Siri Chongchitnan

Exploring University
Mathematics

with Python

@ Springer

Exploring University Mathematics with Python

Siri Chongchitnan

Exploring University
Mathematics with Python

@ Springer

Siri Chongchitnan
Mathematics Institute
University of Warwick
Coventry, UK

ISBN 978-3-031-46269-6 ISBN 978-3-031-46270-2 (eBook)
https://doi.org/10.1007/978-3-031-46270-2

Mathematics Subject Classification (2020): 00-01

©The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG
2023

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the
whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions
that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://doi.org/10.1007/978-3-031-46270-2

To my teachers

Preface

Motivation

Python is now arguably the world’s most popular programming language, thanks to its
gentle learning curve, clear syntax, wide range of open-source libraries and active online
support community. Over the past decade, Python programming has become a highly
desirable skill to employers not only in the STEM and ICT sectors, but also in any industry
involving data. It comes to no surprise then that Python has now been integrated into school
and university curriculums around the world.

A typical mathematics university curriculum would include some element of program-
ming, usually in a standalone module. However, in my experience teaching at several UK
universities, students often regard programming as just another module that is disparate
from a typical ‘pen-and-paper’ module.

In my opinion, this is an extremely unhealthy viewpoint, because programming can
often help us gain a more solid understanding of mathematics in comparison to a purely
pen-and-paper approach. It is true that much of university mathematics is driven by theorems
and proofs, and it is also true that Python does not prove theorems. However, Python gives
us the power and freedom to glimpse into the unknown, leading us towards insightful
conjectures that would have been difficult to formulate otherwise.

Hence, I was motivated to write a mathematics textbook that is richly interwoven with
Python, rather than another Python textbook with some mathematical examples. The spirit
of this book is one of mathematical exploration and investigation. I want to show students
that Python can hugely enrich our understanding of mathematics through:

* Calculation: Performing complex calculations and numerical simulations instantly;

 Visualisation: Demonstrating key theorems with graphs, interactive plots and anima-
tions;

* Extension: Using numerical findings as inspiration for making deeper, more general
conjectures.

Who is this book for?

I wrote this book for all learners of mathematics, with the primary audience being mathe-
matics undergraduates who are curious to see how Python can enhance their understanding
of core university material. The topics I have chosen represent a mathematical tour of what
students typically study in the first and second years at university. As such, this book can
also serve as a preview for high-school students who are keen to learn what mathematics is
like at university.

vii

viii PREFACE

In addition, I hope this book will also benefit mathematics lecturers and teachers who
want to incorporate programming into their course. I hope to convince educators that
programming can be a meaningful part of any mathematical module.

Structure

The topics covered in this book are broadly analysis, algebra, calculus, differential
equations, probability and statistics. Each chapter begins with a brief overview of the
subject and essential background knowledge, followed by a series of questions in which key
concepts and important theorems are explored with the help of Python programs which
have been succinctly annotated. All code is available to download online.

At the end of each section, I present a Discussion section which dives deeper into the
topic. There are also a number of exercises (most of which involve coding) at the end of
each chapter.

Assumed knowledge

In terms of programming knowledge, this book does not assume that you are a highly
experienced user of Python. On the other hand, complete beginners to Python might struggle
to follow the code given. I would suggest that the reader should have the most basic
knowledge of programming (e.g. you know what a for loop does).

For completeness, I have included a section called Python 101 (Appendix A) which
gives instructions on installing Python and signposts to references that can help anyone pick
up Python quickly.

In terms of mathematical knowledge, I do not assume any university-level mathematics.
Students who are familiar with the material in the standard A-Level mathematics (or
equivalent) should be able to follow the mathematical discussions in this book.

Acknowledgements

I am extremely grateful to have received extensive comments from my early reviewers,
many of whom are students at my home department, Warwick Mathematics Institute. They
are:

* Maleeha Ahmad * Kit Liu e Zac Ruane

* Michael Cavaliere e William Mau « Reduan Soroar
 Carl Beinuo Guo * Ben Middlemass

* Rachel Haddad * Kush Patel * Kyle Thompson
* Trinity Jinglan Hu * Payal Patel

e Rachel Siy% Hong » Safeeyah Rashid * Ben Wadsworth
» Kornel Ipacs * Danny Robson * Jiewei Xiong

I would also like to thank the team at Springer for their support. Special thanks to Richard
Kruel for his belief in my idea and his unwavering encouragement.

Siri Chongchitnan
Coventry, UK

PREFACE ix

The code

a) Downloading and using the code

All code is available to download from
https://github.com/siriwarwick/book

We will be coding in Python 3 (ideally 3.9 or higher). To find out which version you
have, see the code box below. If you don’t have Python installed, see Appendix A.

There are many ways to run Python programs, but by default, I will assume that you
are working in JupyterLab (or Jupyter Notebook). You will be working with files with
the . ipynb extension. For more information on the Jupyter IDE (integrated development
environment), see https://jupyter.org.

There are alternative IDEs to Jupyter, for example:

e IDLE (which comes as standard with your Python distribution);
e Spyder (https://www.spyder-ide.org);

e PyCharm (https://www. jetbrains.com/pycharm);

* Replit (https://replit.com).

If you prefer these IDEs, you will be working with files with the . py extension.
Code and annotations will be given in grey boxes as shown below. The code is given on
the right, whilst the explanation is given on the left.

filename.ipynb (for checking Python version)

'from platform import python_version

Let’s check your version of Python | python_version()

b) About %matplotlib

We will often use the line
%matplotlib

to make any plot interactive (rather the usual static ‘inline’ plot). The zoom and pan buttons
in the GUI window will be particularly useful. To return the static plot, use the command:

%matplotlib inline

%matplotlib is one of the so-called ‘magic’ commands! that only work in the Jupyter
environment and not in standard Python.
If you have difficulty running with just %matplotlib, try running this line of code in an
empty cell
%matplotlib -1

(that’s a small letter L after the dash). This should list all the graphics backends available
on your machine. Choose one that works for you. For example, if gt is on the list, replace
%matplotlib by

%matplotlib gt

! For more on magic commands, see https://ipython.readthedocs.io/en/stable/interactive/
magics.html

https://github.com/siriwarwick/book
https://jupyter.org
https://www.spyder-ide.org
https://www.jetbrains.com/pycharm
https://replit.com
https://ipython.readthedocs.io/en/stable/interactive/magics.html
https://ipython.readthedocs.io/en/stable/interactive/magics.html

X PREFACE

¢) Coding style

Everyone has their own style of coding. The code that I present in this book is just
one of many ways of approaching the problems. Keeping the purpose and the audi-
ence in mind, I tried to minimise the use of special packages and clever one-liners,
but instead I placed a greater emphasis on readability. In particular, I do not use the
if __name__ == "__main__": idiom. My goal in this book is to show how basic
knowledge Python goes a long way in helping us delve deeply into mathematics.

In short, every piece of code shown can be improved in some ways.

A caveat: some code may produce warnings or even errors as new versions of Python
roll out since the publication of this book. If you feel something isn’t quite right with the

code, check the book’s GitHub page for possible updates.
d) Getting in touch

Comments, corrections and suggestions for improvement can be posted on the discussion
section on the book GitHub

https://github.com/siriwarwick/book/discussions

or emailed to siri.chongchitnan@warwick.ac.uk. I will be happy to hear from you
either way.

https://github.com/siriwarwick/book/discussions
mailto:siri.chongchitnan@warwick.ac.uk

CONTENTS

ANALYSISo 5
1.1 Basics of NumPy and Matplotlibcccciiien.. 6
1.2 Basic concepts in analysisouuuiueuineuineinanan 6
1.3 The &, N definition of convergence for sequences 10
1.4 Convergence of SEriesovuunt e 15
1.5 The Harmonic Seriesoouiiinin i 17
1.6 The Fibonacci S€qUeNCecooiiiimiinniiiianeaeenn.. 20
1.7 The &, ¢ definition of continuity 23
1.8 Thomae’s function.ot 30
1.9 The Intermediate Value Theorem and root finding 33
1.10 Differentiationt 36
1.11 The Mean Value Theoremt ininnnnn.. 41
1.12 A counterexample in analysiS........... ... 44
113 EXCICISES oottt e 47
Calculus 53
2.1 Basic calculus with SCiPyo 54
2.2 Comparison of differentiation formulae 55
2.3 Taylor SEIIeS . o v vttt e e 59
2.4 Taylor’s Theorem and the Remainderterm........................... 63
2.5 A continuous, nowhere differentiable function 67
2.6 Integration with Trapezium Rule 70
2.7 Integration with Simpson’sRule 72
2.8 Improperintegralst 75
2.9 FOUTET SEIIES . . o v vttt ettt e e e e 82
2,10 EXEICISES .. vttt ettt e e e 87
Vector Calculus and Geometry, 95
3.1 Basic concepts in vector calculus i 96
3.2 Thecycloid.o 101
33 Arclengthofanellipse. ... 104
3.4 CUIVALUTE . ..ottt et e et e e e e e e e e e e 108
3.5 TOTSION .. v ettt 112
3.6 Quadric Surfaces 117
37 Surfacearea 120
3.8 Normal to surfaces and the grad operator 124

Xii

CONTENTS

3.9 The Divergence Theorem and the div operator 129
3.10 Stokes’ theorem and the curl operator, 135
31T EXETCISES o vttt et ettt e e e e e e e e e 142
Differential Equations and Dynamical Systems 147
4.1 Basic concepts: ODEs, PDEs and reCurSions 148
4.2 Basics of Matplotlib animationc.couuuiueiineennn. 150
43 ODEI-first-order ODES......... 150
44 ODEIl-thependulum.t 160
4.5 ODEIII —the double pendulum. ioa.. 165
4.6 ODEIV —the Lorenz equations.o.uuiiiiieinnnneeeenn.. 171
477 The Logistic Mapottt e et 176
4.8 The Mandelbrot Setcoouuuiiiiiii e 181
49 PDEI-theheatequation................. iiiiiiiiiin. 190
4.10 PDEII - the wave equation oiiiiiiaon... 197
411 EXEICISES .\ i ittt et e e 204
Linear Algebra 215
5.1 Basics oOf SYMPYot 216
5.2 Basic concepts in linear algebra 217
5.3 Linearsystems in R 224
5.4 Four methods for solving Ax =b i 230
5.5 Matrices as linear transformations. o i 237
5.6 Eigenvalues and eigenvectorsouuett it 243
5.7 Diagonalisation: Fibonacci revisited, 251
5.8 Singular-Value Decomposition.c.oviiiiiiiiiiinn... 258
5.9 The Rank-Nullity Theorem. it 265
5.10 Gram-Schmidt process and orthogonal polynomials................... 272
S.A1 EXEICISES ..ottt e e e 278
Abstract Algebra and Number Theory................................. 283
6.1 Basic concepts in abstract algebra 283
6.2 Basic concepts in number theoryouuuiieiieiinn. 285
6.3 Groups [—Cyclic groupot 289
6.4 Groups Il - Dihedral group it 295
6.5 Groups III — Symmetric and alternating groups. 302
6.6 QUALETNIONS . ..o\ttt ettt e et e e et 311
6.7 Elementary number theory I: Multiplicative inverse modulon 318
6.8 Elementary number theory II: Chinese Remainder Theorem 322
6.9 Elementary number theory III: Quadratic residue and the reciprocity law . 327
6.10 Analytic Number Theory I: The Prime Number Theorem 332
6.11 Analytic Number Theory II: The Riemann zeta function 336
6.12 Analytic Number Theory III: The Riemann Hypothesis 343
6.13 EXCICISES ...ttt et e 348
Probability 355
7.1 Basic concepts in cOMDINAIOTICSouuuiee e 356
7.2 Basic concepts in probability 357
7.3 Basics of random numbers in Python 362

7.4 Pascal’striangle.o 363

CONTENTS xiii

7.5 CointOSSING . ..ot 369
7.6 The Birthday Problem........ 377
7.7 The Monty Hall problem i, 381
7.8 The Normal distribution i i 386
7.9 The Poisson distribution 391
7.10 Monte Carlo integrationc..oiiiiiiiiiinnnnnnn. 395
7.11 Buffon’sneedle 401
TA2 EXEICISES .ottt ettt e e 407
8 Statistics 415
8.1 Basic concepts in StALISTICS oo v ettt ettt 416
8.2 Basics of statistical packages 421
8.3 Central Limit Theorem i .. 423
8.4 Student’s ¢ distribution and hypothesis testing 429
8.5 x? distribution and goodness of fit, 438
8.6 Linear regression and Simpson’s paradoX.ccoooiiieeoa... 444
8.7 Bivariate normal distribution o 451
8.8 Randomwalkso 458
8.9 Bayesianinference........... 463
8.10 Machine learning: clustering and classification 471
.11 EXEICISES . .vtt ettt e e e 479
Appendix A: Python 101 489
ALl Installation 489
A2 Learning Python 490
A3 Python data typesttt 491
A4 Random musingsttt 497
References 501
Index 507

ALL CODE AND BRIEF DESCRIPTIONS

All code and brief descriptions
All code (in .ipynb and .py) is available to download from https://github.com/siriwarwick/book.

Section |Filename What does the code do?
1.3 |sequence-convergence.ipynb [Plots terms in a sequence
1.4 |series-convergence.ipynb [Plots partial sums of a series
1.5 |harmonic.ipynb Demonstrates that the harmonic number H,, is
approximately Inn + y
1.6 |fibonacci.ipynb Demonstrates that the Fibonacci sequence F;,
" scales like ¢" (where ¢ is the Golden ratio)
217 Explores the -6 definition of continuity using
Té continuity.ipynb - ipywidgets slider (Jupyter only)
<_ continuityslider.ipynb - Matplotlib slider
| 1.8 [|thomae.ipynb Plots Thomae’s function
1.9 |bisection.ipynb Performs bisection root finding
1.10 |differentiation.ipynb Performs numerical differentiation (forward Euler)
1.12 |counterexample.ipynb Shows a counter-intuitive property of the function
f(x) = x + 2x%sin(1/x), showing its behaviour
near the origin
2.2 |Eh.ipynb Plots the error E (/) in numerical differentiation
(forward difference) as a function of step size h
2.3 |taylor.ipynb Plots a function and its Taylor series of various
degrees
2.4 |taylorthm.ipynb Plots the error Ry in the Taylor-series approxima-
. tion as a function of the degree N
% 2.5 |weierstrass.ipynb Plots the Weierstrass function
% 2.6 |trapezium.ipynb Plots the error E(h) in numerical integration
o (Trapezium Rule) as a function of step size &
A 2.7 |simpson.ipynb Plots the error E(h) in numerical integration
(Simpson’s Rule) as a function of step size h
2.8 |improper.ipynb Plots the error in numerical integration of an
improper integral
2.9 |fourier.ipynb Plots the Fourier series (up to n terms) of a given
function
3.2 |cycloid.ipynb Generates a cycloid from a rolling wheel
3.3 |ellipse.ipynb Calculates the perimeter of an ellipse and com-
" pares with Ramanujan’s approximation
_; 3.4 |curvature.ipynb Plots a parametric curve in R? and its curvature «
% 3.5 |torsion.ipynb Plots a parametric curve in R? and its torsion 7
©| 3.6 |quadrics.ipynb Visualises a family of quadric surfaces
§ 3.7 |surfacearea.ipynb Calculates the area of (part of) an ellipsoidal
3 surface
: 3.8 |grad.ipynb Plots a 3D surface and its contour lines
3.9 |div.ipynb Demonstrates the divergence theorem
3.10 |curl.ipynb Demonstrates Stokes’ theorem for a family of
surfaces

https://github.com/siriwarwick/book

4. Differential Equations

ALL CODE AND BRIEF DESCRIPTIONS
Section|Filename What does the code do?
4.3 |odesolver.ipynb Solves a first-order ODE numerically and plots the
result
4.4 |pendulum.ipynb Animates a pendulum by solving a 2nd order ODE
4.5 |doublependulum.ipynb|Animates the (chaotic) double pendulum by solving a
system of ODEs
4.6 |lorenz.ipynb Animates the Lorenz system, showing a strange at-

tractor

4.7 |logistic.ipynb Plots the bifurcation diagram for the logistic map
4.8 |mandelbrot.ipynb Plots the Mandelbrot set
mandelbrot3D.ipynb |Visualises the connection between the Mandelbrot set
and the logistic map
4.9 |heat.ipynb Animates the solution of the 1D heat equation
4.10 |wave.ipynb Animates the solution of the 2D wave equation
5.3 |planes.ipynb Visualises a system of linear equations as planes in
R3
5.4 |solvetimes.ipynb Plots the time taken to solve a linear system as a
= function of matrix dimension
2| 5.5 |transformation.ipynb |Visualisesa2X2 matrix as a geometric transformation
%” 5.6 |eigshow.ipynb Visualises the eigenvectors and eigenvalues of a 2 X 2
= matrix via a game
g| 5.7 |diagonalise.ipynb Visualises matrix diagonalisation as a sequence of 3
= transformations
wi| 5.8 |svd.ipynb Performs singular-value decomposition of an image
5.9 |ranknullity.ipynb Visualises the rank-nullity theorem
5.10 |gramschmidt.ipynb Plots the Legendre polynomials obtained via the Gram-
Schmidt process
o 6.3 |cayley.ipynb Produces the Cayley table for a group
5| 6.4 |dihedral.ipynb Visualises the dihedral group as rotation and reflection
= of a polygon
t 6.5 |permutation.ipynb Produces the Cayley table for a permutation group
2| 66 quaternion.ipynb Rotates a point about an axis in R? using a quaternion
5 6.7 |inversewheel.ipynb Produces an intriguing pattern in a circle using pairs
z of multiplicative inverses modulo n
°§ 6.8 |crt.ipynb Visualises the solutions of a pair of congruences
% 6.9 |legendre.ipynb Visualises the Quadratic Reciprocity Law
20 6.10 |pnt.ipynb Visualises the Prime-Number Theorem
E 6.12 |zetaanim.ipynb Animates the image of the critical line Re(s) = %

under the Riemann zeta function

ALL CODE AND BRIEF DESCRIPTIONS

Section|Filename What does the code do?
7.4 |pascal.ipynb Produces Pascal’s triangle modulo 2
7.5 |coinl.ipynb Simulates multiple coin throws and plots the distribution
of the number of heads observed
coin2.ipynb Plots the distribution of the first occurrence of a partic
o ular sequence in multiple coin throws
Z| 7.6 |birthday.ipynb Simulates the birthday problem
=| 7.7 |montyhallipynb [Simulates the Monty Hall problem
E 7.8 |normal.ipynb Simulates the Galton board (visualising the normal
- distribution)
™1 7.9 |poisson.ipynb Simulates scattering dots randomly in a grid and plots
the distribution of dot counts per square
7.10 |montecarlo.ipynb |Plots the fractional error for Monte Carlo integration as
a function of the number of random points used
7.11 |buffon.ipynb Simulates the Buffon’s needle problem
8.3 |CLT.ipynb Demonstrates the Central Limit Theorem by sampling
from a given distribution
8.4 |ttest.ipynb Plots the distribution of the population mean from a
small sample and performs a one-sample z-test
8.5 |chi2test.ipynb Plots the observed and expected frequencies for cate-
% gorical data and performs a y? test
:‘5 8.6 |regression.ipynb |Plots a regression line through data points and demon-
= strates Simpson’s paradox
@| 8.7 |bivariate.ipynb Plots the bivariate normal distribution and its contour
% ellipses
8.8 [randomwalk.ipynb |Generates 1D random walks and plots the mean distance
travelled as a function of time step
8.9 |bayesian.ipynb Plots the prior and posterior for Bayesian inference
8.10 |clustering.ipynb |Performs k-means clustering
classification.ipynb |Performs k-nearest neighbour (kKNN) classification

VISUALISATION RECIPES

Visualisation recipes

Recipe Section|Code
Plots
Plot with different types of lines 1.3 |sequence-convergence.ipynb

Plot a large number of curves, with a gradual| 2.3 |taylor.ipynb
colour change
Two-panel plot in R? 1.5 |harmonic.ipynb
Plot parametric curves and surfaces in R and R3| 3.1 [see text
Plot polar curves 3.1 |see text
Plotting in R? with Plotly 5.3 |planes.ipynb
Three-panel plot in R3 5.9 |ranknullity.ipynb
Plot one panel in R? next to one in R? 3.8 |grad.ipynb
Plot a 3D surface and its contour lines 3.8 |grad.ipynb
Shade the area under a graph 8.4 |ttest.ipynb
Draw a filled polygon 6.4 |dihedral.ipynb
Sliders
Slider controlling a plot in R? 1.7 |continuityslider.ipynb
Slider controlling a plot in R3 3.6 |quadrics.ipynb
One slider controlling two plots in R? 3.4 |curvature.ipynb
One slider controlling two plots, one in R? and 3.5 |torsion.ipynb
one in R3 8.7 |bivariate.ipynb
Two sliders controlling one plot in R? 2.5 |weierstrass.ipynb
Heatmaps
Heatmap + vector field + slider (in R?) 3.9 |div.ipynb
Heatmap + slider (polar coordinates) 3.10 |curl.ipynb
Animations
Animation in R? 4.4 |pendulum.ipynb
4.9 |heat.ipynb
Animation with two panels in R? 6.12 |zetaanim.ipynb
Animation in R3 4.6 |lorenz.ipynb
4.10 |wave.ipynb
Visualising matrices
Display a matrix with colour-coded elements 6.3 |cayley.ipynb
4.8 |mandelbrot.ipynb
Read in an image file 5.8 |svd.ipynb
Visualising data
Plot a histogram with Matplotlib 7.5 |coinl.ipynb
Plot a histogram with Seaborn 8.3 |CLT.ipynb
Fit a line through a scatter plot 7.10 |montecarlo.ipynb
Read data from a file and store as Pandas| 8.6 |regression.ipynb
dataframes
Write data to a file 8.7 |see text
Shade 2D regions according to classifications with| 8.10 [classification.ipynb

Scikit-learn

®

Check for
updates

CHAPTER
ONE

Analysis

Real analysis is the study of real numbers and maps between them (i.e. functions). Analysis
provides a solid foundation for calculus, which in turn gives rise to the development of other
branches of mathematics. The main feature of analysis is its rigour, meaning that every
concept in analysis is defined precisely with logical statements without the need for pictures.

AUGUSTIN
CAUCHY
1789-1857

REPUBLIQUE FRANCAISE

LA POSTE 1989

Fig. 1.1: Augustin-Louis Cauchy (1789-1857), one of the founders of modern analysis.
Cauchy is commemorated on a French stamp shown on the right. (Image source: [137].)

Analysis is a subject which many new university students find to be most different
from how mathematics is taught in school. The proof-driven nature of the subject can
be overwhelming to some students. In this chapter, we will see how Python can help us
visualise and understand key concepts in analysis.

In addition to real numbers, the main objects in analysis are sequences, series and
functions. We will first see how these objects can be represented and manipulated in
Python. We then give a survey of some key theorems in analysis and see how Python
can help us understand these theorems more deeply. We will focus on understanding and
visualising the theorems themselves, rather than the proofs. The proofs of the theorems
discussed in this chapter can be found in good analysis textbooks, amongst which we
recommend [10,20,91, 143,189].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 5
S. Chongchitnan, Exploring University Mathematics with Python,
https://doi.org/10.1007/978-3-031-46270-2 1

https://doi.org/10.1007/978-3-031-46270-2_1
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46270-2_1&domain=pdf

6 1 Analysis

1.1 Basics of NumPy and Matplotlib

NumPy is an indispensable Python library for mathematical computing. Most mathematical
objects and operations that you are familiar with are part of NumPy. Equally indispensable
is the Matplotlib library which is the key to visualising mathematics using graphs and
animations. It is standard practice to import NumPy and Matplotlib together using the
following two lines at the beginning of your code.

import numpy as np
import matplotlib.pyplot as plt

1.2 Basic concepts in analysis

Sequences

A sequence (a,,) is simply a succession of numbers with the subscriptn = 1,2,3 ... labelling
the order of appearance of each term. For example, the sequence (a,) = (%) contains the

termsa; =1, a; = %, as = é and so on. The bracketed notation (a,,) denotes the entire
sequence, whereas a, denotes a single term in the sequence.

Sequences can be finite, for example, (an)fl =1 %, é, 1—16, % However, in analysis, we
are mainly interested in the behaviour of infinite sequences (a,,);’l":l.

Sequences are easily represented as NumPy arrays, which are one of the most useful
objects in Python (another method is to use lists which we will discuss later). Naturally, we
cannot store infinitely long arrays in Python. But take the array to be long enough and it
will usually be sufficient to reveal something about the behaviour of the infinite sequence.

It is often necessary to create a sequence of equally spaced numbers between two given
numbers (in other words, an arithmetic progression). Such a sequence can be easily created
using NumPy’s linspace command:

np.linspace(first element, last element, how many elements)

The third argument is optional. If not provided, the default is 50 elements, equally spaced

between the first and the last elements. It is worth noting the terminology here: each term in

a sequence can be identified with an element in a NumPy array. 1inspace is especially

useful for plotting graphs, since we usually want equally spaced points along the x-axis.
The same sequence can also be created using the arange command of the form:

np.arange (first element, >last element, step)

where >last element means any number greater than the last element, but not exceeding last
element + step. This is because, by convention, the 2nd argument in arange is not included
in an arange array. In practice, just choose a number that is slightly larger than the final
element desired. The third argument is optional, with the default = 1.

If you want to create a short sequence by manually specifying every element, use the
following syntax:

np.array([elementl, element2, ..., last element])

1.2 Basic concepts in analysis 7

Here are some examples of how to create sequences in Python and obtain new ones using
array operations.

Creating sequences as arrays

Standard header (for all code on this page) : import numpy as np
|

100 evenly spaced values from 0 to 5 'np.linspace(®, 5, 100)

a_n = np.arange(3, 100)

(@n)=3,4,5,...99

(bp)=3,57,...99 b_n = np.arange(3, 99.1, 2)

(cn) =4 V2,7 cn = np.array([1/3, np.sqrt(2), np.pil)
(dy) =100 terms, all 0. d_n = np.zeros(100)
(en) = 100 terms, all 0.7. e_n = np.full(100, 0.7)

Array operations

Addition and scalar multiplication
(xn) = (2an -3)

Yn) = (an + xn)

|
|
|
|
:
|
Multiplication and division !
|
(Xnyn) 1X_n*y_n
|
|
|
|
|
|
|
|

(2/xn) 2/x_n
(Xn/yn) x_n/y_n
Exponentiation

(xfl) 1 X_n**3
3*m) | 3%%x_n

Other useful array commands

The number of elements in an array x,, : len(x_n)

Shape of the array 1 X_n.shape
|

Calling elements of (x,,) by its index |

The first element : x_n[0]

The fifth element 1x_n[4]

The last element : x_n[-1]

The first 9 elements (slicing) 1 x_n[0:9]

(zn) = zero array, same shape as x,, : z_n = np.zeros_like(x_n)
(w,,) = array of 0.7, same shape as x, W_n = np.full_like(x_n, 0.7)

Here are some Python tips to help avoid errors.

* Initial index In Python, the index of each array starts from O, not 1.

+ *% means power In some programming languages (e.g. MATLAB), x? is coded as
x+2. However, in Python, the operation ab is a bitwise addition modulo 2 (i.e. a and b
are converted to binary and added bitwise modulo 2). This is something that we will
seldom need in mathematics problems, so be careful!

List vs array Instead of a NumPy array, one can also work with a Python list. There
are subtle differences between the two data types. For most numerical purposes, we
will be using arrays, although there will be occasions where we will also use lists, or
mix the two data types. We compare arrays and lists in detail in the Appendix A.3.

8 1 Analysis

Series

A series is the sum of terms in a sequence. If the sequence is infinitely long, the sum of the

terms is an infinite series denoted 7>,

(e8]
X, . For example, the sequence (#) . gives rise
. n=
to the series

i L 1+ 1 +] +] +
Linp2 49 16 7

Of course, Python cannot deal with infinitely many terms, but we can still compute the
partial sums

N
SN =Zx,, =X +X2+...+xXN.
n=1

for large values of N. These partial sums should give us a good idea about whether the
series converges to a finite number, or diverges (e.g. the sum becomes arbitrarily large, or
fluctuates without settling down to a value). We will study the convergence of a number of
interesting series in §1.4.

A useful command for evaluating series is sum(an array). Another useful operator in
Python 3 is the @ operator, which is equivalent to the dot product of two arrays, i.e.

x@y =np.dot(x, y) =sum(x*y)

Of course there is also the option of using the for loop. This is the most appropriate method
if you need to plot the partial sums. Here are two examples of series evaluation using various
methods.

Series evaluation

| import numpy as np
100 :
Zn ix= np.arange(l,101)
n=1 ! sum(x)
'# or
'S =20
(for n in np.arange(1,101):
} S+=n
100 :
Z”(’l+3) ' X@(x+3) # or
n=1 ' sum(x* (x+3)) # or
inp.dot(x, x+3) # or
'S =0
'for n in np.arange(1,101):
| S += n*(n+3)
Functions

A function f is a mapping which takes as its input an object x € A (where A is called the
domain), and produces an output f(x) € B (where B is called the codomain). We denote
such a mapping by the notation f : A — B.

1.2 Basic concepts in analysis 9

Functions in Python are defined using the def command, which has a rich structure. A
function expects brackets in which arguments (if any) are placed. In most cases, you will
also want your function to return an output.

Instead of def, another way to define a function in a single line is to use the lambda
function (also called anonymous function).

For example, let F(x) = 2x + 1 and G(x,y) = x + y. In the box below, the left side
shows the def method. The right side shows the lambda-function method.

Defining functions

Method I: def

def F(x):

' Method II: Lambda functions
\F
return 2*x+1 |

= lambda x : 2*x+1

def G(x,y):
return x+y

D
1l

lambda x,y : x+y

We often use lambda functions when creating very simple functions, or when feeding a
function into another function. In the latter case, the lambda function does not even need
to have a name (hence ‘anonymous’). This will be useful when we discuss integration in
Python — for a preview, take a look at the end of §3.1.

Now that we can define sequences, series and functions in Python, we are ready to
investigate some key definitions and theorems in analysis.

10 1 Analysis

1.3 The &, N definition of convergence for sequences

A sequence of real numbers (x,) is said to converge to x € R (and we write
lim x, = x) if,

n—oo

For any € > (), there exists an integer N € N such that, foralln > N, |x, —x| < €.
Consider sequences defined by the following expressions for each term.

1 sinn Inn 1\"
Wxi=l-= by =l g, =28 d)En=(1+—).

n n n n

For each sequence, find the limit as n — oco. Investigate the relationship between &
and N.

This is one of the most important definitions in analysis. It gives a rigorous way to express
an intuitive concept of convergence as n — oo very precisely. Let’s first try to unpack the
definition.

Let’s call |x,, — x| the error (i.e. the absolute difference between the nth term of the
sequence and the limit x). The definition above simply says that down the tail of the sequence,
the error becomes arbitrarily small.

If someone gives us & (typically a tiny positive number), we need to find how far down
the tail we have to go for the error to be smaller than £. The further we have to go down the
tail, the larger N becomes. In other words, N depends on &.

Now let’s consider the first sequence x, = 1 — % The first step is to guess the limit as

n — oo. Clearly, the % term becomes negligible and we guess that the limit is 1. Now it
remains to prove this conjecture formally. We go back to the definition: for any given & > 0,
the error is given by

1 1
|Xn—l|zz<ﬁ<8,

where the final inequality holds if we let N be any integer greater than 1/¢. For instance, if
someone gives us € = 3/10, then any integer N > 10/3 would work (e.g. N = 4). We have
shown that this choice of N implies that the definition holds, hence we have proved that
nlglgo xn = 1.

The definition holds if there exists one such integer N, so that in the proof above, N + 1
or 3N? + 5 are also equally good candidates (one just goes further down the tail of the
sequence). However, it is still interesting to think about the smallest N (let’s call it Np;,)
that would make the definition of convergence work. We could tabulate some values of Ny,
for the sequence x,,.

& 03 02 01 005 0.03
Numin | 4 5 10 20 34

We can easily confirm these calculations with the plot of the error |x, — 1| against n
(solid line in fig. 1.2).

Next, let’s consider the sequences y, . What does it converge to? Since sin n is bounded
by —1 and 1 for all n € N, whilst n can be arbitrarily large, we guess that y, converges to 0.
The proof can be constructed in the same way as before. For any € > 0, we find the error:

1.3 The &, N definition of convergence for sequences 11

i 1 1
-0 = 13k L L (1.1
n n N

where the final inequality holds if we let N be any integer greater than 1/&. However, the
latter may not be Ny, because we have introduced an additional estimate | sinn| < 1.

It seems that Np,;, cannot be obtained easily by hand, and the error plot (dashed line in
fig. 1.2) also suggests this. For example, we find that when € = 0.1, Np;, = 8 rather than 10
as we might have expected from Eq. 1.1.

A similar analysis of the relationship between & and N can be done for remaining
sequences z, and E;. The sequence z,, converges to 0 because, intuitively, In # is negligible
compared with n when n is large (we discuss how this can be proved more rigorously in the
Discussion section).

Finally, the famous sequence E,, can be regarded as the definition of Euler’s number e

ln
e = lim (1+—) .

n—oo n

The errors of all these sequences approach zero, as shown in fig. 1.2 below. Matplotlib’s
plot function renders the errors as continuous lines, but keep in mind that the errors form
sequences that are defined only at integer #, and the lines are for visualisation purposes only.

0.40

0.35 A1

0.30 1

0.25 1

0.20 1

|Error|

0.15 A

0.10 1

0.05 1+

0.00

Fig. 1.2: The error, i.e. the absolute difference between the sequences x,,, y,, Zn, E, and
their respective limits.

The code sequence-convergence.ipynb plots fig. 1.2. Remember that all code in
this book can be downloaded from the GitHub page given in the Preface.

1 Analysis

sequence-convergence.ipynb (for plotting fig.)

i import numpy as np
| import matplotlib.pyplot as plt

Consider up to n = 40 ! n = np.arange(1,41)
I
|
'recp = 1/n

Define x,, xn = l-recp

Error = |x,, — x| where x = lim x,, =0
—00

lerr_xn = recp
n |

lim y,, =0 yn = np.sin(n)/n
noe err_yn = abs(yn)
lim z,, =0 zn = np.log(n)/n
nee err_zn = abs(zn)

lim E,, =¢ En = (l+recp)**n

n—oo

err_En = abs(En-np.e)
Plotting with dots (markersize = 3) joined by | plt.plot(n, err_xn, 'o-' , ms=3)
various line styles ! plt.plot(n, err_yn, 'o--', ms=3)
plt.plot(n, err_zn, 'o-.', ms=3)
plt.plot(n, err_En, 'o:' , ms=3)
3 plt.x1im(®, 40)
iplt.ylim(0®, 0.4)
r allows typesetting in LaTeX iplt.xlabel(r'n")
plt.ylabel(' |Error|")
'plt.legend([r'$|x n-11$', r'$|y n|$",
: r'$|lz_nl$', r'$|E_n-e|$']1)
plt.grid('on')
i plt.show()

Suppose that at some point, the error shrinks monotonically (i.e. it does not fluctuate like
the error for y,), we can use the code below to search for Ny, for a given value of epsilon.
Take E,, for example.

Finding N given &

For any given &, say, 107 'epsilon = le-5

mn =1

lerr = np.e - (1 + 1/n)**n
Continue searching until the error < & iwhile err >= epsilon:
Increasing n by 1 per iteration n+=1

err = np.e - (1 + 1/n)**n

=", n-1)

Report Npin print("N_min

In this case, we find that for the error to satisfy |E, — e| < 1073, we need n > Nyin =
135912.

1.3 The &, N definition of convergence for sequences 13

DiscussioN

* Floor and ceiling. Instead of saying “N is the smallest integer greater than or equal to
x”’, we can write
N = [x],

which reads “the ceiling of x". For example, in our proof that the sequence x,, = 1 —1/n
converges, given any & > 0, we can take N = [¢7!].

Similarly, one can define | x| (the floor of x) as the smallest integer less than or equal
to x.

¢ Squeeze Theorem. Consider y,, = sinn/n. The numerator is bounded between —1 and

1, so we see that

-1 1
— <yp < —.

As n becomes large, y,, is squeezed between 2 tiny numbers of opposite signs. Thus,
we have good reasons to believe that y, also converges to 0. This idea is formalised by
the following important theorem.

Theorem 1.1 (Squeeze Theorem) Let a,,, by, ¢, be sequences such that a, < b,, < ¢,
foralln € N. If lim a, = lim ¢,, then lim a, = lim b, = lim c,.

n—-oo n—oo n—oo n—-oo n—-oo

The Squeeze Theorem can also be used to prove that z,, = Inn/n — 0. Using the
inequality In x < x for x > 0, observe that

0 Inn_ 2y 2y _ 2

Now take the limit as n — oo to find that lim Inn/n = 0.

n—oo

* Monotone convergence. Why is the sequence E, = (1 + %)" convergent? First, we
will show that E,, < 3. The binomial expansion gives:

En=(1+2 n—1+1+Zn: n)]
" n) k| nk
k=2
Observe that:

(n) 1 1nn-Dm-2)...(n—(k—-1))
k

1 1 2 k-1
—— 1 d1==11=2)... (1=
a =) =2 -
1
<_
k!
_ 1
C1-2-3..k
1
<
—1-2-2...-2
1

1 Analysis

Therefore, the sequence is bounded above by the sum of a geometric series.

(o)

Sl 1
En<2+ZF<2+ F=3
k=2 k=2

2.7 A

2.6

2.5 4

2.4 4

2.3 4

2.2

2.1+

2.0 A

Fig. 1.3: E, = (1 + 1)m.

In addition, the graph of the sequence E,, (fig. 1.3) shows that the sequence is strictly
increasing (i.e. E, < E,11). The proof is an exercise in inequalities (see [20]). These
facts imply that E,, converges due to the following theorem for monotone (i.e. increasing
or decreasing) sequences.

Theorem 1.2 (Monotone Convergence Theorem) A monotone sequence is convergent
if and only if it is bounded.

1.4 Convergence of series 15

1.4 Convergence of series

By plotting the partial sums, conjecture whether each of following series converges
or diverges.

(o)

1 > (— 1 S|
D), b)Y ”éﬁ“ mgfﬁﬁ'

k=1 k=1

Let’s have a look at one way to plot the partial sum for (a) where S, = 3} _, #

series-convergence.ipynb (for plotting the blue solid curve in fig.)

| import numpy as np
| import matplotlib.pyplot as plt

Calculate partial sums up to Sig X = np.arange(1,11)

l
|
Initialise S to be an array with 10 zeros.,S = np.zeros(len(x))
We will use S to collect the partial sums !
Define each term as a function rdef afunc(k):
: return 1/k**2
|
|
The first partial sum 1S[0] = afunc(1)
|
i for i in range(l, len(x)):
S; = S;-1 + (ith term) : S[i] = S[i-1] + afunc(x[i])
|
Plot the partial sum with dots joined by:plt.plot(x, S, 'o-")
solid line :plt.xlim(l, 10)
iplt.xlabel ('Number of terms')
plt.ylabel('Partial sum')
:plt.legend(['a'])
iplt.grid('on')
iplt.show()

The graphs for (b), (c) and (d) can be obtained similarly by augmenting the above code.
Fig. 1.4 shows the result. We are led to conjecture that series (a) and (b) converge, whilst (c)
and (d) diverge.

DiscussioN

* p-series. Whilst the conjectures are correct, the graphs do not constitute a proof. In
analysis, we usually rely on a number of convergence tests to determine whether a series
converges or diverges. These tests yield the following very useful result in analysis:

1

npP

Theorem 1.3 The p-series Y, — converges if p > 1 and diverges if p < 1.

[

where the shorthand } here means 37",
why series (a) converges and (c) diverges.

for some integer ng. This theorem explains

¢ Euler’s series. The exact expression for the sum in series (a) was found by Euler in
1734. The famous result

=R
25 (12)

n=1

1 Analysis

51 -8 a =1
L~
—* .4
-e- ¢ /-/./ Y S
41 @ d AT g
A e
£ e
@ 3 =Y hd
S P RS .
© Pl
s o 9
o Vo
2 i
/‘ P ——0— 00— 00—
W
1_
T T T T T T T T
1 2 3 4 5 6 7 8 9 10

Number of terms

Fig. 1.4: The partial sums for the series (a)-(d) up to 10 terms

(sometimes called the Basel problem) has a special place in mathematics for its
wide-ranging connections, especially to number theory.

Euler’s series (1.2) is often interpreted as a particular value of the Riemann zeta function
(£(2) = 7%/6 ~ 1.6449). See reference [4] for a number of accessible proofs of this
result. A proof using Fourier series will be discussed later in §2.9. We will study the
zeta function more carefully later in §6.11.

Taylor series. The value of series (b) can be derived from the well-known Taylor
(Maclaurin) series

2 x3 x4

X
1n(1+x)—x—?+?—z...
valid for x € (-1, 1]. Substituting x = 1 shows that series (b) converges toIn2 ~ 0.6931.
We will discuss why this holds on the interval (-1, 1] in §2.4.

Comparison test. Finally, we can understand why series (d) diverges by observing that,
because n > Inn for all n € N, we have

1 1
> .
l+Inn 1+n

Thus, series (d) is greater than }, %, which is divergent (as it is a p-series with p = 1).
This technique of deducing if a series converges or diverges by considering its magnitude
relative to another series (usually a p-series) can be formally expressed as follows.

Theorem 1.4 (Comparison Test) Let x,, and y,, be real sequences such that (eventually)
0 < x, < yn. Then a) Y, x,, converges if 3, y, converges, b)Y, y, diverges if Y, x,
diverges.

1.5 The Harmonic Series 17

1.5 The Harmonic Series

The Harmonic Series is given by

il_l+—+%+

Show that the partial sum of the series grows logarithmically (i.e. increases at the
same rate as the log function).

S

We wish to calculate the partial sums of the Harmonic Series, where each partial sum of
N terms is given by
N

n=1

Slv—‘

As in the previous section, to calculate the partial sum of N + 1 terms in Python, we simply
add one extra term to the partial sum of N terms.

Another thing to note is that, because the sum grows very slowly, we will get a more
informative graph if we plot the x-axis using log scale, whilst keeping the y-axis linear.
This is achieved using the command semilogx.

The question suggests that we might want to compare the partial sums with the (natural)
log curve. We will plot the two curves together on the same set of axes. In fact, if the
partial sums up to N terms grow like In N, then it might even be interesting to also plot the
difference between the two.

The code harmonic.ipynb produces two graphs, one stacked on top of the other. The
top panel shows the growth of the harmonic series in comparison with the log. The difference
is shown in the bottom panel. The calculation itself is rather short, but, as with many
programs in this book, making the plots informative and visually pleasing takes a little more
work.

The resulting plots, shown in fig. 1.5 shows a very interesting phenomenon: the upper
plot shows that the partial sums grows very slowly just like the log, but offset by a constant.
When we plot the difference between the two curves, we see that the difference is between
0.57 and 0.58.

These graphs lead us to conjecture that there is a constant y such that

N
1
y—]\lllinoo(zz—lnN). (1.3)

It is useful to express this as an approximation:

N
1
For large N, Z— ~InN +vy. (1.4)
n
n=1

18 1 Analysis

harmonic.ipynb (for plotting fig.

i import numpy as np
| import matplotlib.pyplot as plt

How many terms in the sum? Nmax = leS

n=1,2,...Nmax in = np.arange(l, Nmax+1)

Initialise hplot, using it to collect the hplot = np.zeros_like(n)

partial sums. harmo is the running total ' harmo = 0

Collecting the partial sums for N in np.arange(®, int(Nmax)):
harmo += 1/n[N]

hplot[N] = YN+ 1/n hplot[N] = harmo

|
1
|
I
|
|
n=1 |
I
|
1

Create 2 stacked plots, specifying, fig, (axl, ax2)=plt.subplots(2, figsize=(5,6))
the dimension in inches |
The upper plot (log scale on the x-axis)' ax1.semilogx(n, hplot, n, np.log(n) , '--')
showing the Harmonic Series and In n |axl. set_x1im([10, Nmax])

raxl.set_ylim([2, 12])

"axl.legend(['Harmonic series', r'$\ln n$'],

loc = 'lower right')

axl.grid('on')

Adjust legend location 3
|
l
The lower plot in red (log x-axis)|ax2.semilogx(n, hplot-np.log(n), 'r')
showing Harmonic Series —Inn rax2.set_x1im([10, Nmax])

|ax2.set_ylim([0.57, 0.63])

| ax2.set_xlabel(r'n")

1 ax2.legend([r'Harmonic - $\In n$'])

: ax2.grid('on')

! plt.show()

DiscussioN

¢ The Euler-Mascheroni constant. The constant y is known as the Euler-Mascheroni
constant (not to be confused with Euler’s number ¢), where

y =np.euler_gamma = 0.5772...

consistent with our findings. The convergence can be proved by showing that the
difference is monotone decreasing (as seen in the lower panel of fig. 1.5) and bounded
below. Hence the limit exists by the monotone convergence theorem. A comprehensive
account of the history and mathematical significance of y can be found in [121].

* The Harmonic Series is divergent. Another observation from the graphs is that the
Harmonic Series diverges to oo, just like the log. In fact, we can deduce the divergence
by the following proof by contradiction. Suppose that the Harmonic series converges to
S, then, grouping the terms pairwise, we find

S=(1+1)+(1+1)+(1+1)+...

2 3 4 5 6

>(1+1)+(1+1)+(1+1)+...
2 2 4 4 6 6

=S.

Several other accessible proofs can be found in [113].

1.5 The Harmonic Series 19

See exercise 1 for an intriguing physical situation in which the Harmonic Series appears.

12

10 A

—— Harmonic series
Inn

10! 107 103 104 10°
0.63

—— Harmonic - Inn
0.62 -

0.61 A

0.60 A

0.59 A

0.58 A

0.57 ————t—t—————
10! 102 103 104 105

n

Fig. 1.5: Top: The partial sums of the Harmonic Series grows like Inn. Bottom: The
difference between the two curves approach a constant y = 0.577.

20 1 Analysis

1.6 The Fibonacci sequence

The Fibonacci sequence is given by the recursive relation:
Fi=1 k=1 F,=F,1+F-.

Investigate the growth of the following quantities: a) F, b) R, = F,/F,_1.

The Italian mathematician Fibonacci (1170-1250) mentioned the sequence in his Liber
Abaci (‘book of calculations’) published in 1202, although the sequence was already known
to ancient Indian mathematicians as early as around 200BC. The sequence is ubiquitous
in nature and has surprising connections to art and architecture. See [169] for a readable
account of the Fibonacci sequence.

A quick calculation of a handful of terms shows that

F,=(1,1,2,3,5,8,13,21,34,55,89, 144, . .),

and R, is the ratio of consecutive terms. The growth of F,, and R,, is shown in fig. 1.6. The
figure is producing by the code fibonacci.ipynb.

Let’s consider the growth of F,,. The semilog plot in fig. 1.6 is, to a good approximation,
a straight line. This suggests that, for large n at least, we have an equation of the form

InF,~an+p = F, ~ A¢",

where « and 3 are the gradient and y-intercept of the linear graph, and the constants A = f
and ¢ = e®. We are only interested in the growth for large n so let’s focus on the constant ¢
for now.

The gradient « of the line can be calculated using two consecutive points at n and n — 1.
Joining these points gives a line with gradient

InF, —InF,_ F,
S M Tl T R,
1 Fn—l

= ¢=e” =R,

a

Thus we conclude that F,, grows like ¢" for large n, where ¢ = lim R,,, which according

to the other plot in fig. 1.6, appears to be just below 1.62. In fact, Python tells us that
Ry5 ~ 1.618034.
Finally, we estimate the y-intercept from the expression

B=InF,-nlnR,.

Using n = 25, Python tells us that A = ef ~ 0.4472136.

1.6 The Fibonacci sequence 21

105 4 167
1.66 1
104 4
1.65 1
. 1.64
10° 4 |
o o
2 1.631
10% 5 1.62 1
1611
101 4
1.60
5 10 15 20 25 5 10 15 20 25

Fig. 1.6: Left: The Fibonacci sequence F,, plotted against n. The vertical scale is logarithmic.
Right: The ratio R,, between consecutive Fibonacci numbers appears to approach a constant
¢ ~ 1.618.

fibonacci.ipynb (for plotting fig.

 import numpy as np
| import matplotlib.pyplot as plt
Plot up to F>s Nend = 25

= np.zeros(Nend+1)

F
R = np.zeros(Nend+1)

|
|
!
Initialise the sequences F, |
andR,, = F,,/F,,_1 :

|

|

Define F and F»

]

—

-

fu
|

=1
'F[2] =1
Iterate the recurrence :for i in np.arange(3,Nend+1):
| F[i] = F[i-1] + F[i-2]
: R[i] = F[i]/F[i-1]
|
|
|

Plot two figures side by side

Set smallest N value on the x-axis Nmin = 5
Plotting on domain [Nmin, Nend] 'Nplt = range(Nmin, Nend+1)

Use vertical log scale to see the : axl.semilogy(Nplt, F[Nmin:Nend+1], 'bo-', ms=3)
growth of F,, ;ax1l.set_xlabel(r'ns")
axl.set_ylabel(r'F_n")
! axl.set_xlim(Nmin, Nend)
Manual adjustment of tick frequency raxl.set_xticks(range(Nmin, Nend+1l, 5))
1 axl.grid('on')
|
I
Use linear scales for plotting R, ! ax2.plot(Nplt, R[Nmin:Nend+1], 'ro-', ms=3)
1ax2.set_xlabel(r'n')
| ax2.set_ylabel (r'F_{n}/F_{n-1}")
| ax2.set_xlim(Nmin, Nend)
! ax2.set_xticks(range(Nmin, Nend+1, 5))
: ax2.grid('on')
|

i plt.show()

22 1 Analysis

DiscussioN

¢ The Golden Ratio. ¢ in fact corresponds to the Golden Ratio

1+V5
-

In fact, our estimate R,s is remarkably accurate to 9 decimal places. The connection
between R, and ¢ can be seen by observing that, from the recurrence relation, we find
F, Fo» 1

=l+— = R, =1+ .
Fn—l Fn—l Rn—l

(1.5)
Thus if the lim R, exists and equals ¢, then it satisfies the equation

<;5—1+l
= 5

which defines the Golden Ratio.

* Binet’s formula. Python allowed us to discover part of a closed-form expression for
F,, called Binet’s formula

n_(1- n

T
V5

We will derive this formula when we study matrix diagonalisation in §5.7 . For large

n, we see that F,, = %q&". More precisely, for any positive integer n, the Fibonacci

number F,, is the integer closest to the number qub”. This follows from the fact that

the second term in Binet’s formula is small. To see this, let » = 1 — ¢ and note that
7] = (0.618...)" < 1 for all n. Therefore,

1 1 1
(1= < — <« —
w/§(¢)<\/§<\/Z

This shows that F}, is the integer nearest to

1
=3
L(pn

="

* Contractive sequences. It remains to explain why the limit of R, exists. This is a

consequence of the following theorem (see [20]).

Theorem 1.5 If a sequence x,, eventually satisfies the relation
Ixn+l - xn| < C|xn - xn—ll

where the constant C € [0, 1), then x,, is convergent.

Such a sequence is said to be contractive. We show that the sequence R,, is contractive
as follows. From Eq. 1.5, it is clear that for n € N, R, € [1,2], which implies
Ruysi=1+ R_l,, > % Using (1.5) again we find that for n > 4,

[Rn+1 — Ryl = i_ !
Rn Rn—l
_ |Rn_Rn—1|
B |Ran—1|
< % . %|Rn —Ry 1| = i|Rn - Ry1l.
~3 3 9

1.7 The &, 6 definition of continuity 23

1.7 The &, 6 definition of continuity

Students are taught in school that a continuous function is one for which the graph can be
drawn without lifting the pen. However, at university, the focus of mathematics is shifted
away from drawings, descriptions and intuition to mathematics that is based purely on logic.
In this spirit, we want to be able to define continuity logically (i.e. using symbols, equations,
inequalities. . .) without relying on drawings.

A function f: A — R is said to be continuous at a point xo € A if, for all € > 0,
there exists 6 > 0 such that, for all x € A, we have

[x—xol <6 = |f(x) - f(x0)| <e&.

For the following functions, investigate the relationship between & and ¢ at x = x.

2
a) f(x) == (x=1),
. sin x
— x %0,
b)g(x) =In(x+1) (x0=1), ¢) h(x) = . x (x0 = 0).

X =

The &-6 definition given above was first published in 1817 by the Bohemian mathematician
and philosopher Bernard Bolzano (1781-1848). It expresses precisely what it means for a
function to be continuous at a point purely in terms of inequalities. This is one of the most
important definitions in real analysis, and is also one which many beginning undergraduates
struggle to understand. Let’s first try to unpack what the definition says.

If f is continuous at x, it makes sense to demand that we can always find some y
values arbitrarily close to (or equal to) yo = f(x¢). Symbolically, the set of “all y values
arbitrarily close to yy” can be expressed as follows.

Definition Let ¢ > 0 and yg € R. The g-neighbourhood of yy is the set of all y € R such
that |y — yo| < €.

Now, we want the y values inside the e-neighbourhood of yg to “come from" some values
of x. In other words, there should be some x values such at that y = f(x). It is natural to
demand that those values of x should also be in some neighbourhood of xo. We are satisfied
as long as “there exists such a neighbourhood” in the domain A. This statement can be
written symbolically as:

46 > OsuchthatVx € A, |[x —xp| <0...

The symbol 3 reads “there exists", and V reads “for all".

Combining what we have discussed so far, we say that a function f is continuous at
xo if there exists a neighbourhood of xo which gets mapped by f into an arbitrarily small
neighbourhood of yyp = f(xp). Symbolically:

Ve > 0,30 > 0OsuchthatVx € A, |[x —xo| <0 = |f(x) — f(x0)| < e&.

This explains the intuition behind the definition. One could think about this as a game in
which we are given a value of &, and our job is to find a suitable value of J.

In fact, if we can find a certain value of ¢ that works, then so will any other values ¢’
such that 0 < ¢’ < . Often we may find that there is a largest value, &yax, that works for
each choice of &.

24 1 Analysis

Now let’s see how Python can help us visualise this &-6 game for the function a)
f(x) = 2/x,at xo = 1. The code continuity.ipynb produces a GUI (graphical user
interface) as shown in fig. 1.7. Warning: This code only works in a Jupyter environment!.

continuity.ipynb (for plotting the top panel of fig.). Jupyter only

| import matplotlib.pyplot as plt
:import numpy as np
ipywidgets make the plot interactive | from ipywidgets import interactive
|
The function f def £(x):
return 2/x
The inverse function f’1 def finverse(x):
return 2/x

Domain X = np.linspace(0.5, 2)
We will study the continuity of f at xg x0 =1

y = £(x)

yo = £(x0)

Now define a function of &£ to feed
into the slider

fxo) +&

f(xo)—&

The x values of the above two points

(We use them to calculate &)

def plot(eps):
yOp = yO+eps
yOm = y0-eps
x0p = finverse(yO®p)
x0m = finverse(yO®m)

vertical

Where to draw vertical and horizon- =
horizontal

[x0, xO0p, xOm]
tal dotted lines =

[y®, yOp, yOm]

Plot y = f(x) inred
An easy way to plot horizontal lines

plt.plot(x, y, 'r")
for Y in horizontal:

(black dotted) plt.axhline(y = Y, color = 'k',
linestyle = ':'")

... and vertical lines for X in vertical:

(cyan dotted) plt.axvline(x = X, color = 'c',
linestyle = ':'")

plt.show()
The largest viable value of & delta= min(abs(x0-x0p), abs(x0®-xOm))

Report values (using unicode for
Greek letters)

print(f'Given \u®3B5 {eps:.2}")
print(f'Found \u®3B4 = {delta:.4}")

|
Finally, set slider for £ € [0.01, 0.4] in : interactive(plot, eps=(0.01, 0.4, 0.01))
steps of 0.01 |

In the code, we use the ipywidgets? library to create a slider for the value of &. Drag
the blue slider to change the separations of the horizontal dotted lines which correspond to
the e-neighbourhood of f(xg).

UIf you are running a non-Jupyter IDE, Matplotlib’s slider (to be discussed shortly) can be used to to
produce fig. 1.7. The code is given on GitHub as continuity.py.

2https://ipywidgets.readthedocs.io

https://ipywidgets.readthedocs.io

1.7 The &, 6 definition of continuity 25

eps . 0.25

06 08 10 12 14 16 18 20

Given £ = 0.25
Found 6 = 0.1111

eps @ 0.13

000 025 050 075 100 125 150 175 200

9.13
0.2438

Given €
Found &

Fig. 1.7: Interactive plots illustrating the £-0 definition of continuity. Here we investigate
the continuity at xo = 1 of functions defined by f(x) = 2/x (top), and g(x) = In(x + 1)
(bottom). In each graph, you can use the slider to adjust the value of &, and a viable value of
¢ is displayed.

Given this ¢, the largest §-neighbourhood of x(can be found by taking the smallest
separation between the vertical dotted lines. In this example, we can write

,|f_1()’0 —€) - xo|} .

Conveniently, f is decreasing and so f~!(x) can be evaluated easily (in fact f = f~1).
Thus, it is also possible to calculate precisely the value of 6. Given & = 1/4 as shown in
the top panel of fig. 1.7, our formula gives

Omax = mMin {lf_l()’O +€) — X

Smax = min {|£719/4) = 1]~ 774 -1}
=min {1/9,1/7}
=1/9.

This agrees with the value of ¢ displayed by the code at the bottom of the GUI.

26 1 Analysis

We can easily modify the code to illustrate the continuity of g(x) = In(x + 1) at xg = 1,
as shown in the lower panel of fig. 1.7. We leave it as an exercise for you to show that the
exact expression for 4 shown is given by

Omax = 2(1 = 6_0'13) ~ (0.2438.

The previous code relies on the fact that the function is either strictly decreasing or
increasing and that the expression for the inverse function can be found explicitly. If these
conditions do not hold, the positions of the vertical lines may not be so easy to obtain. This
is the case for the function /& shown in fig. 1.8, where

sin x

— x %0,
h(x) =14 x

1 x=0.

One way to get around this is to ask the GUI to read out the coordinates of where
the horizontal lines intersect the curve y = h(x). In fig. 1.8, with € = 0.1, we find that
|h(x) — h(0)| = € at x = £0.79, so taking any ¢ to be less than this value would make the
£-0 definition work. Indeed, /(x) is continuous at x = 0.

The code continuityslider.ipynb produces the interactive GUI shown in fig. 1.8.
We use Matplotlib’s own Slider widget to create an interactive plot (which you can pan
and zoom in to get a more accurate value of 0).

[] ® Figure 1

T A rreneeransrssnsnnsennarsasrannasansesnssssenssasnenssnnssaparassransssnnnsarans

1.05 A

=15 =1.0 =05 0.0 0.5 1.0 T:5:
0.10

A €>PQ = *=0.788 y=0.9000

Fig. 1.8: An interactive GUI showing the graph of h(x) = sinx/x around x = 0 (with
h(0) := 1). The dotted lines show y = 1 and 1 + &, where the value of € can be adjusted
using the slider. The coordinates of the cursor are given at the bottom. The readout shows
that for € = 0.1, we need 6 ~ 0.79.

1.7 The &, 6 definition of continuity 27

continuityslider.ipynb (for plotting fig.

i import numpy as np

| import matplotlib.pyplot as plt

| from matplotlib.widgets import Slider
See Preface “b) About %matplotlib" 1%matplotlib

I

|
The function takes an array def f(xarray):
y = np.zeros_like(xarray)

enumerate gives pairs of numbers: for ind, x in enumerate(xarray):

|
l
the indices (ind) and elements (x) in the array 1 if x==0:
The function maps O to 1. .. : y[ind] =1
) | else:
and maps nonzero x to %me : y[ind] = np.sin(x)/x
| return y
I
|
Choose domain to plot 'xarray = np.linspace(-2, 2,200)
ly = f(xarray)
X0 =0
y0 = £([x01)
Initial value of & reps = 0.1
I
y arrays for 3 horizontal lines at yg j harray® = np.full_like(xarray, y0)
andyp + & ‘harrayP = np.full_like(xarray, y®+eps)

harrayM = np.full_like(xarray, y0-eps)

: fig,ax = plt.subplots()
Leave a space at the bottom for a slider 1 plt.subplots_adjust(bottom = 0.2)
|

:plt.ylim(®.5,1.15)

Plot the function with a thick line iplt.plot(xarray, f(xarray) , lw=2)

|

|
Plot the 3 horizontal dotted lines: 'he, = plt.plot(xarray, harray®, 'b:')
y = yp inblue, y = yo = £ are in red 'hP, = plt.plot(xarray, harrayP, 'r:')
Use commas to unpack the lists - see Discussion 1 hM, = plt.plot(xarray, harrayM, 'r:')

|
The slider’s dimensions and location |axeps = plt.axes([0.15, 0.1, 0.7, 0.62])
Create a slider 'eps_slide = Slider(axeps, '\u®3B5',

specify range of values, step size and. . .
the initial value of £

0, 0.15, valstep = 0.001,
valinit = eps)

|
|
!
|
Update the plot if slider is changed | def update(val):
Take new value of £ [eps = eps_slide.val
The location of the horizontal lines yo + & are , hP.set_ydata(y® + eps)
!
|
|
|
|

updated hM.set_ydata(y® - eps)
fig.canvas.draw_idle()
Redraw the graph eps_slide.on_changed(update)

} plt.show()

28 1 Analysis

DiscussioN

* Proof of continuity. The graphs shown in this section do not prove continuity. They
only allow us to visualise the -0 game. Writing a rigorous -6 proof is an important
topic that will keep you very much occupied in your analysis course at university.

To give a flavour of what is involved, here is a rigorous proof that f(x) = 2/x is
continuous at x = 1.
Proof: For all £ > 0, take 6 = min{1/2, £/4}, so that Yx € R\ {0},

2
x-1l<é6 = If(X)—f(1)|=‘;—2‘

2|x - 1] ,
=)
|x]
Since |x — 1| < 1/2, the reverse triangle inequality gives
1
-12<x|-1<1/2 = 2/3<ﬂ<2.
X
Substituting this into (), we find
[f(x) = f(1)] <46 < e. O

e Limits. A closely related related concept to continuity is that of continuous limits.
Given a function f : (a,b) — R, and a point ¢ € (a, b). We write

lim f(x) =L,
X—C
if Ye > 0, 36 > 0 such that Vx € (a, b), we have
O<lx—-c|<d = |f(x)|-L|<e.

The only difference between this definition and that of continuity is that for limits, there
is no mention of what happens at x = ¢, but only what happens close to c.
Using this definition, it can be shown that the following important theorem holds.

Theorem 1.6 Let A C R and define f : A — R. f is continuous at ¢ € A if and only if
lim f(x) = f(c).

This rigorous definition of the continuous limit lays a strong foundation for differentiation
and integration, both of which can be expressed as continuous limits, as we will see
later.

* The sinc function. In the language of limits, our plot of #(x) shows that

Jim 22X _ (1.6)
x—0 X
The proof of this limit based on the Squeeze Theorem (for continuous limits) can be
found in [20]. The function i(x) is sometimes written sinc(x). It has many real-world
applications, particularly in signal processing.

1.7 The &, 6 definition of continuity 29

¢ Why comma? In the code, you may be wondering why we used a comma on the LHS
of the assignment

hP, plt.plot(xarray, harrayP, 'r:')

rather than

hP plt.plot(xarray, harrayP, 'r:')

Indeed, had we removed the comma, Python would report errors when the slider is
moved. So what is going on here? Well, let’s ask Python what type the object hP is.
With the comma, the command type (hP) tells us that hP is a Line2d object. This
object has many properties including the x and y coordinates of the lines (called xdata
and ydata) and optional colours and line thickness attributes (type dir (hP) to see the
full list of attributes). Indeed, when the slider is moved, the update function updates
the y coordinates of the dashed line.

Without the comma, however, we find that hP is a list. Furthermore, len(hP)=1,
meaning that the object plt.plot(...) is in fact a list with one element (namely, the
Line2d object). When we move the slider, the y coordinates (ydata) is not a property
of this list, but rather the object within the list. This explains why Python reports an
error.

To put this in another way, we want to change the filling of the sandwich within the box,
rather than put new filling onto the box itself.

In summary, the comma tells Python to unpack the list (i.e. take out the sandwich), so
we can update its content.

30 1 Analysis

1.8 Thomae’s function

Thomae’s function f: (0, 1) — R is defined by

F(x) = {é if x e Qand x = § in lowest form, where p, g € N,

0 otherwise.

Plot this function. For how many values x € (0, 1) is f(x) > %? or ﬁ?
Deduce that Thomae’s function is continuous at irrational x and discontinuous at
rational x.

This function, named after the German mathematician Carl Johannes Thomae (1840—
1921), serves as a classic illustration of how university mathematics differs from school
mathematics. Few school students would have seen functions defined in such an exotic way.

Let’s try to make sense of the function, for example, by first looking for values of x that
would be mapped to the value 1/8. A little experiment reveals that there are 4 such values:

1357
8888’
Note that f(2/8) = f(6/8) = 1/4 and f(4/8) = 1/2.
It is clear that if f(x) = 1/8 then x must be a rational number of the form p/8 where
p and 8 have no common factors apart from 1. Another way to say this is that p has to be
coprime to 8. Yet another way to say this is that the greatest common divisor (gcd) of p and

8is 1, i.e.
gcd(p,8) = 1.

(More about the gcd when we discuss number theory in chapter 6.)

0.5 A1 4

0.4

0.3 1

0.2 1 ° ° ° °

Fig. 1.9: Thomae’s function

1.8 Thomae’s function 31

The graph of Thomae’s function is shown in fig. 1.9. To plot this graph, we can
conveniently use NumPy’s gcd function as shown in the code thomae.ipynb. The code
also counts how many values of x satisfy f(x) > 1/10.

thomae.ipynb (for plotting fig.)

| import numpy as np
| import matplotlib.pyplot as plt
|
Initialising x and y as empty lists 'xlist = [1]
lylist = []
|
I
Search for fractions with denominators : for q in range(2,200):
from 2 to 199 : for p in range(l,q):
If p and g are coprime. . . | if np.gcd(p,q) == 1:
append the lists of x and y coordinates l xlist.append(p/q)
} ylist.append(1/q)
|
I

Plot the points with big red dots rplt.plot(xlist, ylist, 'or', ms=3)
‘plt.xlabel('x")

'plt.ylabel('y")

'plt.x1im(0, 1)

iplt.grid('on')

 plt.show()
|
|
Count how many points are above 0.1 ! lim = 0.1
Use list comprehension to do this mum = sum(y > lim for y in ylist)
and report lprint(f'Found {num} points above y={lim}')

In the code, we use the for loops to append values to empty lists. This creates 2 growing
lists of the x and y coordinates. Instead of lists, one could also use NumPy arrays (using
np.empty and np.append).

Running the code tells us that there are 27 values. As an exercise, try to write them all
down. As for the case f(x) > 1/100, the code gives us 3003 values.

What do these results mean? Well, they imply that given any number & > 0, there are a
finite number of x such that f(x) > e. This means that at any xo € (0, 1), we can find a
neighbourhood of xg sufficiently small that it does not contain any values of x such that
f(x) > &. In other words, | f(x)| < & for all x sufficiently close to xg.

Now let xg be any irrational number in (0, 1). Since f(xo) = 0, the previous paragraph
gives the following result:

Ve > 0,36 > 0 such that, Vx € (0, 1), |x — xol <6 = |f(x) - f(x0)| < &.

This is precisely the e-6 definition for the continuity of Thomae’s function at any
irrational x¢ € (0, 1).

DiscussioN

e The Archimedean property. In deducing the fact that there are a finite number of x
such that f(x) > &, we implicitly used the following property of real numbers.

Theorem 1.7 (The Archimedean property) For any & > 0, there exists an integer
n € N such that € > 1/n.

(Can you see precisely where this has been used?) This property sounds like an obvious
statement, but, like many results in introductory analysis, it has to be proven. It turns out

32

1 Analysis

that the Archimedean property follows from other axioms, or properties of real numbers
which are satisfied by decree. These axioms consist of the usual rules of addition an
multiplication, plus some axioms on inequalities which allow us to compare sizes of
real numbers. In addition, we also need:

The Completeness Axiom. Every bounded nonempty set of real numbers has a least
upper bound.

For example, the least upper bound of real numbers x € (0, 1) is 1. The axiomatic
approach to constructing R is a hugely important topic in introductory real analysis
which you will encounter at university.

Sequential criterion. The £-¢ definition for continuity is equivalent to the following.

Theorem 1.8 (Sequential criterion for continuity) The function f : A — R is contin-
uous at xy € A if and only if, for every sequence x,, € A converging to xg, we have

fxn) = f(xo).

This theorem can be used to prove that Thomae’s function is discontinuous at any
rational number xq € (0, 1). Consider the sequence

V2

xn:xO_ >
n

which must necessarily be a sequence of irrational numbers (here we use the well-known
result that V2 is irrational). The sequence clearly converges to xo € Q. Thus, we have
found a sequence x,, — x¢ such that f(x,) =0 /5 f(xo). This proves that f cannot be
continuous at xg € Q N (0, 1).

1.9 The Intermediate Value Theorem and root finding 33

1.9 The Intermediate Value Theorem and root finding

Solve the equation e™ — x = 0.

The Intermediate Value Theorem (IVT) is an important result concerning functions
which are continuous on a closed bounded interval [a, b]. Continuity on an interval simply
means that the £-9 definition applies to all points in the interval. Such functions have special
properties such as the following ‘intermediate value’ property.

Theorem 1.9 (Intermediate Value Theorem) Let f be a function which is continuous on
[a, b). If v is a value strictly between f(a) and f(b), then there exists ¢ € (a, b) such that

f(c) =v.

In other words, a continuous function f on [a, b] takes all possible values between f(a)
and f(b).

Now consider the function f(x) = e — x, which comprises the exponential function
and a linear function. Both functions (and their difference) can all be shown to be continuous
at every x € R using the £-¢ definition. In particular, we note that f is continuous on the
interval [0, 1] and that f takes opposite signs at the end points of this interval, i.e.

fO =1, fA)=1/e-1<0.

Therefore, the IVT tells us that ¢ € (0, 1) such that f(c) = 0. The graph below illustrates
that the root of f(x) = 0 indeed lies in this interval.

10

0.8 1

0.6 1

0.4

0.2 1

0.0

-0.2 1

0.4 4

0.6 T T T T
0.0 0.2 04 0.6 08 10

Fig. 1.10: The graph y = e™* — x intersects the x-axis somewhere in the interval (0,1). This

is consistent with the Intermediate Value Theorem.

One way to proceed is to consider the sign of f(x) at the midpoint x = 0.5. We find that

£(0.5) =1/Ve-0.5> 0.

Since f(x) has opposite signs at the endpoints of the ‘bisected’ interval (0.5, 1), the IVT
again implies that f has a root in (0.5, 1).

34 1 Analysis

We can carry on bisecting this interval and study the sign of f(x) at the midpoint and
repeat until we achieve a root ¢ in an interval that is as small as the desired accuracy.

The code below illustrates how this process (called the bisection method of root finding)
can be iterated as many times as required to achieve a root with accuracy acc. The core of
the code is a while loop which repeats the iteration until the size of the bisected interval
shrinks below acc.

bisection.ipynb (for performing root-finding using the bisection method)

i import numpy as np
| import matplotlib.pyplot as plt

fa, fb = f(a), £(b)

Define f(x) idef £(x)
| return np.exp(-x)-x
|
Specify accuracy required racc = 0.5e-5
Specify interval [a, b] 'a, b=29,1
|
|

Function values at interval endpoints

If f(a) and f(b) don’t have oppo—iif fa*fb>=0:

site signs, report error and abort mission raise ValueError('Root is not bracketed.')
|
|

Iteration counter ' n=0
Repeat as long as the error is too large twhile (b-a)/2 > acc:

This step is the bisection I x = (a+b)/2
1 fx = £(x)
If lucky (found exact root), } if fx == 0:
.. .jump out of while loop ! break
If root lies in [a, x], I if fx*fa < 0:
.. .make x the new b : b =x
Otherwise, root lies in [x, b] } else:
: a =X
Report result of every iteration I print(f'Iteration number {n}, x={x}')
Increase iteration count and repeat : n+=1
|
Final bisection X = (a+b) /2
Report answer : print(f'Final iteration number {n}, x= {x}')

Running the code above with acc = 0.5 x 107 (to ensure 5 dec. pl. accuracy) shows that

Final iteration number 17, x= 0.5671424865722656

Thus, we can report that the root of the equation e™

(5 dec. pl.).

DiscussioN

* Newton-Raphson method. The bisection method is a relatively slow but reliable
method of root-finding for most practical applications. A faster root-finding method
called the Newton-Raphson method is discussed in the exercise 11. Although the
Newton-Raphson method is faster, it requires additional information, namely, the
expression for the derivative f’(x), which is not always available in real applications.

— x = 0 is approximately 0.56714

* Bracketing. For the bisection algorithm to start, we first need to bracket the root, i.e.
find an interval [a, b] in which f(a) and f(b) have opposite signs . However, this may
not be possible, for instance, with f(x) = x2. In this case another root-finding method
must be used. See [131, 132] for other root finding algorithms in Python.

1.9 The Intermediate Value Theorem and root finding 35

e Throwing. The Python command raise is useful for flagging a code if an error has
occurred. This practice is also known as throwing an error. The simplest usage is:

if (some conditions are satisfied):
raise ValueError('Your error message')

It is good practice to be specific in your error message about what exactly has gone
wrong.

* Numerical analysis is the study of the accuracy, convergence and efficiency of numerical
algorithms. This field of study is essential in understanding the limitation of computers
for solving mathematical problems. We will explore some aspects of numerical analysis
in this book, particularly in the next chapter. For further reading on numerical analysis,
see, for example, [40, 170, 182].

36 1 Analysis

1.10 Differentiation

For each of the following functions, plot its graph and its derivative on the interval

a) f(x) =sinzmx, b)g(x) = Vx|, ¢) H(x) = {

Which functions are differentiable at x = 0?

x2sin(1/x3) x #0,
0 x=0.

Let f: (a,b) — R and let ¢ € (a, b). The derivative of f at x = ¢, denoted f’(c) is
defined as:

flerh) = flo)

7 1.7

' .
f(e) = lim
A function is said to be differentiable at x = c if the limit above is finite.

In school mathematics, the derivative is often defined as the rate of change of a function,
or the gradient of the tangent to y = f(x) at x = ¢. However, in university analysis,
pictorial definitions are not only unnecessary, but must also be avoided in favour of rigorous
logic-based definitions. The limit (1.7) has a precise definition in terms of -6 (see §1.7).

First let’s consider the derivative of f(x) = sin 7x. You will probably have learnt how
to differentiate this type of function at school. But let’s see how we can also work this out
from first principles using the definition above. Recall the trigonometric identity:

. . a+pB) . [a-p6
s1na—s1nﬁ—2005(—2)sm(7)

Using this identity in the limit, we have:

sinz(c + h) —sinzc
h
2cosn(c+ %) sin

f'e) = lim

nh

= 1i 2
hli% h
. ho oo sin %
:}lgr%)cosn(c+§)~}lllir(1)7r TR (1.8)
2

where we have broken up the limit into a product of two limits. The first limit in (1.8) is
simply cos ¢ (technical note: this step requires the continuity of cos). The second limit can
be evaluated using the result from Eq. 1.6 in §1.7, giving us . Therefore, we have

f'(c) = mcos mc,

as you might have expected. Note that f” is defined at all values of ¢ € R. In other words, f
is differentiable on R. In particular, it is certainly differentiable at x = 0 with f’(0) = 7.

The next function g can be written in piecewise form (using the definition of the modulus)
as:

) = Vx o x>0,
81V x <o

This can be differentiated in the usual way for x # 0, giving

1.10 Differentiation 37

1
g'(x):{z‘/f x>0

__1 0

= <0

But that at x = 0, the limit definition gives

VA
"(0) = lim —,
8" (0) lim —
which becomes arbitrarily large near & = 0, so the limit does not exist. Thus, g is not

differentiable at x = 0.

Before we consider H(x), let’s pause to consider how derivatives can be calculated on
the computer. Of course, one could simply differentiate the function by hand, then simply
code the result. However, in real applications, we may have limited information on the
function to be differentiated. Sometimes the expression for the function itself cannot be
easily written down. This means that it is often impractical to rely on the explicit expression
for the derivative.

Instead, we can work with a numerical approximation of the limit definition (1.7). For
example, we could say:

Jx+h) - f(x)

)~ ?

(1.9)
for a small value of A. This is called the forward-difference or forward-Euler estimate of the
derivative. The word ‘forward’ comes from the fact that the gradient at x is approximated as
the slope of the line joining the points on the curve at x and x + A, a little “forward" from x.

Figure 1.11 shows the graphs of f, g (dashed blue lines) and their approximate derivatives
(solid orange lines) calculated using the forward-difference approximation (1.9) with
h = 107°. Note in particular that the lower panel shows that the derivative of g blows up
near x = 0, where y = g(x) has a sharp point (similar to that the graph of y = |x|). The
graph indeed confirms that g is not differentiable at x = 0.

38

D ———

-1.00 -0.75 -0.50 -0.25 0.00 0.25

0.50 0.75 1.00

2.0
1.5
1.0 f==c -
0.5+ Tl -
0.0 1
_051

—1.0 A1

—1.5 A1

=== y=9(x)
y=9'(x)

-
=

-2.0

-1.00 -0.75 -0.50 -0.25 0.00 0.25

0.50 0.75 1.00

1 Analysis

Fig. 1.11: The graphs of functions f(x) = sinzx (top) and g(x) = V|x| (bottom) —in dashed
blue lines — and their derivatives (solid orange lines) calculated using the forward-difference

approximation (1.9) with 4 = 1076,

The code differentiation.ipynb plots the graphs of g and g’. Note that we work
on the positive and negative x values separately because, otherwise, Matplotlib would join
up points around x = 0, creating a false visual impression of the values of g’(x) near 0.

1.10 Differentiation 39

differentiation.ipynb (for plotting the bottom panel of fig.

i import numpy as np
| import matplotlib.pyplot as plt

Function to be differentiated def g(x):

I
|
: return np.sqrt(np.abs(x))
|
I

Pick a small & th=1e-6

Work with x > 0 and x < 0 separately 'Xp= np. linspace(0,1)
1xn= np.linspace(-1,-h)
1gxp = g(xp)
1gxn = g(xn)

g’ (x) approximation (forward Euler) rdgp = (g(xp+h) - gxp)/h

rdgn = (g(xn+h) - gxn)/h

"'plt.plot(xp, gxp, 'b--"',

xp, dgp, 'orange',

xn, gxn, 'b--"',

i xn, dgn, 'orange')
plt.legend(["y=g(x)" ,"y=¢"'(xX)"1)
'plt.grid('on')

rplt.x1lim([-1,1])
yplt.ylim([-2,2])

'plt.show()

Now let’s return to H (x). With simple modifications of the code, we can plot H and H’
as shown in fig. 1.12. It appears that the derivative fluctuates wildly around x = 0. One
might even be tempted to conclude from the graph that H is not differentiable at x = 0.

1.00

0.75 1%, e
0.50 ™ 4

0.25 A \ /
\ ik mn /
VA A
0.00 - AR A A
IR KR SN AR
\| 7 \ |/
—0.25 A

—0.50 A

—0.75 A y=H'(x)
-=- y=H(x)

-1.00 T T T T T T T
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Fig. 1.12: The graphs of function H(x) (blue dashed lines) and its derivative (solid orange
lines) calculated using the approximation (1.9) with # = 107°,

But graphs can be misleading! In fact, H is differentiable at x = 0, as we now prove
using the limit definition:

40 1 Analysis

H(h) - H(0)
h

_ . 2

= }llli%hsm(l/h).

70 - i

Note that we replaced H (h) by the expression for 4 # 0. This follows from the fact that the
limit as 2~ — 0 is defined without requiring us to know what happens ar h = 0. Observe
then that for any # € R, we have

—|h| < hsin(1/h%) < ||,

since —1 < sin(1/h%) < 1. Taking the limit as 7 — 0, we conclude that H’(0) = 0 by the
Squeeze Theorem.

DiscussioN

* How small should / be? In the forward-difference approximation 1.9, it appears as

though the smaller # is, the more accurate the estimate for the derivative becomes.
Surprisingly, this is not the case! You could try this yourself by changing / in the code
from 1079 to, say 1072°. What do you observe?
In fact, there is an optimal value of & which gives the most accurate answer for the
derivative. Larger or small values of & would give answers that are less accurate. We
will explore this in chapter 2, in which we will also see that there are many other
derivative approximations that are more accurate than the forward-difference formula
(but they take more resources to compute).

¢ Differentiable means continuous. The following useful theorem establishes the link
between continuity and differentiability.

Theorem 1.10 If f : (a,b) — R is differentiable at a point ¢ € (a,b), then f is
continuous at c.

* Can computers really do maths? It is worth reminding ourselves that whilst computers
can help us understand mathematics more deeply, they cannot think mathematically.
It is our job to check and interpret results that Python tells us. Often the answers we
get are not what we expect (e.g. when the step-size A is too small). Sometimes the
answers are just plain wrong (e.g. H’(0)). So one should never treat a computer like an
all-knowing black box which always gives us the correct answers all the time.

1.11 The Mean Value Theorem 41

1.11 The Mean Value Theorem

Show that the function f(x) = (x — 1) sin x has a turning point in the interval (0,1).
Find the x coordinate of the turning point.

Method 1
It is natural for students to associate the phrase ‘turning point” with where f’(x) = 0.
This means that we have to solve the equation

sinx + (x—1)cosx =0. (1.10)

Suppose cos x = 0, then Eq. 1.10 gives sin x = 0, but this is impossible because sin x
and cos x cannot be zero at the same time, so we conclude that cos x # 0. We can then
safely divide Eq. 1.10 by cos x, giving

tanx =1 — x. (1.11)

A quick sketch reveals that there are infinitely many solutions, but only one in (0, 1), as
shown in fig. 1.13.

Fig. 1.13: The curves y = tan x and y = 1 — x intersect infinitely many times on R, but only
once on (0, 1).

One way to locate this root is to do a bisection search for the solution of (1.11) in (0, 1)
using the code in §1.9. Whilst this method will yield the x-coordinate of the turning point,
we needed the explicit expression for the derivative f’(x) that we just found. However, as
discussed earlier, such an expression may not always be available.

Method 2

Let’s take another look at the problem. This time, suppose we don’t know how to
differentiate the function f(x) = (x — 1) sin x, nor do we know about its graph. Can we still
deduce that there is a turning point in the interval (0, 1)? Yes, according to the following
theorem:

f(x)

42 1 Analysis

Theorem 1.11 (Mean Value Theorem) If f: [a, b] — R is continuous on [a, b] and differ-
entiable on (a, b), then there exists ¢ € (a, b) such that

[y =——

With (a,b) = (0, 1), we find that £(0) = f(1) = 0, so by the Mean Value Theorem,
dc € (0,1) such that f'(c) = 0, i.e. there exists a turning point in (0, 1)

The Mean Value Theorem (MVT) is a very powerful theorem in analysis. The word
‘mean’ refers to the fact that at c, the gradient is simply the average trend on the interval
(a,), i.e. the slope of the straight line joining the two endpoints of the curve.

To find the location of the turning point without manual differentiation, we can employ
the forward-difference estimate (1.9)

fx+h) - fx)

- (1.12)

f e/st ()C) =
for some small / (say 107%). It is then just a matter of finding where fei(x) = 0 numerically
using, say, the bisection code in §1.9.

Both methods give us, after 17 bisections, the following answer for the x coordinates of

the turning point
x =0.47973 (5 dec. pl).

In summary, the existence of the turning point is guaranteed by the MVT, and its location
can be estimated without knowing the derivative explicitly. The plots below (of f and its
exact derivative) are consistent with our numerical answer for the turning point.

-0.235 0.15
—0.236 - 0.10 1

—0.2371 0.05 1

f(x)

—0.238
0.00 1

—0.239
—0.05 1

—0.240 -

T T T T T T T T T T T T
0.44 0.46 0.48 0.50 0.52 0.54 0.44 0.46 0.48 0.50 0.52 0.54
X X

Fig. 1.14: The curve y = (x — 1) sin x (left) and its exact derivative (right) around the
turning point at x = 0.48.

1.11 The Mean Value Theorem 43

DiscussioN

* Rolle’s Theorem. It is a useful exercise to show that the MVT is a consequence of the
following theorem.

Theorem 1.12 (Rolle’s Theorem) If f: [a, b] — R is continuous on [a, b] and differen-
tiable on (a, b), with f(a) = f(b), then there exists ¢ € (a, b) such that f’(c) = 0.

As a consistency check, putting f(a) = f(b) in the MVT gives Rolle’s Theorem, so we
see that the MVT is a more general result.

Michel Rolle (1652—-1719) was a French self-taught mathematician. Apart from Rolle’s
Theorem, he is also credited with introducing the notation {/x for the nth root of x.

¢ Cauchy’s Mean Value Theorem. A generalised version of the MVT is the following.
Theorem 1.13 (Cauchy’s Mean Value Theorem) Let f and g be functions that are

continuous on [a, b] and differentiable on (a, b), Suppose that g’(x) # 0 for all
x € (a, b). Then there exists ¢ € (a, b) such that

f(©) _ f(b) - f(a)
g'(c) gb)-ga)’

As a consistency check, putting g(x) = x gives the MVT, so we see that Cauchy’s MVT
is a more general result.

44 1 Analysis

1.12 A counterexample in analysis

In mathematics, a counterexample is a specific example which proves that a statement is
false. For instance, to prove that the statement “every prime number is odd", one only needs
to supply the counterexample: “2 is an even prime."

In analysis, counterexamples are typically used to demonstrate the falsehood of statements
that seem intuitively true. Such counterexamples are very instructive. They warn us that we
cannot always rely on our intuition, and that functions are a more nuanced entity than we
might have thought when studying mathematics in school.

We will study one such counterexample in this section, with the help of Python for
visualisation.

Is the following statement true or false?
Let f be differentiable at ¢ € R with f’(c) > 0. Then there exists a neighbourhood
of ¢ in which f is strictly increasing.

f is said to be strictly increasing on an interval [if, Vx, xo € I such that x| < xp, we
have f(x1) < f(x2). f is said to be increasing on an interval I if, Vx1, x, € I such that
x1 < xp, we have f(x1) < f(x2).

The property f’(c) > 0 tells us that the gradient of the curve y = f(x) at ¢ is positive.
Thus, it makes intuitive sense to think that at points very close to x = ¢, the curve should
also have positive gradients that are not drastically different from f’(c), suggesting that f is
increasing around x = c. Besides, since f is differentiable at c, it is also continuous there
(this is theorem 1.10). So it makes sense that we should not have any wild jumps around
x = c that might invalidate continuity at c.

Yet the statement is false. Consider the following counterexample.

2 i (L
Fx) = {x + 2x” sin (x) x #0, (1.13)
0 x=0.

We will show that f/(0) > 0, yet there exists no neighbourhood of 0 in which f is strictly
increasing.
Firstly, to prove that f’(0) > 0, we use the limit definition (1.7).

v — i SO+ 1) — £(0)
R

=1+ lim 2Asin (%)

h—0

=1,

where the last step follows from the Squeeze Theorem as before (try justifying this by
following the calculation at the end of §1.10).

We now show that f is not increasing around x = 0. It suffices to show that in any
neighbourhood of 0, we can find a point with negative gradient. Symbolically, we want to
show that Y§ > 0, Jc € (-6,) such that f'(c) < 0 (we will say more about this in the
Discussion section).

By applying the usual differentiation techniques, we find that for x # 0,

1.12 A counterexample in analysis 45
, 1 1

f'(x) =4xsin|—|—-2cos|—]+ 1. (1.14)
X X

For all 6 > 0, there exists an integer n € N such that 0 < % < 2m6. This follows from

the Archimedean property discussed in §1.8. Note that the point x = »1— is within the

2ntn
neighbourhood (-9, ¢). However,

AL
5m) =

Hence, we have successfully used the counterexample to disprove the given statement.

Let’s use Python to visualise the curve y = f(x). The code below produces fig. 1.15,
which plots the curve in two neighbourhoods of 0 (the neighbourhood on the right panel is
10 times smaller than the left). We see a sinusoidal behaviour in both plots. Try increasing
the zoom level by a small modification of the code, or by using %matplotlib and using
the zoom button on the GUI (see §1.7). In any case, you should see a sinusoidal behaviour
no matter how much you zoom in (of course you should increase the plotting resolution in
the code accordingly). The figure suggests that within any ¢ neighbourhood of 0, we can
find points at which f”(x) is positive, negative or zero!

One way to understand this result is to see that the graph for the function f gets
increasingly wiggly towards the origin, whilst being constrained to bounce between the
parabolas y = x + 2x? and y = x — 2x? (where sin ()1—6) = =1). These parabolic boundaries
intersect at 0, hence forcing f’(0) = 1. Try adding these parabolas to the plots in fig. 1.15.

04 y=f(x) 0.04 Zoomed
0.3 0.03 1
0.2 4 0.02 A
0.1+ 0.01 A
0.0 4 0.00 1
-0.1+ -0.01 1
—0.2 —0.02 1
—-0.3 1 —0.03 A
-0.4 1 T T T T -0.04 1+ T T T T
-0.4 -0.2 0.0 0.2 0.4 -0.04 -0.02 0.00 0.02 0.04

Fig. 1.15: The curve y = f(x) where f(x) = x + 2x”sin ()17) (x # 0) and f(0) = 0. The
right panel is the same plot but 10 X zoomed in. The sinusoidal behaviour is seen no matter
how much we zoom in towards the origin.

46 1 Analysis

counterexample.ipynb (for plotting fig.

Define the function

Given x array. . .

i import numpy as np
| import matplotlib.pyplot as plt

def f(xarray):
y=np.zeros_like(xarray)
for i, x in enumerate(xarray):

...map0to0 if x==0:
y[il = 0
else:
and map the rest to x + 2x2sin 4 y[i] = x*(1+2*x*np.sin(1/x))
then return an array return y

fig, (axl, ax2) = plt.subplots(l,2,
figsize=(10,6))

|
I
|
I
I
|
I
I
|
I
|
I
x I
|
I
I
|
I
|
I
I
|
I
I
|
I

x1 = np.linspace(-0.4, 0.4, 100)
x2 = np.linspace(-0.04, 0.04, 100)
Left panel yaxl.plot(x1l, f£(x1))
60=04 "axl.set_ylim(-0.4, 0.4)

raxl.title.set_text('y=f(x)")
raxl.grid('on")

Right panel "ax2.plot(x2, £(x2))

6 =0.04 rax2.set_ylim(-0.04,0.04)
rax2.title.set_text('Zoomed')

yax2.grid('on')

'plt.show()

DiscussioN

* Derivative of a monotone function. There is a subtle connection between the sign of
the derivative and the monotonicity of f. The MVT can be used to show that, on an
interval 7,

f'(x) 200onl < fisincreasing on I,

f'(x)>00onlI = f is strictly increasing on /.

The converse to the second statement does not hold. Can you think of a simple
counterexample? A dramatic one is given in exercise 14.

* A counterexample of historical importance. Perhaps the most notorious counterexam-
ple in analysis is a function which is continuous everywhere but is nowhere differentiable.
The discovery of such a function by Karl Weierstrass in 1872 sent a shockwave through
the mathematical world, leading to the reform and development of analysis into the
rigorous subject that we know today. We will meet this function in the next chapter.

* More counterexamples in analysis have been compiled by Gelbaum and Olmsted [72],
a highly recommended book full of surprising and enlightening counterexamples.

1.13 Exercises 47

1.13 Exercises

1 (Book-stacking problem) Here is an interesting physical situation in which the Harmonic
Series appears. The problem was published by Paul Johnson in 1955 [101].
The code harmonic.ipynb may be helpful in this question.

I wish to create a leaning tower of books using multiple identical copies of a book.
Using n books arranged in a tower perpendicular to the edge of the table, I push the top
book as far out as I can, and do the same for the next book below, working my way
towards the bottom of the tower. See the figure below when n = 4. We can assume that
the books and the table are rigid enough that there are no vertical movements.

a. Show that using n books, the overhang (in units of books) can be written as the
Harmonic Series
1 (1 1 1
—“|l+-+=-...+—-].

2 2 3 n

Deduce that using 4 books, the overhang exceeds the length of a book.

b. Plot the overhang (in unit of books) against the number of books used to build the
tower. Consider up to 1000 books. Suggestion: use log scale on the horizontal axis.

c. On the same plot, plot the result when the eq. 1.4 (logarithmic approximation of
the Harmonic Series) is used to calculate the overhang.

d. Using the log approximation:
i. estimate the overhang when 10° books are used to create the tower. (Ans:
around 7-book long overhang.)
ii. estimate the number of books needed to build a leaning tower with a 10-book
long overhang. (Your answer is probably greater than the estimated number of
physical books that exist in the world.)

2 (Famous approximations for) Below are three historically important approximations
for 7.

* Madhava series (14th century), sometimes called the Gregory-Leibniz approxima-
tion (1671-1673)
1 1 1
N P,
g (375777)
* Wallis product (1656)

a3 () (9

o Viete’s formula (1593)

pe2. .2 . 2
ﬁ‘ﬁ+ﬁ‘¢+ﬁ+ﬁ

48 1 Analysis

Let n denote the number of iterations in each approximation scheme. For example, the
zeroth iteration (n = 0) gives 4, 2 and 2 for the three approximations respectively.

a. On the same set of axes, plot the results of the three approximations against the
number of iterations up to n = 10.

b. On a set of logarithmic axes, plot the absolute fractional error

Estimate after n iterations — 7

T

for the three approximations up to n = 100. This gives us an idea of how fast the
approximations converge to .

You should find that the error for Viete’s formula does not appear to go smaller
than a minimum limit of around 10~'®. The reason for this is the machine epsilon
which will be discussed in §2.2.

c. Recall that an estimate x of r is accurate to p decimal places if [x — 7| < 0.5%x 1077.
For each of the three approximations of x, calculate how many iterations are needed
to obtain & accurate to 5 decimal places.

(Answers: 200000, 157080 and 9.)

3 (Ramanujan’s formula for n) In 1910, Ramanujan gave the following formula for 7.

- -1
22 Z (4n)!(1103 + 26390n)
= .
9801 &4 (n!)*396*"

(Famously, he simply ‘wrote down” many such formulae.) Calculate the first 3 iterations
of this approximation. How many decimal places is each approximation accurate to?
Try writing a code that calculates the series up to n terms. Can your code accurately
evaluate the result, say, when n = 10? If not, explain why.

Suggestion: In Python, we can calculate the factorial, say 15!, using the following
syntax:

import math
math.factorial (15)

The factorials in Ramanujan’s formula give rise to huge numbers. Think about what
can go wrong.

4 (Reciprocal Fibonacci number) Use fibonacci.ipynb as a starting point.
The reciprocal Fibonacci constant is given by

=1
= — = 3.35988566624317755 ...
Y Zf i

a. Calculate the sum to 20 terms.
Suggestion: Try to do this in a vectorised way using arrays rather than a loop.

b. Calculate how many terms are needed to obtain iy to 10 decimal places. (Answer:
49.)

1.13 Exercises 49

5 (Generalised Fibonacci sequences) Use fibonacci.ipynb as a starting point.

a. Suppose we use different initial values Fyy and Fj. Use Python to investigate the
behaviour of the ratio R, = F,/F,-1. Show that R,, always converges to the
Golden Ratio.

(If you like a challenge, you could demonstrate this behaviour using sliders.)

b. (Lucas sequences) Let P and Q be fixed integers (not both zero). Define the Lucas
sequence, Uy, (P, Q), by the following rules:

U=0, U=1 U,=PUy - QU .

Note that the Fibonacci sequence corresponds to U,, (1, —1).
Write a code that plots the large-n behaviour of the ratio of consecutive terms
R, := Uy41/U, for the following values of P and Q.
i (P,Q)=(@1)
ii. (P,0)=(,1)
iii. (P,Q) =(1,1)
Make a conjecture on the range values of P such that R,, is a convergent sequence.
(Answer: see https://mathworld.wolfram.com/LucasSequence.html)

—

6 (Order of convergence) Given a convergent sequence, it is natural to ask: how fast
does the sequence converge? In this question, we explore how to quantify the speed of
convergence.

Suppose a sequence (x,) converges to x. Define the absolute error, E,,, as the sequence

En = |x, — x|.

The speed of convergence can be quantified by two positive constants: the rate (C) and
the order (g) of convergence, defined via the equation

lim 2L~ ¢ > 0.
n—w (Ey,)4

a. Verify by hand that the sequence (%) converges with g = C = 1.
b. For most applications, only the order of convergence is of interest as it is a better

indicator of how fast the sequence converges. It can be shown that we can estimate

q using the formula

~ ln(En+1/En)
T nEa B’

where n should be large enough so that g stabilises, but not so large that the
denominator in the formula is zero.
i. Using this approximation, verify (using Python) that the ratio of consecutive
Fibonacci numbers R;,, = F,,+1/F, converges with order 1.
Suggestion: it might help to plot g as a function of n. You should find that the
graph settles on ¢ = 1 before becoming undefined when » is too large.

ii. Consider the Madhava series for & in Question 2. Show that ¢ < 1.
Technically, we say that the convergence of the series is sublinear (i.e. terribly
slow).

iii. Conjecture a sequence that converges superlinearly (g > 1) and demonstrate
this property graphically..

https://mathworld.wolfram.com/LucasSequence.html

50 1 Analysis

7 In continuityslider.ipynb (§1.7), add a slider in the GUI so that the value of x
can be changed.

8 (Euclid’s orchard) Thomae’s function (§1.8) has an interesting connection to the
following problem, sometimes called Euclid’s orchard or the visible points problem.

Consider grid points with positive integer coordinates (m, n). A grid point P is said to
be visible from (0,0) if a straight line joining (0,0) to P does not pass through any other
grid points. For example, as shown in the figure below, the point (1, 2) is visible from
(0,0), but (2,4) is not.

- | not v|sible

visible

7

Observer

You should first try to experiment on a piece of grid paper to come up with a conjecture
on which points are visible from (0, 0).

a. Write a code that produces a grid and marks each point that is visible from (0,0)
with a red dot (you will need to impose a sensible cutoff).
b. For each visible point (m, n), plot its image under the mapping

F(m,n):(m !)

m+n m+n

What do you see? Can you explain how this mapping works?
(Answer: You see Thomae’s function!)

9 (Root-finding) Use the bisection code to solve the following problems. Give your
answers to 4 decimal places.

a. Solve the equation x*> — x> —x — 1 = 0.
Suggestion: Start by plotting.

b. Solve % = 0.9 (hence verifying the intersection point seen in fig. 1.8)

c. Find the numerical value of V3 using only the four basic operations + — X-+.
Suggestion: Start by defining f(x) = x> — 3.

10 (Generalised Golden Ratio) Suppose we generalise the Golden Ratio to ¢,, defined as
the positive root of the following order-n polynomial

For example, ¢; = 1 and ¢, = 1.618.
Write a code that plots the sequence ¢, (obtained by bisection). Make a conjecture for
the value of lim ¢,,.

n—oo

1.13 Exercises 51

11 (Newton-Raphson method) Let f be differentiable function on R. The Newton-Raphson
method for finding the root of the equation f(x) = 0 comprises the following steps.

* Start with an initial guess x.

* Calculate

_ S(xn)
S (xn) ’
where the expression for f’(x) must be explicitly known.

* Repeat the above iteration as long as |x,,+1 — X, | < € for a fixed tolerance & specified
by the user (e.g. 0.5 x 107 for p-decimal place accuracy). This step ensures that we
stop only when the first p-decimal places are stabilised.

Xn+l = Xn

a. Write a Python code for this method and use it to solve the problems in question 9.
b. Let x,, be the estimate of the solution of f(x) = x> — 3 after n iterations using the
Newton-Raphson methods.
Calculate the absolute error E,, = |x,, — V3 | and verify that the Newton-Raphson
with order 2. Do this by calculating g defined in question 6).

12 (Creating a pretty plot) Plot the graph of the sinc function f : [0, 27] — R defined by

sin x ifx;tO,
fx) ={ *

1 if x =0.

On the same set of axes, plot its first and second derivatives, estimated using the
forward Euler method (i.e. do not differentiate anything by hand in this question). Try
to use different types of lines in your plot (think about colour-blind readers). Here is an
example output.

1.0

— f(x) =sinx/x
0.8 - —=—= 1st derivative
----- 2nd derivative

0 /2 n 3n/2 2n

Fig. 1.16: A pretty plot of the sinc function and its first and second derivatives.

52 1 Analysis

13 (Mean Value Theorem) Consider the sinc function f defined in the previous question.
Let’s apply the Mean Value Theorem (theorem 1.11) to f on the interval [0, r].
In particular, let’s determine the value(s) of ¢ in the statement of the theorem. In other
words, we wish to find ¢ € [0, 7] such that

- fQ
fo= 1010

a. Show (by hand) that one solution is ¢ = 7.
b. Use a root-finding algorithm to find another solution to 4 decimal places.
Your answer should be consistent with the dashed line in fig. 1.16 above.

14 (Another counterexample) Here is another interesting counterintuitive example in
analysis. Use counterexample.ipynb as a template.

Consider the function f : [0, 1] — R defined by

x(2—-coslnx —sinlnx) ifx € (0, 1],
flx) = .
0 if x =0.
It can be shown that f is strictly increasing, yet there are infinitely many points where
f'(x) =01in (0, 1].

a. Use Python to plot the graph of the function. Your graph should demonstrate the
self-similar structure when we zoom in towards the origin.

b. Show (by hand) that there are points of inflection at x = ¢~>"" where n € N.
Indicate them on your plot.

®

Check for
updates

CHAPTER
TWO

Calculus

Calculus broadly encompasses the study of differentiation and integration. At school,
these subjects are often taught in a rather algorithmic way with a focus on employing
various techniques of differentiation and integration using stock formulae and tricks. This
approach only scratches the surface of what has to be one of the most profound mathematical
inventions that have helped us understand the physical world and the laws of nature.

At university, the focus of calculus shifts dramatically from how to why you can
differentiate or integrate a function, and calculus becomes a much more rigorous subject
with close links to analysis. A good review of these links is given in [161, 189], for example.

Fig. 2.1: (L-R) Sir Isaac Newton (1642—1726) and Gottfried Leibniz (1646—1716) formulated
calculus independently, although the question of who came to it first was a highly contentious
intellectual feud of the late 17th century. (Image source: [137].)

How can we use Python to help us understand calculus? Since Python is primarily a
numerical tool, we will be interested in the numerical values of derivatives and integrals
rather than their algebraic expressions. For example, we are not interested in the problems

If f(x) = e, find f'(x) OR Find f sin x dx,

which are symbolic in nature, and so must be solved by specialised packages that have been
taught the rules of calculus (e.g. the SymPy library). Instead, we are interested in problems
that require numerical answers, such as

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 53
S. Chongchitnan, Exploring University Mathematics with Python,
https://doi.org/10.1007/978-3-031-46270-2_2

https://doi.org/10.1007/978-3-031-46270-2_2
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46270-2_2&domain=pdf

54 2 Calculus

T
If f(x) = e~ ,find f/(2) OR Find f sin x dx,
0

which can be solved with basic binary arithmetic on any computer.

Calculus on the computer is a surprisingly subtle topic. Because Python does not know
even the most basic rules of differentiation and integration, we need to approximate those
quantities numerically using the gradient of a tangent for derivatives, and area under a graph
for integrals. The surprise here, as we will see, is that there is a limit to how accurate these
numerical answers can be, stemming from the inevitable fact that computers operate on a
system of floating-point binary numbers (this will be explored in §2.2) .

We will also explore some applications of calculus, including applying Taylor’s Theorem
to quantify the error in approximating a function as a polynomial (§2.4) and approximating
a function as a Fourier series, comprising sine and cosine waves of various frequencies

(82.9).

2.1 Basic calculus with SciPy

Another useful Python library for mathematicians is SciPy (https://www.scipy.org),
which contains ready-made functions and constants for advanced mathematics. We will use
often use SciPy throughout this book.

You will need SciPy version at least 1.10. To check this, run the following lines:

import scipy
scipy.__version__

If you have an older version of SciPy, update it using pip. See Appendix A.

In this chapter, we will need the SciPy module scipy.integrate, which contains
several integration routines such as the Trapezium and Simpson’s Rules. The go-to workhorse
for computing integrals in Python is the function quad (for guadrature, a traditional term for
numerical integration). The quad function itself is not a single method but a set of routines
which work together to achieve an accurate answer efficiently. The algorithm behind quad
was initially conceived in Fortran in a package called QUADPACK, and is described in
detail by [165].

Here’s the basic syntax for the quad function.

Integration with SciPy
i import numpy as np
| import matplotlib.pyplot as plt
For integration with SciPy "import scipy.integrate as integrate

Define f (x) = e’ f = lambda x: np.exp(-x**2)

fom e dx integral, error = integrate.quad(f, 0, np.inf)

The output for (integral, error) is
(0.8862269254527579, 7.101318390472462e-09)

Note that quad returns a pair of numbers (called a tuple of length 2). The first number is the
value of the definite integral, and the second is an estimate of the absolute error (which

https://www.scipy.org

2.2 Comparison of differentiation formulae 55

should be tiny for a reliable answer). In this case, the exact answer is \/7/2, which agrees
with SciPy’s answer to 16 decimal places.

The mathematical details of how functions like SciPy’s integrate work are usually
hidden from users behind a ‘Wizard-of-Oz’ curtain that users rarely look behind. This is
contrary to the spirit of this book whose emphasis is on mathematics and not commands.
Therefore, in this chapter, we will only use SciPy’s integrate function occasionally, and
only to confirm what we can do by other, more transparent methods.

As for differentiation, SciPy had a derivative routine, but it is now obsolete. In the
next section, we will discuss how to differentiate a function numerically.

2.2 Comparison of differentiation formulae

Consider the following 3 formulae for approximating the derivative of a function f
at point x.
Let 4 > 0 be a small number (we call this the step size).

J&x+h) - fx)
- .
f) - fx-h
- .
fx+h) - fx—h
2h '

Let f(x) = x>. Compare the actual value of the derivative f’(1) to the above
approximations for a range of step sizes h. Do this by plotting the absolute error
E(h) for each formula, where

The forward-difference formula: f’(x) ~
The backward-difference formula: f'(x) =

The symmetric-difference formula: f’(x) ~

E(h) = |actual value of the derivative—numerical approximation using step size #|.

The forward, backward and symmetric-difference formulae all approach the gradient of
the tangent to the graph y = f(x) at point x as the step size 7 — 0, so it is reasonable to
expect that the smaller the %, the more accurate the expression will be. However, we show in
this section that on the computer, this is not the case. This may come as a surprise to many
beginners. It is very important to be aware that when coding derivatives, hugely inaccurate
answers could result if / is too large or too small.

Let’s study the accuracy of these approximations at a fixed value x = 1 and calculate the
absolute difference between f’(1) and the approximations as we vary 4. The code below
produces the graph of E(h), which in this case is

E(h) = |3 — approximation|

for & in the range [10720, 1].

56 2 Calculus

Eh.ipynb (for plotting fig.)
i import numpy as np
| import matplotlib.pyplot as plt

Range of i from 10720 to 10° (log scale) 3 h = np.logspace(-20, 0, 300)
Point of interest x =1
Define the function | f = lambda x: x**
Actual expression for f”(x) ractual = 3*x**2
fx = £(x)
| fxp = f(x+h)
| fxm = f£(x-h)
|
Forward difference lestl = (fxp-£x)/h
Symmetric difference iest2 = (fxp-fxm)/(2*h)
|
E(h) :errl = abs(actual-estl)
rerr2 = abs(actual-est2)
|
Plot the errors on log axes plt.loglog(h,err2, 'k', lw=2)

:plt.loglog(h,errl, 'r', lw=1)
iplt.legend(['Symmetric difference',
l 'Forward difference'])
plt.xlabel(r'h')
:plt.ylabel(r'Absolute error E')
iplt.xlim([1le-20, 1])
1p1t.grid('on')

plt.show()

Fig. 2.2 shows the logarithmic plot of the two approximations (forward and symmetric
differences). The graphs show a number of distinctive and surprising features:

100

1072 -

10—4 4

10—6 4

Absolute error E

1078 A

10719 4 —— Symmetric difference
—— Forward difference

1020 107V 10714 10711 1078 1075 1072
h

Fig. 2.2: E(h) defined as |f’(1) — approximation| is plotted for the forward-difference
approximation (thin red line) and the symmetric-difference approximation (thick black line).

22

Comparison of differentiation formulae 57

For each approximation, there appears to be an optimal value of /2 which minimises the
error, namely:

L 1078 (Forward difference)
ot 107® (Symmetric difference)

The symbol ~ is used in this context to mean a rough order-of-magnitude estimate.
The minimum error (ignoring small-scale fluctuations) are roughly:

1078 (Forward difference)

10~"" (Symmetric difference)

E(hopt) ~ {

For h 2 hepi, we see a linear behaviour in both cases. Since this is a log-log plot, a line
with gradient m actually corresponds to the power-law relation E(h) ~ h'™. From the
graph we see that

h (Forward difference)

E(h 2 hopt) ~
(opt) { h* (Symmetric difference)

For 107!® < h < hopt» we see rapid fluctuations, but the overall trend for both
approximations is
E(107'% < h < hop) ~ h71.

For h < 10716, both approximations give the same constant.

You should try changing the function and the point x at which the derivative is calculated.

You should see that there are no effects on any of the observations summarised above. You
should also verify that the backward-difference approximation gives essentially the same
graph as the forward-difference graph (the fluctuations will be slightly difference).

The key takeaway here is that numerical derivatives do not behave in the way we might

expect: smaller i does not produce a more accurate estimate. Always use i = hgp Whenever

we

code a derivative.

DiscussioN

The machine epsilon. The reason behind the behaviour of E (%) that we saw is the
fact that computers use binary numbers. A computer uses 64 binary digits to represent
any real number as a floating-point number (or simply float). It can be shown that
this accuracy is dictated by a number called the machine epsilon, &mach, defined
as the distance between 1 and the next floating-point number greater than 1. For
double-precision floats (which is what most computers today use by default), we have

Emach =272 ~ 2.2 % 10710,

See [182] for an explanation of how &y, is calculated. The machine epsilon is one of
the main reasons why numerical results are sometimes very different from theoretical
expectations.

For instance, emacn is the reason why we see the flat plateau for very small 4 in fig.
2.2.If h < &mach, the floating-point representation of 1 + 4 is 1, and the approximation
formulae give zero because f(x + h) = f(x — h) = f(x). Therefore E(h) = 3 if h is
too small, as seen in the graph.

58

2 Calculus

* Truncation and rounding errors The V-shape of the graphs is due to two numerical

effects at play. One effect is the rounding error, Eg, which occurs when a number
is represented in floating-point form and rounded up or down according to a set of
conventions. It can be shown that

Eg ~h7,

and therefore Ex dominates at small 4. The tiny fluctuations are due to different
rounding rules being applied at different real numbers.

In addition, there is also the truncation error, Et, which is associated with the accuracy
of the approximation formula. In fact, Taylor’s Theorem (see §2.4) tells us that the error
in the forward and symmetric difference formulae can be expressed as follows.

fx+h-fx) h_,
3/ @ 2.1)

h) — —h) K2
flx+)th(x)_E), 2.2)

Forward difference: f’(x) =

Symmetric difference: f'(x) =

for some numbers &1, &> € (x, x + h). The truncation error is simply each of the error
terms above, arising from the truncation of the infinite Taylor series for f. Note that the
powers of & in these remainder terms are exactly what we observed in the E (/) graph.
In exercise 2, you will explore the E (/) graph of a more exotic formula for the derivative.

Big O notation Another way to express the accuracy of the approximations (2.1)-(2.2)
is to use the O(h™) notation, where n is determined from the scaling of the error
term. We say that the forward difference formula is an O (%) approximation, and the
symmetric difference formula is O(h?). The higher the exponent n, the faster the error
shrinks, so one does not have to use a tiny / to achieve a good accuracy.

2.3 Taylor series 59

2.3 Taylor series

Evaluate and plot the partial sums of the Taylor series for:
a) sin x, b) In(1 + x) c) 1/(1 + x).
In each case, at what values of x does the Taylor series converge?

Recall that the Taylor series for a smooth function f expanded about x = 0 (also known
as Maclaurin series) is given by:

f(x) = f(0) + f'(0)x +

9 1 ()
00 L0y 230)

For the given functions, we find

Sinx = Z mx 5 (24)
© (_1)n+l i
In(1 + x) = ,,Zi ", 2.5)
1 = "
= nzzo(—x) . 2.6)

The code taylor.ipynb plots the graph y = In(1 + x) along with partial sums of the
Taylor series up to the x*° term (fig. 2.3). As there are so many lines, it might help to start
plotting only, say, the 5th partial sum onwards. The first few partial sums do not tell you
much more than the fact that they are terrible approximations.

It might also help to systematically colour the various curves. In our plot, we adjust the
(r,g,b) values gradually to make the curves ‘bluer’ as the number of terms increases (i.e.
by increasing the b value from O to 1 and keeping r=g=0).

From the graphs (and further experimenting with the number of terms in the partial
sums), we can make the following observations.

* sin x — The Taylor series appears to converge to sin x at all x € R.

* In(1 + x) — The Taylor series appears to converge to In(1 + x) for x € (-1, 1), possibly
also at x = 1. For x > 1, the graphs for large n show a divergence (i.e. the y values
become arbitrarily large in the right neighbourhood of x = 1).

141—x — The Taylor series also appears to converge to ﬁ for x € (—1,1), similar to
In(1 + x). At x = 1, the Taylor series gives alternating values of +1, so clearly does not
converge to the function value of % For |x| > 1, the Taylor series blows up.

60 2 Calculus

-0.5 0.0 0.5 1.0 1.5 2.0

T =— y=1/(1+x)

-0.5 0.0 0.5 1.0 1.5

Fig. 2.3: The graphs of y = sinx, In(1 + x) and ﬁ (thick black lines) and their Taylor
series. The top panel shows up to 7 terms in the series (up to the term x!3). The lower panels

show the series up to the x** term in the series, with bluer lines indicating higher number of
terms.

2.3 Taylor series

taylor.ipynb (for plotting the middle panel in fig.

nth term of the Taylor series def

|

l
Specify maximum number of terms 'n_m
Domain of the function IX =

'S =

|

|
With every pass of the for loop | for
Add a term w
Adjust the colour (b value) of the curve :
Start plotting from n = 5 }

|

l
Plot the function in thick black line plt

plt

:plt

plt

plt

| plt

)

i import numpy as np
| import matplotlib.pyplot as plt

nth_term(x,n):
return -(-1)**n*x**n/n

np.linspace(-0.99, 2, 100)
np.zeros_like(x)

n in np.arange(l,n_max+1):

S = S + nth_term(x,n)

b=n/n_max

if (n>=5):
plt.plot(x,S,label="'_nolegend_',
color = (0,0,b), 1lw=1)

.plot(x, np.log(1l+x),lw=2,color="k")
.legend([r'$y=1n(1+x)$'], loc="upper left')
.x1im([-0.99, 2])
.ylim([-2,2])
.grid('on')
.show()

DiscussioN

* Radius of convergence The radius of convergence, R, of a power series is a real

number such that the series)’ a, x™ converges for |x| < R, and diverges for |x| > R.
The interval (—R, R) is called the interval of convergence of the series.
For example, the series (2.6) could be regarded as a geometric series with common ratio
x. We know that the geometric series converges to the sum to infinity ﬁ if |x] < 1
and diverges when |x| > 1, as can be seen graphically in fig. 2.3. We say that the radius
of convergence of the series is 1.

» Ratio Test. We discussed the comparison test in the previous chapter. Another useful
convergence test is the following result known as d’Alembert’s Ratio Test:

Theorem 2.1 (Ratio Test) Let T,, be a sequence such that T,, # 0 eventually. Let

Tn+1
T, |

L = lim

n—oo

If L < 1 then the series Y. T, converges. If L > 1 then the series Y, T, diverges.

Applying the Ratio Test to the series (2.4) gives
2

X
L= lim —"
e 2n2n+ 1)

n—oo

=0, forall x € R.

This proves our conjecture that the Taylor series converges for all x.
However, we have not proved that the series converges to sin x (we only proved that it
converges to some function). We will come back to this in the next section.

62 2 Calculus

* Differentiating and integrating power series. There is a relation between the Taylor
series for ﬁ and In(1 + x). Here is a very useful theorem from analysis:

Theorem 2.2 The series Y, a,x" can be differentiated and integrated term by term
within the interval of convergence. The resulting power series has the same radius of
convergence.

Using this result, we can integrate both sides of Eq. 2.6 with respect to x as long as
|x| < 1, yielding exactly Eq. 2.5. This proves our conjecture that the two series share
the same interval of convergence.

However, we have not established the convergence at the end points x = +1. We will
discuss this in the next section.

2.4 Taylor’s Theorem and the Remainder term 63

2.4 Taylor’s Theorem and the Remainder term

Suppose we approximate sin x and In(1 + x) by the following polynomials (obtained
by truncating their Taylor series P(x)):

. 30 Nay X2V
in¥x Pay-i(¥) = x =34 g+ GO GETy
N
_ (_1)n+l P
_; -1 2.7)
x2 x3 X
ln(1+x)zPN(x);=x_7+?. (1)N+1N
N
-1 n+l
=2, (,z xt. 2.8)
n=1

Quantify the accuracy of these approximations by investigating the difference
between the function and its order-k polynomial approximation:

Ry (x) = f(x) = Pr(x).

You will probably be familiar with the approximation of a function f(x) as an order-k
polynomial Py (x) by truncating its Taylor series after a finite number of terms. At university,
we are not only concerned with the series itself, but also the error term (the ‘remainder’) in
the expansion, defined by Ry (x). The following theorem gives a useful expression for the
remainder term.

Theorem 2.3 (Taylor’s Theorem) Let I = [a,b] and N = 0,1,2. ... Suppose that f and
its derivatives f', f", ... fN) are continuous on I, and that f™N*V exists on on (a, b). If
xo € I, then, Vx € I\ {xo}, A€ between x and x(such that

(N)
£ = Fo0) + 7o) x0) -+ L)V 4 Ry ()
(N+1)
where Ry (x) = ﬁ(ﬁc - xo)"*!

Note that when x = x, the equality is trivial.

Although the theorem bears the name of the English mathematician Brook Taylor
(1685—-1731) who studied the polynomial expansion of functions, it was Joseph-Louis
Lagrange (1736-1813) who provided the expression for the remainder term. R,, is often
called the Lagrange form of the remainder.

In this form, the remainder is not completely determined due to the appearance of an
unknown &. However, in practice, this expression is sufficient for us to place a bound on R,
giving us some idea of the magnitude of the error.

Applying Taylor’s Theorem to f(x) = In(1 + x), the remainder Ry is found to be

=DV

RO =NoT

N+1
X
(s f) s for some & € (0, x). 2.9)

64 2 Calculus

On the domain 0 < x < 1 (where the Taylor series converges), we find that |Ry (x)]| is
bounded by:

L) e L onve 2.10
N+1(1+x) <IRv@l < Fg (2.10)
As the polynomial order N increases, we expect the quality of the approximation to improve,
and so Ry (x) should shrink to 0. Indeed, as N — oo, the RHS of (2.10) goes to zero. This
means that for all x € (0, 1], the Taylor series for f converges to f(x) (and not any other
functions)!.

Interestingly, this also explains why we can evaluate the Taylor series at x = 1, giving us
the familiar series for In 2 which we saw in §1.4.

The code taylorthm.ipynb calculates Ry (x) at a fixed x € (0, 1] and plots it as a
function of N. Fig. 2.4 shows the graph of Ry (x = 0.4) (solid red line) when In(1 + x) is
approximated by the Taylor polynomial of order N. The upper and lower bounds for |Ry |
(eq. 2.10) are shown in dotted lines. The graph shows that Taylor’s Theorem holds, and that
the constant & must be close to 0.

Now let’s turn to the function f(x) = sin x. Since the coefficients of the even powers of
x vanish, the 2/N-th order approximation is the same as the (2N — 1)th order approximation.
In other words, Ryn (x) = Roy—1(x). Calculating the remainder using Taylor’s Theorem,
we find

(—1)N COSE Hn4

Ron_1(x) = Ron(x) = QN+ D! ,

for some & € (0, x).
Note that the cosine is positive and decreasing on the interval (0, 0.4). Thus, we find the
upper and lower bounds for |Ry |:

v < Ren (01 = 1Ron (9] < mxﬂv“. @.11)

In fig. 2.4, we can see that the remainder and its bounds are almost indistinguishable,
up until around N = 12 where the |Ry | violates the bounds when it shrinks below a small
number of order &y ~ 10716, This is due to an additional error arising from the subtraction
of two nearly equal numbers (namely, f(x) and Py (x)).

In both cases, our conclusion is that Taylor’s Theorem is verified. In addition, we also
saw that the Taylor series for sin x converges much more rapidly than that of In(1 + x). By
the time we reach the order-12 polynomial, the approximation for sin x is so good that the
error is smaller than &pach-

! Keen-eyed readers might remember from fig. 2.3 that the Taylor series of In(1 + x) also converges to
In(1 + x) when —1 < x < 0. However, our proof does not work in this case, since it no longer follows from
eq. 2.9 that R (x) — 0. What is needed in that case is a different technique (for example, integrating
another Taylor series).

2.4 Taylor’s Theorem and the Remainder term

1072 43
10—4 4

1076

108 A

10-10 —
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Polynomial order N

— |Rn(x=0.4)|
1072 4

10-5

108 A

10-11 4

10714 4

10717 T T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Polynomial order N

65

Fig. 2.4: The absolute value of the remainder term |Ry (x)| for the function In(1 + x)

(top) and sin x (bottom), evaluated at x = 0.4, plotted as a function of N (the order of the
approximating polynomial). As N increases, the remainder approaches zero. The bounds

for |Ry| are plotted in dotted lines.

DiscussioN

* Ratio Lemma. We showed in the previous Section that the Taylor series for sin x
converges, but it remains to show that it converges to sin x. Here is a very useful result

which will help us prove this.

Theorem 2.4 (Ratio Lemma) Let a,, be a sequence such that a, > 0. Suppose L is a

constant such that 0 < L < 1 and an+1/a, < L eventually. Then, a, converges to 0.

Letting an be the sequence |x[*N+1/(2N + 1)! which appears on the RHS of Eq. 2.11
— 0 regardless of the value
of x. The Ratio Lemma says that ay — 0, and therefore the remainder Ry — 0. This

(where x # 0). Then the ratio ay1/an = m

proves that the Taylor series of sin x converges to sin x for all x € R.

66 2 Calculus

* A pathological function. You may be wondering if it is possible for the Taylor series
of a function to converge to a different function. The answer is yes! Here is a classic
counterexample. Define f : R — R by

e X if x #0,
f(x)"{o if x=0.

It can be shown that f M (0) = 0 for all n € N (see, for example, [91] for calculation
details). Therefore, the Taylor series of f converges to 0 everywhere, but only coincides
with f at a single point where x = 0.

taylorthm.ipynb (for plotting the top panel of fig.)

| import numpy as np
| import matplotlib.pyplot as plt
Term of degree N in the Taylor series def Nth_term(x,N):
return -(-1)**N*x**N/N

Choose any x € (-1, 1] x =0.4

Specify the maximum polynomial order : N_max = 15
1Nlist = np.arange(1l,N_max+1)
P =0

Value of the polynomial |PNlist = []

Lower bound for the remainder 1lowlist = []

Upper bound for the remainder ‘hilist = [1
|

Append the lists with every iteration "for N in Nlist:

Py (x) P = P + Nth_term(x,N)
PNlist.append(P)

Np = N+1

low = (x/(1+x))**Np/Np
lowlist.append(low)

hi = x**Np/Np
hilist.append(hi)

Lower and upper bounds in Eq. 2.10

The remainder |[Ry (x = 0.4)] RN = abs(PNlist-np.log(l+x))

Plot |R v | (thick red line), log y-axis plt.semilogy(Nlist, RN, 1lw=2,
color = 'r'")

plt.semilogy(Nlist,lowlist,'r:',
Nlist,hilist, 'r:')

yplt.legend([r'$|R_N(x=0.4)[$']1)

i plt.xticks(Nlist)

:plt.xlim([l,N_max])

1plt.xlabel ('Polynomial order N')

iplt.ylim([le-10,0.11)

plt.grid('on")

:plt.show()

1
|
1
|
1
1
|
1
|
1
1
|
l
Upper and lower bounds in dotted lines !
1

2.5 A continuous, nowhere differentiable function 67

2.5 A continuous, nowhere differentiable function

In 1872, Karl Weierstrass announced the discovery of a function which is continuous
on R, but is nowhere differentiable. The Weierstrass function f : R — R is given by

(o)

f(x) = Z a" cos(b" nx),

n=0

where a € (0, 1), b is an odd integer, and ab > 1 + 37”
Plot the Weierstrass function for some choices of a and b.

A function is continuous wherever it is differentiable. However, it came as a surprise
to the late 19th-century mathematical world that the converse is not true. The Weierstrass
function, arguably the most famous counterexample in mathematics, led to the development
of a rigorous foundation for analysis. Although Weierstrass’s counterexample was the first to
be published, and certainly the most impactful, such a pathological function was discovered
much earlier in 1830 by Bolzano. There are now many known examples of such a function.

An accurate plot of the function had to wait until the advent of computers (surely
frustrating mathematicians over the decades). Luckily for us, we can use Python to visualise
Weierstrass’s original function. The code below produces an interactive GUI with two
sliders for adjusting the values of a and b (fig 2.5). The code looks long, but it is simply a
straightforward extension of the single-slider code that we used in §1.7.

Using this GUI, we see that the parameter a adjusts the amplitude of the small-scale
fluctuations (as a — 0, f reduces to a regular cosine curve). The parameter b adjusts the
density of the small-scale fluctuations (higher b gives more substructures with high-frequency
oscillations).

The GUI also allow us to zoom into the curve, revealing a self-similar (or fractal-like)
oscillating structure. This self-similarity is the key intuitive reason why the curve is not
differentiable: zooming in always reveals the same oscillations, meaning that there are no
smooth segments on the curve, despite the fact that the function is continuous on R.

Whilst these properties may be easy to understand intuitively, Weierstrass’s original
proof is rather technical. We refer interested readers to [161] for a readable walkthrough of
the proof. It should be mentioned that the conditions ab > 1+ 37/2 and b an odd integer are
both specific to Weierstrass’s own working. It was shown by Hardy that the only conditions
required are that ab > 1 and b > 1 (not necessarily an integer).

68 2 Calculus

The Weierstrass Function

-20 -15 -10 -05 00 05 10 15 2.0
b 113
a 1 0.5

The Weierstrass Function (zoomed in)

0.00
—0.15 -0.10 —0.05 0.00 0.05 0.10 0.15
b 113
a 105

Fig. 2.5: The Weierstrass function on two very different scales, showing its self-similar
structure.

DiscussioN

¢ Other monsters. Poincaré famously described Weierstrass’s function as a “monster".
Here are two other famous monsters. Both these functions will be explored in the
exercises.

— The Blancmange function. Form = 0, 1,2 ..., let f,, : R — R be defined by

1
fo(x) = min{|x — k|, k € Z}, Jm(x) = 2—mf0(2"’X).

The Blancmange function, g : R — R, is defined by g(x) = 37 fm(x). It is
continuous on R but is nowhere differentiable.
— Riemann’s function, R : R — R is defined by

o . 2
R =Y. Sm;# 2.12)
k=1

Riemann conjectured that R was nowhere differentiable, and Weierstrass drew
inspiration from this function in the construction of his counterexample. However,
it is now known that R is differentiable only at points of the form ma/b where a, b
are odd coprime integers.

2.5 A continuous, nowhere differentiable function 69

¢ Further reading. For historical accounts and accessible material on continuous,
nowhere differentiable functions, see [118,202]. A more comprehensive treatment can
be found in [98].

weierstrass.ipynb (for plotting fig.

i import numpy as np
| import matplotlib.pyplot as plt
| from matplotlib.widgets import Slider

Create an interactive GUI 1%matplotlib
I
|
Initial values of a and b 'a, b = 0.5, 13
Maximum number of term in the series jm_max = 25
x values (need high resolution) 'x = np.linspace(-2, 2, 2500)

I

Each term in the series. Pass @ and b as,def fn(x, n, a, b):

arguments so they can be updated with the slider | return a**n*np.cos(np.pi*x*b**n)
|

The Weierstrass function i def g(x, a, b):

: S = np.zeros_like(x)

Sum the terms from n = 0 to m_max | for i in np.arange(®,m_max+1):
|
|
I
|
I

S =S + fn(x,1i,a,b)
return S

1 fig,ax = plt.subplots()
Leave a space at the bottom for sliders ! plt.subplots_adjust(bottom=0.2)
|
Plot Weierstrass function (thin black line) \Wfunc, = plt.plot(x, g(x,a,b),'k', 1lw=0.5)
iplt.xlim([-2,2])
! plt.ylim([-2,2])
iplt.grid('on")
1p1t.tit1e('The Weierstrass Function')
|

I

:axa = plt.axes([0.15, 0.05, 0.7, 0.02])
Create a slider for a € (0, 1) ra_slide = Slider(axa, 'a', 0, 1,
valstep=0.01, valinit=a)

axb = plt.axes([0.15, 0.1, 0.7, 0.02])
b_slide = Slider(axb, 'b', 1, 25,
valstep=0.01, valinit=b)

Create a slider for b

Update the plot if slider is changed
Take a and b from sliders

|
|
|
|
|
:
ldef update(val):
I a = a_slide.val
: b = b_slide.val
l Wfunc.set_ydata(g(x,a,b))
! fig.canvas.draw_idle()
Redraw 'a_slide. on_changed (update)

' b_slide.on_changed(update)

3 plt.show()

70 2 Calculus

2.6 Integration with Trapezium Rule

Partition the interval [a, b] into n subintervals [xg, x1], [x1, x2] ... [Xn-1, X] Of
equal length (where x¢ = a and x,, = b). Let h = (b — a)/n. The Trapezium Rule

(or Trapezoidal Rule) states that the integral fab f(x) dx can be approximated as:

b h n-1
dx ~ = 2 N 2.13
fa f(x)dx 2[y0+y1+ ;yl (2.13)

where y; = f(x;). We say that the RHS is the approximation of the integral using
the Trapezium Rule with 7 strips.

Use the Trapezium Rule to approximate the integral ff Inx dx.

How does the accuracy of answer vary with the width of each strip 4?

The Trapezium Rule approximates the area under the graph y = f(x) as the sum of
the area of n equally spaced trapezia. The left panel of fig. 2.6 demonstrates this idea
for f(x) = Inx, using 10 trapezia, or strips. The concavity of the curve suggests that the
Trapezium-Rule estimate will be less than the actual answer.

Similar to the error analysis of derivatives in §2.2 , we can study the error in numerical
integration by defining E(h) as the absolute difference between the Trapezium-Rule
estimate and the actual answer. The latter can be obtained by integration by parts, yielding

f12 Inxdx =[xInx — x]% =2In2 - 1. Hence, we find
E(h) = (2In2 — 1 — Trapezium-Rule estimate) > 0.

The graph of E(h) (produced by the code trapezium.ipynb) is shown on the right of
fig. 2.6. Since E(h) appears to be a straight line on the logarithmic plot, we can approximate
this behaviour as E o hX where k is the gradient of the straight line. Python tells us that

Gradient of line = 1.99999.

Thus, we conjecture that the Trapezium Rule is an O(h?) approximation.

Trapezium Rule with h=0.1 (10 strips))

0.7
0.6 // 10-6 1
0.5 1071
0.4 _ 107% 4
> =
")
0.3+ 10-9 |
0.2+ 10-10 4
0.1 10-11]
0.0 T T T T T
1.0 12 1.4 1.6 1.8 2.0 107 1074 1073 1072
x h

Fig. 2.6: Trapezium Rule. Left: The integration scheme for f]Z In x dx using 10 trapezoidal
strips. Right: The error E(h) plotted on log scales, showing that E(h) o h2.

2.6 Integration with Trapezium Rule 71

DiscussioN

¢ The error term. It can be shown (e.g. [182]) that the error term in the Trapezium Rule
can be written as

b
j; f(x)dx :g

for some ¢ € (a, b). The exponent of % in the error term confirms our finding that the
Trapezium Rule is an O(h?) approximation. Note from the formula that if f is a linear
function, the error vanishes. This is consistent with the geometric picture — the area
under a straight line is exactly a trapezium.

(- a)h?

n-1
YN H2 Y yi| - SO, (214)
i=1

* numpy.trapz NumPy actually has a built-in Trapezium Rule. Look up the trapz
command in NumPy’s documentation and verify that it gives the same result as our
own code.

trapezium.ipynb (for plotting fig.

rimport numpy as np
| import matplotlib.pyplot as plt
|
|
Integration limits fab 'a =
Create N evenly spaced values (number of 1N = np.round(np.logspace(2,5))
strips) on log scale. round gives nearest integer. :

Exact answer for the integral } actual= 2*np.log(2)-1
h (width of each strip) ! hlist = (b-a)/N
E (h) (to be filled in using the for loop) rerror = []

def trapz(y,h):

Eq. 2.13 return h*(sum(y)-(y[0]+y[-11)/2)
Given a fixed number of strips, for n in N:
Create partition x; X = np.linspace(a,b,int(n+1))
i y = np.log(x)
h = (b-a)/n

Apply the Trapezium Rule
and collect the value of E (h)

estim = trapz(y,h)
error.append(actual-estim)

1plt.loglog(hlist, np.abs(error))
iplt.x1lim([1le-5, 1le-2])
,plt.xlabel('h"')
'plt.ylabel('ECh) ")
iplt.grid('on')

1plt.show()

Calculate the gradient from the first and | k=(np.log(error[0])-np.log(error[-1]1))/\
last points on the line. . . : (np.log(hlist[®])-np.logChlist[-1]))
and report iprint(f'Gradient of line = {k:.5f}.")

72 2 Calculus

2.7 Integration with Simpson’s Rule

Partition the interval [a, b] into 2n equal subintervals
[x0, x1], [x1, x2] . .. [X2—1, X2n] (Where xg = a and x5, = b). Let h = (b — a)/2n.
Simpson’s Rule states that the integral fab f(x) dx can be approximated as:

b
fa e

where y; = f(x;).

n n—1
Yo+ Yo +4 Y yais1 +2) v, (2.15)
i=1 i=1

Use Simpson’s Rule to approximate the integral flz In x dx.
How does the accuracy of answer vary with the width of each strip?

Thomas Simpson (1710-1761) was an English self-taught mathematician known today
for his integration rule (although, as he himself acknowledged, the result was already known
to Newton and a number of previous mathematicians).

In Simpson’s Rule, the curve y = f(x) is approximated using a parabola drawn over each
subinterval [x;, x;4+2]. Each parabola goes through three points, namely, (x;, y;), (Xi+1, Yi+1)
and (x;42, y;+2). For easier comparison with the Trapezium Rule, we say that the formula
(2.15) uses n strips, each with width H = 2k, where h is the width of each substrip.
This means that one parabola is drawn per strip. Fig. 2.7 (left panel) demonstrates this
scheme with 10 strips: the thick red vertical dashed lines show the boundaries of strips at
X0, X2, . . . X20. The thin blue dashed lines are the centres of the strips at xy, x3, . . . X]9.

As before, we define the absolute error in the approximation as

E(H) = [2In2 — 1 — Simpson’s-Rule estimate] .

The graph of E(H) is shown in the right panel of fig. 2.7. For easy comparison with the
result for Trapezium Rule, we plot this graph over the same domain as that in fig. 2.6. We
can make a few interesting observations from this graph.

Simpson's Rule with H=0.1 (10 strips)

-11
0.7 // 10
0.6 / o2
0.5 -
10°13 4
> : : : : : ‘E ™
031 : : : : : : 0
02 I 1015
wl A E B MMM
0.0 = + = + = + = + = T T
1.0 1.2 1.4 1.6 1.8 2.0 10-° 1074 1072 1072
x H

Fig. 2.7: Simpson’s Rule. Left: The integration scheme for flz In x dx using 10 strips (20
substrips). Right: The error E(H) plotted on log scales. The domain is the same as that in
fig. 2.6 for easier comparison.

2.7 Integration with Simpson’s Rule 73

 The values of the error, given the same number of strips, is many orders of magnitude
smaller than the error using Trapezium Rule. For example, using the strip width 1072
gives a surprisingly accurate answer with E ~ 107!! for Simpson’s Rule, but for the
Trapezium Rule, we find a much larger E ~ 107.

» There appears to be two distinct regimes of the curve. The straight part where H > 1073,
and the oscillating part for smaller H. Python tells us that the value of the gradient of
the straight part is

Gradient of line = 3.99997.

Thus, we conjecture that Simpson’s Rule is an O(4*) approximation. Together with the
previous point, we conclude that Simpson’s Rule is a far superior method in terms of
accuracy (at the expense of an increased number of calculations).

» The oscillating part of the curve occurs around E(H) ~ 10713, This is a magnitude
comparable to enyacn. Indeed, we are just seeing the numerical artefact when subtracting
two nearly equal numbers in the calculation of E(H).

Here is the code for plotting E(H) and calculating the gradient of the straight part.

simpson.ipynb (for plotting fig.)

import numpy as np
| import matplotlib.pyplot as plt

|

|
Integration limits fab 'a, b=1, 2
Create N evenly spaced values (number of 1N = np.round(np.logspace(2,5,300))
strips) on log scale. round gives nearest integer. |

Exact answer for the integral ;actual= 2*np.log(2)-1
H (width of each strip) ! Hlist = (b-a)/N
E(H) (to be filled in using the for loop) rerror = []

|

def simp(y,h):
return (h/3)*(y[0]+y[-1]+\
4*sum(y[1:-1:2])+2*sum(y[2:-1:2]))

Eq. 2.15

|
I
|
|
I
:
|
Given a fixed number of strips for n in N:
Number of substrips ! n2 = 2*n
I
|
I
|
|
I
|
|
I
|

The partition x; X = np.linspace(a,b,int(n2+1))
Yi y = np.log(x)
Width of each substrip h = (b-a)/n2

estim = simp(y,h)
error.append(actual-estim)

Apply Simpson’s Rule
and collect the value of E(H)

,plt.loglog(Hlist , np.abs(error))
'plt.xlim([1le-5,1e-2])
rplt.xlabel('H")
1plt.ylabel('EC(H) ")
,plt.grid('on")

'plt.show()

Calculate the gradient of the straight part | k= (np.log(error[®])-np.log(error[50]))/\
Note that the first 100 elements of these lists are, (np.log(Hlist[0])-np.log(Hlist[50]))
the right third of the graph shown in fig. 2.7 print(f'Gradient of line = {k:.5f}.")

74 2 Calculus

DiscussioN

* Smaller / is not always better. Just as we saw in numerical differentiation, we have a
similar phenomenon for numerical integration: smaller # does not always guarantee a
more accurate answer. Fig. 2.7 shows that the minimum strip width (below which the
roundoff error dominates) occurs at around 1073,

* The error term. It can be shown (e.g. [182]) that the error term in Simpson’s Rule
can be written as

b
L f(x)dng

for some & € (a, b). The derivation of the error term is surprisingly much more difficult
than that of the Trapezium Rule.

The exponent of £ in the error term confirms our conjecture that Simpson’s Rule is an
O(h*) approximation.

Note from the formula that if f is a cubic function, the error vanishes. This too is
surprising given that Simpson’s Rule is based on parabolas. If we consider the simplest
case of a single strip on [xo, x2], the formula suggests that given a cubic curve on
this interval, we can draw a parabola which intersects the cubic at 3 points (where
X = Xxg, X1, X2) such that both the cubic and the parabola have exactly the same area
under the curves! See exercise 9.

4 = (b—a)h*
Yo+ Yon + 42)’2:’—1 + 22)’2:‘ - wa(f),

i=1 i=1

Another interesting observation is that the error term allows us to estimate the minimum
strip width by setting magnitude of the error term to be roughly &p,ch. We find

1/4
Hpin = 2hpin ~ 2 (Lgmach) .
(b-a)f® ()

With f(x) = Inx on [1,2] and |f®(£)| > 2, we find a conservative estimate of
Hpin < 1.1 x 1073, This is in good agreement with what we see in fig. 2.7. A similar
calculation of Ay, for the Trapezium Rule is left as an exercise.

* Romberg integration. In fact, there is a beautiful connection between the Trapezium
and Simpson’s Rules. Each method approximates the function y = f(x) on a strip
with a degree-n polynomial (n = 1 and 2 respectively). One could clearly extend
this approximation by using a higher-order polynomial on each strip. This iterative
construction is formalised in the technique called Romberg integration, frequently used
in numerical applications as it has the advantage of being easy to implement using an
iterative scheme.

The Trapezium Rule is the lowest-order (O(h?)) Romberg integration, and Simpson’s
Rule is the next order (O(h*)) Romberg integration. The next order (O (h°)) Romberg
integration is based on dividing each strip into 4 substrips, and approximating f(x)
over the strip using an order-4 polynomial. This approximation, known as Boole’s Rule,
will be explored in exercise 11.

Werner Romberg (1909-2003), was a German mathematician who escaped Nazi
Germany and settled in Norway. His integration method was based on previous work
by Maclaurin and Huygens. George Boole (1815-1864) was an English mathematician
and inventor of symbolic logic which we now call Boolean algebra.

2.8 Improper integrals 75

2.8 Improper integrals

Evaluate the following integrals numerically.

oo (o) [o%) Q
P 2 sin x
I =f e ¥ dx, L =f x2e™ dx, L =f — dx.
0 0 0 X

An improper integral is an integral that either has an integration limit involving co or one
in which the integrand is not well-defined at one of the integration limits (e.g. the integrand
in /

inte
acl
revi
wol
sho

1.0 — 2
y=e”
0.5 1
0.0 4 T T T : ; ; ;
0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0
2
y:x2671
0.2
0'0- T T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Fig. 2.8: Graphs of the integrands of I; to I3 (top to bottom).

We see that the integrands all appear to converge to y = 0 as x — co. However, this
asymptotic behaviour alone does not guarantee the convergence of the integrals (after
all, flw % dx is divergent). But our graphical investigation has not revealed any obviously
divergent integrals.

You might also notice that for I3, the integrand does not diverge as x — 0, but approaches
1 (due to the limit lim,_,o(sinx/x) = 1, see eq. 1.6). To avoid zero division, it might be
useful for numerical purposes to define the integrand of /3 as
MY x#0,
fx)y=9 x .

1 x =0.

This makes f is continuous on R.
Now let’s see how these improper integrals can be evaluated in Python.

76 2 Calculus

First solution: quad

The quickest method for tackling improper integrals is use scipy.integrate.quad
which accepts oo (np.inf) in the argument. The code for evaluating I; was shown in the
beginning of this chapter (§2.1). Using quad, we obtain the following values of the integrals,
as well as the error estimates.

I1, errl = (0.8862269254527579, 7.101318390472462e-09)
I2, err2 = (0.4431134627263801, 8.053142703522972e-09)
I3, err3 = (2.247867963468921, 3.2903230524472544)

The error estimates for /; and I; look reassuringly tiny, but the error estimate for /3 is
alarmingly large (even larger than the answer itself!). Python also gives a warning message
that “The integral is probably divergent, or slowly convergent”. Further investigation is
needed.

The quad method is really easy, but it gives us very little understanding of what is
happening mathematically. When coding becomes an opaque black box, it makes the
interaction between mathematics and computing less meaningful, and the problem becomes
less mathematically enlightening.

Second solution: substitution

Let’s take a look at a more transparent method, this time without using quad.

All the integrals involve infinity in the limit. But infinity is not a binary number, so to
compute it numerically we must replace infinity with a finite limit. But simply replacing
infinity with a large number is not always going to work. After all, it’s not clear how large
the large number should be.

Here is a more sophisticated strategy. To work out I/ = fooo f(x)dx, let’s first break it up

into two integrals:
@ [eS)
1= f fOodx+ f f(x)dx,
0 @

where the break point « is a positive number to be determined. For the second integral, use a
substitution to turn the limit co to a finite number. Let’s try u = 1/x (a different substitution
might work even better, depending on the behaviour of the integrand). This yields

a 1/a
I:f F(x)dx + f(IQ/”) du. (2.16)
0 0 u

When a = 1, the two terms can also be combined into a single integral (upon renaming the
dummy variable u as x)

1
sz [f(x)+f(1§x)] dx. 2.17)
0

X

Let’s try using formula (2.16) to tackle /; using Simpson’s Rule to evaluate each integral.
You can use our own Simpson’s Rule code, or, equivalently, scipy.integrate.simpson.
Supposing for now that the exact answer is

11 = 7 .
(We will explain this in the Discussion section.) Let’s vary the value of the break point o and
see how the error behaves. Using 4 = 1073 in Simpson’s Rule, the code improper. ipynb
produces fig. 2.9.

2.8 Improper integr: - 77

10713 4

10-14 4

Absolute error

10-15 4

10716 4

Fig. 2.9: The accuracy when I} = fooo e dx is evaluated by splitting it into two integrals

(eq. 2.16) and using Simpson’s Rule with 2 = 1073, The graph shows the absolute error as
the break point a varies. The absolute error is minimised when « 2 5.

Fig 2.9 shows that the best accuracy is obtained when « is around 5 (where the absolute

error is machine-epsilon limited). Nevertheless, for any a the worst accuracy is still a
respectable 13 decimal places. With @ = 5, Python gives the following excellent estimate
which is accurate to 15 decimal places:

integ

0.886226925452758

exact = 0.8862269254527579

A couple of highlights from the code:

¢ In evaluating the second integral in eq. 2.16 , we choose a tiny cutoff for the lower limit
(1073 in the code) in place of zero, which would have produced a division-by-zero error.
It is always a good idea to check that the answer for the integral is insensitive to the
choice of the tiny cutoff. Indeed, varying the cutoff by a few orders of magnitude does
not change the shape of the graph.

» Simpson’s Rule requires an even number of strips, i.e. an odd number of points N in
np.linspace(a, b, N). We ensure that N is odd using the function

makeodd(N) = N + 1 - (N%2).

The syntax N%2 gives the remainder when N is divided by 2. Therefore, the function
gives N when N is odd, and N+1 when N is even.

* Nevertheless, SciPy’s integrate.simpson would still work without our makeodd
function, but one should be aware of how the routine deals with an odd number of
half-strips. The result can be different depending on your version of SciPy. For more on
this point, consult SciPy’s documentation?.

2

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.simpson.

html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.simpson.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.simpson.html

78 2 Calculus

improper.ipynb (for producing fig.

i import numpy as np
SciPy’s Simpson’s Rule | import matplotlib.pyplot as plt

| from scipy.integrate import simpson
Range of break point @ in eq. 2.16 !
Each run of the for loop will fill this list : alpha = np.linspace(8.05, 7, 500)
f (the first integrand of (2.16) error = []
g (the second integrand) "f = lambda x: np.exp(-x**2)
g = lambda x: np.exp(-1/x*%2)/x**2
Exact value of the integral
Width of each half-strip exact = 0.5*np.sqrt(np.pi)
h = le-3
Function which always gives an
odd integer
(see text for explanation)

def makeodd(N):
return N + 1 - (N%2)

for a in alpha:
N1 = int(a/h)
N2 = int(1/(a*h))
x1 = np.linspace(®, a, makeodd(N1))
x2 = np.linspace(le-8, 1/a, makeodd(N2))

Loop over « values

No. of half-strips in each integrand (int
converts a float to an integer)

Domain of the first integration

Lower limit in the second integral cannot
be 0, so we introduce a tiny cutoff 1078,
Use Simpson’s Rule to evaluate (2.16)
(note the syntax: y values then x values)
Collect the absolute errors

|
|
|
|
|
|
|
|
|
|
|
|
|
|
i
: integ = simpson(£f(x1),x1)+simpson(g(x2),x2)
} err = abs(exact-integ)
! error.append(err)

|
Plot the result with a green line1plt.semilogy(alpha,error, 'g")
(log vertical axis) 'plt.x1im([0,max(alpha)])

! plt.xlabel(r'α"')

1plt.ylabel('Absolute error')

1p1t.grid('on‘)

i plt.show()

Applying the same splitting trick to integral I, you should find a similar behaviour in
the absolute error. To work out the exact answer, one can integrate by parts and use the
previous exact result to deduce that

With @ = 5, Python gives an excellent estimate accurate to 15 decimal places.

integ = 0.44311346272637947
exact = 0.44311346272637897

Finally, for the integral I3, our trick produces

I; = fa _sinxdx+fl/"’ —sin(l/x) dx.
0 X 0 X

For small x, the sin(1/x) term fluctuates very rapidly. The resulting error from integrating
this term numerically is enormous (try it!).

We could try neglecting the second troublesome integral and evaluating the first integral
up to a large finite number @ = A, i.e. we make the approximation

A .
sin x
I3 = —dx.
0 X

2.8 Improper integrals 79
The integral converges very slowly as shown in fig. 2.10. Here we have used the Trapezium
Rule with strip width & = 1073, and we have assumed that the exact answer is

I = 7
(This will be explained in the Discussion). From fig. 2.10, it is clear that we have to integrate
to quite a large number to achieve high accuracy. More precisely, the error fluctuates
more and more as A increases, but there is an envelope A o (error)~!, which guarantees
a minimum achievable accuracy. We can deduce, for instance, that to achieve an answer
that is accurate to p decimal places (i.e. the error must be at most 0.5 x 1077), this can be
achieved when A ~ 2 X 10” (limited by rounding error).

Absolute error

10—8 4

10-10 4

10712 4

10t 102 103 104 10°
A

A sinx s
Jo Hrdx-3

X

Fig. 2.10: The absolute error defined by plotted as the upper limit A varies.

The integral is evaluated using Trapezium Rule with 4 = 1073,

Although we have attacked these integrals using a variety of different numerical methods,
itis also possible to calculate these integrals using Python’s library for symbolic mathematics
called SymPy. We will explore SymPy in chapter 5, but if you are impatient, go straight to
the code box in the very last exercise in that chapter.

Finally, a rather different approach to numerical integration based on probability is Monte
Carlo integration, which will be discussed in §7.10.

80 2 Calculus

DiscussioN

* Key to success with numerical integration. The main takeaway here is that there are
no magical Python functions which can deal with every integral accurately. The key to
success is to work with Python by using our mathematical understanding (e.g. introduce
a suitable transformation). Always investigate the behaviour of the integrands, and
where possible, avoid the black-box approach (where you leave everything to Python
without knowing what it does). Numerical integration is an art which takes experience
to master, so be patient!

* A Gaussian integral and a trick. Here is a neat integration trick to show that
Iy =+/m/2. Let I = ff; ¢~ dx. Note that by symmetry, I = 21;. Since we can also

. _y2 . . .

write I = f © ey dy, we can multiply the two expressions for / and, assuming that we
—00

can move terms around, we have

Izzf e‘xzdxf e_yzdysz e_(xz+y2)dxdy.
-0 —o0 R2

Here we need some knowledge of multivariable calculus. If double integration is
unfamiliar to you, come back to revisit this point after studying the next chapter. Note
that the domain in the final integral is the whole of R?. We can evaluate this integral in
polar coordinates (r, #). We have x> + y*> = 2, and the area element dxdy = r dr d6.

Thus,
2) 5
I’ =f f re”” drdf = n.
0=0 Jr=0

Therefore I = /rr and I} = /2.
This kind of integral, known as Gaussian integral, occurs frequently in university
mathematics, especially in probability and statistics (you may recognise that the integrand

. ST . . . L b _

is the normal distribution). But if we change the integration limits to fa e dx for
arbitrary real numbers a, b, then there are no elementary expressions for the answer. This
is why it is important for us to perform this kind of numerical integration accurately.

* The sine integral and another trick. The integral I3, which we found tricky to handle
numerically due to its slow convergence, is in fact a special value of the following
function called the sine integral:

.
Si(x)zf SINE .
0 t

This function occurs frequently in physical and engineering applications. The quickest
way to evaluate this is to use the following SciPy command:

scipy.special.sici(x)[0]

Note that only first element of sici(x) is the sine integral. The second element is the
cosine integral which will be explored in exercise 13.

In general, there are no elementary expressions for this integral, except at x = 0 (clearly
Si(0) = 0) and x — oo where the integral becomes I3 = fooc % dx = /2 as we
saw earlier. At university, you will learn a number of different methods that can help
you evaluate /3 exactly. One technique is to use contour integration (in a topic called
complex analysis). Another technique the Laplace transform, which is a mathematical
tool with a huge range of engineering applications.

2.8 Improper integrals 81

Even without these advanced techniques, there is a clever trick which can help us
evaluate the integral. Again this relies on some elementary knowledge of multivariable
calculus. This trick is based on the following simple observation:

[ee) .
o sin x
e sinxdy = ,
0 X

(where x is held constant in the integral). Therefore, we can write the original integral

as . .
I; :f (f e sinxdx) dy,
0 0

where we have assumed that the order of integration can be switched (thanks to a result
in analysis called Fubini’s theorem). You would most likely have come across the inner
integral presented as an exercise in integration by parts with the use of a reduction
formula (whereby the original integral appears upon integrating by part twice). You

should verify that:
0 1
f e sinxdx = .
0 1+y?

Returning to the original integral, we then find:

© 4 e
Ig:f(; 1+yy2:[tanly]0=g.

82 2 Calculus

2.9 Fourier series

Let f : R — R be a 2r-periodic function defined by:

_ 1 xe[0,mn)
f(x)_{O X € [m,27)

and continued outside [0, 277) in the same way, so that the graph of y = f(x) looks
like a square wave.
Show that f can be written as a series in sinnx as

1 2 1 1
fx) = §+ - (sinx+ gsin3x+§sin5x...).

Plot the partial sums of this series.

The topic of Fourier series is a vital part of university mathematics. We give a brief
summary here. The goal is to write a 2r-periodic function f (defined on R) as a sum of sines
and cosines of different frequencies and amplitudes. In other words, we want to express
f(x) as

(o8]
flo =20, > (ancos nx + by sinnx), (2.18)
2 =1
(the constant term ay is traditionally written out separately to make the formula for a,, and
b, easier to remember). The French mathematician Joseph Fourier (1768—1830) proposed
such a series to study the problem of heat conduction, and showed that the coefficients of
the series are given by:

T T
ay = lf f(x) cos nx dx, b, = lf f(x)sinnxdx. (2.19)
T J-x T Jdon

We can think of equation 2.18 as a decomposition of a function into different resolutions.
Large n are high-frequency sinusoidals, so they capture the small-scale fluctuations of f at
fine detail. Similarly, small n sinusoidals would capture the low-frequency, broad-brush
behaviour of f.

In fact, this composition can be generalised to a continuous range of frequency n, in
which case the decomposition is called a Fourier transform. Fourier series and Fourier
transform constitute a topic called Fourier analysis, which is an indispensable tool in signal
and image processing, geoscience, economics and much more. See [65, 94, 190] for some
excellent books on Fourier analysis.

Back to the square-wave function. Performing the integrations in Egs. 2.19, we find:

a0:1’ a}'I:O’

2
= fi
b, = 1 [1-(-1)"] = {nﬂ or n odd

nr 0 for n even

where n = 1,2,3 ... (you should verify these results). Putting these into the Fourier series
(2.18) gives:

2.9 Fourier series 83

0

Z sinnx (220)

l\)l'—'

fx) =

:HN

The code below produces an interactive plot with a slider which changes the number of
terms in the truncated Fourier series (n = 0, 1,2, ... nn,) . Some snapshots for different
values of np,x are shown in fig. 2.11.

Here are some interesting observations from fig. 2.11.

* The more terms we use, the closer we are to the square wave. However, the series,
even with infinitely many terms, will never be exactly the same as the square wave. For
example, at the points of discontinuities of the square wave function, the Fourier series
equals % (just put x = kx in (2.20)), but the square wave never takes this value.

This means that one has to take the equal sign in Eq. 2.20 with a pinch of salt. Some
people write ~ instead of = to emphasise the difference.

* Near each discontinuity, there appears to be an overshoot above 1 (and undershoot
below 0). Try zooming into an overshoot and read off the maximum value (choosing a
large value of np,,x). You should find that Fourier series overshoots the square wave by
just under 9%. The undershoot below 0 is also by the same amount.

DiscussioN

* Jump discontinuities. It can indeed be shown that if there is a jump discontinuity in
the function f at x = a, then its Fourier series converges to the average of the left and
right limits, i.e.

* Gibbs phenomenon. An overshoot (and an undershoot) always occurs when using the
truncated Fourier series to approximate a discontinuous function. For large nyx, the
overshoot moves closer to the point of discontinuity but does not disappear. In fact, the
overshoot can be shown to be around 9% of the magnitude of the jump. More precisely,
the fractional overshoot can be expressed as

f S G — L 2 0.0894898722 (10 dec. pl) (2.22)

Note the appearance of the sine integral!
The overshoot and undershoot of Fourier series near a discontinuity are known as Gibbs
phenomenon after the American mathematician Josiah Gibbs (1839-1903) who gave a
careful analysis of the overshoot magnitude. However, it was the English mathematician
Henry Wilbraham (1825-1883) who first discovered the phenomenon.

 Parseval’s theorem and ((2). There is an elegant relation between the function f and
its Fourier coefficients a, and b,, (without the sine and cosines).
Parseval’s Theorem, named after the French mathematician Marc-Antoine Parseval
(1755-1836), states that

84

1.2

Fourier series

1.0 1

0.8 1

0.6

0.4 1

0.2

0.0 A

—-0.2 -+

12

1.0 fife
0.8
0.6
0.4
0.2 4

0.0 1

1.2

35

1.0

0.8 1

0.6

0.4

0.2 1

0.0 A

—-0.2

2 Calculus

Fig. 2.11: The partial sums (thin blue curves) of the Fourier series (2.20) for the square-wave
function (shown in red) with n,,,x = 5, 35 and 95.

2.9 Fourier series 85

1kf”uun%u—(“ﬂ2+ljéa2+ljiﬁ (2.23)
21 J_p 2 2447 L ’

Here is a brief interpretation of why this holds. The LHS is the average of | f(x)|> over
the period. The terms on the RHS are the averages of terms when the Fourier expansion
is squared. We are left with the averages of (a9/2)?, (a, cos nx)? and (b, sin nx)?> (the
cross terms average to zero).

Applying Parseval’s identity to the square wave function, Eq. 2.23 becomes:

1—]+2 1+1+1+
2 4 g2 320052)

Another way to express this interesting result is:

00

2

1 n

k=1

We end this chapter with a calculation of £(2) = 3™, # that follows from Eq. 2.24.
Let S = £(2). Observe that:

g= 1
- 2
n:ln
1 1
— — .
n%‘]:dn2 n;;nn2
- 1 !
)
—1)2 2
A2k —1)2 " & (2K)
xS
= — 4+ —
8§ 4
4 2 2
=5 S:—-ﬂ—zﬂ—.
3 8 6

This beautiful result? also verifies our numerical calculation of £(2) in §1.4.

3 A subtle point: in the second line of the working, we assumed that the sum S remains unchanged by the
rearrangement of the terms in the series. Although it is safe to do here, a rearrangement can change the sum
of series like the alternating harmonic series. Look up Riemann’s rearrangement theorem.

86 2 Calculus

fourier.ipynb (for producing fig.

i import numpy as np
| import matplotlib.pyplot as plt
| from matplotlib.widgets import Slider

Create an interactive GUI 1%matplotlib
I
|

Initial values of nmax (an odd number) inmax = 5

A shorter way to call 1 'pi = np.pi

Domain [-27, 27] at high resolution !X = np. linspace(-2*pi, 2*pi, 1001)
I

The square-wave function ' def f(xarray):

Pre-populate output with 0’s y = np.zeros_like(xarray)

for ind, x in enumerate(xarray):
xmod = x%(2*pi)
if xmod<pi:

y[ind] =1

if x%pi==0:

y[ind]= np.nan

If x modulo 27 is. . .

in the right domain then. ..

change the output from O to 1

Insert discontinuities at multiples of &

def Fourier(x, nmax):
S = np.zeros_like(x)
for n in np.arange(l,nmax+1,2):
S += np.sin(n*x)/n
return 0.5+ 2*S/pi

The Fourier series

|
1
|
|
1
|
|
1
|
1
|
: return y
|
1
|
1
|
Ymax X with p odd |
|
|
1
|
1

| fig,ax = plt.subplots()

Leave a space at the bottom for a slider plt.subplots_adjust(bottom=0.15)
|

Plot the square wave in red : plt.plot(x, f(x),'r',lw=1.5)

Plot the Fourier series in thin blue line | Ffunc,= plt.plot(x, Fourier(x,nmax),'b',
! 1w=0.5)

|

:plt.xlim([—z*pi, 2*pi])

rplt.ylim([-0.2, 1.2])

:plt.grid('on')

plt.title(r'Fourier series')

|

'axn = plt.axes([0.15, 0.05, 0.7, 0.03])
Create a slider for nmax from 1 to 101 in_slide = Slider(axn, 'n', 1, 101,
Keep nmax 0odd by setting the step size to 2 ‘ valstep = 2, valinit = nmax)

|

I

| def update(val):
Take nmax from slider : nmax = n_slide.val
Recalculate the Fourier series } Ffunc.set_ydata(Fourier(x,nmax))
| fig.canvas.draw_idle()
|
I
|
|
I

Update the plot if slider is changed n_slide.on_changed(update)

} plt.show()

2.10 Exercises 87

2.10 Exercises

1 Perform the following modifications on the code Eh.ipynb which we used to calculate
the derivative of f(x) = x3 atx = 1 (§2.2).

* Change the point x at which the derivative is calculated.
» Change the function f(x) to any differentiable function.
* Change the approximation to the backward-difference approximation.

Verify that the qualitative behaviour of E (%) does not change by these modifications.

2 (Five-point stencil) Use Eh.ipynb to help you with this question.
Apart from the forward, backward and symmetric-difference formulae for the derivative
discussed in §2.2, there are infinitely many other similar differentiation formulae. Those
involving more points typically produce a more accurate answer (given the same step
size h) at the expense of increased calculation time.
Here is an exotic one called the five-point stencil formula:

f(x) =~ ﬁ(—f(x +2h) +8f(x+ h)—=8f(x—h)+ f(x —2h)).
a. Plot the graph of the absolute error E(h) for the derivative of f(x) = cosxatx = 1.
You should see a V-shape similar to fig. 2.2.
b. On the same set of axes, plot the symmetric difference formula. How do the two
graphs compare?
c. If the five-point stencil formula is an O(h*) approximation, use your graph to show
that k = 4.

Note: Such formulae are studied in a topic called finite-difference methods, which we
will explore in §4.9.

3 (Taylor series and convergence) Consider the following Taylor series.

s x2n+l
N S
St ;(2“1)!

tan™ x = i(—l)"ﬁ,
P 2n+1)

[oe]

— (-prteny
b= L2 en-1)"

a. Modify the code taylor.ipynb (§2.3) to produce the graph of each of the above
functions and its Taylor series, similar to fig. 2.3.
Experiment with the domain of the plot, and conjecture the radius of convergence
for each Taylor series.
(For example, you should find that for V1 + x, the radius of convergence is 1.)

b. Choose a value of x for which all three Taylor series converge to the respective
function (for example, x = 0.3).
Plot the absolute error

|[Ry| = |f(x) — Taylor series of order N|

88 2 Calculus

as a function of the polynomial order N, similar to fig. 2.4 (but forget about the
upper and lower bound in dotted lines). Plot the absolute error for all 3 Taylor series
on the same set of axes.

From the plot, deduce which Taylor series converges fastest and slowest.
(Answer: sinh x is fastest, V1 + x is slowest.)

4 (Taylor’s Theorem) Consider f(x) = In(1 + x). We showed using Taylor’s Theorem
(theorem 2.3) that the remainder Ry is given by eq. 2.9.

a. Fix x = 0.4. Using the Taylor polynomial of order 1, show that the constant ¢ is
approximately 0.1222 (to 4 dec. pl).

b. Plot a graph of £ as a function of N. You should obtain a decreasing function. Verify
that & always lies in the interval (0, 0.4), in accordance with Taylor’s Theorem.

5 (The Blancmange function) Form = 0,1,2.. ., let f,,, : R — R be defined by

1
fo(x) = min{|x — k|, k € Z}, Sm(x) = 2—mf0(2mx)~

a. Plot the graph of the function f,, (x) for a few values of m. Show that the graphs
are straight-line segment with sharp (non-differentiable) points similar to y = —|x]|.
b. Plot the Blancmange function defined by

g(x) = i Fn(3).

m=0

On the domain [0, 1], you should obtain the graph in fig. 2.12 (which looks like the
eponymous dessert). Clearly you will need to impose some cutoff to approximate
the infinite sum.

c. Generalise the Blancmange function by redefining f,, (x) as

1
Sk (x) = K—mfo(K'”x).

Plot the generalised Blancmange function gx(x) = > f kx (x) for K =
2,3,4...20 on the same set of axes.
(Better yet, vary the plot using a slider for K. Use weierstrass.ipynb as a
template).
Conjecture the shape of the function when K — oco. Can you prove it?

d. For K = 2, create a figure which shows the self-similarity structure of the graph (in
the style of fig. 1.15). Note also that the graph is periodic on R.
Conjecture the values of K € R for which the graph shows i) periodicity, or ii)
self-similarity.

For an accessible account of the Blancmange function and its properties, see [200].

2.10 Exercises 89

0.7

0.6

0.5 1

0.4 4

0.3 1

0.2

0.1+

0.0

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 2.12: The Blancmange function (K = 2). It is continuous on R but is nowhere
differentiable.

6 (Riemann’s function) Consider Riemann’s non-differentiable function, R(x), defined by

0o

2
R(x) = Z sin(k x).

2
k=1 k

a. Plot the graph y = R(x). What is the period of this function? (Prove it.)

b. The function R is continuous on R but is only differentiable at certain points,
including those of the form x = an/b where a and b are odd, coprime integers. It
is known that the derivative at such points takes the same value. Let’s use Python
to investigate what this value is.

i. Use the symmetric-difference formula (see §2.2), with h = 107°, to find
the numerical derivative of R at xo = 37/5. To do this, you will have to
approximate the infinite sum by the partial sum with Ny, terms:

Nmax . 2
sin(k“xq)
R(xo)~), — 5 (*)
k=1

ii. Plot the approximation of the derivative () as a function of the cutoff Np,.x. You
should choose the values of N, such that a convergent behaviour emerges.
Hence, conjecture the value of the derivative at xo = 37/5.

iii. Change x(to see if your conjecture still holds.
(Answer: See [73].)

7 (The error function) The error function erf: R — R is defined by the integral:

f 2fx - 4
errx = — e .
vV Jo

We often encounter this function in the context of probability, statistics and in simple
models of diffusion.

90

8

9

10

2 Calculus

a. Plot the graph of the error function. Suggestion: Use scipy.special.erf.
b. The error function can be expressed as a power series
2 sl (_l)nx2n+1

fr=— S
et V& &4 @n+ D!

Suppose we want to use a power series in x to approximate erf(x) for |x| < 2,
accurate to 4 decimal places.

Show that we need 15 terms in the partial sum.

Suggestion: Plot the absolute error (semi-log scale) for x € [0, 2]. Increase the
number of terms in the partial sum until the error falls below 0.5 x 107*.

(Trapezium Rule) Use trapezium.ipynb as a starting point for this question.
. . 2
Consider the evaluation of fl In x dx.

a. Evaluate the integral using Trapezium Rule, extending the graph of E(h) (fig. 2.6)
to smaller values of /. Note that when 4 becomes sufficiently tiny, rapid fluctuations
start to appear in the plot of E(4). This is where roundoff error starts to dominate.
Take note of the value of & around which the fluctuations occur. (We can regard
this value of 4 as the optimal value of the strip-size for the numerical integration.)
How does your graph compare with fig. 2.7 (right panel)?

b. Using the expression for the error term in eq. 2.14, estimate the value of 4 below
which the roundoff error dominates. Do this by hand by setting the error term to
Emach- You should find that this value roughly agrees with the graph in part (a).

(Simpson’s Rule) Use simpson.ipynb as a starting point in this question.

Recall that Simpson’s Rule uses parabolas to approximate the area under a graph. In this
question, we will demonstrate the (somewhat surprising) observation that Simpson’s
Rule gives an exact answer when integrating a cubic polynomial. (The reason for this
was discussed at the end of §2.7.)

Consider the cubic polynomial defined by f(x) = 2x — 1).

a. Verify that [f(x) dx = 300,

b. Evaluate the integral f04 f(x) dx using Simpson’s Rule with 1 strip (i.e. 2 substrips).
You should also obtain 300.

c. Consider the parabola P(x) = 36x> — 58x — 1. Verify that the parabola agrees with
the cubic at x = 0,2 and 4.

d. Verify that [’ P(x)dx = 300.

e. Plot the cubic and the parabola on the same set of axes over the domain [0, 4]. This
graph shows the parabola that is drawn when Simpson’s Rule is applied.
(Clearly both the cubic and the parabola should look like they have the same signed
area under the graph.)

(Midpoint Rule) Use trapezium.ipynb to help you with this question.

The Midpoint Rule is another useful integration scheme, in addition to the Trapezium
and Simpson’s Rules.

We start as before by partitioning the domain of integration into n equal subintervals
[x0, x1], [x1, x2] . . . [Xn-1, X]. Let h = (b — a)/n. The Midpoint Rule states that the

integral fa b f(x) dx can be approximated as:

y A
\
\ y=f9

AN

~—

> X

Mo mi mz mas ma

Fig. 2.13: The Midpoint Rule with 5 strips.

. Write a code which evaluates the integral flz In x dx using the Midpoint Rule with
h=107.

. Plot the graph of the absolute error E(%) on log scales. On the same set of axes,
plot E(h) for the Trapezium Rule. You should see two parallel lines.

Verify that the Midpoint Rule is an O(h?) approximation.

. Plot the graph of the ratio of the errors:

EMidpoint (h)
ETrapezium(h) .
You should find that this ratio is approximately constant over a large range of 4.

Hence, make a conjecture on the exact form of the error term for the Midpoint Rule.
. Use the Midpoint Rule to verify the result

Note: The Midpoint Rule allows us to avoid the singularities at the endpoints. This
makes it a useful method for evaluating integrals in which the integrand is not
well-defined at one or both of the endpoints. The combination of a well-judged
substitution and the Midpoint Rule is a powerful arsenal for tackling improper
integrals (see [170] for details of such techniques).

92 2 Calculus

11 (Boole’s Rule) Use simpson.ipynb to help you with this question.
Another interesting higher-order integration scheme called Boole’s Rule.
Partition the domain of integration into 4n equal subintervals [xo, x1], [x1, x2] . . . [X4n—1, X4n].
Let h = (b — a)/4n (i.e. divide each strip into 4 substrips). Boole’s Rule states that the

integral fab f(x) dx can be approximated as:

b 2 4n-1 4n-2 4n—4
fa F@)dxx T2 1700+ yan) +32. > yi+12 > yi+ 14 > vl
i=1,3,5... i=2,6,10... i=4,8,12...

a. Write a code that evaluates the integral flz In x dx using Boole’s rule with & = 1072
b. Plot the graph of the absolute error £(/) on log scales. Hence verify that Boole’s
Rule is an O(h®) approximation.

12 (Numerical integration challenge) Use numerical integration techniques studied in this
chapter to verify the following results. Remember to always plot the integrand first and
plan how to deal with any singularities.

1

o0 . 2
2) dx = V7 b)f (%) de=2
0 V=Inx 0 x 2
c) f N L =1 (where ¢ is the Golden Ratio)
o (1+x®)¢ ¢ '

For more interesting integrals against which you can test your numerical integration
skills, see the classic encyclopaedic reference by [78], and also [153,208] for deep
mathematical insights into many fascinating (and mind-blowing) integrals.

13 (Sine and cosine integrals) The sine and cosine integrals are defined by

* sint X t—1
Si(x):f %dg Ci(x):y+lnx+f °°St dt,
0 0

where 7y is the Euler-Mascheroni constant (see §1.5). Plot Si(x) and Ci(x) on the domain
[0, 4], performing the integration numerically. (Suggestion: Use quad.) Check your
results using scipy.special.sici.

Conjecture the asymptotic values of Si(x) and Ci(x) as x — oo.

14 (Fourier series recap) Use fourier.ipynb to help you with this question.
Consider the 2r-periodic function, f : R — R, defined by

f(x) = (x+m)2, x € [-x, 7).

Its Fourier series (which you may like to verify by hand) is given by
o =4 Sy (- T
X)=— - — cosnx — —sinnx]| .
34 n? n

a. Substitute x = 0 and show that £ (2) = 72/6.

b. Substitute x = 7 and verify the convergence property at jump discontinuities (eq.
2.21).

c. Apply Parseval’s Theorem (eq. 2.23) to show that £ (4) = 7#/90.

d. Modify fourier.ipynb to plot the function and the partial sums of its Fourier
series. Your output should resemble fig. 2.14 shown below.

2.10 Exercises 93

e. Verify numerically the magnitude of Gibbs phenomenon (eq. 2.22). Suggestion:
You will need a large number of terms in the partial sum.

Fourier series

40 A

30 A

204

10

T T T
-2mn - 0 s 2n

n e—— 20
Fig. 2.14: The Fourier series (thin blue line) for y = (x + 7)? defined on [—, 7] (extended

periodically outside the interval).

15 (Fourier series with period L) Fourier series can be used to approximate a function
f : R — R with arbitrary period L > 0 (not necessarily 2x). In this case, we have the
Fourier series:

a - 2nmx . (2nmx
?O+Z(ancos(7)+bnsm(2)), where

n=1
2 (L 2nmx 2 (L . (2nmx
ZILf(x)cos(3)dx, bnzzf:Lf(x)sm(2)dx.

Consider the function, f : R — R, with period L = 2, defined by

f(x)

dap

f(x) = coshx, x€[-1,1).
You may like to verify that the Fourier coefficients are given by:

_2(=1)"sinh 1

a, = s b, =0.
" n?r? +1 "

a. Modify the code fourier.ipynb to plot the function and the partial sums of its
Fourier series.
b. By substituting a suitable value of x in the Fourier series, find a closed-form

expression for
(o]
Z 1
2.2 :
= nn” + 1

Verify your answer numerically.

®

Check for
updates

CHAPTER
THREE

Vector Calculus and Geometry

Vector calculus is a generalisation of calculus concepts (i.e. differentiation and integration)
from R to R". Sometimes called multivariable calculus or differential geometry, this is one
of the core topics in any mathematics course.

Fig. 3.1: Carl Friedrich Gauss (1777-1855) discovered profound results in a myriad of
topics in mathematics and physics. His legacy is that of an intellectual titan whose work
dramatically revolutionised mathematics. Many results in this chapter are due to him. (Image
source: [137].)

One of the most useful applications of vector calculus is the study of curves and surfaces
in R?. Python’s Matplotlib is especially useful in helping us visualise 3-dimensional curves
and surfaces. Double and triple integrals (of well behaved functions) can also be performed
quickly as we will demonstrate below. We will use these visualisation tools to create
interactive graphics to help us understand the length, curvature and torsion of curves in R,
as well as the surface area and volume bounded by surfaces. The chapter concludes with
two important results in vector calculus: the Divergence Theorem and Stokes” Theorem.

Excellent reviews of vector calculus can be found in [28,93, 174, 189, 192]. For good
references on differential geometry of curves and surfaces, see [37,171,201]. We will
introduce many more references along the way.

We now present a lightning review of some essential concepts in vector calculus, with
accompanying code snippets where appropriate. For full mathematical explanations and
plenty more examples, see the textbooks on vector calculus recommended above.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 95
S. Chongchitnan, Exploring University Mathematics with Python,
https://doi.org/10.1007/978-3-031-46270-2 3

https://doi.org/10.1007/978-3-031-46270-2_3
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46270-2_3&domain=pdf

96 3 Vector Calculus and Geometry

3.1 Basic concepts in vector calculus

All code snippets in §3.1 will require the following header.

import numpy as np
import matplotlib.pyplot as plt
[code snippet]

Parametric curves

A parametric curve r : (a, b) — R" is defined by

r(t) = (f1(0), f2(0), ... fu (D)),

where we assume that each component f; is a smooth function of 7 (i.e. infinitely differentiable
on (a, b) C R). In this chapter, we will only encounter curves in R? or R3.

Here are Python commands for plotting curves in R?> and R3. We have given two of
several command variations that can be used to plot a parametric curve in R>. They require
the keyword argument projection="3d’.

Plotting parametric curves in R? and R3

t € [0, 2x] :t = np.linspace(0,2*np.pi)
|
Plot r(t) = (cost, sint) (a circle) 'plt.plot(np.cos(t), np.sin(t))
This prevents the circle from appearing stretched , plt.axis('equal')
: plt.show()
Plot r(¢) = (cost, sint, t) ax = plt.axes(projection="'3d")
(a helix) ,ax.plot(np.cos(t), np.sin(t), t)
: plt.show()
|
| # OR
|
! fig = plt.figure(Q)
rax = fig.add_subplot(projection="'3d")
1 ax.plot(np.cos(t), np.sin(t), t)
iplt.show()

Polar coordinates

Polar coordinates (r,) are related to Cartesian coordinates (x, y) by
X =rcosé, y =rsinf.

To plot a polar curve of the form r = f(6), use either of the following methods.

3.1 Basic concepts in vector calculus 97

Plotting a curve in polar coordinates

0 € [0, 2x] 't o= np.linspace(®, 2*np.pi, 100)
Example: plot » = 2 cos 36 1T = 2*np.cos(3*t)

|
Method I: Convert to Cartesian | # Method I
and use 6 as the parameter ! plt.plot(r*np.cos(t), r*np.sin(t))
Prevent shape distortion iplt.axis('equal')

: plt.show()

|
Method II: Plot on polar axes '# Method II

rax = plt.axes(projection="polar')
Lax.plot(t, r)
i plt.show()

Both methods allow the possibility that » < 0, however Method II displays the curve in
an unconventional way when r < 0. Try this, and notice how the centre of the plot does not
correspond to » = 0.

If you’d like to exclude the part r < 0 when using Method I, insert the following command
before plotting.

r = r.clip(min=0)

Parametric surfaces

A parametric surface S : A — R3 is defined by

S, v) = (fi(u,v), f2u,v), f3(u,v)),

where (1, v) € A € R%. We assume that each component f; is infinitely differentiable in u
and v.

A parametric curve has one parameter ¢, whilst a parametric surface has two (# and v).
In the code below, we use the command meshgrid to create all possible ordered pairs of u
and v. The surface is created using the plot_surface command.

Plotting a parametric surface

u€e[-1,1] 'u = np.linspace(-1,1)
v € [0, 2] Vo= np.linspace(0,2)
Create 50 x 50 coordinate grid U, V = np.meshgrid(u,v)
|
Plot S(u, v) = (u, 2v, 1 —u —v) lax = plt.axes(projection="3d")
(a plane) rax.plot_surface(U, 2*V, 1-U-V)
i plt.show()

Alternatively, the first three lines may be equivalently written using the mgrid command
as follows.
U, V = np.mgrid[-1:1:50j, 0:2:507j]

where 507j specifies that we want 50 equally spaced values.

98 3 Vector Calculus and Geometry

Cylindrical and spherical coordinates

A surface can be expressed in many possible coordinate choices, but picking one that
exploits the symmetry of the surface can greatly simplify your calculations.

Cylindrical coordinates are useful for describing surfaces with some rotational symmetry
about the z-axis. In essense, cylindical coordinates are simply polar coordinates with the z
coordinate added on as the 3rd dimension. The relationship between cylindrical coordinates
(r, 0, z) and Cartesian coordinates (x, y, 7) is:

x=rcosf, y=rsinf, z=z,

where r > 0, 0 € [0,27] and z € R.

Spherical coordinates are useful for describing surfaces with some rotational symmetry
about the origin. The relationship between spherical coordinates (r, 6, ¢) and Cartesian
coordinates (x, y, 7) is:

x=rcosfsing, y=rsinfsing, z=rcosdae,

where r > 0, 8 € [0,2x] and ¢ € [0, 7].

In terms of Matplotlib, there are no special commands that allow you to plot surfaces
directly in these coordinates (unlike polar coordinates). Simply use Cartesian coordinates
and treat them as parametric surfaces as above. Here is an example of how to plot the unit
sphere.

Plotting a sphere

u € [0, 27r] (this is Q) ' = np.linspace(0,2*np.pi)
v € [0,] (this is ¢) v = np.linspace(0,np.pi)
Create 50 x 50 grid U, V = np.meshgrid(u,v)

|
Plot the unit sphere : x = np.cos(U)*np.sin(V)
(convert spherical to Cartesian coordinates) 1y = np.sin(U)*np.sin(V)

1z = np.cos(V)
I
|
lax = plt.axes(projection="'3d")
rax.plot_surface(x,y,z)
Prevent shape distortion | ax.set_box_aspect((1,1,1))
1 plt.show()

Partial derivatives

Suppose we differentiate a multivariable function f(x,y,z) with respect to one of its
variables, say x, whilst treating y and z as constants. The result is called the partial
derivative of f with respect to x, and is denoted

af

0x of fx

This is in contrast to the usual (total) derivative %, which does not make sense in this case.
For most vector calculus applications, the function f(x, y, z) will be infinitely differen-
tiable in all 3 variables on the given domain in R3. There are 3 possible first-order partial

3.1 Basic concepts in vector calculus 99

derivatives: %, %, %. There are 6 possible second-order partial derivatives:
'y Ve

Ry
0x2" 9y?’ 972 0xdy’ 0ydz’ dxdz

The last thee are partial derivatives of mixed orders, which can be done in any order (e.g.
2 2

66 g = 66 g). But be aware that there are pathological counterexamples where this does
x0y yOx

not hold (see [72]).

In this chapter, we will not perform partial derivatives numerically. As far as possible,
one should try to differentiate by hand in order to avoid the truncation and rounding errors
discussed in §2.2. However, if numerical differentiation is needed, the procedure is exactly
the same as that described in §2.2. For example, using the forward-difference formula, we

have
Of St hy2)-fxy.2)
Ox h '

Multiple integrals

A multivariable function may be integrated with respect to more than one variable. For
example, we can integrate a 2-variable function f(x, y) over a rectangle R = [0, 1] x [0, 2].
This can be expressed as any the following double integrals.

1 2 2 1
ff f(x.y)dxdy = f f f(x,y)dydx = f f f(x,y)dxdy.
R 0 0 0 0

Note that we perform the innermost integral first and proceed outwards. This means that

2 Al 2/ pl
f f f(x,y)dxdy =f (f f(x,)’)dx) dy
0 Jo o \Jo

although brackets are normally omitted.
Similarly, we can integrate a 3-variable function f(x, y, z) over a cuboid C = [0, 1] X
[0,2] x [—1, 1]. This can be expressed as any the following triple integrals.

1 2 1
f f Foy.2)dudydz = f f f Flxy,2) dzdy dx
C 0 0 -1
1 2 1
f f f f(x,y,2)dxdydz
-1 JO0 0
1 1 2
f f f f(x,y,z)dydxdz.
-1 J0 0

There are 3 other possible orders of integrations. Try to write them down.

To perform double and triple integrals in Python, one can integrate one variable at a time
using, say, the Trapezium or Simpson’s Rules described in §2.6-2.7. Alternatively, for ‘well-
behaved’ functions (Python will most likely warn you if your function is not well-behaved),
you can use SciPy’s dblquad and tplquad which are multivariable generalsations of the
quad function described in §2.1. Two examples are given below.

100 3 Vector Calculus and Geometry

Double and triple integrals

2 2x
1 :f f dy dx
0 Jx2

Output: I[0] = 1.3333333333333333

:from scipy.integrate import dblquad, tplquad
|
|
|
l
(Exact answer: I =4/3.) :
|
|
|
|
|
|

I = dblquad(lambda y, x: 1,

o, 2,

lambda x: x**2, lambda x: 2*Xx)
print("I = ", I[0])

J = tplquad(lambda z,y,x: x*y,
o, 1,
0 , lambda x: x**(1/2),
0 , lambda x,y: 1+x+y)
print("] = ", J[0])

1 Vx I+x+y
J = f f f xydzdydx
0 0 0

Output: J[0] = 0.38690476190095546
(Exact answer: J = 65/168.)

When using dblquad and tplquad, there are a few quirky rules to keep in mind:

 The integrand must be defined as a function (even if it’s 1). When defining this function,
the variables must be listed in the order of integration (i.e. from in to out). Note
that in the examples given, we have used lambda (anonymous) functions to define the
integration limits.

* The limits of the integrals must all be defined as functions unless they are constants.
Here’s a quirky thing about tplquad. For the innermost limits, the variables in the
functions must be listed in reverse order of integration.

* As with quad, the output of dblquad and tplquad is a tuple (pair of numbers): namely,
the value of the integral and an estimate of the absolute error.

Finally, it is worth remembering the formulae for the double integral in polar coordinates:

ff dxdy = ffrdr de (polar)

as well as triple integrals in cylindrical and spherical coordinates.

fff dxdydz = fffrdr dodz (cylindrical)
= f f f r?sin ¢ dr d0 d¢ (spherical)

3.2 The cycloid 101

3.2 The cycloid

Point P lies on the circumference of a unit circle in the x-y plane. As the circle rolls
horizontally without slipping, P traces out a curve. Investigate the equation and the
shape of this curve.

(P (b) -~

O

Fig. 3.2: (a) The rolling wheel with unit radius. (b) The vector b in the frame where the
centre of the wheel is stationary.

Let’s parametrise the curve traced out using r which equals the x coordinates of the
centre of the circle (i.e. the distance travelled by the wheel). From the diagram, we see that
at any value of #, the three vectors above always satisfy the relation

p(1) = a(t) +b(1).

We seek a more explicit expression for p(#).

Since the circle has unit radius, we have a(t) = (¢, 1).

Recall the definition of the radian: on the unit circle, an arc of length ¢ subtends an angle
of ¢ radians. The rolling of the wheel implies that the horizontal distance travelled by the
wheel equals the arc length that has rolled on the x-axis. Thus, we deduce that the angle
swept out by the wheel also equals ¢.

We can then obtain the components of vector b(¢) from fig. 3.2(b), which shows the
wheel in the frame where its centre is fixed at the origin. Resolving b into horizontal and
vertical components, we find b(¢) = (—sint, — cos?).

In conclusion, we have shown that the parametric equation of the cycloid is

p(®) = (¢t —sint, 1 —cost). 3.1

The code on the next page produce an interactive figure, a snapshot of which is shown
in fig. 3.3. The user controls the x position of the centre of the wheel with a slider, whilst
point P traces out the cycloid shown in red.

102 3 Vector Calculus and Geometry

O T T T T T T T
0 2 4 6 8 10 12

t] 11.00

Fig. 3.3: The cycloid (eq. 3.1) shown here with ¢ € [0, 11].

cycloid.ipynb (for producing fig.)

 import numpy as np

| import matplotlib.pyplot as plt

1from matplotlib.widgets import Slider
Create an interactive GUI 1%matplotlib
I
|

Parametrize the unitcircle with @ € [0, 2zr] | theta = np.linspace(0,2*np.pi)
|
|
Parametric equation of the rolling'circ_x =
circle at time ¢ : circ_y =
|

lambda t: t + np.cos(theta)
1 + np.sin(theta)

Coordinates of the reference point: cycl_x = lambda t: t - np.sin(t)

P (which lies on the cycloid) at time 7 1 cycl_y = lambda t: 1 - np.cos(t)
I
|
Set initial time it =0
|
ifig,ax = plt.subplots()
Leave space for a slider 1plt.subplots_adjust(bottom=0.2)
iplt.ylim(®, 3)
plt.xlim(-1, 1+4*np.pi)
Set equal aspect ratio to prevent ! plt.gca() .set_aspect('equal')
shape distortion iplt.grid('on')
I

Plot the circle in black
Plot the cycloid in red
Mark point P with a big red dot

Adjust the position of the slider
Set range and resolution of the ¢ slider

axt

Get the ¢ value from slider
Slide the circle along

Plot the cycloid from time O to ¢
Mark point P only at present ¢ value

Redraw figure when the slider

changed

Pnt,

t_slide = Slider(axt,

plt.

| Circ,=plt.plot(circ_x(t), circ_y, 'k')
'Cycl,=plt.plot(cycl_x(t), cycl_y(t),

r', markersize=3)
=plt.plot(cycl_x(t), cycl_y(t),

'ro', markersize=5)
= plt.axes([0.18, 0.33, 0.67, 0.02])
't', 0, 4*%np.pi,
valstep=0.001, valinit=t)

def update(val):

t = t_slide.val
Circ.set_xdata(circ_x(t))

T = np.linspace(®, t, int(50*t))
Cycl.set_data(cycl_x(T),cycl_y(T))
Pnt.set_data([cycl_x(t)], [cycl_y(t)])
fig.canvas.draw_idle()

is't_slide.on_changed(update)

show()

3.2 The cycloid 103

DiscussioN

¢ Cusps. The cycloid has a characteristic cusp (sharp point) when ¢ is an even multiple
of m. At each cusp, the tangent vector is zero. We can check this by verifying that
p’(0) = (0,0).

* Regular curves. A regular parametrisation of a curve r(¢) is one in which |r’(¢)| # 0 on
the whole curve. Thus, another way to state the previous point is that the parametrisation
(3.1) isnot regular. A regular curve is one for which there exists a regular parametrisation.
Regular curves are important because it allows a change of parameter (reparametrisation)
to be done without altering properties of the curve. Regular curves also have well-defined
curvature, as we will see in §3.4.

Roulettes. As a curve C; rolls on another curve C, without slipping, the locus of a
reference point P on C is called a roulette. Some readers (or their parents) may be
familiar with the spirograph, a retro toy which generates roulettes. The cycloid is a
roulette where C is a circle and C; is a line. You will explore the case of a circle rolling
on another circle in exercise 2.

One could also formulate the roulette problem differently: suppose P traces out a
straight line, what possible pairs of curves Cj, C, can we have? This problem is usually
phrased in terms of a wheel of shape C; travelling on a road with shape C,. The centre
of a circular wheel of a bicycle travelling on a flat road traces out a straight line, of
course. A famously outrageous wheel-road pair is that of a bicycle with square wheels
which can travel smoothly on a road made up of precisely placed catenary segments!
Incredibly, Macalester college in Minnesota hosts this precise setup for visitors to try.
For other intriguing road-wheel pairs, see [87, 119].

104 3 Vector Calculus and Geometry

3.3 Arc length of an ellipse

The parametric equation of an ellipse £ with semi-major axis 1 and semi-minor
axis b (where 0 < b < 1) is given by

r(t) = (cost, bsint), t €[0,2m).

Calculate the perimeter of the ellipse as a function of b.
In 1914, Ramanujan gave the following approximation for the perimeter of the
ellipse with semi-major axis a and semi-minor axis b:

n (3(a +b) —/(a+3b)(3a + b)) . (3.2)

Investigate the accuracy of this approximation for the ellipse E.

The arc length, s, of a parametric curve r(z) where ¢ € [f(, #1] is given by

1
s:f I’ (¢)| dt.
to

For the total arc length of the ellipse E, the integral becomes

/2
s=4f sin? ¢ + b2 cos? ¢ dt
0

/2
:4f \/1—(1—b2)cosztdt
0

where we have used the symmetry of the ellipse. Now use the substitution x = 5 —¢. We
find:

/2
s =4f \/1—(1—b2) sin? x dx. (3.3)
0

If you haven’t thought about this before, it will probably come as a surprise to you that
there is no analytic expression for this integral unless b = 1 (where the ellipse becomes a
unit circle with circumference s = 27). The fact that there are only approximations to the
perimeter of the ellipse has been known since at least 1609 when the German astronomer
Johannes Kepler (1571-1630) proposed the first approximation in connection with planetary
orbits which he discovered to be elliptical. Over the centuries, many approximations have
been put forward by great mathematical minds (see [199] for a comprehensive review).

The approximation (3.2) is due to the legendary mathematician Srinivasa Ramanujan
(1887-1920). Ramanujan came from an impoverished background in south India and rose
to mathematical prominence in England through a combination of innate genius, hard work
and resourcefulness. There are by now volumes of books and even a few movies about
Ramanujan’s inspirational but tragically short life. See [25] for a thorough and enlightening
account of Ramanujan’s life and work.

3.3 Arc length of an ellipse 105

Perimeter of ellipse Error of Ramanujan's approximation

6.5 102
10-3 4

6.0 1
10-4 4

5.51
1075

5.0 1
107° 4

4.5 10-7]

4.0 T T T T 1078 T T

0.0 0.2 0.4 0.6 0.8 1.0 1073 1072 1071 10°
b b

Fig. 3.4: Left: The perimeter of the ellipse r(f) = (cost, bsint) as a function of b,
calculated using numerical integration (quad). Right: The fractional error of Ramanujan’s
approximation (3.2).

Back to the perimeter of the ellipse. The numerical approximation of the integral and the
fractional error of Ramanujan’s approximation are plotted in fig. 3.4, produced using the
code ellipse.ipynb. The left panel of the figure uses the quad function for numerical
integration. It shows the correct limits as b — 0 (a vanishingly flat ellipse) and b — 1 (a
unit circle). Plotting Ramanujan’s approximation of the perimeter in this figure gives an
essentially identical curve.

The plot on the right shows the fractional error of Ramanujan’s approximation plotted
on log scale, so that we can examine more carefully the small b regime where the ellipse is
flatter (more eccentric). This is the regime where most approximations do not perform well.
Nevertheless, we see that Ramanujan’s formula performs remarkably well here, with the
worst accuracy being roughly 0.4%.

DiscussioN

* Working with tuples. When using quad in the code, be very careful not to do
mathematical operations on the resulting tuple. This is a very common pitfall for
beginners.

You cannot do mathematical operations on values in a tuple because values in a tuple
cannot be changed (in geek speak, we say that tuples are immutable). In the last line of
the code above, try adding 1 or multiplying by 4. The results aren’t what you might
expect. For example, multiplying a tuple by integer n simply produces n copies of the
tuple, concatenated together.

Can you predict what calamity would occur had we coded the parameter as
s=4*integrate.quad(f, 0, np.pi/2)? (try it!) More about this in the Appendix
(A.3).

Also, recall that s[1] (the second element of the tuple s) is an estimate of the error
associated with the numerical integration. You should always check that this number is
tiny.

106 3 Vector Calculus and Geometry

* Eccentricity. For the ellipse with semi-major axis a and semi-minor axis b, the shape
of the ellipse can be quantified by its eccentricity defined as

b2
=4/1-=.
e a2

The letter e is not to be confused with Euler’s constant. We see that the eccentricity is a
number between O (a circle) and 1 (a vanishingly flat ellipse). The integral expression
for the perimeter can be expressed in terms of the eccentricity as

/2
s = 4af V1 — €2 cos? ¢ dr. (3.4)
0

* Arc-length parametrisation. A regular curve r(¢) can be parametrised using the arc
length parameter

t
s(t):f Ir’(u)| du. (3.5)
o

The resulting parametrisation, r(s), is called the arc-length parametrisation (or unit-
speed parametrisation, since |dr/ds| = 1). Both parametrisations describe the same
curve, but the arc-length parametrisation simplifies many otherwise nasty formulae and
proofs in vector calculus (as we will see later). Most of the time, we will not need to
know the explicit form of the arc-length parametrisation. Just the fact that it exists is
enough.

A case in point is the ellipse r(¢) = (a cost, bsint). We do not know the expression for
s(t) explicitly. However, r’(¢) # 0 (sint and cos ¢ cannot be zero at the same time), so
the ellipse has a regular parametrisation, and therefore has an arc-length parametrisation
r(s), with |[r’(s)| = 1.

« Elliptic integrals. The integral

¢
E(¢ k) = fo 1 — k2 sin2 x dx, (3.6)

is called the elliptic integral of the second kind. For the elliptic integral of the first kind,
take the reciprocal of the above integrand:

¢ 1
F(g, k) = f S — (3.7)
0 VI-kZsin2x

These functions have analogous behaviour to trigonometric functions, and arise in
physical problems involving elliptical geometry. For example, the perimeter of the
ellipse with eccentricity e (eq. 3.4) can be expressed as 4a E(%, e).

3.3 Arc length of an ellipse 107

ellipse.ipynb (for producing fig.)

| import numpy as np
| import matplotlib.pyplot as plt
|import scipy.integrate as integrate

:%matplotlib

|
Sample b linearly for the perimeter plot 'b_lin = np.linspace(0,1,100)
But logarithmically for the error plot ib_log = np.logspace(-3,0,100)
Array for perimeter values Iperim = np.zeros(100)
Array for fractional error in Ramanujan’s | error = np.zeros(100)
approximation ‘

Integrand in eq. 3.3 def integrand(x,b):

|

3 return np.sqrt(l-(1-b**2)*np.sin(x)**2)
|

Ramanujan’s approximation (3.2) with, def Ramanujan(b):

a=1 ! return np.pi*(3*(1+b) - \

np.sqrt((1+3*b)*(3+b)))

for i, b in enumerate(b_lin):
f = lambda x: integrand(x,b)
s = integrate.quad(f, 0, np.pi/2)
perim[i] = 4*s[0]

Fill in array for first plot

quad gives a tuple (see Discussion)
Store perimeter values
Fill in array for second plot for i, b in enumerate(b_log):

f = lambda x: integrand(x,b)

s = integrate.quad(f, 0, np.pi/2)
Store fractional error values error[i]=1- Ramanujan(b)/(4*s[0])
Plot two figures side by side fig, (axl, ax2) = plt.subplots(l,2,

figsize=(10,4))

axl.plot(b_lin,perim, 'blue')
'axl.set_x1lim([0, 11)

raxl.set_ylim([4, 6.5])

raxl.set(xlabel = 'b')

axl.set(title ='Perimeter of ellipse')
"axl.grid('on")

1ax2.loglog(b_log, error, 'red')
ax2.set_xlim([le-3, 11)
"ax2.set_ylim([le-8, 1le-2])
rax2.set(xlabel = 'b")
rax2.set(title = \

"Error of Ramanujan's approximation")
ax2.grid('on")

plt.show()

108 3 Vector Calculus and Geometry

3.4 Curvature

The Lemniscate of Bernoulli is given by the parametric equation

cost costsint
1 +sin2¢’ 1 +sin?¢

r(t) = () t € [0, 2r].

Find an expression for the curvature of the Lemniscate. Identify the points on the
Lemniscate where the curvature takes maximum and minimum values.

The Lemniscate (meaning ribbon) was named after Jacob Bernoulli (1655-1705), who
showed that it is one possible locus of points such that the product of the distances to two
given points is constant. This is analogous to the ellipse which is the locus of points such
that the sum of the distances to two given points (called foci) is constant.

The Bernoullis were an influential Swiss family of eminent (and occasionally competitive)
intellectuals. In particular, Jacob, his brother Johann and the latter’s son Daniel made
substantial contributions to many areas in mathematics and physics. At university, you will
come across many results named after them.

For a curve in R?, it is interesting to ask: how much does a curve curve? A huge circle
appears to curve less than a tiny circle (the outer lane of an Olympic running track is mostly
straight). The quantity which measures this concept is the curvature, «. For a unit-speed
curve, r(s), it is defined by

K(s) = [F(s)]. (3.8)

We can see why this definition makes sense by applying to the circle radius R parametrised
as Terele () = (R Ccos %, R sin %), s € [0,27R). You can check that this is a unit-speed
parametrisation, and that the curvature is

1

Keircle () = E
Indeed, the larger the circle, the smaller the curvature.
From definition (3.8), it can be shown that for any regular curve r(¢) (not necessarily
unit speed), the same formula becomes dramatically more complicated, namely:

' (1) X x” (1)

“O = oop

(3.9)
(See recommended texts on differential geometry.) You may be wondering how we can
perform the cross product with vectors in R?. We simply append a zero z-component, so
that (x, y) becomes (x, y, 0) in the cross product. The formulae (3.8)-(3.9) are also valid for
regular parametric curves in R3. Note from the formula that we need the parametrisation to
be regular - can you see why?

For our Lemniscate, substituting in the derivatives and simplifying (this gets a little
messy) gives the following expression for the curvature:

3| cost|

k() = — 281
V1 + sin?¢

(3.10)

3.4 Curvature 109

Parametric curve Curvature
4
0.4+
34
0.2
24
0.0
1 -
—0.2
0
7(]'4 B
T T T T T _1 T T T T T T
-1.0 -05 0.0 0.5 1.0 0 2 4 6 8 10 12

t] 11.32

Fig. 3.5: Left: The Lemniscate of Bernoulli. The slider controls the value of # on both graphs.
Right: The curvature «(¢) at the corresponding point on the Lemniscate.

Let’s use Python to visualise the Lemniscate and the curvature at each point on the curve.
The code below produces two graphs, one of the Lemniscate and one for its curvature, as
shown in fig. 3.5.

We make the following observations.

* The Lemniscate does indeed look like a ribbon. As ¢ goes from 0 to 27, the figure-of-eight
loop is traced out once.

* Visually, the least curved part of the Lemniscate look like the centre of the ribbon
(where the curve looks the ‘straightest’). Indeed, the curvature plot tells us that the
minimum «(¢) = 0 is achieved at = odd multiples of 7/2.

* The maximum curvature k(t) = 3 is achieved at the leftmost and rightmost points of the
ribbon (where ¢ = multiples of 7). This might be slightly more tricky to judge visually.

DiscussioN

* Signed curvature. You may have noticed that the curvature plot has cusps (sharp
points) where « = 0. To understand this, note that, by definition (3.8), x > 0. However,
at the centre of the Lemniscate, the second derivative ¥(s) changes sign. As an analogy,
try plotting the second derivative of f(x) = x> around the point of inflection at x = 0.
You will see that y = | f”’(x)| has a similar cusp.

In fact, for curves in R?, it is possible to formulate the concept of curvature more
precisely by assigning a sign to the curvature at each point. This quantity is called the
signed curvature, k. Its magnitude, |k,|, is exactly «. The sign of «; at a particular
point on the curve is determined by the direction of rotation of the tangent vector at
that point: anticlockwise rotation means «s > 0, clockwise rotation means «; < 0. For
example, on the Lemniscate, ks > 0 on the right half of the ribbon, and «5 < 0 on the
left half.

Be aware that, confusingly, some authors refer to the signed curvature as “curvature”.

¢ The Fundamental Theorem of Plane Curves. The signed curvature is particularly
important in the study of geometry because it turns out that for any smooth function f,
there exists a unit-speed curve whose signed curvature «(s) equals f(s). Furthermore,
this curve is unique up to translation and rotation in the plane. In this sense, the signed
curvature completely characterises a curve in R.
This result is called the Fundamental Theorem of Plane Curves. See [171] for proof.

110 3 Vector Calculus and Geometry

* Arclength of the Lemniscate. Is it possible to work with the arc-length parametrisation
of the Lemniscate? Using eq. 3.5, we find

t
1
s:f — 4. G.11)
0 VI1+sin?x

This can be expressed as an elliptic integral F(k,i) which we saw in §3.3. In this
case, the arc-length parameter is clearly too complicated for practical use, but it is still
instructive to see that both the Lemniscate and its curvature can be plotted as functions
of 5. See exercise 5.

3.4 Curvature

curvature.ipynb (for producing fig.)
i import numpy as np
| import matplotlib.pyplot as plt
| from matplotlib.widgets import Slider

Create an interactive GUI 1%matplotlib
|
x component of r(z) def rx(t):
return np.cos(t)/(l+np.sin(t)**2)

|

y component of r(z) 3 def ry(t):

| return np.sin(t)*np.cos(t)\
} /(14+np.sin(t)**2)
The curvature «(t) | def kappa(t):

I return 3*np.abs(np.cos(t))\
: /(l+np.sin(t)**2)
|

|

|

|

|

|

|

Set initial ¢ =0

+

Plot two figures side by side fig, (ax1l, ax2) = plt.subplots(l,2,
figsize=(10,6))

Leave space for a slider plt.subplots_adjust(bottom=0.2)

Set equal respect ratio 'axl.set_aspect('equal’)

raxl.set_ylim(-0.5,0.5)

raxl.set_xlim(-1.2,1.2)

axl.title.set_text('Parametric curve')

raxl.grid('on')

Plot the parametric curve in blue r, = axl.plot(rx(t), ry(t),

| 'b', markersize=3)

with a moving red dot which the slider ! Pntl, = axl.plot(rx(t), ry(t),

controls 'ro', markersize=6)

Similar settings for the second plot ax2.set_aspect('equal')

! ax2.set_ylim(-1,4)
rax2.set_x1im(®,4*np.pi)
rax2.title. set_text('Curvature')
ax2.grid('on")

|

Plot the curvature values in red :kap, = ax2.plot(t, kappa(t),

1 'r', markersize=3)
with a moving blue dot which the slider}PntZ, = ax2.plot(t, kappa(t),
controls ! 'bo', markersize=6)

Adjust the position of the slider
Set range and resolution of the ¢ slider
from ¢t = 0 to 47

axt = plt.axes([0.25, 0.32, 0.5, 0.02])
t_slide = Slider(axt, 't',
0, 4*np.pi, valstep=0.001,
valinit=t)

|
|
|
|
|
|
:
| def update(val):
Get the ¢ value from slider | t = t_slide.val
: T = np.linspace(0,t,200)
| r.set_data(rx(T),ry(T))
l Pntl.set_data(rx(t),ry(t))
} kap.set_data(T, kappa(T))
! Pnt2.set_data(t,kappa(t))
: fig.canvas.draw_idle()
|

Plot the parametric curve from O to ¢
Mark the dot only at time ¢
Do the same for the curvature plot

Redraw figure when the slider is changed | t_slide.on_changed(update)
: plt.show()

111

112 3 Vector Calculus and Geometry

3.5 Torsion

Plot the curve

2
r(t) = (cos g, ;—0) t € [0, 67]. (3.12)

Find an expression for the forsion T of the curve. The formula for the torsion is
given by
r/ X r/l . rl//

Torsion quantifies how much a curve ‘escapes’ from a 2D plane, in the sense that a curve
is contained in a plane if and only if 7 = 0 on the entire curve. Let us review the definition
of 7 and understand how it appears naturally in the study of parametric curves in R3.

Let r(s) be a unit-speed parametrisation of a curve in R3. We saw in the previous section
that the magnitude of the second derivative ¥ tells us about the curvature «. Let us write the
vector ¥ as

f=«n, (3.14)

where n is a unit vector called the principal normal.
Let t be the unit tangent vector defined in the usual way by t = r. Define the binormal, b,
as

b=txn. (3.15)

It is then straightforward to show the following facts about vectors {t, n, b} (remember that
they are all functions of the parameter s).

1. The vectors t(s), n(s), b(s) are perpendicular to one another at all values of s on the
curve.

2. All three are unit vectors.

3. Given a value of s on the curve, any vector v € R3 can be written in the form

v=cit+cyn+ C3b,

where cy, ¢p, 3 are some real constants.

Another way to express the above points is to say that {t,n, b} is an orthonormal basis of
R3 (analogous to the standard basis {i, j, k}). If you have not come across the concept of an
orthonormal basis before, don’t worry, it will all be clear when you start studying a subject
called Linear Algebra, which we will also cover from a Python perspective in chapter 5.

The set {t,n, b} is called the Frenet frame or Frenet-Serret frame. Jean Frédéric Frenet
(1816-1900) and Joseph Alfred Serret (1819-1885) were French mathematicians who
independently studied space curves in this formulation. In fact, they showed that on a
unit-speed curve r(s) with x # 0, the vectors {t, n, b} satisfy three differential equations
that can be written in an elegant matrix form called the Frenet-Serret equations:

3.5 Torsion 113

t 0 k O\t
nl=|-« 0 7|n|. (3.16)
b 0 -70/|b

Note that each bold component is itself a vector. The variable 7(s) appearing in this equation
is called the torsion of the curve.

A useful example to illustrates what 7 means is the helix shown in fig. 3.6. The helix has
the unit-speed parametrisation:

r(s) = (c s> 0. 3.17)

s . s S)
08 —, sin —, — |,
V2 V2 V2
The helix winds around the unit cylinder (since x> + y> = 1), travelling up the z-axis in an

anti-clockwise direction as s increases.The Frenet-frame vectors at a point on the helix are
also shown in the figure.

V2' TN V2
the grey dot on the helix are also shown. This figure was created using GeoGebra.

Fig. 3.6: The helix r(s) = (cos = sin == i) (s > 0). The Frenet-frame vectors t, n, b at

You can quickly verify that this parametrisation is indeed unit-speed. From the Frenet-
Serret equation, we find that x = % and that the torsion is

r=—b-n (3.18)

114 3 Vector Calculus and Geometry

Intuitively, we can think of 7 = constant as the result of the helix escaping from a 2D plane
at a ‘constant rate’.

In the previous section, we saw that for a regular curve r(z) which is not unit speed, the
expression 3.9 for «(¢) was rather more complicated. Similarly, the expression for 7(¢) also
becomes dramatically more complicated than (3.18). Instead, we now have formula 3.13
given above.

Now that we understand the meaning of T more clearly, let us try to calculate it for the
given curve (3.12). The x and y components satisfy x> + y> = 1, suggesting that the curve
winds around the unit cylinder like the helix. However, unlike the helix, the z component
suggests that it is not escaping from a 2D plane at a constant rate. Hence, we expect 7 to be
a nontrivial function of ¢.

Substituting equation 3.12 into formula 3.13 and simplifying, we find the expression for
the torsion:

10¢
t) = ———. 3.19
0= 5 o0 G-19)
By differentiating this function, we find that 7(¢) attains the maximum value atr = V101 =

10.05.

Let’s visualise the curve and its torsion using Python. In fig. 3.7, the curve r(¢) (3.12)
is shown on the left panel, and the torsion 7(¢) is on the right panel. A slider controls the
position of a point on both plots simultaneously. The code for producing these plots is
torsion.ipynb.

Parametric curve

Torsion
0.6

0.4 T

0.2 1

0.0 T T T T T T T
0.0 2.5 5.0 7.5 100 125 150 175

t

t | 18.00

Fig. 3.7: Left: The parametric curve r(z) = (cos t,sint, é—g) where ¢ € [0, 6r]. The slider

controls the value of 7. Note that 3D figures produced with Matplotlib can be rotated with a
mouse. Right: The torsion 7(¢) at the corresponding point on the curve.

3.5 Torsion 115

Mixing a 3D and 2D plot with a slider is a slightly complicated affair, so the syntax is
somewhat different from how we did this for the curvature plot in the previous section. In
particular, note that to plot a curve in R3 next to one in R?, we use the command add_subplot
to specify the projection of the 3D graph. Contrast this with the subplots command
which we have used so far to plot multiple graphs of the same kind.

DiscussioN

* Why antisymmetric? You might be wondering why the Frenet-Serret equation 3.16
features an anti-symmetric matrix.

0 « 0
-k 07
0 -710

Surely this has got nothing to do with the geometry of the curve itself since the equation
describes the geometry of any regular curves in R3. One explanation is the following
which relies on some knowledge of linear algebra. Feel free to skip and revisit this point
after studying chapter 5.

Consider the 3 x 3 matrix P whose rows are the Frenet-frame vectors t,n and b. We
can write it in the “vector of vectors" form as before.

t
P=|n].
b

The orthonormality of the Frenet frame can be expressed as the matrix equation
PP =1.
Differentiating the above equation with respect to s, we find
P'PT + P(PTY = 0. (3.20)

Multiply the above on the right by P and using the fact that P P = I, we obtain a
matrix equation which resembles the Frenet-Serret equation:

P’ = AP, where A = —P(PT)

Finally, it is straightforward to show that AT = —A (using eq. 3.20 and the fact that
the transpose and differentiation can be done in any order). This proves that the anti-
symmetry of A is no coincidence: it follows from the orthonormality of the vectors,
and the differentiation process which reveals an additional structure.

¢ The Fundamental Theorem of Space Curves. Analogous to the Fundamental Theo-
rem of Plane Curves, we have the following theorem: let f and g be smooth functions
such that f(s) > 0 for all s > 0. Then, there exists a unit-speed curve in R with
curvature x(s) = f(s) and torsion 7(s) = g(s). The curve is unique up to rotation and
translation in R3.

116 3 Vector Calculus and Geometry

torsion.ipynb (for producing fig.)

i import numpy as np

| import matplotlib.pyplot as plt

| from matplotlib.widgets import Slider
Create an interactive GUI 1%matplotlib
X, ¥y, z components of r(z) rx = lambda t: np.sin(t)

'ry = lambda t: np.cos(t)
:rz = lambda t: t**2/20

The torsion 7 () :tau = lambda t: 10%t/(t**2+101)
Set initial ¢ t =20
Create a new figure size 10x6 inches fig = plt.figure(figsize=(10,6))

The left plot (in R3)
Plot the curve r(z) in blue

ax = fig.add_subplot(121, projection='3d')

s ax.plot(rx(t), ry(t), rz(t),

: 'b', markersize=3)

Plot a moving red dot which the slider:Pntl, = ax.plot(rx(t), ry(t), rz(t),

controls | 'ro', markersize=6)
} ax.set_title('Parametric curve')
:ax.set_xlim(—l, 1
rax.set_ylim(-1, 1)
| ax.set_zlim(0, 20)

The right plot (in R?) 'ax = fig.add_subplot(122)
Make it a horizontally elongated figure rax.set_aspect(8)
| ax. set_title('Torsion')
' ax.set_x1im(®,6*np.pi)
: ax.set_xlabel('t")
rax.set_ylim(0,0.6)
1 ax.grid('on')

Plot the torsion values in red torsion, = ax.plot(t, tau(t),
'r', markersize=3)
Plot a moving blue dot which the slider,Pnt2, = ax.plot(t, tau(t),

controls 'bo', markersize=6)

Add a # slider at the bottom
Set range and resolution of the 7 slider
from ¢ = 0 to 67

axt = plt.axes([0.2, 0.1, 0.5, 0.02])
t_slide = Slider(axt, 't',
0, 6*np.pi, valstep=0.001,
valinit=t)

def update(val):
t = t_slide.val
T = np.linspace(0,t,200)
P =T[-1:]
r.set_data_3d(rx(T),ry(T),rz(T))
Pntl.set_data_3d(rx(P),ry(P),rz(P))
torsion.set_data(T, tau(T))
Pnt2.set_data(P, tau(P))
fig.canvas.draw_idle()

Get the ¢ value from slider

We will plot the trace from O to ¢

The end point to be marked with a dot
Update the 3 components of r
Similarly, update the position of the dot
Do the same update for the torsion plot
Update 2 components

Redraw figure when the slider is changed t_slide.on_changed(update)

plt.show()

3.6 Quadric surfaces 117

3.6 Quadric surfaces

Plot the family of surfaces in R® given by the equation
x>+y?+ar=1, (3.21)

where -2 < a < 2.

Quadric surfaces are a generalisation of the quadratic equation ax® + bx + ¢ = 0 to R?.
A quadric is an equation of the form

a1x2 + a2y2 + a3z2 + asxy + asyz + agxz + arx + agy + agz + ajgp = 0, (3.22)

where a; € R. The question asks us to plot the graph of a family of quadrics with a simple
expression.

Before we start coding, let us consider what we can deduce about these surfaces. Firstly,
the terms x” + y? suggests that this family of surfaces will have rotational symmetry about
the z-axis. One might therefore consider working in cylindrical coordinates (7, 6, z). The
precise range of values of r will depend on the constant a. There are 3 cases to consider.

* a = 0. The equation of the surface 3.21 reduces to x> + y> = 1. This is not just a unit
circle. The equation says that we see the unit circle regardless of the value of z. This
suggests that the surface is a cylinder with unit radius. It extends infinitely in the positive
and negative z directions. The cylinder is shown in the central panel in fig. 3.8.

* g > 0. In terms of cylindrical coordinates, eq. 3.21 reads

1-r

==

(3.23)
a

For the term in the square root to be non-negative, we need 0 < r < 1. To figure out the
shape of surfaces in R3, it usually helps to consider its projections onto the x-y, y-z
and x-z planes (by respectively setting z, x or y to 0 in the equation of the surface).

— In the x-y plane, we see x2+ y2 = 1, the unit circle.
— In the y-z plane, we see y” + az” = 1, an ellipse.
— In the x-z plane, we see x> + az”> = 1, an ellipse.

These observations suggest that the surface is an ellipsoid. For example, the ellipsoidal
surface with a = 1.2 is shown on the third panel in fig. 3.8.

* a < 0. Eq. 3.23 now suggests that r > 1. For the projections, instead of the ellipses,
we see pairs of hyperbolae in the y-z and x-z planes. We still see the unit circle in the
x-y plane. Furthermore, the projection on any z = constant slice is a circle of radius
V1 + |a|z2. The circle gets bigger as |z| increases.

These observations suggest that the surface is a hyperboloid of one sheet as shown on
the first panel in fig. 3.8, which shows the surface when a = —1.

In summary, as a increases from negative to zero and to positive values, the quadric
surface changes from a hyperboloid to a cylinder and to an ellipsoid.

Fig. 3.8 is produced by code quadrics.ipynb, which uses a slider to control 3D
graphics. Unlike 3D curves, surfaces do not get updated using the method that we have
used so far (namely, using the command set_data in the update function to update the

118 3 Vector Calculus and Geometry

Fig. 3.8: The surfaces given by the equation x> + y*> + az*> = 1 with (from left to right)
a = —1,0 and 1.2. The slider adjusts the value of a. The portions of the surfaces with z > 0
and z < 0 are shown in blue and orange respectively.

plot). The workaround we have used is to simply clear the surface plot and replot everything

whenever the slider is moved.

DiscussioN

» Other quadrics in R3. A sequence of translation and rotation will bring eq. 3.22 to
one of a number of standard quadrics [171]. This is sometimes called the principle axis
theorem. We have already met the ellipsoid, hyperboloid of one sheet and the cylinder.
Other quadrics will be explored in Ex. 10.

+ Quadrics in R?. Quadrics in 2 dimensions are called conic sections. They comprise
the ellipse, the parabola and the hyperbola. Properties of conic sections have been
studied as far back as ancient Greece, particularly by Menaechmus (380-320BC) who
is credited with the discovery of conic sections.

* Quadrics in R". We can express the general equation of quadrics (eq. 3.22) in a more
compact form as
x'Ax+b-x+c¢=0,

where x = (x y z)T, A is a symmetric 3 X 3 matrix, b € R3 and ¢ € R. In this way, we
can see how quadrics can be generalised to R" simply by changing the dimension of
the vectors and matrix A accordingly. Generalised quadrics beyond 3 dimensions are
not easily visualised, so diagrams and figures cannot give us a full understanding of the
geometry of these objects.

In general, given an algebraic expression like the generalised quadric, one can understand
the geometry of the corresponding object using the tools of abstract algebra (e.g. groups
and rings). This subject is called algebraic geometry, a vast topic that students normally
meet in their senior undergraduate years. For the keen readers, take a peek at [24,173,185]
which are classic introductory texts in algebraic geometry.

3.6 Quadric surfaces

quadrics.ipynb (for plotting fig.

Create an interactive GUI

z coord. (positive root of eq. 3.23)

Produce (x,y,z) coordinates of sampledldef

points on the surface for a given value a
Case I: a = 0 (cylinder)

All (z, @) combinations

r = 1 (unit circle) for all z values

Case II: a > 0 (ellipsoid)

r €[0,1]

All (r,) combinations

The z coordinates for those points

Case I1II: a < 0 (hyperboloid of 1 sheet)
(similar)

x and y coordinates of all sampled points
(Convert cylindrical to Cartesian coordinates)

Leave a space at the bottom for the slider

undistorted)

Plot the quadric surface given a

Get coordinates of points

Clear canvas

Plot the upper half (positive square root)..
and the lower half (negative square root)
(alpha adjusts the transparency)

Initial value of a to plot

Set position and size of the a slider
Set the slider’s range and resolution
Plot the quadric for the initial a
Get the a value from slider. . .

and replot

Redraw figure when the slider is changed

i import numpy as np

| import matplotlib.pyplot as plt

| from matplotlib.widgets import Slider
1%matplotlib

I

def zfunc(r,a):

f
p

ig

1t.

return np.sqrt((1-r**2)/a)

data(a):
theta = np.linspace(0,2*np.pi)
if (a==0):

z = np.linspace(0,5)

Z, tc = np.meshgrid(z,theta)

rc =1
elif (a>0):
r = np.linspace(0, 1)
rc, tc = np.meshgrid(r, theta)
Z = zfunc(rc,a)
else:
r = np.linspace(l,2)
rc, tc = np.meshgrid(r, theta)
Z = zfunc(rc,a)
X = rc*np.cos(tc)
Y = rc*np.sin(tc)

return X, Y, Z

= plt.figure()
subplots_adjust(bottom=0.15)

ax = fig.add_subplot(projection='3d"')
Equal aspect ratio (so a sphere appears,ax.set_box_aspect((1,1,1))

def plotfig(a):

a

X, Y, Z = data(a)
ax.clear()

119

Pl=ax.plot_surface(X,Y, Z, alpha=0.5)
P2=ax.plot_surface(X,Y,-Z, alpha=0.5)

ax.set_xlim(-2,2)
ax.set_ylim(-2,2)
ax.set_zlim(-2,2)
return P1, P2

0

axa = plt.axes([0.3, 0.05, 0.45, 0.02])

a_slide = Slider(axa,

a', -2, 2,

valstep = 0.05, valinit = a)

plotfig(a)

def update(val):

a = a_slide.val
plotfig(a)

ya_slide.on_changed(update)
i plt.show()

120 3 Vector Calculus and Geometry

3.7 Surface area

Consider the following surfaces.

i) The unit sphere x* + y> + 7% = 1,

ii) The ellipsoid x> + y?/4 + z% = 1.

For each surface, calculate the area of the portion of the surface bounded by the
planes z = 0 and z = h where || < 1.

We briefly mentioned algebraic geometry in the last section. Another way in which
geometry is studied at university is differential geometry, where properties of curves and
surfaces are analysed using the tool of calculus (i.e. differentiation and integration). In this
example, we will need the following important result from differential geometry on how the
area of a surface can be calculated (see recommended texts on differential geometry for

proof).

Theorem 3.1 The area of the portion of a surface parametrised by S(u, v) corresponding
to the domain R C R? is given by

Area = ff 9 X 9 dudy. (3.24)
R|Ou v
Equivalently, the area can also be expressed as
Area = ff EG-F2dudy, (3.25)
R

aS oS S 0S8 S 0S

E:_._ F:—-— = — . —,

where ou ou’ du ov’ G dv Ov

Let us apply Theorem 3.1 to the two surfaces given. It is useful to note that both surfaces
are symmetric about the x-y plane, so it will be sufficient to consider the upper half of each
surface (where z > 0). Fig. 3.9 shows the surfaces and the areas bounded by z = 0 and
z=0.5.

Starting with the unit sphere, let’s use spherical coordinates to parametrise the surface as

S(u, v) = (cosusinv, sinusinv, cosv), (3.26)

where u € [0,2nx] and v € [vg, 7/2]. The angle v starts from vy = cos™ A.
Calculating the area using Theorem 3.1, we find

oS S
n = (—sinusinvy,cosusinv,0), ™ = (cosucosv,sinucosv,—sinv),
u

v
2 /2
E:sinzv, F =0, G=1 = Area:f f sinvdvdu = 2rh.
u=0 Jv=yy

Thus, we have arrived at a remarkably simple conclusion: the area of the strip increases
linearly with h.

Next, for the ellipsoidal surface, one could lightly modify the above spherical-coordinates
parametrisation. Alternatively, let’s try a modified cylindrical-coordinates parametrisation:

3.7 Surface area 121

Fig. 3.9: The upper halves of the unit sphere x> + y? + z> = 1 (left) and the ellipsoid
x? + y2/4 + 72 = 1 (right). The portions shown in solid shading are bounded by z = 0 and
z = 0.5. This figure was created using GeoGebra.

S(u,v) = (\/1 —u?cosv, 2v1 —u?sinv, u), (3.27)

where u € [0, k] and v € [0, 27). Calculating the area using Theorem 3.1, you should find
that we arrive at a much tougher double integral:

2r h
Area = f f \/4 —3(1 —u?)sin2vdudv. (3.28)
v=0 Ju=0

This would be a good place to bring in Python to help us evaluate this double integral. The
code surfacearea.ipynb evaluates the integral as # goes from O to 1 and plots the area
of the strip as a function of h.

11
10 1
9
8 -
7 -
6
5 4

—— Surface area
------ 10.7392h

4
3
2
1

0 T T T T T T T T T
00 01 02 03 04 05 06 07 08 09 10

Height h

Surface area of ellipsoidal strip

Fig. 3.10: The red solid line shows the surface area of the ellipsoid x> + y?/4 + 2> = 1
bounded between z = 0 and z = A, plotted as a function of /. The variation is almost linear.
The dotted blue line is a straight line joining the endpoints for comparison.

122 3 Vector Calculus and Geometry

We see that the variation of the surface area with 4 is almost linear. Python tells us that
the area of the semi-ellipsoid is:

Surface area of semi-ellipsoid ~ 10.7392 (4 dec. pl).

The error reported by dblquad is a tiny number of order 1077, which gives us confidence
in the accuracy of the above answer.

DiscussioN

¢ Archimedes’ tombstone and cartography. Have you ever noticed that the surface
area of a sphere equals the area of the curved surface of the cylinder which exactly
contains it?

N This result was discovered by the legendary Greek
mathematician Archimedes (c.287-212 BC) in
around 250BC using rudimentary geometric ar-
guments (remember this was long before calculus
was invented). Archimedes’ tombstone (now lost)
was said to have been inscribed with a figure similar
to the one shown on the left.

You might also have noticed from our calculation
that the surface area of a strip with height / on the

w sphere (found to be 27h) is exactly equal to the
surface of the unit cylinder height A.

In fact, a similar calculation shows that we can choose any region, R, on the sphere and

project it horizontally to a region, R, on the wrapping cylinder. R and R will have the

same area.

This kind of projection can be used in cartography (map-making). The resulting map of

the Earth is called the Lambert cylindrical projection of the Earth. It does not distort

the area of landmasses (unlike the more popular Mercator projection). However, the
Lambert projection distorts lengths and angles.

¢ First fundamental form. The coeflicients E, F and G in Theorem 3.1 are called the
coeffcients of the first fundamental form of a surface. It turns out that these coefficients
tell us everything about the intrinsic properties of the surface. By intrinsic, we mean
properties that can be measured by an inhabitant on the surface. Such properties include
the length of a curve, the angle between two lines, the area of a portion of the surface,
and even the curvature at a point on the surface. If you are intrigued by this result, look
up Gauss’s Theorema Egregium.

* Surface area of an ellipsoid. In §3.3, we saw that the arc length of an ellipse cannot be

expressed in terms of elementary functions, but only in terms of an elliptic integral. A
similar misfortune befalls the surface area of the ellipsoid. There is no explicit formula
for the surface area, but one can express it in terms of elliptic integrals.
There is, however, an interesting approximation which was discovered surprisingly
recently in 2004 by the Danish scientist Knud Thomsen and communicated via email
to the Numericana website [146]. Thomsen’s approximation for the surface area of an
ellipsoid (x/a)? + (y/b)* + (z/c)* = 1 is

(ab)? + (ac)P) + (bc)P \''P
3 9

S ~dn (p = 1.6075. (3.29)

3.7 Surface area 123
Using this formula for our semi-ellipsoid with a = ¢ = 1, b = 2, we find
Surface area of semi-ellipsoid =~ 10.7328 (4 dec. pl).

This is within 0.06% of the value found by Python — an excellent approximation indeed.

surfacearea.ipynb (for producing fig.

| import numpy as np
| import matplotlib.pyplot as plt
:from scipy.integrate import dblquad

The integrand (3.28). Note the order of | def integrand(u,v):

variables | return np.sqrt(4-3*(1-u**2)*np.sin(v)**2)
|
List of strip areas (to be filled) 3 Alist = [0]
List of strip heights, h thlist = [0]
Initial area and height ‘A, h=0, 0
Small increment in A 1dh = le-2
|
Evaluate the double integral iwhile (h<1):
Outer limits (v from O to 7 /2) l dA = dblquad(integrand,
Inner limits (u« from A to h + dh) | 0, np.pi/2,
Accumulate the area, one small strip at a ! h, h+dh)
time (factor 4 from rotational symmetry) | A += 4*dA[0]
‘ h += dh

} Alist.append(A)

! hlist.append(h)
|

Area of the semi-ellipsoid Area = Alist[-1]
|

Plot the area for varying A (red) ! plt.plot(hlist, Alist, 'r')

Linear comparison (blue dotted line) iplt.plot([®,1],[®, Area], ':b')
iplt.x1im(0,1)
plt.xlabel('Height h')

Set x ticks in steps of of 0.1 ! plt.xticks(np.arange(0,1.1,0.1))
plt.ylim(0,11)
1 plt.ylabel('Surface area of ellipsoidal strip')

Set y ticks in steps of 1 plt.yticks(np.arange(0,11.1,1))
Report equation of linear approximation ! plt.legend(['Surface area', f'{Area:.4f}h'])
(to 4 dec. pl.) iplt.grid('on")

i plt.show()

124 3 Vector Calculus and Geometry

3.8 Normal to surfaces and the grad operator

Consider the surface given by the equation
z=F(x,y) = x+2sin(x + y).

a) Plot the surface and its contour lines projected onto the x-y plane.
b) Find the unit normal to the surface at the origin.

Suppose F and G are functions such that F : R> — R and G : R* — R. These functions
are called scalar fields. Each of them associates a number to every point in space, e.g. the
temperature or pressure at different points in a room.

The gradient of a function F : R? — R is defined in Cartesian coordinates as

OF OF
VF(x,y) = (a, a—y) .
Similarly, if G : R? - R, then
0G 0G 0G
VG(x, Y, 7) = (a, a—y, a—z) .

The notation VF is read “grad F"; indeed VF is sometimes written as grad F.
We can view V as an operator and write

(90 90 9
T \ox’ay az)’

The V operator can be thought of as the generalisation of the derivative for multivariable
functions. The grad operator takes a scalar and gives us a vector. (Note that in the context
of vector calculus, a scalar means any one-dimensional object, like a function f(x, y, z).)

Although the name gradient might suggest a link to the tangent of a curve or a surface,
VF actually gives a vector that is normal to the surface F' = constant. Let us state this more
precisely.

Theorem 3.2 Consider the functions F : R*> — R and G : R> — R. Let P be the point with
coordinates (xo, Yo, z0). Then, at P,

a) the vector VF (xo, yo) is normal to the curve F = constant.

b) the vector VG (xo, Yo, z0) is normal to the surface G = constant.

(3.30)

This theorem is so important in vector calculus that it is worth discussing the proof
below.

First let’s consider statement a). The point P(xo, yo) clearly lies on the curve F(x, y) =
F(x0, y0). Suppose we use the variable 7 to parametrise this curve so that

F (x(1), y(1)) = F(x0, yo)-

Let’s also assume that at x(0) = xg and y(0) = yy. Differentiating the above equation with
respect to ¢ and using the Chain Rule, we find

F F
a—x’(t) + a—y'(t) =0 (3.31)
ox ay

3.8 Normal to surfaces and the grad operator 125

Now let’s evaluate expression (3.31) at P. Recall that the vector t = (x’(0), y’(0)) is tangent
to the curve at P. Eq. 3.31 can then be expressed as the dot product:

VF(x0,y0) -t =0. (3.32)

In other words, VF is perpendicular to the tangent of the curve F = constant at P. This
proves (a).
Let us demonstrate this with the given example F(x,y) = x + 2sin(x + y), and P the
origin. The curve passing through P is F(x, y) = 0, which we can solve for y, giving
- L1 X
y=-—x-sin" 7.
It is not terribly difficult to try to plot this by hand, but it is useful to note that around the
origin (where sin™! x ~ x), we expect the curve passing through the origin to be roughly
that of a straight line y = —3x/2.

Fig. 3.11 confirms this behaviour on the righthand panel, where the colour-coded contour
lines are the curves corresponding to F(x, y) = constant (these contour lines are also called
level curves). When the constant is zero, the contour line is roughly straight and passes
through the origin shown as the red dot.

Furthermore, the normal to the contour line at the origin can be calculated by finding
VF:

VF(x,y) = (1 +2cos(x +y),2cos(x+y)) = VF(0,0) = (3,2).

This is parallel to the red arrow in the figure, which shows the vector
n = (-3/V14, -2/V14).

The reason we chose to plot this vector (rather than (3, 2)) is that n is the projection of the
red vector in the left-hand panel of the figure. Thus, Python has visually demonstrated part
(a) of Theorem 3.2.

Now let us consider part (b) of Theorem 3.2. Consider the function G : R®> — R defined
by
Gx,v,2) =z—-F(x,y) = z— x — 2sin(x + y).

The equation G(x, y, z) = constant represents a surface of constant temperature (sometimes
called isosurface), which is just a 3-dimensional generalisation of the contour lines we saw
above.

The origin lies on the surface G(x, y, z) = 0. This surface is shown in the left-hand panel
of fig. 3.11 in particular. Going through the same proof as before shows us that

VG(0,0,0) -t =0,

where t is the tangent vector to any curve passing through the origin. In other words,
VG(0,0,0) is perpendicular to the tangent vector of every curve on the surface passing
through the origin. We conclude that at the origin, VG is normal to the surface G = 0, which
is precisely the statement of the theorem.

Let’s calculate this normal.

VG(x,y,7) = (=1 = 2cos(x + y), =2 cos(x +), 1) = VG(0,0,0) = (=3, -2, 1).

126 3 Vector Calculus and Geometry

It is common practice to express the answer as a unit vector fi (as only the normal direction
is of interest).

(3 2 1
Vid' V14’ V1a)’

The unit normal fi is shown as the red arrow in the left-hand panel of fig. 3.11. When
projected onto the x-y plane, we simply neglect the z component, and hence we see the 2D
vector n on the right-hand panel.

The code for producing (3.11) is given in grad. ipynb. The left-hand panel is interactive.
Try to use the mouse to spin the figure around so that you see the same projection as that on
the right panel. You can also see from the figure that fi is indeed the normal to the surface at
the origin (remember that orthogonality can only been seen if we set the aspect ratio to be
equal in all directions in the plotting code).

i (3.33)

Projection onto z=0

3.6
2.4
1.2
0.0
-1.2
—2.4
-3.6

Fig. 3.11: Left: The surface z = x + 2sin(x + y). The dot in the middle of the surface is
the origin. The vector is i (eq. 3.33), the unit normal to the surface at the origin. Right:
The contour lines on the x-y plane. The projections of the origin and the unit normal are
also shown in red. The projected normal n is perpendicular to the contour line through the
origin, as expected from theorem 3.2.

DiscussioN

* Directional derivative. Suppose G(x, y, z) represents the temperature at a point with
coordinates (x, y, z) in a room. One might ask: how fast is the temperature changing at
a certain point (xo, yo, z9) if one travels in a given direction?
For example, starting at (xo, yo, Z0), if we travel in the direction along the tangent plane
to the surface G = constant, then the rate of change of temperature is zero.
If we specify the travel direction by a unit vector @ = (a, b, ¢), then it makes sense to
define the rate of change associated with travelling in the direction i as the limit:

3.8 Normal to surfaces and the grad operator 127

G(xo + ha, yo + hb, zo + hc) — G(xo, Yo, 20)

DaG(x0, Y0, 20) =]llir(l) g

This quantity is called the directional derivative of G in the direction .
It turns out that the grad operator can also be used to calculate directional derivatives.
The above limit can be shown to be equal to the scalar product:

DgG(x0, yo, z0) = VG (x0, Yo, 20) - Q.

Steepest descent. Once we know how to calculate the rate of change of temperature in
a given direction, we can ask, which direction is the temperature changing most rapidly?
From the previous equation, using the definition of the dot product, we have

DgG = |VG|cos 6,

where 6 € [0, 7] is the angle between VG and 6. From this simple observation, we can
deduce that

— The directional derivative is maximised when 6 = 0, so the temperature is increasing
the fastest when we walk in the direction @t = VG/|VG]| (normal to the surface G =
constant). This is called the direction of steepest ascent.

— Similarly the direction &t = —VG/|VG] sees the temperature dropping the fastest.
This is called the direction of steepest descent.

— The rate of change is zero when 6 = /2, i.e. the direction tangential to the surface
G = constant, in agreement with the previous bullet point.

The direction of steepest descent is particularly important in helping us find the
minimum of a multivariable function, a common optimisation problem arising in
physics, engineering and data science. For details on how to implement the steepest
descent and other optimisation algorithms in Python, see [74, 100].

Normal vectors and computer graphics. Light reflects off objects at an angle which
can be determined from the normal vectors on the surface. Thus, normal vectors play a
key role in rendering realistic 3D graphics in computer games and cinematic animations.
In such applications, paths of light rays are traced between the camera and light sources
in a scene, reflecting off intervening surfaces where the normal VF is determined
numerically. This is a somewhat crude description of the highly sophisticated technique
of raytracing. Once thought computationally prohibitive and time consuming, raytracing
can now be done in real time on home computers and game consoles. For a glimpse
into the fascinating mathematics behind computer graphics and games, see [127,207].

128

grad.ipynb (for producing fig.)

3 Vector Calculus and Geometry

i import numpy as np
| import matplotlib.pyplot as plt

gridspec allows us to control the relative size | import matplotlib.gridspec as gridspec

of subplots

Define F(x, y) for the surface z = F(x, y)

Create a square grid of 50 x 50 points
z coordinate for each point on the grid

Unit normal to surface ii

Create 2 figure side by side
with the left figure wider than the default size

Left panel (3D plot)

Equal aspect ratio to see orthogonality
Plot the surface

Adjust density or grid lines on surface
Show grid lines on surface in black
Choose your favourite colourmap

Origin = a red dot

Plot the unit normal in red

(or type *N to unpack N into 3 components)

Right panel

Plot up to 20 contour lines

Legend shown as a bar (reduced size)
Origin = a red dot

Plot the projected normal in red

in exactly the dimensions specified
Equal aspect ratio to see orthogonality

1%matplotlib

|
‘def F(x, y):
return x + 2*np.sin(x+y)

X = np.linspace(-2,2)

y = np.linspace(-2,2)

X, Y = np.meshgrid(x, y)
Z

|

|

I

|

I

|

|

I

|

|

:

'N = np.array([-3,-2,1]1)/np.sqrt(14)
|

I

:fig = plt.figure(Q)

1gs = gridspec.GridSpec(1l, 2,
1 width_ratios=[1.5,1])
|
|
I
|
|
I
|
I
|
|
I
|
|
I
|
I
|
|
I
|

axl = fig.add_subplot(gs[0],
projection="'3d")
axl.set_box_aspect((1,1,1))
axl.plot_surface(X,Y, Z, alpha=0.7,
rstride=5, cstride=5,
edgecolor="k',
cmap="viridis")
axl.plot(0,0,0, 'or')
axl.quiver(9,0,0,N[0],N[1],N[2],
length=1, color='r'")
raxl.set_x1im(-2,2)
axl.set_ylim(-2,2)
'axl.set_zlim(-2,2)

|

|

|ax2 = fig.add_subplot(gs[1])
'p = ax2.contour(X, Y, Z, 20)
lfig.colorbar(p, shrink = 0.4)
rax2.plot(0,0, 'or')
1ax2.quiver(®,0, N[®],N[1], color='r',
l scale_units='xy', scale=1)
;axZ.set_aspect('equal')
:ax2.set_title('Projection onto z=0")
|

| fig.tight_layout()

}plt.show()

3.9 The Divergence Theorem and the div operator 129

3.9 The Divergence Theorem and the div operator

Consider the cube:
V={(xyz)eR¥:-1<x<l,-1<y<l -1<z<1}.
Fluid flows out of the cube with flux given by the vector field
F(x,y,z) = (2xz, 7 +2cos Yy, 2z3),

where (x, y, z) € V. Calculate the net outward flux.

A vector field assigns a vector to a point in space. For example, the wind direction or
electric field at a point can be described by vector fields. Every point is assigned not only a
magnitude (as in a scalar field) but also a direction.

In this example, we will study the Divergence Theorem - one of the most important
results in vector calculus. It has wide ranging applications in physics, particularly in fluid
mechanics and electromagnetism where vector fields are ubiquitous. We will only give an
outline of the theorem below. For an accessible proof, see [192]. See also [28] for a good
intuitive explanation of the theorem.

Start with a closed container with volume V' containing fluid that flows outward through
its surface S. At each point P(x,y, z) on the surface, suppose that the fluid velocity is
v(x, y, z) with unit ms™!, and the density at P is p(x, y, z) with unit kg m~>. Note that the
vector F = pv has unit kg m™2s~!, meaning that it quantifies the rate at which the fluid
flows through a small area element containing point P.

The vector F is called the flux. Furthermore, we can work out the total mass of fluid
emptying from V per unit time by integrating the flux over the entire surface S, i.e.

Flux across S = ffF -0 dS, (3.34)
s

where fi is the outward-pointing unit normal at each point on S.

On the other hand, consider a volume element dV = dx dy dz within V. Let us write the
flux vector as F = (F}, F», F3). It can be shown that the rate at which the fluid flows out of
this volume element is given by

2\ F
dF, 0F, OF 9 !
L T2 T3 dedydz = aﬁ | F|dxdydz =V -Fav,
dx 0y 9z ’f

3z) \B3

where V is the differential operator defined in eq. 3.30. Therefore, the total mass of fluid
emptying from the entire volume per unit time can be obtained by integrating over the whole

volume:
fff V-Fdv. (3.35)
v

Egs. 3.34 and 3.35 are the same quantity calculated in two ways. Therefore, we have the
following.

130 3 Vector Calculus and Geometry

Theorem 3.3 (The Divergence Theorem) Let F : R3 — R3 be a differentiable vector field.
Let V be a volume in R and S its boundary surface. Then

[[[war= [[nas

where 1 is the outward-pointing unit normal to the surface S.
The name of the theorem refers to the divergence operator (the ‘div’) defined as:
divF =V .F.

Note that the div operator takes a vector and gives us a number that quantifies the local rate
of outflow per unit volume.

Discovered by Lagrange in 1764, the Divergence Theorem was proved decades later by
Gauss and also by the Russian mathematician Mikhail Vasilyevich Ostrogradsky (1801—
1862). In some texts, the Divergence Theorem is called the Gauss or Gauss-Ostrogradsky
theorem.

Now we are ready to address the given question. Fig. 3.12 shows a sketch of the given
vector field defined in the cube V, plotted using the quiver command. The longer the
arrow, the larger the magnitude of the flux (i.e. faster flow). The tails of the arrows are at
250 sampled points within the cube (sampled using the meshgrid command). The code for
generating this interactive figure is given below.

Fig. 3.12: Sketch of the vector field F(x, y, z) = (2xz, z +2cos y, 22%).

3.9 The Divergence Theorem and the div operator 131

Plotting a vector field (fig.)

| import numpy as np

| import matplotlib.pyplot as plt
Interactive plot |%matplotlib

|

i fig = plt.figure()

lax = plt.axes(projection='3d")

|
Define 3D grid points ix, y, z = np.meshgrid(np.linspace(-1, 1,5),
Avoid a crowded figure - don’t use too many | np.linspace(-1, 1,5),
points l np.linspace(-1, 1,10))
Components of F(x, y, z) lu = 2%x*z

v o=z + 2*np.cos(y)

W = 2*2*1‘:3

I

|
Plot vector field in 3D ax.quiver(x, y, z, u, v, w , length=0.2)
(1ength adjusts arrow length) !

1plt.show()

Let’s calculate the net flux (i.e. each side of the Divergence Theorem) in two ways.
First, let’s calculate the triple integral on the LHS. The integrand is the divergence

V-F =2z-2siny+ 62°.

Every point within the cube has a divergence value (e.g. the origin has zero divergence).
By inspection, we see that the maximum divergence in the cube is achieved at the surface
z = 1 along the edge y = —1, with (V- F) ..« = 4 + sin 1 =~ 9.68. Similarly, the minimum
divergence occurs on the slice z = 0 (when the squared term vanish) and y = 1, giving
(V-F)pin = —2sinl1 =~ —1.68

We can use Python to visualise the divergence on each z = constant slice. Fig. 3.13
shows the heatmaps corresponding to the divergence of F at z = —1,0,0.5 and 1, varied
using the slider below the figure. The arrows are the top-down views of the vector field F
projected onto each z = constant plane (this time we sample 400 points per slice to get a
good view of the flow directions). The code div.ipynb was used to produce this figure.

The net flux is the sum of the divergence on all such slices. We can calculate this
numerically by performing the triple integration:

fffV-F dV=fff (22 - 2siny +627) dxdydz
v v
1,1l
=f f f (2z—231ny+6z2) dzdydx
-1J-1J4
1 pl
:2f f (2z—251ny+6z2) dzdy
-1J-1
! 2
:8f z+3z7) dz
| (z+32)

= 16.

It remains to calculate the surface integral on the RHS of the Divergence Theorem. For
our example, S comprises the 6 faces of the cube, where x, y, z = +1.

Let’s start by calculating the flux across the face z = 1. Here the outward-pointing normal
isfi = (0,0,1), and dS = dx dy. Thus, the flux across this face is

132 3 Vector Calculus and Geometry

Divergence heatmap Divergence heatmap
SN

10

@

0.00

IS

-0.25

—0.25 1

)

—0.50 —-0.50

ERSNES S

0.5 | O NN S| -0.75
S ANT

-2 -1.00

-1.0 t 1
-L00 —0.75 -0.50 —0.25 0.00 025 050 075 1.00

.00
-1.00 -0.75 —-0.50 -0.25 0.00 025 050 075 100
zslice [T 1-1 z slice T 10

Divergence heatmap

Divergence heatmap

—0.25
—0.50 \\

—-0.75

=1.00 +
-1.00 -0.75 -0.50 -0.25 0.00 025 050 0.75 100

—0.50

=2 -1.00
-1.00 -0.75 -0.50 -0.25 0.00 025 050 0.75 100

|
=
="
g_——
\\\

e
a—Aa S

z slice 105 z slice 1

Fig. 3.13: Heatmaps corresponding to the divergence of F(x, y, z) = (2xz, z+2cosy, 2z3)
at z = —1,0,0.5 and 1 (varied using the slider). The arrows are the top-down views of the
vector field F projected onto each z = constant plane.

2xz 0 1 1
ff z+2cosy|-|0 dSzf f 2dxdy = 8.
S 2Z3 1 -1 J-1

Next, for the face z = —1, the outward-pointing normal is i = (0,0, —1), and dS = dxdy.
The flux across this face also equals 8.

You should check that across the remaining 4 faces of the cube, the flux integrals all
yield 0. Thus,

Net flux = (Flux across face with x = —1) + (face x = 1)
+ (facey =—-1) + (facey = 1)
+ (facez = —1) + (facez = 1)
= 16.

Hence, the Divergence Theorem is verified.

It is useful to check with the quiver plot (fig. 3.12) that these flux calculations make
sense. Do this by rotating the figure to see if there are arrows piercing each of the 6 faces.
You should see an abundance of upward arrows across z = 1, and similarly, many downward
arrows across z = —1. Those are the faces that contribute to the net flux. On each of the
remaining faces, you should see that every arrow has an ‘anti-arrow’ which cancels the total
flux across that face down to zero.

3.9 The Divergence Theorem and the div operator 133

DiscussioN

¢ The Fundamental Theorem of Calculus. The Divergence Theorem expresses how a
certain property inside a volume V is equivalent to a related property on the boundary
surface S. In the simplest case, this idea can be demonstrated by a very simple calculus
equation:

b
f f(x)dx = f(b) - f(a).

The LHS sums up the contribution from all points in the interval [a, b], whilst the RHS
comprises contributions from the two boundary points x = a and b. This equation is
one form of what is known as the Fundamental Theorem of Calculus.

Another example of this phenomenon of dimensional reduction is Stokes’ Theorem,
which we will discuss in the next section.

* Divergence Theorem in physics. Here are some important examples of physical laws
that are manifestations of the Divergence Theorem.

— Gauss’s law in the theory of electromagnetism:

where @F is the electric flux through the surface S, Q is the total charge contained
in volume V, and g is the permittivity of free space (a constant).
— Poisson’s equation in the theory of gravitation:

V2p = 4nGp,

where ¢ is the gravitational potential, p is the density within the volume V, and G
is Newton’s constant. The operator V2 = V - V (div of grad) is also known as the
Laplacian (sometimes written A).
— The continuity equation in fluid mechanics:
ap

iV, =0,
ar " (pv)

where p is fluid density, v is the flow velocity, and ¢ is time.

More about these important equations and their connections to the Divergence Theorem
can be found in good undergraduate physics textbooks such as [184,220].

134 3 Vector Calculus and Geometry

div.ipynb (for plotting fig.

i import numpy as np

| import matplotlib.pyplot as plt

| from matplotlib.widgets import Slider
Interactive plot : %matplotlib

|
Create 400 grid points on each constant,x, y = np.meshgrid(np.linspace(-1, 1,20),
z slice ! np.linspace(-1, 1,20))

Initial slice z=0.5
u, v are the x, y components of F u = lambda x,y,z: 2*x*z
We will use (u, v) to plot arrows on each slice 'v = lambda x,y,z: z+2*np.cos(y)

|
|
|
div F 3 div = lambda x,y,z: 2*z-2*np.sin(y)+6*z**2
Rough estimates of max and min of div F i dmax= 10
(so the legend shows a sensible range) L dmin= -2
|
Initialise plot ! fig, ax = plt.subplots()
Leave space for slider 1plt.subplots_adjust(bottom=0.15)
1 ax.axis([x.min(Q,x.max(Q),y.minQ,y.max(Q1)
|
def plotdiv(z):
D = div(x,y,z)

This function plots the heatmap at a given z

U =u(x,y,2)
V =v(x,y,z)
Clear the canvas ax.clear()

ax.set_title('Divergence heatmap')
heat = ax.pcolormesh(x, y, D,
vmin = dmin, vmax=dmax,
shading="gouraud', cmap="RdBu')
arrow = ax.quiver(x, y, U, V,
units='xy', scale=5)
return arrow, heat

Heatmap of div F

gouraud smooths the heatmap
Plot the arrows (F projected onto each 2D slice)

|
I
|
|
I
|
I
|
|
I
|
|
I
|
I
|
|
I
. . |
Use scale to adjust arrow size |
I
|
I
|

Start with the heatmap at initial z slice rarrow, heat= plotdiv(z)
Add legend on the side | fig.colorbar(heat, ax=ax)
|
I
Dimensions and location of z slider laxz = plt.axes([0.15, 0.05, 0.6, 0.02])
Range and resolution of slider 1z_slide = Slider(axz, 'z slice', -1, 1

valstep = 0.02, valinit = z)

Update plot if slider is moved
Get new z value from slider
Replot

|
:
|
;def update(val):

: z = z_slide.val

| plotdiv(z)

|

| z_slide.on_changed(update)
lplt.show()

3.10 Stokes’ theorem and the curl operator 135

3.10 Stokes’ theorem and the curl operator

Consider the vector field

F(x,y,2) = (xz,yz, xy).

Calculate the net circulation of F on the surface of the semi-ellipsoid
22 (2)
xX“+y +(—) =land z >0,
a

where a is a positive constant.

Given a vector field F(x, y, z), the circulation at a point P(x, y, z) on a surface S is given
by the formula

Pointwise circulation = V X F - i, (3.36)

where 11 is the unit normal to the surface at point P. The operator VX is known as the
curl of a vector field, sometimes written curl F. It maps a vector to another vector. Let
F(x,y,z) = (F1, F», F3) (where each component is a function of x, y, z), then!

VxF =& & & (3.37)

B oF; O0F, 0F, O0F; 0F, O0F;

“\ay 9z> 9z ax’ ax ay)’

The pointwise circulation can be understood conceptually as follows. Think of F as
the velocity field of a fluid. We would like to quantify the rotation of the fluid at P. This
‘pointwise’ rotation can be characterised by 2 properties: the speed of the rotation, and
the orientation of the rotation plane. It turns out that the vector V X F completely captures
these characteristics. Its length is proportional to the rotation speed, and its direction is
normal to the rotation plane. For a mathematical justification of these statements, see for
instance [174, 189, 192].

If P also lies on a surface S with normal fi, we could ask, how much is the fluid
circulating around 1i? This quantity is precisely the pointwise circulation (3.38): namely,
curl F projected in the direction of fi. The sign of this number tells us about the direction in
which the fluid is locally rotating around fi.

Make a thumbs-up gesture with your right hand, and align the thumb in the direction of
fi. If curl F - fi is positive, then the direction in which the fluid locally rotates around i is
the direction in which your other fingers curl. This is sometimes called the right-hand rule.
This also means that it does not matter whether which one of the two possible directions for
il is chosen: the direction of local circulation remains consistent with either choice.

! The long vertical bars around the matrix in eq. 3.37 denote the determinant of the matrix. Don’t worry if
you are not familiar with matrices or the determinant at this point. We will discuss matrices in detail in
chapter 5.

136 3 Vector Calculus and Geometry

Now let’s study the circulation of the vector field F(x, y, z) in our example. This vector
field is shown in fig. 3.14. The flow looks fairly complicated, but try plotting this vector
field (a template is given in the previous section) and rotating it to see the projection in the
x-v nlane. Yon will see that the vector field noints radiallv ontward awav from the 7-axis.

&
| ¢
/
0 4
143 /7
\:::‘\\h ;:'//
o B <
= I 1
s

A
I\‘II"{’

R

\rTlf
AN

e

¥

BT

>

Fig. 3.14: Left: Sketch of the vector field F(x, y,z) = (xz, yz, xy) and the surface z =
v/1 = x2 — y2 (unit hemisphere). Right: View from the top down. In this projection, the
vector field points radially outwards.

For this vector field, we find the curl:
VXxF=(x-y, x-y, 0).

Now, to find the normal fi to the ellipsoid, let’s exploit the symmetry and change to cylindrical
coordinates, (7, 8, 7). The semi-ellipsoid can be parametrised by:

S(r,0) = (r cos®, rsiné, avl — rz),

where r € [0, 1] and 8 € [0, 2r].
The families of tangent vectors in the r and 6 directions are

oS oS
o5 = (cos@, sinf, —ar/V1 —rz), i (=rsin6, rcosé, 0).

The cross product gives us the normal vector, n, to the ellipsoid

n_BSXBS_ artcos8 ar?sing .
S or T 0 Vie2 Vie2)

We see from the vector components that the normal is outward (and upward) pointing.

3.10 Stokes’ theorem and the curl operator 137

Normalising n gives the outward-pointing unit normal, fi.

1
i=—— (arcos&, ar’sin@, V1 - rz).

Therefore, the pointwise circulation is

2cos 20
VxF = 89 (3.38)

it @1

In fig. 3.15, we plot the pointwise circulation projected onto the x-y plane for various
values of a, corresponding to the following surfaces:

* a = 0 —aunit disc in the x-y plane
* a = 0.5 : —an oblate (flat) ellipsoid
* g =1 : —the unit sphere

* a =2 :—aprolate (tall) ellipsoid

The code for producing these circular heatmaps (with a slider for a) is given in curl. ipynb.

Surface Circulation (projected) Surface Circulation (projected)
70.0 . :
05 4 4-1.0
0 8 — 0.5
Circulation (projected) Surface Circulation (projected)

a 1 a 2

Fig. 3.15: Each panel shows a) the surface z = a+/1 — x2 — y2, and b) a circular heatmap
showing the projection in the x-y plane of the pointwise circulation patterns for a = 0,0.5, 1
and 2 (varied using the slider). The net circulation on each heatmap is always zero regardless
of the value of a.

Now let’s sum up all the pointwise circulations on the surface. The net circulation on the
surface is given by

Net circulation = ff VxF- i ds. (3.39)
s

138 3 Vector Calculus and Geometry

Recall from eq. 3.24 that the area element on the surface S(u, v) is given by

ds = §x§ drdé = |n|dr d6.

Therefore, dS = ndr d6. Thus, the net circulation expressed entirely in r and 6 is

ff 2r 1 ar3
VxF- i dS = f f cos20drdo (3.40)
S 0 0 V1-r2

=0.

The net circulation on the surface is zero. You may have already spotted this from the
angular pattern in the heatmaps: we see that every point with positive pointwise circulation
(red) has a partner with an equal but negative circulation (blue). You can find these partner
points by folding each circular heatmap along the diagonal 6 = 45°.

It is also interesting to note that when a is large, the heatmap becomes insensitive to a.
As the ellipsoid becomes very tall (¢ — o), the heatmap pattern converges to r cos 26.

The fact that the net circulation on the surface is independent of the shape of the surface,
in fact, points to a deeper result. Here is a very important result in vector calculus.

Theorem 3.4 (Stokes’ Theorem) Let F(x, y, z) be a vector field. Let S be a surface with unit
normal 1t and boundary curve C, oriented according to the right-hand rule. Then,

fF-dr:ffoF-ﬁds. (3.41)
C S

Like the Divergence Theorem, Stokes’ Theorem reduces the dimensionality of the
integral, in this case a 2-dimensional integral on the RHS (the net circulation) is reduced to
a one-dimension one on the LHS. The amazing thing about Stokes’ Theorem is that it holds
for all smooth surfaces with boundary C. If we think of C as the rim of a butterfly net, then
Stokes’ Theorem holds regardless of the shape of the net.

Integrals of the form

f F- dr, (3.42)
C

are called line integrals. If F represents a force in moving an object, then the line integral
represents the energy spent in moving it along the curve C (in physics, this is called the
work done on the object). The direction in which the curve C is traversed is determined by
the right-hand rule. This is often summed up by the phrase “C is positively oriented".

To evaluate the line integral, start by parametrising the curve C by a parameter ¢, and
recast the integral in this single variable. Suppose C can be parametrised by r(f) where

t € [a, b], then
b
f F-dr= f F(t) -r'(¢) dt. (3.43)
C a

Note that since r’(¢) is the tangent vector along C, the line integral essentially quantifies the
tendency of the vector field F to point in the same direction as C.

3.10 Stokes’ theorem and the curl operator 139

In our example, we parametrise the unit circle C as r(¢) = (cost, sint,0), t € [0, 27). As
t increases, C is traversed anti-clockwise, agreeing with the right-hand rule (the normals are
all pointing upwards). Substituting x, y, z as the corresponding functions of r(z), we find

o 0 —sint
fF.drzf 0 || cost |dr=o. (3.44)
C 0 0

cos @ sinf

Hence Stokes” Theorem is verified.

George Stokes (1819-1903) was an Irish mathematician and physicist who made profound
contributions particularly in fluid dynamics. Stokes’ theorem, however, was not Stokes’ own,
but his name stuck because of his habit of setting it as an exam question at Cambridge. The
theorem was probably first discovered by George Green (1793—1841).

Green was a remarkable English mathematician who, having taught himself mathematics
at a library in Nottingham in his 30s, entered Cambridge University as an undergraduate at
almost 40 years old. His name lives on today most notably in Green’s Theorem (which we
will shortly discuss) and Green’s function, an indispensable tool in solving partial differential
equations. See [108] for an in-depth historical account of Green’s, Divergence and Stokes’
Theorems.

DiscussioN

* Green’s Theorem in the plane. Apply Stokes’ Theorem to the vector field F =
(f(x,y),g(x,¥),0), with C a positively oriented curve in the x-y plane (so that
i = (0,0, 1)). This gives

f(fdx+gdy)=ff (8_g_ﬂ) dx dy, (3.45)
C R 0x ay

where the region R is bounded by C. This equation is called Green’s Theorem in the
plane. Here is one neat application: choose any f and g such that the integrand on the
RHS is 1. The area of R will then be given by the double integral, and thus can be
calculated by a 1D line integral thanks to Green’s Theorem. This is the principle behind
the planimeter, a device that, when used to trace the boundary of a region, tells us its
area.

¢ Stokes’ Theorem in physics. Here are some manifestations of Stokes’ Theorem in
physics.

— Conservative forces. In mechanics, a force F is said to be conservative if the work
done in moving an object from one point to another is independent of the path
joining the two endpoints. If F is conservative, then

VxF=0.

— Faraday’s Law in electromagnetism:

oB

VXE = -——,
% ot

where E is the electric field induced by the changing magnetic field B.
— Ampére’s Law, also in electromagnetism:

VxB = o,

140 3 Vector Calculus and Geometry

where pg is the permeability of free space, and J is the current density which
generates the magnetic field.

Faraday’s Law and Ampere’s Law are part of Maxwell’s equations in electromagnetism.
See [83] for an excellent introduction to electromagnetism, and [184,220] for a review
of undergraduate physics.

Unifying Green’s, Stokes’ and Divergence Theorems. In your senior undergraduate
course (or beginning graduate course) in differential geometry, you would be pleasantly
surprised to discover that Green’s, Divergence and Stokes’ Theorems can in fact be
elegantly unified into a single equation. In this unified version, called generalised
Stokes’ Theorem, we have the equation

fdw:f w,
Q 09

where w is a differential form, d is the exterior derivative, Q is a manifold and 9Q2
its boundary. These technical terms are simply higher-dimensional generalisations of
vector-calculus concepts such as partial derivatives, curves and surfaces. For a glimpse
of these higher-dimensional objects, see textbooks on differential geometry on manifolds
such as [42,67,148].

3.10 Stokes’ theorem and the curl operator 141

curl.ipynb (for producing fig.

i import numpy as np
| import matplotlib.pyplot as plt
| from matplotlib.widgets import Slider
:%matplotlib
Create a grid of 50 x 50 pairs of (r, 9) r, theta = np.meshgrid(np.linspace(®, 1),
np.linspace(®, 2*np.pi))
def circulation(a):
if (a==0): return 0*r
else: return a*r**2*np.cos(2*theta)/\
np.sqrt(l+r**2*(a**2-1))

Pointwise circulation (3.38)
This prevents zero division when a = 0
Return zeroes with the right dimension

We’ll plot 2 figures side by side fig = plt.figure(figsize=(6,4))
Left figure = 3D surface axl = fig.add_subplot(121, projection='3d")
Right figure = circular heatmap ax2 = fig.add_subplot(122, projection='polar')

def data(a):
Theta = np.linspace(0,2*np.pi)
R = np.linspace(®, 1)
rc, tc = np.meshgrid(R, Theta)
X = rc*np.cos(tc)
Y = rc*np.sin(tc)
Z = a*np.sqrt(l-rc**2)
return X, Y, Z

def plotsurf(a):
axl.clear()
axl.set_title('Surface')
axl.set_xlim(-1,1)
axl.set_ylim(-1,1)
axl.set_zlim(0,2)

|
|
I
|
|
I
|
I
|
|
I
|
|
I
|
I
|
I
Produce sample points on surface !
I

|

I

|

|

I

|

|

I

|

I

|

|

I

|

|

I

|

I

|

:

Get the coordinates 1 X, Y, Z = data(a)

I

|

I

|

|

I

|

|

I

|

I

|

|

I

|

|

I

|

I

|

|

I

|

|

I

|

I

|

|

I

|

|

I

|

I

|

|

I

|

|

I

|

I

|

Parametrise surface by (r, 6)

Cylindrical coordinates

Left plot: 3D surface given a

3D plot P1 = axl.plot_surface(X,Y,Z, cmap ='bone')
return P1

Right plot: Circular heatmap def plotcirc(a):

ax2.clear()

ax2.set_title('Circulation (projected)')

ax2.set_xticklabels([])

ax2.set_yticklabels([])

C = circulation(a)

heat = ax2.pcolormesh(theta, r, C,

shading = 'gouraud')

ctf = ax2.contourf(theta, r, C,
levels= 50, cmap ='coolwarm',
vmin = -1, vmax = 1)

return heat, ctf

Create the heatmap

Create filled 50 contour levels be-
tween +1. With this cmap, positive=red,
negative=blue.

Space for slider
Slider dimensions and location
Slider range and resolution

plt.subplots_adjust(bottom=0.15)
axa = plt.axes([0.16, 0.15, 0.7, 0.02])
a_slide = Slider(axa, 'a', 0, 2,
valstep = 0.01, valinit = 0)
Plot the initial surface and heatmap plotsurf(0); plotcirc(0)
def update(val):
a = a_slide.val
plotsurf(a); plotcirc(a)
1a_slide.on_changed(update)
:plt.show()

Update plot if slider is moved
Get new a value from slider
Replot

142 3 Vector Calculus and Geometry

3.11 Exercises

1 (Cycloid revisited) Derive the equation of the cycloid in the case when the point P is at
a distance /& from the centre of the unit circle. Show that its parametric equations are

x(t) =t — hsint,
y(t) =1—hcost.

By modifying cycloid. ipynb, plot the cycloid for # = 0.8 and 1.2. Use the initial
condition (x(0), y(0)) = (0, 1 — h). Are there cusps on the cycloid if 7 # 1?

2 (Hypocycloid) A circle radius r < 1 is rolling on the inside of a circle radius 1, centred
at the origin O. The centre C of the smaller circle is initially at (1 — r, 0). Let 6 be the
angle subtended by the line OC measured with respect to the positive x-axis. The point
P, initially at (1, 0), traces out a curve as the smaller circle rolls inside the unit circle.
The setup is shown in the fig. 3.16.

Fig. 3.16: The hypocycloid.

The curve traced out by P has the parametric equations:

x(0) = (1 —r)cos9+rcos(1 _ra),

r

y(6) = (l—r)sina—rsin(l;ra).

This curve is called a hypocycloid.

a. Plot the hypocycloids for » = %, E—P % and % with a slider for 6 € [0, 107], showing

the rolling action. Use cycloid.ipynb (§3.2) as a template.
b. Conjecture the appearance of the hypocycloid for an arbitrary r € R. (Try r > 0
and r < 0 as well.)

3 (Perimeter of the ellipse) Investigate the fractional error of the following approximations
for the perimeter of the ellipse with semi-major axis ¢ = 1 and semi-minor axis b.
Use ellipse.ipynb (§3.3) as a template. Be aware that the fractional error can be
negative.

3.11 Exercises 143
a. Euler’s approximation (1773)

mAJ2(a2 + b2).

b. Ramanujan’s second approximation (1914)

ﬂ(a+b)(l+L) whereh—(a_b)2
10+ V4 =3n)’ a+b)

c. Padé approximation (one of many variations in the form of a rational function of /)

a2
ﬂ(a+b)(64 3h)

64 — 16h

4 (Witch of Agnesi) Consider the Witch of Agnesi curve given by

1

Sl el

The word witch was the result of an English mistranslation of the work of the Italian
mathematician Maria Gaetana Agnesi (1718-1799), believed to be the first female
professor of mathematics at a university.

a. Parametrise the curve in the form r(¢) where ¢ € R.

b. Calculate its curvature «(t).

c. Plot the curve and its curvature on the domain x € [-2,2]. Use curvature.ipynb
(§3.4) as a template.

5 (Lemniscate of Bernoulli) This question concerns the arc length and curvature of the
Lemniscate of Bernoulli — see §3.4.

a. Using eq. 3.11, plot the graph of the arc-length function s(¢) for the Lemniscate.
b. By modifying curvature.ipynb, plot the curvature « of the Lemniscate as a
function of the arc length s.

6 Calculate the curvature «(¢) for the curve given by eq. 3.12. Add its graph to fig. 3.7.
Can you think of another parametric curve r(z) with the same curvature «(¢) and torsion
7(¢) as this curve?

7 (Nielsen’s spiral) Consider the parametric curve defined by the equation r(z) =
(Ci(2), Si(¢)), where Ci(r) and Si(z) are the cosine and sine integrals given by

X sint X t—1
Si(x)zf %dg Ci(x)=y+lnx+f Cost dt,
0 0

(y is the Euler-Mascheroni constant).

The curve is known as a Nielsen’s spiral. Plot it for ¢ € [0, 100].

Suggestion: Use scipy.special.sici for the integrals.

Verify (using eq. 3.9) that the curvature k grows linearly with ¢. Is this consistent with
what you see in the plot?

144 3 Vector Calculus and Geometry

8 (Viviani’s curve) Consider the curve of intersection between the sphere x> + y? + 7> = 4
and the cylinder (x — 1)? + y* = 1. This curve, called Viviani’s curve, is named after
Vincenzo Viviani (1622—-1703), Italian mathematician and engineer who was also a
student of Galileo. Viviani’s curve can be expressed as

1t
r(t) = (1 + cost, sint, 2sin 5) t €10, 4nr].

a. Find an expression for its arc length as an integral and evaluate it numerically.
Suggestion: Express the arc length as an elliptic integral of the second kind (eq.
3.6) and use SciPy’s special.ellipeinc. Answer ~ 15.28.

b. The curvature and torsion of the curve are given by

V13 +3cost 6 cos &

-)= ———.
(3 + cost)3/2 @) 13+ 3cost

k() =

You may like to verify these results using eqs. 3.9 and 3.13.

Create an interactive plot of the curve, its curvature and torsion. Use a slider
to control the value of ¢+ € [0,4x] on all three graphs simultaneously as in
curvature.ipynb.

9 (Osculating circle) Consider of a curve r(¢) = (f(¢), g(t)) € RZ. At point P on the
curve, the osculating circle at P is a circle which touches the curve at P, where the
circle and the curve share the same tangent line. It can be thought of as the "best
approximating circle’ of the curve near P.

It can be shown that the centre and radius of the osculating circle are given by

|
Radius = @
Centre = (xc(1), ye (1)),
72 N2\ o/ "2 N
Wherexc(t)zf—M yc(t):g+M.

f/g// _f//g/ 4 f/g// _f//g/

Let r(¢) = (¢, > — 1) (a cubic curve) where ¢ € [-2, 2] Create an interactive plot which
plots the curve along with the osculating circle at a point which can be controlled by a
slider. [Suggestion: Make sure to prevent zero division when x = 0.]

10 (Families of quadrics) Let’s explore more quadric surfaces. Use quadrics.py (§3.6)
as a template for the following tasks.

a. Consider the family of surfaces given by the equation

P +yP-2=a,

for -2 < a < 2. Analyse the projections of the surface in the various coordinate
planes and make a sketch (by hand) of the surfaces fora =0, a > 0 and a < 0.
Modify quadrics.py to create an interactive plot with a slider that controls the
value of a.

As a increases from negative, to zero, to positive, you should see the quadric
changing from a hyperboloid of two sheets, to a double cone, to a hyperboloid of
one sheet.

3.11 Exercises 145

b. Repeat part (a) for the family of surfaces given by the equation

7 = x* +ay2,

for -2 < a < 2. You should see the following quadrics as a increases: the

saddle (also known as the hyperbolic paraboloid), the parabolic cylinder, and the
paraboloid.

11 (Surfaces of revolution) Consider the curve parametrised by r(u) = (f(u), 0, g(u)),
where f(u) > O for all parameter values u. The curve lies on the x-z plane.
If the curve is then rotated anticlockwise about the z-axis, it can be shown that the
resulting surface can be parametrised by

r(u,v) = (f(u)cosv, f(u)sinv, gu)),
where v € [0, 2x]. The surface is called a surface of revolution.

a. Write a code that plots the surface of revolution for the generator curve r(u) =
(coshu, 0, u), where u € [0, 1]. Include contour lines on the surface, showing
curves of constant u and v in two different colours. (This surface is called the
catenoid.)

b. Use your code to plot some quadric surfaces that are surfaces of revolution. For
example, a cone, a paraboloid, a hyperboloid of 1 and 2 sheets.

c. Plot the surface of revolution by rotating one arch of the cycloid r(u) = (1 —
cosu, 0, u — sinu), where u € [0, 2], about the z-axis (see §3.2). Suggestion: Use
ax.set_box_aspect((_,_,_)) to adjust the aspect ratio.

Use Theorem 3.1 to show that area of the surface of revolution equals 64x/3.

12 (Mobius strip) The famous Mébius strip is formed by taking a long strip of paper, giving
it a half twist, and closing it up in a loop. It can be parametrised as the surface

S(u,v) = ((1 —usin%)cosv, (1 —usin%) sinv, ucos%),

where u € [-1/2,1/2] and v € [0, 2x).

a. Plot the Mobius strip.
b. Explain why the unit circle C(v) = (cosv, sinv, 0) lies along the centre of the
strip. Overlay the unit circle on your plot.

c. The standard unit normal at the point P on the surface is defined as the vector
S, xS,
|Su X SV | ’

o=

evaluated at P (where each subscript denotes a partial derivative).
i. Show (by hand) that the unit normal fi along the centre of the strip is given by

R (v v, . V)
n=|CoOS—-CosSv,Cos —Sinv,Sin — | .
2 ’ 2 ’ 2

Suggestion: Substitute # = 0 as soon as possible.

ii. Create an interactive plot with a slider for v € [0, 27] that controls the position
of the normal fi along the unit circle C using a slider. Note the behaviour of

146 3 Vector Calculus and Geometry

the normal as it traverses the Mobius strip. In particular, you should find that
the normals as v — 0% and v — 27~ point in opposite directions.
Suggestion: Use quiver to create the arrow representing .

Note: Since an ‘outward’ pointing normal can end up pointing ‘inward’, the M&bius

strip has no well-defined notion of inside and outside - it only has one side! Such a
surface is called a non-orientable surface.

13 (Tangent plane and normal to a surface) Use grad.ipynb (§3.8) to help you answer
the following questions.
Consider the surface given by the equation

x3+y2+z=1.

a. Plot the surface and its contour lines projected onto the x-y plane.

b. Use theorem 3.2 to show that the upward-pointing unit normal to the surface at
P(1,0,0) is fi = \/LTO (3,0, 1). Display this normal on your plot.

c. Show that the tangent plane to this surface at P is given by 3x + z = 3. Plot the
tangent plane on the same set of axes as the surface.

14 (Torus) Let F(x, v, z) = (x,0,0) and S be the surface of the torus with the parametrisa-
tion:

S(u,v) = ((2 + cosu)cosv, (2+cosu)sinv, sinu), whereu,v € [0,2r].

a. Use Python to plot the torus, making sure that the aspect ratio is equal in all
directions.

b. Overlay some lines of constant # and v on your plot. What do # and v measure?

c. The volume of the torus can be expressed in cylindrical coordinates as

3
4 1= —2)2dr.
ﬂﬁr (r)>dr

Evaluate this integral with SciPy’s quad.
d. Use the Divergence Theorem (theorem 3.3) to show that the volume of the torus
agrees with part (c).

15 (Stokes’ Theorem) Use curl.ipynb to help you with this question.
Consider the vector field F(x, y, z) = (y2, X2, z) and the surface S parametrised by

S(r,0) = (rcos@, rsin@, 2 —rsinf),

where r € [0, 1] and 6 € [0, 27]. We can think of surface S as the intersection between
the plane y + z = 2 and the unit cylinder x> + y? = 1.

a. Plot the surface with Python.
b. Show that both sides of Stokes’ Theorem (theorem 3.4) evaluate to zero.
c. Show that the local circulation on the surface is

VxF~ﬁ=‘/§r(cosG—sin9).

Plot the heatmap of the pointwise circulation on the surface projected onto the unit
circle on the x-y plane. Is the pattern consistent with the result in part (b)?

®

Check for
updates

CHAPTER
FOUR

Differential Equations and Dynamical Systems

Fig. 4.1: Leonhard Euler (1707-1783), the Swiss mathematician many consider to be
one of the greatest mathematicians who ever lived. By 1771 he became completely blind,
yet continued to produce an enormous body of revolutionary mathematical work. Euler’s
method for solving a differential equation numerically will be discussed in this chapter
(Image source: [137].)

Mathematical modelling of real world phenomena usually requires an understanding how a
system evolves over time. If the change is continuous over time, then a differential equation
can be used to model the system. If the change occurs in discrete time steps, one could
model the system using a recurrence relation. This chapter shows how Python can be used
to solve differential equations and recurrence relations, and help us visualise their solutions.

Along the way, we will show how a physical system can be modelled more abstractly
as a dynamical system. In this approach, the evolution of the system is represented as a
trajectory in an abstract phase space whose coordinates are the possible states of the system.
More about this in §4.6. To learn more about dynamical systems, including the concepts
of chaos and fractals (which we will touch on in this chapter), see [6,96, 197] which offer
excellent mathematical introductions to this fascinating subject. See also [135] which gives
a very readable Python-led tour of dynamical systems.

Let us give an overview of the topics that we will study in this chapter.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 147
S. Chongchitnan, Exploring University Mathematics with Python,
https://doi.org/10.1007/978-3-031-46270-2_4

https://doi.org/10.1007/978-3-031-46270-2_4
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46270-2_4&domain=pdf

148 4 Differential Equations and Dynamical Systems

4.1 Basic concepts: ODEs, PDEs and recursions
Ordinary differential equations

An ordinary differential equation (ODE) is one which contains derivatives. ODEs occur in
essentially all areas of applied mathematics. At school, some students may have been taught
how to solve simple ODEs such as

dy 2y

= = 4.1
dr t+1 “.1)
d2
d—[; = sint (4.2)

Eq. 4.1 is called a first-order ODE, whilst eq. 4.2 is a second-order ODE (the order being
the highest derivative in the equation). Various ways to solve these equations numerically
will be discussed in §4.3 and 4.4.

It is important to note that ODE:s in real applications come with some prescribed initial
condition(s). For instance, one could prescribe y = 0 when ¢ = 0 for the ODE (4.1). Such
an initial condition is required to solve the ODE numerically. This is why it is technically
more appropriate to say that we are looking for the solution of the initial-value problem
(IVP) rather than the solution “of the ODE". It is worth keeping in mind that different initial
conditions can lead to very different solutions (or no solutions at all).

IVPs that arise in real-world systems cannot usually be solved by hand (or is too tedious
to do so), and we have little choice but to tackle them numerically. It is therefore imperative
that we know how Python can help us solve IVPs.

Incidentally, at university, the focus is not always on obtaining solutions to IVPs, but
rather to prove whether a solution exists, and if so, whether it is unique. More about this
later in §4.3.

Readers who are keen to delve more deeply into the mathematics of ODEs may like
to take a look at introductory texts such as [97, 175]. More advanced analysis of ODEs
can be found in [45,96]. For an overview of how ODEs are used in real-world modelling,
see [1]. For a strong focus on numerical approach to solving ODEs, see [13,36]. Finally, for
a classic compendium of ODEs and their solutions, see [168].

Partial differential equations

A partial differential equation (PDE) is one which contains partial derivatives.
Here is an example of a PDE. Let y(x, #) be a function of x and ¢ where x is defined on
the domain [0, 1] and # > 0. Both x and ¢ are independent variables. The PDE:

dy %y
-7 4.3
ar Ox2 “-3)
is called the heat equation (or diffusion equation) in one dimension.
Another example. Let u(x, y, ¢) be a function of x, y and ¢, where x, y € [0, 1] and ¢ > O.
The PDE:

4.1 Basic concepts: ODEs, PDEs and recursions 149

o 0*u 0%u

ar_dm, ou 44
02 9x? 0y? 44

is called the wave equation in two dimensions. These two PDEs will be solved numerically
in §4.9 and 4.10.

Just as ODEs require initial conditions to solve numerically, PDEs also require additional
data. For example, in the heat equation (4.3), the data required to solve for y(x, ¢) could be

y(x,0) = f(x),
for some function f. This is the initial condition. In addition, we may also be given that
y(0,1) =0, y(L,1) = 1.

These are called boundary conditions since they prescribe values of y at the boundary of
the domain [0, 1] at all times. Thus, when we say we are “solving a PDE", we really mean
that we are looking for the solution of the PDE given some initial and boundary conditions.

Like ODEs, PDEs also permeate much of applied mathematics. It is rare to be able to
solve PDEs in real-world applications by hand (for instance, the simplest models of weather
forecasting use 5-7 coupled PDEs). Therefore, numerical methods are indispensable in
solving them.

Atuniversity, PDEs are normally only studied as a standalone topic in senior undergraduate
(or beginning graduate) years. However, it is perfectly possible for beginning undergraduates
to gain competency in solving them both by hand (using the ‘separation of variable’
technique) and numerically (using the ‘finite-difference’ method). These methods are the
focus of §4.9 and 4.10.

For a deeper dive into the world of PDE:s, see classic introductory texts such as [60, 196].
For an excellent introduction to numerical solutions of PDEs, see [124].

Recurrence relations

A recurrence relation (sometimes called difference equation) is an equation that expresses
the nth term of a sequence in terms of previous terms. For example, the equation

Xn+l = Xp + Xp-1,

is arecurrence relation which tells us how to generate a new term x,,.| given two initial terms
X and x,_1. Assuming the initial terms xo = x; = 1, this recurrence relation generates the
famous Fibonacci sequence.

Another well-known recurrence relation is that for a complex sequence z,,:

2
Zn41 =2, +¢ 20=0,

where ¢ € C. This sequence gives rise to the famous Mandelbrot set, as we will see in §4.8.

Recurrence relations can be used to model a wide range of discrete-time systems,
ranging from real-world applications in biology and economics, to theoretical applications
in number theory and combinatorics. For good introductions to recurrence relations and
their applications, see [58, 147, 180].

150 4 Differential Equations and Dynamical Systems

4.2 Basics of Matplotlib animation

In terms of Python visualisation, in this chapter we will move away from sliders and instead
introduce the use of Matplotlib’s animation function to visualise “real-time" evolution of
time-dependent systems. The result is a video animation which can be saved as an mpeg file
or other suitable formats.

Matplotlib achieves this by stitching together a large number of plots and playing them
back frame-by-frame. The impatient reader may like to jump ahead to our first animation in
§4.4, where we explain in detail how to produce a simple animation of a swinging pendulum.
The chapter closes with a more advanced 3D animation of a vibrating membrane (§4.10).

4.3 ODE I — first-order ODEs

Plot y(¢) on the domain [0, 3] given that y satisfies each of the following differential
equations.

Y = — =
a) ? = y,2 y(0) =2,

Yy _ _
b)y—(H—l))’—ﬂ y(0) =0,
©) d—f —y(1-y), y(0)=1/2.

Let’s start by solving first-order ODEs, namely, solve for y as a function of # given the
initial value problem (IVP):
dy
i F@y@®), y(o) = yo. (4.5)
where ¢ is in some specified interval [a, b]. Higher-order ODEs can be recast as a system of
first-order ODEs, as we will show in the next section.
All 3 ODE:s in this example can be solved exactly with simple techniques that many
students may have studied in school, but in any case let us walk through these techniques
together.

ik

a _— =
dr

with respect to y.

—y. | This can be solved by rewriting the ODE “upside down" and integrating

dr 1
—=——- = t=-Iny+C.
dy y

Using the initial condition y = 2 when ¢t = 0, we find C = In 2, yielding the exact solution

y=2e". (4.6)

d 2
b) d_)t) - (m) y = t. | This can be solved by a technique called integrating factor which

we summarise here. Let F and y be functions of 7. The product rule gives (yF)' = Fy’+F’y.
Now let

4.3 ODE I - first-order ODEs 151
F(r) = o] PO 4.7)

where we write the integral without limits to mean that the result is a function of ¢ (ignoring
the integration constant). Note that

F'(r) = P(t)F(1).
This means that if we were presented with an ODE of the form
Y+ Py =0(), (4.8)

then multiplying the equation by the function F(¢) defined in eq. 4.7, we see that the LHS
can be written as a product rule:

(YF)" = QF.

This can then be integrated with respect to ¢ and a solution for y can be found. The function
F(¢) defined in (4.7) is called the integrating factor.
The ODE in this example is of the form (4.8) so let’s calculate the integrating factor.

Fiy=e Jmd = ¢4+ 1)2.

Multiplying the ODE by this factor, we obtain

() = o
t+ 12 @+

Now we can integrate both sides with respect to ¢. It helps to write the numerator on the
RHS as (¢ + 1) — 1 and split it into two terms. Then, integrating, we have

y 1
Y G+ +— +C.
11 e D

Now use the initial condition y = 0 when ¢ = 0 to find that C = —1. Thus, we obtain the
exact solution

y=(@+ D[+ DIn@+1)-1]. 4.9)

d
c) d_)t) = y(1 —y). | Here we could repeat the “upside down" technique in part (a), or
employ a very useful technique called separation of variables. This is useful for solving
ODEs of the form

% =Y)T(@). (4.10)
We can rewrite this ODE in the form
dy dr
Y T@

(assuming Y and T are nonzero). In this form, the LHS only contains y, and the RHS only ¢
(hence ‘separation of variables’). We can then integrate both sides:

152 4 Differential Equations and Dynamical Systems

fY(y) fT(t)

giving us an expression in y and ¢.
The ODE in this example is in the form (4.10) with Y = y(1 —y) and T = 1. Using

separation of variables, we find
d
y(I—y)

where we assume y # 0 and y # 1 (we will revisit this point in the Discussion section).
Then, the LHS can be tackled with partial fractions:

1 1
LHS:f(—Jr—)dy:ln y
y 1-y -y

2 _ce.

I-y
Using the initial condition y(0) = 1/2, we find C = 1. Finally, we make y the subject to
find the exact solution

Thus we have

1

_— 4.11
1+e! ‘1D

y:

Now that we have obtained the exact solutions (4.6), (4.9) and (4.11), let’s study 3
methods to solve ODEs numerically, namely 1) the forward-Euler method, 2) Heun’s method
and 3) the Runge-Kutta method.

Forward-Euler (FE) method

The forward-Euler method (or sometimes simply the Euler method) is generally regarded
as the simplest numerical method to solve ODE:s. It is based on the Taylor expansion of
y(t + h), where h is a small parameter, to linear order.

y(t+h) = yt)+hy' (1)
=y(®) +hf(ty@®), 4.12)

where f (¢, y(t)) denotes the RHS of the ODE (4.5). The parameter % is known as the step
size. It plays a key role in determining the accuracy of the numerical solution, similar to its
role in numerical differentiation in chapter 2. Choose & too large and the solution becomes
inaccurate, but if % is too small the code might take too long. A very tiny £ could even give
hugely inaccurate solutions due to rounding error as we saw in §2.2.

Numerical solutions to ODEs are often written in terms of the step number i. For example,
the FE method can be written as

Yiel = Yi + hf(ti, i), (4.13)

where we use the shorthand y; to mean y(¢;). This formula says: “the solution at step i + 1 is
determined by data at step i." Thus, we see that numerical solutions to ODEs are calculated
step-by-step, meaning that inaccuracies in each step can accumulate and grow with each

4.3 ODE I - first-order ODEs 153

PR [k B R [P N, RS RE SR B 6 L) I F SR, NI [[(VI [SR —,

yﬂ

y(ti+1) (exact)

y(ti+1) (FE)

[l L

tis1

Fig. 4.2: The forward-Euler (FE) method. Knowing only y(¢;), the FE method says that
y(t;+1) is the y value of the extrapolated blue line at r = #;1.

The code for solving the ODE (a) with the FE method is given in odesolver.ipynb.
The result for 3 choices of the step size & are shown in fig. 4.3. We can see that in this case,
decreasing the magnitude of & gives a more accurate solution. It is important to keep in
mind that in real applications, we will not usually know what the exact solution is.

154 4 Differential Equations and Dynamical Systems

Forward-Euler, h=0.5 Forward-Euler, h=0.1 Forward-Euler, h=0.001

2.00 4 —— Numerical 2.00 1 —— Numerical 2.00 1 —— Numerical
--- Exact --- Exact --- Exact
1.75 1 1.75 A 1.75 1
1.50 1 1.50 A 1.50 1
1.251 1.25 A 1.251
1.00 - 1.00 4 1.00 4
0.75 4 0.75 4 0.75 -
0.50 A 0.50 4 0.50
0251 0.25 0.25 4
0.00 A
T T 0.00 - T T T T
0 1 2 3 0 1 2 3 0 1 2 3

Fig. 4.3: The solution of y’ = —y, with y(0) = 2, obtained using the forward-Euler method.
The 3 panels correspond to 3 choices of the step size &, namely, 0.5, 0.1 and 0.001. The
numerical solution (solid line) and exact solution (dashed line) agree better as / shrinks.

odesolver.ipynb (for plotting fig.

 import numpy as np
| import matplotlib.pyplot as plt
|
def odeFE(f, y0, h, a , b):
N = int(round((b-a)/h))
y = np.zeros(N+1)
t = np.linspace(a, b, N+1)
y[0] = y®
for i in np.arange(®,N):
yli+1]=y[il+ h*£(t[i]l,y[i])
return y, t

Forward-Euler routine

Number of steps (integer)
Initialise solution y ()

Divide (a, b) into N subintervals
Initial condition

#% FE method (eq. 4.13)
Return ¢; and y;.

def f(t, y):
The RHS of the ODE (eq. 4.5) return -y
Choose the step size h h = 0.001
Input the given initial condition yo = 2
Choose interval (a, b) to plot a, b=20, 3
Solve the ODE! y, t = odeFE(f, y®, h, a, b)
t array for plotting exact solution T = np.linspace(a, b)
Skinny figure plt.figure(figsize=(3, 5))
Plot numerical solution in black solid line, plt.plot(t, y, 'k',
exact solution in dashed line ! T, 2*np.exp(-T), '--")

iplt.xlim([0,3])

1 plt.legend(['Numerical', 'Exact'])
'plt.title('Forward-Euler, dt=0.001")
: plt.grid('on")

! plt.show()

4.3 ODE I - first-order ODEs 155

Let’s briefly discuss the error, E(h) defined in the usual way as a function of the step
size h.

E(h) = |yexact - ynumerical| .

Since the FE method is derived using a linear Taylor expansion in /4, we might expect
that the error scales like h2. However, this is true for each step in the interval [a, b]. When
we perform N steps (where N = (b — a)/h), the error accumulates to

1
W*N o« h*> X — = h.
h
The conclusion is that for the FE method, E (/) scales like 4. We often write this as

Forward-Euler method: E(h) ~ h,

where we use the symbol ~ to express the approximate scaling of error with step size.
Alternatively, we say that forward Euler is an O(h) approximation. You will verify this
scaling in exercise 2.

In general, we want E(h) to decrease as quickly as possible with decreasing / so that an
accurate solution is obtained without taking too many steps. We present two more methods
which improve on the FE method.

Heun’s method

The forward-Euler formula (4.13) is asymmetric in the same way that the forward-difference
formula for derivatives (Eq. 1.9) is. Just like the forward-difference formula, the forward-
Euler method is not usually the method of choice for general practical use because small
errors can quickly grow with each step.

One method to reduce the asymmetric effect and improve the stability of the FE method
is known as the modified Euler method, or Heun’s method, after the German mathematician
Karl Heun (1859-1929). The idea is based on a more sophisticated estimate of the slope of
the red line segment in fig. 4.2. Observe the following

* The slope of the solution curve at ¢; is f(¢;, y;).
* The slope of the solution curve at t;,1, according to the FE method, is f(#;1, yffl),
where

ViE = v+ hf (i, yi).

* Heun’s method states that the slope of the red line segment in fig. 4.2 is approximately
the average of the two slopes above, i.e.

yisr —yi 1
+T =5 (f(li, yi) + f(li+1,yff]))
h
= yier = yi+ 5 (Fy) + [t 35)) (4.14)

It can be shown that this simple modification leads to one order of magnitude improvement
in the convergence (see proof in [182]). In other words, the error for Heun’s method satisfies:

Heun’s method: E(h) ~ h%.

You will verify this in exercise 2.

156 4 Differential Equations and Dynamical Systems

Fig. 4.4 shows the result of solving ODE (b) with Heun’s method. A fairly terrible
step-size h = 0.1 was purposely chosen to solve the ODE to make a point that the numerical
solution still matches the exact solution well on this domain (visually at least).

To implement Heun’s method in Python, simply replace the line annotated [*** FE
method] in the code odesolver.ipynb by the snippet shown in fig. 4.4.

Heun's method, h=0.1

10 4 = Numerical
-=- Exact

Heun's method

yFE = y[il+ h*f(t[i],y[i])

yli+1]l= y[il+ h/2*(£(t[i],y[i])
+ f(t[i+1],yFE))

T T T T T
0.0 0.5 1.0 15 2.0 2.5 3.0

Fig. 4.4: The solution of y’ — 2y/(¢t + 1) = ¢, with y(0) = 0, obtained using Heun’s method
(4.14). Even with h = 0.1, the numerical (solid line) and exact (dashed) solutions show
good agreement on this domain. The code snippet on the right replaces the line annotated
[*** FE method] in odesolver.ipynb.

Fourth-order Runge-Kutta (RK4) method

One of the most widely used methods of solving ODEs is the fourth-order Runge-Kutta
method (RK4), named after two German scientists: the mathematical physicist Carl Runge
(1856-1927) and the mathematician Martin Kutta (1867-1944). Here is the RK4 formula
for solving y’ = f(x, y):

h
Yn+l = Yn + E(Sl + 25y + 283 + 54) 4.15)
where s1 = f(xn, yn)
h h
52 = f(xn 3 Int 551)

2 2
s4 = [(xn+h, yn + hs3).

h h
53 =f(xn+—, yn+—52)

The above is derived from an even more sophisticated estimate of the gradient of the red
line in fig. 4.2 by a weighted average of four FE-like slopes, s1, 2, 53, 54, of straight lines
drawn at t = ¢;, t;+1 and the midpoint #; + h/2. See, for example, [13,36] for accessible
derivations. The error E(h) for the RK4 method satisfies

4.3 ODE I - first-order ODEs 157
Runge-Kutta method: E(h) ~ h*.

The order-4 scaling is the reason that RK4 is generally regarded as the go-to numerical
method for solving ODEs accurately without too much coding effort.

Fig. 4.5 shows the result of solving ODE (c) with the RK4 method. Again we have chosen
an impractically large step-size h = 0.1, yet we see that the numerical and exact solutions
are almost visually indistinguishable on this domain.

To implement the RK4 method in Python, replace the line annotated [*** FE method]
in the code odesolver. ipynb by the snippet shown in fig. 4.5.

RK4 method, h=0.1

—— Numerical
--- Exact
0.9 A
RK4 method
0.8 sl = f(e[il, y[iD)
s2 = f(t[i]l+h/2, y[i]+h*s1/2)
s3 = f(t[i]+h/2, y[i]+h*s2/2)
0.7 s4 = f(t[i]+h, y[i]+h*s3)
y[i+1]1= y[il+h/6*(
s1+2%(s2+s3)+s4)
0.6
0.5 A
0.0 OTS 1?0 115 2T0 215 3.0

Fig. 4.5: The solution of y’ = y(1 — y), with y(0) = 1/2, obtained using the RK4 method
(4.15), with & = 0.1, the numerical (solid line) and exact (dashed) solutions show excellent
agreement on this domain. The code snippet on the right replaces the line annotated [***
FE method] in odesolver.ipynb.

DiscussioN

* Existence and uniqueness of solutions. Before solving IVPs numerically, it would
have been more logical to start by asking, do solutions exist? And if so, is the solution
unique? Or do we expect the solver to yield just one of many solutions? Here’s a theorem
which sets out conditions for which there exists a unique solution to an IVP.

Theorem 4.1 Consider the initial value problem

Y =f@y®), yto) =yo (4.16)

where f : [to,t1] X R = R. The IVP has a unique solution if f is continuous in t and
satisfies

£t y1) = f(ty2)] £ Alyr — ¥l 4.17)

where A > 0 is a fixed constant, for all pairs of points (t, y1), (t, y2) in the domain of f.

See [36,45] for proofs (which in fact depends on the observation in the next bullet
point). The above is one variation of a fundamental theorem in the theory of ODEs
called the Picard-Lindeldf Theorem, after the French mathematician Emile Picard

158

4 Differential Equations and Dynamical Systems

(1856-1941) and the Finnish mathematician Ernst Lindelof (1870-1946), both of
whom made contributions to a wide range of mathematics.

IVPs as integral equations. The Fundamental Theorem of Calculus gives the following
equivalence between an initial value problem and an integral equation:

t
Y (@) = ft,y®), yto) =y y(t)=y(to)+f f(s,y(s)) ds.
to

This equivalence suggests that that there is also a connection between numerical
methods to solving ODEs and numerical integration. Indeed, we can regard y(t) as the
area under the graph f (¢, y(¢)), and thus y(¢) — y(#o) is the area under the curve f on
the interval [7, #]. In this sense, the numerical schemes presented in this section can be
regarded as the form

vi+1 = y; + area under the curve f over the strip [#;, f;4+1].

For example, in the FE formula (4.13), the area of the strip is A4 f(¢;, y;), which we
recognise as the area of a rectangle width £, and height given by the function value at
the left end point 7 = ¢;. In other words, the FE method is equivalent to estimating the
area under the curve as a sum of rectangular strips. Similarly, we can deduce from (4.14)
that Heun’s formula is equivalent to estimating area under the curve using trapezoidal
strips.

n-th order Runge-Kutta. The RK4 method is one in a family of infinitely many
Runge-Kutta methods which can be iteratively refined to give arbitrarily high-order
convergence (at the expense of an increased number of computations). It turns out that
the FE and Heun’s method can be subsumed into the RK family (they are RK1 and RK2
respectively). This is analogous to how the iterative Romberg integration encompasses
the Trapezium and Simpson’s Rules, as discussed in §2.7.

SciPy’s solve_ivp. SciPy has a built-in ODE solver scipy.integrate.solve_ivp.
For example, the following short code solves the ODE (c) and plots the result over the
interval [0, 3]. For clarity, the argument names for the routine solve_ivp are shown
explicitly.

solving IVP with SciPy

import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import solve_ivp

def f(t, y):
return y*(1l-y)

T = np.linspace(0,3)
sol = solve_ivp(f, t_span = [0, 3], y0 = [0.5], t_eval = T)

plt.plot(sol.t, sol.y[0])
plt.show()

4.3 ODE I - first-order ODEs 159

Note the following in the code:

— The argument t_eval specifies the values at which the numerical solution should
be evaluated. Without this argument, the solver only picks a handful of points to
evaluate.

— When defining the function £, the solver solve_ivp requires that the ordering of
the arguments must be £(t,y).

— By default, the solver uses variation of a fifth order RK method (dubbed ‘RK45”).
For details of this and other available methods, see SciPy’s documentation on
solve_ivp!

I https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.
html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html

160 4 Differential Equations and Dynamical Systems

4.4 ODE II - the pendulum

A pendulum consists of a bob of mass m attached at the end of a taut string of length
{. The pendulum swings in the (x, y) plane about the pivot (0, 0) without friction,
making an angle 6(¢) with respect to the vertical at time 7. The equation of motion
for 6 is

g” = —% sin), (4.18)

where g is the acceleration due to gravity (9.8 m/s).
Assume that the pendulum starts from rest with 6(0) = n/4 and that £ = Im. Plot
6(t) for from ¢ = 0 to 10s.

This is a classic application of how a simple ODE can be used to describe a physical
system. The ODE (4.18) can be derived from Newton’s famous second law, F = ma (see,
for example, [17] for the derivation).

Unfortunately, even in this relatively simple form, the exact solution of the ODE involves
elliptic integrals (see [23]). If, however, the pendulum were to swing at a sufficiently small
angle such that sin @ =~ 6, the ODE could then be approximated by:

0" = —w?h, where w = +/g/¢. (4.19)

This second-order ODE can be solved by hand using the method of auxiliary equation,
which we will briefly summarise below. For proof, see [97,175].
Consider the second-order ODE

ay” (t) + by'(t) + cy(t) = 0,

where a, b, c are constant coefficients with a # 0. We associate it with a quadratic equation
(the auxiliary equation):
am® + bm+ ¢ = 0.

Solving this quadratic equation yields two solutions

-bx VA
mp,my = —\/_, A = b* - 4ac.
2a
The solution of the ODE is then given by
Ae™! 4 Be™at if my, my are real and distinct,
y(t) = qe™!(A + Bt), if my = my,

e?" (Acos Bt + Bsin Br), ifmy,my=a=xif (B %0).

Note that there are two constants in the solution (A, B) which can be determined from two
initial conditions. The above is equivalent to the following alternative form.

e™01/2a (Acosh(tVA/2a) + Bsinh(tVA/2a)), if A >0,
y(t) = {e 129 (A + Br), if A=0,
e™1/2a (A cos(tVIA/2a) + Bsin(tV[Al/2a)), if A <O.

4.4 ODE II — the pendulum 161

Returning to the ODE (4.19), the auxiliary equation is m? = —w?, with A = —4w?,
corresponding to the third case. Thus, 6(¢) = A coswt + B sin wt. Finally, substituting the
initial conditions gives A = /4 and B = 0. We then have the approximation:

o) = %cos wt. (4.20)

The resulting periodic motion is an example of a simple harmonic motion (SHM), which
occurs when the magnitude of the restoring force is proportional to the object’s displacement.

Recall that our approximation was based on the small-angle approximation sin 6 ~ 6. But
we also know that the given pendulum can swing by as much as 6 = /4 = 0.785, whilst
sinf = 1/v2 = 0.707. We should therefore keep in mind that our small-angle solution
won’t be an excellent approximation to the true solution. On the other hand, it won’t deviate
too wildly from the true solution either. We investigate this point next.

Numerical solution: solving a system of first-order ODEs

To solve the original second-order ODE (4.18) numerically, we first transform it into a
system of two first-order ODEs. Let ¥y = 6 and Y} = 6" = Y. We see that (4.18) is equivalent
toY = —w?Y). In other words, we have transformed a second-order ODE into a system of
two first-order ODEs:

Yy =1,
Y = —wY, 4.21)
with initial conditions Y3(0) = 7/4 and ¥;(0) = 0.

4 . . .
LetY = (YO). We can write the above system in a matrix form as
1

(4.22)

—w? 0 0

Y = (0 1) Y, with Y(0) = (”/4) .
Since the above is in the form of an IVP, it can be solved with the methods described in
the previous section. The only difference is that in each step in the for loop, two arrays
are updated. The IVP can also be solved with SciPy’s solve_ivp using the same syntax
previously shown, except the derivative now returns an array with 2 elements. The code
pendulum. ipynb shows how this is done (more about this code below).

You can see that if we were given an Nth-order ODE, we can similarly turn it into a
system of N first-order ODE, and recast it as an IVP where the variable is an array with N
elements.

162 4 Differential Equations and Dynamical Systems
Animating the pendulum

Let’s visualise the numerical solution 6(¢) as an animation of the pendulum. This is done
in the code pendulum. ipynb using matplotlib.animation. The idea for the animation
code is as follows.

1. We solve the IVP (with solve_ivp) once and store the solutions at a large number of
time steps between ¢ = 0 and 10s.

2. For each solution, we plot a straight line segment (representing the taut string) making
an angle 6 with the vertical, with two dots at the ends. One dot at the origin represents
the pivot, and the other dot the swinging bob.

3. Stitch the plots (frames) together using FuncAnimation, yielding a video animation.

The code annotation explains how this is done in detail. Snapshots from the animation are
shown in fig. 4.6.

1.07 time = 0.0s 1 time = 0.4s
0.51
0.0
—-0.51

—1.0;

1.07 time = 0.8s T time=1.1s
0.51
0.0
—0.51

_1.0'

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

Fig. 4.6: Snapshots of the pendulum animation at # = 0,0.4,0.8 and 1.1s.

4.4 ODE II — the pendulum 163

pendulum.ipynb (for plotting fig.)

| import numpy as np

| import matplotlib.pyplot as plt

:from scipy.integrate import solve_ivp

i from matplotlib.animation import FuncAnimation

: %matplotlib

|

I
Increase font size 'plt.rcParams.update({'font.size': 22})
Acceleration due to gravity (m/s2) g=9.8
Length of pendulum (m) 1=1.0

(No mass dependence)

Derivatives (RHS of the ODEs (4.22)) def derivs(t, Y):
dYdt = np.zeros_like(Y)
dydt[0] = Y[1]
dYdt[1] = -g/1*np.sin(Y[0])
return dYdt

Step size (s) h = 0.025
Time to end evolution (s) Tmax = 10
Times at which to plot the pendulum T = np.arange(®, Tmax+h, h)

Array of initial conditions [0(0), 8’(0)] ,Yinit = [np.pi/4, 0]

Use SciPy to solve the IVP sol = solve_ivp(derivs, t_span = [0, Tmax],
y0= Yinit, t_eval=T)

(1) | theta = sol.y[0]
(x, y) coordinates of the bob ! xbob = 1*np.sin(theta)
:ybob = -1*np.cos(theta)
|
fig = plt.figure(Q)
lax = fig.add_subplot(111, xlim=(-1.2, 1.2),
| ylim=(-1.2, 1.2))
1ax.grid('on")
Output 1: The pendulum (red line,|line, = ax.plot([], [I,
joining 2 dots) !
Display the time (to 1 dec. pl.) rtext = "time = %.1fs’'
Output 2: Text showing time elapsed (s) | time = ax.text(-1.1, 0.9, '")
|

ro-', lw=3)

def animate_frame(i):
x_i = [0, xbob[i]]
y-i = [0, ybob[i]]
line.set_data(x_i, y_i)
time.set_text(text % (i*h))

|
Animation in the ith frame !
I
|
|
I
|
|
I
I return line, time
I
|
|
I
|
|
I
|
I
|
|

x coords of pivot and bob
y coords of pivot and bob
Update Output 1
Update Output 2

ani = FuncAnimation(fig, animate_frame,
frames = len(T),
interval = 10)

Animate the pendulum
How many frames?
Delay between frames (s)

plt.show()

164 4 Differential Equations and Dynamical Systems

Finally, it is interesting to compare the numerical solution to the small-angle (SHM)
approximation (4.4). Fig. 4.7 shows the angle 8 as a function of time. We see that the
oscillation period (time for one complete oscillation) actually increases slightly with time,
whereas the small-angle oscillation period is a constant given by

T = n ~ 2.007s.
w

You should experiment with changing the initial conditions, e.g. making 8(0) a larger or
smaller angle, or giving it an initial kick 6”(0) < 0. You should see that the larger 6 can
become, the larger the deviation between the numerical and SHM approximations. You
should also try to reproduce fig. 4.7 (exercise 4).

—— Numerical === SHM approx.
0.8

0.6 1

0.4 1

0.2 1

0.0

o(t)

—0.2 1

—0.4 1

—0.6

-0.8
0 2 4 6 8 10

Fig. 4.7: Comparison between the numerical solution to the ODE (4.18) and the approximate
solution (4.4) (simple harmonic motion).

DiscussioN

 Variations on the simple pendulum. There are endless variations on the pendulum
and its modelling using ODEs. For example, a more realistic pendulum may involve
air resistance (exercise 6). The string could also be replaced by a spring or a solid rod.
More dramatically, one could attach another pendulum at the bob of one pendulum,
creating a double pendulum, which we will study in the next section.
See [17] for a fascinating book specifically on the pendulum and its variations.

» Saving an animation as a video file. To save the animation produced in pendulum. ipynb
as a video file (say, mp4), include the following lines at the end of the code

ani.save('pendulum.mp4')

where ani is the object of type FuncAnimation. You will first need to install the
FFmpeg software?.

2 See https://www.ffmpeg.org for installation instructions.

https://www.ffmpeg.org

4.5 ODE III - the double pendulum 165

4.5 ODE III - the double pendulum

A double pendulum consists of one pendulum attached at the end of another
pendulum as shown in the figure below. The double pendulum swings in the (x, y)
plane about the pivot (0,0). Let £; and ¢, be the length of the top and bottom
pendulums respectively, and let 6 () and 6, () be their angular displacements with
respect to the vertical at time 7. Let m; and m; be the respective bob masses. The
equations of motion for 8, and 6, are

1 - , - - . N

This modification gives the simple pendulum a surprising amount of mathematical
richness. Firstly, the equations of motion are clearly a lot more complicated. It is possible
to derive them by resolving forces and applying Newton’s law, but this gets quite messy.
Instead, it is more common to derive the equations of motion using Lagrangian mechanics,
in which energy considerations lead to the equations of motion without having to draw a
force diagram. Introduction to Lagrangian mechanics can be found in [88] and in good
textbooks on classical mechanics (for example, [76, 112] are classic references). See [17]
for a full derivation of the equations of motion of the double pendulum.

When working with very complicated equations, it is always a good idea to see if they
reduce to known results in a simpler setup. In this case, setting §; = 6, and m; = 0, we
obtain the equation of motion (4.18) for the single pendulum, which reassures us of the
equations’ validity.

Take note of one key conceptual difference between the double and single pendulum:
whilst the motion of the simple pendulum is independent of the bob mass, the motion of the
double pendulum depends on the mass ratio m;/m;.

166 4 Differential Equations and Dynamical Systems

Numerical solution

To solve the ODEs numerically, we use the same technique as in the previous section:
transform the ODEs into a system of first-order ODEs which we can solve with solve_ivp. In

Y 0
. n_ |6
this case, the two second-order ODEs become four first-order ODEs. Let Y (¢) = vl=1e |
2 2
vl \g
The equations of motion become:
Yy =71,
1
Y = fl_F [g(sinYz cos® — usin¥y) — ()’32{’2 +)’12{’1 cos @) sin G)] ,
Y, =¥, (4.25)
’ 1 . . 2 2 .
Y/ =— [g,u(smYocosG) —sinY,) + <,qu €1 + Y505 cos G)) sm@] s
OHF
where @ =Yy -1, u:= 1+ﬂ, F = ,u—cos2®,
nip

with Y(0) = (n/2, 0, n/2, 0).

Animating the double pendulum

We could follow the steps outlined in the single pendulum animation and adjust the code by
modifying the derivatives and adding a lower bob at position

(%, Y1ower bob = (%, y)upper bob + (€2 8in 6>, — €2 cos67).

However, let’s now add another feature to the visualisation. It would be interesting to
display the trajectory of the lower bob as it swings around. We will call this trajectory the
trace of the lower bob. In the ith frame, we want to plot the curve representing the history
of motion so far from the first to the ith frame. Thus, in each frame, there are 3 outputs to
display, namely:

* Qutput 1: The double pendulum (represented by two straight line segments joining 3
dots).

¢ QOutput 2: The trace of the lower bob so far.

* Output 3: Time elapsed.

The code doublependulum. ipynb is shown below. Snapshots from the animation are
shown in fig. 4.8.

The technique we have used to animate the trace is to pass two function arguments to the
animation function animate_frame, namely 1) the precalculated (x, y) coordinates of the
lower bob (xbob2, ybob2), and 2) the trace, which gets longer in every frame. The key to
plotting the trace so far is the line

trace.set_data(xbob2[:i], ybob2[:i])

which uses array slicing to extend the trace data in each new frame.

4.5 ODE III - the double pendulum 167

You should try experimenting with the code to study the effect of changing m, m», £y, ¢,
as well as the initial conditions. Again, it is worth checking first that with small angles 6; (0)
and 6,(0) and large u, the pendulum behaves effectively like a single pendulum. This gives
us confidence in the validity of the numerical solution.

Once you are confident that the code is valid, you can go wild and explore how various
initial angles and velocities result in hypnotic motions that are difficult to predict.

Chaotic behaviour

For the single pendulum, two very slightly different initial conditions lead to subsequent
motion that are also very slightly different. However, this is not the case with the double
pendulum. A tiny difference in the initial conditions can lead to huge differences in the
subsequent evolution.

This is demonstrated in fig. 4.9, which shows a snapshot of the double pendulum with 3
sets of very slightly different initial conditions, namely,

(01, 01, 602, 05) = (2+¢,0, 1,0.1),

where £ = 0, 1073 and 1073 (from left to right). We see that the final pendulum configurations
after 30 seconds are all quite different, and so are the traces.

This sensitivity to initial conditions (the so-called ‘butterfly effect’) is a hallmark of
chaos, which will be explored further in the next sections.

For an even more dramatic representation of the sensitivity to initial conditions, we can
plot the dynamics of the double pendulum in the (61, 62) phase space (exercise 8).

DiscussioN

* Building a double pendulum. Building a real double pendulum and studying its
dynamics is an ideal undergraduate research project, especially given that high-speed
motion capture is now widely available and used in everything from gaming to sports
science (see fig. 4.10 for an example). See [187] for a study using a real experimental
setup.

* Triple pendulum. There is a lovely animation featuring 41 simultaneously released
triple pendulums, demonstrating extreme sensitivity to initial condition in a most
colourful and dramatic fashion3, but beware that the equations of motion for the triple
pendulum are extremely long, as you may expect. A systematic study of the equations
of motion for a pendulum with N bobs is given in [219].

* Lyapunov exponent. We said that the double pendulum exhibits a chaotic behaviour,
but surprisingly, there is no single universally accepted definition of what chaos
constitutes. We loosely say that a chaotic system displays sensitivity to initial conditions.
To measure this sensitivity, we could, say, take two systems with almost the same initial
conditions, say, Y(0) and Y(0) + A(0) (where |A(0)| is small). If the difference grows
exponentially, i.e. |A(t)| ~ e**|A(0)|, with 2 > 0, then the system is said to be chaotic4.
For instance, for the physical double pendulum constructed in [187], 1 = 7.5 was
measured, consistent with the expectation that double pendulums can display a chaotic
behaviour.

3https://jakevdp.github.io/blog/2017/03/08/triple-pendulum-chaos/

4 We are being slightly careless with this definition. There are actually »n values of A in an n-dimensional
dynamical system. Here we are referring to the largest A.

https://jakevdp.github.io/blog/2017/03/08/triple-pendulum-chaos/

168 4 Differential Equations and Dynamical Systems

The exponent A is called the Lyapunov exponent, named after Aleksandr Mikhailovich
Lyapunov (1857-1918), a Russian mathematician who is best remembered today for
his contributions to the study of dynamical systems and probability.

2.0 Ttime=10.0s time = 2.05

159

1.0

0.5+

0.0

—0.5 4

—-1.04

~1.54

2.

=3

7 time =10.0s time =30.05

159

1.0 1

0.5

0.0

—0.5 4

—-1.04

~1.54

—2.04

T T i T T T T T T T T T T T T T T T
=2.0 -15 =10 =05 0.0 0.5 10 15 2.0 —=2.0 -15 =-1.0 =05 0.0 0.5 1.0 15 2.0

Fig. 4.8: Snapshots of the double pendulum animation at ¢ = 0, 2, 10 and 30s, with initial
conditions (6, 0}, 65,05) = (7/2,0,7/2,0).

2ol 0(0)=2| [61(0)=2001 | 6,(0) = 2.00001

ey
oy

4

2

20 -15 -l 05 00 05 10 15 208 20 -15 -lo 05 00 05 10 15 20 20 -15 1o 05 ©0 05 10 15 20

Fig. 4.9: Snapshots of the double pendulum animation after 30s of evolution, starting with
very slightly different initial conditions, (61, 61, 62, 63) = (2+¢,0, 1,0.1) where & = 0 (left),
1073 (centre) and 107> (right). This shows that the double pendulum is sensitive to initial
conditions, i.e. it exhibits a chaotic behaviour.

4.5 ODE III - the double pendulum 169

doublependulum.ipynb (for plotting fig.)
|
| import numpy as np
rimport matplotlib.pyplot as plt
Lots of these in the code | from numpy import sin, cos, pi
| from scipy.integrate import solve_ivp
i from matplotlib.animation import FuncAnimation

:%matplotlib
Acceleration due to gravity (m/s?) g=9.8
Pendulum lengths ¢y, ¢, (m), masses'1ll, 12, ml, m2 =1, 1, 1, 1

my, my (kg), and u. mu = 1 + ml/m2

|

|

|

i

Derivatives (RHS of the ODEs (4.25)) ,def derivs(t, Y):

} dYdt = np.zeros_like(Y)
! Theta = Y[0]-Y[2]

: F = mu - cos(Theta)**2
1 C, S = cos(Theta), sin(Theta)
| dydt[0]= Y[1]

|

|

|

|

|

|

|

|

|

Eq. 4.23 dYdt[1]= (g*(sin(Y[2])*C-mu*sin(Y[0]))
- (12*Y[3]**2+11*Y[1]##2*C) *S) / (L1*F
dydt[2]= Y[3]
Eq. 4.24 dydt[3]= (g*mu*(sin(Y[01)*C-sin(Y[2]))

+(muFl1¥Y[1]%%2+12%Y [3]*%2%C) *S) / (12*F
return dydt

Step size (s) h = 0.02

Time to end evolution (s) ' Tmax = 30

Times at which to plot the pendulum 'T = np.arange(®, Tmax+h, h)
LC. [61(0), 61(0), 62(0), 65(0)] \Yinit = [pi/2, O, pi/2, 0]

Use SciPy to solve the IVP sol = solve_ivp(derivs, t_span = [0, Tmax],

|
: y0= Yinit, t_eval=T)
|
|
0,(1) | thetal = sol.y[0]
(x, y) coordinates of the upper bob ' xbobl = 11*sin(thetal)
1ybobl = -11*cos(thetal)
|
6-(1) | theta2 = sol.y[2]
(x, y) coordinates of the lower bob | xbob2 = xbobl+12*sin(theta2)
(We will plot the trace of the lower bob) : ybob2 = ybobl-12*cos(theta2)
| fig = plt.figure(Q)
Adjust plot window if necessary rax = fig.add_subplot(11l, xlim=(-2.2, 2.2),
| ylim=(-2.2, 2.2))
rax.grid('on")

Output 1: Double pendulum (red) i line, = ax.plot([], []1, 'ro-', lw = 3)
Output 2: Trace of the lower bob (blue) | trace,= ax.plot([1, [1, 'b-', 1w = 1)
Display the time in s (to 1 dec. pl.) ' text = 'time = %.1fs'

Output 3: Time elapsed (s) i time = ax.text(-2.1, 1.9, '")

(specifying position of text) ‘

I
| # Code continues on the next page

170 4 Differential Equations and Dynamical Systems

doublependulum.ipynb (continued)

Animation in the ith frame
Coordinates of the pivot, and 2 bobs

def animate_frame(i, xbob2, ybob2, trace):
x_i = [0, xbob1[i], xbob2[i]]
y_i = [0, ybobl[i], ybob2[i]]

Update Output 1 line.set_data(x_i, y_i)
Update Output 2 (see text) trace.set_data(xbob2[:i], ybob2[:i])
Update Output 3 time.set_text(text % (i*h))

return line, trace, time

Animate the pendulum

Passing two function arguments
How many frames?

Delay between frames (ms)

ani = FuncAnimation(fig, animate_frame,
fargs=(xbob2, ybob2, trace),
frames = len(T),
interval = 10)

plt.show()

Fig. 4.10: A working double pendulum at the University of Hull (2019). Angle measurements
were made using a high-speed motion-capture camera at the Sports Science Lab as part of
an undergraduate research project. (Image credit: Mark Anguige.)

4.6 ODE IV - the Lorenz equations 171

4.6 ODE IV - the Lorenz equations

Let x, y, z be functions of ¢, where o, r, b are positive constants. The Lorenz equations
are 3 coupled ODEs given by

X' =0(y-x)
y=x(r—z)—y (4.26)
7' =xy-bz

Study the trajectory in the (x, y, z) space for o = 10, b = 8/3, r = 28 given the
initial condition (x, y, z)(0) = (1, 1, 1).

Edward Lorenz (1917-2008) was an American mathematician and meteorologist who
serendipitously discovered that the above set of equations (which modelled fluid convection)
have extreme sensitivity to initial conditions. In this model, x, y, z are time-dependent
properties of the fluid (for details of these physical properties, see [6]). We are interested in
the trajectory of the system in the (x, y, z) space, which is an example of a phase space of a
dynamical system.

Fixed points

Whilst it is difficult to make analytical headway in solving this system, we can search for
fixed points in the phase space.

Let x(r) = (x(¢), y(¢), z(¢)). A fixed point of a dynamical system is a point where all
derivatives x’(¢) vanish. (This is similar to the concept of stationary points.)

Fixed points tell us about the long-term behaviour of the system. A fixed point may be
an attractor towards which the system converges, a repellor from which the system tends to
migrate away, or a saddle point which behaves like an attractor or a repellor depending on
the state of the system. We discuss more about this when we look at eigenvalues in chapter 5.
All the textbooks on dynamical systems mentioned in the introduction give more complete
discussions on fixed points of dynamical systems.

For now, let’s find out where the fixed points for the Lorenz system are. Setting
x" =y’ =z’ = 0 and solving the system of 3 simultaneous equations for (x, y, z), we find
the following fixed points (you should verify this).

* The origin
e (If r > 1) A pair of fixed points

x* = (£yb(r = 1), 2y/b(r = 1), r = 1).

In particular, for the given parameter values (o, b,r) = (10, 8/3, 28), we find the fixed
points at

x* ~ (8.5, +8.5, 27) . 4.27)

Lorenz himself [133] showed that in this case x* are points between which trajectories
bounce around endlessly.

172 4 Differential Equations and Dynamical Systems

3D animation

Let’s visualise the dynamics of the Lorenz equations by animating trajectories in the (x, y, z)
space. The code lorenz. ipynb given here produces an animation of a trajectory, starting
at (x,y,z) = (1,1,1) for 0 < r < 60.

The technique for plotting the trajectory is worth discussing. This is similar to plotting
the trace in the double pendulum, but with a key difference: we use the command

traj.set_data_3d(data[®:3, :i])

to update the x, y, z coordinates of the trajectory so far (a quick reminder that the array
slicing 0: 3 excludes the index 3, so gives 3 rows of data).

The animation shows that indeed, the trajectory encircles one of the two fixed points
x*, but switches between them in an apparently random manner. Over a long period, the
trajectory traces out a 3D structure resembling a pair of butterfly wings. This structure
is called a strange attractor. The geometric structure of the strange attractor is discussed
further in the Discussion section.

Chaotic behaviour

Analogous to the double pendulum, the Lorenz equations also exhibit chaotic behaviour, i.e.
sensitivity to initial conditions. In fig. 4.12, we plot the x coordinates of two trajectories
whose initial conditions differ by one-billionth, namely

Trajectory A (red solid line): (x,y,z) = (1,1, 1),
Trajectory B (blue dashed line): (x,y,z) = (1 + 107, 1, 1).

We see that the trajectories evolve almost identically until # ~ 37, when they clearly separate
into non-periodic orbits. The Lyapunov exponent in this case is known to be 1 ~ 0.9. A
positive A indicates chaos as discussed at the end of §4.5.

It is interesting to note that whilst this holds for » = 28, changing the value of r reveals a
fascinating range of behaviours, some chaotic, some not, and some only temporarily chaotic.
You will investigate these behaviours in exercise 6.

DiscussioN

* Geometry of strange attractors. The strange attractor in the Lorenz equations com-
prises trajectories (from different initial conditions) that trace out two ‘butterfly wings’.
Different trajectories tracing out the strange attractor cannot intersect (due to the
uniqueness theorem discussed in§4.3). From this simple observation, one can deduce
that the two wings do not merge (despite their appearance) and thus the strange attractor
cannot be a single surface, but rather an “an infinite complex of surfaces," as Lorenz
himself put it [133].

Such a structure with infinite complexity is called a fractal, which we will explore
further in §4.8.

4.6 ODE IV - the Lorenz equations 173

* Poincaré-Bendixson theorem. Can a strange attractor be constructed using 2 differen-
tial equations rather than 3? The answer is no, thanks to a powerful result known as the
Poincaré-Bendixson theorem, which roughly states that trajectories in a two-dimensional
dynamical system either converges to a fixed points or a periodic orbit. A chaotic
solution therefore cannot be found in a system with fewer than 3 differential equations.
A more precise statement of this theorem and its proof can be found in [6, 96, 197].

t=10.0 t=20.0

t=40.0 t=60.0

Fig. 4.11: Snapshots of trajectory in the (x, y, z) plane for the solution of the Lorenz equations
att = 10,20, 40 and 60, with initial conditions (x, y, z)(0) = (1, 1, 1) and parameter values
o =10, b = 8/3, r = 28. The red dot in each panel indicates the instantaneous coordinates
of the trajectory.

174 4 Differential Equations and Dynamical Systems

— Xo=1 — Xo=:|.+].0_9
20
10 A
x 0
_10 4
-20 . | | | |
0 20 40 60 80 100

Fig. 4.12: A comparison between two trajectories with initial conditions (x, y,z) = (1, 1,1)
(red solid line) and (1 + 107, 1, 1) (blue dashed line). Only the x-coordinates of the
trajectories are shown. The parameter choices are the same as those in fig. 4.11. At ~ 37,
the two trajectories clearly separate into two different non-periodic orbits.

4.6 ODE IV - the Lorenz equations 175

lorenz.ipynb (for plotting fig.)
i import numpy as np
| import matplotlib.pyplot as plt
| from scipy.integrate import solve_ivp
1 from matplotlib.animation import FuncAnimation
I
1 %matplotlib
|
I
Parameter choices for the Lorenz equations | sigma = 10
:b = 8/3
T = 28

Derivatives (RHS of the Lorenz}def derivs(t, X):

system (4.26)) x,y,z = X
dXdt = np.zeros_like(X)
dXdt[0] = sigma *(y - x)
dXdt[1] = x*(r-z) -y
dXdt[2] = x*y - b*z
return dXdt

Step size h = 0.01

Time to end evolution Tmax = 60

= np.arange(®, Tmax+h, h)

Times at which to plot the trajectory T
Xinit = [1, 1, 1]

LC. [x(0), ¥(0), z(0)]
Use SciPy to solve the IVP sol = solve_ivp(derivs, t_span=[0, Tmax],
y0=Xinit, t_eval=T)

Solutions x(t), y(t), z(t) X, y, z = sol.y[0], sol.y[1], sol.y[2]

Create a data array - each column is : data = np.array([x, y, z])

(x,y, 2)T at time ¢ I

:fig = plt.figure(Q)

ax = fig.add_subplot(1l1l1l, projection='3d',
x1im=(-20,20), ylim=(-30,30), zlim=(0,50))

ax.set_xlabel('x")

jax.set_ylabel('y")

|ax.set_zlabel('z")

|

Create a 3D figure

Output 1: The trajectory in blue : traj,= ax.plot([],[],[],'b"', 1w=0.6)
Output 2: The current state as a red dot 1 pnt, = ax.plot([],[],[], 'ro', markersize=3)
Display ¢ to 1 dec. pl. (text = 't = %.1f'

Output 3: Text displaying current ¢ value | time = ax.text(15,30,60, '")

Animation in the ith frame

Update the x, y, z values of Output 1
Update the x, y, z values of Output 2
Update Output 3 (time)

def animate_frame(i, data, traj):
traj.set_data_3d(data[®:3, :i])
pnt.set_data_3d(data[0:3, i:i+1])
time.set_text(text % (i*h))
return traj, pnt, time

ani = FuncAnimation(fig, animate_frame,
fargs=(data, traj),
frames= len(T),
interval = 1)

Animate trajectory evolution
Passing 2 function arguments
How many frames?

Delay between frames (ms)

plt.show()

fxn)

176 4 Differential Equations and Dynamical Systems

4.7 The Logistic Map

The logistic map is given by the relation

Xn+1 = f(xXn)
where f(xp) =rx,(1 —x,), (4.28)

wheren e N,0 < x,, < landr > 0.
Investigate the long-term behaviour of x,, for different choices of x¢ and r.

The dynamical systems we have studied so far are differential equations that evolve
continuously with time ¢. This example, however, is a dynamical system with discrete time
steps labelled by n = 1,2,3 Equations like (4.28) are known as recurrence relations or
difference equations.

Here is an example of a physical system which can be modelled by the logistic map:
let N be the number of fish in a certain lake averaged over each month. Let N(n) be the
number of fish in month n (labelled by integer values, starting with n = 0). The fish naturally
reproduce, but since the lake has finite resources, there is an absolute maximum number of
fish, Nnax, that the lake can sustain, i.e. if N = Ny, at any point, food runs out completely
and the population declines due to starvation.

Let x, = N(n)/Nmax (i.e. the fractional population measured with respect to the
maximum capacity). It follows that x,, lies between 0 and 1. In addition, x,,+1 (the fractional
population next month) depends on x, in a natural way: x,; increases with x,, due to
reproduction up to a point, then decreases if x,, is too close to the maximum limit.

1.0
The logistic map models this behaviour as a one-parameter

081 quadratic relation

0.6

Xnt1 = rxp (1 = xp),

0.4)
where r can be regarded as the growth rate of the population.

0.2 1 Note that the limit x,, € [0, 1] restricts r to be between 0 and
4. The plot on the left shows x,.; as a function of x,, for

0.0 { -

00 02 04 06 08 107 1,2,3,4 (bottom to top).

Xn

The logistic map was first studied by the Australian ecologist Robert May (1963-2020) in
his hugely influential 1976 paper [140] which revealed surprisingly complicated dynamics
for such a simple equation.

4.7 The Logistic Map 177

Fixed points and period

We look for fixed points in the same way we did in the previous section. These fixed points
hold clues to the long-term behaviour of the system. Setting f(x) = x (we drop the subscript
n for clarity), we find different fixed points depending on the value of r.

* 0O is a fixed point for all r.
e x* = (r—1)/ris afixed point if r > 1.

These values of r give rise to x which remains constant from month to month. In addition,
there may be values of x that return to the original value every 2 months, or 3 months, and
so on. We say that x is a fixed point with period k if k is the smallest positive integer such
that

) = x. (4.29)

Here f* denotes function composition f o f o f... f (k times).
For example, to find fixed points with period 2, we set

r—1

fz(x) =x = x (x - T) (r3x2 - (r2 + r3)x +r2+ r) =0. (4.30)

There are four solutions to this quartic equation: two of them are the fixed points (with
period 1) found above. The other two are period-2 fixed points which exist if » > 3, namely:

xi_r+li\/(r—3)(r+l)
B 2r

For instance, with » = 3.3, we find the period-2 fixed points at x* ~ 0.479 and 0.823.
Another way to say this is that x* are a period-2 orbit, with x alternately bouncing between
the two values. On the other hand, if r = 3, we have repeated roots at x = 2/3, which is
precisely the period-1 fixed point x*, so in this case the system does not have a period 2
orbit. The first two panels in fig. 4.13 show the period-1 orbit when r = 3 and the period-2
orbit when r = 3.3 (assuming some random initial condition xg € [0, 1]).

It can be shown that one can always find values of » that give rise to orbits with periods
3,4, 5 and so on. Some of these orbits are shown in fig. 4.13.

Stability

Let p1, pa, . . . px be a period-k orbit. The orbit is said to be stable if I(fk)’(p])l < 1, and
unstable if |(f*) (p1)] > 1.

For example, | f/(0)| = |r|, so 0 is stable if » < 1. For the fixed point x* = ’7_1, we find
|f’(x*)| = |2 — r|, which implies that x* is stable if 1 < r < 3. As r increases above 3, x*
loses its stability, but a stable period-2 orbit (x*) appears. These points themselves lose
their stability when r increases above 1 + V6 ~ 3.449 (you should verify this), and a stable
period-4 orbit appears (as shown in the fourth panel of fig. 4.13). This phenomenon gives
rise to all orbits which are powers of 2, and is known as a period doubling cascade.

178 4 Differential Equations and Dynamical Systems

1.0

0.8 1 14
\l ‘

I

\ ‘| ‘
0.6 —, |‘|||

/{

Xn

0.2 1

' 100 102 10* 10° 107 10410°

n n n

Fig. 4.13: The values of the logistic map (4.28) for n up to 10* (horizontal log scale) with
parameter (from top left) r = 3 (period 1), r = 3.3 (period 2), r = 3.8284 (period 3),r = 3.5
(period 4), r = 3.845 (period 6) and r = 3.99 (chaotic).

Plotting the bifurcation diagram

As one dials up the value of r, we expect more period-k fixed points to appear, but where
exactly? We can use Python to locate these points using the following strategy.

1. Fix a value of r € [0, 4].
2. Select a random initial condition xo € [0, 1].
3. Perform a large number of iterations to obtain, say, x509. This should lock the trajectory

into a steady state.
4. Record xs00 up to, say, xss50. Plotting these values would reveal the periodicity of the

orbit (or lack thereof).

4.7 The Logistic Map 179
The code logistic.ipynb executes the above strategy and produces a plot of x,, against

r (fig. 4.14) This plot is known as a bifurcation diagram in which we can observe the
following.

1.0

3

0.81 it
d

0.6 1

o
0.4 4 LT
N

0.2 4

0.0 ‘ / } } } ! ! 0.0 ! | ! } ~
00 05 10 15 20 25 30 35 40 35 36 3.7 38 3.9 4.0
r r

Fig. 4.14: Bifurcation diagram for the logistic map on the domain r € [0, 4] (left) and [3.5, 4]
(right).

« Creation of new stable period-k points occurs at » = 1,3 and 1 + V6 ~ 3.449, in
agreement with our stability analysis.

¢ Period-doubling continues up to » = 3.57 when the orbit appears blow up into a range
of (apparently random) values. This means that very slightly different initial values of
xo could potentially lead to very different x,. Thus, we say that the logistic map gives
rise to chaos.

* The chaotic behaviour is occasionally interrupted when, at certain values of r, the
system settles into a period-k orbit (for example, a period-3 orbit at r ~ 3.8284, see the
third panel of 4.13).

As r increases a little further, the attractor becomes chaotic again, most dramatically at
r close to 4 when x,, can take essentially any value between 0 and 1 (see the last panel
of 4.13).

* The attractor behaviour observed above does not appear to depend on the value of the

initial condition xg.

It is truly astonishing that such a simple equation should give rise to such a rich spectrum
of dynamics.

DiscussioN

* Feigenbaum constant. Let b; be the value of » where the period-doubling bifurcation
occurs for the ith time. Our analysis showed that b = 3, by, = 3.449, b3 ~ 3.544,
by = 3.564 etc. We can quantify the rate at which b; appears using the variable ¢
defined as b b

§ = lim 2=l = 7n=2
”I_I’Iolo by = b1
It can be shown that 6 = 4.669. This constant is called the Feigenbaum constant,
named after the American mathematical physicist Mitchell Feigenbaum (1944-2019).
Remarkably, this behaviour holds for all one-dimensional maps with a single quadratic
maximum, meaning that they all bifurcate at the same universal rate. See exercise 10d.

180

4 Differential Equations and Dynamical Systems

 Li-Yorke theorem and Sharkovsky’s theorem. Tien-Yien Li and James Yorke showed
in their legendary 1975 paper ‘Period 3 implies chaos’ [129] that if a map f: [a, b] —
[a, b] has a period-3 orbit (like the logistic map), then it has a period-n orbit for any
positive integer n as well as chaotic orbits.
It was later found that the Li-Yorke theorem was in fact a special case of an earlier
result discovered in 1962 by the Ukrainian mathematician Oleksandr Mikolaiovich

Sharkovsky (1936-2022).

* Fractal. Zooming in to the bifurcation diagram reveals a self-similar structure as shown
in fig. 4.15 below. From left to right, each panel zooms into the bifurcation diagram on
a scale Ar ~ 1071, 1072, 107 respectively. Such a self-similar structure, known as a
fractal, will be explored further in the next section.

<
@
z
ot

0.48625

0.45600

0.46575

0.48550

0.98525

0.48500

0.46475

355 360 185 3.830 3835 3.840 3.845 3.850 3855 0 7 3

8
le-5+3.8521

Fig. 4.15: Fractal structure of the bifurcation diagram for the logistic map. From left to right,
each panel zooms into the bifurcation diagram on a scale Ar ~ 107!, 1072, 10~* respectively.

logistic.ipynb (for plotting fig.

i import numpy as np

| import matplotlib.pyplot as plt
|%matplotlib

|

R = np.linspace(®, 4, 4000)

Plot steady states (tiny blue dots)

Range of r values to explore 'rng = np.random.default_rng()
Initialise random number generator : xlist = []
List for collecting x (steady states of x;,,) : rlist = []
List for collecting r (a single r may lead |
to many possible x values) def f(x, r):

} return r*x*(1-x)
The logistic map !

i for r in R:
Random initial x¢ in (0, 1) : X = rng.random()
Perform n = 500 iterations towards a| for j in range(500):
steady state ! x = f(x, r)
Collect up to 50 steady states for each for k in range(50):

1 x = £f(x, r)

|

|

|

|

.plot(rlist, xlist,
.xlabel('r")
.ylabel('x")
.x1im([0,4])
.ylim([0,1])
.grid('on')

.show()

xlist.append(x)
rlist.append(r)

'b.', markersize=0.05)

4.8 The Mandelbrot set 181

4.8 The Mandelbrot set

Consider the sequence of complex numbers

in+l = fc(Zn)
where f.(z,) =z2+¢ 20=0, (4.31)

where ¢ € C. Locate values of ¢ in the complex plane such that the set
{za:n=0,1,23...}

is bounded.

(This section requires some elementary knowledge of complex numbers. For a gentle
introduction to complex numbers, see [9, 115].)
The question asks us to identify values of ¢ € C such the sequence of complex numbers

0= fc(0) = fe (fe(0) = fe(fe (fe(0))) ...

or, equivalently, 0oc—oc+c— (62 + c)2 +c... (4.32)

remains in a bounded region in the complex plane even as the sequence continues forever.
We will call this bounded sequence the orbit of 0 for a given ¢. The Mandelbrot set, M, is
defined as the set of all such permissible ¢ values giving rise to bounded orbits.

The Mandelbrot set is named after the Polish-born mathematician Benoit Mandelbrot
(1924-2010), who coined the term fractal and pioneered the use of computer to visualise
complex geometry.

Analysing orbits in the complex plane

Let’s work out the orbits of 0 for some values of c listed in the table below. Applying fj to
these values repeatedly, we find the following orbits.

c Orbit

0 |[0-0-0...

-1 |0>—-i>(-1-i)>i->(-1-i)—>1i...

1 0—->1—>2—-5—26— 677 — 458330 — 210066388901 ...
2|10 -2->52->2...

It is clear that 0, —i and —2 are in M since those corresponding sequences are bounded,
but probably 1 ¢ M, although we don’t have a definite proof for the latter yet.

The code snippet below can be used to help calculate the orbits. Note that the syntax for
the imaginary number i in Python is 1j.

An example with ¢ = —i e = -1

fle)y=c I = @

Calculate f"(c) for n = 2 to 9 iteratively | for n in range(2,9):

‘ zZ = z¥*2 + C

Print using £ flag 1 print(£"£A{n}(z) = {z}")

182 4 Differential Equations and Dynamical Systems

Our calculations so far have yielded three points in M, but the goal is to determine all
such ¢ € M. At this point, one could use Python to do a brute search by calculating orbits
for a large number of points in the complex plane, but there are analytic properties that can
help us reduce the search time.

Lemma 1 M is symmetric about the real axis.

In other words, if ¢ € M then its complex conjugate ¢ also belongs to M. One can
deduce this by examining the orbit 4.32: the nth term in the sequence is clearly a polynomial,
say P,(c), with real coefficients. Taking the complex conjugate of P, (c) shows that ¢
satisfies the same polynomial, i.e. P, (c) = P,(¢). Since conjugation does not change the
magnitude of a complex number, both P, (c) and P, (¢) are either both bounded or both
unbounded orbits. Hence the lemma follows.

Lemma 1 implies that it is sufficient to analyse values of ¢ = x +iy for y > 0 only, hence
halving our work.

Lemma 2 All orbits containing ¢ € M remain within the circle radius 2, centred at the
origin.

The proof requires a little manipulation of inequalities for complex numbers and can be
found in [162] for example (we will not reproduce it here). This lemma means that if an
orbit ever escapes outside the circle |z| = 2, then ¢ ¢ M. We will use this observation in
our code as a criterion to decide whether ¢ € M. This criterion is sometimes called the
escape criterion.

Plotting the Mandelbrot set

Our first attempt to plot the Mandelbrot set might be to pick a point ¢ in the complex plane,
and use the escape criterion to determine whether it lies in M or not. In this case, Lemmas
1-2 imply that it is sufficient to perform this membership test for points within and on the
boundary in the upper semicircle {c € C : |c| < 2 and Im(c) > 0.}

However, the image resulting from this yes/no test is not ideal. Unless we use a sufficiently
high resolution (and spend a lot of computing time), we will see an image comprising dots
that are sometimes isolated from the main bulbous structure (we will try this method later
when plotting fig. 4.18). In fact, a famous result concerning the Mandelbrot set is that it is a
single connected region with no gaps [55].

You may be more familiar with pictures of the Mandelbrot set that look more like
fig. 4.16, with glowing bulbs and root-like substructures. You will notice that the picture
contains more than just black and white pixels. Indeed, we have added an additional piece of
information to produce shades and tones that help outline M as a connected structure. The
additional information is this: how many iterations does it take for the orbit to escape the
circle radius 2?. The fewer the iterations required, the lighter the colour. If a point does not
ever escape (within a fixed maximum number of iterations), it is shaded the darkest colour.

Here is a summary of the algorithm which is coded in mandelbrot. ipynb.

1. Pick ¢ = x + iy in a rectangular grid above the real axis. For instance, x € [-2,0.5] and
y e [0,1.2].

2. Calculate the orbit of 0 by iterating the function f, k times.

3. If at some point the result satisfies |z | > 2 (or, to avoid square-rooting, |zx 12 = zx 7k >
4), we record k (the number of iterations needed to escape).

4.8 The Mandelbrot set 183

4. If the orbit never escapes even after kp,x iterations (say 100), then we record kp,x and
conclude that ¢ € M.
5. Collect the k value associated with each point in the grid and form a matrix. Display

the colour around each point according to the value of k (the larger the k value, the
darker the cell).

The final image is the result of the above algorithm together with its reflection across the
X-axis.

-2.0 -1.5 -1.0 -0.5 0.0 0.5
Re ¢

Fig. 4.16: The Mandelbrot set.

The Mandelbrot set is of course the poster child for the concept of fractal, or self-similarity
on infinitely decreasing scales. Using our code, the plot produced in interactive mode allows
zooming into different parts of M, revealing the fractal structure.

In fig. 4.17, we show 3 similar structures on different scales (analogous to fig. 4.15 for
the logistic map). We obtain these pictures by repeatedly zooming in on the small bulb
on the immediate left of the main bulb. (You may need to decrease eps in the code to see
structures on smaller scales and reduce colour bleed.)

184 4 Differential Equations and Dynamical Systems

Imec

-14 -13 -1z -11 X -0.9 -08
Re ¢ Ree Rec

Fig. 4.17: The fractal structure of the Mandelbrot set. The same nodular structure is seen as
we zoom into smaller and smaller scales.

mandelbrot.ipynb (for plotting fig.)

| import numpy as np
| import matplotlib.pyplot as plt

|%matplotlib

|
Grid resolution (smaller eps = finer) ; eps = 3e-3
Range of x (where ¢ = x + iy) | xmin, xmax = -2, 0.5
Range of y is [0, ymax) ymax = 1.2

:X = np.arange(xmin, xmax, eps)
'Y = np.arange(0®, ymax, eps)

Max no. of iterations ' kmax = 100
How many x and y values are there? nx, ny = len(X), len(Y)
|
Initialise an ny by nx matrix | kmatrix = np.zeros((ny, nx))
I
|
The function g(z) = |z|? = zZ imodsq= lambda z: z*np.conj(z)

for row in np.arange(ny):
for col in np.arange(nx):

Looping over all ¢ = x + iy in the grid

c=x+1y c = X[col] + Y[row]*1j
k counts how many iterations k=20

Keep iterating as long as orbit does not escape while (modsq(z)<=4)and(k<=kmax):
and k < kmax zZ = z2%%2 + ¢C
k = k+1

kmatrix[row,col]=k-1

|
I
|
I
|
:
Start the orbit with zg = 0 : z=0
I
|
I
:
Record k for each ¢ :
|

Lemma | = flip kmatrix upside down to get| kflip = np.flipud(kmatrix)
the image for y < 0. !
Stitch the two matrices together to form K (avoid 1 K = np.concatenate((kflip, kmatrix[1:]))
recording the axis of symmetry twice) :
| fig, ax= plt.subplots()

Display the colour-coded elements of K |ax. imshow(K, cmap = "magma_r",

I origin = 'lower',

| extent = [xmin,xmax,-ymax,ymax])
Relabel the ticks on the axes | ax.set_xlabel("Re c")

|ax. set_ylabel("Im c")
1plt.show()

4.8 The Mandelbrot set 185

3D view and connection to the logistic map

Let’s explore a surprising connection between the Mandelbrot set and the logistic map.
Recall that the Mandelbrot set M is generated using the mapping

Intl = 25 + G, (4.33)

where we studied the orbits of zy = 0 for different values of ¢ € C.
To connect M to the logistic map, let r be a real number such that O < r < 4 and let
x, € [0, 1]. Let’s make the substitutions

1 r r
2 =r(5 =) and ¢ =2 (1 5) (4.34)
In other words, we are restricting ourselves to real orbits z,, and real ¢, but parametrised by
Xxn and r respectively.

It is easy to check that x,, € [0,1] = 1z, € [-2,2], consistent with Lemma 2. We
can also check that r € (0,4] = ¢ € [-2, %]. You can verify this in the plot for M: its
intersection with the real axis is indeed the interval [-2, JT].

In terms of x,, and r, eq. 4.33 becomes:

1 1 2y r
r(z ‘X"H) =’2(§‘X") +5(1-3)
Making x,; the subject, we obtain
Xne1 = rxp (1 = xp), (4.35)

which is precisely the logistic map!

Let’s go further and see if we can locate the bifurcation diagram (fig. 4.14) somewhere
in the Mandelbrot set. Recall that for the bifurcation diagram, we start the sequence with
a random initial xy € [0, 1] for each fixed r € [0, 4]. This means that we should see the
same bifurcation if, for each fixed ¢ € [-2, %], we start the orbit off with a random initial
20 € [-2,2].

Over to Python. Firstly, for clarity, let’s isolate the points in M using the binary (yes/no)
criterion that we discussed earlier, i.e., for each ¢ € C, we test its membership of M using
the escape criterion, and plot it as a dot if ¢ € M.

For each dot representing ¢ € M, let’s also add a third dimension: the real part of the
complex number z which each orbit converges to after 100 iterations.

The resulting 3D plot in the (Re(c), Im(c), Re(z)) plane is shown in fig. 4.18. Here we
only focus on the region Im(c) > 0 (thanks to the symmetry discussed in Lemma 1). We
see (a dotty version of) the Mandelbrot set in shades of blue, but note that the main bulb
bifurcates into two secondary nodes (corresponding to two possible values of Re(z)), and
SO on.

If we chop the 3D Mandelbrot set above along the plane Im(c) = O (if we are only
interested in real values of c), we do indeed see the bifurcation diagram for the logistic map
(shown in red). It is upside down compared to fig. 4.14 because of the minus sign in the
substitution (4.34).

186 4 Differential Equations and Dynamical Systems

Finally, fig. 4.19 shows how the various nodes in the Mandelbrot set correspond to
features in the same bifurcation diagram in red. Period-1 points (along the main branch) are
precisely those along the cross-section of the largest bulb. Period-2 points are those of the
secondary bulb and so on. This also means that the Feigenbaum constant also appears in the
Mandelbrot set (see Discussion section in §4.7).

Fig. 4.18: Slicing the 3D Mandelbrot set (with random z() along its axis of symmetry reveals
a surprising cross section, namely, the bifurcation diagram of the logistic map (shown in
red).

4.8 The Mandelbrot set 187

1.0

0.8 4

0.6

Imc

0.4 A

0.2 4

Re z

-1.0 -0.5 0.0 0.5
Re c

Fig. 4.19: Top: The upper half of the Mandelbrot set. Bottom: The subset of points
with Im(c)=0 shown in the Re(c)-Re(z) plane. These points are precisely the bifurcation
diagram of the logistic map. Note the correspondence between the period-n points and the
substructures of the Mandelbrot set.

DiscussioN

e The Cardioid. The boundary of the main bulb might look like a familiar polar curve.
To investigate further, we recall a result on orbit stability from §4.7: a fixed point p
of period k is stable if I(fk)’(p)l < 1. We leave it as an exercise to show that for
the Mandelbrot set, the fixed points of period 1 (i.e. the solution of f.(z) = z) are
z+ = (1 £ V1 —4¢)/2. To look for the boundary between stability and instability, we
solve | f’(z+)| = 1 for ¢ = x + iy. This yields the parametric polar equations of the
Cardioid:

1 1 1

x=—=cos6(l—-cosb)+ —, y==sinf (1 —cosf). (4.36)
2 4 2

Similarly, the boundary of the secondary bulb (to the left of the main bulb) is formed

by fixed points of period 2. The same technique shows that the boundary is a circle

centered at ¢ = —1, radius i. See [135] for calculation details.

e Mathematical art. If a picture paints a thousand words, then the Mandelbrot set
paints an infinite volume on mathematical art. Since the popularisation of computer-
generated art in the 1980s, today we can find many ultra high-resolution zoom-ins of
the Mandelbrot set on YouTube 3. They reveal a whole universe of hidden structures
and psychedelic fractals, all stemming from a single quadratic equation.

5Shttps://www.youtube.com/c/MathsTown

https://www.youtube.com/c/MathsTown

188 4 Differential Equations and Dynamical Systems

* The Mandelbrot set is universal. You may be wondering if the rich structure of the
Mandelbrot set is unique to the function f.(z) = z> + ¢. Try generalising the function
fc by changing to other polynomials. Other generalisations are explored in exercise 12.
Furthermore, it appears that the characteristic shape of the Mandelbrot set occurs in
the fractal patterns of associated with a wide range of complex functions. Like the
Feigenbaum’s constant, the Mandelbrot set appears to be a universal phenomenon
associated with fractals. See [54, 144] for in-depth studies of this phenomenon. One
particularly intriguing appearance is that in Newton’s fractal arising from solutions
obtained by the Newton-Raphson root finding method (Chapter 1, exercise 11). This
connection is clearly visualised and explained in this video®.

6 https://www.youtube.com/watch?v=LgbZpur38nw

https://www.youtube.com/watch?v=LqbZpur38nw

4.8 The Mandelbrot set

mandelbrot3D.ipynb (for plotting fig.

189

1 imp:
1 g

; imp
| Jma
|

I

| cre
| cim

: zre

Collect real and imaginary parts of ¢ € M...

and the real part of z = lim z,,

Collect the subset of the above 3 quantities when ' cre

c is real (we will colour them red) rcim
| zre

Initialise random number generator ,rng

Max no. of iterations : kma
|

Grid resolution (smaller eps = finer) | eps
|

On the domain x € [-2,0.4], loop over ! for
all points (x,y) within and on the upper:
semicircle radius 2 ‘
c=x+1iy

Start the orbit with a random z(€ [-2, 2]
Initialise Boolean value for membership of M
Applying f. iteratively up to kmax times
fe(2)

Calculate |z|? = zZ

Escape criterion

If orbit escapes, stop applying f.

Otherwise, c € M
and we record the 3 quantities

If Im(c) = 0 (mind the machine epsilon)
record them as special red points

Turn lists into arrays for easier handling :
i cim
| zre
| cre
1 cim
| zre
:

1 fig
ax

| ax.

3D plot

| ax
| ax
ax.
| ax.
| ax.

Plot ¢ € M as blue points, size 0.4 ax.
and shaded according to the magnitude of Re(z)
Plot the subset of the above points with real ¢
as bigger red points

plt

|
|
I
|
I
| ax.
|
I
|
|

ort numpy as np
ort matplotlib.pyplot as plt
tplotlib

allist
aglist
allist
alred
agred
alred
= np.random.default_rng()
100

X

= 3e-3

X in np.arange(-2, 0.4, eps):
ymax = np.sqrt(4-x*x)
for y in np.arange(®, ymax+eps, eps):
c =X+ y*1j
z = 4*rng.random() - 2
test = True
for k in range(l,kmax+1):
z = z%¥%2 + ¢C
modsq = z*np.conj(z)
test (modsq<=4)
if (not test):
break
if (test):
creallist.append(c.real)
cimaglist.append(c.imag)
zreallist.append(z.real)
if (np.abs(c.imag)<le-16):
crealred.append(c.real)
cimagred.append(c.imag)
zrealred.append(z.real)

al = np.array(creallist)

ag = np.array(cimaglist)

al = np.array(zreallist)

alR = np.array(crealred)

agR = np.array(cimagred)

alR = np.array(zrealred)

= plt.figure()

= fig.add_subplot(111l, projection="'3d")
set_xlabel('Re c'")

.set_ylabel('Im c')
.set_zlabel('Re z'")

set_x1im(-2,0.5)
set_ylim(0,1)
set_zlim(-2,2)

scatter(creal, cimag, zreal,

s=0.4, c=zreal, cmap="Blues")
scatter(crealR, cimagR, zrealR,

s=1, color='r'")
.show()

190 4 Differential Equations and Dynamical Systems

4.9 PDE I - the heat equation

Let u(x,t) denote the temperature (in °C) of an insulated rod of unit length at
position x (where x € [0, 1]) at time ¢ (in seconds). The rod is heated so that its
temperature is initially given by u(x, 0) = sin(57x/2).

The heating suddenly stops. Subsequently, at x = 0, the rod is maintained at 0°C,
whilst at x = 1 the rod is maintained at 1°C. The subsequent temperature distribution
for t > 0 is governed by the heat equation

ou 0%u
— = — 4.
ot ox? (4.37)
with initial condition u(x,0) = sin(57x/2), (4.38)
and boundary conditions u(0,7) =0, u(l,7) = 1. (4.39)

Determine the temperature distribution u(x, t). What happens as ¢t — oo?

The heat equation (also called diffusion equation) was discovered and studied by Joseph
Fourier (whom we have met in Chapter 2) around 1822. The derivation of the heat equation
(and solution methods) can be found in classic textbooks on PDEs such as [60, 196].

Finite-difference method

Here is a method called finite-difference method which demonstrates the general principal
of solving PDEs numerically. It is important to keep in mind solving the PDE requires not
only the differential equation itself, but also the boundary and initial conditions. Changing
the boundary conditions, for instance, could give rise to an entirely different solution (or no
solutions at all).

The method starts by discretising the rod, i.e. dividing into N equal subintervals [x;, x;41]
wherei = 0,1,2... N. Note that there are N + 1 grid points x;, where

Xi = N
Let Ax == x;41 — x; = l be the length of each subinterval. We will use Ax in the
approximation of the partlal derivative g % on the RHS of the heat equation, so we will

need to keep Ax small.
To do this, we express the function f(x = Ax) as a Taylor series in Ax for small Ax.

f(x+AX)=f(x)+f’(x)Ax+f”()(A)+ f” ()

f ”(X)

L 2 (Ax)’+0 ((Ax)).
f’”(X)

f(x=Ax) = f(x) = f/(0)Ax + (Ax)? = 2= (A0)* + O ((Ax)*),

(where O expresses the next leading order in the tail of the series). Adding the above
equations and making f”’(x) the subject gives

4.9 PDE I - the heat equation 191

fx+Ax) =2f(x)+ f(x —Ax)

£ = v

+0 ((Ax)?). (4.40)

In other words, we have obtained a symmetric-difference approximation for the second
derivative. This means that the second-derivative term in the heat equation can be expressed
in terms of u evaluated at grid points as

azu(xi’ t) ~ u(-xi+1’t) - 2’/{(){[, t) + M(.Xi_],t)
ax2 (Ax)? :

(4.41)

This holds for all internal grid points (i = 1,2,... N — 1). We exclude the boundary grid
points since we already know that u(xo,#) = 0 and u(xy,) = 1 at all times.

In summary, a single PDE (4.37) is converted into a system of (N — 1) ODEs. Writing
u(x;,t) as u; (t), we have

du; (1) uir1 () = 2u;(t) + ui—1 (7)

Fori=1,2,...N—1, , 4.42
ort dr (Ax)?2 (442)
with initial conditions u;(0) = sin(57x;/2), 4.43)

and boundary conditions up(t) =0, un()=1. 4.44)

We can then use one of the methods discussed in §4.3 to solve the ODE for the (N — 1)
variables u; as a function of ¢. The code heat.ipynb below uses SciPy’s solve_ivp to
solve the ODE. We then use Matplotlib to create an animation of the temperature evolution
from ¢ = 0 to 0.5s. Snapshots from the animation are shown in fig. 4.20.

We see that as time evolves, the temperature pattern flattens towards a linear variation
u(x,t) = x. This makes sense since the rod is insulated and is maintained at a constant
temperature at each end, so in the long run the temperature will vary linearly along the rod.

192 4 Differential Equations and Dynamical Systems

t =0.020s

0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10

t =0.100s

0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10

Fig. 4.20: Snapshots from the animation of the temperature u(x,¢) att = 0, 0.02, 0.1 and
0.5s. The x-axis shows the position along the rod.

4.9 PDE I - the heat equation 193

heat.ipynb (for plotting fig.

i import numpy as np

| import matplotlib.pyplot as plt

| from scipy.integrate import solve_ivp

1 from matplotlib.animation import FuncAnimation

| %matplotlib

|
Divide the rod into N subintervals N = 40
The grid points along the rod 'X = np. linspace(0,1,N+1)
The length of each subinterval Ax rdx = x[1]-x[0]

|

|
Derivatives (RHS of ODEs (4.42)) 1 def derivs(t, U):
: dUdt = np.zeros_like(U)
Vectorised form of (4.42) | dudt[1:-11=(U[2:]1-2*U[1:-1]1+U[:-2])/dx**2
|
|

return dudt

Step size (in time) ! h = 5e-4

Time to end evolution (s) 1 Tmax = 0.5

Times to record temperature snapshots T = np.arange(®, Tmax+h, h)

The initial temperature distribution (4.43) | Uinit = np.sin(np.pi*5*x/2)
I

Use SciPy to solve the IVP for u; (1) sol = solve_ivp(derivs, t_span=[0, Tmax],

y0=Uinit, t_eval=T)

|
|
I
i
|
Create a 2D array U. Each row = ! U = np.zeros((len(T),len(x)))
temp. at each time step. Each column =
temp. at a fixed point on the rod. |
Fill in the columns with solutions from | for i in np.arange(1,N):
solve_ivp : U[:,i] = sol.y[i]
I

The last column is the boundarle[: ,-1] = np.ones(len(T))
condition upx (¢) = 1 (4.44). }
:fig = plt.figure(Q)

rax = fig.add_subplot(111l, xlim=(0®, 1),

: ylim=(-1, 1))
lax.grid('on")
|ax. set_xlabel('x")
rax.set_ylabel('u(x,t)")
Template for plotting each frame 1 line, = ax.plot([], []1, 'r', lw=2)
Display time ¢ i text = 't = %.3fs'
Position of the time display "time = ax.text(0.03, 0.8, '")

Animate each frame
Plot each row of U in each frame
Update time display

def animate_frame(i):
line.set_data(x, U[i,:])
time.set_text(text % (i*h))
return line, time

ani = FuncAnimation(fig, animate_frame,
frames = len(T),

interval = 20)

|
I
|
|
I
|
|
I
|
I
|
|
:
|
Set delay between frames :
I
|
|

plt.show()

194 4 Differential Equations and Dynamical Systems

Separation of variables

Let’s try to solve the heat equation by hand and see if the solution is consistent with our
numerical solution.

Here is a very useful method which can help us solve certain types of PDEs exactly.
This is the method called separation of variables, which we will outline below step-by-step
(you may want to fill in the details). This is a multi-step process with nuances in every step.
Whilst the calculations involved can be overwhelming at first reading, your introductory
PDE course will provide plenty of practice. For those who want to read ahead, see [33] for
plenty of solved problems.

1. Simplify the system Since the numerical investigation showed that u(x, t) ~ x eventu-
ally, let’s define
v(x,t) = u(x,t) — x,

and solve for v(x,7) instead of u(x,). A quick calculation shows that v satisfies the
same PDE, whilst the boundary conditions become simpler (and the initial condition
gains an extra term).

v v
— = — 4.45
ot ox? (4.45)
with initial condition v(x,0) = sin(57x/2) — x, (4.46)
and boundary conditions v(0,7) =0, v(l,¢) =0. 4.47)

The fact that the boundary conditions are now zero at both endpoints is the key to the
success of this method.

2. Separate the variables Let’s try looking for a solution of the form
v(x, t) = X(x)T (1), (4.48)

where X is a function of x alone and T is a function of 7 alone. Substituting this into the
heat equation (4.45) and dividing by X7, we obtain
TI B XI/
T X

(4.49)

(This is the separation of variables.) Note that the LHS of (4.49) is a function of ¢ alone,
whilst the RHS is a function of x alone. What function is both a function of ¢ alone and
x alone? The answer is of course, a constant, say k, i.e.

T’ X"
- = =k. (4.50)
T X

3. Solve for X (x) We will now show that the constant k£ must be strictly negative. To do
this, we will rule out the case k = 0 and k > 0.

* Can k = 0? If this is the case, eq. 4.50 tells us that:

X//

=0 = X=ax+p,

4.9 PDE I - the heat equation 195

for some constants « and S to be determined from the boundary conditions. Since
we require X (0) = X(1) = 0, the only solution is X (x) = 0, which is invalid since
this would mean that the temperature is O at all times. So k # O.

e Can k > 0? Let k = A2 for some A # 0. If this is the case, we have

X/I

X =12 = X = acoshx + Ssinh x.

Using X(0) = X(1) = 0 again gives X (x) = 0, which we rule out.
« Finally, let’s try k < 0. Write k = —1? (1 # 0). In this case, the solution of X”" = 0
with boundary conditions X (0) = X (1) = 0 is nontrivial:

X(x)=asindx, where A=nmr (n=123...). 4.51)
These values of A are called the eigenvalues of the boundary-value problem.

4. Solve for T () Equating the LHS of (4.50) to —A? and solving the ODE gives

T’ 2 22
?z—/l = T =Be "™,

Combining this with X (x) (4.51), we have so far found solutions of the form

NI
vu(x,t) = be " ™ 'sinnrx, (neN),

where b is a constant.

5. Superposition An important observation is that if v; and v, are solutions to the PDE,
then v; + v, is another solution. This property (called the superposition principle)
simply follows from the linearity of the partial derivatives. This means that the following
infinite sum (if convergent) is also a solution:

(o)
2.2
v(x, t) = Z bpe " sinnnx.
n=1
6. Find the Fourier series It remains to use the initial condition (4.46), which requires

sin (5nx/2) —x = Z b, sinnnx,

n=1

where x € [0, 1], i.e. we want to write the LHS as a linear combination of sine waves.
Recall our earlier encounter with Fourier series in §2.9, where we saw how a function
can be expressed a sum of sines and cosines. It is also possible to express the function
using only the sine terms. To do this, we extend the rod (defined on [0, 1]) to [—1, 0]
in such a way that v(x, t) is an odd function defined on the interval [-1, 1]. When we
calculate the Fourier series for this odd-extended function, we find that only the sine
terms are needed, and that the coefficient b,, is given by

1
b, = 2f (sin (571x/2) — x) sinnmrx dx
0
2=t (4n l)

+_
Py 25-4n2 n

(4.52)

196 4 Differential Equations and Dynamical Systems

The integration above is fiddly but definitely worth trying!
In conclusion, we have found the exact solution for the temperature

u(x,t) =x+ Z bpe " sinnnx, (4.53)

n=1
where b, is given by eq. 4.52.

We can now easily see the asymptotic behaviour of the solution from the exact solution
(4.53). The sinusoidal terms are exponentially damped when ¢ is large, leaving us with
u(x,t) = x.

In exercise 13c, you will investigate how the exact solution compares with the numerical
solution.

DiscussioN

* Uniqueness. In the search for the exact solution, we started by assuming that the
solution is in the separable form 4.48. Are there other solutions? The answer is no. The
uniqueness of the solution can be shown using an elegant trick known as the energy
method. Details in [196], for example.

Uniqueness also holds for the solution to the wave equation, which we will study in the
next section.

+ The heat equation in R3. Suppose that heat can move in all directions in R3. The heat
equation then becomes

10u 0*u 0% 62u_

—— = —— +—+— =V
@ dt Ox? 9yr 072 !

where V2 = V - V (called the Laplacian operator). We have also introduced the constant
a, the thermal diffusivity of the medium in which the heat is being conducted. Better
heat conductors have higher « values. For example, agjer = 166 mm?2/s whereas
@rubber ~ 0.1 mm?/s.

* Stability The timestep Az and grid size Ax need to be chosen carefully so that the
numerical solution is stable, i.e. numerical errors do not grow and dominate the solution.
For the heat equation, for a given Ax, stability is guaranteed if

2
At < B (4.54)
a

where « is the diffusivity and C is a constant which depends on the numerical method
used to solve the differential equation (4.42). For example, C = 0.5 if the forward Euler
method is used.

Nevertheless, it is possible to avoid having to choose a small At dictated by the stability
criterion. A famous trick known as the Crank-Nicolson method uses a small modification
of the discretised scheme (4.42) to guarantee stability for any At and Ax.

More details on the analysis of numerical stability, and the Crank-Nicolson method,
can be found in [59, 124, 170]. The open-access reference [124] in particular contains
excellent expositions on the finite-difference method with Python implementations.

4.10 PDE II - the wave equation 197

4.10 PDE II - the wave equation

A thin elastic membrane is stretched over a square frame S = {(x,y) € (0,1) X
(0,1)} c R2. The edges of the membrane are kept fixed to the frame but the
membrane itself is otherwise free to vibrate vertically within the frame. Let u(x, y, t)
be the amplitude of the vibration at position (x, y) at time ¢. It is known that u
satisfies the two-dimensional wave equation

0%u 5 %u 0%u

m = ﬁ + 6_})2’ (X, y) € S, (455)

with initial conditions u(x,y,0) = sin(2rx) sin(2ry), (IC1)
ou

. 9 9 0 = 07 IC2

5 (7.0) (1c2)

and boundary condition u(x,y,t) =0, (x,y)€dS, (BO)

where dS denotes the boundary of S. Determine the subsequent amplitude u(x, y, t)
where ¢ > 0.

As we will be discussing a variety of partial derivatives, let us use the notation dyu to

2 . . L
mean %. In this notation, the wave equation in 2D reads

Optlt = Oxxit + Oyyu.

You can probably guess that the wave equation in 1D simply reads d;;u = 9xxu. You will
solve in this in exercise 14a. The wave equation in 3D is equally obvious to generalise.

The 1D wave equation was discovered and solved in 1747 by the French mathematician
Jean d’Alembert (1717-1783) who made important contributions to mechanics. You may
recall that the Ratio Test in §2.3 was also named after d’Alembert.

Finite-difference method

First, let’s see how we can discretise the problem and apply a similar finite-difference
method as that for the heat equation.
Let’s divide the unit square into N X N square cells with grid points

iJ .
(Xi,yj)=(ﬁ,ﬁ), i,j=0,1,2...N.

Of course one may instead divide the square into N, X N, rectangular cells where N, and
Ny may not necessarily be equal. Let Ax := x;41 — x; and Ay = y;;; — y; be the width and
height of each cell.

The RHS of the wave equation 4.55 can be discretised using eq. 4.41. Let u; ; denote u
evaluated at grid point (x;, y;). The second-order partial derivatives become:

198 4 Differential Equations and Dynamical Systems

Wisl,j = 2Uij + Ui,

(axxu)i,j ~ (Ax)2 5 (456)
Wi jo1 —2uj + Ui

~ 4.57

(Osvu), IO (4.57)

This holds for all internal grid points (i, j = 1,2,... N — 1) at all times. We exclude the
boundary grid points since we already know from eq. BC that u; ;(¢) = O at all times
whenever i or j equals 0 or N.

The discretisation so far has reduced the PDE to a second-order ODE in terms of ¢,
namely

2
(%)' = (456) + (4.57). (4.58)
L]

One way to solve this ODE numerically is to transform it into a system of two first-order
ODE:s (as we did in §4.4) and then use SciPy’s solve_ivp to solve for u(x;,y;,t). The
difficulty with this method, however, is that solve_ivp can only handle vectors (1D arrays),
so our data on the 2D plane must first be reshaped into a 1D array, then the output from
solve_ivp must then be again reshaped into a 2D array for plotting. Whilst the method is
viable, there is a lot of fiddly indexing and array reshaping to keep track of. You can imagine
that this reshaping gets even more complicated if we were dealing with a 3D problem.

An alternative method is to forgo solve_ivp and instead discretise the time derivative
as well (using eq. 4.41). Let each time step be of size & and let the nth time step be

t,=nh, n=012...

We then find that for all interior grid points (x;, y;) at time step ¢, (n > 1), we have
i j () = =t j(tn1) + 20 (n) + B @)y (1) + 12 (Qyyu) (1) (4.59)

which tells us how to advance u to the next time step using data from previous time steps.

However, we can’t yet use eq. 4.59 to advance from ¢ to ¢; since we do not know the
data at #_y. To this end, note that the symmetric-difference formula for the time derivative
% at time step 79 = 0 reads

ui j(t1) —u; j(t-1)

(Oru); j (to) = = u,j(1-1) = u;,j(11) = 2h (Opu); ; (10) .
———

2h
(IC2)
Substituting the above into (4.59) (with n = 0) and rearranging gives
h? h?
wi j (1) = ui,j(t0) +h (d); ; (t0) + = (Dux); j (t0) += (Byyu). (t0). (4.60)
N 2 2 i,J
acn 1c2) Eq. 4.56 M

Eq.4.57

In summary, we use (4.60) to advance from f to #1, then (4.59) for the subsequent time
steps. This gives us the amplitude u(x;, y;,1,) at all interior grid points at all times.

The code wave.ipynb implements the above algorithm and creates an animation for
t > 0. Some snapshots from the animation are shown in fig. 4.21.

4.10 PDE II - the wave equation 199

Some points of interest in the code.

* There is a lot of vectorisation happening in the functions first_step and next_step.
Make sure you understand why these are equivalent to eqs. 4.60 and 4.59.

¢ In defining the initial condition (IC2) as a lambda function, we write ®*x to make the
output a 2D array. What do you think would happen if we make the function return ®
instead of 0*x? (We used the same technique in the code curl.ipynb in §3.10).

 To update the 3D surface in each frame, we clear the deck and replot the surface from
scratch (using ax.clear()). This is in contrast with how we updated the 3D curve in
lorenz.ipynb (§4.6), where we kept the axes and just updated the data. At the time
of writing, it is not possible to do this kind of data update for 3D surfaces without using
some unwieldy workaround.

Separation of variables

Let us investigate if we can solve for u(x, y, t) exactly by following the steps outlined in the
previous section. We begin by searching for a separable solution of the form

u(x, y,t) = X()Y ()T(1).
Using the boundary condition and the superposition principle gives us

u(x,y,t) = Z Z sin(mnx) sin(nry) (amn cos At + by, sin At), 4.61)

n=1 m=1

where the eigenvalues A = 7Vm?2 + n2, and d,n,, by, are functions of m and n to be
determined.
Next, using the initial condition (IC1), we can determine @, as follows.

sin(27rx) sin(2ry) = Z Z Amp Sin(max) sin(nry) = amn =

n=1m=1

{1 it (m,n) = (2,2),

0 otherwise.
Using (IC2), we determine b,,, as follows.

n=1

Abpyy sin(max) sin(nny) = by, = 0.

[Ms

1

3
I

Putting everything together, we find the solution
u(x,y,t) =sin(2rx) sin(2ny) cos(2\/§m‘). 4.62)

This can be used to verify the validity of the numerical solution — see exercise 14d. As a
rough check, we see from (4.62) that the cosine term first vanishes at time ¢ = V2 /8 = 0.177
s, and the amplitude of the membrane should also be zero. The middle panel of fig. 4.21
corroborates this calculation.

200 4 Differential Equations and Dynamical Systems

DiscussioN

¢ Normal modes. We were quite lucky that the initial condition and boundary conditions
of the problem allowed us to solve the wave equation by hand exactly. The relatively
simple solution (4.62) is called a normal mode of the system, meaning that all points
on the membrane oscillates at the same frequency. This is apparent in the animation
which shows that the solution behaves like a ‘standing wave’.
In general, a different set of initial and boundary conditions will yield a more complicated
solution which, as can be seen in eq. 4.61, can be decomposed into a combination of
normal modes (this is precisely the idea behind Fourier series).

+ The wave equation in R3. Suppose that the wave can propagate in all directions in R?,
then the amplitude u(x, y, z, t) satisfies the 3D wave equation

1 6%u 5

— =V,
c2 or?
where the constant c is the speed of the wave in the medium. The above can also be
written as
Ou =0,

1 8 _V?

where the d’Alembertian operator (or box operator) is O = —5 25

* Wave equation in physics. Here are some examples.

— The electric field E in a vacuum obeys the wave equation
oE =0.

The above equation is in fact 3 equations written in vectorial notation (i.e. each
component of E satisfies the same PDE). The magnetic field B obeys the same
equation. The wave speed c is the speed of light.

— Gravitational waves, predicted by Einstein in 1916 and first detected in 2016, can
be described by a tensor, 1_1,,,,, which, in this case, can be thought of as a 4 x 4
matrix and g, v = 0, 1,2, 3 are the indices for its rows and columns. The amplitude
Ii_l,n,l can be thought as the magnitude of the ripples propagating in spacetime (3
space dimensions + time). General relativity predicts that in vacuum, & uv satisfies
the wave equation

Ohy, = 0.

This means that gravitational waves travel at the speed of light.

— In quantum mechanics, a particle is described by a wave function (x,t) which
describes the physical state of the particle probabilistically. If a particle has mass

m, it obeys the equation
mc?

Dlﬁ:—? v,

where c is the speed of light and 7 is Planck’s constant. This can be regarded as a
wave equation with a source term on the RHS.

These examples tell us that the wave phenomenon is ubiquitous on all physical scales,
from quantum to cosmological.

4.10 PDE II - the wave equation 201

1.00
0.75
0.50
0.25
0.00

—-0.25

—0.50

-0.75

-1.00
1.00

0.75

0.50

0.25

0.00

-0.25

—0.50

-0.75

-1.00
1.00

0.50

0.25

0.00

-0.25

—-0.50

—-0.75

-1.00

Fig. 4.21: Animation snapshots of the wave amplitude u(x, y,¢) at¢ = 0, 0.17, 0.35s.

202 4 Differential Equations and Dynamical Systems

wave.ipynb (for creating the wave animation (fig.)

|
:import numpy as np
rimport matplotlib.pyplot as plt
\ from matplotlib.animation import FuncAnimation
| %matplotlib
|
Divide the domain into Ny, X N, cells i Nx, Ny = 40, 40
The x and y coordinates of the grid points 1 x = np.linspace(0,1,Nx+1)
|y = np.linspace(0,1,Ny+1)

Cell dimension Ax, Ay ydx, dy = x[1]1-x[0], y[1]-y[0]
Step size (in time) ! h = 1le-3
Time to end evolution 1 Tmax = 3
Times to record snapshots T = np.arange(®, Tmax+h, h)
Constants (h/Ax)? and (h/Ay)? 1Cx2, Cy2 = (h/dx)**2, (h/dy)**2
|
Initial condition (IC1) 1 IC1 = lambda X, Y : np.sin(2*np.pi*x)*\
l np.sin(2*np.pi*y)
Initial condition (IC2) | IC2 = lambda x, y: 0%x
|
Grid points (x;, y;) (2D arrays) 1X, Y = np.meshgrid(x, y)
Initialising (IC1) and (IC2) at grid points U = ICI(X, V)
Vo= I, V)
ui j(tn-1) ! Unml = np.zeros((len(x),len(y)))
u; ; at snapshot times T : Usnap = np.zeros((len(x),len(y),len(T)))
|
Eq. 4.60 — to go from g to #; 'def first_step(U):
Setting boundary condition (BC) Ustep = np.zeros((len(x),len(y)))
Numerator of (4.56) Uxx=U[:-2, 1:-1]-2*U[1:-1,1:-1]+U[2:,1:-1]
Numerator of (4.57) Uyy=U[1l:-1,:-2] -2*U[1:-1,1:-1]+U[1:-1,2:]

Set u;,; at interior grid points Ustep[1:-1,1:-1]= U[1:-1,1:-1] + \
h*V[1:-1,1:-1]+ 0.5*(Cx2*Uxx + Cy2*Uyy)

return Ustep

I
|
I
|
|
I
|
|
I
|
l
|
Eq. 4.59 — for subsequent time steps | def next_step(U, Unml):
1 Ustep = np.zeros((len(x),len(y)))
I Uxx=U[:-2, 1:-1]-2*U[1:-1,1:-1]1+U[2:,1:-1]
; Uyy=U[1:-1,:-2] -2%U[1:-1,1:-1]+U[1:-1,2:]
| Ustep[1:-1,1:-1]=-Unm1[1:-1, 1:-1]+\
| 2*U[1:-1,1:-1]+ Cx2*Uxx + Cy2*Uyy
! return Ustep
I
)
first_step(U)

Record u;_; (to) | Usnap[:,:,0]
Record u; ; (1) | Usnap[:,:,1]

|
Record u; j(t,) forn > 2 i for i in np.arange(2, len(T)):
l Usnap[:,:,i] = next_step(Usnap[:,:,i-1],
| Usnap[:,:,1i-2])
Display every 10th time step in each frame ! fskip = 10
for the sake of speed (reduce fskip for a: frames = Usnap[:,:, 0::fskip]
smoother animation) |

Code continues on the next page

4.10 PDE II - the wave equation

wave.ipynb (continued)

Plotting commands for the ith frame

Plot 3D surface in the ith frame

Display ¢ value on the plot

Plot the surface att = 0
Add colour bar on the right

Animate each frame

How many frames?

203

def plot_ith_frame(i):
ax.set_x1lim([0,1])
ax.set_ylim([0,1])
ax.set_zlim([-1,1])
ax.set_xlabel('x"')
ax.set_ylabel('y')
ax.set_zlabel('z")
surf = (ax.plot_surface(X,Y,frames[:,:,i],
cmap="'Spectral', vmax = 1, vmin = -1))
ax.text(0,0,1.6, f't= {i*fskip*h:.3f} s')
return surf

fig = plt.figure(Q)

ax = fig.add_subplot(11ll, projection = '3d')
surf = plot_ith_frame(®)

fig.colorbar(surf, pad=0.1)

def animate(i):
ax.clear()
surf = plot_ith_frame(i)
return surf

ani = FuncAnimation(fig, animate,

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
:
| frames = frames.shape[2])
|

|

plt.show()

204

4 Differential Equations and Dynamical Systems

4.11 Exercises

1 (Solving ODEs numerically)

a.

Use separation of variables to show that IVP

Y1) = y() =2, (4.63)

_y
tt+1)
has exact solution y = 4¢/(¢ + 1).

Now solve the IVP numerically using the forward-Euler, Heun’s and RK4 methods
with 2 = 0.01. Obtain the values of the absolute error |Yexact — Ynumerical| at ¢ = 2.
Which method gives the most accurate answer?

. Use integrating factor to show that the IVP

w’(t) = wtant —sect, w(0) =1,

has exact solution w = (1 —¢) sect.

Solve the IVP numerically using 3 methods in part (a) with 4 = 0.01. Obtain
the absolute error of the solution at # = 1.57. You should find that the numerical
solutions are much less accurate than in part (a). Why?

2 (Scaling of E(h)) Consider the IVP

y'(@) ==y, withy(0)=2

(see §4.3a).

a.

b.

Solve the IVP numerically using the forward-Euler, Heun’s and RK4 methods using
step size & = 0.01 to obtain the solution y at t = 3.
Vary h and plot the absolute error

E(h) = |yexact(3) - ynumerical(3)|'

You should obtain something similar to fig. 4.22.

Calculate the gradient of the lines and hence verify that E(h) scales like &, > and
h* for the three methods.

Suggestion: Combine Eh.ipynb (§2.2) and odesolver.ipynb (§4.3). Vary the
number of subintervals N in [0, 3], then calculate the corresponding step size.
Why do we see the wiggles in the graph when using the RK4 method?

3 (Third-order ODE) Consider the following IVP

Y7 +y" =y —y=0, withy(0) =7 y'(0)=-3, y”(0) =C.

Solve the IVP with SciPy’s solve_ivp (see code at the end of §4.3). Hence, produce a
plot of y(¢) for t € [0, 5] for a few values of C on the same set of axes.

Suggestion: Start by writing the third-order ODE a system of three first-order ODE:s.
Find C such that y(¢) —» 0 ast — oo.

(Note: This problem could also be solved analytically using the auxiliary-equation
method.)

4.11 Exercise

Absolute error E

1072 A

1074 4

1076 4

1078 |

10-10

10712

1024 4

10-16

205

— Forward Euler

1073 1072 107!
h

Fig. 4.22: Scaling of the absolute error E(%) as a function of step size i for three ODE
solving schemes, namely, forward Euler, Heun’s and RK4.

4 Reproduce figure 4.7.

Suggestion: Use the command bbox_to_anchor (x,y) to place the legend outside the

plot by adjusting x and y.

5 (Satellite orbits) Let (x(¢), y(¢)) describe the 2-dimensional trajectory of a satellite
orbiting a planet. Assume the planet is stationary at the origin (0,0). Newtonian
mechanics tells us that, if the mass of the satellite is negligible compared to that of the
planet, then the orbit satisfies the following coupled second-order ODEs:

d’x B Mgx

dr2 ~ (xz + y2)3/2’
Ey ___ Mgy
dt2 (xz + y2)3/2’

where M is the mass of the planet and g its gravitational acceleration. Note that the
mass of the satellite does not appear in these equations.

a. Set Mg = 3 and set the initial conditions (x, x’, y, y’) = (2, 0, 0, —1). Produce an
animation of the orbit up to r = 100 by solving the ODEs using the RK4 method

with 2 = 0.1.

b. From Newton’s theory of gravitation, it can be shown that all possible satellite
orbits are conic sections (i.e. ellipses, hyperbolae or straight lines). Which shape
is your orbit in part (a)? Try changing the initial conditions to produce the other

kinds of orbit.

c. Re-calculate the orbit in part (a) using the forward Euler and Heun’s methods with
h = 0.1. Are the resulting orbits physically viable?

206 4 Differential Equations and Dynamical Systems

6 (Damped pendulum) A pendulum is set up as in §4.4, with an addition of friction (e.g.
due to air resistance). Suppose that the friction is proportional to the angular velocity of
the pendulum, the ODE for the angular displacement 0(¢) is

b
0"+ 20" +Ssino =0, (4.64)
m {
where m is the mass of the bob (in kg) and the constant b is the damping coefficient.

a. LetQ = |% - %‘.
Using the small-angle approximation (sinf ~ 6) and the method of auxiliary

equation, show that the approximate solution is given by

e~P1/2m (A cosh Qt + Bsinh Qr), if Q2 >0,
Oapprox (1) = { €”P112™ (A + Br), if Q2 =0,
e P12m (AcosQt + BsinQt), if Q2 <0.

where A and B are constants to be determined.

b. Suppose that §(0) = 0 rad, 8’(0) = 2 rad/s and £ = 1m.
Using the code pendulum. ipynb as a starting point, plot 8(¢) fromz =0to 5 s
assuming that
b
— = 0.5+/g, 24/g and 3+/g.
m
Plot these 3 curves on the same set of axes.

c. For the given the initial conditions in part (b), obtain @,pp0x (f) by showing that
A =0, and that

6’ (0) if Q=0,
0’(0)/€, otherwise.

d. For each of the 3 values of b/m in part (b), plot the approximation and the numerical
solution on the same set of axes. Do the approximations appear to be accurate?
(You may like to quantify the accuracy.)

Verify that as the initial angular velocity 8’(0) increases, the small-angle approxi-
mation becomes less accurate.

e. The 3 values of b/m in part (b) give rise to an underdamped, overdamped or
critically damped pendulum. Explain which case is which, and suggest why they
are given these names.

7 (The upside-down pendulum) Use the code pendulum.ipynb as a starting point for
the following questions.
Watch this video”.
The video shows a pendulum made from a rod of length ¢ attached to a pivot that moves
up and down. Let 6 be the angle that the rod makes with the vertical (i.e. 8 = 0 when
the rod points downward). The goal of this question is to investigate the situation in
which the upside-down (‘inverted’) pendulum becomes stable.

Suppose that at time ¢, the pivot’s position is at

Ypivot = Acos(wt),

7https://www.youtube.com/watch?v=50GYCxkgnHQ

https://www.youtube.com/watch?v=5oGYCxkgnHQ

4.11 Exercises 207

where A and w are constants that determine the amplitude and frequency of the pivot’s
oscillation. Intuitively, it is clear that if A = O (when the pivot does not move), the
downward pendulum 6 = 0 is a stable equilibrium, and the inverted pendulum 8 = x is
an unstable equilibrium.

When the pivot starts moving up and down, it can be shown that 6(¢) satisfies the ODE:

2
A
0" + (% — w7 coswt) sind = 0.

In this question, let £ = 0.5 m, g = 9.8 m/s2. Use the initial condition #(0) = 3.1.

a. Produce an animation of the upside-down pendulum.
b. Set A = 0 to make sure that the pendulum behaves as expected.
c. Adjust A, w and 6’(0) so that the pendulum is stable in the upside-down position.

8 (Exploring the double pendulum further) Use the code doublependulum. ipynb as a
starting point for each of these questions.

a. Set the double pendulum to be initially perfectly upside down, i.e. set §;(0) =
6,(0) = 7 and 91 0) = 0§ (0) = 0 (assume the bobs are connected by massless
rods). This is an unstable equilibrium. Nonetheless, in theory we should expect no
movement at all. Does the animation support this prediction? If not, explain why.

b. Visually demonstrate the sensitivity of the double pendulum to initial conditions
by producing an animation of 2 double pendulums (on the same set of axes) using
almost the same initial conditions.

The animation should show that the pendulums evolve almost identically up to a
certain time when they suddenly become wildly different.

c. Here is another way to visualise the sensitivity of the double pendulum to initial
conditions. Using the initial conditions (61, 61, 62,65) = (2 + &, 0, 1, 0.1) where
£ =0, 1073 and 107> (as in fig. 4.9), plot the trajectories in the (6, 6,) phase space
from ¢ = 0 to 30s.

The plot for ¢ = 1073 is shown in fig. 4.23. Your other plots should look very
different. The dramatic changes in these plots as a result of tiny changes in ¢
demonstrates the chaotic nature of the double pendulum.

d. How do we make the double pendulum more chaotic? For example, how does
increasing the ratio m;/m; affect the behaviour of the double pendulum? Does it
become ‘more’ or ‘less’ chaotic? Make a conjecture and verify it with the animation.
(One could actually measure how chaotic a system is using the Lyapunov exponent
A, but you are not asked to calculate A in this question.)

e. Investigate the sensitivity of the evolution of the double pendulum to the choice
of step size h. You may like to plot the trajectory in the (1, 6>) plane for various
choices of h.

9 (Exploring the Lorenz equations further) Use the code lorenz.ipynb as a starting
point for each of these questions.

a. Use the animation to verify the behaviour of trajectories given the values of r listed
in the following table, keeping oo = 10 and b = 8/3. (Table adapted from [6].)
Use the animation to explain what the phrase ‘transient chaos’ means.

time = 30.0s

N

Fig. 4.23: A trajectory of the double pendulum in the 6;-6, phase space.

O<r<l1 The origin is an attractor.
1 <r<13.93 X* are attractors.
13.93 < r < 24.06 ‘Transient chaos’.
r > 24.06 A strange attractor appears.
r>313 Periodic orbits exist.

b. Plot fig. 4.12, which shows x(¢) for two trajectories with almost identical initial
conditions.

c. Create a 3D animation of the two trajectories in fig. 4.12 evolving simultaneously
on the same set of (x, y, z) axes.

d. Does the numerical method used to solve the Lorenz equations matter?
Try solving the Lorenz equations with two different methods in scipy.solve_ivp
(say, RK45 and DOP853 — type help(solve_ivp) to see other methods). Plot
x(t) (say) arising from these methods on the same diagram.

10 (Exploring the logistic map further) Use the code logistic.ipynb as a starting point
for each of these questions.

a. Plot the bottom right panel of fig. 4.13. Verify that chaotic behaviour occurs
regardless of the initial value xq € [0, 1].

b. Produce a fly-through animation which zooms into the bifurcation diagram of the
logistic equation, showing its fractal structure.
Suggestion: start with the window [3.84, 3.855] x [0.45,0.54] and end with the
window [3.85213,3.85219] x [0.4646,0.4664]. Do linear interpolations of the
endpoints and plot the bifurcation diagram in each frame. Use fewer frames to start
off with and increase the number of frames when you are confident that the code
works. Save your animation as a .mp4 file.

c. By examining the bifurcation diagram, or otherwise, give an estimate of r which
produces a period-5 orbit.

4.11 Exercises 209

d. Consider the map x4+ =r — xfl where x(is drawn randomly from [-2, 2] and
r € [0, 2] (this is a variation on the logistic map).
Plot the bifurcation diagram and locate the first 4 bifurcation points b;. Calculate

the ratio
bn—l - bn—2

bn - bn—l)

(You should obtain a number close to the Feigenbaum constant.)

11 (SIR model in epidemiology)
The spread of a disease in a population can be modelled using the famous SIR model,
where S, I, and R are all functions of time ¢ (in days) and take values in [0, 1].

* S(¢) is the fraction of the population who are susceptible to the disease (but not yet
infected),

* [(¢) is the fraction of the population who are infectious to others,

* R(?) is the fraction of the population who have recovered and are now immune to
the disease.

The ODEs for the SIR model are:
ds

— = -BSI,
dt B

d/

— = BSI —vyl,
& B Y
R _
a7

where the constant S is called the contact rate (the transition rate from susceptible to
infectious), and 7y is the recovery rate (the transition rate from infectious to recovered).
The following simple diagram summarises this model.

s5 1% R

Summing the ODE:s tells us that (S + 7 + R)’ = 0, meaning that S + I + R is constant at
all times. We shall set S + I + R = 1. We say that the population is compartmentalised
into these 3 categories
In this question, let y = 0.1, I(0) = 1073, R(0) = 0. We take 8 = 0.2 for now, but we
will vary it in part (c).

a. Use solve_ivp to solve the system. Hence, on the same set of axes, plot S, I, R as
functions of ¢ € [0, 100].
b. Plot the trajectory showing how the system evolves in the (/, S) phase space. In
other words, plot S against /. Furthermore,
i. Determine whether the trajectory travel up or down in this plot.
ii. From the graph, write down the value of S where the trajectory has a vertical
tangent. Explain why this value corresponds to y/g.
¢. Add aslider for g (ranging from O to 1) to part (a). Hence, answer the following
questions.
i. Describe the long-term behaviours of S, I and R when the contact rate is very
high (= 1) or very low (= 0). Do these behaviours reflect what might happen
in the real world?

210 4 Differential Equations and Dynamical Systems

ii. When 8 = 1, what fraction of the population was infected at the peak of the
disease outbreak? When did this peak occur? (Answer: 67%, occurring on day
10.)

For further reading on mathematical epidemiology see [32] and [120] (the latter is an
accessible introduction to the mathematical modelling of the spread of COVID-19).

12 (Exploring fractals further)

a. Use the code mandelbrot.ipynb as a starting point for this question.
Replace the map f.(z) in eq. 4.31 by the following maps and plot the resulting
fractals. You may assume that the escape criterion (Lemma 2) still applies.
i. (‘Burning ship’ [145])

fe(2) = (IRe()| +illm(z))* + ¢, z9=0.
ii. (Tricorn and Multicorns [51]):
fe(@=7"+c, z=0,

where k =2,3,4...
iii. (The ‘Multibrot’ set)

fe(@=2"+c z=0,

where k = 3,4,5...
In each case, zoom into the image and explore its fractal structure.
Suggestion: You may need to do more than just changing the iterative map in the
code. In particular, some of these fractals may not have the same symmetries as
the Mandelbrot set. Also, to speed up the investigation, start with a relatively poor
resolution to figure out the best window to plot.
b. By modifying mandelbrot3D. ipynb, plot figure 4.19.

Suggestion: Use the code snippet below to stack the two figures on top of each
other without any space between.

fig = plt.figure(Q)
axl = fig.add_subplot(211)
ax2 = fig.add_subplot(212)

plt.subplots_adjust(hspace=0)
plt.setp(axl.get_xticklabels(), visible=False)
yticks = ax2.yaxis.get_major_ticks()
yticks[-1].labell.set_visible(False)

4.11 Exercises 211

c. (Julia set) In the complex map f. (eq. 4.31), let’s take an alternative view: instead
of fixing zp and vary c, let’s fix ¢ and vary zo.
More precisely, we want to investigate orbits of zo € C under the iterated map f.(z).
An orbit either escapes to infinity or remains bounded. The boundary between these
two behaviours is called the Julia set of f.. Gaston Julia (1893-1978) along with
fellow French mathematicians Pierre Fatou (1878-1929) are regarded pioneers in
the field of dynamical systems.

Im z

-1.0 -0.5 0.0 0.5 1.0
Re z

Fig. 4.24: Douady’s Rabbit. The boundary between the light and dark regions is the Julia
set of f.(z) = 2% + ¢ with ¢ = —0.17 + 0.78i.

The Julia set for ¢ = —0.17 + 0.78i is shown in fig. 4.24.
i. Reproduce this figure and investigate the Julia set for other values of c.

To plot Julia sets, you only need to perform very few modifications to
mendelbrot.ipynb. Here are some pointers.
* Fix c at the start of the code.
* For each zy, iterate the map f. while checking that |za]? < 1000 (say).
* Exploit the symmetry z — —z under the map f.. You only need to check
points in the region Im z > 0. To obtain the image for Im z < 0, flip the
image left-to-right and upside down.

ii. Produce the Julia sets for other values of c. What can you conclude about the
Julia sets for ¢ € M and ¢ ¢ M? (Hint: think in terms of connectedness.)

212 4 Differential Equations and Dynamical Systems

13 (Exploring the heat equation further) Use the code heat.ipynb as a starting point for
each of these questions.

a. Solve the 1D heat equation 4.3 using the initial condition u(x, 0) = sin(S7x/2)
with the following boundary conditions. Produce an animation of u(x, t) where
t €[0,0.5] and x € [0, 1].

i. (variable left endpoint) u(0,t) = sin(20¢), u(l,7) = 1.
ii. (variable endpoints) u(0,t) = sin(20¢), u(1,t) = cos(10¢).

iii. (Neumann boundary condition) g—)”C(O, 1) = %(l,t) =0.

Suggestion: Only a few modifications to the function derivs in heat.ipynb
are required to include data at the endpoints. Symmetric-difference formulae for
x derivatives cannot be applied at the endpoints, so use forward or backward-
difference formulae instead. Your animation of u(x, ¢) should not contain any kinks
or discontinuities.

b. (Heat equation with a source term) If at t > 0, the entire rod continues to be heated
(or cooled), the heat equation becomes

du 0%u

Frar +q(x),

where g(x) is called the source term, where g > 0 corresponds to heating and
q < 0 cooling. Suppose that for x € [0, 1], the source term is given by:

q(x) = x(1 - x).

Using the initial condition u#(x, 0) = sin(57x/2) and boundary conditions u(0,7) =
0 and u(1,7) = 1, produce an animation of u(x,¢) up to ¢ = 1.

Obtain an expression for the steady-state temperature distribution (by solving the
PDE and ignoring the time derivative). Plot the curve representing the steady
state temperature on your animation. You should see the time-dependent solution
approaching this curve.

c. For the original heat-equation problem posed in §4.9, compare the series (exact)
solution 4.53 to the numerical solution at some fixed time (say, ¢ = 0.1). Plot them
on the same set of axes, noting the number terms needed for the series solution to
resemble the numerical solution. Obviously this will depend on your choices of Ax
and 4.

Quantify the accuracy of the numerical solution by plotting the fractional difference.
d. Solve the discretised heat equation (4.42)-(4.44) again but, instead of using
solve_ivp, use the forward-difference method.

Explore different choices of Ax and A¢. What happens when the stability condition
(4.54) is not satisfied?

4.11 Exercises 213

14 (Exploring the wave equation further) Use the code wave.ipynb as a starting point for
each of these questions.

a. Reduce the dimensionality of code wave.ipynb so that it solves the following
one-dimensional wave equation:

%u du
— =, € (0, 1),
o e FEOD
with initial conditions u(x,0) = sin(27x),
ou
. 90 = 0’
Y (x,0)

and boundary condition u(l,t) =u(0,¢t) = 0.

This involves going through the code and deleting the y dimension. When done
correctly, your code should produce a 2D animation of a string vibrating in a normal
mode.

Repeat the animation with the initial triangular waveform

u(x,0) =1-12x-1|.

b. (Non-trivial boundary condition) Suppose the vibrating membrane modelled by
the 2D wave equation (4.55) is forced to move on one side, so that the boundary
condition (BC) becomes:

sin(2¢) sin(2rx) if y =0,

b ’t =
u(x, y, 1) {0 if y#0and (x,y) €dS.

Produce an animation of the vibrating membrane for ¢ € [0, 3]. Suggestion: This
involves a minor modification of the function next_step in the code.

c. Modify the animation to produce an evolving heatmap (see §3.9) instead of a
vibrating 3D surface.

d. For the original wave-equation problem posed in §4.10, compare the numerical
solution of the wave equation against the separable solution (4.62). Do this by
plotting the difference between them and observing the maximum values. (This
depends on your choices of Ax, Ay and h — watch out for potential instability.)

Check for
updates

CHAPTER
FIVE

Linear Algebra

&

E
ey

Fig. 5.1: Seki Takakazu (ca.1640-1708), a Japanese scholar whose many mathematical
discoveries preceded those in the western world. He was the first person to study matrix
determinants and use them to solve linear systems ten years before the same discoveries
were made by Leibniz. (Image source: [214].)

Linear algebra introduces students to abstract concepts associated with vectors and
matrices. Some students may have already worked with matrices at school (some may even
know how to calculate a 3 X 3 determinant), but it is only at university that matrices are
viewed as objects in a vector space. Students will discover that a matrix is not just a grid
of numbers, but has associated with it structures such as row space, column space and
nullspace. Each matrix can also be viewed as a representation of a linear transformation
which has a geometric interpretation (e.g. rotation, magnification, shear or a combination of
transformations). In this chapter, we will see how these abstract structures and transformations
can be understood and visualised with the help of Python.

Linear algebra has been studied for millennia, mostly in the context of solving systems of
linear equations with many unknowns (the first matrix appeared in China as early as 200BC
—see fig. 5.2). The subject was given a modern synthesis in the seminal book by Birkhoff
and Mac Lane [26] (and its subsequent editions [27]). Today, linear algebra plays a key role

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 215
S. Chongchitnan, Exploring University Mathematics with Python,
https://doi.org/10.1007/978-3-031-46270-2_5

https://doi.org/10.1007/978-3-031-46270-2_5
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46270-2_5&domain=pdf

216 5 Linear Algebra

in the development of machine learning and data science — see [2, 195]. An application to
image reduction will be explored in this chapter (§5.8).

There are many good introductory textbooks on linear algebra. Some notable modern
references are [14, 104, 125] and, in particular, [194].

ARARAEIEAEA Ll
Bl | K| Li# R ¥
El T |z || L ®Y S
Bk R ﬁ'ﬂﬁ% A
L EAN BLNE ARt T
ARSRESE AT A I SR
ARME JE=tE I EE
AT AEIEE JE
R | RTIE T '
F | E|TIE ‘
% BRI il |
I — K| |
¥ HiE - |E|
FEE B
i S = J? j‘t- 1 ‘
i DI ~A
i LW R
w | [Elria] e

Fig. 5.2: A page from a reprint of the Nine Chapters of Mathematical Art, an anonymous
Chinese text originating from 200-100BC. This page describes a problem related to grain
production involving 3 unknowns. The translation and solution are discussed in this chapter
—see eq. 5.2. (Image sources: [221])

5.1 Basics of SymPy

One of the main tools we will use in this chapter is SymPy, a Python library for symbolic
computing. It can help us solve fiddly algebraic equations and simplify complicated
expressions, although, as we will see later, the user must be vigilant when interpreting
SymPy’s results. The SymPy website has an excellent introductory guide!, including
common mistakes and pitfalls (essential reading for all new users). SymPy has a large
number of linear-algebra functions, some of which will be used in this chapter when we
require symbolic results or exact expressions.

Another tool for computational linear algebra is SciPy’s 1inalg library (scipy.linalg).
We will use this when numerical (rather than symbolic) answers are required (especially when
numpy arrays are needed for plotting). NumPy also has a linalg library (numpy.linalg).
However, scipy.linalg contains all the functionality of numpy.linalg, so it is recommended
that you always use scipy.linalg.

It is worth mentioning other popular alternatives for numerical linear algebra that you
can use for free. (Their uses are not only limited to linear algebra.)

Lhttps://docs.sympy.org/latest/tutorials/intro-tutorial/index.html

https://docs.sympy.org/latest/tutorials/intro-tutorial/index.html

5.2 Basic concepts in linear algebra 217

e Julia (https://julialang.org)
* Sage (https://www.sagemath.org)
¢ GNU Octave (https://octave.org)

In the next section, we will give a quick summary of essential linear algebra and show
how both the numerical method (using NumPy and SciPy) and symbolic method (using
SymPy) can be used to demonstrate those concepts.

5.2 Basic concepts in linear algebra

All code snippets in this section are to begin with the following lines:

import numpy as np
import scipy.linalg as LA
import sympy as sp

Matrices

Matrices and basic operations

Defining a matrix

oo (12
Numerical : A = (3 4)

A = np.array([[1,2], [3,411)

I
Z = sp.zeros(2,3)

|
i
Symbolic : B = (¢ b 'a,b,c,d = sp.symbols("a,b,c,d")
e 'B = sp.Matrix([[a,b], [c,d]])
Identity and zero matrices i
10 000 |
I—(Ol)andz—(ooo) !
|
Numerical :I = np.eye(2)
1Z = np.zeros((2,3))
|
Symbolic 'I = sp.eye(2)
|
|
|

Multiplying two matrices |
Numerical: A? (Be careful! Both A*A and A**2 | AGA
mean squaring elementwise) :

Symbolic: B> B*B # or B**2 or B@B

|

|

:
Transposing }
Numerical: AT ! A.T # or np.transpose(A)
Symbolic: BT 'B.T
Finding the determinant l
Numerical: det A = -2 ! LA.det(A)
Symbolic: det B = ad — bc ! B.det()

|
Finding the inverse :
Numerical: A~} 'LA.inv(A)

Symbolic: B! 3 B*¥%_1
|

https://julialang.org
https://www.sagemath.org
https://octave.org

218 5 Linear Algebra

Here are a few important pointers for the above concepts.

¢ Matrix multiplication is associative, meaning that
(AB)C = A(BC).

But matrix multiplication is not commutative, i.e. AB is not always equal to BA.

* The transpose of A (denoted A”) is a matrix in which the rows/columns of A become
the columns/rows of AT (i.e. rows and columns are switched). The transpose of AB is
not AT BT . In fact, the order is reversed:

(AB)T = BT AT.
¢ The determinant of a 2 X 2 matrix is defined as

ab
cd

‘:ad—bc.

This comes from the expression of the area of a parallelogram — see the Discussion in
§5.5.
The determinant of a 3 X 3 matrix is

abc
def:aef‘—b‘df+cde
e hi hi gi gh

=a(ei— fh)—b(di— fg)+ c(dh —eg)

when expanded by the first row, although any row or column can also be used.
The determinant of a matrix A may be written as |A| or det A.

* The inverse of A is the matrix A~! such that AA~' = A='A = I. To find the inverse of
AB, the same order-reversal rule as the transpose applies:

(AB) ' =B7'A".

The inverse of a matrix exists if and only if its determinant is nonzero, in which case
the matrix is said to be invertible. For most numerical purposes, finding an explicit
expression for the inverse of a matrix is usually avoidable. We explain how and why in
§5.4.

Row reduction and the RREF

Given a matrix, one can perform row operations to reduce it to a simpler form. These row
operations (also called Gaussian elimination despite its use long before Gauss) are:

e Multiplying row i by a constant ¢ (denoted R; : cR;)
* Swapping row i with row j (denoted R; < R;)
* Adding c times row i to row j (denoted R; : R; + cR;)

These are normally performed to reduce a matrix to row-echelon form (REF), meaning
that:

5.2 Basic concepts in linear algebra 219

1. Rows that are entirely zeros are the last rows of the matrix.
2. The leading entry (i.e. the first nonzero entry) in each row is to the right of the leading
entry of the row above.

In addition, if all the leading entries are 1, and each leading 1 is the only nonzero entry in
its column, then the matrix is said to be in reduced row-echelon form (RREF). ,
The following example shows how a 3 x 3 matrix A can be reduced to row-echelon form.

D21\ popeory (L2 =1 popsize, (121
A=l21-2|—"",]0-30 S lo-3 0. (REF)
31 1) BRR\g 7 9 00 -2

One can go further and reduce it to reduced row-echelon form

12 =1\ gty (12-1\ pig,ag, (100
0-30|—"5lo10|—51]010 (RREF)
00 -2/ Re=3Rs \go 1) R:Ri*Rs \gg 1

We see that the RREF of the original matrix is simply the 3 X 3 identity matrix. (In fact,
the RREF of any invertible matrix is the identity matrix.)
To obtain the RREF of the above matrix in Python, we use SymPy.

Finding the reduced row-echelon form of a matrix with SymPy

A = sp.Matrix([[1, 2, -1]1, [2, 1, 2], [-3, 1, 11D
A.rref()[0]

The function rref gives two outputs: the first is the rref of the matrix, the second is a
tuple containing the indices of columns in which the leading entries appear.

Reducing a matrix to its REF or RREF can be expressed as a sequence of matrix
multiplications on A. For example, swapping the first two rows of a 3 X 3 matrix A can be

written as L A where
010
L = (1 0 0).
001

Similarly, the row operation R3 : R3 — 7R, performed on A can be expressed as L, A where

100
L,=({0 1 0].
0-71

We will see why these matrices are important when we discuss LU decomposition in §5.4.

Solving linear systems

One of the most important topics in introductory linear algebra is the understanding of the
solution(s) to the linear system

Ax = b. 5.1)

220 5 Linear Algebra

Here A is an m X n matrix, X = (xq, X2, ...x,)! and b € R". Eq. 5.1 represents a system of
m linear equations with n unknowns. We want to understand when the system permits a
unique solution, more than one solution (how many?), or no solutions at all. This will be
discussed in §5.3.

Four methods of solving Ax = b (by hand) will be discussed in §5.4. For now, let’s see
how Python can help us solve a linear system that appeared in the legendary Chinese text
Nine Chapters of Mathematical Art (jili zhang suan shi) written anonymously in circa
200-100 BC. Below is the first problem posed in Chapter 8. The translation is adapted
from [122].

“3 bundles of top grade cereal, 2 bundles of medium grade cereal and 1 bundle of low grade cereal
yield 39 dou of grains.

2 bundles of top grade cereal, 3 bundles of medium grade cereal and 1 bundle of low grade cereal
yield 34 dou.

1 bundle of top grade cereal, 2 bundles of medium grade cereal and 3 bundles of low grade cereal
yield 26 dou.

How many dou of grains can be obtained from each bundle of the top, medium and low grade
cereal?"

(A dou is approximately 10 litres.)
Let x, y, z be the number of dou of grains that can be obtained from a bundle of top,
medium and low grade cereal respectively. The question then translates to the system:

3x+2y+z=39 321\ (x 39

2x+3y+z=34 = [231||y|=]34]. 5.2)

x+2y+3z=26 123/\z 26
Numerical :A = np.array([[3,2,1],[2,3,1],[1,2,3]1])
Answer: (9.25, 4.25, 2.75) b = np.array([39, 34, 26])

LA.solve(A,b)

Symbolic :x,y,z = sp.symbols("x,y,z")
Answer. (3717 11 ‘A = sp.Matrix([[3,2,1],[2,3,1],[1,2,3]1])
WSWe \ 7 4 'b = sp.Matrix([39, 34, 26])

'sp.linsolve((A, b), x, y, 2)

In the Nine Chapters, the solution to this problem is obtained essentially by row reduction
(although columns are used instead). It is widely accepted that this was the earliest explicit
use of a matrix to solve a mathematical problem.

More advanced concepts and definitions

Here we collect a non-exhaustive list of definitions that are useful in introductory linear
algebra.

5.2 Basic concepts in linear algebra 221

Definition of a vector space

A vector space V is a set containing objects (called vectors) that can be added together or
multiplied by real numbers. Take any u, v, w € V and a, b € R. The following are axioms
must be satisfied.

* (Closure under addition and scalar multiplication)u+v e Vandau e V.
¢ (Commutativity of addition) u + v =v +u.

* (Associativity of addition) (w+v) +w=u+ (v+ w).

* (Associativity of scalar multiplication) a(bu) = (ab)u.

 (Existence of identity) 30 € V suchthatVu € V,u + 0 = u.

« (Existence of additive inverse) Yu € V, A(—u) € V such that u + (—u) = 0.
* (Distributivity over vector addition) a(u + v) = au + av.

* (Distributivity over scalar addition) (a + b)u = qu + bu.

* (Scalar identity) lu = u.

Linear algebra can be regarded, in the broadest terms, as the study of vector spaces. You
are by now familiar with with vectors in R”, which is a vector space containing vectors
which are n-tuples x = (x1, X2, . . . x,). There are less obvious examples of vector spaces,
such as P, — the set of all polynomials with degree at most n — which we will study in §5.10
(the Gram-Schmidt process).

Definitions related to vectors and vector spaces

* Linear independence The set {v{, Vs, ...V, } is said to be linearly independent if the
equation
civi+cvp+ -+, v, =0

only has the trivial solutionc; = ¢, =...=¢, =0.
¢ Linear combination A linear combination of vectors vy, vy, . .. v, is the vector

c1Vy + v+ -+, Vy

for some given constants cy, ¢y, . . . Cy.

* Span The span of a set of vectors {vy,vy,...V,} is the set of all possible linear
combinations of v;.

* Basis A basis of a vector space V is a linearly independent set of vectors {e;}! , whose
spanis V.

* Dimension The dimension of a vector space V is the number of vectors in its basis. For

example, if V has basis {e; };‘:1, then the dimension of V is n. We write dimV = n.

Definitions related to matrices

Let A be an m X n matrix. Denote its rows as ry, I, . . . I',,. Denote its columns as ¢, €3, . . . C;,.

* Row and column spaces The row space of A is span(ry, Iy, . ..y,). The column space
is span(cy, €2, . . . C;).

* Rank The rank of A is the dimension of its row space (or, equivalently, its column
space).

222 5 Linear Algebra

* Nullspace The nullspace (sometimes written null space) of A is the set of all solutions
x to the equation Ax = 0.
* Nullity The nullity of A is the dimension of its nullspace.

Definitions related to linear transformations

LetT : V — W be a mapping from V to W (both are vector spaces). Suppose that for all
u,v € Vand for all @ € R, we have

Ta+av)=Tw)+aT(v). (5.3)
Then, T is said to be a linear transformation.
* Image The image of T is defined by
imT ={T(v):veV}
* Kernel The kernel of T is defined by
kerT = {v:T(v) =0}.

In the case that V = R" and W = R, the linear transformation 7' can be represented by
an m X n matrix A. In §5.5, we will visualise the geometric action of the linear transformation
associated with a matrix.

In particular, im T is precisely the column space of A, and ker T is the nullspace of A.
These relations will be discussed in §5.9 (the rank-nullity theorem).

Some advanced linear-algebra concepts in Python

1-1-1 |
LetA=|0 0 1 |A=sp.Matrix([[1,-1,-1],[0,0,1],[0,0,1]11)
00 1 |
Rank ! A.rank()
|
Row and column spaces | A.rowspace()

The results are the basis vector(s) for the A.columnspace()

row/column spaces !
|
|

Nullspace and nullity with SymPy | NullSpace=A.nullspace()
Nullspace | len(NullSpace)
Nullity

|
Nullspace and nullity with scipy.linalg lA:np.array([[l ,-1,-11,[0,0,1],[0,0,11]1)

Nullspace | NullSpace = LA.null_space(A)
Nullity ! NullSpace.shape[1]

5.2 Basic concepts in linear algebra 223

The output for SymPy’s nullspace command or SciPy’s null_space command is the
set of basis vector(s) for the nullspace.

1 —7.07106781 x 107!
SymPy : [1 scipy.linalg:|-7.07106781 x 107!].
0 8.86511593 x 10°17

In the second vector, the last entry is a sub-machine-epsilon quantity (see §2.2). Thus, the
two answers agree. Also note that —7.07106781 x 107! is meant to represent —%. This
comes from the fact that the SciPy method always gives normalised basis vectors.

Invertible Matrix Theorem
A huge chunk of introductory linear algebra can be summarised by the following collection
of results which link many concepts and definitions introduced in this section.

Theorem 5.1 (Invertible Matrix Theorem) Let A be an n X n matrix. Let T : R™ — R" be
the linear transformation represented by A. The following are equivalent:

e A is invertible erank (A) =n
edetA#0 ® The nullspace of A is {0}
®The RREF of Ais I ® The nullity of A is 0
® The columns of A are linearly indepen-
okerT = {0}

dent) N
® The column space of A is R" eimT =R
o The row of A are linearly independent ® The eigenvalues of A are nonzero
® The row space of A is R" ® A has n positive singular values

Eigenvalues and eigenvectors will be discussed in §5.6. Singular values will be discussed
in §5.8.

224 5 Linear Algebra

5.3 Linear systems in R?

Consider the system of equations

x—-2z=1
x—y+z=1 5.4
2x+ay—-z=p

where a and S are real constants. Investigate the number of solutions for different
values of @ and .

Algebraic solutions

Let’s solve the system by hand. We start by writing it in matrix form:

1 0 -2\/x 1
(1 i 1)(y)(1) 55
2 a -1/\z B

Next, we row-reduce the augmented matrix to find the RREF:

1 0 -2|1 _ 100|Ba+2B8-1)/Ba+3)
po1 1 | BT D 10 B+ |, (5.6)
2 a —-1|8 001 (B-2)/Ba +3)
where we have assumed that @ # —1. If @ = —1, we instead have
1 0 =2|1 RREF 10-2| 1
1-11|1|—01-3] 0 |. 5.7)
2-1-1(8 000(B-2

Do try to obtain these RREFs by hand, and, if you like, use SymPy to verify your results
(more about this in the Discussion section). Let’s now investigate the possibilities.

Case 1 a # —1. Reading off eq. 5.6, we have the following unique solution for (x, y, z):

_3a+2p-1 _p-2 _ p-2

30+3 0 0 a+1l ‘T 3a+3

(5.8)

Case2 a = -1, 8 # 2. The last row of the RREF matrix in eq. 5.7 reads
0=p8-2.

Therefore, if 8 # 2, the RHS of the above equation is nonzero. The system has no
solutions and is said to be inconsistent.

Case 3 o = —1, 8 = 2. The last row of eq. 5.7 is now consistent, but also redundant (0 = 0).
We have 3 unknowns with only 2 equations, and so one unknown can be regarded as a
free variable. This means that there are infinitely many solutions to this system. We

5.3 Linear systems in R 225

say that the system is underdetermined. (Overdetermined systems will be explored in
exercise 1.)

Let’s say we regard z as our free variable. Writing z = ¢, eq. 5.7 then gives us the
solution (x, y, z) in terms of the free variable ¢ as:

X 1+2¢ 1 2
(y):(3t)2(0)+t(3), teR. (3.9)
z t 0 1

Geometric interpretations

The 3 linear equations (5.4) represent 3 planes in R3. Different values of @ and 8 will
determine the configuration of the planes, which can intersect at a single point, a line, a
plane, or at no points at all.

Case 1 a # —1. The 3 planes intersect at a point, corresponding to the unique solution (5.8).
A visualisation of this situation is shown in the top panel of fig. 5.3, where @ = 1, 8 = 0.
Substituting these values into eq. 5.8 gives the coordinates of the intersection point.

1 2 1
(x’ y, Z) - (§’_§9_§) .

Case2 a = -1, 5 # 2. The 3 planes do not have a common intersection. Perhaps two of the
planes are parallel, or perhaps the 3 planes are 3 sides of a triangular prism. The latter
case is shown in the middle panel of fig. 5.3, which shows the configuration with @ = —1
and g =0.

Case 3 a = —1, 8 = 2. The solution (5.9) represents a line through the point (1, 0, 0) parallel to
the vector (2, 3, 1). All solutions to the system lie along this line. This configuration is
shown in the bottom panel of fig. 5.3, which shows the 3 planes intersecting along the
line (5.9).

Plotly

The code planes. ipynb produces fig. 5.3. This code looks quite different from our previous
programs. Rather than using Matplotlib, we use the P1lot1ly? package to plot the planes.
Whilst Matplotlib can certainly plot 3 planes on the same set of axes, unfortunately, it looks
bad. To save you the trouble of trying this, the Matplotlib plot is shown in fig. 5.4. You can
see that Matplotlib does a poor job at rendering the intersection of planes, and the confusing
figure gives us little sense of the positions of the planes relative to one another.

Fig. 5.3, produced by Plotly, is a 3D interactive figure showing 3 planes in the cubic plot
window (x, y, z) € [-5, 5]3. The planes are in different colours, and a slider is added for the
value of « (say, a € [-2, 2] in steps of 0.25). When we move the slider, the corresponding
plane is replotted accordingly. To keep things relatively simple with only one slider, we
specify the value of 8 manually in the code.

2 For installation, see https://plotly.com/python/getting-started/

https://plotly.com/python/getting-started/

226 5 Linear Algebra

alpha=1.0

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

alpha=-1.0

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

alpha=-1.0
-i.O I -1‘.5 ‘ -1.0 I -6.5 I DLO I 0:5 I 1:0 I 1:5 . 2:0
Fig. 5.3: Three planes representing the system (5.4), plotted with Plotly. Top: « = 1, 8 =0

(unique solution). Middle: @« = —1, § = 0 (no solution). Bottom: @ = —1, 8 = 2 (infinitely
many solutions).

53

Linear systems in R? 227

Fig. 5.4: Matplotlib produces a confusing figure.

The syntax for creating a 3D plot with a slider in Plotly is quite involved, but here are

some pointers.

The 3 planes are called planel, plane2 and plane3. Only the third plane is changed
by the @ value determined by the slider.

The for loop marked Loop 1 plots all possible positions of plane3 for all @ values.
However, we make them all invisible for now.

The for loop marked Loop 2 switches the visibility of the planes on and off according
to the position of the slider.

There are 17 possible values of . For each a, there are 3 planes to display. Altogether,
there are 17 X 3 = 51 objects whose visibility must be controlled. These 51 objects are
stored in fig.data. (Try checking len(fig.data).)

planel is stored as objects number 0, 3, 6. . .48, planes?2 as objects 1, 4, 7...49 and
plane3 as objects 2, 5, 8...50.

Loop 2 starts by making everything in £ig.data invisible. If @ takes the ith value on
the slider (¢ = -2+1i/4,i =0, 1,...16), then Loop 2 turns on the visibility for objects
3i,3i + 1 and 3i + 2.

Throughout the code, properties of the objects in each frame are stored in a dictionary.

A dictionary is a Python object containing an ordered list of properties. See Appendix A for
more details.

In exercise 1, you will use the code to explore a scenario where the slider changes two

planes at the same time.

DiscussioN

SymPy’s naivety. Using SymPy to find the RREF in eq. 5.7, you will be shown the

augmented matrix
10-2/0
(0 1-3 0).
00 0]1

You ought to be suspicious of this answer: somehow [has vanished from the matrix!
There are in fact two errors in this augmented matrix, stemming from SymPy’s naivety
in performing algebraic simplifications. Since a RREF has leading 1s, SymPy simply
performs the division B :g to obtain the 1 on the lower right entry without considering
the possibility of zero division. It goes on to use this 1 to create a O on the top right
entry. Both numbers are wrong (the correct answer is on the RHS of eq. 5.7).

228

5 Linear Algebra

In simple terms, if x is a SymPy symbol, then x/x = 1. You must take care of the
possibility that x = 0 separately.

It is far too easy to delegate all fiddly algebraic manipulations to computer algebra
systems, but the lesson here is that you must also be vigilant of the results, and always
ask yourself if the computer’s answers are sensible. There are many other gotchas and
pitfalls worth reading on SymPy documentation3.

Determinant and rank. The following theorem allows us to rephrase the uniqueness
of the solutions for Ax = b in terms of the rank or determinant of the matrix A.

Theorem 5.2 Consider the linear system AX = b where A is an n X n matrix, X =
(x1, X2, ...xpn) and b is a constant vector in R". The following are equivalent:

1. The system has a unique solution
2. rank A = n (we say that A is ‘full rank’)
3. det A # 0 (i.e. Ais invertible)

10 -2
Returning to the matrix in the question, let A = (1 -11) If @ # -1, we see from eq.
2 a -1

5.6 that the RREF of A is the identity matrix with rank 3.

You may like to check the rank with SymPy, but be careful. SymPy will tell you (falsely)
that rank A = 3 regardless of @. The previous bullet point explains why this isn’t true.
More helpfully, SymPy’s expression for the determinant is det A = =3« — 3, which is
correct. Clearly the determinant is nonzero if and only if @ # —1, giving us the unique
solution x = A~'b.

3https://docs.sympy.org/latest/explanation/gotchas.html

https://docs.sympy.org/latest/explanation/gotchas.html

5.3 Linear systems in R 229

planes.ipynb (for plotting fig.)

:import plotly.graph_objects as go
i import numpy as np
|

Define matrix A and vector b 'A = np.array([[1,0,-2], [1,-1,1], [2,1,-11DD
where Ax = b, from eq. 5.5 :b = np.array([1,1,0])
The (x, y) domain to plot the planes 'x = np.linspace(-5,5)

'y = np.linspace(-5,5)

Create 50 x 50 grid points :X,Y: np.meshgrid(x,y)
Express z in terms of x and y. . . 1Z1 = (A[0,0]1*X + A[0,1]1*Y - b[0])/-A[0,2]
for the first two planes 1Z2 = (A[1,0]%X + A[1,1]1*Y - b[1])/-A[1,2]

fig = go.Figure()

Plot the first plane
Suppress the legend for z values
Plot the second plane

planel = go.Surface(x=x, y=y, z=Z1,
showscale=False)

plane2 = go.Surface(x=x, y=y, z=Z2,
showscale=False,
colorscale="viridis"')

>

If not specified, the default is ‘electric

alpha = np.arange(-2, 2.1, 0.25)
for a in alpha:
Z3= (A[2,0]*X + a*Y - b[2])/-A[2,2]
plane3 = go.Surface(x=x, y=y, z=Z3,
showscale=False,
colorscale="blues',
opacity = 0.9,
visible=False)
fig.add_traces([planel,plane2,plane3])

Loop 1: Prepare plots for all &
Plot all possible positions of the third plane
Make them all translucent blue planes

Make them all invisible for now
Add the 3 planes to data

Make the third plane visible initially fig.data[2].visible = True

This will be filled with 51 plots steps = []

Loop 2: Selectively display plot for i, a in enumerate(alpha):
step = dict(
method="restyle",
args=[{"visible":[False]*len(fig.data)}],
label=str(a))
step["args"]1[0]["visible"][3*i] = True
step["args"][0]["visible"][3*i+1] = True
step["args"]1[0]["visible"][3*i+2] = True
steps.append(step)

Make everything invisible
Display the current @ value on the slider
Turn on the visibility of the 3 planes

Add a slider
What to display on the slider

sliders = [dict(steps=steps,
currentvalue={"prefix": 'alpha='},
font=dict(size=20))]

Update the plot as the slider is changed
Make the plotting area bigger

Specify the z range in the plot

Set the aspect ratio to be equal

fig.update_layout(sliders=sliders, width=700,
margin=dict(r=20, 1=10, b=5, t=5),
scene = dict(zaxis = dict(range=[-5,5])),
scene_aspectmode="cube",
font=dict(size=18))

Display in a new browser tab fig.show(renderer="browser")

230 5 Linear Algebra

5.4 Four methods for solving Ax = b

Solve the system

X1 +2x,— x3=3
le + X2 —2X3 =3 (510)
=3x1+ xp+ x3=-6

using each of the following methods.
1) Row reduction and back substitution
2) LU decomposition

3) Inverse matrix

4) Cramer’s rule

Which method is the quickest?

We wish to solve Ax = b forx = (x1 X7 xg)Twhere
1 2-1 3
A=121-=-2], b=|3].
=311 -6

Method 1: Row reduction and back substitution

Let’s obtain the row-echelon form of the augmented matrix (A|b) whilst keeping track of
the row operations along the way (this will be important for the next method).

D213 popior, (12 <13\ pipiar (12 71]3
2123 |—",[0-30]-3 *lo-30(-3 (5.11)
31 1|-6) RsRst3Ri \g 7 2|3 00 —2|-4

Next to solve for x, we perform back substitution, meaning that we start from the last
row, solve for x3, and make our way up the rows.

From Rj: —2x3=—-4 = x3=2,
From R;: —2xp=-3 = x =1,

From R;: x1+2x;—x3=3 = x; =3.

Method 2: LU decomposition
The row operations in the previous method are, in order,

7
R, :R),—2Ry, R3;:R3+3R;, R3:R3-— §R2.

5.4 Four methods for solving Ax = b 231

These operations can be expressed as left-multiplication by the following elementary

matrices:
100 100 100
Li=|-210|, Ly=(010|, L3y=|010].
001 301 031

Their inverses are simple to write down (think about undoing the row operations).

100 100 100
Li'=(210], Ly'=[010], Ly'=[0 1 0].
001 =301 0-11

Hence, we have the following relation between A and its REF.

12 -1 12 -1 1 0 0\/1 2 -1
LiL,LiA=|0-3 0| = A=L]'L;'L;'[0-3 0|=[2 1 0][0-30

00 -2 00 -2/ \-3-21/\00 -2
N N ———
L U
(5.12)

In summary, we have decomposed A into two matrices, L (a lower triangular matrix)
and U (an upper triangular matrix). A matrix L is said to be lower triangular if L;; = 0
whenever i < j. A matrix U is said to be upper triangular if U;; = 0 fori > j.

The decomposition A = LU is known as LU decomposition (or LU factorisation). How
does this help us solve Ax = b? Well, now that we have LUx = b, let y = Ux and write
y= (y1 2 y3). Let’s first solve Ly = b. The triangular structure of L allows us to easily
obtain y by substitution from the top row down.

3 3= G-

Finally, we solve Ux =y. This is also easy — just do back substitution (bottom row up).

o)) = GG

Of course, this agrees with the solution from the previous method.

But why do LU? 1t feels like we’re doing extra work with LU decomposition compared
with row reduction. Why do we bother?

Firstly, LU decomposition keeps a record of the row operations, which remains the same
even if b is changed. There is no need to work with b until after the LU decomposition is
complete. On the other hand, with row reduction, changing b means the augmented matrix
is changed, and so the row reduction would have to be redone.

Secondly, there is really no extra computational work compared with row reduction. It
feels as though there are extra steps in LU decomposition because we only dealt with b
separately in the final stage, whereas in row reduction, we incorporated b into our calculation
from the beginning in the augmented matrix.

For problems involving multiple b’s, the LU approach is significantly faster than row
reduction. More precisely, for a given n X n matrix A, the number of operations needed
to obtain its row-echelon form by row reduction (or to obtain its LU decomposition) is

232 5 Linear Algebra

approximately %n3, i.e. the complexity is O(n?). On the other hand, when solving LUx = b
by back substitution, only on?) operations are required. (See [182] for details.)

In Python, the syntax
scipy.linalg.solve(A, b)

performs (essentially) an LU decomposition on A, then uses back substitution to obtain
the solution. The actual decomposition is a slightly more sophisticated algorithm (called
PA = LU decomposition, where the matrix P encodes additional row swaps performed on
A to minimise numerical errors).

Method 3: Inverse matrix

In this method we will calculate A~! and obtain the solution x = A~'b. One way to find
A~!is to use the formula)
Al = adj A
det A’
where adj A is the adjoint of A. It’s logical to first calculate det A — if that’s zero, then the
matrix is not invertible and this method won’t work. For the matrix in the question, we find
that the determinant is nonzero, with det A = 6. Let’s now try using the adjoint formula.
The recipe for obtaining the adjoint of a 3 X 3 matrix A is as follows. First, create the
following skeleton in which there are alternating signs.

To calculate the number in the box in row i and column j, go to matrix A, delete row i and
column j. What remains is a 2 X 2 matrix. Find the determinant of that matrix, and that’s
the number in the box. (See any introductory linear algebra textbooks for more details and
examples.)

Following this recipe (and don’t forget to take the transpose in the end), we find:
3-3-3
adjA=(4-2 0.
5-7-3

Dividing this by the determinant gives:

=

Al =

QNI = —

o=

N DRI | —

The solution x is therefore

x=A"'b=

ONUINA—
|
OV~ —
| o |
P— = -
—_——

|

oW w

_—/
1l

—

N — W

~————

5.4 Four methods for solving Ax = b 233

It’s worth noting that in Python, the command scipy.linalg.inv(A) does not use
the adjoint formula to calculate A~ because determinants are computationally expensive.
Instead, an LU decomposition is performed on A, and the result is used to solve 3 systems:

1 0 0
Ac1 =10 . AC2 =11 . AC3 =10].
0 0 1

The solutions are columns of the inverse matrix A~! = (cl C C3), which is then post-
multiplied by b to obtain the solution x.

Compared with the previous method, we see that there are two extra sets of back
substitutions to perform, plus the final matrix multiplication A~'b. If A is an n X n matrix,
the complexity of both methods 2 and 3 is still dominated by LU decomposition, costing
O(n?). However, when n is large (= 1000), the extra calculations in method 3 can make a
difference.

The code solvetimes.ipynb produces the top panel of fig. 5.5. Warning: this code
will probably take a few minutes to run. If your computer is struggling, try considering
smaller matrices or use fewer points in the plot.

The figure shows the time taken (in seconds) to solve the system Ax = b where A
is a large matrix filled with random numbers between 0 and 1, and b = (1, 1,1, ... l)T.
The graphs are plotted against increasing size of the matrix A. The comparison between
SciPy’s 1inalg.solve(A,b) method and the 1inalg.inv(A)*b method corroborates
our observations in the previous paragraph. When n = 5000, the inverse method takes
around 50% longer in this particular run.

Saving fractions of a second on computation seems hardly impressive. However, remember
that with more computations come greater numerical errors, so keeping the number of
operations low not only means that your code will run faster, but the output will probably
be more accurate too.

The main message here is that when it comes to linear algebra with Python, you should
avoid inverting matrices unless A~! is explicitly required (which is seldom the case). In any
case, you should never solve Ax = b by the inverse-matrix method.

Method 4: Cramer’s rule

Cramer’s rule is a method for solving Ax = b using nothing but determinants. The rule is
named after Gabriel Cramer (1704—1752), a mathematician born in the former Republic
of Geneva. His ‘rule’ was given in an appendix which accompanied his book on algebraic
curves (see [116] for an interesting history of Cramer’s rule).

Cramer’s rule states that the solution for the unknown x; is given by

det Bi
X; = ,
" detA

where B; is the matrix A with the ith column replaced by the vector b (see [194] for proof).
In our example, we have det A = 6, and thus the solutions by Cramer’s rule are

1 32-1 1 1 3 -1 1 123
X1 = 31—223, Xy = 2 3—221, X3 = 21 3|=2.
detA| o 4 detA| 3 ¢ detA| 5 _¢

234 5 Linear Algebra

—8— linalg.solve(A, b)
150 1 —* linalg.inv(A)*b

1251
1.00 4

0.75 4

Time (s)

0.50 4

0.25 4

0.00 4

T T T T T
0 1000 2000 3000 4000 5000
Matrix dimension

600

—+— Cramer's

500 -

400 -

300 -

Time (s)

200

100 -

T T T T T
200 400 600 800 1000
Matrix dimension

o4

Fig. 5.5: Time taken to solve the system Ax = b using 3 different methods, plotted as a
function of the size of matrix A. We take A to be an n X n matrix of random small numbers
betweenOand 1,andb = (1, 1,1...1)T. The top panel (produced by solvetimes.ipynb)
shows that SciPy’s 1inalg. solve is the quickest, followed by the matrix inversion method
(x = A™'b). Cramer’s rule (bottom) is the slowest by far. We only considered n up to 1000
in the bottom panel.

One useful thing about Cramer’s rule is that it allows us to solve for a special subset of
unknowns (say, if you only want x;7 out of 200 unknowns x1, x, . . . X200). Otherwise, it is
a computationally inefficient way to solve a linear system, due to the need to compute many
determinants.

In SciPy, the command 1inalg.det (A) first performs LU factorisation, then calculates
the det A by multiplying the diagonal elements of U (you can verify this property for our
example by inspecting the diagonal elements of U in eq. 5.12). Solving for n unknowns
requires (n + 1) LU decompositions, each costing ~ n* operations. This means that the
complexity of Cramer’s rule in Python is O(n*), which is an order of magnitude larger
than the previous two methods. It goes without saying that when it comes to solving linear
systems numerically, Cramer’s rule should not be used.

To illustrate this point, let’s repeat the same large-matrix analysis as in the previous
method. The result is shown on the lower panel of fig. 5.5, which was calculated for random

5.4 Four methods for solving Ax = b 235

matrices up to n = 1000 (at which point it took my poor computer almost 10 minutes to
solve — whilst the previous methods would only have taken a fraction of a second).

DiscussioN

¢ Other matrix decompositions. Besides the LU decomposition discussed in this section

(where we obtained A = LU), here are other famous decompositions for a given matrix
A.

— Eigendecomposition A = PDP~', where D is a diagonal matrix. We will discuss
this in §5.6.

— OR decomposition A = QR, where R is an upper triangular matrix and Q satisfies
0T Q = I (Q is said to be an orthogonal matrix).

— Cholesky decomposition A = RT R, where R is an upper triangular matrix. (This
can be thought of as taking the square root of A.)

— Singular-value decomposition (SVD) A = ULV, where U and V are orthogonal
matrices and X is a diagonal matrix of nonnegative real numbers. We will discuss
this in §5.8.

Matrix decompositions are generally deployed to speed up computations by reducing the
complexity of the problems at hand. Certain decompositions are only applicable when
the matrix A satisfies certain properties. For example, the Cholesky decomposition can
help us solve Ax = b twice as fast as LU decomposition, but can only be performed
if A is symmetric (A = AT) and positive definite (x - Ax > 0 for all nonzero vectors
x). The QR decomposition can help solve the least-square problem (i.e. find the best
solution to Ax = b when there are no exact solutions). The SVD is more general and
can be performed on any matrix. It is used frequently in data analysis especially in
reducing big data, as we will see later.

These matrix decompositions are typically taught in a second course in linear algebra
(or numerical analysis). Mathematical details can be found in more advanced linear
algebra books such as [103, 134, 195].

236 5 Linear Algebra

solvetimes.ipynb (for plotting the top panel of fig.)

i import numpy as np
| import matplotlib.pyplot as plt
i from scipy import linalg as LA

Load the timer 1 from time import perf_counter as timer
I
1%matplotlib
|
I
Range of sizes of matrix A to solve | N=np.arange(1,5001,50)
Initialise random number generator 'rng = np. random.default_rng()
To be filled with computational times in seconds 1 t1 = []
12 =[]
n = matrix size for n in N:
A = matrix of random numbers between 0 and 1 A = rng.random((n,n))
b = column vector of 1’s b = np.ones((n,1))

|

|

|

|

Start the clock! ! tic = timer()

LU method | x1 = LA.solve(A, b)

Stop the clock! 1 toc = timer()

Note the time taken } tl.append(toc-tic)
|
|
|
|
|
|

Start the clock!
inverse-matrix method
Stop the clock!

Note the time taken

tic = timer()

x2 = LA.inv(A)*b
toc = timer()
t2.append(toc-tic)

Join up the data points (red circles vslplt.plot(N,tl, '-ro',N,t2, '-bx')
blue crosses) plt.xlabel('Matrix dimension')
: plt.ylabel('Time (s)')
plt.legend(['linalg.solve(A, b)',
l 'linalg.inv(A)*b'])
plt.grid('on")
:plt.show()

5.5 Matrices as linear transformations 237

5.5 Matrices as linear transformations

Let S be the unit square [0, 1]x[0, 1]. Consider the linear transformation 7 : S — R?
defined by 7'(x) = M;x, where

cost —sint 11t t0
a)Ml_(sint cost) b)Mz_(O 1) C)M3_(O 1)'

Find the image of S under each transformation. Describe each transformation
geometrically.

Recall the definition of a linear transformation 7 : V — W. It satisfies
T(x1 +ax3) =T(x1) +aT(x3), (5.13)

for all x3,x, € V and @ € R. The equation says that a linear expression is mapped to another
linear expression. In particular, if V and W are R? or R?, it follows that straight lines in V
are mapped onto straight lines in W. Also note that a linear transformation maps the zero
vector onto itself (just set x; = Xz and @ = —1).

It is easy to check that the transformation 7'(x) = Mx satisfies the linearity condition
(since matrix multiplication is distributive over vector addition). Conversely, any linear
transformation 7 : R" — R can be represented by a matrix multiplication 7(x) = Mx.

Let’s see why this holds in RZ. Write x = xe; + ve, where e =i = ((1)), ande; =j = ((1))

are the standard basis vectors. Linearity of 7 means that

T(xe; + yey) = xT(e) + yT(ep) = (T(el) | T(ez)) (;C) . (5.14)
M
This shows that the transformation 7'(x) can be represented by the matrix multiplication
Mx where the first column of M is T'(e;) and the second column is 7' (e;). In other words,
the action of T on the basis vectors tells us about its action on any vectors.

It’s helpful to distinguish the two concepts: the transformation is an action (which is
independent of coordinate choices), but the matrix is its representation in a certain coordinate
choice. Knowing this subtlety, you can see that one should not say “the transformation M,”,
but rather “the transformation represented by the matrix M;".

Here are some examples of linear transformations in R?.

Rotation

In R?, consider a rotation by angle ¢ about the origin. Clearly straight lines are mapped onto
straight lines, and the origin stays put, so we suspect that it is a linear transformation that
can be represented by a matrix. What would such a matrix look like? As we discovered
earlier, we only need to find the images of e; and e; to obtain the matrix.

The diagram below tells us that

T(e;) = coste; + sintep, T(ey) = —sinte; + costes.

Putting them into columns, we obtain the matrix

y

A

©,1)

/—~ (cos t, sint)
(-sin t, cos t)

\ (1,0

® » X

The image of the square S under this matrix can be visualised with Python as shown
in fig. 5.6, created by the code transformation.ipynb. The code finds the images of 3
vertices (corners) of the square by matrix multiplication, and join the image points again to
find the transformed square (the vertex at the origin stays put due to linearity). We have
included a slider for the variable ¢ € [-2m, 2rr]. The original square is plotted with reduced
opacity alpha=0.4. The red and green edges are the images of e; and e, respectively.
Indeed the image is a rotated square.

15

1.0

0.5 - ,/\-

NVZEN

NS
' A4

-1.0

_1 .5 T T T T T
-1.5 -1.0 -0.5 0.0 0.5 10 15

t 2.36

Fig. 5.6: The transformation represented by M; (557 ~5n7) is an anticlockwise rotation

by angle ¢ (adjustable using the slider) about the origin. In the figure, M) rotates the unit
square by an angle ¢ ~ 37 /4.

5.5 Matrices as linear transformations 239

Shear

The code allows us to find the image of the square under any 2 X 2 matrix. The image of the

square under M, = ((1) i) is shown in the top panel of fig. 5.7.

150
1.25 4

0.75 4 \\

0.50 4

0.25 1 \

0.00 4 —A

—0.25

—-0.50 T T T T T T T
-2.0 -15 -1.0 -0.5 0.0 0.5 10 15 2.0

t —— . -1.50

150
1.25 A

1.00 4
0.75 1
0.50 +

0.25 1

0.00 +

—0.25

—0.50 T T T T T T T
-2.0 -15 -1.0 -0.5 0.0 0.5 10 15 2.0

t— . -1.50

Fig. 5.7: Top: The transformation represented by M, = () is a shear along the x direction.
10
1

11
01
Bottom: The transformation represented by M3 = () is a scaling along the x direction.

Both transformations are shown here with t = —1.5.

In the figure, we can see that the vector e; stays put under this transformation, and this is
t
confirmed by the first column of M;, which tells us that T (e;) = e;. However, T'(ey) = (1)

If t > 0, the green side of the square is pushed, or sheared, to the right, whilst maintaining
the same height. The amount of shear that a point undergoes is directly proportional to its
y coordinates. If # < 0, the green side is sheared to the left, as shown in the figure (with
t =-1.5).

We conclude that the transformation represented by M, maps the square S to a paral-
lelogram of the same height but sheared left or right. This transformation is said to be a
horizontal shear and 7 is called the shear factor. It is worth noting that a sheared straight line
is another straight line, and the origin remains unchanged, as expected.

240 5 Linear Algebra

Scaling and reflection

Repeating the same analysis, we conclude that M3 = ((t) (1)) represents scaling (i.e. stretching)

along the x direction. If ¢ > 0, the square is stretched to the right, mapping it to a rectangle.
If ¢ < 0, the stretch is to the left (as shown in fig. 5.7 with t = —1.5). In particular, when
t = —1, the transformation is a reflection along the y-axis.

DiscussioN

. . . [cost —sint
¢ Orthogonal matrices. Let R(¢) be the rotation matrix (

.) Note that the
sint cost

inverse matrix is precisely its transpose, i.e.

R'(r) = (= RT(1).

cost sint
—sint cost

Matrices satisfying the condition R = R~! are called orthogonal matrices. These
matrices occur frequently in mathematics and physics, and have a rich mathematical
structure.

For our rotation matrix R(z), note the following:

— R(0) is the identity matrix .

— R7'(t) = R(-1), meaning that the inverse of a rotation matrix is another rotation
matrix (which does the rotation in the opposite direction).

— Multiplying two rotation matrices (and simplifying the result using trigonometric
identities), we have:

R(s)R(t) = (= R(s +1).

coss sins) (cost sint| [cos(s+1) sin(s+1)
—sins coss| \—sint cost| ~ \—sin(s + 1) cos(s + 1)

Thus, multiplying to rotation matrices gives another rotation matrix.

The above properties suggest that the rotation matrices form a closed structure under
multiplication. This structure is called the special orthogonal group in two dimensions,
denoted SO(2). More about groups in the next chapter.

* Determinant as area. What do you notice about the determinants of M;, M, and M3?
detM; =1, detM, =1, det M5 =t.

These determinants are precisely the area of the transformed unit square (rotation and
shear do not change the area, but the scaling does). Let’s see why the determinant tells
us about area.

Consider a general linear transformation 7 represented by the matrix

M:(ig).

(a+b, c+d)

0.,0)
From the figure above, we deduce that:

Area of parallelogram

=(a+b)(c+d)—l— -2xN
=(a+b)(c+d)—bd—-ac-2bc
=ad - bc.

Thus, we see that det M is simply the signed area of the parallelogram (‘signed’ meaning
that the determinant can be negative).

* Translation. You may be wondering if translation (i.e. shifting the unit square by, say,
a unit to the right, and S unit up) can be represented by a matrix. Clearly, translation is

. L . . . [ab
not a linear transformation since the origin not preserved, and there is no matrix cd

2 x+a\ _ (ab)([x
et (139-40)

However, a clever solution is to introduce an extra coordinate and note that

X+ a 10a)\/x
(y+ﬁ)=(o | ﬁ)(y). _
1 001/\1

The rotation and shear matrices can also be appended with the extra coordinate, allowing
them to be multiplied together. This technique, called homogeneous coordinates, is
important in computer graphics — for example, in OpenGL# (see also [127,207]).

such that

4 http://www.opengl-tutorial.org/beginners-tutorials/tutorial-3-matrices/

http://www.opengl-tutorial.org/beginners-tutorials/tutorial-3-matrices/

242

transformation.ipynb (for plotting fig.

5 Linear Algebra

Vertices of the unit square S

Make space for the slider
Set equal aspect ratio (to see a square)

two given points
* operator unpacks an array
alpha is an optional argument

remove arrowheads

For plotting S and T'(S) given ¢
Clear the canvas

Plot the original
alpha=
colour

square

Specify transformation matrix here

The matrix acts on each vertex
(The origin is unchanged)

Plot each
figure T'(S)

Specify the plot window

Plot the initial square (¢ = 0)
Specity dimensions of the slider
Set the range of ¢ and step size

Update the plot if slider is moved
Get a new value of ¢ from the slider
Replot

For plotting a coloured line joining

Set arrows to the coordinate-grid size, and

with |
0.4...each side a different

side of the transformed

i import numpy as np

| import matplotlib.pyplot as plt

| from matplotlib.widgets import Slider
:%matplotlib

0 = np.array([0,0])
A = np.array([1,0])
B
C

= np.array([1,1])
= np.array([0,1])

"fig,ax = plt.subplots()
:plt.subplots_adjust(bottomz@.15)
iplt.axis('square')

I

|

i def vecplot(start, end, colour, alpha=1):

! vec = end-start

| ax.quiver(*start, *vec, color=colour,

\ alpha = alpha, angles='xy',

} scale_units='xy', scale=1,

! headaxislength=0, headwidth=0,
I headlength=0)

l return

I

|

|

I

|

def transform(t):
ax.clear()
vecplot(0,A, 'r',0.4)
vecplot(A,B,'b',0.4)

! vecplot(B,C, 'k',0.4)

vecplot(C,0,'g',0.4)

s, ¢ = np.sin(t), np.cos(t)
M = np.array([[c,-s],[s,c]])

At = M@A
Bt = M@B
Ct = MeC

vecplot(0 ,At,'r")
vecplot (At,Bt,'b")
vecplot(Bt,Ct, 'k")
vecplot(Ct,0 ,'g")

ax.axis([-1.5,1.5,-1.5,1.5])
ax.grid('on')
return

transform(0)

axt = plt.axes([0.23, 0.05, 0.55, 0.02])

t_slide = Slider(axt, 't', -2*np.pi, 2*np.pi,
valstep = 0.02, valinit = 0)

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
:
| def update(val):

} t = t_slide.val

! transform(t)

|

| t_slide.on_changed(update)
i plt.show()

5.6 Eigenvalues and eigenvectors 243

5.6 Eigenvalues and eigenvectors

For a given matrix A, suppose that we have a vector x (with x # 0) and a constant 1 € C
such that

AX = AX. (5.16)

Then, x is said to be an eigenvector of A with eigenvalue A.

Find the eigenvalues and eigenvectors of the following matrices.

11 11 11
2) (3/2 1/2) b) (1/2 1/2) ©) (—3/2 1/2)'

Solving the eigenvalue problem
Here is the standard way to solve eq. 5.16 by hand. First, we move everything to the LHS,
yielding

(A-2ADx =0, (5.17)

where I is the identity matrix of the same size as A. If the matrix (A — A1) were invertible,
then we would have x = (A — 27)~10 = 0. But we require the eigenvector to be nonzero.
Therefore, the matrix (A — AI) cannot be invertible, i.e.

det(A — AI) = 0. (5.18)

Eq. 5.18 is called the characteristic polynomial of the matrix A. If A is an n X n matrix,
then det(A — A1) is a polynomial of order n in A. Solving for the zeros of this polynomial
gives us the eigenvalues.

Let’s apply this method to the first matrix A = (3}) 1}2). We find the characteristic
polynomial:
1-4 1 3 5 _ B {
' 3/2 1/2_/1'—0 = 24°-31-2=0 = A=2o0r —E,

Now let’s solve for the eigenvectors. Substituting 4 = 2 into (5.16) and writing the

1))= ()

The two components of the above equations tell us the same information that y = x (an

. X
eigenvector X as (y)’ we find

. 1
equation of a line). This means that the eigenvector can be expressed in terms of x as x (1),

where x € R. It’s not surprising that there are infinitely many eigenvectors — after all, we
can see in eq. 5.16 that if x is an eigenvector, so is any multiple of x. As such, it is sufficient

244 5 Linear Algebra

to say that:

A has eigenvector (i) with eigenvalue 2.

The same technique tells us that the eigenvector —% has solution y = —%x, ie.

2
A has another eigenvector (_

S 1
3) with eigenvalue — ok

Geometric interpretation

The LHS of the eigenvalue equation Ax = Ax can be thought of as a linear transformation
acting on a vector X. For certain special x, the resulting vector Ax happens to be parallel to
x itself, but scaled by a factor 4. Without knowing how to solve the eigenvalue equation, it
is possible to search for such a special vector x numerically.

The code’ eigshow.ipynb creates a little game where the user has to find the directions
in which two vectors are parallel. More precisely:

« First, the user picks a candidate for the eigenvector x. Since only the direction of x
matters, it is sufficient to vary x along the unit circle

(Zi’;g) 0 € [0, 27].
A slider is used to vary the value of the polar angle 8.

* For each x, the transformed vector Ax is also simultaneously plotted.

e The aim is to vary 6 until the vectors x and Ax are parallel. When this happens, we
have found the eigenvector x. Furthermore, the length of the vector Ax is the magnitude
of the eigenvalue. If x and Ax point in the same direction, then 4 > 0. If they point in
opposite directions, then 1 < 0.

Snapshots of this “Make the vectors parallel" game are shown in fig. 5.8, with the slider
at three values of 6. The dotted blue circle is the locus of vector x which we vary using the
slider. The dashed red ellipse is the locus of the transformed vector Ax.

The two lower panels of fig. 5.8 show the two solutions of this game. The lower left
panel shows the first alignment at 8 = /4 ~ 0.785. This is consistent with our eigenvector

(1 l)T. We also see that the vectors point in the same direction, with the red vector twice
the length of the blue vector. This is consistent with the eigenvalue 2 that we found by
hand. (You could verify this factor of 2 either by hovering the mouse over the points to see
the coordinate readouts, or ask Python to calculate the ratio of the blue and red lines. See
exercise 6a.)

Similarly, the lower right panel shows the other alignment at 8 ~ 2.16 where the vectors
line up in opposite directions. This is consistent with our calculation since the line y = —%x
makes an angle of 7 — tan~! % ~ 2.159 with the positive x-axis. The length of the two
vectors can be similarly verified.

In fact, the code also displays the two eigen-directions (in thin green lines). Indeed, we
find that the two vectors line up along the green lines.

5 This visualisation is a tribute to the elegant but deprecated MATLAB demo called eigshow.

5.6 Eigenvalues and eigenvectors 245

Make the vectors parallel!

2.0
1.5 1
1.0 4
0.5
0.0
705 m
1.0
151
-2.0 T T .
-2 -1 0 1 2
] 6.283
2.0 - 2.0
1.5 | 15
1.0 1.0
0.5 4 0.5 4
0.0 0.0 4
—0.5 —0.5 4
1.0 —-1.0 1
-1.579 —o— X -1.5 - x
—8— Ax —— Ax
-2.0 T T T -2.0 . T ‘
-2 -1 0 1 2 -2 -1 0 1 2
6 — 0.785 8 2,160

Fig. 5.8: The objective of the game is to make the blue and red vectors (x and Ax)
parallel, where A = <3}2 1}2). The slider changes the polar angle 6 for the blue vector

x = (cos @, sin@)T. The lower panels show when the parallel configurations are achieved —
precisely when the vectors all line up with the eigenvectors (thin green lines). At each of
these positions, the length of the red vector is the magnitude of the eigenvalue.

You may be wondering what the equation of the red ellipse is. To work this out, note the
result of the transformation

1 1) (cosf) [cos@+sind
3/21/2) \sin6] ~ %0059+%Sin9)
This is a parametric equation of a curve in R?. If you prefer it in Cartesian form, let

x =cosf +sinfandy = % cos 8 + % sin 6. Solving these simultaneous equations for cos 6
and sin 6, and using cos” @ + sin” @ = 1, we find the Cartesian equation of the ellipse:

5
Exz —4xy + 2y2 =1.

This equation is in quadric form which we have previously seen in §3.6.

246 5 Linear Algebra

You will also notice from fig. 5.8 that the maximum and minimum distances of the
ellipse from the origin look as though they are along the green eigenvectors, and if that is
the case then the maximum and minimum distances would be given by the magnitude of the
eigenvalues. This observation is indeed correct. We will explain why this happens when we
discuss change of basis in the next section.

Zero, imaginary and repeated eigenvalues

If the two eigenvalues of a 2 X 2 matrix are real and nonzero, the geometric picture is
essentially the same as that in fig. 5.8. The transformation takes the blue circle to a red
ellipse. The eigenvalues determine the size of the ellipse, and the eigenvectors determine its
orientation.

You can then imagine that if one of the eigenvalues is zero (and the other is nonzero),
the red ellipse would collapse (or degenerate) into a line. This situation is shown in the left
panel of fig. 5.9, obtained by replacing the matrix in the code by the second matrix in the

question, namely
1 1
1/21/2)°

A quick calculation shows that the matrix has the following eigenvalues and eigenvectors

3 2 -1
/ll:§9el:(1)’ /12:03e2:(1)'

Indeed we see in the figure that the direction of the red line is e;. The direction e; is shown
by the green line, although we can’t see from this snapshot that the blue and red vectors are
actually lined up along e;. It is worth noting that when one of the eigenvalues is zero, the
matrix also has zero determinant and is therefore not invertible.

A zero eigenvalue 20 Imaginary eigenvalues

2.0 .

1.5 1.5 4

1.04 R 1.0

0.5 A 0.5 4

0.0 | 0.0 4
—0.5 A —-0.5 -
-1.0 1 —1.0
—1.5 1 —— X -1.5 1

—8— AX
-2.0 T T T -2.0 T T T
-2 -1 0 1 2 -2 -1 0 1 2
2] 5.498] 6.283

Fig. 5.9: Left: For the matrix (1}2 1}2), the red ellipse previously seen now degenerates into

a line due to a zero eigenvalue. Right: For the matrix (4 2 1}2), the vectors never become
parallel in this plane because the eigenvalues are not real.

5.6 Eigenvalues and eigenvectors 247

The right panel of fig. 5.9 shows the geometric picture for the final matrix in the question:

11
-3/21/2]"

However, this time it is impossible to make the red and blue vectors parallel — moving the
slider simply makes the vectors chase each other round the circle. This is because the matrix
has complex eigenvalues and eigenvectors, namely

3 +V23i —1-+23i 3 —23i —-1+V23i
lszelz 6 s /122—4 , € = 6 .

We can imagine that the vectors would line up if we add two extra dimensions to the plot to

take care of the fact that each component of x is a complex number.
It’s useful to confirm the above calculations with SymPy.

Eigenvalues and eigenvectors with SymPy’s eigenvects

import sympy as sp
A = sp.Matrix([[1,1],[-sp.S(3)/2,sp.S.Half]])
A.eigenvects()

The ‘Sympify’ operator S converts a Python object to a SymPy object. In the above,
S(3)/2 is prevented from being converted to floating point 1.5 (you should try it without
Sympifying). Python then gives us the following output on the right (explanation on the
left).

SymPy output for eigenvects

A1 1 [(3/4 - sqrt(23)*1/4,
Its multiplicity L1,
e | [Matrix([
! [-1/6 + sqrt(23)*1/6],
I DD,
Ao i (3/4 + sqrt(23)*1/4,
Its multiplicity Lo,
e . Matrix([
! [-1/6 - sqrt(23)*1/6],
! L 11DHD1

The multiplicity of an eigenvalue 1; means how many times it algebraically counts as a
root of the characteristic polynomial det(A — A1) = 0. An example of a matrix with repeated

real eigenvalues is
11/2
0 1)

Solving the characteristic polynomial in the usual way, you will find that the quadratic
equation has repeated real root 4 = A = 1 (i.e. the eigenvalue has multiplicity 2) with

eigenvector ¢; = e; = . An n X n matrix with fewer than n linearly independent

0
eigenvectors is called a defective matrix. Can you predict how the vector alignment game
will look like in this case? (see exercise 6¢).

Finally, here is how to do the same eigenvalue/eigenvector calculations with scipy.linalg.
This is much faster than SymPy and it should be your default method unless symbolic
calculations are required. We use this method in eigshow. ipynb to plot the eigen-directions
in green.

248 5 Linear Algebra

Eigenvalues and eigenvectors with scipy.linalg.eig

import numpy as np

import scipy.linalg as LA

A = np.array([[1, 1],[-1.5, 0.511)
lam, w = LA.eig(A)

lam is now an array of eigenvalues, and w is a 2D array whose columns are the normalised
eigenvectors of A.

Unlike the SymPy method, scipy.linalg.eig can handle large matrices fairly quickly
(see exercise 4). Also note that the SymPy method does not normalise the eigenvectors, but
SciPy does.

DiscussioN

* Dynamical systems revisited. In chapter 4, we briefly discussed the stability of fixed
points in the phase space of a dynamical system. In fact, the stability of fixed points can
be determined by eigenvalues of a matrix. In particular, if we linearise the dynamical
system x’ = F(x) around a fixed point and consider the linearised system x’ = Ax.
Then, the signs of the real part of the eigenvalues of A determine the stability of the
fixed point. See [75] for more details on linearised stability.

The key results are as follows: if all eigenvalues of A have negative real parts, the fixed
point is stable (i.e. it is a local attractor). If all eigenvalues have positive real parts, then
the fixed point is unstable (a local repeller). If the real parts of the eigenvalues have
different signs, then it is a saddle point (it is stable in some directions but unstable in
other).

For concreteness, let’s revisit the Lorenz system in §4.6 where we found that the origin
was one of the fixed points. Let’s determine whether the origin is stable or unstable.
Linearising the system around the origin (i.e. ignoring quadratic terms) and using
standard parameter values o = 10, b = 8/3,r = 28, we obtain the linearised system:

-1010 O
x" = Ax, where A=(28 -1 0
0 0 -8/3

You should verify that the eigenvalues of A are

8 11++v1201
3’ 2 '

There are two negative eigenvalues and one positive eigenvalue. Hence the origin is not

a stable fixed point, but rather, a saddle point. This is consistent with the behaviour of

trajectories that we saw in the animation: a trajectory flies towards the origin and then

away from it, forming the butterfly wings.

* Cayley-Hamilton Theorem. The following theorem gives a surprising relationship
between a square matrix A and its characteristic polynomial det(A — A1) = 0.

Theorem 5.3 (Cayley-Hamilton Theorem) Every square matrix satisfies its own char-
acteristic polynomial.

5.6 Eigenvalues and eigenvectors 249

1 1
3/21/2
21% =32 -2 = 0. It is straightforward to verify that

For instance, we found that the matrix A = () has characteristic polynomial

2 _24_~7_ (00
2A° -3A 21—(00.

For a general proof, see [14]. See exercise 5 for an application.

The theorem is named after the British mathematician Arthur Cayley (1821-1895) and
the Irish mathematician Sir William Rowan Hamilton (1805-1865). Both were prolific
mathematicians who made major contributions from a young age: Cayley published at
least 28 papers by the age of 25; Hamilton became Professor of Astronomy and Royal
Astronomer of Ireland at the age of 22, whilst still an undergraduate.

250 5 Linear Algebra

eigshow.ipynb (for plotting fig.

i import numpy as np

| from scipy import linalg as LA

| import matplotlib.pyplot as plt

i from matplotlib.widgets import Slider

| %matplotlib

|
Input the matrix here : A = np.array([[1,1],[1.5,0.5]1)
Find its eigenvectors (w) : lam, w = LA.eig(A)

| fig, ax = plt.subplots()

Leave space for a slider plt.subplots_adjust(bottom=0.2)
Equal aspect ratio lax. set_aspect('equal')

rax.set_title('Make the vectors parallel!')
Set plotting window |ax.axis([-2,2,-2,2])

ax.grid('on')
|

Plot the blue vector x =(1, O)T :Vecl, = ax.plot([0,1], [0,0], 'bo-')

Plot Ax as a red vector 'Vec2, = ax.plot([0,A[0,0]], [0,A[1,0]], ' 'ro-")
Add legend plt.legend(['x", 'Ax'], loc='lower right')
Locus of x (blue dotted circle) | Curvel ,=ax.plot(l, 0,'b:")

Locus of Ax (dashed red ellipse) | Curve2,=ax.plot(A[®,0], A[1,0],'r--")

"ax.plot([-w[0,0],w[0,0]],
[-w[1,0],w[1,0]],"'g", 1lw=0.5)

ax.plot([-w[0,1],w[0,1]],
[-w[1,1],w[1,1]],"'9g", 1lw=0.5)

Plot the directions of the 2 eigenvectors
in thin green lines

Dimension and location of 6 slider
Label slider in LaTeX 6
with @ € [0, 27]

axt = plt.axes([0.25, 0.1, 0.5, 0.02])
t_slide = Slider(axt, r'θ',
0, 2*np.pi, valstep=0.001,
valinit=0)

def update(val):
t = t_slide.val
T = np.linspace(®,t,100)

Take 6 value from the slider
Use 100 values to plot each locus

cT = np.cos(T)

sT = np.sin(T)

xT=np.array([[cT], [sT]]) .reshape(2,len(T))
AxT= A@xT

Arrays of cos and sin values are
used to plot the loci of x (blue circle)
Reshape x into a (2 x 100) matrix
Calculate Ax (red ellipse)

Now we update 4 things:

- The blue vector

- The red vector

- The blue circle

- The red ellipse

Vecl.set_data([0®,cT[-1]], [0,sT[-1]11)
Vec2.set_data([0,AxT[0,-1]],[0,AxT[1,-1]]1)
Curvel.set_data(cT, sT)
Curve2.set_data(AxT[0,:], AxT[1,:])

fig.canvas.draw_idle()

Replot when the slider is changed t_slide.on_changed(update)

plt.show()

5.7 Diagonalisation: Fibonacci revisited 251

5.7 Diagonalisation: Fibonacci revisited

Use matrix diagonalisation to find the expression for the nth term of the Fibonacci
sequence defined by

Fn+2 = F,H_] ar Fn, F() = 0, Fl =1. (519)

You may be surprised to know that this problem can be solved elegantly with vectors and
matrices despite them not appearing explicitly in the question. There are a few ideas that
come together to help us do this.

Idea 1 — A linear recurrence relation like (5.19) can be expressed in matrix form.

Idea 2 — The nth term of a sequence can be obtained by finding the nth power of a matrix.
Idea 3 — The nth power of a matrix can easily be computed (by hand) using matrix
diagonalisation (explained below).

The goal is to obtain F;, in terms of n using these ideas. Let’s begin.

Idea 1: Let’s find a matrix A such that

Fn+2 _ Fn+1
(Fn+1) = A(F,) . (5.20)

In other words, multiplying by the vector by A shifts the sequence forward, revealing the
next term. Using the recurrence relation (5.19), we can rewrite the LHS of (5.20) as

Fuio _ Foa+F, _ 11\ (Fus1

Fn+l Fn+1 10 Fn
11

= A= (1 0)'

Idea 2: Observe in the chain of equalities below that by multiplying (?) repeatedly by A,
0

we will obtain an explicit expression for F;, in terms of n (by simply reading off the lower

component).
F1 1 F2 -2 F3 Fn+1
n — n — n — —
)= lm) =) =5

Idea 3: There is a smarter way to calculate A" than brute-force matrix multiplication. Here
is a very important theorem in introductory linear algebra.

Theorem 5.4 (Diagonalising a matrix) Suppose that A is a k X k matrix with k linearly
independent eigenvectors, ey, ey, . . . e, with corresponding eigenvalues A, Ay, ... Ag. Let
P be a matrix whose ith column is e;. Then,

A0 -0
0 A--- 0

A=PDP', whereD = _) (5.21)
00 - A

The theorem simply follows from the observation that AP = </11e1 - /lnen) = PD.
We say that A is diagonalised by P.

252 5 Linear Algebra

A very useful application of diagonalisation is in the calculation of integer powers of a
matrix. First, note the identity

A2 = (PDPYYPDP" = PD(P~'P)DP™' = PD?*P"!

which follows from the associativity of matrix multiplication. Inductively, we have, for all
positive integers n,

A0 -0

n n p—1 0 /12’ 0 —1

A" =PD"P ' =P , P
00 /12

This only involves multiplying 3 rather than » matrices, thanks to the fact that the nth power
of a diagonal matrix can be easily calculated by raising each diagonal element to the nth
power.

} (1)) and applying the calculation method outlined in the previous
section, we obtain the characteristic polynomial

Using our matrix A =

A-1-1=0 (5.22)
and the following eigenvalues and eigenvectors.

1 1-
= +—\/§’ el = (/ll)’ /12 ‘/g, e2 = (/12) .

A4 3 1

We then use the eigenvectors as columns of P.

(A, (40 11 -2
P_(1 1), D_(Ob), P =l 4) (5.23)

Now we can raise A to the nth power easily.

Fn+1 " F1 ” el 1 1 /ln+l _/ln+1
=A = PD"P =— "1 2.
()= ()= o fo) = 5 (2
Finally, note that 1 = ¢ = 1.618 (the Golden Ratio — see §1.6) and 1, = 1 — ¢. Reading

off the lower component of the above equation gives us the expression for F;, in terms of n
(this is the so-called Binet’s formula).

¢" - (-9
NG :

Exercise 7 challenges you to apply this method on a 4-term recurrence relation.

F, = (5.24)

Visualising diagonalisation

If A represents a linear transformation, then the diagonalisation A = PDP~! can be thought
of as breaking A down into a sequence of 3 transformations. Let’s use Python to help us
visualise these transformations.

5.7 Diagonalisation: Fibonacci revisited 253

But before we get to the code, it would be useful to reexamine the matrix P in eq. 5.23.
Recall that if e; is an eigenvector of A, then so is any nonzero constant multiple of e;. In
particular, we could fill in the columns of P with normalised eigenvectors &; and €;:

N ® N 1—¢): 1 (—1) 595
“ m(l) . 3—¢(1 NEPAL; 62

(where we have used the equation ¢> — ¢ — 1 = 0 to turn higher powers of ¢ into linear
functions of ¢). In this form, it is easy to see that

él-él=éz~éz=l, e1~e2=0.

When these properties are satisfied, we say that the set {&;, €} is an orthonormal basis of
R2.
Now let P = (él éz). Let’s interpret the transformations represented by P, D and Pl

Ziﬁg _C(S)lsn: where 6 = sin™! (ﬁ) In other words, P
represents a rotation of § ~ 31.7° anticlockwise.
+ P! therefore represents a clockwise rotation of the same angle.
'D—(¢ 0 ~(1.618 0
01-¢/ "\ 0 -0.618
x direction (an enlargement) and a scaling by a factor of ~ —0.618 in the y direction
(shrinking and reflecting across the x-axis).

* P can be expressed as (

represents a scaling by a factor of ~ 1.618 in the

Fig. 5.10 summarises the sequence of transformations PDP~! performed on the shape
shown on the top left panel (a unit circle with a line joining the origin to (1,0)). These
pictures are the output of the code diagonalise.ipynb which produces an interactive
plot with a slider that transforms the circle stage by stage, starting with P~!. The final
transformed shape is the tilted ellipse shown in the top right panel.

From our investigation in the previous section, and the code output in this section, one
mioht make the followino coniectnre: the semi-maior and semi-minor axes of the tilted

15 15

1.0 1.0 A

0.5 0.51 =

-1.01 -1.01

-15 T T T T T T T =15

Fig. 5.11: Change of basis from the standard basis (left) to the basis comprising eigenvectors
&1, 8, (right). The tilted ellipse x> — 2xy + 2y? = 1 on the left takes a much simpler form in
the eigenbasis (eq. 5.26).

254 5 Linear Algebra

15 1.5

1.0 4 1.0

0.5 1 0.5

0.0 1 0.0
—0.5 —0.5 A
—-1.0 4 =1.0
-1.5 T T T -1.5

-2 -1 0 1 2 -2 2
—1
I 1 1 P
p-1 D P

1.5

1.0 1.0 4

0.5 1 0.5 A

0.0 1 0.0 1
—0.5 - -0.5 1
~1.04 1.0 4 LTI G b
-1.5 T T T -1.5 T T T

-2 -1 0 1 2 -2 -1 0 1 2
’ | I | . |
p-1 D P p-1 D P

Fig. 5.10: Visualising matrix diagonalisation. Breaking down the linear transformation
represented by A into a sequence of 3 transformations PDP~! (done in reverse order), namely:
a) P! (clockwise rotation), b) D (enlargement in the x direction and shrinking+reflection
in the y direction), and c) P (anticlockwise rotation). The blue dashed shape in each panel
shows the pre-transformed shape in the previous stage.

DiscussioN

* Change of basis. Let’s examine why the size and orientation of the ellipse are determined
by the eigenvalues and eigenvectors of A = PDP~!. Let the vector x be written in two
ways: 1) using the standard basis as x = xi + yj and 2) the eigenbasis as x = ¥&; + j€;.
Equating the two expressions, we find

@ ()=e e) = ()=

In other words, we can think of P~! as the change-of-basis matrix which gives the
coordinates of x in the eigenbasis. In the new coordinates, the ellipse has a simple
equation

5.7 Diagonalisation: Fibonacci revisited 255

12 5 2
—] +[=| =1 (5.26)
A1 A2
This change of basis also explains why the ellipse seen in fig. 5.8 is aligned along the
eigenvectors with the size determined by the eigenvalues.

* The spectral theorem. In the previous section, we found the eigenvectors for the matrix

(3}2 1}2) (the green lines in fig. 5.8). The eigenvectors are not orthogonal. On the

other hand, in this section we found that the eigenvectors for are orthogonal (and

11
10
therefore, after normalisation, orthonormal). Is there a way to tell whether a matrix has
orthogonal eigenvectors? Here is a very important theorem in linear algebra.

Theorem 5.5 (Spectral theorem) Every real symmetric matrix has real eigenvalues and
orthogonal eigenvectors.

See [194] for proof. The spectral theorem explains why the matrix A = (} (1)) gave rise

to an orthonormal eigenbasis (because it is symmetric).

The orthonormality of the eigenvectors is equivalent to the expression P P = I (where
the columns of P are the eigenvectors of A). In other words, P! = PT_ and we could
have diagonalised the matrix as A = PDPT.

¢ Method of characteristics. We have shown how the Fibonacci recurrence relation
could be solved using matrix diagonalisation. In practice, there is a more compact
method called the method of characteristics which skips writing down the matrix and
condenses the method to its bare essential.
The method goes like this. To solve F, 4o — F;,—1 — F,, = 0 with (Fp, F1) = (0, 1):

1. Write down the characteristic polynomial
m*-m—-1=0.

2. Solve it to obtain two roots:

n
15

3. The solution for F;, is
Fy = Ci(my)" + Co(m-)",

where C; and C, are constants to be determined.
4. Substitute the ‘initial condition’ (Fy, F1) = (0, 1) to find:

Ci+C =0

1 1
m+C1+m_C2=1} = G="7 G="-=

V5 V5

This yields the Binet’s formula (5.24) as expected. See [104] for details of why this
method produces the same result as the diagonalisation method.

256 5 Linear Algebra

diagonalise.ipynb (for plotting each panel of fig.

i import numpy as np

| from scipy import linalg as LA

| import matplotlib.pyplot as plt

i from matplotlib.widgets import Slider

| %matplotlib
|
Input the matrix here : A= np.array([[1,1],[1,0]1]1)
The eigenvalues and matrix P 1 lam, P = LA.eig(A)
We also need P~L. .. 'Pinv = LA.inv(P)
and the diagonal matrix D 'D = np.array([[lam[0],0]1,[0,lam[1]1]]1)

1 fig, ax = plt.subplots()

Leave space for a slider i plt.subplots_adjust(bottom=0.2)
Equal aspect ratio | ax.set_aspect('equal')
Set plotting window :ax.axis([—2,2,—1.5,1.5])

rax.grid('on')
|

Polar angle € [0, 27] T = np.linspace(0,2*np.pi, 100)
The unit circle x to be transformed ! X = np.array([[np.cos(T)], [np.sin(T)]11)\
Reshape x into a (2 x 100) matrix I .reshape(2,len(T))
P 'x | PinvX= Pinvex
DP'x ' DPinvX= D@PinvX
PDP'x ' PDPinvX= P@DPinvX
|
The original shape (circle with line \Vecl, = ax.plot([0,X[0,0]], [0,X[1,0]], 'bo:")
segment) in blue dotted line | Curvel,= ax.plot(X[0,:], X[1,:],'b:")

ax.plot([0,X[0,0]], [0,X[1,0]], 'ro-")
ax.plot(X[®,:], X[1,:]1,'r-")

The transformed shape in red solid line : Vec2,

o)
=
5
<
™
N
1l

Slider dimension and location axt = plt.axes([0.25, 0.1, 0.5, 0.02])

Divide the diagonalisation into 3 steps t_slide = Slider(axt, '',0, 3, valstep=0.001,
with smooth transition in between valinit=0)

Hide slider values (¢ € [0, 3]) 1 t_slide.valtext.set_visible(False)

Add custom labels to our slider | axt.add_artist(axt.xaxis)

At t values 1, 2,3 | slider_ticks = [1,2,3]

set the labels as P~!, D, P respectively 1slider_label = [r'$PA{-1}$', r'D', r'P']
1 axt.set_xticks(slider_ticks, slider_label)
|
def Frame(t):
if t<1:
Xt=X
Ft=t*PinvX+(1-t)*Xt

|

Generate data at a given ¢ value |

Do smooth linear interpolation between: !

a) Original state (x) atz =0 :

b) Transformed state (P~'x) at ¢ = 1 l

Interpolation between the next 2 states: | elif 1<=t and t<2:

a) Original (P~!x) at ¢t = 1 \ Xt=PinvX

b) Transformed (DP’IX) att =2 : Ft=(t-1)*DPinvX+(2-t)*Xt

And the final 2 states: | else:

a) Original (DP 'x)attr =2 : Xt=DPinvX

b) Transformed (PDP_IX) attr =3 I Ft=(t-2)*PDPinvX+(3-t) *Xt
1 return Xt, Ft
|
|
I
|

Code continues on the next page

5.7 Diagonalisation: Fibonacci revisited

diagonalise.ipynb (continued)

257

Take ¢ value from the slider
Data for the original/transformed shapes
Update the original (blue) shape

Update the transformed (red) shape

Replot when the slider is changed

def update(val):
t = t_slide.val
Xt, Ft = Frame(t)
Curvel.set_data(Xt[0,:], Xt[1,:]1)

Vecl.set_data([0,Xt[0,-1]1], [0,Xt[1,-1]1])

Curve2.set_data(Ft[0,:], Ft[1,:1)

Vec2.set_data([0,Ft[0®,-1]], [0,Ft[1,-1]])

fig.canvas.draw_idle()

t_slide.on_changed(update)
plt.show()

258 5 Linear Algebra

5.8 Singular-Value Decomposition

a) Perform singular-value decomposition (SVD) on the matrix

110
A= (0 0 1) ’
and obtain its rank-1 approximation.

b) Use SVD to perform image reduction using an image of your choice.

In the previous section, we saw how a square matrix A (satisfying certain condition) could
be decomposed into A = PDP~! where D is a diagonal matrix containing the eigenvalues
of A (theorem 5.4). In this section, we will generalise the theorem to any matrix.

Some observations.

(a) Given any matrix A, the matrices AA” and AT A are symmetric matrices.
(This follows from the property (AB)T = BT AT. Put B = AT)

(b) By the spectral theorem (theorem 5.5), the eigenvectors u; of AAT can be chosen to be
an orthonormal set. (Same for the eigenvectors v; of AT A.)

(c) The matrices AAT and AT A share the same eigenvalues.

(d) The eigenvalues of AAT and AT A are non-negative.

Here’s a quick proof of (c). Suppose AAT has eigenvalues A;, then, multiplying the
eigenvalue relation by AT | we have:

AATY = Ly = ATAATw) = ;AT). (5.27)

In other words, AT A has eigenvalues A; corresponding to eigenvectors v; = AT u;.
For (d), since the eigenvectors {u;} of AAT are orthonormal, we have (dropping the
subscript for clarity):

l=u-u=u"u = 1=u’(1u) =u’ 44Tu) = (ATu)" (ATu) = |ATu)* > 0.

All these properties suggest that even though A may be an odd-shaped matrix with no
discernible special properties or symmetry, we can instead turn to AA” and AT A, which
are square, symmetric matrices, and study their ‘eigen-properties’. This would then shed
light on the information content of A itself.

The following theorem makes use of the above properties. It is one of the most important
theorems in modern applications of linear algebra. For proof, see [103, 194].

Theorem 5.6 (Singular-value decomposition) Let A be an m X n matrix of rank r. Then, we
can write
A=UzVT,
where
o U is an m X m orthogonal matrix whose columns are the normalised eigenvectors of
AAT (these are called the ‘left singular vectors’)

oV is an n X n orthogonal matrix whose columns are the normalised eigenvectors of
AT A (the ‘right singular vectors’)

5.8 Singular-Value Decomposition 259

o X js an m X n diagonal matrix

_ [)rxr0
z_(- 0).

D = diag (01,02, ...0;), where o; (the singular values) are the square roots of the
nonzero eigenvalues of AAT, arranged in decreasing order of magnitude.

The rank of A is precisely the number of singular values in X. One can see this from the
decomposition A = UXVT as follows: note that U and V are invertible matrices (U~! = UT).
Multiplication by invertible matrices does not change the rank of a matrix. Therefore, we
must have rank(A) = rank(X).

SVD by hand

110
001

Step 1: Find the eigenvalues and eigenvectors of AAT or AT A (whichever is easier). We
find

Let perform SVD on the matrix A = () . Follow these steps.

110
AATz((Z)(l)), ATAa=[110].
001

Obviously it is easier to work with AAT. The eigenvalues can be read off along the
diagonal and the (normalised) eigenvectors are straightforward to write down. They are:

=2, 111=((1)) =1, u2=((1))

This gives us the first orthogonal matrix

o33

We also have the singular values o; = v/1;. Hence,

2=(510)

Make sure to the eigenvalues are ordered in decreasing magnitude, and that the matrix X is
padded with zeros so that it has the correct dimension.

Step 2: Find the eigenvectors of AT A. We don’t necessarily have to do this by solving the
characteristic polynomial. Instead, we can use what we know from eq. 5.27 that v; = AT u;.
We get two eigenvectors straightaway (remember to normalise them).

o3l

260 5 Linear Algebra

10 0 0
ATuy =110 (1) = v, =(0].
01 1

However, we expect 3 mutually orthogonal eigenvectors {vy, v2, v3}. In this case, we can
simply write down what the third basis vector should be by inspection (perhaps by thinking
about the configuration of {vy, v5, v3} in R3). One option is

(or you could also choose its negative). If it is too difficult to figure out the missing vector(s)
by inspection, one could use row-reduction to help identify what other linearly independent
vectors should be added to the basis. Then apply the Gram-Schmidt process (discussed in
§5.10) to obtain an orthonormal basis.

In any case, we have now obtained the other orthogonal matrix V.

1/V2 0 1/V2
V=[1/V2 0 -1/V2].
0 1 0

Step 3: Complete the decomposition A = ULV,

10\ (v200 V2 1N2 0
A=lo1)\lo 10/| © o 1.
/N2 —=1/72 0

Low-rank approximation

Since there are two singular values, A has rank 2. From its SVD, we can also express A in
terms of the eigenvectors u;, v; and its 2 singular values as:

A= 0’1111(V|)T + 0'2112(V2)T

1 0
:\/5(0)(%%0%(1)(001)
{110\ (000
=looo)*loo1]

In the last line, the first piece is deemed to contain more information than the second,
since it is associated with a larger singular value. Thus, we say that the rank-1 approximation

of Ais ((1) (1) 8) (which seems like an obvious answer).

5.8 Singular-Value Decomposition 261

SVD with Python

In practice, SVD is usually deployed to find row-rank approximations of much larger
matrices. We take a look at an example where SVD can be used to compress an image.

A grey-scale image can be represented by an m X n matrix in which each number
represents the brightness of a pixel ranging from 0 (black) to 255 (white). An example
is shown in fig. 5.12. The photo of Epiphylum oxypetalum (its flowers bloom for only
one night) is represented by a 921 x 1464 matrix. The code svd.ipynb applies SVD to
this photo and lets the user adjust the number of singular values N used for the rank-N
approximation.

Note that the singular values are arranged in decreasing magnitude, and for this photo,
the magnitude of o; drops off sharply (note the logarithmic scales). The plot suggest that
the information contained in the term o;u;(v;)T for i 2 100 is far less crucial than those
with i < 100. This explains why there is not much visual gain when increasing N from 100
to 921, as we can see from the figure.

One might ask: what is the saving in using the rank-N approximation rather than the
full image? Well, the SVD has to store N eigenvectors u; (each containing m numbers), N
eigenvectors v; (each containing n numbers), and of course the N singular values themselves.
In total, the amount of data needed is Nm + Nn + N = N(m + n + 1), in contrast with nm
(the full data). In the photo compression in fig. 5.12, (m, n) = (921, 1464), so using 100
singular values, we are retaining only around 18% of the full data, yet the reconstructed
image is of satisfactory quality.

Finally a few observations about the code svd.ipynb.

* The key to the SVD operation is SciPy’s 1inalg. svd function:
U, s, VT = svd(A)

Note that the output s is a one-dimensional array of singular values (and not an m X n
array).
* The compression step (resizing) using N singular values is

N
A= Z o (v)T. (5.28)
i=1

This rank-N approximation is done by the function resize_image in the code.

* The slider has been transformed so that it is logarithmic and its position matches the
logarithmic x-axis of the singular-value plot. We also override the display on the slider
so that it shows the value of N and not log;q N.

* You can use any jpeg image — just place it in the same folder as the code. We recommend
using the Pillow (PIL) package® to read in the image as a matrix and convert it to
greyscale. This is achieved by the line:

A = Image.open(’ flowers.jpeg’).convert(’L’)

The code can also be modified to perform SVD on colour images. A walkthrough is
given in exercise 9c.

Shttps://pillow.readthedocs.io/en/stable/

https://pillow.readthedocs.io/en/stable/

Singular values

10° 4

10% 4

103 4

102 4

10! 4

800 1000 1200 1400

200

400

600

800

0 200 400 600 800 1000 1200 1400 O 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400

Fig. 5.12: A photo of Epiphylum oxypetalum (‘Queen of the night’) flowers found in Northern
Thailand. The image is reduced using singular-value decomposition. The top left panel
shows the size of the singular values arranged in decreasing order (note the logarithmic
scales). The slider adjusts N, the number of singular values retained. The reconstructed
images are shown for various N.

5.8 Singular-Value Decomposition 263

* Real-world applications of SVD are in situations where key information needs to be
extracted from a large 2-dimensional data. In addition to image/data compression, SVD
is also used in machine-learning tasks, such as:

Outlier detection and de-noising a dataset;

— Linear regression (i.e. finding the best approximate solution to the system Ax = b);
Recommender systems on video/shopping/social-media platforms;

Facial recognitions [150].

More about the role of SVD in these applications in [2, 34, 195].

264 5 Linear Algebra

svd.ipynb (for plotting the top 2 panels of fig.

| import numpy as np

| import matplotlib.pyplot as plt

:from matplotlib.widgets import Slider
PIL = Python Imaging Library 1 from PIL import Image

\ from scipy.linalg import svd

| %matplotlib

|
Use your own jpeg image (we con-:A = Image.open('flowers.jpeg').convert('L")
vert it to greyscale) :
Perform SVD U, s, VT = svd(A)

N = number of singular values
Rank-N approximation (eq. 5.28)

def resize_image(N):
return U[:,:N] @ np.diag(s[:N]) @ VT[:N,:]
Plot two figures side by side fig, (axl, ax2) = plt.subplots(1,2,
figsize=(10,4))

Space for the slider 1plt.subplots_adjust(bottom=0.2)

Set the range of the index i of o; laxl.set_x1lim(1,len(s))
}axl.title.set_text('Singular values')
! axl.grid('on')

Plot o-; against i on log scales (red) raxl.loglog(s, 'ro-', markersize=3)
I
|

Initial choice of N N =10

Do rank-N approximation ! image = resize_image(N)

Display the resized image 1ax2.imshow(image, cmap="'gray')

Position the slider below the x-axis axt = plt.axes([0.125, 0.1, 0.355, 0.05])
N_slide = Slider(axt, 'N',
0, np.logl®(len(s)),
valstep=0.05, valinit=1)

N_slide.valtext.set_text(N)

Apply log, to the slider
The correct value of N on the slider

def update(val):
N = round(10**N_slide.val)
N_slide.valtext.set_text(N)
image = resize_image(N)
ax2.imshow(image, cmap='gray')
fig.canvas.draw_idle()

Take N from the slider (undo log)
Display the correct value of N
Do rank-N approximation and display

|
Re-display the photo on the right' N_slide.on_changed(update)
when the slider is changed :

1plt.show()

5.9 The Rank-Nullity Theorem 265

5.9 The Rank-Nullity Theorem

The rank-nullity theorem states that for an m X n matrix A,
rank(A) + nullity(A) = n. (5.29)
Verity the theorem for the following matrices.

1-1-1 1-1-1 1-1-1
A=|11 1 B=100 1 cC=(2-2-2 D = (3 x 3) zero matrik.

00 1 00 1 3-3-3

The rank-nullity theorem is one of the most important theorems in university-level linear
algebra. In short, it follows from the observation that if (the RREF of) an m X n matrix has r
leading 1s, then the solution of the equation Ax = 0 requires n — r free variables. For proof
of the theorem, see any of the textbooks recommended in the introduction of this chapter.

An equivalent rephrasing of the rank-nullity theorem is as follows: for an m X n matrix A,

dim (column space) + dim (nullspace) = n.

The theorem can also be expressed in linear-transformation terminology. Recall that the
matrix A represents a linear transformation 7 : V. — W. In terms of T, the rank-nullity
theorem says:

dim(im 7) + dim (ker T) = dim V.

Let’s do some calculations before we demonstrate the theorem with Python. Take the
matrix A in the question. Performing row reduction, we find

1-1-1 100
A=|11 1 RREF — o 10].

00 1 001

Hence, A has rank 3. The column space is the whole of R3.

To find the nullity, we solve Ax = 0 and count the number of free variables. In this case,
since A is full-rank, it is invertible, and therefore we have the unique solution x = A”l0=0
(i.e. no free variables). The nullspace consists of a single vector 0, and the nullity is therefore
0.

We conclude that the rank-nullity theorem is satisfied, since 3 (rank) +0 (nullity) = 3
(number of columns).

For matrix B, we can tell by inspection that it has rank 2 (the last row is redundant). To
be more precise, the column space is

(3l

Geometrically, this is the plane y — z = 0. You can check this by taking the cross product of
the two vectors.
To find the nullity, solving Bx = 0, we find the solutions

266 5 Linear Algebra

1
x=c|l]|], ceR.
0

The nullity is therefore 1 (a straight line). This is again consistent with the rank-nullity
theorem (2 + 1 = 3).

For matrix C, the rows are simply multiples of one another, and therefore the rank is 1.
T
The column space is simply the line in the direction of the vector (1 2 3) .
For the nullity, solving Cx = 0 gives the solutions

1 1
x=ci|1]|+c|0], c1,c0€R.
0 1

The nullity is therefore 2. This agrees with the rank-nullity theorem (1 + 2 = 3).
The nullspace of C is a plane spanned by two vectors. To find the equation of the plane,
you could find the cross product of the two basis vectors to find the equation

x—y—-z=0.

Alternatively, the normal (1 -1 —I)T is also parallel to a row (any row) of C, so you could
just read of the equation of the 2D nullspace from inspecting the rows of C. This property
follows from thinking about the multiplication in the equation Ax = 0 and noticing that the
rows of A must be perpendicular to the column vector x in the nullspace. This property is
sometimes expressed as the following theorem.

Theorem 5.7 Let A be an m X n matrix. The row space and nullspace of A are orthogonal
complements in R".

Finally, the case for the zero matrix D is trivial: the column space is the zero vector, whilst
the nullspace is the whole of R?. The rank-nullity theorem is again satisfied (0 + 3 = 3).

Visualising the rank-nullity theorem

For visualisation, it helps to associate each matrix with a linear transformation 7'. Let x be
the position vectors of points inside and on the unit sphere x> + y? + z> = 1. We will take
the domain of T to be the sphere. We will then apply the matrix to find the image of the
sphere under 7'. Finally, we will visualise the kernel of T by considering which part of the
solid sphere is mapped onto the zero vector by 7.

The visualisation of these spaces are shown in fig. 5.14. Each row of figures corresponds
to each of the 4 given matrices. The key observation here is that the dimensions of the image
and kernel in each row always add up to 3.

It is important to keep in mind that the spheres (and the ellipsoid) in this figure are all
meant to represent 3D solids (and not just the shells). For example, note that the kernels are
subset of the domain, so the green line in the second row, and the disc in the third row, are
all contained in the spherical domain.

The zero vector has also been added to all figures as a black dot. It is clearly part of the
domain (the centre of the sphere). Furthermore, since we always have 7'(0) = 0, the zero
vector is also in both im(7") and ker(T).

5.9 The Rank-Nullity Theorem 267

Coding highlights (a quaternion appears)

The code ranknullity.ipynb produces each row of fig. 5.14. It is a rather long piece of
code since we are producing 3 figures at the same time. Each subplot is interactive, in the
sense that you can spin them and zoom in/out.

To visualise the kernel, the code uses scipy.linalg.null_space to produce the
(normalised) basis of the nullspace. Then, the nullity is obtained by counting how many
vectors are in the basis. It is then easy to plot the point, line and sphere if the nullity is 0,1
and 3.

Visualising the kernel when nullity equals 2 is the most complicated part of the code. The
function kernel2D plots the slice of the sphere corresponding to ker(7"). More precisely,
the kernel is a unit disc containing two given unit vectors emanating from the origin.

To do this, we create the unit disc {(x,y,z) € R3: x2+ y2 < 1,z = 0} and rotate it
to match the kernel. The procedure we have chosen is interesting in the sense that it is a
rotation technique that is commonly used in computer games, namely, using a quaternion.
Here is a summary of what the function kernel2D does.

* The unit disc in the x-y plane is created (using polar coordinates). Note that it has unit
normal k = (0,0, 1).

* The normal to the kernel is simply any row of the given matrix (thanks to theorem 5.7).
Normalise it to get the vector K

» The rotation required is that which maps k to N. The rotation angle is 6 = cos™' k - N.
The axis of rotation is k x N. Normalise this axis to get the unit vector I.

* The quaternion that performs this rotation can be written in the so-called polar form as

—cosQ+Isin9
4=cos3 2

It does not matter if you are not familiar with quaternions at the moment (we will
discuss them in some detail in §6.6). The point here is that to perform a spatial rotation
of angle ¢ around an arbitrary axis I, a process using a quaternion offers the easiest
solution. A quaternion has an equivalent 3 X 3 matrix form, which we also use in the
code to multiply to vectors to rotate them in the usual way.

* The rotated unit disc can then be plotted along with the 2 basis vectors of ker(T).

The code should work for any 3 X 3 matrix you throw at it.

The rank-nullity theorem also works for non-square matrices, although the code will
require a little modification. You will explore the visualisation for non-square matrices in
exercise 10.

268 5 Linear Algebra

Fig. 5.13: Strang’s four fundamental subspaces of an m X n matrix A.

5.9 The Rank-Nullity Theorem

Domain

1 -1
A=11 1
0 0
1 -1
B=10 0
0 0

03 10-1.0

Domain

1 -1
c=12 -2
3 -3
0 0
D=0 0
0 0

0.5

1.0-1.0

Fig. 5.14: Visualising the rank-nullity theorem: dim(Image) + dim(Kernel) = 3.

269

270 5 Linear Algebra

ranknullity.ipynb (for plotting each row of fig.

i import numpy as np
| import matplotlib.pyplot as plt
| import scipy.linalg as LA

Function for 3D rotation : from scipy.spatial.transform import Rotation
1 %matplotlib
|
I
Input the matrix here |A= np.array([[1,-1,-11,[1,1,1],[0,0,111)
I
Create a grid of 6 and ¢ values | Theta= np.linspace(®, 2*np.pi, 25)
(spherical coordinates) 'Phi = np.linspace(®, np.pi, 25)
(6, @) is a point on the unit sphere | theta, phi = np.meshgrid(Theta, Phi)

Cartesian coordinates of points on X = np.cos(theta) *np.sin(phi)
the surface of the unit sphere 'Y = np.sin(theta)*np.sin(phi)
"Z = np.cos(phi)

We will plot 3 figures in a row fig = plt.figure(Q)

First plot = the unit sphere ### First plot: Domain
ax = fig.add_subplot(131, projection='3d")

def plot_axes(name):
ax.set_box_aspect((1,1,1))
ax.set_xlim(-1,1)
ax.set_ylim(-1,1)
ax.set_zlim(-1,1)

I
|
|
I
|
I
|
|
I
|
|
A function for plot cosmetics :
I
|
|
I
|
:
| ax.set_xlabel('x")
|
|
I
|
|
I
|
I
|
|
I
|
|
I
|
I
|
|
I
|

Equal aspect ratio

ax.set_ylabel('y")
ax.set_zlabel('z")
ax.set_title(name)
ax.plot(0,0,0,'k.")

Display name as plot title
Add a black dot at the origin

def plot_3D(X, Y, Z):
ax.plot_surface(X, Y, Z, alpha=0.2,
edgecolor="k', cmap='rainbow')

A function for plotting a surface
Set transparency
Add black contour lines

plot_axes('Domain')
plot_3D(X, Y, Z2)

Prep the first plot titled ‘Domain’
Plot the sphere

|
Second plot = the image of the|### Second plot: Image
sphere under A lax = fig.add_subplot(132, projection='3d')

|
A transformation with matrix M def transform(M, x, y, z):
Reshape meshgrid data into 3 rows (x= xyz = np.vstack((np.ravel(x), np.ravel(y),
top row, then y, then z = bottom row) : np.ravel(z)))

|

Multiply the data by M Mxyz = M@xyz
Extract the transformed data and undo the | MX = Mxyz[0,:].reshape(x.shape)
reshaping (revert to meshgrid data format) | MY = Mxyz[1,:].reshape(y.shape)
: MZ = Mxyz[2,:].reshape(z.shape)
Return the transformed data I return MX, MY, MZ
|
|
Transform the sphere with A AX, AY, AZ = transform(A, X, Y, 2Z)
Prep the second plot 'plot_axes('Image')
Plot the transformed sphere 1plot_3D(AX, AY, AZ)
I

|
| ### Code continues on the next page
|

5.9 The Rank-Nullity Theorem 271

ranknullity.ipynb (continued)
Third plot shows which part of the (solid) ' ### Third plot: Kernel

sphere is mapped to 0 rax = fig.add_subplot(133, projection='3d")
|

Let SciPy find the basis of the nullspace 'NS = LA.null_space(A)

How many vectors are in the basis? 'nullity = NS.shape[1]
|

A function for plotting 2D kernel | def kernel2D():

Create a unit disc in the x-y plane

using polar coordinates (r, 8)

The disc will be rotated and mapped to the
kernel

Meshgrid data format of the unit disc

r = np.linspace(®, 1, 20)
theta = np.linspace(0, 2*np.pi, 20)
R, Theta = np.meshgrid(r, theta)

xx = R*np.cos(Theta)
yy = R*np.sin(Theta)
zz = 0%xx

Each row of A is normal to the ker-
nel (see thm. 5.7)
If the normal is parallel to k, then. . .

normal = A[O,:]

if normal[0]==0 and normal[1]==0 and\
normal[2]!=0:

the kernel is the untransformed disc RX = xx
RY = yy
RZ = zz

Otherwise, else:

Rotaton axis for mapping disc to kernel V = np.cross([0,0,1], N)

Normalise the rotation axis axis = V/LA.norm(V)

Angle 6 between k and the normal th = np.arccos(N[2])

cos2, sin2 = np.cos(th/2), np.sin(th/2)

Isin2 = sin2*axis

Quat = np.append(Isin2, cos2)

rot = Rotation.from_quat(Quat)

RX, RY, RZ= transform(rot.as_matrix(),
XX, VY, 2z)

The quaternion cos(6/2) + Isin(6/2)
SciPy takes the quaternion to do rotation
Transform the unit disc using the matrix
form of the quaternion

Add (+) basis vectors of the nullspace in
green

ax.plot([-NS[0,0], NS[0,0]],
[-NS[1,0],NS[1,0]],[-NS[2,0],NS[2,0]1],"'g-")
ax.plot([-NS[0®,1], NS[®,1]11,
[-NS[1,1],NS[1,1]],[-NS[2,1],NS[2,1]],"'9g-")

I
|
I
|
|
I
|
|
I
|
I
|
|
I
|
|
I
|
I
|
|
I
|
|
I
:
|
Calculate the unit normal to the kernel | N = normal/LA.norm(normal)

|
|
I
|
I
|
|
I
|
|
I
|
I
|
|
I
|
|
I
|
I
|
:
| plot_3D(RX, RY, RZ)
I

Plot the kernel as a rotated disc

|
ID kernel = a line parallel to theif nullity == 1:
basis vector I ax.plot([-NS[0,0], NS[0,0]],
l [-NS[1,01,NS[1,011,[-NS[2,0],NS[2,011, 'g-"
2D kernel = a rotated unit disc (if nullity == 2:
| kernel2D()
3D kernel = the (solid) unit sphere ! if nullity ==
|
|
|

plot_3D(X, Y, Z)
Prep the third plot plot_axes('Kernel')

:plt.tight_layout()
: plt.show()

272 5 Linear Algebra

5.10 Gram-Schmidt process and orthogonal polynomials

Given the polynomials

1, x, xz, x3, x4, x.

Use the Gram-Schmidt process to obtain an orthonormal basis of $s, namely, the
vector space of polynomial degree at most 5 defined on [—1, 1], equipped with the
inner product defined by

1
f.&= f] f(x)g(x)dx. (5.30)

The Gram-Schmidt process is a procedure for obtaining an orthonormal basis
{ej, e ...e,} for a vector space V, starting with a given linearly independent basis
{v1, V2, ...v,}. The procedure goes as follows (see [14, 103] for proof).

1. Starting with v;, we normalise it to get e;.

!

e = —.
[vi]

2. Writevp = vg +v5, where Vg and vy are the components of v, parallel and perpendicular

to e; respectively. Note that Vg is the projection of v, along the direction ey, i.e.

Vg = (vp-ey)e;.
3. Obtain the component vy and e; as follows.

1
n \F)
Vy =Va—(Va-ep)ep = €= —.
vy
4. Continue this process by subtracting the projections of v; along the directions of
€,€2...€j1.

1

Vi =vi—(vi-ep)e; —(vi-e)er...— (Vi -€i_1)ei-1 = € = (5.31)

i
Ivit|
Continue until e, is obtained.

The procedure for two vectors is shown in fig. 5.15 below.

V2

Gram-
Schmidt

il » Vi €1

Fig. 5.15: The Gram-Schmidt process for 2 vectors.

The Gram-Schmidt process is named after the Danish mathematician Jgrgen Gram
(1850-1916) and the German mathematician Erhard Schmidt (1876—1959) although the
process was already used by Laplace in his 1812 publication (Gram’s published his results
in 1883). See [128] for an interesting overview of the history and applications of the
Gram-Schmidt process.

The Gram-Schmidt process can be applied to vectors in an abstract vector space. So far
we have only discussed vectors in the vector space R?, where the dot product is defined in
the usual way. In this question, however, we are working in the vector space $5 in which
the ‘vectors’ are polynomials up to degree 5. The ‘dot’ or inner product between two
polynomials f and g is also defined differently as an integral of the product fg over [—1, 1].
This inner product naturally gives rise to the ‘length’ or norm of a vector f as

1/2

1
Ifl = (f,)YV = (fl[f(x)]zdx)

Let’s follow the Gram-Schmidt recipe given the polynomials
Vo = I, vi=x, wv= xz, V3 = x3, V4 = X4, V5 = xs.

(Note that #,, has dimension n + 1.) We have relabelled the indices so that each subscript
matches the degree of the polynomial.

SR

2. The component of v; parallel to e is

- [)8

3. Subtracting the projection, we find

| ~1)2 3
Vf=V1—0=>e1=x(f xzdx) =\/;x.
-1

1. Normalising vy gives

274 5 Linear Algebra

4. Continuing the process, we find the remaining polynomials in the orthonormal basis:

€ = %\/g(?wcz -]),
e; = %\/2(5)9 - 3x),
= %\/2(35x4—30x2+3>,

1 [11 s 3
es= g ?(63); —70x +15x).

Note that the functions e; are alternately odd and even functions.
Any polynomial of degree at most 5 can be written as a linear combination of these
polynomials. For example, take f(x) = x> + 1, then it is easy to show that

2 |2 3 /2

3

1=2,4/2 I Den.
X+ 5\/;e3+5\/;e1+\/_e0

Coding

In the code gramschmidt . ipynb, we use SymPy to automate the Gram-Schmidt process,
print out the orthonormal functions {e;}, and plot them on the same set of axes, as shown in
fig. 5.16. We note that SymPy’s results for e; agree with our calculations. The code can be
easily extended to find the orthonormal basis of #,, for any n.

The code can also modified to perform the Gram-Schmidt process on other vector spaces
with different inner products. See exercise 11.

DiscussioN

* Legendre polynomials. The basis functions of polynomials degree at most n on [—1, 1]
(assuming the inner product (5.30)) are called Legendre polynomials, denoted P; (x)
@i=0,1,2,...n). Like the basis functions e;, they obey the orthogonal condition

1
f P;(x)Pj(x)dx =0ifi # j.
-1

However, instead of the unit-length requirement, the Legendre polynomials obey the
standardisation condition
Pi(1) =1,

for all integers i to up n (note from the graphs in fig. 5.16 that the orthonormal functions
e; do not satisfy this condition). The first 6 Legendre polynomials are

Py=1, P = x, Py =3 (3x7 - 1), P3=1(5x3—3x),

)
, P5:%(63x5—70x3+15x).

N =

~—

1
Py= (35x4 ~30x2+3

5.10 Gram-Schmidt process and orthogonal polynomials 275

At university, you will meet the Legendre polynomials when studying physical problems
associated with spherical symmetry. In particular, they appear in spherical harmonics,
Y;" (8, ¢), which are the basis functions for expressing a function defined on the unit
sphere. See [84] for details of how the Legendre polynomials and spherical harmonics
appear in quantum mechanics.

Adrien-Marie Legendre (1752—-1833) was a French mathematician who made major
contributions to mathematical physics. There appears to be only one surviving likeness
of him in the form of an unflattering caricature’.

* Orthogonal polynomials. The Legendre polynomials are one family of many classical
orthogonal polynomials that occur in mathematics. These polynomials typically satisfy
the following properties.

— They are orthogonal with respect to some inner product.
They satisfy a 3-term recurrence relation. For example, the Legendre polynomials
satisfy

(n+ DPpi1(x) = 2n+)xP, —nP,_;.

They satisfy a 2nd-order differential equation. For example, P,, satisfies the Legendre
differential equation

(1 =x*)P/(x) = 2xP.(x) + n(n + 1)P,(x) = 0.

They satisfy a degree-n differential expression known as Rodrigues’ formula. For
the Legendre polynomial, we have

Pu () = 2”1n! dc:ln (=1)".

See [41] for an introduction to orthogonal polynomials and their properties. See also
Exercise 11c which explores the Hermite polynomials.

7 See https://bit.ly/3ypUePq for an intriguing tale of mistaken identity.

https://bit.ly/3ypUePq

Orthonormal basis of Pg

— e — € —e —— €3 —— €, —— 65

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

e[0] = sqrt(2)/2

e[1] = sqrt(6)*x/2

e[2] = 3*sqrt(10)*(x**2 - 1/3)/4

e[3] = 5*sqrt(14)*(x**3 - 3*x/5)/4

e[4] = 105*%sqrt(2)*(x**4 - 6*x**2/7 + 3/35)/16
e[5] = 63*sqrt(22)*(x**5 - 10*x**3/9 + 5%x/21)/16

Fig. 5.16: The orthonormal basis for $5 obtained using the Gram-Schmidt process, along

with the printout generated by the code gramschmidt.ipynb.

5.10 Gram-Schmidt process and orthogonal polynomials 277

gramschmidt.ipynb (for plotting fig.

i import numpy as np
| import sympy as sp
| import matplotlib.pyplot as plt

:%matplotlib
|
!X = sp.Symbol('x")
The linearly independent vectors v; given : v = sp.Matrix([[1,x,x*%2,x**3,x**4 x**5]])
Initialise e; (to be calculated using Gram-'e = sp.zeros(l,len(v))
Schmidt process) :
Define the inner product (f, g) i def Dot(f,g):

return sp.integrate(f*g, (x,-1,1))

def norm(f):
return sp.sqrt(Dot(f,f))

Define the norm |f'|

e[0] = v[0]/norm(v[0])

|
|
|
l
Begin Gram-Schmidt: obtain eg !
|
|
|

Display result print(f'e[0] = {e[0]}")
x values for plotting xarray = np.linspace(-1,1,100)
Vo (constant function) lyarray = e [®]*np.ones_like(xarray)
Plot it 1plt.plot(xarray,yarray)
I
|
Calculating the remaining e; "for i in range(l,len(v)):
vit vperp = v[i]

for j in range(l,i+1):
vperp -= Dot(v[i], e[j-1]1)*e[j-1]
e[i] = vperp/norm(vperp)

|
|
The main Gram-Schmidt algorithm :
|
!
Display the expression ! print(f'e[{i}] = {e[il}")
|
|
|
|

Formula 5.31

Turn a SymPy expression into a lambda function f = sp.lambdify(x,e[i])
Vi yarray = f(xarray)
Plot the result from Gram-Schmidt plt.plot(xarray,yarray)

rplt.xlim((-1, 1))
plt.ylim((-2, 2))

Insert the legend in LaTeX. . . plt.legend([r'Se_0$',r'Se_1$',r'Se_2%",
! r'$e_3%',r'$e_4%',r'$e_5%$'1,\
at the bottom of the plot, horizontal style : ncol=1len(v),loc="lower right')

(plt.title(r'Orthonormal basis of $P_5%')
,plt.grid('on"')
'plt.show()

278 5 Linear Algebra

5.11 Exercises

1 (Visualising linear systems) Use the code planes.ipynb to help you answer these
questions.

a. In the code, add a dot at the intersection point of the 3 planes whenever o = —1.
Suggestion: To add a single point with coordinates (1, 2, 3) with Plotly, use

dot = go.Scatter3d(x=[1],y=[2],z=[3])

b. Explore the number of solutions to the linear system

2 1 1\ /x 4
0 a lllyl=|1-a
a-21/\z 3+ 2

for different values of «. Visualise the results with Plotly and give a mathematical
explanation.

Suggestion: First attack the system analytically to work out the critical « values. In
the code, two planes should change with the « slider.

c. We saw an underdetermined system of equations in §5.3 (it has more unknowns
than equations). An overdetermined system, on the other hand, has more equations
than unknown.

In each case, give an example of a system of 4 equations in 3 unknowns such that
* there exists a unique solution,
* there are infinitely many solutions,
* there are no solutions.

Visualise these different scenarios as 4 planes in Plotly.

2 (Timing linear solvers) Use the code solvetimes.ipynb as a starting point for these
questions.

a. Does the choice of the matrix A matter? Try changing the random matrix to, say,
one of SciPy’s special matrices such as toeplitz, circulant or hankel, or
Numpy’s vander (Vandermonde matrix). Does the conclusion still hold?

b. Repeat the time-comparison exercise but this time between SciPy’s solve and
SymPy’s linsolve. Don’t be too ambitious with the matrix size n (unless you
plan to leave the code running and go watch a film). Why does it take so long?

c. Plot the lower panel of fig. 5.5 (runtime for Cramer’s rule). This may take a while.
You really don’t have to go up to n = 1000 to see what’s going on. Why does it
take so long?

3 (Visualising linear transformations) Use the code transformation.ipynb as a
starting point for these questions.

a. Replace the square by a triangle with vertices at (1,2), (-1, —1), (1, —1) and rotate
it about the origin.

b. Replace the square by the unit circle x> + y*> = 1 and apply a horizontal shear to it.

c. Replace the transformation in the code by a matrix which represents a vertical shear
with shear factor ¢.

5.11 Exercises 279

d. Replace the matrix M in the code by each of the following matrices.

0 11t i) 2t 0 iii) |t cost —|t|sint
t 1) 0t |t| sint |t|cost

Predict what these transformations represent. Confirm your answers with the code.

e. Using homogeneous coordinates (see eq. 5.15), write down the 3 x 3 matrix which
represents the translation (x, y) — (x +1¢, y). Apply it to the unit square in the code
(where ¢ can be adjusted using the slider). (Don’t forget to transform the origin.)

4 (Wigner’s semicircle law)

a. Write a code that generates a symmetric matrix M of size 2000 X 2000 whose entries
are random numbers between 0 and 1 (see solvetimes. ipynb for a method to
initialise such a matrix).

b. Use SciPy to find the eigenvalues of M. What is the largest eigenvalue A, ?
Verify that all the eigenvalues are real (this is the spectral theorem).

c. Remove A« from the array of eigenvalues. Plot a histogram of the eigenvalues in
this array.
Suggestion: Use Matplotlib’s hist function with, say, 50 bins.
You may be surprised to see that the histogram is (roughly) a semicircle. This
phenomenon is a consequence of a more general theorem in random matrix theory
called Wigner’s semicircle law.

-1-11 2

2 -1-11

1 2 -1-17
-11 2 -1
Using SymPy, show that its characteristic polynomial is

5 (Cayley-Hamilton theorem) Let A =

A48 41202 -41-13=0.

Using the Cayley-Hamilton theorem, express A~! as a cubic polynomial in A, and hence
evaluate A~!
Verify that your answer agrees with the SymPy command A**-1.

6 (Exploring the eigshow game) Use eigshow. ipynb to help you answer these questions.

a. Add a display on the plot showing the length of the red vector as the slider moves.
Suggestion: Use ax . text. Consult the code in §6.6.

b. Write down a matrix A that maps the unit circle to the ellipse x> + 16y? = 4.
Verify your answer with the code. (There are several answers.)

c. (Defective matrix) Show (by hand) that the matrix ((1) 1{2

) has an eigenvalue with
multiplicity 2. Find its eigenvector.

Use this matrix in the code and play the vector-alignment game. Check that what
you see is consistent with your calculations.

Find the Cartesian equation of the red ellipse.

7 (Solving a recurrence relation) Use matrix diagonalisation to solve for a, in terms of n,
where a,, satisfies the recurrence relation

Ans3 = —Apyo +4apy1 +4ap, ap=2, a1 =3, ap=11.

280 5 Linear Algebra

Plot the sequence (a,) up to n = 20 by working out the terms iteratively. Verify that
your nth-term expression agrees with the values obtained iteratively.

Solve the recurrence relation again using the method of characteristics (see Discussion
in §5.7). Feel free to use SymPy to help with fiddly calculations.

8 (Diagonalising matrices) Use diagonalise.ipynb to help you answer the following
question.
Consider the following matrices

(1 -1/2 (11 _(1-1/2 (11

A_(—1/2 1) B_(ll) C_(l 1) M_(Ol)'

a. Diagonalise matrices A, B, C by hand. Check your answers with SymPy using the
command:

import sympy as sp
A = sp.Matrix([[1, -sp.S.Half], [-sp.S.Half,1]1])
P, D = A.diagonalize()

Explain why matrix M is not diagonalisable.

b. Put each of the matrices into the code, and describe the diagonalisation as a
sequence of 3 transformations.
Be as precise as you can. For example, if the transformation is a rotation, calculate
the angle of rotation.

c. For matrix C, explain why the visualisation produced by the code is inadequate.

d. For matrix M, explain why the code does show a sequence of (strange) transforma-
tions even though the matrix is not diagonalisable.

9 (Singular-value decomposition) Use svd.ipynb as a starting point for the following
questions.

a. The SVD process approximates an m X n matrix by a rank-N matrix. Above the
compressed photo produced by the code, set the title of the photo to show an
estimate of the percentage of data retained in the rank- N approximation. Use the

formula
Nm+n+1)

mn

x 100%

as discussed in the text.
Does it make sense that this number could be higher than 100% when N is
sufficiently large?

b. (Marchenko-Pastur distribution) Perform SVD on a 2000 x 5000 matrix A whose
entries are random numbers between 0 and 1 (see solvetimes.ipynb for a method
to initialise such a matrix).

Let s be the array of singular values. Remove the largest eigenvalue from s (see
question 4). Then, plot the distribution of the remaining singular values as a
histogram.

Try it with (large) random matrices of different dimensions. Note that the shape of
the distribution remains similar. This is called the Marchenko-Pastur distribution.
This observation is important in filtering noise from data (small singular values are
associated with noise).

5.11 Exercises 281

c. (Compressing a colour image) One way to store a colour image is to associate each
pixel with a tuple (7, g, b) called the RGB (red-green-blue) values. Each colour
value is an 8-bit unsigned integers (‘uint8’) ranging from 0 to 255.

Let’s modify the code so that it performs SVD on a colour image. Here are some
pointers and useful commands for working with colour images in PIL.

 Put your colour image (say tree. jpg) in the same folder as the code (for
smoother sliding, use a smaller photo). Open it with the command

A = Image.open('tree.jpg').convert('RGB')

Obtain the 3 matrices representing each channel using the command Ar, Ag,
Ab = A.split(Q)

Perform SVD on each matrix. Let’s call the results Imr, Img, Imb. These
are arrays of floating point numbers, as you can verify using the command
Imr.dtype.

Convert the results back to an array of unsigned integers using the command
Imr = Imr.astype(’uint8’).

Convert the arrays to PIL’s Image type using R=Image. fromarray(Imr).
Similarly, obtain images G and B

Finally, merge the 3 compressed images with the command

Image.merge('RGB', (R, G, B))
For the left-hand plot, plot the singular values of all 3 channels on the same graph.
10 (Rank-nullity theorem) Use ranknullity.ipynb as a starting point for these questions.

a. Recall matrices B and C in the question, namely:

1-1-1 1-1-1
B=(00 1 c=|2-2-2|.
00 1 3-3-3

Demonstrate theorem 5.7) visually. In other words, for each matrix, plot its row
space and its kernel to demonstrate orthogonality.

b. Modify the code to visualise the rank-nullity theorem for 3 X 2 matrices like

11
2-1{.
10

Produce a set of figures similar to fig. 5.14.
c. Repeat the above exercise for the 2 X 3 matrix

110
2-11)°

282 5 Linear Algebra

11 (Gram-Schmidt process) Use gramschmidt.ipynb to help you answer the following
questions.

a. Starting with the vectors
vi=(1010)", w=(120-1)",

add two more vectors vz and v4 such that the set {vy, v, v3, v4} is linearly indepen-
dent.

Then, use the Gram-Schmidt process to construct an orthonormal basis {ey, >, €3, €4}
of R*.

Suggestion: You can check your answer with SymPy’s own Gram-Schmidt function.
Look up sympy.matrices.GramSchmidt.

Hence, express the vector (1 23 4)T as a linear combination of the orthonormal
basis {e;}.
b. Write a Python code to automate and visualise the Gram-Schmidt process for
vectors in R3. In particular, given a set of 3 vectors {vy, v2, v3}, your code should:
* Test whether the set is linearly independent. If not, throw an error with a raise
command.
e Perform the Gram-Schmidt process and produce the orthonormal basis
{eq, e, e3}. Print the results.
* Plot ey, e5, e3 and vy, v, v3 on the same set of axes to visualise the basis pre-
and post-Gram-Schmidt.
Suggestion: Use SymPy to work with exact expressions up to the print stage.

c. (Hermite polynomials) Given the polynomials

1, x, x2, X, x* X0,
Use the Gram-Schmidt process to obtain an orthonormal basis of s, namely, the
vector space of polynomial degree at most 5 defined on R, equipped with the inner
product defined by

(fg) = f FOOg(x) e dx.

Use SymPy to display the orthonormal polynomials and plot them on the same set
of axes (in the style of fig. 5.16).

Note: If the polynomials are not subject to normalisation, but instead, to the
condition that the coefficient of the highest power of x"* is 2", then the polynomials
obtained are called Hermite polynomials which have applications in physics and
probability. See [157] for a review.

Suggestion: Here is how you can evaluate f_o; e dxin SymPy.

import sympy as sp
X = sp.Symbol('x")
sp.integrate(sp.exp(-x**2), (x, -Sp.oo, Sp.00))

Check for
updates

CHAPTER
SIX

Abstract Algebra and Number Theory

Fig. 6.1: A monument to Muhammad ibn Musa al-Khwarizmi (c.781-850), the Persian
scholar many consider to be the father of algebra. As his work spread in 12th century Europe,
his latinised name gave rise to the word algorithm (Image source: [213]).

6.1 Basic concepts in abstract algebra

The word algebra takes on a very different meaning from how it is used in school. Algebra
means much more than the rules of shuffling around symbols and expanding or factorising
expressions in x and y. At university, algebra is a pure mathematics subject concerned with
abstract structures like groups, rings and fields, as well as their properties and mappings
between them. Abstract algebra allows integers, matrices, real and complex numbers to be
viewed with a bird’s eye view as particular types of abstract structures (e.g. R is a type of
field). Algebraists often describe their subject as elegant and beautiful. A good algebraic
proof is as succinct and refined as a haiku.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 283
S. Chongchitnan, Exploring University Mathematics with Python,
https://doi.org/10.1007/978-3-031-46270-2_6

https://doi.org/10.1007/978-3-031-46270-2_6
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46270-2_6&domain=pdf

284 6 Abstract Algebra and Number Theory

Visualising abstraction may sound a little contrary — certainly a typical abstract algebra
textbook contains far fewer figures than a book on, say, vector calculus (with the exception
of [38]). But some visualisation is possible (and useful), and in this chapter we will attempt
to visualise some aspects of abstract algebra with the help of Python. We will focus on group
theory and produce visualisations that help us understand of some of the most important
groups you will meet in group theory.

Here are some good introductory books on abstract algebra: [12,19,68,70, 149]. The
student guide [5] is particularly readable. Ref. [81] is interesting overview of the history of
abstract algebra.

Groups

Groups are one of many types of structures in abstract algebra. But what makes them special
is their boundless mathematical richness despite being defined by only 4 properties below.
Groups occur abundantly not only in mathematics but also in other areas of science, thanks
to their close association with symmetry. For instance, chemists use groups to describe the
structure of molecules and crystals [111]. In physics, groups are essential in the studies of
fundamental forces and elementary particles [106].

A group is a set G together with a binary operation * satisfying the following requirements
(called the group axioms).

e (Closure)Forall a,b e G,a*b € G.

* (Associativity) For all a, b,c € G, (a*b) xc =a = (bxc).

* (Existence of identity) e € G such thatforalla € G, a x e = e x a = a. We call e the
identity of G .

o (Existence of inverse)Na € G,3a™' € Gsuchthataxa™' =a™' xa = e. We call ¢!
the inverse of a.

We say that “(G, %) is a group”, or “G is a group under *", or simply “G is a group" if it
is clear from the context what the binary operation is.

Example: G = {—1, 1} is a group under multiplication. Closure can be quickly verified.
Associativity follows from that of multiplication of real numbers. The identity is 1, and
each element is the inverse of itself.

Often the symbol for the binary operation is not shown, i.e. ab means a * b, and a*
means a * a. Be careful, this notation can cause confusion when the operation is addition.

Here are some important group-theoretical terms that we will need in this chapter.

* Finite group A group with finitely many elements.

* Order of a group The number of elements in the group. The order of G is denoted |G|.

* Order of an element Let g € G. The order of g is the smallest number n € N such that
gl =e.

Example: G = {—1, 1} under multiplication is a finite group with 2 elements, so |G| = 2.
The order of the identity element is (always) 1. The order of —1 is 2 since (—=1)% = 1.

In §6.3-6.6, we will explore important groups including the cyclic group C,,, the diledral
group D,,, the symmetric group Sy, the alternating group A,,, and the quaternion group Q.

6.2 Basic concepts in number theory 285

Group theory in Python

Compared to other specialised algebra packages, SymPy has a limited group-theory
capability! although we will only need a limited number of group-theory functions. In
particular, we will only use SymPy to express group elements in terms of permutations. We
will introduce permutations properly and learn how to work with them in SymPy in §6.5.

You are encouraged to explore the following free specialist computer packages that are
more tailored to algebraic calculations.

* Magma
http://magma.maths.usyd.edu.au/magma/

* GAP (Groups, Algorithms, Programming).
https://www.gap-system.org

e Sage
https://www.sagemath.org

6.2 Basic concepts in number theory

Number theory is, in the broadest term, the study of integers. On one hand, it can be viewed
as a subset of abstract algebra (for example, Z under addition can be viewed as a group).
However, techniques in number theory also involve aspects of other mathematical fields
such as combinatorics, analysis and calculus, thus making number theory a rich tapestry
that is often considered a standalone subject.

Within number theory there are several subdisciplines, two of which will be touched on
in this chapter. First, elementary number theory introduces students to basic concepts (e.g.
ged, divisibility, modulo arithmetic) and tools of number theory (e.g. Euclidean algorithm,
Chinese Remainder Theorem, Quadratic Reciprocity Law).

There are many excellent books on elementary number theory, including [35,57, 105].

Analytic number theory, on the other hand, uses techniques in analysis (real, complex and
numerical) to understand integers, particularly prime numbers. Analytic number theory is
usually introduced at senior undergraduate level, but it is useful for beginning undergraduates
to see how concepts such as integration and power series can help us understand prime
numbers. Most excitingly, in this chapter we will discuss the Prime Number Theorem and
the Riemann zeta function, and only basic knowledge of high-school calculus and complex
numbers will be assumed.

For those who want a deeper dive, [11, 167] are particularly good books on analytic
number theory.

Here are some basic number-theory terms that we will need in this chapter.

* Divisor A divisor d (also called a factor) of an integer N is a positive integer such that
N/d is an integer.
In this case, we say that “N is divisible by d" or “d divides N" and write d | N. If d
does not divide N, we write d ¥ N.
Example: 2 | 4but2 ¢t 5

¢ Greatest common divisor The greatest common divisor of two integers a, b, denoted
gcd(a, b), is the greatest integer d such that d | a and d | b. This can be extended to
more than 2 integers.

Lhttps://docs.sympy.org/latest/modules/combinatorics/named_groups.html

http://magma.maths.usyd.edu.au/magma/
https://www.gap-system.org
https://www.sagemath.org
https://docs.sympy.org/latest/modules/combinatorics/named_groups.html

286 6 Abstract Algebra and Number Theory

Example: gcd(2,4) = ged(2,4,6) = 2.

* Prime number A prime number is a positive integer which is divisible only by 1 and
itself. The smallest prime number is 2.
A positive number greater than 2 that is not prime is called a composite number.

* Coprime Two integers are coprime (or relatively prime) if they share no common
divisors except 1. Equivalently, a and b are coprime iff gcd(a, b) = 1.
A set of 3 integers {a, b, c} is said to be (setwise) coprime if gcd(a, b, c) = 1.
A set of 3 integers {a, b, ¢} is said to be pairwise coprime if gcd(a, b) = gcd(b,c) =
ged(a, b) = 1.
Setwise and pairwise coprimality can be extended to more integers.
Example: 2, 3 are coprime. 4, 5, 6 are coprime, but not pairwise coprime since
gcd(4,6) = 2.

We will also need a fundamental result in number theory.

Theorem 6.1 (Fundamental Theorem of Arithmetic) Every integer N > 2 can be written as

a product of prime powers:
N = pfipke . . pkm
=P P Pm

where k; € N. This prime factorisation is unique up to the ordering of the primes p;.

Example: 223344 = 24.33 . 11-47.

Modular arithmetic

Modular arithmetic reduces the task of studying all integers into a simpler task of studying
a finite set of integers. Modular arithmetic is actually something that’s already familiar to
you: the 12-hour clock operates under “modulo 12", i.e. 13 o’clock = 1 o’clock. We write
13 =1 (mod 12). Remainders play a key role in modular arithmetic. Much of elementary
number theory is about studying integers in the modular world and hence revealing deep,
beautiful results about integers, some of which are explored in §6.7-6.9.

Leta, b € Z and n € N. We say that “a is congruent to b modulo n" iff (a — b) is divisible
by n. In symbols, we write

a=b (mod n).

(Some books use the symbol = instead of =.) The above is called a congruence rather
than an equation.
The following theorem shows that many usual rules of arithmetic still hold in modulo .

Theorem 6.2 (Rules of modular arithmetic) Let n € N and a, b, c,d € Z. The following
properties hold.

o (Adding and multiplying to both sides) a = b (mod n) = a+c = b+ ¢ (mod n)
and ac = bc (mod n).

o (Adding and multiplying congruences) a = b (mod n) and ¢ = d (mod n) —
a+c=b+d (mod n) and ac = bd (mod n).

o (Exponentiating both sides) a = b (mod n) — a* = b* (mod n) for all k € N.

o (Cancellation) ka = kb (mod n) and gcd(k,n) =1 = a = b (mod n).

Another way to interpret the cancellation property is to use the following concept:

6.2 Basic concepts in number theory 287

« Given an integer k € N, its multiplicative inverse (modulo n) is an integer k! such that
Kk =1

Multiplying the congruence ka = kb (mod n) by k! on both sides gives a = b
(mod n).

The multiplicative inverse of k exists if and only if gcd(k,n) = 1 (we explain why in
§6.7).

Examples:

*3=0 (mod 3) = 4 =1 (mod 3) (by adding 1 to both sides), and 6 = 0 (mod 3)
(by multiplying both sides by 2).

*4=1 (mod3)and2 = -1 (mod 3) = 6 =0 (mod 3) (by adding two congruences)
and 8 = —1 (mod 3) (by multiplying two congruences).

e 2=-1 (mod 3) = 4 =1 (mod 3) (squaring both sides)

e 8 =2 (mod 3) and gcd(2,3) =1 = 4 =1 (mod 3) (cancelling a factor of 2). On
the other hand, 6 = 3 (mod 3) but one cannot cancel a factor of 3 from both sides since
gcd(3,3) # 1.

* Instead of using the cancellation property, note that 2 - 2 = 1 (mod 3), so the multi-
plicative inverse 27! = 2. Multiplying the congruence 8 = 2 (mod 3) by 27! on both
sides gives 4 = 1 (mod 3).

Generating prime numbers

In our exploration of number theory, it will be essential to generate a list of prime numbers
up to a given integer N. An ancient method for doing this is the Sieve of Eratosthenes which
we now discuss.

Sieve of Eratosthenes The following algorithm produces a list of prime numbers up to a
given integer N

1. Write down a list of all integers from 2 up to and including N

2. Retain the smallest number on the list (2). Then cross off all multiples of that number.

3. Retain the next smallest number on the list (3). Then cross off all multiples of that
number.

4. Repeat while the smallest numbers are the list are all < VN

5. The numbers on the list that are not crossed out are all the primes up to and including
N

The method is named after Eratosthenes (~276—-194BC), a Greek all-round scholar who
made important contributions to mathematics, astronomy, geography, drama and literature.

Let’s see the Sieve in action. Suppose we want a list of prime numbers up to 50.

Start with the list of integers from 2 up to 50. First we retain 2 and cross off all its
multiples.

23 458738 9K
11 32 13 34 15 26 17 18 19 20
2122 23 24 25 26 27 28 29 3Q
3132 33 34 35 36 37 38 39 44
41 42 43 44 45 46 47 48 49 5Q

Next we retain 3 and cross off all its multiples.

288 6 Abstract Algebra and Number Theory

23 458738 9K
11 32 13 34 3§ 26 17 18 19 20
2422 23 24 25 26 29 28 29 3Q
31323334 35363738394
41 42 43 44 45 46 47 48 49 54

Next we retain 5 and cross off all its multiples.

23 458738 9K
11 32 13 34 3§ 26 17 18 19 20
2422 23 24 25 26 29 28 29 3Q
31323334 3536373839 4
41 42 43 44 45 46 47 48 49 5Q

Next we retain 7 and cross off all its multiples. This is the last step since V50 = 7.07.
Everything that’s not crossed out is prime (we circle these numbers), and the sieving is

complete.
2) (3) 4(5) K 8 9{}@
(11) 12(13) . }5}6
21 22(23)24 2526 242&
(31) 32 3334 3536(37)38 394@

(41) M;M 45 46 (47) 48 49 50

The reason we can stop sieving once we have reached VN is as follows. If there were a
composite number K > VN left on the list at this point, then writing K = ab, we note that
both a and b must be greater than VN (otherwise K would have been sieved out). But this
makes ab > VN -VN = N , a contradiction since the largest number on our list is N.

Number theory in Python

Modulo arithmetic

100 (mod 11) 100 % 11
Output = 1
25 (mod 11) pow(2, 5, 11)
Output =10

27! (mod 11) (multiplicative inverse)
Output = 6

Generate primes with SymPy
A list of all primes p < 19
Output=1[2, 3, 5,7, 11, 13, 17]

from sympy import sieve, prime
list(sieve.primerange(19))

A list of primes 6 < p < 23 list(sieve.primerange(6, 23))
Output = [7, 11, 13, 17, 19]

A list of the first 9 prime numbers list(sieve.primerange(prime(9) + 1))
Output =[2, 3, 5,7, 11, 13, 17, 19, 23]

6.3 Groups I — Cyclic group 289

SymPy comes with many more functions that are useful for number theory2. More
advanced functions will be introduced in the text.

Magma, GAP and Sage also have extensive number-theory libraries that are more
comprehensive than SymPy, and you are encouraged to explore them.

6.3 Groups I — Cyclic group

Produce the Cayley tables for each of the following groups.

a) (Zy0, +) (integers under addition modulo 10)

b) (Z},, X) (integers coprime to 11 under multiplication modulo 11)
Are these groups i) Abelian? ii) cyclic? iii) isomorphic?

The group (Z;9, +) consists of integers {0, 1, 2, 3,..., 9} under addition modulo 10,
which simply gives the last digit of the result. It is straightforward to check that all the group
axioms are satisfied, with O being the identity element. We can tabulate the result of the
binary operation a + b as a table called Cayley table (after Arthur Cayley whom we met in
Chapter 5). The following short code generates the required table in Python.

Cayley table for addition mod 10

n=10
for row in range(®, n):
print(*(£"{(row + col)%n :3}" for col in range(®, n)))

The key syntax is the % operator which applies modulo 7 to the result. More precisely,
a%b gives the remainder when a is divided by b. It also works for non-integers.

The number 3 adjusts the width of each column, and the operator * unpacks the numbers
generated in each row for printing. The output of this code is shown below on the left.

1 2 3 4 5 6 7 8 9
1+1 1+2 143 1+4 1+5 146 1+7 1+8 149
2+1 242 243 2+4 2+5 246 2+7 2+8 249
3+1 3+2 3+3 3+4 3+5 3+6 3+7 3+8 3+9
4+1 442 443 4+4 445 4+6 4+7 4+8 449
5+1 5+2 543 5+4 5+5 5+6 5+7 5+8 549
6+1 6+2 643 6+4 6+5 6+6 6+7 6+8 649
T+1 7+2 743 T+4 7+5 7+6 7+7 7+8 749
8+1 8+2 8+3 8+4 8+5 8+6 8+7 8+8 8+9
9+1 9+2 943 9+4 9+5 9+6 9+7 9+8 9+9

WNEFE S WOWOWN O VA
S W~ OWooNOWUV
v WIN RS WOWOoN O
OOV WN RS WO
NO U WN RS W
NV WN RO

O oONOUVTLh WN R
D OV O NO VI B WN =
= @ WO NO VT W
N =P, WOWo0NO UV W
O 0NN AW~ +

The interpretation of the table is shown on the right. Let a;; be the entry in the ith row
and jth column. The Cayley table shows the result a;1 +a1; = a;;. The ordering is important.
Here we have suppressed the trivial result 0 + a = a (which is just a group axiom).

A more sophisticated version of the same table is shown in fig. 6.2 (bottom right), in
which numbers are colour-coded. The code cayley.ipynb generates this figure.

2https://docs.sympy.org/latest/modules/ntheory.html

https://docs.sympy.org/latest/modules/ntheory.html

290 6 Abstract Algebra and Number Theory

The same code can be used to generate the Cayley table for the group (Z7,, X). Here the

star indicates that we are only interested in elements of Z;; which are coprime to 11. If p is
prime, then

Z,={123,....p- 1)

(Z10, +)

Fig. 6.2: The Cayley table for (Z],,X) (top) and the reordered table (bottom left). The
diagonal structure shows that the group is cyclic and that it is isomorphic to the group
(Zy0, +) (bottom right). Raising 2 to the power of all the elements in the lower-right table

(mod 11) gives the lower-left table.

6.3 Groups I — Cyclic group 291

Abelian groups

A group (G,) is said to be Abelian if, for all a,b € G, a - b = b - a. This means that the
Cayley table for an Abelian group would be symmetric along the diagonal going top-left to
bottom-right (i.e. the same symmetry for a symmetric matrix). Of course, we know that
integer addition and multiplication are both commutative, hence (Zy0, +) and (Z],, X) are
both Abelian. But we can also see this from the symmetry of all the tables in fig. 6.2.

The word ‘Abelian’ comes from the surname of Niels Henrik Abel (1802—1829). Abel
was a Norwegian mathematician who, despite succumbing to tuberculosis aged only 27,
made profound contributions to analysis and algebra, particularly in proving that a general
quintic polynomial equation cannot be solved algebraically.

Cyclic groups

A group (G, -) is said to be cyclic if there exists an element g € G such that each element of
G has the form g" for some n € Z. g is said to be a generator of the group G, and we write
G =(g).

The group (Z19, +) is cyclic because every integer n € Zjo canbe expressedas [+1+---+1
(n times). Thus, 1 generates the group.

In fact, for all N € N, (Zy, +) is a cyclic group with 1 as a generator. The Cayley table
of the group (Zy, +) will have the same diagonal stripe structure as (Zo, +) as shown in
fig. 6.2.

The table for the group (Z7,, xX) (top figure) does not appear to have the same diagonal
structure, but if we reorder the elements of ZTl as (1,2,4,8,5,10,9,7, 3, 6), the diagonal
stripes appear (lower left table in the figure). Could this group be cyclic?

Indeed it is. The reordered elements are simply the sequence

(2" (mod 11))

forn=0,1,2,...,9. You should verify that this is the case. This means that all the elements
in Z7], can be expressed as 2". Multiplying two elements gives 22" = 2"*"_ The addition
of the exponents explains why the same diagonal structure as Z;(appears. In fact, if we
raise 2 to the power of each element in the table for Z;(, we obtain the reordered table for
Z7,. Therefore, the latter is a cyclic group generated by 2.

Group isomorphism

Let G = (Z19, +) and H = (Z], X). We saw that they have the same Cayley table when the

elements of G are ‘relabelled’ by the function ¢ : G — H such that ¢(g) = 28 (mod 11).
Let’s tabulate this relabelling function explicitly.

g€G|0 1 23 45
5

6 789
¢(g)€H|1248 109 7 3 6

292 6 Abstract Algebra and Number Theory
The relabelling function ¢ has the following special properties.

¢ ¢ is a homomorphism
let (G, -) and (H, *) be two groups. A function ¢ : G — H is said to be a homomorphism
if

(g1 - g2) = d(g1) * p(g2).

In our case, let g1, g2 € (Z10, +). We observe that

é(g1 +g2) =288 (mod 11)
=281 x28 (mod 11)
= ¢(g1) X p(g2)-
Hence the relabelling function ¢ is a homomorphism.
¢ is injective
A function ¢ : G — H is said to be a injective (or one-to-one) if

#(g1) = d(g2) = g1 =g

Equivalently, the contrapositive of the above says that if g; # g» then ¢(g1) # ¢(g2).
In other words, if ¢ is injective, then distinct elements in G are mapped to distinct
elements in H.

It is straightforward to check from the table of correspondence that this property holds
for the relabelling function ¢.

¢ is surjective

A function ¢ : G — H is said to be a surjective (or onto) if, for all h € H, dg € G such
that & = ¢(g).

In other words, every element in H is the image of some element in G. Again it is
straightforward to check from the correspondence table that this holds.

A function which is both injective and surjective is said to be bijective.

Two groups (G,-) and (H, *) are said to be isomorphic if there exists a bijective
homomorphism ¢ : G — H. If this holds, we write (G, -) = (H, %), or simply G = H.

We have shown that (Zg, +) is isomorphic to (Z’{l, X). As the word suggests, two
isomorphic groups have the same structure. They have the same number of elements, and
their Cayley tables are identical when relabelled by the homomorphism ¢.

Here is a more general result which you may have already conjectured yourself.
Conjecture: If p is prime, then (Z;,, X) = (Z,_1, +).

We have proved the isomorphism for p = 11. A more dramatic visualisation of this
isomorphism is shown in figure 6.3 for p = 79. You will be asked to produce these plots in
exercise 3. Think about how you can use Python to find a generator for the cyclic group Z7,.

6.3 Groups I — Cyclic group 293

.
(Z79, %) (Z74, %) reordered

(Z78, +)

Fig. 6.3: Top left: The Cayley table for (Z2,, X). Top right: the reordered table showing the

cyclic structure. Bottom: The Cayley table for (Z7g, +).

DiscussioN

¢ More on cyclic groups. Here are some interesting results on cyclic groups. Proofs can
be found in most introductory texts on group theory.

— All cyclic groups are Abelian.

— Any two cyclic groups of order n (i.e. containing n elements) are isomorphic. We
use the symbol C,, to denote a generic cyclic group of order n.

— Let n € N. The group (Z}, X) is cyclic if and only if n = 1,2, 4, p* or 2p* where
p > 2isprime and k € N.

— Let n € N. The cyclic group (Z,, +) has ¢(n) generators, where ¢ is Euler’s totient
function, which counts the number of positive integers coprime to n.

Exercise 2 explores how Python can be used to find generators of a cyclic group.

294 6 Abstract Algebra and Number Theory

* Cyclic groups as rotations and roots of unity. A cyclic group of order n generated

by a can be written as

C, =l{e,a,a’a’,....,a" "}

)

where a" = e (the identity element). One can think of a as a rotation in 2D by angle
2n/n (denoted Ry,) so that a” corresponds to a full 27 rotation, which of course is
the identity transformation. We can write C,, = (Ryx/5,). The binary operation is the
composition of rotations.

We can also use the roots of unity (i.e. complex solutions to z"* = 1) to represent the
same cyclic group. We write C,, = (¢>*//™). The binary operation here is multiplication
of complex numbers.

cayley.ipynb (for plotting fig.)

i import numpy as np

| import matplotlib.pyplot as plt
Integers from O to 9 N = np. arange(@, 10)
Modulo 10 Nmod =
Display numbers in the table if True labels = True

f(,j)=1i+j (mod Nmod) f = lambda i,j : (i+j) % Nmod

|
|
|
|
|
|
:
Generate a square matrix (a;;) with | array—np fromfunction(lambda i,j:£f(N[i],N[j1),
function f (i, j) (len(N),len(N)), dtype=int)

Display the matrix (amplitude deter- plt.imshow(array, cmap='hsv',
mines colour). Specify range of colormap : vmin = N[®], vmax = len(N))
|

iif labels:

I for ind, X in np.ndenumerate(array):
Display the matrix elements 1 plt.text(s = strX),
X, ¥ = column, row numbers } x = ind[1], y = ind[0],
Centre-justified ! va='center', ha='center')

|

Use LaTeX in title iplt.title(r' ($\mathbb{Z}_{10}, +)$")
plt.axis('off")
! plt.show()

6.4 Groups II — Dihedral group 295

6.4 Groups II - Dihedral group

Consider a regular hexagon. Let r be the anticlockwise rotation about its centre by
angle /3. Let s be a reflection about a fixed axis of symmetry. Show that r and s
form a group (call it Dg).

What are the subgroups of Dg?

Let’s number the vertices of the hexagon 1 to 6 and colour the sectors of the hexagon as
shown below.

Starting with the top-left hexagon, the figure shows a sequence of transformations
comprising rotation r and reflection s about the horizontal line through its centre, which we
will take to be the fixed axis of symmetry. The elements of Dg, called the dihedral group of

Adoovoo A are trancformatione that are comnngitione nf » and ¢ nlnc the identitv 2 (which

3 2 2 1
T
4 1 3 6
5 6 4 5
s Ts
5 v 6 4 V 5
TD
4 1 3 6
3 2 2 1
The transformations clearly satisfy
o= =e. (6.1)
The sequence in the figure also shows that
srsr=e = sr=(sr)" =r7 s = P, (6.2)

Therefore, using (6.1) and (6.2), every combination of r and s can be expressed as the
form ris/ (or, equally, s/r), where i = 0,1,2,3,4,5 and j = 0, 1. This means that D¢ has
12 elements (i.e. it has order 12). Be careful, some authors denote this group by Dy,.

296 6 Abstract Algebra and Number Theory

The Cayley table for Dg is shown in table 6.1. Remember the ordering: to calculate a X b,
look up a from the leftmost column, and b from the very top row. (We will discuss how to
generate this Cayley table in Python in the next section.)

~
W

e r V2 }"3 r r N rs r2s I‘SS r's r-s
e e r }"2 V3 }"4 l"5 N rs I‘2S r3s 4S VSS
r r 7'2 7'3 V4 I"5 e rs 7‘2S 7‘3S r4s SS
7'2 }"2 7'3 7'4 }"5 e r r2s r3s r4s r5s rs
}’3 }’3 I"4 r5 e r 1’2 F3S 7‘4S r5s N rs }’2S
r4 I"4 r5 e r rz r3 r4s r5s N rs }’2S r3s
r5 r5 e r r2 r3 r4 rSS N rs }"2S r3s 1"4S
N N I’SS I’4S F3S r2S rs e FS l’4 l’3 I"2 r
rs rs N I’SS }’4S }’3S }’2S r e I’S }’4 }’3 }’2
I"ZS I"ZS rs }”SS }"4S F3S 1"2 r e }”5 }”4 7‘3
V3S V3S }’25 rs N r5s r4s }’3 }’2 r e r5 r4
V4S V4S r3s r2s rs N r5s 1’4 r3 r2 r e r5
r5s VSS r4s r3s r2s rs N r5 r4 r3 r2 r e

Table 6.1: Cayley table for the group Ds.

As you can see, when a group gets larger, it can be daunting to understand its structure
from the Cayley table. There is a more concise and visually illuminating way to represent
this group.

Cayley graph

Fig. 6.4 shows the Cayley graph of the group D¢. Essentially the graph is a pair of large
concentric hexagonal circuits connected cobweb style. The vertices show the possible
configurations of the regular hexagon. The edges are transformations r and s. Each blue
arrow represents the rotation r, whilst the (double-headed) red arrow represents the reflection
s.

The Cayley graph gives us a more geometric way to understand the group. For example,
we observe:

* The identity 7® = e can be seen from the closed loop around the inner (or outer)
hexagon.

* The identity s> = e can be seen from traversing forwards and backwards on any
double-headed red arrow.

* The identity srsr = e can be seen from any 4-sided loop formed between the outer and
inner hexagons.

+ Going against the blue arrow means applying 7~ (or, equivalently, 7).

As such, every entry in the Cayley table corresponds to a path on the Cayley graph.

/
L & &b & ¢
»-% /
&8

Fig. 6.4: The Cayley graph for the dihedral group Dg. Each blue arrow is an application
of r (anti-clockwise rotation by angle n/3). Each double-headed red arrow is an appli-
cation of s (reflection across the x-axis). Each hexagon can be produced using the code
dihedral.ipynb.

Coding techniques

The main components of an elaborate diagram such as fig. 6.4 are the hexagons that
have undergone particular transformations. Here we discuss the coding techniques used in
producing these hexagons.

If we place the centre of a hexagon at the origin of the x-y plane, then the transformations
in D¢ can be represented by the following 2 X 2 matrices (see §5.5).

cosZ —sinZ 10
— 3 3 _ _
(sin§ cos%)’ s(O—l)’ e=1.

Once the elements of D¢ are represented as matrices, we can easily code them and
multiply them to vertices of a regular hexagon. This is what the code dihedral . ipynb
does to visualise the effect of a given transformation on the hexagon.

Some highlights from the code.

298 6 Abstract Algebra and Number Theory

* Although we only need 2D arrays, we work with 3D arrays since the z coordinate can
be used to store the label of each vertex. This allows us to keep track of the orientation
of the hexagon as it gets rotated and flipped around.

* We use the Matplotlib function £il1l to create colourful triangular segments.

* You only need to change the line annotated “** Specify the transformation here” to
see the effect of ris/ on the hexagon. In the code, rot = r and ref = s.

* The same code can be used to study the symmetry of any n-gon simply by changing the
value of n. (See exercise 4.)

dihedral.ipynb (for plotting each hexagon in fig.)

 import numpy as np
| import matplotlib.pyplot as plt

! %matplotlib
|
Specify n (number of sides of n-gon) in =6
Rotation angle 6 | theta = 2*np.pi/n

¢, S = np.cos(theta), np.sin(theta)
2D rotation matrix. Use z cooord,: rot = np.array([[C,-S,0],[S, C,0],[0,0,1]1]1)
to store label
Reflection matrix (about the x-axis)
For changing the z-coord (label)
Specify one vertex at (1, 0). Label it ‘1’

ref = np.array([[1, 0,0],[0,-1,0],[0,0,1]11)
k = np.array([0,0,1])

V = np.array([1,0,1])

U=V

Find the remaining vertices for i in range(n-1):

Next vertex = rotate previous vertex & ad—: U = rot@ + k

just label. Then, append the coords+label | V = np.vstack((V, U))

of each new vertex found \

Complete the circuit 'V = np.vstack((V,np.array([1,0,11))).T
*¥% Specify the transformation here 'V = np.linalg.matrix_power(rot,3)@v

(For example, this applies 7> to the n-gon) j

Separate out the x, y, z coords of the ipoly_x = V[O,:]
transformed n-gon |poly_y V[1,:]
(remember that z is just the label) ! poly_z = V[2,:]

Outline the n-gon with black line plt.plot(poly_x, poly_y, 'ko-')
for i, X in enumerate(poly_x):
plt.text(x = 1.1*X, y = 1.1%*poly_y[i],
s = int(poly_z[i]), fontsize=14,
ha = 'center', va = 'center')

Add labels to the vertices
Place the label slightly away from the
point (s = label)

for i in range(n):
Tx = np.array([0, poly_x[i], poly_x[i+1]])
Ty = np.array([0®, poly_y[il, poly_y[i+1]1)
plt.fill(Tx, Ty)

Let’s divide n-gon into triangles
x and y coords of each triangle

Use fill function for colouring
This prevents shape distortion 1plt.axis('square"')

plt.axis('off")
'plt.show()

6.4 Groups II — Dihedral group 299

Subgroups

You may have noticed from the Cayley graph that the inner hexagonal circuit (comprising
pure rotations) represents a group. More precisely, it is a cyclic group of order 6, i.e.
Cg = (r). Equally, you might have noticed the same thing in the Cayley table (the top-left
quadrant contains all terms without s).

A subset H of a group G is said to be a subgroup if H itself is a group (under the binary
operation of G).

Every group G has the trivial subgroup {e} and G itself as subgroups. We say that H is a
proper subgroup of G if H is a subgroup of G and H # G. In symbols, we write H < G.

We have seen that Cg < Dg. The subgroups of Dg are shown in fig. 6.5. For each
subgroup, we list the elements of the subgroup and show the corresponding subset of the
Cayley graph.

Some observations:

* There are other possible choices for the elements of the dihedral subgroups D,. For
example, D can be formed by any one of the following 6 possibilities

Dy ={e,ris}), where i =0,1,2,3,4,5.

You can verify that the element ' s has order 2 (or check the diagonal of the Cayley
table). Equally we could use sr' instead of r's.
Try to write down possible choices for the elements of D, and D3 in terms of r and s,
and sketch their Cayley graphs.

* The subgroups of Dg are all of the form C; or D;, where d is a divisor of 6.

* The subgroups of Dg have orders 1, 2,3,4,6 and 12 (the group itself). These are all
divisors of 12 (= the order of Dg). Is this a coincidence?

DiscussioN

* Lagrange’s theorem. The following important result explains why all the subgroups
of Dg have orders that are divisors of 12.

Theorem 6.3 (Lagrange’s theorem) Let H be a subgroup of a finite group G. Then |H|
divides |G|.
The converse does not hold in general: if d is a divisor of |G|, there may not be a
subgroup of order d.

¢ Subgroups of D,. Here is another general result which you may have conjectured.
Lemma: All the subgroups of D,, are C; and D, where d|n.
See [19] for proof.

+ Klein four-group. The dihedral group D, = {e, r, s, 7s} (where r> = s = (rs)?)is also
called the Klein four-group, after the German mathematician Felix Klein (1849-1925)

(who also devised the famous Klein bottle). The Klein four-group is sometimes given the
symbol V or Ky. It has a special place in group theory for being the smallest non-cyclic

group.

Subgroup Elements Cayley graph

C1 (trivial) {e} &

02 {e, T3} a—a

D1 {e, s}

03 {e,r? r*} I>‘

3

/B B\
Do {e,r® 5,135} &8 —ae

W

D3 {6,7"2,7“478,7“28,7“48}

Fig. 6.5: Proper subgroups of Dg. There may be more than one way to represent the elements
of each subgroup.

06 {6,7’,7"2,7'3,7”4,7"5}

6.4 Groups II — Dihedral group 301

302 6 Abstract Algebra and Number Theory

6.5 Groups III - Symmetric and alternating groups

List the elements of S4, the symmetric group of 4 objects.
Which of the following are normal subgroups of Ss?

a) Ss, b) The alternating group Ay, ¢) D3, d) D,.
Describe the quotient group S4/A4.

The elements of the symmetric and alternating groups are permutations which we will
introduce here along with the main results. Details can be found in any of the recommended
texts on algebra.

Suppose we have 4 objects labelled O to 3 lined up in that order. A permutation is a
function which rearranges of these object. For example, here are two permutations f and g
defined in terms of their rearranging action.

f(0123)=2031), g(0123)=(1203).

Another way to notate a permutation is to use a 2-layer notation:
(0123 {0123
F=\1302)> #2013/
The top row lists the original positions whilst the bottom row lists the new position of each
element directly above.

Yet another notation which is more widely used (and one which we will use) is the
following ‘cycle’ notation.

f=(0132), g=(021)(3).

Each pair of bracket is called a cycle where the object originally in position n goes to
position in the next entry. For example, (O 13 2) means, the object originally in position 0
goes to position 1, the object originally in position 1 goes to position 3, the object originally
in position 3 goes to position 2, and the object originally in position 2 goes to the object in
position 0.

In the cycle notation, (O 13 2) is the same permutation as (2 01 3), (3 20 1) and

(1320).

The cycle notation for g can also be written as (O 2 1), omitting (3) since 3 is left
unchanged by the permutation. However, we will see that when working in SymPy, sometimes
it is necessary to include singletons (1-cycles) like (3).

The symmetric group

We can compose two permutations, for example,

fe=(0132)(021)=(23), gf=(021)(0132)=(13). (6.3)

where we perform the operation on the rightmost cycle first and move leftwards. As you can
see, this operation is non-commutative.

6.5 Groups III — Symmetric and alternating groups 303

Each permutation has an inverse which undoes the permutation. For example,
f=(0231), g'=(012),
(just write the cycles backward). You should check that
fri=flf=g"=¢"g=e

where e is the identity permutation (i.e. doing nothing). To follow SymPy’s convention, we
can also express the identity permutation on the set {0, 1,2,3,...,n} as (n). In our case,
ffl=gg"=0).

All permutations on n objects form a group called the symmetric group, S,,. This group
has n! elements.

Odd/even permutations and the alternating group

Every cycle can be written as a product of cycles of length 2 (these are called transpositions).
Here is one method to decompose f and g into transpositions. Study the following pattern:

f=(0132)=(01)(13)(32) g=(021)=(02)(21).

Another method uses the following pattern:

(0132)=(02)(03)(01) (021)=(01)(02).

Both of these methods decompose an n-cycle into (n — 1) transpositions. There are other
ways to do this.

An odd permutation is one which can be expressed as a product of an odd number of
transpositions.

An even permutation can be expressed as a product of an even number of transpositions.

The state of being odd or even is called the parity of a permutation.

The cycle notation makes it easy to identify if a permutation is odd or even — a cycle of
odd length is even, and a cycle of even length is odd. Note that the identity permutation is
an even permutation.

All even permutations of S,, form the alternating group, A,, with n!/2 elements. The
alternating group A, is clearly a subgroup of S,,.

304 6 Abstract Algebra and Number Theory

Permutations in SymPy

Detailed documentation on working with permutations in SymPy can be found on SymPy’s
website3. We highlight some important syntax here. See the accompanying code snippets in
the box Working with permutations in SymPy.

* The composite permutation fg means g is evaluated before f. However, in SymPy,
the order is reversed! fg should be coded as g*f£.

e In SymPy, (0 2 1) (3) is different from (0 2 1). SymPy interprets the latter as a
permutation of only 3 objects {0, 1,2}. You can check this using the command g.size
where g is (O 2 1) or (3) (O 2 1).

The documentation recommends that “it is better to start the cycle with the singleton".

* SymPy comes with ready-made lists of elements of S,,, A,,, C,, (cyclic group) and D,
(dihedral group). Elements are represented as permutations (see Discussion).

For example, Table 6.2 shows the 4! = 24 elements of S; generated using SymPy.

The code permutation.ipynb generates the Cayley tables for S4 as shown in fig. 6.6.
With minor modifications, the table for A4 can be obtained whilst retaining the same indices
as those in the table for S4 (exercise 5(a)i).

Some observations from the Cayley tables:

* Ay is a subgroup of Sy. It is precisely half the size of S4.

* S3 (the permutation group of 3 objects) appears in the top left (6 X 6) block of the S
table. This arises since we can leave the element 0 alone and perform permutations on
{1,2,3}. Similarly, S, takes up the top 2 X 2 block, since we can leave both 0 and 1
alone and permute {2, 3}. In short, S, < S5 < S4.

* There appear to be 3 other distinct 6 X 6 sub-blocks along the left edge of the S, table.
Each sub-block is closed (i.e. they don’t contain elements external to the block).

* Similarly, there appear to be four distinct 3 X 3 sub-blocks along the left ledge of the A4
table.

index |element |parity index |element |parity
0 |e E 12 |(021) |E
1 |23) o 13 [(0231) |O
2 112 o 14 [(02) (¢}
3 1123) |E 15 [(023) |E
4 |(132) |E 16 [(02)(13)|E
5 |(13) 0] 17 [(0213) |O
6 [(01) 0) 18 [(0321) |O
7 [(01)23)|E 19 [(031) |E
8 [(012) |E 20 [(032) |E
9 [(0123) |0 21 ((03) o
10 [(0132) |O 22 |(0312) |O
11 [(013) |E 23 [(03)(12)|E

Table 6.2: Elements of Ss4 and their indices (0-23) in the Python list. The even-parity
elements form the group Ay.

3https://docs.sympy.org/latest/modules/combinatorics/permutations.html

https://docs.sympy.org/latest/modules/combinatorics/permutations.html

Fig. 6.6: Cayley tables for S4 and Aa.

306 6 Abstract Algebra and Number Theory

Working with permutations in SymPy

from sympy.combinatorics \
import Permutation as P

Defining permutation in SymPy

f=0132) f = P@,1,3,2)

g=02D03) g = P(3)(9,2,D)
Careful: P(0,2,1)(3) gives an error!

Composition

In SymPy, £*g is evaluated as “f then g”!!! f*g

Output: £*g = (1 3), g*f = (2 3) g*f

(The opposite of mathematical notation (6.3))

Inverse

Output: g**-1= (0 1 2)(3) g**-1

Order

Output: 4 (try £%*%4) f.order()

Output: 1 for f f.parity(Q

0 for g g.parity(Q

Decomposition into transpositions
Output: (0 2)(0 3)(0 1)

Are two permutations equal?

Output: True

Symmetric and alternating groups
Generate these groups in SymPy

(Also available: dihedral and cyclic)
Make output pretty

f.transpositions()
P(0,1)(0,2) == P(0,2)(2,1)

|
I
|
|
I
|
I
|
|
I
|
|
I
|
I
|
|
I
|
|
l

Parity :
|
I
|
|
I
|
I
|
|
I
i
I
i from sympy.combinatorics.generators \
| import symmetric, alternating
| from sympy import init_printing as IP
| IP(perm_cyclic=True, pretty_print=True)
I

All elements of Sy as a list 1 list(symmetric(4))

All elements of A4 as a list ' list(alternating(4))

permutation.ipynb (for plotting fig.

 import numpy as np
| import matplotlib.pyplot as plt

For generating Sy | from sympy.combinatorics.generators import \
I symmetric
\%matplotlib
|
I
Put elements of Sy into a list G = list(symmetric(4))
Index each element (Table 6.2) : labels = True

(Choose False for large tables) |

Compose the permutations and find which f = lambda i,j : G.index(G[j]*G[i])
element of Sy is the result |

Create a 2D square array using the larray = np. fromfunction(np.vectorize(f),

function £(i, j) | (len(G),len(G)), dtype=int)
|
Display the matrix (index determines plt.imshow(array, cmap="hsv',
colour). Specify range of colormap ! vmin = 0, vmax = len(G))
if labels:

for ind, X in np.ndenumerate(array):
plt.text(s = str(X),
x = ind[1], y = ind[0],
va='center', ha='center', fontsize=9)

|
l
Display the index (not just the colour) }
X, y = column, row numbers !
Centre-justify labels \
|
Use LaTeX in title plt.title(r'sS_4', fontsize=12)
! plt.axis('off")
1plt.show()

6.5 Groups III — Symmetric and alternating groups 307

The Cayley table suggests that there are substructures within the group structure of Sy.
Ideas that will help us make sense of these substructures are cosets, normal subgroups and
quotient groups. Let’s discuss these ideas one by one.

Coset

Let H be a subgroup of G and take a fixed element g € G. A left coset of H in G is the set
gH ={gh:heH)

The notation g H means that we left-multiply all elements of H by a fixed element g and
collect the results. Note that if g € H, then gH = H due to the closure of H.
Similarly, a right coset of H in G is the set

Hg =1{hg : h e H}.

Let’s examine the possible left cosets of S3 in S4. The result depends on the fixed element
g € Sa.

e Case A —if g € S3, then gS3= S5 = {elements with indices O — 5 in Table 6.2}.
e Case B—if g = (0, 1), then gS3 = {elements with indices 6 — 11.}

e Case C-if g = (0,2, 1), then gS3 = {elements with indices 12 — 17.}

e Case D-if g =(0,3,2,1), then g53 = {elements with indices 18 — 23.}

You can check that for all g € S4, any left coset is one of the above types. We can use
SymPy to help us quickly calculate the indices of the elements in the cosets of S3.

from sympy.combinatorics.generators \
import symmetric

from sympy.combinatorics \
import Permutation as P

S4 G = list(symmetric(4))
S3 H = G[0:6]
Left coset (0 1)S3. coset = [h*P(3)(0,1) for h in H]

Note SymPy’s reverse ordering |
Produce a set of indices (ignore repeats) : set([G.index(x) for x in coset])

The above calculations show that the 24 elements of S4 appear to organise themselves
into 4 substructures (left cosets) - each containing 6 elements. This explains the 4 sub-blocks
on the left edge of the Cayley table for S4: They are simply the left cosets of Sy4.

We say that cosets partition a group, i.e. every element of a group belongs to exactly one
of the cosets.

The top panel of fig. 6.7 shows the result of partitioning S4 by the left cosets of the
subgroup S3. There are 4 cosets with 6 elements each. The same procedure can be done
with the right cosets of S3. In the figure we also show the partitioning using other subgroups
such as A4, D3 and D». (Exercise 5b asks you to obtain these partitioning with SymPy.)

Similarly, in the Cayley table for A4, the top-left 3 x 3 sub-block is the subgroup C3, and
the 3 sub-blocks below are its left cosets.

Partitioning 54 by cosets of various subgroups

B2 3 ¢ 5Js 778 5 1012 13 A NSEORNEE cn coxo
B2 3 o sTo 7 1203 1oNENE0R > 1 EEENE e cose

CERRARIRE U TR RTIE T .
At g 47 811 1 SESRORH[N 2 5 5 9 1013 AR o core

W5 o umRiE ¢ 7 oMz s o R T oo

D 0 7 I o > o> 11 e o s O oo
2 @7] o W o sE s 1 g 5 s S o oot

S3

D3

S, (reordered)

Fig. 6.8: The Cayley table for S4, reordered so that A4 appears on the top-left block. The
4-block structure illustrates the isomorphism S4/A4 = Z;.

6.5 Groups III — Symmetric and alternating groups 309

Normal subgroup

A subgroup H is said to be a normal subgroup of G (written H < G) if, for all g € G, the
left and right cosets are equal, i.e.
gH =Hg.

This condition can also be expressed as gHg ™' = H.
From fig. 6.7, we see that A4 and D, are normal subgroups of S, whilst S3 and D3 are
not normal subgroups S4

Quotient group

The cosets of a subgroup H < G partition the group into substructures. If H is also a normal
subgroup, then those substructures themselves behave like group elements. This allows a
large group to be simplified into a simpler, smaller group.

Let H < G. The set of cosets {gH : g € G} form a group called the quotient group,
denoted (G/H, =), where the ‘coset multiplication’ * is defined as

(g1H) = (g2H) = (g182)H.
For example, take the normal subgroup A4 < S4. We established that there are two cosets
(even)Ay and (odd) A4,
where (even) and (odd) are any even or odd permutations in S4. The quotient group S4/A4

has 2 elements, namely, the two cosets. The results of the coset multiplications are:

* | (even)As4 (odd)A4
(even)Ay4| (even)As (odd)A4
(odd)A4 | (odd)As (even)Ay

Table 6.3: The Cayley tables for (S1/A4, *) (left) and (Z,, +) (right).

We see that the Cayley table for the quotient group looks like that for (Z;, +) (addition
modulo 2). We conclude that the two groups are isomorphic.

S4/Ag = 7.

Let’s visualise this isomorphism in SymPy. In fig. 6.8, we produce the Cayley table for
S, but the elements have been rearranged so that the first 12 are the even permutations
followed by the 12 odd ones. This produces a 4-block structure that (when you zoom out)
looks like the Cayley table for Z,. This is one way we can think about what quotient groups
are: zooming out of a Cayley table for a group, we see another Cayley table for its quotient
group.

In exercise 5b, you will perform a similar reordering to study the quotient group S4/D5.

310 6 Abstract Algebra and Number Theory

DiscussioN

¢ Cayley’s theorem. The cyclic group C, and dihedral group D, can all be represented
as permutation groups. Just draw the corresponding polygon with numbered vertices to
see that a transformation maps one number to another like a permutation.
For example, the dihedral group D3 (symmetry group for an equilateral triangle) can be
thought of as, S3, the permutations of 3 symbols. Note that both have 6 elements. In
fact, we have the isomorphism D3 = S3 (take another look at fig. 6.7 to see if you can
spot the isomorphism). The following result goes even further.

Theorem 6.4 (Cayley’s theorem) Every finite group of order n is isomorphic to a
subgroup of Sy,.

In other words, we can use permutations to describe every finite group!

6.6 Quaternions 311

6.6 Quaternions

Let P be the point (2,0,3) and v =i + j + k. The point P is rotated about the axis v
by 6 radians. Find the coordinates of the rotated point P’.

It is generally uncommon for quaternions to be studied in a typical first-year mathematics
curriculum, but had history of the late 1800s panned out differently, students would probably
be studying quaternions instead of vectors. In this section, we will give a summary of the
mathematics of quaternions and use them to perform rotation in R,

We use of the letter i for the imaginary unit, and also i for the unit vector (1,0, 0). These
two concepts, as we will see, are combined in the world of quaternions.

We can think of quaternions as a generalisation of the imaginary number i to 3 dimensions.
Let 1, j, k be mathematical objects and define their multiplication via the formula

i?=j =Kk =ijk = -1. (6.4)

These objects also satisfy non-commutative multiplication rules that are reminiscent of
the vector cross product.

ij=—ji=k jk = —Kkj =1, ki = —ik = j. (6.5)

The story of the conception of quaternions is now legend. Sir William Rowan Hamilton
had a flash of inspiration whilst out walking in Dublin in October 1843 and carved their
algebraic formulation (eq. 6.4) on Broom Bridge. However, the French mathematician
Olinde Rodrigues (1795-1851) was the first to discover the formulation of quaternion
rotation a few years earlier (recall that we met Rodrigues and his famous ‘formula’ in §5.10).

The quaternion group Q consists of 8 elements {+1, +i, +j, +k} with the following
multiplication rule.

1 -1 i —i J —j k -k
1 1 -1 i —-i —j k -k
- -1 1 —i i -j j -k k
i i —-i -1 k -k -Jj Jj
—i —i i 1 -1 -k k j -j
J j -J -k k -1 1 —-i
-j -j J k -k 1 - —i
k k -k j -Jj —i i -1 1
-k -k k -j j i —i 1 -

Table 6.4: The Cayley table for the quaternion group Q.

In general, a quaternion q can be expressed as a linear combination of 1,1, j and k.
q=s+xi+yj+zKk, s, X% v,z€R.

We call s the real part of q, and v := xi + yj + zK the vector part. If s = 0, we call q a pure
quaternion.

312 6 Abstract Algebra and Number Theory

Letqy = 51+ x1i+ y1j+zik and q2 = 52 + x21 + y2j + z2k. We can add two quaternions
componentwise.

qr+qz = (s1+52) + (X1 +x2)i+ (1 +y2)j + (21 +)k
We can also multiply two quaternions using the multiplication rules (6.4)-(6.5). The result

is a little messy.

q1q2 = (s1 + x1i + yij + 21K) (52 + 220 + y2J + 22K)
=(S182 — X1X2 — Y1¥2 — 2122) + ($1X2 + $2X1 + Y120 — y221)i+ - -+ (6.6)
(s1y2 + $2y1 — X122 + X221)j + (5122 + 5221 + X1¥2 — X2y K.

Thankfully there is a less painful way to express the above result using the cross product.
Write q1 = s1+ vy and q2 = s+ Vv, (where v and v are the vector parts). The multiplication
rule can be written more compactly as

q1q2 = (5152 — V1 - v2) + (51v2 + $2V1 + V1 X V2). (6.7)

Conjugate, modulus and inverse

* The conjugate of a quaternion q = s + v is defined asq = s — v.

. ~\1/2 2 2\1/2 - -
e The modulus of q = s + v is defined as |q| = (qq) "/~ = (s + |v|) . (Verify this
using eq. 6.7.)

* The inverse of a quaternion q is defined as q'= |%
q
Every nonzero quaternion has an inverse which satisfies qq~! = 1.
« If |q| = 1, we say that q is a unit quaternion. Its inverse is its conjugate: q~! = q.

Polar form

We can associate a quaternion with an angle through the following theorem.

Theorem 6.5 (Polar form of a quaternion) Any unit quaternion q can be expressed in the
form

q=cos(f)+sin(0) L, (6.8)

for some angle 6 and some unit vector 1. This is called the polar form of q.

If q is not a unit quaternion, we can apply the above theorem to q/|q|. Thus the polar
form of q is simply q = |q| (cos (8) + sin (8) I)
Rotation in R? using quaternions

The following important theorem states that a rotation in R? about an axis through the origin
can be represented by a unit quaternion.

6.6 Quaternions 313

Theorem 6.6 (Rotation in R?) Let q = cos(6/2) + sin(8/2)I be a (unit) quaternion and
p = 0 + vV be a pure quaternion. When the point P with position vector Vv is rotated by angle
6 about the axis 1 (a unit vector through the origin), the image is given by the vector part of

P =qpq . (6.9)

This is the key theorem behind the usefulness of quaternions in computer graphics. Be
careful: the angle in the quaternion q is half the rotation angle.

You may be wondering why we bother with quaternions when surely the same rotation
can be performed by a 3 X 3 matrix. Indeed, when a point with position vector v is rotated
through an angle 6 about the axis («, 8, y) (a unit vector), the result is Ryv where

*(l-¢c)+c aB(l-c)+ysay(l—-c)—pBs
Rg =|aB(l—c)—vys ,82(1—c)+c By(l—c)+as]. (6.10)
ay(l—c)+ Bs py(l —c) —as 72(1—C)+c

Here ¢ = cos 0 and s = sin 6. However, you can see that this requires working with 9 entries
in the matrix. Quaternions require fewer operations and is therefore useful in computer
applications where a large number of elements may be undergoing rotations at the same
time. Quaternions are also used when objects need to be able to rotate very freely (e.g. in a
flight simulator or in determining the orientation of mobile phones) as quaternions, unlike
matrices, do not suffer from gimbal lock*, a loss of degree of freedom which could lead to
erratic behaviour.

Python implementation

The code quaternion.ipynb rotates a given point P with position vector v by an angle 6
around a given axis I (a unit vector). The code produces an interactive display with a slider
for the angle 6, as shown in fig. 6.9. In the code, we follow this recipe.

1. Write q = cos(6/2) + sin(6/2)1.

2. Find its inverse q~! = @

3. Write p = 0 + v and calculate the ‘sandwich’ p’ = qpq~"'. (Formula 6.7 reduces this to
two cross products.)

4. The image is the vector part of p’

For instance, when the point (2, 0, 3) is rotated about the axis (1, 1, 1) by 6 = 6 radians,
we find the image point (to 3 SF) at

(1.503,0.228, 3.270). (6.11)

We can check our results with SciPy’s own quaternionic rotation (we previously used
this method in the code ranknullity.ipynb in §5.9). The following code snippet uses
variables in the code quaternion.ipynb and so should only be run after.

4 See GuerrillaCG’s video https: //www.youtube. com/watch?v=zc8b2Jo7mno for a clear explanation.

https://www.youtube.com/watch?v=zc8b2Jo7mno

6 Abstract Algebra and Number Theory

314

3D Rotation with SciPy (use this after running quaternion.ipynb)

from scipy.spatial.transform import Rotation
t=6

c, s = np.cos(t/2), np.sin(t/2)

Is = s*Axnorm

Q = np.append(Is, c)

rot = Rotation.from_quat(Q)
rot.as_matrix()@v

You should find that the output of the above snippet agrees with our answer (6.11).

Rotated point at (1.503, 0.228, 3.270)

6.000

Fig. 6.9: Rotation in R3 implemented using the code quaternion.ipynb. The red dot is
rotated about the black vector by angle 6 (adjusted using the slider).

For further reading on quaternions, see [50] (and [7]) for the history of (and mathematical
introduction to) quaternions, including proofs of the theorems discussed in this section.
Ref. [29] gives an overview of the vector-versus-quaternion debate, whilst [206] gives a

tour of the modern applications of quaternions to computer graphics.

6.6

Quaternions 315

DiscussioN

Pauli matrices. The unit quaternions 1, i, j, k have an interesting representation in terms
of the following 2 X 2 matrices

11, i —ioy, j —iocy, ke —ios,

01 0—i 10
where o = 1ol 2={; o) 937101

The matrices o1, 07, 073 are called Pauli matrices, after the Austrian physicist Wolfgang
Pauli (1900-1958) who used them study the spin of particles in quantum mechanics.
We have not shown why quaternion multiplication is associative. This could be checked
with SymPy, say (exercise 6b), but a nice consequence of the Pauli-matrix representation
is that associativity follows automatically from that of matrix multiplication.

Rings and fields. Apart from groups, you will also come across other important
algebraic structures, such as rings and fields.

A ring is an extension of the idea of a group to include addition and multiplication (but
not division).

More precisely, a ring is a a nonempty set R with two binary operations + and X,
satisfying the following ring axioms. (We will write a X b as ab.)

(1) Ris an Abelian group under +.

(2) X is associative.

(3) 31 € Rsuchthat,Ya € R, al = 1la = a.

(4) X is distributive over +, i.e. Ya,b,c € R,a(b+c¢) = ab+ac and (a+b)c = ac + bc.

A division ring satisfies an additional axiom.
(35) Ya#0,3a! € Rsuchthataa™! = a la = 1.
The set of all quaternions with the operations + and X form a division ring and is given
the symbol H.
H={s+xi+yj+zKk:sxyz¢eR]}.

Finally, a field is a division ring in which X is commutative.

At university, much of your time in the first (or second) year will be spent studying why
the real numbers R is said to be a complete ordered field. See any textbooks on real
analysis for details.

316 6 Abstract Algebra and Number Theory

quaternion.ipynb (for plotting fig.)
i import numpy as np
| import matplotlib.pyplot as plt
| from matplotlib.widgets import Slider

: %matplotlib

|
Input 1: Coordinates of point to be rotated 'v = np.array((2,0,3))
Input 2: Axis of rotation |Ax = np.array((1,1,1))

! L= np.sqrt(Ax@Ax)
Normalised axis i Axnorm = Ax/L
Quaternionp =0+ v P = np.append(0,v)

def gmult(ql, g2):
sl, s2 = ql[0], q2[0]
vl = ql[1:]
v2 = q2[1:]
S = sl*s2 - vl@v2
V = s1*v2 + s2*vl + np.cross(vl,v2)
return np.append(S,V)

Function for multiplying quaternions
scalar parts
vector parts

Formula 6.7

def qrotate(t):
c, s = np.cos(t/2), np.sin(t/2)
sI = s*Axnorm
Q = np.append(c, sI)
Qinv = np.append(c, -sI)
return gmult(Q, gmult(P, Qinv))[1:]

Quaternion rotation (Thm. 6.6)

q =cos(6/2) +sin(6/2)1L
q'=3
Formula 6.9 — only the vector part is needed

Resolution of the @ slider step = 0.001
Empty lists to be filled with coords. of 1X, Y, Z = ([] for i in range(3))
rotated pts

for i, t in enumerate(T):
X,y¥,z = qrotate(t)
X.append(x)
Y.append(y)
Z.append(z)

Perform the rotation for all 8 € [0, 27]
Collect results

fig = plt.figure(Q)

ax = fig.add_subplot(111l, projection='3d',
xlabel = 'x', ylabel = 'y', zlabel = 'z',
xlim = (0,4), ylim = (0,4), zlim= (0,4))

ax.set_box_aspect((1,1,1))

Set plotting window
Equal aspect ratio

vec =ax.quiver(0,0,0, *Ax, color = 'k',
length=2*L, arrow_length_ratio=0.05)

Plot axis of rotation (black arrow)

I
|
|
I
|
I
|
|
I
|
|
I
|
I
|
|
I
|
|
I
|
I
|
|
I
|
:
't
All 0 values to perform rotation | T = np.arange(0,2*np.pi, tstep)
1 X
|
|
I
|
I
|
|
I
|
|
I
|
I
|
|
I
|
|
I
|
I
|
|
:
(reduce arrow head size) }

Plot rotation arc in blue : Cir, =ax.plot(X[0],Y[0],Z[2],'b',markersize=3)
Plot rotated point in red 1 Pnt, =ax.plot(*v, 'ro', markersize=6)

Display coords. of red point | Coord=ax.text(0,1,5, 'Initial point at '\

to 3 SE. £'({X[0]:.3£}, {Y[0]:.3£f}, {Z[0]:.3f})")

axt = plt.axes([0.26, 0.02, 0.5, 0.02])

j
Position and size of 6 slider :
i t_slide = Slider(axt, r'θ', 0, 2*np.pi,
|
|
|

valstep=tstep, valinit=0)

Code continues on the next page

6.6 Quaternions

317

quaternion.ipynb (continued)

Get 0 from slider

Recalculate coords of red point
Update blue arc

Update red dot

Update coordinate display

Update plot when slider is moved

def update(val):
t = t_slide.val
i = int(t/tstep)
X,y,Zz = qrotate(t)
Cir.set_data_3d(X[®:i], Y[0:i], Z[®:i])
Pnt.set_data_3d(X[i:i+1],Y[i:i+1],Z[i:i+1]
Coord.set_text('Rotated point at '\
£' ({x:.3£}, {y:.3f}, {z:.3f})")
fig.canvas.draw_idle()

t_slide.on_changed(update)
plt.show()

318 6 Abstract Algebra and Number Theory

6.7 Elementary number theory I: Multiplicative inverse modulo n

Solve for x if
13x =1 (mod n),

where n = 88, 130, 168,263, 303.

Let’s deal with the case n = 88 by hand. First, we apply the Euclidean algorithm to find
gcd(13, 88). The algorithm goes as follows

88 = 13(6) + 10 (6.12)
13=10(1)+3 (6.13)
10=33)+1 (6.14)

The key component in the algorithm is the remainder (in bold) in each line of division. The
algorithm stops because the next step would produce no remainder. The algorithm shows
that

gcd(13,88) = 1.

Now we reverse the steps with a sequence of back-substitutions, starting with the last line.

1=10-303)
=10(1) = [13 - 10(1)](3) (using 6.13)
= 13(=3) + 10(4)
= 13(-3) +[88 — 13(6)](4) (using 6.12)
= 13(=27) + 88(4).

From the last line, it follows that
13(=27) =1 (mod 88) = 137! =27 =61 (mod 83).

You can see that if gcd(13,n) # 1, then the back-substitution process cannot start with
1 =.... In fact, we have:

Theorem 6.7 Let n € N and a € Z. Then a has a multiplicative inverse modulo n iff
ged(a, n) = 1.

The theorem implies that 13x = 1 (mod 130) has no solution.

Thankfully, ged(13,168) = gcd(13,263) = gecd(13,303) = 1, and the Euclidean
algorithm yields:

1371 =13 (mod 168), 1371 =81 (mod 263), 1371 =70 (mod 303).

Finding the multiplicative inverse of a mod n in Python only requires a single command:
pow(a, -1, n). Yet there is an interesting visualisation that we can do. Let’s arrange
the nonzero integers mod n (1,2, ...,n — 1) in a circle and join up pairs of multiplicative
inverses.

6.7 Elementary number theory I: Multiplicative inverse modulo n 319

The code inversewheel . ipynb produces such a circle> (fig. 6.10). The key to this plot
is to evenly distribute the integers mod n on the unit circle, but only displaying those that
are coprime to n. The point labelled k has the Cartesian coordinate

(cos@,sinf), where 6 = 2kn/n.

When n is large, as in the case for 263 and 303, we omit the labels as they become
unhelpfully tiny.
The patterns in the circles are mesmerizing, and they exhibit symmetry.

4341
25 23 21 19 47 37

17

61 71
121 13577 131

ALK =N
.""‘;é;'é“:é" %‘g' .4“\!5£ i
5 SRR N AN
105 X '\>§l@l

y LIS
5’;&’1"\ ‘,‘"i;q‘
LS S [A
0 A =X
TV N
RS

A K

a

N

s
S
XA

Fig. 6.10: Each line joins up the multiplicative inverses modulo (top row) 88, 168, (bottom
row) 263, 303. Dots without connecting lines are inverses of themselves. The symmetry in
the patterns is discussed in the text.

5 The visualisation was inspired by Peter Karpov’s fascinating blog http://inversed.ru/Blog_1.htm

http://inversed.ru/Blog_1.htm

320 6 Abstract Algebra and Number Theory

Two observations in the patterns seen in fig. 6.10 can be made:

* All 4 circles have a horizontal line of symmetry
* The patterns for n = 88 and 168 have an additional symmetry across the vertical line.

The symmetry about the horizontal line occurs for all n. This follows from the simple
observation that if ab = 1 (mod n), then

(n—a)(n—>b) =n>—na—-nb+ab
=1 (mod n).

If, in particular, n = 4k, then there is another symmetry about the vertical line. This
follows from the observation that

(2k — a)(2k — b) = 4k?> = 2k(a + b) + ab
=1 (mod 4k),

where we have used the fact that a and b are necessarily odd (being coprimes to an even
number). Therefore, a + b is even, and so the term 2k (a + b) is divisible by 4k.

These symmetries mean that the code can be slightly improved by omitting unnecessarily
calculations. Exercise 7c asks you to implement such an improvement.

DiscussioN

* The The Euclidean algorithm is a fundamental tool in number theory and is worth
mastering. The algorithm is described in Elements (~300 BC), the legendary series of
13 books written by the Greek mathematician Euclid (c.325-265 BC). However, the
origin of the algorithm probably predates Euclid.

* Bézout’s identity is a useful result related to the Euclidean algorithm. It states that if
gcd(a, b) = d, then there exist integers x, y such that

ax+by=d.

We have seen that gcd(13, 88) = 1 and found with back substitution that 13(-27) +
88(4) = 1.

The French mathematician Etienne Bézout (1730—1783) showed that the result holds
not just for integers, but also in certain types of rings. Bézout’s identity is the key to
proving the next result.

6.7 Elementary number theory I: Multiplicative inverse modulo n

inversewheel.ipynb (for plotting fig.

Modulo what integer?
Numbers around the wheel?
(set False if n large)

Plot unit circle in blue

List of integers coprime to n
List of their multiplicative inverses

Angular positions for @ and a ™!

(x, y) coordinates of a on the wheel
(x, y) coordinates of a~!

Join up a and a~! with a red line

Label a (slight offset)
Text size and alignment

Equal aspect ratio to see a circle

i import numpy

as np

| import matplotlib.pyplot as plt

| %matplotlib
|

in = 88

| label = True

t = np.linspace(0,2*np.pi)

plt.plot(np.cos(t), np.sin(t),

b

321

A= [a for a in range(l,n+1) if np.gcd(a,n)==1]
B

= [pow(a,-1,

n) for a in A]

for i, a in enumerate(A):

XA, yA =
xB, yB =

plt.plot([xA, xB],
if label:

2*np.pi*a/n, 2*np.pi*B[i]/n
np.cos(tA), np.sin(tA)
np.cos(tB), np.sin(tB)
[yA, yB], 'ro-')

plt.text(x= 1.1*xA, y= 1.1*yA, s = a,
fontsize=10, ha='center', va='center')

|
|
1
|
|
1
|
1
|
|
1
:
| tA, tB =
1
|
|
1
|
|
1
|
1
|
|
1

plt.axis('square')
'plt.axis('off")

| plt.show()

322 6 Abstract Algebra and Number Theory

6.8 Elementary number theory II: Chinese Remainder Theorem

Find x if

x =3 (mod m),
x =5 (mod n),

where (m, n) equals: i) (7,8) ii) (6,8) iii) (4,8).

Let’s first solve the case (m,n) = (7, 8) by hand.
x=3 (mod7) = x=3+7n(ne2z). (6.15)
We then substitute this into the other equation, giving
3+7mn=5 (mod8) — -n=2 (mMod8) — n=-2+8m (me?2z).
(We have used 7 = —1 (mod 8).) Putting this back into (6.15), we find the solutions
x=-11+56m (m e Z).
There are infinitely many integer solutions, but only one in the range 0 < x < 56, namely
x =45,

Let’s generalise the problem slightly to the following. Find x if

a (mod 7),
b (mod 8), (6.16)

wherea =0,1,2,...,6and b =0, 1,2,...,7. Let’s use Python to help us find the solutions
to all 56 systems.
To solve the system of congruences (6.16) with SymPy, we use the following syntax

from sympy.ntheory.modular import solve_congruence
solve_congruence((a, 7), (b, 8))

The code crt.ipynb produces the grid in fig. 6.11 (top table) in which the solution to
the system (6.16) is located in row (a + 1) and column (b + 1). Note the solution x = 45
for the original problem in which (a, b) = (3,5) is at position (row, column)= (4, 6). The
coding technique is similar to that for producing Cayley tables in §6.3.

You will have noticed that all integers from O up to (but excluding) 56 = 7 X 8 appear
somewhere on the table. This means that the system (6.16) can be solved for all choices of
(a,b).

However, when a similar table is produced for (m, n) = (6,8) and (4, 8) (lower tables in
fig. 6.11), we see that for some values of (a, b), there are no solutions. For instance, the
system

x=3 (mod 6),
x =5 (mod), (6.17)

6.8 Elementary number theory II: Chinese Remainder Theorem 323
has solution x = 21 (mod 48), but the system

x=3 (mod 7),
x =5 (mod 8), (6.18)

has no solution (the entry in the table shows a black square).
It is also interesting to note from fig. 6.11 that

gcd(7,8) =1 = 56 =7 x 8 solvable cases,
gcd(6,8) =2 = 24 = 6 x 8/2 solvable cases,
gcd(4,8) =4 = 8 =4 x 8/4 solvable cases.

Given these observations, perhaps we might conjecture the following:

Conjecture 1 |Let gcd(a, b) = 1. Then the system of congruences.

x=a (mod m),
x=b (mod n), (6.19)

has a unique solution modulo mn.

Conjecture 2 |If gcd(m, n) = 1, there is a one-to-one correspondence between

* the pairs of integers (a, b) wherea =0,1,2,...,m—1land b=0,1,2,...,n -1,
and
¢ the set of integers {0, 1,2, ...,mn — 1}.

Conjecture 3 | Consider the system (6.19). If gcd(m, n) = d, then there are “* choices

of the pairs of integers (a, b) for which the system is solvable, where 0 < a < m and
0<b<n.

DiscussioN

* Chinese Remainder Theorem. Conjecture 1 is a special case of the following theorem

Theorem 6.8 (Chinese Remainder Theorem) Let ny, ny, . .., n; be pairwise coprime
integers. The system of congruences

x=a; (mod np),

x=ap (mod ny),

x =a, (mod ny),

has a unique solution modulo niny - - - n.

The theorem indeed originates from China: a system of congruences appeared in the
ancient text Sun Zi Suan Jing (Master Sun’s Mathematical Manual - ca. 3rd century
BC). The identity of Sun Zi (‘Master Sun’) still remains unclear, but perhaps explicitly
labelling a theorem as “Chinese" is now antiquated exoticism (after all there aren’t
theorems that are labelled English or German). In any case, the name stuck.

324

6 Abstract Algebra and Number Theory

x=(#row-1) (mod 7) and x = (#col-1) (mod 8)

0

8

16

24

32

40

48

49

17

25

33

41

42

50

10

18

26

34

35

43

51

3

11

19

27

28

36

44

52

4

12

20

21

29

37

45

53

5

13

14

22

30

38

46

54

6

7

115

23

31

39

47

55

x=(#row-1) (mod 6) and x = (#col-1) (mod 8)

Fig. 6.11: Solutions of the simultaneous equations x = @ (mod m) and x = b (mod n)
where (a, b) are determined by the row and column numbers in each table. Top: (m,n) =
(7,8). Middle: (m,n) = (6,8). Bottom: (m,n) = (4,8). A black square means there is no

solution.

6.8 Elementary number theory II: Chinese Remainder Theorem 325

* The Pigeonhole Principle. Conjecture 2 is a consequence of the following.

Theorem 6.9 (The Pigeonhole Principle) Let n € N. If n + 1 pigeons roost in n holes,
then there must be a hole containing more than one pigeon.

This simple, almost trivial, observation is of utmost importance in mathematics. An
overview of its wide-ranging applications can be found, for instance, in [82].

For the system of congruences at hand, the pigeons are the mn integers {0, 1,2, ..., mn—
1} (these are the possible values of x). The pigeonholes are the m X n grid like the top
table in fig. 6.11. If gcd(m, n) = 1, the Chinese Remainder Theorem guarantees that no
two pigeons share the same hole. The Pigeonhole Principle then implies Conjecture 2.

* When is a system of congruences solvable? Conjecture 3 is a consequence of the
following result, which is a generalisation of the Chinese Remainder Theorem to the
case when ny, ny, . . ., ny are not necessarily coprime.

Theorem 6.10 (Solvability criterion) The system of congruences

x=a; (mod ny),

x=a (mod ny),

x =a; (mod ng),

is solvable iff a; — a; is divisible by gcd(n;, n;) (i # j).

For example, the system

x=a (mod 6),
x=>b (mod 8),

is solvable if a — b is divisible by 2. In terms of the table in fig. 6.11, a = #row—1 and
b = #col-1. Thus, the system is solvable iff #row and #col have the same parity. This
explains the chessboard pattern in the middle table.

Try to explain the pattern in the bottom table in fig. 6.11 using the solvability criterion,
which in fact predicts a diagonal pattern in the table for all (m, n). For proof of the
criterion, see [105].

326 6 Abstract Algebra and Number Theory

crt.ipynb (for plotting fig.

| import numpy as np
| import matplotlib.pyplot as plt

Use SymPy’s number theory module ! from sympy.ntheory.modular import\
[solve_congruence
: %matplotlib

We want to solve |

x =1 (mod m@) me = 7

x =3j (mod ml) ml = 8

forall 0 <i <m®,0 < j<ml 1

A big negative number yields a black | neg = -100
square if unsolvable !
For each entry in the table rdef £(i,j):
Solve the system u = solve_congruence((i, m®), (j, ml))
If unsolvable if u==None:
return neg
else:
return int(u[0])

If solvable
return solution 0 < x <m0 -ml

Populate the array using £
Array size = mOxm1l

array=np. fromfunction(np.vectorize(f),
(m®,ml1), dtype=int)

Display the array
neg will show up as black

plt.imshow(array, cmap='magma',
vmin = neg, vmax = m®*ml)

Labelling
(if solvable)
Display the solution

for ind, x in np.ndenumerate(array):
if x!=neg:
plt.text(s = str(x),
X = ind[1], y = ind[0],
Text alignment and size va='center', ha='center', fontsize=12)
plt.title(f'x=(#row-1) (mod {m@}) and '
f'x = (#col-1) (mod {ml1})',
fontsize=12)
(plt.axis('off")
i plt.show()

6.9 Elementary number theory III: Quadratic residue and the reciprocity law 327

6.9 Elementary number theory III: Quadratic residue and the
reciprocity law

Let p e Nand a # 0 (mod p). a is said to be a quadratic residue of p if a = b*
(mod p) for some b, otherwise it is said to be a quadratic non-residue.

The Legendre symbol (ﬂ) indicates whether a is a quadratic residue or non-residue.
It is defined as follows.

0 ifa=0 (mod p),
(f) =41 if a is a quadratic residue of p,
—1 if a is a quadratic non-residue of p.

3
Find all prime numbers p such that a) (g) =1, b) (—) =1.
4

The first question asks what prime number p is a square mod 3. Since the only possible
squares in mod 3 are
2=22=1 (mod 3),

we conclude that all primes such that p = 1 (mod 3) are quadratic residues of 3, and those
such that p =2 (mod 3) are quadratic non-residues.

Fig. 6.12 (upper table) shows the values of the Legendre symbol (’q—’) for a range of odd
primes p and g. This table can be generated using the code legendre.ipynb. The key
calculation of the Legendre symbol is performed using SymPy. For example, to calculate
(%)
from sympy.ntheory import legendre_symbol
legendre_symbol (83, 3)

We can verify our findings on (%) against the leftmost column of the table. Indeed, we
see that

(p):{l ifp=1 (mod 3), (6.20)

-1 ifp=2 (mod 3).

The question becomes much more difficult if we switch the roles of 3 and p, since in
mod p, there are potentially many possible squares. For example, when p = 17, all possible
squares are

12=1 (mod 17) 22 =4 (mod 17) 32 =9 (mod 17) 42 =16 (mod 17)

52 =8 (mod 17) 6% =2 (mod 17) =15 (mod 17) 8% =13 (mod 17)

92 =13 (mod 17) 10*> =15 (mod 17) 112 2 (mod 17) 122 =8 (mod 17)

132=16 (mod 17) 142=9 (mod 17) 15> =4 (mod 17) 16%> =1 (mod 17)

This gives us a list of 16 quadratic residues (of which 8 are unique), namely

1,4,9,16,8,2,15,13,13,15,2,8,16,9,4, 1. (6.21)

Since 3 is not on this list, (17) -1.
It is interesting to note (as Euler did in 1751) that only half the integers in the set
{1,2,3,...,16} are quadratic residues, and half are non-residues. The list of residues also

328 6 Abstract Algebra and Number Theory

appear to be arranged symmetrically about the midpoint of the list. (We will revisit this in
the Discussion section.)
If only the calculation of (13—7) could be as easy as (%) Well, Gauss proved that it is!

Legendre symbols

Legendre symbols for p=q=3 (mod 4)
83
79
71
67
59
47
43
31
23
19
11
7
3
p/g 3 7 11 19 23 31 43 47 59 67 71 79 83

Fig. 6.12: Values of the Legendre symbol (fl—’) (p is tabulated against ¢), for all odd primes
D, q < 83 (upper table). The lower table displays the Legendre symbols for primes of the
form 4k + 3. The lower table is antisymmetric about the green diagonal, in agreement with
the quadratic reciprocity law.

6.9 Elementary number theory III: Quadratic residue and the reciprocity law 329

Quadratic reciprocity law

The upper table in fig. 6.12 looks almost symmetric about the green diagonal (going bottom
left to top right). If we isolate those entries such that (%) * (%) we get the lower table.
These are the entries that spoil the symmetry.

But we notice that these entries themselves form a totally antisymmetric table about the
green diagonal (meaning that (%) =- (;’—)) in this table). Furthermore, these always occur
when p = ¢ =3 (mod 4).

What we have observed is a consequence of the following.

Quadratic reciprocity law If p and q are distinct odd primes, then

(g):{—(;—’) ifp=g=3 (mod4),

p (g) otherwise.

The quadratic reciprocity law is one of the most fundamental results in number theory.
It may surprise you that it is also probably the ‘most proved’ result in mathematics. In
1801, Gauss published two proofs and later gave 6 further proofs. A tally of the number of
proofs is kept on F. Lemmermeyer’s website®. At the time of writing, there are well over
300 proofs listed, although many are variations of one another. The historical development
and generalisations of the quadratic reciprocity law can be found in [126].

Understanding any proof of the reciprocity law will require some work. References
[4,57,105] give detailed discussions of a particularly accessible proof based on counting
lattice points in a rectangle. This proof is probably one that will be most accessible to
undergraduates. The proof relies on Gauss’s Lemma which is discussed in exercise 11.

Now let’s apply the reciprocity law to our problem.

(using the quadratic reciprocity law)

(g)_{ £) ifp=1 (mod4)
- r
3

1 ifp=1 (mod3)andp =1 (mod 4)

-1 ifp=2 (mod3)andp =1 (mod 4) .

=] (using eq. 6.20)
-1 ifp=1 (mod3)andp =3 (mod 4)

1 ifp=2 (mod3)andp =3 (mod4)

1 ifp=1 (mod 12)
-1 ifp=5 d 12
= up (mo) (using the Chinese Remainder Theorem)
-1 ifp=7 (mod 12)

1 ifp=11 (mod 12)

ifp=1lorp=11 (mod 12)
ifp=5Sorp=7 (mod 12).

I
—_——
| —
—_

You should check this result against the last row of the upper table in fig. 6.12.

Shttps://www.mathi.uni-heidelberg.de/~flemmermeyer/qrg_proofs.html

https://www.mathi.uni-heidelberg.de/~flemmermeyer/qrg_proofs.html

330 6 Abstract Algebra and Number Theory

DiscussioN

¢ Let’s prove the following observation which we made earlier.
Lemma: Let p be an odd prime. Then half of the numbers in the list

L,2,...,p—1

are quadratic residues of p.

Proof: Observe that for all a € Z, we have the identity

2 (mod p). (6.22)

(P-a)’=a
Letting a = 1,2,..., (p — 1)/2 gives us (p — 1)/2 values of a>. It remains to show that
these values of ¢ are all distinct modulo p.
Take a; and a; from the set S = {1,2, ..., (p — 1)/2}. Suppose that a} = a3 (mod p)
but a; # a (mod p). Then (a; —az)(a; +az) =0 (mod p), from which we conclude
that a; + a = 0 (mod p). In other words, a; + a, is a multiple of p. But this is
impossible because 0 < a; < p/2, and therefore 0 < a; + a < p.
Therefore, when all the elements of S are squared, the results are (p — 1)/2 different
integers mod p. Hence, we have (p — 1)/2 quadratic residues.
This explains why we obtained 8 quadratic residues of 17 (below eq. 6.20. In fact, the
identity 6.22 also explains why the quadratic residues are arranged symmetrically about
the midpoint of the list (6.21).

* Euler’s criterion. The lemma above only tells us that there are (p — 1)/2 quadratic
residues of p, but it does not tell us which integers are quadratic residues. The following
result gives us more clues.

Theorem 6.11 (Euler’s criterion) Let p be an odd prime and a # 0 (mod p). Then,

(ﬁ) = aprl (mod p).
4

So a is a quadratic residue if = =1 (mod p). Try verifying this result using any
entry in the tables in fig. 6.12.

6.9 Elementary number theory III: Quadratic residue and the reciprocity law 331

legendre.ipynb (for plotting fig.

| import numpy as np
| import matplotlib.pyplot as plt

For generating primes | from sympy import sieve
For calculating Legendre symbol : from sympy.ntheory import legendre_symbol
1%matplotlib
|
I
The user to specify this number | Pmax = 85
L = list of all primes from 3 up to Pmax : L = list(sieve.primerange(3,Pmax))
I

Calculate the Legendre symbol in each entry , £ = lambda i,j: legendre_symbol(L[i], L[j1)

array = np.fromfunction(np.vectorize(f),
(len(L),len(L)), dtype=int)

|
Generate an array of symbols (p/q) :
i
|
These 3 lines attach an extra row and|array = np.vstack((L, array))
column of L onto the array, acting as the : u= [2]+ L
labels on the x and y axes. The number 2 1 array = np.column_stack((u,array))

acts as the origin and will be replaced later. |

|

Display the array as a colourful table.:plt.imshow(array, cmap="terrain',

The terrain colormap is the key to success. vmin = -1, vmax = 2, origin='lower")
|

Labelling each entry in the table
The origin

for ind, x in np.ndenumerate(array):
if x==2:
plt.text(s="p/q', x =0, y =0,
va='center', ha='center', fontsize=7)
else:
plt.text(s = str(x),
x = ind[1], y = ind[0],
va='center', ha='center', fontsize=7)

Elsewhere in the table

'plt.title(' Legendre symbols', fontsize=10)
iplt.axis('off")
1plt.show()

332 6 Abstract Algebra and Number Theory

6.10 Analytic Number Theory I: The Prime Number Theorem

Define the prime-counting function, n(x), as the number of prime numbers less
than or equal to x.
For large x, 7(x) has been shown to take the following asymptotic forms.

Q))~ —,
In x
b) n(x) ~Li(x) :=f ﬂ
2

Int’

(where f(x) ~ g(x) means f and g are asymptotically equal, i.e.
limyeo f(x)/g(x) = 1).
Investigate the accuracy of these expressions.

These results are collectively known as the Prime Number Theorem (PNT). The PNT
was proved independently in 1896 by Jacques Hadamard (1865-1963) and Charles Jean de
la Vallée Poussin (1866—1962), although the result was already known to Gauss around a
century earlier.

The prime-counting function 7(x) is one of many important number-theoretic functions
in analytic number theory. Here is a plot of (x) for x up to 100. We can see, for instance,
that there are 25 prime numbers less than 100.

25 -l
L)
)
-n
L)
20 1 o
-
)
L)
L)
15 L)
-
S)
E -n
L)
10 o
L)
-
)
-
5)
)
)
-
°
[E)
0 20 40 60 80 100

X

Fig. 6.13: The prime-counting function 7 (x) for x € [0, 100]

In SymPy, we can calculate, say, 7(100), using the syntax below.

from sympy import primepi
primepi (100)

6.10 Analytic Number Theory I: The Prime Number Theorem 333

The PNT predicts the behaviour of 7(x) when x is large, and a linear plot like fig. 6.13
is not going to be very useful. In fig. 6.14 (top panel) we plot 7(x) on logarithmic scales up
to x = 108, along with the PNT estimates (a) and (b). They all seem to coincide pretty well
on this domain. Increasing x further, you will start to notice the exponential increase in the
time taken for SymPy to compute 7 (x). The latest computational progress for (x) can be
found on the OEIS website”.

Let’s study the plot of the ratios:

w(x) d m(x)
Jnx O Lix)’

(middle panel of fig. 6.14). Both ratios appear to approach 1 as x — oo (which is what the
PNT predicts), but 7(x)/Li(x) seems to converge to 1 more rapidly.
From this middle panel, we can also deduce that

m(x) > = xe(10,10). (6.23)
Inx

In fact this inequality holds for all x > 10. See [63] for the proof of this and other related
estimates (including the PNT). We can also see that

n(x) < Li(x), xe€(10,10%).

However this does not always hold. Intensive computations have shown that (x) can exceed
Li(x) when x is very large (of order 10316 [22,39]). Interestingly, it has been shown? that
Li(x) — m(x) switches sign infinitely many times!

Finally let’s take a look at the differences for the two estimates:

7(x) = —— and Li(x) - 7(x).
In x

(bottom panel of fig. 6.14). A common misconception is to say that if f(x)/g(x) — 1 then
f(x) — g(x) — 0. You can see that this isn’t the case for our functions. (Can you think of a
simpler counterexample?) You can see that the differences grow, but as described above, for
infinitely many values of very large x, the graph Li(x) — n(x) will dip below the x-axis
(and then rises above it again).

In summary, the PNT gives a fascinating and perhaps unexpected connection between
the distribution of prime numbers and the logarithm. A particularly useful takeaway from
the PNT is that the size of the nth prime number, when # is large, is roughly

pn = nlnn.

(Yet another form of the PNT is discussed in exercise 12.)

7https://oeis.org/A006880

8 InJ. E. Littlewood’s 1914 paper Sur la distribution des nombres premiers on page 1868 of this online
facsimile of the original journal: https://archive.org/details/comptesrendushebl58acad

https://oeis.org/A006880
https://archive.org/details/comptesrendusheb158acad

334 mber Theory

— n(x)/(x/Inx)
—— n(x)/Li(x)

1.2 1

1.1+

1.0 fmmmmmm o m oo

0.9 A
0.8 1

— m(x) = x/Inx
105 4 — Li(x) —n(x)

104 E

103 o

102 o

101 o

10°

10t 102 103 104 10° 10° 107 108
X

Fig. 6.14: Graphical illustrations of the Prime Number Theorem. Top: n(x), x/Inx and
Li(x) = fzx dt/t plotted logarithmically against x. Middle: The ratios m(x)/(x/1nx)
and 7(x)/Li(x) both approach 1 for large x. Bottom: The differences 7(x) — x/Inx and
Li(x) — m(x) grow at different rates.

6.10 Analytic Number Theory I: The Prime Number Theorem 335

DiscussioN

* The infinitude of primes. The inequality 7(x) > x/Inx (which holds for x > 10)
implies that there are infinitely many primes (since limy e 515 = ©0). The fact that
there are infinitely many prime numbers was already proven by Euclid in ¢.300 BC. A
varied collection of interesting proofs of the infinitude of primes can be found in the
first chapter of [4] — a highly recommended read.

* Computers and prime numbers. Computers have become an integral part of the
understanding of prime numbers. For instance, the largest primes continue to be
discovered by computers®, and questions like “when does 7(x) exceed Li(x)?” certainly
require intensive computing and the use of clever algorithms. See [49] for an excellent
introduction to this field of study known as computational number theory.

Big questions in number theory continue to be explored with computers, including
perhaps the biggest of them all, the Riemann Hypothesis, which we will touch on shortly.

pnt.ipynb (for plotting the middle panel of fig.

i import numpy as np
| import matplotlib.pyplot as plt

For integration | from scipy.integrate import quad
For calculating 7 (x) :from sympy import primepi

1 %matplotlib

|

I
Specify domain to count primes i Nmin, Nmax = lel, le8

300 equally spaced points in loglNlist = np.logspace(np.logl®(Nmin),
space ‘ np.logl0®(Nmax), 300)

List of prime counts 7 (x) P = [primepi(n) for n in Nlist]

|

|

|

:

Li(x) = [, dt/Int ldef 1i(x):

| X, err = quad(lambda t: 1/np.log(t), 2, Xx)
: return X
|

|

|

|

|

|

Make 1i (x) accept array input Li = np.vectorize(li)

PNT (a) 7(x) ~ x/Inx PNT1 = Nlist/(np.log(Nlist))
PNT (b) m(x) ~ Li(x) PNT2 = Li(Nlist)

Ratios of n(x) and its asymptotic, errl = P/PNT1

forms :err2 = P/PNT2

plt.semilogx(Nlist, errl,
Nlist, err2,
| Nlist, np.ones_like(Nlist), 'k--')
rplt.x1lim(Nmin, Nmax)
:plt.grid('on')
i plt.xlabel('x")
'plt.legend([r'$\pi(x)/(x/\ln x)$",
I r'$\pi(x)/Li(x)$'])
:plt.show()

|
Plot the ratios (log x scale). . . 1
|
|

and the asymptote y = 1 (dashed)

9 You too can join the search at https://www.mersenne.org

https://www.mersenne.org

336 6 Abstract Algebra and Number Theory

6.11 Analytic Number Theory II: The Riemann zeta function

Plot the Riemann zeta function £ (s) for s € R.

Bernhard Riemann (1826-1866) was a German mathematician who did groundbreaking
work in analysis, differential geometry and number theory. A student of Gauss, Riemann
also laid the mathematical foundation for Einstein’s theory of general relativity. He died
aged only 39.

One of Riemann’s most celebrated mathematical results is the extension of the zeta
function

o)

HOEDY nis Re(s) > 1, (6.24)

n=1

(previously studied by Euler) to the complex numbers. In this section, we will focus on the
case when s is real. We will consider complex s in the next section.

Region s > 1

The series (6.24) converges if s > 1 (it is a p-series discussed in §1.4). The graph of {(s)
on this domain is plotted in fig. 6.15 (top panel). Panel A zooms in on the domain [2, 6],
and panel B shows a logarithmic plot near s = 1.

To plot these graphs, we use SciPy to calculate {(s). SymPy can also give exact
expressions for £(s) (if known).

Evaluating the zeta function with SciPy and SymPy

from scipy.special import zeta
[zeta(6), zeta(3)]

Using SciPy
Output: [1.0173430619844492,
1.2020569031595942]

from sympy import zeta
[zeta(6), zeta(3)]

Using SymPy
76

Output: s
e [945

4(3)]

Let’s write down some observations on the graph in panel (A). We will discuss and
justify some of these observations as we go along.

A1l For s > 1, ¢ is a decreasing function. You might even conjecture from graph (A) that

lim £(s) = 1.

S§—00

This makes sense since, for large s, the series (6.24) looks like 1+(small contributions).

1.7

g(s)

g(s)

{(s) forreal s

30 1
201
w J
= 10
01 j
10
-20 -15 ~10 5 0 5
s
J(s)fors=2t06 106 {(s)nears=1
105 4
104 4
% 103 4
102 4
101 4
10° () - - " - -
1076 1075 1074 1073 1072 107! 10°
s—=1
{(s) fors= —10to -1 (= trivial zeros)
0.00
—0.024
D
& -0.04
—0.06 1
(D) :
1 I
—0.08 4 <=1 12

-0 -9 -8 -7

Fig. 6.15: The Riemann zeta function on the real line. Panels (A)—(D) zoom in on different
parts of the top panel. Key observations from each of these graphs are discussed in the text.

338

A2

A3

6 Abstract Algebra and Number Theory

We proved (using Fourier series and Parseval’s Theorem in chapter 2) that £ (2) = 72/6
(§2.9) and £(4) = 72/90 (exercise 14). A similar technique shows that £(6) = 76/945.
We can continue using this technique to obtain { at any positive even integer. In fact,
Euler showed that

By, (6.25)

X _ = Bk k
ex—1 Z T
We can let SymPy do the expansion and manually pick out the Bernoulli numbers.

Power series expansion with SymPy

import sympy as sp
X = sp.symbols('x")
f = x/(sp.exp(x)-1)
sp.series(f, x, n=10)

x2 x4 X6 8

Output: |

= 10
5" 12 " 720 T 30240 ~ 1200600 T 0%)

Alternatively, SymPy can give us the Bernoulli numbers directly.

[sp.bernoulli(n) for n in range(10)]

Output: [1, -1/2, 1/6, O, -1/30, 0, 1/42, 0, -1/30, 0]

Note that Bogg>3 = 0.

£(3) =~ 1.202057

Unlike ¢ (2n) (which are all rational multiples of 72), it remains unknown whether ¢
at a given odd positive integer is rational or irrational, with the exception of (3). The
French mathematician Roger Apéry (1916—1994) proved that £ (3) is irrational.

Region near s = 1

B1

In the graph of { (top panel of fig. 6.15), we see a vertical asymptote at s = 1, which
looks suspiciously like that of f(s) = s—ll ats = 1.

If the asymptote of £ at s = 1 really behaves like that of ﬁ, then, multiplying ¢ by
(s — 1) would remove the singularity, i.e. the graph of y = (s — 1){(s) would have no
asymptotes. Indeed, the graph in fig. 6.16 shows that this is the case.

6.11 Analytic Number Theory II: The Riemann zeta function 339

1.64 — (s=1)(s)
1.4
1.2
1.0
0.84

0.6

0.00 025 050 075 1.00 1.25 150 1.75 2.00
S

Fig. 6.16: The graph of the function y = (s — 1){(s), showing that the singularity at s = 1
has been removed.

B2

Of course, Python did not calculate y = (s —1){(s) at s = 1 exactly (this would produce
a NaN) but evaluating y(s) in the neighbourhood of 1 suggests that lims=; y(s) = 1.
Morever, the graph of y = (s — 1){(s) looks smooth (differentiable) everywhere on R.
This suggests that y could be expressed a power series around s = 1.

y(s)=(s—De(s)=ap+ai(s— 1D +ax(s— D> +az(s—1)° +---

Since lim,_,; y(s) = 1, we have ag = 1, and we can write the zeta function near s = 1
as a power series

g(s)zSl—l+a1+a2(s—1)+a3(s—1)2+---

In the language of complex analysis, we say that the zeta function has a simple pole
at s = 1. Near s = 1 (where s may even be a complex number), one can prove (in a
complex analysis course) that the zeta function can be expressed as

1
s—1

+ = (1-s)", (6.26)

gk
:|*<

J(s) =

n=0

where the coefficients y,, are called the Stieltjes constants (with yg = 7y, the Euler-
Mascheroni constant). Series such as (6.26) are called Laurent series (a generalisation
of the Taylor series to complex numbers, with terms of negative degree).

The graph in fig. 6.15 (B) shows the behaviour of ¢ just to the right of the asymptote
(plotted on log scales). A straight line is seen over the region where s — 1 is small. The
line passes through all the grid points so neatly that we can deduce the relation

107+ 1)~ 105, keN

We can now understand that this is simply a consequence of the Laurent expansion
(6.26) with s = 107 + 1. The first term on the RHS dominates as we gonearerto s = 1.
Think about what you would see on the other side of the asymptote, i.e. if {(s) is
plotted against 1 — s on log scales (exercise 13b).

340 6 Abstract Algebra and Number Theory

Region 0 < s <1

The region 0 < s < 1 is an important one for the zeta function: it is a subset of the critical
strip {s +it,s € [0, 1), € R} in the complex plane. The critical strip plays a key role in
the Riemann Hypothesis discussed in the next section. For now, let’s explore £ on the real
segment s € [0, 1).

Here are some observations on the graph 6.15 (C):

C1 The function ¢ is decreasing on the interval [0, 1).
But wait - if the power series (6.24) is only valid for s > 1, how does one calculate {(s)
on the domain [0, 1)? The idea is to derive a different expression altogether that is valid
on this domain.

First, consider the identity 1 + (—1)" = 2 if n is even (and 0 otherwise). Dividing every
term by n* and summing over n, we obtain

0o

> 1 (=" 2
Zn_s+z ns :;(Zn)s

n=1 n=1

_1\n+l
= {(s) = _1 —~Z(D™ o 6.27)

The alternating series on the RHS (called the Dirichlet eta function) converges for s > 0
(this can be verified using the alternating-series test of convergence).

In complex analysis, this extension of the domain of a function is called analytic
continuation.

A technical note: Although in theory the series (6.27) holds for s > 0, the convergence
is impractically slow, particularly near s = 0. In practice, other forms of the analytic
continuation are normally used (exercise 15).

C2 £(0) = —%. Be careful!

1
Do not write: 1+1+1+~.-=_§,

because the power series expression (6.24) is not valid here (and neither is (6.27)). We
will see why £(0) = —% next.
Region s < 0

Analytic continuation into the region s < 0 shows that

2(s) = 2°7 L sin %F(l 9 —s), s<0, (6.28)

This was proved by Riemann but conjectured by Euler a century earlier (see [15] for Euler’s
line of argument). Equation 6.28 is called the functional equation for the zeta function.
In (6.28), T is the gamma function defined by

6.11 Analytic Number Theory II: The Riemann zeta function 341
(o)
['(s) = f #ledr, >0, (6.29)
0
and analytically continued to s < 0 by its own functional equation

I(1-9)I(s)= ——, s+7 (6.30)
sin s
The gamma function satisfies ['(n) = (n — 1)! for integer n € N. As such, the gamma
function is said to extend the factorial from integers to real numbers.
Here is how to evaluate the gamma function in SciPy and SymPy. More about the gamma
function in exercise 14.

Evaluating the gamma function with SciPy and SymPy

Using SciPy | from scipy.special import gamma
Output: [6.0, 0.8862269254527579] | [gamma (4), gamma(3/2)]
I
Using SymPy :
\/_] | from sympy import gamma, S

T
Output: |6, - | [gamma (4), gamma(S(3)/2)]

Although the functional equation for ¢ (6.28) is not valid at s = 0, we can investigate the
limit as s — 0. The RHS has the term £ (1 — s) which, near s = 0 can be replaced by the
Laurent series (6.26):

1
(1—-s)= -5 +O(1).
Using the functional equation, we have
. 1. . (7&s 1
lim £(s) = — lim sin (—)F(l -s)|—-—+0)
s—0 T s—0 2 S
1 . sin(rs/2)
—=lim —=
250 7ms/2
1

2

where we have used I'(1) = 1 and the identity lim,_,o sin x/x = 1. This proves observation
C2.

Finally, let’s make some observation on the graph 6.15 (D) which shows the zeta function
on the domain [-10, —1]

D1 {(-1)=-4.

This can be obtained by substituting s = —1 into the functional equation, giving

1 1
(=1 = —2—7T2F(2)§(2) =T

You may have seen the provocative equation below somewhere online. But be careful!

1

Do not write: 1+2+3+~--=—E.

This kind of ‘equation’ is nonsensical since the zeta function does not take the power-
series form (6.24) on this domain. Any ‘derivations’ you may have seen are usually
based on cavalier handling of divergent series.

342 6 Abstract Algebra and Number Theory

D2 {(-2n) =0forall n € N.
This is immediate upon substituting s = —2n into the functional equation. These are
called the trivial zeros of the zeta function. There are other (non-trivial) zeros in the
critical strip, which we will explore in the next section.

D3 As s < 0 increases in magnitude, { oscillates with increasing amplitude. It diverges as
§ — —o0o.
This too can be explained using the functional equation. Using the result lim;_,o, {(s) =
1, it follows that ¢ takes the following asymptotic form as s — —oo (ignoring constants)

I'l-s) . =ns
L(s) ~ ———sin >
(2m)~*
I'(1 — s) grows faster than (27)~* (the former grows like the factorial) and thus the
coefficient of the sine term grows without bound as s — —co. This results in an amplified
oscillation as s — —oo.

DiscussioN

* Complex analysis. Although we did not deal with complex numbers in this section, we
did touch on a few topics that are specific to complex analysis, namely, poles, removable
singularities, Laurent series, and analytic continuation. A course in complex analysis
(usually in the 2nd or 3rd year) will reveal the fascinating world of complex functions.
For those who can’t wait, there are plenty of good textbooks on introductory complex
analysis. Here are a few recommended reads: [3, 16,172, 191].

¢ Prime numbers and the zeta function are connected via Euler’s product

(=[] a-po" s>t 6.31)

p prime

Here’s a heuristic argument for why this holds. Each term in the product on the RHS is
the infinite sum of a geometric series
1 1 1 1

1—P_S:1+E+P2S+I$+m

Taking the product of the RHS over all primes p = 2,3,5, ..., we have

1 1 1 1 1 1
1+2—s+27+"' 1+3—S+37+"' 1+5_S+57+-“ .

If we were to expand out all the brackets in these multiplications, we would get

| 11 1 1 S
+2s+3s+22s+5 23\ ;n‘

where we have used the Fundamental Theorem of Arithmetic.
As a bonus, from the fact that {(s) — oo as s — 1, we deduce that there are infinitely
many primes.
A very readable and accessible overview of Euler’s work on the zeta function can be
found in [15].
In the next section, we continue to explore the zeta function and uncover more
connections to the prime numbers.

6.12 Analytic Number Theory III: The Riemann Hypothesis 343

6.12 Analytic Number Theory III: The Riemann Hypothesis

Locate the first 10 non-trivial zeroes of the Riemann zeta function.

This section requires basic knowledge of complex numbers.

Let’s consider the zeta function as a map ¢ from a two-dimensional domain (a subset of
the complex plane C) to the two-dimensional codomain C.

The zeta function £ (s) for complex s takes on different analytic continuations on different
domains (just like the version for real s discussed in the previous section).

* The power-series form

0o

HOEDY ni Re(s) > 1. (6.32)

n=1

 The alternating-series (Dirichlet-eta) form

1 sl (_1)n+1
£(s) = 1_21_3; ——. Re(s) >0, (6.33)

* The analytic continuation into Re(s) < 0 via the functional equation
£(s) =257 sin %F(l —5)l(1—5), Re(s) <0, (6.34)

In terms of Python, SciPy’s zeta (at the time of writing) cannot handle a complex
argument. However, SymPy’s zeta can. Here’s how to calculate £ (+i).

Evaluating the zeta function with SymPy

from sympy import zeta
print(f'zeta(i) ={complex(zeta(1lj))}")
print(f'zeta(-i)={complex(zeta(-1j))}")

This gives the following output.

zeta(i) =(0.0033002236853241027-0.41815544914132173j)
zeta(-1)=(0.0033002236853241027+0.4181554491413217j)

You might then suspect that

£(5) = 4(s) (6.35)

i.e. the complex conjugate can ‘come out’ of the argument. Indeed, this is true, although the
proof requires some advanced complex analysis!®. The upshot is that we only need to study
how ¢ maps the upper half of the complex plane Im(s) > 0. The mapping of the domain
Im(s) < 0 is then completely determined thanks to eq. 6.35.

An interesting question is, where are the zeros of the map {? In other words, we want to
find all s € C such that {(s) = 0. We have already found the trivial zeros in the previous
section at s = —2n, n € N. Are there any more zeros?

One way to roughly locate where the zeros are is to plot the amplitude |{(s)| for s on the
complex plane. One could do this as a heatmap as shown in fig. 6.17 (exercise 16 discusses

10 see Schwarz Reflection Principle in [16] for instance

344 6 Abstract Algebra and Number Theory

how to produce this figure). We see a dark region near the trivial zero at z = —2. In addition,
we see some suspicious dark spots where the amplitude is close to zero. In this plotting
window (0 < Im(s) < 50), we see 10 potential nontrivial zeros. Zooming into the figure
reveals that these dark spots all occur where Re(s) is roughly 1/2.

Heatmap of |{(s)|

10°
1071

102

103

Re s

Fig. 6.17: The heatmap of |{(s)|. The 10 dark horizontal stripes correspond to 10 nontrivial
zeros of {(s) in the region 0 < Im(s) < 50. There is also a dark area around the trivial zero
atz = -2,

All nontrivial zeros are in the critical strips 0 < Re(s) < 1 (this follows from Euler’s
product formula 6.31 and the functional equation 6.34). Riemann went further and made
the following conjecture.

Riemann Hypothesis: All nontrivial zeroes of {(s) lie along the line Re(s) = 1/2.

The Riemann Hypothesis is one of the most intriguing unsolved problem in mathematics,
featuring both on David Hilbert’s famous list of 23 problems!! and the Clay Institute’s list
of Millennium Prize Problems'2. We discuss some of its far-reaching implications later.

Now that we know roughly where the nontrivial zeros are, let’s locate them at a higher
resolution. Suppose we accept the Riemann Hypothesis, we can ask, what is the image of
the line Re(s) = 1/2 under the zeta function map? As before, we only need to consider part
of the line where Im(s) > 0, since we see from eq. 6.35 that if s is a zero of £, then so is the
conjugate s.

Instead of simply plotting the image of the line Re(s) = 1/2 (which, as you will see,
turns out to be a complicated swirl of circles), let’s create an animation showing a real-time
mapping as we travel up the line % + it where ¢ increases from 0 to 50.

The code zetaanim. ipynb produces this animation, and three frames from the animation
is shown in fig. 6.18. Each pair of figures show the domain (left) and the image (right) under

Thttps://tinyurl.com/yckch9e6 (simonsfoundation.org)
2 https://www.claymath.org

https://tinyurl.com/yckch9e6
https://www.claymath.org

6.12 Analytic Number Theory III: The Riemann Hypothesis 345

{. The animation shows that for Im(s) € [0, 50], {(s) passes through zero 10 times (count
as you watch!), corresponding to the 10 dark spots in the heatmap (fig. 6.17).

The animation gives us 10 nontrivial zeros to a handful of decimal places (depending on
the resolution in your animation). You can check that they are all consistent with known

results shown in table 6.5!3.

Zero number (Imaginary part (4 dec. pl.)
1 14.1347
2 21.0220
3 25.0109
4 30.4249
5 32.9351
6 37.5862
7 40.9187
8 43.3271
9 48.0052
10 49.7738

Table 6.5: The first 10 nontrivial zeros of £ (s), where s = % + it. The second column gives
the values of ¢ to 4 decimal places.

DiscussioN

* Riemann Hypothesis and prime numbers. One of the key implications of the Riemann
Hypothesis is that the Prime Number Theorem (§6.10) can be stated more precisely as

|7(x) = Li(x)| = O(¥xInx).

This was proven by the Swedish mathematician Helge von Koch (1870-1924) (of the
Koch snowflake fame). Even more precisely, the PNT under the assumption of the
Riemann Hypothesis can also be stated as

|7(x) —Li(x)| < Vxlnx, x>2.01,

(see [49] for details). Another implication of the Riemann Hypothesis is that the gap
between two consecutive prime numbers, p, and p,, 4 satisfies [48]

Pn+l —Pn = O(\/p_nlnpn)

In short, the Riemann Hypothesis gives us a good understanding on the distribution of
prime numbers and gaps between prime numbers.

References [47, 142] are excellent accessible reviews of the Riemann Hypothesis and
its connections to prime numbers 4.

* Computer verifications of RH. To date, billions of zeros of £ (s) have all been verified
to lie on the line Re(s) = % (e.g. [166]). The numerical techniques used to compute the
zeros (such as the widely used Odlyzko-Schonhage and the Riemann-Siegel algorithms)
are interesting by themselves. Reviews of computational techniques in connection to
the Riemann Hypothesis can be found in [30, 95].

13 Billions of nontrivial zeros are given here https://www.1lmfdb.org/zeros/zeta/
14 See also this video from Quanta magazine https://www.youtube.com/watch?v=z1lmlaajH6gY

https://www.lmfdb.org/zeros/zeta/
https://www.youtube.com/watch?v=zlm1aajH6gY

346 6 Abstract Algebra and Number Theory

z=0.5 +(14.1141)i zeta(z)=0.0027 +(-0.0161)i

50 - 3
401 21
1,
304
0,
201
_1—
101)
0l | | | | _3 | I .
00 02 04 06 08 10 =2 -1 o 1 2 3 a4

z=0.5 +(27.6777)i zeta(z)=2.8456 +(-0.0158)i

50 3
40 21
1,
304
0_
204
-1
104 -2
0+ ; ; ; ; -3 ! ! ! | !
0.0 0.2 0.4 0.6 0.8 1.0 -2 -1 0 1 2 3 4

z=0.5 +(50.0000)i zeta(z)=-0.0817 +(0.3308)i

50 1 3
40 21
1,
30
0_
201
—11
101 o
0 ‘ | | | -3 ‘ | . | |
00 02 04 06 08 1.0 -2 -1 0 1 2 3 4

Fig. 6.18: Three frames from the animation produced by zetaanim.ipynb. Each pair
of panels show the domain (left) and the image (right) in the complex plane under the
Riemann-zeta function z — (z). The domain is the line % + it where t increases from 0 to
50. The image curve passes through zero 10 times in this animation.

6.12 Analytic Number Theory III: The Riemann Hypothesis 347

zetaanim.ipynb (for producing the animation shown in fig.

i import numpy as np
| import matplotlib.pyplot as plt
| from matplotlib.animation import FuncAnimation

For calculating {(z) with SymPy 1 from sympy import zeta
| %matplotlib
|
i Tmax = 50
Domain of £ = line segment in C 'T = np.linspace(®, Tmax, 1000)
fromz = 1 to 1 +50i 'Z = [0.5 + t*1j for t in T]
List of the real parts of domain Dom_r = np.real(Z)
and imaginary parts of domain Dom_i = np.imag(Z)
List of the real parts of image under { 1 Img_r = []
and imaginary parts of image : Img_i = []

for z in Z:
fz = complex(zeta(z))
Img_r.append(np.real (£z))

|
|
Apply the complex map ¢ :
|
1 Img_i.append(np.imag(£fz))
|
|
|
|
|

Store results in 2 lists

We’ll plot 2 figures side-by-side
Increase font size a little
Templates for left plot (domain):

fig, (axl,ax2)=plt.subplots(l,2,figsize=(12,4))
plt.rcParams.update({'font.size': 16})

1) Trace (line segment) in blue curvel, = axl.plot([],[], 'b', markersize=3)
2) Current point z (red dot) 'dotl, = axl.plot([],[],'ro', markersize=6)
3) Current z value (a complex number) : textl = "z=%.1f +(%.4£)i"

4) Positioning of the text display 1titl = axl.text(0.27, 1.03*Tmax,'')

laxl.set_ylim(-0.5, 0.5+Tmax)
:axl.set_xlim(@, 1
raxl.grid('on')
j
Similar templates for the right plot| curve2, = ax2.plot([],[], 'b', markersize=3)
(the image) ! dot2, = ax2.plot([],[],'ro', markersize=6)
1text2 = 'zeta(z)=%.4f +(%.4£)i'
May need to adjust these if Tmax, tit2 = ax2.text(-1.2, 3.1,'")
or the domain is changed | ax2.set_ylim(-3, 3)
1ax2.set_xlim(—2, 4)
: ax2.grid('on')

In the ith frame, plot these:
Trace of domain in C
Trace of image in C

I
def animate_frame(i, Dom_r,Dom_i,Img_r,Img_i):
| curvel.set_data(Dom_r[:i], Dom_i[:i])
I curve2.set_data(Img_r[:i], Img_i[:i])
z as a dot : dotl.set_data(Dom_r[i], Dom_i[i])
{(z) as adot } dot2.set_data(Img_r[i], Img_i[i])
Display z value | titl.set_text(textl % (Dom_r[i],Dom_i[i]))
Display £(z) value : tit2.set_text(text2 % (Img_r[i],Img_i[i]))
| return curvel,curve2, dotl,dot2, titl,tit2
|
I
Animate the domain and its image rani = FuncAnimation(fig, animate_frame,
! fargs=(Dom_r, Dom_i, Img_r, Img_ i),
How many frames? : frames = len(T),

How many microseconds between frame? interval = 20)
|

|
! plt.show()

348 6 Abstract Algebra and Number Theory

6.13 Exercises

1 (Sieve of Eratosthenes) How long does it take for SymPy to generate a list of prime
numbers from 2 to N? Plot (logarithmically) the time taken (in seconds) against N up
to 108. You should find that the time taken scales exponentially.

Suggestion: SymPy’s sieve stores previous results. To reset the sieve, use sieve._reset ().
To time the code, see solvetimes.ipynb in §5.4.

2 (Primitive roots)

a. Given an integer n > 2, generate a list of integers coprime to n. Try doing this
using list comprehension.

b. Let n > 2 be an integer. Let a be coprime to n.
Write a code that determines whether a is a generator of the cyclic group (Z;,, X).
Suggestion: Generate the set (a) as a Python set object. Then test whether the set
equals G.

c. Write a code to find all generators of the cyclic group (Z;,, X).
These generators are called the primitive roots modulo n.
For example, you should find that there are 8 primitive roots modulo 17.

3 (Cayley table) Use cayley.ipynb as a starting point.

a. Produce the three plots in fig. 6.3.
Suggestions: To reorder the elements, first show that 3 is a generator for the cyclic

group (25, X). Perhaps do the previous question first.

b. Produce the Cayley table for (Z},, X). There should be 8 elements. Deduce that
this group is not cyclic.

4 (Cayley graph) Consider the dihedral groups D4 and D;.
For each dihedral group, use dihedral . ipynb to produce the coloured polygons and
assemble them to form a Cayley graph in the style of fig. 6.4.
List all their proper subgroups and identify the corresponding subset of the Cayley
graphs that represents each subgroup.
Suggestion: Unless you have to produce a whole lot of Cayley graphs, it’s probably too
time-consuming to write a code that assembles all the polygons into a Cayley graph.
Instead, assemble the polygons and insert arrows between them manually using, say,
Keynote or Powerpoint.

5 (Permutations groups) Use permutation.ipynb as a starting point for these questions.

a. i. Produce the Cayley table for A4 as shown in fig. 6.6.
Reorder the elements of A4 so that the elements of the Klein four-group

{(e), (0 1)(23), (02)(13), (03)(12)}

appear in the top-left corner of the Cayley table.
ii. Express each element of D4 as a permutation (do this by hand first) and check
with SymPy.
Use Python to create the Cayley table in the style of fig. 6.6. Make sure to
order the elements so that you obtain precisely Table 6.1. Examine the table
and hence deduce that
Dy/Cy = 7».

6.13 Exercises 349

b. Use SymPy to verify the partitioning of Sy using the Klein four-group D, (as shown
in fig. 6.7).
By reordering the elements of S4, produce the Cayley table of S4 like fig. 6.8 (but
with the table for D, in the top left corner). Hence, deduce the isomorphism

S4/D, = S3.

Suggestion: The Python command sorted turns a set into a list of increasing
integers.

6 (Quaternions)

a. Modify quat.ipynb so that the code rotates a line segment joining two points
about a given axis.

b. Write a code to verify that for the set of quaternions {+1, +i, +j, £k}, multiplication
is associative.
Suggestion: Use SymPy to initialise quaternions — see https://docs. sympy.
org/latest/modules/algebras.html.

c. (Do question 5b first) From table 6.4, spot the normal subgroups of Q. Hence,
produce a Cayley table that visualises the isomorphism

0/Z> = D».

7 (Patterns from multiplicative inverses) Use inversewheel . ipynb as a starting point
in these questions.

a. Investigate the pattern of the circle modulo 7 (fig. 6.10) for other values of n.
Why do some values of n result in busier patterns than others? (e.g. 203 vs. 204).
b. Modify the code so that it reports the number of lines in each circle. For example,
with n = 203, the code should report that there are 82 lines.
When 7 is prime, make a conjecture on the number of lines. (Note: this observation
leads to Wilson’s Theorem — see any recommended textbooks on elementary number
theory).

c. In the code, each line joining a and a~! is drawn twice (once starting from a and
once starting from a~!.
Modify the code to avoid this redundancy. You should use the symmetries that we

found in §6.7.

8 (Chinese Remainder Theorem) Use crt.ipynb to help you with this problem.
Consider the following problem from the ancient Chinese text Sunzi Suanjing (ca. 3rd
century BC).

“There are an unknown number of things. If we count by threes, the remainder is 2. If we
count by fives, the remainder is 3. If we count by sevens, the remainder is 2. Find the
number of things."

a. Solve the problem by hand.

b. Solve the problem using SymPy (this takes one line of code).

c. Generalise the problem so that the remainders are a b and ¢ when counted by
threes, fives and sevens. Is the system always solvable for all integers (a, b, c)?

d. Demonstrate the connection between the solution and the Pigeonhole Principle by
displaying all possible solutions as slices of a 3D array (say, show 3 slices of 5 X 7
arrays).

https://docs.sympy.org/latest/modules/algebras.html
https://docs.sympy.org/latest/modules/algebras.html

350 6 Abstract Algebra and Number Theory

9 (Legendre symbol and quadratic reciprocity)

a. Use SymPy to verify that the 1000th prime is 7919.
Find (%) by hand and verify your answer with SymPy.
Suggestion: Use reciprocity law and the property that if a = b (mod p) then

(f—)) = ([%). Alternatively, find a general formula for (%) by following the steps

for (%) as discussed in §6.9.

b. Use legendre.ipynb as a starting point.
i. Render the squares for which (g) # (1) the same colour and remove the
labels. Explain the symmetry of the resulting table.
ii. Produce the lower table in fig 6.12 (i.e. the antisymmetric table).

10 (Chebyshev bias) Plot the ratio

Total number of primes p < N such that (%) =1

Total number of primes < N

against N in the range 10 to 10°.

You should find that the ratio approaches a number just below 50% but, surprisingly,

does not go above it.

You have just verified the phenomenon known as Chebyshev bias. See [80] for detail.

Does the bias occur for, say, (%) ? What about (1%)? Experiment and make a conjecture.
11 (Gauss’s Lemma) Many proofs of the reciprocity law rely on the following lemma

(published by Gauss in his third proof of the reciprocity law). The lemma helps us
determine whether a number is a quadratic residue.

Gauss’s Lemma Let p be an odd prime and a # 0 (mod p). Consider the list of

numbers
p—1

2
Reduce these numbers modulo p. If there are n numbers that are greater than (p — 1)/2,

then
-
p

Write a code that verifies Gauss’s Lemma and produces the following output given, say,
a=283,p=19.

a,2a,3a,..., a.

List = [7 14 2 9 16 4 11 18 6]
There are 4 numbers in the list > 9.
Thus (83/19) = (-1)*4 = 1.

(For proof of Gauss’s Lemma, see any of the recommended texts on elementary number
theory.)

12 (More on the Prime Number Theorem)

a. By modifying pnt . ipynb, plot the top and bottom panels in fig. 6.14.
b. The PNT is equivalent to the statement that

m(x) ~ (6.36)

Inx-a’

6.13 Exercises 351

for some constant a.
Let’s investigate the accuracy of the above approximation using different values of
a (for large x).
i. In 1808, Legendre found empirically that a = 1.08366. Do you agree? Try
plotting the difference between the two sides of eq. 6.36 for x up to 10,
ii. In this range of x, find the optimal value of the constant a using SciPy’s
curve_fit function's.
iii. Show that the optimal value of a decreases as the range of x is extended to 10°
and then 10'°.
(In fact, Chebyshev proved that the constant approches 1 as x — 0.)

13 (The zeta function for real s) Enjoy these easy mini exercises!

a. Using eq. 6.25, find an expansion for £(10) in terms of x. Check your answer with
SymPy.

b. Plot the graph of |{(s)| against 1 — s on log scales (similar to fig. 6.15 but on the
other side of the singularity at s = 1).
On the same plot, insert the Laurent series (6.26), keeping up to the yg term. You
should find excellent agreement between the two curves.

c. Plot the absolute difference between £(4) and the Euler’s product

[]a-pH"

p prime

as a function of the number of primes in the product (say, up to 30 primes).
How many primes are needed in the product to achieve 6 dec. pl. accuracy? (Recall
that n-dec. pl. accuracy is achieved when the absolute difference is < 0.5 x 1077).

14 (The gamma function)

a. Use the functional equation for I" (eq. 6.30) to find the exact expressions for I'(1/2),
I'(3/2) and I'(—1/2).
Check that your results agree with the SymPy’s symbolic output.

b. Plot y = I'(x) on the domain [-5, 5]. Show that it agrees with (x — 1)! when x € N.

c. When x is a large, positive number, the gamma function takes the following
asymptotic form

[(x) ~ V2rx*" e, (6.37)

This approximation is called Stirling’s approximation after the Scottish mathe-
matician, James Stirling (1692—1770). This formula was actually discovered by de
Moivre, but the fact that numerical factor equals V27 was due to Stirling.
i. Plotthe I'(x) and Stirling’s approximation on the same set of axes for x between
1 and 4. You should find excellent agreement between the two curves.

ii. Plot the fractional error in using the Stirling’s approximation to approximate
I'(x). Do this for x up to 100 and use semilogy. You should find that the
absolute fractional error decreases very slowly.

Calculate the fractional error in using Stirling’s approximation to calculate
100! (Answer: —8.25 x 107%).

15 https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.
html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html

352

6 Abstract Algebra and Number Theory

15 (Computing the zeta function efficiently)

a. Plot the analytic continuation of the zeta function {(s) for real s € (0,0.5) using

eq. 6.27 (involving the Dirichlet eta function). Use 107 terms.

Compare the graph of the analytic continuation with SciPy’s zeta function. You
should see that the eta-function expression is noticeably off from {(s) near s = 0.
Try increasing the number of terms.

. There are several alternative formulae for the analytic continuation of ¢ that are

useful for computational purposes. See [30] for an overview.
One of these formulae is the following:

1 /2
[()_F(S/Z) (m+$1+52), (638)
Sy = Zn‘Sr (s/2, 7m2>,
n=1

h =872 Iin‘ 1F (1—s)/2 7rn)

n=1

where I'(a, z) is the incomplete gamma function

F(a,z)zf e dr.
V4

The above integral expression is valid for Re(s) > 0, but can be extended to
other values of s via analytic continuation (though you will not need the extended
expression explicitly in this question).

Use the analytic continuation 6.38 to evaluate ¢(0.5) using 10° terms in the sums.
You should find that it gives essentially the same result as SciPy’s £(0.5).

On log-log scales, plot the absolute errors

|Eq.6.27 - £(0.5)] and |Eq.6.38 — £(0.5)]

against the number of terms used (from 1 to 10°). You should see that the formula
(6.38) converges much more quickly than (6.27). in fact, only a handful of terms
are needed to achieve machine-epsilon-level accuracy.

Suggestion: Do everything in SciPy. SciPy has a built-in function gammaincc!®,
but be careful - it has a different normalisation from the incomplete gamma function
defined above.

16
html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.gammaincc.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.gammaincc.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.gammaincc.html

6.13 Exercises 353

16 (Locating nontrivial zeros of) Reproduce fig. 6.17 (or a similar plot which shows the
locations of the nontrivial zeros of £ in the complex plane).
Suggestion: Use meshgrid to populate a grid of (x, y) coordinates, then define z =
[{(x +iy)| (use SymPy’s zeta). Plot the heatmap with pcolormesh. Use logarithmic
colour mapping for the z values. Here’s one way to do this.

fig, ax = plt.subplots()
ax.pcolormesh(x, y, z, norm=colors.LogNorm(vmin=z.min(), vmax=z.max()),
shading="gouraud', cmap="hot")

17 (Visualising { as a complex map) Use zetaanim. ipynb to help answer the following
questions.

a. Modify the code to show the images of the lines Re(s) = 0.5 and Re(s) = 0.8
simultaneously. You should see that the trajectories evolve in sync, coming very
close together at times.

b. Plot the image of the circle |z| = R under the { mapping. Experiment with various
values of R. Take care to avoid the singularity at z = 1.
You should find a range of interesting images, ranging from circles to cardioid-like
loops.

c. Plot the image of the square with vertices at z = £R + iR under the { mapping
(where R # 1). Experiment with various values of R.
You should see that a right angle get mapped to a right angle.
Note: Complex functions that preserve angles are called conformal maps.

d. Consider the Mobius transformation defined as

az+b

—+d’ Cl,b,C,dEC.

f@) =

We wish to find the image of the unit disc |z| < 1 under the Mobius transformation
for some choices of parameters a, b, ¢, d.
Plot all the images of the circles |z| = R where R takes several values between 0
and 1, using the following values of (a, b, ¢, d).

e (1,-i/2,i/2,1)

* (0,1,1,0)

e (1,4, 1,-0)
(Answers: the unit disc; complement of the unit disc; a half plane.)
You should notice that all circles are mapped onto either a circle or a line. See [154]
and this video!” for more on the Mobius transformations and its applications.

7 https://www.youtube.com/watch?v=0z1fIsUNhO4

https://www.youtube.com/watch?v=0z1fIsUNhO4

®

Check for
updates

CHAPTER
SEVEN

Probability

Fig. 7.1: Portrait of Blaise Pascal (1623-1662), a French mathematician, physicist and
philosopher who laid the mathematical foundation for probability. Image from [210]

The study of probability arose out of the desire to understand (and perhaps gain an
upper hand in) games of chance and gambling. Today, probability deeply pervades our
everyday life, and has forged connections to surprising areas of mathematics. For instance,
the probabilistic number theory and probabilisitic group theory are active research fields
with applications in modern cryptography. The mathematical foundation of probability
relies on real analysis, particularly measure theory. In other areas of science, probability is
essential in the understanding of quantum mechanics, molecular dynamics, genetic mutation,
and econometrics.

At the heart of probability is the concept of randomness which is difficult to replicate with
pen and paper. It is rather disheartening that many students, perhaps in their introduction to
probability in school, only ever see phrases like “a ball is drawn at random from an urn",
“a pair of fair dice is thrown 20 times" or “5 students out of 100 are randomly chosen to
form a committee". Such phrases normally appear in exercises, and some calculations are
then performed, but the randomness is never seen.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 355
S. Chongchitnan, Exploring University Mathematics with Python,
https://doi.org/10.1007/978-3-031-46270-2_7

https://doi.org/10.1007/978-3-031-46270-2_7
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46270-2_7&domain=pdf

356 7 Probability

Thankfully, Python allows us to invoke and visualise randomness instantly. Millions
of simulations involving games of coins, dice, cards and randomly selecting objects can
be performed with little effort. The understanding of probability through simulation and
visualisation is the spirit of this chapter.

We will use Python’s randomisation capability to perform a large number (typically
millions) of simulations and render visualisations of the results. This approach gives us
insights into probability that are difficult to gain with the old pen-and-paper approach.
Along the way, we will encounter some truly fascinating and often counterintuitive results
in probability.

There are of course many excellent textbooks on probability that are suitable for beginning
undergraduates. These include [8,52,179], and the classic series by Feller [62]. Good books
on probability with focus on numerical simulations include [109, 156, 205] and Nahin’s
books [151, 152] which are particularly accessible and entertaining. For a problem-based
approach, [77,86] are highly recommended.

7.1 Basic concepts in combinatorics

Combinatorics is, in simple terms, the study of counting different ways that something can
happen. Two useful concepts in combinatorics are permutation and combination.

A permutation is a rearrangement of objects where order matters. For example, the
number of ways a word can be formed given n letters (we assume that a word does not have
to make sense). There are, for instance, 6 permutations of 3 letters A, B, C, where letter
repetition is not allowed.

ABC,ACB,BCA,BAC,CAB, CBA.

A combination, on the other hand, is a way to group together objects where order does
not matter. For example, there are 6 ways to form a two-object subset out of the set of letters
{A B,C,Dj}.

{A, B}, {A C},{A, D}, {B,C},{B, D}, {C, D}

Here are some key results in basic combinatorics.

Proposition 7.1 (Key results in basic combinatorics)

1. Given n different letters, there are n! unique words that can be formed using those
letters (Where letter repetition is not allowed).
2. Given n letters, of which ki are alike, ky are alike. . . k, are alike, then there are

n!
ki'ky!. .. k!

unique words that can be formed using those letters without repetition.
3. Given n different letters, the number of unique r-letter words (where 0 < r < n) that
can be formed without repetition is

n!

P G

Here P stands for permutation.

7.2 Basic concepts in probability 357

4. Given n different objects, the number of different subsets with r objects (where0 < r < n)
is "C,, also written (:‘), defined as

n n!
(r) = rl(n-r)l’ 7.1y

Here C stands for combination. The symbol (’:) is called the binomial coefficient.

To calculate (’:) with Python, we can use SciPy’s built-in command binom(n,r). This
will be important when we come to discuss Pascal’s triangle in §7.4.

7.2 Basic concepts in probability
Axioms of probability

Consider an experiment in which the set of all possible outcomes is denoted € (called the
sample space). The probability that the outcome A C Q occurs, denoted Pr(A), satisfies the
following 3 axioms.

1. 0<Pr(A) <1.

2. Pr(Q) = 1.

3. Let A, B, C, ... (countably many, possibly infinite) be mutually exclusive outcomes,
meaning that no two outcomes can occur simultaneously. Then,

Pr(AUBUCU...) = Pr(A) + Pr(B) + Pr(C) + - --

These are called the Kolmogorov axioms after the Russian mathematician Andrey Nikolaevich
Kolmogorov (1903-1987). These axioms give rise to the following elementary results.

Proposition 7.2 Let Q be a sample space and let A, B C Q.

1. The probability that A does not occur, denoted Pr(A€), equals 1 — Pr(A).
2. If A C B, then Pr(A) < Pr(B).
3. Pr(AU B) = Pr(A) + Pr(B) — Pr(AN B).

Conditional probability
Let Pr(B) > 0. The conditional probability that A occurs given that B has occurred is
denoted Pr(A|B). It can be expressed as

Pr(AN B
Pr(A|B) = %. (7.2)

If Pr(A|B) = Pr(A), or in other words, if

Pr(A N B) = Pr(A) Pr(B), (7.3)

358 7 Probability

then A and B are said to be independent events. For example, a fair die showing 6 when
thrown in London, and a fair die showing 6 when thrown in Singapore, are independent
events.

Here is another useful result in connection with conditional probability.

Proposition 7.3 (Law of total probability)

Pr(A) = Pr(A N B) + Pr(A N BY)
= Pr(A|B) Pr(B) + Pr(A|B¢) Pr(B°).

This follows from eq. 7.2 and the axioms of probability. We will calculate conditional
probabilities in our investigation into the famous Monty Hall problem (§7.7).

Random variables

A random variable X is a function defined on the sample space Q. For example, let 2 be all
possible results of 3 successive throws of a fair die. Let X be the sum of the 3 throws. Then
X is a random variable such that 3 < X < 18. Each possible value of X is associated with a
probability value.

A random variable may be discrete or continuous.

Discrete random variables

A discrete random variable X takes on a countable number of possible values xy, x, x3, . . .
(possibly infinitely many). Examples include outcomes of throwing coins and dice, card
games, and general counts of people or things satisfying some conditions.
For a discrete random variable X, the probabilities Pr(X = x;) can be represented
graphically using a histogram such as those in figs. 7.6, 7.9, 7.12 and 7.13.
The function
f(xi) =Pr(X = x;)

is called a probability mass function (pmf) or a probability distribution function (or simply,
a distribution).
It follows that a probability distribution function satisfies the normalisation condition

if(x» = 1.
i=1

In this chapter, we will encounter a number of discrete probability distributions, including
the Bernoulli, binomial and Poisson distributions. To visualise these distributions, we will
use Matplotlib’s hist function! to produce histograms. Another method is to use the
Seaborn library — this will be explained in chapter 8.

Lhttps://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.hist.html

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.hist.html

7.2 Basic concepts in probability 359

Continuous random variables

A continuous random variable X can take on an uncountable number of possible values.

Examples include outcomes associated with physical observables (time, length, mass,

temperature. . .) and general quantities that can take any values on some interval [a, b] C R.
Consider the interval [a, b] C R. The probability that X € [a, b] can be expressed as

b
Pr(aSXSb)=f f(x)dx,

where f is called the probability density function (pdf).

A pdf can be represented as a graph y = f(x). An example is shown in fig 7.12 in which
the red curves show a continuous probability distribution known as the normal distribution.

It is important to note that a single value of f(x) does not correspond to a probability.
We can only deduce probability values from the integral of the pdf. In other words, the
area under the graph of the pdf y = f(x) between x € [a, b] tells us about the probability
Pr(a < X < b).

Analogous to the discrete case, it follows that the pdf of a continuous random variable
satisfies the normalisation condition

fwf(x)dx =1.

In this chapter, we will encounter a number of continuous probability distributions,
including the uniform, normal and exponential distributions.

Cumulative distribution function

The cumulative distribution function (cdf) of a random variable X with probability distribu-
tion function f is defined by

F(x) =Pr(X <x)

_ {Zx,-gx f(x;y), if X is discrete,

=9 rx ey . (7.4)
f_w f()dr, if X is continuous.

The graph of a cdf is an increasing function from F(x) = 0 to 1. It satisfies the limits

lim F(x) =0, lim F(x) = 1.
X——00 X—00
An example of a cdf can be seen in fig. 7.9 (lower panel).

It is conventional to use a lowercase letter to denote a probability mass or density function,
and a capital letter to denote the cumulative distribution function.

360 7 Probability

Expectation (mean)

The expectation value of a random variable X with probability distribution function f is
defined by

Yooy xif(xp), if X is discrete,

o e . (7.5)
f_oo xf(x)dx, if X is continuous.

E[X] ::{

(assuming that the sum or integral converges). The expectation value E[X] is sometimes
written (X). The expectation value of X is also called the mean of X, denoted .

The expectation value of a function g of a random variable X can itself by considered a
random variable g(X). Therefore, we have:

Yoo &(xi) f(x;), if X is discrete,

o0 ey . (7.6)
f_m g(x)f(x)dx, if X is continuous.

Efg(X)] = {
Let a and b be constant. It is straightforward to show that E is a linear operator, meaning

that for two random variables X and Y,

ElaX + bY] = aE[Y] + bE[Y]. (7.7)

Variance

The variance of a random variable X, denoted Var(X), is defined by
Var(X) = E [(X - p)’] (7.8)

where u = E[X]. Intuitively, the variance measures the spread of the values of X around
the mean.
A little simplification gives us a useful alternative formula for the variance.

Var(X) = E[X?] - /2. (7.9)

The variance of X is denoted o2 Its square root, o = VVar(X) is called the standard
deviation. It is used to quantify the error or uncertainty in some repeated experimental
measurements or simulations.

Here is a useful property which will come in handy in our investigation into Monte Carlo
simulations (§7.10). Let a and b be constant. Then,

Var(aX + b) = a*Var(X). (7.10)

This follows immediately from the definition of the variance. This shows that Var is not a
linear operator. In fact, for two random variables X and Y, we have

Var(aX + bY) = a*Var(X) + b*Var(Y) + 2abCov(X,Y), (7.11)
where Cov(X,Y) = E[XY] - E[X]E[Y].

More about the covariance Cov(X,Y) in §8.7.

7.2 Basic concepts in probability 361

Example: The uniform distribution

An important probability distribution is the uniform distribution. Let’s discuss the case
where X is a continuous random variable with pdf

1

— ifa<x<hb
x) = b-a 1 - -
F) {0 otherwise,

for some constants a, b such that a < b. We say that X is distributed uniformly between a
and b, and write
X ~U(a,b).

The tilde can be interpreted as the phrase “follows the distribution".
It is straightforward to check that

a+b
2 9’

foo fx)dx =1, E[X] = Var(X) = é(b - a)?,

and that the cumulative distribution is given by

0 ifx <a,
F(x)=13=% ifa<x<bh,
1 if x > b.

The uniform distribution is especially important for computer simulations. In particular,
we will usually work with Python’s default random number generator which gives a small
random number with the distribution U (0, 1).

362 7 Probability

7.3 Basics of random numbers in Python

Here is a quick guide on how to generate random numbers in Python using either the NumPy
or Python method. Take care of the different endpoints and types of output in each method.

NumPy method Python method

rng = np.random.default_rng() |import random

Pick a random
number in [0,1)

Pick N random

numbers in [0,1)

A matrix of
random numbers

rng.random()

rng.random(N)

An array

rng.random((M,N))
An MxN array

random.random()

[random.random() for i in range(N)]

A list

Pick a random
number from
a uniform
distribution
U(a, b)

Result in [a,b)

a + (b-a)*rng.random()

OR

rng.uniform(a,b)

Result in [a,b]

random.uniform(a,b)

Pick a random
integer between m
and n

Result in [m,n)

rng.integers(m,n)

Result in [m,n)
random.randrange (m,n)
OR, for result in [m,n]

random.randint (m,n)

7.4 Pascal’s triangle 363

7.4 Pascal’s triangle

Study the structure of Pascal’s triangle modulo 2.

Pascal’s triangle is shown on the left panel of fig. 7.2. Starting at the top of the triangle
(call it row 0), the entries in row n are (g), ('1‘), ('2’), o (Z) The rows are stacked to form a
triangular pattern.

It follows from the binomial theorem that row n contains the coefficients in the expansion

(1 + x)™, since
(1+x)" = (g) + (’I)H (;)x2+~~+ (Z)x" (7.12)

Although the triangle bears the name of Pascal who studied it in 1654, it is likely to
have been known to the Indian poet-mathematician Pingala (~ 300-200 BC), and later
mathematicians in Persia and China.

1 5 1¢ 18 5 1
1 6 15 20 15 6 1
1 7 21 3 35 21 7 1
1 8 28 56 70 56 28 8 1

Fig. 7.2: Left: Pascal’s triangle generated using Python. Right: A page from a 14th century
Chinese manuscript attributing the triangle to the mathematician Jia Xian (ca. 1010-1070).
Image from [211].

Here are some well-known properties of Pascal’s triangle.

1. Recursion Two adjacent entries in the same row add up to the entries between them in

the row below.
n n n+1
(k) " (k+ 1) = (k+ 1)' (7.13)

This is easily proved by algebraically simplifying the LHS.
2. Symmetry The triangle is symmetric about the vertical line drawn down the centre of
the triangle.

364 7 Probability

()

This follows from the definition (7.1).

3. The sum of the nth row is 2". This follows from setting x = 1 in eq. 7.12.
A fun observation: setting x = 10 in eq. 7.12., we deduce that the first 5 rows of Pascal’s
triangle are simply the digits of 119118 112,113, 114

4. Triangular numbers The 3rd diagonal reads
1,3,6,10,15,21,28,. ..

These are the triangular numbers, t, =1 +2+3+---+n=nn+1)/2.

The next diagonal along contains the tetrahedral numbers, T, = t; +ty +--- +1t, =
n(n+1)(n+2)/6 and so on.

5. Fibonacci numbers Left justify the triangle. Then, the sum of each diagonal produces
a Fibonacci number (see exercise 1c).

There are many other exotic patterns within the triangle?.

Computing (Z) with Python

SciPy has a built-in command binom. For example, to calculate (i) , we can use the following
syntax.

from scipy.special import binom
binom(9,4)

This also works with non-integers (SciPy replaces n! by I'(n — 1) - see eq. 6.29).

Nevertheless, it is instructive to try to write the code that can compute (2) accurately
ourselves. The (home-made) function binom(n, k) (at the top of pascal.ipynb) shows
how (’,:) can be computed recursively. The idea is to calculate each bracketed term on the
RHS of the expression below

(=) (=)

and multiply them recursively going from left to right. The ‘floor division’ operator
// ensures that the result of the division is an integer (otherwise we would see lots of
unnecessary .0 when generating, say, Pascal’s triangle in fig. 7.2).

2 See https://tinyurl.com/y396zt8k (cut-the-knot.org)

https://tinyurl.com/y396zt8k

7.4 Pascal’s triangle 365

Sierpinski’s triangle

The code pascal.ipynb produces a large Pascal’s triangle in modulo 2 (i.e. we retain only
the parity of the entries). The result is shown in the top panel of fig. 7.4. The white squares
are 0’s and the black squares are 1’s. The code prints these symbols as Unicode characters.
An introductory guide to Unicode in Python can be found here3.

An intriguing triangular pattern emerges. . .

On the right of the same figure, we show the Sierpiriski triangle, a fractal in which the
white triangles are iteratively generated in the black spaces using the following pictorial
rule (5 iterations are shown).

A =\

Ak 5&2};
53 :22.:2“ LYYV
1& ﬁhﬁh bl 3:...}:5 é%f%“é&

Fig. 7.3: Constructing the Sierpisiski triangle. Wactaw Sierpiriski (1882—1969) was a prolific
Polish mathematician who made important contributions to set theory and number theory.
Several fractals bear his name.

Of course the binary Pascal’s triangle is not a true fractal in the sense that one cannot
infinitely zoom in to see a self-similar structure. Nonetheless, zooming out of the triangle
does reveal an infinite self-similar structure. You may find it surprising that a self-similar
structure emerges out of Pascal’s triangle. The proof is a little fiddly but is accessible to
undergraduates - see [18,218] for example.

Without going into the detail of the proof, one can get a feel of why a self-repeating
pattern emerges. From the top panel of fig. 7.4, we see that now and then a line appears
with mostly 0’s (white squares) with 1’s (black squares) at either end, i.e.

1000...0001

Doing a little counting in the figure will convince you that this type of row appears
in lines () where n = 2',22,23,24 This observation is equivalent to the following
statement.

Lemma: If n = 2™ (where m € N), then (1 + x)"” =1+ x" (mod 2).

This result is straightforward to prove by induction. This means that as we go down
Pascal’s triangle, we will keep seeing a line corresponding to one side of an upside-down
triangle whenever n = 2.

The appearance of the such a line then completely determines the lines below (due to
the recursive property of binomial coefficients). Below two squares of the same colour, we
must have a white square, since 1 + 1 =0+ 0 =0 (mod 2). Below two squares of opposite
colours, we have a black square. These rules then generate the repeating pattern, leading to
self-similarity on large scale.

3https://docs.python.org/3/howto/unicode.html

https://docs.python.org/3/howto/unicode.html

366

In summary, the structure of Pascal’s triangle modulo 2 resembles that of Sierpiriski’s
triangle with one key difference: Pascal’s triangle shows self-similarity when zoomed out,

7 Probability

whilst Sierpinski’s triangle shows self-similarity when zoomed in.

pascal.ipynb (for plotting the top panel of fig.

Generate n + 1 lines of Pascal’s triangle
Modulo what integer?

Binomial coefficients computed recursively

// means floor division

Convert a number to a symbol
\u25A1 is an empty square (0)
\u25A0 is a black square (1)

Printing n + 1 lines

Prepend empty spaces to centre-justify
Compute binomial cofficients mod n

Convert result to a symbol
Print the line

binom(n,k):
a=1
for i in range(k):

a = a*(n-1)//@+1)
return a
symb (u) :
if u==0:

return "\u25A1"
else:

return "\u25A0"

i in range(n+l):
for j in range(®, n-i+1):
print(' ', end="")
for j in range(i+1):
u = binom(i,j) % mod
s = symb(u)
print(' ', s, sep="", end="")
print()

7.4 Pascal’s triangle 367

P
ALAR
A
b
Ab, Ab,
Anhn ARAR

Ab A Ah A
AndhAhAh b A5 AN AN

Fig. 7.4: Top: Pascal’s triangle in mod 2, showing 64 rows, generated using pascal.ipynb.
Filled (black) squares are ones and empty (white) squares are zeroes. Bottom: The Sierpiniski
Triangle (after 5 iterations).

368 7 Probability

DiscussioN

¢ Cellular automata. The recursive property of Pascal’s triangle allows one line to

Fig. 7.5: Rule 90 in Wolfram’s classification of elementary cellular automata. Starting with a
single black cell initially (top row of the grid), the binary Pascal’s (Sierpifiski) triangle appears.
Figure adapted from http://atlas.wolfram.com/01/01/90/01_01_1_90.html.

Starting with a line containing a single black square, Rule 90 generates the binary
Pascal’s (Sierpiriski) triangle. We can see why this holds: assign value 1 to a black and
0 to a white square. Given 3 adjacent squares with values p, ¢, r, Rule 90 simply says
that the value of the square below g is (p +r) (mod 2).

Cellular automata were extensively studied by Stephen Wolfram in the 1980°s [217].
A well-known game using cellular automata is the Game of Life, invented by John
Conway*“.

* Turtle. A popular Python package for drawing lines and shapes is Turtle, which was
used to produce the Sierpiriski triangle in fig. 7.4. See https://docs.python.org/
3/1library/turtle.html for an introduction to Turtle.

4https://conwaylife.com

http://atlas.wolfram.com/01/01/90/01_01_1_90.html
https://docs.python.org/3/library/turtle.html
https://docs.python.org/3/library/turtle.html
https://conwaylife.com

7.5 Coin tossing 369

7.5 Coin tossing

I toss a fair coin 10 times. In each throw, the coin shows either heads (H) or tails (T).
a) What is the probability that I see at least 5 heads?

b) What is the probability that I see the sequence HH?

c) What is the probability that I see the sequence TH?

Parts (b) and (c) seem like they should have the same answer. After all, H and T occur
with equal probability. However, we will see that this intuition turns out to be wrong. . .

Simulating coin tosses

There are several ways to simulate coin tosses in Python. We give 3 ways below.

Three methods to simulate 10 coin tosses and count the number of heads

Method 1: Python’s random module [# oo
rimport random
iheads= 0

Pick between 0 (heads) or 1 (tails) | for trial in range(10):

Add 1 to count if heads appears | roll = random.randint(®, 1)
! if roll == 1: heads +=1
| heads
!
e
|

Method 2: NumPy’s RNG : import numpy as np
rrng = np.random.default_rng(Q)
Sample from the binomial distribution i rng.binomial (10, 0.5)

withn =10, p = 0.5 !

oo
, from scipy.stats import bernoulli
| import numpy as np

Method 3: SciPy’s stats module

Bernoulli trials with Pr(success) = 0.5 ! dist = bernoulli(®.5)
Draw 10 ‘random variates’ with replacement 1 rolls = dist.rvs(10)
Count how many successes occurred i np.count_nonzero(rolls==1)

Bernoulli trials are independent events each of which is either a success with probability
p, or a failure with probability 1 — p. For example, obtaining heads in a toss of a fair coin is
a Bernoulli trial with p = 0.5.

The Bernoulli trial is named after Jacob Bernoulli (whose Lemniscate we studied in
§3.4).

The probability distribution of the two possible outcomes of a Bernoulli trial is called
the Bernoulli distribution. Let 1 and 0 correspond to success and failure respectively. We
can then express the pmf of the Bernoulli distribution as

p ifk =1,

7.15
1-p ifk=0. (7.13)

f(k)={

370 7 Probability

Binomial distribution

Part (a) asks for the probability that we have at least 5 successes (heads) in 10 Bernoulli
trials.

Let’s first consider the probability of obtaining exactly 5 heads which do not necessarily
appear successively. We could have, for example, any of the following sequences

HHHHHTTTTT
THTHTHTHTH
TTHHTHHHTT

How many such sequences are there? Well, it is simply a matter of choosing 5 positions
(out of 10 possibilities) for which the heads can occur. The answer is therefore (150) =252
possibilities.

In each of these possibilities, heads occur 5 times with probability 2% and tails occur 5
times also with probability 2% Therefore, the probability that exactly 5 heads occur in 10
throws is

We can generalise the above observation as follows: the probability that k successes are
observed in n Bernoulli trials, where each success occurs with probability p, is given by

1 1 1
Pr(5 heads) = (0) 63

Pr(k successes observed) = (Z)pk(l - p)"_k. (7.16)

The RHS is the pmf of the binomial distribution, denoted B(n, p), with pmf

Flk) = (Z)p"(l —pk

Note that when n = 1, the binomial distribution reduces to the Bernoulli distribution (7.15).
In our scenario of tossing a fair coin 10 times, the probability of obtaining exactly 5
heads follows the binomial distribution with n = 10, k = 5 and p = 0.5. We can then repeat
the calculation for the probability of obtaining exactly 6, 7, 8, 9, 10 heads.
Therefore, to answer part (a), the probability of obtaining at least 5 heads is given by

s (] (2 (3)+(2)+5)+ ()
_ 319
T 512

~ 0.6230 (4 dec. pl.).

(Alternatively, we could calculate 1 — Pr(< 5 heads).)

Let’s see if this result agrees with simulation. The code coinl.ipynb generates 10°
simulations of 10 throws of the coin (using Method 1), and counts the number of heads in
each 10-throw simulation. The histogram showing the count is shown in fig. 7.6. The height
of the bars is normalised so that the blue area is 1. In other words, the histogram can be
interpreted as a probability mass function.

7.5 Coin tossing 371

The more throws we perform, the closer the distribution gets to the binomial distribution
10\ 1
Pr(k heads) = (X)ﬁ (7.17)

In this particular simulation with 103 throws, we found the following output.

Pr(5 heads)= 0.24625
Pr(at least 5 heads)= 0.62296

These values are in good agreement with our calculations.

0.25 A1

0.20 A

©

=

€]
!

Probability

0.10

0.05 +

0.00 -

No. of heads in 10 throws

Fig. 7.6: The probability mass function for the total number of heads seen in 10 throws. We
simulated 107 ten-throw experiments using the code coinl.ipynb. The result agrees with

the binomial distribution (7.17).

372 7 Probability

coinl.ipynb (for plotting fig. and calculating Pr(at least 5 heads))

i import numpy as np
| import matplotlib.pyplot as plt
| import random

: %matplotlib
|
Number of 10-throw experiments to,exprmt = int(le5)
simulate : throws = 10
This will be filled with heads counts : Htally = []
Throw the coin lots of times | for i in range(exprmt):
heads= 0

for trial in range(throws):
roll = random.randint(0®, 1)
if roll == 0: heads += 1

Htally.append(heads)

Use Method 1 to simulate throws
Record the number of heads

Plot 11 bars (centred on integers)
Plot histogram (prob=bar height)
density=True normalises the distribu-
tion :plt.xticks(range(ll))
iplt.xlabel('No. of heads in 10 throws')
iplt.ylabel ('Probability"')
plt.grid('on")
! plt.show()

bins = np.arange(throws+2)-0.5
prob, bl, b2 = plt.hist(Htally, bins= bins,

|
|
|
|
|
|
|
|
|
|
|
|
l
} density = True)

|
Obtain probabilities from histogram 1 print (£'Pr(5 heads)= {prob[5]}"')
'print(f'Pr(at least 5 heads)= {sum(prob[5:1)}")

A surprise (and Fibonacci appears)

Now let’s address parts (b) and (c), namely the probability of seeing HH or TH in 10 throws.
First, let’s examine this problem analytically.

Let f(n) be the number of ways of tossing a coin n times such that HH does not appear.
Tn other words. f(n) is the nimber of seanences of lenoth n. comnrisine H and T. snch that

Fig. 7.7: Tossing a coin n times in such a way that HH does not appear, represented as a tree

diagram.
::'.Z'_i"” f(n-1) sequences

TYTT) 1o

7.5 Coin tossing 373

Since there are altogether f(n) sequences, and the paths in the diagram are mutually
exclusive, we deduce that

fm)=f(n-1)+ f(n-2),

which is of course the Fibonacci recursion. The first 2 terms are f(1) = 2 (namely H,T) and
f(2) =3(TT, TH, HT). This means that f(n) = F,,12, the (n+2)th Fibonacci number (recall
that F; = F, = 1). In particular, note that f(10) = Fj, = 144 (see §1.6 for computation of
Fy).

We can now calculate the probability of seeing the sequence HH in 10 throws as follows.

Pr(HH) = 1 - Pr(no HH)

144

:]_W

_ 55
T 64
= 0.859375.

Now let’s repeat our analysis for the sequence TH. Let g(n) be the probability that TH
does not appear in n tosses of a coin. Following the same method, we deduce that

gn) =1+gmn-1),

with the initial terms g(1) = 2 and g(2) = 3. It follows that g(n) = n + 1, and in particular
g(10) = 11. Therefore,

Pr(TH)

1 —Pr(no TH)
1013
1024
= 0.9892578125.

The tree-diagram analysis helps us make sense of the counter-intuitiveness of the answer:
it is more likely to observe TH rather than HH because of the simple fact that there are
many more sequences without HH compared to those without TH, i.e. f(n) > g(n).

Let’s turn to the simulation. The code coin2.ipynb confirms the results of our recursion
analysis. In one particular run of 10° ten-throw simulations, we found

Pr(HH seen)= 0.85923
Pr(TH seen)= 0.98916

In the code, we use Method 3 to produce 10-throw sequences, and convert them to
binary strings. In each string, we search for the appearance (if any) of HH (11) or TH (01).

A bonus from the simulation is that we can plot the distribution of the number of throws
needed for either HH or TH to first appear, and compare them quantitatively. Fig. 7.8 shows
these (unnormalised) distributions. For example, in the 10-throw sequence

TTTHTHTHHH

we say that HH appears in position 8, and that TH appears in position 3. Let’s assign position
0 to the case when HH or TH does not appear in the sequence.

374

Distributions of HH (top) and TH (bottom) occurrences

25000
20000
15000

10000

No. of simulations

5000

No. of simulations

0 1 2 3 4 5 6 7 8 9
First-occurrence position

Fig. 7.8: Distributions of the first occurrences (in a 10-throw sequence) of HH (top) and TH
(bottom) in 10° simulations. Position 0 indicates that the sequence does not appear in the
simulation.

Interestingly we see from the simulations that both HH and TH are equally likely to
occur in position 1 (the probability is 3—‘ since there are only 4 possible combinations for the
first two tosses). However, we are far more likely to observe TH than HH in position 2. At
the opposite end, in position 9 it is far more likely to observe HH rather than TH. Try to
work out these probabilities by hand.

We conclude that although we have random events that are equally likely to occur, the
sequences of such events are not necessarily equally likely to occur. Exercise 2 further
explores this somewhat counterintuitive idea.

7.5 Coin tossing 375

coin2.ipynb for plotting fig. and calculating the probability of seeing HH or TH

| import numpy as np

| import matplotlib.pyplot as plt
For performing Bernoulli trials | from scipy.stats import bernoulli

:%matplotlib

|

Use Method 3 to simulate throws dist = bernoulli(0.5)

Number of experiments : exprmt = int(le5)
How many throws per experiment? i throws = 10
Running tallies of HH and TH occurrences |HHfound, THfound = 0, 0
Lists for storing occurence positions |PHH = []
! PTH = []

|

| for i in range(exprmt):

rolls = dist.rvs(throws)

seq = ''.join(str(r) for r in rolls)
posHH = seq.find('11")

posTH = seq.find('01")
PHH.append(posHH + 1)
PTH.append(posTH + 1)

if posHH !=-1:

Perform all throws at once!
Convert result to a binary string
The position where HH or TH first occurs

Store the positions
(Start counting from 1)

|
|
|
|
|
|
|
|
l
seq.find = -1 = sequence not found j
|
|
|
|
|
|
|
|

If found, add to tally HHfound += 1
if posTH !=-1:
THfound += 1
Pr(HH seen) HHprob = HHfound/exprmt
Pr(TH seen) | THprob = THfound/exprmt

|
:print(f‘Pr(HH seen)= {HHprob}')
1print(f'Pr(TH seen)= {THprob}')

|
Plot 2 stacked figures ::Eig,(axl, ax2) = plt.subplots(2,1)
Adjust the bins to centre-justify the bars 1bins = np.arange(®, throws+1l) - 0.5
:axl.set_title('Distributions of HH (top) and'
} ' TH (bottom) occurrences')
Plot the two histograms '"HHtally, bl, b2 = axl.hist(PHH, bins= bins,

HHtally and THtally are the frequencies color = 'b")
THtally, cl, c2 = ax2.hist(PTH, bins= bins,
color = 'r'")

for X in [axl,ax2]:
X.set_xticks(range(®, throws))
X.set_x1im(-0.5, throws-0.5)
X.set_ylabel('No. of simulations')
X.grid('on")
:ax2.set_xlabel(‘First—occurrence position')
1 fig.show()

|
|
|
!
|
Common settings for both histograms |
|
|
|
|
|
|
|

376 7 Probability

DiscussioN

* Penney’s game. We could modify the scenario a little and turn the coin tosses into a
2-player game. Player A picks a sequence of length 3 (HHT, say) and Player B picks a
different sequence. The player whose sequence appears first wins. It can be shown that
Player B can always win. Exercise 2 investigates a winning strategy.

This game is called called Penney’s game (or Penney ante) after Walter Penney who
described it in the journal for recreational mathematics in 1969. See [71, 155] for a
more thorough analysis.

* Random number generators (RNG). At the heart of probabilistic simulations lies

an RNG that allows random numbers to be produced. However, current binary-based
computers are deterministic, and so we can never really produce truly random numbers,
but pseudo-random numbers at best. Pseudo-RNG are also periodic - although the
period can be extremely long.
Understanding RNGs and measuring the randomness of pseudo-random numbers are
important topics in computing, numerical analysis and cryptography. See [102] for a
deep dive into the world of random numbers. The website https://www.random.org
provides true random numbers by using atmospheric noise.

* Mean and variance. It is worth stating the mean and variance of the Bernoulli and
binomial distributions with probability of success p. Letg = 1 — p.

H o’

Bernoulli(p) p Pq
Binomial(n, p) np npq

These results are consistent with the fact that when n = 1, the binomial distribution
reduces to the Bernoulli distribution.

https://www.random.org

7.6 The Birthday Problem 377

7.6 The Birthday Problem

Find the smallest number of people in a group such that the probability of two
people sharing the same birthday is at least 0.5.

For simplicity, assume that a year comprises 365 days and that births are equally
likely to occur on any day of the year.

This is a classic problem in probability in which, for most people, the answer doesn’t sit
well with intuition.

Let’s first see how this problem could be solved analytically. As is often the case in
probability, it is sometimes easier to calculate the probability of the complementary situation,
i.e. the probability that a group of n people have all distinct birthdays.

For two people, A and B,

364
Pr(2 distinct birthdays) = 365"

since, having fixed A’s birthday, there are 364 possibilities for B’s birthday. Continuing this
way with n people,

364363 365-(n-—1)

Pr(n distinct birthdays) = 365365 " 365 (7.18)
364 363 365-(n—1
— Pr(at least 2 people share a birthday) = 1 — 365365 % (7.19)

It remains to solve for n when the above probability exceeds 0.5. This can be done
numerically with Python (exercise 3). Alternatively, using the linear approximation e™ ~
1 — x for small x, we find:

Pr(at least 2 people share a birthday)
_1 365-1)\(365-2 365-(n—-1)
B 365 365) 365

1 2 n—1
=1-|1-=—1-z=]---(1-

(365)(365) (365)
1

~l—exp(—%(1+2+-~+(n—1)))

= 1—exp (—”(’;3_01)) . (7.20)

If the above expression exceeds 0.5, then it follows that

e ——
W —n—730I2 >0 = n> T 1+229201“2 ~22.999943 . ..

Thus, assuming that the linear approximation is sufficiently accurate, we conclude that in a
group of 23 people, the probability of at least 2 people sharing a birthday exceeds 0.5.

One could generalise the problem and replace the probability 0.5 by other values as
shown in the table 7.1.

378 7 Probability

Pr(2 people share a birthday) Min group size

0.33 18
0.5 23
0.9 41
0.99 57

Table 7.1: Probability that two people share the same birthday and the minimum group size.

Simulation

Let’s use Python to simulate a scenario in which people enter a room one-by-one whilst
each new entrant compares their birthday with the rest of the group. Sometimes there will
be a lucky simulation in which only a few people enter the room before a match occurs.
Other times, we might need, say, 50 people in the room before a match occurs. Python can
help us play out this scenario thousands of times. We can then construct a histogram of the
number of people in the room in each successful simulation. This is precisely what the code
birthday.ipynb does.

Fig. 7.9 shows the histogram obtained by performing 10° simulations. We normalise
the histogram by dividing the frequency by 10°, giving us a probability distribution. It is
interesting to note that there are indeed rare simulations in which it only takes 2 people in
the room to share a birthday. At the other extreme, there are also rare simulations in which
close to 100 people are needed before a birthday is shared.

The lower plot is the cumulative probability distribution obtained by summing the height
of the successive bars. This gives the probability of a shared birthday as the group size
increases. The code reports the group size at which the probability exceeds 0.5. Indeed the
answer is 23.

Rerunning the simulations will produce slightly different distributions, but the answer
to the birthday problem remains 23 (unless the number of simulations is too small). It is
reassuring to see that although we have not used any pre-calculated probabilistic formulae
in the code, yet, with a large number of ensembles, the simulation result agrees with our
calculation.

Finally, we note that the peak of the probability distribution (the mode) is around 20.
This can be interpreted as saying that, as people enter a room one by one, the 20th person is
most likely to be the first one to share a birthday with someone already in the room. See
exercise 3 for a way to obtain the mode by hand.

DiscussioN

* Only 23? The answer ‘23 people’ is probably far lower than most people would have
initially guessed. The reason is that many people misinterpret the question as the number
of people needed for someone to have the same birthday as them. In this case, if you
enter a room with 22 other people, there are 22 birthday comparisons to be made. The
probability can be calculated as

, 364\
Pr(Same birthday as yours) = 1 — 365 = 0.059 (3 dec. pl.)

As expected, this is rather small. Solving a quick inequality shows that we need 253
people to compare birthdays with before the probability of finding someone with the
same birthday as yours exceeds 0.5.

Probability distribution

Fig.

Cumulative distribution

Distribution of group size for same birthday to occur
Yy
0.02 1 : b
FloL ™

0.01 A

0.00 -
1.0
0.9 A
0.8 -
0.7
0.6 A
0.5 -
0.4 A
0.3 A
0.2 A
0.1 -
0.0

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
Group size

7.9: Results from 10° simulations of the birthday problem. Top: A histogram showing

the distribution of the group sizes in which two people share the same birthday. The height
of the bars is normalised so that the area under this curve is 1. Bottom: The cumulative
distribution, showing that the probability of two people sharing the same birthday in a group
of 23 exceeds 0.5.

However, this isn’t what the birthday problem is about. In a group of 23 people, there
are many more birthday comparisons, namely (223) = 253, any of which could be a
potential match. The pitfall is that ‘same birthday’ does not mean ‘same birthday as
yours’.

Generalisations. There are many interesting generalisations of the birthday problem.
For instance, what is the average number of people in a group such that their birthdays
take up all 365 days of the year?

This is called the coupon collector’s problem and can be rephrased as follows: suppose
there are some mystery boxes, each containing a random type of coupon. On average,
how many boxes must be opened to find all n types of coupons?

The answer turns out to be nH,,, where H,, = ZZ:I % is the nth harmonic number (see
also §1.5). For n = 365, we need, on average, a group of 2364 people to fill up a whole
year’s calendar of birthdays. See for example [179] for calculation details.

This and other generalisations of the birthday problem will be investigated in exercise 3.

380 7 Probability

birthday.ipynb (for plotting fig.)

| import numpy as np
| import matplotlib.pyplot as plt

| %matplotlib

|
Number of simulations to perform | sims = int(le5)
Initialise RNG 'rng = np.random.default_rng()
Min. group size from each simulation : grpsize = []

Simulations
Start with an empty room

i for i in range(sims):

. BD=1[]

} sameBD = 0

I while sameBD == 0:

Add one person (random birthday) : newBD = rng.integers(l, 366)

Add their birthday to the list l BD. append (newBD)

All unique birthdays on the list so far | uniq = set(BD)

Repeat until a shared birthday appears ! sameBD = len(BD)-len(uniq)

Note how many people are in the room | grpsize.append(len(BD))
|
|
|

Max = max(grpsize)+1

Let’s plot two stacked histograms : fig, (axl, ax2) = plt.subplots(2,1)

'bins = np.arange(®, Max)-0.5
Plot the group-size distribution prob, al, a2 = axl.hist(grpsize, bins,
Normalise bar height to get probability ! density=True, color='purple')

: axl.set_ylabel ('Probability distribution')
yaxl.set_title('Distribution of group size for'
' same birthday to occur')

plt.subplots_adjust(hspace=0.1)
Remove x labels of the top histogram plt.setp(axl.get_xticklabels(), visible=False)
Plot the cumulative distribution cprob, bl, b2 = ax2.hist(grpsize, bins,
density=True, cumulative=True,
histtype='step', color = 'b')
ax2.set_ylabel('Cumulative distribution')
ax2.set_yticks(np.arange(0, 1.01, 0.1))
ax2.set_ylim([0,1])
ax2.set_xlabel ('Group size')

Show unfilled bars (so we see ‘steps’)

Add a red horizontal dashed line
Read the position where prob. > 0.5
Add the reading to the figure

ax2.axhline(y=0.5, color='r', linestyle=':"')

ans = np.searchsorted(cprob, 0.5)

ax2.text(41, 0.52, 'Pr(>0.5) when group size'
r'\geq' £f'{ans}')

for X in [ax1l, ax2]:
X.set_xticks(range(®, Max, 5))
X.set_x1im(®, Max-2)
X.grid('on")

Common settings for both plots

plt.show()

7.7 The Monty Hall problem 381

7.7 The Monty Hall problem

Monty Hall hosts a TV gameshow in which a contestant wins whatever is behind a
door that is chosen amongst 3 closed doors. A car is behind one door and a goat is
behind each of the other 2 doors.

Once the contestant has chosen a door, Monty does not open it but instead opens a
different door to reveal a goat. Monty then gives the contestant the choice of staying
with the original choice or switching to the remaining unopened door.

Should the contestant stay or switch to maximise the chance of winning the car?

This famous problem was posed in 1975 [183] by the American statistician Steve Selvin,
who also described its notoriously counterintuitive solution. Monty Hall was a real TV
personality who hosted a gameshow called ‘Let’s Make a Deal’ with elements of the scenario
(but not exactly) as described by Selvin.

Most people would intuitively think that the chance of winning the car after the goat is
revealed is 50%, and so switching would not make a difference.

But imagine scaling the problem up to, say, 100 doors and Monty revealing 98 goats.
You would be quite certain that the car is behind the remaining unopened door rather than
the one you picked initially (unless you were incredibly lucky). So by switching we are
making use of extra information provided by Monty, giving us an advantage of winning the
car. We wish to quantify this advantage.

There are some implicit rules (i.e. the assumptions) that determine which door Monty
can open immediately after the contestant has chosen a door.

* Monty knows which door hides the car, but does not open it.

* Monty does not open the door initially chosen by the contestant.

* Monty always offers a switch.

* If more than one ‘goat’ doors could be opened, Monty chooses one randomly.

Before we perform the simulations, let’s see how the problem could be tackled with
probability theory.

Bayes’ Theorem

We wish to calculate the probability that the car is behind the chosen door given that a goat
is revealed behind another door. It seems sensible to consider conditional probabilities.
First, note that from the definition of conditional probability (7.2), we have

Pr(ANB Pr(BN A
Pr(A|B) = u Pr(B|A) = Pr(B N 4)
Pr(B) Pr(A)
Equating Pr(A N B) = Pr(B N A) we have
Theorem 7.1 (Bayes’ Theorem)

Pr(B|A) Pr(A)

Pr(A|B) = —— B

382 7 Probability

Revd. Thomas Bayes (1702—-1761) was an English clergyman who laid the foundation to
Bayesian statistics, a subject which lies at the heart of modern data analysis and machine
learning. We will discuss Bayesian statistics in §8.9.

Now suppose that the contestant has chosen a door (call it door 1) and Monty reveals a
goat behind another door (call it door 2). Let C,, be the event that the car is behind the door
n. Let G, be the event that Monty reveals a goat behind door 7.

Using Bayes” Theorem, we have the following expression for the probability of winning
the car if the contestant were to switch to door 3.

Pr(G,|C3) Pr(C3)
Pr(G31G2) = Pr(Ga)
B Pr(G,|C3) Pr(C3)
Pr(G2[Cy) Pr(Cy) + Pr(G2|Cy) Pr(C2) + Pr(G2|C3) Pr(C3)

1
1X§ 2

TT1o1 1 1~ 3
§X§+0X§+1X§ 3

The second line uses the law of total probability (Prop. 7.3). The third line uses the rules and
assumptions of the game. For example, Pr(G,|C3) = 1 because the contestant picked door 1
whilst door 3 has the car, so Monty is forced to reveal the goat behind door 2. However,
Pr(G,|Cy) = % because, with the car behind door 1, Monty could reveal the goat behind
either door 2 or door 3.

The probability of winning the car without switching is the number of cars divided by
the number of doors, which equals % It is instructive to confirm this with Bayes’ Theorem
as follows.

Pr(G2|Cy) Pr(Cy)
Pr(Cy1G2) = W
_ Pr(G1|Cy) Pr(Cy)
Pr(G2[Cy) Pr(Cy) + Pr(G2|C) Pr(Cy) + Pr(G2|C3) Pr(Cs)

| |
3X3 1

1o 1 1 1~ 3"
3X3+0x53+1x5 3

Thus, switching gives us an advantage by doubling the chance of winning the car.

n-door generalisation

Suppose there are n doors and Monty reveals g goats. A car is behind one of the doors.
A similar calculation shows that the probability of winning a car upon switching to an
unopened door is

n-—1

Since the no-switch probability of winning is %, we see that switching improves the winning
probability by a factor of ’1;1_1 > 1.

n

7.7 The Monty Hall problem 383

For example, if a single goat is revealed (g = 1), the winning probability is n?r;—IZ) . For
large n, this probability is comparable with the no-switch probability of % This makes
intuitive sense: with so many doors, switching makes little difference.

On the other hand, if all but one goat are revealed (g = n — 2), the winning probability
simplifies to 1 — % For large n, this probability approaches 1, agreeing with our 100-door
discussion earlier. Switching essentially guarantees winning.

1o Monty Hall simulations with 3 doors

0.8 1

P(win if switch)=0.667

o
o
L

o
IS
s

P(win if stay)=0.333

Probability of winning

0.2 4

0.0 T T T
10t 10?2 103 104 10°
Number of simulations

Fig. 7.10: Result from 10° simulations of the Monty Hall problem with 3 doors. The
long-term behaviour agrees with our calculations using Bayes’ Theorem (2/3 and 1/3).

Monty Hall simulations with n doors

1.0

0.8 1
o
[=
£ f
£061Y
E ‘\ —— (n—2) goats revealed, switch
; ‘\‘ -=—=- 1 goat revealed, switch
:E \ —-= Stay
© 0.4\
o \
<) N N
a .,

NN
RN
0.2 1 \'\,*~\
TS Emeaoll
\':'-—_'_-‘_-"‘-u-n.-n— “““““
0.0 T T T T T T T
4 6 8 10 12 14 16 18 20

Number of doors (n)

Fig. 7.11: Result from 10° simulations of the Monty Hall problem with n doors (up to
n = 20). The curves are the probability of winning the car if — a) a switch is made when all
but one goats have been revealed by Monty (blue solid line), b) a switch is made when 1
goat is revealed (dashed black line), c) no switch is made (dash-dot red line).

384 7 Probability

Simulation

The code montyhall.ipynb simulates a large number of games and keeps track of the
probabilities of winning with and without switching doors. The result is shown in fig. 7.10
which shows that the switch and no-switch probabilities get close to % and % respectively
(after about 1000 games). If you run this code yourself, you will obtain a slightly different
graph, but the long-term behaviour is the same.

It is worth noting the key syntax in the code: the function random. choice is used to
randomly pick an element from a list (i.e. pick a door).

The code is easily modified to simulate a scenario with multiple doors. Fig. 7.11 shows the
long-term behaviour when the number of doors (n) is varied. The solid blue line shows the
winning probability if all but one goat are revealed, showing that the probability approaches
1 as expected. The dashed black line shows the case when only one goat is revealed, showing
that the winning probability approaches 1/n, i.e. it approaches the no-switch scenario shown
as the red (dash-dot) line.

In exercise 4 you will perform simulations to investigate other generalisations of the
Monty Hall problem. For even more outrageous variations, see [176].

DiscussioN

¢ Bayes’ Theorem in the real world. Bayes’ Theorem can help us make sense of
everyday probabilities in the face of evidence. This is particularly important when
making medical decisions based on empirical evidence.
A classic example is in understanding the reliability of, say, a Covid test kit. Suppose
that at a certain time, 1% of the population are actually infected with Covid. If you are
tested positive for Covid using a home-test kit that says it is “99% accurate”, what is
the probability that you actually have Covid?
Most people would instinctively say that you almost certainly have Covid. But let’s see
what Bayes’ Theorem says.
Let Pr(Covid) be the probability that you are actually infected with Covid and
Pr(No Covid) = 1 — Pr(Covid).
Let Pr(+) be the probability that the test kit shows a positive result (suggesting that
you probably have Covid) and similarly let Pr(—=) = 1 — Pr(+) (we ignore inconclusive
results). Since the test is 99% accurate, we have

Pr(+|Covid) = 0.99 and Pr(—|No Covid) = 0.99
= Pr(Covid|+) = Pr(+|Covid) Pr(Covid) (Bayes’ Theorem)
Pr(+)
B Pr(+|Covid) Pr(Covid)
"~ Pr(+|Covid) Pr(Covid) + Pr(+|No Covid) Pr(No Covid)
B 0.99 x 0.01
~0.99 x0.01 +0.01 x 0.99

=0.5.

The answer seems surprisingly low, but this is the same kind of mathematical counter-
intuition that arises in the Monty Hall problem. For another surprise: guess the answer
for Pr(No Covid|—) and then calculate it with Bayes” Theorem.

7.7 The Monty Hall problem

montyhall.ipynb (for plotting fig.

385

Specify the number of simulations
and the number of doors

Scoreboard for each strategy

evolve with the number of simulations
Let’s Make a Deal!

The winning door which hides a car
Our initial pick

Doors that Monty can pick

Goat door opened by Monty

Doors available for switching to

Final door that we switch to

Add win (if any) to a scoreboard

Probability of winning for each strategy

Plot evolving probabilities

Display probability limits (3 DP)

:import matplotlib.pyplot as plt
 from random import choice
| %matplotlib

I
:sims = le5
1 Ndoors = 3
|
|

| listsims =
:roundl =
|
I

, staywin, switchwin = 0, 0

range(int(sims))
range(Ndoors)

Keep track of how winning probabilities | Pstay = []

:Pswitch = [1

|

| for i in listsims:

car = choice(roundl)
pickl = choice(roundl)

monty = [n for n in roundl
if n!= car and n!= pickl]
goat = choice(monty)

round2 = [n for n in roundl
if n!= pickl and n!=goat]
pick2 = choice(round2)

if pickl==car: staywin += 1
if pick2==car: switchwin +=1

pl = staywin/(i+1)
p2 = switchwin/(i+1)
Pstay.append(pl)
Pswitch.append(p2)
plt. 'r',
lb l)

semilogx(listsims, Pstay,

|
|
I
|
I
|
|
I
|
|
I
|
I
|
|
I
|
|
I
|
I
|
|
I
|
|
I
|
I
|
|
I
|
|
I
| listsims, Pswitch,

}plt.text(5e3, 0.36, f'Pr(win if stay)={pl:.3}'
:plt.text(5e3, 0.7,f'Pr(win if switch)={p2:.3}"')
iplt.x1im([10, sims])

iplt.ylim([0,1])

plt.xlabel ('Number of simulations')
'plt.ylabel('Probability of winning')
:plt.title(‘Monty Hall sims. with 3 doors')
iplt.grid('on")

1 plt.show()

386 7 Probability

7.8 The Normal distribution

The figure below shows a vertical board with rows of pegs through which tiny metal
balls fall through and are collected at the bottom in vertical columns.

Show that when the number of pegs and balls are large, the height of the columns
follows the normal distribution.

This device was invented by the English polymath Francis Galton (1822—-1911). His
unusually wide range of academic contributions include biology, anthropology, mathematics
and statistics amongst other fields. Sadly, his legacy is marred by his strong advocacy of
eugenics (having himself coined the term).

Galton’s device can be modelled in a simplified way as follows. When a ball hits a peg, it
either goes to left or right by a fixed distance Ax with equal probability, then falls vertically
to hit the next peg. We assume that each ball encounters N pegs before falling into one of
the collecting columns at the bottom. All bounces are disregarded.

At each encounter with a peg, the probability of going left or right is a Bernoulli trial
(i.e. a coin flip) with p = % Let’s take take the outcome O to be ‘left’ and ‘1’ to be right. In
§7.5, we saw that the sum of N Bernoulli trials follows the binomial distribution (7.16).
The probability of a ball making k moves to the right on its journey down is therefore

. N\ (Mt N! 1\v
Pr(krlghtmoves):(k)(z) (E) :m(z) .

Let x = 0 correspond to the centre of the board. If a ball moves k times to the right, then
it must move N — k times to the left (assuming no balls get stuck). Thus the final distance it
lands a the bottom of the board is x = kAx — (N — k)Ax = (2k — N)Ax. We wish to know
the distribution of x as we release more balls from the top.

7.8 The Normal distribution 387

Simulation

The code normal.ipynb simulates the board with N rows of pegs and Ny, balls. The
resulting distributions of the final landing distance x with Ny, = 20000 and Ax = 1 are
shown in fig. 7.12, assuming N = 10, 50, 100 and 500.

The (normalised) histograms follow the binomial distribution, which is of course a
discrete distribution. But as N increases the distribution is well approximated by the bell-like
continuous curve shown in red.

20000 balls, 10 rows of pegs 20000 balls, 50 rows of pegs

0.10 1

Probability distribution

-5 0 5 ' -10 0 10 30

20000 balls, 100 rows of pegs 20000 balls, 500 rows of pegs

.040
0-040 0.0175 4

0.035 1
0.0150 4

0.0125

0.0100 +

o o o o
o o o o
2 8 8 @
5 58 B 8

0.0075

Probability distribution

0.010 0.00501

0.005 1 0.0025

0.000 - 0.0000 -

-20 0 20
X

Fig. 7.12: Histograms showing the results of simulations of the board with N =
10,50, 100, 500 rows of pegs, using 20000 balls. The resulting distribution of the fi-
nal landing distance x is the binomial distribution. The red curve in each panel shows the
approximation by the normal distribution N (0, N).

Approximation by normal distribution

The red curves in fig. 7.12 show pdf of the normal distribution, denoted N (i, 0%). The
normal distribution, also known as the Gaussian distribution, is a continuous probability
distribution with pdf

388 7 Probability

—(x=)?

—e (7.22)

fx) =

2no

where y is the mean and o2 is the variance of the distribution. The distribution is a
bell-shaped curve which is symmetrical about x = yu (where it peaks). The pdf approaches
0asx — +oo.

The fact that the normal distribution is a good approximation to the binomial distribution
for large N is due to the following theorem (see [62] for proof).

Theorem 7.2 (De Moivre-Laplace) When N is large and k is around Np, we have the
approximation

202
kpq e

s

(N) k N-k ! ep?
2no?
where u=Np and o? = Npq.

In other words, for a large number of trials N, the binomial distribution B(N, p) approaches
the normal distribution N (u, %) with the same mean and variance as those of B(N, p).

A special case of this theorem was discovered by Abraham de Moivre (1667-1754), a
French mathematician who fled religious persecution in France into exile in England. He
was a close friend of Newton and is remembered for his contributions to probability and the
development of complex numbers. De Moivre’s initial results on the large N limit were later
generalised by Pierre-Simon, Marquis de Laplace (1749—-1827), a prolific French scientist
who made profound contributions to probability, mechanics and astronomy. Exercise 5
investigates the accuracy of the de Moivre-Laplace approximation as N and k vary.

The theorem tells us about the asymptotic distribution of &, the number of moves to the
right. However, we are interested in the distribution of the landing distance x, so a little
conversion is needed. Earlier, we found that

x = (2k = N)Ax. (7.23)

Assuming p = g = %, according to Theorem 7.2, the expected number of right moves
u = E[k] = % Taking the mean of eq. 7.23, we have p, = (2u — N)Ax = 0. This is not
surprising since overall we expect as many right moves as left moves, resulting in the mean
tx =0.

Next, to find the variance -2, Theorem 7.2 gives o> = N /4, so E[k*] = (E[k])? + 02 =

szN . Using eq. 7.23, we find

o2 = E[x*] - (E[x])? = (4E[k*] — 4NE[k] + N*)(Ax)? = N(Ax)>.

In conclusion, the red curves in fig. 7.12 are the pdfs of the normal distribution
N (0, N(Ax)?), which provides a good approximation to the binomial distribution when N
is large.

Let’s do a quick accuracy test of this approximation. For example, with Ax = 1 and
N = 50 pegs, the probability that a ball lands at the centre of the board (i.e. requiring k = 25

right moves) is
50\ (1)

On the other hand, using Theorem 7.2 with y = 25 and o? =25 /2, we find

7.8 The Normal distribution 389
Pr(k = 25) ! 0.1128
T = N — X . y
SvT

which seems reasonably accurate. This approximation says that the height of the central
histogram bar is roughly the height of the peak of the normal distribution.
Alternatively, we could approximate the area of the central histogram bar (centred at
x = 0) as the area under the pdf of the normal distribution N (0, 50) from x = —1to x = 1.
This gives
1

V1007

which is a better approximation. This is an example of continuity correction, which broadly
refers to measures that can be used to improve the accuracy when using a continuous
distribution to approximate a discrete distribution.

DiscussioN

¢ The Central Limit Theorem. Theorem 7.2 states that the sum of N independent
Bernoulli random variables converges to the normal distribution. In fact, in §8.3, we will
show that the sum of N independent random variables from any probability distribution
also converges to the normal distribution. This is the Central Limit Theorem, one of the
most fundamental results in probability and statistics. The theorem also holds even if
the independent random variables are drawn from different distributions (satisfying
certain conditions).

I
Pr-1<x<1)= f e dx =~ 0.1125,
-1

* The normal distribution in the real world. Many observables in the real world are the
net results of various factors drawn from different probability distributions. Thanks to
the Central Limit Theorem, the normal distribution appears to underlie many real-world
phenomena. For example:

— Weight distribution of babies at birth (see [215]);
— Average height of adults [177];
— Global temperature anomaly [90].

390 7 Probability

normal.ipynb (for plotting fig.

i import numpy as np
| import matplotlib.pyplot as plt
| from scipy.stats import bernoulli

: Y%matplotlib

|
Number of balls Nballs = 25000
Number of rows of pegs | Nrows = 500

Each ball-peg encounter is a Bernoulli trial \Ber = bernoulli (0.5)
Ball moves left or right by distance dx tdx = 1
For storing final position of each ball X =]

|

i

\for i in range(Nballs):
Left/right (0/1) moves for each ball l D = Ber.rvs(Nrows)

Number of moves to the right | rights = sum(D)

Final position of each ball (eq. 7.23) ! x = (2*rights - Nrows)*dx
|

Store it X.append(x)
Note extreme distances Max = max(X) + 4*dx
:Min = min(X) - 4*dx
|
XN = np.linspace(Min, Max,100)
o? 1 sig2 = Nrows*dx**2
Normal-distribution fit A (0, N(Ax)z) ! yN = np.exp(-0.5*xN**2/sig2)/\
| np.sqrt(2*np.pi*sig2)
|
I
' fig, ax = plt.subplots(1,1)
Centre bars at multiples of dx : bins = np.arange(Min, Max, 2%*dx)-dx
Plot histogram of column height rax.hist(X, bins, density=True, color="teal')

1ax.set_x1abel('x')
|ax.set_ylabel('Probability distribution')
:ax.set_title(
I f'{Nballs} balls, {Nrows} rows of pegs')
:ax.set_xlim([—round(Max),round(Max)])

Overlay normal-distribution fit ax.plot(xN, yN, 'r', linewidth=2)
lplt.grid(‘on')
1p1t.show()

7.9 The Poisson distribution 391

7.9 The Poisson distribution

Place N dots randomly within a grid of 10 x 10 squares. Count how many dots fall
in each square.
Find the probability distribution of the number of the dots in a square.

10 -5

We are interested in the probability of the occurrence of an event per some spatial unit.
We assume that the occurrences are random and independent of one another.
Let’s start by simulating the problem.

Simulation

In the code poisson.ipynb, dots are randomly distributed in a 10 x 10 square grid by
choosing Ndots pairs of real numbers (x, y). Taking the integer parts of (x, y) tells us the
coordinates of the bottom left corner of the square that each dot falls into. Each simulation
then produces a grid of dot counts, and therefore a histogram showing the distribution of
dot counts per square. We repeat the simulation 500 times.

Fig. 7.13 shows the histograms of the normalised dot counts per square for Ndots =
100, 250, 500, 1000. The normalisation is obtained by dividing the actual dot count by the
total number of dots, and thus the height of the bars can be interpreted as the probability of
finding Ndots dots in a square.

The results show a consistently skewed (asymmetric) distribution. More specifically,
the distribution is positively skewed, meaning that it leans towards the left with a long tail.
Number counts are more concentrated towards lower values.

The Poisson distribution

Consider events that are random, independent and mutually exclusive (i.e. two events cannot
occur simultaneously). The probability that k such events occur over a fixed time or space
interval (such as those that we see in fig. 7.13) is given by the distribution

392 7 Probability
PLEN
Pr(k events occur) = e (7.24)
for some parameter A > 0. We call this distribution the Poisson distribution, after the French
mathematician Siméon-Denis Poisson (1781-1840). See [89] for an interesting account of
the history of the Poisson distribution. Poisson is remembered today for his contributions to
probability, complex analysis and various areas of mathematical physics (recall that we met
Poisson’s equation in §3.9).
The Poisson distribution is discrete and is determined by a single parameter A. Calculating
the mean yu and variance o2, we find that

This means that A is simply the mean number of events occuring over a time or space
interval.

In our simulations, the mean number of dots per square is u = Ndots/100. Equating this
to A and plotting the Poisson distribution (black lines) on top of the histograms in fig. 7.13,
we observe a very good fit to the data.

Note that we join up the points for ease of visual comparison with the histograms —
keeping in mind that the Poisson distribution is of course discrete.

Dot count in a 10x10 grid with 100 dots Dot count in a 10x10 grid with 250 dots

3 4 5 5 6 7 8 9 10
Dot count in a 10x10 grid with 500 dots Dot count in a 10x10 grid with 1000 dots

0.12 4

0.10

0.08 1

0.06

0.04

9 10 11 12 13 14 15 ’ 01234567 8 910111213141516171819202122

Fig. 7.13: The histograms show the probability that N dots are found in a square within
a 10 x 10 grid, assuming that the dots are distributed randomly in the grid. The plots
show the probability for N = 100, 250, 500 and 1000. Each figure was obtained from 500
simulations using the code poisson.ipynb. The black line shows the Poisson distribution
with 4 = N/100. Discrete points are joined up for visual clarity.

7.9 The Poisson distribution 393

DiscussioN

e The Poisson distribution in the real world. The Poisson distribution is useful for
modelling the probability of rare events occurring over a time or space interval.
Real-world applications include:

— The number of bombs (per square km) dropped in London during WWII (see [44]);
— The number of heart attacks per week in a certain area [188];
— The number of distant quasars observed per square degree of the sky [198].

* Relationship between Poisson and binomial distributions. The binomial distribution
for rare events is well approximated by the Poisson distribution. More precisely, if
n — oo and p — 0 whilst np = A (constant), then for k =0, 1,2, ...

k

(Z)p"(l -p)"t > %e‘”. (7.25)

In practice, this approximation is useful when p is small, n large, and np is moderate.

* Relationship between Poisson and normal distributions. We observe in fig. 7.13
that as the number of dots increases (e.g. when Ndots = 1000), the asymmetry of the
distribution is less pronounced, and the distribution resembles the normal distribution.
This is due to the following limit: when A is large, we have

Ak 1 =)
Z et » e~ 2, (7.26)
k! V2rd

where the RHS is the pdf of the normal distribution AV (4, 4). Combining this observation
with (7.25), we deduce that the normal distribution is a good approximation to the
binomial approximation for large N, which is of course the de Moivre-Laplace theorem
(Theorem 7.2).

In exercise 6, you will explore the accuracy of approximations (7.25) and (7.26).

* The exponential distribution. If the number of rare events occurring over a time or
space interval follows the Poisson distribution, then the interval between two successive
occurrences follows the exponential distribution

Le=x/B x>0
Pr(interval length = x) = {5 (7.27)
0 x <0,

with parameter 8 > 0. In exercise 7, you will explore the probability of events occurring
over a time interval and show that the inter-arrival times follow the exponential
distribution.

394 7 Probability

poisson.ipynb (for plotting fig.

| import numpy as np
| import matplotlib.pyplot as plt
! from math import factorial

1%matplotlib
I
|
Number of simulations | sims = 500
Number of dots in each simulation Ndots = 100
There are gridxgrid squares grid = 10
Initialise random number generator rng = np.random.default_rng()
List of dot counts in the squares Tally= []

|

|

I

|

I

|

|

I

:

In each simulation | for sim in range(sims):

Initialise grid of number counts l Count = np.zeros((grid,grid))

Scatter the dots randomly, storing their | dotx = rng.uniform(®, grid, Ndots)

(x, y) coords ! doty = rng.uniform(®, grid, Ndots)
I
|
I
|
|
I
|
|
I
|
I
|

At each scattered dot. . .

Get the bottom left coord. of the square
Add to the number count in the grid
Flatten the grid to a long 1D array
Store each simulation result

for x,y in zip(dotx,doty):
n, m = int(x), int(y)
Count[m,n] += 1

C = Count.flatten()

Tally = np.concatenate((Tally,C))

Highest number count ! Max = max(Tally)
1xbins = np.arange (Max+2)
Centre bars at integer values ibins = xbins-0.5
Plot histogram of normalised counts 'prob = plt.hist(Tally, bins=bins,

! density=True, color="'deeppink')

mean = Ndots/(grid**2)

Poisson =[mean**x*np.exp(-mean)/\
factorial(int(x)) for x in xbins]

Mean number of dots per square
Poisson distribution fit

plt.title(f'Dot count in a {grid}x{grid} grid'
‘ f' with {Ndots} dots')
Plot Poisson distribution (joining:plt.plot(xbins, Poisson, 'k')
discrete points with black line) iplt.xticks(xbins)
iplt.x1im([-0.5, Max+0.5])
plt.grid('on")
:plt.show()

7.10 Monte Carlo integration 395

7.10 Monte Carlo integration

Evaluate the following integrals.

1 1 -1 00
t
a)f V1 — x2dx, b)f an xdx, c)f e " Inxdx,
0 0 0

X

L ploply Y\ (2
d) f f f {—} {—} {—} dxdydz, where {x} denotes the fractional part
. 0o Jo Jo Y <) X
of x.

Monte Carlo methods (named after the famous casino) use random numbers and their
distributions to solve problems that would otherwise be too difficult or time-consuming
to tackle. Here we will investigate how random numbers can help us perform numerical
integration.

The integral fol V1 — x2 dx represents the area of a quarter circle of radius 1, so we
know the exact answer is /4 = 0.785398 One way to evaluate this area is to pick
many random points in the unit square [0, 11> and work out the fraction of points within the
circular sector. In other words, we throw darts randomly at the unit square and compute the
ratio

Darts landing below y = V1 — x2
Total number of darts

Fig. 7.14 show the result when we throw N = 10°, 10* and 10’ darts at the unit square.
In exercise 8, you will quantify the error in this approximation and show that it shrinks like
N2,

N=1000, MC estimate = 0.793 N=10000, MC estimate = 0.7832 0 N=100000, MC estimate = 0.78556

0.4 0.6 0.8 1.0
x x x

Fig. 7.14: Monte Carlo estimates of fol V1 — x2 dx using the darts method. The area under
the curve is approximately the number of darts landing inside the area (shown in blue)
divided by the total number of darts.

The darts method requires inequality tests to be performed with every dart used. Here
is a more efficient Monte Carlo method that does not require explicit inequality tests.

396 7 Probability

b
f f(x)dx.

Suppose that on (a, b), f(x) has mean value (f(x)). The area represented by the integral
can be expressed as the area of the rectangle with base (b — @) and height (f(x)).

Consider the integral

b
f f(x)dx = (b—a)(f(x)).

We can find a numerical estimate of the mean (f(x)) by sampling over N values of x;,
where N is large:

1 N
Fan =+ ;ﬂm.

Therefore, we have obtained the fundamental equation for 1D Monte-Carlo integration.

b b—a N
fu) dx = (b= axf() x T ;f(xi)- (7.28)

Let’s apply this method to the integral fol (tan™! x)/x dx, drawing N = 107 values of x;
from the uniform distribution U (0, 1). Here’s the code.

import numpy as np
rng = np.random.default_rng()

f = lambda x: np.arctan(x)/x
xi = rng.random(int(le7))
np.mean(£(xi))

Output: 0.9159685092587398
Of course, every run will give a slightly different answer. But how accurate is this answer?
Recall the geometric series

1
— ===
1+ x2

valid for |x| < 1. Integrating both sides from O to x gives
1 2o X
tanT x=x——+——-—+
T x=x- ot -

Dividing by x and integrating again from O to 1 gives

1tan‘lx ! x2 x* xf
dx = l-=4+—=—-=+--
0 X 0 3 5 7
1
= —_ —_ .

where the Catalan’s constant G = 0.91596559 Eugéne Charles Catalan (1814-1894)
was a Belgian mathematician whose name we now associate, in addition to the constant

7.10 Monte Carlo integration 397

G, with Catalan’s numbers in combinatorics, and Catalan’s conjecture (now proven) in
number theory.

Knowing the exact value of the integral allows us to plot the magnitude of the fractional
error in the Monte Carlo integration as a function of N (the number of random points
sampled). In fig. 7.15, each blue dot is a Monte Carlo estimate of the integral.

We have also plotted the best-fit line (in red) through the log data points (logx, logy).
In Python, we can do this by finding the best-fit polynomial using the following syntax.

Finding the best-fit polynomial with NumPy

from numpy.polynomial import Polynomial as P
poly = P.fit(logx, logy, 1).convert()

Here poly is a polynomial object of order 1 (a line), calculated using the least-square
method (see mathematical details in §8.6). The polynomial can be called as a function, and
also has an attribute poly.coef — an array whose ith element is the coeflicient of xt,

The code reports that the gradient of the line is approximately —0.5. This tells us that the
error shrinks like N~1/2.

Gradient = -0.501

1073 5

1074 4

|Fractional error]|

1077

10-6 4

T Ty T T Ty T Y
10! 102 103 104 10° 108 107
N (number of points)

Fig. 7.15: The magnitude of the fractional error in the estimate of fol (tan~! x)/x dx using
Monte Carlo integration (eq. 7.28) plotted as a function of the number of sampled points N.
Note the log scales. The gradient of the best-fit line tells us that the error shrinks like N=1/2.

The magnitude of the fractional error is a long way from machine epsilon, unlike the
numerical integration methods discussed in chapter 2. For instance, recall that with N points,
Simpson’s Rule shrinks like N~* which is a lot faster than N~1/2.

Whilst those numerical integration methods converge faster, they do require the number
of sampled points to scale with the dimension of the problem. For example, to evaluate a
triple integral with quad, a 3D grid of N3 points are required to maintain the high accuracy.
However, the accuracy of Monte Carlo integration using N points is always ~ N~!/2

398 7 Probability

regardless of dimension. In mathematical speak, we say that Monte Carlo integration does
not suffer from the curse of dimensionality.

Monte Carlo integration can also be adapted to evaluate improper integrals. Let’s look
at two methods to evaluate [= fooo e X Inxdx.

Method 1 - a new variable: We can transform the integral so that the domain [0, o) is
mapped to, say, [0, 1]. One method that we discussed in §2.8 was to split the interval
[0, 00) = [0, 1] U [1, c0) and use the variable u = 1/x to map [1, o) to [0, 1]. The result of
this transformation is given in eq. 2.17, which, in this case, reads

1 e—]/x
I= f (e—x -—)lnxdx. (7.29)
0 X

This can then be evaluated with the same Monte Carlo code as in part (b).

Method 2 - a new probability distribution: Recall that if x; is drawn from a probability
distribution p(x), then, for a given function f, the mean value of f(x) is

(F0)) = f FeOp() dx,

Comparing this with the integral at hand, we see that fooo e* In x dx can be considered the
mean value of In x, where x is drawn from p(x) = e¢™* with x € (0, o). Fortunately, we
have seen precisely such a probability distribution: it is the exponential distribution (7.27)
with 8 = 1.

Conveniently, NumPy has such a ready-to-use exponential distribution from which we
can easily sample random numbers. In the code below, the integral is evaluated using 10’
numbers drawn from the exponential distribution with g8 = 1.

import numpy as np

rng = np.random.default_rng()

xi = rng.exponential(l, int(le7))
np.mean(np.log(xi))

Output: -0.577228988705456

An eagle-eyed reader might recognise this as being awfully close to —y, where y =
0.57721566. . ., the Euler-Mascheroni constant which we met in our discussion of the
harmonic series (§1.5). Indeed the exact answer turns out to be —y. The proof, using clever
integration trickery, can be found in [153] (eq. 5.4.3).

The accuracy for both methods I and 1T is O(N~'/2), which you will verify in exercise 9.
In the Discussion, we will justify where N~!/2 comes from.

In practice, Monte Carlo integration is normally used to evaluate multiple integrals
where traditional quadratures suffer from the curse of dimensionality. The same fundamental
equation works for any dimensions:

N
Lf(x) dx ~ VO}\(IQ) D Fxi) +ONT', (7.30)
i=1

even if f is a discontinuous function such as the integrand in this question.

7.10 Monte Carlo integration 399

Here is the code which evaluates fol fol fol {x/y} {y/z} {z/x} dxdy dz, using 107 sampled
points. Note how the modulo operator % is used to find the fractional part of a number.

import numpy as np
rng = np.random.default_rng()

f lambda x,y,z: (x/y %1)*(y/z %1)*(z/x %1)
N int(le?7)

xi = rng.random(N)

yi rng.random(N)

zi = rng.random(N)

np.mean(f(xi, yi, zi))

Output: 0.09585272990649539

Quite shockingly, in [208] (problem 49) the exact answer was obtained (for an even more
general problem) as 1 — %{(2) + %((3){(2) ~ 0.09585017.. ., where ¢ is the Riemann zeta
function. The working only requires undergraduate mathematics and is a beautiful feat of
integration.

Finally, it seems daunting to think about how the function f(x, y, z) = {x/y} {y/z} {z/x}
looks like, but perhaps we can get a sense of its discontinuities by plotting z = {x/y} (see
fig. 7.20 in exercise 9).

DiscussioN

* Why O(N~'/2)? We now discuss why the error of Monte Carlo integration shrinks like
N~12,
Consider the identically distributed random variables X; (i = 1,2,...,N), where
X; = f(x;) (i.e. the given function evaluated at a random point x;). From eq. 7.28,

observe that the integral fa b f(x) dx is a good approximation of the mean of the random

variable
b—a N
Y = Xi,

in the large N limit.
The error of Monte Carlo integration is determined by (the square root of) the variance
of Y. Using basic properties of the variance (including eq. 7.10), we find

N
_(b-a)? _(b-a)? , (b-a)’o?
Var(¥) = = ; Var(X;) = =5 No? = ——7—.
where o2 is the variance of each X;. Taking the square root of the above equation gives
the magnitude of the error which scales like N~/ (and also quantifies the spread of
the blue points in fig. 7.15). The proof for higher dimensions is identical - just replace
(b — a) by the volume of the integration domain.

* Monte Carlo integration in graphics rendering. Monte Carlo integration is an
important tool for realistic rendering in animations and games. In particular, it is used in
finding approximate solutions to the rendering equation [107], a fundamental equation
in computer graphics. The rendering equation is an integral equation which expresses
the radiance of each pixel by tracing the paths of light rays that reach that pixel. For
details of the role of Monte Carlo integration in the rendering techniques of raytracing
and pathtracing, see [46, 164].

400 7 Probability

montecarlo.ipynb (for plotting fig.

| import numpy as np
| import matplotlib.pyplot as plt
For plotting the line of best fit | from numpy.polynomial import Polynomial as P
:from sympy import S
1%matplotlib
|
Function f to be integrated f = lambda x: np.arctan(x)/x
List of number of points (integers) to:Nlist = np.round(np.logspace(l,7,200))
sample (up to 107)

Initialise random number generator rng = np.random.default_rng()
For storing the fractional errors Err = []
Catalan’s constant (from SymPy) G = S.Catalan

for N in Nlist:
xi = rng.random(int(N))
est = np.mean(f(xi))
Err.append(float(abs(est/G -1)))

Sample N random points x; € [0, 1)

f(xi))

Store |fractional error|

—
[}
«Q
B
|

= np.logl®(Nlist)

1logy = np.logl®(Err)
Best-fit polynomial degree 1 (log data) ypoly = P.fit(logx, logy, 1).convert()
y coord of best-fit line 'yfit = 10**(poly(logx))

plt.loglog(Nlist, Err, 'b.',
Nlist, yfit, 'r')

'plt.x1im(10, le7)

'plt.xlabel(r'N (number of points)')
1plt.ylabel(' |Fractional error|')

Display the gradient (coefficient of x)lplt.title(f'Gradient = {poly.coef[1]:.3}")

to 3 dec. pl. plt.grid('on')
:plt.show()

Plot fractional error as blue dots
Overlay best fit line in red

7.11 Buffon’s needle 401

7.11 Buffon’s needle

A needle of length ¢ is dropped onto a large sheet of paper with parallel horizontal
lines separated by distance d. Find the probability that the needle intersects a line.

Georges-Louis Leclerc, Comte de Buffon (1707-1788), a French scientist and natural
historian, posed this problem in 1777. Let’s first investigate this scenario with Monte Carlo
simulation, then discuss the solution using a probabilistic calculation.

Simulation

We begin by fixing the needle length £ = 0.05 and the inter-line distance d = 0.1. Clearly the
two parameters can be simultaneously scaled up and down without affecting the probability
(i.e. only the ratio £/d matters). Let’s drop our needle onto a ‘paper’ which is a unit
square [0, 1] X [0, 1]. Using a large number of needles in the simulation, the probability of
intersection can be estimated by

. . Number of needles that intersect a line
Pr(intersection) ~ Total number of needles ’ (7.31)

A visualisation of such a simulation is shown in the top panel of fig. 7.16 in which 100
needles were used. Note that there are 11 potential lines that each needle can intersect (a
needle is shown in red if it intersects a line).

To ‘throw’ a needle, one might start by randomly placing the ‘head’ of the needle at a
point (Xpeads Yhead)> Where Xhead and yheaq are independent random numbers, each one being
drawn from U(0, 1). We then sample the angle 6 that the needle makes (with respect to the
horizontal) from U (0, 27). The ‘tail’ of the needle is then at

(Xtail> Yaail) = (x + £c0os 8,y + £sin).

One way to detect a needle-line intersection is to check whether yheaq and yi,; satisfy the
condition

Lyheaa/d] # Lyuin/d]. (7.32)

where | -] denotes the floor function (see Discussion of §1.3). This condition says that there
is an intersection iff the two ends of the needle lie above different horizontal lines.

In the code buffon.ipynb, we throw 10° needles onto the grid one at a time whilst
keeping track of how the fraction (7.31) evolves. The result (with £/d = 0.5) is shown
in the lower panel of fig. 7.16. The fraction fluctuates rather wildly before converging
to approximately 0.318 after an impractically large number of needles (which should
discourage teachers everywhere from attempting this activity in class).

402

Probability of intersection

N =100,d =0.1,£ = 0.05

1 S — ;T_//
0.9 7/ — | \ |
0.8 A t ™ —=\l A\ 7\
o7l L N

— / b
064 T
0.5 1 i /I \ / \
0.4 — _\\ /l < >~
0.3 - X

N
~
21 \\L/l e \\ =
0.1 A N =\ // AN |
0.0 1 \ N > A
Final probability = 0.318356
0.33 1
0.32
0.31
0.30 1
102 10° 104 10°

Number of needles

7 Probability

Fig. 7.16: Top: A simulation with £/d = 0.5 using 100 needles, 32 of which intersect a line
(shown in red). Bottom: The evolution of the fraction of needles that intersect lines (eq.
7.31) as the number of needles increases to 10°.

Analysis using joint probability distribution

Let’s try to make analytical progress on the problem using the idea of joint probability

distribution.
Let X and Y be continuous random variables drawn from a single probability distribution

called the joint probability distribution f(X,Y) (also called a bivariate distribution). The
probability that x; < X < xp and y; < Y < y, is obtained by integrating the joint
distribution as in the one dimensional case, but in this case a double integral is needed.

Y2 X2
Pr(x; < X <xpandy; <Y <y) = f f f(x,y)dxdy.
Y1 X1

We assume that f has been normalised so that f fR2 f(x,y)dxdy = 1.

{=d {>d

dr2 1 d/2 1

n/2 0 n/2 0

The diagram on the left shows an example of a
needle making an angle X with a horizontal grid
line (in blue), with its midpoint distance ¥ from
the nearest line. We deduce that a needle intersects
gsin x a horizontal line if and only if

T l Y<rnin(£sinX d)
a2 AW Y 2 T2
------ 'L ceneeeeenes S e The behaviour of the function y = min (% sin x, %

depends on whether the needle is short (£ < d) or
long (¢ > d). The graphs of this function are shown

L1<d L=d L>d
df2 dj2 dr
22
y
0 0 0 ——
0 X n/2 0 X n2 0 X sin~'(d/t) n/2

ig. 7.17: The graph of y = min (5 sin x, 5) for the 3 cases: { < d, { = d, an > eft
Fig. 7.17: Th h of g ‘zif he 3 t<d,f{=d,and € > d (lef

to right). The area under the graph is the integration domain of f f f(x,y)dxdy.

404 7 Probability

If the needle is short (£ < d), then we automatically have ¥ < %. In this case, the
probability of intersection is simple to work out.

/2 gsinx
f f Flxy)dydx
0 0
20

/2
sin x dx

Pr(intersection if £ < d)

nd Jo
2¢
nd’

On the other hand, if the needle is long, we have the situation in the right-most panel in
fig. 7.17. Breaking up the integration domain into two regions, we have:

sin"!(d/) 4sinx /2 dj2
f f fxy)dyd + f f F(xy) dyd
0 0 sin~l(d/€) JO
20 d\? 2 d
g I R 1-=sin! =
nd((5))+ T
2L £2—1+cos*l£l
a\d d Ak

where we have simplified the answer using simple trigonometric identities. Finally, we can
combine our results for short and long needles and write the intersection probability in
terms of the ratio variable r := £/d.

Pr(intersection if £ > d)

r ifr <1
Pr(int tionif £/d =r) = / - 7.34
rntersection i£6/d =) {,%(r_m+cos—l<1/r>), itr>1. Y

IS

This is then the solution to the Buffon’s needle problem. The graph of this function is shown
in fig. 7.18.

Note that when r = 0.5, we obtain the probability 1/7 ~ 0.31831, in agreement with
the simulation result in fig. 7.16. Additionally, in the large r limit (when the needles
are extremely long compared to the line spacing), intersections are almost certain since
lim, . Pr(r) = 1.

DiscussioN

* Geometric probability is concerned with measuring probability using length, area
or volume, when there are infinitely many possible outcomes. The Buffon’s needle
problem was one of the earliest examples of a problem in geometric probability. Another
well-known problem in geometric probability is Bertrand’s chord problem (exercise
11), infamous for paradoxically having infinitely many solutions.

+ Buffon’s ‘noodles’. In 1860, the mathematician J-E. Barbier gave an elegant solution to
the Buffon’s needle problem without the use of integrals. His proof, which is discussed
in [4,77], also established the remarkable fact that the average number of line crossings
is 2¢/(nd) regardless of the shape of the needle (hence ‘noodle’). We will verify a
special case of this result in exercise 10.

7.11 Buffon’s needle 405

* Covariance matrix. If random variables X and Y are sampled from the joint probability
distribution f(X,Y), we can quantify the extent to which X and Y are correlated using
the covariance given by

Cov(X,Y) = E[XY] - E[X]E[Y].

Note that Cov(X, X) = Var(X). The covariance is often expressed as a matrix X;; =
Cov(X;, X;) which is square and symmetric. The covariance matrix plays a key role in
data analysis as it quantifies the inter-relationships between pairs of variables. More
about this in §8.7.

1.0

0.8

0.6

0.4 1

Probability of intersection

0.2 A

0.0

£/d

Fig. 7.18: The solution to the Buffon’s needle problem. There are two curves on this graph
showing the intersection probability as a function of r = ¢/d. The red curve shows the
simulation result obtained from using 10° needles per r value to estimate the intersection
probability. The dotted blue curve is the exact answer (7.34), practically indistinguishable
from the simulation result.

406 7 Probability

buffon.ipynb (for plotting the lower panel of fig.

| import numpy as np
| import matplotlib.pyplot as plt

|%matplotlib
|
How many needles to drop in total? | Nmax = int(le6)
Specify d and ¢ id, ell = 0.1, 0.05
Initialise random number generator rng = np.random.default_rng()

|
INlist = range(l, Nmax+1)
i Prob =[]

Running tally of intersection count jcount = 0

for N in Nlist:
yhead = 10*d*rng.random()
theta = 2*np.pi*rng.random()
ytail = yhead + ell*np.sin(theta)

|
Drop 1 needle at a time onto the grid :
y coordinates of needle ‘head’ l
Orientation of the needle |
y coordinates of needle ‘tail’ !

|
Check intersection condition (7.32),
(use floor division) and add to count

if yhead//d != ytail//d:
} count += 1

Keep track of evolving fraction of in-) prob = count/N

tersecting needles l Prob.append(prob)

Plot results from 100 needles onwards 'plt.semilogx(N1ist[100:], Prob[100:], 'b')
1plt.xlabel('Number of needles')

yplt.ylabel('Probability of intersection')

'plt.xlim(1e2, Nmax)

Display final estimate to 5 dec. pl. 'plt.title(£f'Final probability = {prob:5}')
iplt.grid('on")

 plt.show()

7.12 Exercises 407

7.12 Exercises

1 Use pascal.ipynb as a starting point for these exercises.

a. In pascal.ipynb, a student suggests changing the line
a =a*(m-1)//@(+1) to a *= (n-1)//@G+1D

(which seems a harmless thing to do). Why does this give the wrong answer?

b. Produce Pascal’s triangle as shown on the left panel of fig. 7.2.
Suggestion: To print a centre-justified string s in a space with width of 4 characters,
say, use the syntax print('{:44}"'.format(s), end="")
Then, modify the code so that the function binom is not used. Instead, use the
recursion (7.13). This improves the efficiency and reduces redundant calculations.

c. (Fibonacci sequence in Pascal’s triangle) Produce a left-justified version of Pascal’s
triangle. Then, generate a print-out the sums of elements along the 45° diagonals.

They should read:
1

1

1, 1

1, 2

1, 3, 1

1, 4, 3

and so on. Calculate the sum of each row and observe that the Fibonacci sequence
is obtained.
For an elementary proof, see [85].

d. (Pascal mod 4) Produce the plot of Pascal’s triangle mod 4 with 4 different symbols
(or colours). Make a conjecture about the emerging pattern.
Suggestion. To change the colour of a Unicode symbol, look up “ANSI colour
codes”.
The answer can be found in [79].

2 (Expected waiting time) Use coin2 . ipynb as a starting point for the following exercises.

a. Increase the number of throws in each sequence from 10 to 100. What is changed
in the histograms? What stays the same?
In the following problems, keep the number of throws in each sequence as 100.

b. Verify (using np.mean) that the expected (mean) position for HH is 5 (disregard
sequences in which HH does not appear). Similarly, show that the expected position
for TH is 3.

The expected waiting time is the mean number of throws that will produce the
desired sequence in its entirety. Thus, the expected waiting time for HH and TH
are 6 and 4 respectively.

Show that the probability that in TH occurs before HH is around 0.75. In other
words, TH is more likely to occur before HH, rather than the other way round.

c. Find the expected waiting time for the sequence HTHH to appear. Repeat for THTH.
Show that the probability that in THTH occurs before HTHH is around 0.64.
You should find that the waiting time for THTH is longer, yet THTH is more likely
to occur before HTHH!

408

7 Probability

d. Amongst the 8 sequences of length 3 (e.g. TTT, THT, ...), conjecture which one
has the longest waiting time. Which has the shortest waiting time?
Verify your conjecture with Python. This analysis should give you an edge when
playing Penney’s game. See [155] for details.

3 (The Birthday Problem - further explorations) Use birthday.ipynb to help you
answer these questions.

a. In our investigation, we have the exact answer (eq. 7.19), the linear approximation
(eq. 7.20) and the simulation result (fig. 7.9). Let’s see how they compare to one
another.

i

ii.

iii.

Plot the exact probability that at least two people in a group of n people share
the same birthday (Eq. 7.19) as a function of n. Read off where the probability
exceeds 0.5. Insert this curve into the cumulative plot in fig. 7.9. Are they in
good agreement?

Plot the fractional error in the linear approximation (eq. 7.20) for n < 100. How
accurate (in terms of decimal places) is the linear approximation for n = 23?
Show that the maximum error in the approximation occurs at n = 26. Is the
approximation still useable at that point?

By differentiating eq. 7.20, obtain an approximate expression for the probability
distribution shown on top of fig. 7.9. Plot this curve on top of the histogram.
Use the expression to show that the peak of the distribution (the mode) occurs
atn = V365 + § ~ 20.

b. (Generalising the Birthday Problem) Ref. [77] provides a good analysis of these
problems.
Suggestion: These exercises will require nontrivial modifications to the code
birthday.ipynb. Alternatively, you may like to take a fresh approach to the
problem rather than building on birthday . ipynb. For example, you can improve
the efficiency by starting with a guess, say, n from a small interval [«, 8]. For
each n, you could quickly simulate realisations of their birthdays and calculate the
required probability.

i.

ii.

iii.

(More than 2 people sharing a birthday) Let P(n, k) be the probability that at
least k people in a group of n people share the same birthday. For a given &,
we wish to find the smallest n such that P(n, k) > 0.5.

The original birthday problem corresponds to the case k = 2.

Modify birthday.ipynb to show that when k = 3, the answer is n = 88.
Tabulate k£ and n for k < 5.

[Useful tool: np.histogram]

(Multiple shared birthdays) Let P(n, k) be the probability that amongst n
people there are at least k unique shared birthdays. For a given k, we wish to
find the smallest n such that P(n, k) > 0.5.

The original birthday problem corresponds to the case k = 1.

Modify birthday.ipynb to show that when k = 2, the answer is n = 36.
Tabulate k£ and n for k < 5.

(Almost birthday) Let P(n, k) be the probability that in a group of n people, at
least 2 were born within k adjacent days from each other. For a given k, we
wish to find the smallest n such that P(n, k) > 0.5.

The original birthday problem corresponds to the case k = 0.

7.12 Exercises 409

Modify birthday.ipynb to show that when k = 1, the answer is n = 14.
Tabulate k and n for k < 5.
[Useful tools: np. sort, np.diff and the mod operator %.]

c. (Coupon collector’s problem) Suppose there are some mystery boxes, each con-
taining a random type of coupon. If there are n types of coupons, how many boxes
must be opened, on average, to find all n types of coupons?

Use Python to generate simulations and show that when n = 10, 30 boxes must be
opened on average.

Plot the average number of boxes needed against n = 10,20, 30, . .. 100. On the
same plot, overlay nH,,, where H,, is the nth harmonic number. You should find
good agreement between the two curves. See [179] for calculation details.

4 (Monty Hall problem - generalisations) Let’s explore generalisations of the Monty Hall
problem. See [176] for theoretical discussions. The code montyhall.ipynb may be
useful as a starting point for these problems.

a. (Multiple doors) Simulate the Monty Hall problem with n doors concealing 1
car, and suppose that g goats are revealed by Monty after the initial pick (where
0 < g < n—2).Reproduce fig. 7.11. Check that the simulation results agree with
the exact solution (eq. 7.21).
Suggestion: Use random. sample () to select multiple random elements from a
list.

b. (Multiple cars) Simulate the Monty Hall problem with n doors concealing c cars,
and suppose that g goats are revealed by Monty after the initial pick. In this case,
one can show that the probability of winning upon switching becomes

c(n—1)
nn—-g-1)

which is ¢ times the one-car probability (eq. 7.21). Verify that this holds for a few
values of c.

c. (Multiple switches) Suppose there are 4 doors, behind which there are 3 goats and

1 car.
Suppose that Monty will reveal 2 goats, and we are entitled to 2 switches. In other
words, we have the sequence of events

Pick a door — Monty reveals a goat — Switch/stay — Monty reveals another goat — Switch/stay — Car is revealed

Simulate this scenario. Show that the winning probability if we switch twice is
0.625. Show that there is a better strategy.

5 Use normal.ipynb as a starting point for these questions.

a. Instead of summing N Bernoulli trials, use scipy.stats.binom to obtain the
histograms in fig. 7.12.

b. Study the effect of a bias to the left. For example, suppose at each ball-peg encounter,
the ball moves to the left with probability 0.6 (perhaps due to a magnet being
placed on the left of the board). Plot the resulting distribution. Does the normal
approximation still work?

410

7 Probability

c. This exercise explores the accuracy when approximating the binomial distribution

using the normal distribution (Theorem 7.2).
Plot the absolute value of the fractional error as a heat map in the k-N plane
assuming p = 0.5. You should obtain something like this.

Approximation error, p=0.5

100 0
80 -1

5

60 20

=

c

z o

©

©

40 -3%

()]

o
20 -4
L5

20 40 60 80

Fig. 7.19: The error in approximating the binomial distribution using the normal distribution
with p = 0.5. The darkest regions are either invalid (k > N) or too large (fractional error
>1). The brighter the pixel, the greater the accuracy.

Suggestion: One could use imshow to display log,, of the absolute error as elements
of a large matrix. The more negative the entry, the better the approximation. If the
error is too large (>1) or if k > N, set the element to be 1.

Interestingly, there are 4 (bright yellow) lines around k =~ Np on which the approx-
imation is exceptionally good. Which region do you consider the approximation
to be reasonably accurate? (This is a little subjective.) Describe the region using
inequalities.

Repeat the analysis for p = 0.1 and p = 0.9.

. (Challenging) Study the effect of the distribution if a peg is removed from the

Galton board.

6 (Accuracy of Poisson approximations)

a. Let’s explore accuracy using the Poisson distribution to approximate the binomial

distribution (Eq. 7.25).

Do this by plotting the absolute value of the fractional error as a heat map in the
p-N plane (for a fixed k) similar to fig. 7.19 in the previous exercise. Now increase
k. Incorporate a slider for k£ going from O to N if you feel adventurous.

There is a folk theorem that says that the approximation 7.25 is reasonable if n > 20
and p < 0.05. Comment on this statement in light of your result.

7.12 Exercises 411

b. Quantify the accuracy of using the Poisson distribution to approximate the normal
distribution (Eq. 7.26). Do this by first fixing k& and then plotting the graph of the
absolute error as a function of A.

Another folk theorem says that the approximation 7.26 is reasonable for 1 > 20.
Comment on this statement in light of your result.

7 (Characterising radioactivity with the Poisson distribution|) Use poisson.ipynb as a
starting point for this question.

a. A lump of radioactive element emits @ particles at a constant average rate of 1
particles per minute (assume that this element has a very long half-life). In the lab,
it was found that a total of N particles were emitted over a period of 100 minutes.
In how many 1-minute intervals can we expect to detect k emitted particles? (where
k=0,1,2...)

This problem can be regarded as a one-dimensional version of the dot-scattering
problem discussed in §7.9. Let’s simulate this situation.

Start by randomly choosing N real numbers on the (time) domain [0, 100]. These
are the times at which the particles are detected.

By modifying poisson.ipynb, produce a histogram of the particle counts in
each unit-length (1-minute) interval. Do this for N = 50, 100, 200 etc. Show that
the distribution of the counts is well-described by the Poisson distribution with
A = N/100.

b. With N = 50, plot a histogram of the inter-arrival times of the particles (i.e. time
between two successive detections) in units of minutes. Show that the distribution
roughly follows the exponential distribution (7.27) with § = mean inter-arrival
time.

8 (Monte Carlo integration - Dart method)

a. Write a code which produces each of the scatter plots shown in fig. 7.14.

b. Plot the fractional error as a function of the number of points used. Show graphically
that the error scales like N~'/2.

c. Plot the region in the square S = {(x,y) € [-2,2] X [-2,2]} that satisfies the
inequality
(x - 2y)2 >(x—-y+ 1)? cos(x + y).

Estimate this area.

9 (More Monte Carlo integrations) Use montecarlo.ipynb as a starting point for these
questions.

a. Show graphically that the accuracy in the evaluation of the integrals (c) and
(d) is O(N~?) (i.e. Monte Carlo integration does not suffer from the curse of
dimensionality). Your graph should all look like fig. 7.15.

b. Evaluate the following integrals using Monte Carlo integration.

(o] (o)
i CoS X .. _x2
1)f 5 dx 11)f cos xe ¥ /% dx
o 1+x —o0

1 1 s T Vi
dxdyd
in)ff{f}dxdy iv)fff reyee _
o Jo Yy o Jo Jo 3—cosx—cosy—cosz

412

7 Probability

Answers: i) 5= (from [208] problem 51).

ii) 27” (from [153] eq. 3.1.5). Try doing this by sampling x from a normal
distribution.
iv) look up Watson’s triple integrals [209].

iii) % - % An interesting exercise is to plot a heatmap of the function z = {f} on

the square [0, 1]%. One way to do this is to modify the code mandelbrot .ipynb
(§4.8). You should obtain something like fig. 7.20, which may inspire a way to
solve the problem by hand.

z={x/y}

1.0

0.0

X

Fig. 7.20: The function z = {f}

10 (More fun with Buffon’s needle) Use buffon.ipynb to help you with these questions.

a.

b.

Plot the top panel of fig. 7.16. Suggestion: To show only the horizontal gridlines,
use plt.grid(axis="y’).

Fix r = 0.5 say. Plot the (absolute) fractional error between the intersection
probability obtained from simulation and the exact answer (7.34). Obtain a graph
of the error against N and conjecture how the error term shrinks with N.

. Try experimenting with a scenario where some needles are long and some are

short. Do this by drawing ¢ from, say, a uniform distribution U (0, 2d). Find the
intersection probability numerically.

. How long should the needles be to guarantee that the probability of intersection is

at least 0.9? You can solve this graphically or use a root-finding method discussed
in §1.9.

. What if we add vertical grid lines as well? (so that the paper is a grid of d x d

squares). Plot the probability as a function of r = £/d. In the short needle case
(¢ < d), you should obtain the answer £(4d — £)/rnd?. Look up Buffon-Laplace
problem.

7.12 Exercises 413

f. Inthe origin Buffon’s needle problem, verify that the average number of intersections
is 2¢/nd regardless of whether the needle is long or short.

g. Instead of needles, throw circles of perimeter ¢ onto the grid. Show that the average
number of intersections remains the same.
Plot a graph to show how the probability of intersection depends on .

11 (Bertrand paradox) An equilateral triangle is inscribed in a circle. Suppose a chord
is chosen at random (where a chord is a straight line joining two points on the
circumference). Find the probability that the chord is longer than one side of the
triangle.

The French mathematician Joseph Bertrand (1822—-1900) posed this problem in 1889
and offered 3 apparently correct solutions which are all different. This has come to be
known as Bertrand paradox. Let’s simulate them in Python.

Suppose that the circle has radius 1, so that the inscribed equilateral triangle has side
V3. Place the origin O at the centre of the circle.

a. Pick two random points, P = (cosfy,sinf;) and Q = (cosf,,siné,) on the
circumference of the circle, where 61, 8, are chosen randomly from [0, 27) (use a
uniform distribution). Calculate the distance PQ.

Show that for a large number of chords, the solution is 1/3.

b. Draw a radius at a random angle 6 € [0, 27). Pick a random point P along the
radius and construct a chord passing through P perpendicular to the radius. Note
that |OP| € [0, 1]. Measure the length of the chord.

Show that for a large number of chords, the solution is 1/2.

c. Pick a point (7 cos 6, r sin) randomly in the circle, where r € [0, 1] and 6 € [0, 27).
Let this be the midpoint of the chord. Measure the length of the chord.

Show that for a large number of chords, the solution is 1/4.

All 3 solutions can be obtained analytically (see, for example, [77]). There are in fact
infinitely many solutions, depending on how the chord is chosen randomly. See [31,99]
for further discussions.

Bonus question: in each method, plot all the chords within the circle. Do the chords
appear cover the circle uniformly?

®

Check for
updates

CHAPTER
EIGHT

Statistics

Fig. 8.1: Many will know Florence Nightingale (1820-1910) as a pioneer of modern nursing,
but she also made major contributions to statistics, particularly in data visualisation. She
was the first female fellow of the Royal Statistical Society. Image from [212]

Statistics refers to the science of collection, analysis and interpretation of data. We will
use probability theory to help us describe data mathematically, and make inferences about
the population given the data.

Introductory statistics is sometimes taught in school (and in many online tutorials) as an
algorithmic subject requiring students to follow step-by-step recipes to obtain, say, a z-score,
a p-value, or a confidence interval (we will discuss all these concepts shortly). Along the
way, students learn how to quickly navigate unwieldy statistical tables, and use statistics
functions on fancy calculators.

In this chapter, we will see how Python frees us from the archaic approach described
above. In particular,

* Python allows data to be visualised (as histograms, scatter plots, contour plots ezc.),
allowing easy interpretation.

* Statistical inferences follow naturally through visualisation without having to rely on
magical formulae and recipes.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 415
S. Chongchitnan, Exploring University Mathematics with Python,
https://doi.org/10.1007/978-3-031-46270-2_8

https://doi.org/10.1007/978-3-031-46270-2_8
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46270-2_8&domain=pdf

416 8 Statistics

¢ Calculations involving complicated probability distributions can be done easily, doing
away with the need for statistical tables.

The material in this chapter comprises some highlights from a traditional pre-university
and first-year university course in statistics, including the Central Limit Theorem, hypothesis
testing and linear regression. However, our discussions will focus on visualisation and
numerical experimentation.

Towards the end of the chapter, we will also discuss two more advanced topics, namely,
Bayesian statistics and machine learning. These topics are not part of the standard canon in
a typical university mathematics degree (unless you follow a statistics-focussed course), but
they have such prominence in today’s data-driven world that it would be unthinkable not
to include them here. It is only a matter of time before they become a core part of every
university’s degree in mathematical sciences.

We do not assume that you have already studied some statistics. While we try to be as
self-contained as possible, there will be occasions where you may want to consult other
references that will explain statistical concepts more clearly and thoroughly.

There are many excellent introductory textbooks on statistics offering modern expositions
guided by real-world applications. Amongst these, we recommend [160, 179,216]. For
statistics textbooks led by Python, see [92,110,205]. Other references will be recommended
along the way.

8.1 Basic concepts in statistics

We will need the basic concepts of probability covered in §7.2, including random variables,
probability density functions (pdf), cumulative distribution functions (cdf), mean and
variance. You may find it helpful to study chapter 7 before proceeding.

Probability distributions

You will need to be familiar with the most common probability distributions such as
the uniform, normal and binomial distributions. We will also come across the following
distributions (in order of appearance in this chapter).

e Cauchy * Triangular e Chi (y)
* Arcsine Student’s ¢ * Gamma
* Bates * Chi squared (y?) * Beta

For an encyclopedic study of statistical distributions, see [66].
In terms of Python, we will use scipy.stats to draw samples (or random variates)
from different distributions. The samples are stored as arrays. Here are some examples:

8.1 Basic concepts in statistics 417

Sampling from probability distributions

from scipy.stats import uniform, norm, binom
i) Sample 5 numbers x € [0, 1] from the | X = uniform.rvs(size=5)

uniform distribution U (0, 1)

|
ii) Sample 4 numbers y € R from ! Y = norm.rvs(size=4)
the (standard) normal distribution N (0, 1) |

|
iii) Sample 3 integers (0 < k < 9)|K
from the binomial distribution B(9, k) !
with p = 0.5

binom.rvs(9, 0.5, size=3)
I
|
|
I

iv) Same as (iii) but the output is K = binom.rvs(9, 0.5, size=3, random_state=74)

reproducible (pick your favourite non-!
negative integer for random_state)
Output = [3, 6, 6]

Standard probability distributions

We studied the normal distribution N (y, o?) in §7.8. In the case that u=0and o =1, the
pdf ¢ and cdf ®@ of NV (0, 1) are given by

1 -x2/2
- , 8.1
#(x) \/z_ne 8.1)
d(x) = % f e 12 4gr. (8.2)
V T —00

These are called the pdf and cdf of the standard normal distribution, which plays a very
important role in statistics.

If (i, o02) # (0,1), we can standardise the distribution by the substitution z = %
(called the z-score). More precisely, the random variable X follows N (u, 02) if and only if
the standardised variable

z=2"r (8.3)

follows N (0, 1).

More generally, we can standardise any pdf f(x) by thinking about the transformation
(8.3) geometrically as a scaling (enlargement) of the graph y = f(x) by a factor o, followed
by a translation of y unit to the right.

In Python, we can sample from non-standard probability distributions by specifying the
optional arguments scale and 1loc which perform the scaling and translation of standard
pdfs. Here are some examples:

418 8 Statistics

Sampling from scaled/shifted probability distributions

| from scipy.stats import uniform, norm
i) Sample a number x € [1, 3] from the:x = uniform.rvs(scale = 2, loc = 1)
uniform distribution U (1, 3)
Note: x €[loc, loc + scale]

ii) Sample a number y € R from the
normal distribution N (u = —1, o2 = 4)
Note: u = loc, o = scale

y = norm.rvs(scale = 2, loc = -1)

Iid random variables

We will be discussing statistical properties of a combination of multiple random variables.
For example, if X; ~ N(0,1) and X, ~ N (1,2), we might ask what distribution the sum
X1 + X, follows.

If X; and X, have same probability distribution, then they are said to be identically
distributed random variables. More precisely, let F; and F; be the cdfs of X; and X,. Then
X1 and X, are identically distributed if Fy(x) = F(x) for all x € R.

X1 and X, are said to be independent random variables if

Pr(X, € Aand X, € B) = Pr(X, € A) Pr(X; € B),

(we discussed this condition in eq. 7.3).
When X and X, are independent, identically distributed random variables, we usually
abbreviate this to “X; and X, are iid random variables".

Sample statistics

In statistics, we are often presented with a small sample from which we deduce information
about the population. We use different symbols to distinguish the mean and variance of a
sample from those of the population:

Population Sample
Mean i X
Variance o2 52
Given n numbers, x1, X2, . . ., X, sampled from a population, we can calculate the sample
mean, X, as
1 n
F=- Z Xi. (8.4)
n

i=1

Suppose that we repeat drawing n samples and calculating the sample mean many times.
Consider the random variable X which can take all possible values of the sample mean:

8.1 Basic concepts in statistics 419

N

X = X, (8.5)

i=1

S | =

where X; are iid random variables with E[X;] = u and Var(X;) = o2.

What does X tell us about the population mean u? Naturally, we would expect the
expectation value of X to approach u as we repeat drawing n samples many times. This is
indeed the case since:

E[X]1=E

i=

1 n
w 2%

1 & 1
=— Y EXi]=-—nu=p, (8.6)
n P n

where we have used the linearity of the operator E (see eq. 7.7).

When the expectation value of a sample statistic 7 coincides with the population
parameter 6, we say that T is an unbiased estimator of 6. In our case, we have just shown
that X is an unbiased estimator of .

It is also worth noting that

_ 1 v 1 < 1, 1,
Var(X) = Var(; Z; Xi) == Z;Var(Xi) = —no’ =~ (8.7)

12

where we have used the property (7.11) of the Var operator and the fact that X; are
independent variables.

What does an unbiased estimator of o> look like? One might guess that the random
variable

SR e _
§=— > X=X
i=1

is a good estimate of the population variance (since this mirrors the definition of population
variance (7.8)). However, the working below shows that $? is not an unbiased estimator of
0. First, note the simplification
l n
§ == (x7-2x,% + X?)
i=1
1 < (1 X2
i=1 i=1

i=1

1< -
= X -2%7+ X2
n

i=1

1< .
=y x-X2
n

i=1

Taking the expectation value and using eq. 8.6-8.7, we have

E[$8%] = 0% + 1 - E[X*]
=0+ 12 = (Var(X) + ¢%)
n—1

= 0'2.
n

420 8 Statistics

Since the expectation does not equal o2, we say that $? is a biased estimator. This also
implies that the unbiased estimator, S2, of o2 is given by a simple adjustment.

n

— 1§2 = E[S?] =2 (8.8)

52 =

This means that given a sample of n numbers x1, xo, . . ., x,, then we should calculate
the adjusted sample variance using the formula

2=t Z(xi—i)z. (8.9)
=1

n—14
l

We will always take the term ‘sample variance’ to mean the adjusted variance. For large n,
however, the adjustment only has a tiny effect.

Here are two more useful sample statistics: the median and the mode.

Given a sample of n numbers, xy, x», . . ., X,,, we arrange them in increasing order, and
relabel the ordered list as yy, y2, . . ., y,. The median is then defined as
if n is odd,
Median = }1)('”1)/2 o
3 (yn/Z + y(n/2)+l) if n is even.

The intuition is that the median splits the ordered sample into equal halves.
Finally, the mode is the value that occurs most frequently in the sample.

Here are some useful Python functions for calculating sample statistics. Try calculating
them by hand before checking with Python.

Calculating sample statistics

i import numpy as np
| from scipy import stats
|

Our sample :A =[3, 1, 4, 1, 5, 9]
I
|

Mean ' np.mean(A)

Median inp.median(A)

Mode :stats.mode(A, keepdims=False)
I

Sample variance (eq. 8.9) inp.var(A, ddof =1)

Unadjusted variance |np.var (@)

The argument ddof stands for ‘delta degrees of freedom’. Let’s clarify this terminology.

Our sample contains 6 observations (x;,i = 1,2,...,6). The ingredients for calculating
the sample variance s2 are: x| to xg, plus the sample mean X. But the knowledge of ¥ means
that not all 6 numbers are independent: we can work out the 6th number from knowing 5
numbers and the sample mean. In this case, we say that there are only 5 degrees of freedom.
This corresponds to the prefactor % in the adjusted variance formula.

Scipy’s ddof counts the reduction in the degrees of freedom due to extra known
parameters. We will revisit the degrees of freedom again in §8.4.

8.2 Basics of statistical packages 421

8.2 Basics of statistical packages

In this chapter, we will be using 3 popular statistical libraries, namely, Pandas, Seaborn
and Scikit-learn. This is quite a break from the previous chapters, where we have tried to
minimise the use of specialist libraries. However, we have included them here due to their
popularity in data science.

Pandas

Pandas! is a Python library for easy data handling and analysis. Instead of NumPy arrays, in
Pandas data are stored as series (for 1D data) or dataframes (2D). Working with dataframes
is analogous to working with Excel spreadsheets, but with more mathematical logic and,
dare we say, less frustration.

Pandas is traditionally imported with the following line:

import pandas as pd

In §8.6 (on linear regression and Simpson’s paradox) we will use Pandas to work with
data files. This is an important skill in real data analysis where data are typically stored in
multiple large files which may have to be merged or trimmed.

Seaborn

Seaborn? is a data visualisation library created by Michael Waskom in 2012. Seaborn
simplifies the process of creating beautiful data visualisations that would have otherwise
been difficult and time consuming to make using Matplotlib alone.

Seaborn is traditionally imported with the line:

import seaborn as sns

In §8.3 (on the Central Limit Theorem), we will use Seaborn to plot histograms (much
more easily than how we previously plotted histograms with Matplotlib in §7.5). More
Seaborn functionalities are explored in the exercises.

Scikit-learn

The last section of this chapter explores topics in machine learning using scikit-learn3 (often
shortened to sklearn).

Sklearn is a Python library originally authored by David Cournapeau and publicly
available since 2013. You will need sklearn version 1.2.2 or later. To check which version

'https://pandas.pydata.org
2 https://seaborn.pydata.org
3https://scikit-learn.org

https://pandas.pydata.org
https://seaborn.pydata.org
https://scikit-learn.org

422 8 Statistics

you may already have, run these two lines:

import sklearn

sklearn.__version__

And finally: although we will be exploring statistics with Python, the statistician’s
programming language of choice is not Python but R4. For good introduction to R,
see [193].

4https://www.r-project.org

https://www.r-project.org

8.3 Central Limit Theorem 423

8.3 Central Limit Theorem

Consider n numbers xy, X3, . . ., X, randomly drawn from the uniform distribution
U,1). Let x := % 2%, x; be the sample mean.
When n = 100, find the probability that x > 0.55.

We are interested in the probability distribution of the sample mean where the samples
are drawn from some underlying distribution such as the U (0, 1) in this case. Let the random
variable X denote all possible mean values of n samples.

Let’s experiment with some values of n. When n = 1, the sample means are the samples
themselves, so the distribution of X is simply U (0, 1).

When n = 2, pairs of numbers x| and x, are drawn from U(0, 1) and an average is
taken. We note that there are many more possible pairs of numbers that will average to 0.5
compared with pairs of numbers that will average to, say, 0.99 or 0.01. Thus, we expect that
the probability distribution of X will peak at 0.5, and drop offto 0 at X =0 and X = 1.

Using Python to simulate this problem for more values of n, we obtain fig. 8.2. Here, n
samples (n = 1,2, 3, 10) are drawn from U (0, 1) and repeated 10* times. The histograms
shown (plotted with Seaborn) are the normalised frequency plotted with 25 bins on the
interval (0, 1). These are good approximations of the probability distributions of X.

As n increases, the distribution of X approaches a familiar shape, i.e. the normal
distribution. Taking this observation further, when n = 100, the distribution of X (shown on
the top panel of fig. 8.3) can in fact be approximated by N (ux, o %) (pdf shown as a red
curve) where

g ~05 og~0.029. (8.10)

In the code CLT. ipynb, we approximate uy and o g directly from the list of simulated
X values. Keep in mind that at this point, the normal approximation is only a conjecture —
we will justify this shortly.

Let’s now address the question: what is the probability that X > 0.55? In one run of the
simulation, out of 10* sample means, the code reported that 420 numbers were greater than
0.55. Hence, we could say that

Pr(X > 0.55) ~ 420/10* ~ 0.042. 8.11)

Alternatively, we could use the normal approximation N (0.5, 0.029), and calculate the
probability by integrating the pdf using SciPy’s quad. We can also transform the integral to
the standard normal distribution as follows.

] 1 g)2 N
Pr(X > 0.55) = f e *\ 7x) dX
o g V2r Jo.55
1 e X —ug
= — 712 dz (let z= Hx)
V27T z=1.724 Ox
=1-®(1.724)
~ (0.04235 (4S.F) (8.12)

in agreement with the simulation result (8.11). (To evaluate ®(1.724),use stats.norm. cdf.)

2.0 A
5, 1.0 7
@]
g
i 1.5 A
g 0.8
]
= 0.6
é 1.0 1
S 0.4
:
) 0.5 A
Z, 0.2 4
0.0 - 0.0 -
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
2 2.0
g
(]
=
o 1.5 1
o
o)
O
£ 1.0
9]
g
3 054
2> 0.
0.0 -
0.00 0.25 0._50 0.75 1.00 0.2 0.4 3 0.6 0.8
X X

Fig. 8.2: Distribution of the sample mean X for n = 1,2,3 and 10 when n numbers
are sampled from the uniform distribution U(0, 1), repeated 10* times. The distribution
approaches a normal distribution.

The Central Limit Theorem

The fact that the distribution of the sample mean X approaches the normal distribution is
due to the following fundamental theorem of probability and statistics:

Theorem 8.1 (Central Limit Theorem) Let X1, X3, . . ., X, be iid random variables sampled
from a distribution with mean p and variance 0% where 0 < 02 < co. Then, for each fixed
x, the sample mean X satisfies

. X-—pu _
lim Pr(NG Sx) = O(x),

n—oo g

where @ is the cdf of the standard normal distribution (8.2).

8.3 Central Limit Theorem 425

Equivalently, the Central Limit Theorem (CLT) says that for large n, the pdf of the sample
mean approaches N (ux, o5) where

(oa
Hx = K, ff;‘(:%’

where y and o2 are the mean and variance of the underlying distribution from which the
samples are drawn.

We can now see why the normal approximation with uy, o g given in eq. 8.10 holds.
For U(0, 1), we have u = % and o2 = % Therefore, according to the CLT, we have

1
pg =05 og=— =—— =0.0288675...

Vi 2073
in agreement with the values found in eq. 8.10.
Amazingly, the CLT holds for any discrete or continuous underlying distribution with

a finite nonzero variance. Fig. 8.3 shows the distributions of the sample mean when the
underlying distributions are:

¢ The uniform distribution U (0, 1)

* The binomial distribution with n» = 12 and p = 0.3 (see eq. 7.16)
* The exponential distribution with 8 = 2 (see eq. 7.27)

¢ The arcsine distribution with pdf

1
avx(l - x)7
(so called because its cdf F'(x) = % sin~! V).

In each case, the normal distribution (shown in red) is a good fit to the sample-mean
distribution.

fx) = (8.13)

We end with a little history of the CLT, the proof of which spans centuries. We already
mentioned in §7.8 that de Moivre discovered the special case of the CLT for the binomial
distribution in 1733, and this was later generalised by Laplace in ca. 1810. A definitive proof
for an arbitrary distribution was published by A. Lyapunov in 1900 and further refinements
were made by J. Lindeberg in 1920 and P. Lévy in 1935, resulting in the version of the
theorem that we know today. Reference [64] presents a comprehensive discussion of the
historical development of the CLT.

DiscussioN

* Bates distribution. The probability distributions seen in fig. 8.2 can be calculated
exactly: the mean of n random variables drawn from U (0, 1) follow the Bates distribution
with pdf

n = n nel .
1) = 50 kZ:O(—l)k(k)(nx — k)" sign(nx - k), (8.14)

where sign(¢) = 1,0, —1 when ¢ is positive, zero or negative. You should verify that
when n = 1, we recover U (0, 1), and when n = 2, we obtain two straight line segments
joining (0,0), (0.5,2) and (1, 0) (a triangular distribution).

Grace Bates (1914-1996) was an American mathematician who worked on algebra and
probability.

426 8 Statistics

Uniform on [0,1] Distribution of sample mean
14
1.04 12
1.02 10
8
1.00
6
0.98 4
0.96 2
0
0.00 025 050 0.75 1.00 0.40 0.45 050 0.55 0.60
Binomial, n=12, p=0.3 Distribution of sample mean
0.25

/\ 2.5
0.20 \ 2.0
0.15 / \ 15
0.10 / 10
0.05 \ 0.5

0.0
0 2 4 6 8 3.0 3.5 4.0

Exponential, =2 Distribution of sample mean

0.5
0.4

0.3 \
0.2 \
01 \

\
0 2 4 15 2.0 2.5
Arcsine Distribution of sample mean
2.25
2.00 \ l 10
1.75 \ I 8
\\ /l 6

roo] \ /|
54N YAl

0 P—
0.00 0.25 0.50 0.75 1.00 0.4 0.5 0.6

Fig. 8.3: Demonstration of the Central Limit Theorem for four underlying probability
distributions shown on the left. From each distribution, 100 numbers are sampled and the
sample mean is calculated. Repeating this 10* times, we obtain the probability distributions
of the sample mean shown on the right. These are consistent with the normal distribution,
shown as red curves.

8.3 Central Limit Theorem 427

¢ Cauchy distribution. The CLT only applies when 0 < o < oco. An example of
a pathological distribution which violates this condition is the (standard) Cauchy
distribution

fx) = (8.15)

a(l+x2)’
It is straightforward to show that the mean and variance are undefined. In exercise 1,
you will show that the CLT fails when samples are drawn from this distribution.

* Generalised CLT. The sample mean of n independent variables (not necessary
identically distributed) also approaches the normal distribution for large n, provided
certain generic conditions are satisfied - see [163] for details.

The graph below shows the distribution of the sample mean X of 100 numbers, consisting
of 25 numbers drawn from each of the four distributions shown in fig. 8.3. The normal
approximation is shown as the red curve, hence verifying the generalised CLT.

Distribution of X from 4 distributions

1.2 1.4 1.6 1.8 2.0 2.2

Fig. 8.4: Demonstration of the generalised CLT: when 25 samples are drawn from each of
the 4 different distributions shown in fig. 8.3, the distribution of the sample mean X is still
approximately normal.

428 8 Statistics

CLT.ipynb (for plotting the first pair of figures in fig.)

i import numpy as np
| import matplotlib.pyplot as plt

For uniform and normal distributions | from scipy.stats import uniform, norm
rimport seaborn as sns
| o
1 %matplotlib
|
I
List of sample means : Means = []
How many sample means? 'Musize = int(le4)
|

I
Batch size for calculating each mean X | size = 100
I
|
Collect lots of sample means by : for i in range(Musize):
1. Generating a batch of uniform variates samples = uniform.rvs(size=size)
2. Calculating the sample mean l mu = np.mean(samples)
3. Storing it | Means . append (mu)
|
|

Two graphs side-by-side 1 fig, (axl, ax2)=plt.subplots(l,2,figsize=(7,3))
1x1 = np.linspace(9,1)
1st graph = uniform pdf i pdf = uniform.pdf(x1)

:axl.plot(xl, pdf)
raxl.set_title(f'Uniform on [0,1]")
: axl.grid('on')

|
2nd graph = seaborn histogram of!sns.histplot(Means, bins=25,
sample mean (normalised frequency) \ stat = 'density', ax=ax2)
| ax2.set_title(f'Distribution of sample mean')
'x2 = np.linspace(min(Means), max(Means))
: ax2.set_ylabel('")
Hx MU = np.mean(Means)
ox 1SIG = np.sqrt(np.var(Means, ddof=1))
Normal approximation (due to the CLT) |y2 = norm.pdf(x2, MU, SIG)
Add red normal curve on top of histogram ' ax2.plot(x2,y2, 'r')
rax2.grid('on')

|
i plt.show()
|
Count of samples > 0.55 :Mcount = sum(i > 0.55 for i in Means)
| Ans = Mcount/Musize
i print(f'{Mcount} samples were >0.55.
: f'P(X>0.55)={Ans}")

v

8.4 Student’s ¢ distribution and hypothesis testing 429

8.4 Student’s ¢ distribution and hypothesis testing

a) Sample n random numbers from the standard normal distribution /_V (0,1). Let x

be the sample mean and s> be the sample variance. Calculate 7 =

s/\n
Let the random variable T denote the values of ¢. Plot the distribution of 7 and
investigate the limit as n — co.

b) The following 5 numbers were sampled from a normal probability distribution
whose mean y and variance o are unknown.

0.6517 —-0.5602 0.8649 1.8570 1.9028

Estimate the population mean p.

c¢) A student believes that the population from which the numbers in part (b) were
drawn from has mean po = 1.5. Does the data support this statement?

This section deals with statistical information that can be extracted from a small dataset.
In particular, we will see what we can learn about the mean of an infinite population from
the mean of a small sample. We will encounter the Student’s t distribution, and learn about
hypothesis testing, p values and confidence intervals.

Let’s go straight to Python to sample n random variates from N (0, 1) and find the

sample mean X and the sample variance s>. Repeating this many times (say 10%), we obtain
a histogram showing the normalised frequency of the variable ¢ = . /)i/ﬁ' The code is similar
to CLT. ipynb in the previous section. The results are shown in fig. 8.5 for n = 3,5, 8, and
10.

Each histogram corresponds approximately to a symmetric distribution whose shape
resembles the normal distribution. However, the red curve plotted over each histogram is not

the normal distribution, but rather, Student’s t distribution, due to the following theorem.

Theorem 8.2 Let X1, X, . .., X,, be n random iid variables drawn from the standard normal
distribution N (0, 1). Let the random variables X and S* be the sample mean and sample
variance. Then, the random variable T = ﬁﬁ Jfollows Student’s t distribution with pdf

L Tesh oA
f(t)_mr(g) (1+V) , teR, (8.16)

where T is the gamma function and the parameter v=n—1 > 0.

(See eq. 6.29 for the definition of the gamma function.) This result was discovered by
Student, the pseudonym of William Sealy Gosset (1876—1937), an English statistician who
studied small-sample statistics whilst working at the Guinness brewery in Ireland.

Distribution of T, n =3 Distribution of T, n=5

0.40
8

0.35 - . X‘

0.30 .

0.25 .

0.20 1 b
0.15 A

Normalised frequency

0.05 A

LU
s
LI

0.00 r r
Distribution of T, n =8 Distribution of T, n =10

o R
s

0.20 1 1

0.15 A i

Normalised frequency

010- ’ 1 ‘ |
| | ' LY
0.00 T T T

-4 -2 0 2 4 -4 -2 0 2 4
T T

Fig. 8.5: Histograms showing the distributions of the variable T = \nX/S for n = 3,5,8
and 10. The red curves show Student’s ¢ distribution (8.16) with v = n — 1.

The parameter v is called the degree of freedom. With n samples, we say that there are
n — 1 degrees of freedom for the distribution of the sample mean X. This is because, for a
given mean X of n numbers, we are free to choose only n — 1 numbers, x1, x2, ..., X,_1, as
the final remaining number is fixed by the relation x,, = nX —x; —xp —- - - — x,_;. Although
this explanation suggests that the degree of freedom v should be an integer, the pdf admits
any positive real values of v.

Fig. 8.6 shows a family of the ¢ distribution for v = 0.5 — 10 in steps of 0.5. Generally
the pdf of the ¢ distribution has a lower peak and fatter tails than the normal distribution
N (0, 1). As v becomes large, the limit approaches N (0, 1). The proof requires the limit
lim;, o (1 + %)™ = e* and Stirling’s approximation (6.37).

Interestingly, when v = 1, the ¢ distribution reduces to the Cauchy distribution (eq. 8.15).

8.4 Student’s ¢ distribution and hypothesis testing 431

Student's t distribution, v=0.5-10
0.40

--- N(0,1)

0.35 A

0.30 A

0.25 A

0.20 1

0.15 A

0.10 A

0.05 A

Fig. 8.6: The pdf of Student’s ¢ distribution (8.16) where the degrees-of-freedom parameter
v goes from 0.5 to 10 (solid lines going from blue to red) in steps of 0.5. The dashed red
curve is the pdf of the standard normal distribution N (0, 1).

Confidence interval of y from a small sample

We are given a small sample of 5 numbers with sample mean and sample variance

% =0.9732, s> =1.0268 (4 dec. pl.).

We know that the population is normal with mean y and variance o (both are unknown).
We wish to estimate u using seemingly limited information in the small sample.
The mean and variance of the random variable X are given by

X+ X+ X, 1 B
g =E : _;ZE[XI]_H (8.17)
i=1

Xi+Xo+---+X 1 v a?

2 _ 1 2 n|_ & N Y
o = Var(:) = Z;Var(X,) =—. (8.18)

iz

The standardised variable (z score) for X is therefore (f/_\/’% Since we do not know o, we

can replace it with the sample variance S, giving precisely the T random variable

X-—pu
T="2=L,
S/\n

which, according to theorem 8.2, follows the ¢ distribution (8.16).

Another way to interpret eq. 8.19 is to reverse the roles of X and u, and conclude that
the unknown population mean u follows the ¢ distribution which has undergone the scaling
transformation u — u/(S/+/n) and then shifted so that its peak is at 4 = X. The top panel
of fig. 8.9 shows this probability distribution (produced by the code ttest.ipynb).

(8.19)

432 8 Statistics

The purplish shaded area (which is symmetric about the peak) equals 0.95, spanning the
interval
-0.3149 < u < 2.2014

We call this the 95% confidence interval for the estimate of .

Hypothesis testing

In the context of statistics, a hypothesis is a statement about a population (whose data
we have). A hypothesis is usually stated in terms of a population parameter (e.g. its mean,
variance or the type of distribution) reflecting the belief of an observer.

Part (c) of this question phrases the estimate of the parameter u in terms of a hypothesis
(in this case, that u = 1.5). In light of the data (5 numbers drawn from the population),
how confident can we be that this hypothesis holds? This is the art of statistical hypothesis
testing.

Hypothesis testing is a crucial concept in statistics with many variations and specialist
terminology that can be daunting for new learners. The essential concept is simpler to
understand graphically rather than algorithmically. Of course, one can simply follow a
hypothesis-testing recipe to get the right answer (unfortunately many students are taught
this way). However, without understanding the reason behind each step, the whole process
becomes an opaque, robotic routine that sheds no light on the underlying mathematics.

Let’s go through hypothesis testing in this question step-by-step. Along the way, key
terminology will be introduced, along with relevant graphical interpretations.

¢ Step 1: State the hypotheses
Basic hypothesis testing involves two statements: the null hypothesis, Hy; and the
alternative hypothesis, H .
In general, the null hypothesis represents a viewpoint that is expected, status quo
or uninteresting about the population. The alternative hypothesis is a statement that
contradicts the null hypothesis.
In the process of hypothesis testing, we initially assume Hj to be true. The goal is
simple: can we reject Hy given the data? If so, we then conclude that H| is true. If we
fail to reject Ho, then it continues to hold true.
The null hypothesis usually includes one of the symbols =, <, >. The alternative
hypothesis includes #, >, <.
Thus, in our case, we have

Hy: u=1.5
Hy: u#15

* Step 2: Decide on the rejection region

Consider the top panel of fig. 8.9, which shows the distribution of the population mean
with a 95% confidence interval. We could say that if the hypothetical value of uq lies
within this region (as indeed it does), then we do not reject Hy. If wq falls outside the
shaded region, it is said to lie in the rejection region — meaning that Hy should be
rejected. (The rejection region is also called the critical region.)

Instead of 95%, we might have chosen 90%, or 99%. It all depends on our desired level
of confidence in rejecting Hy. In this question, let’s go with 95%.

8.4 Student’s ¢ distribution and hypothesis testing 433

Another way to put this is that we have chosen to take a 5% chance that Hy might be
wrongly rejected. In statistics speak, we say that the significance level @ = 0.05.

Also note that the rejection region in our case is split between both tails of the pdf. This
is because our alternative hypothesis H; : u # 1.5 allows u to be at either tails of the
pdf. In technical terms, we say that our test is a two-tailed test.

If, instead we had chosen H; : u < 1.5. Then the rejection region is only on the left tail
of the pdf, and we say that the test is one-tailed (see exercise 2).

Step 3a: Calculate the test statistic

Consider the middle panel of 8.9, which shows the standard ¢ distribution f () with
v = 4 degrees of freedom. The rejection region with total area 0.05 (corresponding to
the @ value) can be transformed to the corresponding area on this distribution as shown
below.

Rejection region, @ =0.05

Fig. 8.7: The standard ¢ distribution with v = 4, showing the shaded rejection region with
area @ = 0.05. Critical values are at t.j = +2.7764.

The boundary of the rejection region on this plot works out to be at .4 ~ +2.7764
(these are called critical values). We can check this with SciPy using the following
syntax.

from scipy import stats

rv = stats.t(4)

A, B = rv.ppf(0.025), rv.ppf(0.975)
print(£f' ({A:.4f}, {B:.4f})")

Output: (-2.7764, 2.7764)

Here ppf (percent point function) is simply the inverse of the cdf.

A test statistic, t, is the value on the (standard) distribution which determines whether
H, is rejected, depending whether or not it falls within the rejection region. In our case,
according to Hy, it = puo = 1.5. Thus, using eq. 8.19, the test statistic is

X — o
s/\n
= —1.2286 (4 dec. pl.)

=

Since [t| < i, the test statistic falls outside the rejection region, meaning that Hy fails
to be rejected.

Note the sign of #. Negative means that the hypothetical value of y is greater than the
sample average.

434 8 Statistics

* Step 3b: Calculate the p-value
Another way to test the hypothesis is to use the p-value. To do this, consider the area
shaded (in yellow) shown in the middle panel of fig. 8.9. This area, called the p value,
represents the critical level of significance which determines whether Hy is rejected or
not. In other words, we have the following criteria:

p < a = Reject Hy, p > a = Do not reject Hy.

Some students remember this condition this way: “if the p-value is a wee value, reject
the null hypothesis".

The probabilistic interpretation of the p-value can be deduced from its area interpretation:
assuming the null hypothesis, the p-value represents the probability of observing our
samples (or an even more extreme set of samples with a larger |¢|).

To calculate the p-value, we find the area under the pdf with the test statistic ¢ in the
integration limit. Using its symmetry, we have

t
p=2f f(x)dx

=2F(t) (where F is the cdf)
= 0.2866 (4 dec. pl.)

Since the p is not a wee value (0.05 or less), we conclude that the data is consistent with
Hj, which cannot be rejected.

We can now reveal that the sample of 5 numbers were actually drawn from N (1, 1).
Although y = 1 in actuality, our data does not allow us to dismiss the claim that u = 1.5.

t-test with SciPy

The particular type of hypothesis testing we have discussed is known in the trade as a
one-sample t-test.

Conveniently, SciPy can help us calculate the test statistic ¢ and the p-value associated
with this test, as well as the confidence interval of u. The syntax are shown in the code
ttest.ipynb. The key syntax is the line

res = stats.ttest_lsamp(samples, mu®)

We then report the #-value using res.statistic and the p-value using res.pvalue.
As reported in the code output shown at the bottom of fig. 8.9, both SciPy’s values agree
with our previous calculations. The syntax res.confidence_interval (0.95) gives the
95% confidence interval.

DiscussioN

« Statistical tables. In exam situations where computers and calculators are not allowed,
students are usually supplied with statistical tables. These tables are also found at the
back of most textbooks on statistics.

Here is an example of a table of critical #-values for a given a for the Student’s ¢
distribution (from [56]). There are also tables of p-values for various distributions. With
Python on hand, however, there is no need to consult any tables.

8.4 Student’s ¢ distribution and hypothesis testing 435

Perhaps these tables will be phased out in the near future, just as log and trig tables
have disappeared decades ago.

t Distribution: Critical Values of ¢

Significance level

Degrees of Two-tailed fest: 10% 5% 2% 1% 0.2% 0.1%

freedom One-tailed test: 5% 2.5% 1% 0.5% 0.1% 0.05%
1 6.314 12.706 31.821 63.657 318309 636.619
2 2.920 4.303 6.965 9.925 22.327 31.599
3 2353 3.182 4.541 5.841 10.215 12.924
4 2.132 2.776 3.747 4.604 7.173 8.610
5 2.015 2.571 3.365 4.032 5.893 6.869

Fig. 8.8: Excerpt from a statistical table [56]. Note the critical #-value we found earlier using
Python (highlighted).

* Type I and type II errors. We discussed earlier that the significance value @ = 0.05
means that there is a small probability of 5% that the null hypothesis H is rejected
when it is actually true. This is called a type I error, associated with false positives in
medical tests, or a guilty verdict when a defendant is innocent.

Type II error, on the other hand, is the probability 8 that the null hypothesis fails to
be rejected when it is actually false. This is associated with false negatives in medical
tests, or a not-guilty verdict when a defendant is guilty.

Typically, @ and 8 are set (somewhat arbitrarily) between 0.05 and 0.2.

In our example, the samples were drawn from a normal distribution with u = 1, yet
we were unable to reject the hypothesis that ¢ = 1.5. It appears that a type II error has
occurred. This may have been avoided with a bigger sample — exercise 2e quantifies
how much g is reduced as the sample size increases.

Estimate of the population mean (95% C.I. shaded)

0.8 1

0.6 1

Pdf

0.4

0.2 A

0.0 T T T T T
-2 -1 0 1 Hoo» 3 4

Pdf

Code output
Hy = 0.9432, Oy = 0.4532
Ho = 15

t statistic= -1.2286
SciPy:t statistic=-1.2286
p value = 0.2866

SciPy:p value = 0.2866

95% C.I. for u
(-0.3149,2.2014)

Fig. 8.9: Top: The pdf of the estimate of the population mean u obtained from the given
5 numbers. The pdf is a ¢ distribution with v = 4, scaled by o ; and centred at u ;. The
domain of the shaded region is the 95% confidence interval of w. The dashed line shows
the hypothetical value pg = 1.5. Middle: The standard ¢ distribution with test statistic # (eq.
8.19). The area of the shaded region equals the p-value. Bottom: Statistical information
displayed by the code ttest.ipynb.

8.4 Student’s ¢ distribution and hypothesis testing 437

ttest.ipynb (for plotting the top panel of fig. and displaying results relevant to the z-test)

| import numpy as np
| import matplotlib.pyplot as plt
:from scipy import stats
For displaying maths in the code output ' from IPython.display import Math, Latex

:%matplotlib
|
I
The data | samples =[0.6517,-0.5602,0.8649,1.8570,1.9028]
N = len(samples)
Sample mean (x) | Smean = np.mean(samples)
Sample variance (s) | Svar = np.var(samples, ddof=1)
Estimate o ¢ "scale = np.sqrt(Svar/N)

|
|
Show output on Jupyter notebook : display(Math(r'\mu_\bar{X} = ' f"{Smean: .4}, "
l r'\sigma_{\bar{X}} = 'f"{scale:.4}"))
|

Plotting top panel of fig. 8.9 :fig, ax = plt.subplots(l,1, figsize=(6,3))
SciPy’s ¢ distribution (scaled and shifted) rv = stats.t(N-1, loc = Smean, scale = scale)
Domain for plotting | xmin, xmax = -2, 4

}x2 = np.linspace(xmin, xmax, 150)
The pdf :yZ = rv.pdf(x2)
Plot the pdf in red rax.plot(x2, y2, 'r")

| ax.set_xlim((xmin, xmax))
ax.set_ylim((0,0.9))
rax.set_ylabel('Pdf')
rax.set_title('Estimate of the population'
' mean (95% C.I. shaded)')

Null hypothesis: u = po = 1.5 :mu@ = 1.5
rdisplay(Math(r'\mu_0 = ' f"{mu®}"))
Plot dotted vertical line at u = uo | ax.axvline (mud, c='k', 1s="--"', lw=1)

"ax.text(mu®, -0.05 , r'$\mu_0%')

SciPy’s one-sample #-test

|
I
|
rres = stats.ttest_lsamp(samples, mu@®)
I
|

't = (Smean-mu@®)/scale

:print(f't statistic= {t:.4f}")

Test statistic (manual)

Test statistic (SciPy) iprint(£'SciPy:t statistic={res.statistic:.4f}’
|

p-value (manual-ish) 'p = 2*(l-rv.cdf(mud))
| print(f'p-value = {p:.4£f}")

p-value (SciPy) : print(f'SciPy:p-value = {res.pvalue:.4f}"')
yprint('")

Display p-value on figure ax.text(1.1*mu®,0.7, f'p = {p:.4}")
|

Report confidence interval 3disp1ay(Latex(‘95% C.I. for μ'))

1 CL = res.confidence_interval(0.95)
print(f' ({CL.low:.4f},{CL.high:.4f})")
|

The confidence interval 3 Xcl = np.linspace(CL.low, CL.high)
Shade the area under the pdf over the C.I. 1 ax.fill_between(Xcl, 0, rv.pdf(Xcl),
l color="plum', alpha=0.7)
plt.grid('on")

! plt.show()

438 8 Statistics

8.5 x? distribution and goodness of fit

a) Let X1, X», ..., X,, be niid random variables drawn from the standard normal
distribution A (0, 1).

Plot the distribution of the random variable 37", Xl.z. Investigate the limit as n — co.
b) I toss four coins simultaneously. Let N be the number of heads shown in each

throw. I repeat this 100 times. The following data for the number of heads was
obtained.

N 0 1 2 3 4
Observed frequency 12 33 36 16 3

Are the coins fair?

In section 8.4, we tested a hypothesis on the parameter of a known distribution (it is
recommended that you work through the previous section first to understand the framework
of hypothesis testing). In this section, we will test a hypothesis concerning the nature of
the distribution itself. In particular, we want to test whether some given data comes from
a certain distribution. We will see that the goodness of fit can be measured by a quantity
called y? (chi-squared).

We use Python to generate n random variates drawn from N (0, 1) and compute the

sum of their squares. When we repeat this many times (say 10%), a distribution of the
random variable X = }'" | X, ,2[is obtained. Fig. 8.10 shows the histograms of normalised
frequencies forn = 1,2,3 and 5.

The following theorem gives the identity of the red curve plotted over each histogram.

Theorem 8.3 Let X1, X, ..., X,, be n random iid variables drawn from the standard normal
distribution N (0, 1). Then, the random variable X = }.7"_| Xl.2 follows the x? distribution
with pdf

n_ —
1,=x/2

1
foo =
0.

, x <0,

, x>0,
(8.20)

where T is the gamma function and the degrees-of-freedom parameter n is positive.

(See [52] for proof.) Note from the power of x that the f is continuous at O if and only if
n>2.

Looking at fig 8.10, we might guess that as n increases the distribution looks more and
more like a normal distribution, with the peak shifting further and further to large x. Indeed,
this follows from the Central Limit Theorem.

Let’s recast the question “are the coins fair?" in the form a hypothesis test. If the
coins are fair, then the number of heads, &, in each 4-coin throw would follow the binomial
distribution B(4, k) with pgyccess = 0.5 (we reserve the symbol p for the p-value to be
calculated later). Here are the null and alternative hypotheses:

Hj : The number of heads follows the binomial distribution with pgyccess = 0.5

H; : The number of heads does not follow the binomial distribution with pgyccess = 0.5.

n n
Distribution of > X2, n=1 Distribution of > X2, n=2
=) =)

0.4

0.3

0.2

0.1

Normalised frequency

0.0

n n
Distribution of > X2, n=3 Distribution of > X2, n=5
' =)

0.4 i=1

Normalised frequency

o
N
IS
o
©
-
o

Fig. 8.10: Histograms showing the distributions of the sum of squares X = '/, Xl.2 for
n=1,2,3 and 5. Each red curve is a)(2 distribution (8.20).

In particular, H; would suggest that the coins are not fair (assuming that no other factors
are systematically affecting the outcome).

We are going to perform a goodness-of-fit test by first creating another row called
“expected frequency” in the given table. Assuming Hy, we expect that out of 100 throws, the
number of throws showing k heads equals

4 k 4k _ 25(4
100(k) (05" (05" = (k)

N 0 1 2 3 4
Observed frequency 12 33 36 16 3
Expected frequency 6.25 25 37.5 25 6.25

Fig. 8.12 shows the observed and expected (normalised) frequencies of the number
of heads. The figure is produced using the code chi2test.ipynb. There are significant
discrepancies between the two distributions, and this might make you suspect that Hy should
be rejected. Let’s see how this can be done using the goodness-of-fit test.

The procedure is similar to the ¢-test in the previous section. We will calculate the test
statistic and the p-value using the significance level @ = 0.05 (i.e. 95% confidence).

440 8 Statistics

Let’s begins by calculating the test statistic given by

8.21
expected ()

c 2
(observed — expected)
=)

1
where c is the number of categories in the data (¢ = 5 in our case). The idea is simple: if y?
is large, then the observed and expected frequencies are very different, meaning that the
hypothetical distribution is no good. We reject Hy.

In our example, we find

, (12-6.25)? L 33— 25)2 L (36— 37.5) L (16— 25)2 L G- 6.25)
625 25 375 25 6.25
=12.84.

The reason we have used the same symbol)(2 for both the test statistic (8.21) and the
probability distribution (8.20) is due to the following theorem.

Theorem 8.4 (Convergence to y?) Consider a random sample of size n drawn from a
population. Let O; and E; be the observed and expected numbers of samples that are in
category i (wherei =1,2,...,c). As n — oo, the distribution of the statistic

i (0; - E;)?
= E

converges to the x? distribution (8.20) with ¢ — 1 degrees of freedom.

This theorem is due to Karl Pearson (1857-1936), a British polymath and influential
statistician whose work has shaped the way statistics is applied in modern research. Sadly,
like his mentor Francis Galton, Pearson saw scientific justification in eugenics and worked
fervently to promote it.

But back to our problem. With 100 samples, we can use Theorem 8.4 to determine how
large the test statistic x> would have to be for Hy to be rejected with significance @ = 0.05.
We simply determine the critical value of y? such that the area under the distribution (with
4 degrees of freedom) from y? to co equals 0.05. This rejection region is shown below.

Rejection region, a = 0.05

0.20

0.15
©
50104

0.05 4

0.00

Fig. 8.11: The y? distribution with 4 degrees of freedom. The shaded rejection region (with
infinite tail) has area @ = 0.05, and the critical value is y2; ~ 9.4877.

The critical value is at x2; ~ 9.4877. We can check this with SciPy as follows:

8.5 x? distribution and goodness of fit 441

from scipy import stats
rv = stats.chi2(4)

crit = rv.ppf(0.95)
print(£f'{crit:.4£f}")

Output: 9.4877

Since our test statistic x> > y2. it lies in the rejection region, and therefore Hy is
rejected at 95% confidence.

Note the difference between the rejection regions in figs. 8.7 (the ¢-test) and 8.11 (the
- test). The former is a two-tailed test whilst the latter is a one-tailed test.

Finally, we may wish to calculate the p-value associated with the null hypothesis. The
p-value equals the area in the tail of the pdf bounded by the test statistic y?:

P=f2 Jf(x)dx
X

=F(x?) (where F is the cdf)
=0.0121 (4 dec. pl.)

Since the p-value is a wee value (p < 0.05), we reject Hy. The p-value tells us that under
the null hypothesis, the probability of observing our data (or a more extreme dataset with
an even larger y?) is only 1.21%. We conclude that, at 95% confidence, the coins are not all
fair.

Observed vs expected frequencies, p=0.0121

Observed
0.35 1 Expected

0.30 1

0.25 A

Normalised frequency

©c © ©c ©

o = [l N

u o] o
1 1 1 1

0.00

0 1 2 3 4
No. of heads

Fig. 8.12: Histogram comparing the observed and expected (normalised) frequencies
assuming the binomial distribution with n = 4 and Pr(heads) = 0.5. The figure is produced
by chi2test.ipynb.

442 8 Statistics

x? test in SciPy

SciPy can help us quickly calculate the test statistic y? and the p-value using the syntax
shown in the code chi2test.ipynb. The key syntax is the line

res = stats.chisquare(f_obs, f_exp)

where f_obs and f_exp are the observed and expected frequencies. We then report the x>
value using res.statistic and the p-value using res.pvalue. Be careful to distinguish
between SciPy’s syntax chi2 (the distribution) and chisquare (the test). The code output
shown below shows that SciPy’s results agree with our calculations.

Code output

chi2 statistic = 12.8400
SciPy: chi2 statistic = 12.8400

p-value = 0.0121
SciPy:p-value = 0.0121

DiscussioN

* Practical advice and tea-tasting. Since theorem 8.4 only holds in the large sample
limit, many authors recommend not using the y? test if the sample size is less than 50.
In addition, if the expected frequencies are too small (< 5), it is recommended that the
data in different categories be combined to increase the frequencies.

For a test than can deal with small samples, see Fisher’s exact test, devised by the
eminent British statistician Sir Ronald Fisher (1890—1962) (who unfortunately also
worked on eugenics). Fisher was motivated to statistically test whether one Dr Muriel
Bristol was really able to taste if tea or milk was added first to a cup of tea. See [181] for
a readable historical review, or [77] for a more mathematical account of this experiment.

+ The Gamma distribution. The y? distribution is a special case of the gamma distri-

bution with pdf
iy = r/ga)xa_le_'gx’ x>0,

and f(x) = 0 for x < 0. The gamma distribution has two parameters @, 8§ > 0.
When (o, B) = (n/2,1/2), we recover the XZ distribution. The gamma distribution
is a large family of distributions, finding applications in various areas from biology
(e.g. modelling the distribution of protein concentration in cells [69]) to astronomy
(modelling the luminosity distribution of galaxies [61]).

8.5 x? distribution and goodness of fit

443

chi2test.ipynb (for plotting fig.

Observed frequencies

Number of categories
Sample size (no. of throws)

Expected frequencies

2

Test X

tion)
SciPy’s goodness-of-fit test

statistic (manual

Report test statistic
Report SciPy’s test statistic

x?2 distribution
Read p-value from cdf

Report p-value
Report SciPy’s p-value

Let’s plot pairs of bars side-by-side

Width of each histogram bar
Normalised observed frequencies
(blue bars, offset left)
Normalised expected frequencies
(orange-ish bars, offset right)

and reporting the results relevant to the y? test)

 import numpy as np

| import matplotlib.pyplot as plt
:from scipy import stats
1%matplotlib

I

f _obs = np.array([12, 33, 36, 16, 3])

len(£f_obs)
sum(£f_obs)

np.arange (C)
_exp = Nsmpl*stats.binom.pmf(X, C-1, 0.5)

calcula-| chisq = sum((f_obs - f_exp)**2/f_exp)

res stats.chisquare(f_obs, f_exp)

: =
lprint(f'chiz stat. = {chisq:.4£f}")
print(£'SciPy: chi2 stat.={res.statistic:.4f}")
:print(")
|
'rv = stats.chi2(df = C-1)
'p = 1 - rv.cdf(chisq)

|

:print(f'p—value = {p:.4f}")
1print(f'SciPy:p—va1ue {res.pvalue:.4f}")

:fig, ax
iwidth = 0.3
"ax.bar(X - width/2, f_obs/Nsmpl,

width = width, color 'skyblue')
bar(X + width/2, f_exp/Nsmpl,

width = width, color = 'coral')
.set_title('Observed vs expected '

f'frequencies, p = {p:.4£f}")

x.set_xlabel('No. of heads')
x.set_ylabel('Normalised frequency')

plt.subplots(l,1, figsize=(6,4))

ax.

|
I
|
|
I
|
| ax
|
I
|
|
I
|
|

! plt.legend(['Observed', 'Expected'])
plt.grid('on')
i plt.show()

444 8 Statistics

8.6 Linear regression and Simpson’s paradox

Download the files datasetA.csv and datasetB.csv from the book’s website“.
In each data file, there are 500 rows of two comma-separated numbers x and y. Here
are the first few entries in each file.

datasetA.csv datasetB.csv
3.0468,0.8157 —0.2851,5.0319
4.6406, —2.0899 -4.0064,1.1191
2.8146,-1.5743 3.1098, 4.9286

2.7879,-2.8717 —1.4257,1.8992

Find the equation of the regression line y = ax + S for each of the following
datasets.
a) dataset A, b) dataset B, ¢) the combined dataset.

“https://github.com/siriwarwick/book/tree/main/Chapter8

Linear regression involves fitting a curve through scatter points in order to understand
the trend in the data. For example, suppose we have data points (x;, y;) in R?. We might try
to fit a straight line y = ax + 8 through the data as ‘best’ as we can (e.g. by minimising
some function measuring the mismatch between data and model).

The linear part of linear regression refers to the fact that the model can be regarded as
a linear combination of the parameters (@, in the case of a straight line). In this sense,
fitting a polynomial y = ¥ a x* to the data is also regarded as linear regression.

The regression part refers to the phenomenon of regression to the mean (as coined by
Galton). This will explained later in the discussion section.

In this section, we try our hand at handling data contained in files using Pandas, and
performing linear regression on the datasets. We will also discuss Simpson’s paradox in
which an apparent trend seen in various datasets vanishes or reverses when the datasets are
combined.

Least-square method

Let’s consider the method of least squares which will give us the equation of the regression
line. Suppose the line

y=ax+p
is drawn through N data points (x;, y;), where 1 <i < N. In the ideal situation where the
line goes through all data points, we would be able to solve the following system of linear
equations exactly for (a, 8)

https://github.com/siriwarwick/book/tree/main/Chapter8

8.6 Linear regression and Simpson’s paradox 445

ax; + =y
ax,+ =y

Fig. 8.13: The least-squares method. The coefficients @, § minimise the residual sum of
squares SSps = X; £7.

Eq. 8.22 can be expressed in matrix form as

Minimise SS,es :=|Ax — b|?, (8.23)
x1 1 Y1
X2 1 a y2
where A =| . , X= , b= .1.
: B :
X 1 Yn

Although we have a situation where the linear system Ax = b cannot be solved exactly,
we can still find the best approximation X (the least-squares solution) which minimises
|Ax — b|2.

Linear algebra gives us an elegant solution (see [194] for proof).

Theorem 8.5 (Least-squares solution) Suppose we have a system AX = b where A is an
m X n matrix withm > n and rank A = n. The least-squares solution X is unique and satisfies

AT A% = ATp. (8.24)

There is a nice geometric interpretation of the least-
squares solution X in the language of linear algebra. If
vector b is not in the column space of A, the approximate
solution X represents the projection of b onto the column
space. The picture on the left represents this situation
in 3D. The least-squares solution X is the vector joining
O to the point on the plane closest to the point B, and
the minimum error (min SS;) is the corresponding
shortest distance.

The code below reads in data from a file and stores it as a dataframe. The least-squares
solution is then computed by using SciPy’s 1inalg.solve to solve the linear system (8.24).
See §5.4 for our earlier discussion on solving linear systems.

Important: make sure the csv file is in the same folder as the ipynb file which reads it.

Reading data file and computing the least-squares solution

rimport numpy as np
| from scipy import linalg as LA
'import pandas as pd

df = pd.read_csv('datasetA.csv', sep=',"',
header=None)

x = df.values[:,0]

y = df.values[:,1]

ones = np.ones_like(x)

Read in data in csv file as a dataframe

I
|
I
|
:
x and y coords of the data points l
I
|
I
|

Construct matrix A 1A = np.column_stack((x , ones))
Solve eq. 8.24 alpha, beta = LA.solve(A.T@A, A.T@y)
Display result to 5 dec. pl. ! print(f'alpha={alpha:.5f}, beta={beta:.5f}"')

Here are the code outputs for the values of the least-squares coeflicients for dataset A,
dataset B and the combined dataset.

For dataset A : alpha 0.64874, beta -4.90148
For dataset B: alpha = 0.59491, beta = 3.88723
-0.28755, beta = 0.84805

For combined dataset : alpha

8.6 Linear regression and Simpson’s paradox 447

Simpson’s paradox

The code regression.ipynb produces fig. 8.14 which shows the datasets in the x-y plane
along with the regression lines. The latter are conveniently plotted using the £it function in
NumPy’s polynomial library which we previously used in §7.10. You should verify that
NumPy’s values for @ and 8 agree with the solutions we obtained using matrices.

The red and blue clusters of points both show a trend in which y increases as x increases
(i.e. x and y are positively correlated). However, when the dataset are combined, the data
shows negative correlation. This is Simpson’s paradox, named after the British statistician
Edward Hugh Simpson (1922-2019). The ‘paradox’ here is that a trend seen in several
datasets can disappear or reverse when the datasets are combined.

This phenomenon has led to misunderstanding and misuse of data. For instance, the
reduced death rate in various age groups due to vaccination against Covid can be reversed
in the data for the total population>. Simpson’s paradox cautions us to be wary of inferring
information from a large datasets in which hidden variables have been ignored.

In exercise 5, we will express Simpson’s paradox as a mathematical statement involving
inequalities.

datasetA ~
datasetB | ~7-37 e e combined
-5 0 5 10 -5 0 5 10
X X

Fig. 8.14: Left: (x, y) data from the files datasetA.csv (red cluster) and datasetB.csv
(blue), together with the regression lines. Right: Simpson’s paradox: Combining the
datasets gives a regression line with the opposite trend. The figure is produced by
regression.ipynb

Finally, you may be interested to know that the data points were generated by sampling
500 pairs of numbers from a bivariate normal distribution with different covariance matrices.
This will all be investigated in the next section.

Shttps://covidactuaries.org/2021/11/22/simpsons-paradox-and-vaccines/

https://covidactuaries.org/2021/11/22/simpsons-paradox-and-vaccines/

448 8 Statistics

DiscussioN

¢ Correlation coefficient r. Note that in fig. 8.14, the combined dataset has a larger
spread and shows a ‘weaker’ linear trend than that in the individual datasets.
The strength of conformity of a dataset to a linear trend can be measured by the
correlation coefficient r (sometimes called Pearson’s correlation), defined as

- Sixi =X)(yi =)
Vi =022 (i —)2

where X and y are the sample means of x; and y;. The sign of r tells us whether x and
y are correlated or anti-correlated, and the magnitude measures the strength of a linear
relationship. It can be shown that —1 < r < 1, with r = +1 if the datapoints line up
perfectly in a line.

A bit of algebra shows that the slope @ and intercept S of the regression line are related
to r by

(8.25)

Sy _ _
a=r—, B =y —ax, (8.26)
Sx
where s, and s, are the sample standard deviations. Keep in mind though that r can be
calculated without having to draw any line through the data points.

* Regression to the mean. Substituting eq. 8.26 into the equation of the regression line,
we have
y—y (x -)E)
=r .
Sy Sx

Suppose that x is one standard deviation away from the mean (x = ¥ + s,). The equation
of the regression line tells us that y will be r standard deviations away from j. Unless
the data points line up a perfect line, r will be a small number. Thus, this observation
shows that the predicted value of y is closer (in unit of standard deviations) to the mean
v than x is to X. This regression to the mean (as observed by Galton) explains the origin
of the term regression.

+ Coefficient of determination R>. Once we have a line through the data points, we
might want to measure how well the line fits the data. More precisely, we ask: does
introducing a linear relationship between x and y help to explain the variation in the y
values in the data?

If we hadn’t introduced a linear relationship between x and y, we might measure
the variation in y by the total sum of squares around the sample mean j of the n
y-coordinates y;.

n
SSiot = Z()’i - y)2~
i=1

However, with a linear relationship § = mx + c, the variation in y about the line can be
measured by the residual sum of squares.

SSres = Z(yl - 5))2
i=1

The coefficient of determination, RZ, is the fractional difference in the variation in y
due to introduction of the linear relationship.

8.6 Linear regression and Simpson’s paradox 449

— SStot - SSres =1 SSres

R?: — .
SStot SStot

(8.27)

Note that R> can be measured using any line through the data, not just the regression
line. A perfect fit gives R? = 1. A horizontal line drawn at y = ¥ gives R? = 0. In fact,
R? can be negative for a particularly terrible fit to the data (e.g. when a line with a
negative gradient is drawn through dataset A).

Exercises 6 and 7 ask you to measure r and R in the data shown in fig. 8.14.

* Anscombe’s quartet. Given a dataset, the equation of the regression line, and additional
measures like i, o, r and R?, still give us an incomplete understanding of data in general.
Visualisation is an indispensable part of data analysis, as demonstrated by the famous
Anscombe’s quartet, which comprises 4 very different datasets with identical statistical
measures. You can explore these intriguing datasets yourself with Seaborn®.

6 https://seaborn.pydata.org/examples/anscombes_quartet.html

https://seaborn.pydata.org/examples/anscombes_quartet.html

450 8 Statistics

regression.ipynb (for plotting fig.

| import numpy as np
| import matplotlib.pyplot as plt
For plotting regression lines :from numpy .polynomial import Polynomial as P
rimport pandas as pd
:%matplotlib
|

Create 2 plots side by side fig, (axl,ax2) = plt.subplots(1,2,figsize=(8,4))

Read in csv file as a dataframe dfl = pd.read_csv('datasetA.csv', sep=',"',
header=None)

x1 dfl.values[:,0]

yl = dfl.values[:,1]

axl.plot(x1l,yl,'.r")

x and y coords of dataset A

Left panel: Scatter plot (red dots)

Repeat for dataset B df2 = pd.read_csv('datasetB.csv', sep=',"',
header=None)
1x2 = df2.values[:,0]
y2 = df2.values[:,1]
Plot as blue dots axl.plot(x2,y2,"'.b")

axl.legend(['datasetA', 'datasetB'],
loc="lower right')

Insert legend

Gradient and y-intercept of line 'polyl = P.fit(x1l, yl1l, 1).convert()
1xfitl = np.linspace(min(x1) ,max(x1))
yfitl = polyl(xfitl)

Overlay the regression line in black raxl.plot(xfitl, yfitl, 'k')
|

Repeat for dataset B :polyZ = P.fit(x2, y2, 1).convert()
1xfit2 = np.linspace(min(x2) ,max(x2))
yfit2 = poly2(xfit2)
:axl.plot(xfitz, yfit2, 'k')
|
1 axl.set_xlabel('x")
| axl.set_ylabel('y")

! axl.grid('on')
|

x and y coords of combined dataset X = np.concatenate((x1,x2))
lY = np.concatenate((yl,y2))
Right panel: plot as grey dots |ax2.plot(X,Y,".", c="gray")
Insert legend : ax2.legend(['combined'], loc='lower right')

|
|Poly = P.fit(X, Y, 1).convert()
:Xfit = np.linspace(min(X) ,max (X))
1Yfit = Poly(Xfit)
Plot regression line for combined | ax2.plot(Xfit, Yfit, 'k")
dataset |
} ax2.set_xlabel('x")
: ax2.grid('on')

i plt.show()

8.7 Bivariate normal distribution 451

8.7 Bivariate normal distribution

Let X; i = 1,2,...,n)berandom variables with zero mean. We say that the random
variables X; follow the multivariate normal distribution if their joint pdf is given by

FX) = —lez—lx), (8.28)

1
———————¢X
VQ2r)r detX i (2

T
where X = (X 1 Xo ... Xn) . The covariance matrix X is defined as
2 = Cov(Xy, Xj) = E[(Xi — px,)(X; — pux;)]

Since the variables have zero mean, X;; = E[X; X;].
In 2 dimensions (n = 2), f is said to be the pdf of the bivariate normal distribution.

LetX = (X Y). The covariance matrix can be expressed as

2
Z_(O'X pUny)
= b} s
PO X0y O'Y

where 03, and o3 are the variances of X and Y. The correlation p is given by

Cov(X,Y)

= WVar(X)Var(Y)

and satisfies -1 < p < 1.
a) If ox = oy = 1, investigate the effect of p on the shape of the pdf.

b) It is known that the file datasetA.csv are random numbers drawn from a
bivariate normal distribution. Estimate ux, uy and X.

Two random variables X and Y are said to be jointly continuous if there exists a non-
negative function f : R — R such that the probability that (X,Y) € A C R? is given
by

Pr((X,Y)eA):ff f(x,y)dxdy.
A

f is called the joint or bivariate probability distribution.

The bivariate normal distribution (8.28) is applicable when X and Y have zero mean. If
X and Y have nonzero mean ux and uy, we simply apply the translation X — X — ux and
Y — Y — uy to the pdf (8.28). The resulting pdf can be written explicitly as

1 1
f(X,Y) = exp (— 7% —2pZxZy + Z2) (8.29)
2noxoy1 - p? 2(1-p%) [X Y]
X - Y -
where Zx = 'uX, Zy = J.
ox Ty

Compare this with the pdf for the univariate normal pdf given by

1 _
g(X) = exp (——ZZ) where Z = al ﬂ. (8.30)

a

m/_

452 8 Statistics

We see that when X and Y are uncorrelated (p = 0), the bivariate normal pdf is given
by f(X,Y) = g(X)g(Y). This also means that X and Y are independent” random variables
(we defined this in eq. 7.33).

Here is a comparison between the univariate and bivariate normal pdfs:

Univariate normal Bivariate normal
Peak position U (ux, 1y)
‘Shape’ parameters o oOx,0y, P
Normalisation fR fx)dx =1 ffRZ flx,y)dxdy =1

The bivariate normal distribution is a very useful tool for data analysis. For instance, if X
and Y are the height and weight of 40-year old women in England, each variable would very
likely follow a normal distribution with its own mean and variance. However, modelling
them jointly as a bivariate normal distribution gives us extra information on how much
height and weight are correlated. This information is captured by the correlation coefficient
o

You might have noticed that the definition for the correlation p looks very similar to the
coefficient of correlation r (eq. 8.25) for two sets of samples x and y. Indeed they are the
same concept: we use p to for measuring correlation between two populations, and r for
two sets of samples.

Let ux = uy =0and ox = oy = 1. The effect of p on the shape of the bivariate pdf
is explored using the code bivariate.ipynb. By varying p from —1 to 1 using a slider,
we see the changes in the pdf shown in fig. 8.15. In the figure, we also show the contours of
the pdf on the x-y plane.

Some observations from the figure:

* When p = 0, the pdf has a rotational symmetry about the z-axis. This is because
when p = 0, we have z = f(X,Y) o« exp(X? + Y?), which can be transformed using
cylindrical coordinates (r, 6, z) to z o exp(r?). There is no 6 dependence, meaning
that the pdf looks the same in all directions. The contours (curves of constant z) are
therefore concentric circles X? + Y2 = constant.

* When p > 0, the pdf is stretched in the direction y = x and squashed in the direction
y = —x. The contours are ellipses with principal axes along y = +x direction. Higher
values of p stretch/squash the ellipse further.

When p < 0, the stretching and squashing effects are reversed. The pdf and contour
ellipses are elongated in the direction y = —x.

Here is a useful result to help us understand why the stretching and squashing occur in
these directions.
Lemma (Quadratic form of an ellipse) Let M be a real symmetric 2 X 2 matrix with
eigenvalues A, 4o and the corresponding eigenvectors ej,e;. Let X = (;C) Then, the

equation x” Mx = constant describes an ellipse centred at the origin with principal axes
along e, e;. Furthermore, the ratio of the principal axes is 1/V4; : 1/V 5.

7 In general, however, two random variables can be uncorrelated but not independent. For example,
X =N(@O1)andY = X2

8.7 Bivariate normal distribution 453

The expression x’ Mx is called a quadratic form. We give the proof of the above lemma
in the discussion.
Note that the contours of the bivariate normal pdf is z = constant, i.e. exp (—%XTZ’IX) =

constant, which implies that x!'~1x = constant.
Assuming that ox = oy = 1, the covariance matrix X is

s=(1F) = 1L (1 7).
pl 1-p*\-p 1

Note that ™! is a real symmetric matrix. Its eigenvalues and eigenvectors are

1 1 1 1 1 -1
:—7e = . = ’e = .
1 T+, 1 1 2 5 2 1

According to the Lemma, x’ £~'x = constant describes an ellipse with principal axes e;
and e; (i.e. y = +x). Furthermore, the ratio of the principal axes is /1 + p : \/1 — p.

For example, with p = 0.5, the contours are ellipses with axes ratio V3 @ 1. With
p =—0.8, theratiois 1 : 3.

From datasetA. csv, we find the following sample statistics.

% =2.9994 52 =52191
§=-29557 s, =4.5409
r = 0.6955

We then insert these values into the estimator, S, for the covariance matrix X.

s::(53 rsxsy):(5.2191 3.3859)'

rsxsy s 3.3859 4.5409

Alternatively, we can also obtain the matrix S using scipy.stats.Covariance or
numpy . cov.

Fig. 8.16 shows the data from datasetA.csv along with the 1, 2, and 30 contours. For
each ellipse, the lengths of the semi major/minor axes are n/+/A and n/+/A>, aligned along
the directions of the corresponding eigenvectors e; and e,. Unlike the univariate normal
distribution, the 1,2,30" contours do not correspond to the 68-95-99.7% confidence level.
In exercise 8, you will calculate the corresponding percentages for the bivariate normal
distribution.

454 8 Statistics

2D projection

0.30
0.25
T 0.20
1 015
0.10
0.05
0.00

-2.0 -15 -10 -05 00 05 1.0 15 2.0
X

O 0
-1 0 1
2D projection

2.0

1.5
0.30 1.0
0.25
0.5
0.20
T 015 0.0 >
T 0.10
0.05 =03
0.00 N
) .
-15
-2.0

-2.0 -1.5 -1.0 -05 00 05 1.0 15 20
X

0.5

p]
-1 0 1
2D projection

2.0
15
7 0.30 1.0
1025
0.20 0.5
Ta.1s
“10.10 00 >
0.05 .
0.00 -
2 -1.0
y -1.5
2.0

-2.0 -1.5 -1.0 -05 0.0 05 1.0 15 2.0

X

p m— 1 -0.8
,

-1 0 1

Fig. 8.15: Bivariate normal distribution with p = 0,0.5 and —0.8 (top to bottom) with
ol = 0'5 = 1. Each pair of figures (with p slider) is produced by the codebivariate. ipynb.

X =

The pdfs are shown on the left, and their projections onto the x-y plane on the right.

8.7 Bivariate normal distribution 455

Dataset A with confidence contours

-10 1

Fig. 8.16: Data from datasetA.csv with 1, 2 and 30 confidence ellipses.

We can now reveal that the code used to generate datasetA.csv (and writing the data
to file) is given below.

Writing pandas dataframe to csv file

import pandas as pd
from scipy import stats

mean = [3,-3]
Sigma = [[5,3],[3,4]1]
rv = stats.multivariate_normal (mean, Sigma)

S = rv.rvs(500)

pd.DataFrame(S).to_csv("filename.csv", index=False,
header=None, float_format='%.4£f")

(choose your own filename)

The main takeaway message in this section is that for bivariate data, the covariance
matrix £ encodes the ‘shape’ of the data. For a more complete mathematical treatment of
the multivariate normal distribution, see [203].

DiscussioN

* Diagonalisation of quadratic form. Let M be a real, symmetric 2 X 2 matrix with

nonzero eigenvalues A1, A7, and let x = (i) Here is the proof that xI' Mx = 1is an

ellipse with axes ratio 1/+/A1 : 1/4/25.
Since M is a real, symmetric matrix, the spectral theorem (thm. 5.5 in §5.7) tells us

that M = PDPT, where the columns of P are the eigenvectors of M, and D = (/})1 /?)
2

The key observation is that, using the eigenvectors as the basis, the quadratic form has
Nno Cross terms.

u=PTx
X Mx=1—>u"Du=1 /llu% + /lzu% =1.

Thus, in the eigenbasis, we see an ellipse whose ratio of the principal axes is 1/ :

1/V2,.

456 8 Statistics

* Marginal distribution. Suppose that random variables X, Y follow a bivariate distri-
bution f(X,Y). A marginal distribution is obtained when a variable is integrated out
of the joint pdf. For instance, the pdf of the marginal distribution of X is obtained by
integrating out the y variable, i.e.

Fx(x) = fR Fxy)dy.

(We say that Y is marginalised.) It can be shown that if X, Y follow that bivariate
2
normal distribution with ux = uy =0and X = (Ix P 0')(20')/)’ then the marginal
pPOxOy o Y
distributions of X and Y are univariate normal distributions, namely, N (0, 0'§() and
N, O’%,) respectively (the correlation information is lost).

* Correlation and causation. Much has now been discussed about the correlation
between two variables, but it is worth remembering the old adage that correlation does
not imply causation. Two variables could be positively correlated by sheer coincidence,
or the correlation may have been caused by a hidden ‘confounding’ variable. Ref. [159]
gives and in-depth yet accessible discussion on establishing causation statistically. See
this link® for a light-hearted take.

8 https://xkcd.com/552/

https://xkcd.com/552/

8.7 Bivariate normal distribution

bivariate.ipynb (for plotting fig.)

Specity the correlation coefficient p. . .

and the variances o2, , o2
x Ty
oOxOy

We’ll plot 2 figures side by side
A little space at the bottom for a slider

Left plot: 3D surface of the pdf

Right plot: contours on the x-y plane
Equal aspect ratio for the right plot

Set domain for the 3D plot

Plotting 2 graphs given p
Covariance matrix X

The bivariate normal pdf given (X, Y)

Specify colormap for both plots
Plot the surface

Set number of contours
Plot the contour ellipses

Slider dimensions and position
Create p slider

-l<p<l1

Add ticks to slider manually
Initialise plots at p = 0

Update plots if slider is moved

Get new p value from slider
Replot

457

| import numpy as np

| import matplotlib.pyplot as plt

| from matplotlib.widgets import Slider

1 from scipy.stats import multivariate_normal
\%matplotlib

|

| rho

=0.5
S2=1,1

= np.sqrt(S1*S2)

= plt.figure(figsize=(10,6))

.subplots_adjust(bottom=0.15)

= fig.add_subplot(121, projection='3d"')
= fig.add_subplot(122)

.set_box_aspect (1)

.set_title('2D projection')
.yaxis.tick_right(Q);
.yaxis.set_label_position('right')
.set_xlabel('x"'); ax2.set_ylabel('y')

xplot = np.linspace(-2,2)
:yplot = np.linspace(-2,2)

X, Y = np.meshgrid(xplot,yplot)
|

I
|
I
|
|
I
|
|
I
|
I
|
|
I
|
|
I
|
I
|
|
I
|
|
I
|
I
|
|
| axt
|
I
|
I
|
|
I
|
|
I
|
I
|
|
I
|
|
I
|
I
|

i rho_
! plt.

rho_

axt.
axt.

def plots(rho):

Cov = [(S1, rho*S12), (rho*S12, S2)]

rv = multivariate_normal (cov = Cov)

Z = rv.pdf(np.dstack([X,Y]))

cmap = 'rainbow'

plotl = axl.plot_surface(X, Y, Z,
alpha=0.9, cmap=cmap)

axl.set_zlim(0®, 0.3)

axl.set_xlabel('x")

axl.set_ylabel('y")

levels = np.linspace(®,np.max(Z),15)
plot2 = ax2.contourf(X, Y, Z,

levels = levels, cmap=cmap)
return plotl, plot2

= plt.axes([0.34, 0.1, 0.4, 0.03])
slide = Slider(axt, r'ρ',

-1, 1, valstep=0.01, valinit=0)
add_artist(axt.xaxis)
set_xticks([-1,0,1])

plots(0)

def update(val):

axl.clear()
rho = rho_slide.val
plots(rho)

slide.on_changed(update)
show()

458 8 Statistics

8.8 Random walks

A particle is initially at xo = 0. In each time step, it moves left or right by a distance
1 unit with equal probability. Find the expected value of the distance from the origin
after N steps.

Generalise the problem to two dimensions.

A random walk is a sequence (X) where Xy = Zf\il g; and {g;} are iid variables.
Random walks are a type of stochastic process which occurs in everyday life - from
diffusion of fluids to the fluctuation of stock prices. For introductions to stochastic processes,
see [21,158,178].

In this example, we will study a simple stochastic process called the symmetric random
walk, defined by

N
XN = Z g;, where g; = =1 with equal probability.

i=1

In other words, {g;} are iid random variables drawn from a Bernoulli distribution with
Pr(e; = 1) =Pr(e; = —1) = 0.5 (i.e. a coin toss). We can think of Xy is the displacement
of the particle with respect to the origin at step N.

This setup might remind you of the Galton board (§7.8) where X,, represents the
horizontal displacement of the ball after encountering n pegs. Here we have reduced the
problem to 1 dimension, which allows a clearer visualisation and statistical analysis. We
will also see how this approach allows the problem to be generalised to any dimensions.

Firstly, as in the Galton board setup, we can apply the Central Limit Theorem (§8.3) to
g, and deduce that the random variable X / VN , in the large N limit, follows the standard
normal distribution N (0, 1). Equivalently, X5 ~ N (0, VN) in the large N limit.

However, the question asks for the distribution of the distance | Xy | rather than the
displacement. It is not immediately clear what this distribution is. Let’s see what Python
can show us.

Simulating random walks

The code randomwalk.ipynb simulates the 1D random walk problem and produces
trajectories and the mean-distance plot shown in fig. 8.17. The key syntax in the code is the
function np . cumsum which gives the cumulative sum of Bernoulli random variables chosen
from {1, —1}. This gives us an array X of the particle’s displacement at the Nth step.

103 trajectories, evolved up to 500 steps, are shown in the left panel of fig. 8.17. They
appear to form a cluster with a parabolic shape. To see why, let’s calculate the mean and
variance of Xy .

N
E[Xn]=) Elzi]=0.
i=1

N

Var(Xy) = i Var(s;) = i E[£?] = Z 1
i=1 i=1

i=1

N.

8.8 Random walks 459

We expect most of the trajectories to stay within the 30~ boundary, which is the parabola
f(N) = +3VN , shown as dashed lines. A little modification to the code shows that the
trajectories stay within the 30~ boundary ~ 99.7% of the time (exercise 9).

The jagged blue curve in the right-hand panel shows the mean of | X | taken over the
10 trajectories. The curve is well approximated by the function V2N /. We will see where
this comes from shortly. It is interesting that such a simple, predictable average should arise
out of a bunch of seemingly random trajectories.

The y distribution

The following theorem tells us about the distribution of the mean distance at step N of a
random walk.
Theorem 8.6 (The x distribution) Let Z1, Z, ..., Zx be iid random variables drawn

from N (0, 1). Then, the random variable Sy = \/le + Z22 +oc 4+ Z,% follows the x (chi)
distribution with k degrees of freedom. Its pdf given by

2
k=1 ,-x%/2

fx) = m,

(x>0) (8.31)

and f(x) =0 for x <O.
A little algebra shows that the mean and variance of the variable Sy is

\51“ ((k+1)/2)

— 1 2
T2 Var(Sx) = k — (E[Sk])”. (8.32)

E[Sk] =

Note that with 1 degree of freedom, E[S|] = E[|Z,]] = \/z/l"(l/Z) =2/x.

Using this observation, we deduce that the mean of the variable S| = Xy /\/ﬁ |
approaches V2/x in the large N limit; that is, E[|Xx|] ® V2N/x. This proves the behaviour
seen on the right of fig. 8.17.

Another interesting distribution emerges when we consider the time that the particle
spends in the region x > 0. This leads to the astronishing arcsine law explored in exercise 9.

2D random walk

Let’s generalise the problem to 2 dimensions. Starting at the origin (0, 0), the particle
chooses the displacement randomly from {+1} in both the x and y directions. This means
that at the next step, the particle will be at either (1, 1), (-1, 1), (1,—-1) or (=1, —1). These
trajectories are shown in fig. 8.18 in which we simulated 103 trajectories up to N = 500
steps.

Let Xy = Y = XV, . The distance D from the origin at step N is therefore given by

i=1
_ [x2 2
D= Xy +Yy.
Theorem 8.6 tells us that mean of the variable Sp = /(va + YI%,) /N =D/ VN approaches
that of the y distribution with 2 degrees of freedom, namely, E[S,] = V2I'(3/2) = V7 /2.

460 8 Statistics

In other words, E [D] ~ yn N /2. This is corroborated by Python: the mean distance plot on
the right of fig. 8.18 agrees well with our theoretical estimate.
In addition, from eq. 8.32 the variance of S is given by

Vs
Var($,) =2 — rh

This implies that the standard deviation of the distance D is given by o ~ 1.1VN. We
draw the 30 circle around the cluster of trajectories on the LHS of fig. 8.18. As expected,
this encompasses almost the entire cluster of trajectories. In fact, Python tells us that the
trajectories stay within the 30~ boundary ~ 99% of the time (exercise 9).

A nice takeaway from all these observations about random walks is that, although the
trajectories appear random, statistics reveals the hidden order and predictability to us.

DiscussioN

* A drunk bird. What is the probability that a random walk returns to the origin? It
turns out that the 1D and 2D random walks are recurrent, meaning that they return to
the origin with probability 1. However, in 3 dimensions and higher, random walks are
transient, meaning that the probability of returning to the origin is strictly less than 1.
This inspired the mathematician Shizuo Kakutani to quip that “a drunk man will find
his way home, but a drunk bird may get lost forever".

¢ Wiener processes. The random walks that we studied in this section are discrete in
time and space. In the continuous limit, the phenomenon is known as Brownian motion,
or, a Wiener process, W(t), defined by the following properties:

1. W) =0;
2. W is continuous in ¢ with probability 1;
3. W(t+s)—W(t) ~N(,s) forany t > Oand s > 0.

The Wiener process plays an important role in physics [141] and mathematical
finance [43].

Norbert Wiener (1894—1964) was an American mathematician who published pioneering
work on stochastic processes and analysis. His work was partly inspired by the
observation of pollen motion in water by the Scottish botanist Robert Brown (1773—
1858).

—— Simulation

17.5 1
— V2N/n

60

40

12.54
20

10.0 1

7.5 1

Displacement from the origin
o
Mean distance from the origin

5.0 1

2.5 1

T T T T 1 0.0 T T T T
0 100 200 300 400 500 0 100 200 300 400 500

Number of steps N Number of steps N

Fig. 8.17: Random walk in 1 dimension generated by randomwalk.ipynb. Left: 103
trajectories, all starting from the origin, evolved up to N = 500 steps. The dotted line shows
the contour +3VN. Right: The mean distance (absolute value of the displacement) at step

LR AN o IR TS TRNSER NSNS TR SRS S | S S 1 S Al Y | ARTTZ o+ -2
80
—— Simulation
60 - 254 —— VnN/2
40 £
g 20
5]
1]
20 A <
£
g 15 A1
> 01 ©
o]
c
it
~201 £ 10/
c
3
—40 4 =
5 -
—60
-80 T T T 0 T T T T
-80 -60 -40 0 20 40 60 80 0 100 200 300 400 500
X Number of steps N

Fig. 8.18: Random walk in 2 dimensions. Left: 10° trajectories, all starting from the origin,
evolved up to N = 500 steps. The dotted line shows the circle with radius 30-. Right: The
mean distance from the origin at step N. The blue simulation points are well approximated

by E [,/XIZV + YI\Z,] = \/nN/2 shown in red.

462

randomwalk.ipynb (for plotting fig.

8 Statistics

Number of trajectories
Number of time steps per trajectory

Initialise mean distance in each step

Plot 2 figures side-by-side
Left plot: Colourful random walks

Assign trajectories different colours

For each trajectory,
choose Nsteps random integers (0 or 1)

Re-scale them to —1 and 1
Summing cumulatively

Pre-pend the Oth step

Plot the multicoloured trajectories
Record the distance in each step

The 30~ boundary

Plot the boundary (dashed black)

Average distance in each time step

Right plot: mean distance in blue
Theoretical prediction in red

| import numpy as np

| import matplotlib.pyplot as plt
| import random

1%matplotlib

I

|

|Nsims = int(le3)

| Nsteps = 500

I
| Sims = np.arange (Nsims)

| Steps= np.arange(Nsteps+1)
"SumDist = np.zeros_like(Steps)

|

|

:fig,(axl, ax2)=plt.subplots(l,2,figsize=(10,5)
laxl.set_x1im(®, Nsteps)

| .set_ylim(-3.5*np.sqrt(Nsteps),

: 3.5%np.sqrt(Nsteps))

.set_xlabel ('Number of steps N')
.set_ylabel('Displacement from the origin')
.grid('on")
:color:plt.cm.prism_r(np.linspace(®, 1, Nsims))

for i in Sims:

R = [random.randint(0®,1) for

i in range(l,Nsteps+1)]
moves = 2*np.array(R)-1
traj = np.cumsum(moves)
traj = np.insert(traj, 0, 0)
axl.plot(Steps, traj, '-',

lw = 0.5, ¢ = color[i])

SumDist += np.abs(traj)

bound = 3*np.sqrt(Steps)

axl.plot(Steps, bound, 'k--',
Steps, -bound, 'k--")
AveDist = SumDist/Nsims
I
laxZ.plot(Steps, AveDist, 'bo-', ms=1)

;axZ.plot(Steps,np.sqrt(Z*Steps/np.pi),'r',lw:l)
:axZ.set_xlim(@, Nsteps)

1ax2.set_ylim(®, np.ceil(np.max(AveDist)))

| ax2.set_xlabel (r'Number of steps N')
1ax2.set_ylabel('Mean distance from the origin')
:ax2.1egend(['Simulation', r'$\sqrt{2N/\pi}$'1)
rax2.grid('on')

'plt.

show()

8.9 Bayesian inference 463

8.9 Bayesian inference

Some students suggested to the maths department at a certain university that they
would like a new water fountain (for dispensing drinking water) to be installed in
the building for students’ use.

The department decided to do a survey in which some students were asked if they
would be using the new water fountain if one were to be installed. Out of 20 students
surveyed, 9 students said they would.

Should the department install a new water fountain?

At first glance this doesn’t seem to be a well-defined mathematical problem. However,
this is typical of many real-world problems that require mathematical modelling in order to
make a well-informed decision.

The simplest approach is to simply say that since only 9 out of 20 (45%) of those
surveyed would use the water fountain, then, extrapolating to the larger population, we might
expect that only 45% of the maths department will be using the water fountain. Perhaps the
department administrators were hoping that at least 60% of the department would use a new
water fountain. So they may decide that it is not worth installing a new water fountain after
all. Problem solved - or is it?

In this section, we will show how the problem could be modelled in a more sophisticated
way by involving probability in our assumptions, modelling and decision making. The
process we will be studying is called Bayesian inference which plays a key role in data
science and complex decision making (e.g. in machine learning).

Here are two ways in which we can introduce probability into our modelling.

* Let’s assume that a randomly chosen student has a fixed probability p of saying that
they will use the water fountain if one is built.

If we think of p as the probability of success in a Bernoulli trial, then it follows that
the number of students who respond positively to a new water fountain follows the
binomial distribution (see §7.5).

* We don’t know exactly what p is, but we might have some initial belief on the ballpark

values that it can take. Say, there are already a number of water fountains in the
department, or if the survey was done soon after a Covid outbreak, then p would likely
to be low (most likely < 0.5). On the other hand, if there are no water outlets around the
department, or if the survey was done in a hot summer month, then p would probably
be high. This belief can be modelled mathematically as a probability distribution which
can be used to inform our decision.
For now, let’s assume that we don’t know much about the students in the department,
so our initial belief might be that p can take any value between 0 and 1 with equal
probability, i.e. p is drawn from the uniform distribution U(0, 1). This is called a
non-informative prior.

Our goal is to use the data (informed by our belief) to infer a statistical constraint on the
value of p. The answer will be in the form of a probability distribution of p. This process is
called Bayesian inference.

464 8 Statistics

Prior, likelihood, posterior

The goal of Bayesian inference is to obtain a statistical constraint on the model parameters 6
(which may be a vector of many parameters) using data. At the heart of Bayesian inference
is Bayes” Theorem from §7.7.

Pr(f|data) = %. (8.33)

It is worth learning the technical name for each of the terms in the above equation.

* Pr(0) on the RHS is called the prior. It reflects our initial belief about the values of the
model parameters.

In our scenario, we will start by taking the prior to be U (0, 1), in which case Pr(60) is
constant.

* Pr(data|@) is called the likelihood. It is the probability that the underlying generative
model takes the parameters 6 and produces the observed data. The generative model
depends on the situation at hand.

In the water-fountain scenario, 6 = p and the generative model is the random variable
drawn from the binomial distribution B (20, p). The likelihood is the probability that
the number drawn equals 9 (matching the observed data), i.e.

Pr(datald) = Pr(X = 9|n = 20, p) = (290)179(1 -p'

* Pr(data) is called the evidence. It can simply be regarded as the normalisation factor
which will make the RHS of eq. 8.33 a probability distribution. (In more advanced
applications, the evidence can be used to compare the predictive powers of different
models.)

* Pr(@|data) on the LHS is called the posterior probability distribution (or simply the
posterior). This represents our updated belief about upon seeing the data.

In short, one might summarise the Bayesian inference process as follows: starting with
an initial belief (the prior®), we use the data and a probability model (the likelihood) to
update our belief (the posterior).

Coding

The code bayesian.ipynb performs the Bayesian inference pipeline via the following
steps

« Step 1: Prior — Draw a large number, say 10°, of p-values from the prior distribution.

* Step 2: Likelihood — For each value of p, draw a number from B(20, p).

¢ Step 3: Posterior — If then result in Step 2 produces the number 9, store the value of p,
and reject otherwise. Normalising this distribution of p gives the posterior.

9 Interesting examples of how the the prior can lead to blatantly biased decisions are described in the classic
psychology paper by Tversky and Kahneman [204].

8.9 Bayesian inference 465

To understand why Step 3 corresponds to the RHS of Bayes’ Theorem (8.33), think about
the filtering process as the multiplication between the prior and the likelihood. For a value
p to be viable, it has to be drawn from the prior distribution and, in addition, drawing from
B(20, p) gives 9. The posterior is the probability of both events happening.

Fig. 8.19 (top panel) shows the prior and posterior probabilities using the uniform prior.
We represent these probabilities as histograms, and therefore require the data to be binned
(here we used 20 bins in the p-values, but you can change that in the code). To put numbers
in a given array into bins, we use the NumPy function np.histogram which bins the
data without producing a histogram. We then normalise the height of the bars to show the
probability values on the y-axis (rather than the values of the pmf).

We see that the posterior is a distribution which peaks when p is approximately 0.4-0.5,
with a significant spread. In fact, the code also reports some statistical properties of the
posterior:

Posterior mean = 0.455
Mode at p = 0.475
90% credible interval from p = 0.275 to 0.625

There is a 90% probability that the parameter value p falls within the 90% credible
interval. Note the philosophical difference between a Bayesian credible interval and a
frequentist confidence interval. A 90% confidence interval would capture the true value of
the parameter 90% of the time.

The strategy for calculating the credible interval is to consider the cumulative probability
distribution and determine in which bin the probability equals 0.05 or 0.95. The same
strategy was used in the Birthday problem §7.6 to determine where probability exceeds 0.5.

The beta distribution

Let’s investigate how sensitive the posterior is to the choice of prior.
A commonly used family of probability distribution for the prior is the beta distribution
B(a, b), where a, b > 0 are shape parameters of the distribution. Its pdf is given by

_T(a+D)

a-1 b-1
= Tt D (1—x)""". (8.34)

f(x)
The pdf is continuous on (0, 1) (or [0, 1] if @, b > 1). The beta distribution captures a wide
range of trends on [0, 1] and encompasses many famililar distributions. Exercise 12 explores
the range of pdf shapes as a and b vary.

We note that when a = b = 1, the pdf reduces to f(x) = 1. Hence, S(1,1) = U(0, 1),
which is the prior seen in the top panel of fig. 8.19.

In the middle panel, we use the prior B(1,3), which reduces to a quadratic function
o (x — 1)2. One can imagine using this prior if, say, we believe that most students wouldn’t
use the new water fountain (perhaps there are already lots of water fountains).

In the lower panel, we use the prior 5(4,2), which gives a skewed distribution peaking
at around p = 0.75. Can you think of a situation in which this prior could reflect our initial
belief?

Despite the stark difference in the priors, the shape of the posteriors is similar. Here are
the comparison of the posterior distributions resulting from the 3 priors.

466 8 Statistics

Prior Posterior mean Mode 90% credible interval
B, 1) 0.455 0.475 [0.275,0.625]
B(1,3) 0.416 0.425 [0.275,0.575]
B(4,2) 0.500 0.525 [0.325,0.675]

Table 8.1: Analysis of the posteriors for three different priors

(Note that you might get slightly different results in your own run of the code.) We see
that the posterior is largely influenced by the data, whilst the prior has a much smaller effect.
In fact, with more data, the prior matters less and less.

Analysing the posterior will inform the decision whether the department should install
another water fountain. For example, if the department has 100 students, and the department
will only install a new water fountain if at least 60 students are likely to use it. Then under
the prior 8(1, 1) or B(4,2), the credible interval supports the installation initiative.

In conclusion, a huge amount of mathematics lies hidden in this problem which contains
only two numbers: 9 out of 20. Real-life modelling is a complex process with assumptions,
beliefs and uncertainties. Bayesian statistics helps us articulate some of these uncertainties
and use them to make mathematically informed decisions.

Bayesian statistics is a vast topic that this small section cannot do justice. For excellent
introductions to the subject, see [123] and [139].

8.9 Bayesian inference

Prior Beta(1,1)

Posterior

467

Pr(6)

0.0 0.2 0.4

6

0.6

Prior Beta(1,3)

0.8

Pr(6|data)

0.175 1

0.150 1

0.125 |

0.100 A

0.075 |

0.050 A

0.025 1

0.000 -
0.0

0.2 0.4 0.6 0.8
6

Posterior

Pr(6)

0.0 0.2 0.4

¢}

0.6

Prior Beta(4,2)

0.8

Pr(6|data)

0.200 A

0.175 |

0.150 1

0.125 |

0.100

0.075 1

0.050 A

0.025

0.000 -
0.0

0.2 0.4 0.6 0.8
6

Posterior

0.10 A

0.08

0.06

Pr(6)

0.04

0.02 4

0.2 0.4

0.6

0.8

Pr(6|data)

0.200 A

0.175 1

0.150 1

0.125

0.100 -

0.075 A

0.050 A

0.025 1

0.000 -

0.0

Fig. 8.19: The prior (left) and posterior (right) probabilities for the Bayesian analysis of the

water-fountain problem.

468 8 Statistics

DiscussioN

* Frequentist vs. Bayesian. It is very likely that all the probability and statistics you
have studied so far are based on the frequentist interpretation of probability.
Here are some key conceptual differences between the frequentist and Bayesian

interpretations.
Frequentist interpretation Bayesian interpretation
Data comes from some probabilit .
rom some p ¥ Data is fixed.
distribution.

Model parameters are fixed. Model parameters follow some probability

distributions.
Beliefs do not matter. Initial belief (prior) is an essential ingredient.
The confidence interval contains the true The credible interval contains the true
parameter value x% of the time. parameter value with x% probability.

¢ Markov-Chain Monte Carlo (MCMC) methods. In our code, we manually accept-
ed/rejected the value p drawn from the prior by testing whether or not drawing from
B(20, p) gives 9.
Now imagine that we were to constrain n parameters 6 = (61,6, ..., 6,). Manually
searching for acceptable values of 6 in an n-dimensional parameter space quickly
becomes computationally unfeasible — this is the curse of dimensionality.
A more efficient way to explore the parameter space is to perform a special type of
random walk in the parameter space called Markov-Chain Monte Carlo (MCMC)
sampling. This is explored in detail in exercise 14. MCMC algorithms are an essential
part of Bayesian inference in real data analysis.

* PyMC is a popular Python library for performing Bayesian inference. With PyMC, the
code for analysing our problem (using a range of sophisticated MCMC samplers) is
reduced to just a handful of lines. See https://www.pymc.io.

https://www.pymc.io

8.9 Bayesian inference 469

bayesian.ipynb (for plotting fig.

i import numpy as np
| import matplotlib.pyplot as plt
| from scipy.stats import binom, beta

: %matplotlib

|
The data | Nsample, Nsuccess = 20, 9
Number of realisations | Nsim = int(le5)
Number of bins in the histograms 'Nbins = 20

We’ll collect @ values for the posterior 1 post = []
|

Parameters for the prior B(a, b) a, b=1,1

|
I
i
Sample from the prior :pri = beta.rvs(a, b, size=Nsim)
I
|
For each parameter value for p in pri:
Feed into the likelihood ! like = binom.rvs(Nsample, p)
Filtering: accept only parameter values if like == Nsuccess:
that produce the required data 1 post.append(p)
|
|
I
|
|

Bin edges for plotting the results bins = np.linspace(®, 1, Nbins+1)

Prior (binned), _=redundant output ipri_b, _ = np.hi stogram(pri, bins= bins)
Prior (normalised) | pri_prob = pri_b/sum(pri_b)
|
Posterior (binned) : post_b, _ = np.histogram(post, bins= bins)
Posterior (normalised) 1post_prob = post_b/sum(post_b)
|
Plot two figures side by side ! fig, (axl, ax2)=plt.subplots(l,2,figsize=(11,4)
Width of each histogram bar iwidth = 1/Nbins
Centres of bins 'X = np.arange(®, 1 ,width) + width/2

.bar(X, pri_prob, width = width,

color="coral', edgecolor="k'")
,axl.set_title(f'Prior Beta({a},{b})")
"axl.set_xlabel(r'θ')
raxl.set_ylabel (r'Pr(θ)"')
jaxl.set_x1im(0,1)

Plot the prior as histogram

[
>
=

ax2.bar (X, post_prob, width = width,
color="royalblue', edgecolor='k')

x2.set_title('Posterior')

x2.set_xlabel(r'θ')

x2.set_ylabel ((r'Pr(θldata)'))

x2.set_x1im(0,1)

Plot the posterior as histogram

plt.show()

Code continues on the next page

470
bayesian.ipynb (continued)
Report the posterior mean

Report the mode

Cumulative probability distribution
Find the 5th and 95th percentiles

Report the 90% credible interval

8 Statistics

' post_mean = sum(X*post_b)/sum(post_b)
iprint(f'Posterior mean = {post_mean:.3}')
|

| post_mode = np.argmax(post_prob)
:print(f'Mode at p = {X[post_mode]:.3}")

| C = np.cumsum(post_b) /np.sum(post_b)
P05 = np.searchsorted(C, 0.05)
:p95 = np.searchsorted(C, 0.95)

1print('90% credible interval from

f'p = {X[p05]:.3} to {X[p95]:.3}")

8.10 Machine learning: clustering and classification 471

8.10 Machine learning: clustering and classification

Refer to datasets A and B in §8.6.

a) If we combine them into a single dataset (and perhaps even shuffle the rows), how
do we disentangle them again?

b) A data point (previously overlooked) reads (0, 0). Which dataset is it in?

In statistics, we use mathematical tools to analyse data to help us make inferences and
decisions. Machine learning takes ideas in statistics (and probability, calculus, linear algebra
etc.) and uses those ideas to make decisions and predictions based on some data and (if
applicable) training. What statistics and machine learning have in common is the use of
data.

Two main disciplines of machine learning are supervised and unsupervised machine
learning'°.

In supervised learning, an algorithm uses a training dataset to learn how various
characteristics determine the labels of objects in the data. Objects with some shared
characteristics share the same label. Once trained, the algorithm is then presented with new
unlabelled data, and determines the label based on the training. If the labels are discrete
(e.g. cator dog, 1 or 0), we call this task classification. (If the labels are continuous, the
task is regression.)

In unsupervised learning, we do not know the ‘true’ labels of objects in the data, and
there are no training datasets. One possible task is to find subgroups of objects that are
similar (with respect to some metric) and give each subgroup a label. This is the task of
clustering.

In this section, we will investigate how simple classification and clustering algorithms
can be performed in Python.

k-means clustering

Let’s first consider a clustering task. Start with the combined datasets A and B from §8.6 as
shown in the left panel of fig. 8.20. Suppose that we don’t know which data point comes
from which file. The goal is to disentangle them into two clusters. Since the goal is to assign
labels to an unlabelled dataset, this is an unsupervised machine-learning task.

The k-means algorithm is a simple clustering algorithm consisting of the following steps.

1. Specify k, the number of clusters in the data!l.
2. Assign k random data points as cluster centres ¢; (also called centroids), for i =
1,2,...,k.
3. For each data point x;, calculate its distance to the centroids |x; — ¢;|.
If ¢; is the nearest centroid to x;, we assign X; to cluster j. In other words, x; is in
cluster j if!'?
j minimises D(n) = |x; —¢,|, n=12..., k.

10 There is also reinforcement learning — an important part of artificial intelligence.

11 'We judge by eye that the combined dataset contains two clusters, but sometimes the number of clusters in
the data may not be so obvious. The k-means algorithm can be modified so that the most suitable value of &
is determined from the data. This is known in the industry as the ‘elbow method’.

12 If a point is equidistant to more than one cluster, one can be chosen at random.

472 8 Statistics

4. Update the centroids to the mean of each clustered data. In other words, let x; be all
data points in cluster j in the previous step. Then, the new centroid is the mean (x;).
5. Repeat steps 3 and 4 until there are no changes in the centroids.

The results of the algorithm are 1) a label (cluster ID) for each data point, 2) the
coordinates of the k centroids.

In practice, the distance metric | - | does not have to be the physical distance. For example,
given a colour image, one might want to cluster pixels with a similar colour together, in
which case the distance between two points would be the difference in their RGB values. In
this way, by retaining only k colours, k-means clustering to be used for image compression
and segmentation (exercise 16).

Let’s apply k-means clustering to add a label (0 or 1) to each point in the combined
dataset. We will colour all points in clusters O red, and all points in cluster 1 blue. Since the
labels were removed, we cannot tell which colour belongs to which dataset. Our only goal
is to sort them into two clusters.

The code clustering.ipynb shows how sklearn can be used to perform k-means
clustering. The code produces the right panel of fig. 8.20, showing the two clusters in
different colours and their centroids as black crosses. The coordinates of these centroids are
reported by the code as

After 3 iterations, the centroids are at
[3.00014779 -2.97393273] and
[-0.09937072 3.81232351]

In fact, the data was generated by sampling from two bivariate normal distributions with
means at (3, —-3) and (0,4). The k-means centroids are consistent with the actual means of
the clusters.

We can ask sklearn to predict which cluster the data point (0, 0) belongs to.

point = [0,0]
kmeans.predict([point]) [0]

The output is 1, meaning that it belongs to the blue cluster.

Data k-means clustered data

=75 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0 =75 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0

Fig. 8.20: The data before (left) and after k-means clustering (right). The black crosses are
the centroids of the clusters.

8.10 Machine learning: clustering and classification 473

clustering.ipynb (for plotting the right panel of fig.

i import pandas as pd
| import matplotlib.pyplot as plt
Use sklearn to perform k-means clustering | from sklearn.cluster import KMeans
1%matplotlib
|
|
Import data from two csv files (make,data® = pd.read_csv('datasetA.csv',

sure they are in the same directory as this | sep=","', header=None)
ipynb file) : datal = pd.read_csv('datasetB.csv',

| sep=","', header=None)
Combine (concatenate) the datasets X = pd.concat([data®, datall)

I

|
Perform k-means clustering with k = 2 rkmeans = KMeans(n_clusters=2, random_state=4,

n_init="auto').fit(X)
centr = kmeans.cluster_centers_

random_state allows reproducibility
Fetch the centroids

fig, ax = plt.subplots(1,1)

Plot the datapoints, using the labels | ax.scatter(X.values[:,0], X.values[:,1],

(0 or 1) as dot colours (red or blue) ‘ c=kmeans.labels_, cmap="bwr_r',
s=10, alpha=0.5)

ax.scatter(centr[:,0], centr[:,1], c="k',
s=80, marker = 'x')

ax.set_title('k-means clustered data')

ax.set_xlabel('x")

ax.set_ylabel('y")

plt.grid('on')

plt.show()

Mark the centroids with big black crosses
X
X

print(f'After {kmeans.n_iter_} iterations,
'the centroids are at')
print(f'{centr[0,:]} and \n{centr[1,:]1}")

Report number of iterations
and centroid coordinates

k-nearest neighbour (KNN) classification

In clustering, we started with unlabelled data and assigned a label to each data point. What
if we were to start with some labelled data, and use them to deduce the labels of unlabelled
data points? This is the goal of classification.

Let’s study a type of classification called the k-nearest neighbours (kNN) algorithm.
Follow these steps.

1. Create the training dataset X’ = {x!, £;} where each x! is an unlabelled data point and
¢; its label.

2. Let x be an unlabelled data point to which we wish to assign a label. Compute the
distance of x to all points in the training data, i.e. for all x}, compute

t
Ix —x;].

3. Choose an integer k € N and select the k-nearest neighbours (in the training set) of x
with respect to the distance | - |. Let the set L be the labels for the k-nearest neighbours
of x.

4. The label of x is determined by the mode of L, i.e. X is assigned the most common label
amongst those of its k nearest neighbours.

474 8 Statistics

The cartoon below illustrates kNN classification with k = 4. The labels of the training
set sh
the w

Fig. 8.21: The 4-nearest neighbours classification algorithm will assign the unlabelled point
? the apple label.

If there is a tie, a label can be left unassigned, or one can be chosen from amongst the
modal values, either randomly, or (as is done in sklearn) choose whichever modal label
appears first in the ordered training data.

Just like clustering, the distance metric | - | does not necessarily have to be the physical
distance, but can be defined to fit the purpose. This allows classification techniques to be
used for image processing, for example, to identify objects shown in an image, or to fill in
missing details (inpainting).

Now let’s experiment with classification using datasets A and B.
The code classification.ipynb will demonstrate training, testing and classification
using sklearn. We now discuss the key concepts and highlights from the code.

8.10 Machine learning: clustering and classification 475

First, we create a list of the correct label for each point in the combined
dataset.

Then, we randomly pick 10% of the combined data (with their correct labels) to use as
the training set X’. This is accomplished using the sklearn function

train_test_split(X, label, train_size=0.1, random_state=4)

The argument random_state allows the same result to be reproduced in every run.

The training set is shown in fig. 8.22 in which training data points are marked with
crosses. The three panels show the classification results using k = 1, 2, 3 nearest neighbours.
The shaded regions are coloured blue or red according to the classification — points in the
red region would be labelled 0, and blue would be 1. The key syntax for the classification
(if k =3)is

clf = KNeighborsClassifier(n_neighbors = 3)

The shading is produced using the function DecisionBoundaryDisplay.

Note the different boundaries between the red and blue regions in fig. 8.22 for different
values of k. For k = 1, the boundary (white jagged line) consists of points whose nearest
neighbour is any of two training points of different colours, one on either side of the
boundary. This means that along this boundary, the 1NN classification results in a tie,
although in practice it would be highly unlikely to have to deal with this ambiguity since the
boundary is an infinitely thin line.

For k = 2, any point in the (now bigger) white region has 2 nearest neighbours of different
colours. The shading algorithm does not try to break the tie and leaves this region as white.

Finally, for k = 3, we see light blue and light red regions straddling the & = 1 line. For a
point in the light blue region, its 3 nearest neighbours are 2 blue and 1 red training points
(and similar for points in the light red region).

We deduce that it is best to choose k to be an odd integer to avoid tie-breaks as much as
possible.

kNN training, k=1 kNN training, k=2 kNN training, k=3

-4 -2 0 2 4 6 8 -4 -2 0 2 4 6 8 -4 -2 0 2 4 6 8
X X X

Fig. 8.22: The training dataset for the kNN classification with k = 1,2 and 3 nearest
neighbours.

476 8 Statistics

Let’s see how well kNN performs given that only 10% of the data was used
for training. The remaining data (without labels) are fed into the kNN algorithm using the
syntax

clf.predict(X_test)

The resulting classification predictions are then tested against the actual classification.
The measure of accuracy in the testing phase of classification is normally presented as a
confusion matrix, whose diagonal are the counts of correct classifications, and off-diagonal
entries count the mis-classifications. In our case, with two classes {0, 1}, the confusion
matrix is the 2 X 2 matrix defined as:

. . Predicted =0, true =0 Predicted =0, true =1
Confusion matrix = .

Predicted =1, true =0 Predicted =1, true =1

The code classification.ipynb reports the following output for the testing phase.

Confusion matrix =
[[444 1]
[1 454]]
Accuracy = 0.998
(-0.8404,0.1561) is classified as 1 but should be 0
(2.2737,1.5929) is classified as 0 but should be 1

The accuracy score is simply the fraction of correct classifications. The score is very high
indeed, despite using only 10% of the data for testing. This is due to the fact that the data is
quite clearly segregated into 2 classes with only a few ambiguous points along the interface.

Fig. 8.23 summarises the testing phase. Comparing the left (true classification) and right
(test result), we see that the classification results are excellent! In fact, you can pick out by
eye where the two mis-classified points are. This gives us high confidence that the classifier
can be used for predicting the classification of unseen data.

True classification kNN classification

7.51

5.0

2,51

=5.0 1

e datasetA

—7.54
5 e datasetB

=75 =5.0 =25 0.0 25 5.0 7.5 10.0

Fig. 8.23: Testing the kNN classification. The true classified data is shown on the left, and
the result of 3 nearest-neighbour classification is on the right, where 10% of the data was
used for training (shown as crosses). The data used for testing are shown as circles. There
were 2 mistakes in the classification (can you spot them?), giving an accuracy score of
99.8%

8.10 Machine learning: clustering and classification 477

’ 3. Classification ‘Finally, we use the kNN classifier to predict the label for the data point
(0,0) as follows.

point = [0,0]
clf.predict([point]) [0]

The output is §, meaning that it belongs to the red cluster. This suggests that the data
point came from dataset A. Note that using a different set of training data can result in a
different prediction.

There are many other clustering'3 and classification'# algorithms built into scikit-learn.
Some of these algorithms are explored in exercise 17.

DiscussioN

* Much, much more on machine learning. It is of course impossible to capture the vast
and rapidly advancing field of machine learning within a short section of this book.
Here are some good introductory references on the topic. A good all-round introduction
to machine learning can be found in [117]. A gentle mathematical introduction can be
found in [53]. Ref. [136, 186] offer very readable introductions with Python code, and
cover key topics such as neural networks and deep learning.

B https://scikit-learn.org/stable/modules/clustering.html

14 https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_
comparison.html

https://scikit-learn.org/stable/modules/clustering.html
https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html
https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html

478 8 Statistics

classification.ipynb (for plotting the right panel of fig.

i import pandas as pd

| import matplotlib.pyplot as plt
The kNN classifier lfrom sklearn.neighbors \

I import KNeighborsClassifier
For splitting data into training and\from sklearn.model_selection \

testing datasets import train_test_split

For shading classification regions and‘from sklearn.inspection \

plotting the boundary ! import DecisionBoundaryDisplay

For producing the confusion matrix durmg from sklearn.metrics \

testing ‘ import confusion_matrix
|%matplotlib

|
Import data from csv files in the | data® = pd.read_csv('datasetA.csv',
same directory as this ipynb file ‘ sep=","', header=None)
datal = pd.read_csv('datasetB.csv',
: sep=","', header=None)
Combine (concatenate) the datasets X = pd.concat([data®, datal])
Create a list of correct labels label = len(data®)*[0] + len(datal)*[1]
|

|
Training: Keep 10% of data for‘X_train, X_test, y_train, y_test = \
training and the rest for testing train_test_split(X, label,
random_state allows reproducibility train_size=0.1, random_state=4)

Initialise the kNN classifier clf = KNeighborsClassifier(n_neighbors = 3)

Perform ANN on training set clf.fit(X_train, y_train)
fig, ax = plt.subplots(1l,1)

This colourmap maps O tored and 1 toblue ' cm = "bwr_r'

Shade red/blue regions DecisionBoundaryDisplay. from_estimator (
(using full data) clf, X, cmap=cm, alpha=0.8, ax=ax)
Testing: Try kNN on testing set ! predi = clf.predict(X_test)

Calculate and report accuracy score | score = clf.score(X_test, y_test)

and confusion matrix ! print('Confusion matrix = ')

iprint (confusion_matrix(predi, y_test))
| .

(print(f£'Accuracy = {score:.3}')

|

for i,(cl,c2) in enumerate(zip(y_test,predi)):
if cl != c2:
X X_test.iloc[i, 0]
= X_test.iloc[i, 1]
pr1nt(f ({x},{y}) is classified as
f'{c2} but should be {cl1}')

Report mis-classifications

(iloc locates a dataframe’s compo-
nent)

Plot the training set as crosses of | ax.scatter(X_train.iloc[:,0],X_train.iloc[:,1]
the correct colours ‘ c=y_train, cmap=cm, marker ='x'")
Plot the testing set as black-edged mrcles rax.scatter(X_test.iloc[:,0], X_test.iloc[:,1],
of the correct colours c=predi, cmap=cm, edgecolors="k",
alpha=0.5,)

x.set_title(r'kNN classification')
x.set_xlabel('x")
,ax.set_ylabel('y")

1 plt.show()

8.11 Exercises 479

8.11 Exercises

1 (The Central Limit Theorem) Use CLT.ipynb to help you answer these problems.

a.

Use the code to reproduce each row of fig. 8.3.

Now consider the last row (the arcsine distribution 8.13). Verify that Python’s
answers for the mean and variance of the red curve are close to the values suggested
by the CLT.

Suggestion: First, show by hand that for the arcsine distribution 8.13, we have

1

H=7 8

(Bates distribution) Reproduce each panel in fig. 8.2. In addition, overlay the Bates
distribution (8.14) on the histogram.

Reproduce each panel in fig. 8.2 when the underlying distribution is the arcsine
distribution. How large would you say n has to be for the normal approximation to
be accurate? (This is slightly subjective.)

. (Cauchy distribution) Verify that when random variates are drawn from the Cauchy

distribution (8.15), the sample mean follows the same Cauchy distribution (rather
than a normal distribution). This is an example of when the CLT is not applicable.
Suggestion: Plot everything over the interval [—5, 5] say, and tell Seaborn to restrict
the histogram to this range using the argument binrange = [-5,5].

(Generalised CLT) Reproduce fig. 8.4 (i.e. when random variates are drawn from 4
different distributions). Experiment further using your favourite pdfs.

Look up the Lindeberg condition and try to break the convergence predicted by the
generalised CLT.

2 (Hypothesis testing) Use ttest.ipynb as a starting point for these questions.

a.

b.

Reproduce fig. 8.5 (histogram for the 7-distribution). Suggestion: Use Seaborn and
adjust the number of bins.

Plot fig. 8.6 (pdf of Student’s ¢ distribution for varying degrees of freedom v). In
addition to changing the colour of the curves as v increases, try increasing the
opacity (alpha value) of the curves at the same time.

. Plot the middle panel of fig. 8.9 (showing shaded area representing the p-value).
. (One-tailed t-test) Hypothesis testing! t-testModify the code to perform the follow-

ing one-tail hypothesis test using the same sample as described in §8.4.

(A) HQZ ,u=1.5 H11 ,u<1.5
(B) Hy: u=15 H : u>1.5

The code should report the p-value in each case, with and without using SciPy’s
ttest_lsamp, and produce a plot the pdf for the estimate of u (analogous to the
top panel of fig. 8.9). The 95% confidence interval should be shaded.

Tip: Use the alternative argument in ttest_1lsamp. See SciPy documentation.
[Ans: For (A) p = 0.1433. p < 1.9093 at 95% confidence.]

480

8 Statistics

e. (Type II error) Perform the r-test again as described in §8.4 with the same null

and alternative hypotheses (Hp : ¢ = 1.5 and H; : p # 1.5) with a different set of
n = 5 numbers sampled from N (1, 1). Repeat 1000 times. Keep track of how many
tests are performed and how many fail to be rejected. Hence calculate the value of
B (the probability of committing type II error).

[Ans: B equals the p-value, which is uncomfortably high. We really want a small
number.]

Repeat the exercise, this time increasing the sample size to n = 10. Show that S is

dracticallv reduced ta inet aronnd 10,

#* (Chi-Squared) Distribution: Critical Values of 3*

Significance level
Degrees of 5% 1% ?
freedom
1 3.841 6.635 10.828
2 ? 9.210 13.816
3 7.815 11.345 16.266
4 9.488 ? 18.467

Use Python to fill in the 3 missing entries in the table.

. Reproduce each panel of fig. 8.10. Suggestion: Use Seaborn.
c. (Minimum x* parameter estimation) Using the dataset in §8.5, we showed that

when peuceess = 0.5, the test statistic y2 ~ 12.84

Now calculate the test statistic)(2 for a range of value of pgyccess in (0.1, 0.9). Hence,
plot ,\/2 against pgyccess- Suggestion: Use log y scale for dramatic effect.

Estimate to 2 decimal places the value of pgyccess that minimises ,\(2.

Interpret the meaning of this value of pgyccess that minimises)(2.

. (Degrees of freedom) Using the dataset in §8.5, we can estimate pgyccess Using the

simple formula
Total number of heads observed

p= Total number of coins thrown

Show that p = 0.4125.
Now consider the following null and alternative hypotheses.

Hy : The number of heads follows the binomial distribution
H; : The number of heads does not follow the binomial distribution

Perform hypothesis testing using the y? test statistic and a = 0.05.

Suggestion: The degree of freedom = C — Nparam — 1 where C is the number of
categories in the data, and Nparam is the number of parameters in the pdf. In this
context, the binomial distribution has one parameter pgyccess- Therefore, you will
need to set the degree of freedom to C — 2.

8.11 Exercises

481

4 (Regression) Use regression.ipynb to help you with these questions.

a. Modify the code so that the regression lines are plotted using Seaborn’s regplot
function instead of NumPy’s polynomial library.

b. Here are some easy least-squares problems:

i. Consider 50 evenly-spaced values of x € [0, 1]. Randomly select y from
the normal distribution N (x, 1). Produce a scatter plot of (x, y) and find the
equation of the regression line. Add this line to your plot.

Suggestion: Use the matrix method discussed in §8.6 to obtain the regression
line. Then check that it matches NumPy’s or Seaborn’s answer.

ii. Modify the code in part (i) so that y is instead drawn from the normal
distribution N (x2, 1). Produce a scatter plot of (x, y) and find the equation of
the least-squares parabola. Add this parabola to your plot. (Same suggestions
as above).

iii. Consider 100 evenly-spaced grid points on [0, 1] X [0, 1], let z = 1 — p where
p is drawn from the normal distribution N (0, 1). Produce a scatter plot of
(x, y, z) and find the equation of the least-squares plane. Add this plane to your
plot.
Suggestion: Use the matrix method (eq. 8.24). Useful commands: np .meshgrid
and flatten().

5 (Quantifying Simpson’s paradox) Consider the following data which gives the number
of success and failures when students and staff were asked to take a certain test.

University A Pass Fail Total
Student a b-a b
Staff A B-A B
University B Pass Fail Total
Student c d-c d
Staff C D-C D
. Deduce that Simpson’s paradox occurs if
a<A dC<C but a+c>A+C
—<—and - < — u .
b B d D b+d~ B+D

This means that in each university, students are less likely to pass the test compared
to staff. However, for the combined population, students appear to be more likely to
pass compared to staff.

. Give an example of non-negative integers (a, b, ¢, d) and (A, B, C, D) such that
Simpson’s paradox occurs. Make sure a < b, A < B,c <dand C < D.

. Sample integers b, B, d, D from U(1,100) and sample integers a, A, ¢, C from,
respectively, U (0, b), U(0, B), U(0,d) and U (0, D).
Find probability that Simpson’s paradox occurs. (Ans: ~ 1%.)

482 8 Statistics

6 (Correlation coefficient) Using eq. 8.26, show that the correlation coefficients r for the
dataset shown in fig. 8.14 are given by

e Dataset A: r = 0.6955
e Dataset B: r = 0.6652
e Combined: r = —0.1981

We conclude that datasets A and B show moderate positive correlations between x and
y. The combined data shows a weaker negative correlation.
Suggestion: There are several ways to calculate r in Python, such as:

* SciPy’s stats.pearsonr

* SciPy’s stats.linregress
* NumPy’s corrcoef

e Pandas’s print (df.corr())

The last two methods print a symmetric matrix showing the r values between all pairs
of columns.

7 (Coefficient of determination) Use eq. 8.27 to show that in dataset A, the coefficient
of determination R?> ~ 0.48. Note that this is simply the square of the correlation
coefficient.

Now draw another line through the data (it can be as bad a fit as you like). Calculate R,
which you should find to always be lower than that of the regression line.

Now a challenge. Suppose we use the line y = mx + c to fit dataset A. Plot the value
of R? as a heatmap as (m, ¢) vary near the least-square parameters (a, 3), which you
should locate with a dot.

Suggestion: Adjust vimin and vmax in pcolormesh until you see an elliptical contour
whose centre is («, 5).

8 (Bivariate normal distribution) Use the code bivariate.ipynb as a starting point for
these questions.

a. The pairs of random numbers (x, y) in the file datasetB. csv came from a bivariate
normal distribution. Estimate py, uy, 0y, 0y and p.

52

24)
Calculate (by hand) the dimensions and orientation of the contour ellipses for the
bivariate normal pdf. Verify that your answers are consistent with the code output.

b. Suppose that ux = uy = 0, and that the covariance matrix is given by £ = (

c. Reproduce fig. 8.16 (confidence ellipses for dataset A). For instructions, see https:
//matplotlib.org/stable/gallery/statistics/confidence_ellipse.html.

d. (68-95-99.7 rule for bivariate normal) Consider the standard bivariate normal
distribution (uy = py = 0 and oy = oy = 1). Show (e.g. with Monte Carlo
simulation) that when p = 0, the probability that a randomly chosen pair of numbers
(x,y) € R? lies in the 1o ellipse is approximately 39%.

(Compare this with 68% for the 1D normal distribution.)

(Suggestion: The code for doing this is really short. If p = 0, and X and Y are
drawn from N (0, 1). Their sum therefore follows the y? distribution with 2 degrees
of freedom. The 1o ellipse are all points such that X> + Y% < 1.)

Hence, show numerically that the 68-95-99.7 rule for the standard univariate normal
becomes 39-86-99 for the standard bivariate normal.

Investigate how changing p affect these numbers.

https://matplotlib.org/stable/gallery/statistics/confidence_ellipse.html
https://matplotlib.org/stable/gallery/statistics/confidence_ellipse.html

8.11 Exercises 483

e. (Marginal distribution) Use Seaborn’s jointpoint function to visualise the
marginal pdfs for X and ¥ in datasetA.csv.

9 (Random walks) Use randomwalk.ipynb as a starting point for these questions.

a. In the 1D random walk model, plot a histogram showing the distribution of
(1) X1000, the displacement from the origin after 1000 steps,
(i) | X1000!, the distance from the origin after 1000 steps.
In each case, overlay a suitable curve which approximates the distribution.
Suggestion: From the discussion in the text, (i) is approximately normal, (ii) is
approximately a y distribution (8.31).

b. Verify that the percentage of the time in which the 1D random walk spends inside
the 30~ boundary shown in fig. 8.17 is 99.7%. Predict the answers for 1o~ and 20
boundaries and verify your answer.

Repeat for the 2D random walk.

c. Reproduce fig. 8.18 for the 2D random walk.
Now modify the code so that at each step, the particle can only make one of the
following moves: up, down, left or right, with equal probability. Show that the

mean distance can be approximated by E [, /X3 + YI%,] =VrN/2.

Modify the 30 circle accordingly. Verify numerically that trajectories stay within
the 30 circle ~ 99% of the time.

d. Plot the y distribution with N degrees of freedom, where N = 1 to 10, on the same
figure. Vary the colour of the curves in a sensible way.

10 (Gambler’s ruin) Imagine a scenario in which a gambler starts off with A&10, and with
each game wins A&1 with probability p, or loses A¢1 with probability 1 — p

a. First consider the case p = 0.5. This could be a game in which tossing a fair coin
determines if the gambler wins or loses. The gambler stops playing when either of
the following scenarios occurs.

A) The gambler has A20, B) The gambler has A&0.

Simulate this scenario. Plot the distribution of the number of games played and
find the mean.

(Ans: 100 games)

b. Repeat the experiment with p = 0.4. Suggestion: Use scipy.stats to draw
random variates from a Bernoulli distribution.
(Ans: 48 games)

For analytic solutions, further references and the historical significance of this
problem (dating back to Pascal), see ch. 5 of [77].

11 (Arcsine law) Consider the 1D symmetric random walk starting at Xy = 0. Let N, be
the total number of steps during which a random walk spends in the region X > 0
Simulate a large number of random walks, each with Nps timesteps.

Plot the distribution of N, /Nyeps (this ratio quantifies the time that the trajectory spends
in the region X > 0). Show that the distribution is well approximated by the arcsine

distribution with pdf
1

fx) = m,

484 8 Statistics

(see eq. 8.13). You should obtain something similar to the figure below (the red curve is
the arcsine distribution).

Lévy's Arc-Sine Law

Normalised frequency
= = g g w
o w o w o

o
wn

0.0
0.0 0.2 0.4 0.6 0.8 1.0

N 4+ /Nsteps

This result is known as Lévy’s first arcsine law. For more details and a counterintuitive
interpretation of this result, see ch. 29 of [77].

12 (The beta distribution) The beta distribution has pdf

_T(a+D)

a-1.1 _ \b-1
= F(a)F(b)x (1=x)""", (8.35)

f(x)

where a, b > 0. On domain [0, 1], plot the following graphs:

a. B(a,a) for various values of a > 0
b. B(a,?2) for various a
c. B(1,b) for various b

In each case, describe the effect of varying the free parameter.

13 Use the code bayesian.ipynb to help you answer these questions.

a. Experiment with different beta priors to see the response of the posterior.
One suggestion is to try the prior £(0.5,0.5). Does this function look familiar?
(see previous question). Can you think of a situation where someone might believe
that this prior is suitable?

b. (Conjugate priors) Suppose that the prior is B(a, b) and the likelihood is the
binomial distribution. Then, given the data of k successes out of N observations,
the posterior can be shown to be another beta distribution:

Bla+k,b+ N —k).

Verify this observation by overlaying the graph of a suitable beta distribution on
the posterior plot in each panel of fig. 8.19.

For a given likelihood function, if the prior and posterior belong to the same family
of distribution, we say that the prior is a conjugate prior for the likelihood. More
details and proof in ch. 9 of [123].

8.11 Exercises 485

14 (MCMC sampling with Metropolis-Hastings algorithm) Let’s revisit the water-fountain
problem try the following Metropolis-Hastings algorithm. Follow this recipe.

Step 1: Choose any initial parameter value 6;

Step 2: Draw a sample 6, from the normal distribution N (6;,0.1) (this is called
the proposal distribution).

Step 3: Calculate the acceptance ratio a given by

__ Pr(6;41ldata) Likelihood pmf(6;41) X Prior pdf(6;.1)
"~ Pr(¢;|data) ~ Likelihood pmf(6;) x Prior pdf(6;)

In the water-fountain problem, the likelihood is the binomial distribution B(20,9).
Use the prior B(1, 1).
Step 4: Decide whether to accept or reject 6;. To do this:

— Draw a random number u from U[0, 1]

— Ifu < a, accept 6;,1. Store it, and assign 6; = 6;,1. Go to Step 2.

— Ifu > «, reject 6;,1. Redo Step 2.

Code the algorithm, looping over it say, 10° times. You should then obtain a
sequence of accepted parameter values 6. You should find that the acceptance rate
is about 72%, resulting in a sequence of around 72000 6 values.

Plot the sequence of accepted 6 values. You should see a 1D random walk
concentrating around the mean which you should find to be around 0.455. This is
called a trace plot.

. From the random-walk sequence, generate a histogram. This is the posterior. You

should obtain a figure similar to the following (your data might be slightly different).
Note the similarity between the resulting posterior and that at the top of fig. 8.19.

Note: An algorithm which samples parameter values 6 from a proposed distribution and
accepting/rejecting them probabilistically is broadly known as an Markov-Chain Monte
Carlo (MCMC) algorithm. The precise recipe for accepting/rejecting as described
above is called the Metropolis-Hastings algorithm, which explores the parameter space
by performing a specialised random walk. The real benefit of the MCMC method for
Bayesian inference becomes apparent when the parameter space is multi-dimensional.
For a detailed treatment of the MCMC method and the Metropolis-Hastings algorithm,
see [123].

486

Fig.

ICS

Trace

0.8

0.7

0.6 ARSI

0.3 ' \\““ el L

P L

0 10000 20000 30000 40000 50000 60000 70000
Posterior

0.175 A

0.150 -

0.125 A

Probability
o
=
o
S

o
o
N
o

0.050 -

0.025 A

0.000 -

0.0 1.0

6

8.24: Top: The trace plot showing a random walk resulting from the Metropolis-Hastings

algorithm. Bottom: The posterior probability distribution plotted using the random walk
data.

15

16

(Clustering) Predict what will happen if you ask sklearn to sort the combined dataset
(shown on the left of fig. 8.20) into 3, 4 or 5 clusters. Do you expect to get the same
result every time?

Modify the code clustering.ipynb to allow the data to be sorted into into k clusters
where k is any integer greater than 1. The code should also report their centroids.
Suggestion: Choose a colourmap which does not display points in white. Remove
random_state to see that the result is probabilistic.

(Image segmentation using k-means clustering)

Image segmentation is the process of decomposing an image into simple components.
Use k-means clustering to reduce the greyscale image flowers.jpg (or your own image)
to k shades. Fig. 8.25 shows the segmented image for k = 3.

Original image

Segmented image (k = 3)

J I

Fig. 8.25: Image segmentation using k-means clustering. The image on the right contains 3
shades.

Suggestions:

* See §5.8 on how to load an image from file. Use |np.array| to convert the image
into a matrix.

* Reshape the matrix into an (n X 1) array X containing the greyscale values, i.e.
integers between 0 (black) and 255 (white).

* Use sklearn to perform k-means clustering on X (see clustering.ipynb). Take
note of the cluster centroids, which are the greyscale values of the kK components.

* Reshape the clustered array into the original shape and display the matrix using
imshow.

17 (Exploring Scikit-learn further)

a. Perform k-means clustering and kNN classification using appropriate toy datasets
that are included in the sklearn library!3.
b. Research into the following popular algorithms.
e Clustering: i) Mean-shift ii) Gaussian mixture models
* Classification: i) Support vector machine (SVM) ii) Neural network (multi-
layer perceptron)
Revisit the clustering and classification tasks in part (a) using these algorithms.

5Shttps://scikit-learn.org/stable/datasets/toy_dataset.html

https://scikit-learn.org/stable/datasets/toy_dataset.html

Appendix A: Python 101

Fig. A.1: Guido van Rossum (b.1956), creator of Python. (Image credit: Michael Cavotta
CC BY-NC-ND 4.0)

Since the inception of Python in 1989 by the Dutch computer scientist Guido van Rossum,
Python has now grown to become arguably the world’s most popular programming language
(as of 2023). Python is easy and intuitive to learn, with a strong community support. It is
therefore ideal for learners with little or no background in computing, and as such it is now
taught in schools all over the world.

A.1 Installation

If you are totally new to Python, the following installation method is recommended.

¢ Anaconda and JupyterLab. We recommend installing Anaconda on your computer
from

https://www.anaconda.com

Anaconda is a popular software suite containing, amongst other applications. JupyterLab
which we recommend for using with this book. The complete guide to using JupyterLab
can be found at

https://jupyterlab.readthedocs.io

* Pip is an essential tool for installing and updating Python libraries that are not part of
the standard distribution.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 489
S. Chongchitnan, Exploring University Mathematics with Python,
https://doi.org/10.1007/978-3-031-46270-2

https://www.anaconda.com
https://jupyterlab.readthedocs.io
https://doi.org/10.1007/978-3-031-46270-2

490 A Appendix A: Python 101

Pip uses command lines. This means that you need to have a Terminal open (this applies
to both Windows and Mac).
Check if you already have pip on your machine. In your terminal, type

pip --version
If pip has not yet been installed, follow the instructions at

https://pip.pypa.io

A.2 Learning Python

There is no shortage of learning resources for beginners. Here are some free resources for
beginners that you may find useful (as of 2023). I have selected resources that focus on
scientific computing.

Of course, Python evolves all the time, so you may like to start by searching for the latest
resources out there.

There is no need to a complete an entire Python course to start using this book. You can
pick things up along the way by modifying the code given in this book.

¢ Online resources

— Aalto university in Finland has produced a wonderful, free course with the focus
on scientific computing. There are lots of videos and easy-to-follow tutorials. See:

https://aaltoscicomp.github.io/python-for-scicomp/

— Scientific Python lectures (Ga€l Varoquax et. al.) is a comprehensive set of tutorials,
guiding beginners through NumPy, SciPy, SymPy efc. on all the way up to machine
learning.

https://lectures.scientific-python.org
* Books

— Linge and Langtangen, Programming for computations — Python, Springer (2020)
[131]

— Kong, Siauw and Bayen, Python programming and numerical methods — a guide
for engineers and scientists, Academic Press (2020) [114]

— Lin, Aizenman, Espinel, Gunnerson and Liu, An introduction to Python program-
ming for scientists and engineers, Cambridge University Press (2022) [130]

— Lynch, Python for scientific computing and artificial intelligence, CRC Press
(2023) [136]

https://pip.pypa.io
https://aaltoscicomp.github.io/python-for-scicomp/
https://lectures.scientific-python.org

A3

Python data types

A.3 Python data types

Here we summarise key facts about data types in Python.

Basic data types

The basic data types used in this book are:

* Integere.g. 0, 1, -99
Floate.g. 1.0, 2/3
String e.g. 'Hello', '2'

Boolean namely, True, False

Complex e.g. 1j, 5-2j

Composite data types

Composite data types and their properties are given in table (A.1) below.

Data type Ordered? Mutable? | Duplicate elements allowed?
List and Ordered Mutable Duplicate elements allowed
NumPy array
Tuple Ordered Immutable | Duplicate elements allowed
Set Unordered Immutable No duplicate elements
Dictionary Ordered Mutable No duplicate elements

Table A.1: Properties of composite data types in Python 3.9+

Examples:

* Lists and arrays are used in most programs in this book.

e Tuple: s in ellipse.ipynb (§3.3).
* Set: unigq in birthday.ipynb (§7.6)

* Dictionary: step in planes.ipynb (§5.3)

* Ordered. A composite data type is said to be ordered if its elements are arranged in a
fixed, well, order. This means that it is possible to pinpoint the first or second object in

Let’s now discuss the three properties in the heading of table A.1.

the data type. For example, suppose we define a list L as:

Then, the first element L[0] is reported as the string 'goat'. Similarly, define a tuple

as

L = ['goat', 999, True]

T = ('goat', 999, True)

492 A Appendix A: Python 101

Then, T[O0] is reported as the string 'goat"'.
In contrast, suppose we define a set S as:

S = {'goat', 999, True}

Then, calling S[Q] gives an error.
Finally, a dictionary is ordered (since version 3.7), but Python does not index its
elements (which are keys).

¢ Mutable. A composite data type is said to be mutable if its elements can be changed
after it is defined. For example, using the list L above, the command

L[1] = L[1] + 1

changes L to ['goat', 1000, True]. This happens because lists are mutable. How-
ever, the command

T[1] = T[1] + 1

produces an error, since the elements of T cannot be changed.

Duplicate elements. The list
L1 = ['goat', 999, True, True]

is different from L (they have different numbers of elements). However, the set
S1 = {'goat', 999, True, True} equalsthe setS (you can test this by performing
the equality test S==S1).

Whilst duplicate elements are ignored by a set, a dictionary will override previous
duplicate elements. For example, if we define a dictionary of animal types with 2
duplicate keys:

D = {'animal': 'goat', ‘'animal': 'pig', 'animal': 'bear'}

then D is simply a dictionary with one key, namely, D = {'animal': 'bear'}.

Lists vs arrays

Python list Numpy array
Mixed data types? Allowed Not allowed
+ means Concatenation Addition elementwise
% means Duplication Multiplication elementwise
Storage Less efficient More efficient
Computational speed Slower Faster (due to vectorisation)

Table A.2: Comparing properties of Python lists and NumPy arrays.

Let’s now discuss table A.2 line-by-line.

A.3 Python data types 493

* Mixed data types. A list can hold mixed data types. For example, the list:

Lmixed = [1 , 2.3 , 4+5j]

contains an integer, a float and a complex number.
Now let’s convert the list to an array using the command A=np.array(Lmixed). We
now find that the array A reads

array([1l. +0.j, 2.3+40.j, 4. +5.31)

This shows that the list has been converted to an array of a single data type (i.e. complex).
This is because NumPy arrays are homogeneous, meaning that every element in an
array is of the same data type. NumPy converts the elements in the list to the data type
that best satisfies all of the list elements involved.

+ operator. Adding two NumPy arrays together element-wise is what we often need to
do as mathematicians (e.g. adding vectors and matrices). But take note that for two
lists, L1 and L2, the operation L1+L2 creates a new list by merging (also known as
concatenating) the two lists.

In the mathematical tasks discussed in this book, we sometimes find ourselves adding
an array of numbers to a list of numbers, in which case the operator + thankfully acts
like element-wise addition.

In short, the operator + acts differently depending on the data types involved. In technical
terms, this is called operator overloading.

Run the following code which demonstrates overloading of the operator +.

import numpy as np

A = np.array([7, 8, 5])

X =10, -1, 2]

L = ['goat', 999, True]

Suml = A + A

Sum2 = A + X

Sum3 = X + L

#Sum4d = A + L #This line will produce an error

print('A+A =', Suml, type(Suml),
'"\nA+X =', Sum2, type(Sum2),
'"\nX+L ="', Sum3, type(Sum3))

Output:

A+A = [14 16 10] <class 'numpy.ndarray'>
A+X = [7 7 7] <class 'numpy.ndarray'>
X+L = [0, -1, 2, 'goat', 999, True] <class 'list'>

% operator. Let L be a list and A be an array. Let c be a constant. Consider the following
‘multiplications’ involving the operator :. The results are not always what you might
expect due to overloading.

1. If c is a positive integer, then c*L is a list comprising ¢ concatenated copies of the
list L. In other words, c*L= L + L + ... + L (c copies).
If c is a negative integer or zero, then c*L is an empty list.
If c is not an integer, c*L produces an error.

2. c*Ais an array whose elements are those A multiplied by c.

3. L*Ais an array whose ith element is the product of the ith element of L and the ith
element of A.

494

A Appendix A: Python 101

4. A*A is an array whose ith element is the square of the ith element of A. This is
equivalent to A**2.

The following code demonstrates the above points.

import numpy as np

L =1[0, -1, 2]

A = np.array([7, 8, 5])
Prodl = 3*L; Prod2 = 3*A
Prod3 = L*A; Prod4 = A*A

print('3*L =', Prodl, type(Prodl),
'\n3*A =', Prod2, type(Prod2),
'\nL*A ="', Prod3, type(Prod3),
'\nA*A =', Prod4, type(Prod4))
Output:

3*L = [0, -1, 2, O, -1, 2, ®, -1, 2] <class 'list'>
3*A = [21 24 15] <class 'numpy.ndarray'>
L*A = [® -8 10] <class 'numpy.ndarray'>
A*A = [49 64 25] <class 'numpy.ndarray'>

Here is another example: in the code classification.ipynb (§8.10), we find the
following line:

label = len(data®)*[0] + len(datal)*[1]

This line uses the * operator to duplicate the singleton lists [0] and [1] and concatenate
them using the + operator.

Storage. In broad terms, a large array takes up less storage (in terms of bytes) than a
list of the same length. Let’s quantify this statement.
In the code ratio-size.ipynb, we store the sequence

S=(012...,n-1) (A.1)

in two ways: as a list and as an array. We then find out how many bytes are required to
store each representation, and calculate the ratio

Number of bytes used to store S as a list

Number of bytes used to store S as an array

This ratio is plotted in fig. A.2 for sequence length n up to 10°. We see that for a
long sequence (n 2 10°), storing it as a list can take up as much as 10% more space
compared to an array. On the other hand, there are no real space-saving advantages for
short sequences (n < 100).

A3 Pyt 195

1.10 1

1.05 A1

1.00 A1

0.95 A

0.90 +

Ratio of sizes (List:Array)

0.85 A

0.80 A

0.75 T T T
10t 107 103 104 10° 10°
Length

Fig. A.2: Ratio of the numbers of bytes needed to store the sequence (0, 1,2,...,n—1) asa
list vs as an array. For a long sequence (n 2 10%), storing it as a list can require as much as
10% more space compared to an array. This graph is produced by ratio-size.ipynb.

ratio-size.ipynb (for plotting fig.

| import numpy as np
| import matplotlib.pyplot as plt
getsizeof = size of an object in bytes | from sys import getsizeof

Sequence lengths (up to 10%)
For storing list sizes. . .
and array sizes

N = np.round(np.logspace(l,6,1000))
sizel [1
sizeA = []

|
I
|
|
I
|
:
For the sequence (0, 1, 2,...,n—1) i for n in N:
Create the corresponding list. . . l L = [x for x in range(int(n))]
and the corresponding array | A = np.arange(n)
Store their sizes : sizel.append(getsizeof(L))
| sizeA.append(getsizeof(A))
I
|
Size ratio jratio = np.array(sizel)/np.array(sizeA)
|
1p1t.semilogx(N, ratio, 'b')
 plt.xlabel('Length')
'plt.ylabel('Ratio of sizes (List:Array)')
'plt.x1im(10, max(N))
iplt.grid('on')
 plt.show()

496 A Appendix A: Python 101

* Computational speed. Broadly, computations using arrays are faster than those using
lists. This is because many array operations can be vectorised, meaning that the
operations are performed in parallel by the CPU. This is much faster than, say, using a
for loop to perform the same operations on each element of a list one at a time.

Let’s quantify this speed boost.

In the code ratio-time.ipynb, we measure how long it takes to add one to each
element of the list and array representations of the sequence S (eq. A.1). Using a list L,
we time how long it takes to perform the list comprehension

[1+1 for 1 in L]

In contrast, using an array A, the operation A + 1 is vectorised, where 1 is understood
by NumPy to be the array (1,1,. .., 1) of the same size as A (this shape-matching is
called broadcasting!).

Fig. A.3 shows the ratio of the runtimes for the list and the array calculations. We see
that the list computation is generally slower. On my computer, the worst cases occur for
sequences of length ~ 3 x 10*, where the list computation is up to 70 times slower than
the array computation.

Your graph will be slightly different, depending on your hardware and Python distribution.
But your graph should support the conclusion that list-based calculations are generally
slower than those using arrays.

(o)}
o
!

u
o
!

w
o
!

N
o
!

Ratio of runtimes (List:Array)
N
o

=
o
!

10! 102 103 104 10° 106
Length

Fig. A.3: Ratio of the runtimes taken to add 1 to the sequence (0, 1,2,...,n— 1), using a list
vs using an array. In the worst case (when n ~ 3 x 10%), the list computation is around 70
times slower than the array computation. This graph is produced by ratio-time.ipynb.
Your graph will be slightly different.

Lhttps://numpy.org/doc/stable/user/basics.broadcasting.html

https://numpy.org/doc/stable/user/basics.broadcasting.html

A4 Random musings 497

ratio-time.ipynb (for plotting fig.

| import numpy as np
| import matplotlib.pyplot as plt
For measuring operation runtime | from time import perf_counter as timer

Array of sequence lengths (up to 10°)
For storing runtime using a list. . .
and using an array

N = np.around(np.logspace(l,6,1000))
timel = []
timeA = []

For the sequence (0, 1,2,...,n —1)
Create the corresponding list. . .
and the corresponding array

L = [x for x in range(int(n))]
A = np.arange(n)

|

I

|

|

I

|

|

I

|

I

|

|

I

j

Start the clock! : tic = timer()

Add 1 to every element in the list l [1+1 for 1 in L]

Stop the clock! | toc = timer()

Store the runtime : timeL.append(toc-tic)
I
|
I
|
|
I
|
|
I
|
I
|
|
I

Start the clock!

Repeat for the array (vectorised method)
Stop the clock!

Store the runtime

tic = timer(Q)

A+l

toc = timer()
timeA.append(toc-tic)
Ratio of runtimes ratio = np.array(timel)/np.array(timeA)
1plt.semilogx(N, ratio, 'r')
 plt.xlabel('Length')

'plt.ylabel('Ratio of runtimes (List:Array)')
'plt.x1im(10, max(N))

iplt.grid('on")

 plt.show()

A.4 Random musings
Free visualisation tools

In this book, we have used Matplotlib, Pandas, Plotly and Seaborn to create visualisations
in Python. Here are other useful (and free) visualisation tools.

* Visualising curves and surfaces. Desmos? is a powerful visualisation tool for plotting
curves and exploring 2D geometry. One of the best features is that sliders are instantly
and intuitively created for you. For 3D geometry, math3d> offers an easy-to-use,
Desmos-like interface for creating 3D surfaces and vector fields. GeoGebra* gives
advanced functionalities and is my go-to app for creating beautiful 3D figures like fig.
3.9.

2 https://www.desmos.com
3https://www.math3d.org
4https://www.geogebra.org

https://www.desmos.com
https://www.math3d.org
https://www.geogebra.org

498 A Appendix A: Python 101

* Data visualisation. R is a powerful programming language used by the statistics
community. The R library htmlwidgets> makes it easy to create interactive data
visualisation with only basic R knowledge.

Parallelisation

We have come across tasks that can be done in parallel, e.g. performing multiple Monte
Carlo simulations, solving an ODE with a range of initial conditions, and machine-learning
tasks. Your computer will most likely contain multiple computing cores, and we can speed
up our code by manually distributing tasks over multiple cores. To see how many computing
cores your computer has, run the following lines:

import multiprocessing
multiprocessing.cpu_count()

If you have not tried parallel programming before, a good starting point is the documen-
tation® for the module multiprocessing.

Python pitfalls and oddities

Overall, Python is easy for beginners to pick up. But there are some pitfalls that can trip up
many beginners.

We have already mentioned that when using lists, the + and = operators are not really
addition and multiplication.

Here are more pitfalls and some oddities that Python learners should watch out for.

1. The last element. One of the most common beginner’s mistakes is forgetting that
range and np.arange do not include the last element, but np.linspace does.
This applies to slicing of arrays and lists too. For example, A[-1] is the last element of
array A, but A[0:-1] is the array A excluding the last element.

2. Tranposing 1D arrays. Sometimes you may want to transpose a one-dimensional array
(e.g. to turn a row vector into a column vector). For example:

u = np.array([0,1,2])
v =u.T

However, you will find that then v is still precisely u. Nothing happens when you
transpose a 1D array!
If you really need the transpose explicitly, try adding another pair of brackets and
transpose v=np.array([[0,1,2]]) instead. In practice, such a transpose can often
be avoided altogether.

Shttp://www.htmlwidgets.org
6 https://docs.python.org/3/library/multiprocessing.html

http://www.htmlwidgets.org
https://docs.python.org/3/library/multiprocessing.html

A4 Random musings 499

3. Modifying a duplicate list/array can be dangerous. Consider the following lines of

code:
A=1T11,1,1]
B=A

B[®] = 9

Clearly B=[9,1, 1]. But you may be surprised to find that A is also [9,1,1]! The
original list has been modified, perhaps inadvertently.

To modify B whilst preserving the original list, use B=A.copy() instead of B=A.
Alternatively, if using arrays, use B=np . copy (A).

This caution applies to all mutable objects in Python. In short, be careful when
duplicating mutable objects”.

4. Iterators can only be used once. What do you think you will see if you run this code?

A = [1,2]

B = [5,9]

Z = zip(A,B)

for i,j in Z:
print(i,j)

for i,j in Z:
print('Can you see this?')

You will find that the string 'Can you see this?' is never printed, because zip is
an iterator, and each iterator can only be used once. When it comes to the second for
loop, Z is now empty.

To avoid this pitfall, we should replace each Z in the for loops by zip(A,B).

5. Mutable default argument. Probably the most infamous Python pitfall of all is
illustrated in the following function

def F(x=[]):
x.append(9)
return x

print(FO, FO)

The function F takes an argument x, which, if not supplied, is set to the empty list by
default. Therefore, calling F() gives [9]. So we might expect that the output of the
code is [9], [9]. However, you may be surprised to see the output

[9, 91 [9, 9]

See this discussion thread® for explanation. The commonly prescribed remedy is to use
the (immutable) keyword x=None in the argument instead.

def F(x=None):
if x==None:
x=[]
x.append(9)
return x

7 You will need deepcopy rather than copy when duplicating, say, a list containing lists. Read more about
deepcopy at https://docs.python.org/3/library/copy.html

8 https://stackoverflow.com/questions/1132941

https://docs.python.org/3/library/copy.html
https://stackoverflow.com/questions/1132941

500 A Appendix A: Python 101

Concluding remarks

Mathematics and programming are both lifelong pursuits for me. The main difference is
that whilst mathematics is a body of universal truths that will never change, programming
changes constantly. Even in the space of almost two years of writing this book, Python has
constantly evolved, and things that used to work now produce warnings or errors.

Naturally this means that this book will not have an indefinite shelf-life, but at least I
hope that I have demonstrated how maths and programming can work in synergy (in the
non-contrived sense of the word). I hope that the techniques demonstrated in this book have
given readers plenty of inspirations to explore mathematics more deeply for themselves. I
am looking forward to sharing more ideas for exploring university mathematics with Python
in future updates.

AN AW

8.

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.

26.
217.

28.
29.

30.

REFERENCES

. Agarwal, R.P,, Hodis, S., O’Regan, D.: 500 examples and problems of applied differential equations.

Springer, Cham (2019)

. Aggarwal, C.: Linear algebra and optimization for machine learning. Springer, Cham (2020)

. Abhlfors, L.V.: Complex analysis, third edn. McGraw-Hill, New York (1979)

. Aigner, M., Ziegler, G.M.: Proofs from THE BOOK, 6th edn. Springer, Berlin (2018)

. Alcock, L.: How to think about abstract algebra. Oxford University Press, Oxford (2021)

. Alligood, K.T., Sauer, T.D., Yorke, J.A.: Chaos: an introduction to dynamical systems. Springer, New

York (1997)

. Altmann, S.L.: Hamilton, rodrigues, and the quaternion scandal. Mathematics Magazine 62(5), 291

(1989)

Anderson, D.F., Seppildinen, T., Valko, B.: Introduction to Probability. Cambridge University Press,
Cambridge (2017)

Andreescu, T., Andrica, D.: Complex numbers from A to —Z, 2nd edn. Birkhduser, New York (2014)
Apostol, T.M.: Mathematical analysis, 2nd edn. Addison-Wesley, London (1974)

Apostol, T.M.: Introduction to analytic number theory. Springer, New York (2010)

Armstrong, M.A.: Groups and Symmetry. Springer, New York (1988)

Atkinson, K.E., Han, W., Stewart, D.: Numerical solution of ordinary differential equations. Wiley,
New Jersey (2009)

Axler, S.: Linear algebra done right, 3rd edn. Springer (2015)

Ayoub, R.: Euler and the zeta function. The American Mathematical Monthly 81(10), 1067 (1974)
Bak, J., Newman, D.J.: Complex analysis, 3rd edn. Springer, New York (2010)

Baker, G.L., Blackburn, J.A.: The pendulum : a case study in physics. Oxford University Press, Oxford
(2006)

Bannink, T., Buhrman, H.: Quantum Pascal’s Triangle and Sierpinski’s carpet. arXiv e-prints
arXiv:1708.07429 (2017)

Barnard, T., Neill, H.: Discovering group theory: a transition to advanced mathematics. CRC Press,
Boca Raton (2017)

Bartle, R.G., R., S.D.: Introduction to Real Analysis, 4th edn. Wiley, New Jersey (2011)

Bas, E.: Basics of probability and stochastic processes. Springer, Cham (2019)

Bays, C., Hudson, R.H.: A new bound for the smallest x with 7(x) > li(x). Mathematics of
Computation 69(231), 1285 (1999)

Beléndez, A., Pascual, C., Méndez, D.I., Beléndez, T., Neipp, C.: Exact solution for the nonlinear
pendulum. Revista Brasiliera de Ensino de Fisica 29(4), 645 (2007)

Beltrametti, M.C., Carletti, E., Gallarati, D., Bragadin, G.M.: Lectures on curves, surfaces and
projective varieties. European Mathematical Society, Ziirich (2009)

Berndt, B.C., Robert, A.R.: Ramanujan: Letters and Commentary. American Mathematical Society,
Providence (1995)

Birkhoff, G., Mac Lane, S.: A survey of modern algebra. Macmillan, New York (1941)

Birkhoff, G., Mac Lane, S.: A survey of modern algebra, 4th edn. Macmillan, London; New York;
1977)

Boas, M.L.: Mathematical Methods in the Physical Sciences, 3rd edn. Wiley (2005)

Bork, A.M.: “vectors versus quaternions"—the letters in nature. American Journal of Physics 34(3),
202 (1966)

Borwein, J.M., Bradley, D.M., Crandall, R.E.: Computational strategies for the riemann zeta function.
Journal of Computational and Applied Mathematics 121(1), 247 (2000)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 501
S. Chongchitnan, Exploring University Mathematics with Python,
https://doi.org/10.1007/978-3-031-46270-2

https://doi.org/10.1007/978-3-031-46270-2

502

31.

32.

33.
34.

35.
36.

37.
38.
39.
40.
41.
4.
43.
44,

45.
46.

47.
48.

49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.

60.
61.

62.

63.

64.
65.

66.
67.

References

Bower, O.K.: Note concerning two problems in geometrical probability. The American Mathematical
Monthly 41(8), 506 (1934)

Brauer, F., Castillo-Chavez, C., Feng, Z.: Mathematical models in epidemiology. Springer, New York
(2019)

Bronson, R., Costa, G.B.: Schaum’s outline of differential equations, 5th edn. McGraw Hill (2021)
Brunton, S.L., Kutz, J.N.: Data-Driven Science and Engineering: Machine Learning, Dynamical
Systems, and Control, 2nd edn. Cambridge University Press, Cambridge (2022)

Burton, D.M.: Elementary number theory, 7th edn. McGraw Hill, New York (2011)

Butcher, J.C.: Numerical methods for ordinary differential equations, 3rd edn. Wiley, Chichester
(2016)

do Carmo, M.P.: Differential geometry of curves and surfaces. Prentice Hall (1976)

Carter, N.C.: Visual group theory. Mathematical Association of America, Washington, D.C. (2009)
Chao, K.F., Plymen, R.: A new bound for the smallest x with 7(x) > li(x) (2005). URL https:
//arxiv.org/abs/math/0509312

Cheney, W., Kincaid, D.: Numerical mathematics and computing, 7th edn. Cengage (2012)
Chihara, T.S.: An introduction to orthogonal polynomials. Dover, New York (2011)
Choquet-Bruhat, Y., de Witt-Morette, C., Dillard-Bleick, M.: Analysis, manifolds and physics. North
Holland, Amsterdam (1983)

Chung, K.L., AitSahlia, F.: Elementary probability theory: with stochastic processes and an introduction
to mathematical finance, 4th edn. Springer, New York (2003)

Clarke, R.D.: An application of the poisson distribution. Journal of the Institute of Actuaries 72(3),
481 (1946)

Collins, PJ.: Differential and integral equations. Oxford University Press, Oxford (2006)
Comninos, P.: Mathematical and computer programming techniques for computer graphics. Springer,
London (2006)

Conrey, J.B.: The riemann hypothesis. Notices of the AMS 50(3), 341 (2003)

Cramér, H.: On the order of magnitude of the difference between consecutive prime numbers. Acta
Arithmetica 2(1), 23 (1936)

Crandall, R., Pomerance, C.: Prime numbers: a computational perspective, 2nd edn. Springer, New
York (2005)

Crowe, M.J.: A history of vector analysis: the evolution of the idea of a vectorial system. University
of Notre Dame Press, London;Notre Dame (Illinois) (1967)

Crowe, W.D., Hasson, R., Rippon, P.J., Strain-Clark, P.E.D.: On the structure of the mandelbar set.
Nonlinearity 2(4), 541 (1989)

DeGroot, M.H., Schervish, M.J.: Probability and statistics, 4th edn. Pearson Education, London
(2012)

Deisenroth, M.P., Faisal, A.A., Ong, C.S.: Mathematics for machine learning. Cambridge University
Press, Cambridge (2020)

Dolotin, V., Morozov, A.: The Universal Mandelbrot Set: The beginning of the story. World Scientific,
Singapore (2006)

Douady, A., Hubbard, J.H.: Etude dynamique des polyndmes complexes. Publications Mathématiques
d’Orsay 84 (1984)

Dougherty, C.: Introduction to econometrics, fifth edn. Oxford University Press, Oxford (2016)
Dudley, U.: Elementary number theory, 2nd edn. W. H. Freeman, San Francisco (1978)

Elaydi, S.: An introduction to difference equations, 3rd edn. Springer, New York (2005)

Evans, G., Blackledge, J., Yardley, P.: Numerical methods for partial differential equations. Springer-
Verlag, London (2000)

Farlow, S.J.: Partial differential equations for scientists and engineers. Dover, New York (1982)
Feigelson, E.D., Babu, G.J.: Modern statistical methods for astronomy: with R applications. Cambridge
University Press, Cambridge (2012)

Feller, W.: An introduction to probability theory and its applications, vol. I, 3rd edn. Wiley, London
(1968)

Fine, B., Rosenberger, G.: Number Theory: an introduction via the density of primes, 2nd edn.
Birkhiuser, Cham (2016)

Fischer, H.: A History of the Central Limit Theorem. Springer, New York (2011)

Folland, G.B.: Fourier analysis and its applications. American Mathematical Society, Providence
(2009)

Forbes, C.S., Evans, M.: Statistical distributions, 4th edn. Wiley-Blackwell, Oxford (2010)

Fortney, J.P.: A Visual Introduction to Differential Forms and Calculus on Manifolds. Birkhauser,
Cham (2018)

https://arxiv.org/abs/math/0509312
https://arxiv.org/abs/math/0509312

References 503

68.
69.

70.
71.
72.
73.
74.
75.
76.

71.
78.

79.

80.
81.
82.
83.

84.

85.

86.

87.
88.

89.

90.

91.
92.

93.
94.
95.

96.

97.

98.

99.
100.
101.
102.
103.
104.
105.
106.
107.

Fraleigh, J.B., Brand, N.E.: A first course in abstract algebra, 8th edn. Pearson (2020)

Friedman, N., Cai, L., Xie, X.S.: Linking stochastic dynamics to population distribution: An analytical
framework of gene expression. Phys. Rev. Lett. 97, 168302 (2006)

Gallian, J.A.: Contemporary abstract algebra, 10th edn. Chapman and Hall /CRC, Boca Raton (2020)
Gardner, M.: Mathematical games. Scientific American 231(4), 120 (1974)

Gelbaum, B.R., Olmsted, J.M.H.: Counterexamples in Analysis. Dover, New York (1964)

Gerver, J.: The differentiability of the Riemann function at certain rational multiples of 7. Proceedings
of the National Academy of Sciences of the United States of America 62(3), 668-670 (1969). URL
http://www.jstor.org/stable/59156

Gezerlis, A.: Numerical methods in physics with Python. Cambridge University Press, Cambridge
(2020)

Glendinning, P.: Stability, instability, and chaos: an introduction to the theory of nonlinear differential
equations. Cambridge University Press, Cambridge (1994)

Goldstein, H., Poole, C., Safko, J.: Classical mechanics, 3rd edn. Addison Wesley, San Francisco
(2002)

Gorroochurn, P.: Classic problems of probability. John Wiley, Hoboken (2012)

Gradshteyn, 1.S., Ryzhik, I.M.: Table of integrals, series, and products, 8th edn. Academic Press,
Amsterdam (2014)

Granville, A.: Zaphod beeblebrox’s brain and the fifty-ninth row of pascal’s triangle. The American
Mathematical Monthly 99(4), 318 (1992)

Granville, A., Martin, G.: Prime number races. The American Mathematical Monthly 113(1), 1 (2006)
Gray, J.: A history of abstract algebra. Springer, Cham (2018)

Grieser, D.: Exploring mathematics. Springer, Cham (2018)

Griffiths, D.J.: Introduction to Electrodynamics, 4th edn. Cambridge University Press, Cambridge
(2017)

Griffiths, D.J., Schroeter, D.F.: Introduction to quantum mechanics, 3rd edn. Cambridge University
Press, Cambridge (2018)

Griffiths, M., Brown, C., Penrose, J.: From pascal to fibonacci via a coin-tossing scenario. Mathematics
in School 43(2), 25-27 (2014)

Grimmett, G., Stirzaker, D.: One thousand exercises in probability, 3rd edn. Oxford University Press,
Oxford (2020)

Hall, L., Wagon, S.: Roads and wheels. Mathematics Magazine 65(5), 283-301 (1992)

Hamill, P.: A student’s guide to Lagrangian and Hamiltonians. Cambridge University Press, Cambridge
(2014)

Hanley, J.A., Bhatnagar, S.: The “poisson" distribution: History, reenactments, adaptations. The
American Statistician 76(4), 363 (2022)

Hansen, J., Sato, M.: Regional climate change and national responsibilities. Environmental Research
Letters 11(3), 034009 (2016)

Hart, M.: Guide to Analysis, 2nd edn. Palgrave, Basingstoke (2001)

Haslwanter, T.: An introduction to statistics with Python: with applications in the life sciences.
Springer, Switzerland (2016)

Hass, J., Heil, C., Weir, M.: Thomas’ Calculus, 14th edn. Pearson (2019)

Herman, R.L.: An introduction to Fourier analysis. Chapman and Hall /CRC, New York (2016)
Hiary, G.A.: Fast methods to compute the riemann zeta function (2007). URL https://arxiv.org/
abs/0711.5005

Hirsch, M.W., Smale, S., Devaney, R.L.: Differential equations, dynamical systems, and an introduction
to chaos, 3rd edn. Academic Press, Amsterdam (2013)

Howell, K.B.: Ordinary differential equations: an introduction to the fundamentals, 2nd edn. Chapman
and Hall /CRC, Abingdon (2020)

Jarnicki, M., Pflug, P.: Continuous Nowhere Differentiable Functions: The Monsters of Analysis.
Springer, Cham (2015)

Jaynes, E.T.: The well-posed problem. Foundations of Physics 3(4), 477 (1973)

Johansson, R.: Numerical Python. Apress, Berkeley (2019)

Johnson, P.B.: Leaning Tower of Lire. American Journal of Physics 23(4), 240 (1955)

Johnston, D.: Random Number Generators—Principles and Practices. De Gruyter Press, Berlin (2018)
Johnston, N.: Advanced linear and matrix algebra. Springer, Cham (2021)

Johnston, N.: Introduction to linear and matrix algebra. Springer, Cham (2021)

Jones, G.A., Jones, J.M.: Elementary number theory. Springer, London (1998)

Jones, H.F.: Groups, representations and physics, 2nd edn. Taylor & Francis, New York (1988)
Kajiya, J.T.: The rendering equation. SIGGRAPH Comput. Graph. 20(4), 143-150 (1986)

http://www.jstor.org/stable/59156
https://arxiv.org/abs/0711.5005
https://arxiv.org/abs/0711.5005

504

108.
109.
110.
111.

112.
113.

114.
115.
116.
117.
118.
119.

120.
121.

122.

123.
124.

125.
126.
127.
128.
129.
130.

131.
132.

133.
134.
135.
136.
137.
138.

139.
140.

141.

142.

143.
144.

145.

146.

References

Katz, V.J.: The history of stokes’ theorem. Mathematics Magazine 52(3), 146 (1979)

Kay, S.M.: Intuitive probability and random processes using MATLAB. Springer, New York (2006)
Kenett, R., Zacks, S., Gedeck, P.. Modern statistics: a computer-based approach with Python.
Birkhduser, Cham (2022)

Kettle, S.F.A.: Symmetry and structure: readable group theory for chemists, 3rd edn. John Wiley,
Chichester (2007)

Kibble, T.W.B., Berkshire, F.H.: Classical mechanics, 5th edn. Imperial College Press, London (2004)
Kifowit, S.J., Stamps, T.A.: The Harmonic Series diverges again and again. AMATYC Review 27(2),
31-43 (2006)

Kong, Q., Siauw, T., Bayen, A.: Python programming and numerical methods — a guide for engineers
and scientists. Academic Press (2020)

Kortemeyer, J.: Complex numbers: an introduction for first year students. Springer, Wiesbaden (2021)
Kosinski, A.A.: Cramer’s rule is due to cramer. Mathematics Magazine 74(4), 310-312 (2001)
Kubat, M.: An introduction to machine learning, third edn. Springer, Cham (2021)

Kucharski, A.: Math’s beautiful monsters; how a destructive idea paved the way to modern math.
Nautilus Q.(11) (2014)

Kuczmarski, F.: Roads and wheels, roulettes and pedals. The American Mathematical Monthly 118(6),
479-496 (2011)

Kuhl, E.: Computational epidemiology: data-driven modelling of COVID-19. Springer, Cham (2021)
Lagarias, J.C.: Euler’s constant: Euler’s work and modern developments. Bulletin of the American
Mathematical Society 50(4), 527-628 (2013)

Lam, L.Y.: Jiu zhang suanshu (nine chapters on the mathematical art): An overview. Archive for
History of Exact Sciences 47(1), 1 (1994)

Lambert, B.: A student’s guide to Bayesian statistics. SAGE Publications, London (2018)
Langtangen, H.P.,, Linge, S.: Finite difference computing with PDEs. Springer, Cham (2017). URL
https://link.springer.com/book/10.1007/978-3-319-55456-3

Lay, D.C., Lay, S.R., McDonald, J.: Linear algebra and its applications, 5th edn. Pearson, Boston
(2016)

Lemmermeyer, F.: Reciprocity laws. Springer, Berlin (2000)

Lengyel, E.: Mathematics for 3D game programming and computer graphics. Cengage (2011)
Leon, S.J., Bjorck, A., Gander, W.: Gram-schmidt orthogonalization: 100 years and more. Numerical
Linear Algebra with Applications 20(3), 492 (2013)

Li, T.Y., Yorke, J.A.: Period three implies chaos. The American Mathematical Monthly 82(10), 985
1975)

Lin, J.W., Aizenman, H., Espinel, E.M.C., Gunnerson, K.N., Liu, J.: An introduction to Python
programming for scientists and engineers. Cambridge University Press, Cambridge (2022)

Linge, S., Langtangen, H.P.: Programming for Computations - Python, 2nd edn. Springer (2020)
Liu, Y.: First semester in numerical analysis with Python (2020). URL http://digital.auraria.
edu/IR00000195/00001

Lorenz, E.N.: Deterministic nonperiodic flow. Journal of Atmospheric Sciences 20(2), 130 (1963)
Lyche, T.: Numerical linear algebra and matrix factorizations. Springer, Cham (2020)

Lynch, S.: Dynamical systems with applications using Python. Birkhduser, Cham (2018)

Lynch, S.: Python for scientific computing and artificial intelligence. CRC Press (2023)

MacTutor History of Mathematics Archive: URL https://mathshistory.st-andrews.ac.uk/
MacTutor History of Mathematics Archive: URL https://mathshistory.st-andrews.ac.uk/
Curves/Cycloid/

Matsuura, K.: Bayesian Statistical Modeling with Stan, R, and Python. Springer, Singapore (2022)
May, R.M.: Simple mathematical models with very complicated dynamics. Nature 261(5560), 459
(1976)

Mazo, R.M.: Brownian motion: fluctuations, dynamics, and applications, vol. 112. Clarendon Press,
Oxford (2002)

Mazur, B., Stein, W.A.: Prime numbers and the Riemann hypothesis. Cambridge University Press,
Cambridge (2016)

McCluskey, A., B., M.: Undergraduate Analysis. Oxford University Press, Oxford (2018)
McMullen, C.T.: The Mandelbrot set is universal. In The Mandelbrot Set, Theme and variations, p. 1.
Cambridge University Press, Cambridge (2007)

Michelitsch, M., Réssler, O.E.: The “burning ship” and its quasi-julia sets. Computers & Graphics
16(4), 435 (1992)

Michon, G.P.: Surface area of an ellipsoid (2004). URL http://www.numericana.com/answer/
ellipsoid.htm

https://link.springer.com/book/10.1007/978-3-319-55456-3
http://digital.auraria.edu/IR00000195/00001
http://digital.auraria.edu/IR00000195/00001
https://mathshistory.st-andrews.ac.uk/
https://mathshistory.st-andrews.ac.uk/Curves/Cycloid/
https://mathshistory.st-andrews.ac.uk/Curves/Cycloid/
http://www.numericana.com/answer/ellipsoid.htm
http://www.numericana.com/answer/ellipsoid.htm

References 505

147.

148.
149.

150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.

175.

176.
177.

178.
179.
180.
181.

182.
183.

Mickens, R.E.: Difference equations: Theory, applications and advanced topics, 3rd edn. Chapman
and Hall /CRC (2015)

Misner, C.W., Thorne, K.S., A., W.J.: Gravitation. W. H. Freeman, San Francisco (1973)

Mullen, G.L., Sellers, J.A.: Abstract algebra: a gentle introduction. Chapman and Hall /CRC, Boca
Raton (2017)

Muller, N., Magaia, L., Herbst, B.M.: Singular value decomposition, eigenfaces, and 3d reconstructions.
SIAM review 46(3), 518 (2004)

Nahin, P.J.: Duelling Idiots and Other Probability Puzzlers. Princeton University Press, Princeton
(2012)

Nabhin, P.J.: Digital Dice: Computational Solutions to Practical Probability Problems. Princeton
University Press, New Jersey (2013)

Nabhin, P.J.: Inside Interesting Integrals. Springer-Verlag, New York (2015)

Needham, T.: Visual complex analysis. Clarendon, Oxford (1997)

Nickerson, R.: Penney ante: counterintuitive probabilities in coin tossing. UMAP journal 27(4), 503
(2007)

Paolella, M.S.: Fundamental probability: a computational approach. John Wiley, Chichester, England
(2006)

Patarroyo, K.Y.: A digression on hermite polynomials (2019). URL https://arxiv.org/abs/
1901.01648

Paul, W., Baschnagel, J.: Stochastic processes: from physics to finance, 2nd edn. Springer, New York
(2013)

Pearl, J., Glymour, M., Jewell N, P.: Causal Inference in Statistics: A Primer. John Wiley and Sons,
Newark (2016)

Peck, R., Short, T.: Statistics: learning from data, 2nd edn. Cengage, Australia (2019)

Pedersen, S.: From calculus to analysis. Springer, Cham (2015)

Peitgen, H.O., Jiirgens, H., Saupe, D.: Chaos and fractals: new frontiers of science, 2nd edn. Springer
(2004)

Petrov, V.V.: Limit theorems of probability theory: sequences of independent random variables.
Clarendon, Oxford (1995)

Pharr, M., Humphreys, G.: Physically based rendering: from theory to implementation, 2nd edn.
Morgan Kaufmann, San Francisco (2010)

Piessens, R., Doncker-Kapenga, E.d., Uberhuber, C., Kahaner, D.: QUADPACK: A subroutine package
for automatic integration. Springer-Verlag, Berlin (1983)

Platt, D., Trudgian, T.: The Riemann hypothesis is true up to 3 - 10'2. Bulletin of the London
Mathematical Society 53(3), 792 (2021)

Pollack, P., Roy, A.S.: Steps into analytic number theory: a problem-based introduction. Springer,
Cham (2021)

Polyanin, A.D., Zaitsev, V.F.: Handbook of ordinary differential fquations, 3rd edn. Chapman and
Hall /CRC, New York (2017)

Posamentier, A.S., Lehmann, I.: The (Fabulous) Fibonacci Numbers. Prometheus Books, New York
(2007)

Press, W.H., Tekolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes: the art of scientific
computing, 3rd edn. Cambridge University Press, Cambridge (2007)

Pressley, A.N.: Elementary Differential Geometry. Springer-Verlag, London (2010)

Priestley, H.A.: Introduction to complex analysis, second edn. Oxford University Press, Oxford (2005)
Reid, M.: Undergraduate algebraic geometry. Cambridge University Press, Cambridge (1988)
Riley, K.F., Hobson, M.P., Bence, S.J.: Mathematical Methods for Physics and Engineering, 3rd edn.
Cambridge University Press (2006)

Robinson, J.C.: An introduction to ordinary differential equations. Cambridge University Press,
Cambridge (2004)

Rosenhouse, J.: The Monty Hall Problem. Oxford University Press, Oxford (2009)

Roser, M., Appel, C., Ritchie, H.: Human height. Our World in Data (2013). URL https:
//ourworldindata.org/human-height

Ross, S.M.: Stochastic processes, 2nd edn. Wiley, Chichester (1996)

Ross, S.M.: A first course in probability, 10th edn. Pearson, Harlow (2020)

Salinelli, E., Tomarelli, F.: Discrete dynamical models, vol. 76. Springer, Wien (2014)

Salsburg, D.: The Lady Tasting Tea: How Statistics Revolutionized Science in the Twentieth Century.
Holt Paperbacks (2002)

Sauer, T.: Numerical analysis, 2nd edn. Pearson, Boston (2012)

Selvin, S.: Letters to the editor. The American Statistician 29(1), 67 (1975)

https://arxiv.org/abs/1901.01648
https://arxiv.org/abs/1901.01648
https://ourworldindata.org/human-height
https://ourworldindata.org/human-height

506

184.
185.
186.
187.

188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
200.

201.
202.

203.
204.

205.
206.
207.
208.
209.
210.
211.
212.
213.

214.
215.

216.
217.
218.
219.

220.
221.

References

Serway, R.A., Jewett, J.W.: Physics for scientists and engineers, 10th edn. Cengage (2011)
Shafarevich, L.R.: Basic algebraic geometry I, 3rd edn. Springer, Berlin (2013)

Shah, C.: A Hands-On Introduction to Machine Learning. Cambridge University Press (2022)
Shinbrot, T., Grebogi, C., Wisdom, J., Yorke, J.: Chaos in a double pendulum. American Journal of
Physics 60(6), 491-499 (1992)

Skegvoll, E., Lindqvist, B.H.: Modeling the occurrence of cardiac arrest as a poisson process. Annals
of emergency medicine 33(4), 409 (1999)

Spivak, M.: Calculus, 3rd edn. Cambridge University Press, Cambridge (2006)

Stein, E.M.: Fourier analysis: an introduction. Princeton University Press, Princeton (2003)
Stewart, 1., Tall, D.: Complex analysis: the hitch hiker’s guide to the plane, second edn. Cambridge
University Press, Cambridge (2018)

Stewart, J., Watson, S., Clegg, D.: Multivariable Calculus, 9th edn. Cengage (2020)

Stinerock, R.: Statistics with R: A Beginner’s Guide. SAGE Publishing.1 (2018)

Strang, G.: Introduction to linear algebra, 5th edn. Wellesley-Cambridge Press (2016)

Strang, G.: Linear algebra and learning from data. Wellesley-Cambridge Press (2019)

Strauss, W.A.: Partial differential equations : an introduction, 2nd edn. Wiley, New Jersey (2008)
Strogatz, S.H.: Nonlinear dynamics and chaos, with applications to physics, biology, chemistry, and
engineering, 2nd edn. Westview Press (2015)

Sutton, E.C.: Observational Astronomy: Techniques and Instrumentation. Cambridge University Press
(2011)

Sykora, S.: Approximations of ellipse perimeters and of the complete elliptic integral (2005). URL
http://dx.doi.org/10.3247/SL1Math05.004

Tall, D.: The blancmange function continuous everywhere but differentiable nowhere. The Mathemat-
ical Gazette 66(435), 11-22 (1982)

Tapp, K.: Differential Geometry of Curves and Surfaces. Springer (2016)

Thim, J.: Continuous nowhere differentiable functions. Masters Thesis, Lulea University of Technology
(2003)

Tong, Y.L.: The Multivariate Normal Distribution. Springer New York, New York (1990)

Tversky, A., Kahneman, D.: Judgment under uncertainty: Heuristics and biases. Science 185(4157),
1124 (1974)

Unpingco, J.: Python for Probability, Statistics, and Machine Learning, 2nd edn. Springer International
Publishing, Cham (2019)

Vince, J.: Quaternions for computer graphics, 2nd edn. Springer, London (2021)

Vince, J.: Mathematics for computer graphics, 6th edn. Springer, London (2022)

Vilean, C.I.: (Almost) Impossible Integrals, Sums, and Series. Springer, Cham (2019)

Watson, G.N.: Three triple integrals. The Quarterly Journal of Mathematics 0s-10(1), 266 (1939)
Wikimedia: URL https://commons.wikimedia.org/wiki/File:Blaise_Pascal_
Versailles.JPG

Wikimedia: URL https://en.wikipedia.org/wiki/Jia_Xian#/media/File:Yanghui_
triangle.gif

Wikimedia: URL https://en.wikipedia.org/wiki/Florence_Nightingale#/media/File:
Florence_Nightingale_(H_Hering_ NPG_x82368).jpg

Wikimedia / Mario Biondi: URL https://commons.wikimedia.org/wiki/File:Al_
Khwarizmi%27s_Monument_in_Khiva.png

Wikipedia: URL https://en.wikipedia.org/wiki/Seki_Takakazu

Wilcox, A.J.: On the importance—and the unimportance— of birthweight. International Journal of
Epidemiology 30(6), 1233 (2001)

Witte, R.S., Witte, J.S.: Statistics, 4th edn. Wiley, Hoboken (2021)

Wolfram, S.: Statistical mechanics of cellular automata. Rev. Mod. Phys. 55, 601 (1983)

Wolfram, S.: Geometry of binomial coefficients. The American Mathematical Monthly 91(9), 566
(1984)

Yesilyurt, B.: Equations of Motion Formulation of a Pendulum Containing N-point Masses. arXiv
e-prints arXiv:1910.12610

Young, H.D., Freedman, R.A.: University physics with modern physics, 15th edn. Pearson (2020)
Yuan, Y.: Jiu zhang suan shu and the gauss algorithm for linear equations. Documenta Mathematica
(Extra volume: optimization stories) p. 9 (2012)

http://dx.doi.org/10.3247/SL1Math05.004
https://commons.wikimedia.org/wiki/File:Blaise_Pascal_Versailles.JPG
https://commons.wikimedia.org/wiki/File:Blaise_Pascal_Versailles.JPG
https://en.wikipedia.org/wiki/Jia_Xian#/media/File:Yanghui_triangle.gif
https://en.wikipedia.org/wiki/Jia_Xian#/media/File:Yanghui_triangle.gif
https://en.wikipedia.org/wiki/Florence_Nightingale#/media/File:Florence_Nightingale_(H_Hering_NPG_x82368).jpg
https://en.wikipedia.org/wiki/Florence_Nightingale#/media/File:Florence_Nightingale_(H_Hering_NPG_x82368).jpg
https://commons.wikimedia.org/wiki/File:Al_Khwarizmi%27s_Monument_in_Khiva.png
https://commons.wikimedia.org/wiki/File:Al_Khwarizmi%27s_Monument_in_Khiva.png
https://en.wikipedia.org/wiki/Seki_Takakazu

A

Algebra 283

Anaconda 489

Analysis

Complex 342

Real 5

Animation (Matplotlib) 150
Ansombe’s quartet 449
Apéry’s constant £(3) 338
arange (syntax) 6
Arclength 104
Archimedian property 31
Arcsine law (random walk) 483
Array (NumPy) 6

B

Bayes” Theorem 381
Bayesian statistics
Conjugate priors 484
Credible interval 465
Evidence 464
Inference 463
Likelihood 464
Posterior 464

Prior 464

vs. Frequentist statistics 468
Bernoulli numbers 338
Bernoulli trials 369
Bertrand paradox 413
Bifurcation 179

Big O notation 58
Binet’s formula 22
Binomial coefficient 364
Birthday problem 377

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

INDEX

Generalisations 408
Bisection method 34
Blancmange function 88
Broadcasting (Python concept) 496
Buffon’s needle 401
Buffon’s noodles 404
Bézout’s identity 320

C

Cardioid 187
Cartographic projections 122
Catalan’s constant 396
Cayley’s Theorem 310
Cayley-Hamilton Theorem 248, 279
Ceiling 13
Cellular automata 368
Central Limit Theorem 424
Generalised 427
Chaos 167,172
Chinese Remainder Theorem 323
Circulation 135
Classification 471
k-nearest neighbour algorithm 473
Clustering 471
k-means algorithm 471
Coefficient of determination R? 448,
482
Coin toss (simulation techniques) 369
Combination 356
Comma (Python operator) 29
Comparison test 16
Completeness Axiom 32
Confidence interval 432
Conic sections 118
Continuity (e-6 definition) 23
507

S. Chongchitnan, Exploring University Mathematics with Python,

https://doi.org/10.1007/978-3-031-46270-2

https://doi.org/10.1007/978-3-031-46270-2

508

Contractive sequence 22
Correlation coefficient r 448, 482
Counterexamples 44
Coupon collector’s problem 379, 409
Covariance 405,482
Cramer’s rule 233
Curse of dimensionality 398
Curvature 108

Signed 109
Cycloid 101
Cylindrical coordinates 98

INDEX

Division ring 315
Douady’s Rabbit 211

Eccentricity 106
Eigenvalues and eigenvectors 243

Multiplicity (of an eigenvalue) 247

Ellipsoid 117

Surface area 122

Elliptic integrals 106

d’Alembertian operator o0 200

Data types (Python) 491

De Moivre-Laplace Theorem 388
Degrees of freedom (statistics) 430,

480

Differentiability 36
Differentiation 36

Backward difference 55
Five-point stencil 87
Forward difference 37, 55
of power series 62
Symmetric difference 55

Directional derivative 126
Dirichlet eta function 340
Distribution (probability)

x 459

x> 438

Arcsine 425

Bates 425

Bernoulli 369

Beta 465,484
Binomial 370
Bivariate (joint) 402
Bivariate normal 451, 482
Cauchy 427
Exponential 393
Gamma 442
Marchenko-Pastur 280
Marginal 456
Normal (Gaussian) 387
Poisson 391,410
Student’st 429
Triangular 425
Uniform 361

Divergence (div operator V-) 130
Divergence Theorem 129

Epiphylum oxypetalum 262
Error function (erf) 89
Euclid’s orchard 50
Euclidean algorithm 318
Euler’s criterion 330

Euler’s product 342
Euler-Mascheroni constant 18
Expectation value 360

F

Factorial (syntax) 48
Feigenbaum constant 179
Fibonacci sequence 20,251
From coin tosses 373
Generalised 49
In Pascal’s triangle 407
Field 315
First fundamental form 122
Fixed point (of a dynamical system)

171
Period 177
Stability 177,248
Floor 13
Flux 129

Fourier series 82
Fractal 180,210
Frenet-Serret equations 112
Function 8
Bijective 292
Homomorphism 292
Injective 292
Python syntax 9
Surjective 292
Fundamental Theorem of Arithmetic
286
Fundamental Theorem of Calculus

Fundamental Theorem of Plane Curves

109

INDEX

Fundamental Theorem of Space Curves
115

G

Galton board 386
Gambler’s ruin 483
Gamma function 340
Gauss’s Lemma 350
Gaussian integrals 80
Gibbs phenomenon 83
Gimbal lock 313
Golden Ratio 22
Generalised 50
Gradient (grad operator V) 124
Gram-Schmidt process 272
Greatest common divisor (gcd) 30,
285
Green’s Theorem 139
Groups 284
Abelian 291
Alternating 303
Cayley graph 296
Cayley table 289
Coset 307
Cyclic 291
Dihedral 295
Isomorphism 291
Klein four 299
Normal subgroup 309
Permutation 302
Quaternion 311
Quotient 309
Special orthogonal 240
Subgroups 299
Symmetric 302

H

Harmonic numbers 379
Harmonic series 17
Heat equation (diffusion equation) 190
Helix 113
Hermite polynomials 282
Hyperbolic paraboloid (saddle) 145
Hyperboloid of one sheet 117, 144
Hyperboloid of two sheets 144
Hypocycloid 142
Hypothesis testing 432

chi-squared (goodness of fit) test 439

509

Critical values 433

p value 434

t-test 434

Tea tasting 442

Test statistic ()(2) 440

Type I and type Il errors 435
Test statistic () 433

I

Image compression

SVD (colour) 281

SVD (greyscale) 262
Image segmentation 486
Improper integral 75
Incomplete gamma function 352
Initial-value problem 148
Integrating factor 150
Integration

dblquad and tplquad (syntax) 100

Double and triple 99

of power series 62

Romberg 74

Trapezium Rule 70

Boole’s Rule 92

Midpoint Rule 90

Simpson’s Rule 72,90

Trapezium Rule 90
Intermediate Value Theorem 33
Invertible Matrix Theorem 223
ipywidgets (library) 24

J

Juliaset 211
JupyterLab 489

L

Lagrange’s Theorem 299

Laplacian operator V> 133

Laurent series 339

Legendre polynomials 274

Legendre symbol 327

Lemniscate of Bernoulli 108, 143

Li-Yorke Theorem 180

Limit 28

Linear algebra 215

Linear combination 221

Linear congruences (system of) 322
Solvability criterion 325

510

Linear independence 221
Linear regression 444
Least square 444
Linear systems (of equations) 219, 224
Linear transformation 222
Image 222
Kernel 222
Matrix representation 237
Rotation 237
Scaling and reflection 240
Shear 239
Translation 241
linspace (syntax) 6
Logistic Map 176
Lorenz equations 171,207
Lucas sequences 49
Lyapunov exponent 167

M

Machine epsilon (gmacn) 57
Machine learning 471
Supervised 471
Training 475
Unsupervised 471
Madhava series 47
Magic commands (including
%Jematplotlib) ix
Mandelbrot set 181
Connection to the logistic map 185
Matplotlib 6
Matrices 217
Change of basis 254
Characteristic polynomial 247
Defective 279
Determinant 218,240
Fundamental subspaces 268
Inverse 218,232
Nullspace and nullity 222
Orthogonal 240
Pauli 315
Rank 221
Row and column spaces 221
Row reduction 218
Row-echelon form 218
RREF 219
Matrix decomposition
Cholesky 235
Diagonalisation
(eigen-decomposition) 251

INDEX

LU 230

QR 235

Singular-value (SVD) 258
MCMC algorithms 468,485
Mean 360

Mean Value Theorem 41
Cauchy’s 43

Median 420

Metropolis-Hastings algorithm 485
Minimum x> 480

Mode 420

Modular arithmetic 286
Monotone Convergence Theorem 14
Monte Carlo integration 395, 411
Error 399

Graphics rendering 399
Monty Hall problem 381
Generalisations 409

Mobius strip 145

Mbobius transformation 353

N

Neighbourhood 23
Newton-Raphson method 34,51
Nielsen’s spiral 143
Nine Chapters of Mathematical Art
216, 220
Normal modes 200
Normal to a surface 124
Number theory 285
Python syntax 288
NumPy 6

(0

Order of convergence (for sequences)
49
Ordinary differential equations 148
Existence and uniqueness of solutions
157
Forward-Euler method 152
Heun’s method 155
Runge-Kutta (RK4) method 156
Separation of variables 151
solve_ivp (syntax) 158
Orthogonal polynomials 275
Osculating circle 144
Overloading (Python concept) 493

INDEX

P

p-series 15
Pandas (library) 421
Paraboloid 145
Parametric curves 96
Arc-length parametrisation 106
Regular 103
Parametric surfaces 97
Parseval’s theorem 83
Partial derivatives 98
Partial differential equations 148
Crank-Nicolson method 196
Finite-difference method (1D) 190
Finite-difference method (2D) 197
Separation of variables 194, 199
Uniqueness of solution 196
Pascal’s triangle 363
Pendulum 160
Damped 206
Double 165,207
Simple harmonic motion 161
Upside-down 206
Permutation (combinatorics) 356
Pigeonhole Principle 325
PIL (library) 261
Pip (Python installation tool) 489
Plotly (library) 225
Poincaré-Bendixson Theorem 173
Prime Number Theorem 332
Prime numbers 286
Chebyshev bias 350
Computer search 335
Infinitude of 335
Prime-counting function 7 332
Primitive roots 348
Probability 355
Conditional 357
Cumulative distribution function (cdf)
359
Density function (pdf) 359
Kolmogorov axioms 357
Law of total 358
Mass function (pmf) 358
Percent point function (ppf) 433
PyMC (library) 468

Q

quad (syntax) 76

511

Quadratic form 453
Diagonalisation 455
Quadratic reciprocity law 329
Quadratic residue 327
Quadric surfaces 117
Quaternions 311
Rotation in R? 267, 312

R

Radius of convergence 61
Ramanujan 104
m approximation 48
Elliptic perimeter approximation
104, 143
Random number generators (RNG)
376
Random numbers (Python) 362
Random variables
Continuous 359
Discrete 358
Iid 418
Independent 403
Uncorrelated 452
Random variates (sampling) 416
Random walk 458
2D 459
Recurrent 460
Symmetric 458
Transient 460
Rank-Nullity Theorem 265
Ratio Lemma 65
Ratio Test 61
Raytracing 127,399
Reciprocal Fibonacci number 48
Recurrence relation 149
Solution using matrices 251
Solution using method of
characteristics 255
Regression to the mean 448
Rejection region (critical region) 432
Riemann Hypothesis 344
Computer verification 345
Prime numbers and 345
Riemann’s non-differentiable function
89
Riemann’s zeta function { 336
Analytic continuation 340
Critical strip 340
Efficient computation 352

512

Functional equation 340
Nontrivial zeros 343
Prime numbers and 342
Trivial zeros 342
Ring 315

Rolle’s Theorem 43
Roulettes 103

Rounding error 58

S

Sample mean 418
Sample variance 420
Satellite orbits 205
Scalar field 124
Scikit-learn (library) 421
SciPy (library) 54
Seaborn (library) 421
Sequence 6

Convergence 10
Sequential criterion 32
Series 8
Sharkovsky’s Theorem 180
Sierpiniski’s triangle 365
Sieve of Eratosthenes 287
Simple pole 339
Simpson’s paradox 447,481
sinc (function) 28

Sine and cosine integrals (Si and Ci)

80, 92

Singular-value decomposition (SVD)

258

SIR model (epidemiology) 209

Slider (in Python) 26
Span 221
Spectral Theorem 255
Spherical coordinates 98
Spherical harmonics 275
Squeeze Theorem 13
Standard deviation 360
Statistics 415

Tables 434,480
Steepest descent 127
Stieltjes constants 339
Stirling’s approximation 351
Stokes’ Theorem 138

Generalised 140
Strange attractor 172
Superposition principle 195
Surface of revolution 145

Sympify (SymPy operator) 247

SymPy (library) 216
T

Taylor series 59
Remainder 63
Taylor’s Theorem 63
Theorema Egregium 122
Thomae’s function 30
Throwing (Python) 35
Torsion 112

Torus 146

Totient function ¢ 293
Triangular numbers 364
Truncation error 58
Turtle (library) 368

U
Unbiased estimator 419
\%

Variance 360
Vector field 129
Vector space 221
Basis 221
Dimension 221
Viete’s formula 47
Viviani’s curve 144

W

Wallis product 47

Wave equation 197
Weierstrass function 67
Wiener process 460
Wigner’s semicircle law 279
Witch of Agnesi 143

zZ

Z-score 417

Abel, Niels Henrik, 291
Agnesi, Maria Gaetana,
143
al-Khwarizmi,
Muhammad ibn
Musa, 283
Apéry, Roger, 338
Archimedes, 122

Bates, Grace, 425
Bayes, Thomas, 382
Bernoulli, Jacob, 108
Bertrand, Joseph, 413
Bolzano, Bernard, 23
Boole, George, 74
Brown, Robert, 460
Buffon, Georges-Louis
Leclerc, 401
Bézout, Etienne, 320

Catalan, Eugeéne
Charles, 396
Cauchy, Augustin-Louis,

5
Cayley, Arthur, 249
Cramer, Gabriel, 233

d’Alembert, Jean, 197
de la Vallée Poussin,
Charles Jean, 332

BIOGRAPHICAL INDEX

Fatou, Pierre, 211

Feigenbaum, Mitchell,
179

Fibonacci, 20

Fisher, Ronald, 442

Fourier, Joseph, 82

Frenet, Jean Frédéric,
112

Galton, Francis, 386

Gauss, Carl Friedrich,
95

Gibbs, Josiah, 83

Gosset, William Sealy
(‘Student’), 429

Gram, Jgrgen, 273

Green, George, 139

Hadamard, Jacques, 332
Hamilton, William

Rowan, 249
Heun, Karl, 155

Jia Xian, 363
Julia, Gaston, 211

Kepler, Johannes, 104
Klein, Felix, 299
Kutta, Martin, 156

Lagrange, Joseph-Louis,

Leibniz, Gottfried, 53
Lindelof, Ernst, 158
Lorenz, Edward, 171
Lyapunov, Aleksandr
Mikhailovich, 168

Mandelbrot, Benoit, 181
May, Robert, 176
Menaechmus, 118

Newton, Isaac, 53
Nightingale, Florence,
415

Ostrogradsky, Mikhail
Vasilyevich, 130

Parseval, Marc-Antoine,
83

Pascal, Blaise, 355

Pauli, Wolfgang, 315

Pearson, Karl, 440

Picard, Emile, 158

Pingala, 363

Poisson, Siméon-Denis,
392

Ramanujan, Srinivasa,
104

Riemann, Bernhard, 336

Rodrigues, Olinde, 311

Rolle, Michel, 43

de Moivre, Abraham, 63 Romberg, Werner, 74
388 Laplace, Pierre-Simon, Runge, Carl, 156
388
Eratosthenes, 287 Legendre, Schmidt, Erhard, 273
Euclid, 320 Adrien-Marie, Serret, Joseph Alfred,
Euler, Leonhard, 147 275 112
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 513

S. Chongchitnan, Exploring University Mathematics with Python,
https://doi.org/10.1007/978-3-031-46270-2

https://doi.org/10.1007/978-3-031-46270-2

514

Sharkovsky, Oleksandr
Mikolaiovich, 180

Sierpiniski, Wactaw, 365

Simpson, Edward Hugh,
447

Simpson, Thomas, 72

Stirling, James, 351

Stokes, George, 139
Sun Zi, 323

Takakazu, Seki, 215
Taylor, Brook, 63

Thomae, Carl Johannes,
30

BIOGRAPHICAL INDEX

van Rossum, Guido, 489
Viviani, Vincenzo, 144
von Koch, Helge, 345

Wiener, Norbert, 460
Wilbraham, Henry, 83

	Preface
	Motivation
	Who is this book for?
	Structure
	Assumed knowledge
	Acknowledgements
	The code
	a) Downloading and using the code
	b) About %matplotlib
	c) Coding style
	d) Getting in touch

	CONTENTS
	CHAPTER ONE: Analysis
	1.1 Basics of NumPy and Matplotlib
	1.2 Basic concepts in analysis
	Sequences
	Series
	Functions

	1.3 The ε, N definition of convergence for sequences
	1.4 Convergence of series
	1.5 The Harmonic Series
	1.6 The Fibonacci sequence
	1.7 The ε, δ definition of continuity
	1.8 Thomae’s function
	1.9 The Intermediate Value Theorem and root finding
	1.10 Differentiation
	1.11 The Mean Value Theorem
	1.12 A counterexample in analysis
	1.13 Exercises

	CHAPTER TWO: Calculus
	2.1 Basic calculus with SciPy
	2.2 Comparison of differentiation formulae
	2.3 Taylor series
	2.4 Taylor’s Theorem and the Remainder term
	2.5 A continuous, nowhere differentiable function
	2.6 Integration with Trapezium Rule
	2.7 Integration with Simpson’s Rule
	2.8 Improper integrals
	2.9 Fourier series
	2.10 Exercises

	CHAPTER THREE: Vector Calculus and Geometry
	3.1 Basic concepts in vector calculus
	Parametric curves
	Polar coordinates
	Parametric surfaces
	Cylindrical and spherical coordinates
	Partial derivatives
	Multiple integrals

	3.2 The cycloid
	3.3 Arc length of an ellipse
	3.4 Curvature
	3.5 Torsion
	3.6 Quadric surfaces
	3.7 Surface area
	3.8 Normal to surfaces and the grad operator
	3.9 The Divergence Theorem and the div operator
	3.10 Stokes’ theorem and the curl operator
	3.11 Exercises

	CHAPTER FOUR: Differential Equations and Dynamical Systems
	4.1 Basic concepts: ODEs, PDEs and recursions
	Ordinary differential equations
	Partial differential equations
	Recurrence relations

	4.2 Basics of Matplotlib animation
	4.3 ODE I – first-order ODEs
	4.4 ODE II – the pendulum
	4.5 ODE III – the double pendulum
	Numerical solution
	Animating the double pendulum
	Chaotic behaviour

	4.6 ODE IV – the Lorenz equations
	Fixed points
	3D animation
	Chaotic behaviour

	4.7 The Logistic Map
	Fixed points and period
	Stability
	Plotting the bifurcation diagram

	4.8 The Mandelbrot set
	Analysing orbits in the complex plane
	Plotting the Mandelbrot set
	3D view and connection to the logistic map

	4.9 PDE I – the heat equation
	Finite-difference method
	Separation of variables

	4.10 PDE II – the wave equation
	Finite-difference method
	Separation of variables

	4.11 Exercises

	CHAPTER FIVE: Linear Algebra
	5.1 Basics of SymPy
	5.2 Basic concepts in linear algebra
	Matrices
	Row reduction and the RREF
	Solving linear systems
	More advanced concepts and definitions
	Definition of a vector space
	Definitions related to vectors and vector spaces
	Definitions related to matrices
	Definitions related to linear transformations
	Some advanced linear-algebra concepts in Python
	Invertible Matrix Theorem

	5.3 Linear systems in R3
	Algebraic solutions
	Geometric interpretations
	Plotly

	5.4 Four methods for solving Ax = b
	Method 1: Row reduction and back substitution
	Method 2: LU decomposition
	Method 3: Inverse matrix
	Method 4: Cramer’s rule

	5.5 Matrices as linear transformations
	Rotation
	Shear
	Scaling and reflection

	5.6 Eigenvalues and eigenvectors
	Solving the eigenvalue problem
	Geometric interpretation
	Zero, imaginary and repeated eigenvalues

	5.7 Diagonalisation: Fibonacci revisited
	Visualising diagonalisation

	5.8 Singular-Value Decomposition
	SVD by hand
	Low-rank approximation
	SVD with Python

	5.9 The Rank-Nullity Theorem
	Visualising the rank-nullity theorem
	Coding highlights (a quaternion appears)

	5.10 Gram-Schmidt process and orthogonal polynomials
	Coding

	5.11 Exercises

	CHAPTER SIX: Abstract Algebra and Number Theory
	6.1 Basic concepts in abstract algebra
	Group theory in Python

	6.2 Basic concepts in number theory
	Modular arithmetic
	Generating prime numbers
	Number theory in Python

	6.3 Groups I – Cyclic group
	Abelian groups
	Cyclic groups
	Group isomorphism

	6.4 Groups II – Dihedral group
	Cayley graph
	Coding techniques
	Subgroups

	6.5 Groups III – Symmetric and alternating groups
	The symmetric group
	Odd/even permutations and the alternating group
	Permutations in SymPy
	Coset
	Normal subgroup
	Quotient group

	6.6 Quaternions
	Conjugate, modulus and inverse
	Polar form
	Rotation in R3 using quaternions
	Python implementation

	6.7 Elementary number theory I: Multiplicative inverse modulo
	6.8 Elementary number theory II: Chinese Remainder Theorem
	6.9 Elementary number theory III: Quadratic residue and the reciprocity law
	Quadratic reciprocity law

	6.10 Analytic Number Theory I: The Prime Number Theorem
	6.11 Analytic Number Theory II: The Riemann zeta function
	Region s > 1
	Region near s = 1
	Region 0 ≤ s < 1
	Region s < 0

	6.12 Analytic Number Theory III: The Riemann Hypothesis
	6.13 Exercises

	CHAPTER SEVEN: Probability
	7.1 Basic concepts in combinatorics
	7.2 Basic concepts in probability
	Axioms of probability
	Conditional probability
	Random variables
	Discrete random variables
	Continuous random variables

	Cumulative distribution function
	Expectation (mean)
	Variance
	Example: The uniform distribution

	7.3 Basics of random numbers in Python
	7.4 Pascal’s triangle
	Computing (n k) with Python
	Sierpinski’s triangle

	7.5 Coin tossing
	Simulating coin tosses
	Binomial distribution
	A surprise (and Fibonacci appears)

	7.6 The Birthday Problem
	Simulation

	7.7 The Monty Hall problem
	Bayes’ Theorem
	n-door generalisation
	Simulation

	7.8 The Normal distribution
	Simulation
	Approximation by normal distribution

	7.9 The Poisson distribution
	Simulation
	The Poisson distribution

	7.10 Monte Carlo integration
	7.11 Buffon’s needle
	Simulation
	Analysis using joint probability distribution

	7.12 Exercises

	CHAPTER EIGHT Statistics
	8.1 Basic concepts in statistics
	Probability distributions
	Standard probability distributions
	Iid random variables
	Sample statistics

	8.2 Basics of statistical packages
	Pandas
	Seaborn
	Scikit-learn

	8.3 Central Limit Theorem
	The Central Limit Theorem

	8.4 Student’s t distribution and hypothesis testing
	Confidence interval of � from a small sample
	from a small sample
	Hypothesis testing
	t-test with SciPy

	8.5 χ2 distribution and goodness of fit
	distribution and goodness of fit
	χ2 test in SciPy

	8.6 Linear regression and Simpson’s paradox
	Least-square method
	Simpson’s paradox

	8.7 Bivariate normal distribution
	8.8 Random walks
	Simulating random walks
	The χ distribution
	2D random walk

	8.9 Bayesian inference
	Prior, likelihood, posterior
	Coding
	The beta distribution

	8.10 Machine learning: clustering and classification
	k-means clustering
	k-nearest neighbour (kNN) classification

	8.11 Exercises

	Appendix A: Python 101
	A.1 Installation
	A.2 Learning Python
	A.3 Python data types
	Basic data types
	Composite data types
	Lists vs arrays

	A.4 Random musings
	Free visualisation tools
	Parallelisation
	Python pitfalls and oddities
	Concluding remarks

	REFERENCES
	INDEX
	BIOGRAPHICAL INDEX

