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Preface

The idea of this handbook came to me when I noticed something that made me
pause and reflect. What I saw was that when I mentioned data visualization to a
person who know just a little about it, perhaps adding that it involves representing
data and the results of data analysis with figures, sometimes even interactive one,
the reaction was often of curiosity with a shade of perplexity, the name sounded
nice, but what is it, exactly? After all, if we have a table with data and we want
to produce a graph, isn’t it enough to search in a menu, choose the stylized figure
of the graph you want to create and click? Is there so much to say to fill an entire
book? When I also add that what I was talking about were completely different
graphic tools from those of office automation and that, to tell the truth, it doesn’t
even stop at the graphics, even if they are interactive, but there are also dashboards,
i.e. the latest evolution of data visualization, when real dynamic web applications
are created, then the expression of the interlocutor was generally crossed by a
shadow of concern. At that moment, I typically threw the ace up the sleeve by
saying that in data visualization there are also maps, geographical maps – why
not? – those are data too, they are spatial data, geographical data, and the maps are
produced with the zoom, the flags, colored areas, and also cartographic maps, you
may work with maps of New York, Tokyo, Paris, Rome, New Delhi, you name it.

At that point the interlocutors were usually looking puzzled, the references they
had from the common experience were lost and doesn’t really know what this data
visualization is about, only that there actually seems to be a lot to say, enough to
fill an entire book.

If anyone recognizes themselves in this interlocutor, be assured that you are in
good company. Good in a literal not figurative sense, because data visualization
is the Cinderella of data science that many admire but always from a certain
distance, it arrives last and at the best moment it is forced to step back because
there is no longer enough time to teach, study, or practice it. Yet, it frequently
happens that those who, given the right opportunity to study and practice it,
sense that it could be decidedly interesting, certainly prove useful and applicable
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in an infinite number of fields. This is due to a property that data visualization
has and is instead absent in data analysis or code development: it stimulates visual
creativity together with logic. Even statisticians and programmers use creativity,
those who deny it have never been neither of them, but that is logical creativity.
With data visualization, another dimension of otherwise neglected data science
comes into play, the visual language combined with computational logic, meaning
that data are represented with an expressive form that is no longer just logical and
symbolic, but also perceptive, sensorial, shapes together with colors come into
play, the once passive observer starts interacting, or projections of geographical
areas suddenly become artifacts to use in a visual communication. Data visualiza-
tion conveys different knowledge and logic for an expressive form that always has
a double nature: computational for the data that feeds it, visual and sometimes
interactive for the language it uses to communicate with the observer. There is
enough to fill not a single book, in fact, what is contained in this book is a part of
the discourse on data visualization, the one more practical and operative, other
publications approach data visualization considering complementary aspects,
such as the aesthetical composition of graphics, the storytelling behind a visual
communication, and the syntax and semantic of a visual language together with
the sensorial perception and psychology, and there is a lot to say for each one
of these topics. All of them are essential for a complete understanding of the
aim and extent of data visualization, but together they just don’t fit in one single
handbook, unless presented in a truly superficial fashion, for this reason almost
every book on data visualization focuses more explicitly on a few of those aspects.
This book is dedicated to the more operational and computational issues, because
you have to know the low-level logic behind modern data visualization artifacts
and you have to know and practice with tools, they are not all alike, “just pick
the easiest to use and you’re all set” is definitely not a good advice and, given the
liveliness of the proprietary data visualization tools’ market, it is easy to forget
about open-source ones, which instead rival and often surpass what proprietary
tools are able to offer; may be with a little more of initial efforts, but not much.

To conclude, data visualization probably deserves better consideration in educa-
tional programs and a recognition as a coherent and evolving discipline. It could
be a lot of fun to study and practice it, it could make also you pause and reflect
about tools for communicating data science results with a visual language, and
it includes many different aspects from diverse disciplines, both theoretical and
practical, all converging and enmeshing in a coherent body of knowledge. These
are all good characteristics for curious persons. The Cinderella role of data visu-
alization can be overcome by recognizing its educational and professional value
and, no less important, its creative stimulus.

Marco Cremonini
University of Milan

October 8, 2024
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Introduction

When you mention data visualization to a person who doesn’t know it, perhaps
adding that it involves data and the results of data analysis with figures, sometimes
even interactive ones, the reaction you observe is often that the person in front of
you looks intrigued but doesn’t know exactly what it consists of. After all, if we
have a table with data and we want to produce a graph, isn’t it enough to open
the usual application, go to a certain drop-down menu, choose the stylized figure
of the graph you want to create and click? Is there so much to say to fill an entire
book? At that moment, when you perceive that the interlocutor is thinking of
the well-known spreadsheet product, you may add that those described in the
book are graphic tools completely different from those of office automation and,
to tell the truth, we don’t even stop at the graphics, even if interactive, but there
are also dashboards, namely the latest evolution of data visualization, when it is
transformed into dynamic web applications, and to obtain dashboards it is not
sufficient to click on menus but you have to go deeper into the inner logic and
mechanisms. It’s then that the expression of the interlocutor is generally crossed
by a shadow of concern and you can play the ace up your sleeve by saying that in
data visualization there are also maps, geographical maps, sure, those are made
by data too: spatial data and geographical data, and the maps can be produced
with the many available widgets such as zoom, flags, and colored areas; and we
even go beyond simple maps, because there are also cartographic maps with
layers of cartographic quality, such as maps of Rome, of Venice, of New York,
of the most famous, and also not-so-famous cities and places, possibly with very
detailed geographical information.

At that point the interlocutor has likely lost the references she or he had
from the usual experience with office automation products and doesn’t really
know what this data visualization is, only that there seems to be a lot to say,
enough to fill an entire book. If anyone recognizes themselves in this imaginary
interlocutor (imaginary up to a certain point, to be honest), know that you are in
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good company. Good in a literal not figurative sense, because data visualization
is a little like the Cinderella of data science that many admire from a certain
distance, it arrives last in a project and sometimes it does not receive the attention
it deserves. Yet there are many who, given the right opportunity to study and
practice it, sense that it could be interesting and enjoyable, it could certainly prove
useful and applicable in an infinite number of areas, situations, and results. This
is due to a property that data visualization has and is instead absent in traditional
data analysis or code development: it stimulates visual creativity together with
logic. Even statisticians and programmers use creativity, those who deny it have
never really practiced one of those disciplines, but that is logical creativity. With
data visualization, another dimension of data science that is otherwise neglected
comes into play, the visual language combined with computational logic, the data
represented with an expressive form that is no longer just logical and formal,
but also perceptive, and sensorial, comes into play with shapes, colors, use
and projections of space, and it is always accompanied with meaning that the
originator wish to convey and the observers will interpret, often subjectively.
Data visualization conveys different knowledge and logic for an expressive form
that always has a double soul: computational for the data that feeds it, visual and
sometimes interactive for the language it uses to communicate with the observer.
Data visualization has always a double nature: it is a key part of data science for
its methods, techniques, and tools, and it is storytelling; who produces visual
representations from data tells a story that may have different guises and may
produce different reactions. There is enough to fill not just a single book.

Organization of the Work: Foundations and Advanced Contents

The text is divided into four parts already mentioned in the previous introduction.
The first part presents the fundamentals of data visualization with Python and
R, the two reference languages and environments for data science, employed
to create static graphs as a direct result of a previous data wrangling (import,
transformation) and analysis activity. The reference libraries for this first part are
Seaborn for Python and ggplot2 for R. They are both modern open-source graphics
libraries and in constant evolution, both produced by the core developers and with
the contributions of the respective communities, very large and lively in engaging
in continuous innovations. Seaborn is the more recent of the two and partly repre-
sents an evolved interface of Python’s traditional matplotlib graphics library, made
more functional and enriched with features and graph types popular in modern
data visualization. Ggplot2 is the traditional graphic library for R, unanimously
recognized as one of the best ever, both in the open-source and proprietary world.
Ggplot is full of high-level features and constantly evolving, it receives contri-
butions from researchers and developers from various scientific and application
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fields. A simply unavoidable tool for anyone approaching data visualization. The
two have different settings, more traditional Seaborn, with a collection of functions
and options for the different types of charts supported. Instead, ggplot is organized
by overlapping graphic levels, according to a setting that goes by the name of
grammar of graphics, shared by some of the most widespread digital graphics
tools, and suitable for developing even unconventional types of graphics, thanks
to the extreme flexibility it allows. This first part covers about a third of the work.

The second part introduces Altair, a Python library capable of producing inter-
active graphics in HTML and JSON format, as well as static versions in bitmap
(PNG and JPG) and vector (SVG) formats. Altair is a young but solid graphic library
because in all respects it represents a modern interface of Vega-Lite, a graphic
library with an established tradition for web applications thanks to the declara-
tive syntax in JSON format. Altair offers the same web-oriented functionality as
Vega-Lite for typical data science use, with a syntax that supports the definition of
overlapping graphical layers and aesthetics composed with a syntax that is easy to
use and common to similar tools. This second part presents a higher level of dif-
ficulty than the first, but certainly within reach for those who have acquired the
fundamental knowledge given by the first part. The first and second parts cover
approximately half of the work.

The third and fourth parts represent advanced data visualization contents. The
difficulty increases and so does the commitment required, on the other hand, we
face two real worlds: that of web dashboards and of spatial data and maps. The term
dashboard may be new to many, but dashboards are not. Whenever you access
environments on the web that show menus and configurable graphic objects
according to user’s choices and content in the form of data or graphs, what you
are using is most likely a dashboard. If you access Open Data of a large institution,
such as the Organisation for Economic Co-operation and Development (OECD) or
the United Nations, or even an internal company application that displays graphs
and statistics, you are most likely using a dashboard. Numerous systems and prod-
ucts for creating dashboards with different technologies are available, it is a vast
market. In data science environments with Python and R, there are two formidable
tools, Plotly/Dash and Shiny, respectively. They are professional tools, and the list
of relevant organizations using them is long. They are also irreplaceable teaching
tools for learning the logic and basic mechanisms of a dashboard, which, in its
final form, is a web application, therefore integrated with the typical technology
of pages and websites. However, a Dash or Shiny dashboard is also something
else, it is the terminal point of a pipeline that begins with the fundamentals of data
science, data import, data wrangling, data analysis, and then static and dynamic
graphs. The dashboard is the final end in which everything is concentrated and
integrated: logic, mechanisms, requirements, and creativity. Technically they
are challenging due to the presence of reactive logic which allows them to be
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dynamic and interactive and due to the integration of various components. The
text discusses and develops examples of medium complexity, with different solu-
tions, from web scraping of online content to the integration of Altair interactive
graphics.

The second world that opens up, that of geographical maps, is undeniably
fascinating. Spatial data, choropleth maps, the simplest ones with the colored
areas (such as maps with areas colored according to the coalition that won the
elections or the rate of unemployment by province, region, or nation), but also
maps based on cartography data are the declination given by data science of a
discipline that has very ancient roots and still constitutes an almost independent
environment composed of high-resolution maps and geographic information
systems (GIS), with its specializations and professional skills. Until a few years
ago, data science tools could not even touch that world, but today they have come
surprisingly close. This is thanks to extraordinary progress in open-source systems
and tools, Python but above all R, which is now offering formidable tools capable
of also using shape files from a technical cartography and geographic coordinate
systems according to international standards. In the examples presented, geo-
graphic and cartographic files from Venice, Rome, and New York were used with
the aim of showing the impressive potential offered by the Python and R tools.

Who is it Aimed at?

It is simple to specify to whom this text is addressed: it is addressed to everyone.
Anyone who finds data visualization interesting, and images useful for their work,
study, and the skills they are building, will find a learning path that starts from
the fundamentals and goes up to cartography and web applications. Of course,
saying “it’s aimed at everyone” is simple, then doubts may arise in the reader,
“but am I also part of those everyone?” Trying to make a list of those included
in this “everyone” will inevitably leave out someone, but we could certainly
mention students, researchers, and instructors of social, political, and economic
sciences. In addition to many generic data, they may have spatial data to represent
(e.g. movement of people and goods, global supply chains, logistics, spatial or
ethnographic analyses). Next, students, researchers, and instructors of marketing,
communication, public relations, journalism, media, and advertising, for whom
interactive representations via the web and graphics in general are important, as
products and skills. Also, students, researchers, and instructors of scientific and
medical disciplines could be interested, they often deal with sophisticated graphic
representations, for example in biology or epidemiology, without forgetting that
the graphic contributions from the genomics and molecular biology community
are among the most numerous. Students, researchers, and instructors of engi-
neering, management, or bioengineering, for example, use data science tools and
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visualization as an integral part of their analyses. Historians, archaeologists, and
paleontologists produce high-quality graphic representations, so the text can be
useful for them too. Well, the list is already long, and I’m definitely forgetting
someone who should be mentioned instead.

In general, undergraduate and graduate students, teachers, researchers, and
Ph.D. students will find many examples and explanations to help them graphically
present content and organize exercises. Likewise, professionals and companies,
for their corporate and institutional communication and training, may enjoy the
material presented in the text.

What I’m trying to say is that data visualization, like data science as a whole, is
not a sectoral discipline for which you need to have a specific background, such as a
statistician, computer scientist, engineer, or graphic designer. It is not necessary at
all, in fact the opposite is needed, that is, that data visualization and data science
be as transversal as possible, being studied and used by all those who, for their
formation and work interests, in their specific field, from economics to paleon-
tology, from psychology to molecular biology, find themselves working with data,
whether numerical, textual, or spatial and find useful to obtain high-quality visual
representations from those data, perhaps interactive or structured in dashboards.

What is Required and What is Learned

To follow and learn the contents of the text it is necessary to know the fundamen-
tals of data science with Python and R, meaning those concerned with importing
and reading operations of datasets and the typical data wrangling operations (sort-
ing, aggregations, shape and type transformations, selections, and so on). Numer-
ous examples are presented in the text which include the data wrangling part (the
cases where it is longer can be found in the Supplementary Material), so to repli-
cate a visualization all the necessary code is available, starting from reading the
Open Data. Therefore, it is not required to independently produce the preliminary
part of operations on the data, but it is necessary to be able to interpret the logic
and the operations that are performed. Hence the need to know the fundamentals,
as well as the possibility of producing variations of the examples.

Another aspect that may appear problematic is knowledge of the fundamentals
of data science with both Python and R because often one only knows one of the
two environments and languages. In this regard, I would like to reassure anyone
who finds themselves in this situation. If you know data wrangling operations
with R or Python, interpreting the logic of those carried out with the other lan-
guage requires little effort, at most the details of the syntax will need some specific
attention and learning efforts. But here a second consideration comes into play:
knowledge of both Python and R is particularly useful in modern data science,
those who know only one of the two probably just need a good opportunity
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to learn the second, discovering that the learning curve is much smoother
than could have been imagined and the effort will be certainly reasonable. The
advantage will be considerable in terms of new features and tools that will become
available.

The organization into parts also suggests a progression and division in learning
and teaching. The first part is also suitable for those who have just learned the
fundamentals of data science and can be carried out in parallel with the study of
those fundamentals. Most static graphs require basic data wrangling operations
and generating graphs can be a great educational tool for demonstrating the logic
and use of data wrangling operations. The presentation of the different types of
static graphs follows an order of increasing complexity, from the first intuitive and
easily modifiable in infinite variations, up to the last ones which require knowl-
edge of some important properties of statistical analysis. The difficulty level of
code is generally low. The second part is a natural continuation of the first. The
Altair library has a linear and clear syntax, so the greater difficulty introduced by
the interactive features, especially in terms of computational logic, is completely
within reach for anyone who has learned the fundamentals contained in the first
part. The result will be motivating, the Altair interactive graphics are of excellent
quality, allowing various configurations and alternative solutions.

Between these two parts and the subsequent third and fourth parts, there is a
gap in terms of what is required and what is learned, for this reason in the initial
introductory part the last two parts were presented as advanced content. It is nec-
essary to have acquired a good familiarity with the fundamentals, confidence in
searching for information in the documentation of libraries, and knowing how to
patiently and methodically manage errors. In other words, you need to have done
a good number of exercises with the fundamental part.

For the third part on dashboards, it is necessary to have basic knowledge of
HTML, CSS, and in general how a traditional web page is made. They are not
difficult notions, but it may take some time to acquire them. You don’t need more
advanced knowledge, such as JavaScript or web application frameworks. You also
need to have gained some confidence in writing scripts in Python and R. In both
cases you learn the basic reactive mechanisms to manage interactivity, it is a dif-
ferent logic from the traditional one.

For the fourth part on maps, it is necessary to learn the fundamental notions
of geographic coordinate systems, the form of geographic data with the typical
organization in geometries, and the often-necessary coordinate transformations.
The tools used are partly known, ggplot for R and pandas for Python, but many new
ones will be encountered because in any case, not only in the world of cartography
but also in that of data science, the logic, methods, and tools to use spatial data have
specificities that distinguish them. As mentioned initially, there are some initial
difficulties to overcome and it is required to go into the details of the shape of the
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spatial data, but the use of these data and the production of geographical maps is
fascinating, right from the first and simple choropleth maps. However, it is right
after those initial maps that there’s the real beauty of working with spatial data
and geographic maps.

What is Excluded

As always, or almost always, much remains excluded from the content of a book,
sometimes simply due to the need not to exceed a certain number of pages,
sometimes out of pure forgetfulness, and often due to a conscious choice by the
Author. All three motifs also exist in this work. For the first, that is simply how a
publisher works; for the second, other than apologizing I don’t know what to say
since those are things I’ve forgotten; for the third however, there is something to
comment on, if for no other reason than to give some explanation of the motives
for exclusions by choice.

The first obvious exclusion is the absence of proprietary technologies and tools.
For data visualization there are many proprietary solutions, from very specialized
ones produced by small companies to generalist ones produced by big players.
Manufacturers of data visualization software will say that their tools are better
than those presented in this book. For some aspects, it might be true, but almost
always it is false and in general, to define itself as better than the open-source tools
of Python and R would require several distinctions and clarifications that are rarely
presented. One of the main reasons is the ease of use of the graphical interfaces of
proprietary tools compared to the low-level programming of open-source ones. An
old, worn out, and now out-of-date issue that is slowly, perhaps, starting to be over-
come. It is obvious that learning to click sequences of buttons and menus or drag
graphic icons is initially simpler than writing code with a programming language.
The initial learning curve is different in the two cases. The point, however, lies in
that adjective, “initial.” What happens next? What is the purpose of learning to use
these tools? If the purpose is educational, teaching and learning the fundamentals
and advanced contents of data visualization, there is practically no choice, only the
environments and tools that exhibit low-level details are teaching tools. The others
simply aren’t. They are suitable for professional training courses on that particu-
lar instrument, but not for basic teaching or learning. This is enough to exclude
any proprietary instrument from this text. It should be noted that some of the most
modern proprietary tools (or perhaps made by intelligent manufacturers) are inte-
grating the open-source technologies of Python and R into their frameworks, with
the idea of offering both possibilities.

Then there is a specific and perhaps surprising exclusion among the basic chart
types, and not one of the exotic kind that very few use, on the contrary of the
most widespread, very widespread indeed. The excluded is pie charts and reason
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is simply that it is not useful in the true sense of data visualization in data science.
The statement will seem surprising, in what sense are pie charts, ubiquitous and
used millions of times, not useful? I will briefly explain the reason, which is also
shared by many who deal with data visualization. A graph is produced to visu-
ally represent the information contained in certain data and this representation
is based on at least two conditions: (1) that the visual representation is clear and
interpretable in an unambiguous way and (2) that with the graph, the information
contained in the data is easier to understand than the tabular form (or at least of
equal difficulty). Pie charts satisfy neither condition. They are ambiguous because
the relative size of the slices is often unclear and above all they make it more dif-
ficult to interpret the data than the equivalent table. In other words, if the table
with the values is presented instead of the pie chart, the reader has easier, clearer,
and more understandable information. On the contrary, bar charts are one of the
fundamental type of graphics, despite the fact that pie charts are simply the polar
coordinate representation of a bar chart. So why this difference and why pie charts
are so common? The reason for the difference is that visually evaluating angles is
considerably more difficult than comparing linear heights. Pie charts are mostly
used because they just give a touch of color to an otherwise monotonous text, not
for their informative content. And what about the difficulty of evaluating the slice
proportions? Well, the numerical values are often added to the slices, that is, in
practice, to rewrite the data table right over the graphic.

To conclude, data visualization deserves more space in educational programs
and clearer recognition as a coherent and evolving discipline and body of knowl-
edge. The Cinderella role of data science can be overcome by recognizing its edu-
cational value and, no less importantly, its creative stimulus.
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About the Companion Website

This book is accompanied by a companion website:

https://www.wiley.com/go/Cremonini/DataVisualization1e

This website includes:
● Codes
● Figures
● Datasets
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Part I

Static Graphics with ggplot (R) and Seaborn (Python)

Grammar of Graphics

The grammar of graphics was cited in the Introduction and will continue to be
mentioned in the rest of the text. We see a brief summary here. The concept of
grammar of graphics was proposed by Leland Wilkinson in the early 2000s with
the idea of creating grammatical, mathematical, and aesthetic rules to define
the graphics that were produced by statistical analysis. The different approach,
with respect to the fixed definition of chart types composed of stylized reference
schemes, is that a graph’s grammar would instead have allowed previously
unknown flexibility. In Wilkinson’s definition, seven fundamental components
were identified, but the construction by overlapping layers was not yet high-
lighted. It is Hadley Wickham, core developer of R and ggplot, who in 2010
introduced the layered grammar of graphics, with which Wilkinson’s approach
was updated by reviewing the fundamental elements. The definition by levels
provides the representation of the data, combining statistics and geometries,
two of the fundamental elements, together with positions, aesthetics, scales, a
coordinate system, and possibly facets. We will find all these elements in ggplot
and Altair, the two graphic libraries organized according to the grammar of
graphics considered in this book, as well as in the recent but still preliminary
Seaborn Objects interface of Seaborn, the reference graphic library for Python.

Data Visualization in R and Python, First Edition. Marco Cremonini.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Cremonini/DataVisualization1e
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1

Scatterplots and Line Plots

Scatterplots, with the main variant represented by line plots, are the fundamental
type of graphic for pairs of continuous variables or for a continuous variable and
a categorical variable and, in addition to representing the most common type
of graphic together with bar plots (or bar charts/bar graphs), form the basis for
numerous variations. The logic that guides a scatterplot graphic is to represent
with markers (e.g., dots or other symbols) the values that two quantities (variables
and attributes) take on during a certain number of observations. The pairs of
variables are conventionally associated with the Cartesian axes x and y, with
scales ordered in ascending order, according to units of measurement, which may
be different. By convention, the variable associated with the x-axis is said to be
the independent variable and put in relation with the dependent variable on the
y-axis, meaning that what is shown is implicitly a correlation between the two
variables. This traditional interpretation of the meaning of the representation
of variables on Cartesian axes must be put in the right context to avoid all too
frequent errors. The result of a scatterplot graphic, in no case, demonstrates the
existence of a cause–effect relationship between two variables. The cause–effect
relationship must already be known in order to consider one variable as truly
dependent on the other. Or it must be demonstrated, extending the graphic
analysis with considerations about the phenomenon observed and the reasons in
favor of the existence of such a cause–effect relationship. Conversely, a scatterplot
simply shows how pairs of values from two variables are distributed for a sample
of observations, nothing is said about the reasons. A typical example that is often
presented considers the height and weight of a certain sample of people. Each
person represents a single observation, the two quantities have different units of
measurement and for each person, the intersection between the coordinates of
height (x-axis) and weight (y-axis) is marked with a dot (or other marker). In this
case, we know that there is a cause–effect relationship between the two physical
characteristics: a greater height tends to correspond to a greater weight for purely
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physiological reasons regarding body size. This does not mean that a tall person
always weighs more than a short one, which is obviously false, but only that this
tends to be true, given a homogeneous sample of the population.

Dataset

Inflation, consumer prices (annual %), World Bank Open Data (https://data
.worldbank.org/indicator/FP.CPI.TOTL.ZG).

Copyright: Creative Commons CC BY-4.0 (https://creativecommons.org/
licenses/by/4.0/)

Compiled historical daily temperature and precipitation data for selected 210
U.S. cities, Yuchuan Lai and David Dzombak, Carnegie Mellon University, April
2022, DOI: 10.1184/R1/7890488.v5 (https://kilthub.cmu.edu/articles/dataset/
Compiled_daily_temperature_and_precipitation_data_for_the_U_S_cities/
7890488).

Copyright: Creative Commons CC0 1.0 DEED.
GDP growth (annual %), World Bank Open Data (https://data.worldbank.org/

indicator/NY.GDP.MKTP.KD.ZG).Copyright: Creative Commons CC BY-4.0
(https://creativecommons.org/licenses/by/4.0/).

1.1 R: ggplot

1.1.1 Scatterplot

Let us start with the just mentioned relation between height and weight of a sam-
ple of people. For this, we can use the dataset heights, predefined into package
modelr, which is part of the tidyverse package. For simplicity, we always assume
to load the tidyverse package for all R examples. The dataset refers to a sample of
US citizens collected in a 2012 study of the U.S. Bureau of Labor Statistics. Values
are expressed as centimeters and kilograms, for readers familiar with the Imperial
system, they could be visualized simply by omitting the two transformations into
centimeters and kilograms with the conversion coefficients shown in the code.
library(tidyverse)

df= modelr::heights
df$height_cm= 2.54*df$height
df$weight_kg= 0.45359237*df$weight

df
# A tibble: 7,006 × 10

income height weight age marital sex height_cm weight_kg
<int> <dbl> <int> <int> <fct> <fct> <dbl> <dbl>

1 19000 60 155 53 married female 152. 70.3

https://data.worldbank.org/indicator/FP.CPI.TOTL.ZG
https://data.worldbank.org/indicator/FP.CPI.TOTL.ZG
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://kilthub.cmu.edu/articles/dataset/Compiled_daily_temperature_and_precipitation_data_for_the_U_S_cities/7890488
https://kilthub.cmu.edu/articles/dataset/Compiled_daily_temperature_and_precipitation_data_for_the_U_S_cities/7890488
https://kilthub.cmu.edu/articles/dataset/Compiled_daily_temperature_and_precipitation_data_for_the_U_S_cities/7890488
https://data.worldbank.org/indicator/NY.GDP.MKTP.KD.ZG
https://data.worldbank.org/indicator/NY.GDP.MKTP.KD.ZG
https://creativecommons.org/licenses/by/4.0/
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2 35000 70 156 51 married female 178. 70.8
3 105000 65 195 52 married male 165. 88.5
4 40000 63 197 54 married female 160. 89.4
5 75000 66 190 49 married male 168. 86.2
# … with 7,001 more rows

The dataset contains data of 7006 individuals, with information regarding sex,
income, and marital status, in addition to height and weight.

We can create the scatterplot of height and weight by using ggplot (in the book,
for simplicity, we generically refer to ggplot meaning the current ggplot2 version
of the R package). The main function is ggplot(), with the data frame to use
as its first attribute, while the second attribute represents the aesthetics of the
grammar of graphics, defined with function aes(). Aesthetics represent graph-
ical elements whose values are derived from data frame’s variables/columns. In
other words, every graphical element that should depend on data must be defined
into the aes() function and it is called an aesthetic. The main aesthetics are
attributes x and y corresponding to the Cartesian axes. Figure 1.1 shows the result
of executing just the ggplot function with x and y aesthetics.

ggplot(data= df, aes(x= height_cm, y= weight_kg))

We have obtained exactly what we specified: the Cartesian plan with the two
variables associated to the axes and the scales defined according to data values.
Consistent with the grammar of graphics, this represents the first layer of our
graphic, now we could proceed by adding the following layers with graphical
elements. If we want to draw a scatterplot, we should specify it by means of
the corresponding function geom_point(). In this first example, we do not
specify anything else, scatterplot aesthetics are inherited from those defined in
the main ggplot function. The plus sign + concatenates the two layers: first the
Cartesian plan is created, then, on top of it, the scatterplot markers are designed
(Figure 1.2).

Figure 1.1 Output of
the ggplot function with
x and y aesthetics.
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Figure 1.2 First ggplot’s
scatterplot.

ggplot(data= df, aes(x= height_cm, y= weight_kg)) +
geom_point()

This is the scatterplot of our sample of citizens’ heights and weights. The
existing causal relation between height and weight is confirmed by the increasing
trend, although the large variability represented by the dispersion of points
should be noted. We make another step forward. The relation should be studied
for homogeneous samples, for example, it would not be correct to mix infants
with adults given the largely different body shapes and proportions, likewise, men
and women have different body structures so it would be better to analyze them
separately. A possibility is to divide the data frame into two subsets of data for
men and for women and plot them separately. A better option is to visualize men
and women differently in the same plot, for example, using colors to differentiate
the two subsets. In this case, the color of the markers is an aesthetic that will
depend on data values from the data frame variable sex. We should define it
accordingly using color=sex in the aes() function. It could be done in two
ways, either it is defined in the ggplot() function and inherited by all following
elements (except for the case of explicitly denying inheritance through the
parameter inherit.aes=FALSE), or set only for the specific layer defined by
geom_point() (this way other graphical layers could associate the same color
aesthetic to variables different than sex). We choose the second option. Figure 1.3
shows the result.

ggplot(data= df, aes(x= height_cm, y= weight_kg)) +
geom_point(aes(color= sex))

Now we see the difference between men and women, with men, not surprisingly,
typically taller than women. However, for what regard the causal relation between
height and weight, the increasing trend result is less evident if men and women
are considered separately, in particular for women, apparently exhibiting a larger
variability, at least for this sample.
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Figure 1.3 Scatterplot with color aesthetic.

If we try with a different variable to analyze homogeneous subsets in the pop-
ulation, for example, coloring points for marital status, the result changes, and in
this case, it does not exhibit any apparent causal relation (Figure 1.4).

ggplot(data= df, aes(x= height_cm, y= weight_kg)) +
geom_point(aes(color= marital))

We could consider another relation, here between height and income, which
sometimes is pretended to carry some truth, with tall people supposedly earning
more than short ones (Figure 1.5).

ggplot(data= df, aes(x= height_cm, y= income)) +
geom_point(aes(color= sex))

Again, at first sight, no causal relation seems to emerge for this sample of
citizens, except that women appear to earn less than men, and that among the

Figure 1.4 Scatterplot with color aesthetic for marital status variable.
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Figure 1.5 Scatterplot with income as dependent variable and color aesthetic for sex
variable.

wealthiest, men are largely the majority, two well-known facts of an enduring
state of gender inequality.

What if we would like to introduce a fourth variable, for example, the marital
status in addition to height, weight, and sex? We have to use another aesthetic
in addition to x, y, and color, for example, the shape of the markers. We have
two possibilities: associate markers’ shape to the marital status (color=sex,
shape=marital) or the sex to the shape (color=marital, shape=sex).
We try both ways and use package patchwork (https://patchwork.data-imaginist
.com/) to plot the two graphics side by side (plot1 + plot2 or plot1 |
plot2). To have them stacked one over the other, the syntax would be plot1 /
plot2. Figure 1.6 shows the two alternatives.

library(patchwork)

ggplot(data= df, aes(x= height_cm, y= income)) +
geom_point(aes(color= sex, shape=marital)) -> plot1

ggplot(data= df, aes(x= height_cm, y= income)) +
geom_point(aes(color= marital, shape=sex)) -> plot2

plot1 / plot2

The result is almost unreadable in both ways. This simply shows that just adding
more aesthetics does not guarantee a better result that is readable and informative;
instead, it easily ends up in a confused visual representation. These simple initial
examples have touched some important aspects that we recapitulate:

● The logic of the grammar of graphics.

https://patchwork.data-imaginist.com/
https://patchwork.data-imaginist.com/
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Figure 1.6 (a/b) Scatterplots with four variables.

● The use of aesthetics.
● The indispensable care required to draw a graphic.
● The required caution in interpreting visual results.

Let us now consider another example by using package WDI (https://github
.com/vincentarelbundock/WDI), containing the World Development Indicators
from the World Bank. For the sake of precision, the package is not strictly
necessary, the same data could be manually collected from the World Bank’s
DataBank (https://data.worldbank.org/).

In particular, we use data about inflation variations measured on consumer
prices, associated to indicator FP.CPI.TOTL.ZG or available from https://data
.worldbank.org/indicator/. We use, for instance, US data (different countries
could be selected by changing the attribute iso2c=='US').

library(WDI)

infl = WDI(indicator='FP.CPI.TOTL.ZG')

https://github.com/vincentarelbundock/WDI
https://github.com/vincentarelbundock/WDI
https://data.worldbank.org/
https://data.worldbank.org/indicator/
https://data.worldbank.org/indicator/
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infl= as_tibble(infl)
us_infl= filter(infl, iso2c=='US')

# A tibble: 62 × 5
country iso2c iso3c year FP.CPI.TOTL.ZG
<chr> <chr> <chr> <int> <dbl>
United States US USA 2022 8.00
United States US USA 2021 4.70
United States US USA 2020 1.23
United States US USA 2019 1.81
United States US USA 2018 2.44
United States US USA 2017 2.13
United States US USA 2016 1.26
United States US USA 2015 0.12
United States US USA 2014 1.62
United States US USA 2013 1.46
United States US USA 2012 2.07
United States US USA 2011 3.16
United States US USA 2010 1.64
# …

The time series goes from 1960 to 2022. In this case, the scatterplot could be
produced by associating years to inflation values. We use the pipe notation and
add some style options: a specific marker (shape) with a custom line width and
internal color (stroke and fill), the marker size (size), a certain degree of
transparency (alpha), custom labels for aesthetics (labs()) – either associated
to axes, the legend, or as plot title/subtitle – and a graphic theme (theme()).
Figure 1.7 shows the result.

us_infl %>% ggplot(aes(x= year, y= FP.CPI.TOTL.ZG)) +
geom_point(shape=21, stroke=2, size=5,

fill="gold", color= "skyblue3", alpha=0.7) +
labs(x= "Year", y= 'Inflation (%)') +
theme_light()

The options included in this example for customizing the scatterplot cover
almost all available possibilities. We can modify the graphic to add more countries,
for example, France, Germany, and the United Kingdom.
sample_infl= filter(infl, iso2c %in% c('FR','DE','GB','US'))

We can draw again the scatterplot, in this case, without the many stylistic options
but with color as an aesthetic associated to countries and a color palette from
Viridis (Figure 1.8).
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Figure 1.7 United States’ inflation values 1960–2022.
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Figure 1.8 Inflation values for a sample of countries.

sample_infl %>% ggplot(aes(x= year, y= FP.CPI.TOTL.ZG)) +
geom_point(aes(color=country), size=2) +
scale_fill_viridis_d()+
labs( x= "Year", y= 'Inflation (%)',

color= "Country" ) +
theme_light()

The result, once again, is not clearly readable, it is difficult to recognize the
yearly variations watching dots of same color and even more trying to compare
the different countries. This is a typical case of where to prefer a line plot, which
we will consider in the following section, to a scatterplot, because here it is impor-
tant to easily recognize groups of points, each one representing a certain entity
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Figure 1.9 Dots colors based on an aesthetic when over a threshold, otherwise as a
fixed color.

(a specific country, in our example). Before line plots, to conclude this short intro-
duction to scatterplots, many more examples will be presented in the following
chapters, we consider some other cases.

The first one is very common: we want to color the markers differently based on
threshold values. For example, we want dots over a first threshold in a given color,
dots below a second threshold in another color, and those between them in a third
color. Or, in a different setting, we want markers colored based on an aesthetic only
when they fall over a certain threshold and with a fixed neutral tint when below
that threshold; this is because we could be specifically interested in differentiat-
ing data points only over the threshold, in order to make an observer focus the
attention to them. Same logic could be applied by using shapes rather than colors.

In the following example, we associate the color aesthetic to the countries, and
we want to show colored markers only for years from 2000 and beyond while using
a neutral tint for years before 2000. In this case, we proceed as follows: with func-
tion mutate() we create a new column color, whose values are assigned based
on a logical condition, if year is equal or greater than 2000, then we assign the
country name, otherwise the value remains undefined.

In the graphic, the aesthetic color is associated to the new column color. Func-
tion scale_color_manual() defines the values (using attribute breaks) to
be associated to colors (using attribute values), and, with attribute na.value,
we assign a fixed color to elements of the column color with a missing value
(Figure 1.9).

color_list= c("black","forestgreen","skyblue3","gold")

sample_infl %>%
mutate(color = ifelse(year>=2000,

as.character(sample_infl$country),
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NA_character_)) %>%
ggplot(aes(x= year, y= FP.CPI.TOTL.ZG)) +
geom_point(aes(color=color), size= 2) +
scale_color_manual(breaks = unique(sample_infl$country),

values = color_list, na.value= "azure3") +
labs(x= "Year", y= 'Inflation (%)', color= "Country" ) +
theme_light()

1.1.2 Repulsive Textual Annotations: Package ggrepel

In this example, we define two thresholds for the inflation value and color
the points differently. We also add two horizontal segments (using function
geom_hline()) to visually represent the thresholds. Function scale_color_
manual() allows assigning colors manually to the color aesthetic. There exist
several variants of scale functions, the main ones are scale_color_* and
scale_fill_* (the star symbol indicating that several specific functions are
available), respectively, for configuring the aestheticcolor or the aestheticfill.
Moreover, scale functions are also important to configure axes values and labels.
We will use them in other examples. In addition, we introduce an often very
useful package called ggrepel, which is the best solution when textual annotations
should be added to markers, to show a corresponding value. The problem with
textual annotations in scatterplots is that they easily end up overlapping in a
clutter of labels only partially readable. Package ggrepel automatically separates
them or, at least, makes its best effort to produce a comprehensible visualization.
It has obvious limits, when markers are too many and too close, there is nothing
that even ggrepel could do to place all labels in a suitable way, but if markers are a
few, which is the correct situation for showing textual labels, the result is usually
good. Here we use it to add textual labels only for years with a very high inflation
(greater than 5%).

For this example, the logic is the following: with function cut(), we can define
three ranges of inflation values, i.e. from −2 to 2, from 2 to 5, and from 5 to infinite;
variable val is defined as a list with key=value pairs as elements, where keys are
the values resulting from function cut() and values are color codes; variable lab
has the different texts to visualize as legend keys.

In the graphic, we have the color aesthetic associated to the three values pro-
duced by the cut() function, and with function scale_color_manual() we
configure colors corresponding to values of variable val and legend names corre-
sponding to variable lab. It would be worth making some tests and variations in
order to fully clarify the logic of the example. Textual labels are added by loading
library ggrepel and using function geom_label_repel(), which in this case
takes a subset of data (variable highInfl) and associates values of variable year to
aesthetic label. Figure 1.10 shows the result.
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Figure 1.10 Markers colored based on two thresholds and textual labels, US inflation.

library(ggrepel)

cut= cut(us_infl$FP.CPI.TOTL.ZG, c(-Inf, 2, 5, Inf))

val= c("(-2,2]" = "forestgreen",
"(2,5]" = "gold",
"(5,Inf]" = "darkred")

lab= c("less than 2%", "between 2 and 5%", "greater than 5%")

highInfl= filter(us_infl,FP.CPI.TOTL.ZG>5)

us_infl %>% ggplot(aes(x= year, y= FP.CPI.TOTL.ZG)) +
geom_point(aes(color= cut), size=3) +
scale_color_manual(name = "Inflation",

values = val,
labels = lab) +

geom_hline(yintercept = 2, linetype = "dashed",
color = "grey50", linewidth=.5) +

geom_hline(yintercept = 5, linetype = "dashed",
color = "grey50", linewidth=.5) +

geom_label_repel(data=highInfl, aes(label=year))+
labs( x= "Year", y= 'Inflation (%)' ) +
theme_light()
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1.1.3 Scatterplots with High Number of Data Points

With the next example, we show how scatterplots could be employed even with a
multitude of data points. In this case, it is not specific values of single data points
to provide useful information, if we exclude some exceptional cases, instead, it
is the shape of the whole set to inform the reader of a certain phenomenon. For
this example, we use datasets with temperature measurements regarding some US
cities from Carnegie Mellon University’s Compiled historical daily temperature and
precipitation data for selected 210 U.S. cities. Atlanta, El Paso, Havre (Montana),
Milwaukee, New York, and Phoenix have been selected to cover a wide range of cli-
mate conditions. Temperatures are measured daily by collecting the minimum and
maximum temperature, values are expressed in Fahrenheit degrees (Note: readers
used to Celsius degrees can convert them using the following formula: Celsius =
(Fahrenheit–32)/1.79999999).

Time series provided with this set of data, in several cases, cover many decades;
for example, years have been selected from 2010 to 2022. Some data-wrangling
operations are needed to prepare the data frame. First, because each data series is
referred to a single measurement station, there could be more than one for each
city, and second, because they are recorded as separate CSV (comma-separated
values) datasets. We have chosen data collected from airport measurement stations
and, after reading each dataset, a column specifying the city has been added, then
separate data frames have been combined to form a single one. The resulting data
frame has been transformed into long form to have both minimum and maximum
temperatures in a single column.
c1= vroom('datasets/CarnegieMU/7890488/USW00014839.csv') # Milwaukee
c2= vroom('datasets/CarnegieMU/7890488/USW00023044.csv') # El Paso
c3= vroom('datasets/CarnegieMU/7890488/USW00094728.csv') # New York
c4= vroom('datasets/CarnegieMU/7890488/USW00023183.csv') # Phoenix
c5= vroom('datasets/CarnegieMU/7890488/USW00013874.csv') # Atlanta
c6= vroom('datasets/CarnegieMU/7890488/USW00094012.csv') # Havre, Montana

c1$city= 'Milwaukee'
c2$city= 'El Paso'
c3$city= 'New York'
c4$city= 'Phoenix'
c5$city= 'Atlanta'
c6$city= "Havre (MT)"

cities= bind_rows(c1,c2,c3,c4,c5,c6)

citiesL= pivot_longer(cities, cols = tmax:tmin,
names_to = "tminmax", values_to = "temp")

Years from 2010 to 2022 are selected, then the graphic has been pro-
duced. Ticks on axes x and y have been customized according to dates and



16 1 Scatterplots and Line Plots

temperatures; axes and legend values also have been minimally tweaked
(functions scale_x_date() and scale_y_continuous() for axes’ ticks,
functions theme() and guides() for axes and legend values). The color palette
is set with scale_color_wsj() that imitates the typical color scale of The
Wall Street Journal.

filter(citiesL, lubridate::year(Date)>=2010) -> y201022

filter(y201022, tminmax=="tmin") %>%
ggplot()+
geom_point(aes(x=Date, y=temp, color=city),

alpha=0.7, size=0.6, shape=16)+
scale_color_wsj()+
scale_x_date(date_breaks = "2 years",

date_labels = "%Y")+
scale_y_continuous(breaks = c(-40,-20,0,20,40,60,80,100))+
labs(x="", y="Temperature (F)",

color="City", subtitle="Minimum Temperatures 2010-2022")+
theme_light()+
theme(axis.text.x = element_text(angle=0, vjust = 0.5)) -> p

p + guides(color= guide_legend(override.aes = list(size=3)))

Figure 1.11 shows the result for minimum temperatures. The shape of the
multitude of scatterplot markers provides an intuitive information about the sea-
sonal temperature variation, which is qualitatively similar for all cities. The color
aesthetic, set with city names, offers specific information about cities, although
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Figure 1.11 Temperature measurement in some US cities, minimum temperatures.
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not completely clear, due to markers overlapping. The hottest city, i.e. Phoenix,
and the coldest, i.e. Havre, are fairly well recognizable in their most extreme
temperatures, but details are muddled for temperatures in the middle range. We
will see in a future chapter how to approach a case like this for producing a clearer
visualization; for now, it is important to learn that scatterplots are extremely
flexible and adaptable to many cases, and creativity could and should be exercised.

1.1.4 Line Plot

The line plot is a scatterplot variant that connects with a line the data points belong-
ing to the same group, meaning that they share the same value of a certain variable
(e.g., they are referred to the same city). The same data points could or could not
be visualized with a marker. Let us consider a first example, which will result in
an incoherent graphic, but will be useful to understand the main characteristic of
line plots, which is the definition of homogeneous groups of data points. We use
the previous example with countries and inflation values and add a new layer rep-
resenting the line plot with function geom_line(). Figure 1.12 shows the result,
which is problematic.

sample_infl %>% ggplot(aes(x= year, y= FP.CPI.TOTL.ZG)) +
geom_point(aes(color=country), size=2) +
geom_line(aes()) +
scale_fill_viridis_d()+
labs(x= "Year", y= 'Inflation (%)', ccolor= "Country") +
theme_light()

The result is clearly incoherent because the line just connects data points in
sequential order, which has no meaning at all. What we would have wanted,
instead, was to connect data points belonging to the same country, this way
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Figure 1.12 A problematic line plot, groups are not respected.
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Figure 1.13 Line plot connecting points of same country.

resulting in different lines, one for each country. We should use attribute group,
which represents a new aesthetic associated to the data frame variable with
country names. With attribute group, we specify the variable whose unique
values define the homogeneous group of points to connect with a line. In the
example, we set group=country, meaning that points should be logically
grouped for same country, and points belonging to the same country should be
connected with a line. Figure 1.13 shows the correct line plot.

sample_infl %>% ggplot(aes(x= year, y= FP.CPI.TOTL.ZG)) +
geom_point(aes(color=country), size=2) +
geom_line(aes(group=country)) +
scale_fill_viridis_d()+
labs(x= "Year", y= 'Inflation (%)', color= "Country") +
theme_light()

The readability is still poor, but now the line plot is coherent having one line for
each country. We could improve it by removing the scatterplot markers, using line-
type as an aesthetic in addition to color so that lines are different for the different
countries, and by tuning other style options such as line color and line width. The
result has a better look and is more readable (Figure 1.14).

color_list= c("gold","skyblue3","forestgreen","black")

sample_infl %>% ggplot(aes(x= year, y= FP.CPI.TOTL.ZG)) +
geom_line(aes(color= country, linetype= country),

linewidth=0.6) +
scale_color_manual(values = color_list) +
labs(x= "Year", y= 'Inflation (%)',

color= "Country", linetype= "Country") +
theme_light()
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Figure 1.14 Line plot with style options.

Tip

In this last example, the aesthetic group has been omitted without influenc-
ing the result, because the default behavior for the geom_line() function
is to use the aesthetic groupwhen specified or to use the association defined
in another aesthetic, if present. In this case, both the aesthetic color and the
aesthetic linetype are associated to column countries, which is correct for
setting the groups of lines too. In any case, explicitly specifying the aesthetic
group would have been also correct.

1.2 Python: Seaborn

With Python’s Seaborn graphic library, we proceed similarly to what has been done
with R’s ggplot. Python libraries to import are NumPy, pandas, pyplot module from
matplotlib, and Seaborn. An introductory comment on Seaborn is due. It has been
developed as an advanced interface to the pre-existing matplotlib, substantially
improving several graphical features, which makes it a modern graphical library
for data science. It maintains the native approach of the matplotlib library, not
based on the grammar of graphics and instead providing for specific functions for
each graphic type. It is a simpler approach, convenient for standard graphics with
few configurations, but less flexible and adaptable to nonstandard or advanced
results. However, it should be noted that also Seaborn is progressively migrating
to the grammar of graphics. Starting from version 12.0 of September 2022, a new
notation called Seaborn Objects has been introduced. It is still in an early stage of
development and incomplete, but the direction for its future development is clear
and aligned with modern graphical libraries like ggplot and Altair; some details
about the Seaborn Objects Interface are present in the Additional Online Material.
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At any rate, even in the present original form, the Seaborn library is a notable tool
and a primary reference for the Python environment.

From the World Bank, we use data about gross domestic product (GDP) growth
of several countries.

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

gdp = pd.read_csv('datasets/world_bank/API_NY.GDP.MKTP.
KD.ZG_DS2_en_csv_v2_5358346.csv',
skiprows=4)

Country Name Country Code 1960 1961 … 2019 2020 2021

0 Aruba ABW NaN NaN … 0.635 −18.589 17.172
1 Africa Eastern

and Southern
AFE NaN 0.237 … 2.038 −3.042 4.402

… … … … … … … … …
264 Zambia ZMB NaN 1.361 … 1.441 −2.785 4.598
265 Zimbabwe ZWE NaN 6.316 … −6.332 −7.816 8.468

A few data-wrangling operations are necessary to prepare the data (i.e., the last
useless column is dropped, and the data frame is transformed into long form).

gdp=gdp.loc[:, gdp.columns != 'Unnamed: 66']

df=gdp.melt(id_vars=['Country Name','Country Code',
'Indicator Name','Indicator Code'],

var_name= 'Year', value_name= 'GDP')
df.Year=df.Year.astype('int64')

Country Name Country Code Year GDP

0 Aruba ABW 1960 NaN
1 Africa Eastern and Southern AFE 1960 NaN
… … … … …
16489 South Africa ZAF 2021 4.913097
16490 Zambia ZMB 2021 4.598734
16491 Zimbabwe ZWE 2021 8.468017



1.2 Python: Seaborn 21

Year

G
D

P

1960 1970 1980 1990

GDP: United States

6

4

2

–2

0

2000 2010 2020

Figure 1.15 Scatterplot of the United States’ GDP time series from the World Bank.

1.2.1 Scatterplot

Function sns.scatterplot() produces a scatterplot. Seaborn attributes are
intuitive: hue corresponds to ggplot color, s to size, alpha, data, x and y
are the same as ggplot. Legend position should be controlled explicitly and native
matplotlib features are needed (e.g., plt.legend(), other options exist).

We start with a first simple example by selecting the United States from the data
frame in long form, then we add a few stylistic directives and use a light theme
(Figure 1.15).

us_gdp=df[df['Country Name'] == 'United States']

plt.figure(figsize = (8,5))
plt.rcParams.update({'font.size': 16})
sns.set(style='whitegrid', font_scale=0.9)

g= sns.scatterplot(data=us_gdp, x="Year", y="GDP",
color= 'darkmagenta', s=30, )

g.set_title("GDP: United States")

Now we consider a group of countries and associate variables to Seaborn func-
tion attributes (the term aesthetics is not used by Seaborn). We use attribute hue
for coloring points according to the country (Figure 1.16).

sample_gdp=df[(df['Country Name'] == 'United States') |
(df['Country Name'] == 'France') |
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Figure 1.16 Scatterplot of the GDP for a sample of countries.

(df['Country Name'] == 'Germany') |
(df['Country Name'] == 'United Kingdom') |
(df['Country Name'] == 'China')]

sns.scatterplot(data=sample_gdp, x="Year", y="GDP",
s=40, alpha= 0.7, hue='Country Name',
palette= 'rocket')

plt.legend(loc='lower right')

To replicate the example seen with ggplot and coloring data points based on
a threshold value, Seaborn does not offer many opportunities other than to cre-
ate two distinct subsets of data points and draw two overlapped scatterplots. In
this case, we use point size and transparency to differentiate data points over or
below the threshold. Only one legend is shown, the second would be a duplication
(Figure 1.17).

subset1= sample_gdp[sample_gdp.Year < 2000]
subset2= sample_gdp[sample_gdp.Year >= 2000]

sns.scatterplot(data=subset2, x="Year", y="GDP",
s=40, alpha= 1.0, hue='Country Name',
palette= 'rocket')

sns.scatterplot(data=subset1, x="Year", y="GDP",
s=20, alpha= 0.5, hue='Country Name',
palette= 'rocket', legend=False)

plt.legend(loc='lower right')
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Figure 1.17 Scatterplot with markers styled differently for from year 2000 and beyond.

We could also replicate the example with temperature measurements from
some US cities, as collected by Carnegie Mellon University’s Compiled historical
daily temperature and precipitation data for selected 210 U.S. cities. Temperature
measurements are recorded daily and are referred to as the minimum and
maximum temperatures. The values are expressed in Fahrenheit degrees. The data
require some data-wrangling operation to be prepared for visualization. They are
the equivalent already seen for R, namely the addition of a new column with the
city name, the concatenation of the data frames to form a single one, and the
transformation into long form of columns tmax and tmin. In addition, a few other
operations on data types, for selecting only years from 2010 and, in this case,
maximum temperatures.

# Milwaukee
c1=pd.read_csv('datasets/Carnegie_Mellon_Univ/7890488/USW00014839.csv')
# El Paso
c2=pd.read_csv('datasets/Carnegie_Mellon_Univ/7890488/USW00023044.csv')
# New York
c3=pd.read_csv('datasets/Carnegie_Mellon_Univ/7890488/USW00094728.csv')
# Phoenix
c4=pd.read_csv('datasets/Carnegie_Mellon_Univ/7890488/USW00023183.csv')
# Atlanta
c5=pd.read_csv('datasets/Carnegie_Mellon_Univ/7890488/USW00013874.csv')
# Havre, Montana
c6=pd.read_csv('datasets/Carnegie_Mellon_Univ/7890488/USW00094012.csv')

Column Date is transformed in datetime type and a new column city is added
with the city name.
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c1["Date"] = pd.to_datetime(c1["Date"], format="%Y-%m-%d")
c2["Date"] = pd.to_datetime(c2["Date"], format="%Y-%m-%d")
c3["Date"] = pd.to_datetime(c3["Date"], format="%Y-%m-%d")
c4["Date"] = pd.to_datetime(c4["Date"], format="%Y-%m-%d")
c5["Date"] = pd.to_datetime(c5["Date"], format="%Y-%m-%d")
c6["Date"] = pd.to_datetime(c6["Date"], format="%Y-%m-%d")

c1["city"] = "Milwaukee"
c2["city"] = "El Paso"
c3["city"] = "New York"
c4["city"] = "Phoenix"
c5["city"] = "Atlanta"
c6["city"] = "Havre (MN)"

The data frames should be concatenated by column to form a single one; then
columns tmax and tmin are transformed into long form.

cities= pd.concat([c1,c2,c3,c4,c5,c6], axis=0)

citiesL= cities.melt(id_vars=['Date', 'city'],
value_vars=['tmax','tmin'], var_name="tminmax",
value_name='temp')

Now, we could produce the scatterplot. We still select years from 2010 and, this
time, maximum temperatures and some style options are added. Figure 1.18 shows
the scatterplot.

dataT= citiesL[(citiesL.tminmax=="tmax") &\
(citiesL.Date.dt.year>=2010)]

g= sns.scatterplot(data=dataT, x="Date", y="temp",
hue="city", s=3, palette="coldwarm",
hue_order=["Havre (MT)","Milwaukee","New York",

"Atlanta","El Paso","Phoenix"])

plt.figure(figsize = (8,5), dpi=600)
sns.move_legend(g, "lower left")
plt.title('Maximum Temperatures 2010-2022')
plt.xlabel("")
plt.ylabel('Temperatures (F)')
plt.rcParams.update({'font.size': 16})
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Figure 1.18 Temperature measurement in some US cities, maximum temperatures.

1.2.2 Line Plot

The line plot, as we already know, follows the same logic of the scatterplot, with
the additional requirement that groups of points should be correctly managed.
Seaborn automatically manages homogeneous data points and just few attributes
should be adjusted, with respect to the scatterplot, for example, linewidth is
needed to change the line width rather than s for marker size (Figure 1.19).

sns.set(style='white')

sns.lineplot(data=sample_gdp, x="Year", y="GDP",
hue='Country Name', linewidth=1,
palette= 'viridis')

plt.legend(loc='lower center)
plt.xlabel("")
plt.ylabel('GDP (%)')

The line style could be made dependent on variable values by using attribute
style. In the example, each line style is customized according to country names;
other style options in common with the previous graphic have been omitted
(Figure 1.20).

sns.lineplot(data=sample_gdp, x="Year", y="GDP",
hue='Country Name', style='Country Name',
linewidth=1, palette= 'viridis')

plt.legend(loc='lower right)
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Figure 1.19 Line plot of GDP variations for a sample of countries.
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Figure 1.20 Line plot with line style varied according to country.
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Figure 1.21 Line plot and scatterplot overlapped.

To overlap a scatterplot to the line plot, in order to plot both markers and lines,
the two functions could be written in sequence and the graphics are drawn on
the same plot. This possibility is not equivalent to the logic of the grammar of
graphics with layers of aesthetics, being just distinct plots overlapped on the same
plan (Figure 1.21).

sns.lineplot(data=sample_gdp, x="Year", y="GDP",
hue='Country Name', style='Country Name',
linewidth=0.5, palette= 'viridis', legend=False)

sns.scatterplot(data=sample_gdp, x="Year", y="GDP",
s=20, alpha= 0.7, hue='Country Name',
palette= 'viridis')

This just seen is the general technique for Seaborn to overlap different graphics.
For specific features, shortcuts often are available. For example, with line plots,
in order to show markers, is not necessary to overlap a scatterplot but the handy
markers attribute set to True is sufficient. Shortcuts, however, have often some
limitations like in this case where a common style is applied to both markers and
lines (see Figure 1.22). If we want different configurations for markers and lines,
then the general technique with two plots overlapped is the solution.

sns.lineplot(data=sample_gdp, x="Year", y="GDP",
hue='Country Name', style='Country Name',
linewidth=1, palette= 'viridis', markers=True)
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Figure 1.22 Line plot with markers automatically added.
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Bar Plots

In this section, we introduce the fundamentals of bar plots with ggplot and Seaborn
and show their main features. Bar plots, like scatterplots, will be used extensively
in following chapters, with more details and variants, so as to appreciate their
flexibility.

Dataset

Air Quality Report year 2021 (transl. Report qualità aria 2021), Open Data Munic-
ipality of Milan, Italy (https://dati.comune.milano.it/dataset/ds413-rilevazione-
qualita-aria-2021).
Copyright: Creative Commons CC BY-4.0.

2.1 R: ggplot

A bar plot (or bar chart) is the reference type of graphic when categorical variables
are handled: each category has a value associated, and a bar is drawn to represent
it. Values could depend on another variable, for example, a statistic, or could rep-
resent the number of observations that fall in each category. Let us consider a first
example using data about the air quality of the city of Milan, Italy, which is a heav-
ily polluted city. It is a time series where, for each day of the period, quantities of
some pollutants are measured. The variable pollutant is categorical, and we want
to graphically represent the variations of pollutant levels during the time period.
Column names have been translated into English.

Data Visualization in R and Python, First Edition. Marco Cremonini.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Cremonini/DataVisualization1e

https://dati.comune.milano.it/dataset/ds413-rilevazione-qualita-aria-2021
https://dati.comune.milano.it/dataset/ds413-rilevazione-qualita-aria-2021
http://www.wiley.com/go/Cremonini/DataVisualization1e
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df=read_csv2("datasets/Milan_municipality/
qaria_datoariagiornostazione_2021.csv")

df=rename(df, c(station_id=stazione_id, date=data,
pollutant=inquinante, value=valore))

head(df)

# A tibble: 6 × 4
station_id date pollutant value

<dbl> <date> <chr> <chr>
1 1 2021-12-31 NO2 <NA>
2 2 2021-12-31 C6H6 2
3 2 2021-12-31 NO2 54
4 2 2021-12-31 O3 2
5 2 2021-12-31 PM10 50
6 2 2021-12-31 PM25 32

First, a few transformations are needed: column value must be converted into
numerical type and missing values could be omitted because useless.

df$value=as.numeric(df$value)
df%>%filter(!is.na(value)) -> df1

With the first bar plot, we want to show, for each pollutant, the total value over
the whole period; an aggregation operation is needed.

df1%>%group_by(pollutant) %>%
summarize(total=sum(value)) -> df1_grp

# A tibble: 7 × 2
pollutant total
<chr> <dbl>

1 C6H6 774.
2 CO_8h 644.
3 NO2 75839
4 O3 34720
5 PM10 26993
6 PM25 9267
7 SO2 1029

With this aggregated data frame, the bar plot could be created, adding a few
style options, like a color palette. Color Brewer (https://r-graph-gallery.com/38-
rcolorbrewers-palettes.html) provides a number of predefined palettes for R and
it is a common choice, although not much original.

https://r-graph-gallery.com/38-rcolorbrewers-palettes.html
https://r-graph-gallery.com/38-rcolorbrewers-palettes.html
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Tip

Many other lists of predefined color palettes are available other than Color
Brewer: package ggthemes has several, and an even larger list is included
in r-color-palettes. It is worth noting that choosing a color palette is an
important choice not to be taken lightly because it could considerably affect
the overall quality of a graphic. Colors represent a key aspect of visual
communication; several specific publications address the implications of
their choice for different audiences and contexts, so choose wisely, always
test different alternatives, and do not be afraid of defining your own custom
color palette if you think it would be better than the predefined ones.

The ggplot function for bar plots is geom_bar() and a key attribute is stat
(statistic). By default, the stat attribute has value count, meaning that the bar
plot requires a single categorical variable as the independent one (x-axis), and values
of the y-axis are calculated as the number of observations falling in each category.
In our case study, it would count the number of measurements for each pollutant.
When, instead, a bar plot with two variables is needed, one for the categorical
values and the second for values associated to each category (in our example,
the total quantity of pollutants during the period), the attribute stat should be
explicitly set to value identity (stat=’identity’). Another important attribute
is position that controls the visualization of groups of bars, where for each
group, bars could be placed beside one to the other (position=’dodged’)
or one on top of the other (position=’stacked’), which is the default. The
next example shows a simple bar plot with two variables, pollutant names on
the x-axis and their quantities on the y-axis, therefore stat=’identity’ is
specified. Figure 2.1 shows the result.

library(ggthemes)

df1_grp %>% ggplot(aes(x=pollutant, y=total)) +
geom_bar(aes(fill=pollutant), stat="identity") +
scale_fill_viridis_d(option = "rocket")+
theme_clean()

Let us see a variant with a custom palette and horizontal orientation of
bars (function coord_flip() switches the axes). Bars are also in order for
increasing quantity of pollutants by using function reorder() for axis x
(i.e., x=reorder(pollutant, total)). Function reorder() takes two
parameters: the first one is the variable whose elements should be reordered,
pollutant in our case, and the second is the variable with values to be used for
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Figure 2.1 Bar plot with two variables.

Figure 2.2 Bar plot with custom color palette, horizontal bar orientation, and
ordered bars.

defining the order, total in our case. We use a custom color palette by specifying
colors with their hexadecimal RGB code (RGB is the name of the main color
model in use) and axes labels are set with function labs(), the legend is omitted
(show.legend=FALSE) because unnecessary (Figure 2.2).
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cols=c("C6H6"="#bda50b", "CO_8h"="#a1034a",
"NO2"="#295eb3", "O3"="#94770f", "PM10"="#471870",
"PM25"="#94420f", "SO2"="#356604")

df1_grp %>%
ggplot(aes(x=reorder(pollutant, total), y=total)) +
geom_bar(aes(fill=pollutant), stat="identity",

alpha=0.8, show.legend = FALSE) +
scale_fill_manual(values = cols)+

labs(x="Pollutant", y="Quantity")+
coord_flip()+
theme_light()

2.1.1 Bar Plot and Continuous Variables: Ranges of Values

It often happens that we wish to use values from a continuous variable but still
want to produce a bar plot. Being values on a continuous scale, they cannot be
used as such (probably there would be just a single data point for each value).
The solution is to define ranges of values and use those ranges as values of a new
categorical variable.

In our example, we may want to divide pollutant quantities into ranges and use
a bar plot to count the number of days for each range. The approach is similar to
what we have seen in the previous section for coloring scatterplot markers based
on thresholds. With pollutants, it should be considered that they have quite dif-
ferent scales, therefore ranges should be defined singularly or for pollutants on
similar scales. We consider a single pollutant (i.e., PM10) and use again function
cut() to define ranges. The new column range will record the respective range
for each data point.

df1_PM10 = filter(df1, pollutant=="PM10")
df1_PM10$value=as.numeric(df1_PM10$value)

To define ranges, we consider the minimum and the maximum values, respec-
tively, 10 and 97 for PM10, and define a reasonable number of ranges, for example:
<30, 30–40, 40–50, 50–60, 60–70, 70–80, >80.

df1_PM10$range <- cut(df1_PM10$value,
breaks=c(0, 30, 40, 50, 60, 70, 80, 120),
labels=c('<30','30-40','40-50','50-60',

'60-70','70-80','>80'))

We can produce the bar plot using column range and counting the number of
observations for each range. This time the stat=’count’ is correct and being
the default, it could be omitted (Figure 2.3).
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Figure 2.3 Bar plot with ranges of values for PM10 derived from a continuous variable.

df1_PM10 %>%
ggplot(aes(x=range)) +
geom_bar(aes(fill=range), show.legend = FALSE) +
scale_fill_tableau(palette = "Miller Stone")+
labs(x="Value ranges: PM10", y="Number of days")+
theme_minimal()

2.2 Python: Seaborn

We replicate for Seaborn the examples seen with ggplot. First, data should be pre-
pared for plotting.
df=pd.read_csv("datasets/Milan_municipality/

qaria_datoariagiornostazione_2021.csv", sep=";")
df.columns=['station_id', 'date', 'pollutant', 'value']

df["date"]=pd.to_datetime(df["date"], format="%Y-%m-%d")
df=df[∼df.isna().any(axis=1)]

df_grp=df.groupby(["pollutant"])[["value"]].sum()
df_grp.reset_index(inplace=True)

Now that we have the total quantity for each pollutant, we can start with a
simple bar plot using function sns.barplot(), to which we add a few options:
attribute order to order bars, which has a peculiar syntax with the following
general template: order=df.sort_values("variable_y",ascending=
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Figure 2.4 Bar plot with ordered bars and x ticks rotated.

False).variable_x), meaning that variable_x is the variable whose bars
should be ordered, and variable_y the variable whose values define the ordering
criteria, ascending or descending. As a last option, we rotate the labels on ticks of
axis x by 45∘ to improve readability and set axes labels (Figure 2.4).

sns.barplot(data=df_grp, x="pollutant", y="value",
order=df_grp.sort_values("value",ascending=
False).pollutant, palette='mako')

plt.xticks(rotation=45)
plt.xlabel("Pollutant")
plt.ylabel('Quantity')
plt.tight_layout()

2.2.1 Bar Plot with Three Variables

We can extend the previous example seen with R to include a third variable, repre-
sented by the month. We want to show, for each month, the total quantity of each
pollutant. This way we will have groups of bars, one group for each month. We
should aggregate the observations for month (methoddt.month extracts months
in numeric form from dates). This time, to differentiate bars based on the pollutant
value, we need to associate colors to pollutants with attribute hue, and by default
in Seaborn, bars in groups are visualized besides one to the other (i.e., dodged).
Figure 2.5 shows the result.
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Figure 2.5 Bar plot with three variables and groups of bars.

df_grp2= df_py.groupby([df['date'].dt.month, "pollutant"])\
[["value"]].sum()

df_grp2.reset_index(inplace=True)
df_grp2= df_grp2.rename(columns={"date":"month"})

sns.barplot(data=df_grp2, x='month', y="value",
hue="pollutant", palette='mako')

plt.xticks(rotation=30)
plt.xlabel("Month")
plt.ylabel('Quantity')
plt.tight_layout()

The bar plot is correct although the style could be improved. For example,
we could use month names and move the legend outside the plot. First, column
month should be transformed into datetime type. Then, we can use method
dt.month_name() to obtain month names. For the legend, to move it
outside the plot, the specific function sns.move_legend() has attribute
bbox_to_anchor, style options in common with the previous graphic have
been omitted (Figure 2.6).

Tip

To position a legend outside the plot, to the upper right, the combination
"upper left" and bbox_to_anchor=(1, 1) gives exactly that out-
come despite its unintuitive format.
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Figure 2.6 Bar plot with month names and the legend moved outside the plot.

df_grp2["month"]=pd.to_datetime(df_grp2["month"], format="%m")

g=sns.barplot(df_grp2, x=df_grp2["month"].dt.month_name(),
y="value", hue="pollutant", palette='mako')

plt.xticks(rotation=30)
plt.xlabel("")
plt.ylabel('Quantity')
sns.move_legend(g, "upper left", bbox_to_anchor=(1, 1))

Let us consider a variant by using a color palette (sns.color_palette())
and with stacked bars rather than dodged, for this attribute dodge must be set to
False (dodge=False). Figure 2.7 shows the result, and style options in common
with previous plots have been omitted.
pal=sns.color_palette("magma")

g=sns.barplot(data=df_grp2,
x=df_grp2["month"].dt.month_name(), y="value",
hue="pollutant", dodge=False, palette=pal)

2.2.2 Ranges of Values from a Continuous Variable

To create categorical values from a continuous variable, pandas offers function
pd.cut(), very similar to the corresponding R function. In the example, we
select a single pollutant (i.e., NO2) and define a number of value ranges in the
new column range.
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Figure 2.7 Bar plot with stacked bars.

df_NO2= df[df.pollutant=="NO2"]

df_NO2[range] = pd.cut(x=df_NO2['value'],
bins=[0, 30, 40, 50, 60, 70, 80, 100, 120, 140, 200],
labels=['<30','30-40','40-50','50-60','60-70','70-80',

'80-100','100-120','120-140','>140']

station_id date pollutant value range

2 2 2021-12-31 NO2 54.0 50–60
8 3 2021-12-31 NO2 51.0 50–60
11 4 2021-12-31 NO2 59.0 50–60
17 6 2021-12-31 NO2 67.0 60–70
20 7 2021-12-31 NO2 54.0 50–60

This time, we want to count the number of observations for each range value,
Seaborn distinguishes between two cases: function sns.barplot() is for bar
plots with two variables, while for the case of just one variable, it takes function
sns.countplot(). Figure 2.8 shows the result.

plt.figure(figsize = (8,5))
plt.rcParams.update({'font.size': 16})

sns.countplot(data=df_py_NO2, x="range", palette="viridis")
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Figure 2.8 Bar plot with ranges of values derived from a continuous variable.

plt.xticks(rotation=30)
plt.title("Quantity of NO2")
plt.xlabel("Range")
plt.ylabel('Count')

2.2.3 Visualizing Subplots

A useful variant of function pd.cut() is function pd.qcut(), where the q let-
ter stands for quantile. With this function, the whole range of variable values is
divided into quantiles and the fundamental attribute is q that takes two forms:

● q=<number> means that the range of values is divided in the specified num-
ber of bins, whose limits are automatically set in order to make the number of
occurrences for each bin the more balanced as possible (i.e., bin’s height will be
as alike as possible).

● q=[list of values] means that the range of values is divided into the
specified quantiles of the distribution (e.g., q=[0, .2, .4, .6, .8, 1]).

We can use the qcut() function for two examples.

df_NO2= df[df.pollutant=="NO2"]
df_NO2['es1'] = pd.qcut(df_NO2['value'], q=4)
df_NO2['es2'] = pd.qcut(x=df_NO2['value'],

q=[0, .25, .5, .75, 1])
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Figure 2.9 Bar plots with quantile representation, subplots, and style options.

In the visualization, we add an important detail to obtain an outcome similar
to what we have produced with the R’s patchwork library that allows drawing
multiple plots side-by-side or stacked. In this case, we use matplotlib subplots,
which lack the intuitive syntax of patchwork but provide a wide array of possi-
ble visualizations. The function to use is plt.subplots(), whose first attribute
represents the number of rows, the second the number of columns (default is 1) of
the grid of subplots, figsize() specifies the size of the entire plot. Subplots are
associated to the standard parameter ax (axes), which, in our example, will be an
array with two elements, ax[0] and ax[1], corresponding to the first and the second
subplots. By using ax[0] and ax[1], subplots could have specific formatting; in the
example, they will have different titles and different axis options (Figure 2.9).

df_py_NO2['es1'] = pd.qcut(df_py_NO2['value'], q=4)
df_py_NO2['es2'] = pd.qcut(x=df_py_NO2['value'],

q=[0, .25, .5, .75, 1])

f, ax = plt.subplots(2, figsize=(5, 4))
pal=sns.color_palette("viridis")

sns.countplot(data=df_py_NO2, x="es1", palette=pal, ax=ax[0])
sns.countplot(data=df_py_NO2, x="es2", palette=pal, ax=ax[1])

ax[0].set(title="ES 1: q=4")
ax[1].set(title="ES 2: q=[0, .25, .5, .75, 1]")
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ax[0].xaxis.set_tick_params(labelsize=7)
ax[1].xaxis.set_tick_params(labelsize=7)
f.tight_layout()

Tip

An R function qcut() is included into package timereg, it works the same
way as the pd.qcut().
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3

Facets

Facets represent one of the typical modalities for data visualization. The idea is
to have a grid of plots presented as a unique visualization. Graphics presented as
facets, however, are not independent and uncorrelated; on the contrary, they are
the graphics produced by selecting a specific data frame variable/column, and for
each of its unique values, a plot is produced by using common ggplot definition and
aesthetics. For example, we may want to visualize the tourist arrivals in some loca-
tions on a yearly basis. So, if we have a time series (i.e., the yearly tourist arrivals)
but observed in more than one context (e.g., different countries), how would we
represent it graphically? There are alternatives. For example, with a line plot, each
line representing data of a certain country, or with a stacked bar plot, with each
stacked segment corresponding to a country. But we might also prefer to look at
the data of the different countries separately rather than condensed into a single
plot, for instance for better clarity; in that case, how do we do that? The trivial
solution would be to extract subset of rows from the data frame, one subset for
each country, and plot them individually. It works, of course, but it is inefficient,
and we end up with several distinct plots to manage somehow. Here comes the
facet visualization with a clever solution that allows, in a single execution, cre-
ating a grid of plots, one for each country with the yearly tourist arrivals. Cases
like this are the perfect scenario for facets. It is a smart and convenient solution,
but it needs caution because it is easy to end up producing an excessively large
grid of plots, which would be computationally intensive and difficult to interpret.
In other cases, an ineffective choice of the variable used to produce facets could
result in a grid of plots where just a few show informative results, while the others
look meaningless. However, when facets are used properly, they usually represent
an excellent solution.

Data Visualization in R and Python, First Edition. Marco Cremonini.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Cremonini/DataVisualization1e

http://www.wiley.com/go/Cremonini/DataVisualization1e
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Dataset

In this section, we use the dataset Compiled historical daily temperature and precip-
itation data for selected 210 U.S. cities, Yuchuan Lai and David Dzombak, Carnegie
Mellon University, and Air Quality Report year 2021 (transl. Report qualità aria
2021), Open Data Municipality of Milan, already introduced before.

3.1 R: ggplot

3.1.1 Case 1: Temperature

We use the data from Carnegie Mellon University about daily temperature in some
US cities in years 2010–2022. To produce a visualization by facets, two formats are
available in ggplot: a grid based on distinct values of a single variable (function
facet_wrap()) or a grid based on the combinations of distinct values from two
variables (function facet_grid()).

Warning

Each facet is actually a full graphic to be plotted; therefore, a grid of facets
could be computationally intensive to produce and/or difficult to read. It is
worth estimating in advance the number of facets that would be produced;
when facets will be about a dozen, that would already be a significant num-
ber of graphics, if their number is in the dozens, that would be probably
excessive. Even more care should be taken when function facet_grid()
is used because combinations of the distinct values of the two variables may
grow fast.

In Chapter 1, we saw a scatterplot presenting the daily temperatures for six US
cities as a single visualization and commented that, while the overall shape of the
scatterplot was informative, it was difficult to clearly recognize data points from
all cities. Now, we see how, with a visualization by facets, it is possible to efficiently
separate the different cities into individual plots. Variable city is used to produce
the facets with function facet_wrap(). Here we use the same data frame citiesL
derived in Chapter 1 from reading the datasets and preparing them for visualiza-
tion. Minimum temperatures are selected, years go from 2010 to 2022. Function
year() of package lubridate extracts the year component from a date. Figure 3.1
shows the result with facets.
filter(citiesL, lubridate::year(Date)>=2010, tminmax=="tmin") %>%

ggplot(aes(x=Date, y=temp)) +
geom_point(aes(color=city),size=0.01, show.legend = FALSE) +
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Figure 3.1 Temperature measurement in some US cities, minimum temperatures,
visualization by facets.

facet_wrap(vars(city), ncol = 3)+
scale_color_wsj()+
scale_x_date(date_breaks = "2 years",

date_labels = "%Y")+
scale_y_continuous(breaks = c(-40,-20,0,20,40,60,80,100))+
labs(x="", y="Temperature (F)",

color="City", subtitle="Minimum Temperatures 2010-2022")+
theme_light()

3.1.2 Case 2: Air Quality

This time, we reuse the data regarding air quality measurements from the city of
Milan. We start by extracting the month component from the date with function
month() of package lubridate.

df2%>%filter(!is.na(value)) -> df2
df2$value= as.numeric(df2$value)
df2%>%mutate(month= lubridate::month(date)) -> df2

# A tibble: 4,416 × 5
station_id date pollutant value month

<dbl> <date> <chr> <dbl> <dbl>
1 2 2021-12-31 C6H6 2 12
2 2 2021-12-31 NO2 54 12
3 2 2021-12-31 O3 2 12
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4 2 2021-12-31 PM10 50 12
5 2 2021-12-31 PM25 32 12
# … with 4,411 more rows

We want to show, for each month, the total quantity of every pollutant. First,
we need to aggregate and calculate the total quantity for each month and each
pollutant.

df2%>%group_by(month, pollutant)%>%
summarize(total=sum(value)) -> df2_grp

# A tibble: 84 × 3
# Groups: month [12]

month pollutant total
<dbl> <chr> <dbl>

1 1 C6H6 100
2 1 CO_8h 74
3 1 NO2 7106
4 1 O3 1119
5 1 PM10 2493
6 1 PM25 910
7 1 SO2 95.5
# … with 77 more rows

Now we can produce bar plots with facets and some style options. We spec-
ify month names by replacing month numbers with names. For this, we use
function scale_x_discrete(). There exist similar functions for the y-axis
or continuous values (i.e., scale_y_discrete(), scale_x_continue(),
scale_y_continue()). In this case, showing the legend would be redundant,
we omit it with option show.legend=FALSE. Figure 3.2 shows the result.
df2_grp %>% ggplot(aes(x=as.factor(month), y=total)) +
geom_bar(aes(fill=pollutant),stat="identity", show.legend = FALSE) +
scale_fill_viridis_d(option='cividis')+
facet_wrap(vars(pollutant), ncol = 3)+
labs(x="Month", y="Total value ")+
scale_x_discrete(labels=c("1" = "January", "2" = "February",

"3" = "March", "4" = "April", "5"= "May",
"6" = "June", "7" = "July", "8" = "August",
"9" = "September", "10" = "October",
"11" = "November", "12" = "December"))+

theme_clean()+
theme(axis.text.x = element_text(angle = 90, hjust = 1),

axis.text = element_text(size = 12))

The result presents inhomogeneous facets, three of them have a scale on axis
y too different to be represented meaningfully. One possibility to overcome this
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Figure 3.2 Facet visualization with bar plots, some facets not readable due to different
scales of pollutant measurements.

problem is to make facet scales on axis y independent (or on axis x, if that would
be the case). This could be done in a simple way by adding attribute scales
to function facet_wrap(), which could have value free, free_x, or free_y,
respectively for making both scales independent, only that on the x-axis, or on
the y-axis. In our case, it would be scales="free_y". Figure 3.3 shows how
the visualization changes.

…
facet_wrap(vars(pollutant), ncol= 3, scales= "free_y")+
…

Technically, we have fixed the problem, but caution is nevertheless necessary:
the presence of different scales could easily be overlooked by an observer, who as
a consequence could be misled into thinking that data in the different facets could
be directly compared. That might be the source of severe errors. Depending on
how serious this risk is, choosing to plot facets with different scales is worth con-
sideration. Otherwise, a different organization of the plot could be chosen, such
as in the following example.

Let us consider a variant by adding a fourth variable, station_id, representing the
specific monitoring station. We aggregate again to have the totals for each moni-
toring station, month, and pollutant.

df2%>%group_by(station_id, month, pollutant)%>%
summarize(total=sum(value)) -> df3_grp
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Figure 3.3 Facet visualization with independent scale on y-axis.

# A tibble: 239 × 4
# Groups: station_id, month [60]

station_id month pollutant total
<dbl> <dbl> <chr> <dbl>

1 2 1 C6H6 25.5
2 2 1 NO2 1410
3 2 1 O3 614
4 2 1 PM10 657
5 2 1 PM25 508
6 2 1 SO2 95.5
# … with 233 more rows

We can use month, total, and pollutant variables for bar plots, and station_id for
facets. The style is customized with custom colors. The result shown in Figure 3.4
looks aesthetically pleasant and informative with no risk of ambiguity as for the
previous case.

df3_grp %>% ggplot(aes(x= as.factor(month), y= total)) +
geom_bar(aes(fill= pollutant), stat= "identity") +
scale_fill_viridis_d() +
facet_wrap(vars(station_id), ncol= 3) +
labs(x= "Month", y= "Values") +
scale_x_discrete(labels=c("1" = "January", "2" = "February",

"3" = "March", "4" = "April", "5"= "May",
"6" = "June", "7" = "July", "8" = "August",
"9" = "September", "10" = "October",
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Figure 3.4 Facet visualization with bar plots, facets are all well-readable and balanced.

"11" = "November", "12" = "December"))+
coord_flip() +
theme_clean() +
theme(axis.text.x = element_text(angle = 90, hjust = 1),

axis.text = element_text(size = 12))

3.2 Python: Seaborn

With Seaborn, facets are managed in a peculiar way with two different approaches,
a simpler one, but limited in flexibility, and a second a little more complicated but
also more general. Let us start with the simple one.

This approach is based on special functions that are already configured to pro-
duce facet visualization. Each function is suited for a set of graphic types. The main
facet-oriented functions are:

● sns.relplot() produces facet visualization for scatterplots and line plots.
● sns.catplot() produces facets for the many graphics based on categorical

variables (e.g., bar plots, boxplots, and categorical scatterplot variants).
● sns.displot() produces facets for univariate and bivariate distributions

(e.g., histograms and kernel density plots).

To specify the particular type of graphics, all these functions have attribute
kind, attribute col is set to the variable/column used to define the facets.
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Tip

These functions could also produce normal graphics without facets, just by
omitting attribute col specifying the variable to use for facets. This possibility
may suggest to always use these functions in place of the more specific ones
(e.g., scatterplot(), barplot(), and boxplot()), as (unfortunately)
suggested by several online materials. That is not a good practice, though,
because these functions have limitations with respect to the more specific
ones and are less adaptable, which may result in a poorer graphical quality.

3.2.1 Facet for Scatterplots and Line Plot

With function relplot(), two graphic types are supported:

● scatterplot, by specifying kind="scatter" (default).
● line plot, by specifying kind="line".

The usage is simple. We could replicate the previous example with daily tem-
perature from some US cities in years 2010–2022 and use variable city for facets.
A limitation with respect to specific functions like scatterplot() and line-
plot() is that the plot is not resizable with the usual plt.figure(figsize
= ()) and, in general, many pyplot’s methods are not supported, like the one to
rotate tick’s labels. In the example, we use attribute kind set to scatter (although,
being the default, that would not be necessary), col set to city, col_wrap set to
3 to have a grid with three columns, and height set to the single facet’s height.
In order to rotate tick’s labels, we need to adopt a different method with respect to
what is seen in previous examples. Figure 3.5 shows the result.

g=sns.relplot(data=dataT, x="Date", y="temp", hue="city",
s=1, palette="magma", kind="scatter",
col="city", col_wrap=3, height=2.3)

g.tick_params(axis='x', rotation=45)
g.set_axis_labels("",'Temperatures (F)')

For a complete overview of the graphical options (e.g., markers, color palette,
and proportional sizes), the excellent Seaborn online documentation is the main
reference.

3.2.2 Line Plot

For line plots, the only differences with respect to scatterplots are kind="line"
and linewidth to set the line width. The following code is the line plot corre-
sponding to the previous scatterplot.
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Figure 3.5 Temperature measurement in some US cities, maximum temperatures, facet
visualization.

g=sns.relplot(data=dataT, x="Date", y="temp", hue="city",
linewidth=0.3, alpha=0.5, kind="line",
palette="magma", col="city", col_wrap=3,
height=2.3)

3.2.3 Facet and Graphics for Categorical Variables

With function catplot(), we produce facet visualization for graphics of types:

● strip plot with kind="strip" (default).
● swarm plot with kind="swarm".
● boxplot with kind="box".
● violin plot with kind="violin".
● boxen plot with kind="boxen".
● point plot with kind="point".
● bar plot with kind="bar".
● count plot with kind="count".

We will not see examples of all these types of graphics, many of them will be
addressed specifically in following sections, and others are just simple variants.

3.2.4 Facet and Bar Plots

To obtain facet visualizations with bar plots, we use kind=bar. The result is easy
to obtain, but not particularly customizable, unlike the equivalent with ggplot.
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We replicate the example seen before with data about the air quality and pollu-
tants in Milan. A few common data-wrangling operations are needed to prepare
the data frame.

df["data"]= pd.to_datetime(df["date"], format="%Y-%m-%d")
df= df[∼df.isna().any(axis=1)]
df_grp1= df.groupby([df['date'].dt.month_name(), "pollutant"])\

[["value"]].sum()

df_grp1.reset_index(inplace=True)
df_grp1= df_grp1.rename(columns={"date":"month"})

month pollutant value

0 April C6H6 32.2
1 April CO_8h 38.3
2 April NO2 5 798.0
3 April O3 3 405.0
4 April PM10 1 806.0
· · · · · · · · · · · ·
79 September NO2 7 549.0
80 September O3 4 686.0
81 September PM10 2 027.0
82 September PM25 589.0
83 September SO2 77.0

Let us first use months as the facet variable. The result of Figure 3.6 is correct
overall, with the exception of the scale on axis y that is suitable for certain pollu-
tants only (e.g., bars for C6H6, CO_8h, and SO2 are always practically invisible).

sns.set_theme(style="white",font_scale=0.9)

g=sns.catplot(data=df_grp1, x="pollutant", y="value",
kind="bar", height=2, col="month",
col_wrap=3, palette='cubehelix')

g.set_axis_labels("Pollutants",'Quantity')
g.tick_params(axis='x', rotation=45)

Let us see a variant that replicates the example seen with ggplot. In this case,
we want to have pollutants as facets, months on the x-axis, and coloring bars for
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Figure 3.6 Facets and bar plot visualization.
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Pollutant = PM10
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Figure 3.7 Incorrect facet visualization (single facet
detail).

each pollutant using attribute hue. Figure 3.7 shows the detail of just one facet for
clarity (i.e., for pollutant NO2), the other ones are similar. The result is not visually
correct in this case because Seaborn plots bars as if they were grouped side-by-side,
this is the reason why they appear so thin and difficult to recognize. The month
order is also incorrect when names are used.

sns.set_theme(style="white",font_scale=0.7)

g=sns.catplot(data=df_grp1, x="month", y="value", hue="pollutant",
kind="bar", height=2, col="pollutant", col_wrap=3)

g.tick_params(axis='x', rotation=90)
g.tight_layout()

The problem has to do with the limitations of the simplified facet-oriented func-
tions: relplot(), catplot(), and displot(). To overcome these limita-
tions, a more general but less simple method to visualize facets exists.

3.2.5 Facets: General Method

With the general method to produce a facet visualization, we are able to overcome
the limitations of the simplified functions seen before. We consider the logic. It
requires two steps: first, the facet grid is defined, with general elements, then the
specific type of graphics for facets is specified.

The functions corresponding to the two steps are sns.FacetGrid() and
map(). The two functions will be associated by means of a variable representing
the graphical object with the following template:

g=sns.FacetGrid(general elements)
g.map(specific graphic type and attributes)

We can reproduce the previous example to obtain a correct visualization. We also
fix the wrong month name order by defining a list with month names correctly
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Figure 3.8 Facet visualization with the general method, unbalanced facets.

ordered, with that we configure attribute order of function map(). Figure 3.8
shows the facet visualization.

list=["January", "February", "March", "April", "May",
"June", "July", "August", "September", "October",
"November", "December"]

g = sns.FacetGrid(df_grp1, col='pollutant', hue='pollutant',
col_wrap=3, height=2, palette='cubehelix')

g.map(sns.barplot, 'month', 'value', order= list)

g.tick_params(axis='x', rotation=90)
g.set_axis_labels("",'Quantity')
g.tight_layout()

Technically, the graphic is now correct. Still, the facets are not homogeneous,
due to the different scales of the pollutants. We can correct it, similarly to what
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Figure 3.9 Facet visualization with the general method, independent scales.

we did with ggplot, by making scales on the y-axis independent. To make that,
function FacetGrid() has attributes sharex and sharey, which if True use a
shared scale for all facets respectively on axis x or axis y, if False otherwise. In our
case, we want independent scales on axis y (sharey=False) and common scales
on axis x (sharex=True). In Figure 3.9 the modified facet visualization is shown.

…
g = sns.FacetGrid(df_grp1, col='pollutant', hue='pollutant',

col_wrap=3, height=2, sharex=True, sharey=False)
…

As observed for the equivalent example in R, a cautionary note is necessary,
using different scales in a facet visualization should not be done lightly because
observers could easily be misled into thinking that quantities among facets are
directly comparable, without noticing that scales are not the same. This misun-
derstanding might provoke more than a small annoyance.
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Figure 3.10 Facet visualization with balanced and meaningful bar plots.

Similar to the R section, we show an alternative by employing a fourth variable
(station_id) for facets, with bars set as stacked. Figure 3.10 shows the result.

df_grp2= df.groupby(["station_id", df['date'].\
dt.month_name(), "pollutant"])[["value"]].sum()

df_grp2.reset_index(inplace=True)
df_grp2= df_grp2.rename(columns={"date":"month", "value":"total"})

station_id month pollutant total

0 2 April C6H6 12.2
1 2 April NO2 936.0
2 2 April O3 1 796.0
3 2 April PM10 457.0
4 2 April PM25 324.0
· · · · · · · · · · · · · · ·
234 7 October O3 1 267.0
235 7 October PM10 752.0
236 7 September NO2 1 367.0
237 7 September O3 2 317.0
238 7 September PM10 479.0
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sns.set_theme(style="white",font_scale=0.7)

list=["January", "February", "March", "April", "May", "June",
"July", "August", "September", "October", "November",
"December"]

g2 = sns.FacetGrid(df_grp2, col='station_id', hue='pollutant',
palette='cubehelix', col_wrap=3, height=2)

g2.map(sns.barplot, 'total', 'month', order= list).add_legend()

g2.set_axis_labels("Quantity",")
g2.tight_layout()
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4

Histograms and Kernel Density Plots

A histogram is a traditional type of graphics based on a continuous variable. For
the values of this variable, it defines a certain number of ranges called bins and
counts the number of observations for each bin. Visually, it is schematic and typ-
ically aesthetically simple, but it may provide useful information about data. For
this reason, it is often used as an analysis tool, not just in presentations, in order to
study general characteristics of data, such as anomalous distributions. It is impor-
tant to remember that histograms are most useful when several combinations of
bin width or numerosity are tested.

Dataset

In this section, we use the dataset Compiled historical daily temperature and precip-
itation data for selected 210 U.S. cities, Yuchuan Lai and David Dzombak, Carnegie
Mellon University and Report qualità aria 2021 (transl. Air Quality Report year
2021), Open Data Municipality of Milan, already introduced before. The following
one is new, instead.

Bologna – B&B List, Open Data from Bologna Municipality, Italy (https://open-
data.comune.bologna.it/explore/dataset/bologna-rilevazione-airbnb/information
/?disjunctive.neighbourhood&disjunctive.room_type),

Copyright: Creative Commons CC BY-4.0.

4.1 R: ggplot

The main ggplot function for histograms is geom_histogram() with two main
attributes, to be used as alternatives:

● binwidth defines the width of bins; in this case, the number of bins is derived
from the whole range of values divided by the bin’s width, and the result is

Data Visualization in R and Python, First Edition. Marco Cremonini.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Cremonini/DataVisualization1e

https://opendata.comune.bologna.it/explore/dataset/bologna-rilevazione-airbnb/information/?disjunctive.neighbourhood&disjunctive.room_type
https://opendata.comune.bologna.it/explore/dataset/bologna-rilevazione-airbnb/information/?disjunctive.neighbourhood&disjunctive.room_type
https://opendata.comune.bologna.it/explore/dataset/bologna-rilevazione-airbnb/information/?disjunctive.neighbourhood&disjunctive.room_type
http://www.wiley.com/go/Cremonini/DataVisualization1e
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Figure 4.1 Number of bins equals to 30.

usually rounded to the largest integer: bins=round((max(values)-min(values))/
binwidth)

● bins define the number of bins and in this case, it is the bin width to be calcu-
lated as binwidth=round((max(values)-min(values))/bins)

4.1.1 Univariate Analysis

In short, a univariate analysis means that statistics are analyzed independently,
one at time. This is the classical reference case for histograms when the value
distribution of a single variable is visually inspected for different bin widths or
numbers.

Let us see first an example with daily temperatures of some US cities from
years 2010 to 2022. We try with bins=30, then with binwidth=10. Some style
elements are formatted using some of the many options provided by function
theme(). Figure 4.1 and Figure 4.2 show the histograms for the two cases.

# Number of bins: 30

filter(df, tminmax=="tmin", lubridate::year(Date)>=2010)%>%
ggplot() +

geom_histogram(aes(temp), bins=30,
fill="white", color="lightblue", na.rm=TRUE) +
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Figure 4.2 Bin width equal to 10.

labs(x="Temperature range", y="Count")+
theme_clean()+
theme(panel.grid.major.y = element_blank(),

legend.position = 'none')+
theme(axis.text.x =
element_text(size = 12, hjust = .75))

# Bin width: 5

filter(df, tminmax=="tmin", lubridate::year(Date)>=2010)%>%
ggplot() +

geom_histogram(aes(temp), binwidth=10,
fill="white", color="lightblue", na.rm=TRUE) +

labs(x="Temperature range", y="Count")+
theme_minimal()+
theme(panel.grid.major.y = element_blank(),

legend.position = 'none')+
theme(axis.text.x =
element_text(size = 12, vjust = 6, hjust = .75))

We could use facets to look at the monthly distribution of temperatures, in func-
tion facet_wrap(), the notation ∼ Month is equivalent to vars(Month).
Figure 4.3 shows the result.
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Tip

To have month names instead of month numbers as facet’s titles, different
from the case of axes, a handy scale_ function is not available. It needs to
be a little creative. Here are the steps.
With mutate(), a new column Month is created with month numbers as val-
ues. Then, a second mutate()transforms the new column as a factor and
associates values (1…12) to levels (factor level) (“1”…“12”), and levels to labels
(“January”…“December”). Function facet_wrap() will use labels as titles.

mutate(df, Month=month(Date)) %>%
mutate(Month=factor(Month,

levels = c("1","2","3","4","5","6","7",
"8","9","10","11","12"),

labels = c("January","February","March","April","May",
"June","July","August","September","October",
"November","December"))) %>%

filter(tminmax=="tmin", lubridate::year(Date)>=2010)%>%
ggplot() +
geom_histogram(aes(temp), binwidth=2,

fill="lightblue", color="gray50", na.rm=TRUE) +
facet_wrap(∼ Month, ncol = 3)+
labs(x="Temperature range", y="Count")+
theme_clean()+
theme(panel.grid.major.y = element_blank())

4.1.2 Bivariate Analysis

In short, bivariate analysis means that two statistics are analyzed together. In this
case, graphics have forms less familiar, although aesthetically of greater impact.
ggplot utilizes two functions, geom_bin2d() and geom_hex(), as bivariate
extensions of the traditional univariate case. For kernel density estimate (kde), func-
tionsgeom_density2d() andgeom_density2d_filled()are available. In
this second case, the result will show where, in the bidimensional space of values,
points have higher density.

For the example, we use again the datasets of daily temperature of some US
cities. In this case, data should be homogeneous, meaning that they could not mix
observations collected from contexts having very different characteristics, such as
if we were mixing data from Phoenix, one of the hottest US cities with those from
Milwaukee, one of the coldest. For this reason, we pick just one city, New York
City. Variables are month and temperature.

We start with geom_bin2d() and geom_hex(); they have simple usage, very
similar to the univariate case. Months are obtained with month names through
package lubridate function month() with attribute label; other style options
have been added, such asscale_fill_continuous() to set the color gradient
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Figure 4.4 Histogram for bivariate analysis with rectangular tiles.

and scale_x_continuous() to visualize 10 ticks on the x-axis. Finally, with
function theme(), other formatting options have been adjusted. Maximum tem-
peratures have been selected; the bins have a 5 ∘F range. Figure 4.4 shows the
result, which should be interpreted according to the color scale, the darker the hue
of tiles, the denser the observations; for example, in July and August, temperatures
in the range 80–85 ∘F are the most frequent.

filter(df, city=="New York", tminmax=="tmax") %>% ggplot() +
geom_bin2d(aes(x=temp, y=lubridate::month(Date, label=TRUE)),

binwidth=5, na.rm=TRUE) +
scale_fill_continuous(low="lightblue", high="darkred") +
scale_x_continuous(breaks = waiver(), n.breaks = 10)+
labs(
x="Temperature (F)",
y="Month",
subtitle="New York City: Maximum temperature/Month (1869-2022)"

)+
theme_light() +
theme(panel.grid.major.y = element_blank(),

legend.position = 'none',
axis.text.x = element_text(hjust = .75),
axis.text = element_text(size = 14),
axis.title = element_text(size = 14))

We try the same but with function geom_hex(), which produces a slightly dif-
ferent visual representation with hexagonal tiles instead of rectangular tiles, style
options in common with the previous graphic have been omitted; in this case, the
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Figure 4.5 Histogram for bivariate analysis with hexagonal tiles.

lighter the hue of tiles, the denser the observations, the bin width is set to 2 for the
x-axis (binwidth=c(2,1)) (see Figure 4.5).
filter(df, city=="New York", tminmax=="tmax") %>% ggplot() +
geom_hex(aes(x=temp, y=lubridate::month(Date, label=TRUE)),

binwidth=c(2,1), na.rm=TRUE) +
scale_fill_continuous(low=low="darkblue", high="gold") +
…

For these types of graphics, a good choice of colors and style options is important,
being the aesthetic impact possibly very effective.

Facet visualization is also possible with bivariate histograms. Here we choose
some years (i.e., 1870, 1920, 1970, 2000, 2010, and 2021) and plot the facets for
the distribution of maximum temperatures in New York with respect to months.
Again, we omit style options in common with previous graphics. Figure 4.6 shows
the facet visualization.
yearsNY=c("1870","1920","1970","2000","2010","2021")

filter(df, city=="New York", tminmax=="tmax",
lubridate::year(Date) %in% yearsNY) %>% ggplot() +

geom_bin2d(aes(x=temp, y=lubridate::month(Date, label=TRUE)),
binwidth=5, na.rm=TRUE) +

facet_wrap(vars(lubridate::year(Date)), ncol= 3)+
scale_fill_gradient(low="deepskyblue1", high="darkorange") +

…
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Figure 4.6 Histogram for bivariate analysis with facet visualization.
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4.1.3 Kernel Density Plots

We move now to the case of kernel density plots using geom_density2d()
and geom_density2d_filled(). Results are qualitatively similar to those
obtained with the two previous functions, but some differences are notable, due
to the different method of analysis, and a peculiar graphical form. We remain in
New York and keep the facet visualization, this time just for years 1940, 1970,
2000, and 2021. For this plot, month names cannot be used as categorical variables
for the y-axis, numerical continuous values are needed; the number of bins is
20, meaning an approximately 5 ∘F range of temperature. The plot in Figure 4.7
shows curves representing a certain density level (isodensity), the higher the
number of curves, the greater the density of data points. For example, we still see
that in August, temperatures are densely concentrated around 80 ∘F; although
from 1940 to 2021, a change in temperature distribution is visible.

yearsNY=c("1940","1970", "2000","2021")

filter(df, city=="New York", tminmax=="tmax",
lubridate::year(Date) %in% yearsNY) %>%

ggplot() +
geom_density2d(aes(x=temp, y=lubridate::month(Date)),

bins=20, na.rm=TRUE) +
facet_wrap(vars(lubridate::year(Date)), ncol = 2)+
scale_x_continuous(breaks = waiver(), n.breaks = 10)+
scale_y_continuous(breaks = waiver(), n.breaks = 12)+

…

The result of the second function is qualitatively alike, except that it makes use of
a color scale instead of isodensity curves to indicate density levels. We use the same
settings as the previous plot, just the function is different. Figure 4.8 shows the
result, which is more intuitive than with isodensity curves, although less precise.

yearsNY=c("1940","1970", "2000","2021")
filter(df, city=="New York", tminmax=="tmax",

lubridate::year(Date) %in% yearsNY) %>% ggplot() +
geom_density2d_filled(aes(x=temp, y=lubridate::month(Date)),

bins=20, na.rm=TRUE) +
facet_wrap(vars(lubridate::year(Date)), ncol = 2)+
scale_fill_viridis_d(option="plasma")+
scale_x_continuous(breaks = waiver(), n.breaks = 10)+
scale_y_continuous(breaks = waiver(), n.breaks = 12)+

…

Finally, for curious readers, we also show the results with minimum tempera-
tures, still in New York and for the same years of the previous plot (Figure 4.9).
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Figure 4.7 Kernel density for bivariate analysis with isodensity curves.
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Figure 4.8 Kernel density for bivariate analysis with color gradient, NYC maximum temperatures.
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Figure 4.9 Kernel density for bivariate analysis with color gradient, NYC minimum temperatures.
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yearsNY=c("1940","1970", "2000","2021")
filter(df, city=="New York", tminmax=="tmin",

lubridate::year(Date) %in% yearsNY) %>% ggplot() +
geom_density2d_filled(aes(x=temp, y=lubridate::month(Date)),

bins=20, na.rm=TRUE) +
facet_wrap(vars(lubridate::year(Date)), ncol = 2)+
scale_fill_viridis_d(option="turbo")+
scale_x_continuous(breaks = waiver(), n.breaks = 10)+
scale_y_continuous(breaks = waiver(), n.breaks = 12)+

…

4.2 Python: Seaborn

Data for this section are from the Open Data of Bologna Municipality, Italy, they
contain the list of Bed and Breakfasts (BnB) present in town.
df=pd.read_csv("datasets/comune_bologna/bologna-rilevazione-airbnb.csv",

sep=";")

id neigh. price
number_of_
reviews last_review

reviews_
per_month avail.

0 209692 Navile 32 22 2021-11-08 0.38 256
1 229114 Navile 80 49 2022-09-12 0.41 125
2 374610 Santo Stefano 48 100 2022-05-05 0.86 29
3 570880 Porto–Saragozza 150 67 2022-07-03 0.54 281
4 684271 Navile 120 4 2018-11-11 0.05 107
… … … … … … … …

With Seaborn, histograms are produced with functionhistplot(), having the
usual two attributes binwidth and bins, for bin width and number. We start
with an example using the number of reviews as the continuous variable and we
vary bin’s width and number.

4.2.1 Univariate Analysis

The bin width is set to 20 (Figure 4.10).

g=sns.histplot(data=df, x="number_of_reviews", binwidth=20)

plt.xlabel("Number of Reviews")
plt.ylabel("Number of BnB (count)")
plt.title("binwidth=20")
plt.tight_layout()
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Figure 4.10 Histogram for univariate analysis, bin width equals 20.

To add the kernel density estimate, the attribute is kde=True (Figure 4.11).

g=sns.histplot(data=df, x="number_of_reviews",
binwidth=40, fill=False, kde=True)

We can try with a third variable for neighborhoods and a stacked layout
(attribute multiple=’stack’); we also omit most expensive BnBs to limit the
price range. Unfortunately, the result shown in Figure 4.12 is not clear because
bars for BnBs with a high number of reviews are almost invisible. We will improve
it later in the chapter.
pal=sns.color_palette("cubehelix")

g=sns.histplot(data=df[df.price<750],
x="number_of_reviews", hue='neighbourhood',
bins=20, multiple="stack", palette=pal)

plt.xlabel("Number of Reviews")
plt.ylabel("Number of BnB (count)")
plt.title("bins=20")
plt.tight_layout()
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Figure 4.11 Histogram for univariate analysis and kernel density, bin width equals 40.

4.2.2 Bivariate Analysis

We use now function histplot() with two variables for a bivariate analysis.
We choose the number of reviews and price. Attribute discrete if True set
binwidth=1 to the corresponding axis, meaning that each bin corresponds
to a single value, which is useful when the variable is categorical. In our first
example, we have instead continuous value, then we set discrete=(False,
False). Attribute cbar controls the visualization of the color bar, while
char_kws represents a method, overly complicated actually, to reduce font size
(Figure 4.13).

g=sns.histplot(data=df[df.price<750],
x="number_of_reviews", y='price',
bins=50, discrete=(False, False),
cbar=True, cbar_kws=dict(shrink=.75))

plt.xlabel("Number of Reviews")
plt.ylabel("Price")
plt.title("bins=50")
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Figure 4.12 Histogram for univariate analysis with stacked bars.

To try with a categorical variable, we could use neighborhoods for the y axes, and
in this case, we set discrete=(False,True). Figure 4.14 shows the result.

g=sns.histplot(data=df[df.price<750],
x="number_of_reviews", y='neighbourhood',
bins=30, discrete=(False, True),
cbar=True, cbar_kws=dict(shrink=.75))

As described before, displot() function exists for facet visualization with
univariate and bivariate distributions, whose main graphic types are histograms
(kind="hist") and kernel density estimates (kind=’kde’). Let us con-
sider the case for histograms by using neighborhoods for the facet variable
(Figure 4.15).

pal=sns.color_palette("crest")

g=sns.displot(data=df[df.price<750],
x="number_of_reviews",
y='price', height=2.3,
kind='hist', col='neighbourhood',
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Figure 4.13 Histogram for bivariate analysis and continuous variables.

hue='neighbourhood', col_wrap=3,
bins=10, discrete=(False, False), palette=pal,
cbar=True, cbar_kws=dict(shrink=.75),
legend=False)

g.set_xlabels("Number of Reviews ")
g.set_ylabels("Price")
g.set_titles("Q. {col_name}")

4.2.3 Logarithmic Scale

In order to make a visualization clearer when scales vary on several magnitudes,
the classical method is to turn to logarithmic scales. We can use it for the first
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Figure 4.14 Histogram for bivariate analysis with a categorical variable.

example applied to axis y with the number of BnBs, which is always greater than
zero, so avoiding the problem of log(0), which corresponds to minus infinite
(Figure 4.16).

g=sns.histplot(data=df, x="number_of_reviews", bins=50)

plt.yscale('log')

plt.xlabel("Number of Reviews ")
plt.ylabel("Number of BnBs (count)")
plt.title("bins=50")
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Figure 4.15 Histogram for bivariate analysis and facet visualization.
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Figure 4.16 Histogram with logarithmic scale.

The result is the classical logarithmic graphic that makes the tail of a distribution
more visible; in this case, emphasizing bars associated to BnBs with a high number
of reviews, which were almost invisible with a linear scale.

We can try using bins=100 and apply the logarithmic scale to axis x, with the
number of reviews, to see the result. The problem is that this time we have many
data points corresponding to value zero (i.e., BnBs with no reviews), which would
correspond to log(0)=-inf and an inevitable visualization error if we would simply
set log_scale=True in function histplot(). This is a common problem of
logarithmic scales that has a clever solution in matplotlib called Symmetric log or
symlog for short. A symlog turns the logarithmic scale into a linear scale for a tiny
range of values around zero, this way avoiding the case of log(0) and allowing for
a meaningful visualization. The result (see Figure 4.17) shows the presence of a
considerable number of BnBs with no reviews and permits visualizing also the tail
of the distribution.

g=sns.histplot(df, x="number_of_reviews",
binwidth=2, fill=False)

plt.xscale('symlog')
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Figure 4.17 Histogram with logarithmic scale and symmetric log.

plt.xlim(0,900)
plt.xlabel("Number of Reviews ")
plt.ylabel("Number of BnBs (count)")
plt.title("binwidth=2")

We turn now to the previous example with the stacked visualization and
improve it to make it more informative. It should be noted how, by changing
bin width or number, different details could be observed. Figure 4.18 shows the
result for bin width equal to 20, while Figure 4.19 shows the result for bin width
equal to 5.

g=sns.histplot(data=df[df.price<750],
x="number_of_reviews", hue='neighbourhood',
binwidth=20, multiple="stack", palette=pal)

plt.yscale('symlog')
g.legend_.set_title('Neighborhoods')
plt.xlabel("Number of Reviews ")
plt.ylabel("Number of BnBs (count)")
plt.title("binwidth=20")



Figure 4.18 Histogram with stacked visualization, logarithmic scale, and symmetric log (bin width equals 20).



Figure 4.19 Histogram with stacked visualization, logarithmic scale, and symmetric log (bin width equals 5).
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5

Diverging Bar Plots and Lollipop Plots

This chapter presents two peculiar types of graphics, diverging bar plots and
lollipop plots, where the second one has an efficient implementation in ggplot
but not in Seaborn, which forces to delve into maplotlib complications, lacking a
specific support. It is of course possible that future versions of Seaborn (v. 12.2 is
the one used for this book) will provide a native implementation of lollipop plots.

Dataset

OECD-FAO Agricultural Outlook 2021-2030 by country, Organization for Eco-
nomic Co-operation and Development (OECD) (https://stats.oecd.org/index
.aspx?queryid=107144).

Permitted use: Except where additional restrictions apply as stated above. You
can extract from, download, copy, adapt, print, distribute, share, and embed data
for any purpose, even for commercial use. You must give appropriate credit to the
OECD by using the citation associated with the relevant data, or, if no specific
citation is available. You must cite the source information using the following for-
mat: OECD (year), (dataset name), (data source) DOI or URL (accessed on (date)).
When sharing or licensing work created using the data. You agree to include the
same acknowledgment requirement in any sub-licenses that You grant, along with
the requirement that any further sub-licensees do the same.

(https://www.oecd.org/termsandconditions/)

5.1 R: ggplot

5.1.1 Diverging Bar Plot

It is not rare to encounter the case of both positive and negative data. When they
are associated to a continuous variable, that case is no different than the one

Data Visualization in R and Python, First Edition. Marco Cremonini.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Cremonini/DataVisualization1e

https://stats.oecd.org/index.aspx?queryid=107144
https://stats.oecd.org/index.aspx?queryid=107144
https://www.oecd.org/termsandconditions/
http://www.wiley.com/go/Cremonini/DataVisualization1e
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with only positive or only negative data; ggplot just draws the Cartesian plan to
show scales with negative and positive values and with graphic functions (e.g., for
scatterplots) nothing changes. The same is not completely true for categorical
variables when a bar plot has to be produced, this case requires some additional
care with respect to the traditional one of all negative or all positive values. For
this reason, it is usually identified with the specific adjective of diverging bar
plot, because the result will show bars in opposite directions for negative and
positive values with respect to axis x or y, depending if the bar plot is visualized
vertically or horizontally. Typical examples are associated to variations of a
certain quantity that could either increase or decrease along a time period, like
countries’ gross domestic product (GDP), production of goods, purchases, and
population.

For our example, we consider a new dataset from OECD with a time series
representing the production of agricultural goods for a set of countries. The
information we are interested in is the country name, the year of production,
and the quantity of a certain commodity. Being interested in visualizing both
negative and positive values, we could derive yearly differences in production with
a simple procedure. For the analysis, we choose a particular product, wheat, and
calculate yearly differences as the difference between values of two consecutive
years.

oecd %>%
filter((Variable=='Production') & (Commodity=="Wheat")) %>%
select(LOCATION, Country, TIME, Time, Value) -> df

There exist several practical ways to calculate differences between consec-
utive elements of a data frame column, for example, with a for cycle that, for
each country starts from the second year and compute df$Value[i] -
df$Value[i-1]. From the data, we know that there are 41 years for each
country, so it is easy to move from country to country.

df$DIFF=0
num_country= length(unique(oecd$Country))
num_year= length(unique(oecd$TIME))

k=0
for (j in 1:num_country) {

for (i in 2:num_year) {
$DIFF[i+k]=df$Value[i+k] - df$Value[i-1+k]
}

k=k+41
}
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LOCATION Country TIME Time Value DIFF
<chr> <chr> <dbl> <dbl> <dbl> <dbl>

1 AFR AFRICA 1990 1990 13084. 0
2 AFR AFRICA 1991 1991 16987. 3903.
3 AFR AFRICA 1992 1992 11946. –5042.
4 AFR AFRICA 1993 1993 12954. 1008.
5 AFR AFRICA 1994 1994 15500. 2547.
6 AFR AFRICA 1995 1995 13279. –2221.
…

An easier solution exists, however, which makes use of R function lag() that
copies the elements of a column and shifts them down by one line; the result could
be then used in a new column (i.e., column LAG in the following excerpt of code).

df %>% group_by(LOCATION) %>%
mutate(LAG = lag(Value))

# Groups: LOCATION [47]
LOCATION Country TIME Time Value LAG
<chr> <chr> <dbl> <dbl> <dbl> <dbl>

1 AFR AFRICA 1990 1990 13084. NA
2 AFR AFRICA 1991 1991 16987. 13084.
3 AFR AFRICA 1992 1992 11946. 16987.
4 AFR AFRICA 1993 1993 12954. 11946.
5 AFR AFRICA 1994 1994 15500. 12954.
6 AFR AFRICA 1995 1995 13279. 15500.
7 AFR AFRICA 1996 1996 22135. 13279.
8 AFR AFRICA 1997 1997 14837. 22135.
9 AFR AFRICA 1998 1998 18437. 14837.
10 AFR AFRICA 1999 1999 15481. 18437.
# … with 1,917 more rows

With new column LAG, we have what we need to easily calculate yearly differ-
ences, just by subtracting values of column LAG from values of column Value and
put the result in another new column (i.e., DIFF).

df %>% group_by(LOCATION) %>%
mutate(LAG = lag(Value)) %>%
mutate(DIFF= Value - LAG) -> df2

df2$LAG=NULL
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LOCATION Country TIME Time Value DIFF
<chr> <chr> <dbl> <dbl> <dbl> <dbl>

1 AFR AFRICA 1990 1990 13084. NA
2 AFR AFRICA 1991 1991 16987. 3903.
3 AFR AFRICA 1992 1992 11946. –5042.
4 AFR AFRICA 1993 1993 12954. 1008.
5 AFR AFRICA 1994 1994 15500. 2547.
6 AFR AFRICA 1995 1995 13279. –2221.
…

We just need to remember that, in this particular example, all rows for year 1990,
the first of the time series, should be omitted because, for the first row, there is no
value for the difference, all the subsequent rows for the year 1990 have meaning-
less values, being calculated with respect to the last year of the previous country.

df2=filter(df2, TIME!=1990)

We are ready for visualizing a diverging bar plot. A usually good stylistic choice
for diverging bar plots is to use a diverging color palette, that is a palette that
starts from a certain value (e.g., the center of the scale) and uses two different
color gradients for values above or below that value. For example, one gradient
on the blue scale and the other on the red scale, or any other possible varia-
tion. With ggplot we can set our custom diverging color palette using function
scale_fill_gradient2(), which takes three attributes, mid for the middle
color, low and high for the colors of the two diverging gradients. For the
example, we select data about Argentina (Figure 5.1).
df2 %>% filter(LOCATION=="ARG") %>%

ggplot(aes(x= as.factor(TIME), y=DIFF)) +
geom_bar(aes(fill = DIFF), stat="identity", show.legend = FALSE) +
scale_fill_gradient2(low = "darkred",

mid = "lightgray",
high = "darkblue")+

labs(
y= "Wheat production (yearly variations, tons)",
x="",
title="Argentina: OECD-FAO Agricultural Outlook 2021-2030"

)+
coord_flip()+
theme_light()+
theme(axis.text.x = element_text(size = 8),

axis.text.y = element_text(size = 6))

In this case, ordering bars according to the values would not be the most appro-
priate solution, because maintaining the year order is the most useful informa-
tion. We can consider a variant, where instead would be useful to order the bars,
by considering the whole set of countries and a particular year (i.e., year 2000).
We also add the indication of the actual value at the top of each bar by means of
function geom_text(). Figure 5.2 shows the result.
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Figure 5.1 Diverging bar plot, yearly wheat production variations for Argentina.
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df2 %>% filter(TIME==2000) %>%
ggplot(aes(x= reorder(Country, DIFF), y=DIFF)) +
geom_bar(aes(fill = DIFF), stat="identity", show.legend = FALSE) +
scale_fill_gradient2(low = "red",

mid = "lightgray",
high = "blue")+

geom_text(aes(label = round(DIFF, 1),
hjust = ifelse(DIFF < 0, 1.5, -1),
vjust = 0.5),

size = 1.5) +
labs(
y= "Wheat production (year 2000 variations, tons)",
x="",
title="World: OECD-FAO Agricultural Outlook, year 2000"

)+
coord_flip()+
theme_light()+
theme(axis.text.x = element_text(size = 8),

axis.text.y = element_text(size = 6))

Diverging bar plots, when carefully styled for a good quality appearance, could
be particularly effective and aesthetically pleasing.

5.1.2 Lollipop Plot

A lollipop plot is a clever variant of a categorical scatterplot that simulates a bar plot
by substituting bars with points and segments (from here the resemblance with lol-
lipops). It is made by combining a scatterplot (geom_point()) to visualize values
and segments (geom_segment()). Like the previous case of diverging bar plots,
when carefully styled, it could be effective and aesthetically good-looking. We con-
sider two layouts with different graphical elements and options, in the second one
also aesthetic size will be used. The following excerpt of code shows the creation
of the lollipop plot and Figure 5.3 shows the result.
df2 %>% filter(LOCATION=="ARG") %>%

ggplot(aes(x= as.factor(TIME), y=DIFF)) +
geom_point(aes(color=DIFF), size=4, show.legend=FALSE) +
geom_segment(aes(x=as.factor(TIME), xend=as.factor(TIME),

y=0, yend=DIFF, color = DIFF),
show.legend = FALSE)+

scale_color_gradient2(low = "darkred",
mid = "lightgray",
high = "darkblue")+

labs(
y= " Wheat production (yearly variations, tons)",
x="",
title="Argentina: OECD-FAO Agricultural Outlook 2021-2030"

)+
theme_light()+
theme(axis.text.x = element_text(size = 5),

axis.text.y = element_text(size=8))+
theme(axis.text.x = element_text(angle=30, hjust=1))
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Figure 5.2 Diverging bar plot with ordered bars and annotation, yearly variations in wheat production for year 2000 with respect to year
1999.
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With the next example, we reproduce the second diverging bar plot seen before,
this time by using a lollipop plot instead of a bar plot (Figure 5.4).
df2 %>% filter(TIME==2000) %>%

ggplot(aes(x= reorder(Country, DIFF), y=DIFF)) +
geom_point(aes(size=abs(DIFF), color=DIFF), show.legend=FALSE) +
geom_segment(aes(x=Country, xend=Country, y=0, yend=DIFF-1,

color=DIFF),
linewidth=0.4, show.legend = FALSE)+

scale_color_gradient2(low = "red",
mid = "lightgray",
high = "blue")+

geom_text(aes(label = round(DIFF, 1),
hjust = ifelse(DIFF < 0, 1.5, -1),
vjust = 0.5),

size = 1.5) +
labs(
y= " Wheat production (year 2000 variations, tons)",
x="",
title="World: OECD-FAO Agricultural Outlook, year 2000"

)+
coord_flip()+
theme_minimal()+
theme(axis.text.x = element_text(size=8),

axis.text.y = element_text(size=6))

5.2 Python: Seaborn

5.2.1 Diverging Bar Plot

We replicate with Python and Seaborn the first diverging bar plot seen with ggplot
starting from the necessary data wrangling operations for preparing the data
frame.
oecd=pd.read_csv("../datasets/OECD/OECD-FAO_Agriculture_20212030.csv")

oecd1=oecd[(oecd.Variable=='Production')&(oecd.Commodity=="Wheat")]\
[['LOCATION', 'Country', 'TIME', 'Value']]

LOCATION Country TIME Value

0 AUS Australia 1990 15 066.1
1 AUS Australia 1991 10 557.4
2 AUS Australia 1992 14 738.7
3 AUS Australia 1993 16 479.3
4 AUS Australia 1994 8 961.3
… … … … …
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Figure 5.4 Lollipop plot ordered by values and annotation, yearly variations in wheat production for year 2000 with respect to year 1999.
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Differences in wheat production from year to year are calculated, first, by creat-
ing column LAG using Python function shift() that copies and shifts column
values for the number of specified rows, here just one. Then, the difference could
be simply derived by subtracting column LAG from column VALUE, DIFF is the
new column.

oecd1= oecd1.sort_values(by=['LOCATION','TIME'])

oecd1['LAG']=oecd1.groupby('LOCATION')[['Value']].shift(1)

LOCATION Country TIME Value LAG

0 AFR Africa 1990 13 084.2 NaN
1 AFR Africa 1991 16 987.3 13 084.2
2 AFR Africa 1992 11 945.7 16 987.3
3 AFR Africa 1993 12 953.5 11 945.7
4 AFR Africa 1994 15 500.2 12 953.5
… … … … … …

oecd1['DIFF']=oecd1.Value-oecd1.LAG
oecd1.drop('LAG', axis=1, inplace=True)

LOCATION Country TIME Value DIFF

0 AFR Africa 1990 13 084.2 NaN
1 AFR Africa 1991 16 987.3 3 903.1
2 AFR Africa 1992 11 945.7 −5 041.6
3 AFR Africa 1993 12 953.5 1 007.8
4 AFR Africa 1994 15 500.2 2 546.7
… … … … … …

With these simple operations, the data for all countries are almost ready, we just
have to remember that all rows corresponding to year 1990 should be removed
because having inconsistent data in production differences. Then, we can select
the country for which we want to plot the data, this time it is the United States,
and plot.

oecd1=oecd1[oecd1.TIME!=1990]

usa=oecd1[oecd1.Country=='United States']
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To plot the diverging bar plot, we start using the normal Seaborn function
sns.barplot(), in this example, with years (variable TIME) on the x-axis
and production differences (variable DIFF) on the y-axis, a few style options are
also added. However, this is not sufficient to have a reasonable diverging bar
plot because the color scale will not be as we usually want it to be in this case,
diverging for positive and negative values. Here comes the tricky part because for
that seemingly obvious feature, there is no support from Seaborn and we should
turn to matplotlib that forces us to manually color each bar.

The logic is as follows: we want to use a diverging palette and a color
gradient based on the height of each bar, meaning that the higher the bar
the darker the hue and different for positive and negative values. This
means that first, because of the vertical orientation of bars, we have to col-
lect the heights of all bars (np.array([bar.get_height() for bar in
ax.containers[0]])). Then, we can set the diverging matplotlib’s color
scale (mpl.colors.TwoSlopeNorm()) and for this reason, we had to load
the whole matplotlib library (import matplotlib as mpl), not just the
pyplot module as usual. Function TwoSlopeNorm() is the reference for setting
diverging color scales by configuring the center of the scale and the two bound-
aries, with attributes vcenter, vmin, and vmax. After this, we can set the color
palette, bwr (blue-white-red) in the example, for the color scale (plt.cm.bwr
(divnorm(heights))). Finally, bars should be individually colored with a for
cycle that fills each one of them with the color corresponding to the height, pos-
itive or negative. It is an overly complicated procedure, indeed, for the result that
we want to achieve, which, instead, is quite ordinary. Figure 5.5. shows the result.

import matplotlib as mpl

sns.set_theme(style="white", font_scale=0.7)

ax = sns.barplot(usa, x='TIME', y='DIFF',
edgecolor='black', linewidth=0.5)

# For all bars, their heights are collected and
# the color scale is configured

heights = np.array([bar.get_height() for bar in ax.containers[0]])
divnorm = mpl.colors.TwoSlopeNorm(vmin=heights.min(),

vcenter=0, vmax=heights.max())

# The color palette (here called bwr) is set for the color scale

div_colors = plt.cm.bwr(divnorm(heights))

# Each bar is individually colored with a for cycle
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United States: OECD-FAO Agricultural Outlook 2021–2030 

W
he

at
 p

ro
du

ct
io

n 
(y

ea
rly

 v
ar

ia
tio

ns
, t

on
s)

–20 000

–15 000

–10 000

–5 000

0

5 000

10 000

15 000

20 000
19

91
19

92
19

93
19

94
19

95
19

96
19

97
19

98
19

99
20

00
20

01
20

02
20

03
20

04
20

05
20

06
20

07
20

08
20

09
20

10
20

11
20

12
20

13
20

14
20

15
20

16
20

17
20

18
20

19
20

20
20

21
20

22
20

23
20

24
20

25
20

26
20

27
20

28
20

29
20

30

Figure 5.5 Diverging bar plot, yearly wheat production variations for the United States,
vertical bar orientation.

for bar, color in zip(ax.containers[0], div_colors):
bar.set_facecolor(color)

# Style options

plt.xticks(rotation=90)
ax.set_ylabel("Wheat production (yearly variations, tons")
ax.set_xlabel("")
plt.title("United States: OECD-FAO Agricultural Outlook 2021-2030")
plt.tight_layout()

The plot, however, is likely more readable if bars are horizontal and years on
the y-axis. That seems trivial, just switching attribute x with y, or using attribute
direction of function sns.barplot(), should be sufficient. Unfortunately,
also this simple variation has hidden subtleties.

Two are the points of attention: first, with horizontal bars, it is no longer
bars’ heights that we should collect, but their widths, the code has to be changed
accordingly (i.e., bar.get_height() becomes bar.get_width()); second,
if we put years on the y-axis, variable TIME is numerical and it is not handled as
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Figure 5.6 Diverging bar plot, yearly wheat production variations for the United States,
horizontal bar orientation.

categorical, so the plot becomes a total mess. We have to turn it into category data
type or create a new one as categorical. In the following example, new column
YEAR is created as categorical with years as values and categories. Figure 5.6
shows the result.

In conclusion, a little too much trickery to do for producing an ordinary bar plot
variation commonly provided by other graphic libraries for data science, a future
support for diverging bar plots by Seaborn is awaited.

# New column YEAR as categorical with years values as categories
list= usa.TIME.tolist()
usa['YEAR']= pd.Categorical(list, categories=list, ordered=True)

sns.set_theme(style="white", font_scale=0.7)

ax = sns.barplot(data=usa, x='DIFF', y='TIME',
edgecolor='black', linewidth=0.5)

widths = np.array( [bar.get_width() for bar in ax.containers[0]])
divnorm = mpl.colors.TwoSlopeNorm(vmin=widths.min(), vcenter=0,
vmax=widths.max())
div_colors = plt.cm.PiYG(divnorm(widths))
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for bar, color in zip(ax.containers[0], div_colors):
bar.set_facecolor(color)

ax.set_xlabel("Wheat production (yearly variations, tons")
ax.set_ylabel("")
plt.title("United States: OECD-FAO Agricultural Outlook 2021-2030")
plt.tight_layout()
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6

Boxplots

A boxplot is an important type of graphic for categorical variables that has the
merit of summarizing several statistics in a compact and intuitive form. Following
Figure 6.1 shows the characteristics of a boxplot. Important is to note that the box
(i.e., the rectangular area) represents 50% of all data points (IQR = Q3−Q1, with
IQR for interquartile range and Q for quartile), or equivalently the range of data
points from the 25th to the 75th percentile. For the two segments (called whiskers),
on top and at the bottom of the box, there is no unique definition, but all of them
are substantially equivalent: the interval defined by the two whiskers includes
most data points (i.e., at least 95% of them). The only data points not included
are outliers, usually indicated by single dots.

The term outlier needs to be interpreted correctly, though, because if misled, it
could provoke serious mistakes in the analysis of results. Data points from obser-
vations may fall way far from the median for a number of different reasons. It
might be because of some sort of errors (e.g., wrong measurements, mistyped data,
or malfunctioning of some instrumentations), which justifies considering them
as incoherent data to be omitted that could wrongly affect the statistics and the
overall interpretation. But it might also be because of extreme events, meaning
exceptionally rare cases that are nevertheless intrinsic to the observed system or
phenomenon; in other words, they might be very unusual but not wrong. In that
case, considering them as incoherent and omitting them from the analysis could
be the source of severe errors. Therefore, outliers of a distribution are initially just
data points falling in the tail of the distribution, and that is it. Whether they could
safely be omitted, or they should be considered legitimate as all other data points
is a matter of knowledge of the observed phenomenon and careful interpretation.
This is an important issue to consider because phenomena producing data points
far from the median are not rare or necessarily bizarre.

As a graphical tool, a boxplot visualization typically has one categorical variable
on the x-axis, when boxplots are drawn vertically, and a continuous variable on the
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Figure 6.1 Boxplot statistics.

y-axis. Furthermore, being a boxplot aimed at presenting statistics of a distribution,
it requires the sample to be statistically significant, so there is no point in produc-
ing a boxplot visualization for a few data points. Given these premises, boxplots
represent a particularly effective visualization, which, however, requires that
readers have sufficient statistical knowledge to correctly interpret them (at least
qualitatively), meaning that they are not suitable for all kinds of audiences.

Dataset

In this section, we use the dataset Report qualità aria 2021 (transl. Air Quality
Report year 2021), Municipality of Milan Open Data, already introduced before.

6.1 R: ggplot

For boxplots, similar to what we have done with bar plots, we use pollutant as
the categorical variable, but this time, rather than aggregating to calculate total
quantities, we use all data points to obtain statistics for the boxplot. Let us try with
the simplest configuration of function geom_boxplot(). Figure 6.2 shows the
result.

df1 %>% ggplot(aes(x=pollutant, y=value))+
geom_boxplot(fill="grey80")+
theme_light()
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Figure 6.2 Boxplot, air quality in Milan, 2021.

Note

ggplot draws whiskers without the horizontal segment at the end, as is typical
in most boxplot representations. It is just a stylistic choice; nothing changes
in the meaning.

From the example, we note different distributions and statistics for the
pollutants but for some of them, boxplots appear shrank at the point of being
uninterpretable because of the different scales of values. We had this same problem
with bars of the bar plots. Different variations with respect to the median and pres-
ence of outliers are also visible, more pronounced for some pollutants. Based on
this initial example, we can enrich it with style elements already seen before and
add month as the third variable. Figure 6.3 shows the result, which, unfortunately,
is largely incomprehensible, as it has too many elements put together.

months=c("1"="January", "2"="February", "3"="March",
"4"="April", "5"="May", "6"="June",
"7"="July", "8"="August", "9"="September",
"10"="October", "11"="November", "12"="December")

df1 %>% mutate(month=as.factor(month(date))) %>%
ggplot(aes(x=month, y=value)) +
geom_boxplot(aes(fill=pollutant)) +
scale_fill_viridis_d(option='plasma')+
scale_x_discrete(labels=months) +
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Figure 6.3 Boxplot with three variables, confused result.

labs( x="", y="Value", fill="Pollutant" ) +
theme_light() +
theme(axis.text.x = element_text(angle = 30, hjust = 1))

To improve the previous plot, we could try with facets, aiming to ease the read-
ability of information. Figure 6.4 shows the result, which is still not satisfactory.

months=c("1"="January", "2"="February", "3"="March",
"4"="April", "5"="May", "6"="June",
"7"="July", "8"="August", "9"="September",
"10"="October", "11"="November", "12"="December")

df1 %>% mutate(month=as.factor(month(date))) %>%
ggplot(aes(x=month, y=value)) +
geom_boxplot(aes(fill=pollutant)) +
facet_wrap(vars(pollutant), ncol=4) +
scale_fill_viridis_d(option='plasma') +
scale_x_discrete(labels=months)+
labs( x="", y="Quantity", fill="Pollutant") +
theme_light() +
theme(axis.text.x = element_text(angle = 90, hjust = 1))

With respect to the previous visualization, this one improved, but still, the prob-
lem of the different scales remains, and three facets are almost unreadable. As we



Figure 6.4 Boxplot with three variables, unbalanced facet visualization.
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Figure 6.5 Boxplot with three variables, balanced facet visualization.

saw for bar plots, one possibility is to make the facets scale on the y-axis inde-
pendent, but although technically it works, as we have commented before, it also
might be a source of misunderstanding for observers. Another option is to modify
it to have more balanced facets, and for this example, we could use months for
facets rather than pollutants. Figure 6.5 shows the result, now well readable and
balanced.

months=c("1"="January", "2"="February", "3"="March",
"4"="April", "5"="May", "6"="June",
"7"="July", "8"="August", "9"="September",
"10"="October", "11"="November", "12"="December")

df1 %>% mutate(month=as.factor(month(data))) %>%
ggplot(aes(x=pollutant, y=value))+
geom_boxplot(aes(fill=as.factor(month(date))), )+
facet_wrap(∼month, ncol=4, labeller = labeller(month=months))+
scale_fill_viridis_d(option='plasma', labels=months)+
labs(
x="Pollutant",
y="Quantity",
fill="Month"

)+
theme_hc()+
theme(axis.text.x = element_text(angle = 90, hjust = 1))+
theme(legend.position = "none")
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6.2 Python: Seaborn

The same example presented for ggplot is replicated with Seaborn, with few dif-
ferences, which makes it particularly easy to create boxplots. For having month
names correctly ordered, this time, we employ the ordering technique based on an
external list that we have seen in a previous chapter for R. The logic in Python is
the same, just the technicalities will change. We start by obtaining month names
with method dt.month_name(), and to add a new feature to the example, we
choose names in a different language than the default setting (i.e., English). In this
case, we have French month names, so we use attribute locale=’fr_FR’. and
place them in the new column Month. Then, we transform the column Month with
French month names into categorical type with function pd.Categorical(),
where categories (attribute categories) correspond to the ordered list of month
names saved into a variable (month_list); finally, with attribute ordered=True,
we specify that the order of the list should be respected. This way, values of column
Month will be sorted according to the ordered list month_list.

Note

A tiny but nevertheless relevant detail should be noted. Month names in
Romance languages (e.g., Spanish, French, Italian, and Portuguese) are cor-
rectly spelled with lowercase names, and not with the first letter capitalized,
such as in English (e.g., in French it is janvier, not Janvier, for January).
However, the Python datetime function dt.month_name(), as well as the
R’s lubridate function month(labels=TRUE, abbr=FALSE), defines only
capitalized month names. It is incorrect with respect to Romance languages,
but it is needed in code otherwise month names are not recognized. This is
the reason for capitalized French month names in the following code.

month_list=['Janvier','F’evrier','Mars','Avril','Mai',
'Juin','Juillet','Août','Septembre','Octobre',
'Novembre','D’ecembre']

df["Month"]=df['date'].dt.month_name(locale='fr_FR')
df.Month=pd.Categorical(

df.Month,
categories = month_list,
ordered = True)

We can now create our first boxplot by means of Seaborn function
sns.boxplot(). We use three variables (Figure 6.6).
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Figure 6.6 Box plot with three variables, the result is confused.

g=sns.boxplot(data=df_py, x="Month", y="value",
hue='pollutant', palette='cubehelix',
linewidth=0.5)

plt.xticks(rotation=30)
plt.xlabel("Month (French)")
plt.ylabel("Value")
plt.legend(title="Pollutant")
sns.move_legend(g, "upper left", bbox_to_anchor=(1, 1))

Similar to the R case, even now the visualization is unclear, with too many
graphical elements put together and not well recognizable. Facets would be bet-
ter and separating months into facets is likely a good choice, as we did before
(Figure 6.7).

sns.set_theme(style="whitegrid", font_scale=0.8)

g=sns.catplot(data=df_py, x="pollutant", y="value",
kind="box", height=2, col="Month",
col_wrap=4, palette='cubehelix',
linewidth=0.3)

g.set_xticklabels(rotation=90)
g_set_axis_labels("Pollutant","Value")
…
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Figure 6.7 Boxplot with three variables, facet visualization.
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Violin Plots

A violin plot is a boxplot variant initially introduced to add the missing
information about the actual distribution of data points. Rather than the fixed
rectangular boxplot shape, the violin plot adapts its shape to the density of data
points for each value of the continuous variable, the shape is larger where data
points are more abundant and thinner where they are scarce. This often produces
a shape that vaguely reminds a violin, from which the name. The drawback of the
violin plot with respect to the boxplot is to be less precise in the representation of
descriptive statistics about quantiles of the distribution.

However, another aspect of the violin plot progressively became the most inter-
esting feature of this type of graphics: its suitability to be morphed into new and
clever graphical representations by combining it with other types of graphics. It is
sometimes surprising to discover the imaginative graphic combinations that make
use of the violin plot, mostly because of its elegant and graceful shape. This is
the most relevant feature that distinguishes it from the boxplot, while the box-
plot is rigorous and severe-looking, possibly intimidating readers not well aware
of its statistical meaning, a violin plot in its many variants is pleasant and intuitive,
good-looking and curious, although less precise than a boxplot. In conclusion, the
violin plot is not just a more graceful but less precise variant of the boxplot. The
two types of graphics should actually be considered suitable for different audiences
and different visual communication styles.

Dataset

OECD Skills Survey (https://pisadataexplorer.oecd.org/ide/idepisa/report.aspx),
OECD 2022 (The Organisation for Economic Co-operation and Development),
Pisa Data Explorer (https://www.oecd.org/pisa/data/). The reports produced
regard Mathematics, Reading, and Scientific skills for 15-year-old students of
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OECD countries. Values are the average results for male and female students for
years 2006, 2009, 2012, 2015, 2018, and 2022.

Copyright: You can extract from, download, copy, adapt, print, distribute, share,
and embed Data for any purpose, even for commercial use. You must give appro-
priate credit to the OECD by using the citation associated with the relevant Data
[· · ·].

(https://www.oecd.org/termsandconditions/).
Bicycle thefts in Berlin (trans. Fahrraddiebstahl in Berlin) from the Municipality

of Berlin, Germany, Berlin Open Data (https://daten.berlin.de/datensaetze/
fahrraddiebstahl-berlin). It presents data about bike thefts collected by the
German police.

Copyright: Common Criteria Namensnennung 3.0 Deutschland (CC BY 3.0 DE)
(https://creativecommons.org/licenses/by/3.0/de/)

7.1 R: ggplot

Let us start with a simple example and elaborate on it. We use first the OECD Skills
Survey for Pisa tests, values are referred to the average results and students are
divided by gender, male and female. The dataset is in Microsoft Excel format, so it
needs package readxl to be read and has been slightly modified with respect to the
original one (i.e., year values have been copied in all cells, the header simplified,
and a new column Test added with MAT for Mathematics, READ for Reading, and
SCI for Scientific skills).

We start by considering Mathematics skills. A few simple data-wrangling
operations are needed.
library(readxl)

Mat=read_excel("datasets/Eurostat/
IDEExcelExport-Mar122024-0516PM.xlsx",
sheet ='Report 1', range='B12:F227', trim_ws=TRUE)

Mat$Female = round(Mat$Female, 0)
Mat$Male = round(Mat$Male, 0)

MatL= pivot_longer(Mat, cols = c(Female, Male),
names_to = 'Sex', values_to = 'Avg')

In these initial examples of violin plots – which, admittedly, will not look much
like violins with this dataset – we aggregate the results referred to the different
countries into total results. In following chapters, we will make use again of this
dataset with disaggregated data. First, we look at the student distribution, for the
different years, with respect to the two subpopulations of male and female students
(Figure 7.1).

https://www.oecd.org/termsandconditions/
https://daten.berlin.de/datensaetze/fahrraddiebstahl-berlin
https://daten.berlin.de/datensaetze/fahrraddiebstahl-berlin
https://creativecommons.org/licenses/by/3.0/de/
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Figure 7.1 Violin plot, OECD/Pisa tests, male and female students, Mathematics skills.

library(ggthemes)

ggplot(MatL, aes(x=as.factor(Year) , y=Avg))+
geom_violin(aes(fill=Sex)) +
scale_fill_tableau(palette= "Color Blind") +
labs(

x="Year", y="Average", fill="Gender",
title= 'OECD/Pisa test: Mathematics Skills'

)+
theme_hc()+
theme(legend.position = "bottom")+
theme(axis.text = element_text(size = 16),

axis.title = element_text(size = 16))

The visualization provides intuitive information regarding the distribution of
data points. The shape of the violin plot corresponds to the density of points at each
value level. This is literally how the shape is drawn and it could be seen by compar-
ing the violin plot with a density plot, produced by function geom_density().
As the following example of Figure 7.2 shows, the violin plot is actually a density
plot merged with its mirrored image.

We can produce the density plot by setting test results (column Avg) on the
x-axis, and areas filled with different colors for gender (column Sex). The y-axis
will be automatically associated to the data point density. For better readability,
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Figure 7.2 Density plot, OECD/Pisa tests, male and female students, Mathematics skills.

facets are configured based on years. Finally, to have an orientation similar to a
typical violin plot, we flip the axes (coord_flip()).

ggplot(MatL, aes(x=Avg, fill=Sex))+
geom_density(alpha=0.4)+
coord_flip()+
facet_wrap(∼ as.factor(Year))+
scale_fill_tableau(palette= "Color Blind") +
labs(

x="Average", fill="Gender",
title= 'OECD/Pisa test: Mathematics Skills'

)+
theme_hc()+
theme(axis.text = element_text(size = 16),

axis.title = element_text(size = 16))+
theme(plot.margin = unit(c(0.5,0.5,0.5,0.5),"cm"),

legend.position = 'bottom',
axis.text.x = element_text(angle=45))

The violin plot and the density plot are scaled differently, but confronting the
information they provide, we can immediately recognize that it is the same.

The second important part of the violin plot, in addition to the information
about the density of data points, comes from being a variant of the boxplot. The
length of tails in a violin plot corresponds with the distance of the farthest outlier in
a boxplot. It could be easily verified by comparing the boxplot of Figure 7.3 with
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Figure 7.3 Boxplot, OECD/Pisa tests, male and female students, Mathematics skills.

the violin plot of previous Figure 7.1. In the following codes, all instructions that
are in common with previous example of Figure 7.1 have been omitted.

ggplot(MatL, aes(x=as.factor(Year) , y=Avg))+
geom_boxplot(aes(fill=Sex)) +
scale_fill_tableau(…

These are the basis for understanding how to use violin plots. But, as said before,
violin plots are particularly effective when combined with other graphic types, to
produce ingenious representations. Let us see the first two combinations.

7.1.1 Violin Plot and Scatterplot

It is frequent to combine a violin plot with a scatterplot by overlapping one to the
other. This way, it is not just the density of data points to be communicated by the
violin plot, but data points are also explicitly shown. Clearly, this visualization is
better suited for small samples, when visualizing data points conveys information
and graphically is well-presented. For large samples, the density is all we need.

Technically, a few adjustments are necessary to produce this type of combined
graphics, mostly because what we need is a correct overlapping of the two
graphics. In particular, when groups of points are presented (e.g., with aesthetic
color or fill), function geom_point() for scatterplots has attribute group that
instructs ggplot to draw points by respecting the same groups defined in the violin
plot, and attribute position=position_dodge(width=…) to tell that we
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Figure 7.4 Violin plot and scatterplot combined and correctly overlapped and dodged.

want points belonging to different groups presented as dodged, not overlapped.
Attribute width controls the horizontal alignment. A good value should be found
empirically by doing some tests (Figure 7.4).

ggplot(MatL, aes(x=as.factor(Year), y=Avg, fill=Sex))+
geom_violin()+
geom_point(aes(group=Sex), position=position_dodge

(width=0.9), alpha=0.5, size=0.5)+
scale_fill_tableau(…

The combined visualization of a violin plot with a scatterplot adds informa-
tion, but as Figure 7.4 clearly shows, it still presents a recurrent problem: most
scatterplot markers overlap, which severely reduces the information conveyed
by showing data points. This is a general problem of scatterplots that we will
consider in a future section. For the moment, we introduce the second common
variant of violin plots.

7.1.2 Violin Plot and Boxplot

Since a boxplot is more rigorous in communicating statistical information and a
violin plot shows the density of data points and has a more intuitive look, why not
combining the two? That is what often happens, aiming at adding up the benefits
of both graphic types.

As before, attribute position=position_dodge() is key for a correct
overlapping and dodging of the two graphics. Additional attributes alpha, size,
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Figure 7.5 Violin plot and boxplot combined and correctly overlapped and dodged.

and width, if tuned carefully, allow improving the aesthetic quality of the plot
(Figure 7.5).

ggplot(MatL, aes(x=as.factor(Year), y=Avg, fill=Sex))+
geom_violin()+
geom_boxplot(position=position_dodge(width=0.9),

alpha=0.4, size=0.3, width= 0.2)+
scale_fill_tableau(…

Finally, we could also read Pisa test results for Reading and Scientific skills,
bind rows of the three data frames together, repeat the transformation into long
form, and plot the facets by means of variable Test. Two details are to note:
the first is that for the boxplot, the dots representing outliers are redundant
being the violin’s tails conveying the same information. These could be omitted
with attribute outlier.shape=NA; the second is that here we use function
facet_grid(), not facet_wrap(), for the facet visualization; it is only
for aesthetic purposes being facet_grid() made for facets created with the
combination of two variables’ values but we have just one, however, using our
single variable for rows, we can have facet titles beside each facet instead of on top
of them.
Rd=read_excel("datasets/Eurostat/IDEExcelExport-Mar122024-0516PM.xlsx",

sheet = 'Report 2', range = 'B12:F227', trim_ws = TRUE)
Rd$Female = round(Rd$Female, 0)
Rd$Male = round(Rd$Male, 0)
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Sci=read_excel("datasets/Eurostat/IDEExcelExport-Mar122024-0516PM.xlsx",
sheet = 'Report 3', range = 'B12:F227', trim_ws = TRUE)

Sci$Female = round(Sci$Female, 0)
Sci$Male = round(Sci$Male, 0)

Here the transformation into long form.

bind_rows(Mat, Rd, Sci) %>%
pivot_longer(cols= c(Female, Male),

names_to= 'Sex', values_to= 'Avg') -> pisaMRS

The final graphic could be produced (Figure 7.6). We could have added the scat-
terplot too, but we will show that case later on when we consider how to deal with
scatterplot markers that overlap.
ggplot(pisaMRS, aes(x=as.factor(Year), y=Avg, fill=Sex))+

geom_violin(alpha=0.7)+
geom_boxplot(position=position_dodge(width=0.9),

alpha=0.9, size=0.3, width= 0.2, outlier.shape = NA)+
facet_grid(rows = vars(Test))+
scale_fill_tableau(palette= "Superfishel Stone") +
labs(
x="Year", y="Average", fill="Gender",
title= 'OECD/Pisa test: Mathematics, Reading, and

Scientific Skills'
)+

theme_hc()+
theme(axis.text = element_text(size = 14),

axis.title = element_text(size = 14))+
theme(legend.position = "bottom")

Figure 7.6 OECD/Pisa tests, male and female students, Mathematics, Reading, and
Scientific skills.
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The result of Figure 7.6 is eye-catching, indeed, and, as a funny note, when
I showed it to a person who knows nothing about violin and box plots, her
first reaction was “Nice! How cute those little ghostly spinning wheels!” but
nevertheless, after that, she got exactly the information conveyed by this compact
visualization about young male and female students’ skills and the variations
along the years. However, it is important to remember that violin plots, and their
many combinations, are not just cute ghostly spinning wheels but a concentration
of statistical information in a very compact form, especially when combined with
boxplots.

7.2 Python: Seaborn

With Python, we make use of data about bike thefts in Berlin, Germany.

bikes= pd.read_excel("datasets/Berlin_open_data/
Fahrraddiebstahl_12_2022_EN.xlsx")

The dataset requires some data-wrangling operations to be ready for
visualization, in particular, the translation through an online tool from German
to English needs a specific care to avoid errors in date formats, errors which might
be difficult to spot afterward. In the Additional Online Material, all data-wrangling
operations, the logic, and the tricky details to take care of are presented, here we
use the data frame bikes resulting from that preparation.

By checking the range of dates, we figure that dates go from January 1, 2021 to
December 9, 2022, therefore we should be aware that for December we have an
incomplete time series.

Seaborn function sns.violinplot() natively adds the boxplot to the
visualization of the violin plot (see Figure 7.7).

sns.violinplot(x= bikes["START_DATE"].dt.year,
y= "DAMAGES", data= bikes,
palette= "Spectral")

plt.xlabel("")
plt.ylabel("Bike Value")
plt.title("Berlin: bicycle thefts ")
plt.tight_layout()

From Figure 7.7, we see that most bikes stolen are in the range of tens to
hundreds of euros, while just a few are particularly expensive (thousands of
euros). Let us try some variations.

We specify month as the variable for the x-axis. The result automatically shows
the number of observations for each month value on the y-axis. Figure 7.8 shows
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Figure 7.7 Violin plot, bike thefts in Berlin, and bike values.

Figure 7.8 Violin plot, bike thefts in Berlin for each month of years 2021 and 2022.

the seasonal variation of bike thefts, the curious shape of the plot seemingly with
waves is just the peculiar rendering of the Seaborn function and does not represent
data, which are based on a categorical variable (i.e., months) in this case. This is
an easy way of using the violin plot with Seaborn that sometimes could be useful.
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Figure 7.9 Bar plot, bike thefts in Berlin for each month of years 2021 and 2022.

sns.violinplot(data=bikes,
x= bikes["START_DATE"].dt.month)

We can verify the same results by calculating the number of thefts for each
month and visualizing the bar plot. The shape of the bar plot in Figure 7.9 is
equivalent to that of the violin plot of Figure 7.8.
bikes2= bikes.groupby(bikes["START_DATE"].dt.month).\

DAMAGES.count().reset_index()

g= sns.barplot(data= bikes2, x= "START_DATE", y= "DAMAGES",
palette= 'cubehelix')

START_DATE DAMAGES

0 1 2 201
1 2 2 140
2 3 3 083
3 4 3 074
4 5 3 877
5 6 4 167
6 7 3 995
7 8 4 387
8 9 4 494
9 10 4 550

10 11 3 642
11 12 1 559



120 7 Violin Plots

Figure 7.10 Violin plot, bike thefts in Berlin for bike type and month, years 2021 and
2022.

We can now consider bike types for axis y and use attribute scale=’count’
that scales dimensions with respect to the number of observations. Attribute
cut=0 restricts the shape of the violin plot only to values actually present in
data. This may sound bizarre; how could it be that a plot shows inexistent data?
Actually, it is what the Seaborn violin plot would do in this case without attribute
cut=0; violin tails, purely for aesthetic reasons, would be extended beyond the
minimum or maximum data point; in this case, we would have seen a tail going in
the negative range of the x-axis, clearly impossible being x the number of thefts.
Function despine() removes the visualization of Cartesian axes, which might
be aesthetically redundant sometimes (Figure 7.10).

g= sns.violinplot(data= bici,
x= bici["START_DATE"].dt.month,
y= "TYPE_OF_BICYCLE",
scale= 'count', cut=0,
palette= "cubehelix")

sns.despine(left=True, bottom=True)
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8

Overplotting, Jitter, and Sina Plots

Dataset

In this chapter, we make use again of data from the OECD Skills Survey, OECD
2022 (The Organisation for Economic Co-operation and Development), and from
Bicycle thefts in Berlin (trans. Fahrraddiebstahl in Berlin) from the Municipality of
Berlin, Germany, Berlin Open Data, previously introduced.

8.1 Overplotting

Previously, in Figure 7.4, we showed the combination of a violin plot and a scat-
terplot, and observed that, while the result was correct, scatterplot markers were
mostly overlapped, with the actual distribution of data points barely recognizable.
Overlapped scatterplot markers are a common problem that goes under the name
of overplotting.

The easiest way of dealing with overplotting is by adjusting transparency of
markers, this way the lighter or darker shade communicates a lesser or higher
density. However, transparency alone might be sometimes enough to give a clear
information, but insufficient in many cases. Another approach exists and it is
called jittering. The idea is to introduce a tiny random error in the placement of
markers (called jitter) in order to plot most of them visibly distinct. The evident
drawback of jitter is that the position of markers actually plotted does not corre-
spond any longer to the real data point, and this is acceptable only when the visual
effect is more relevant than the exact precision of markers’ positions. Also, jitter-
ing has limitations, when markers are copious and closely located, the tiny random
error introduced might be unable to avoid overplotting. Usually, the degree of such
random error is customizable, letting to set more or less jitter, but the stronger
the jitter, the less precise the position of markers with respect to real data points.

Data Visualization in R and Python, First Edition. Marco Cremonini.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Cremonini/DataVisualization1e
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Hence, there is not a unique solution to deal with overplotting, it should be chosen
wisely and tuned case by case.

8.2 R: ggplot

8.2.1 Categorical Scatterplot

Function geom_jitter() is equivalent to geom_point() but adds a jitter
when markers are plotted. Attributes width and height control the horizontal
and vertical extent of the jitter.

Note

With geom_jitter(), it is not possible to use at the same time attribute
position and attributes width and height. In a previous example with
a violin plot and a scatterplot, attribute position=position_dodge()
was needed to overlap and dodge correctly the two graphics. We will see how
to solve this problem.

Let us consider a first example by using geom_jitter() with attributes
width=0.2 and height=0, without a violin plot. We define a color list and
use the same data frame MatL of Chapter 7 with data about the Pisa tests for
Mathematics skills transformed into long form and grouped for country. For the
sake of precision, this type of graphic is often called categorical scatterplot or strip
plot, being defined for a categorical variable. It is only a matter of terminology,
nothing substantial changes with respect to generic scatterplots. Figure 8.1 shows
the result.

colorList= c('#1252b8','#fa866b')

ggplot(MatL, aes(x=as.factor(Year) , y=Avg, color=Sex))+
geom_jitter(width = 0.2, height = 0, size=3)+
scale_color_manual(values = colorList) +

labs(
x="", y="Test Results", color="Gender:",
title="OCSE/Pisa test: Mathematics Skills"

)+
theme_hc()+
theme(legend.position = "bottom")+
theme(plot.margin = unit(c(1,1,1,1),"cm"))+
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Figure 8.1 Categorical scatterplot with jitter, OECD/Pisa tests results for male and
female students, Mathematics skills.

theme(axis.text = element_text(size = 16),
axis.title = element_text(size = 16),
legend.text = element_text(size = 16),
legend.title = element_text(size = 16))

This way, we have controlled the horizontal jitter effect. In the same way, we
could control the vertical jitter. We try two more cases by varying attribute width.
First, we reduce it to width=0.1 (Figure 8.2), then increase it to width=0.3
(Figure 8.3). The different visual effects are evident.

Tip

In genomics, for genome-wide association studies (GWAS), it is often employed
a graphic type called Manhattan plot (a name that may sound a little unfor-
tunate, after September 11, 2001). Several specific R libraries exist to create
the many variants of this kind of graphic. However, technically, it still is a cat-
egorical scatterplot like the ones just seen, customized with style elements
and other graphical components.

8.2.2 Violin Plot and Scatterplot with Jitter

As already observed, function geom_jitter() does not allow using at the same
time attribute position with attributes width and height, a limitation that
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Figure 8.2 Categorical scatterplot with reduced jitter.

Figure 8.3 Categorical scatterplot with increased jitter.

makes it more difficult to produce a combined graphic between a violin plot and a
scatterplot while handling the overplotting with geom_jitter(). To this end, a
special option has been introduced: position=position_jitterdodge(),
which has attributesjitter.width,jitter.height, and the already-known
dodge.width. We see an example in Figure 8.4, the visual effect improved by
reducing the overplotting and making the information about data points clearly
visible. Style options in common with previous graphics have been omitted.
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Figure 8.4 Violin plot and scatterplot with jitter, OECD/Pisa tests results for male and
female students, Mathematics skills.

colorList= c('gold','forestgreen')

ggplot(MatL, aes(x=as.factor(Year), y=Avg, fill=Sex))+
geom_violin()+
geom_point(aes(group=Sex),

position=position_jitterdodge(jitter.width = 0.15,
jitter.height = 0,
dodge.width = 0.9),

alpha=0.5, size=0.8)+
scale_fill_manual(values=colorList)+
labs(…

We can do more by combining a violin plot, a scatterplot with jitter, and a box-
plot. Attribute outlier.shape=NA hides boxplot’s outliers, being scatterplot
markers already plotted. The graphical result (Figure 8.5) is pleasant and despite
the many elements the visual effect is good.

colorList= c('gold','forestgreen')

ggplot(pisa, aes(x= as.factor(Year), y= Value, fill=CompLevel)) +
geom_violin(alpha=0.4) +
geom_boxplot(position= position_dodge(width=0.9),

alpha=0.5, size=0.4, width= 0.2,
outlier.shape= NA) +

geom_point(aes(group= CompLevel),
position= position_jitterdodge(jitter.width = 0.15,

jitter.height = 0,
dodge.width = 0.9),
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Figure 8.5 Violin plot, boxplot, and scatterplot with jitter, OECD/Pisa tests results for
male and female students, Mathematics skills.

alpha=0.5, size=0.7, shape=1) +
scale_fill_manual(values= colorList)
…

8.2.3 Sina Plot

We consider now a variant of jittering called sina plot. A sina plot is a relatively
recent type of graphic, which attracted a good deal of interest because it is not just
a simple variant of the basic jittering but it could be considered an alternative visu-
alization to violin plots. For ggplot, it is implemented by function geom_sina()
of package ggforce. The difference with normal jittering is that the points in a sina
plot are not displaced randomly but by complying with the density curve, therefore
replicating the shape of a violin plot. This way, a sina plot provides a solution to
overplotting and conveys the same information as a violin plot. We start with the
basic example of Figure 8.6, again style options common with previous graphics
have been omitted.

library(ggforce)
colorList= c('#1252b8','#fa866b')

ggplot(MatL, aes(x=as.factor(Year), y=Avg, color=Sex))+
geom_sina(size=2)+
scale_color_manual(values= colorList) +
labs(…
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Figure 8.6 Sina plot, OECD/Pisa tests results for male and female students,
Mathematics skills.

Figure 8.7 Sina plot and violin plot combined, OECD/Pisa tests results for male and
female students, Mathematics skills.

A violin plot and a sina plot could be combined as well, for a visual effect with
better-defined shapes (Figure 8.7), style options common with previous graphics
have been omitted.

colorList= c('#1252b8','#fa866b')

ggplot(MatL, aes(x=as.factor(Year), y=Avg))+
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geom_violin(aes(fill=Sex), alpha=0.2)+
geom_sina(aes(color=Sex), shape=1)+
scale_color_manual(values = colorList) +
scale_fill_manual( values = colorList)+
labs(

x="", y="Test Results",
title="OCSE/Pisa test: Mathematics Skills",
fill="Gender:", color="Gender:") +
…

Let us try the sina plot with a boxplot. The combination could be effective
when data points are appropriate to this visualization, even without a violin plot
(Figure 8.8).

colorList= c('#1252b8','#fa866b')

ggplot(MatL, aes(x=as.factor(Year), y=Avg))+
geom_boxplot(aes(fill=Sex), alpha=0.7, outlier.shape= NA)+
geom_sina(aes(color=Sex), shape=1)+
scale_color_manual(values = colorList) +
scale_fill_manual(values = colorList) +
labs(…

We see now another variation with attributes position=’identity’ to
have separate groups of points stacked instead of dodged and maxwidth to
control jitter. We also add a logical condition (color= Avg > 500) to have
some points with a color different from the others. A detail should be noted: the

Figure 8.8 Sina plot and boxplot, OECD/Pisa tests results for male and female students,
Mathematics skills.
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Figure 8.9 Sina plot with stacked groups of data points and color based on logical
condition.

logical condition on aesthetic color has the consequence that values associated
to that aesthetic are True and False, meaning that in the legend the labels for the
two colors would have been TRUE and FALSE, barely understandable to a reader.
For this reason, we have explicitly reconfigured the legend labels in function
scale_color_manual().

Figure 8.9 shows the resulting plot.

ggplot(MatL, aes(x= as.factor(Year) , y= Avg)) +
geom_sina(aes(color= Avg > 500),

position= "identity",
maxwidth=0.6, size=2) +

scale_color_manual(values= c("lightblue","darkred"),
labels= c("FALSE"="Average and Low",

"TRUE"="Above average")) +
labs(

x="", y="Test Results", color="Scores:",
title="OCSE/Pisa test: Mathematics Skills")+
…

8.2.4 Beeswarm Plot

A different approach for handling the overplotting problem, especially for categor-
ical data, is provided by the beeswarm plot. This is another relatively recent graphic
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type defined, for ggplot, in a custom package (ggbeeswarm) to replicate the corre-
sponding swarm plot natively implemented by Seaborn. The features are similar
to graphics previously seen in this section. For R, after the installation of package
ggbeeswarm, the library to load is ggbeeswarm.

Warning

Do not mislead the library ggbeeswarm, to use for the beeswarm plot, with the
similarly named beeswarm, installed as a dependency.

Function geom_beeswarm() has some peculiar attributes:

● cex: controls the distance among markers;
● dodge.width: controls distance among markers when grouped;
● priority: could have value ascending (default), descending, density, random,

and none, for different layouts of the markers.

Let us consider a basic example. What is shown in Figure 8.10 is the typical
fishbone deployment of markers in a beeswarm plot. The advantage is of providing
intuitive information regarding the density of markers for each level of the depen-
dent variable, clearer than in previous graphics. This benefit is, however, paid in
terms of precision, the position of markers is no way approximately close to the
real data points, much worse than with traditional jittering or sina plot.

Figure 8.10 Beeswarm plot, OECD/Pisa test results for male and female students,
Mathematics skills.
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library(ggbeeswarm)
colorList= c('#1252b8','#fa866b')

ggplot(pisa, aes(x =as.factor(Year), y= Value,
color= CompLevel)) +

geom_beeswarm(size=1, cex=2) +
scale_color_manual(values= colorList) +
labs(x="Year", y="Students (%)",

color="Competence\nLevel") +
theme_light()+
theme(plot.margin= unit(c(1,1,1,1),"cm"))

8.2.5 Comparison Between Jittering, Sina plot, and Beeswarm plot

In Figure 8.11, the three approaches to overplotting are shown side-by-side
together with the representation of overplotting. The differences are easily noted.

Which one to choose? In general, both the sina plot and the beeswarm plot con-
vey an additional information about the distribution of data points with respect to
traditional jitter for categorical scatterplots. It could be observed that the sina plot
maintains a more realistic representation of the density of the data points, closely
resembling a violin plot, while the beeswarm plot prefers a more stylized shape.
However, choosing between the sina plot and the beeswarm plot is largely a matter
of subjective preference, either aesthetical or of communication style.

8.3 Python: Seaborn

Different from ggplot, Seaborn does not provide a specific control of overplotting,
for example, with jittering, for traditional scatterplots. Its approach, instead, is to
provide specialized functions for categorical scatterplots that natively handle over-
plotting: strip plot (i.e., the traditional categorical scatterplot with jitter) and swarm
plot (i.e., the same previously called beeswarm plot for ggplot). Seaborn functions
are, respectively, stripplot() and swarmplot().

8.3.1 Strip Plot and Swarm Plot

Strip plots and swarm plots are variants of traditional categorical scatterplots, the
first introducing jitter to manage overplotting but weakening the correspondence
between the marker’s positions and real data points, the second presenting the
typical fishbone placement of markers, highlighting their density but almost
completely losing the correspondence with real data point positions.



Figure 8.11 Comparing overplotting, jitter, sina plot, and beeswarm plot.
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Figure 8.12 Strip plot, bike thefts in Berlin.

We start with a strip plot, which lets specifying attributes jitter, size, and
alpha to control overplotting. As data, we make use of the dataset about bike
thefts in Berlin (see Figure 8.12).

g= sns.stripplot(data= bikes,
x= bici["START_DATE"].dt.month,
y= "DAMAGES",
alpha=0.7, size=1.5, jitter=0.3, pal='flare')

plt.xlabel("Month")
plt.ylabel("Bicycle Value ")
plt.title("Berlin: bicycle thefts")

With a swarm plot, attribute jitter is not available. We use a visualiza-
tion by facets using month as the variable. For simplicity, we select just one
month, October 2022, and two types of bikes to show the markers grouped
(Figure 8.13).

bikes_ml=bikes[((bikes["TYPE_OF_BICYCLE"]=="men's bike") | \
(bikes["TYPE_OF_BICYCLE"]=="ladies bike")) & \
(bikes["START_DATE"].dt.month==10) & \
(bikes["START_DATE"].dt.year==2022)]

g=sns.swarmplot(data=bikes_ml,
x="TYPE_OF_BICYCLE",
y="START_HOUR",
size=2.5,
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Figure 8.13 Swarm plot, men’s and ladies’ bike thefts in Berlin, October 2022.

palette={"men's bike": "skyblue", "ladies bike":
"darkred"})

plt.xlabel("")
plt.ylabel("Hour of day")
plt.title("Berlin: bicycle thefts (October 2022)")
plt.tight_layout()

Graphically, the result is not completely satisfying. It gives an idea of the number
of thefts for each hour of day but not much more; in addition, when points reach
the maximum width of the virtual column, they are packed together, and details
get lost. Generating the swarm plot also takes considerably more time, being com-
putationally intensive, than for the strip plot.

This example shows that choosing between the two types of graphics remains
largely an individual choice, but there are some objective elements to consider:
the swarm plot is well-suited for small samples only and with data points not too
much concentrated in a small range of values; for other cases, it is better to use the
strip plot.

8.3.2 Sina Plot

Sina plot does not exist as a native graphic type in Seaborn (up to version 12.2, at
least), but custom implementations have been proposed and could be considered
for use. An excellent one has been realized by Matthew Parker and it is available
from his GitHub repository, a Jupyter notebook provides the usage instructions
(https://github.com/mparker2/seaborn_sinaplot).

To use custom function sinaplot(), it is required to save the two files pro-
vided into a local directory called sinaplot. The Jupyter notebook or the Python

https://github.com/mparker2/seaborn_sinaplot
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script from which the sinaplot()function will be executed should be located
in the same sinaplot folder. With this, the usual import directive could be executed
(from sinaplot import sinaplot). The following schema shows the file
organization to reproduce.

local directory/

sinaplot /

init.py

sinaplot.py

python script_or_sinaplot.ipynb

…

Alternatively, a more general solution could be adopted by using Python library
sys to specify the path to the sinaplot directory with the custom function to use.

import sys
sys.path.append('path to sinaplot directory')

Once the setup is done, usage is simple. Attribute violin=False (default
True) draws only sina plot points without the violin shape, the opposite if set to
True. For the example, we select just data from January 2021 to 2022, and two
types of bikes (Figure 8.14).

bikes_ml= bikes[
((bikes["TYPE_OF_BICYCLE"]=="men's bike") |
(bikes["TYPE_OF_BICYCLE"]=="ladies bike")) &
(bikes["DEED TIME_START_DATE"].dt.month==1)]

g= sinaplot(data= bikes_ml,
x= bikes_ml["DEED TIME_START_DATE"].dt.year,
y= "DAMAGES", hue= "TYPE_OF_BICYCLE",
palette= sns.color_palette(['forestgreen','skyblue']),
s=2, violin=False)

ax.legend(title="Bike Type ")
ax.set(xlabel=" ", ylabel=" Bicycle Value")
ax.set(title="Berlin: bicycle thefts (January 2021/2022)")
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Figure 8.14 Sina plot, men’s and ladies’ bike thefts in Berlin in January 2021–2022.
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9

Half-Violin Plots

The name half-violin plot could sound like an oddity, one of those bizarre artifacts
that sometimes data scientists and graphic designers create for amusement, but it
would be a mistake to consider it that way. Instead, it is a relevant variant of the
violin plot that is particularly well-suited to be combined in different fashions to
convey a good deal of information in an intuitive and aesthetically pleasant form.

The key premise is that graphics with a symmetric structure (e.g., boxplots and
violin plots) are intrinsically redundant, meaning that the whole information could
be provided by just one-half of them. This, on the one side, would allow simplifying
the graphic, but aesthetically it would be less agreeable, on the other, it permits
replacing one-half of the graphic with something else, like another type of graphic,
to increase the informational content of the visualization. Creativity is paramount
in this case, as well as good judgment about the effectiveness and interpretability
of the visual artifact for data visualization.

We present some cases, others exist, by starting from the basic feature: how to
produce just half of a violin plot. In past years, several solutions, both for R and
for Python, have been introduced, first as custom functions, then through more
stable packages, when the interest in this possibility has gained traction.

Dataset

In this chapter, we make use again of data from the OECD Skills Survey, OECD
2022 (The Organisation for Economic Co-operation and Development), and from
Bicycle thefts in Berlin (transl. Fahrraddiebstahl in Berlin) from the Municipality
of Berlin, Germany, Berlin Open Data, previously introduced.

Data Visualization in R and Python, First Edition. Marco Cremonini.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Cremonini/DataVisualization1e
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9.1 R: ggplot

9.1.1 Custom Function

Custom function geom_split_violin() has been originally proposed on
Stack Overflow by user jan-glx (https://stackoverflow.com/questions/35717353/
split-violin-plot-with-ggplot2) and at the time of writing it does not appear to be
available in any package on CRAN (The Comprehensive R Archive Network).
The function could be used by manually copying the source code into the same R
script or in the same way we previously described for the custom implementation
of the sina plot function. The source code is available in the Additional Online
Material – R: half-violin – geom_split_violin.R. Let us see a basic example, we
define a color list and make use of the same data frame pisa, created in Chapter 7.
Figure 9.1 shows what we expected: just half violins are plotted, clearly resembling
density plots (geom_density()), with the same information of original violin
plots but a more elaborate graphic. It is well-suited when data points are grouped
with respect to a variable with just two values (e.g., male/female, North/South,
and Republicans/Democrats), so to glue the two halves. Other than that, more
creative ways to exploit half-violins become available.

colorList= c('#3c77a3','#b1cc29')

ggplot(pisa, aes(x= as.factor(Year) , y= Value,
fill= Sex)) +

Figure 9.1 Half-violin plot, custom function, OECD/Pisa test results for male and female
students, Mathematics skills.

https://stackoverflow.com/questions/35717353/split-violin-plot-with-ggplot2
https://stackoverflow.com/questions/35717353/split-violin-plot-with-ggplot2
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geom_split_violin() +
scale_color_manual(values= colorList) +
labs(x=" ", y="Test Results", fill="Gender:",

title="OCSE/Pisa test: Mathematics Skills"
)+
theme_hc()+
theme(legend.position = "bottom")+
theme(plot.margin = unit(c(1,1,1,1),"cm"))

We can replicate some examples seen with violin plots by using the half-violin
graphic type. We choose the most complete, tuning attribute width to correctly
place the internal boxplot. Once again, the result, shown in Figure 9.2, is aesthet-
ically pleasant and conveys information with a compact and original layout.

colorList= c('#3c77a3','#b1cc29')

ggplot(pisa, aes(x= as.factor(Year), y= Value,
fill= Sex)) +

geom_split_violin(alpha=0.4) +
geom_boxplot(position= position_dodge(width=0.2),

alpha=0.5, size=0.4, width= 0.2,
outlier.shape= NA) +

geom_point(aes(group= Sex),

Figure 9.2 Half-violin plot, boxplot, and scatterplot with jitter correctly aligned and
dodged, OCSE-PISA tests.
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position= position_jitterdodge(jitter.width=0.15,
jitter.height=0,
dodge.width=0.9),

alpha=0.5, size=0.7, shape=1) +
scale_fill_manual(values= colorList) +

labs(x="", y="Test Results", fill="Gender:",
title="OCSE/Pisa test: Mathematics Skills"

)+
theme_hc()+
theme(legend.position = "bottom")+
theme(plot.margin = unit(c(1,1,1,1),"cm"))

Similar to what we showed in Figure 7.6 of Chapter 7, a facet visualization for
Mathematics, Reading, and Scientific skills is an interesting addition to consider
the overall picture of Pisa tests and the half-violin plot solution, which is an even
more compact form than what we have seen in Figure 7.6. This time, we have also
the scatterplot as a graphic layer. In the code, datasets reading operations, binding
rows, and long-form transformation are omitted, being identical to those presented
in Figure 7.6, the same for style options in common with previous plots. Figure 9.3
shows the result.
colorList= c('#3c77a3','#b1cc29')

ggplot(pisaMRS, aes(x=as.factor(Year) , y=Avg, fill=Sex))+
geom_split_violin(alpha=0.7)+

Figure 9.3 OECD/Pisa tests, male and female students, Mathematics, Reading, and
Scientific skills.



9.1 R: ggplot 141

geom_boxplot(position=position_dodge(width=0.2),
alpha=0.5, size=0.4, width= 0.2, outlier.shape = NA)+

geom_point(aes(group=Sex),
position=position_jitterdodge(jitter.width = 0.15,

jitter.height = 0,
dodge.width = 0.9),

alpha=0.5, size=0.7, shape=1)+
facet_grid(rows = vars(Test))+

scale_fill_manual(values = colorList) +
labs(
x="", y="Test Results", fill="Gender:",
title= 'OCSE/Pisa test: Mathematics, Reading, and Scientific Skills'

)+
…

9.1.2 Raincloud Plot

A variant of the plot just presented is called raincloud plot and combines in a partic-
ularly creative fashion a half-violin plot, a boxplot, and a dot plot, the latter another
variant of the scatterplot with a stylized layout (geom_dotplot()).

Note

The raincloud plot has been presented in the following scientific publication:

Allen M, Poggiali D, Whitaker K, Marshall TR, Kievit RA. Raincloud plots: a
multi-platform tool for robust data visualization. Wellcome Open Res. 2019
Apr 1;4:63. doi: 10.12688/wellcomeopenres.15191.1. PMID: 31069261;
PMCID: PMC6480976.

To implement this example, we need a different function than the previous
geom_split_violin() because half-violins should have the same orientation
(i.e., all left side), a feature not well supported by that custom function. There are
alternatives, one available in a package on CRAN is geom_half_violin()
of package gghalves. With attribute side="l" (default) only the left side of the
violin is plotted, similarly side="r" draws only the right side. Let us see a simple
example (Figure 9.4).

library(gghalves)
colorList= c('#3c77a3','#b1cc29')

ggplot(MatL, aes(x=as.factor(Year) , y=Avg, fill=Sex))+
geom_half_violin(side="l")+
scale_fill_manual(values = colorList) +
labs(…
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Figure 9.4 Left-side half-violin plots, male and female students, Mathematics skills.

With this as the basis, the raincloud plot could be produced. Some care should be
taken in order to correctly place the three graphics, the half-violin plot, the boxplot,
and the dot plot. In particular, attribute position=position_nudge()is
needed to overcome the default placement; attribute stackratio of
geom_dotplot() to modify the distance of aligned markers, and attribute
binaxis defines the axis used to align markers (axis x is the default, we need to
specify axis y). The adoption of facet_grid() instead of facet_wrap() has
just an aesthetical reason, that way we have facet titles vertically on the left side
rather than on top. In the example, we use a single variable for facets associated
to rows of the grid with attribute rows=vars(); with attribute switch="y"
facet titles are shown on the right side. As a last detail, by resizing the plot with
attribute width and height of function ggsave(), which saves on file the last
plot, we improve the excessive vertical closeness of graphics of the original plot,
otherwise not easy to tune.

Figure 9.5 shows the result. It is an elaborate combination of three graphics that
at first might appear difficult to comprehend, but with some patience and placing
one element at time, the logic becomes clear.

library(gghalves)
colorList= c('#3c77a3','#b1cc29')

ggplot(pisaMRS, aes(x=as.factor(Year) , y=Avg, fill=Sex))+
geom_half_violin(side="r", alpha=0.3,

position = position_nudge(x = 0.03))+
geom_boxplot(size=0.4, width= 0.1, outlier.shape = NA,
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Figure 9.5 Raincloud
plot, male and female
students, Mathematics,
Reading, and Scientific
skills.
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position = position_nudge(x = 0.04))+
scale_fill_manual(values = colorList) +
geom_dotplot(stackdir="down", binaxis = "y",

dotsize=1.6, binwidth = 0.5,
stackratio=1.5, width = 0.5,
position = position_nudge(x= 0),
fill="#345ceb" ,alpha=0.5)+

facet_grid(rows=vars(Test))+
coord_flip()+
labs(

x="", y="Test Results", fill="Gender:",
title="OCSE/Pisa tests 2006-2022"

)+
theme_hc()+
theme(legend.position = "bottom")+
theme(plot.margin = unit(c(1,1,1,1),"cm"))+
theme(axis.text = element_text(size = 10),

axis.title = element_text(size = 10),
legend.text = element_text(size = 10),
legend.title = element_text(size = 10))

ggsave("raindropPlot.png", dpi=600, bg='transparent',
width=15, height=30, units="cm")

The result is smart and imaginative, with the origin of the name (i.e., raindrop)
that should be now manifest. It is, however, also effective in conveying informa-
tion in a compact form. Several hints about data from the Pisa tests emerge quite
evidently.

9.2 Python: Seaborn

In this Python section, we make use again of data about bike thefts in Berlin, as we
did in the violin plot section. We already know that half-violin plots are well-suited
in case of groups of markers where the variable has two values. For this reason, we
select just two bike types and plot the corresponding violin plots for each month.
Figure 9.6 shows the result.

bikes_ml= bici.query(" TYPE_OF_BICYCLE=='men\\'s bike' | \
TYPE_OF_BICYCLE=='ladies bike' ")

g= sns.violinplot(data= bikes_ml,
x=bikes_ml["START_DATE"].dt.month,
y= "DAMAGES", hue= "TYPE_OF_BICYCLE",
palette={"men's bike": '#3c77a3', "ladies bike": '#b1cc29'},
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Figure 9.6 Violin plot with groups of two subsets of points, bike thefts in Berlin.

linewidth=0.7)

g.legend_.set_title('Bike types')
plt.xlabel('Month')
plt.ylabel('Bicycle Value')
plt.show()

This is an ideal case for a half-violin plot for having a single violin composed
of the two halves instead of the two dodged violins. Seaborn supports it natively
with attribute split=True of function sns.violinplot(). To show the
result more clearly, we select just one month (i.e., January). With attribute
hue_order, we could set a specific order of values of the variable used for
groups and associated to attribute hue. We also add a visual effect with attribute
inner=’stick’ that shows the data distribution as lines, while directive
sns.despine(left=True,bottom=True) removes the external border
(see Figure 9.7). By specifying inner=’quart’, the quartiles of the distribution
(Q1, median, and Q3) are shown (see Figure 9.8).

data= bikes_ml[bikes_ml["START_DATE"].dt.month == 1]

g=sns.violinplot(data= data,
x= bikes_ml["START_DATE"].dt.year,
y= "DAMAGES", hue= "TYPE_OF_BICYCLE",
hue_order= ["men's bike", "ladies bike"],
palette={"men's bike": '#3c77a3', "ladies bike": '#b1cc29'},
linewidth=0.1,
split= True, inner= 'stick')
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Figure 9.7 Half-violin plots with sticks.

Figure 9.8 Half-violin plots with quartiles.

sns.despine(left=True,bottom=True)

g.legend_.set_title('Bike types')
plt.xlabel(“)
plt.ylabel('Bicycle Value')
plt.show()
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Ridgeline Plots

10.1 History of the Ridgeline

The ridgeline plot is a peculiar type of graphic with a curious history intersecting
that of an iconic image, the one presented on the cover of the (once renowned)
UK band Joy Division’s first album, Unknown Pleasures (1979). The origin
of that image has been researched for long by music fans until the definitive
explanation was found. It is the white-on-black representation of the 80 pulsations
of the first observed pulsar star, named PSR B1919+21 (originally called CP1919
and first observed by Jocelyn Bell Burnell in 1967, at time a Ph.D. student at
Cambridge University, UK), vertically aligned one over the other. The original
image (Figure 10.1) first appeared in the 1970’s Ph.D. thesis of Harold D. Craft,
Jr. and in the journal Scientific American, which also published that image in
1970, summarized the whole story by interviewing the author, at time a student
at Cornell University, now Professor Emeritus at the same university (https://
blogs.scientificamerican.com/sa-visual/pop-culture-pulsar-origin-story-of-joy-
division-s-unknown-pleasures-album-cover-video/).

The ingenious idea of showing those star pulsations on top of each other to high-
light the frequency variations is the same that inspires the ridgeline plot where, in
place of electromagnetic pulsations, there are density plots showing the different
value distributions for a set of observations.

The expected visual effect is to compare similar observations collected from dif-
ferent times or contexts, showing them with a visual effect that resembles that
of waves flowing. The ridgeline plot is undoubtedly one of the most original and
eye-catching types of graphics, but for this reason, it needs to be drawn with special
care of all details.

In this section, we show examples only for ggplot because it offers a specific
library able to produce high-quality ridgeline plots. Unfortunately, this is not
the case for Seaborn (at least up to version 12.2), which does not support this
type of graphics and no other good custom implementation has been retrieved.

Data Visualization in R and Python, First Edition. Marco Cremonini.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Cremonini/DataVisualization1e
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Figure 10.1 “Many
consecutive pulses from
CP1919,” in Harold
Dumont Craft, Jr, “Radio
observations of the pulse
profiles and dispersion
measures of twelve
pulsars,” PhD dissertation,
Cornell University, 1970,
p. 214, Courtesy of Prof.
Harold D. Craft.

With Seaborn, it is possible just to approximately reproduce the graphical layout
and visual effect of a ridgeline plot by combining basic elements in an overly
complicated and unsatisfactory fashion. We let the possibility to produce good
ridgeline plots with Seaborn to future developments.

Dataset

In this chapter, we make use again of data from the OECD Skills Survey, OECD
2022 (The Organisation for Economic Co-operation and Development) previously
introduced.

10.2 R: ggplot

Package ggridges, whose author is Claus O. Wilke, provides the main functions
and a sample dataset about temperatures in year 2016 at Lincoln, NE. The
specifications with examples are available in the package documentation.
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The example of temperatures gathered on an extended time period is well-suited
for a ridgeline plot because it represents the same observation taken at different
times. The same could have been done by collecting temperatures in the same
period (e.g., a month) but from different locations.

In our case study, we want to produce a ridgeline plot with data from the OECD
Skills Survey regarding OECD/Pisa tests, already introduced in Chapter 7, which
are the same tests completed by same-age students in different countries. This case
has some similarities with that of temperatures but also differences that we should
consider:

● They are similar because they are results of the same observation repeated in
regional contexts that may differ, climate conditions for temperatures, socioeco-
nomic, political, organizational, and cultural aspects for Pisa tests.

● The main difference with temperatures is that while temperatures are measured
on a given scale, Pisa test results do not have an implicit scale for ordering them.
Different metrics are possible to use, one should be chosen, and values derived
from data.

We present the examples by separating results for Mathematical, Reading,
and Scientific skills because a ridgeline plot visualization is effective if data are
homogeneous, so to compare them among different contexts. Package viridis
has color palettes also for discrete variables with numerous values. In our
case, we have 35 countries plus the International Average (OECD). Function
geom_density_ridges()draws the density plots that, when combined, will
result in the ridgeline plot. Data frames are the same prepared for visualization
in Chapter 7, namely MatL, RdL, and SciL, derived from reading the original
datasets and then transformed into long form. Figure 10.2 shows the first
resulting plot.

library(ggridges)
library(viridis)

MatL%>%
ggplot(aes(x=Avg, y=Country))+
geom_density_ridges(aes(fill=Country), scale=2, rel_min_height=0.005) +
scale_fill_viridis(discrete= TRUE, option= "viridis" )+
labs(
x="Test results", y="",
title="OECD/Pisa test: Mathematics skills"

)+
theme_clean() +
theme(panel.grid.major.y = element_blank(),

legend.position = 'none')+
theme(axis.text.x =
element_text(size = 8, hjust = .75))

The first attempt to produce a ridgeline plot is technically correct with density
plots that appear sufficiently homogeneous and intuitive. The viridis gradient
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Figure 10.2 Ridgeline plot, OECD-Pisa tests, default alphabetical order based on country names, Mathematics skills.
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is pleasant. However, the overall visual effect is somehow confused, grasping the
differences among countries requires particular attention and is not immediately
clear; it could be improved by ordering the results with respect to a metric based
on data, rather than alphabetically by country name. The easiest way is to use
a descriptive statistic as a metric; for instance, the arithmetic mean, median,
maximum, or minimum value are all possible metrics, and choosing a specific
one depends on what information we want to convey.

To realize the solution with a different order of countries, we need a particular
technique that allows ordering a data frame with respect to an external ordered list
of items. The logical steps are as follows:

1. (a) First, the list of countries should be ordered based on the metric chosen (e.g.,
a descriptive statistic) and (b) the list of ordered countries should be created.

2. (a) Ordered country names of the list should be transformed into categories
(R factor data type) and (b) associated to levels (factor level). This way, country
names of the data frame will be ordered according to the ordered list.

3. Finally, the data frame is sorted with respect to country names, which will no
longer adopt the alphabetical order but the one defined by the external list.

Based on this approach, we could now realize the desired ridgeline plot.

STEP 1a: We choose a specific descriptive statistic as the ordering criteria; in this
case, we select the arithmetic mean, and sort the data frame based on mean
values.

df1_high %>%
group_by(Country) %>%
summarize(Mean= mean(Value, na.rm= TRUE)) %>%
arrange(desc(Mean)) -> df1_sort

STEP 1b: Country names (df1_sort$Country), sorted based on values of column
Mean, are transformed into a list of 35 elements.

list1 = as.list(df1_sort$Country)

STEP 2a: In data frame with Pisa test results (df1_elev) country names of column
Country are transformed into factor type.

STEP 2b: With function fct_relevel(), each value of column Country (now
as factor) is associated, through its attribute level, to the corresponding position
of list1. For example, Korea is in first position based on mean values of Pisa tests,
therefore all rows related to Korea are associated to factor level 1 and so on for
all countries.

STEP 3: Now we can sort the data frame based on the Country column, obtaining
the ordering based on the factor levels.
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df1_high %>%
mutate(Country= factor(Country)) %>%
mutate(Country = fct_relevel(Country,list1)) %>%
arrange(Country) -> df_high_factor

We can now produce again the ridgeline plot as did before, style directives are
omitted for brevity (Figure 10.3).

df_high_factor %>%
ggplot(aes(x= Value, y= Country)) +
geom_density_ridges(aes(fill= Country),

scale= 2, rel_min_height=0.005) +
scale_fill_viridis(discrete=TRUE, option="viridis") + …

The result is much better than the previous one. Now it is very evident how
results of Pisa tests differ for the set of countries. Next, the color gradient is more
meaningful this way, highlighting the overall trend.

We can now replicate the same example for Reading and Scientific skills, just
changing the initial data frame, as already did previously for other types of
graphics.

For Reading skills, there are few changes:

● A different palette from the Viridis set (i.e., plasma) with the order of
color reverted with attribute direction (i.e., scale_fill_viridis
(discrete=TRUE, option="plasma", direction= -1))

● Theme light a little tweaked to remove major and minor grids for the x-axis and
the panel’s border:

theme_light() +
theme(panel.grid.major.x = element_blank(),

panel.border = element_blank(),
panel.grid.minor.x = element_blank(),
legend.position = 'none')

Figure 10.4 shows the result.
Instead, for Scientific skills, as a tribute to the first pulsar observed and of Joy

Division, we could try to replicate the style of that iconic image (Figure 10.5). In
the script, the only differences with what was previously discussed are:

● Data frame is SciL, derived from reading the original dataset for Scientific skills
and transforming it into long form.

● Colors and line thickness: geom_density_ridges(fill="black",
color="white",size=0.5,scale=1.5,
rel_min_height=0.005).
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Figure 10.3 Ridgeline plot, OECD-Pisa tests, custom order based on arithmetic mean of test results, Mathematics skills.
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Figure 10.4 Ridgeline plot, OECD-Pisa tests, custom order based on arithmetic mean of test results, Reading skills.



OCSE/Pisa test: Scientific skills

400 450 500
Test results

550

United States

Mexico

United Kingdom

Türkiye

Switzerland

Sweden

Spain

Hungary

Slovenia

Slovak Republic

Portugal

Poland

Norway

Iceland

New Zealand

Netherlands

Luxembourg
Lithuania

Latvia

Korea

Japan

Italy

Israel

Ireland

Intl. Avg. (OECD)

Greece

Germany

France

Finland
Estonia

Denmark

Canada

Belgium

Austria

Australia

Czech Republic

Figure 10.5 Ridgeline plot, OECD-Pisa tests, custom order based on arithmetic mean of test results, Scientific skills, a tribute to pulsar
CP1919 and Joy Division.
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● The background color: theme(panel.background=element_rect
(fill="black"), axis.text.x=element_text(vjust = 1.5)).

The excerpt of code shows only the more relevant differences with respect to
previous plots.

…
geom_density_ridges(fill="black", color="white", size=0.5,

scale = 1.5, rel_min_height = 0.005) +
labs(…)+
theme_clean() +
theme(panel.grid.major.y= element_blank(),

legend.position= 'none')+
theme(axis.text.x= element_text(size=8, vjust=6, hjust= .75))+
theme(panel.background= element_rect(fill= "black"),

plot.background= element_rect(color='white')
axis.text.x= element_text(vjust= 1.5))
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Heatmaps

Heatmaps are a type of graphic that is usually easy to produce and could be
aesthetically pleasant and effective to convey information in an intuitive way. In
practice, what a heatmap shows is a color-based representation of a data frame
in rectangular form, with two categorical variables associated to the sides of
the heatmap (corresponding to the Cartesian axes), and a third variable, either
continuous or categorical, whose values are converted into a color scale. The idea
is that, through the color representation, an observer could easily and intuitively
grasp the values of the third variable corresponding to the two variables on the
axes. The information conveyed by a heatmap is largely qualitative, the color
scale usually has quantitative values but, especially with a continuous gradient,
the exact value associated to a certain hue is difficult to determine, so what an
observer gets is often a broad approximation of the real value. Therefore, with
respect to the corresponding data frame, a heatmap is certainly less precise but it
gains in simplicity for an observer to get the informational content. In addition to
this, heatmaps, being colorful and with their regular structure, are well-adapted
to be used in creative ways and combined with different graphical elements.

Dataset

In this chapter, we make use again of data from Bicycle thefts in Berlin (transl.
Fahrraddiebstahl in Berlin) from the Municipality of Berlin, Germany, Berlin
Open Data, previously introduced.

11.1 R: ggplot

We have not yet used the dataset of bike thefts in Berlin with R, so it is worth
reminding that, as previously discussed, this case study has some subtleties to

Data Visualization in R and Python, First Edition. Marco Cremonini.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Cremonini/DataVisualization1e
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consider when the translated version, from German to English, is used. Problems
could arise due to incoherent date formats deriving from intrinsic limitations of
automatic translation tools, which suggests caution when dealing with dates. The
Additional Online Material, in the section dedicated to violin plots (Chapter 7),
provides the details of this case and all Python data-wrangling operations to cor-
rectly set up the data frame for visualization. The same Additional Online Material,
in the section dedicated to this chapter on heatmaps, summarizes the same oper-
ations for R. Those data-wrangling operations do not present any particular diffi-
culty; however, the subtleties and the logic should be clear in order to fully grasp
their meaning.

Here we start with the modified English dataset correctly set up with coherent
dates. We read it and adjusted some column names to work more swiftly on them.
Then, we aggregate bike values and number of bikes stolen with respect to months
and hours of the theft.

df= read_csv("datasets/Berlin_open_data/
Fahrraddiebstahl_12_2022_EN_MOD.csv")

newNames <- c(START_DATE = 'DEED TIME_START_DATE',
END_DATE = 'DEED TIME_END_DATE',
START_HOUR = 'TIME_START_HOUR',
DATE = 'CREATED_AM')

df <- rename(df, all_of(newNames))

bikesR= group_by(df, month(DATE, label=TRUE,
abbr=FALSE),

START_HOUR) %>%
summarize(TOT_DMG= sum(DAMAGES), NUM= n()) %>%
rename(MONTH = 1)

# A tibble: 288 × 4
# Groups: MONTH [12]

MONTH START_HOUR TOT_DMG NUM
<ord> <dbl> <dbl> <int>

1 January 0 28696 29
2 January 1 7746 13
3 January 2 8255 11
4 January 3 8328 11
5 January 4 6073 6
# … with 283 more rows
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Let us check the data type of column MONTH, it is of factor type with values
correctly ordered (we have assumed to have already sorted it based on the external
ordered list with month names, as seen in previous chapters).

class(bikesR$MONTH)
[1] "ordered" "factor"

ggplot offers a basic support for heatmaps with functions geom_tile() and
geom_rect(), very similar, and geom_raster(), more efficient in some
specific cases (i.e. same-size tiles). Different from Seaborn, as we will see, which
requires the data frame in rectangular form (i.e. wide form), ggplot functions
work on data frames in long form, namely they require three columns respectively
for data corresponding to the x-axis, the y-axis, and the color scale. Knowing this,
we could create our first heatmap, with the caveat that looking at the result we
should remember that the dataset has incomplete values for December, which is
certainly underestimated (Figure 11.1).

bikesR %>% ggplot(aes(x=START_HOUR, y=MONTH)) +
geom_tile(aes(fill=NUM))+
scale_x_continuous(breaks= c(0,2,4,6,8,10,12,14,16,18,20,22))+
labs(x= "Hour of day", y= "", fill="Bikes\nstolen") +
theme_clean()+
theme(axis.text = element_text(size= 14),

axis.title = element_text(size= 14))

We can produce a second heatmap improving the visual presentation and with
some better-crafted elements, such as reversing the ordering of values on the y-axis
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Figure 11.1 Heatmap, bike thefts in Berlin for months and hours of day.
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Figure 11.2 Heatmap, bike thefts in Berlin for months and hours and style elements.

through directive scale_y_discrete(limits=rev) and some other tweaks
(Figure 11.2).

min_lim= min(bikesR$NUM)
max_lim= max(bikesR$NUM)

bikesR %>% ggplot(aes(x=START_HOUR, y=MONTH)) +
geom_tile(aes(fill= NUM), color= "white") +
scale_fill_gradient(low= "darkolivegreen1", high= "slateblue4",

limits= c(min_lim, max_lim),
guide= guide_legend(title="Bikes\nstolen")) +

scale_y_discrete(limits= rev) +
labs(x= "Hour of day", y= "",

title= "Bicycle thefts in Berlin (2021/2022)") +
theme_bw() +
theme(panel.border= element_blank(),

panel.grid.major= element_blank(),
axis.text= element_text(size=12),
axis.title= element_text(face='bold'))

11.2 Python: Seaborn

We still use the same dataset of bike thefts in Berlin with data frame bikes from
previous chapters. We aggregate the data frame to obtain the value and number of
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bikes stolen for each month and hour of day. First, we rename some columns for
simplicity.

bikes.columns= ['DATE','START_DATE','START_HOUR',
'END_DATE','END_HOUR','LOR','DAMAGES',
'EXPERIMENT','TYPE_OF_BICYCLE',
'OFFENSE', 'DETECTION']

bikes2= bikes.groupby([bikes['DATE'].dt.month_name(),
'START_HOUR'])\

['DAMAGES'].agg(TOT_DMG= 'sum', NUM= 'count').\
reset_index()

Now we want to correctly sort the new data frame bikes2 with respect to month
names. We need to employ the known technique based on an external list. Here
we show a tiny variant, deriving the month list instead of manually writing it.

monthList= pd.date_range(
start='2022-01-01',
end='2022-12-01', freq='MS')

monthName=
monthList.map(lambda x: x.month_name()).to_list()

bikes2.DATE= pd.Categorical(bikes2.DATE,
categories= monthName, ordered= True)

bikes2.sort_values('DATE', inplace= True)

To generate a heatmap, Seaborn requires having the data frame in rectangular
form with an index composed of a single level, meaning we need data in the wide
format. The resulting heatmap will have, on the y-axis, the values of the index, and
as values corresponding to the x-axis, the column names. Tiles of the heatmap will
be colored according to values of elements of the rectangular data frame. If the
explanation sounds not easy to understand, there is a better way to say it: look at
the data frame in rectangular form, the Seaborn heatmap is exactly its translation
into a colorful rectangular graphic.

For the example, we transform data frame bikes2 into wide form by using column
START_HOUR for new column names and the number of bikes stolen for values.

bikes_wide= pd.pivot_table(bikes2, values= 'NUM',
index= 'DATE', columns= 'START_HOUR')
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START_HOUR 0 1 2 3 … 21 22 23
DATE

January 29 13 11 11 … 69 65 53
February 28 10 3 5 … 76 64 49
March 50 18 15 10 … 108 95 58
April 47 21 14 9 … 118 124 75
May 58 23 29 14 … 189 157 105
June 79 51 24 13 … 211 195 146
July 88 47 37 15 … 218 206 173
August 72 51 19 19 … 212 215 131
September 88 42 29 18 … 222 184 123
October 67 51 19 18 … 204 202 130
November 54 25 15 14 … 136 127 79
December 23 14 9 4 … 72 46 31

Now that we have the data frame in rectangular form, the Seaborn heatmap is
very easy to produce with function sns.heatmap(), we just need to select a
color palette, as we wish; a few style options have been applied (Figure 11.3)

Figure 11.3 Heatmap, number of bike thefts in Berlin for months and hours.
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sns.set_theme(style="white")

g= sns.heatmap(bici_wide, cmap="mako", ax=ax)

g.xaxis.set_tick_params(labelsize=8, rotation=30)
plt.xlabel("Hour of day")
plt.ylabel("")
plt.title("Bicycle thefts in Berlin: number of thefts (2021/2022)")
plt.tight_layout()

We can repeat it, this time by using bikes value for the wide form transformation
(Figure 11.4).

bikes_wide2= pd.pivot_table(bikes2, values= 'TOT_DMG',
index= 'DATE',
columns= 'START_HOUR')

sns.set_theme(style="white")

g= sns.heatmap(bici_wide, cmap="cubehelix")

g.xaxis.set_tick_params(labelsize=8, rotation=30)
plt.xlabel("Hour of day")
plt.ylabel("")
plt.title("Bicycle thefts in Berlin: bikes value (2021/2022)")
plt.tight_layout()

Figure 11.4 Heatmap, value of stolen bikes in Berlin for months and hours.
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Marginals and Plots Alignment

So-called marginals are a family of graphics made by the combination of different
plots with a main one presented in the central position and one or two others
associated to the x and y axes. For example, we may have a scatterplot as the main
graphic and histograms, density plots, or boxplots associated to the axes. Several
other variants are possible.

Dataset

In this chapter, we make use again of data from Bicycle thefts in Berlin (transl.
Fahrraddiebstahl in Berlin) from the Municipality of Berlin, Germany, Berlin
Open Data, previously introduced.

12.1 R: ggplot

Dataset read and change of column names are the same as already shown before,
here omitted. We aggregate values for year, month, and bike type, calculating bike
values, and number of stolen bikes.

bikesR= group_by(df,
year(DATE),
month(DATE, label=TRUE, abbr=FALSE),
TYPE_OF_BICYCLE) %>%

summarize(TOT_DMG= sum(DAMAGES), NUM =n()) %>%
rename(YEAR = 1, MONTH_CREATED = 2)

12.1.1 Marginal

Features to produce marginal graphics are offered by package ggExtra with func-
tion ggMarginal().

Data Visualization in R and Python, First Edition. Marco Cremonini.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Cremonini/DataVisualization1e

http://www.wiley.com/go/Cremonini/DataVisualization1e
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We create a first simple example by defining a scatterplot with some style
elements and assigning it to variable p. For convenience, we omit the two bike
types with the lowest number of thefts and plot the number of thefts with respect
to the average value of stolen bikes for bike type. We add also shape as an aesthetic
to observe the effect on black and white support, as is the paper edition of the
book. Function scale_color_brewer() permits to select a color palette
among those defined by Color Brewer.

library(ggExtra)
library(ggthemes)

filter(bikesR, TYPE_OF_BICYCLE!="children's bike",
TYPE_OF_BICYCLE!='mountain bike') %>%

ggplot(aes(x= NUM , y= TOT_DMG/NUM)) +
geom_point(aes(color=TYPE_OF_BICYCLE, shape=TYPE_OF_BICYCLE),

alpha=0.8, size=3)+
scale_color_brewer(palette = 'Paired')+
labs(
x="Number of stolen bikes x month",
y="Average bike value",
color="Bike type", shape="Bike type"

) +
theme_hc() + theme(legend.position = "left") -> p

Following this, we specify the graphic type to add as marginal. We chose a
histogram with 20 bins. The first attribute is variable p1 with the scatterplot just
defined. As it could be seen from Figure 12.1, histograms on the axes show the
distribution of corresponding axis x and axis y values, shapes, when not too
cluttered, help to distinguish categories when colors are not clearly discernible.

ggMarginal(p,
type= "histogram",
fill= "lightblue",
xparams= list(bins=20))

12.1.2 Plots Alignment

In order to see the marginal variants with boxplots and density plots, we introduce
a new possibility to define the layout of the result that would permit to align
different plots in different ways. Several solutions exist for that feature, with
different degrees of difficulty. Previously, we already saw an example by using
packet patchwork, which is the easiest, but unfortunately does not support graph-
ical objects produced with ggMarginal and cannot be fine-tuned. We present one
of the most flexible solutions for plot alignment provided by package gridExtra.
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Figure 12.1 Marginal with scatterplot and histograms, bike thefts in Berlin
(2021–2022).

With gridExtra, it is possible to create complex layouts with different graphical
objects and images. Here, we use it in a simple way, just to vertically align
three plots: the one created in p1 and two variants. The main function is
grid.arrange(), which lets specify the number of rows (attribute nrow) and
columns (attribute ncol) of the grid. The creation of ggplot object p is identical
to the previous example and is omitted. Figure 12.2 shows the result.

library(gridExtra)

... -> p

p1 <- ggMarginal(p, type= "histogram",
fill= "lightblue",
xparams= list(bins=20))

p2 <- ggMarginal(p, type= "boxplot",)
p3 <- ggMarginal(p, type= "density")

grid.arrange(p1, p2, p3, ncol=1)

More elaborate alignments and the tuning of fine details, such as to have a single
legend, might require solutions that could be surprisingly overly complicated.
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Figure 12.2 Plots aligned in a vertical grid, marginals, bike thefts in Berlin (2021–2022).

12.1.3 Rug Plot

A rug plot is a kind of density plot that, instead of density curves, shows small seg-
ments, whose density represents the density of data points. It is not a particularly
relevant type of graphics, but its visual effect could be agreeable in some cases.

To create a rug plot, there exists function geom_rug(). Usage is simple and
rug plots could be added as marginals as we have seen in previous examples. In
the following example, we add some style options: we move the rug plot right-top
(attribute sides) and external with respect to the axes (attribute outside).
Function coord_cartesian() with attribute clip=’off’ adds a stylistic
variant by hiding the Cartesian axes. Like for the previous example, the creation
of ggplot object p is omitted, being the same as described in Figure 12.1. The result
is shown in Figure 12.3.

… -> p

p + geom_rug(length = unit(0.1, "npc"), sides="rt",
linewidth= 0.1, alpha= 1/2, outside= TRUE)+

coord_cartesian(clip = "off") +
theme(plot.margin = margin(1, 1, 1, 1, "cm"))

We change graphic type and present another variant, a little more imaginative.
We use hours of day as the variable for the y-axis, hence a categorical variable,
the number of stolen bikes for axis x, and bike types for color aesthetic, meaning
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Figure 12.3 Marginal with scatterplot and rug plots, bike thefts in Berlin (2021–2022).

that we will have a categorical scatterplot horizontally oriented. With function
pretty_breaks() of package scales, part of tidyverse, we could adapt ticks of
the x-axis (e.g. ticks every 10 units). In this case, the same would not be correct for
the y-axis too, because there we have hours, which should be exactly 24 for the day.
The pretty_breaks() function, instead, tries to adjust ticks and we would end
up with days of more or less than 24 hours. We add the rug plot as marginal for
the x-axis placed on top, move the legend to the bottom, and define a color palette
(Figure 12.4).
bike_types= c("ladies bike","men's bike","mountain bike")

filter(df_viz, TYPE_OF_BICYCLE %in% bike_types) %>%
ggplot(aes(x= NUM , y= START_HOUR)) +
geom_point(aes(color=TYPE_OF_BICYCLE), alpha=0.5, size=2.5)+
scale_color_viridis_d()+
scale_y_continuous(breaks = c(0,1,2,3,4,5,6,7,8,9,10,11,12,13,

14,15,16,17,18,19,20,21,22,23))+
scale_x_continuous(breaks = scales::pretty_breaks(n = 10))+
labs(
x="Number of stolen bikes", y="Hour of day", color="Bike type"

) +
geom_rug(aes(color=TYPE_OF_BICYCLE),

length = unit(0.1, "npc"),
outside = TRUE, sides = "t") +

coord_cartesian(clip = "off") +
theme_hc() + theme(legend.position = "bottom") +
theme(plot.margin = margin(1, 1, 1, 1, "cm"),

axis.text = element_text(size=8))



170 12 Marginals and Plots Alignment
H

o
u

r 
o

f 
d

a
y

Number of stolen bikes

Bike type Ladies bike Men’s bike Mountain bike

23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

0 20 40 60 80 100 120 140

Figure 12.4 Marginal with categorical scatterplot and rug plot, number of stolen bikes
in Berlin for hours and types of bikes (2021–2022).

12.2 Python: Seaborn

12.2.1 Subplots

With Python, we start from plot alignment, which requires the definition of
subplots. The technique is derived from matplotlib, not native to Seaborn. Again,
we omit the dataset read and column renaming. We aggregate for month and bike
type.

bikes2= bikes.groupby([bikes['DATE'].dt.month_name(),
'TYPE_OF_BICYCLE'])['DAMAGES'].\

agg(TOT_DMG= 'sum', NUM= 'count').\
reset_index()

We create two subplots, respectively, with a scatterplot and a boxplot, and
add few style elements. To do this, we need to define the number of subplots
(plt.subplots(1, 2,...)) and possibly their relative proportion; in this
case, the first will have a length three times the second (gridspec_kw=dict
(width_ratios=[3,1])). Variable ax is a vector whose elements ax[0] and
ax[1] correspond to the first and the second subplot.

sns.set_theme(style="white")

f, ax = plt.subplots(1, 2, figsize=(7, 4),
gridspec_kw= dict(width_ratios= [3,1]))
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Figure 12.5 Subplots, a scatter plot and a boxplot horizontally aligned, stolen bikes in
Berlin (2021/2022).

Now we can draw the two graphics corresponding to the subplots, respectively,
a scatterplot for the first one and a boxplot for the second.

The two subplots associated to ax[0] and ax[1] could be configured separately in
their elements, such as the limits of the scales and the visualization of the legend
(Figure 12.5).

sns.scatterplot(data= bikes2, y= "TOT_DMG",
x= "NUM", hue= "TYPE_OF_BICYCLE",
s=80, alpha=.6, legend=True,
palette="cubehelix", ax= ax[0])

sns.boxplot(data= bici2, y= "CREATED_AM", x= 'NUM',
palette="cubehelix", ax= ax[1])

# Style elements

ax[0].set(
xlim=(0, 2200), ylim=(0, 2.5e+06),
xlabel='Number of bikes (month)',
ylabel='Value (month)',

)
ax[0].legend()

ax[1].set(
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xlabel=' Number of bikes (month)',
ylabel=“

)
ax[1].yaxis.set_label_position("right")
ax[1].yaxis.tick_right()

# Despine subplots

for ax in ax.flat:
sns.despine(bottom=False, left=False, ax=ax)

f.tight_layout()

In this example, subplots are aligned horizontally. Now we want to have them
vertically aligned. The first attribute of plt.subplot()is associated to the
rows of the subplot grid, so we set it to 2. The second attribute is associated to
the columns of the subplot grid, 1 is the default and could be omitted. This time
we should specify the relative proportion between subplot heights, which in this
case will be that the second one should be three times the height of the second
(height_ratios=[1,3]). The remaining part is the same as the previous
example with ax[0] and ax[1] associated to the first and second subplots (the
same code is omitted). Figure 12.6 shows the result.
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Figure 12.6 Subplots, a scatter plot and a boxplot vertically aligned, stolen bikes in
Berlin (2021–2022).



12.2 Python: Seaborn 173

sns.set_theme(style="white")

f, ax = plt.subplots(2, figsize=(8, 4),
gridspec_kw= dict(height_ratios= [1,3]))

…
# Despine subplots

for ax in ax.flat:
sns.despine(bottom=False, left=True, top=True, right=True, ax=ax)

12.2.2 Marginals: Joint Plot

We consider marginals in Seaborn by still using data frame bikes2. Different from
ggplot, Seaborn natively implements marginals in two forms, respectively, called
Joint plot and Joint grid. We start with the first one and show a simple example.
The Seaborn function to use is sns.jointplot(). It works in a simplified way,
the marginal type of graphic is automatically selected according to a simple rule: if
the main graphic does not use attribute hue, then histograms are placed on axes as
marginals, otherwise, if the main graphics does use the hue attribute, then density
plots are placed on the axes.

We produce the joint plot with some style elements. Since we will use the hue
attribute, we expect to see density plots as marginals. The legend is placed with a
matplotlib directive (Figure 12.7).

sns.set_theme(style="ticks")

g= sns.jointplot(data= bici2, y= "TOT_DMG", x= "NUM",
hue= "TYPE_OF_BICYCLE",
ratio=3, alpha=0.7, palette='inferno',
s=100, kind= "scatter")

# limits of axes values
g.ax_marg_x.set_xlim(0, 2200)
g.ax_marg_y.set_ylim(0,2.5e+06)

g.ax_joint.legend_._visible= False
g.fig.legend(bbox_to_anchor= (1.0, 1.0), loc=1)
plt.ylabel("Bike values")
plt.xlabel("Number of stolen bikes")

12.2.3 Marginals: Joint Grid

The Joint grid is the extended version of the Joint plot, which specifies explicitly
the configuration. The logic is similar to what we have seen for facets, whose
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Figure 12.7 Joint plot with density plots as marginals, stolen bikes in Berlin
(2021–2022).

general approach combines functions FacetGrid() with map(), the first to
define general attributes and the facet grid, the second to associate to facets a
specific graphic type.

For Joint grid graphics, it exists a similar approach that combines three
functions:

● JointGrid() defines the grid for the main plot and the two marginals, and
possibly additional graphical elements associated to variables.

● plot_joint() defines the type for the main plot and optional elements.
● plot_marginals() defines the type for marginals and optional elements.

This way a fine-grained control of the graphic is granted. We use the joint grid
with a rug plot as marginals with function sns.rugplot(). Attribute ratio
controls the size proportion between the main plot and marginals. Figure 12.8
shows the result.
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Figure 12.8 Joint grid with scatterplot and rug plots as marginals, stolen bikes in Berlin
(2021–2022).

g= sns.JointGrid(data= bikes2,
y= "TOT_DMG", x= "NUM",
hue= "TYPE_OF_BICYCLE",
space=0, ratio=5)

# Main graphic
g.plot_joint(sns.scatterplot, s=80, alpha=.6,

legend=True, palette= 'inferno')

# Marginals
g.plot_marginals(sns.rugplot, height=1,

color="teal", alpha=.8)

# Optional element for axes



176 12 Marginals and Plots Alignment

g.ax_marg_x.set_xlim(0, 2200)
g.ax_marg_y.set_ylim(0, 2.5e+06)
g.set_axis_labels(xlabel='Number of stolen bikes',

ylabel='Bike values', fontsize=12)

g.ax_joint.legend_._visible= False
g.fig.legend(bbox_to_anchor=(1.0, 1.0), loc=1)
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13

Correlation Graphics and Cluster Maps

Correlation graphics are a family of graphics aimed at showing the possible
statistical correlation between variables. With respect to case studies discussed
in previous sections, for instance, we may want to know which is the correlation
between the hour of day or the month with bike thefts in Berlin. From the
statistical correlation index is then possible to analyze the possible cause–effect
relationship between two variables. For example, is it true that thefts happen more
frequently in certain hours of the day or in certain months? Intuitively we might
be tempted to answer positively, but intuition often fails us when correlation is
inquired and it is not rare to end up misleading pure chance with causality or imag-
ining a direct correlation between two events when instead they are correlated
with a third one (e.g., seasonal phenomena), somehow hidden or ignored.

Data science and statistics have a long history of mistakes of this sort, seeing cor-
relation where there is none because finding causes for an effect is a desire deeply
buried into the human nature or, sometimes, just the most convenient answer. For
this reason, when analyzing data, one should be conscious of this always looming
risk and proceed with extreme caution before stating the presence of causality.
Data visualization, as a language for communicating knowledge from data, could
also easily mislead an observer, either inadvertently or due to voluntary manipu-
lations, into the belief that a certain graphic demonstrates causation. It is almost
never the truth, a graphic is not meant to demonstrate causation, it just reflects
how data appear, not the reason why they appear that way. Finding meaning into
data, like establishing causality between events, is only the result of a correct and
insightful analysis, not of just a table with numerical values or a plot representing
them. This is one of the most important lessons to keep in mind.

In the Additional Online Material, section Correlation indexes, correlation analy-
sis, and normality test, a summary of the basic knowledge for correlation analysis is
presented. That section is not intended to replace basic statistical training, widely
available in print or online sources, just a short reminder of the importance of
those competencies. Many readers of this book would certainly have them.

Data Visualization in R and Python, First Edition. Marco Cremonini.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Cremonini/DataVisualization1e

http://www.wiley.com/go/Cremonini/DataVisualization1e
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Dataset

In this chapter, we make use again of data from Bicycle thefts in Berlin (trans.
Fahrraddiebstahl in Berlin) from the Municipality of Berlin, Germany, Berlin
Open Data, previously introduced.

13.1 R: ggplot

13.1.1 Cluster Map

We start with a graphic type that goes often under the name of cluster map and
represents an extension of traditional heatmaps, enhancing them with graphical
elements derived from clusterization methods, which are statistical methods
aimed at grouping observations based on similarity or correlation metrics. The
goal is to recognize which observations are more similar, with respect to a
statistical criterion, and divide the sample into clusters of observations that are
more alike with each other than with respect to all others. The information
provided is that observations in the same cluster have something in common,
which depends on the specific clusterization metric employed, more than what
they have in common with respect to observations not belonging to the cluster.

Ggplot (up to version ggplot2 3.4.1, at least) does not natively support cluster
maps, like instead, Seaborn does. Standard functionalities for R cluster maps are
available in package stats through function stats::heatmap(). In addition
to these base features, other custom solutions have been presented but, up to
now, none seems to have reached a sufficient maturity level to be considered a
reference solution. We will show examples with stats::heatmap(), which
as data requires a matrix with numerical values only. A matrix is a tabular
data representation, but it is not the same as a data frame, being a bare table
of values of same type with row and column names, nothing more. Function
stats::heatmap() creates a cluster map by using row and column names for
axes x and y, and matrix values for the color scale of tiles.

We use again data frame bikes and, this time, we need to bring them into wide
form. We choose column START_HOUR as values. We also add prefix h to hours
to avoid backticks in column names.

bikes_wide= pivot_wider(bikes, id_cols=MONTH_CREATED,
names_from =START_HOUR,
names_prefix='h',
values_from= NUM)

MONTH h0 h1 h2 h3 h4 h5 h6 …
1 January 29 13 11 11 6 16 35 …
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2 February 28 10 3 5 8 22 34 …
3 March 50 18 15 10 11 18 38 …
4 April 47 21 14 9 10 15 39 …
5 May 58 23 29 14 8 16 42 …
6 June 79 51 24 13 16 32 61 …
7 July 88 47 37 15 12 23 57 …
8 August 72 51 19 19 24 37 75 …
9 September 88 42 29 18 21 34 62 …

10 October 67 51 29 19 18 27 73 …
11 November 54 25 15 14 23 23 71 …
12 December 23 14 9 4 8 8 20 …

Now the data frame is in rectangular form and has no missing values, this is the
basis. Still, it is not sufficient, a matrix should have only values of same type, row
and column names, and function stats::heatmap() requires numerical val-
ues only. Data frame bikes_wide, instead, has the alphanumeric column MONTH
and has no row names. It should be further manipulated by transforming column
MONTH into row names, then it could be converted into a matrix.

bikes_matrix <- bikes_wide %>%
remove_rownames() %>%
column_to_rownames(var= 'MONTH')

bikes_matrix= as.matrix(bikes_matrix)

h0 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14 …
January 29 13 11 11 6 16 35 89 144 110 87 82 97 95 124 …
February 28 10 3 5 8 22 34 89 136 114 102 79 107 88 127 …
March 50 18 15 10 11 18 38 152 193 137 152 109 168 135 146 …
April 47 21 14 9 10 15 39 124 184 154 139 102 170 129 139 …
May 58 23 29 14 8 16 42 146 232 176 192 112 173 174 183 …
June 79 51 24 13 16 32 61 156 235 186 187 120 180 159 199 …
…

Matrix bikes_matrix is correctly organized and could now be used with function
stats::heatmap(), which is not a ggplot function, therefore it should be called
prefixingstats:: or explicitly loading the stats library. Attributescale selects if
values will be scaled (i.e., standardized) by row or by column, meaning that to each
value the minimum row or column value is subtracted, and the result divided by
the maximum row or column value.

Standardization with respect to a dimension (rows or columns) permits to show
relative variations of values with regard to the non-standardized dimension. For
example, if bike thefts are standardized (i.e., scaled) with respect to months, hence
by row, we highlight relative variations of thefts among hours of day, indepen-
dently from the seasonal variability of months. Vice versa, if bike thefts are scaled
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Figure 13.1 Cluster map, bike thefts in Berlin (2021–2022), values scaled by rows.

with respect to hours of day, hence by column, it is the relative variation of thefts
among months to be highlighted, independently from the variability among hours
of day.

Attribute margins control the visualization of values on the axes. In the
following example, we scale by row (scale=’row’), hence the color gradient is
communicating relative variation among hours of the day (Figure 13.1).

stats::heatmap(bikes_matrix,
scale= 'row', margins= c(2,0))

The result is not just a simple heatmap as seen before but has statistical infor-
mation about clusters of observations. The color scale communicates variations in
the number of thefts (dark is the highest, light is the lowest), but it is the graphical
element on the axes to inform us about clusters and how columns, in this case,
since we have scaled by row, have been reordered. Hours have been reordered by
respecting their similarity in terms of thefts along the whole year, for example,
from 16:00 to 19:00 (i.e., columns h16-h19) they are similar, same between 00:00
and 06:00 (i.e., columns h0-h6), and the graphic on top of the cluster map shows
the details. That type of graphics is called dendrogram and shows clusters at
different levels, with lower levels representing the more similar clusters. So, for
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instance, looking at the lowest level of the dendrogram on top side, hours 19:00
and 20:00 are very similar, so are 16:00 and 17:00; moving to the upper level,
we see that the two clusters 19:00 and 20:00 and 16:00 and 17:00 form a cluster
together, meaning they are similar but somehow less similar than the clusters
considered individually, moving up again we discover that the combination of
clusters 19:00 and 20:00/16:00 and 17:00 is similar to 18:00 but yet somehow less
so than the two separated. This is how a dendrogram is read, bottom-up.

The dendrogram on the left side shows clusters of rows (i.e., months) with the
same logic explained for columns. In this case, we could have hints about similarity
among months, but the color scale does not represent them. Let us try now to scale
by column (Figure 13.2).

colors <- colorRampPalette(cividis(9,
direction = -1))(25)

stats::heatmap(test, scale = "col",
margins = c(2,0), col=colors)

The color scale now shows relative variations of bike thefts among months (dark
is the highest, light is the lowest), with dendrograms having the same meaning as
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Figure 13.2 Cluster map, bike thefts in Berlin (2021–2022), values scaled by columns.



182 13 Correlation Graphics and Cluster Maps

described in the previous example. In this case, scaling by hours (i.e. columns),
differences among months look less marked than among hours of day shown in
Figure 13.1, however, winter months have visibly less thefts, then they rise in
spring, and in summer and autumn they do not exhibit large variability. Not truly
surprising as a conclusion, but so is statistics that often is necessary to state what
is common sense but in a methodologically sound way.

13.2 Python: Seaborn

13.2.1 Cluster Map

Cluster maps in Seaborn are natively supported as an extension of heatmaps
through function sns.clustermap(). The usage requires package scipy. Let
us consider the two base cases. Attribute standard_scale controls standard-
ization (i.e., scaling), which could be produced by row (standard_scale=0)
or by column (standard_scale=1). As already discussed in the previous
section, standardization with respect to one dimension allows showing relative
variation of values for the other dimension. The data frame used for function
sns.clustermap() has the same requirement of data frames for Seaborn
heatmaps, it should be in rectangular form, but should not be a matrix, as we have
seen for the R case. We omit the derivation of that data frame; the reader could refer
to the section about heatmaps (Chapter 11) for an example. In the first example,
we scale by column, hence the color gradient will show relative variations of bike
thefts with respect to months, independently from the hour of day (Figure 13.3).

import scipy

sns.set_theme(color_codes=True)

g= sns.clustermap(df_cluster, figsize= (7, 5),
cmap="Blues", standard_scale= 1)

ax= g.ax_heatmap
ax.set_xlabel("Hour")
ax.set_ylabel("")

With the second example, we scale by row, thus the color gradient will show
relative variation of bike thefts among hours, independently from months
(Figure 13.4).

g=sns.clustermap(df_cluster, figsize=(7, 5),
cmap="Blues", standard_scale=0)

ax = g.ax_heatmap
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Figure 13.3 Cluster map, stolen bikes in Berlin (2021–2022), scaled by columns.
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Figure 13.4 Cluster map, stolen bikes in Berlin (2021–2022), scaled by rows.
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ax.set_xlabel("Hour")
ax.set_ylabel("")

Except for few differences, results of Seaborn cluster map are equivalent to those
produced with R.

13.3 R: ggplot

13.3.1 Correlation Matrix

How to produce a correlation matrix in R is presented in the Additional Online
Material, section Correlation indexes, correlation analysis, and normality test,
which presents the basic information to correctly interpret the meaning of
correlation matrixes and correlation indexes, a knowledge that is necessary for
any linear correlation analysis. We forward the reader to that section, without
repeating explanations here.

13.4 Python: Seaborn

13.4.1 Correlation Matrix

Before introducing correlation matrixes for Python, and assuming as given the
basic knowledge about them (also in this case, the section of the Additional Online
Material is a suggested read), it should be clarified that what we will compute
are so-called Pearson correlation matrixes, which aim at measuring the linear
correlation degree between continuous variables having normal distribution.

In our case study, a correlation matrix is produced by correlating columns of a
data frame. The single computed values are called correlation indexes, and have
the following meaning:

● A positive value of the correlation index means that the two series of values (i.e.
two columns) are directly correlated (or positively correlated), namely they tend
to both increase or decrease.

● A negative value means that the two series are inversely correlated (or negatively
correlated), namely when one increases the other tends to decrease, and vice
versa.

● A correlation index is a value in the range [−1, +1], when the value is close to
+1 or −1, it means that the correlation, positive or negative, is strong, while for
values in the middle of the range, hence close to 0, the correlation is weak.

To compute the correlation index with respect to hours of bike thefts, we should
have the data frame in rectangular form with hours as columns and all columns
defined as numeric. The row index produced by the wide form transformation
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should be dropped and the column index should have no name. We use data frame
bikes_wide from the heatmap section of Chapter 11.

# The row index is dropped
bikes_corr= bikes_wide.reset_index(drop=True)

# The column index with no name
bikes_corr.rename_axis(None, axis=1, inplace=True)

0 1 2 3 4 5 6 17 18 19 20 21 22 23

0 29 13 11 11 6 16 35 … 168 207 139 142 69 65 53
1 28 10 3 5 8 22 34 … 168 217 140 135 76 64 49
2 50 18 15 10 11 18 38 … 240 357 250 203 108 95 58
3 47 21 14 9 10 15 39 … 230 329 252 205 118 124 75
4 58 23 29 14 8 16 42 … 277 425 303 304 189 157 105
5 79 51 24 13 16 32 61 … 281 448 317 341 211 195 146
6 88 47 37 15 12 23 57 … 250 411 278 324 218 206 173
7 72 51 19 19 24 37 75 … 317 429 371 339 212 215 131
8 88 42 29 18 21 34 62 … 327 473 383 371 222 184 123
9 67 51 29 19 18 27 73 … 319 452 379 334 204 202 130

10 54 25 15 14 23 23 71 … 335 427 306 263 136 127 79
11 23 14 9 4 8 8 20 … 144 163 150 119 72 46 31

With the data frame correctly configured, we can create the correlation matrix.
Correlation is among columns, therefore for N columns, the result will be a matrix
N×N; here we have 24 hours, and it results in a 24× 24 correlation matrix. The
function is the standard corr().

corrHour= bikes_corr.corr()

0 1 2 21 22 23

0 1.000000 0.889854 0.874354 … 0.957273 0.935459 0.938598
1 0.889854 1.000000 0.761488 … 0.919318 0.948467 0.923206
2 0.874354 0.761488 1.000000 … 0.888029 0.841235 0.884983
… … … … … … … …
21 0.957273 0.919318 0.888029 … 1.000000 0.976417 0.947220
22 0.935459 0.948467 0.841235 … 0.976417 1.000000 0.957711
23 0.938598 0.923206 0.884983 … 0.947220 0.957711 1.000000
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The typical feature of a correlation matrix is to always have the main diagonal
with all values equal to +1 (being a series perfectly correlated with itself) and to
be specular with respect to the diagonal (being the correlation between series1 and
series2 the same that between series2 and series1).

13.4.2 Diagonal Correlation Heatmap

With correlation matrixes, we need an appropriate visualization and Seaborn
comes to help with diagonal correlation heatmaps, a smart adaptation of heatmaps
that produces a triangular heatmap, because only half of a correlation matrix
is necessary, the other half being just its specular image. The following code
shows how to produce the diagonal correlation matrix with Seaborn function
sns.heatmap(). Inline comments guide the comprehension. Figure 13.5
shows the result.
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Figure 13.5 Diagonal correlation heatmap, stolen bikes in Berlin (2021–2022),
correlation among hours.
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sns.set(style="white", font_scale=0.7)

# Mask to omit the upper triangular half of the
# correlation matrix (values above the main diagonal)

mask= np.triu(np.ones_like(corrHour, dtype=bool))

# Divergent color palette

cmap= sns.diverging_palette(200, 20, as_cmap=True)

# Diagonal correlation heatmap, configured by setting the central
# value of the gradient with the approximate value of the
# mean of correlation indexes (0.7), manually calculated

g= sns.heatmap(corrHour, mask=mask, cmap=cmap, vmax=1.0,
center=0.7, square=True, linewidths=.5,
cbar_kws={"shrink": .5})

g.yaxis.set_tick_params(labelsize=8, rotation='auto')
g.set(xlabel='Hour of day', ylabel='Hour of day')

We repeat it by correlating months, rather than hours. Months are the rows of
the data frame bikes_corr previously produced, we need them as columns, so we
compute the transpose. Then we proceed in the same way just seen.

bikes_corrT= bikes_corr.T
corrMonth= bikes_corrT.corr()

0 1 2 9 10 11

0 1.000000 0.992954 0.949250 … 0.944543 0.973583 0.965773
1 0.992954 1.000000 0.967423 … 0.954703 0.978279 0.964437
2 0.949250 0.967423 1.000000 … 0.971824 0.976873 0.964857
… … … … … … … …

9 0.944543 0.954703 0.971824 … 1.000000 0.970778 0.964352
10 0.973583 0.978279 0.976873 … 0.970778 1.000000 0.984198
11 0.965773 0.964437 0.964857 … 0.964352 0.984198 1.000000

Now the correlation matrix is 12× 12 and we can produce the diagonal correla-
tion heatmap. Figure 13.6 shows the result, which still to improve a little, months
are shown from 0 to 11 and the ordering on the y-axis would be better if reversed,
just small tweaks.
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Figure 13.6 Diagonal correlation heatmap, stolen bikes in Berlin, correlation among
months.

mask= np.triu(np.ones_like(corrT, dtype=bool))

cmap= sns.diverging_palette(200, 20, as_cmap=True)

sns.heatmap(corrMonth, mask=mask, cmap=cmap, vmax=1.0,
center=0.94, square=True, linewidths=.5,
cbar_kws={"shrink": .5})

13.4.3 Scatterplot Heatmap

Seaborn offers another interesting visualization for correlation matrixes, again
as a smart variant of a traditional graphic. The idea is to use a scatterplot as a
heatmap to represent a correlation matrix and it takes the name of scatterplot
heatmap.

For the example, we use function relplot(), the general function for
facet-ready plots supporting scatterplots. The logic we want to realize is to
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mimic a heatmap, so it should look rectangular (not triangular like the diagonal
correlation heatmap) with scatterplot markers as heatmap tiles.

This graphic should be carefully crafted, being a peculiar adaptation of one type
of graphic to simulate another one, in order to obtain an eye-catching and partic-
ularly pleasant visual effect. Let us delve into the details. Being a scatterplot, the
reference format is the long form, not the wide one as for heatmaps, so we need
to transform the previous correlation matrix into long form. We use data frame
corrHour, with correlations among hours of day.

corrHour_Long= corrHour.stack().\
reset_index(name= "correlation")

level_0 level_1 correlation

0 0 0 1.000000
1 0 1 0.571533
2 0 2 0.512906
3 0 3 0.446323
4 0 4 0.279243
… … … …
571 23 19 0.555608
572 23 20 0.682778
573 23 21 0.731613
574 23 22 0.811389
575 23 23 1.000000

Combinations of values from columns level_0 and level_1 correspond to all
elements of the correlation matrix, while column correlation has correlation
indexes. With the data frame in this form, we could imitate the heatmap. Direc-
tive g.ax.invert_yaxis() lets inverting the ordering on axis y, so to have
the usual scales of Cartesian axes both increasing from the origin. Construct
for_artist in g.legend.legendHandles, at the end of the script, is
a little tweak that permits having markers in the legend with a colored border,
like in the graphic. The script presents some inline comments to guide the
comprehension. Figure 13.7 shows the result.
sns.set(style="white")

# Custom diverging color palette
ccolor=sns.diverging_palette(20, 220, l=55, s=90, center="light",

n=4, as_cmap=True)
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Figure 13.7 Scatterplot heatmap, stolen bikes in Berlin (2021–2022), correlation
between hours (it is suggested to look at the colored version of this figure from the
Additional Online Material for an optimal view of the many hues).

# Draw scatterplot markers by changing their size
# edgecolor is the marker's border
g = sns.relplot(

data=corr_Long,
x="level_0", y="level_1", hue="correlation", size="correlation",
palette=ccolor, edgecolor="0.1",
height=8, sizes=(50, 250), size_norm=(.50, 1.0),

)

# Invert y axis
g.ax.invert_yaxis()

# Style options
g.set(xlabel="", ylabel="", aspect="equal")
g.despine(left=True, bottom=True)
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g.ax.xaxis.set_ticks(np.arange(0, 23, 1))
g.ax.yaxis.set_ticks(np.arange(0, 23, 1))
g.ax.margins(.02)

# Set border in legend keys like in scatterplot markers
for artist in g.legend.legendHandles:

artist.set_edgecolor(".1")
g.tight_layout()
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Part II

Interactive Graphics with Altair

With Altair, a Python-based graphical library, we enter into the realm of interactive
graphics with graphics that take the form of HTML or JSON objects (other formats
are available). We will still see some static graphics, similar to those presented
in Part 1 of the book, because we need them as building blocks for interactive
ones, however, the main interest now is not specifically on them but on the logic
and mechanisms supporting the interactivity of those visual objects with actions
performed by the observer. Hence, graphics become responsive to user’s choices,
they dynamically adapt through user’s inputs, which may take different forms like
mouse clicks and hovering, or gestures on the touchpad/touchscreen.

This novelty is not a small improvement over static graphics; instead, it is a true
change of perspective. While static graphics still have roots in traditional schemas
and diagrams, for some, those roots may look distant. Interactive graphics, being
reactive and dynamic, cater to the web and offer a completely different user expe-
rience. It is no longer just a visual language for communicating information to
passive observers, but an interactive association between visual objects and active
observers involving actions and responses that should be imagined, designed, and
developed since the beginning of a data visualization project. Interactivity is not
just an add-on to static objects; it is the nature of these dynamic visual objects.
Another important difference is that with interactive graphics, the connection
with a print representation no longer exists, or it is extremely weak. On paper, we
could only reproduce some screenshots of an interactive graphic, a poor approx-
imation of the real experience. This difference, again, should not be minimized,
they truly are artifacts for digital consumption, not for paper. Hence, by consider-
ing Altair is not just an exercise in learning another fancy graphical tool, but it is

Data Visualization in R and Python, First Edition. Marco Cremonini.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Cremonini/DataVisualization1e

http://www.wiley.com/go/Cremonini/DataVisualization1e
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the means to enter a new dimension of data visualization, with a different context,
relation with observers, and mode of thinking about visual objects.

More specifically, Altair is an evolved front end of Vega-Lite (https://vega.github
.io/vega-lite/), a well-known library for interactive graphics with a syntax based
on the grammar of graphics and JSON format. Being a front end, Altair masks the
specifics of Vega-Lite with its own syntax, which is intuitive and should look famil-
iar to the readers of this book. Sometimes it happens that some typical features
of Vega-Lite become visible, but they are limited cases. In general, the graphical
quality of Altair is excellent, and it adopts a clear and clean logic for produc-
ing the graphics and the associated interactive actions, a remarkable legacy from
Vega-Lite.

https://vega.github.io/vega-lite/
https://vega.github.io/vega-lite/
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Dataset

Tourist/visitor arrivals and tourism expenditure, Open Data United Nations (http://
data.un.org/). Tourist arrivals and expenditure for different countries and years.

Copyright: “All data and metadata provided on UNdata’s website are available
free of charge and may be copied freely, duplicated, and further distributed pro-
vided that UNdata is cited as the reference.” (Terms and Conditions of use, http://
data.un.org/Host.aspx?Content=UNdataUse).

Standard country or area codes for statistical use (M49) from the Statistics Divi-
sion of the United Nations. Official denominations, codes, and information of
countries (https://unstats.un.org/unsd/methodology/m49/overview/).

Copyright: Public domain
Crime at Sea: A Global Database of Maritime Pirate Attacks (1993–2020). Data

regarding pirate attacks on sea between January 1993 and December 2020.
Source: Benden, P., Feng, A., Howell, C., & Dalla Riva, G. V. (2021). «Crime at

Sea: A Global Database of Maritime Pirate Attacks (1993–2020)». Journal of Open
Humanities Data, 7, 19. DOI: http://doi.org/10.5334/johd.39

Copyright: Creative Commons Attribution-ShareAlike 4.0 International License
(CC BY-SA 4.0). (https://openhumanitiesdata.metajnl.com/article/10.5334/johd
.39/, https://creativecommons.org/licenses/by-sa/4.0/)

Goods loaded worldwide from the United Nations Conference on Trade and
Development (UNCTAD STAT). Data on products shipped on sea (billions of
tons) (Handbook of Statistics 2022) (https://unctadstat.unctad.org/EN/Index
.html).

Copyright: Creative Commons Attribution 3.0 IGO (CC BY 3.0 IGO) (https://
unctadstat.unctad.org/UnctadStatMetadata/Documentation/UNCTAD_Creative
CommonsLicense3.0_IGO_EN.pdf, https://creativecommons.org/licenses/by/3.0/
igo/)

Data Visualization in R and Python, First Edition. Marco Cremonini.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Cremonini/DataVisualization1e

http://data.un.org/
http://data.un.org/
http://data.un.org/Host.aspx?Content=UNdataUse
http://data.un.org/Host.aspx?Content=UNdataUse
https://unstats.un.org/unsd/methodology/m49/overview/
http://doi.org/10.5334/johd.39
https://openhumanitiesdata.metajnl.com/article/10.5334/johd.39/
https://openhumanitiesdata.metajnl.com/article/10.5334/johd.39/
https://creativecommons.org/licenses/by-sa/4.0/
https://unctadstat.unctad.org/EN/Index.html
https://unctadstat.unctad.org/EN/Index.html
http://www.wiley.com/go/Cremonini/DataVisualization1e
https://unctadstat.unctad.org/UnctadStatMetadata/Documentation/UNCTAD_CreativeCommonsLicense3.0_IGO_EN.pdf, https://creativecommons.org/licenses/by/3.0/igo/
https://unctadstat.unctad.org/UnctadStatMetadata/Documentation/UNCTAD_CreativeCommonsLicense3.0_IGO_EN.pdf, https://creativecommons.org/licenses/by/3.0/igo/
https://unctadstat.unctad.org/UnctadStatMetadata/Documentation/UNCTAD_CreativeCommonsLicense3.0_IGO_EN.pdf, https://creativecommons.org/licenses/by/3.0/igo/
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2007 – 2022 Point-in-Time Estimates by State, from the US Department of Hous-
ing and Urban Development. Data regarding the number of homeless persons at
national and state level, from year 2007 and 2022 (https://www.hudexchange.info/
resource/3031/pit-and-hic-data-since-2007/).

Copyright: CC0 1.0 Universal (CC0 1.0) Public Domain Dedication. (https://
www.hudexchange.info/about/, https://creativecommons.org/publicdomain/
zero/1.0/)

14.1 Scatterplots

We start from the fundamental graph type for continuous variables, the scatterplot,
and its important variant the line plot, which Altair obviously supports, as well as
many other graphic types that a modern data visualization library is expected to
offer.

An important technical aspect of Altair to know immediately is that there is a
standard limitation on the amount of local data that could be used. The default
threshold limits datasets to 5000 at most. The threshold is configurable and could
be changed, but it is important to understand the reason for such a limitation,
apparently incomprehensible if one comes from experiencing with static graphic
libraries like ggplot and Seaborn. 5000 rows for a dataset means a small dataset,
open data could easily have tens of thousands of rows, and datasets in the order
of millions of rows are not unusual at all. So why is there that low threshold in
Altair?

The reason is in the interactive nature of the Altair graphics. A static graphic is
just an image, there is no data in there. But an interactive data is a dynamic object
that should reconfigure itself when the observer interacts with it, and to do that
it has to have the data. So, if the data are local, it means they are stored inside the
Altair object, which also means that the more the data, the larger the size of the
Altair object, HTML or JSON, and the more difficult is to store, access, or transmit
it. We will see an example later in the chapter. This is why it is convenient to put
a threshold on local data, which could be changed if you wish, but being aware
of the possible consequences. There is an alternative, of course, larger datasets
should be remotely accessed by an Altair object, rather than storing all data as local
data. This is the suggested solution: put the data on an online accessible location
and configure the URL. It could be GitHub, an online repository, or something
else of your own and you can use even the largest datasets with Altair. In the
examples, we use the simplest solution of reading data locally, the official Altair

https://www.hudexchange.info/resource/3031/pit-and-hic-data-since-2007/
https://www.hudexchange.info/resource/3031/pit-and-hic-data-since-2007/
https://www.hudexchange.info/about/
https://www.hudexchange.info/about/
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
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documentation provides information for changing the default threshold and for
configuring a remote access to data.

14.1.1 Static Graphics

We make use of dataset Tourist/visitor arrivals and tourism expenditure from the
United Nations (UN). Colum Value adopts comma as thousand separators, there-
fore, to read it correctly, attribute thousands has to be specified because the
default is to have no separator and values would be interpreted as alphanumeric.
import numpy as np
import pandas as pd
import altair as alt

df= pd.read_csv("datasets/
UN/SYB65_176_202209_Tourist-Visitors Arrival and Expenditure.csv",
thousands=',')

Region/
Country/
Area Country Year Series

Tourism
arrivals
series type Value

0 4 Afghanistan 2010 Tourism expenditure NaN 147
1 4 Afghanistan 2018 Tourism expenditure NaN 50
2 4 Afghanistan 2019 Tourism expenditure NaN 85
3 4 Afghanistan 2020 Tourism expenditure NaN 75
4 8 Albania 2010 Tourist/visitor arrivals TF 2191
… … … … … … …

The data frame should be prepared for visualization as a scatterplot. Rows mix
two series, one for expenditures and the other for number of arrivals, we separate
them by transforming in wide form column Series to have a column as monetary
values (millions of dollars) and the other as number of tourists (thousands). Then,
we add a new column Per_capita_Exp(x1000) with the per capita expenditure for
tourists (thousands of dollars), which is a relative information that could be used to
compare the different countries, where absolute values would not have permitted
doing that.
df1= df.pivot(index= ['Country','Year'], columns= 'Series',

values= 'Value').reset_index()

df1.columns= ['Country','Year','Expenditure','Arrivals']
df1["Per_capita_Exp(x1000)"]= (df1.Expenditure/df1.Arrivals).round(3)
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Country Year Expenditure Arrivals
Per_capita_Exp
(x1000)

0 Afghanistan 2010 147.0 NaN NaN
1 Afghanistan 2018 50.0 NaN NaN
2 Afghanistan 2019 85.0 NaN NaN
3 Afghanistan 2020 75.0 NaN NaN
4 Albania 1995 70.0 NaN NaN
… … … … … …
1229 Zimbabwe 2005 99.0 1559.0 0.064
1230 Zimbabwe 2010 135.0 2239.0 0.060
1231 Zimbabwe 2018 191.0 2580.0 0.074
1232 Zimbabwe 2019 285.0 2294.0 0.124
1233 Zimbabwe 2020 66.0 639.0 0.103

First, we omit rows with missing values in expenditures or arrivals, which are
of no interest for the graphic. Easier would have been to omit those with miss-
ing values in the per capita expenditure column, but a little reminder about the
composition of logical conditions could be useful.
df2= df1[ ∼((df1.Expenditure.isna()) | (df1.Arrivals.isna())) ]

Now, we create the scatterplot and add some style options for the axes, the leg-
end, the color palette, the theme, etc. Variables in Altair could be annotated with
their type, either in the extended form by using attribute type or in the compact
form with a capital letter indicating the type, Q for quantitative, meaning numeri-
cal variables, O for ordinal, meaning categorical variables and others that we will
see. It is not always needed to specify the data type, here we use it for complete-
ness. From the following example, a reader could try to selectively remove the data
type specification in order to learn where it was not necessary and where, instead,
it would change the result when not specified.

Let us consider one element at time starting with the general definition of an
Altair graphic with function alt.Chart(). The data frame is the first attribute,
df2 in our case. To draw a parallel with ggplot, this operation is the equivalent of
the ggplot() function.

Now, we should define the specific type of graphic we wish to produce. In this
case, it is a scatterplot, so we use function mark_circle(), applied to the Altair
chart object previously created, then we could specify the characteristics of the
markers, such as their size (attribute size) or transparency (attribute opacity).

The specification of graphical elements, such as the marker characteristics,
could be done in different ways. It could be local to the specific function
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(e.g., mark_circle()), in this case, is applied only to the markers produced
by that function, it could be global, meaning valid for all graphical elements,
when applied to the chart object (e.g., p1.configure_mark(opacity=0.5,
size=80)), or could be in the encoding, which we will introduce soon (e.g.,
opacity=alt.value(0.5), size= alt.value(80)). Here, we specify
size and opacity locally.

p1 = alt.Chart(df2)
p1.mark_circle(size=80, opacity=0.7)

The two instructions could have been concatenated as well.

alt.Chart(df2).mark_circle(size=80, opacity=0.7)

We consider now, the encoding, defined with function encode(), which
represents the general way to define properties for graphical elements such as the
variables for the Cartesian axes, color, size, etc. (in other terms, properties of the
aesthetics of the grammar of graphics). In the encoding, we specify the variables
for axes x and y with their attributes (x and y) and data type (functions X() and
Y()), titles (in function Axes() with attributes axis and title), and padding
(in function Scale() with attributes scale and padding). For the data types,
we show both the compact form (e.g., ’Arrivals:Q’) and the extended form
(e.g., ’Expenditure’, type=’quantitative’).

alt.Chart(df2).mark_circle(size=80, opacity=0.7).encode(

# For axes x and y we define a title, for axis y the padding,
# meaning the distance of markers from the axis

x= alt.X('Arrivals:Q',
axis= alt.Axis(title='Arrivals (thousands)')),

y= alt.Y('Expenditure',
type= 'quantitative',
axis= alt.Axis(title='Expenditure (millions $)'),
scale= alt.Scale(padding=1)),

Finally, we add a third variable (Year) associated to the color aesthetic (attribute
color and function Color()); to specify a color palette we use again function
Scale(); the legend is placed on top of the graphic with attribute legend and
function Legend(). With knowledge of ggplot acquired in Part 1 of this book, the
Altair syntax should look familiar. Figure 14.1 shows the Altair scatterplot for this
example.

color= alt.Color('Year:O',
scale= alt.Scale(scheme='viridis'),
legend= alt.Legend(title="Years", orient="top")))
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Figure 14.1 Altair, scatterplot with color aesthetic and style options.

In general, Altair produces graphics of excellent quality that can be exported
into different formats: PNG/JPG, SVG, HTML, and JSON.

14.1.1.1 JSON Format: Data Organization
Let us delve into some details by saving the previous plot as a JSON file and
looking at its content. The following excerpt of code is the beginning of the
JSON data structure. JSON follows the Python dictionary specifications, keys
mark and type with value circle could be seen, corresponding to Altair function
mark_circle(), followed by local attributes opacity and size, then encoding
and so on. It is the JSON equivalent of the Altair script.

"mark": {
"type": "circle",
"opacity": 0.7,
"size": 80
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},
"encoding": {

"color": {
"field": "Year",
"legend": {

"orient": "top",
"title": "Years"

},

But, if we move down in the JSON structure, we find something else.

"datasets": {
"data-afce4904be12f430c4cee42cfa3e79c6": [

{
"Country": "Albania",
"Year": 2010,
"Expenditure": 1778,
"Arrivals": 2191,
"Per_capita_Exp(x1000)": 0.812

},
{

"Country": "Albania",
"Year": 2018,
"Expenditure": 2306,
"Arrivals": 5340,
"Per_capita_Exp(x1000)": 0.432

},
…

This is the full data frame used for plotting the graphic, which, as said before,
when accessed locally, is stored within the Altair object. And the same happens
if we produce an interactive graphic in HTML format, inside it has the full data
frame, if read locally. This should convince everyone that having a limitation on
the size of data to be accessed locally is a wise choice, configurable at will, but
being aware of the possible consequences.

14.1.1.2 Plot Alignment and Variable Types
We consider how the result may change by specifying different data types for a
variable. We use variable Year, associated to the color aesthetic, and add some new
features: how to align more Altair graphics and how to specify their width and
height. In particular, we will see:

● Horizontal alignment by using functionalt.hconcat() and for vertical align-
ment function alt.vconcat().



202 14 Altair Interactive Plots

● Width and height specification with method and attributes properties
(width= , height= ).

● The definition of a base graphic and the following instantiation into different
plots.

We start by assigning the Altair graphic to object base, without fully speci-
fying the graphics but just the common characteristics of graphics that will be
instantiated from it.
base= alt.Chart(df2).mark_circle(size=80, opacity=0.7).encode(

x= alt.X('Arrivals:Q',
axis= alt.Axis(title='Arrivals (thousands)')),

y= alt.Y('Expenditure',
type='quantitative',
axis= alt.Axis(title='Expenditure (millions $)'))

# Setting width and height

).properties(
width=150,
height=150

)

At this point, the graphic is represented by object base and not visualized yet.
Now, we use base to define three different graphics, each one with a different fea-
ture, which, in this case, will be a different data type for variable Year associated
to markers color (i.e., quantitative (Q), ordinal (O), nominal (N), corresponding to
numerical, categorical, and alphanumerical). Finally, we will visualize the three
graphics horizontally aligned in Figure 14.2.
# Horizontal alignment

alt.hconcat(
base.encode(color='Year:Q').properties(title='quantitative'),
base.encode(color='Year:O').properties(title='ordinal'),
base.encode(color='Year:N').properties(title='nominal')

)

As it is evident from the results, by changing the data type associated to the
color aesthetic, the color palette automatically changes to adapt to the specific data
type. It is a continuous palette when data are numerical, a discrete palette with
sequential gradient when categorical, and a discrete palette when alphanumerical.

14.1.2 Facets

We introduce facets. For a visualization by facets, as we already know, we
should specify a variable whose unique values will be associated to facets. In our
example, we use Year. We also change graphical function from mark_circle()
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Figure 14.2 Altair, horizontal alignments of plots and differences from assigning
different data types to variable Year.

to mark_point(), it is still a scatterplot but the marker’s shape changes, from
dots to rings. With method facet we specify variable Year and the grid of facets,
in this case with three columns, using attribute columns (to specify the number
of rows, there is attribute rows). Figure 14.3 shows the result.

alt.Chart(df2
).mark_point(

size=40,
opacity=0.5

).encode(
x= 'Arrivals:Q',
y= 'Expenditure:Q'

).properties(
width=150,
height=150

).facet(
facet= 'Year:O',
columns=3 )
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14.1.3 Interactive Graphics

We have seen a few examples of static graphics with basic elements and options.
Others will be presented in the following examples, now it is time to move to the
real deal of the Altair library: interactive graphics.

14.1.3.1 Dynamic Tooltips
We return to the first example and add to it the first interactive element: the
dynamic tooltip, which is a box with a content that pops up when the mouse
pointer hovers on a marker or other elements associated to dynamic tooltips
(usually there is a difference between tooltip and popup, the former appears when
the mouse hovers on the graphical element, the latter requires the user to click
on the element, therefore, these Altair objects are correctly named tooltips).

Information shown in the tooltip is configurable based on data frame variables.
In the example, for each marker, we want to show the country name and the per
capita tourist expenditure. Tooltips are another aesthetic of Altair graphics, so their
configuration is easily done in the encoding with attribute tooltip associated to
the list of variables whose values will be shown in the tooltip. Figure 14.4a and
Figure 14.4b shows two screenshots with different tooltips.

alt.Chart(df2).mark_point(size=80, opacity=0.7).encode(
x= alt.X('Arrivals',

axis= alt.Axis(title='Arrivals (thousands)')),
y= alt.Y('Expenditure',

axis= alt.Axis(title='Expenditure (millions $)')),
color= alt.Color('Year:O', scale= alt.Scale(scheme='viridis')),

# Tooltip specification

tooltip= ['Country:N','Per_capita_Exp(x1000)']
)

This is the first example of an interactive graphic, whose presentation on paper
or in static formats cannot be complete; only a few screenshots can be shown. In all
cases, screenshots presented in this book have been selected to be informative for
the reader to grasp the real functionality. However, for a better and more com-
plete experience with interactive graphics, all interactive graphics are available
in the HTML version in the Additional Online Material. To visualize these, you
need a JavaScript front end, such as notebook environments like Jupyter Lab or
Zeppelin with an active web connection (https://altair-viz.github.io/user_guide/
display_frontends.html) or they can be imported into web dashboards (more on
this in Part 3 of the book).

https://altair-viz.github.io/user_guide/display_frontends.html
https://altair-viz.github.io/user_guide/display_frontends.html
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Figure 14.4 (a) Dynamic tooltip (example 1). (b) Dynamic tooltip (example 2).
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14.1.3.2 Interactive Legend
We add the interactive legend, where every key of the legend is an active element,
whose selection modifies the graphic visualization. In the following example, a user
needs to click on a legend key (i.e. a year) and only scatterplot markers correspond-
ing to that year will be visualized. To start, the operation of selecting values of
variable Year from the legend should be defined. In practice, those legend elements
will be turned into radio buttons, the typical widget of graphical interfaces that
shows a list of choices with a button associated where only one of those buttons
could be selected. In our case, the selection of a single key on the legend should
correspond to a selection of all markers related to that key. For instance, if we select
year 2010 on the legend, all markers referring to year 2010 should be selected. For
this reason, we need a method able to select multiple elements on the graphic,
it is provided by function alt.selection_point() (see the following Note),
which implements a selection operation of data points with attribute fields and
should be connected to the legend through attribute bind=’legend’.

selection= alt.selection_point(fields=['Year'], bind='legend')

Note

For the examples, we use the new methods from Altair 4, which has depre-
cated some previous methods. Specifically, alt.selection_multi() and
alt.selection_single() have been superseded by alt.selection_
point(); alt.selection(type=’interval’) is to be replaced
by alt.selection_interval(); and add_selection() by add_
params().

The older versions still work, but being deprecated, they will stop being
supported in future releases of Altair. However, since many examples of Altair
scripts that could be found are based on the older functions, it is worth know-
ing that they could be easily adapted to the new syntax.

We have defined the selection criteria and associated it to the legend. Now, we
need to specify the graphic and the dynamic actions that will modify it according
to the selection on the legend. The action represents what should be done after
a selection is performed, for example, if we select year 2012 on the legend, what
should happen on the graphic? In our case, we want that all markers relative to
year 2012 stay visible as originally were, and all other markers become invisible or
shaded somehow. Then, for markers of the selected year, we are not going to do
anything; they are fine as they are. We need to modify the others. The easiest way is
to twist the transparency, making them more faded or completely transparent, or
to manage colors, for example changing the hue into a neutral, inconspicuous tone
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like pale gray or the like. Here, we twist the transparency with attribute opacity.
For markers of the selected year, we keep the full colors, for markers of other years,
we set a high level of transparency. Technically, it is a condition logically equivalent
to an if-else construct, it has two possibilities, the first if the condition is true, and
the second if it is false. The Altair function isalt.condition(), the logical con-
dition is implemented by the selection criteria (variable selection), meaning that if
the year is selected on the legend, the two possibilities for true and false are the
different levels of transparency (i.e. alt.value(0.9), alt.value(0.1))).
opacity= alt.condition(selection, alt.value(0.9), alt.value(0.1))

This way, the aesthetic opacity in the encoding varies according to the selection
on the legend.

The second necessary step is to specify that an interactive selection (represented
by variable selection) is associated to the graphic, this is needed for every selection
operation. Method add_params(selection) should be used. Here is the full
script.
selection= alt.selection_point(fields=['Year'], bind='legend')

chart= alt.Chart(df2).mark_circle(size=80, opacity=0.7).encode(
x= alt.X('Arrivals',

axis= alt.Axis(title='Arrivals (thousands)')),
y= alt.Y('Expenditure',

axis= alt.Axis(title='Expenditure (millions $)')),
color= alt.Color('Year:O',

scale= alt.Scale(scheme='viridis')),
tooltip= ['Country:N','Per_capita_Exp(x1000)'],

opacity= alt.condition(selection, alt.value(0.9),
alt.value(0.1))

).add_params(
selection

)
chart.show()

The two screenshots, Figure 14.5a and Figure 14.5b show how the transparency
of different markers changes by changing the legend selection.

14.1.3.3 Dynamic Zoom
The dynamic zoom is another interactive element that lets zooming in and out on
the graphic and moving it with the mouse. It is the same common functionality
we are used to with online maps through the mouse or gestures on the touchpad,
scrolling activates the zoom, while clicking and moving shifts the graphic. With
an Altair graphic, it could be particularly useful to inspect details that at standard
zoom level are difficult to evaluate, such as when markers are very close or appear
overplotted. By zooming in or out, the scales are dynamically recalculated, so, for
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Figure 14.5 (a) Dynamic legend, year 2005. (b) Dynamic legend, year 2010.
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example, if the standard scale has thousands as units, by zooming in it is possi-
ble to look at details at scale of hundreds or tens. In the example, screenshots of
Figure 14.6a and Figure 14.6b show the two cases, the first has been zoomed in to
scales of tens of thousands for the arrivals, while in the second the scale is zoomed
out up to millions of tourist arrivals and the plot moved.

To add the dynamic zoom is very easy, it is done by simply specifying the method
interactive() with no attribute.
selection= alt.selection_point(fields=['Year'], bind='legend')

alt.Chart(df2).mark_point(…
).add_params(

selection

# Dynamic zoom
).interactive()

In the same way, the dynamic zoom is compatible with a visualization by facets.

14.1.3.4 Mouse Hovering and Contextual Change of Color
We have seen that with mouse hovering we can activate dynamic tooltips, but
we could do even more, for example, we could activate a contextual change of
color of the markers. Specifically, we want to highlight the marker over which the
mouse is positioned and, contextually, shade the others. We could also combine
this action with dynamic tooltips. The logic is similar to what we have seen with
the interactive legend, a certain action, here mouse hovering, should activate
a selection, in this case of a single marker, and the selection should be used in
the encoding to dynamically change an aesthetic of the graphic, again the color
of the markers. The difference with the case of the interactive legend is that in
function selection_point()the selection is associated to mouse hovering
with attribute on=’mouseover’. In the scatterplot definition, we still have the
aesthetic color associated to a condition (color=alt.condition()), in this
case, it is not the transparency to be modified but the hue of the markers, red for
the selected marker, gray for the others. Finally, the selection should be associated
to the graphic with method add_params(). The script shows the new elements,
and Figure 14.7 shows the result.

hover= alt.selection_point(on='mouseover',
nearest=True, empty=False)

alt.Chart(df2).mark_point(…

color= alt.condition(hover, alt.value('red'),
alt.value('gray'))

).add_params( selection
).interactive()
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(a)

(b)

Figure 14.6 (a) Dynamic zoom, zoom in. (b) Dynamic zoom, zoom out.
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Figure 14.7 Mouse hover, contextual change of color.

For this example, in the tooltip, the year is also present. The same could be done
for visualization by facets.

14.1.3.5 Drop-Down Menu and Radio Buttons
Drop-down menus and radio buttons are other two typical elements of interactive
interfaces that could be added to an Altair graphic as well. The first example has
a drop-down menu with a list of years to select. The logic now should be familiar
because it is similar to what we have seen previously, only the specific functions
and methods change.

Here, we start by defining the drop-down menu with function alt.binding_
select(), where attribute options specifies the list of selectable values and
attribute name corresponds to the data frame column name with corresponding
values (i.e. Years). As usual, this definition should be assigned to an object, here
input_dropdown. With the selection through the drop-down menu, we proceed
as in previous example by dynamically changing the graphic visualization, now
both modifying the transparency and the color aesthetics, so to combine the effects
already seen separately.
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input_dropdown= alt.binding_select(options=[1995,2005,2010,
2018,2019,2020],
name='Year')

For the selection, it uses attributefields to specify the data frame column with
data points to select, it corresponds to the same column used for the definition of
the drop-down menu (i.e. Year), and it is connected to the variable representing
the drop-down menu with attribute bind.

selection= alt.selection_point(fields=['Year'],
bind= input_dropdown)

The actions in the encoding part are similar to those already discussed before.
In the following, the full script is presented, and Figure 14.8 shows the result.
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Figure 14.8 Drop-down menu.
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# Drop-down menu definition
input_dropdown= alt.binding_select(options=[1995,2005,2010,

2018,2019,2020],
name='Year')

# Selection
selection= alt.selection_point(fields=['Year'],

bind= input_dropdown)

# Actions
change_color= alt.condition(selection,

alt.Color('Year:N', legend=None),
alt.value('lightgray'))

change_opacity= alt.condition(selection,
alt.value(1.0), alt.value(0.3))

# Graphic
alt.Chart(df2).mark_point(…

color= change_color,
opacity= change_opacity

).add_params( selection )

With radio buttons we proceed the same way, the only difference is the initial
definition, now of radio buttons with function alt.binding_radio().
Figure 14.9 shows the result.

input_dropdown= alt.binding_radio(options=[1995,2005,2010,
2018,2019,2020],
name='Year')

14.1.3.6 Selection with Brush
With selection through the brush mechanism, we increase the degree of complex-
ity and interactivity because now we have not just a graphic to dynamically adapt,
but also a table with textual values. The aim is to allow selection of a group of
markers on the graph and, contextually, show in the table only the values related
to those markers, the two objects, graphic and table should be coordinated in their
reconfigurations. We proceed step-by-step. First, we add the brush mechanism,
which consists of the possibility to draw a rectangle on the graphic and with
that to select all markers within. It is a selection, and the type is now an interval
(alt.selection_interval).

brush= alt.selection_interval()

Then, we define the graphic, still a scatterplot (mark_circle()) and add to
it the selection with brush (add_params()). This just gives us the brush
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Figure 14.9 Radio buttons.

mechanism on the graphic. We need now to synchronize the table with that
selection, meaning that the selection of data points operated with the brush
should correspond to a selection of rows on the data frame to visualize in the
table. We delve into the details step-by-step.

STEP 1. Variable ranked_text represents a table (mark_text()) composed by a
single column:

● Rows (axis y) are associated to row numbers (‘row_number:0’) but not visualized
(axis=None).

● Row numbers are dynamically modified (transform_window).
● Table values correspond to the data points selected with the brush on the graphic

(transform_filter).
● The number of visualized rows is limited for visualization purposes (less

than 15 in the example) with method transform_filter and function
datum.rank().
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STEP 2. This represents the encoding of table ranked_text and it should be
repeated as many times as the table columns to visualize (remember that each
table has just one column):

● Country, arrival, and expenditures are the three columns we want to show.
● For each one of them, its width (attribute witdh) is specified.

At this point, technically, we have three tables of one column each associated to
different data frame columns.

STEP 3. We specify the horizontal alignment of the three tables of one column,
so as to resemble a single table with three columns (function hconcat()) and
save in variable data.

STEP 4. Finally, we have object plot for the graphic and data with the table, what
is still missing is their visualization. We want them side-by-side, so again function
hconcat(). With resolve_legend() the legend position could be corrected,
but this is just a tiny detail.

Here is the full script and two screenshots in Figure 14.10a and Figure 14.10b.
# Selection with brush
brush= alt.selection_interval(type='interval')

# Scatterplot
plot= alt.Chart(df2).mark_circle(size=80, opacity=0.7).encode(

x= alt.X('Arrivals:Q',
axis= alt.Axis(title='Arrivals (thousands)')),

y= alt.Y('Expenditure',
type= 'quantitative',
axis= alt.Axis(title='Expenditure (millions $)')),

color= alt.Color('Year:O',
scale= alt.Scale(scheme='viridis'),
legend= alt.Legend(title="Years",

orient="top"))

).properties( width=300, height=300
).add_params( brush )

# Table definition
ranked_text= alt.Chart(df2).mark_text().encode(

y= alt.Y('row_number:O',axis=None)
).transform_window(

row_number= 'row_number()'
).transform_filter(

brush
).transform_window(

rank= 'rank(row_number)'
).transform_filter(

alt.datum.rank < 15
)
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# Encoding of columns
country= ranked_text.encode(text= 'Country:N'
).properties(width=150, title='Country')

arrivals= ranked_text.encode(text= 'Arrivals:N'
).properties(width=100, title='Arrivals')

expenditure= ranked_text.encode(text= 'Expenditure:N'
).properties(width=100, title='Expenditure')

# Table visualization
data= alt.hconcat(country, arrivals, expenditure)

# Graphic and table visualization
alt.hconcat(plot, data
).resolve_legend( color="independent" )

This type of interactive graphics is flexible and permits to produce interesting
visualization for every group of data points. For example, with brush, we can
select countries with a number of arrivals greater than a certain threshold or with
per capita expenditure less than another threshold and so forth and look at the
corresponding tabular values. Basically, it is a way to execute logical conditions
through gestures on the graphics. With different visualizations of the scatterplot
is also possible to implement other selection criteria.

There are limitations to consider, though. We could possibly want to add the
dynamic zoom, for example, in order to select through the brush at different
scales. It is a possibility that could be added to the script, but a problem would
arise. It is likely that the zoom mechanism will not function correctly because
the same gesture with the mouse or on the touchpad would likely be associated to
different actions: zooming in and out and defining the brush area. In that case, one
of the two should be remapped to a different gesture on the computer. A second
limitation is the table size because it is not dynamically adjusted to fit the actual
length of the shown text, but it is a static parameter in the script specification
or set by default. Therefore, a text larger than the preset column width will
overflow the table, with a loss of visualization quality. This aspect should be dealt
manually, either by configuring the column width larger than the largest textual
value or shortening too long textual values or both. An alternative is to visualize
the graphic and the table vertically aligned with function vconcat(), which
does not solve the problem by itself, but would give more space to enlarge the
table. In any case, tests are needed to find the right trade-off.

Another useful case study for the brush mechanism is to allow observing
the same selection of data points in two different graphics by synchronizing their
reconfiguration. It is an interesting possibility supported by Altair. The follow-
ing example shows this case. We have a base graphic (object plot) without the
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association of a variable to axis y and two conditions: one applied to aesthetic
color and the other to transparency, both dependent on brush selection. The logic
is similar to what we have previously seen, for selected markers the color and
transparency will remain unchanged, for the others they will change. This for the
base graphic. The next step is to instantiate two specific graphics, from the base
one (plot1 and plot2), each with a different variable associated to axis y. So, they
are different graphics. Finally, they should be synchronized to have that a brush
selection on one will produce a reconfiguration also of the other for the same data
points. The full script is presented, and screenshots are shown in Figure 14.11a and
Figure 14.11b.

# Brush definition
brush= alt.selection_interval()

# Base graphic, axis y is missing
plot= alt.Chart(df2).mark_circle(size=80).encode(

x= alt.X('Arrivals:Q',
axis= alt.Axis(title='Arrivals (thousands)')),

# Conditions on color and transparency
color= alt.condition(brush, 'Year:O', alt.value('lightblue'),

scale= alt.Scale(scheme='magma'),
legend= alt.Legend(title="Years",
orient="top")),

opacity= alt.condition(brush, alt.value(1.0), alt.value(0.3))

).properties(width=300,height=300
).add_params(brush)

# Graphics: plot1 has axis y associated to Expenditure
# plot2 has axis y associated to Per_capita_Exp(x1000)
plot1= plot.encode(

y= alt.Y('Expenditure:Q',
axis= alt.Axis(title='Expenditure (millions $)')),)

plot2= plot.encode(
y=alt.Y('Per_capita_Exp(x1000)',
axis= alt.Axis(title='Per_capita Expenditure (thousands)')),)

alt.hconcat(plot1, plot2)

14.1.3.7 Graphics as Legends
A curious possibility offered by Altair is to replace a legend with an interactive
graphic. We have already seen interactive legends, but the limitation is that
they work as radio buttons, so just one value could be selected. If we want the
possibility of a multiple selection, this ingenious workaround comes to help. The
logic is similar to what we have just seen, two graphics are synchronized so that
the selection on one automatically reconfigures also the second. Let us start by
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defining a multiple selection with selection_point() over values of data
frame column Year, followed by the usual condition to change markers color
based on the selection. We have already seen this.

selection= alt.selection_point(fields=['Year'])

change_color= alt.condition(selection,
alt.Color('Year:O', legend=None,

scale= alt.Scale(scheme='plasma')),
alt.value('lightgray'))

Now we need to define the main graphic and a second one acting and looking
like a legend. The main graphic is still our scatterplot with aesthetic color
associated to the selection. Instead, the graphic mimicking a legend could be
defined having a rectangular shape with mark_rect()and only axis y, with no
x (technically it is a heatmap with a single column). Axis y will be associated
to column Year and to the condition for changing colors. To this graphic is
also associated the selection, to reconfigure its colors too. The result is very
similar to an actual legend and allows for multiple selections (usually using the
uppercase key). This way, we may select all combinations of years. The full script
is presented, and screenshots are shown in Figure 14.12a and Figure 14.12b.

# Main graphic
plot= alt.Chart(df2).mark_point(size=80, opacity=0.7).encode(

x= alt.X('Arrivals',
axis= alt.Axis(title='Arrivals (thousands)')),

y= alt.Y('Expenditure',
axis= alt.Axis(title='Expenditure (millions $)')),

color= change_color,
tooltip= ['Country:N','Per_capita_Exp(x1000)']

)

# Second graphic as a legend, only axis y is defined
legend= alt.Chart(df2).mark_rect().encode(

y= alt.Y('Year:O', axis= alt.Axis(orient='right')),
color= change_color

).add_params(
selection )

# Visualization
plot | legend

To be noted how the two plots have been horizontally aligned. The notation
plot1 | plot2 corresponds to hconcat(plot1,plot2), whereas plot1
& plot2 corresponds to vconcat(plot1,plot2) for vertical alignment.
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14.2 Line Plots

14.2.1 Static Graphics

We see now line plots in Altair and the peculiar interactive actions that could be
introduced.

First, we use dataset UNSD – Methodology from the United Nations that contains
official denominations, codes, and geographical information.
country= pd.read_csv("datasets/UN/UNSD — Methodology.csv", sep=';')

Global
Code

Region
Name

Sub-region
Name

Country
or Area

M49
Code

ISO-alpha2
Code

ISO-alpha3
Code

0 1 Africa Northern Africa Algeria 12 DZ DZA
1 1 Africa Northern Africa Egypt 818 EG EGY
2 1 Africa Northern Africa Libya 434 LY LBY
3 1 Africa Northern Africa Morocco 504 MA MAR
4 1 Africa Northern Africa Sudan 729 SD SDN
… … … … … … … …

The data frame should be prepared for visualization. Data-wrangling operations
are presented in the Additional Online Material – Altair – Line plot: transforma-
tions. We want to show line plots regarding continents (column Region) with
respect to the mean per capita expenditure for tourist. We aggregate to obtain the
means and visualize.
df2_ext= df1_ext.groupby(['Region Name', 'Year'])\
[['Expenditure','Arrivals','Per_capita_Exp(x1000)']].mean().\

round(3).reset_index()

Region Name Year Expenditure Arrivals
Per_capita_Exp
(x1000)

0 Africa 1995 332.054 504.133 0.816
1 Africa 2005 713.625 951.638 0.760
2 Africa 2010 1051.854 1339.542 0.792
3 Africa 2018 1318.022 1857.538 0.961
4 Africa 2019 1371.114 2047.057 0.909
… … … … … …

The line plot is similar to the scatterplot, only the function to be called changes,
it is mark_line().
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alt.Chart(df2_ext).mark_line().encode(
x= alt.X('Year:O',

axis= alt.Axis(title='Year')),
y= alt.Y('Per_capita_Exp(x1000):Q',

axis= alt.Axis(title='Mean Per_capita Expenditure
(thousands)')),

color= alt.Color('Region Name:N',
scale= alt.Scale(scheme='magma'),
legend= alt.Legend(title="Regions", orient="bottom"))

).properties(width=300,height=300)

Previously, we have used standard pandas functions to aggregate values and
obtain the means, but the same could have been done directly in the Altair graphic
with attribute aggregate=’mean’. Here the script using the original df1_ext
data frame and aggregation in the Altair graphic.

alt.Chart(df1_ext).mark_line().encode(…

y= alt.Y(field='Per_capita_Exp(x1000)',
aggregate='mean',
type='quantitative',
axis=alt.Axis(title='Mean Per_capita Expenditure

(thousands $)')),
…

If we wish to show both the mean per capita expenditure and the total expen-
diture (aggregate=’sum’), the possibility to define them directly into Altair
would be handy. The following script presents them both together with the total
of arrivals. Figure 14.13 shows the plots aligned.

plot1= alt.Chart(df1_ext).mark_line().encode(
x= alt.X('Year:O', axis= alt.Axis(title='Year')),
y= alt.Y(field='Per_capita_Exp(x1000)', aggregate='mean',

type='quantitative',
axis= alt.Axis(title='Mean Per_capita Expenditure

(thousands $)')),
color= alt.Color('Region Name:N',

scale= alt.Scale(scheme='magma'),
legend= alt.Legend(title="Regions", orient="bottom"))

).properties(width=200, height=250)

plot2 = alt.Chart(df1_ext).mark_line().encode(
x= alt.X('Year:O', axis=alt.Axis(title='Year')),
y= alt.Y(field='Expenditure', aggregate='sum',

type='quantitative',
axis= alt.Axis(title='Total Expenditure (millions $)')),

color= alt.Color('Region Name:N',
scale= alt.Scale(scheme='magma'))

).properties(width=200, height=250)
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Figure 14.13 Line plots, mean per capita, total expenditure, and total arrivals.



228 14 Altair Interactive Plots

plot3= alt.Chart(df1_ext).mark_line().encode(
x= alt.X('Year:O', axis= alt.Axis(title='Year')),
y= alt.Y(field='Arrivals', aggregate='sum', type='quantitative',

axis= alt.Axis(title='Total Arrivals (thousands)')),
color= alt.Color('Region Name:N',

scale =alt.Scale(scheme='magma'))
).properties(width=200, height=250)

plot1 | plot2 | plot3

14.2.2 Interactive Graphics

14.2.2.1 Highlighted Lines with Mouse Hover
In the first example of interactive line plot, we add a simple visual effect: lines
are highlighted when the mouse hovers on them. The effect is simple but to
realize it, there are some subtleties to consider. The first is that the action is
not actually triggered by the lines, but by markers, with the same mechanism
of scatterplot examples already seen. This means that a scatterplot should be
introduced, together with the line plot, we just need to make it not visible to the
observer but detected by the mouse. Therefore, with functions mark_point or
mark_circle, we add a scatterplot that should be layered upon the line plot.
Here are the logical steps:

1. First, we define the selection criteria, the variable is called highlight and it is
associated to the mouse hover and data frame column Region Name.

2. Line plot and scatterplot should share the same axes definitions to be over-
lapped, for this reason we define a base plot with common elements that will be
instantiated into a line plot and a scatterplot, similarly to what we have already
done in previous examples.

3. Finally, the line plot and the scatterplot are instantiated from the base plot.

In order to better show the details of the technique, we create two graphics,
points1 and points0, which only differ for a single aspect: one has scatterplot
markers not visible, and in the other they are visible. Technically, in the first one,
the scatterplot is completely transparent (opacity=alt.value(0.0)) and
markers are filled with the background color (fill=‘white’), in the second, instead,
there is no transparency (opacity=alt.value(1.0)).

We also add an action to lines, whose size is an aesthetic and varies with respect
to the selection: when not selected (∼highlight) it is standard (alt.value(1)),
when selected it is thicker (alt.value(3)). A detail to note is that the logical
condition checks if the line is not selected. Logically, it could have been the
opposite, but there is a technicality to consider related to the initial value: when
no selection has been done, the first value is used, the one corresponding to True.
By checking if a line is not selected, the initial value is the standard thickness
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of size 1. The reader could try to invert the condition (i.e. (highlight,
alt.value(3), alt.value(1))) and, initially, she/he would see all lines
with thickness of size 3.

The overlapping of the two graphics is done with the plus symbol + (e.g. lines
+ points1). Therefore, with lines + points1, Altair first draws the lines,
then it overlays points to them. This is the reason to specify the size in the line plot
because it is created first. The opposite would be necessary if we reverse the order
(i.e. points1 + lines). The same we do for the second graphic with lines
+ points0, finally the two plots are aligned horizontally. The full script follows,
and Figure 14.14 shows the result.

# Selection associated to mouse hover

highlight= alt.selection_interval(on='mouseover',
fields=['Region Name'], nearest=True)

# Base plot, the specific graphic is not set

base= alt.Chart(df2_ext).encode(
x= alt.X('Year:O', axis= alt.Axis(title='Year')),
y= alt.Y('Per_capita_Exp(x1000):Q',

axis= alt.Axis(title='Mean Per_capita Expenditure
(thousands)')),

color= alt.Color('Region Name:N',
scale= alt.Scale(scheme='magma'),
legend= alt.Legend(title="Regions",

orient="right")))

# First scatterplot with visible points

points1= base.mark_point(fill='white').encode(
opacity= alt.value(1)

).add_params( highlight )

# Second scatterplot with invisible points

points0= base.mark_point().encode(
opacity= alt.value(0)

).add_params( highlight )

# Line plot
lines= base.mark_line().encode(

size= alt.condition(∼highlight, alt.value(1), alt.value(3))
).properties( width=300,height=300 )

# Plots overlapping and alignment

(lines + points1) | (lines + points0)



Figure 14.14 Line plots with mouse hover, Oceania’s line is highlighted (the mouse over is not visible in screenshots).
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14.2.2.2 Aligned Tooltips
We want to add dynamic tooltips to line plots. With scatterplots it was very easy, but
line plots present a new difficulty because the effect we want to obtain is not that
simple. We do not want to show the tooltip for just a single line, which actually
will only be a point on the overlapped scatterplot, which would be the same as
simply showing the scatterplot. What we want is to show all tooltips for all points
corresponding to a certain coordinate on the x-axis. For example, when the mouse
hovers over a point in Figure 14.14, let us say the one corresponding to year 2019
for Americas, we want to show all tooltips related to year 2019 for all regions, not
just Americas. That is more complicated and needs an ingenious solution.

As did before, we start by defining the selection criteria. The new idea is to select
a single marker of the scatterplot, that will be not visible to the observer (the scat-
terplot is fully transparent), associated to the coordinate on the x-axis, therefore
related to a specific value of Year. This is the basis to show all the other tooltips for
that coordinate. Then, we define the line plot as a static graphic.

# Selection criteria

selection= alt.selection_point(nearest=True,
on='mouseover',
fields=['Year'], empty=False)

# Line plot

line= alt.Chart(df2_ext).mark_line().encode(
x= alt.X('Year:O', axis =alt.Axis(title='Year')),
y= alt.Y('Per_capita_Exp(x1000):Q',
axis= alt.Axis(title='Mean Per_capita Expenditure

(thousands)')),
color= alt.Color('Region Name:N',

scale= alt.Scale(scheme='magma'),
legend= alt.Legend(title="Regions",
orient="right")))

Now comes the ingenious solution. The first scatterplot should be associated
only to the x-axis, with no y-axis defined, which would be a series of points
aligned horizontally on the x-axis (and invisible). To these points, we associate the
selection. In order to see the mechanism more clearly, it is possible to temporarily
make them visible by changing the transparency from 0 to 1.

points0= alt.Chart(df2_ext).mark_point().encode(
x='Year:O',
opacity= alt.value(0),

).add_params( selection )
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The second scatterplot has markers visualized for a better graphical effect. We
can add it by using the line plot definition with line.mark_point() and asso-
ciate to it a condition changing the transparency: when the mouse hovers on the
x coordinate (i.e. a certain year) there is no transparency and markers on the line
become visible, otherwise the transparency is full and markers are hidden.

points1= line.mark_point().encode(
opacity= alt.condition(selection,

alt.value(1), alt.value(0)))

We also want textual values to be shown representing the values of correspond-
ing markers when they become visible. Again, when the mouse hovers on one
marker, we want to show all values of points with same x coordinate. It is the same
mechanism used to show markers of the second scatterplot, so, again, the line plot
definition is used, now as line.mark_text(). Attributes align, dx, and dy,
adjust the text position with respect to the scatterplot points.
text= line.mark_text(align='right', dx=-5, dy=-7).encode(

text= alt.condition(selection,
'Per_capita_Exp(x1000):Q', alt.value(' ')))

The last graphical element we want to introduce to improve the readability is
a vertical line (function mark_rule()) corresponding to the x coordinate for
which points and textual values are visualized. This time, it does not depend on
the line plot but just on the x coordinate and the mouse hover. Function trans-
form_filter() is used with the selection to visualize this vertical line when
the selection is true.

rules= alt.Chart(df2_ext).mark_rule(color='gray').encode(
x='Year:O'

).transform_filter( selection )

We have all elements, this time the graphic has a degree of complexity clearly
higher than the previous cases because we should combine a line plot (object
line), a scatterplot with invisible points to activate the selection (object points0),
a second scatterplot with visible points and dynamic actions (object points1),
textual elements with a dynamic action (object text), and a vertical line with a
dynamic action (object rules). In order to combine them all in a single graphic,
we need to explicitly use layers, directly inherited from the grammar of graphics,
with function alt.layer().

alt.layer(
line, points0, points1, rules, text

).properties( width=300, height=500 )

The visual effect of this solution could vary from case to case. In particular, visu-
alizing the textual values is effective when the result is sufficiently separated to be
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clearly read. On the contrary, if lines of the line plot are too close to one another,
the textual labels will overlap, resulting in practically unreadable and the overall
effect will appear confused. Figure 14.15a and Figure 14.15b show two screenshots
for x coordinates that let textual labels to be read sufficiently well; that would not
be the case for years where lines are very close to each other.

Figure 14.15 (a) Line plot with mouse hover and coordinated visualization of all values
and the vertical segment for the corresponding year (example with year 2019). (b) Same
for year 2018.
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Figure 14.15 (Continued)

A possible alternative to this solution is to adopt facets, which could be kept
synchronized.

The solution is the same as the one just seen, except for an important detail:
in all plots, data are omitted in the definition of function alt.Chart()(e.g.,
line=alt.Chart().mark_line().encode(…)). Instead, they are defined
globally in facet specification, which will be concatenated with layers definition,
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as in the following excerpt of code. That way, we will have each region in a facet,
and for all of them the dynamic mechanisms will be replicated and synchronized,
as shown in Figure 14.16.

alt.layer(line, points0, points1, rules, text).facet(
column='Region Name', data=df2_ext)

14.3 Bar Plots

14.3.1 Static Graphics

After scatterplots and line plots, we consider bar plots, the typical graphic type
for categorical variables. As before, we start from the static definition followed
by interactive components. We will see some of the main aspects, for the full list,
we forward the reader to the Altair official documentation. As data, we will use
dataset Crime at Sea: A Global Database of Maritime Pirate Attacks (1993–2020).
df= pd.read_csv("datasets/Pirate_Attacks/pirate_attacks.csv")

date longitude latitude location_description
eez_
country vessel_name

1993-01-02 116.9667 19.700000 Hong Kong – Luzon –
Hainan

TWN Mv Cosmic
Leader

1993-01-04 116.0000 22.350000 Hong Kong – Luzon –
Hainan

CHN Mv Tricolor
Star III

1993-01-06 115.2500 19.670000 Hong Kong – Luzon –
Hainan

TWN Mv Arktis
Star

1993-01-08 124.5833 29.900000 East China Sea CHN Ussurijsk
1993-01-12 120.2667 18.133333 Hong Kong – Luzon –

Hainan
PHL Mv Chennai

Nermai

The data frame needs some transformations to be ready for visualization. We
aggregate data based on the number of attacks for year and month and execute a
few other simple data-wrangling operations.

df['date']= pd.to_datetime(df['date'], format='%Y-%m-%d')
df['Year']= df['date'].dt.year
df['Month']= df['date'].dt.month

df1= df.groupby(['Year',"Month"])[['date']].\
count().reset_index().\
rename(columns= {"date": "Attacks"})



4.5 Regions

Africa

Americas

Asia

Europe

Oceania

4.0

3.5

3.0

M
e
a
n
 p

e
r 

c
a
p
it
a
 e

x
p
e
n
d
it
u
re

 (
th

o
u
s
a
n
d
s
)

2.5

2.0

1.5

1.0

0.5

0.0

Year

0.792

1.188
0.978

1.244

1.558

1
9
9
5

2
0
0
5

2
0
1
0

2
0
1
8

2
0
1
9

2
0
2
0

Year Year

1
9
9
5

2
0
0
5

2
0
1
0

2
0
1
8

2
0
1
9

2
0
2
0

Region name

1
9
9
5

2
0
0
5

2
0
1
0

2
0
1
8

2
0
1
9

2
0
2
0

Year

1
9
9
5

2
0
0
5

2
0
1
0

2
0
1
8

2
0
1
9

2
0
2
0

Year

Africa Americas Asia Europe Oceania

1
9
9
5

2
0
0
5

2
0
1
0

2
0
1
8

2
0
1
9

2
0
2
0

Figure 14.16 Line plot with mouse hover and coordinated visualization in all facets for the corresponding year (example with year 2010).
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Year Month Attacks

0 1993 1 11
1 1993 2 13
2 1993 3 10
3 1993 4 13
4 1993 5 9
… … … …
331 2020 8 8
332 2020 9 8
333 2020 10 18
334 2020 11 24
335 2020 12 16

The Altair function for bar plots is mark_bar(). The following example
presents the number of pirate attacks during the years together with the arith-
metic mean, shown with a horizontal line (function mark.rule()) (see
Figure 14.17).

df2= df1.groupby('Year')[['Attacks']].sum().reset_index()

plot= alt.Chart(df2).mark_bar(fill='lightblue').encode(
x='Year:O',
y= alt.Y('Attacks:Q',
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Figure 14.17 (Left): Bar plot with segment for the arithmetic mean.
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axis= alt.Axis(title='Number of Pirate Attacks')))

stat= alt.Chart(df2).mark_rule(color='red', size=3).encode(
y= 'mean(Attacks):Q')

(plot + stat).properties(width=600)

As a second basic example, we use the original data frame df1 and native
Altair aggregation features (aggregate=’sum’), then we plot it horizontally
by exchanging the axes definition and add the information about the actual value
at the end of each bar using function mark_text(), associated to bar definition.
Attribute text has the sum of monthly attacks as value. Figure 14.18 shows the
result.
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Figure 14.18 (Right): Bar plot with horizontal orientation and annotations.
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bars= alt.Chart(df1).mark_bar(fill='teal').encode(
y= 'Year:O',
x= alt.X(field='Attacks',

aggregate='sum', type='quantitative',
axis= alt.Axis(title='Number of Pirate Attacks')),)

text= bars.mark_text( align='left', baseline='middle', dx=3
).encode( text='sum(Attacks)')

(bars + text).properties(height=450)

14.3.1.1 Diverging Bar Plot
Diverging bar plots are an important variant of traditional bar plots, with both pos-
itive and negative values that lead to the typical configuration of bars oriented in
opposite directions. To present this case, we need to build a data frame with posi-
tive and negative values; in our case, it could be done by calculating differences in
pirate attacks over consecutive years. Python function shift(1) permits to copy
the values of a column and shift them down one element. This way, with the excep-
tion of the first element, we will have, in two columns, the value of pirate attacks
for a certain month and year and beside the value of the previous month (column
lag), which makes it very convenient to calculate the difference for consecutive
months in another new column (diff in the example).

df1['lag'] = df1['Attacks'].shift(1)
df1['diff']= df1['lag']-df1['Attacks']

df1= df1.assign(Date = df1.Year.astype(str) + '-' +
df1.Month.astype(str))

df1['Date']= pd.to_datetime(df1.Date,format='%Y-%m')

Year Month Attacks lag diff Date

0 1993 1 11 NaN NaN 1993-01-01
1 1993 2 13 11.0 −2.0 1993-02-01
2 1993 3 10 13.0 3.0 1993-03-01
3 1993 4 13 10.0 −3.0 1993-04-01
4 1993 5 9 13.0 4.0 1993-05-01
… … … … … … …
331 2020 8 8 9.0 1.0 2020-08-01
332 2020 9 8 8.0 0.0 2020-09-01
333 2020 10 18 8.0 −10.0 2020-10-01
334 2020 11 24 18.0 −6.0 2020-11-01
335 2020 12 16 24.0 8.0 2020-12-01
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This way, we have obtained a column with positive and negative monthly vari-
ations. We could do the same for yearly variations, so as to have two time series to
visualize as diverging bar plots. We use different colors for positive and negative
values, in addition to the different orientations, which will be applied by means
of a logical condition, similar in logic to those already seen in previous examples.
Here there is a difference due to the fact that, logically, we should check whether
the value of column diff is greater than zero, but technically this condition requires
the alt.datum method to be executed (alt.datum.diff >= 0). The com-
plete script follows, and Figure 14.19 shows the diverging bar plot for both time
series.

# Data aggregation
temp= df1.groupby('Year')[['diff']].sum().reset_index()

# Diverging bar plot for monthly variations

plot1= alt.Chart(df1).mark_bar().encode(
x= alt.X('Date:T', axis= alt.Axis(title=None)),
y= alt.Y('diff:Q',

axis= alt.Axis(title='Difference in Number of
Pirate Attacks')),

color= alt.condition(alt.datum.diff >= 0,
alt.value("black"), alt.value("orange"))

).properties(height=200,width=800, title='Monthly variations')

# Diverging bar plot for yearly variations

plot2= alt.Chart(temp).mark_bar().encode(
x= alt.X('Year:O', axis= alt.Axis(title=None,

labels=False, ticks=True)),
y= alt.Y('diff:Q',

axis= alt.Axis(title='Difference in Number of
Pirate Attacks')),

color= alt.condition( alt.datum.diff >= 0,
alt.value("black"), alt.value("orange"))

).properties(height=200,width=800, title='Yearly variations')

# Vertical alignment
plot2 & plot1

14.3.1.2 Plots with Double Scale
A different variant, although not truly specific to bar plots, is the case of two differ-
ent plots overlapping, each one with its own scale. For the second graphic, we use
dataset Goods loaded worldwide, related to global maritime shipping, which we
want to confront with data about pirate attacks, in the not unreasonable hypothesis
that the two phenomena could be somehow correlated (remember, a visualization
does not demonstrate causation, at most, it could provide an initial hint for a more



20

15

10

5

0

D
iff

e
re

n
c
e
 i
n
 n

u
m

b
e
r 

o
f 
p
ir
a
te

 a
tt
a
c
k
s

D
iff

e
re

n
c
e
 i
n
 n

u
m

b
e
r 

o
f 
p
ir
a
te

 a
tt
a
c
k
s

Yearly variations

Monthly variations

–5

–10

–15

30

20

10

0

–10

–20

–30

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Figure 14.19 Diverging bar plots, pirate attacks, yearly and monthly variations.
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accurate analysis unless we have other contextual information). For goods loaded,
we use a line plot and an area plot with some style options for improving the visual
quality and readability.

trade= pd.read_csv("datasets/UN/HBS2022_5.1Fig1.csv")

Some data-wrangling operations are necessary to prepare the data frame, they
are simple.

trade= trade.iloc[0:26,:]
trade['Goods loaded']= pd.to_numeric(trade['Goods loaded']).round(3)
trade['Category']= pd.to_numeric(trade['Category'])
trade.columns= ['Year','Goods_loaded']

Year Goods_loaded

0 1996 4.758
1 1997 4.953
2 1998 5.631
3 1999 5.683
4 2000 5.984
5 2001 6.020
… … …
20 2016 10.247
21 2017 10.714
22 2018 11.019
23 2019 11.071
24 2020 10.645
25 2021 10.985

We are ready for the visualization. First the bar plot, we aggregate data for year
and define the plot (variable barplot). For goods loaded, instead, we use two graph-
ics for purely aesthetic reasons: a line plot (variable line, function mark_line())
and an area plot (variable area, function mark_area()).

Now, we need to have two independent scales on distinct y-axes for
the two data frames, we use function resolve_scale() with attribute
y=’independent’. As style options, we choose colors and transparency to
obtain an aesthetically pleasant and easily interpretable result when the plots are
overlapped. The full script follows, and Figure 14.20 shows the result (hint: the
hypothetical correlation between the two phenomena seems unsupported).
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# Aggregation
df2= df1.groupby('Year')[['Attacks']].sum().reset_index()

# Bar plot (pirate attacks)

barplot= alt.Chart(df2).mark_bar(color='gray').encode(
x= 'Year:O',
y= alt.Y('Attacks:Q',

axis= alt.Axis(title='Number of pirate attacks')))

# Line plot (goods loaded)

line= alt.Chart(trade).mark_line(color='orange', size=3).encode(
x= 'Year:O',
y= alt.Y('Goods_loaded:Q',

axis=alt.Axis(title='Goods loaded (Billions of tons)')))

# Area plot (goods loaded), based on the line plot definition

area= line.mark_area(color='teal', opacity=0.3)

# Line plot and area plot combined
arealine = (line + area)

# Full composition with independent scales
(barplot + arealine).resolve_scale(y='independent')

14.3.1.3 Stacked Bar Plots
With bar plots, it is possible to use a categorical variable and color differently
data belonging to different categories. Two are the typical layouts: stacked bar
plots (colored bars are on top one with the other to form a single composite bar
for each categorical value) and dodged bar plots (for each categorical value of
the Cartesian axis, there is a group of colored bars put beside). Altair supports
the stacked layout but, strangely, lacks the support for the dodged one. For this
reason, we show only the first case.

We still use the dataset about pirate attacks. It needs transformations to be pre-
pared for visualization; for space reasons, they are separately presented in the
Additional Online Material – Altair – Stacked bar plot: transformations. The result
is data frame df6, that is used in the visualization. Colors are associated to country
names (variable country name) (Figure 14.21).

alt.Chart(df6).mark_bar().encode(
x='Year:O',
y=alt.Y('Attacks:Q',

axis= alt.Axis(title='Number of pirate attacks')),

color= alt.Color('country_name:N',
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Figure 14.21 Stacked bar plot, pirate attacks, and countries where they took place.
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scale=alt.Scale(scheme='plasma'),
legend=alt.Legend(title="Countries",

orient="right")))

14.3.1.4 Sorted Bars
As a final feature for static bar plots, we see how to sort bars with respect to a
quantitative variable. The dataset is still that of pirate attacks. We need a logi-
cal condition to select a subset of values (function transform_filter), this
time based on the number of attacks (alt.datum.Attacks > 50). We want
the bars, each one referred to a country, sorted for number of attacks. Attribute
sort=-x will be specified for axis y, meaning that countries (i.e., values of the
y-axis) should be sorted in decreasing order with respect to the number of attacks
(i.e., values of the x-axis). We also add the textual value of the number of attacks
at the end of each bar, as we have seen in a previous example by using function
mark_text(). Data frame df5 is the result of some common transformations
presented in the Additional Online Material (Figure 14.22).

# Aggregation
data= df5.groupby('country_name')[['Attacks']].\
agg('sum').reset_index()

# Bar plot

plot= alt.Chart(data).mark_bar(
).encode(

y= alt.Y('country_name:N',
sort='-x',
axis= alt.Axis(title=“)),

x= alt.X('Attacks:Q',
axis= alt.Axis(title=

'Number of pirate attacks (1993-2020)'))
).transform_filter(

'datum.Attacks > 50')

# Textual values

text= plot.mark_text(
align='left', dx=3,
baseline='middle'

).encode( text='Attacks:Q')

plot + text
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Figure 14.22 Bar plot with sorted bars and annotations.

14.3.2 Interactive Graphics

14.3.2.1 Synchronized Bar Plots
We move to interactive features of bar plots starting with a case where interactivity
may offer a possibility otherwise not easy to obtain. We use the two last static
bar plots just seen: the stacked bar plot, which could present many details in a
compact form but tends to become increasingly difficult to read when the number
of elements increases, and the bar plot with sorted bars, which, on the contrary,
is easy to read but may lack details if the number of bars has been limited, for
example. We could make them mutually interactive and synchronized so that by
selecting one or more elements on one of the two bar plots, we can automatically
see the corresponding elements in the other one. That might be particularly
useful, for example, we can select some countries in the sorted bar plot, which
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is an easy action being the names of countries explicitly listed and see where
those countries are placed in the stacked bar plot, where it could be less easy
to recognize a country by looking at the color scale legend. The opposite is also
possible, we want to know which is a certain country in the stacked bar plot, and
again the color palette legend could be difficult to interpret if hues are similar,
while the information could be easily visible in the sorted bar plot.

To realize this feature, we proceed in a way similar to what we have previously
seen with scatterplots. We start by defining a multiple selection based on country
names with function alt.selection_point(). Then, we define conditions
for changing colors to bars so that those selected have full colors and the others, a
neutral tint. The conditions will be different for the two bar plots (change_color1
and change_color2): in the sorted bar plot, bars have a uniform color, while in the
stacked bar plot, color is an aesthetic referred to country names. Finally, we want
the interactivity to be bidirectional, meaning that the initial manual selection
could be done in both plots. Data frame df5 is the same used in the previous
section and has been derived through common transformations presented in the
Additional Online Material. Figure 14.23a and Figure 14.23b show two screen-
shots, without and with multiple selections. The result is interesting because it
allows for all combinations of countries.

data= df5.groupby('country_name')[['Attacks']].\
agg('sum').reset_index()

# Multiple selection based on country names

selection= alt.selection_point(fields=['country_name'])

# Conditions for changing color of bars

change_color1= alt.condition(selection,
alt.value('teal'), alt.value('lightgray'))

change_color2= alt.condition(selection,
alt.Color('country_name:N'),
alt.value('lightgray'))

# Sorted bar plot, it shows the 40 countries with more pirate attacks

bar_ordered= alt.Chart(data).mark_bar().encode(
y= alt.Y('country_name:N', sort='-x',

axis= alt.Axis(title=“)),
x= alt.X('Attacks:Q',

axis= alt.Axis(title='Number of pirate attacks (1993-2020)')),
color= change_color1,

).transform_filter('datum.Attacks > 40'
).add_params( selection )

# Stacked bar plot, all countries with more than 10 attacks
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Figure 14.23 (a) Synchronized bar plots, default visualization, without selection. (b) Synchronized bar plots with multiple selections of
countries.
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Figure 14.23 (Continued)
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bar_stacked= alt.Chart(df5).mark_bar().encode(
y= alt.Y('Year:O',

axis= alt.Axis(title=None)),
x= alt.X('Attacks:Q',

axis= alt.Axis(title='Number of pirate attacks (1993-2020)')),
color= change_color2,

).transform_filter('datum.Attacks > 10'
).add_params( selection)

bar_ordered | bar_stacked

14.3.2.2 Bar Plot with Slider
We introduce the dataset regarding homeless persons in the United States – 2007 –
2022 – Point-in-Time Estimates by State, from the US Department of Housing and
Urban Development, and select the total amount for each year of the survey. As
usual, some common data-wrangling operations are needed to prepare the data
frame (i.e., df_hl1) for visualization. They are presented in the Additional Online
Material – Altair – Bar plot with slider 1: transformations.

Let us consider a first simple example of bar plot with slider. A slider is a graphi-
cal element that allows selecting a range of values, quite often without exact preci-
sion if the minimum step is not small, but it is anyway a popular and handy widget
for interactively selecting and changing ranges. We need to define the slider object
as associated to a range with function alt.binding.range(), by setting the
minimum and maximum values of the scale and the step of the slider (i.e. the min-
imum increment associated to a movement of the slider). After that, we define a
base plot (object base) to be used to instantiate the final bar plots. It will be just an
Altair Chart associated to data and the slider selection regarding a range of years.
Next, the definition of the color scale is added.

# Slider definition and selection criteria

slider= alt.binding_range(min=2015, max=2022, step=1)

select_year= alt.selection_point(name='Year', fields=['Year'],
bind= slider, init={'Year': 2022})

# Base plot with data, selection

base= alt.Chart(df_hl1).add_params(
select_year

).transform_filter(
select_year

).properties(
width=250

)

# Color scale
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color_scale = alt.Scale(domain=['Overall Homeless','Male',
'Female','Transgender','Not_S_M_F'],
range=['gray','gold', 'darkgreen',

'blue','magenta'])

With these elements, we can define the four final plots that will respond to
the interactive selection operated through the slider. For all, category Overall
Homeless is omitted from data (alt.datum.Category != ’Overall
Homeless’), because being the total of all values, in the visualization it will
be too large with respect to the scale of individual categories, producing a bad
visual effect. Individual plots are derived from the base plot: plots left and right
are bar plots (function mark_bar()), while middle1 and middle2 are textual
tables (function mark_text()). Bars in the left plot are sorted with function
alt.SortOrder(). With the slider, a range of years is selected and both bar
plots and tables are automatically updated. Finally, the four plots are aligned
together. Figure 14.24 shows the result with a certain range of years selected.

# Bar plots left and right

left= base.transform_filter(
alt.datum.Category != 'Overall Homeless'

).encode(
y= alt.Y('Category:N', axis=None),
x= alt.X('Value:Q', title='Population',

sort=alt.SortOrder('descending')),
color= alt.Color('Category:N', scale=color_scale,

legend=None)
).mark_bar().properties(height=150,title='Gender')

right= base.transform_filter(
alt.datum.Category == 'Overall Homeless'

).encode(
y= alt.Y('Category:N', axis=None),

Figure 14.24 Bar plots and tables synchronized with slider, homeless in the United
States, year 2022.
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x= alt.X('Value:Q', title='Population'),
color= alt.Color('Category:N', scale=color_scale, legend=None)

).mark_bar().properties(height=50, title='Overall Homeless')

# Textual tables middle1 and middle2

middle1= base.transform_filter(
alt.datum.Category != 'Overall Homeless'

).encode(
y= alt.Y('Category:N', axis=None),
text= alt.Text('Category:N'),

).mark_text().properties(height=150,width=100)

middle2= base.transform_filter(
alt.datum.Category == 'Overall Homeless'

).encode(
y= alt.Y('Category:N', axis=None),
text= alt.Text('Category:N'),

).mark_text().properties(height=50,width=100)

alt.concat(left, middle1, middle2, right, spacing=5)

This is a very basic example; we elaborate it some more to show further details
and improve the aesthetic quality. We still use the same mechanisms, but now we
consider the US States separately and ethnic categories used in population statis-
tics. Again, the data frame (i.e., df_hl2) requires some common transformations,
shown in the Additional Online Material – Bar plot with slider 2: transformations.
In our case, we want to show statistics related to Whites compared to those about
Blacks and Hispanics/Latinos. We orient the plots vertically, similar to diverging
bar plots, to have a compact visualization. We also take care of some style elements
like the transparent border for the middle plot with state codes. There is a tiny
detail to consider: possessions of American Samoa (AS) and Northern Mariana
Islands (MP) have no values, so we omit them. Figure 14.25a and Figure 14.25b
show two screenshots for years 2022 and 2021.

df_hl2= df_hl2[(df_hl2.State!="AS") & (df_hl2.State!="MP") &
(df_hl2.State!="Total")]

# Slider, selection, and color scale

slider= alt.binding_range(min=2015, max=2022, step=1)

select_year= alt.selection_point(name='Year', fields=['Year'],
bind=slider, init={'Year': 2022})

color_scale= alt.Scale(domain=['White','Black', 'Lat/Hisp'],
range=['darkred','#2f89de','gold'])
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# Base plot

base= alt.Chart(df_hl2).add_params( select_year
).transform_filter( select_year
).properties( height=250 )

# Upper bar plot for Whites
barplot_bottom= base.transform_filter(

alt.datum.Category == 'White').encode(
x= alt.X('State:N', axis=None),
y= alt.Y('Value:Q', title='White',

sort= alt.SortOrder('descending'),
scale= alt.Scale(domain=(0, 120000))),

color= alt.Color('Category:N',
scale= color_scale, legend=None)

).mark_bar()

# Middle textual table with US States codes

middle= base.encode(
x= alt.X('State:N', axis=None),
text= alt.Text('State:N'),

).mark_text().properties( height=20 )

# Lower bar plot for Blacks and Hispanic/Latinos

barplot_top= base.transform_filter(
(alt.datum.Category == 'Black') |
(alt.datum.Category == 'Lat/Hisp')

).encode(
x= alt.X('State:N', axis=None),
y= alt.Y('Value:Q', title='Black & Latin/Hispanic',

scale= alt.Scale(domain=(0, 120000))),
color= alt.Color('Category:N', scale=color_scale,

legend= alt.Legend(title=None, orient="top"))
).mark_bar()

# Plot alignment

alt.vconcat(barplot_top, middle, barplot_bottom ,
spacing=5).configure_view( stroke='transparent'

).properties(title='White, Black, and Latino/Hispanic
Homeless 2015-2022, US states and insular territories')

A possible extension would be to include all ethnic categories defined by the
US Department of Housing and Urban Development. That would make it more
difficult to maintain good readability because relative differences among the US
States will increase; it would be a useful exercise for thinking creatively and testing
possible solutions.
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14.4 Bubble Plots

14.4.1 Interactive Graphics

14.4.1.1 Bubble Plot with Slider
A type of graphic that could be effective and pleasant, supported by all modern
graphical libraries like ggplot and Seaborn, is the bubble plot, which could be
adopted either for categorical or continuous variables. It is a scatterplot variant
that makes use of marker size as an aesthetic, so that the higher the value of the
associated variable, the greater the area of the circle. In the following example, we
will see it for Altair in an interactive plot with slider, again associated to years and
with data about homeless population in the US States. A detail to note is that the
scale on the y-axis has been configured not to be rescaled, so that different years
could be compared based on the same quantitative scale. In code, we set the scale
with alt.Scale(domain=(100, 20000, 120000), where 100 and 120000
are the minimum and maximum values and 20000 is the increment for visualizing
markers with different areas. Bubble size is defined as an aesthetic depending on
column Value (size= alt.Size(’Value:Q’ ...)). Data frame df_hl2 is
the same as the previous example and derived from the dataset in the Additional
Online Material. Figure 14.26a and Figure 14.26b show two screenshots for years
2022 and 2021. The result, if data allow for producing different bubbles, could be
eye-catching and easy to interpret, although values are never precise, but if an
approximate evaluation is sufficient, the bubble plot is a choice to consider.

# Slider definition and selection criteria

= alt.binding_range(min=2015, max=2022, step=1)

select_year= alt.selection_point(name='Year',
fields=['Year'], bind=slider, init={'Year': 2015})

# Base plot

base= alt.Chart(df_hl2).add_params( select_year
).transform_filter( select_year ).properties( height=300 )

# Bubble plot

plot= base.mark_circle().encode(
y= alt.Y('Category:N',title=None),
x= alt.X('State:N',title=None),
size= alt.Size('Value:Q',

scale= alt.Scale(domain=(100, 20000, 120000)),
legend= alt.Legend(title='Population', orient="top")),
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Figure 14.26 (a) Bubble plot and slider, homeless in the US States (year 2022). (b) Bubble plot and slider, homeless in the US States (year
2021).
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Figure 14.26 (Continued)
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color= alt.Color('Category:N',
scale=alt.Scale(scheme="darkblue"), legend=None))

plot.properties(title='Homeless 2015-2022,
US states and insular territories')

14.5 Heatmaps and Histograms

14.5.1 Interactive Graphics

We conclude this Part 2 dedicated to Altair and interactive graphics by adding a few
more details with two popular types of graphics. As data, we still use those about
homelessness in the US States from the US Department of Housing and Urban
Development.

14.5.1.1 Heatmaps
An Altair heatmap is produced following the same logic we have described for
ggplot: variables should be in long-form and corresponding to x and y Cartesian
axes, with the color scale representing values. As usual, several choices could be
made and options could be specified for the color gradient, for example by setting
the minimum and maximum values, and the central value, especially important
for divergent palettes. In the example, we want to visualize as a heatmap the
percentual variations of homelessness and add tooltips to let the observer inspect
actual values of tiles. The data frame used before should be transformed into
long-form (the transformation is simple and not shown) and the heatmap could
be produced with function mark_rect(). The color palette is divergent and
configured with minimum and maximum values, while the central value is set to
0. Again, we should omit US possessions of AS and MP, module datum is imported
for specifying the corresponding conditions into the transform_filter()
function. Figure 14.27 shows the result.

from altair import datum

alt.Chart(df1, title="Homeless people (variation (%)"
).mark_rect().encode(

y='State:N',
x='Time:N',
color= alt.Color('Value:Q',

scale= alt.Scale(
scheme="redblue",
reverse=True,
domain=[-100,400],
domainMid=0, clamp=True),
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Figure 14.28 Univariate histogram, 100 bins, homeless in the United States (%
variation).

legend= alt.Legend(
title=" Variation (%)")),

tooltip= [alt.Tooltip('Value:Q',
title='Variation (%)')]

).transform_filter(
(datum.State != 'MP') &
(datum.State != 'Total'))

14.5.1.2 Histograms
Univariate histograms are produced as variations of generic bar plots (function
mark_bar()). Let us see two examples. In the first one, we associate to axis
x the percentual variation of homeless persons, which is a continuous variable
that is binned into 100 bins (maximum) using attribute bin and function
alt.Bin(maxbins=100). The height of bars is calculated based on the
number of values for each bin (y=alt.Y(’count():Q’)). Figure 14.28 shows
the histogram.

df_h= df1[(df1.State!='MP') & (df1.State!='AS')]

base= alt.Chart(df_h).mark_bar(opacity=0.8).encode(
x= alt.X('Value:Q', bin= alt.Bin(maxbins=100)),
y= alt.Y('count():Q'),

).properties(title='Homeless people 2015-2022, US states
and insular territories')
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As a second example, we produce a bivariate histogram, which is a variation of
the heatmap (functionmark_rect()). On the x-axis, we still have the percentual
variation of homeless persons, now made categorical by binning it into 20 bins.
The second variable for y-axis is Time, which is already expressed as categorical
time periods. The color gradient is associated to the number of data points for
each tile. We also improve the visualization by overlapping a scatterplot, to visual-
ize the actual density of data points. The visual effect, when carefully styled, could
be effective and pleasant (Figure 14.29). Last, we make a little variation by show-
ing ticks (function mark_tick()) instead of points, which technically means to
replace the scatterplot with a rug plot (Figure 14.30).

# Base plot as a heatmap variation

base= alt.Chart(df_h).mark_rect().encode(
x= alt.X('Value:Q', bin=alt.Bin(maxbins=20)),
y= alt.Y('Time:N'),
color= alt.Color('count()',

scale= alt.Scale(scheme='purpleblue'),
legend= alt.Legend(title=Number of points)))

# Overlapped scatterplot

scatter1= alt.Chart(df_h).mark_circle(size=5,color='black'
).encode(

x= alt.X('Value:Q',title='Values (binned)'),
y= alt.Y('Time:N',title=None))

# Overlapped rug plot

scatter2 = alt.Chart(df_h).mark_tick(size=15,color='brown'
).encode(

x= alt.X('Value:Q',title='Values (binned)'),
y= alt.Y('Time:N',title=None))

plot1= base + scatter1
plot2= base + scatter2

hconcat(plot1, plot2).properties(
title='Homeless people 2015-2022,

US states and insular territories')
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Figure 14.29 Bivariate histogram, 20 bins, and scatterplot, homeless in the United States (% variation).
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Figure 14.30 Bivariate histogram, 20 bins, and rug plot, homeless in the United States (% variation).
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Part III

Web Dashboards

A web dashboard represents the conclusion of a journey into data visualization
projects being the final step of a pipeline started with static graphics and moved to
interactive ones, which are clearly already web oriented.

Dashboards are actually true web applications, composed by several elements
and functionalities, integrating different technologies and methodologies, whose
complexity could easily grow fast. In short, web dashboards combine data science
visualization with web applications in a coherent and usable way. That is great
when effective, but it requires different skills, the necessary amount of practice,
and a lot of attention to detail. However, with patience and method, everybody
could learn to design and build good web dashboards, provided that the funda-
mental skills have been acquired. It may take some time, but it is feasible, be
confident about this.

From data science, dashboards inherit data import, wrangling, and visualiza-
tion to feed them with data-oriented informative content. From web applications,
instead, dashboards make use of web technologies, remote connections and pro-
vision of pages, and web standards for interoperability and content layout. Dash-
boards should also be deployed into a production environment, be it on the open
web or in corporate intranets, for the content provision to many simultaneous
user accesses. This brings typical problems of scalability and reliability of web
applications that web dashboards have to deal with. In this book, we will not
tackle deployment problems, scalability, and reliability of web accesses, as well as
with security, these are issues commonly discussed in technical documentation for
specific solutions or mainly dedicated to web applications. We focus on the visu-
alization aspects, but it is however important to know that when a dashboard is
deployed in a production environment, those operational aspects are paramount.

Data Visualization in R and Python, First Edition. Marco Cremonini.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Cremonini/DataVisualization1e

http://www.wiley.com/go/Cremonini/DataVisualization1e
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For what concerns us, the most important aspect to learn is the concept of
reactive logic that represents the basis for understanding the functioning principle
of all dashboards, regardless of the specific technology or tool. The concept of
reactive logic is the theoretical ground for learning to programmatically define
reactive events, the core components of dashboards, namely the implementation
of the logic that allows for intercepting client-side user interactions with the
graphical interface and reacting to them server-side through the functionalities
that have been defined, by adapting the visual content, modifying the data,
and, this the most important aspect, maintaining the overall consistency of the
information presented. This has to be granted for all users possibly interacting,
simultaneously or not, with the dashboard, each one of them has to always see a
coherent information, resulting from her/his own actions.

Dashboards are technologically advanced digital artifacts and to build them
there exist several commercial solutions and some excellent open-source ones.
We are interested in the latter, specifically for R and Python environments: Shiny
for R and Plotly/Dash for Python (this last one, specific for Python data science
projects, where the Apache family of tools is Python-compatible and more suited
for enterprise projects managing large data streams). Shiny and Plotly/Dash are
both advanced tools with several common aspects, although realized differently.
The first is that both allow for a fine-grained level of control of the dashboard,
with low-level implementations exposing the basic mechanisms to the developers
with no use of GUIs (Graphical User Interfaces) or high-level predefined con-
structs. This, as usual, makes the learning curve steeper at the beginning, but it
provides clear and necessary understanding of the logic and mechanisms, and,
with practice, permits to develop custom solutions of high quality and creativity,
a combination that commercial solutions sometimes do not consent. Shiny and
Plotly/Dash are also tools with a wide user base, they are commonly used by many
professionals and organizations, so they are not just good platforms for learning,
but professional, enterprise-level tools. Remember, never believe those telling you
that low-level tools are outdated and that GUI-based ones are the modern choice.
It is patently not true, possibly told by someone who really does not have a clue
about what a low-level, open-source tool is capable of, often better than GUI-based,
commercial ones. There is ample room for both kind of tools on the market and in
organizations, important is to know what kind of solutions each one is offering.

Both Shiny and Plotly/Dash are rich in functionalities and are highly con-
figurable, in this book we could only see the main features, those necessary to
learn the reactive logic and how to configure the layout. In addition, all examples
that will be presented could have been realized in several alternative ways,
equally effective and possibly better. The goal is not to show the best way to
produce a certain case study but to demonstrate the possibilities and inspire
other applications. We will proceed incrementally, step-by-step, always starting
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Dash Board

Figure 1 Design for Tandem Cart, 1850–74, Gift of William Brewster, 1923, The Met,
New York, NY. Source: The Metropolitan Museum of Art / Public Domain.

with a simple, rudimental dashboard and enriching it with new elements, either
interactive, aesthetical, or of the layout. Another goal is to foster creativity, that
dashboards make possible to exercise. It is with a certain degree of disappointment
that many real dashboards look too similar one to the other, all seemingly derived
from the same few templates. For some applications that is perfectly fine, there is
no need of creativity, just efficient functionalities presented rationally. But that is
not always the case, there are plenty of occasions where creativity would make a
remarkable difference, and it should be exercised, it does not come for granted or
just as a gift of nature. Last, it should be conceded that dashboards have made a
long journey from their inception to our days (Part 3, Figure 1).

Dataset

Low achieving 15-year-olds in reading, mathematics, or science by sex from Euro-
stat (source OECD) (https://ec.europa.eu/eurostat/databrowser/view/EDUC_
OUTC_PISA__custom_3152295/). It contains results from OECD/PISA tests from
15-year-old students on mathematics, science, and reading skills.

Copyright: Creative Commons Attribution 4.0 International (CC BY 4.0)
(http://creativecommons.org/licenses/by/4.0/, https://commission.europa.eu/
legal-notice_en#copyright-notice).

https://ec.europa.eu/eurostat/databrowser/view/EDUC_OUTC_PISA__custom_3152295/
https://ec.europa.eu/eurostat/databrowser/view/EDUC_OUTC_PISA__custom_3152295/
http://creativecommons.org/licenses/by/4.0/
https://commission.europa.eu/legal-notice_en#copyright-notice
https://commission.europa.eu/legal-notice_en#copyright-notice
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15

Shiny Dashboards

15.1 General Organization

A Shiny dashboard has generally a schema composed of three fundamental ele-
ments: the graphical user interface definition (User Interface), the definition of
actions, either reactive or nonreactive, to execute on data and variables (Server
Logic), and the execution of the application (Run App). In our examples, we will
follow this schema, incrementally adding elements to the dashboard, with the
user interface and the server logic always kept clearly distinct. From the follow-
ing schema, some key Shiny functions are shown for the user interface: flu-
idPage() for the definition of the dynamic layout, composed of rows (function
fluidRow()), each one possibly separated in columns (function column()).

##### USER INTERFACE #####
ui <- fluidPage(

titlePanel( ),
fluidRow(

column( )
),

…
)

##### SERVER LOGIC #####
server <- function(input, output, session) {
…
}

##### RUN APP #####
shinyApp(ui, server)

Data Visualization in R and Python, First Edition. Marco Cremonini.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Cremonini/DataVisualization1e

http://www.wiley.com/go/Cremonini/DataVisualization1e
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The definition of the user interface is tightly related to characteristics and limita-
tions of a web application and to the current HTML standard. From this comes the
fact of considering the web page as a virtual grid composed by rows and columns
to be used for placing graphical elements of the dashboard. The maximum num-
ber of virtual columns is 12, of same size, while rows are unlimited in number and
have variable height. This difference between rows and columns is largely moti-
vated by an intrinsic difference between horizontal and vertical scrolling. Vertical
scrolling of a web page is typically an intuitive and well-established gesture and
does not pose usability problems (relatively speaking, of course, an excessively
long page is not user-friendly); on the contrary horizontal scrolling is perceived as
annoying and information falling out of the page width might go unnoticed, so it
makes sense to limit it. Basic graphical elements of a dashboard layout, such as the
drop-down menu, the checkbox and radio button, or the slider are input elements,
meaning they are used to collect user choices and reconfigure the visualization
or perform some actions on data. Output elements, instead, are typically those
used to produce information, for instance in graphics or data tables. Other output
elements are those that modify something through actions, for example, a user
selection could be modified as a result of an output element. Furthermore, a
dashboard could have a single page or several pages through the definition of
tabs (in this case it is a multi-page dashboard). Moving to advanced web layouts,
other elements and solutions could be added, as is customary in modern web
applications. In the user interface, we often want to specify titles, a header, a
sidebar, and possibly a navbar, in addition to the definition of the virtual grid and
all input and output elements that should be visualized. The typical programmatic
construct that we will use in the user interface definition is as follows:

fluidRow(
column( )
),

With this construct, we specify a row in the virtual grid of variable size (flu-
idRow()) and within that row a column (column()). The column could be
configured with a certain width as the number of columns of the virtual grid,
so, for example, column(6, …) specifies a width equal to 6 virtual columns,
or 50% of the page width, being 12 the virtual columns; column(3, …) corre-
sponds to 25% of the page width, and so on. This also means that, on a single row,
more columns could be defined, possibly each one with a relative size, correspond-
ing to graphical elements aligned horizontally. Instead, several rows are visualized
vertically aligned.

We can now start with a first simple example, just focusing on the user interface
with no server-side actions. First, we import R libraries tidyverse and shiny and
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read the dataset with Pisa test results for low-achieving students from Eurostat. It is
in compressed form but both functions read_csv() and vroom() (in this case
package vroom is necessary) are able to read it directly and extract the CSV dataset.
For ease of comprehension, we replace string EF461, indicating mathematics tests,
with MAT and obtain the list of countries and tests (i.e., reading comprehension
and scientific knowledge are the other two tests, respectively indicated with READ
and SCI in the following).

library(tidyverse)
library(shiny)

pisa= read_csv("datasets/Eurostat/
educ_outc_pisa__custom_4942428_linear.csv.gz")

pisa$field= str_replace_all(pisa$field, 'EF461','MAT')

choice_test= unique(pisa$field)
choice_geo= unique(pisa$geo)

As we have seen, the user interface is created with function fluidPage().
As input elements, we choose two drop-down menus (function selectIn-
put()), respectively to select a test and a country from the lists; we place them
aligned vertically in two rows. As output elements, we want two textual tables
(function tableOutput()), this time horizontally aligned, to visualize the data
corresponding to the choices activated with the drop-down menus. These are the
specifics of our first Shiny user interface. To recap, we will have two rows, two
drop-down menus, and two textual tables. Each element should be specified in a
column (function column()). We also add a title with function titlePanel().

More specifically, all input and output elements would be associated to an iden-
tifier, which will become necessary in the server logic to associate actions to ele-
ments. Our identifiers will be called test and country for drop-down menus, table1
and table2 for tables. Attribute choice of function selectInput() is used to
refer to the list of items to visualize, respectively the variable with the list of tests
(choice_test) and the variable with the list of countries (choice_geo) defined in the
previous excerpt of code.

####### USER INTERFACE ########
ui <- fluidPage(

# Title
titlePanel("PISA test: Low achieving 15-year-olds in

reading, mathematics or science by sex"),

# Drop-down menus, vertically aligned
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fluidRow(
column(6,

selectInput("test", "TEST", choices= choice_test)
)

),

fluidRow(
column(6,

selectInput("country", "COUNTRY", choices= choice_geo)
)

),

# Textual tables, horizontally aligned
fluidRow(

column(4, tableOutput("table1")),
column(4, tableOutput("table2")),

)
)

######## SERVER LOGIC #########
server <- function(input, output, session) { }

######## RUN APP #########
shinyApp(ui, server)

From RStudio, we can execute RunApp and, if we do not make any error, the
result will be that a local http service is started and a message like Listening on
http://127.0.0.1 will appear on the console, informing us that our new Shiny
dashboard is listening on the localhost network port and ready to receive inputs
through the user interface. RStudio permits to visualize the rendering of the
dashboard in the Viewer panel (a choice suggested only for very early tests) or to
open a new window/tab in the predefined web browser (the preferred choice).

The dashboard produced at this point is obviously rudimentary, however, it is a
start and we have already placed some elements on the page, while data are read
from the dataset. The two tables are still missing, we have just defined them as
output elements, but not produced as yet. For this, we need a server logic to define
actions to be executed as a response to changes in input elements and for producing
some outputs. Let us consider the logic first.

What we want to achieve is that, whenever a Pisa test or a country is selected
through one of the drop-down menus, the two tables should be reconfigured
with the corresponding data. This simple task hides a detail that is of paramount
importance for all reactive actions: only when an input element changes, actions
should be triggered, and output elements updated. This means that for every update
to output elements, data should be read again, which is a computationally inten-
sive and network-based (in a production environment) operation that should be
done only when necessary because it may have a significant latency and require

http://127.0.0.1
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data-wrangling operations, all tasks that introduce delays and affect usability.
Therefore, the key aspect in managing reactive actions is to produce an output
if and only if an input element has been modified. In our case, tables rendering
should not be recalculated when input elements have not been modified, but
restored from a local cache memory, which is a copy of the previous state of the
dashboard that is simply rendered again with no access to data, network, and
so on. This is one of the main reasons for paying great attention and care when
reactive actions are defined because correctly managing them is fundamental
for a dashboard, and the more a dashboard is complex, the more important is to
configure reactive actions correctly.

Let us consider the two tables. Input elements are the drop-down menus,
which, when modified, will communicate the new values to use for reconfiguring
the tables. Shiny defines such elements as reactive objects, meaning that they
could trigger reactive actions in the server logic, so they have to be monitored for
any change. Function reactive() (and the similar eventReactive()) is
the main one for the definition of a reactive action in the server logic. In our case,
the reactive action has to be executed if and only if the corresponding reactive
object changes, meaning a new selection is done through the drop-down menus.
We start with the first drop-down menu, that of Pisa tests. We have defined it with
selectInput("test", "TEST", choices=choice_test), where the
first attribute is the identifier (attribute inputId), the second is the title to be
visualized, and the third the list of values, here stored in variable choice_test.

The inputId (i.e. test) uniquely identifies an input element in the server logic,
equally for outputId identifying an output element. In the server logic, we will
refer to them with the dollar symbol $ prefixed by input, for an input element, or
output for an output element (in this case the drop-down menu will be referred
as input$test). Similarly, the drop-down menu for countries (with identifier
country) will be referred asinput$country. With this, we can write in the server
logic the data selection operations based on inputs from drop-down menus.

pisa %>% filter(field == input$test)
pisa %>% filter(field == input$country)

These are just the filtering operations; we still have to define them as reactive
actions. For this we need to enclose each one of them into function reactive().

selected1 <- reactive(pisa %>% filter(field == input$test))
selected2 <- reactive(pisa %>% filter(field == input$country))

This is the fundamental step because in this way we are correctly managing
reactive objects and reactive actions for this case.

Now we should produce the two tables. The basic function is renderTable(),
whose content will be the data to be visualized as a table. In our example, we
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execute two different actions for the two tables. In the first one, we show, for each
country and gender, the arithmetic means on all years for students with low skills.
It is a common aggregation operation to be executed on variable selected1(). In the
second table, we show all values, not aggregated, and we use variable selected2()
as data.

Let us make a pause. You may have noticed something strange: why are
variables with data stated with parenthesis (i.e. selected1() and selected2())?
Functions have parenthesis, not variables, so why is that? Here lies a fundamental
difference between a dashboard and a normal R script. In a normal R script,
variables are just R objects, but in a Shiny dashboard, there are variables that are
common R objects, but there are also variables that are something different, they
are reactive objects. Here, selected1() and selected2() are reactive objects because
they depend on input elements and the associated reactive actions. Specifically,
they are defined as type reactiveExpr, meaning that they technically are functions,
therefore they should be written with parenthesis. From this example comes an
important rule for Shiny dashboards: all reactive objects are functions, not simple R
objects.

A last aspect remains to be specified: in which graphical objects of the user
interface should the two reactive objects selected1() and selected2() be visualized?
Values of selected1() and selected2() are in tabular form, so they should be the
corresponding graphical objects of the user interface. There, we had defined
tableOutput("table1") and tableOutput("table2"), with table1
and table2 as outputId identifiers. Similar to the case of input elements, for
output elements the syntax to use will be like output$…, therefore, the result
of the first renderTable() function will be assigned to output$table1,
the second to output$table2. The complete code for the server logic part
follows.
server <- function(input, output, session) {

# Reactive objects selected1 and selected2 associated to
# reactive actions for data selection

selected1 <- reactive(pisa %>% filter(field == input$test))
selected2 <- reactive(pisa %>% filter(geo == input$country))

# Tables rendering

# First table
output$table1 <- renderTable(

selected1() %>%
group_by(geo, sex) %>%
summarize(Mean= mean(OBS_VALUE, na.rm=TRUE))

)
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# Second table
output$table2 <- renderTable(

selected2() %>% select(4,5,7,8,9)
)

}

Putting together the user interface and the server logic parts, we can run the
complete Shiny dashboard of our first example. It is still the bare minimum for
a dashboard, but nevertheless it is a fully functioning and complete dashboard
with all fundamental parts. From this one, we will move on adding elements and
complicating the interface and the logic. Figure 15.1a and Figure 15.1b show two
screenshots with different selections from drop-down menus and corresponding
tables.

The following step is to add a graphic that should be dynamically redesigned
when input elements change. The logic is similar to what discussed for tables, it
changes how to obtain the result. A graphic is again an output element that should
be placed in a certain row and column of the user interface with a specified size. We
put it on the same row of tables with function plotOutput() having pisa_MF
as the outputId. This is all the user interface needs to know. Now we turn to the
server logic. Again, the key is to correctly manage reactive events. For the example,
we want to produce a simple line plot by using the same data used for the corre-
sponding table, which, for now, allows us not to define another reactive event and
object. The syntax for plots is similar to that for tables, functionrenderPlot() is
needed and within that function, the graphical object should be included. In our
case, the graphic is produced with ggplot, therefore we can either directly write
ggplot operations inside the renderPlot() function or write them separately
with a custom function and use that function within the renderPlot(). This
time, we write ggplot operations directly. Other tweaks are represented by the
default values for the drop-down menus with attribute selected and to have
kept just one table in the user interface in order to have a compact visualization of
a table and the corresponding plot.

###### USER INTERFACE
ui <- fluidPage(

titlePanel("PISA test: Low achieving 15-year-olds"),

fluidRow(
column(6, selectInput("test", "Test",

choices = choice_test, selected='READ')
)

),

fluidRow(
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(a)

(b)

Figure 15.1 (a) Shiny, test MAT, and country AL (Albania) selected. (b) Shiny, test READ,
and country IT (Italy) selected.
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column(6, selectInput("country", "Country",
choices = choice_geo, selected="IT")

)
),

fluidRow(
column(4, tableOutput("table1")),
column(4, plotOutput("pisa_MF"))
)

)

###### SERVER LOGIC
server <- function(input, output, session) {

selected1 <- reactive(pisa %>%
filter( (geo == input$country) &

(field==input$test) &
(sex!="T") &
(!is.na(OBS_VALUE))

)
)

output$table1 <- renderTable(
selected1() %>% select(4,5,7,8,9)

)

output$pisa_MF <- renderPlot({

selected1() %>% ggplot()+
geom_line(aes(x=as.factor(TIME_PERIOD), y=OBS_VALUE,

color=sex, group=sex), linewidth=1)+
labs(x="" , y="Low achieving 15-year-olds (%)",

color="Gender" )+
theme_bw()+
theme(

axis.text = element_text(size = rel(1.3)),
axis.title = element_text(size = rel(1.5)),
legend.title= element_text(size = rel(1.5)),
legend.text= element_text(size = rel(1.3))

)
})

}

##### RUN APP
shinyApp(ui, server)
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Figure 15.2a and Figure 15.2b show two screenshots for different selections with
the corresponding table and plot.

15.2 Second Version: Graphics and Style Options

At this point, we know how to place elements in the user interface and to define
actions in the server logic. We can extend the first example by adding a second
graphic and taking better care of the style. Specifically, we want to include the
following elements:

● As a second plot, we reuse the ridgeline plot presented in Part 1, which also uses
OECD/Pisa data, in that case, divided by skills and gender.

● The style of the first graphic will be improved by introducing a scatterplot and
specifying some style options.

● Graphical themes could be applied, for example by using package shinythemes;
we try with both light and dark themes. Themes employed are among those
freely available through Bootswatch (https://bootswatch.com/), a common
choice in web dashboards and applications.

In the user interface, in order to configure a theme from package shinythemes, it
suffices to refer to it inside the FluidPage function, such as:

fluidPage(theme= shinytheme("cosmo"), …

It also exists a special selector that automatically adds a drop-down menu with
the list of available themes and allows for changing the theme dynamically when
the dashboard is operating. It is a convenient feature to make tests on a dashboard
without stopping it, changing the code, and restarting. To have this special selector,
the following instruction should be added:

shinythemes::themeSelector(),

As a last modification to the user interface, we want to show a second plot, so
we have to define it. We want it beside the first plot, then on the same row as a
new column (column(4, plotOutput("pisa_ridges"))).

More relevant are changes to make to the server logic. Let us start with creating
the second plot, then we will deal with style options. The ridgeline plot, different
from the first line plot, does not depend on country selection because it shows all
countries. We have to change the data selection, meaning to create a new reactive
action and reactive object. We also omit missing values and total values in order
to keep only data for male and female students.

https://bootswatch.com/


15.2 Second Version: Graphics and Style Options 281

(a)

(b)

Figure 15.2 (a) Table and plot, test READ and country KR (Korea) selected. (b) Table and
plot, test MAT and country KR selected.
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selected2 <- reactive(pisa %>%
filter( (field == input$test) &
(sex != "T") & (!is.na(OBS_VALUE)))

)

The other relevant feature of the ridgeline plot is to show values of the categor-
ical variable sorted by a certain metric. In Part 1, we sorted it based on the arith-
metic mean of test results for each country, through an external ordered list. To do
the same in the dashboard, we have to reproduce the solution and the difference,
once again, is made by reactive events. The ordered list should be recalculated
when the selection of test changes (e.g. from MAT to READ), which makes the
sorting of countries another reactive event. In the following excerpt of code, we
group for country and aggregate to obtain the test arithmetic mean, then we sort
the result. It has to be defined as a reactive event.

df1_sort= reactive(selected2() %>% group_by(geo) %>%
summarize(Mean= mean(OBS_VALUE, na.rm=TRUE)) %>%
arrange(desc(Mean))
)

The following step is to transform into type list the column with country names.
The original version, with names adapted to the current example, would be like
list1= as.list(df1_sort$geo). However, if we try with this solution, an
error is raised by the Shiny interpreter:

Error in ‘.getReactiveEnvironment()$currentContext()‘:
! Operation not allowed without an active reactive context.
You tried to do something that can only be done from inside a reac-
tive consumer.

Reading it, we recognize that it signals the necessity of a reactive context because
the object to create, list1, depends on the reactive object df1_sort, created in the
previous step. Moreover, df1_sort, being a reactive object, is actually a function
that requires to be invoked as df1_sort(). Fixing the mistakes, we obtain the correct
form:

list1= reactive(as.list(df1_sort()$geo))

Finally, the last step is sorting with respect to the external list, which consists of
using data (reactive object selected2()), converting the column with country names
(geo) into factor type, and associating categories (level) to the sorted list list1. As it
should be already clear, this operation requires a reactive context, being dependent
on the two reactive objects selected2() and list1().

df_elev_factor= reactive(
selected2() %>%
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mutate(geo= factor(geo)) %>%
mutate(geo= fct_relevel(geo, list1() )) %>%
arrange(geo)

)

Now that we have correctly managed reactive events, we can turn our attention
to graphical aspects. The ridgeline plot could be easily adapted from what we have
seen in Part 1. Equally, overlapping a scatterplot to the line plot is just a simple
modification to the ggplot script. What is new in this example are Shiny themes
and how to use them. An important detail is that Shiny does not automatically
adapt the aesthetic features of a graphic to those of a theme, for instance, the back-
ground, the legend, axes fonts, and title fonts are kept as in the original graphic
instead of being made the same of the theme. Such details might be unimportant
with light themes but become relevant when dark themes are used because they
are evidently misaligned and create an impression of poor quality, when not truly
a mistake such as with black fonts over a black background. These details must be
considered and fixed. In the following excerpt, style options are presented in order
to comply with a dark theme too. They make use of ggplot function theme(),
which allows for a fine-grained control of style options.

theme(
panel.background= element_rect(fill='transparent'),
plot.background= element_rect(fill='transparent', color=NA),
panel.grid.major= element_line(color ='lightgray'),
panel.grid.minor= element_line(color ='lightgray'),
legend.background= element_rect(fill='lightgray'),
legend.box.background= element_rect(fill='transparent'),
axis.text= element_text(size = rel(1.3),color ='gray50'),
axis.title= element_text(size = rel(1.3),color ='gray50')

)

To these options, another one should be added, which is needed in the ren-
derPlot() function to define the graphic background as transparent:

renderPlot({
…

}, bg="transparent")

The complete code for this version is available in the Additional Online Mate-
rial – PISA Test Dashboard, Second Version. Figure 15.3a and Figure 15.3b show
two screenshots of the result, one with a light theme, the other with a dark theme.
To note, on top-right, there is the theme selector widget.

With these configurations, the aesthetic quality of our dashboard, rudimentary
in the first version, has definitely improved. It is still a simple dashboard with min-
imal functionalities, but we were able to add fast a number of noticeable enhance-
ments.



(a)

Figure 15.3 (a) A table, two plots, and light theme. (b) A table, two plots, and dark theme with style options.



(b)

Figure 15.3 (Continued)
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15.3 Third Version: Tabs, Widgets, and Advanced
Themes

We keep improving our dashboard by introducing other elements frequently used:

● tabs (function tabsetPanel()) to configure a multi-page layout.
● A widget (a preconfigured graphical element) to have a multiple selection box

(function multiInput()). In order to use widgets, package shinyWidgets is
required.

● An advanced table rendering (function renderDataTable()) from package
DT (DT is the actual package name and stands for Data Table), which supports
JavaScript functionalities for sorting columns, selection, and others.

● An alternative theme package called bslib.
● A package called thematic that supports a unified management of graphical

themes for R and Shiny.

In particular, bslib (https://rstudio.github.io/bslib/index.html) is useful to
integrate Bootstrap (https://getbootstrap.com/) into the dashboard, a widely
adopted toolkit for website configuration, which supports CSS style sheets,
JavaScript functionalities, and other features. A detailed presentation of Bootstrap
is out of the scope of this book, but it would be useful to read its documentation
to learn the many ways it permits to customize a dashboard with tools typical of
web frontends. With bslib it is possible to also use free themes from Bootswatch
(https://bootswatch.com/), the same available with shinythemes, and customize
them with a simple GUI. Instead, thematic (https://rstudio.github.io/thematic/)
supports a centralized management of ggplot and Shiny graphical themes, with
also a functionality called automatic styling to solve a problem that we already
know about, namely the fact that ggplot graphics are not integrated with a
Shiny dashboard’s CSS style sheet, leaving several elements with their original
colors. Previously, we solved it by manually configuring style options through
the theme() ggplot function, the Thematic’s automatic styling is configured to
automatically adjust such options. In general, it is effective but it is possible that
some details slip away and still require a manual intervention with theme(). The
combination between bslib and thematic supports efficiently also Google Fonts
(https://fonts.google.com/), another widely adopted choice for web applications.
Finally, for Shiny Widgets, a gallery is available at: https://shiny.rstudio.com/
gallery/widget-gallery.html.

Let us delve into the technical details. The first element we consider is thematic
automatic styling, which is defined outside the user interface.

thematic_shiny(font='auto')

https://rstudio.github.io/bslib/index.html
https://getbootstrap.com/
https://bootswatch.com/
https://rstudio.github.io/thematic/
https://fonts.google.com/
https://shiny.rstudio.com/gallery/widget-gallery.html
https://shiny.rstudio.com/gallery/widget-gallery.html
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With this, thematic functionalities are activated, and graphics are adapted to
the selected theme. Specific fonts or font families, for instance from Google Fonts,
could be indicated, or the choice is left to the tool with font=’auto’.

In the user interface, the theme definition is set with bslib function
bs_theme(). We do not specify a certain theme because we want to use
the selector. On the contrary, a theme could be indicated, attributes are the
Bootswatch version (attribute version, the current one at the time of writing is
5) and the theme’s name (attribute bootswatch).

theme = bslib::bs_theme(),

Next, in the user interface, we want to include the widget for the multiple
selection. It exists the simple version with standard Shiny element selectIn-
put() already seen in the previous versions of the example, which supports
attribute multiple=TRUE, which makes it possible to select more values from
the drop-down menu. However, with widget multiInput() a richer layout is
provided. The first attributes are the same of function selectInput(), specific
are instead attribute selected, configured with elements selected by default,
and attribute options as a list with the activation of the search functionality
and the labels for selected and nonselected values.

multiInput(
inputId= "country", label= "Countries :",
choices= unique(pisa$COUNTRY),
selected= "United States of America",
width= '100%',
options= list(

enable_search= FALSE,
non_selected_header= "List:",
selected_header= "Selected:"
)

)

To transform our single-page dashboard into a multi-page one, tabs should be
introduced following the schema shown here:

tabsetPanel(
id= ,
tabPanel(

id="IdTab1",
fluidRow(…)
),

tabPanel(
id="IdTab2",
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fluidRow(…)
),

…
)

The general container is configured with function tabsetPanel() that
includes an element tabPanel() for each tab. Each element tabPanel(),
in turn, defines its own page layout with the usual sequence of rows through
fluidRow(), each one subdivided into columns with column() as we have
seen for the single-page case.

Another useful improvement to introduce is of programmatic nature. In the
previous versions, we have produced the ggplot graphic by including the ggplot
script into function renderPlot(). That would be a fair choice only for simple
and short ggplot scripts, but it becomes a bad practice when the ggplot script is
somehow more elaborate than the basic level. It is a bad practice because it easily
generates confusion in the code, mixing ggplot logic with Shiny logic. Much better
would be to keep different things separate, the ggplot script out of the Shiny dash-
board configuration and in renderPlot()just use a standard construct with the
ggplot object. That is possible by defining as a custom function the ggplot script,
such as plot_tabs <- function(data) {…}. The definition of this cus-
tom function contains the normal ggplot script, and once invoked, the result will
be the ggplot object representing the plot. To recap, the good practice is:

● define a custom function, outside the dashboard, with the ggplot script to pro-
duce a certain graphic.

● inside function renderPlot() of the server logic, invoke the custom function
with its parameters.

For beginners, this good practice might look like an additional level of complex-
ity, but actually it is the opposite, with a little effort the code is much more readable,
clear, and manageable. It is a little effort well spent. In the following, the excerpt
with the definition of custom function plot_tabs, having the schema:

function_name <- function(parameters) {ggplot script}

Just remember that this function definition should be placed outside the user
interface and the server logic, and before it is invoked; at the very beginning, before
everything else, is usually a good choice.

plot_tabs <- function(data) {

data %>% ggplot() +
geom_line(aes(x=YEAR ,y=‘VALUE (%)‘,

color=COUNTRY, linetype=COUNTRY, group=COUNTRY),
linewidth=0.7) +
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geom_point(aes(x=YEAR, y=‘VALUE (%)‘,
color=COUNTRY),

size=2, shape=21, fill="white") +
facet_wrap(vars(GEN), ncol=1) +
labs(x="" , y="Low achieving 15-year-olds (%)",

color="Country", linetype='Country') +
scale_color_viridis_d() +
theme_minimal() +
theme(℩)
)

}

For the server logic, we could activate the panel Theme customizer with func-
tion bs_themer() to insert the theme selector and make tests by changing the
dashboard’s theme.

15.4 Observe and Reactive

In managing reactive events and objects, we could meet a situation different from
the ones seen before, which were all cases of events that triggered a recalculation
of a new result, for instance, a new selection of rows from a data frame, after an
input element was changed. Such cases where a result is updated are typical of
function reactive(), as we did before. However, actions associated to tabs are
of different nature. They clearly are reactive contexts because by changing input
elements (e.g. tests or country selection), table data and plots included in all tab
pages should change, but they are not simply a recalculation and an update of out-
put elements, reactive events associated to tabs are object rendering actions. Shiny
documentation explains this scenario: “ Use observeEventwhenever you want
to perform an action in response to an event. (Note that “recalculate a value” does
not generally count as performing an action-see eventReactive for that.) The
first argument is the event you want to respond to, and the second argument is a
function that should be called whenever the event occurs.” (Source: https://shiny
.posit.co/r/reference/shiny/0.11/observeevent)

In our case, changing tab is exactly that type of event, which, as a consequence,
would require function observeEvent(). The general scheme is as follows:

observeEvent(input$tabs, {
… actions for all tab pages
}

Alternatively, a logical condition of type if-else-if could be used to specify the
execution of different actions based on the selected tab (Note: it requires to specify
the tab identifier.)

https://shiny.posit.co/r/reference/shiny/0.11/observeevent
https://shiny.posit.co/r/reference/shiny/0.11/observeevent
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observeEvent(input$tabs, {
if(input$tabs == "tab1"){
… tab1 actions
} else if(input$tabs == "tab2"){
… tab2 actions
} else {
… tab3 actions
}

}

In the dashboard that we are producing, the tab management will follow the
logic described as under:

observeEvent(input$tabs, {

if(input$tabs == "MAT") {
# tab MAT
…
plot and table rendering
…}

} else if (input$tabs == "READ") {
# tab READ
…}
plot and table rendering
…

} else {
# tab SCI
…
plot and table rendering
… }

})

Use cases for functionobserveEvent() and of similarobserve() are many
and include scenarios where reactive contexts are not simply those of an input
element that changes, but, for example, several events combined that should take
place for a reactive action to be executed, or an event that is associated to a button
and should change several objects or widgets at the same time.



(a)

Figure 15.4 (a) Tab MAT, default theme. (b) Tab READ, dark theme. (c) Google fonts.



(b)

Figure 15.4 (Continued)



(c)

Figure 15.4 (Continued)
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We also keep all style configurations specified through ggplot functiontheme()
because Thematic is unable to uniformly reconfigure all graphical elements – for
example, facets titles and axes labels. It is possible to test which configurations
thematic is able to manage by selectively commenting single configurations of the
theme() function and checking the result.

The complete code is available in the Additional Online Material – PISA Test
Dashboard, Third Version. Figure 15.4a, Figure 15.4b, and Figure 15.4c show
screenshots of the dashboard with different themes, the default theme, and the
Superhero theme, respectively, for different tabs, plus an example using Google
Fonts (i.e. Genos).
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Dataset

The Himalayan Database Version 2, The Himalayan Database a Nonprofit
Organization, Ann Arbor, Michigan, US (https://www.himalayandatabase.com/
index.html). It contains information on all expeditions to Himalayan peaks, from
1905 to the Spring of 2022. For the examples, we have selected data regarding
expeditions to Mount Everest.

Copyright: Released to the general public at no charge. (https://www
.himalayandatabase.com/downloads.html)

16.1 First Version: Sidebar, Widgets, Customized
Themes, and Reactive/Observe

With this second Shiny dashboard, we increase the complexity level by adding
other graphical elements, reactive events, a more elaborate layout, and finally by
integrating interactive Altair plots. The first element we will consider is very typi-
cal of dashboards and it can be seen in almost all instances: the sidebar, the left-side
panel where widgets, options, and selectors are usually placed. We will add some
new widgets to the sidebar, but in particular we will discuss a special case: a widget
whose aim is not just to let the user make a choice among some alternatives but to
modify the actions of other widgets.

Data and the dashboard organization will require more elaborate actions and
the usage of both reactive() and observe() functions for managing the dif-
ferent types of reactive events, those aimed at recalculating values (i.e., reactive)
and those triggered to execute other actions different from recalculating values
(i.e., observe). This case will also require a particular care of graphical details, such
as to modify textual values in order to make them compatible with the visualiza-
tion on the dashboard and exploit CSS style sheet functionalities for the graphical

Data Visualization in R and Python, First Edition. Marco Cremonini.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Cremonini/DataVisualization1e

https://www.himalayandatabase.com/index.html
https://www.himalayandatabase.com/index.html
https://www.himalayandatabase.com/downloads.html
https://www.himalayandatabase.com/downloads.html
http://www.wiley.com/go/Cremonini/DataVisualization1e
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theme. This level of attention to detail and their management is a necessary effort
when working on dashboards; it does not suffice to produce a dashboard that
works correctly and is passably clear to interact with, instead a dashboard should
be graphically well-organized, carefully crafted, and aesthetically pleasant. The
appearance is not less important than functionalities in a dashboard, it is part of
its quality and effectiveness. For this second dashboard, we will spend more effort
for its aesthetic to demonstrate that such aspects should not be overlooked.

Furthermore, when the complexity of the artifact grows, it becomes very
important to pay attention to the organization of code (not to say its quality). The
dashboard’s code should be written orderly and clearly; different modules and
functionalities should be accompanied by comments and explanations, especially
when a nonintuitive solution has been applied; the code should be correctly
indented even when not mandatory by the language, and different functionalities
should be placed in separate modules, rather than writing a flat long sequence
of instructions. These are all basic simple rules for good programming that have
their motivation both in the possible reuse of code and, most important for us, in
debugging the dashboard and fix errors. What should be clear is that it is the ulti-
mate goal to produce a correctly functioning error-free dashboard, but this does
not imply that no errors should be made in all steps of the development. Errors
are inevitable during development, so is the necessity to debug the code, and thor-
oughly test all intermediate artifacts and the final product. A well-ordered code is
important, also by considering that debugging a dashboard is more complicated
than debugging a traditional R or Python script, because of the reactive events,
whose logic could be complex and may hide subtle errors not easy to detect.

Let us introduce the new elements for this second Shiny dashboard.
Customized bslib theme. Preconfigured Bootswatch themes (or of shinythemes)

are useful and well-done but generic and unoriginal. In a dashboard project, it
is often appreciated a certain degree of customization, not only operational but
also aesthetical, instead of just applying an ordinary graphical theme. For this,
a graphic project and manual customizations are required. In our case, we will
present some examples by manually customizing some elements of the layout by
means of bslib, which supports configurations of the HTML page and CSS style
sheets. We will also make use of Google Fonts and personalized colors chosen with
a Color Picker (we suggest trying to modify the choices of the example and test
different outcomes).

Sidebar. The first new dashboard element of the user interface is the sidebar,
which could be defined according to the following schema with functions
sidebarLayout() and sidebarPanel(), with parameter width to set the
sidebar width:

sidebarLayout(
sidebarPanel(
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…
widgets, text, graphical elements

)
, width = …)

Widgets. We introduce new widgets, in addition to those already presented in
the first dashboard, namely the drop-down menu (function selectInput())
and the multiple selection box (function multiInput()). The new ones are:

● slider for the selection of a range of values (function sliderInput()).
● single or multiple checkbox (functions checkboxInput() and checkbox-
GroupInput()).

● button (function actionButton()).

All these widgets are configured in a similar way of the ones already seen, with
first attribute id as the identifier, needed in the server logic to handle input or
output from/to that widget, then a title or text to visualize, and some specific
attributes like minimum and maximum values for the slider, a list of choices for
the checkboxes and so on. The same applies to other widgets not presented in
this book.

Main panel. The new user interface element main panel (function main-
Panel()) defines the page space except the sidebar (and other similar elements
like the navbar, the panel on top of the page typically used for navigating into the
dashboard or menus, we will not use it). In the main panel, we define the usual
layout of the user interface with rows (fluidRow()) and columns (column()).

Custom functions. This is not a real novelty; we have already made use of one of
them for creating the ggplot graphic in the first dashboard. This time we will have
more graphics to include, so the convenience of separating the code for producing
them from the server logic is even greater.

16.1.1 Button Widget: Observe Context

The button widget allows us discussing an interesting case of an observe context
(functions observeEvent() or observe()), because the reactive action
to perform is not a recalculation of some values. What we wish to achieve is
different.

From the data frame, we want to show with a checkbox all expedition results
(i.e., unique values of data frame column Result), such as “Success,” “Bad
Weather,” and “Accident.” The checkbox permits a multiple choice, and its
identifier is result. By changing the selection, the visualization on the dashboard
is updated. There is an additional feature, though. With a button widget (identifier
selectall), we want to add the possibility to automatically select all checks, which
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is useful instead of manually select each one of them. The logic of the action
associated to the button should be as follows:

● if button selectall is not selected, then data frame rows are filtered based on the
checkbox choice of expedition results and visualized in the dashboard tables and
graphics.

● otherwise, if button selectall is selected, then all checks in the checkbox are
marked as selected and all expeditions are used for visualization.

This is a situation in which an input element (button selectall) is used for modi-
fying a logical condition on data and the state of another input element. It is clearly
a reactive context because input data should be read again if and only if the input
element is modified, but it is also not a simple recalculation. Therefore, it needs
function observeEvent() or observe().

A question may arise: what if we use by mistake reactive() rather than
observe()? Such error is certainly easy to do, and it does not produce a blocking
condition when the dashboard is run. Everything will seem to work smoothly, but
trying to click on the button, nothing will happen, and the reason is that function
reactive() does not support that kind of event, it just does nothing. Testing the
dashboard would easily reveal that something is off.

Some other details need a closer look. The first one is that the function used
to modify the values of the checkbox (i.e., updateCheckboxGroupInput())
requires as first attribute the session identifier that the Shiny server is handling.
It is the same parameter that appears in server <- function(input,
output, session). Session management has mostly to do with the man-
agement of concurrent accesses from multiple users, which is customary for a
web application. In that case, every user should see the results of her/his own
interaction with the application, something similar to what happens on an
e-commerce site, each customer must only see her/his cart, not those of others,
even when purchasing items at the same moment. This is the meaning of sessions,
to keep users separate. These details are important in the deployment phase in a
production environment, we do not delve into them and forward the interested
readers to the official Shiny documentation. However, the reason for that attribute
in function updateCheckboxGroupInput() is similar, if several users are
accessing the dashboard and one of them clicks on the selectall button, that action
should select all results just for her/him, not for all connected users.

16.1.2 Button Widget: Mode of Operation

A second important detail related to the button widget is its mode of operation. It
could be easily mistaken to be similar to a checkbox that has only two states for
each check, selected or not selected, 1 and 0 in numerical values. On the contrary, a
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button is basically a counter, every time the button is clicked, there is a value associ-
ated that is incremented by one, representing the number of times the button has
been clicked. This behavior is easily observable; it suffices to add an instruction
in the server logic to write on the RStudio console the button’s value. To do that,
we can just use standard print() and cat() R functions, the syntax between
them is a little different but they are basically equivalent, choose the one you
like more. So, for example, we may add in the server logic the following instruc-
tion: cat("ALL RESULTS: ", input$selectall, "\n") and expect to
see the value of button selectall written on the console. Unfortunately, we would
receive an error message:

Error in input$selectall :
Can't access reactive value 'selectall' outside of
reactive consumer.
Do you need to wrap inside reactive() or observe()?

We already know that error message, it is about the reactive context that we
forget to define. But why should we have to deal with a reactive context just for
printing values of a button? The answer is always the same, we are using the state
of the input element input$selectall that is interactive, hence monitored as
a reactive event, therefore the need to define a reactive context. Having understood
this, however, should we use reactive() or observe()? Are we recalculating
a value? No, then it is observe(). We add the equivalent instruction for printing
values of the checkbox.

observe(cat("ALL RESULTS: ", input$selectall, "\n"))
observe(cat("RESULTS: ", input$result, "\n"))

Now, we can try clicking several times on the button and look at the console to
check the outcome:

ALL RESULTS: 0
RESULTS: Success Success (Claimed)

ALL RESULTS: 1
RESULTS: Accident Attempt Rumored Bad Conditions Bad
Weather Did not Climb Illness, AMS Lack of Supplies Lack
of Time Not to Reach BC Other Route Difficulty Success
Success (Claimed)
Success (Subpeak, ForeSmt) Unknown

ALL RESULTS: 2
RESULTS:
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ALL RESULTS: 3
RESULTS: Accident Attempt Rumored Bad Conditions Bad
Weather Did not Climb Illness, AMS Lack of Supplies Lack
of Time Not to Reach BC Other Route Difficulty Success
Success (Claimed)
Success (Subpeak, ForeSmt) Unknown

ALL RESULTS: 4
RESULTS:
…

We have the confirmation of what was said before. When the dashboard is
executed the first time, button selectall has value 0 (ALL RESULTS: 0) and the
checkbox has the default values Success and Success (Claimed). When the button
is first clicked, selectall has value 1 (ALL RESULTS: 1) and the checkbox has all
checks selected. If it is clicked the second time, selectall has value 2 and all checks
are deselected. Clicking the third time, selectall has value 3 and the checkbox
has again all checks selected. The fourth time, selectall has value 4 and no check
selected, and so on. The mode of operation is clear, for selectall = 0 nothing has
been done except setting the default values, if any; for selectall = (1, 3, 5, 7,…)
all checks of the checkbox are selected; for selectall = (2, 4, 6, 8,…) no check is
selected. The programmatic logic is:

● For odd values of selectall, data frame rows should be filtered with a logical con-
dition representing the manually selected checks on the checkbox.

● For even values of selectall, data frame rows should not be filtered based on any
logical condition because all checks are selected.

● For zero, the default values are used to filter data frame rows.

The following question is: How do we recognize even values from odd values
in R? There certainly are custom functions that do that but looking for them is
unnecessary and a waste of time because there is a simple and basic method: divide
the value by 2 and look at the rest, if it is 0 then the value is even, if it is 1 then the
value is odd. In addition, R offers a handy notation to obtain the rest of a division,
the double percent symbol %%. Hence, the condition input$selectall%%2 ==
0 is True for even values of selectall, and False for odd values.

Another detail that will be found in the code is the strange instruction
freezeReactiveValue(input, "result"). What is that? It is not strictly
needed, if omitted the dashboard functioning is still correct, but it adds a useful
functionality to avoid the so-called flickering, which is the annoying condition
when the dashboard is updating the visualization because some input element
was changed and, during the reconfiguration, for a short time, it could show inco-
herent results. That is flickering, when a temporary inconsistent state becomes
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visible. Function freezeReactiveValue() freezes the graphical update of a
reactive element, in our case result, until a coherent state of all reactive elements
have been reached. The code for the button widget follows.

observeEvent(input$selectall, {

# selectall equals to 0
if(input$selectall == 0) return(NULL)

# Even values of selactall
else if (input$selectall%%2 == 0)
{
freezeReactiveValue(input, "result")
updateCheckboxGroupInput(session,"result","Result",

choices= sort(unique(him$Result)),
inline=TRUE)

}
else

# Odd values of selectall
{
freezeReactiveValue(input, "result")
updateCheckboxGroupInput(session,"result","Result",

choices= sort(unique(him$Result)),
selected= sort(unique(him$Result)),
inline=TRUE)

}
})

16.1.3 HTML Data Table

The last detail that we should analyze regards table formatting, which may hide a
tiny subtle difficulty. Let us see the excerpt of code, simplified for ease of compre-
hension:

output$exped <- DT::renderDT(DT::datatable(data= table_data(),
options= list(
…
)) %>% DT::formatStyle(

columns= colnames(.$x$data),
fontSize= '70%',
textAlign= "center"))

This piece of code executes the rendering of the data table (function
DT::renderDT()) as output element of the user interface. That function
requires data to render being in HTML format, and this is the task of func-
tion DT::datatable() that takes tabular textual data (a matrix or a data
frame) and transforms them into an HTML table. The data frame is provided by
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the reactive object table_data(), which we have created with a filter()
instruction and the original data frame. The resulting HTML table should
be formatted with function DT::formatStyle(), reducing font size and
centering the text, for example. Here comes the subtle problem. Function for-
matStyle(), has first attribute table that requires an HTML table, the one
created with datatable() and passed with the pipe; with attribute columns
the names of columns to be formatted are specified. We want to format all
columns; how can we specify that? The trivial solution is to explicitly list them all,
it works but it is not a general solution. We want to specify it so that all columns
are automatically formatted, it does not sound difficult but instead, it is not as
easy as it looks like. To understand the problem clearly, a toy example would help.

First, what we need is to obtain all column names from the table created with
datatable(). As a toy example, we can try using just datatable()with data
frame him, the original one produced by reading the dataset, and the common
R function colnames(). Then, we test two simple operations: first we format a
single column (i.e., Year) just coloring red its values; second we try the same with
all columns, by using colnames() to obtain the list of names, expecting to see
all columns values colored red.

> colnames(him)
[1] "Year" "Season" "Host" "Nationalities" "Leader (s)" "Route(s)"
[7] "Result" "Smtrs" "Dead" "Exped ID" "Nation"

# Tests:
# 1) Just column Year is formatted by coloring red its values
> datatable(data= him) %>% formatStyle(columns="Year",

color='red')
# 2) Same but for all columns by using colnames(.)
> datatable(data= him) %>% formatStyle(columns=colnames(.),

color='red')

The result is that, with the first test, we correctly obtain values of column Year
colored red. But with the second, by using the normal dot notation from magrittr
to specify where to place data passed through a pipe, no value is colored red. The
formatting has not been applied to any column. Something is wrong. The prob-
lem, as said, is subtle, and it has to do with the fact that the table produced by
datatable() is not a normal R data frame, so the traditional dot notation with
pipe does not work. A particular syntax is needed: .$x$data, which means that
from data passed by pipe (the dot notation), which is an HTML table, data used
by datatable() are considered ($data), and of them all columns ($x). It is
certainly not crystal clear as a syntax, but it is correct, and by using it we have all
values colored red in our toy example.

datatable(data=him) %>% formatStyle(columns=colnames(.$x$data),
color= 'red')
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The dashboard code reflects exactly what we have discussed with the toy
example, it just applies different formatting operations. The complete code for
this first version of the second Shiny dashboard is available in the Additional
Online Material – Himalayan Database Dashboard, First version. Figure 16.1a,
Figure 16.1b, and Figure 16.1c show some screenshots of the dashboard with the
default configuration and a custom range of years, button Select All clicked, and a
few nationalities selected. The possibilities are clearly many more.

16.2 Second Version: Tabs, Shinydashboard, and
Web Scraping

The first version is already an acceptable dashboard, still simple but neat, and
most of all it is still largely customizable by configuring the many style options
of the layout. We focus on a different aspect, though. The visualization is dense
and trying not to make the page excessively long, a first improvement would be to
make it a multi-page dashboard by introducing tabs. It is not difficult, as we have
seen with the first dashboard of the previous chapter, the overall page organization
remains the same, with the addition of a main element tabsetPanel() and
elements tabPanel(), one for each tab with its own page layout. We will not go
through it again with a detailed explanation, there is no difference with respect to
the previous chapter, just adaptations.

16.2.1 Shiny Dashboard

We consider, instead, a new package called shinydashboard that helps in the
configuration of a Shiny dashboard. It could be useful and it is reliable, but it is
often observed that it produces dashboards that look too similar and conventional
like a template endlessly reused. It is true, but that is mostly due to a certain
laziness in sticking with default configurations, because there is actually no
hard constraint for personalizing a dashboard produced with the help of this
package. The same criticism, as we have observed before, holds for all tools
and solutions that make use of predefined templates and themes, for example it
applies to Bootswatch themes as well, which are many but still tend to a certain
degree of stylistic homologation. The same is also true for many predefined
color palettes and for most commercial products for dashboard development,
which often limit the customization options. The truth is that choosing among
preset configurations is easy and quick, and almost always, among predefined
alternatives, a few are clearly better than the others, so the choice falls preferably
on those few. The definition of a personalized style and layout, not conformist,
not homologated with common templates, is more difficult than it may seem; it



Figure 16.1 (a) Layout with default configuration with years range 2000–2021. (b) Select All button clicked. (c) Only Italy, USA, and UK
chosen.
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Figure 16.1 (Continued)
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takes a considerable amount of time and effort, many attempts and adjustments,
and it also requires great care of the details. It is not by chance that professionals
skilled in that area are often in great demand.

For our examples, we will use shinydashboard and apply some personalization,
in order to give a glimpse of the many possibilities. The library offers several spe-
cific functions for typical components of a user interface, another reason to clearly
organize it in separate modules: functionsdashboardHeader(),dashboard-
Sidebar(), dashboardBody(), and dashboardPage() are specific for the
corresponding components, header, sidebar, body, and page. The reference schema
for the organization is as follows:

dashboardPage(
dashboardHeader(),
dashboardSidebar(),
dashboardBody()

)

An even better organization makes use of variables to handle the different parts
of a dashboard. Let us see how by starting with the user interface. Instead of defin-
ing all user interface components as values of a single ui object, as we did until
now, we could assign

the different components of the user interface to specific variables, and organize
the dashboard with those specific variables, rather than with the general ui one.
An example could be to use the following definitions:

● header (header <- dashboardHeader()): we use it to define all features
of the dashboard’s header.

● sidebar (sidebar <- dashboardSidebar()): for all features of the
sidebar, such as the element sidebarMenu() and widgets.

● body (body <- dashboardBody()): for all features referred to the main
page, graphical objects, tables, and for multi-page dashboards the tabset-
Panel() and specific tab layouts.

Finally, since to run a Shiny app we need to invoke shinyApp(ui,server),
all specific variables should be combined with dashboardPage()into the stan-
dard general ui variable.

ui= dashboardPage(header, sidebar, body, skin = "blue")

shinyApp(ui, server)

For stylistic personalization, some predefined skins exist, “blue” is the standard
one, and others are “black,” “purple,” “green,” “red,” and “yellow.” However, vari-
ations among these skins are limited to the header panel color and a little more.
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That produces the most manifest homologation effect, other than the layout orga-
nization; dashboards produced this way are essentially all alike, most of them with
the blue header, but a little to nothing changes by choosing a different skin. For
true personalization, it is required, at least, to work on the CSS style sheet, the
same way it is done with a traditional website or application. It is possible either
to connect to the dashboard a custom CSS style sheet or to work with inline defini-
tions (e.g.,tags$head(tags$style(HTML(’…’)), which is the Shiny syntax
that translates CSS declarations. In the following excerpt, we change the back-
ground and font color. Technical details are available in the official documentation
of package shinydashboard (http://rstudio.github.io/shinydashboard/appearance
.html) with additional functionalities here not presented.

tags$head(tags$style(HTML('
.skin_blue, .sidebar-menu, #season a {

color: #e6e5e3;
background-color: #2b447a;

}
.skin_blue, .shiny-options-group span {

color: #e6e5e3;
}
.skin_blue, .control-label {

color: #e6e5e3;
}
.skin_blue, .checkbox span {

color: #e6e5e3;
}'

))),

16.2.2 Web Scraping of HTML Tables

We move now to consider the second main novelty of this dashboard version, the
web scraping of HTML tables. With this, we wish to enrich the dashboard with tab-
ular information freely available from websites, without necessarily downloading
it, and transform into a local CSV dataset for traditional data import. This is where
web scraping techniques and tools are useful for retrieving information directly
from the web source. Alternatively, we might use APIs (Application Programming
Interfaces), namely specific functions made available by the owner of the online
source to let remote users access information. If available, APIs are the best choice
to access online information, but if not available, web scraping may help. With web
scraping techniques, data are collected straight from the HTML source by selecting
the elements to collect.

http://rstudio.github.io/shinydashboard/appearance.html
http://rstudio.github.io/shinydashboard/appearance.html
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It is, however, necessary to know that web scraping is subject to an ever-ending
debate regarding its legitimacy as a way to collect information from public sources.
Information on public websites is freely accessible, which technically means that
a user downloads it locally to read it, however, information on public sources is
still a proprietary information and it is questionable if a programmatic collec-
tion through automatic tools is or is not acceptable. There are legitimate concerns
regarding the possible performance degradation if a web server is heavily loaded
with collections of large bunches of data, possibly systematically repeated. There
are also legitimate doubts regarding the fundamental difference between users
individually accessing online information, the reason why a website is online, and
the programmatic collection of information by automatic means, which is not the
purpose of the website. In short, web scraping is not in general forbidden or a
sneaky action possibly unlawful and it is normally made available by standard
libraries and tools (e.g., R and Python data science libraries), but it is possible that
the online source owner decides to block that kind of activity and even to blacklist
the source IP address if they detect a systematic web scraping activity. For example,
do not try to web scrape Amazon, they will not tolerate such attempts.

At any rate, for our purposes and examples, we are not interested in systemati-
cally web scraping a large amount of data or proprietary data for which the owner
forbids web scraping attempts, but we limit our attention to the most innocuous
and simple of online data: HTML tables from static pages. That is easy to do and
problem-free, dynamic content generated by JavaScript is more difficult to retrieve,
you can try it without fear of triggering angry reactions.

We wish to retrieve data from two HTML tables, one present in the Wikipedia
page “List of people who died climbing Mount Everest” (https://en.wikipedia
.org/wiki/List_of_people_who_died_climbing_Mount_Everest), regarding mor-
tal accidents that happened during expeditions; the other from The Himalayan
Database, by selecting the Peak Ascents Report with Mount Everest code (Peak
ID: EVER) (https://www.himalayandatabase.com/scripts/peaksmtr.php), which
provides the full list of Everest expeditions members (at the time of writing,
11 341 members).

Let us consider the basic logic for retrieving those data by means of R function-
alities and inserting them into the Shiny dashboard. First, we need package rvest,
included into tidyverse. The general idea is that we read the HTML page corre-
sponding to a certain URL, then from the page source, we retrieve the table we are
interested in and transform it into a data frame. Let us consider the corresponding
code for the Wikipedia table:

library(rvest)

# Read the HTML page

https://en.wikipedia.org/wiki/List_of_people_who_died_climbing_Mount_Everest
https://en.wikipedia.org/wiki/List_of_people_who_died_climbing_Mount_Everest
https://www.himalayandatabase.com/scripts/peaksmtr.php
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url <- ("https://en.wikipedia.org/wiki/
List_of_people_who_died_climbing_Mount_Everest")

webpage <- read_html(x=url)

# Retrieve the table from the HTML source

data <- html_elements(webpage, 'table.wikitable')
data <- html_table(data, header= TRUE)

# Make it a data frame

dead_him <- data %>%
bind_rows() %>%
as_tibble()

The first instruction simply assigns to a variable (url) the URL of the page with
the table we wish to read. Then, with function read_html() we read the page’s
HTML source; the first attribute (x) should be a local path or a URL. The result,
assigned to variable webpage, is in XML format (a structured format often used for
web content). Figure 16.2 shows part of the XML file visualized with the RStudio
viewer, the main tag <html> is on top and includes tag <head>, the HTML
page’s header, and tag <body>, with page content.

The following instruction is html_elements(webpage,’table.
wikitable’) with html_elements() as the new function, from rvest v.1.0.0,
replacing the previous one called html_nodes(). This is the key step because
here we specify the page to inspect (variable webpage) and, most of all, the specific
HTML element containing the table we want. There are different methods to
specify the HTML element, either by the CSS selector or an XPath expression.
We have used a CSS selector, namely ’table.wikitable’. Let us see how
to recognize it. With a web browser (Chrome has been used for the example),
open the page corresponding to the URL. Then, you should look for a developer
tool for HTML inspection. All modern web browsers provide a tool of this sort,
in one way or another, for Chrome it can be found from menu View-Developer

Figure 16.2 Excerpt of XML representation of a web-scraped HTML page.

https://en.wikipedia.org/wiki/
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(using MacOS, a similar one if Windows is used). From that, select Inspect Element
or, alternatively, right-click on the page and from the contextual menu there will
be again Inspect Element. What appears is a standard Chrome tool to inspect the
elements of a web page, other browsers, such as Firefox and Bing, have similar
ones. Now, let us have a look at Figure 16.3.

On the far left of the menu bar, the one with items like Elements, Console, and
Sources, there is a little icon with an arrow and a square, by clicking on it, it will
turn blue, meaning that we can select page elements just by hovering the mouse
on each one of them. When the mouse hovers on an element, it will be highlighted,

Figure 16.3 Selecting the table element through the Chrome’s Inspect Element tool.
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and a tooltip will show its properties. In the panel at the bottom (Elements menu
selected) the corresponding source code is visualized showing HTML tags and
elements.

Now the tricky step. What we need to do is to select the HTML table element and
to do it, a certain amount of patience is required because you will likely end up
selecting many other elements before catching the table (try to hover on the table
border, that would be easier). At that point, you will see the whole table (and only
the table) highlighted, and the corresponding tooltip will give you the required
information (Figure 16.3 shows exactly that tooltip). In our case, it states that the
CSS selector is table.wikitable.sortable.jquery-tablesorter. We
are almost done, now we should try selecting with the R code. We try executing on
the console (or in a script as well, of course) function html_elements() with
that selector and look at the result.

data <- html_elements(webpage,
'table.wikitable.sortable.jquery-tablesorter')

Checking the result, we find the following:

> data
{xml_nodeset (0)}

It is empty ({xml_nodeset (0)}), meaning that the selector has not caught
the table. It should be tuned, try to make it more general by deleting the last
part and just leave 'table.wikitable.sortable'. We check again as done
before.

data <- html_elements(webpage,'table.wikitable.sortable')
> data
{xml_nodeset (1)}
[1] <table class="wikitable sortable"><tbody>\n<tr>\n<th>Name\n</th>
\n<th>Date\n</th>\n<th align=" …

Now the result has something and looking at it, we easily recognize that it is
the table (we see the table tag, the tbody tag with column names Name, Date,
and so on).

So, we have the table and same result would have been obtained with just
table.wikitable as selector.

Alternatively, in this case, we could have proceeded in the opposite way, that
is, knowing that we were looking for a table, we could have tried immediately
to search with just the table selector, which is a reasonable guess although not
always correct. Let us look at the result, by proceeding this way.

> data <- html_elements(webpage,'table')

> data{xml_nodeset (10)}
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[1] <table class="plainlinks metadata ambox mbox-small-left
ambox-notice" role="presenta…

[2] <table class="wikitable sortable"><tbody>\n<tr>\n
<th>Name\n</th>\n<th>Date\n</th>\…

[3] <table class="nowraplinks mw-collapsible expanded
navbox-inner" style="border-…

[4] <table class="nowraplinks hlist mw-collapsible
mw-collapsed navbox-inner" style=…

[5] <table class="nowraplinks navbox-subgroup"
style="border-spacing:0"><tbody>\n<tr>\…

…
[10] <table class="nowraplinks navbox-subgroup"

style="border-spacing:0"><tbody>\n<tr>\…

The result has 10 elements that correspond to the table selector ({xml_
nodeset (10)}), and it is easy to recognize from the list that the right one is
the second, data[2] (it shows the tbody tag, Name, Date). We also see that the
class is wikitable sortable, which could be combined to form the selector
table.wikitable.sortable that we have found with the first method.

As a third possibility, the SelectorGadget tool could be used (https://rvest
.tidyverse.org/articles/selectorgadget.html), a Chrome and other browser exten-
sion that helps in finding the selector associated to an element of an HTML page.
Even in this case, the approach is purely empirical, you should try with the tool
until you catch the table. In general, it works well, but in this specific case it
turned out to be less easy than the two previous solutions, but anyway, it is worth
a try.

One way or another, we put the HTML table into variable data and just one more
step is left before obtaining a data frame. Function html_table() provides the
tabular data, then with common R functions bind_rows() and as_tibble()
the data frame corresponding to the original table is ready.

data <- html_table(data, header= TRUE)
dead_him <- data %>%

bind_rows() %>%
as_tibble()

To explain the details, with html_table() we already obtain the conversion
into an R object, but there is a caveat. If we look at the content of variable data
or its data type, we recognize it to be of type list, rather than of type dataframe.
It needs a transformation, very easy, to concatenate rows (bind_rows()) and
convert the data type (as_tibble()). Figure 16.4 shows the final R data frame
corresponding to the original Wikipedia table.

https://rvest.tidyverse.org/articles/selectorgadget.html
https://rvest.tidyverse.org/articles/selectorgadget.html
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Name Date Age Expedition Nationality Cause of  Location Refs
     death

Dorje June 7,  1922 British Mount Nepal Avalanche Below [8]
 1922  Everest expedition   North Col

Lhakpa June 7,  1922 British Mount Nepal Avalanche Below [8]   
 1922  Everest expedition   North Col

Norbu June 7,  1922 British Mount Nepal Avalanche Below [8]
 1922  Everest expediton   North Col 

Pasang June 7,  1922 British Mount Nepal Avalanche Below [8]
 1922  Everest expedition   North Col 

Pema June 7,  1922 British Mount Nepal Avalanche Below [8]
 1922  Everest expedition   North Col 

Figure 16.4 First data frame obtained through web scraping from an HTML page.

For the second table to obtain through web scraping, we proceed in a similar way
with just one difference, namely that the web page from The Himalayan Database
is dynamically generated with a PHP script from the initial selection of the Peak
Ascent Report and specifying a certain Peak ID. We do not delve into the details
of web scraping techniques with dynamic pages, which is needed if you want
to systematically web scrape a number of dynamically generated web pages, but
we approach the problem in the most trivial way by simply and manually saving
locally the resulting HTML page from The Himalayan Database. So, now we have
our page as a local resource, rather than accessed with a URL, with the exception
of this detail, the procedure is the same as seen before.

This time we look for the right CSS selector by starting with just table as a
selector. The following is the result we obtain.

url2 <- ("datasets/Himalaian_expeditions/
Himalayan Database Expedition Archives of Elizabeth Hawley.html")

webpage2 <- read_html(url2)

data2 <- html_elements(webpage2,'table')

data2
{xml_nodeset (5)}
[1] <table width="100%" border="0" cellspacing="0"

cellpadding="0"><tbody>\n<tr>\n<td bgcolor="#2F …
[2] <table width="100%" border="0" cellspacing="0"><tbody><tr>\n

<td width="15"></td> <td …
[3] <table width="100%" height="79%" border="0" cellpadding="10"

cellspacing="0"><tbody><tr>\n<td …
[4] <table width="100%" height="100%" border="0" cellpadding="5">

<tbody><tr>\n<td valign="top">\n< …
[5] <table id="Peaks" border="1"><tbody>\n<tr>\n

<th style="width: 40px" align="left"><small> Peak …
>
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We find five HTML tables in the page corresponding to selector table, and
again it is easy to recognize which is the one we are looking for: it is the fifth
(i.e., data2[5]), having HTML id equal to Peaks, the first column named Peak
and so on. An HTML id is different from a class, that we found in the previous
table, but it could be part of a selector as well, it just needs to be prefixed with the
sharp symbol #, therefore the more specific selector would have been ‘table
#Peaks’. For the example, we use data2[5]. It should be converted into an R
object with data2<- html_table(data2[5],header=TRUE) and trans-
formed from list type to dataframe type with bind_rows() and as_tibble()
(see Figure 16.5).

The complete code is available in the Additional Online Material – Himalayan
Database Dashboard, Second version. Figure 16.6a, Figure 16.6b, and Figure 16.6c
show three screenshots, the first for the Expeditions tab, the second for the Sum-
miteers tab with the table from The Himalayan Database web page, and the third
for the Fatalities tab with the table from the Wikipedia page.

16.2.3 Shiny Dashboards and Altair Graphics Integration

With the third version of this dashboard, we introduce an advanced improvement,
represented by the possibility to integrate interactive Altair graphics into a Shiny
dashboard. It is interesting for the excellent quality and features of Altair, but also
challenging. Shiny is based on the R environment, while Altair is a Python library,

Peak Name Yr/Seas Date Time Citizenship Sex Age Oxy Dth Host

EVER Tenzing 1953 May 11:30 India M 39 Y • Nepal
 Norgay Spr 29

EVER Edmund 1953 May 11:30 New M 33 Y • Nepal
 Percival Spr 29  Zealand
 Hillary

EVER Juerg P. 1956 May 14:00 Switzerland M 28 Y • Nepal
 Marmet Spr 23

EVER Ernst 1956 May 14:00 Switzerland M 31 Y • Nepal
 Schmied Spr 23

EVER Adolf 1956 May 11:00 Switzerland M 35 Y • Nepal
 (Dolf) Spr 24
 Reist

EVER Hans- 1956 May 11:00 Switzerland M 27 Y • Nepal
 Rudolf Spr 24
 Von
 Gunten

Figure 16.5 Second data frame obtained through web scraping from an HTML page.



(a)

Figure 16.6 (a) Expeditions tab, default visualization. (b) Summiteers tab, table from The Himalayan Database’s web page. (c) Fatalities tab,
table from Wikipedia’s web page.



(b)

Figure 16.6 (Continued)



(c)

Figure 16.6 (Continued)
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truth is that the integrability between R and Python has improved considerably in
recent years, but nevertheless it is still a challenging task. So, be prepared to tackle
with some difficulties, also due to the fact that the possibility to integrate Altair
into Shiny is relatively recent, partially based on novel developments in Vega-Lite,
the technology behind Altair, is still not rigorously documented, and with just a
few examples available. However, those difficulties being largely predictable, the
goal is definitely worth the effort. We proceed step-by-step, as usual.

16.2.4 Altair and Reticulate: Installation and Configuration

To start, it is recommended to attentively follow the indications given by the
official documentation for the installation (https://vegawidget.github.io/altair/
index.html and https://vegawidget.github.io/altair/articles/installation.html). In
particular, it is suggested to carefully comply with steps described in Installation
because it is not sufficient to install the R package altair from CRAN, some
fundamental operations for using Python functions in an R environment must be
executed. To this aim, the R package reticulate has been specifically developed,
acting as an interface from an R script to the Python execution environment
locally installed. Useful is, at least for the initial tests, to create a Python virtual
environment by means of mamba, conda, or pip package managers and assign
to it the name used in the Altair documentation (r-reticulate), because that same
name is the default when the interface between the R frontend and Altair is
activated. This way you reduce the configurations to do. The virtual environment
should have Python installed as well as all dependencies required by the Python
version of package altair. If a virtual environment for data science projects is
already existing, it might be a good choice to clone it and give to it the name
r-reticulate. Altair installation into the virtual environment should be executed
with the specific installation function altair::install_altair() from the
R console. It may happen that an error is raised signaling inconsistencies between
versions of some dependencies; all such errors must be fixed before proceeding
(for example, at the time of writing, with Altair version 4.2.0, a downgrade of
Python package jsonschema to a version preceding 4.0 was needed).

The final step is to associate reticulate, the R interface with Python, with
the virtual environment r-reticulate just created and configured. The technical
documentation suggests to set it by manually editing the configuration file
.Rprofile. Another possibility is given with the following code, assuming a mamba
or conda virtual environment has been created, it sets the system variable
RETICULATE_PYTHON to use the r-reticulate virtual environment.

https://vegawidget.github.io/altair/index.html
https://vegawidget.github.io/altair/index.html
https://vegawidget.github.io/altair/articles/installation.html
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library(tidyverse)
py_bin <- reticulate::conda_list() %>%

filter(name == "r-reticulate") %>%
pull(python)

Sys.setenv(RETICULATE_PYTHON = py_bin)
library(reticulate)

There exists a third way, by using RStudio to develop the Shiny dashboard, you
likely defined a new R project (if not, it is recommended). In that case, it is possible
to specify a local project configuration with menu Tools – Project Options. On the
sidebar, select Python and edit the Python interpreter by choosing from tab Virtual
environments or Conda environments (the first if you used pip, the second if you
used conda) the r-reticulate virtual environment.

When all installation steps have been completed, it is suggested to test the correct
functioning with a simple dashboard. In the next section, one is proposed.

16.2.5 Simple Dashboard for Testing Shiny-Altair Integration

Examples of Shiny dashboards with Altair graphics are quite rare and often they
are outdated and no longer working, being based on Altair version 3, but super-
seded by version 4 that has deprecated some functions previously required and
now replaced with the original ones from package vegawidget, the one for which
Altair acts as an interface.

Here, we present a very simple Shiny dashboard for testing purposes, which
integrates an Altair bar plot. The attention points are:

● Usage of functions from package vegawidget, replacing the older ones from
package altair (vegawidget::vegawidgetOutput() and vegawid-
get::renderVegawidget()). It is recommended to keep the full syntax
with the package notation (vegawidget::) in order to avoid conflicts or
ambiguities.

● Usage of function as_vegaspec() transforming an Altair graphic into Vega
format (i.e., vega spec), which makes it compatible with rendering and output
features of package vegawidget.

We also recommend not to proceed with the third version of our full dashboard
of Himalayan expeditions before having tested the functioning with this simplified
dashboard.

library(shiny)
library(reticulate)
library(vegawidget)
library(altair)
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# Simple custom data frame
data1 <-
tibble(

a= c("A", "B", "C", "D", "E", "F", "G", "H", "I"),
b =c(56, 33, 12, 22, 98, 65, 25, 16, 76)

)

# User Interface
ui <- fluidPage(

titlePanel("Test Dashboard Shiny + Altair"),

sidebarLayout(
sidebarPanel(),
mainPanel(
# Output vegawidget
vegawidget::vegawidgetOutput("test_altair")

)
)

)

# Server logic
server <- function(input, output) {

# Altair bar plot e as_vegaspec()
chart <- alt$Chart(data1)$mark_bar()$encode(

x= "a",
y= "b"

) %>%
as_vegaspec()

# Rendering vegawidget
output$test_altair <- vegawidget::renderVegawidget(chart)

}

# Run App
shinyApp(ui= ui, server= server)

16.3 Third Version: Altair Graphics

With a correct integration between Shiny and Altair, we can finally extend the
previous version of our dashboard with static and interactive Altair graphics.
Some special adaptation of Altair syntax will be required because originally it
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has Python syntax, not compliant with an R environment. Two are the main
syntactical changes:

● Dots: they are the traditional symbols used by Python to concatenate names of
libraries, functions, and methods (e.g., alt.Chart(), with alt as the alias for
altair library and Chart() the Altair function).
Dots are not compatible with R syntax and are replaced with the dollar symbol
$ (e.g., alt.Chart() becomes alt$Chart()).

● Logical conditions with module datum, necessary to identify the source
data frame should be rewritten by enclosing them between quotes. For
example: .transform_filter(datum.Year<2010) should be written
as $transform_filter(’datum.Year < 2010’). There is a problem
with alphanumeric values, though, that Altair requires to be indicated between
quotes. Quotes for logical conditions and quotes for alphanumeric values
cannot be the same symbol, otherwise the expression is ambiguous. It is neces-
sary to use different symbols, for example: .transform_filter(datum.
Country == ’United States’) could be rewritten as $transform_
filter("datum.Country == ’United States’") or, equivalently,
$transform_filter(’datum.Country == "United States"’).

Furthermore, in order to use module datum in Python, it is required to import
it with from altair import datum, a Python directive that R does not
recognize. For this, R package reticulate comes to help because it is specifi-
cally designed to allow running Python commands in an R environment. We
could then execute the Python import operation with the following command
py_run_string("from altair import datum").

Keeping in mind these caveats, we are able to define Altair graphics for a Shiny
dashboard in the same way we have defined the ggplot ones: first, we define the
output element in the user interface, then the rendering in the server logic with the
Altair script for reading data and creating the plot. Everything with their correct
reactive contexts.

Custom functions, as we did for ggplot graphics, are still useful and rec-
ommended, helping in managing reactive contexts and enhancing the code
organization and readability.

Let us consider the dashboard by starting with the user interface. We want to
add some Altair graphics to the Summiteers tab, which has just the table with
expedition members. Four are the Altair graphics that we will create, finally
composed into a single one with Altair function hconcat() and vconcat()
or the equivalent symbols of pipe | and ampersand &. The result will be a single
graphic in HTML/JSON format.

For this reason, the user interface requires just one output element defined by
vegawidget::vegawidgetOutput, climb_altair is the identifier, and the
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graphic is placed in the same fluidRow, over the table, as we did with previous
ggplot graphics in other tabs.
tabPanel("SUMMITERS",

fluidRow(
br(),
vegawidget::vegawidgetOutput("climb_altair"),
p(),hr(),
column(12, DTOutput("climb"))

)
),

Now the server logic starts with graphical rendering. The output element is
referred as output$climb_altair and for the rendering we use function
vegawidget::renderVegawidget(). To create the Altair graphics, we
define a custom function called plot_climb() with three attributes that
correspond to the different data frames required by the graphic types that we will
produce. Those attributes are data_climb1(), data_climb2(), and data_climb3(),
and the corresponding data frames have been prepared with common data
wrangling operations.

vegawidget::renderVegawidget(plot_climb(
data_climb1(),
data_climb2(),
data_climb3()

)
) -> output$climb_altair

We consider now the data frames. They are derived from climb_him, the one
with data read through web scraping from the web page saved locally from The
Himalayan Database.

We start with data_climb1. This requires a simple data aggregation with rows
grouped for nationality (column Citizenship). The number of members for each
nationality is counted and values are stored in the new column Num_summit. For
simplicity, nationalities with less than 100 members are omitted. These data will
be used to produce a bar plot having on top of each bar the numerical value.
data_climb1 <- reactive(climb_him %>% group_by(Citizenship) %>%

summarize(Num_summit=n()) %>% filter(Num_summit > 100))

It is the turn of data_climb2(), just a little more elaborate than the previous
one. We separate Year from Season and convert Year into numerical type. Then,
we group for name and nationality and count the number of times each name
appears. This tells us the number of expeditions every climber has joined. Again,
for simplicity, we select those with more than 10 expeditions and sort the list by
number of expeditions. This data frame will be used for two bar plots: one for
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Nepalese Sherpas, which predictably are by far those with the highest number of
expeditions; the other for the non-Nepalese climbers.

reactive(climb_him %>%
separate(‘Yr/Seas‘,
into = c('Year','Season'),
sep = ' ') %>%
mutate(Year= as.integer(Year))%>%
group_by(Name, Citizenship) %>%
summarize(Num_summit= n()) %>%
filter(Num_summit >= 10) %>%
arrange(desc(Num_summit))) -> data_climb2

Finally, the third data frame data_climb3(), this time clearly more elaborate than
the others. As before, we separate Year from Season and convert the data type;
then we eliminate rows without a valid value in column Time because they refer
to seemingly spurious entries always duplicated that would create problems in
following operations.

Now the trickiest part. We group by name without aggregating (summarize()
has not been used) and count the number of expeditions for each person. The
result of this operation, being not aggregated, has the same size as the original
data frame, with the new column Num_summit with the same value for all
rows referred to the same person (one row for each expedition that a person has
joined). With the following transformation, we want to select, for each person,
the row with maximum value and the row with minimum value for column Age.
Basically, we want to obtain, for each person, the first and the last expedition
(i.e., this obviously does not apply to persons with just one expedition, but we are
not interested in those cases). In order to obtain such selection, seemingly easy,
within a piped expression, there is a complication. Functions slice_max() and
slice_min(), commonly used to obtain, for each group of a grouped data frame,
the row(s) with highest and the row(s) with lowest value for a certain column,
cannot be logically combined to obtain rows satisfying either the slice_max()
or slice_min(). We need another solution unless we want to complicate
things by separating the two conditions into distinct selections to be combined
afterward. The basic combination of function filter() and function rank()
provides us with an elegant workaround. The form filter(rank()), which
can be used to obtain the same outcome of slice_max() and slice_min(),
could be expressed as a logical condition, hence could be combined.

Let us see the details. In a grouped data frame, to obtain, for each group, the rows
with the highest values with respect to a certain column, the following expression
could be used filter(rank(desc(column))<=num), with num indicating
the number of rows with highest values we want to obtain. Conversely, for each
group, to obtain rows with the lowest values with respect to a certain column,
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the following form should be used filter(rank(column)<=num). The key
is that being both filter operations, the rank expressions are actually logical condi-
tions, so they could be combined with logical operators. In our case we want the
disjunction (i.e., OR) and retrieve just one row for each condition, so to obtain, for
each person, the expedition whose age was the oldest OR the expedition whose age
was the youngest: (filter(rank(Age)<=1 | rank(desc(Age))<=1)).

In other words, we obtain, for each person, the age of the first and the age of the
last expedition.

A last detail remains to be clarified. There is the case of persons who joined more
than one expedition at same age (it is rare, obviously, but there are cases). So, for
our purpose, we can select just the columns we need and remove duplicated rows.

reactive(climb_him %>%
separate(‘Yr/Seas‘,

into= c('Year','Season'),
sep= ' ') %>%

mutate(Year=as.integer(Year))%>%
filter(Time!="") %>%
group_by(Name) %>%
mutate(Num_summit=n()) %>%
filter(rank(Age)<2 |

rank(desc(Age))<2) %>%
arrange(desc(Num_summit),Name) %>%
select(2,3,7,8,9,10,13) %>%
distinct()
) -> data_climb3

16.3.1 Cleveland Plot and Other Graphics

Data frame data_climb3 just derived, will be used to visualize a Cleveland plot,
which is an elegant combination of a scatterplot and a line plot for categorical vari-
ables composed by a pair of values for each category, such as the maximum and
minimum value of common categories like Male/Female, North/South, Left/Right
and so on. It is a simple but clever type of graphics with a long history and an
intuitive, eye-catching visual effect; it just needs some work to prepare the data.

The server logic is finished, what remains is the definition of the custom function
plot_climb() for Altair graphics. The complete code is available in the Additional
Online Material, here we give only the main elements. As already said, the custom
function has three parameters corresponding to the data frames.

plot_climb <- function(data1, data2, data3) {…}

Also, the Altair syntax should be corrected to be compliant with the R environ-
ment, so we will have dollar symbols in place of the dot notation. We will define six
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Chart()plots, that through combinations, will form the four individual graphics,
finally assembled into a single one. Here is the list of the four graphics:

Bar plot Nationality/Number of expeditions: the two plots bar_plot1 and text are
combined, with the second adding the numerical values on top of the bars. These
are static graphics that we have already seen in Chapter 14 and do not present any
difficulty. The combination of them specifies some properties.

chart1 <- (bar_plot1 + text
)$properties(title='Number of summits by nationality',

width=400, height=300)

Cleveland plot Age/Name: the two plots, scatter_plot and line_plot, are combined,
with the first one that, for each climber (y-axis), draws the two points correspond-
ing to the minimum and maximum age (x-axis), while the second plot draws a
line between the two points, creating the typical shape of a Cleveland plot with
two points and a line. Some style options have been defined (i.e., size, stroke) and
dynamic tooltips associated to the markers with contextual information (number
of expeditions, age, year, and nationality). The two are aligned in a way similar to
the previous graphic.

chart2 <- (line_plot + scatter_plot
)$properties(title='Top summiters: age at

first and at last summit',
height=300)

Bar plots Number of expeditions /Name: these are two distinct bar plots, bar_plot2
and bar_plot3, for Nepalese Sherpas and non-Nepalese climbers. They use the
same data frame but a different selection condition, respectively: $transform_
filter("datum.Citizenship==’Nepal’") and $transform_filter
("datum.Citizenship!=’Nepal’").

Both have the dynamic tooltip.
To conclude, we consider the final composition of the four graphics, first aligned

horizontally in pairs, then vertically for the combined pairs. As a final property, we
set the background as transparent, to comply with the dashboard theme. The last
step is the transformation of the Altair graphic into Vega Spec type.

chart <- ( (chart2 | chart1) & (bar_plot2 | bar_plot3)
)$properties(background='transparent')

chart %>% as_vegaspec()

The complete code is available in the Additional Online Material – Himalayan
Database Dashboard, Third version. Figure 16.7 shows tab Summiteers with Altair
graphics, both static and interactive.



Figure 16.7 Static and interactive Altair graphics in a Shiny dashboard.
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17

Plotly Graphics

Plotly is an open-source graphical library offering modern visualization features
to Python, (https://plotly.com) for dynamic graphics. It has been subsequently
ported to R, although it cannot rival ggplot yet, at least for static graphics.
In Python, it has been integrated with an advanced tool for web dashboard
development, called Dash, which provides the open and free community edition,
employed for the examples of this book, and the commercial enterprise edition.
Plotly syntax, similar to traditional Seaborn, does not follow the grammar of
graphics, but is specifically developed for web visualization, it natively offers
useful interactive functionalities.

In this book, we will present only a brief summary of Plotly features, they are
generally simple, given all what we already have learned with Seaborn, and do not
add any particular new skill, but important for us is that Plotly is the reference
graphical library for Dash dashboards, which we will discuss in the next chapter
and represent the real interesting topic to illustrate. Plotly will return in the last
Part 4 of the book, when Python geographic maps will be discussed.

Dataset

Tourist/visitor arrivals and tourism expenditure, Open Data from the United
Nations (http://data.un.org/), regarding tourist arrivals and expenditure for a set
of countries and years. The dataset has been previously introduced.

17.1 Plotly Graphics

Plotly has two main graphical libraries: the most recent plotly.express (with stan-
dard alias px) and plotly.graph.object (standard alias go), which are largely inter-
changeable. In the following examples, we will mainly use plotly.express, rewriting
them with plotly.graph.object is straightforward. Let us start from the basics.

Data Visualization in R and Python, First Edition. Marco Cremonini.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Cremonini/DataVisualization1e

https://plotly.com
http://data.un.org/
http://www.wiley.com/go/Cremonini/DataVisualization1e
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import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
import plotly.io as pio

We read the United Nations dataset with data about tourists’ arrivals and
expenditures.
df=pd.read_csv("datasets/UN/

SYB65_176_202209_Tourist-Visitors Arrival and Expenditure.csv",
thousands=',')

Region/Country/
Area Country Year Series Value

0 4 Afghanistan 2010 Tourism expenditure 147
1 4 Afghanistan 2018 Tourism expenditure 50
2 4 Afghanistan 2019 Tourism expenditure 85
3 4 Afghanistan 2020 Tourism expenditure 75
4 8

· · ·
Albania
· · ·

2010
· · ·

Tourist/visitor arrivals
· · ·

2191
· · ·

A few simple preliminary data wrangling operations are needed to prepare the
data frame for visualization (i.e., long-form transformation, new column creation
with per capita tourist expenditure, removal of rows with missing values).
df1= df.pivot(index=['Country','Year'], columns='Series',

values='Value').reset_index()

df1.columns= ['Country','Year','Expenditure','Arrivals']
df1["Per_capita_Exp(x1000)"]= (df1.Expenditure/df1.Arrivals).\

round(3)
df2= df1[∼((df1.Expenditure.isna()) | (df1.Arrivals.isna()))]

Country Year Expenditure Arrivals
Per_capita_Exp
(x1000)

6 Albania 2010 1778.0 2191.0 0.812
7 Albania 2018 2306.0 5340.0 0.432
8 Albania 2019 2458.0 6128.0 0.401
9 Albania 2020 1243.0 2604.0 0.477
11 Algeria 2005 477.0 1443.0 0.331
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Country Year Expenditure Arrivals
Per_capita_Exp
(x1000)

· · · · · · · · · · · · · · · · · ·
1229 Zimbabwe 2005 99.0 1559.0 0.064
1230 Zimbabwe 2010 135.0 2239.0 0.060
1231 Zimbabwe 2018 191.0 2580.0 0.074
1232 Zimbabwe 2019 285.0 2294.0 0.124
1233 Zimbabwe 2020 66.0 639.0 0.103

17.1.1 Scatterplot

As usual, we start with the scatterplot, the Plotly function is px.scatter() hav-
ing the typical attributes for axes, color, size, and so on. By default, Plotly adds
the interactive tooltip and the standard zoom function of HTML pages. Figure 17.1
shows the first Plotly graphic with the dynamic tooltip, on top-right, icons for the
zoom, and other features are visible.

# Continuous color scales:
# https://plotly.com/python/colorscales/

scatter1= px.scatter(df2, x="Arrivals",
y="Expenditure", color="Year",
size= 'Per_capita_Exp(x1000)', size_max=60,
color_continuous_scale= px.colors.sequential.Viridis)

scatter1.show()

By default, a tooltip shows all values employed as attributes for the graphic. If we
want to add variables into the tooltip different than those specified in the graphic
definition, we could use attribute hover_data. In Figure 17.2, we have added
Country to the tooltip.

# Discrete color palettes:
# https://plotly.com/python/discrete-color/

# Tooltip values have to be strings

df2["Year"]= df2["Year"].astype(str)

scatter2= px.scatter(df2, x="Arrivals", y="Expenditure",
color="Year", size='Per_capita_Exp(x1000)',
size_max=60, hover_data=['Country'],
color_discrete_sequence=px.colors.qualitative.T10)

scatter2.show()

https://plotly.com/python/colorscales/
https://plotly.com/python/discrete-color/
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Figure 17.1 Plotly, scatterplot with default dynamic tooltip.
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17.1.2 Line Plot

For the line plot, the Plotly function is px.line() and, again, it has the usual
attributes (see Figure 17.3).

line1 = px.line(df2, x="Year", y="Arrivals", color="Country",
color_discrete_sequence= px.colors.qualitative.T10)

line1.show()

17.1.3 Marginals

Marginals are easy to produce with attributes marginal_x and marginal_y,
which specify the graphical type to place on axis x and axis y. In the following
example and Figure 17.4, a histogram for axis x and a rug plot for axis y are shown.

px.scatter(df2, x="Arrivals", y="Expenditure",
color="Year", hover_data=['Country'],
marginal_x="histogram", marginal_y="rug",
size= 'Per_capita_Exp(x1000)', size_max=60)

17.1.4 Facets

We conclude this brief overview of Plotly with facets. Attribute facet_col
defines the variable used to produce facets and facet_col_wrap the number
of columns of the grid. The following code and Figure 17.5 show the example.

df3= df2.sort_values(by="Year")

scatter4= px.scatter(df3, x="Arrivals", y="Expenditure",
facet_col="Year", facet_col_wrap=3,
hover_data=['Country'])

scatter4.update_traces(marker=
{"opacity": 0.3, "color":"darkgreen", "size":8})

scatter4.show()

This brief overview of Plotly is evidently just a glimpse on its graphic gallery, but
equipped with the knowledge of Seaborn, learning to use Plotly requires minimal
effort and all classical types of graphics could be reproduced. Such a short intro-
duction is however sufficient to move to the next chapter, Dash web dashboard,
which is of remarkable interest.
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18

Dash Dashboards

For developing dashboards with the Dash framework, it is recommended using a
Python Interactive Development Environment (IDE). The support for Jupyter Note-
book and JupyterLab exists, but there are some differences, and, in general, a
Python IDE will serve you much better in this case.

For the Dash installation, the steps described in the official documentation
should be carefully followed (https://plotly.com/python/getting-started/).

If JupyterLab is chosen as the development tool, it offers three usage modes:
inline (dashboard rendering is shown within the notebook), jupyterlab (rendering
is created in a new tab of JupyterLab), or external (a new tab in the predefined web
browser is opened and the rendering is presented). Mode inline could be used only
for truly simple dashboards, other than that it has too many limitations. Mode
jupyterlab offers more flexibility, but it is an intermediate alternative between
the inline and the web browser with not much use. The rendering in the web
browser should be chosen as the favorite option, showing the dashboard in its
natural environment and permitting mangling with traditional HTML settings
and CSS style sheets, instead of just setting inline directives. There also exist (at
least at the time of writing) some not-well-documented incompatibilities between
the version of the Jupyter library for supporting Dash dashboards (package
jupyter-dash and its dependencies) and the more recent Python versions (e.g.,
v.3.10), which may cause problems in the management of the HTTP process that
executes the rendering on a web browser. For these reasons, differently from Plotly
graphics that are perfectly supported by JupyterLab and Jupyter Notebook, a
Dash dashboard development is better developed using a Python IDE, rather than
Jupyter tools. Many Python IDEs are available like PyCharm, Spyder, and others,
which also provide advanced and useful functionalities for debugging, coloring,
and indenting code (relevant to Python), and package management. All examples
of this chapter have been developed with PyCharm Community Edition and, for

Data Visualization in R and Python, First Edition. Marco Cremonini.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Cremonini/DataVisualization1e

https://plotly.com/python/getting-started/
http://www.wiley.com/go/Cremonini/DataVisualization1e
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this reason, the corresponding files have extension .py. Technical differences with
respect to a development with a Jupyter tool are, anyway, just a few:

● Package jupyter-dash is no longer required.
● The dashboard is created by running Dash(__name__), instead than Jupy-
terDash(__name__).

● The web application representing the dashboard is executed with no need to
specify a mode (e.g., mode=’external’).

Dataset

In this chapter, we use the same Tourist/visitor arrivals and tourism expenditure
dataset introduced before.

18.1 Preliminary Operations: Import and Data
Wrangling

The following code should come before all excerpts of code that will be presented
in this chapter. For brevity, these instructions will not be repeated each time, but
they are required to run the examples.

18.1.1 Import of Modules and Submodules

The list of modules and submodules to import is rich and, depending on the IDE
of choice, some of them could be preloaded.

# NumPy, pandas and Dash
import pandas as pd
import numpy as np
from dash import Dash, dcc, html, Input, Output, dash_table

# Plotly
import plotly.express as px
import plotly.graph_objects as go
import plotly.io as pio

# Dash bootstrap components
import dash_bootstrap_components as dbc
from dash_bootstrap_templates import load_figure_template

# Package lxml (required by pd.read.html())
import lxml

# Inclusion of iframes in HTML pages
pio.renderers.default = "iframe"
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18.1.2 Data Import and Data-Wrangling Operations

In the following steps of Dash dashboard development, for simplicity, we will keep
the same data import and data-wrangling operations to avoid adding unnecessary
complexity.

Here is the excerpt of code for data import of the United Nations’ dataset and
the data-wrangling operations required to prepare the data for visualization.

We also create three local variables, min_arr, max_arr, and country_list, to store
the maximum number and minimum number of tourist arrivals, and the country
list. We will use them frequently.
df= pd.read_csv("datasets/UN/

SYB65_176_202209_Tourist-Visitors Arrival and Expenditure.csv",
thousands=',')

df1= df.pivot(index=['Country','Year'],
columns='Series',
values='Value').reset_index()

df1.columns= ['Country', 'Year', 'Expenditure','Arrivals']
df1["Per_capita_Exp(x1000)"]=

(df1.Expenditure/df1.Arrivals).round(3)

df2= df1[∼((df1.Expenditure.isna())|(df1.Arrivals.isna()))]
min_arr= df2.Arrivals.min()
max_arr= df2.Arrivals.max()
country_list= df2.Country.unique()

Furthermore, in different versions of Dash dashboards that will be presented,
a Plotly graphic will always be included. For simplicity, it will correspond to the
second scatterplot showed in previous Chapter 17 (variable scatter2). Clearly, the
variants are endless, however, for our aim, which is to discuss how to develop and
organize a Dash dashboard, using one type of graphics or another is not relevant.

18.2 First Dash Dashboard: Base Elements and Layout
Organization

18.2.1 Plotly Graphic

We start with the simplest configuration, which is the visualization of a single
Plotly graphic. The dashboard is created with directive Dash(__name__),
app is the standard name for the resulting object representing the dashboard.
With the classical Python dot notation for concatenation, object app.layout is
assigned to the dashboard page layout. The layout definition largely corresponds
to the syntax and organization of an HTML page, only translated into Python
syntax. This way, HTML element <div>, used to define a page section, becomes
function html.Div() that requires a list of elements between square brackets.
These elements could be HTML elements redefined into Python syntax or Dash
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elements. In the example, we see that the first element is a header of level H4
(HTML tag <h4>)), here indicated with html.H4(), followed by an element
dcc.Graph(), with dcc being the alias of submodule Dash Core Components.
This element defines a graphic in the layout with attribute id as its identifier and
figure the attribute with the graphical object to include (i.e., in our case the
Plotly graphic scatter2). The last instruction runs the Dash dashboard locally, it
has the form if __name__ == ’__main__’: app.run_server(), with
host and port as optional attributes. As discussed for Shiny dashboard, we see just
the local execution; for deploying a Dash dashboard on a production server, we
forward the reader to the official Dash documentation.

The result shown in Figure 18.1 does not look impressive, to say the least, it is
practically the same as the simple Plotly graphic, nevertheless, the important part
is under the hood because this is not just a graphic but a full web application and a
Dash dashboard. We will improve it considerably in the remaining of the chapter.

app = Dash(__name__)

app.layout = html.Div([
html.H4('Simple scatterplot'),
dcc.Graph(

id= "graph",
figure= scatter2)

])

if __name__ == '__main__':
app.run_server(host='127.0.0.1', port=8051)

18.2.2 Themes and Widgets

We can now add components, widgets, and, most of all, reactive events to the initial
bare dashboard. We start with layout elements.

In order to specify a Bootswatch theme, we should use module Dash Bootstrap
Components (standard alias dbc) and its method dbc.themes. A list of available
themes could be found on Bootswatch’s home page (https://bootswatch.com/).
We chose a light one (i.e., dbc.themes.FLATLY) and specified it in function
Dash()with attribute external_stylesheets.

The following new element is a widget, starting with a slider, which allows us
selecting a range of values for the associated variable, in our case the number of
tourist arrivals. The function for the slider widget is dcc.RangeSlider(), with
an attribute id for the identifier and typical slider attributes:

● min, max, andstep for the minimum and maximum values, and the minimum
step when the slider is moved.

● value represents the values shown by default.

https://bootswatch.com/


Figure 18.1 Dash dashboard with Plotly graphic.
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On top of the slider, we may want to add a text, like a title. We can do this with
html.P() (again, the Dash translation of HTML tag <p>). All these elements
are vertically aligned in the page layout.

app= Dash(__name__, external_stylesheets=[dbc.themes.FLATLY])

app.layout= html.Div([
html.H3('Scatterplot + Slider',

style={
'textAlign': 'center',
'color': 'teal'

}),
dcc.Graph(id="scatter"),

html.P("Tourist arrivals:"),

dcc.RangeSlider(
id='slider',
min= min_arr, max= max_arr, step=5000,
value= [min_arr, max_arr]

)
])

18.2.3 Reactive Events and Callbacks

Reactive events, as we have seen for Shiny, represent the core of a dashboard, and
this holds for Dash too. So far, we have just defined layout elements, and for the
slider, in particular, there is no action associated. When the input changes through
user interaction, in this case, the slider is moved, that event should be caught, and
the dashboard output updated correspondingly.

In Dash, a reactive event is managed by a mechanism called callback, namely
a function associated to a certain input that is automatically triggered when that
input changes, executes some actions, and updates the dashboard. The callback
mechanism is defined by means of the special function @app.callback()
(https://dash.plotly.com/basic-callbacks). In our example, the callback will
specify that the associated output, with identifier scatter, is a graphic (i.e., type
’figure’) and depends on input, with identifier slider, that will pass some
numerical values (i.e., type ’value’). Types of inputs and outputs for a callback
are codified in Dash. That is the reactive context for the Dash slider element,
which follows the general logic and model of all dashboard’s reactive actions,
similar to what we have seen with Shiny, just using different constructs. The
reactive context is defined, and now the associated actions must be specified. This
is provided by the custom function that immediately follows the callback. In this
case, it is called update_scatterplot(); it is a traditional Python custom
function, and it is executed when the callback that precedes it is activated.

https://dash.plotly.com/basic-callbacks
mailto:@app.callback
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To recap, the logical flow to manage a Dash reactive event is: the input element
is changed, this activates the corresponding callback (@app.callback()). The
following custom function (e.g., update_scatterplot()) is executed and a
result is produced, such as the graphic is recreated (e.g., px.scatter()) or a
table is recalculated. The result is stored in a variable (e.g., fig in the example)
that is returned, and the dashboard is updated. The following excerpt of code
shows the details of the example. Figure 18.2a and Figure 18.2b show two screen-
shots of the dashboard, the first with default slider values, and the second after
having changed the slider input.

# Callback definition
# Input type 'value', id 'slider'
# Output type 'figure', id 'scatter'

@app.callback(
Input("slider", "value"))
Output("scatter", "figure"),

# Associated custom function

def update_scatterplot(slider_range):
low, high = slider_range
mask = (df2['Arrivals'] >= low) & (df2['Arrivals'] <= high)
fig = px.scatter(df2[mask],

x="Arrivals", y="Expenditure", color="Year",
size='Per_capita_Exp(x1000)', size_max=60,
hover_data=['Country']
)

return fig

if __name__ == '__main__':
app.run_server(port=8051)

18.2.4 Data Table

We add a table with data. Starting from the layout, we proceed as seen before,
first creating the table element, for which a function of module table is used,
dash.table.DataTable() (https://dash.plotly.com/datatable). Let us delve
into the details by looking at the definitions presented in the code. The first
attribute data has the data in dictionary format (dict), not as data frame, so the
data frame has to be transformed. Pandas function to_dict() with keyword
records executes that transformation. The second attribute is columns, which
is still a dictionary this time with column names as values and the index value as
keys in dictionary pairs key:value. This is the reason for the for cycle on column
names. Following these two fundamental attributes, the code shows several
among the many possible optional features that could be specified for Dash data

https://dash.plotly.com/datatable
mailto:(@app.callback
mailto:@app.callback


(a)

Figure 18.2 (a) Slider with default range. (b) Slider with modified range (25k–90k).



(b)

Figure 18.2 (Continued)
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tables, such as formatting options, sorting, selection, and so on; in short, features
that transform a classical tabular form into an interactive table with features
associated to each column. It is suggested to try them all and see the outcome.
Figure 18.3 shows the dashboard with the data table.

dash_table.DataTable(
data=df2.to_dict('records'),
columns=[{'id': c, 'name': c} for c in df2.columns],
filter_action="native",
sort_action="native",
sort_mode="multi",
column_selectable="single",
row_selectable="multi",
row_deletable=True,
selected_columns=[],
selected_rows=[],
page_action="native",
page_current=0,
page_size=10,
style_as_list_view=True,
style_table={'margin-top': '48px', 'overflowX': 'auto'},
style_cell={'textAlign': 'left', 'fontSize': 14,

'font-family': 'sans-serif'},
style_data={'backgroundColor': 'white'},
style_data_conditional=[

{
'if': {'row_index': 'odd'},
'backgroundColor': 'rgb(220, 220, 220)',

}
],
style_header={

'backgroundColor': 'teal',
'color': 'white',
'fontWeight': 'bold'

}
)

18.2.5 Color Palette Selector and Data Table Layout Organization

As a variant of the previous case, we want to introduce a color palette selector and
also modify the aspect of the data table by reducing its size and centering with
respect to page’s width.

There is no predefined element or widget for the color palette selector, we have
to produce it. First, we need a drop-down input element placed in the layout. We
use function dcc.Dropdown() with attribute options that allows associating



(a)

Figure 18.3 (a) Dash, graphic, slider, and data table with interactive features, default visualization. (b) Dash, graphic, slider, and data table
with interactive features, slider-modified visualization.



(b)

Figure 18.3 (Continued)
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the list of choices, in our case the list of predefined color palettes. In this case, we
could reasonably guess that it exists a function that gives us such list; it does exist:
px.colors.named.colorscales(), which we could associate to a local vari-
able of the layout.

The drop-down menu with identifier dropdown could be placed within an
HTML div with Dash element html.Div().

colorscales= px.colors.named_colorscales()

html.Div([
html.H4('Interactive color scale'),
html.P("Select your palette:"),
dcc.Dropdown(

id= 'dropdown',
options= colorscales,
value= 'viridis'

),
]),

This is for the layout definition; now it comes with the corresponding reactive
action to apply the selected color palette to the graphic. We need to define a call-
back and the associated custom function. The callback should associate the input
from the drop-down menu to the output represented by the scatterplot graphic. A call-
back that takes an input and associates the output to the scatterplot already exists,
it is the one defined for the slider. We do not need to create a new one, the one that
exists could be customized with an additional input (i.e., Input("dropdown",
"value")), and the correspondingupdate_scatterplot() custom function
modified to handle the two cases: the input from the slider (identifier slider) and
the input from the drop-down menu (identifier dropdown). If the logic is clear, the
code is easy to rewrite. The update_scatterplot() now has two parameters:
slider_range with the values from the slider and scale with the selected color
palette. With scale, we can just add the attribute color_continuous_scale
to the scatterplot to have the graphic produced with the selected palette.
# Callback
# input slider and dropdown, both of type value
# output scatter of type figure

@app.callback(
Output("scatter", "figure"),
Input("slider", "value"),
Input("dropdown", "value"))

# Custom function

mailto:@app.callback
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def update_scatterplot(slider_range, scale):
low, high = slider_range
mask = (df2['Arrivals'] >= low) & (df2['Arrivals'] <= high)
fig = px.scatter(df2[mask],

x="Arrivals", y="Expenditure", color="Year",
size='Per_capita_Exp(x1000)', size_max=60,

hover_data=['Country'],
color_continuous_scale= scale
)

return fig

Next, we want to improve the aspect of the data table by reducing its size and
centering it with respect to page’s width. This tuning might sound trivial but, on
the contrary, it is trickier than it should be, and the reason is that there does not
exist a specific formatting option to do what we want; if we just reduce table width,
it results left aligned, padding on the left side could be used to introduce space
between the left border and the table, there is a style option for this, but the table
will not result correctly centered for all screen resolutions and window sizes.
There is a solution, though, by exploiting the virtual 12 columns of the web page.
We could create a new virtual row with function dbc.Row() and in that row we
define three columns with functiondbc.Col(). In the middle column, we define
our data table with the width we wish, the left and right columns, instead, are left
empty and of same size. This way the data table will appear centered with respect
to the page. An additional detail is that attributes s/sm/md/lg/xl are called
breakpoint in the Bootstrap framework and are used to specify different screen res-
olutions. Values shown in the following code are the standard ones from the offi-
cial documentation (https://getbootstrap.com/docs/5.1/layout/breakpoints/). For
brevity, all options of the data table defined before have been omitted in this excerpt
of code. Figure 18.4a and Figure 18.4b show two screenshots of the dashboard
with, on top, the drop-down menu for selecting a color palette, a different color
palette applied to the graphic, and the table centered with respect to page’s width.

dbc.Row(
[

dbc.Col(
html.Div(),
xs=12, sm=12, md=3, lg=3, xl=3,

),
dbc.Col(
html.Div(

dash_table.DataTable(
data= df2.to_dict('records'),
columns= [{'id': c, 'name': c} for c in

df2.columns],
… )

),

https://getbootstrap.com/docs/5.1/layout/breakpoints/


(a)

Figure 18.4 (a) Color palette selector and centered, resized data table (example 1). (b) Color palette selector and centered, resized data
table (example 2).



(b)

Figure 18.4 (Continued)
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xs=12, sm=12, md=3, lg=3, xl=6,
),
dbc.Col(

html.Div(),
xs=12, sm=12, md=3, lg=3, xl=3

)
], className="g-0" # This removes space between columns

)
])

18.3 Second Dash Dashboard: Sidebar, Widgets,
Themes, and Style Options

With the previous version of the dashboard, we started from scratch with bare
graphics and learned how to place some elements in the layout with their cor-
responding callback with two different inputs. It is still a very easy dashboard,
though. Now, we move to the second version with considerably more elements
and a more elaborate organization.

The first new step is to add the sidebar with some widgets.

18.3.1 Sidebar, Multiple Selection, and Checkbox

With the sidebar, we acquire many more possibilities for enriching and improving
the dashboard layout organization. Let us first consider a general schema that will
be used in following examples; it shows, first, the definition of the sidebar element,
then of the main page, one element for each row, then main page’s elements are
concatenated, and finally the sidebar and the main page are concatenated too, to
produce the final layout.

# SIDEBAR

sidebar= html.Div(…, style= SIDEBAR_STYLE)

# MAIN PAGE
# First row

content_first_row= dbc.Row(
[

dbc.Col(…),
dbc.Col(…)

]

# Second row

content_second_row= dbc.Row(
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[
dbc.Col(…),
dbc.Col(…)

]

# Main page: concatenating rows

content= html.Div(
[

content_first_row,
content_second_row,

],
style= CONTENT_STYLE)

# Final layout: concatenating the sidebar and the main page

app.layout= html.Div([sidebar, content])

This way, we could modularize the layout organization (app.layout) in
distinct parts that will be combined together only at the end. This is an important
aspect to learn, decomposing the code in modules has many advantages and
should always be done, except for very simple cases. As we will see, this also eases
applying different style directives to different parts and elements. Specifically, in
the schema, SIDEBAR_STYLE and CONTENT_STYLE are variable names that
refer to CSS inline style directives, meaning that they are specified into the Python
script, rather than defined in a separate CSS style sheet, and they instruct the
rendering to apply different style configurations to the sidebar and the main page.
The full list of CSS inline directives applied is available in the complete code
present in the Additional Online Material - Second Dash Dashboard.

With the general layout organization, we can now consider how to define the
sidebar. It will have some common HTML elements and two widgets: a drop-down
menu (functiondcc.Dropdown()) with identifier dropdown and the country list
(variable country_list has been defined at the very beginning of the chapter) and
a checklist (function dcc.Checklist()) with identifier checklist. The checklist
selects or deselects the All countries checkbox.
sidebar = html.Div(

[
html.H4('Controls', style= TEXT_STYLE),
html.Hr(),
html.P('Countries:', style= TEXT_STYLE),
dcc.Dropdown(id= "dropdown",

options= country_list,
value= ['Italy'],
multi= True),

html.Br(),
dcc.Checklist(id= "checklist",

options=[{'label': 'All countries',
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'value': 'AllC'}],
value=['AllC']
)

],
style=SIDEBAR_STYLE,

)

For the elements of the main page, on the first row (content_first_row), there is
the Plotly graphic and the slider, as seen in the previous version, and on second row
(content_second_row), we place the data table. With first row content_first_row, we
also define the relative size. Attribute md=9 refers to medium-sized screens (the
same would have been if we used width=9) and it sets a width of nine columns
over 12, that is 3/4 of the total width is dedicated to the main page and the remain-
ing 1/4 to the sidebar. This is for the layout.

For reactive actions, we have some changes in callback functions. First, the
scatterplot, which in the previous version depended on two inputs, the slider and
the color palette, now should depend on three inputs: the slider with the number
of tourist arrivals, the drop-down menu with the country list (the color palette
selector is not present in this version), and the checkbox to select or deselect the
All countries option.

For managing the checkbox, we have to modify the callback and the associated
custom function, it is an adaptation of logical conditions selecting the rows from
the data frame.

The logic is: if the checkbox is selected, then all countries should be included,
meaning that no row selection is required and the choices from the drop-down
menu should be ignored; otherwise, if the checkbox is not selected, then only rows
corresponding to countries selected through the drop-down menu should be pre-
sented. For the slider, only rows corresponding to countries having tourist arrivals
included in the selected range will be presented.

This is for the first callback; a second one is now needed because we also want
the data table to be reactive and reconfigure itself based on input selection from
the drop-down menu for country selection and the All countries checkbox. The
output should be of type data. The logic behind the reactive event associated to
the data table is equivalent to the one for the scatterplot and depends on the same
two inputs. The callback associated to the data table should have its correspond-
ing custom function (update_table()) for calculating the table values and the
rendering. The following excerpt of code presents the solution: Figure 18.5a and
Figure 18.5b are two screenshots showing the result, with the All countries option
or a list of countries selected.
# First callback associated to the scatterplot

@app.callback(
Output("scatter", "figure"),

mailto:@app.callback


(a)

Figure 18.5 Sidebar and reactive data table, all country checkbox selected. (b) Sidebar and reactive data table, countries selected from the
drop-down menu.



(b)

Figure 18.5 (Continued)
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Input("slider", "value"),
Input("dropdown", "value"),
Input("checklist", "value"))

# Custom function for the scatterplot

def update_scatterplot(slider_range, dropdown_selection,
checkbox_value):

low, high = slider_range
if checkbox_value:

mask= (df2['Arrivals'] >= low) & (df2['Arrivals'] <= high)
else:

mask= (df2['Arrivals'] >= low) & (df2['Arrivals'] <= high)
& (df2['Country'].isin(dropdown_selection))

fig= px.scatter(df2[mask],
x= "Arrivals", y= "Expenditure", color= "Year",
size= 'Per_capita_Exp(x1000)', size_max=60,
hover_data= ['Country'],
color_continuous_scale= 'geyser')

return fig

# Second callback associated to the data table

@app.callback(
Output("datatable1", "data"),
Input("dropdown", "value"),
Input("checklist", "value"))

# Custom function for the data table

def update_table(dropdown_selection, checkbox_value):
if checkbox_value:

mask= (∼df2['Country'].isna())
else:

mask= (df2['Country'].isin(dropdown_selection))
data= df2[mask].to_dict('records')

return data

18.3.2 Dark Themes

We proceed to improve the dashboard with new functionalities and by applying
a dark theme. Dark themes are generally less frequent than light ones, especially
in corporate environments, but they should be seriously considered because
they may offer a visual effect of particular appeal. Choosing between themes has
obviously a major subjective component, but an aspect to take into account is
that dark themes require more care than light ones to provide a good outcome; a
dashboard with a dark theme must have a high graphical quality or better to stick
with an easier light one if medium quality is acceptable. With a dark theme, details

mailto:@app.callback
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not carefully crafted are evident at first sight and colors not fully homogenous or
ill-chosen give an immediate feeling of carelessness. Light themes are more toler-
ant of details not perfectly handled and balanced. On the other side, dark themes,
when chosen wisely and managed with care, are indeed the more original and
eye-catching choice. It is up to you to choose the graphical style of your dashboard.

We produce an example with a dark theme, which is not to be meant as a model
for original and personalized dashboards, but as an exercise in curating the visual
effect with this type of theme.

A first novelty of this version is the external CSS style sheet, whose reference
is stated at the beginning of the script. The one referred to is a widely used
CSS style sheet also mentioned in the official Dash documentation; many
others are available, as well as the possibility to customize a CSS of your own.
Technically, to link an external CSS, attribute external_stylesheets
of function Dash() should be used. With the same attribute, we can also
select the theme; in this case, the dark theme SLATE from Bootswatch. With
load_figure_template(’slate’), the theme is loaded and ready to be
applied.
dbc_css= "https://cdn.jsdelivr.net/gh/AnnMarieW/

dash-bootstrap-templates@V1.0.2/dbc.min.css"

app = Dash(__name__, external_stylesheets=[dbc.themes.SLATE,
dbc_css])

load_figure_template("slate")

18.3.3 Radio Buttons

We add the radio button widget to the dashboard. It is similar to checkboxes, the
difference is that radio buttons allow for a unique choice among the available ones.
In this case, however, we wish to use radio buttons in a slightly unconventional
way, which is to permit selecting which variables, among those present in the data
frame, associate to Cartesian axes of the scatterplot. Technically, it is easy to do and
the result is interesting because this way it is possible to dynamically reconfigure
the definition of the plot and the relation between variables in the graphic. So, with
a single plot, it is possible to have many different combinations of variables on
axes. The same could obviously be possible with types of graphics other than the
scatterplot.

The radio button definition is placed in the sidebar with function
dcc.RadioItems(); there will be two radio buttons, one for axis x and
the other for axis y of the scatterplot. The first attribute is the list of values to be
shown as available choices; in our case, it will be the list of data frame columns
(list(df2.columns)), a more precise column selection would have been
possible, of course. Radio buttons, as all widgets, have also an identifier and
possibly a title. It is also possible to associate inline style directives to customize the

https://cdn.jsdelivr.net/gh/AnnMarieW/
mailto:dash-bootstrap-templates@V1.0.2/dbc.min.css


362 18 Dash Dashboards

appearance. The details of inline style directives are available in the Additional
Online Material. We also place some HTML components, such as html.Hr(),
which is the Dash version of tag <hr> that draws a horizontal line; html.P(),
which corresponds to tag <p> to insert a text. To insert text, a specific function of
Dash Core Component, dcc.Markdown() is also available, which, as it is easy
to guess, lets adding a text in Markdown format, with corresponding formatting
annotations.

html.Hr(),
html.P('Axis:', style=TEXT_STYLE),

dcc.Markdown(“'_X Axis:_"'),
dcc.RadioItems(list(df2.columns), 'Arrivals',

id='radio_X', inputStyle= RADIO_STYLE),
html.Br(),
dcc.Markdown(“'_Y Axis:_"'),
dcc.RadioItems(list(df2.columns), 'Expenditure',

id='radio_Y', inputStyle= RADIO_STYLE)

These are the changes in the layout. As we already know well, an interactive
input element should correspond to a callback to manage the reactive event. In this
case, when different variables are selected through radio buttons, the scatterplot
has to be reconfigured. A callback for redrawing the scatterplot already exists, so it
suffices to modify it. The output now depends on further input elements, the two
radio buttons, having identifiers radioX and radioY , both of type value, similar to
checkboxes.

The following custom function update_scatterplot() should be adapted
too, now taking the variable association to axes x and y from parameters radio_X
and radio_Y passed to the function corresponding to the selections operated on
radio buttons.

# Callback

@app.callback(
Output("scatter", "figure"),
Input("slider", "value"),
Input("dropdown", "value"),
Input("checklist", "value"),
Input("radio_X", "value"),
Input("radio_Y", "value")

)

# Custom function

def update_scatterplot(slider_range, dropdown_selection,
checkbox_value, radio_X, radio_Y):

low, high = slider_range
if checkbox_value:

mailto:@app.callback
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mask= (df2['Arrivals'] >= low) & (df2['Arrivals'] <= high)
else:

mask= (df2['Arrivals'] >= low) & (df2['Arrivals'] <= high)
& (df2['Country'].isin(dropdown_selection))

fig= px.scatter(df2[mask],
x= radio_X, y= radio_Y, color="Year",
size='Per_capita_Exp(x1000)', size_max=60,
hover_data=['Country'],
color_continuous_scale= px.colors.sequential.gray)

fig.update_layout(plot_bgcolor='rgba(0, 0, 0, 0)',
paper_bgcolor='rgba(0, 0, 0, 0)')

return fig

18.3.4 Bar Plot

Proceeding to add elements to the dashboard, it is the turn of a new graphic, a
bar plot, this time. In the layout, we should decide where to place it. We choose to
have it on the same row of the scatterplot (dbc.Row()) by defining a new column
(dbc.Col()) with the new bar plot, setting the identifier to bar and its relative
dimension to 1/3 of the row (i.e., width=4).
content_first_row= dbc.Row(

[
dbc.Col([

dcc.Graph(id= "scatter"),
…

]),
dbc.Col([

dcc.Graph(id= "bar")
], width=4)

], className="g-0")

We want also the bar plot to be a reactive element, so we need to define its
corresponding callback and the reactive action to be executed. The output
element is a graphic, so its type will be figure. Regarding the action, we wish
to show the relation between tourist arrivals for each year and countries with
more tourist influx. The bar plot should be reconfigured based both on the slider
values, which allow selecting different ranges of tourist arrivals and on countries
selection operated through the drop-down menu or the All countries checkbox.
So, three are the input elements for the bar plot. The following custom function
update_barplot() should select the data frame rows to visualize in the bar
plot based on the parameters passed corresponding to the three input elements.
Some common data-wrangling operations are needed and the bar plot is produced
with plotly.express function px.bar(). The bar plot is of type stacked with
segments colored based on years, we orient it horizontally for better readability.
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A feature that Plotly automatically adds is the dynamic legend, which allows
for clicking on legend values and shows the corresponding graphical elements
highlighted in the plot.
# Callback

@app.callback(
Output("bar", "figure"),
Input("slider", "value"),
Input("dropdown", "value"),
Input("checklist", "value")

)

# Custom function update_barplot()

def update_barplot(slider_range, dropdown_selection,
checkbox_value):

df2["Year"]= df2["Year"].astype(str)
df2['Country']= df2.Country.str.replace(

'United States of America', 'USA')

low, high = slider_range
if checkbox_value:

data= df2.sort_values(by='Arrivals',
ascending=False).head(20)

else:
mask= df2['Country'].isin(dropdown_selection)
data= df2[mask].\

sort_values(by='Arrivals', ascending=False)

# Plotly bar plot

fig= px.bar(data, x="Arrivals", y="Country", color="Year",
orientation='h',
hover_data=["Per_capita_Exp(x1000)"],
color_discrete_sequence=px.colors.sequential.gray_r,
labels={"Country": "",

"Arrivals": "Total Arrivals"}
)

fig.update_layout(plot_bgcolor='rgba(0, 0, 0, 0)',
paper_bgcolor='rgba(0, 0, 0, 0)')

return fig

18.3.5 Container

The last element we introduce in this version is the Container, with func-
tion dbc.Container() of Dash Bootstrap Container, which represents
an alternative way of defining the dashboard organization other than the
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classical html.Div(). This approach is not simply possible, in partic-
ular when the layout has been defined with functions dbc.Row() and
dbc.Col(), as we did in all examples, but also recommended in the technical
documentation (https://dash-bootstrap-components.opensource.faculty.ai/docs/
components/layout/). The two alternatives are actually largely interchangeable,
except for some very peculiar configurations when one or the other solution could
be better because of some specific options made available. In the following code
excerpt, we can see how the general organization of the layout composed of sidebar
and main page could be rewritten by using the Container instead of the HTML Div.

app.layout = dbc.Container([sidebar, content],
fluid=True,
className="dbc")

if __name__ == '__main__':
app.run_server(port='8051')

Figure 18.6a shows the default appearance of the dashboard with all elements
and the dark theme. Figure 18.6b presents the details of the scatterplot reconfig-
ured according to the selection of radio buttons (Per capita expense on axis y) and
the dynamic tooltip. Figure 18.6c shows the scatterplot further reconfigured with
years on axis y and the bar plot adapted according to the selection on the legend
(years 2010 and 2018 selected).

18.4 Third Dash Dashboard: Tabs and Web Scraping
of HTML Tables

With the third version of our Dash dashboard, we introduce an important element
for the layout organization, tabs, which allow for producing a multi-page dash-
board. We choose another graphical theme from Bootswatch (i.e., SOLAR), still
dark but with a different tint and some colored elements. To populate data used in
the second tab, we also exploit a web scraping technique to collect data online from
HTML tables.

Regarding web scraping techniques, we discussed the context, limitations, and
practice in Chapter 16, we forward the reader to that discussion to have a clear
understanding of their usage and of potential drawbacks.

18.4.1 Multi-page Organization: Tabs

To introduce tabs, this time we start from the end. The final result we have to
achieve, in order to assemble tabs in a correct Dash layout is an organization

https://dash-bootstrap-components.opensource.faculty.ai/docs/components/layout/
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(a)

Figure 18.6 (a) Dash dashboard, default appearance. (b) Detail of the scatterplot reconfigured by changing variable on axis y.
(c) Scatterplot reconfigured with another variable on axis x and bar plot adapted to selection on the dynamic legend.



(b)

Figure 18.6 (Continued)



(c)

Figure 18.6 (Continued)
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similar to what showed in the following excerpt of code. The final Container
combines the sidebar and tabs objects, meaning that tabs are not part of the sidebar
and include the main content, this is the first information we have to know. Mov-
ing backward, we should define the main tab context. Function dcc.Tabs()
specifies the general multi-page layout, while single tabs are defined with function
dcc.Tab(). For each tab, the layout is better specified by defining variables
(e.g., content_tab1 and content_tab2), for the same reasons we have previously
divided the content into a sidebar object, first row, second row, and so on. Such
an organization is orderly and clear; it helps to reduce the complexity and to ease
the readability and maintenance of the code. It also helps associating different
graphical styles to tabs, for example, to differentiate between the one selected and
the others.

tabs= dcc.Tabs([

dcc.Tab(label='Countries', children=[
content_tab1

], style= TAB_STYLE, selected_style= TAB_SELECTED_STYLE),

dcc.Tab(label='Cities', children=[
content_tab2

], style= TAB_STYLE, selected_style= TAB_SELECTED_STYLE)
])

app.layout= dbc.Container([sidebar, tabs],
fluid=True,
className="dbc")

We consider now the organization of a single tab. What follows is referred to as
object content_tab1. As it is easy to recognize, it reflects the normal layout orga-
nization we have used before for the single-page organization of the dashboard;
it is composed of rows and columns with corresponding elements. At the end, an
HTML Div assembles them all. Basically, at single tab level, there is nothing new
with respect to what we have already learned.

# First row

content_first_row= dbc.Row(
[

dbc.Col([
…

]),
dbc.Col([
…

])
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# Second row

content_second_row= dbc.Row(
[

dbc.Col(
… ]
)

# HTML div

content_tab1= html.Div(
[

content_first_row_tab1,
html.Hr(),
content_second_row_tab1,

],
style= CONTENT_STYLE

)

18.4.2 Web Scraping of HTML Tables

Web scraping in Python is very easy, at least for basic cases like collecting an
HTML table from a static page. The main function is offered by pandas and is
pd.read_html(), the attribute to specify should be a URL. For example, we
read an HTML table contained in the Wikipedia page List of cities by international
visitors (https://en.wikipedia.org/wiki/List_of_cities_by_international_visitors).

The result is a table that should be prepared to be used in Dash with some
data-wrangling operations, which are commented in the following excerpts of
code.
url= "https://en.wikipedia.org/wiki/

List_of_cities_by_international_visitors"
dfs= pd.read_html(url)

The array dfs contains the result and dfs[0] is the data frame corresponding to
the table. Values of columns Growth in arrivals (Euromonitor) have symbol % that
should be removed to transform them in numerical type. Furthermore, the symbol
used as the negative sign is not the minus sign but actually a hyphen, so it should
be replaced with the correct symbol; otherwise, it is not recognized as a negative
numeric value in the type transformation.
dfs[0]['Growth in arrivals (Euromonitor)']=

dfs[0]['Growth in arrivals (Euromonitor)'].\
str.replace('%', “)

dfs[0]["Growth in arrivals (Euromonitor)"]=
dfs[0]["Growth in arrivals (Euromonitor)"].\
str.replace("[-]", "-", regex=True)

dfs[0]['Growth in arrivals (Euromonitor)']=
pd.to_numeric(dfs[0]['Growth in arrivals (Euromonitor)'])

https://en.wikipedia.org/wiki/List_of_cities_by_international_visitors
https://en.wikipedia.org/wiki/
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In addition, some country names have to be aligned to allow the correct selec-
tion with those of the drop-down widget with United Nation’ touristic data in the
sidebar.

dfs[0]['Country / Territory']= dfs[0]['Country / Territory'].\
str.replace('United States', 'United States of America')

dfs[0]['Country / Territory']= dfs[0]['Country / Territory'].\
str.replace('Turkey', 'Türkiye')

For simplicity, the table is presented as a static table, without reactive events
associated. It is of course possible to make it reactive in the same way we did with
the first data table.

18.4.3 Second Tab’s Layout

The second tab is new with respect to the previous dashboard version. We
want to place in there two bar plots (id=bar2 and id=bar3) and the data table
(id=datatable2) produced by web scraping the Wikipedia page. The layout
organization presents no difficulties. We have omitted the style options of the
data table; they are available in the Additional Online Material.

# First row

content_first_row_tab2= dbc.Row(
[
dbc.Col([

html.P("Top 20 cities for growth in arrivals (2018)"),
dcc.Graph(id="bar2"),

], width=6),

dbc.Col([
html.P("Top 20 cities for arrivals (2018)"),

dcc.Graph(id="bar3")
], width=6)

], className="g-0")

# Second row

content_second_row_tab2= dbc.Row(
[
dbc.Col(

html.Div(
dash_table.DataTable(

data=dfs[0].to_dict('records'),
id="datatable2",
…

)
)
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]
)

# Tab's content

content_tab2= html.Div(
[
content_first_row_tab2,
html.Hr(),
content_second_row_tab2,

],
style= CONTENT_STYLE

)

18.4.4 Second Tab’s Reactive Events

Finally, we need to specify the reactive actions associated to the bar plots. We want
to populate them with data from the table collected from Wikipedia. The descrip-
tion of the two bar plots follows.

Bar plot (id=bar2): with this bar plot, we want to show countries in order of
growth in tourist arrivals (column Growth in arrivals [Euromonitor]). Countries
are selected either from the list of the drop-down menu or through the All
countries checkbox. The logic is that, if the checkbox is selected, then all coun-
tries are considered and we show the first 20 countries in decreasing order of
growth in tourist arrivals; if the checkbox is not selected, the countries plotted
in the bar plot are those selected with the drop-down menu. We want also to
show another graphical effect, bars should be colored differently whether they
represent a positive or a negative increment; for this reason, we create the new
column Color with a textual value. We add the dynamic tooltip with attribute
hover. Finally, attribute barplot=’relative’ of function px.bar()
indicates to draw the bar plot relatively to value zero, meaning that bars with
positive and negative values take opposite direction. It is a diverging bar plot, the
one we produce, and Plotly supports it natively. For sake of precision, option
barplot=’relative’ is not strictly necessary to specify, being the default,
we show it for clarity. Other possible values other than relative are overlay, when
bars of the same group are stacked, and group to have bars of same group beside
each other.

Bar plot (id=bar3): the second bar plot differs from the first one for the sorting
criteria of countries when the All countries checkbox is selected. In this case, they
are sorted according to the Euromonitor’s ranking (column Rank (Euromonitor))
and the first 20 countries by rank visualized. In the Plotly bar plot, we add attribute
color_discrete_map() to associate different colors to values Negative and
Positive of column Color.
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# First bar plot: bar2
# Callback

@app.callback(
Output("bar2", "figure"),
Input("dropdown", "value"),
Input("checklist", "value")

)

# Custom function update_barplot2

def update_barplot2(dropdown_selection, checkbox_value):

temp1= dfs[0].copy(deep=True)
temp1["Color"]= np.where(temp1["Growth in arrivals

(Euromonitor)"] < 0, 'Negative', 'Positive')

# Logical conditions for selecting rows

if checkbox_value:
data= temp1.sort_values(by='Growth in arrivals

(Euromonitor)', ascending=False).head(20)
else:

mask= temp1['Country / Territory'].\
isin(dropdown_selection)

data= temp1[mask].sort_values(by='Growth in arrivals
(Euromonitor)', ascending=False)

# Bar plot

fig= px.bar(data, x="Growth in arrivals (Euromonitor)",
y="City", barmode='relative',
orientation='h', color="Color"
hover_data={'Color': False, 'City': False,

"Country / Territory": True,
"Arrivals 2018 (Euromonitor)": True},

labels={"City": ""}
)

fig.update_layout(showlegend=False,
plot_bgcolor='rgba(0, 0, 0, 0)',
paper_bgcolor='rgba(0, 0, 0, 0)')

return fig

# Second bar plot: bar3
# Callback

@app.callback(
Output("bar3", "figure"),
Input("dropdown", "value"),
Input("checklist", "value")

mailto:@app.callback
mailto:@app.callback
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)

# Custom function update_barplot3

def update_barplot3(dropdown_selection, checkbox_value):

temp2 = dfs[0].copy(deep=True)
temp2["Color"]= np.where(temp2["Growth in arrivals

(Euromonitor)"] < 0, 'Negative', 'Positive')

# Logical conditions for selecting rows

checkbox_value=1
if checkbox_value:

data= temp2.sort_values(by='Rank (Euromonitor)',
ascending=True).head(20)

else:
mask= temp2['Country / Territory'].\

isin(dropdown_selection)
data= temp2[mask].sort_values(by='Growth in arrivals

(Euromonitor)', ascending=False)

# Bar plot

fig= px.bar(data, x="Growth in arrivals (Euromonitor)",
y="City",
orientation='h', color="Color",
color_discrete_map={

'Negative': '#ad0a72',
'Positive': '#325ea8'

},
hover_data={'Color': False, 'City': False,

"Country / Territory": True,
"Arrivals 2018 (Euromonitor)": True},

labels={"City": ""}
)

fig.update_layout(barmode='relative', showlegend=False,
plot_bgcolor='rgba(0, 0, 0, 0)',
paper_bgcolor='rgba(0, 0, 0, 0)')

return fig

The complete code of this dashboard is available in the Additional Online
Material - Third Dashboard: tab and web scraping of HTML tables. Figure 18.7a
shows the first tab with a selection of countries through the drop-down menu and
the corresponding dashboard reconfiguration; Figure 18.7b represents the second
tab with the two bar plots populated with the Wikipedia table and the table
itself.



(a)

Figure 18.7 (a) First tab with a selection of countries from the drop-down menu and the corresponding dashboard reconfiguration.
(b) Second tab with the two bar plots populated with the Wikipedia table and the table itself.



(b)

Figure 18.7 (Continued)
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18.5 Fourth Dash Dashboard: Light Theme, Custom
CSS Style Sheet, and Interactive Altair Graphics

We conclude this presentation of Dash dashboards with the fourth version where
we use a light theme and associate an external CSS style sheet in order to format the
dashboard, instead of using inline directives as in previous versions.

This, however, is a small refinement, the real novelty of this version is repre-
sented by the integration of Altair interactive graphics into the Dash dashboard
as HTML iframe elements. We already did something similar with a Shiny
dashboard by exploiting a specific R package and commenting about the lack
of documentation available helping the integration of Altair plots into a Shiny
dashboard, given the relative novelty of that possibility. With Dash, despite
sharing the common Python environment, the integration of Altair plots into
a Dash dashboard is even less documented than for Shiny and, most of all, less
supported than in the R environment. That might sound bizarre, but that is
what it is. Nevertheless, being poorly documented and not explicitly supported
does not mean it cannot be done efficiently and with good results. Altair plots
could actually be effectively encapsulated in a Dash dashboard as classical HTML
iframe elements, with the limitations and difficulties in formatting and configu-
ration that iframes present. Without an official Dash documentation guiding the
integration, we may turn to the open community (e.g., StackOverflow) to obtain
hints and indications about the way to proceed. Being this the context, you should
expect some difficulties and several attempts before figuring out the correct
way to do, but the results, once again are worth the effort, with the excellent
quality of Altair interactive graphics that could be fruitfully offered in Dash
dashboards too.

18.5.1 Light Theme and External CSS Style Sheet

Let us start with the stylistic variations. The Bootswatch theme of choice is
UNITED, a light theme that we will personalize with custom style directives.

dbc_css= "https://cdn.jsdelivr.net/gh/AnnMarieW/
dash-bootstrap-templates@V1.0.2/dbc.min.css"

app= Dash(__name__,
external_stylesheets= [dbc.themes.UNITED, dbc_css])

load_figure_template("united")

We replace inline style directives defined in TAB_STYLE and TAB_SELECTED_
STYLE used in the previous version with those of the external CSS tab.css, which
is available in the Additional Online Material. Using an external CSS has two
main remarkable advantages: it permits a native control of the HTML graphical

https://cdn.jsdelivr.net/gh/AnnMarieW/
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configurations, the same way of traditional websites and applications, and it
allows for looking at the results of any changes without stopping the dashboard,
changing the code of inline directives, and restarting the dashboard, and this is
because the style is not defined in the Python script but associated to the web
browser and its HTML rendering.

The association with the CSS style sheet (which should be placed in the
same directory of dashboard’s Python file) is managed by Dash Core Com-
ponents objects; in our case, the specific tab page created with dcc.Tab().
Attribute style specified in previous versions of the dashboard is no longer
needed (in the code it has been commented, for clarity) and replaced with
references to CSS classes such as className=’custom-tabs’, selected_
className=’custom-tab--selected’) with custom-tabs and custom-
tab—selected the names of directives defined in the external CSS tabs.css. The
following excerpt of code shows these references.

tabs= dcc.Tabs(
parent_className='custom-tabs',
className='custom-tabs-container',
children=[

# First tab

dcc.Tab(label='Countries',
className='custom-tabs',
selected_className='custom-tab--selected',
children=[content_tab1]

),

# Second tab
# Replaced: style=TAB_STYLE, selected_style=TAB_SELECTED_STYLE),

dcc.Tab(
label='Cities',
className='custom-tabs',
selected_className='custom-tab--selected',
children=[content_tab2],

),

# Third tab
# Replaced: style=TAB_STYLE, selected_style=TAB_SELECTED_STYLE),

dcc.Tab(
label='Altair charts',
className='custom-tabs',
selected_className='custom-tab--selected',
children=[content_tab3],

)
])
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app.layout= dbc.Container([sidebar, tabs],
fluid=True,
className="dbc")

18.5.2 Altair Graphics

From the previous excerpt of code, you should probably have been noted that a
third tab has been defined titled Altair charts, it is similar to the others and referred
to local variable content_tab3 for its layout, which is presented in the following
explanation.

The organization is already well-known and similar to the other tabs. What
changes is the type of output element, now a generic html.Iframe(), rather
than a graphic, with identifier altair1 and a preset size expressed with attributes
width and height. This is easy and represents the generic placement of an
iframe in a Dash dashboard. The real difficulty is to make an Altair object
compatible with a Dash iframe.

content_first_row_tab3= dbc.Row(
[

dbc.Col([
html.P("Altair interactive graphics

(interactive legend example)"),
html.Iframe(

id= 'altair1',
width="900",
height="1500"

)
])

]
)

content_tab3= html.Div(
[

content_first_row_tab3,
],
style= CONTENT_STYLE

)

The callback is the trickiest part. Let us start with the definition of input and
output parameters. We want Altair graphics to be reactive, as we did with Plotly
graphics; otherwise, they will be just simple HTML objects to include in an
iframe. For the example, we chose to make Altair graphics reactive to changes in
the already defined drop-down menu and All nations checkbox, so by changing
the selection of those input elements in the sidebar, Altair graphics should be
recreated.
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The output type has presented the greatest difficulty because it is unusual and,
apparently, undocumented. An Altair graphic is not recognized by Dash as an
object of type figure, like a Plotly graphic. If we write Output(’altair1’,
’figure’), nothing would be visualized in the iframe. What output type is com-
patible with Dash is not specified in the official documentation (at the time of
writing, at least), which just briefly indicates to refer to the Mozilla documenta-
tion for HTML 5. No example is provided. Therefore, unless you are specifically
skilled with HTML iframes, at first you proceed blindly, just knowing that the lay-
out object is a generic iframe. Therefore, it is not the Dash documentation that
would help (although a less succinct note would have been greatly appreciated),
but that specific to HTML 5 iframes. There are plenty of examples for iframes in
HTML 5, but they always specify attribute src with a URL as the source of data.
In our case, we have a local Altair object, not a URL to point to an online source
of data but trying to refer to it with a local path is inevitably blocked by modern
web browsers’ security controls. So, we are stuck with the definition of the correct
output type for the callback.

The solution comes from a corner of Mozilla’s HTML 5 iframe documentation
that mentions another option: “Inline HTML to embed, overriding the src
attribute. If a browser does not support the srcdoc attribute, it will fall back to
the URL in the src attribute.” (https://developer.mozilla.org/en-US/docs/Web/
HTML/Element/iframe)

“Inline HTML to embed” is exactly what we need, srcdoc is the right output
type and, with another little help from the community, the correct syntax is found:
srcDoc.

With the thorniest problem solved, we can define the actions to execute with the
custom functionplot_altair()when the callback is activated. The data frame
should be prepared for visualization with common data-wrangling operations (i.e.,
remove the total of arrivals and revenues for each country, create a new column
Diff_Arr with arrival differences between years 2018 and 2016, and calculate the
percentages in columns Diff_Arr_percent).

With the data frame prepared for visualization, Altair graphics could be defined,
as a bar plot and a scatterplot. They both are interactive by means of the dynamic
legend of the scatterplot allowing for the selection of countries. The selection
modifies the colors of markers and bars, highlighting those corresponding to
the selected countries and turning transparent those for non-selected countries
(In Part 2, we have seen the same example with an Altair scatterplot). In the
bar plot, we want a different coloring for bars associated to positive or negative
values. Finally, the two charts are vertically aligned, and the background is made
transparent. Other difficulties have been encountered in sizing the iframe, which
is delicate and requires some tests before finding a correct setting. As we were

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe
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saying at the beginning of this section, integrating Altair graphics into Dash
requires patience and several tries. The more elaborate is the layout the more
delicate is placing and sizing the iframe; the layout of the example is simple.
However, giving a try to Altair is worth the effort because an excellent outcome
could be obtained.

# Callback

@app.callback(
Output('altair1', 'srcDoc'),
Input("dropdown", "value"),
Input("checklist", "value")

)

# Custom function plot_altair1

def plot_altair1(dropdown_selection, checkbox_value):

# Data wrangling operations

temp3= dfs[0].copy(deep=True)
temp3= temp3.rename(columns={"Country / Territory": "Country"})
temp3= temp3.groupby('Country')\

[['Arrivals 2018 (Euromonitor)',\
'Arrivals 2016 (Mastercard)',\
'Income (billions $) (Mastercard)']].\

agg('sum').reset_index()

temp3['Diff_Arr']= temp3['Arrivals 2018 (Euromonitor)']- \
temp3['Arrivals 2016 (Mastercard)']

temp3['Diff_Arr_percent']= \
100*(temp3['Arrivals 2018 (Euromonitor)'] - \
temp3['Arrivals 2016 (Mastercard)'])/ \
temp3['Arrivals 2016 (Mastercard)']

# Data selection

if checkbox_value:
data= temp3.sort_values(by='Income (billions $) \

(Mastercard)', ascending=False).head(20)
else:

mask= temp3['Country'].isin(dropdown_selection)
data= temp3[mask].sort_values(by='Income (billions $) \

(Mastercard)', ascending=True)

# ALTAIR CHARTS

selection= alt.selection_point(fields=['Country'],
bind='legend')

mailto:@app.callback
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change_opacity= alt.condition(selection, alt.value(1.0),
alt.value(0.2))

# Bar plot

bar_alt= alt.Chart(data).mark_bar().encode(
y= alt.Y('Country:O', axis=alt.Axis(title=“)),
x= alt.X('Diff_Arr_percent:Q',

axis= alt.Axis(title='Difference in arrivals (%)')),
color= alt.condition(alt.datum.Diff_Arr >= 0,

alt.value("#325ea8"),
alt.value("#ad0a72"),

),
opacity= change_opacity,
tooltip=['Arrivals 2018 (Euromonitor)',

'Arrivals 2016 (Mastercard)',
'Income (billions $) (Mastercard)']

).properties(title='Percent Difference in arrivals 2018-2016')

# Scatterplot

scatter_alt= alt.Chart(data).mark_circle(size=200).encode(
y= alt.Y('Arrivals 2018 (Euromonitor)',

type='quantitative',
axis=alt.Axis(title='Arrivals')),

x= alt.X('Income (billions $) (Mastercard)',
type='quantitative',
scale= alt.Scale(domain=[0, 60])),
color= alt.Color('Country:O',

scale= alt.Scale(scheme='category20'),
legend= alt.Legend(title="Years",

orient="right")),
opacity= change_opacity,
tooltip=['Country', 'Arrivals 2018 (Euromonitor)',

'Income (billions $) (Mastercard)']
).add_params(selection
).properties(title='Income and arrivals 2018')

# Chart alignment and HTML format

chart= alt.vconcat(scatter_alt, bar_alt
).properties(background='transparent')

chart.save('iframes/altair_chart.html')

return chart.to_html()

The complete code for this dashboard version, together with the external
CSS tab.css, is available in the Additional Online Material - Fourth Dashboard:
Interactive Altair graphics, custom CSS, and light theme. Figure 18.8a shows the



(a)

Figure 18.8 (a) First tab, data table, reactive graphics, and layout. (b) Second tab, bar plots, and data table from web scraping. (c) Third tab,
interactive Altair graphics, and default configuration. (d) Third tab, country selection, and reconfigured Altair graphics.



(b)

Figure 18.8 (Continued)



(c)

Figure 18.8 (Continued)



(d)

Figure 18.8 (Continued)
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first tab with the personalized theme, the scatterplot and bar plot reconfigured
according to the slider selection. Figure 18.8b presents the second tab with the
two bar plots. Figure 18.8c shows the third tab with default configuration of
Altair plots, Figure 18.8d represents the same tab but Altair plots have been
reconfigured based on a subset of countries.
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Part IV

Spatial Data and Geographic Maps

The visualization of spatial data and geographical maps represents a broad and
relatively recent area of data visualization which, for some aspects, is close and
sometimes partially overlaps traditional cartography and geographical maps pro-
duced with Geographical Information Systems (GISs). In this last part of the book,
we introduce the main techniques available in R and Python environments, while
cartographic techniques and GISs remain out of the scope, being a technical and
scientific sector clearly distinct from data visualization and data science with its
own peculiarities, skills, and practices.

With regards to data science and visualization, in recent years choropleth maps
have become popular on the press, the web, or other publications, including pro-
fessional and corporate material, and their typical look, with colored regions on a
map to indicate differences with respect to a certain phenomenon, should be now
familiar to many readers. Choropleth maps are generally easy to produce, both for
the diffusion of open and proprietary tools to produce them and for spatial data
with geographic information. Tools made available in R and Python, however,
permit to work on far more complex and rich geographical representations than
choropleth maps, such as managing cartographic shape files, creating maps
with several layers of geographical information, executing complex operations on
spatial data, or introduce interactive widgets in web-based visualizations. In short,
R and Python let developers reach high-quality geographical representations by
means of relatively recent and advanced tools. The R environment, in particular,
which did not provide for advanced features for spatial data until not many
years ago, has demonstrated truly remarkable improvements with new and
sophisticated features, which rival and often make it better equipped than Python

Data Visualization in R and Python, First Edition. Marco Cremonini.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Cremonini/DataVisualization1e

http://www.wiley.com/go/Cremonini/DataVisualization1e
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and many commercial tools, for dealing with spatial data and geographic maps.
In short, while until recently, open-source tools from R and Python could not be
considered a real alternative for professional projects with spatial data, now they
are definitely able to provide state-of-the-art geographical representations and for
this reason are widely employed in academia, corporate environments, and are
the engines behind some popular online services with geographical features. GIS
tools remain of superior level, of course, but in many cases, they are no longer
the only possible choice, R and Python are rising even in this very specific and
fascinating area.
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Dataset/Geodataset

Registry of Domestic Animals (transl. Banca dati dell’Anagrafe Animali
d’Affezione), Italian Ministry of Health, data extracted from column Cani (transl.
Dogs)

(https://www.salute.gov.it/anagcaninapublic_new/AdapterHTTP).
Copyright: Common Criteria CC-BY 3.0
(https://www.salute.gov.it/portale/p5_0.jsp?lingua=italiano&id=50,

http://creativecommons.org/licenses/by/3.0/it/legalcode)
Italian Resident Population on 1∘ January 2022, Italian National Institute of

Statistics (ISTAT)
(http://dati.istat.it/Index.aspx?DataSetCode=DCIS_POPRES1)
Copyright: Creative Commons – Attribuzione – versione 3.0 (https://www.istat

.it/it/note-legali, http://creativecommons.org/licenses/by/3.0/it/)
Topographic Geodatabase, Technical Chart, Municipality of Venice (https://dati

.venezia.it/?q=content/carta-tecnica)
Copyright: Italian Open Data License (IODL)
(https://www.dati.gov.it/content/italian-open-data-license-v20)
Rome Capital – Maps of Municipalities, IPTSAT s.r.l. (http://www.datiopen.it/it/

opendata/Municipi_di_Roma_Capitale)
Copyright: Italian Open Data License v2.0 (https://www.dati.gov.it/content/

italian-open-data-license-v20)
Rome Open Data, Rome Capital, section Dataset (https://dati.comune.roma

.it/catalog/it/dataset) and section Geo Dati (https://www.comune.roma.it/
TERRITORIO/nic-gwt/):

Ville storiche nel territorio di Roma Capitale
(transl. Historical villas in Rome)
(https://dati.comune.roma.it/catalog/dataset/d386)

Data Visualization in R and Python, First Edition. Marco Cremonini.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Cremonini/DataVisualization1e

https://www.salute.gov.it/anagcaninapublic_new/AdapterHTTP
https://www.salute.gov.it/portale/p5_0.jsp?lingua=italiano&id=50
http://creativecommons.org/licenses/by/3.0/it/legalcode
http://dati.istat.it/Index.aspx?DataSetCode=DCIS_POPRES1
https://www.istat.it/it/note-legali
https://www.istat.it/it/note-legali
http://creativecommons.org/licenses/by/3.0/it/
https://dati.venezia.it/?q=content/carta-tecnica
https://dati.venezia.it/?q=content/carta-tecnica
https://www.dati.gov.it/content/italian-open-data-license-v20
http://www.datiopen.it/it/opendata/Municipi_di_Roma_Capitale
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Strutture ricettive di Roma Capitale nel 2023
(transl. Touristic accommodations in Rome)
(https://dati.comune.roma.it/catalog/dataset/suar2023)
Copyright: Creative Commons Attribution License (cc-by) (https://open

definition.org/licenses/cc-by/)
SITAR – Rome Archeological Territorial Information System (transl. Sistema

Informativo Territoriale Archeologico di Roma), Open Data, ArcheoSITARPro-
ject – Ministry of Culture, Special Superintendence of Rome Archaeology, Fine
Arts, and Landscape. Data from WebGIS (https://www.archeositarproject.it/
piattaforma/webgis/).

Copyright: Creative Commons CC BY-SA 4.0 (https://creativecommons.org/
licenses/by-sa/4.0/deed.it)

In this first chapter, we focus on the R environment and consider data from
Italian sources, which are rich in geographic data and offer amazing case studies.
To start, we consider the simplest example by using data about dog registrations
in Italian regions, which will be used for presenting choropleth maps, New York
City’s Open Data has a similar, although richer, dataset that we will use for a more
advanced example. With the basis for visualizing spatial data, we will move to
more sophisticated tools and geographical datasets, by considering data about two
of the most famous and visited cities in the world: Venice and Rome. In both cases,
we will use cartographic shape files publicly available from the municipalities, in
addition to other geographical datasets.

19.1 Spatial Data

As usual, let us start from the basics with some simple examples. With these, we
will produce some rudimental maps, useful for learning the logic and principles
of data visualization with spatial data and geographic maps.

For the first example, we use R package maps that contains some maps, not
particularly updated but handy for a start.

library(tidyverse)
library(lubridate)
library(maps)

Briefly, we see what package maps offers. In package documentation, some
maps are mentioned: the world map (name world), the US map at state level
(name state), and at county level (name county). Other countries are available,
like Italy (name italy), France (name france), and so on. The main function is
map(), which, by loading library maps, overwrites the usual map() from package
purrr, so be careful if you want to use both functions, you need either to prefix

https://dati.comune.roma.it/catalog/dataset/suar2023
https://opendefinition.org/licenses/cc-by/
https://www.archeositarproject.it/piattaforma/webgis/
https://www.archeositarproject.it/piattaforma/webgis/
https://creativecommons.org/licenses/by-sa/4.0/deed.it
https://creativecommons.org/licenses/by-sa/4.0/deed.it
https://open
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Figure 19.1 World map from package maps.

the first one as maps::map() or the second as purrr::map(). Let us look at a first
example.

map1 <- map("world", boundary=TRUE, interior=TRUE, plot=TRUE)

As shown in Figure 19.1, it is a worldview map in Mercator projection (the most
common for nautical maps and also for general use). Inspecting object map1 with
common utility functions class() and str(), we discover that it is of data type
map, meaning that it is not a generic image but a specific R data type with fea-
tures associated, in fact, its content is a list format with four elements and keys: x,
y, range, and names. Values of names are 1627, much more than the existing coun-
tries, meaning that other areas, other than countries, are mapped, for example,
main islands and overseas possessions. The other values will be described in a
moment. However, important is to know that the R data type map has information
associated to each territory identified in the map, being countries, states, regions,
or anything else that has been mapped.

str(map1)
List of 4
$ x : num [1:10671] -69.9 -70.1 -70.1 -69.9 NA …
$ y : num [1:10671] 12.5 12.5 12.6 12.5 NA …
$ range: num [1:4] -180 190.3 -85.2 83.6
$ names: chr [1:1627] "Aruba" "Afghanistan" "Angola" …

Let us try another example, this time with attribute region to specify a certain
territory and two functions: map.scale() and map.axes(), adding the scale
and axes on a map generated with function map().

map1 <- map("world", region= "Italy",
boundary=TRUE, interior=TRUE,



394 19 Geographic Maps with R

plot=TRUE)
map.scale(7, relwidth = 0.15)
map.axes(cex.axis=0.8)

Figure 19.2 shows the generated map. This time it is Italy with the scale and
axes, whose values are expressed as longitude North and latitude East degrees. As
before, object map1 is a list and the key names has eight values. We can look at
them, they correspond to Italy and its major islands. As it will become clear in the
following, there is a technical reason for not just mapping the single country as
a whole but with its main islands separately, which has to do with the peculiar
technique employed to represent planar surfaces as spatial data. For a hint about

Figure 19.2 Italy’s border map.
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the reason, a reader could try another country, for example, the United States (i.e.,
region=’US’)). They will find that also in that case there is one name for the
United States, representing the continental region south of Canada, and several for
Hawaii, which is an archipelago, but also a distinct name (actually more than just
one) for Alaska, which is not an island, but a territory geographically disconnected
from the other US states on the continent. The logic should be clear, a geographi-
cal region could be represented with spatial data as a unique object only if there is
territorial continuity, not if there are disconnected parts. In that case, each discon-
nected part, to be mapped with spatial data, has to be represented individually,
hence the major islands and geographically disconnected regions are separately
mapped from the main portion of a country’s territory.

map1$names
[1] "Italy:Isola di Pantelleria" "Italy:Sicily"

"Italy:Sant'Antonio" "Italy:Forio"
[5] "Italy:Asinara" "Italy:Sardinia"

"Italy:Isola d'Elba" "Italy"

The list format could be used directly or converted in dataframe type. Package
maps helps with a variant of function map() called map_data(), which returns
a format that can be directly converted into data frame but does not automatically
produce the graphic. We will meet again this alternative between the list and the
dataframe data types, both with R and Python (i.e., in Python the R list format is
called dictionary format or dict).

italy <- map_data("italy") %>% as_tibble()

head(italy)
# A tibble: 6 × 6

long lat group order region subregion
<dbl> <dbl> <dbl> <int> <chr> <chr>

1 11.8 46.5 1 1 Bolzano-Bozen <NA>
2 11.8 46.5 1 2 Bolzano-Bozen <NA>
3 11.7 46.5 1 3 Bolzano-Bozen <NA>
4 11.7 46.5 1 4 Bolzano-Bozen <NA>
5 11.7 46.5 1 5 Bolzano-Bozen <NA>
6 11.6 46.5 1 6 Bolzano-Bozen <NA>

After the conversion into tibble (i.e. a dataframe type), we see that the first two
columns represent longitude and latitude. We also see that there is information
associated with each row, like the specific region (column region) and, possibly
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a subregion. The excerpt of code shows rows about the Italian province of
Bolzano–Bozen, a northern area at the border with Austria. To note is that
for such province, there are multiple rows, we can verify the number of rows
associated to each Italian province.

italy %>% group_by(region) %>% count()

# A tibble: 95 × 2
# Groups: region [95]

region n
<chr> <int>

1 Agrigento 146
2 Alessandria 105
3 Ancona 68
4 Aosta 110
5 Arezzo 105
# … with 90 more rows

From this, we learn that each province, meaning a certain geographical region,
same would have been for states or counties in the US, has a different number of
rows associated, each row with a pair of longitude and latitude coordinates. What
is the meaning of those rows and coordinates? Those coordinates actually refer to
the specific way planar surfaces, for example, geographic areas, are represented
in such maps, namely through the juxtaposition of small polygonal elements that
approximate the real shape of a geographic area. Those polygonal elements are not
visualized with the map, but they exist and correspond to each single row of the
data. This explains why different areas (e.g. Italian provinces) are represented with
a different number of rows, it depends on the number of polygons used to approx-
imate the real shape and border of each area. There exist other ways to represent
geographic elements, other than with polygons. It depends on their type; if they
are not planar surfaces, they could be represented with points or lines. We will see
examples.

We can plot the map that corresponds to data frame italy with ggplot and func-
tion geom_polygon(). Columns long and lat will be associated to the Cartesian
axes x and y, while attribute group will be assigned to column group. Function
geom_polygon() supports style options like color and linewidth for the borders,
as well as color for filling the areas. Graphical theme theme_void is the common
choice for maps, being devoid of graphical elements, like grids, axes, and so on.
Figure 19.3 shows the corresponding map.

The reader could replicate this example with any other country, provided it is
present in the map package.
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Figure 19.3 Provinces of Italy.

italy %>% ggplot(aes(long, lat, group = group)) +
geom_polygon(color = "red", linewidth = 0.1,

fill="ghostwhite") +
theme_void()

19.2 Choropleth Maps

What we have seen so far is the basis to start working with spatial data and geo-
graphic maps. Now, we want to create our first choropleth map. The logic is that
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we have data about something (e.g. population data) related to territorial areas at
a certain granularity (e.g. country, state, county, region, or province) and we need
a map with the corresponding areas as spatial data. Or vice versa, we have a map
representing certain areas, and we need corresponding data for a phenomenon of
interest. Given the two elements, data and map, the result is that areas will be col-
ored to represent data values according to a certain color scale. One of the main
reasons for the diffusion of choropleth maps is that both maps at different granu-
larities and data about territorial areas have become more available in recent years,
another is that they are eye-catching, easy to understand, and to produce.

The color scale used in choropleth maps follows the same rules of traditional
graphs, when a continuous value has to be represented it is normally a continuous
palette, when, instead, discrete values are represented, the color palette is discrete,
sequential, or classic. Examples widely popular represent with choropleth maps
electoral results, with areas assuming the color of the winning coalition or party,
income levels, crime rates, ethnic majority, and so on, there are almost infinite
examples.

Technically, we have data and a map, and we need to associate one to the other
in a coherent way. It is a mechanism similar to data frame join, keys from the
geographic data representing areas must match corresponding keys in data repre-
senting the same areas. From this, we may have the typical mismatches of a data
frame join due to missing elements in one or the other data frame or misspelled
keys actually corresponding to the same element but written differently.

If the logic is clear, we can run the first example. As data, we use the Excel dataset
extracted from the Italian Registry of Domestic Animals regarding registered dogs
and a dataset about the resident population from the Italian National Institute of
Statistics (ISTAT).
dogs <- read_xlsx("datasets/AnagrafeCanina/

Cani_AnagCanina.xlsx")
istat <- read_excel("datasets/ISTAT-IT/
Codici-statistici-e-denominazioni-al-30_06_2021.xls")

As spatial data, we use the previous map of Italy’s provinces (dataset italy). A few
common data-wrangling operations are needed to prepare data frames italy and
dogs, this one previously joined with population data of data frame istat, with data
aggregated and aligned for regions and provinces. The operations are available in
the Additional Online Material – Part Four – R: Data-wrangling, Canine Registry.
With the two data frames, data and map, we can execute the inner join operation,
which produces a unique data frame with all columns we need for the choropleth
map. Here, we join using column region for data frame italy and column Region for
data frame dogs as keys. Column Region represents administrative Italian regions
(Note: readers unfamiliar with the administrative distinction between regions and
provinces may think about the similar distinction between US states and counties.)



19.2 Choropleth Maps 399

italy %>% inner_join(dogs,
by = join_by(region == Region)) -> italyDogs

long lat Prov Region Pop_Reg Dogs
Dogs ×
resident

11.83295 46.50011 Bolzano/Bozen Trentino–Alto
Adige/Südtirol

1 073 574 199 100 0.19

11.81089 46.52784 Bolzano/Bozen Trentino–Alto
Adige/Südtirol

1 073 574 199 100 0.19

11.73068 46.51890 Bolzano/Bozen Trentino–Alto
Adige/Südtirol

1 073 574 199 100 0.19

11.69115 46.52257 Bolzano/Bozen Trentino–Alto
Adige/Südtirol

1 073 574 199100 0.19

… … … … … … …

We can produce the choropleth map again with ggplot function geom_
polygon(), this time defining attribute fill as an aesthetic associated to the
ratio between dogs and residents (column Dogs x resident) (i.e., fill=‘Dogs x
resident‘). It is a continuous value, so we choose a continuous palette for the
area and make borders white. Figure 19.4 shows the result.

italyDogs %>% ggplot(aes(long, lat, group= group)) +
geom_polygon(aes(fill= ‘Dogs x resident‘),

colour= alpha("white", 1/2), size= 0.05) +
scale_fill_viridis_b() +
labs(fill= "%", title='Residents with dogs (%)') +
theme_void()

We have a choropleth map; we see areas with different colors and the color
scale tells us how to make sense of them. The lightest region (yellow in the col-
ored image) at the center of Italy is Umbria and apparently its residents, have a
particular love for dogs. Everything looks fine at first sight.

But there is a problem, the visualization is somewhat ambiguous and possibly
misleading. What we look at is a map of provinces, not regions− for example,
Sardinia and Sicily, the two main islands are regions, but the map shows their
provinces−while data are referred to regions because we have joined the data
frames with region names as key. What it appears by looking at the choropleth
map is that, for example, all provinces of Sardinia have the same ratio of dogs
per resident, the same happens for all other provinces of the same region. This is
not a truthful information, for sure at province level there are differences, but the
visualization is communicating a different information because what it actually
tells the observer is that for each region, all its provinces have the same ratio of
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Figure 19.4 Choropleth map with an incoherent association between data and
geographic areas.

dogs per resident. This is an incoherent choropleth map, meaning it is wrong.
You must be extremely cautious about the information that a data visualization is
communicating because it is very easy to convey the wrong one.

A correct choropleth map would have used both the map and the data with same
granularity, either both at region level or both at province level. We fix it by looking
for a map of Italy at regional level, which is very likely to be found freely available.

19.2.1 Eurostat – GISCO: giscoR

Package giscoR is a valuable resource for those interested in European geo-
graphic data because it represents an application programming interface (API) to
Eurostat – the Geographic Information System of the Commission (GISCO), with
some local datasets.
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It requires package Simple Features (sf ) for several core functionalities to man-
age standard formats, a key package that we will discuss in detail in next sections.
As we will learn, package sf is likely the most effective and valuable package
among all open-source libraries for supporting spatial data, it is truly outstanding
in all respects and definitely worth to be known and used.

Note

Citation and Source: Hernangomez D (2023). giscoR: Download Map Data from
GISCO API – Eurostat. https://doi.org/10.5281/zenodo.4317946, https://
ropengov.github.io/giscoR/

With these two packages, we could use function gisco_get_nuts() that
allows selecting the so-called NUTS geometries (https://ec.europa.eu/eurostat/
web/nuts/background/), which are standard representations of geographical
areas defined by the European Union for different levels of coarseness. Level
2 (nuts_level 2) corresponds to administrative regions, this way we can get the
map of the Italian regions. To visualize it (Figure 19.5) we still use ggplot but
this time the function should be geom_sf() because the map has sf format.
Alternatively, it would have been possible to use the base R function plot()
with st_geometry().

library(sf)
library(giscoR)

gisco_get_nuts(
year= 2021, resolution= 20,
nuts_level= 2, country= "Italy") %>%
select(NUTS_ID, NAME_LATN)

ggplot() +
geom_sf(data= nuts2_IT)+
theme_void() -> nuts2_IT

Let us look at the data organization in sf format. They are of type sf and geo-
graphic coordinates are expressed in a column/variable called geometry, in our
example one geometry element for each Italian region (e.g. Puglia and Basilicata),
with geometry defined as type MULTIPOLYGON, being regions planar surfaces,
and each row showing a list of geographic coordinates. This is a different data
organization from the case seen before where we had several rows for each area,
each one with a single pair of longitude and latitude coordinates, here there is a
single row for each area with associated list of coordinates.

https://doi.org/10.5281/zenodo.4317946
https://ropengov.github.io/giscoR/
https://ropengov.github.io/giscoR/
https://ec.europa.eu/eurostat/web/nuts/background/
https://ec.europa.eu/eurostat/web/nuts/background/
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Figure 19.5 Regions of Italy.

nuts2_IT

Simple feature collection with 21 features and 2 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 6.630051 ymin: 35.49457

xmax: 18.51658 ymax: 47.09034
Geodetic CRS: WGS 84
First 10 features: NUTS_ID NAME_LATN geometry
7 ITF4 Puglia MULTIPOLYGON (((15.96243 41℩
8 ITF5 Basilicata MULTIPOLYGON (((16.15755 40…
9 ITF6 Calabria MULTIPOLYGON (((16.62071 40…
10 ITG1 Sicilia MULTIPOLYGON (((15.30001 37…
26 ITF1 Abruzzo MULTIPOLYGON (((14.10346 42…
103 ITF2 Molise MULTIPOLYGON (((14.94085 41…
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105 ITH3 Veneto MULTIPOLYGON (((12.64487 46…
106 ITH4 Friuli-Venezia Giulia MULTIPOLYGON (((13.44023 46…
111 ITH5 Emilia-Romagna MULTIPOLYGON (((9.878123 45…
137 ITI4 Lazio MULTIPOLYGON (((11.84686 42…

At first sight, the sf data type may look unfamiliar, but actually it is an R
data frame, so we can handle it with common operations, such as executing a
normal inner join between data frame nuts2_IT, for geographic data, and dogs.
The join key should be region names, which, in nuts2_IT, corresponds to column
NAME_LATN. Then, we can produce the choropleth map again with function
geom_sf() by filling regions with the color scale corresponding to the ratio
between dogs and residents. With the other attributes, we color the borderlines
white and set the line width. A little tweak is needed to align the name of an
Italian region between the two data frames. Figure 19.6 shows the result that,
now, conveys an information coherent and unambiguous.

%

50

Residents with dogs (%)

40

30

20

Figure 19.6 Choropleth map with coherent data and geographical areas.
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nuts2_IT$NAME_LATN = str_replace_all(nuts2_IT$NAME_LATN,
"Provincia Autonoma di Trento", "Trentino-Alto Adige/Südtirol")

nuts2_IT$NAME_LATN = str_replace_all(nuts2_IT$NAME_LATN,
"Provincia Autonoma di Bolzano/Bozen", "Trentino-Alto Adige/Südtirol")

nuts2_IT %>% inner_join(dogs,
by= join_by(NAME_LATN == Region)) -> italyDogs2

italyDogs2 %>% mutate(Dogs_res= 100*‘Dogs x resident‘) %>%
ggplot() +
geom_sf(aes(fill= Dogs_res),

color='white', linewidth=0.3)+
scale_fill_viridis_b(option= 'cividis') +
labs(fill="%", title="Residents with dogs (%)" )+
theme_void() +
theme(text= element_text(size=10))

19.3 Multiple and Annotated Maps

We consider two variants of the previous plot. With the first, we want to create
three choropleth maps that differ for the variable used to associate the color scale,
namely: the ratio of dogs per resident, the region’s population, and the number
of dogs registered in each region. The three graphics will be horizontally aligned
by means of package patchwork (i.e., p1|p2|p3). Legends will be resized and
adjusted. In the following code, we show in full just one graphic, the others are
produced with same code, except for the variable associated to the fill aesthetic
(e.g. aes(fill=Pop)). Figure 19.7 shows the result.

library(patchwork)

… -> p1

italyDogs2 %>% ggplot() +
geom_sf(aes(fill= Pop), color='white', lwd=0.3)+
scale_fill_viridis_b(option= 'cividis') +
labs(fill= "Residents") +
theme_void() +
theme(text= element_text(size = 10),

legend.position= 'bottom',
legend.key.size= unit(0.4, 'cm'),
legend.text= element_text(size=6, angle = 90,

vjust = 0.5),
legend.title= element_text(size=6)) -> p2

… -> p3

(p1 | p2 | p3)



Figure 19.7 Choropleth maps, from left to right: ratio of dogs per resident, region population, and number of dogs registered in each region.
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In the second variant, we add annotations, meaning graphical and textual ele-
ments placed on the choropleth map. These annotations will be of two kinds:
a dot representing the position of some cities and the corresponding city name.
These elements should be placed by respecting the correct geolocation of the cities,
therefore geographic coordinates have to be used. There is a tiny detail to con-
sider: if the city name is placed on the exact geographic position, it would over-
lap the dot and the visual result will be unclear, therefore city names should be
somewhat displaced in order to not overlap the dot representing the exact city
location.

Ggplot function annotate()does what we look for; its syntax has a first
attribute geom specifying the type of annotation, in our example, it will be point
for the dots and text for city names; attributes x and y specify longitude and
latitude of the annotation, then style options follow.

There is a second important element to consider. In order to place the anno-
tations in the correct positions on the map, it is necessary that the map and the
annotations share the same coordinate references. That might sound perplexing
at first, but the fact is that there is not a unique standard way to define a geo-
graphic point on the Earth, there are several and they are all equally effective. More
precisely, there exist several Coordinate Reference Systems (CRSs), more details on
CRSs will be discussed in following sections. For now, it is important to learn that
to correctly align different geographical objects, like a map and some textual anno-
tations, they all have to be associated with the same CRS, otherwise coordinates
will not align. Function coord_sf() of package sf , serves this purpose because
it can specify what CRS to use for interpreting values of attributes x and y of the
annotations. We need to specify attribute default_crs=sf::st_crs(4326)
telling that for the annotations, CRS 4326 should be considered as the reference
to interpret values of longitude and latitude. We will see mentioned many times
in the following this CRS code 4326 because it refers to the World Geodetic System
1984 (WGS84), which is the most common worldwide, although many others are
in use as well. To recap this important concept, with function coord_sf(), we
specify that annotations’ latitude and longitude coordinates should be interpreted
according to the CRS having code 4326, which should correspond to the CRS asso-
ciated to the map. In this example, for the map, we just assume this to be the case
(actually it is so) without checking map’s metadata, but in future examples we will
consider cases where this assumption will not be true and further operations will
be needed. Figure 19.8 shows the result with annotations, dots, and city names,
correctly positioned on the map.

p2 +
annotate(geom="point", x=12.496, y=41.903, color="darkred") +
annotate(geom="text", x=11.95, y=41.903, label="Rome",

size=3, color="darkred") +



19.3 Multiple and Annotated Maps 407

Figure 19.8 Annotated map with dots and city names for Milan, Bologna, and Rome.

annotate(geom="point", x=9.190, y=45.464, color="darkred") +
annotate(geom="text", x=9.190, y=45.65, label="Milan",

size=3, color="darkred") +
annotate(geom="point", x=11.342, y=44.495, color="gold") +
annotate(geom="text", x=11.6, y=44.7, label="Bologna",

size=3, color="gold") +
coord_sf(default_crs = sf::st_crs(4326)) +
theme(text= element_text(size=12),

legend.position= 'top',
legend.key.width= unit(1.5, 'cm'),
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legend.key.height= unit(0.5, 'cm'),
legend.text= element_text(size=8, angle=0, vjust=0.5),
legend.title= element_text(size=8))

19.3.1 From ggplot to Plotly Graphics

We introduce a last variant by using package plotly. We have already used Plotly
in Part 3, here we use a feature of the corresponding R package that automatically
transforms a ggplot object into a Plotly one, meaning it is no longer a static image
but an HTML object, this way enriched with the standard interactive features
like the dynamic tooltip, in this case just limited to the variables associated to
ggplot aesthetics, and the zoom. In the example, we use one of the ggplot graphics
previously created and turn it into a Plotly one with function ggplotly()
(Figure 19.9).

library(plotly)
ggplotly(p1)

19.4 Spatial Data (sp) and Simple Features (sf)

19.4.1 Natural Earth

Package rnaturalearth is another valuable resource to create geographical visual-
izations and choropleth maps. In this case too, as well as for giscoR, the package
provides an API to interface a remote online service, Natural Earth (https://www
.naturalearthdata.com/), with available datasets of public domain spatial data and
maps. The package has a few vector maps already available and, for others, it
offers function ne_download() that allows for downloading them. An impor-
tant aspect is that by default it requires package sp, the predecessor of package sf .
We load both because we will analyze their differences.

library(sf)
library(sp)
library(rnaturalearth)

Both sp and sf are standard formats in R, easily convertible one into the
other. Actually, we have already used them, although without specifically con-
sidering their differences. We do it now by using maps from rnaturalearth for
our examples. Let us start with the more generic among the maps, provided
by functions ne_countries(), ne_states(), and ne_coastline().

https://www.naturalearthdata.com/
https://www.naturalearthdata.com/
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Figure 19.9 ggplot image transformed into a Plotly HTML object.

With the first, we select Sweden and Denmark, and we could specify the scale
(i.e., “small,” “medium,” and “large”); with the second there is no option for
the scale, just the countries, and with the third the scale could be specified but
without selecting a particular region. We use plot() function of package sp to
visualize the maps, Figure 19.10 shows the three maps.

sp::plot(ne_countries(country= c("sweden","denmark"),
scale= "medium"))

sp::plot(ne_states(country= c("sweden","denmark")))
sp::plot(ne_coastline(scale= "medium"))
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Figure 19.10 Maps from Natural Earth, Sweden and Denmark’s borders and regions,
coastline world map.

19.4.2 Format sp and sf: Centroid and Polygons

We delve now into the details of formats sp and sf . The three maps just created are
in sp format, the default format returned by rnaturalearth functions. If we try to
visualize them by using ggplot andgeom_sf() an error would be raised: ‘stat_sf()‘
requires the following missing aesthetics: geometry. The message error is interesting.
It tells us that in the data, namely in the sp format, the required variable geometry
is missing. We have already seen that variable in a previous example with the sf
format; it contains, for each area, the list of coordinates of the geometry and poly-
gons for planar surfaces. So, what does it mean that error message? That format sp
has no polygons? We can check it directly with function str() as shown by the
following excerpt of code.

First of all, we note that, like format sf , also format sp is actually an R data
frame, therefore usable by ggplot, just not recognized by function geom_sf(),
for example, function geom_polygon() would have handled it. Then, we see a
list of variables/columns and values. We recognize country codes as alpha2 ISO
standards (the two-letter code such as SE for Sweden), names of geographic areas
(e.g. Norrbotten), Swedish postal codes, and finally latitude and longitude coordi-
nates. Are those polygons coordinates? No, those are a single pair of latitude and
longitude coordinates, one pair for each area, so they just identify a specific geo-
graphic point, not multiple polygons. What are those coordinates? They represent
the single point that is conventionally used to identify an area called centroid of the
area, which represents the geographic center of a planar surface.
sw_dk1 <- ne_states(country= c("sweden","denmark"))
str(sw_dk1)

Formal class 'SpatialPolygonsDataFrame' [package "sp"]
..@ data :'data.frame': 26 obs. of 121 variables:

…
.. ..$ iso_a2 : chr [1:26] "SE" "SE" "SE" "SE" …

…
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.. ..$ name : chr [1:26] "Norrbotten" "Västerbotten" …
…

.. ..$ postal : chr [1:26] "NB" "VB" "JA" "KO" …
…

.. ..$ latitude : num [1:26] 66.8 64.7 63.3 60.8 59.8 …

.. ..$ longitude : num [1:26] 20.5 18.4 14.5 14.4 13.1 …
…

.. ..$ geonunit : chr [1:26] "Sweden" "Sweden" …
…

.. ..$ name_en : chr [1:26] "Norrbotten" "Västerbotten" …
…

If we continue looking, we recognize polygons, for each area there is a list
of polygons. Therefore, even format sp has multiple polygons associated to
planar surfaces, just organized differently than in format sf , and with no variable
geometry.

..@ polygons :List of 26
.. ..$ :Formal class 'Polygons' [package "sp"] with 5 slots

.. .. .. ..@ Polygons :List of 10

.. .. .. .. ..$ :Formal class 'Polygon' [package "sp"]

.. .. .. .. .. .. ..@ labpt : num [1:2] 20.1 67

.. .. .. .. .. .. ..@ area : num 21.5

.. .. .. .. .. .. ..@ hole : logi FALSE

.. .. .. .. .. .. ..@ ringDir: int 1

.. .. .. .. .. .. ..@ coords : num [1:663, 1:2] 18.2 18.4 …

.. .. .. .. ..$ :Formal class 'Polygon' [package "sp"]

.. .. .. .. .. .. ..@ labpt : num [1:2] 22.4 65.4

.. .. .. .. .. .. ..@ area : num 0.00273

.. .. .. .. .. .. ..@ hole : logi FALSE

.. .. .. .. .. .. ..@ ringDir: int 1

.. .. .. .. .. .. ..@ coords : num [1:17, 1:2] 22.4 22.4 …
…

19.4.3 Differences Between Format sp and Format sf

With this understanding of format sp and the reason why if we try to visualize an
sp object with ggplot()+geom_sf() we get an error telling us that variable geometry
is missing, we can look at the same data in sf format (https://r-spatial.github.io/sf/
articles/sf1.html). Package rnaturalearth functions offer attribute returnclass
that could have two values: sp, the default, or sf ; we use the latter option to have
the data in sf format.
sw_dk2 <- ne_states(country= c("sweden","denmark"),

returnclass= "sf")
str(sw_dk2)
Classes ‘sf’ and 'data.frame': 26 obs. of 122 variables:
…
$ iso_3166_2: chr "SE-BD" "SE-AC" "SE-Z" "SE-W" …

https://r-spatial.github.io/sf/articles/sf1.html
https://r-spatial.github.io/sf/articles/sf1.html
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$ iso_a2 : chr "SE" "SE" "SE" "SE" ℩
…
$ name : chr "Norrbotten" "Västerbotten" "Jämtland" …
…

As we already know, the sf format is an R data frame and the data organization
seemingly looks identical to the previous sp format, until we catch a tiny differ-
ence:

● sp data: ’data.frame’: 26 obs. of 121 variables
● sf data: ’data.frame’: 26 obs. of 122 variables

They have the same number of rows (observations) corresponding to geographic
areas, but in the sf format there is an additional variable. We can check with
names().

names(ne_states(country= c("sweden","denmark")),
returnclass="sf")

[1] "featurecla"..."iso_3166_2" ...
...

[121] "FCLASS_TLC" "geometry"

Here it is, column geometry. Therefore, the difference between format sp and
format sf is that sp has the list of polygon coordinates for each area following the
initial data frame variables, whereas sf has variable geometry that contains, for
each area, the list of polygon coordinates. In other terms, the two formats have
exactly the same information, just organized differently. This is the reason why
they are easily convertible from one into the other, it is just a data reorganization.
Transformations from format sp to sf and vice versa are possible with the following
functions of package sf :

● from format sf to sp: sf::as_Spatial()
● from format sp to sf : sf::st_as_sf()

We try them with the two objects sw_dk1 (format sp) and sw_dk2 (format sf ).

# From sp to sf
sw_dk_sf <- sf::st_as_sf(sw_dk1)

# From sf to sp
sw_dk_sp <- sf::as_Spatial(sw_dk2)

We verify the resulting data types.
str(sw_dk_sf)
Classes ‘sf’ and 'data.frame': 26 obs. of 122 variables:
…



19.5 Overlaid Graphical Layers 413

str(sw_dk_sp)
Formal class 'SpatialPolygonsDataFrame' [package "sp"] with 5 slots

..@ data :'data.frame': 26 obs. of 121 variables:
…

This analysis of formats sp and sf is important for understanding them clearly,
they are both very common, while format sf is progressively superseding format
sp, so it is essential to be able to handle them correctly and transform one into the
other if needed.

19.5 Overlaid Graphical Layers

We use now the function of Natural Earth to download new maps, ne_
download(). The difficulty of the case study increases because we want to
produce a result of good quality with several graphical and geographical ele-
ments, getting close to what is required for a public presentation or publication.
Specifically, we want to show the map of the main railroad network in Western
Europe and highlight some of the busiest railway stations for number of passengers,
on yearly base. Producing the graphic presents some challenges, and we need to
make graphical choices in order to have a clear and pleasant visualization. All
details need to be carefully crafted.

Let us start with maps that Natural Earth makes available. The list can be
read in the package documentation (https://cran.r-project.org/web/packages/
rnaturalearth/vignettes/rnaturalearth.html). Two of them interest us: railroads
and land. Not all scales are available, railroad has only scale 10. We use format sf .

rail <- ne_download(scale=10, type="railroads",
category="cultural", returnclass="sf")

land <- ne_download(scale=50, type="land",
category="physical", returnclass="sf")

By executing ggplot(rail)+geom_sf() and ggplot(land)+geom_
sf(), we obtain the maps of Figure 19.11.

They are both world maps, for these ones there is no possibility to select a certain
region, it should be cropped from each one of these by specifying the coordinates,
again with sf function coord_sf(). In the following code, Western Europe is
selected through coord_sf(), CRS 4326 is indicated as the reference coordinate
system, and coordinates are defined with attributes xlim and ylim, which set the
boundaries of a rectangle, limiting the area of interest. Then, the ggplot graphic is
produced by overlaying the railroad map over the land map. Figure 19.12 shows
the result. This map is the basis for working toward our final result; now we have
to overlay the other graphical elements referred to the busiest railway stations.

https://cran.r-project.org/web/packages/rnaturalearth/vignettes/rnaturalearth.html
https://cran.r-project.org/web/packages/rnaturalearth/vignettes/rnaturalearth.html
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Figure 19.11 Railroad and land maps from Natural Earth.

ggplot() +
geom_sf(data= land) +
geom_sf(data= rail) +
coord_sf(
default_crs= sf::st_crs(4326),
xlim= c(-10,20),
ylim= c(35,60)
)

The operations are explained step-by-step in the following, starting with com-
mon data-wrangling operations, then graphical elements are added, layer by layer
to the ggplot graphic.

STEP 1. First, data on railway stations’ number of passengers is needed. There are
several possibilities to obtain such data, an easy one is from the Wikipedia page
“List of busiest railway stations in Europe” (https://en.wikipedia.org/wiki/List_
of_busiest_railway_stations_in_Europe). Data are presented in an HTML table

https://en.wikipedia.org/wiki/List_of_busiest_railway_stations_in_Europe
https://en.wikipedia.org/wiki/List_of_busiest_railway_stations_in_Europe
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Figure 19.12 Land and railroad maps of Western Europe.

that we read through a web scraping technique (as seen in Part 3). Package rvest
is required, which is included in tidyverse. The table needs some tidying because
it has two header rows, with simple data-wrangling operations we prepare it.

STEP 2. With the busiest railway stations, we know the corresponding cities and
we need their geographic coordinates. The general solution would have been
to find a dataset with geographic coordinates of main European cities, but for
simplicity we manually built our custom dataset by finding out the coordinates
of the first 14 cities with busiest railway stations.
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STEP 3. The two datasets, the one with information about busiest railway sta-
tions and the one with city geographic coordinates are joined. The resulting data
frame has all information we need.

STEP 4. We draw the base map, as seen before. On the map we want to place scat-
terplot markers corresponding to city’s locations, therefore aesthetics x and y
should correspond to columns with latitude and longitude coordinates.

STEP 5. The basic graphical elements have been placed, now we should take care
of the visual effect of the result to improve the quality. For instance, we do not
just want to design simple dots for railway stations, some of them would result
overplotted (i.e., cities with more than one railway station among the busiest)
and, in any case, are also not much eye-catching, we want something better
than just dots. This could be a good context for a bubble plot, with the area
of the circle depending on the number of passengers. Then, attribute size
should be an aesthetic of the scatterplot. Next, we may want to color the circles
differently for the different countries, then also attribute fill should be a scat-
terplot aesthetic. Again, since there are cities with more than one railway station
among the busiest, it would be better not to overplot the corresponding cir-
cles, but to use some jitter, which means that geom_jitter() is preferred to
geom_point(). Finally, we should work with style options like transparency,
shapes, linewidth, and colors to create a pleasant result. All details should be
considered.

STEP 6. We also want to show the city names, the problem is that with classic
geom_label() they likely end up overlapping or result somehow not all
clearly readable, even tuning the padding. For these cases, package ggrepel
is almost always the best choice, we have introduced it in Part 1, it is able to
automatically handle the placement of labels associated to points avoiding over-
lapping and providing a clearly readable layout (the function to use is geom_
label_repel()). In this case too, style options should be carefully tuned.

STEP 7. The last details remain and could be managed with the options provided
by function theme(), we should also choose a color palette (remember, choose
wisely, try several alternatives), set the legend relative to bubble sizes, and hide
the one for colors.

The result is a graphic that obviously could be further improved or even created
in different ways, but anyhow it is of decent quality, both for the clarity of informa-
tion and the visual effect. In the following code there is the full script with inline
comments; Figure 19.13 follows.

library(rvest)
library(ggrepel)

rail <- ne_download(scale=10, type="railroads",
category="cultural", returnclass="sf")
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Figure 19.13 Busiest railway stations and railroad network in Western Europe.

land <- ne_download(scale=50, type="land",
category="physical", returnclass="sf")

# Web scraping of the Wikipedia HTML table
url <- ("https://en.wikipedia.org/wiki/

List_of_busiest_railway_stations_in_Europe")
webpage <- read_html(url)

# Tidying operations on the table
data <- html_elements(webpage, 'table.wikitable')
data <- html_table(data, header=FALSE)
busiest_rail <- data %>%
bind_rows() %>%
as_tibble()

# The first row has meanigless values, it is omitted

https://en.wikipedia.org/wiki/
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busiest_rail <- busiest_rail[2:97,1:8]

# The next first row has column names, we use it to set column names
colnames(busiest_rail)= as.character(unlist(busiest_rail[1,]))

# The first row is now useless and it is omitted
busiest_rail= busiest_rail[-1, ]

# Some passenger total values have notes in square brackets,
#we remove them
busiest_rail$Sum= busiest_rail$Sum %>%
str_replace_all('\\[[0-9a-z ]+\\]', ") %>%
as.numeric()

# Data frame with city's geographic coordinates
city <- data.frame(
"RW_St"= c("Gare du Nord", "Hamburg Hbf", 'Frankfurt(Main) Hbf',
'Zürich HB', 'München Hbf', 'Gare de Lyon', "Roma Termini",
'Berlin Hbf', 'Milano Centrale', 'Madrid Atocha', 'Köln Hbf',
'Gare Saint-Lazare', 'Berlin Friedrichstraße',
'London Waterloo'),

"Lon"= c(2.349, 9.993, 8.682, 8.545, 11.576, 2.349, 12.496,
13.404, 9.188, -3.703, 6.953, 2.349, 13.404, -0.118),

"Lat"= c(48.856, 53.551, 50.110, 47.373, 48.137, 48.856,
41.903, 52.520, 45.464, 40.416, 50.935, 48.856, 52.520, 51.509)
)

# Join between the two data frames
busiest_rail %>% left_join(city,

by= join_by(‘Railway station‘==RW_St)) -> busiest_rail_geo

# Ggplot graphic
ggplot() +
geom_sf(data= land, fill="ghostwhite") +
geom_sf(data= rail, lwd=0.1) +
geom_jitter(data= head(busiest_rail_geo,15),

aes(x= Lon, y= Lat, size= Sum, fill= Country),
color='black', alpha=0.6, shape=21, width=0.1)+

geom_label_repel(data= head(busiest_rail_geo,15),
aes(x= Lon, y= Lat, label= ‘Railway station‘),
size=2.0, alpha =0.85, na.rm = TRUE,
box.padding = unit(0.75, "lines"))+

scale_size_binned(range= c(3,25), n.breaks=5,
nice.breaks= TRUE)+

labs(size="Passengers\n(Mil per year)",
title="Busiest Railway Stations in Western Europe")+

coord_sf(default_crs= sf::st_crs(4326),
xlim= c(-10,20),
ylim= c(35,60)) -> p1

# Style options
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p1 +
scale_fill_brewer(palette= "Dark2")+
guides(fill= "none") +
theme_void() +
theme(legend.position= 'right',

legend.text= element_text(size=8, vjust=0.5),
legend.title= element_text(size=8),
title= element_text(family= "Helvetica", size=14,

color= "darkred"))

19.6 Shape Files and GeoJSON Datasets

When the interest in working with maps and geographic data grows, it is inevitable
to meet cartographic data and geodatasets since they are now often made available
as open data by municipalities and other public or private subjects. This gets us
closer to the world of traditional cartography, the best systems in this sector, with a
long tradition and a well-earned reputation of quality. These systems are, however,
typically not open-source, the best of them at least, and they require specialized
skills for handling complex projects, skills that are only partially shared with data
science and data visualization.

Tools from data science’s open-source environments should not have the
pretense of rivaling with those sophisticated and very specialized tools at the level
of highly complex projects, but, nevertheless, have become able to handle carto-
graphic data and geodatasets in a good way, certainly at the level of mid-complexity
projects, which is almost always adequate for data visualization projects. An
example of this excellent qualitative level reached by open-source tools is the avail-
ability of native functionalities to handle cartographic shape files without requiring
format conversions but using them directly. This possibility is not trivial, it means
that tools have evolved to support a significant level of complexity of data and
formats and are able to perform complex operations on spatial data. For sure, they
have reached a level way beyond standard choropleth maps, which is the easy task.

To R packages employed in the previous section, we add a new one called
geojsonsf, which is an evolution of package sf specific for geodatasets in GeoJSON
format, an open format derived from JSON, which is of type list (R) or dictionary
(Python) and widely used by many Open Data providers (the shape file format,
older than GeoJSON, is more specific of traditional cartography and typically
with geographic data at a very fine level of detail).

library(tidyverse)
library(lubridate)
library(sf)
library(sp)
library(geojsonsf)



420 19 Geographic Maps with R

19.7 Venice: Open Data Cartography and Other Maps

In the examples of this section, we look at Venice, one of the most fascinating cities
in the world, and we build a case study by using open data of its topology from
official sources. In particular, the main source is the Topographic Geodatabase
of the Venice Municipality, which is provided as Open Data (Italian Open Data
Licence [IODL]) and offers several interesting shape files (https://dati.venezia.it/?
q=content/carta-tecnica).

As mentioned before, the shape file is the traditional cartographic format and the
one usually offering more technical and accurate topographic data. Reading shape
files in native form has been for long an exclusive feature of specialized GIS tools,
therefore the fact that R package sf allows for natively reading them through the
standard support of a preloaded GIS driver is an outstanding feature. The function
to use is st_read(). From the cartography of the Venice Municipality, we select
some shape files that we will visualize as stacked layers to learn the functionalities
of R tools. These are the shape files:

● Elemento di trasporto su acqua: EL_ACQ.shp
(Strato01_Viabilita_Mobilita_Trasporti/Tema0103_AltroTrasporto)
(transl. Waterway transport element)

● Area di circolazione pedonale: AC_PED.shp
(Strato01_Viabilita_Mobilita_Trasporti/Tema0101_Strade)
(transl. Pedestrian circulation area)

● Linea di costa marina cartografica: CS_MAR.shp
(Tema0402_AcqueMarine)
(transl. Coastal marine line)

● Canale: CAN_LAG.shp
(Tema0404_ReticoloIdrografico)
(transl. Hydrographic grid)

● Ponti: PONTE.shp
(Strato02_Immobili_Antropizzazioni/Tema0203_OpereInfrastruttureTras-
porto)
(transl. Bridges)

● Scarpata: SCARPT.shp
(Strato05_Orografia/Tema0503_FormeTerreno)
(transl. Escarpments))

● Aree verdi: AR_VRD.shp
(Strato06_Vegetazione/Tema0604_VerdeUrbano)
(transl. Green areas)

● Numero civico: CIVICI.shp
(Strato03_ Gestione_viabilita_indirizzi)
(transl. Civic numbers)

https://dati.venezia.it/?q=content/carta-tecnica
https://dati.venezia.it/?q=content/carta-tecnica
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waterways= st_read('datasets/Venice/Strato01_Viabilita_Mobilita_
Trasporti/
Tema0103_AltroTrasporto/EL_ACQ.shp')

sea= st_read('datasets/Venice/Tema0402_AcqueMarine/CS_MAR.shp')
streets= st_read('datasets/Venice/Strato01_Viabilita_Mobilita_Trasporti/

Tema0101_Strade/AC_PED.shp')
canals= st_read('datasets/Venice/Tema0404_ReticoloIdrografico/

CAN_LAG.shp')
bridges= st_read('datasets/Venice/Strato02_Immobili_Antropizzazioni/

Tema0203_OpereInfrastruttureTrasporto/PONTE.shp')
terrain= st_read('datasets/Venice/Strato05_Orografia/

Tema0503_FormeTerreno/SCARPT.shp')
green= st_read('datasets/Venice/Strato06_Vegetazione/

Tema0604_VerdeUrbano/AR_VRD.shp')
civicNo= st_read('datasets/Venice/Strato03_GestioneViabilita_Indirizzi/

Tema0301_ToponimiNumeriCivici/CIVICO.shp')

We have read the shape files, let us look at the content of one of those R objects,
for example waterways, with the content of EL_ACQ.shp.

Reading layer ‘EL_ACQ' from data source
‘datasets/Venezia/Strato01_Viabilita_Mobilita_Trasporti/

Tema0103_AltroTrasporto/EL_ACQ.shp'
using driver ‘ESRI Shapefile'

Simple feature collection with 1107 features and 27 fields
Geometry type: MULTILINESTRING
Dimension: XY
Bounding box: xmin: 2302196 ymin: 5012733

xmax: 2326948 ymax: 5047500
CRS: NA

The first information we find is a confirmation that function st_read() reads
shape file in native form thanks to the ESRI Shapefile driver (ESRI is the name of
the US company leader in the market of GIS tools with its widely popular ArcGIS).
The second information is that the object is of type sf and that elements of the
variable/column geometry are of type MULTILINESTRING for this shape file, not
polygons as it is customary for planar surfaces (i.e., the elements are canals and
other waterways, not planar surfaces, they do not have a closed border). This
tells us something new: different geographical elements might be represented
with different geometries. The last two items are important. The first specifies
the bounding box, which provides the geographic coordinates of the rectangle
that represents the area. The bounding box is defined through the two points
corresponding to the extremes of the diagonal of the rectangular area, meaning
the bottom-left point (i.e., xmin and ymin) and the top-right point (i.e., xmax and
ymax). The second important item is the CRS, which we already encountered,
representing the coordinate system employed for the coordinates of this shape
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file. In other words, it is the coordinate system that permits to make sense of the
coordinate values (e.g. xmin: 2302196 ymin: 5012733) that this shape file uses to
represent geographic positions. Without knowing which CRS is associated, we
simply do not know what latitude 2302196 and longitude 5012733 mean. This
is exactly the case of this shape file, there is no indication associated to CRS
metadata in the shape file. Is it an error? Is it strange or exceptional? Not at all, on
the contrary it is quite common to see shape files with no indication of the CRS.
This should not mean that coordinates values have no sense, they are very likely
perfectly meaningful and correct according to a certain CRS, it was just not to be
stated as metadata in the shape file. But, as it is true for basically every metadata
enclosed in digital objects, it might be useful for various functionalities to have it,
but it is almost never strictly necessary because, if the metadata is not present, it
could be set manually, for example when the file is read, or found in accompanying
documentation.

So, not having the CRS specified is not necessarily a problem, it becomes a prob-
lem if we are unable to discover which is the CRS when we have to overlay one
geographic layer to another because, if the CRSs are not the same, coordinates will
be misaligned. In short, the result will be a total mess, same places will not cor-
respond when overlaid. This is why it is so important to clearly understand the
role of CRSs, it might not be necessary to know the details of every single CRSs,
how the coordinate systems have been defined, their history, and so on, that is
a skill of cartographers; but it is mandatory to know the role they have when
different topographic layers are overlaid, when the CRS has to be specified, and
when a transformation of the coordinate system is necessary to align layers with
coordinates from different CRSs.

Let us return to our case study. Since all the sf objects produced from reading the
shape files have no declared CRS, a possibility is to manually set this information.
It is easy with sf function st_set_crs(), but the real issue is to figure out
which CRS should be defined. For this, as it is customary in cartographies, the
documentation is very likely to help. In fact, the accompanying information of
the Venice Municipality’s cartography correctly states it very clearly by specifying
the following: Sistema di riferimento cartografico: Monte Mario/Italy Zone 2 (fuso
E) – Datum: Roma 40 – Proiezione: Gauss-Boaga – Fuso: Est (EPSG 3004). We
have left the statement in Italian because that is the original source to look at,
but it is easy to recognize that it is specifying the cartographic reference system
(i.e., Sistema di riferimento cartografico, meaning CRS), and this specific one is
called Monte Mario/Italy Zone 2, which is very common in Italian cartographic
projections (many CRSs in use are similarly based on local topographic refer-
ences). Important for us is the information provided with EPSG 3004, because
3004 is the numeric code of this Monte Mario CRS (it could have been easily
retrieved with an online search too). So, now we have the information we need
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and can set the CRS for all those sf objects to 3004 with function st_set_crs().
In Figure 19.14a,b, the layers for Venice’s streets and canals are shown, for now
just as single layers with no others overlaid (Note: for those that have visited
Venice, the topography of these layers might look perplexing, it does not look
like the Venice you have seen; the reason is that you likely know just a portion of

(a)

Figure 19.14 (a/b) Venice, streets, and canals cartographic layers.
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(b)

Figure 19.14 (Continued)

the insular part of Venice, the historical and touristic one, but the Municipality
includes a larger territory, partly insular and partly on mainland).

streets.crs <- streets %>% %>% st_set_crs(3004)
canals.crs <- canals %>% st_set_crs(3004)

ggplot() +
geom_sf(data= streets.crs, color= "black", lwd=0.1) +
theme_void() -> plot1
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ggplot() +
geom_sf(data= canals.crs, fill= "lightblue") +
theme_void() -> plot2

Equally, we do the same for all other sf objects.

waterways.crs <- waterways %>% st_set_crs(3004)
sea.crs <- sea %>% st_set_crs(3004)
terrain.crs <- terrain %>% %>% st_set_crs(3004)
green.crs <- green %>% %>% st_set_crs(3004)
civicNo.crs <- civicNo %>% %>% st_set_crs(3004)
bridges.crs <- bridges %>% %>% st_set_crs(3004)

We add now a non-necessary step that is useful to clearly understand the CRS
management: we use a geographical map in GeoJSON format, which is a different
type of data format than cartographic shape files and has simply the borderline
of the Venice Municipality. This is a very common type of map that we have
already used in early examples, it is quite common to find it in open format. We
get it from OpenPolis (https://github.com/openpolis/geojson-italy/tree/master/
geojson), an alternative source could have been Cartography Vector (https://
cartographyvectors.com/map/728-venice). The OpenPolis map is about all Italian
municipalities, so we extract just Venice (Italian: Venezia).

For the GeoJSON format, it exists function geojson_sf() of package geoj-
sonsf , which is the extension of package sf to support GeoJSON and TopoJSON
formats (the two have few differences, not relevant for our analysis). Function
geojson_sf() returns an sf object, hence a data frame, from which we can
easily extract Venice with a common filter(); then we visualize the object with
ggplot()+geom_sf() (see Figure 19.15)

ven_map <- geojsonsf::geojson_sf("datasets/OpenPolis/
limits_IT_municipalities.geojson")

ven_map <- filter(ven_map, name == 'Venezia')
ven_map %>% ggplot() + geom_sf()

It is a simple map; we look at its characteristics

Simple feature collection
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box:
xmin: 7.229827 ymin: 44.90396
xmax: 7.973126 ymax: 45.44821
Geodetic CRS: WGS 84

https://github.com/openpolis/geojson-italy/tree/master/geojson
https://github.com/openpolis/geojson-italy/tree/master/geojson
https://cartographyvectors.com/map/728-venice
https://cartographyvectors.com/map/728-venice
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Figure 19.15 Venice municipality border map.

Being a planar surface, it is represented by means of polygons and the asso-
ciated CRS is specified this time: WGS 84 is the version. This is one the most
common coordinate systems, at least in Western countries, and the bounding box
is expressed with the familiar degrees of latitude North and longitude East. Its code
is CRS 4326, already well-known to us at this point.

So, now we have sf objects from the cartographic shape files whose coordinates
are expressed according to the Monte Mario reference system and this map with
coordinates expressed according to the WGS 84 reference system. These objects
cannot be layered one on top of the other because coordinates would not be aligned
(you can try, they will not match).

The solution in this case is straightforward: either coordinates expressed as WGS
84 are transformed into Monte Mario coordinates or vice versa the Monte Mario
coordinates are transformed into WGS 84. There is no way around it.
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This step should be understood clearly. This is a very different situation with
respect to the one seen before when we set the CRS that was not specified in sf
objects. That was simply an operation of writing the value of a metadata inside
the sf files, we did not touch the coordinates values. Here, instead, we need to
transform coordinate values from one CRS to another, it is a completely different
matter. We need a coordinates transformation function:
st_transform(). For simplicity, we choose to transform coordinates of the

map with the borderline (object ven_map) from WGS 84 to Monte Mario, which
has CRS code 3004.

ve_map.crs <- ven_map %>% st_transform(3004)

If we look at the details of object ve_map.crs, we recognize that there is one
feature because we have extracted just Venice, the geometry is created through
polygons and now the CRS is Monte Mario with bounding box coordinates values
expressed according to that CRS.

Simple feature collection with 1 feature and 18 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 2298936 ymin: 5012153

xmax: 2332383 ymax: 5050100
Projected CRS: Monte Mario / Italy zone 2

Now we can stack these layers, including the map, one on top of the other.
Figure 19.16 is realized by overlaying the map, the streets layer, and the canals
layer.

ggplot() +
geom_sf(data= ve_map.crs, fill= "ghostwhite") +
geom_sf(data= steets.crs, color= "gray", lwd=0.1) +
geom_sf(data= canals.crs, fill= "lightblue") +
theme_void()

The produced map is informative and clearly readable. This first example could
be extended in many possible ways, as many as the combinations of stacks of layers
allow for. Through our sf objects, we can add the marine coastline, bridges, the
waterways, the green areas, and the terrain, but many others are available through
Venice’s cartography.

We make use of another feature of function coord_sf() that permits us to
define the coordinates of our area of interest, which we can crop from an sf object.
We focus on the part of Venice that most visitors know better, the historical insular
part with ancient palaces, bridges, and iconic canals. We use attributes xlim and
ylim acting the same way as the bounding box, meaning the left-bottom and the
right-top points of the diagonal of the rectangle of the area of interest. There is
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Figure 19.16 Venice, Municipality area, streets, and canals layers.

an additional complication in this example: coordinate values are expressed with
Monte Mario CRS, not the common longitude North and latitude East degrees.
A couple of steps are needed:

STEP 1. First, we figure out the coordinates for the two points, xmin, ymin, and
xmax, ymax, in the familiar longitude and latitude degrees. We can easily find
them by looking at online maps that provide for geographical coordinates of
selected locations; otherwise, we can use the map from the GeoJSON file, which
is expressed in WGS 84 coordinates, by cropping it with function coord_sf() until
the desired area is produced.
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Figure 19.17 Venice, historical insular part, map with overlaid layers.

STEP 2. Once we have established the coordinates in usual longitude and latitude
degrees, they should be converted into the Monte Mario CRS, for example
through an online service like https://epsg.io/transform#s_srs=4326&t_
srs=3004&x=NaN&y=NaN, where the transformation is set by specifying CRS
4326 for the source and CRS 3004 for the result. This way we can crop all our sf
objects and overlay them again. It is a little effort for a result that is definitely
worthwhile because now Venice appears in its iconic and unmistakable shape
(Figure 19.17).

ggplot() +
geom_sf(data=ve_map.crs, fill= "ghostwhite") +
geom_sf(data=canals.crs, fill= "skyblue2") +
geom_sf(data=waterways.crs, color= "skyblue2") +
geom_sf(data=sea.crs, color= "skyblue4") +
geom_sf(data=bridges.crs, fill= "tomato3") +
geom_sf(data=streets.crs, color= "gray", lwd=0.1) +

coord_sf(default_crs = sf::st_crs(3004),
xlim = c(2308690,2316697),
ylim = c(5030945,5036255)) +

theme_void() -> plot2

https://epsg.io/transform#s_srs=4326&t_srs=3004&x=NaN&y=NaN
https://epsg.io/transform#s_srs=4326&t_srs=3004&x=NaN&y=NaN
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19.7.1 Tiled Web Maps

When geographic data are visualized, it is typical to use a base map, in the previ-
ous example we use the simplest one, with just the borderline and the area filled
with a color. Many others exist, of different types and visual appearances, from
realistic maps of the terrain to political or street maps, with many variations, some
particularly original and eye-catching. The use of a base map might have both
informative reasons (e.g. showing roads or the orography) or aesthetic, just to
obtain a better-looking final result. Typically, the role of base map is realized by
so-called Tiled Web Maps or, for brevity, tile maps.

The name might sound unfamiliar, but everybody knows them: they are the
base maps that we look at when we use an online map service like Google Maps,
OpenStreetMap, and the like, namely those maps that offer us a zoom feature,
usually controlled by a gesture on the touchpad or touchscreen, that let us place
markers to set a position and other interactive features. The same tile maps are
used for data visualization with the tools we are examining; there is no technical
limit to their usage, there is a commercial limit, instead, because an increasing
number of tile map providers has transformed the service that they were used to
offer freely into a paid subscription one, the most renown example being Google
Maps. With commercial providers, an API key is required, which is a particular
code to specify for downloading the map. The way to obtain an API key depends
on the legal terms of the specific commercial service. Nevertheless, a few tile
map providers have kept a free option, among them Stamen (http://maps.stamen
.com/), OpenStreetMap (https://wiki.openstreetmap.org/wiki/Tiles), and in a
limited way Carto (https://carto.com/blog/getting-to-know-positron-and-dark-
matter). Google Maps offers the possibility to use tile maps freely up to a certain
monthly threshold, but even in that case it requires to obtain an API key with a
formal contractual subscription. A comment that could be made to this evolution
into the commercial realm, is that, on the one hand, the possibility to freely
experiment with tile maps has drastically shrunk, on the other, though, this is
likely a signal that an increasing professionalization and diffusion of geographic
data visualization is now a fact and it is growing.

19.7.1.1 Package ggmap
With a better understanding of the context, we may now turn our attention to pack-
age ggmap that offers two useful functions: get_stamenmap() and ggmap().
With the first one, we access the Stamen online server for downloading free maps,
while the second is used in place of the ggplot() function for creating the graphic.
The same package once allowed for the possibility to access maps from Google
Maps and OpenStreetMap, but not any longer.

http://maps.stamen.com/
http://maps.stamen.com/
https://wiki.openstreetmap.org/wiki/Tiles
https://carto.com/blog/getting-to-know-positron-and-dark-matter
https://carto.com/blog/getting-to-know-positron-and-dark-matter
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Note

Citation: D. Kahle and H. Wickham. ggmap: Spatial Visualization with ggplot2.
The R Journal, 5(1), 144–161. URL http://journal.r-project.org/archive/2013-
1/kahle-wickham.pdf

Let us consider a basic example. We can specify the geographic area (variable
mapbound) in WGS 84 coordinates and with that we download a map among those
available from Stamen. Here, we see the example of Venice base map with the
two main types of Stamen tile maps: Terrain and Toner. The second one could
be obtained with the following code by replacing maptype=’toner’. To visu-
alize them, we use ggmap(). The difference in the visual effect is evident from
Figure 19.18a and Figure 19.18b.
library(ggmap)

mapBound <- c(left=12.30, bottom=45.40, right=12.40, top=45.45)
basemap <- get_stamenmap(bbox= mapBound, zoom=13,

messaging= FALSE, maptype= 'terrain')
ggmap(basemap) + theme_void()

Stamen’s free tile maps are not much informative, they serve aesthetic purposes
only, as base for other stacked informative layers placed on top of them. A com-
ment on package ggmap is that it offers good functionalities but, unfortunately, it
suffers from the lack of support of Google Map and OpenStreetMap. It is worth a
mention and a try, anyway.

19.7.1.2 Package Leaflet
The R package leaflet is technically a wrapper, meaning an interface that makes
it possible to access functionalities of a different software module, that is the
JavaScript library leaflet.js, widely adopted for interactive web maps (https://
leafletjs.com/) in websites, even very popular ones.

Leaflet has many features, which make it a complete tool for the visualization
of interactive geographic maps, not just a library with some useful functions.
Therefore, Leaflet is for sure a solution to consider very seriously. A more detailed
overview of Leaflet’s functionalities will be presented in the final Python’s chapter,
however, all examples, shown here for R, are fully replicable in Python too, just
by adapting the code, with the specific functions being by all means identical
because in both environments, R and Python, what is used is a wrapper to the
same JavaScript library.

We see a simple example. The function for creating a leaflet object is
leaflet(), which by default downloads tile maps from OpenStreetMap.

http://journal.r-project.org/archive/2013-1/kahle-wickham.pdf
http://journal.r-project.org/archive/2013-1/kahle-wickham.pdf
https://leafletjs.com/
https://leafletjs.com/
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(a)

(b)

Figure 19.18 (a/b) Venice, ggmap, Stamen Terrain, and Toner tiled web maps.
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The logic is similar to ggplot, compliant to the grammar of graphics. With
function addTiles(), the first layer made by the tile map is created as the
leaflet object. Next, we could specify a certain area, otherwise the world map is
the default. With function fitBounds(), we can define the coordinates of a
specific area, i.e., the bonding box, with attributes lng1, lat1 and lng2, lat2
expressed in WSG 84 coordinates as latitude North and longitude East. Finally,
in this simple example, we specify the coordinates for the center of the map with
function setView() (i.e., the ones used correspond to Venice’s Ponte di Rialto,
transl. the Rialto Bridge) with the zoom level set with attribute zoom.

library(leaflet)

mapL <- leaflet() %>%
addTiles() %>%
fitBounds(lng1= 12.30, lat1= 45.40,

lng2= 12.40, lat2= 45.45) %>%
setView(12.3359,45.4380, zoom=14)

mapL

The result is a map by OpenStreetMap with more informative content than Sta-
men maps, which not just serve the purpose of an aesthetically pleasant base map
but even alone could provide useful information to the observer. On top of this base
map, other graphical elements, such as position markers and dynamic tooltips,
could be added. Leaflet offers the zoom feature that lets observing a map in great
detail and excellent quality, as Figure 19.19a and Figure 19.19b show.

Other tiled web maps are available, although the actual availability depends
on the particular selected area (http://leaflet-extras.github.io/leaflet-providers/
preview/index.html). To use them, package leaflet.providers is required. In
the example, we add Stamen’s Toner map, Carto’s Positron map, and ESRI’s
WorldImaginery map. Figure 19.20a, Figure 19.20b, and Figure 19.20c show the
corresponding base maps.
library(leaflet.providers)

mapL %>% addProviderTiles(providers$Stamen.Toner) -> plot1
mapL %>% addProviderTiles(providers$CartoDB.Positron) -> plot2
mapL %>% addProviderTiles(providers$Esri.WorldImagery) -> plot3

19.7.2 Tiled Web Maps and Layers of sf Objects

What we have seen so far are examples with packages ggmap and Leaflet just show-
ing base maps, which for Leaflet could be enriched with graphical elements offered
by the package. This is not sufficient, though, because we are working with topo-
graphic layers (i.e., cartographic shape files, GeoJSON datasets) for which we have

http://leaflet-extras.github.io/leaflet-providers/preview/index.html
http://leaflet-extras.github.io/leaflet-providers/preview/index.html
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(a)

(b)

Figure 19.19 Venice, Leaflet base map from OpenStreetMap. (a) Full view. (b) Zoom in.
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(a)

Figure 19.20 (a/b/c) Venice, Leaflet tile maps from Stamen, Carto, and ESRI.

produced the corresponding sf objects and we want to add them to the base map.
Let us see how to do that.

19.7.2.1 Tiled Web Maps with ggmap
This case would not create any particular problem if it were not for the compli-
cation represented by coordinate systems having different CRSs, as for our case
study. Examples available in the documentation are typically presented with the
assumption that all layers have same CRS (usually WGS 84), which removes any
obstacle. However, reality is always more complicated than didactic examples and,
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(b)

Figure 19.20 (Continued)

as the adage says, the devil hides in the details. Having layers with different CRSs
(i.e., WGS 84 and Monte Mario), we have two main options:

● To convert all coordinates of sf objects (i.e., the cartographic layers) defined for
the Monte Mario CRS into WGS 84 coordinates, the ones of the base map.

● To convert base map coordinates from WGS 84 to Monte Mario CRS.

Both options have pros and cons, let us start with the first one.

OPTION 1: from Monte Mario to WGS 84 CRS. The main disadvantage of this
option is that we have several sf objects to convert in order to match the



19.7 Venice: Open Data Cartography and Other Maps 437

(c)

Figure 19.20 (Continued)

coordinates of the single base map object, but the advantage is that it is an
easy operation to execute. The following excerpt of code shows the repeated
coordinate transformations of sf objects. Here, we also include the green areas
layer, then we use ggmap(basemap), similar to what we would have done
with a common ggplot graphics.

canals.4326 <- canals.crs %>% st_transform(4326)
streets.4326 <- streets.crs %>% st_transform(4326)
green.4326 <- green.crs %>% st_transform(4326)
bridges.4326 <- bridges.crs %>% st_transform(4326)
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waterways.4326 <- waterways.crs %>% st_transform(4326)
civicNo.4326 <- civicNo.crs %>% st_transform(4326)

ggmap(basemap) +
geom_sf(data= canals.4326, fill= "skyblue2",

inherit.aes= FALSE) +
geom_sf(data= streets.4326, color= "gray", lwd=0.1,

inherit.aes= FALSE) +
geom_sf(data= waterways.4326, color= "skyblue2",

inherit.aes= FALSE) +
geom_sf(data= bridges.4326, fill= "tomato3",

inherit.aes= FALSE) +
geom_sf(data= green.4326, size=0.05, alpha=0.01,

color= "forestgreen", inherit.aes= FALSE) +
geom_sf(data= civicNo.4326, color= "darkred",

inherit.aes= FALSE) +
coord_sf(default_crs= sf::st_crs(4326),

xlim= c(12.30,12.40),
ylim= c(45.40,45.45)) +

theme_void()

OPTION 2: from WGS 84 to Monte Mario CRS. The obvious advantage of this solu-
tion is that we have just one object whose coordinates should be converted.
The disadvantage is that the conversion of base map coordinates into a differ-
ent CRS, for a base map produced with ggmap’s get_stamenmap(), is not
an easy task because the object produced is not of sf data type, meaning an R
data frame, but a ggmap object of type raster, namely a bitmap, like for example
PNG or JPG images. Delving into the details of raster images is out of the scope
of this book, but we forward the reader to the excellent R package terra and its
documentation.

For our aims, what we should know is that a standard transformation with func-
tion st_transform() does not work. In order to perform it correctly there are
empirical solutions, though, which work fairly well but are not well-documented,
so spending some effort will be necessary. For our case, we choose a solution
that proved effective and was proposed by the community, in particular by user
andyteucher with a post of 2018 (https://stackoverflow.com/questions/47749078/
how-to-put-a-geom-sf-produced-map-on-top-of-a-ggmap-produced-raster/508445
02#50844502). The idea is to implement a custom function (ggmap_bbox) that
cleverly manipulates the format of the ggmap object in order to make it compat-
ible with the format expected by package sf function st_transform(). The
following code shows this custom function with the original comments of user

https://stackoverflow.com/questions/47749078/how-to-put-a-geom-sf-produced-map-on-top-of-a-ggmap-produced-raster/50844502#50844502
https://stackoverflow.com/questions/47749078/how-to-put-a-geom-sf-produced-map-on-top-of-a-ggmap-produced-raster/50844502#50844502
https://stackoverflow.com/questions/47749078/how-to-put-a-geom-sf-produced-map-on-top-of-a-ggmap-produced-raster/50844502#50844502
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andyteucher, simply adapted to our case study for converting coordinates from
WGS 84 (CRS 4326) to Monte Mario (CRS 3004). As with all custom solutions, it
should be chosen only if a standard one of at least equal quality is lacking, but
nevertheless it does its job honestly.
ggmap_bbox <- function(map) {

if (!inherits(map, "ggmap")) stop("map must be a ggmap object")

# Extract the bounding box (in lat/lon) from the ggmap
# to a numeric vector, and set the names to
# what sf::st_bbox expects:

map_bbox <- setNames(unlist(attr(map, "bb")),
c("ymin", "xmin", "ymax", "xmax"))

# Convert the bbox to an sf polygon, transform it to 3004,
# and convert back to a bbox (convoluted, but it works)

bbox_3004 <- st_bbox(st_transform(st_as_sfc(st_bbox(map_bbox,
crs = 4326)), 3004))

# Overwrite the bbox of the ggmap object with the
# transformed coordinates

attr(map, "bb")$ll.lat <- bbox_3004["ymin"]
attr(map, "bb")$ll.lon <- bbox_3004["xmin"]
attr(map, "bb")$ur.lat <- bbox_3004["ymax"]
attr(map, "bb")$ur.lon <- bbox_3004["xmax"]
map

}

# Use the function:

map <- ggmap_bbox(basemap)

With this, the raster base map object has been made compliant with function
st_transform() and then the coordinates converted to the same CRS of car-
tographic layers, we could now visualize the resulting map. The code is the same
presented for Option 1, except for the instruction using function coord_sf().

ggmap(map) +
...
coord_sf(default_crs = sf::st_crs(3004),

xlim = c(2308690, 2316697),
ylim = c(5030945, 5036255)) +

theme_void()

The maps produced are identical for the two solutions, with the exception
of a tiny misalignment of the base map with respect to the cartographic layers,
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introduced with the empirical custom solution, an error that could be corrected
with a more precise tuning of parameters of the bounding box, a confirmation
that empirical methods should be adopted only when standard methods are not
available. Figure 19.21a and Figure 19.21b show two versions of the resulting map
with different tiled web maps, OpenStreetMap in the first case and Stamen Toner
in the second one, green areas are now visible.

19.7.2.2 Tiled Web Map with Leaflet
Leaflet supports a limited variety of CRSs (https://leafletjs.com/reference.html#
crs) so, for our case study, it is more convenient to work with all objects in WGS
84 coordinates, therefore by transforming the cartographic layers from Monte
Mario to WGS 84, in the same way seen before. With respect to a previous simple
example where we just visualized a Leaflet base map, now we have to add graphi-
cal layers on top of it. For this, we have to use Leaflet functions addPolygons()
and addPolylines(), respectively, to add layers with graphical objects with a
geometry defined through multi-polygons or multi-lines.

We see two examples. With the first one, we replicate the layered map just pro-
duced with ggmap. The syntax is intuitive and the result is in HTML format, so we
save it with function save_html() of package htmltools. Being an HTML object,
it offers native features like the zoom, activated with gestures or clicking on the but-
tons with + and – symbols. Figure 19.22a and Figure 19.22b show two screenshots
of the resulting HTML map, respectively with the Venice full map and a detail by
zooming in on Ponte di Rialto (Rialto Bridge) and Piazza San Marco (St. Mark’s
Square). The tile map is Carto Positron.
mapL <- leaflet(width=800, height=800) %>%
addTiles() %>%
fitBounds(lng1= 12.30, lat1= 45.40,

lng2= 12.40, lat2= 45.45) %>%
setView(12.3359, 45.4380, zoom=14) %>%
addProviderTiles(providers$CartoDB.Positron) %>%
addPolygons(data= canals.4326, fill="skyblue3", weight=0.5) %>%
addPolygons(data= streets.4326, color= "gray", weight=0.5) %>%
addPolygons(data= bridges.4326, color="tomato", weight=1.5) %>%
addPolygons(data= green.4326, weight = 0.5, color="forestgreen")

htmltools::save_html(mapL, "Leaflet1.html")

In the second example, we introduce a new interactive feature very typical of
Leaflet, dynamic popups associated to geographic elements (in this case they are
popups rather than tooltips, being required to click on the map to show them, not
just hovering with the mouse). For simplicity, we use a single cartographic layer
(civicNo.4326) with as elements the civic numbers corresponding to buildings. This
layer will be used for two purposes: to represent the graphical elements on the map,
as we have already seen before with other layers, but now also as the data frame

https://leafletjs.com/reference.html#crs
https://leafletjs.com/reference.html#crs
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(a)

(b)

Figure 19.21 Venice, ggmap, tiled web maps with cartographic layers.
(a) OpenStreetMap. (b) Stamen Toner.
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(a)

Figure 19.22 Venice, Leaflet with Carto Positron tile map, and cartographic layers.
(a) Full map. (b) Zoom in on Ponte di Rialto (Rialto Bridge), and Piazza San Marco
(St. Mark’s Square).

(i.e., it is an sf object, therefore an R data frame) from which we extract the informa-
tion corresponding to each civic number that will be associated to the popups. This
way, each graphical element corresponding to a civic number will become an inter-
active element that, when clicked, will show the popup with information on that
civic number. Technically, in the code is present the following assignmentpopup=
∼INDIRIZZO (“indirizzo” means “address” in Italian), meaning that the popup
content is extracted from variable INDIRIZZO of the sf object that corresponds to
the graphical element that has been clicked. Particular attention should be paid to
this peculiar syntax that makes use of the tilde symbol∼ to declare that INDIRIZZO
is the name of a variable contained in the same sf data of the geography (sf object
civicNo.4326), not a local variable. Figure 19.23 shows a screenshot with a popup
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(b)

Figure 19.22 (Continued)

for St. Mark’s Square, all elements shown in red in the original HTML file, or in
dark gray on paper, correspond to clickable civic numbers.

mapL2 <- leaflet(width=800, height=800) %>%
addTiles() %>%
fitBounds(lng1= 12.30, lat1= 45.40,

lng2= 12.40, lat2= 45.45) %>%
setView(12.3359, 45.4380, zoom=14) %>%
addProviderTiles(providers$CartoDB.Positron) %>%
addPolygons(data= civicNo.4326,

color= "darkred", weight=1.5,
popup= ∼INDIRIZZO)

htmltools::save_html(mapL2, "Leaflet2.html")
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Figure 19.23 Venice, Leaflet, civic numbers with dynamic popups associated.

Aesthetically the result is still rough, but nevertheless interesting as a concept
because this way we have produced a map of the city with available informa-
tion, graphically represented and interactive, on all civic numbers, namely all
buildings. It is quite easy to imagine a number of possible applications and
variants of this basic example, either for touristic, business, or public utility
purposes.

Let us see another example, this time with the cartographic layer represent-
ing pedestrian areas from sf object streets.crs, from which we omit missing val-
ues. We proceed the same way as in the previous case, with the result shown in
Figure 19.24.

pedestrianType= c("sidewalk", "traffic island", "arcade",
"gallery", "steps", "avenue","alley",
"pedestrian only ", "passageway","other")
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Figure 19.24 Venice, Leaflet, pedestrian areas.

ggplot() +
geom_sf(data= na.omit(street.crs),

aes(color= AC_PED_ZON,
fill= AC_PED_ZON), lwd=0.3) +

labs(color="Pedestrian Zone", fill="Pedestrian Zone") +
coord_sf(default_crs= sf::st_crs(3004),

xlim= c(2308690, 2316697),
ylim= c(5030945, 5036255)) +

scale_fill_tableau(palette="Color Blind",
labels = pedestrianType, direction = +1) +

scale_color_tableau(palette="Color Blind",
labels = pedestrianType, direction = +1) +

theme_void()

19.7.3 Maps with Markers and Annotations

We conclude this section by showing another typical widget of interactive maps:
markers placed to indicate specific geographic points, in this example enriched
with annotations. This is the kind of interactive feature for maps where Leaflet
shines and is almost unbeatable, but something could be done with ggplot too, we
will see both cases. We start with ggplot.

The pin marker comes from a free icon made by Freepik from www.flaticon.com
and used by ggplot function geom_image() from package ggimage. Textual
annotations, instead, are produced with function geom_label_repel() of
package ggrepel that we have already used in a previous example. As base map,
we use instead a cartographic layer from Venice Municipality and data are simply
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Figure 19.25 Venice, ggplot, markers with annotations.

created with a little custom data frame of a few points of interest. The result
shown in Figure 19.25 is still aesthetically simple but as a concept once again is
interesting and could inspire many applications and variants.

library(ggimage)
icon= "./pin.png"

data= data.frame(
name= c("Guggenheim Museum, Dorsoduro 701-704",

"Ca d'Oro, Cannaregio 3932",
"Ca' Foscari University, Dorsoduro 3246",
"Cinema Palace, Lungomare Guglielmo Marconi"),

lon= c(45.4308, 45.44065, 45.4345, 45.40579),
lat= c(12.3315, 12.33413, 12.3264, 12.36719))

ggplot() +
geom_sf(data= strade.4326, color= "cornsilk3", lwd=0.1) +
coord_sf(default_crs = sf::st_crs(4326),

xlim= c(12.30, 12.40), ylim= c(45.40, 45.45)) +
theme_void() -> plotX2



19.7 Venice: Open Data Cartography and Other Maps 447

plotX2 +
ggrepel::geom_label_repel(data= data,

aes(x= lat, y= lon, label= name),
size=2.5, alpha=0.7, na.rm=TRUE,
box.padding= unit(0.75, "lines")) +

ggimage::geom_image(data= data,
aes(x= lat, y= lon, image= icon),
size=0.05)

Finally, we consider the same example by using Leaflet, which will produce
a result of much better quality, similar to what we are used to seeing on online
maps. We use the same points of interest. Data should be converted into sf objects
with the transformation function st_as_sf() and specifying the CRS. The
novelty is represented by Leaflet function addCircleMarkers() that adds not
just simple marker icons but circular markers that dynamically aggregate several
close markers in a single visual representation when the map is zoomed out, and
again disaggregate into individual markers when the map is zoomed in (attribute
clusterOptions= markerClusterOptions()). Dynamic popup values
are collected from column name of the sf object with attribute popup= ∼name,
using the particular syntax with the tilde symbol that we explained in the previous
example. As tile map, this time we try one with a realistic representation like
Esri.WorldImagery.

The larger view of Figure 19.26a shows a marker with a popup in the Venice
Lido corresponding to the Cinema Palace, another one (red in the original image)
corresponding to the Ca’ d’Oro on the Canal Grande, an amazing historical
Venetian palace, and a third, larger one (green in the original image) with
number 2, meaning that it is a dynamically aggregated marker of two single
markers (i.e., the Venice Guggenheim Museum and Ca’ Foscari University)
close to each other, which will be revealed if the map is zoomed in, as in
Figure 19.26b.

data= data.frame( name= c("Guggenheim Dorsoduro 701-704",
"Ca d'Oro Cannaregio 3932",
"Univ. Ca' Foscari Dorsoduro 3246",
"Palazzo del Cinema Lungomare Guglielmo Marconi"),

lon= c(45.4308, 45.44065, 45.4345, 45.40579),
lat= c(12.3315, 12.33413, 12.3264, 12.36719))

data <- data %>%
sf::st_as_sf(coords= c("lat", "lon"), crs= 4326)

mapL <- leaflet(data, width=800, height=800) %>%
addProviderTiles(providers$Esri.WorldImagery) %>%
fitBounds(lng1= 12.30, lat1= 45.40,
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lng2= 12.40, lat2= 45.45) %>%
setView(12.3359, 45.4380, zoom=14) %>%
addCircleMarkers(popup= ∼name,

radius=10, fillOpacity=0.7,
stroke= FALSE, color= 'tomato',
clusterOptions=markerClusterOptions())

htmltools::save_html(mapL, "./Fig19.26.html")

19.8 Thematic Maps with tmap

R package tmap (abbreviated from thematic map, https://r-tmap.github.io/tmap/)
is a peculiar tool specific for the visualization of spatial data that has quickly
gained interest and appreciation for its terrific quality. It conforms to the grammar
of graphics and is well integrated with package sf , this way representing a robust
alternative to the use of ggplot/ggmap for geographic maps, or thematic maps in
tmap parlance. It is definitely worth serious consideration and practical usage in
data visualization.

(a)

Figure 19.26 (a) Venice, Leaflet, aggregate circular marker and popup, full view.
(b) Venice, Leaflet, disaggregate circular markers and popup, zoom in.

https://r-tmap.github.io/tmap/
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(b)

Figure 19.26 (Continued)

Note

Citation: Tennekes M (2018). "tmap: Thematic Maps in R." Journal of Statistical
Software, 84(6), 1–39. doi:10.18637/jss.v084.i06.

A potential obstacle to its usage is that, in the past, some installation problems
on MacOS have been reported due to some incompatible dependencies, a prob-
lem not so rare both in R and Python environments. This problem is the reason
of the suggestion to use it preferentially on Windows that is sometimes found
online. Contrarily to these comments, the experience of this Author during the
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book preparation was that the installation of tmap (v. 3.3-3) and its dependen-
cies were flawless on MacOS (Catalina v. 10.15.17), the platform used to develop
all the examples. Therefore, the suggestion for MacOS users is not to be discour-
aged by those comments reporting problems on MacOS and instead to give a try to
tmap because it is very likely that everything will be perfectly fine or that depen-
dency problems are easily solvable, as it happens with many other packages, just
by installing a different version of the dependency, a requirement that is usually
stated in installation message errors.

library(tidyverse)
library(tmap)
library(sf)
library(sfheaders)

For case studies with tmap, we move from Venice to Rome, obviously another
subject rich of suggestions and possibilities for practicing data visualization, also
thanks to a good availability of open data. We start from the basic example, the
one visualizing a simple map with polygons as the hidden elements to define pla-
nar surfaces, in this case toponymy areas of Rome. We use the GeoJSON dataset
Rome Capital – Maps of Municipalities, which has geographic data of Rome’s cir-
cumscriptions, and read it with sf function read_sf(). We obtain an sf object
from which we can extract two data frames: one for the neighborhoods (Italian:
quartieri), topographic zones typically outside the historical city center, and the
second for districts (Italian: rioni), the historical subdivision of the central area.

For the visualization, the main tmap functions are:

● tm_shape(): it creates a tmap object. The first attribute represents data, which
should be either in sf format (geometry) or stars format (a raster data type that
we will not analyze); the second attribute is name, which is the title associated
to the legend when the tmap plot is visualized in view mode (more on this in
a moment); third attribute is projection that specifies the CRS associated
to geographic coordinates, by default it assumes the CRS declared in the meta-
data of the sf object; the next attribute is bbox that defines the bounding box,
meaning the size of the map; the following attributes are of lesser importance
for our discussion.

● tm_polygons(): it draws maps with polygons as geometry. It has two vari-
ants: tm_fill() and tm_borders(), respectively to color the internal of
each area or just the borderline with a preset color or according to the values of
an associated variable (this latter case technically produces a choropleth map).
Attribute title is the legend’s title.

● tm_layout(): it permits to configure style options for the map, such as the
tiled web map to be used as base maps, colors, margins, and legends. In this
case, attribute title is the title of the plot.



19.8 Thematic Maps with tmap 451

In the following examples, we also use function tmap_options() that allows
for the definition of global options for a tmap object, such as the maximum number
of categories to be visualized in the legend, in order to avoid excessively long and
bulky legends. We specify some of the style options, such as title, position, and size
of the legend. For uniformity with the following use of Leaflet, we convert all sf
objects with Monte Mario coordinates into WGS 84.

roma <- read_sf('dataset/tmap/Rome/Neighbor/
Roma_quartieri.geojson') %>% st_transform(4326)

# 'Quartiere' means 'Neighborhood', 'Rione' is 'District',
# 'Tipologia' is 'Type'

roma %>% filter(TIPOLOGIA == 'Quartiere') -> data1
roma %>% filter(TIPOLOGIA == 'Rione') -> data2

# NEIGHBORHOODS

tm_shape(data1) +
tmap_options(max.categories=35) +
tm_polygons("quartiere",

title='Neighborhoods')+
tm_layout(legend.position= c("right", "top"),

title='Rome Neighborhoods',
title.position= c('left', 'top'),
legend.width=100)

# DISTRICTS

tm_shape(data2) +
tmap_options(max.categories=35) +
tm_polygons("quartiere",

title='Districts')+
tm_layout(legend.position= c("right", "top"),

title='Rome Districts',
title.position= c('left', 'top'),
legend.width=100)

The result is two simple choropleth maps for Rome’s neighborhoods and dis-
tricts (Figure 19.27a and Figure 19.27b), useful to start familiarizing with tmap
syntax.

19.8.1 Static and Interactive Visualizations

A peculiar tmap feature is to have two visualization modes: static, called plot
mode, and interactive, called view mode. The first is activated by default or
explicitly with directive tmap_mode(’plot’)and the second with directive
tmap_mode(’view’).
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(a)

Figure 19.27 (a/b) Rome, tmap, choropleth maps of neighborhoods and districts.

The difference between the two modes is substantial: for the plot mode (static),
a map is generated as image file and typically visualized in the RStudio tab Plots as
customary for ggplot graphics; for the view mode (interactive) a map is produced
as a leaflet object, therefore as an HTML file. The two previous choropleth maps
were generated in plot mode.

We read new data in addition to toponymy areas and convert them into WGS 84
coordinates (CRS 4326):

● GeoJSON dataset of Rome’s archaeological sites from the ArcheoSITARProject
Open Data (https://www.archeositarproject.it/en/piattaforma/open-data/).

● Shape file of Rome’s historical villas from the Roma Capital Open Data.
archeo <- read_sf('datasets/Rome/Archeo/Roma_SITAR.geojson') %>%

st_transform(4326)
villas <- read_sf('datasets/Rome/Villas/Villestoriche_wgs84.shp') %>%

st_transform(4326)

https://www.archeositarproject.it/en/piattaforma/open-data/
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(b)

Figure 19.27 (Continued)

We start by considering how to personalize the bounding box (the solution pre-
sented is adapted from https://www.jla-data.net/eng/adjusting-bounding-box-of-
a-tmap-map/). The steps are:

1. Obtain the bounding box of the current sf object used as data.
2. Extract bounding box’s coordinates x and y from the geometry of the sf object.
3. Modify coordinates xmin, xmax, ymin, ymax to define the new bounding box.
4. Transform coordinates x and y into the geometry of the sf object with

bbox_new %>% st_as_sfc().
5. Save the new bounding box.

# bounding box of sf object archeo

bbox_new <- st_bbox(archeo)

# Value range for coordinates x and y

https://www.jla-data.net/eng/adjusting-bounding-box-of-a-tmap-map/
https://www.jla-data.net/eng/adjusting-bounding-box-of-a-tmap-map/
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xrange <- bbox_new$xmax - bbox_new$xmin
yrange <- bbox_new$ymax - bbox_new$ymin

# Define new xmin as xmin – left

bbox_new[1] <- bbox_new[1] - (0.5 * xrange)

# Define new ymin as ymin – bottom

bbox_new[2] <- bbox_new[2] - (0.5 * yrange)

# Define new xmax as xmax - right

bbox_new[3] <- bbox_new[3] + (0.5 * xrange)

# Define new ymax as ymax – top

bbox_new[4] <- bbox_new[4] + (0.5 * yrange)
# Save the new bounding box

bbox_new <- bbox_new %>% st_as_sfc()

It is an empirical method, but it works well, and it is easily customizable in
order to obtain the desired bounding box. Let us see an example both with the
plot mode and the view mode. We specify a size by using the sf object villas as the
base for the new bounding box (identical to the previous case shown in the code,
only different for bbox_new <- st_bbox(villas)), then we omit from the
data the distant neighborhoods on the marine coast just to have a more compact
map and visualize. Figure 19.28a is the static map in plot mode, and Figure 19.28b
is the HTML map in view mode.

# Select neighborhoods but omit those on the marine coast

roma %>% filter(TIPOLOGIA == 'Quartiere') %>%
filter(quartiere != "Lido di Ostia Levante" &

quartiere != "Lido di Ostia Ponente" &
quartiere != "Lido di Castel Fusano") -> quart

# Uncomment one of the following two rows to have either
# the static or the interactive visualization
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(a)

Figure 19.28 (a) Rome, tmap, historical villas, plot mode (static). (b) Rome, tmap,
historical villas, view mode (interactive).

# tmap_mode('plot')
# tmap_mode('view')

tm_shape(quart, bbox= bbox_new) +
tm_borders(col="gray40", lwd=1.5) +
tm_shape(villas) +
tm_polygons('Nome', title='Villas')+
tm_layout(title='Historical villas')



(b)

Figure 19.28 (Continued)
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19.8.2 Cartographic Layers: Rome’s Archaeological Sites

We add data about Rome’s archaeological sites read from the cartography of the
ArcheoSITARProject. In this case, the interactive visualization with the HTML
page provided by the view mode has evident advantages like the zoom feature
that permits to zoom in and observe details of archaeological sites and buildings.
This mode has indeed a non-negligible computational load, given the fine level of
details that the shape file offers. The map is produced by overlaying the archaeo-
logical layer on top of the base map of Rome’s historical districts of the city center.
The code presents two steps, first, the leaflet object map_center is created with
the base map and then the archaeological layer is added to it. Figure 19.29a is a
screenshot of the full area without setting a tiled web map, while Figure 19.29b
is a second screenshot zooming in on the Colosseum area and with the default
Leaflet tiled web map.

tmap_mode('view')

# Districts are selected

roma %>% filter(TIPOLOGIA == 'Rione') -> rioni

# New bounding box

bbox_new2 <- st_bbox(rioni)
xrange2 <- bbox_new2$xmax - bbox_new2$xmin
yrange2 <- bbox_new2$ymax - bbox_new2$ymin
bbox_new2[3] <- bbox_new2[3] + (-0.3 * xrange2)
bbox_new2[4] <- bbox_new2[4] + (-0.3 * yrange2)
bbox_new2 <- bbox_new2 %>% st_as_sfc()

# Map of the districs as base map

map_center <- tm_shape(rioni, bbox= bbox_new2) +
tmap_options(max.categories=111) +
tm_borders(col= "gray40", lwd=1.5)

# Map of archeologic sites overlaid to the base map

map_center +
tm_shape(archeo) +
tm_borders(col= "skyblue3", alpha=0.5) +
tm_compass(position= c("left", "bottom"), size=2) +
tm_scale_bar(position= c("left", "bottom"), width=0.15) +
tm_layout(title= 'City center: archeological sites',

bg.color= "ghostwhite")



(a)

Figure 19.29 (a) Rome, tmap view mode, city center archaeological map with ESRI tiled web map. (b) Rome, tmap view mode, zoom in on
the Colosseum area with OpenStreetMap tiled web map.



(b)

Figure 19.29 (Continued)
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19.9 Rome’s Accommodations: Intersecting
Geometries with Simple Features and tmap

We change type of data to visualize as layer on the map and, still from Roma Capital
Open Data, we collect the list of accommodations (e.g. hotels, B&Bs, and hostels).
It is a CSV geodataset with also two columns for the latitude and longitude of each
accommodation.

We start with a seemingly easy visualization that hides a complication that will
lead us to use one of the most awesome and powerful features of the sf package
and to discuss some important new aspects of handling spatial data.

We want to visualize a bubble plot with the areas of the circles proportional to
the number of accommodations for each neighborhood and district. The logic is
straightforward: we should count the number of accommodations defined in the
CSV dataset for each area, neighborhood or district, and create the corresponding
bubble plot, as simple as that. With traditional categorical data that would imply
just an aggregation with common data-wrangling operations and a normal ggplot
scatterplot with attribute size as an aesthetic. But here we have spatial data,
not simple categories, and things get much more complicated because we have to
deal with geometries. So, what we really have to do is to find all accommodations,
which are represented by geographic points, which fall within the boundaries of
each neighborhood or district area, and then we can count them. In other terms,
we need to intersect two geometries, which in this case are geographic points
and multi-polygons. That task is at a completely different level of complexity
than just aggregating data frame rows based on categorical values, orders of
magnitude more difficult. As a matter of fact, intersecting geometries is one of the
most computationally intensive and sophisticated features of a tool for managing
spatial data. Luckily, package sf again demonstrates its remarkable quality by
providing function st_intersection(). This is a function that performs
a highly complex task on spatial data and geometries and, depending on data
characteristics and size, it might take a while (e.g. several minutes or more) to
terminate the execution. Data have to be prepared carefully, missing values in
geometries should be omitted and CRSs must be aligned. The following excerpt of
code shows how to obtain the intersection between the two geometries for accom-
modations (points) and circumscriptions (multi-polygons), data frame roma is
the same as obtained in a previous example by reading Rome’s circumscriptions
dataset.
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# Read the geodataset of Rome's accomodations
accom <- read_sf('datasets/Rome/Accom/

StruttureRicettiveRoma2023-02.csv')

accom$latitude %>% as.numeric() -> accom$latitude
accom$longitude %>% as.numeric() -> accom$longitude

# Omit missing values
filter(accom, !(is.na(longitude) |

is.na(latitude))) -> accom

# Transformation into sf object
st_as_sf(accom, coords= c("longitude", "latitude"),

crs=4326) -> accom

# Check if the two CRSs are aligned
st_crs(roma) == st_crs(accom) # TRUE

# Select just some columns for simplicity
accom %>% select(1:7) -> accom

# Geometry intersection (might take a while to complete)
intersection <- st_intersection(x= roma, y= accom)

With this result (object intersection), we can obtain the number of accommo-
dations for each area by aggregating for column quartiere (i.e. neighborhood or
district) and count them, the result is shown in following table. If the result looks
inconspicuous that would be ill-judged because it is actually a true gem of the sf
package.

# Aggregate for neighborhood/district and count the accommo-
dations
int_result <- intersection %>%
group_by(quartiere) %>% count()

# To show the results, we convent into table and from that
# into data frame, then we sort for number of accommodations
table(intersection$quartiere) -> table1
data.frame(table1) %>% arrange(desc(Freq))
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Quartiere Num

Esquilino 1026
Prati 895
Monti 890
Aurelio 880
Castro Pretorio 829
Trionfale 769
Campo Marzio 681
Trastevere 639
… …

19.9.1 Centroids and Active Geometry

We are a step closer to the bubble plot we want to produce, but there is an impor-
tant detail to consider that we have not encountered before: in this case, we want
to design a single point for each area representing the number of accommoda-
tions (actually a bubble plot circle, but it is a variant of the basic scatterplot point).
Apparently easy, but what is that point? Where are its coordinates in the spatial
data? Should we just pick one structure at random for each area and make a bubble
circle? Definitely not a wise choice, so how do we pick a single point for each area?

This is the tricky detail that lets us analyze the important concept of centroid,
already mentioned before, and an important extension to geometries.

First, we analyze the sf object int_result created with the aggregation from
the intersection of geometries and in particular we look at its geometry variable/
column.
Simple feature collection with 114 features and 3 fields
Geometry type: GEOMETRY
Dimension: XY
Bounding box: xmin: 12.24941 ymin: 41.69707

xmax: 12.7894 ymax: 42.12098
Geodetic CRS: WGS 84
# A tibble: 114 × 4

IDquartiere quartiere n geometry
* <chr> <chr> <int> <MULTIPOINT [∘]>
1 Q01 Flaminio 119 ((12.46649 41.93275), (12.46577 41.9317…
2 Q02 Parioli 37 ((12.46874 41.93045), (12.46824 41.9311…
3 Q03 Pinciano 73 ((12.48314 41.92752), (12.48203 41.9263…
4 Q04 Salario 68 ((12.49965 41.91068), (12.49952 41.9106…
5 Q05 Nomentano 183 ((12.50502 41.9116), (12.50509 41.91081…
6 Q06 Tiburtino 198 ((12.51669 41.90625), (12.51975 41.8992…
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There are 114 rows (features) that correspond to the number of Rome’s
toponymy areas, and the geometry is of type MULTIPOINT, corresponding to the
list of coordinates of all accommodations, which are represented by geographic
points, for each area.

As a first try, we may think to use sf object int_result as data for tmap func-
tion tm_shape() and column n as value for the tmap function for bubble plots
tm_bubble().

tmap_mode("plot")

tm_shape(roma) +
tm_polygons(col="ghostwhite", lwd=1.0)
tm_shape(int_result) +
tm_bubbles(size= 'n', col= "red") +
tm_layout(frame= FALSE,

legend.width=0.3,
legend.position= c('right','bottom'),
)

The result of Figure 19.30 might look nice at first sight, we see little bubbles
on the map, but unfortunately it is plain wrong. Pay close attention to what
the picture is showing. It is not showing what we were expecting, bubbles are
spread all over the areas, and there is no single bubble for each area representing
the number of accommodations in there. In this image, bubbles spread over an
area correspond to all accommodations and are resized proportionally to the
total number of accommodations in that area. This is not what a bubble plot is
supposed to look like, this is a mess.

What was the problem? The problem is subtle, and it is that the geometry of sf
object int_result is not the one we need because there is no single representative
point for each area in there, instead for each area there is a list of many points, as
many as the accommodations in the area. We need a second geometry with just one
representative point for each area. That point is the centroid. The steps we should
take are the following ones:

1. Calculate the centroid for each topographic area.
2. Create a second geometry with the centroids only.
3. Reconfigure the sf object int_result so that the second geometry is used for the

map visualization.

Given these steps, two sf functions are needed: sf_centroid() that calcu-
lates the centroid for a geometry, and sf_geometry() that permits to reconfig-
ure the geometry in use, which takes the name of active geometry. We call centroid
the new column for the second geometry with centroids.
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Figure 19.30 Rome, accommodations for topographic area, wrong bubble plot.

# We make a copy because the original will be necessary
# in following examples
int_result1= int_result

# The column centroid is created with coordinates of
# centroids for each area
int_result1 %>%

st_centroid() %>%
st_geometry() -> int_result1$centroid

We look again at the sf object, now int_result1.
Simple feature collection with 114 features and 3 fields
Active geometry column: geometry
Geometry type: GEOMETRY
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Dimension: XY
Bounding box: xmin: 12.24941 ymin: 41.69707

xmax: 12.7894 ymax: 42.12098
Geodetic CRS: WGS 84
# A tibble: 114 × 5

quarti…1 n geometry centroid
* <chr> <int> <MULTIPOINT [∘]> <POINT [∘]>
1 Flaminio 119 ((12.46649 41.93275), (1… (12.46949 41.92139)
2 Parioli 37 ((12.46874 41.93045), (1… (12.4853 41.92825)
3 Pinciano 73 ((12.48314 41.92752), (1… (12.48585 41.91942)
4 Salario 68 ((12.49965 41.91068), (1… (12.501 41.91323)
5 Nomenta… 183 ((12.50502 41.9116), (12… (12.51926 41.9123)

Two important things happened. The first is that now we have two geometries,
respectively for columns geometry and centroid, the first is of type MULTIPOINT
being a list of point coordinates, and the second is just POINT having the coordi-
nates of a single point for each area. The presence of multiple geometries is not
common, but it is not anomalous, a spatial data frame could have more than one
geometry for a number of valid reasons.

The second important novelty is that among the initial information, there is a
new line (the second one), which reads: Active geometry column: geometry, mean-
ing that an sf object could have multiple geometries, but only one will be active, hence
used for visualizations or other operations based on a geometry.

We have made a step further toward the solution of our problem and the correct
bubble plot. Now we know how to pick the single representative point for each
area, which is that whose coordinates are written in the centroid geometry of the
sf object.

Here is the final step. We know that just one geometry could be active, and
it is column geometry, not centroid; we should change it. For this, function
st_geometry() helps again, and it is easy, we just need to instruct it that the
new active geometry should be column centroid. The following excerpt of code
shows the centroid column turned into the active geometry and the corresponding
metainformation in the sf object confirms the change,

# Column centroid is set as the new active geometry
st_geometry(int_result1) <- "centroid"

# Checking the sf object confirms the change
int_result1

Simple feature collection with 114 features and 3 fields
Active geometry column: centroid
Geometry type: POINT
...
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With column centroid as the active geometry, the problem is solved, and we can
create the bubble plot as we did before. We set the view mode to zoom in on the
resulting map and also add the dynamic popup widget.

# Column relocation in first position to have
# the neighborhood;s name as the popup title
relocate(roma, quartiere) -> roma
relocate(int_result, quartiere) -> int_result

tmap_mode("view")
tm_shape(roma) +

tm_polygons(col ="ghostwhite", lwd = 1.0,
popup.vars=c( "Neighborhood: "="quartiere",
"Perimeter: "="PERIMETRO", "Area: "="AREA",
"Neighborhood/Zone: "="TIPOLOGIA")) -> map_roma

map_roma +
tm_shape(int_result1) +
tm_bubbles(size = 'n', scale= 0.5, col = "red",

popup.vars=c("Neighboorhood: "="quartiere",
"No. accommodations: "="n")) +

tm_layout(frame = FALSE,
title= 'Accommodations',
title.position = c('center', 'top'),
) -> tmap2

tmap2

Finally, we have a correct bubble plot, which looks nice and informative.
Figure 19.31a and Figure 19.31b show two screenshots of the correct result with
the bubbles centered on the centroids of each area. Popups are of two types: one
is associated to the topographic areas and shows information about the neigh-
borhood/district (see Figure 19.31a), and the other to bubbles (see Figure 19.31b)
showing the name of the area and the number of accommodations.

19.9.2 Quantiles and Custom Legend

In this example, we return to choropleth maps and want to create one by defining
categories. The number of accommodations for each area is a continuous variable,
the standard method to produce categories from it is to define value ranges, with
ranges acting as a categorical variable. Here we chose to divide in quantiles the dis-
tribution of values, and more specifically we define deciles. Therefore, we will have
ten ranges of number of accommodations, and each topographic area will fall in
one of those ten ranges. The choropleth map is created based on those ten ranges.

Let us consider the steps:

1. Use again the original sf object int_result, the one with the single geometry,
centroids are not useful for this example.



(a)

Figure 19.31 (a) Rome, tmap, full map with bubbles centered on centroids and popups associated to topographic areas. (b) Rome, tmap,
detail zooming in with popups associated to bubbles.



(b)

Figure 19.31 (Continued)
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2. Create the deciles of the distribution with respect to column n having the num-
ber of accommodations for each area. Function ntile() of package dplyr
included in tidyverse does the calculation, it divides in quantiles, to have deciles
we specify that they should be 10. As usual for similar functions, the quantiles
are automatically calculated trying to have a similar number of items for each
one. The new column decile in int_result will have the index of the correspond-
ing decile for each area.

3. Join the two sf objects, it is a spatial join so we use function st_join(), the
map of topographic areas, and int_result, in order to have more information
regarding the areas.

With these steps, everything would be ready for a visualization, but we want to
add a complication to practice with legends and possible tiny details of the final
result. What we want to achieve is a legend that for each range specifies a text
citing the extremes of the range, such as “from 1 to 4,” “from 4 to 10,” and so on.
Some data-wrangling operations are required to obtain such configuration of the
legend because we need to create another new column with the textual labels that
correspond to the decile of the area. The logic is as follows:

1. Sort and group areas for decile and, for each group, extract the first and the last
row, which corresponds to the minimum and maximum value for that decile.

2. Transform from sf object to traditional R data frame with sfhead-
ers::sf_to_df(data, fill = TRUE), otherwise some operations
cannot be executed.

3. Omit missing values and select only the necessary columns, the decile index,
and minimum and maximum values.

4. Create the textual labels for the legend and save the data frame (cat2).

With this small data frame with decile index and textual labels for the legend, we
can modify the data frame by adding a new column CAT with the textual labels,
then with another new column dec2 defined as factor type (i.e. categorical) we set
factor levels corresponding to decile indexes and factor labels as the legend labels.
It is somewhat tricky, but it is a useful data-wrangling exercise in order to tune that
little detail of the legend.
# Divide into deciles and execute spatial join
int_result$decile <- ntile(int_result$n, 10)
st_join(roma, int_result, left= TRUE) -> roma_bb

# Ranges of values corresponding to deciles
roma_bb %>% arrange(desc(n)) %>% group_by(decile) %>%

filter( rank(n, ties.method='first')<2 |
rank(desc(n), ties.method='first')<2 ) %>%

sfheaders::sf_to_df(fill= TRUE) %>% select(n,decile) %>%
distinct(.) %>% filter(!is.na(decile)) %>%
arrange(decile, n) -> categories
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len1= length(categories$n)

# Create labels for the legend
for (i in seq(1, len1, by= 2)) {

categories$CAT[i]= paste('from', categories$n[i],
'to', categories$n[i+1])

categories$CAT[i+1]= paste('from', categories$n[i],
'to', categories$n[i+1]) }

# Create the data frame with decile indexes and textual labels
rows <- nrow(categories)
odd_rows <- seq_len(rows) %% 2
cat2 <- categories[odd_rows == 1, ] %>% as_tibble()

# Create new column CAT in the data frame with
# textual labels for the legend

roma_bb %>% mutate(CAT= case_when(
decile == 1 ∼ cat2$CAT[1],
decile == 2 ∼ cat2$CAT[2],
decile == 3 ∼ cat2$CAT[3],
decile == 4 ∼ cat2$CAT[4],
decile == 5 ∼ cat2$CAT[5],
decile == 6 ∼ cat2$CAT[6],
decile == 7 ∼ cat2$CAT[7],
decile == 8 ∼ cat2$CAT[8],
decile == 9 ∼ cat2$CAT[9],
decile == 10 ∼ cat2$CAT[10],
is.na(decile) ∼ 'none'

)) -> roma_bb

# Factorize new column dec2 with levels from decile indexes
# and factor labels from column CAT
roma_bb %>% mutate(dec2= factor(decile, levels= cat2$decile,

labels= cat2$CAT, ordered= TRUE)) -> roma_bb2

It is ready for visualization. We use function tm_basemap() to add a tiled web
map from Leaflet, here we show results with two of them, others are left com-
mented in the following excerpt of code. Figure 19.32 shows the result.
# Column relocation in first position to have
# the neighborhood;s name as the popup title
relocate(roma_bb2,quartiere.x) -> roma_bb2

tmap_mode("view")
map_roma <- tm_shape(roma_bb2) +
# tm_basemap("Stamen.TerrainBackground") +
# tm_basemap("OpenTopoMap") +
# tm_basemap("CartoDB.DarkMatterNoLabels") +

tm_basemap("Stamen.TonerLite") +
tm_polygons(col="dec2", palette='-cividis', alpha=0.6,

colorNA=NULL, title='Accommodations',



Figure 19.32 Rome, tmap, quantiles, and custom legend labels.
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Figure 19.33 Rome, tmap, standard quantile subdivision, and legend labels.

popup.vars=c( "Neighborhood: "="quartiere.x",
"No.accomodations: "="n",
"Decile: "="decile", "Range: "="dec2"))

map_roma

This level of complication is clearly not truly necessary. If such a specific cus-
tomization of legend labels is not needed, and instead default legend labels are
sufficient, then there is a much simpler alternative automatically produced with
attribute style of functiontm_polygons(), which takes the number of deciles
and does everything on its own.

Figure 19.33 shows a screenshot of the result.

temp=int_result

temp$decile <- ntile(temp$n, 10)
st_join(roma, temp,

left=TRUE) -> roma_bb

map_roma <- tm_shape(roma_bb) +
tm_polygons(col ="n", title='Accommodations'

style='quantile', palette='viridis',
n=10)

map_roma
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19.9.3 Variants with Points and Popups

We conclude the chapter with two final simple examples, which nevertheless
might inspire practical opportunities to exploit the many excellent features of
tmap and in general of the visualization of geographic maps.

With the first example, we use a base map of roads (OpenTopoMap) and enrich
it by overlaying a transparent layer of topographic areas (attribute alpha=0.0)
with a dynamic popup. This easy trick makes the tile web map, by all means, an
interactive road map with contextual information from the topographic layer. The
code and Figure 19.34 just present the name of the area, but it is easy to extend it
with further information for the popups.
tmap_mode("view")

map_roma <- tm_shape(roma_bb2) +
tm_polygons(fill=NULL, alpha=0.0, lwd=0.0,

colorNA=NULL, title='Num. B&B',
id="quartiere",
popup.vars=c("Quartiere/Zona"="quartiere",

"Tipologia"="TIPOLOGIA")) +
tm_shape(roma_bb2) +
tm_borders(col='blue', lwd = 1.5, alpha=0.3) +
tm_basemap('OpenTopoMap')
map_roma

tmap_Roma <- tmap_leaflet(map_roma, mode= "view",
show = TRUE) %>%

setView(12.48, 41.89,zoom=11)

The final example extends map information by adding a layer of points with
function tm_dots() corresponding to accommodations in Rome. The result
once again is simple but possibly inspiring because it shows Rome’s BnBs and
hotels associated with dynamic popups. Popups are specifically configured for
areas and for dots with information from the associated data frames. The follow-
ing excerpt of code shows the case of bed and breakfasts visualization; the version
with hotels requires simple adaptations (i.e. the initial selection for value “Hotel,”
the corresponding data frame in function tm_shape(), and the title update).

Figure 19.35a shows a screenshot of the full map with Bed and Breakfasts, while
Figure 19.36a and Figure 19.36b show two screenshots for the Hotels, the full map,
and a zoom in.
# Only Bed and Breakfasts are selected
# Column relocation to first position makes the name
# of the bed and breakfast (BnB) as the popup title
filter(struct2, tipologia=="Bed and Breakfast") %>%

relocate(denominazione) -> BnB

tmap_mode("view")
map_roma <- tm_shape(roma_bb2) +



Figure 19.34 Rome region tmap, road map with dynamic popups.



(a)

Figure 19.35 (a) Rome, tmap, Bed and Breakfasts, full map. (b) Rome, tmap, Hotels, full map. (c) Rome, tmap, Hotels, zoom in.



(b)

Figure 19.35 (Continued)



(a)

Figure 19.36 (a) Rome, tmap, hotels, full map. (b) Rome, tmap, hotels, zoom in.



(b)

Figure 19.36 (Continued)
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tm_fill(fill= NULL, colorNA= NULL, alpha=0.0,
interactive= FALSE,
popup.vars=c("Neighborhood: "="quartiere.x",
"No.accomodations: "="n")) +

tm_shape(BnB) +

tm_dots(size=0.02, alpha=0.8, col='darkblue',
popup.vars=c("ID: "="id", "Type: "="tipologia",

"address"="via", "civic no."="civico",
"category"="categoria"))+

tm_layout(frame = FALSE,
title= 'Accommodations: Bed and Breakfasts,
title.position = c('center', 'top')

map_roma

tmap_Roma <- tmap_leaflet(map_roma, mode= "view",
show= TRUE) %>%

setView(12.48, 41.89, zoom=14)
tmap_Roma

saveWidget(tmap_Roma, file="...")
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Geographic Maps with Python

Dataset/Geodataset

NYC Open Data (https://opendata.cityofnewyork.us/)

● Modified Zip Code Tabulation Areas (MODZCTA) (https://data.cityofnewyork
.us/Health/Modified-Zip-Code-Tabulation-Areas-MODZCTA-/pri4-ifjk)

● NYC Dog Licensing Dataset (https://data.cityofnewyork.us/Health/NYC-Dog-
Licensing-Dataset/nu7n-tubp)

● NYC Parks Dog Runs (https://data.cityofnewyork.us/Recreation/NYC-Parks-
Dog-Runs/8nac-uner)

● NYC Parks Drinking Fountains (https://data.cityofnewyork.us/Environment/
NYC-Parks-Drinking-Fountains/622h-mkfu)

● Sea Level Rise Maps (2050s 500-year Floodplain) (https://data.cityofnewyork.us/
Environment/Sea-Level-Rise-Maps-2050s-500-year-Floodplain-/qwca-zqw3)

● Rodent Inspection (https://data.cityofnewyork.us/Health/Rodent-Inspection/
p937-wjvj)

● Demographic Statistics By Zip Code (https://data.cityofnewyork.us/City-
Government/Demographic-Statistics-By-Zip-Code/kku6-nxdu)

● Subway Stations (https://data.cityofnewyork.us/Transportation/Subway-
Stations/arq3-7z49)

Copyright: Public domain (https://www.nyc.gov/home/terms-of-use.page)

20.1 New York City: Plotly

To practice with Python geographic maps, we move to New York City, another
iconic city like Venice and Rome, and whose NYC Open Data represents one of
the richest sources of available open data.

As the source for the base map, we choose the territorial division of areas into
Zip Codes; it is a geodataset in GeoJSON format and the graphical library we will

Data Visualization in R and Python, First Edition. Marco Cremonini.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Cremonini/DataVisualization1e

https://opendata.cityofnewyork.us/
https://data.cityofnewyork.us/Health/Modified-Zip-Code-Tabulation-Areas-MODZCTA-/pri4-ifjk
https://data.cityofnewyork.us/Health/Modified-Zip-Code-Tabulation-Areas-MODZCTA-/pri4-ifjk
https://data.cityofnewyork.us/Health/NYC-Dog-Licensing-Dataset/nu7n-tubp
https://data.cityofnewyork.us/Health/NYC-Dog-Licensing-Dataset/nu7n-tubp
https://data.cityofnewyork.us/Recreation/NYC-Parks-Dog-Runs/8nac-uner
https://data.cityofnewyork.us/Recreation/NYC-Parks-Dog-Runs/8nac-uner
https://data.cityofnewyork.us/Environment/NYC-Parks-Drinking-Fountains/622h-mkfu
https://data.cityofnewyork.us/Environment/NYC-Parks-Drinking-Fountains/622h-mkfu
https://data.cityofnewyork.us/Environment/Sea-Level-Rise-Maps-2050s-500-year-Floodplain-/qwca-zqw3
https://data.cityofnewyork.us/Environment/Sea-Level-Rise-Maps-2050s-500-year-Floodplain-/qwca-zqw3
https://data.cityofnewyork.us/Health/Rodent-Inspection/p937-wjvj
https://data.cityofnewyork.us/Health/Rodent-Inspection/p937-wjvj
https://data.cityofnewyork.us/City-Government/Demographic-Statistics-By-Zip-Code/kku6-nxdu
https://data.cityofnewyork.us/City-Government/Demographic-Statistics-By-Zip-Code/kku6-nxdu
https://data.cityofnewyork.us/Transportation/Subway-Stations/arq3-7z49
https://data.cityofnewyork.us/Transportation/Subway-Stations/arq3-7z49
https://www.nyc.gov/home/terms-of-use.page
http://www.wiley.com/go/Cremonini/DataVisualization1e
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use is Plotly. The following excerpt of code is the usual list of Python libraries to
import and the general load operation to access the dataset’s content.
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from PIL import Image
import plotly.express as px
import plotly.graph_objects as go
import json

nycgeo= json.load(open('datasets/NYC_opendata/
Nyc-zip-code-tabulation-areas-polygons.geojson'))

The data type resulting from accessing the GeoJSON dataset is of type dictionary
(dict for short), which is the correct data type for Plotly visualizations. We can
observe its structure with command nycgeo.keys(). It has two keys, type and
features; we can look at the first element of features.
nycgeo['features'][0]
{'type': 'Feature',
'id': 0,
'properties': {'OBJECTID': 1,
'postalCode': '11372',
'PO_NAME': 'Jackson Heights',
'STATE': 'NY',
'borough': 'Queens',
'ST_FIPS': '36',
'CTY_FIPS': '081',
'BLDGpostalCode': 0,
'Shape_Leng': 20624.6923165,
'Shape_Area': 20163283.8744,
'@id': 'http://nyc.pediacities.com/Resource/PostalCode/11372'},

'geometry': {'type': 'Polygon',
'coordinates': [[[-73.86942457284175, 40.74915687096787],
[-73.89507143240856, 40.74646547081214],
[-73.89618737867819, 40.74850942518086],
...
[-73.87207046513889, 40.75386200705204],
[-73.86942457284175, 40.74915687096787]]]}}

What we observe represents the standard data structure of GeoJSON datasets,
which has the following schema:

features:
|____ id:
|____ properties:

|____ <attributes list as key:value>
|____ geometry:

|____ coordinates:

http://nyc.pediacities.com/Resource/PostalCode/11372
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Now, we need the data for the first layer to overlay over the base map. We choose
the dataset Dogs Licensing in NYC; it is a standard CSV dataset.

dogs= pd.read_csv('datasets/NYC_opendata/
NYC_Dog_Licensing_Dataset.csv')

Animal
Name

Animal
Gender

Animal
BirthYear

Breed
Name ZipCode

LicenseIssue
Date

0 Paige F 2014 American pit bull 10035.0 09/12/2014
1 Yogi M 2010 Boxer 10465.0 09/12/2014
2 Ali M 2014 Basenji 10013.0 09/12/2014
3 Queen F 2013 Akita crossbreed 10013.0 09/12/2014
4 Lola F 2009 Maltese 10028.0 09/12/2014
… … … … … … …

We will use values of zip codes from column ZipCode to associate them with
the corresponding zip codes of the areas included in object nycgeo read from
the GeoJSON dataset, which are stored in element properties.postalCode, nested
into the features element. Before that, we need to prepare data frame dogs with
some common data-wrangling operations like omitting missing values in column
ZipCode and transform the data type. Next, we group and aggregate for zip code
and count the number of dogs for zip code.

dogs= dogs[∼dogs.ZipCode.isna()]
dogs.ZipCode= dogs.ZipCode.astype('int64')

dogs_zipcount=
dogs.groupby(['ZipCode']).size().\
reset_index(name='counts').\
sort_values(by='counts', ascending=False)

dogs_zipcount

ZipCode counts

135 10025 11 439
133 10023 9 164
371 11215 8 829
134 10024 8 826
357 11201 8 757
· · · · · · · · ·
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ZipCode counts

400 11274 1
395 11242 1
1 121 1
352 11108 1
783 99508 1

20.1.1 Choropleth Maps: plotly.express

As mentioned in Part 3, Plotly has two distinct graphical modules, plotly.express,
the most recent, and plotly.graphic.object (or plotly go for short). They have sim-
ilar features; we will discover that in some cases related to maps (i.e. maps with
overlaid layers), plotly go is handier. We start with an example of choropleth map
by using plotly.express.

In standard configuration, function px.choropleth() by default makes use
of the GeoJSON’s element id to associate geographic data to those of the pan-
das data frame. You may think of it as a kind of join operation with id as the
join key, which means that element id must have correct keys for the join opera-
tion. This is not the case of our GeoJSON dataset and pandas data frame because
we want to join them based on zip codes, which are not contained in element
id of the GeoJSON but in element postalCode nested into element properties. We
need to explicitly state it by means of attribute featureidkey by specifying the
path starting from key features, therefore properties.postalCode. This is the element
with the join key for the GeoJSON, now we need to identify the corresponding col-
umn with join key in the pandas data frame dogs. We use attribute locations
to specify column ZipCode. We have defined how to associate GeoJSON areas to
data frame information, the final step is to state which data frame column has the
values to use for the color scale of the choropleth map, in our case column counts
with the number of licensed dogs for each zip code.

As we discussed when choropleth maps were introduced in the previous chapter,
they are generally easy to create. You should take care of preparing the data, have
a base map coherent with the granularity of your data, write the values for func-
tion’s attributes, configure style options, and it is done. It is the same for all graphic
libraries. Figure 20.1 shows the result.

plt.figure(figsize=(80,80))

fig= px.choropleth(dogs_zipcount, geojson= nycgeo,
locations= 'ZipCode', color= 'counts',
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Figure 20.1 NYC, plotly.express, choropleth map of licensed dogs.

featureidkey= "properties.postalCode",
color_continuous_scale= "Viridis",
labels= {'counts':'Dogs Number'}

)
fig.update_geos(fitbounds= "locations", visible=False)
fig.update_layout(margin= {"r":0,"t":0,"l":0,"b":0},

width=700, height=500)
fig.show()

20.1.1.1 Dynamic Tooltips
We modify the data aggregation seen in the previous example to have also the
dog’s breed (column BreedName) as an information, then we count, this time the
number of dogs for each breed in every zip code. Finally, we extract, for each zip
code, only the breed with the highest number of dogs.

a1= dogs.groupby(['ZipCode','BreedName']).size().\
reset_index(name= 'counts').\
sort_values(by= 'counts', ascending=False)

dogs_maxbreed= a1.groupby('ZipCode').head(1)
dogs_maxbreed
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ZipCode = 11385

Breed = Unknown

Number of dogs = 674

Figure 20.2 NYC, plotly.express, most popular dog breed for zip code.

ZipCode BreedName counts

4 620 10025 Unknown 1 312
4 335 10024 Unknown 946
17 730 11215 Unknown 931
4 061 10023 Unknown 876
10 195 10312 Unknown 842
· · · · · · · · · · · ·

With these data, we could introduce the dynamic tooltip feature. It is provided by
configuring attribute hover_data, assigned with the list of data frame columns
whose values will be shown in tooltips, and attribute label for the textual labels to
write in the tooltip. Figure 20.2 shows the map.

plt.figure(figsize=(80,80))

fig= px.choropleth(dogs_maxbreed, geojson= nycgeo,
locations= 'ZipCode', color= 'counts',
featureidkey= "properties.postalCode",
color_continuous_scale= "Viridis",
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hover_data=["ZipCode","BreedName","counts"],
labels={'BreedName':'Breed','counts':'Number of dogs'}

)
fig.update_geos(fitbounds= "locations", visible= False)
fig.update_layout(margin= {"r":0,"t":0,"l":0,"b":0},

width=1000, height=1000)
fig.show()

With the previous data aggregation, the breed that very often appear as the most
popular for every zip code is actually the unknown breed, which, probably, is not
particularly meaningful information to convey. To improve the result, we could
omit dogs with unknown breed. We slightly modify the previous code.

dog_breeds= dogs[dogs.BreedName != "Unknown"]

a1= dog_breeds.groupby(['ZipCode','BreedName']).size().\
reset_index(name='counts').\
sort_values(by='counts', ascending= False)

dogs_maxbreed= a1.groupby('ZipCode').head(1)
dogs_maxbreed

ZipCode BreedName counts

10 106 10312 Shih tzu 591
5 434 10029 Yorkshire terrier 577
10 318 10314 Shih tzu 576
4 477 10025 Labrador retriever 560
4 201
· · ·

10024
· · ·

Labrador retriever
· · ·

459
· · ·

20.1.1.2 Mapbox
With function choropleth_mapbox() the aesthetic quality of a choropleth
map produced with plotly.express could be improved. With that function, we can
add a tiled web map (attribute mapbox_style), a zoom level (attribute zoom),
the coordinates to center the map (attribute center), and others like the trans-
parency (attribute opacity) and the map size (attributes width and height).
Figure 20.3 shows the result having omitted dogs with unknown breed and set
some style options; the tiled web map is from OpenStreetMap.

fig = px.choropleth_mapbox(dogs_maxbreed, geojson= nycgeo,
locations= 'ZipCode', color= 'counts',
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500

ZipCode = 11357

Breed = Maltese

Number of dogs = 181
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Figure 20.3 NYC, plotly.express, most popular dog breed for zip code, OpenStreetMap
tile map, and style options.

featureidkey= "properties.postalCode",
color_continuous_scale= "Cividis",
hover_data= ["ZipCode", "BreedName", "counts"],
labels= {'BreedName':'Breed',

'counts':'Dogs Number'},
mapbox_style= 'open-street-map',
zoom=9, center= {"lat": 40.7831, "lon": -73.9712},
opacity=0.6, width=600, height=600

)
fig.update_layout(margin={"r":0,"t":0,"l":0,"b":0})
fig.show()
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20.1.2 Choropleth Maps: plotly.graph_objects (plotly go)

We now turn our attention to the second Plotly module: plotly.graph_objects
(or plotly go). The logic is the same as for plotly.express, we should just con-
sider some differences in syntax. The main plotly go function to produce a
plot is go.Figure(), while the specific one for choropleth maps is go.
Choroplethmapbox(), again with attributes featureidkey and location
to specify the dictionary element used as join key in the GeoJSON and the
corresponding data frame column; attribute z is for the data frame variable used
for the color scale, other attributes have intuitive meaning.

We continue the example seen before and add a more detailed configuration of
the dynamic tooltip with attribute hovertext that supports very detailed tooltip
configurations. For better readability of the code, it is convenient to define a vari-
able (tooltip in the following excerpt of code) assigned with the specifics of the
layout, which could be composed by a combination of text, columns, and HTML
elements (e.g., <br> and <b>).

tooltip= '<b>Zip Code: </b>'
+ dogs_maxbreed['ZipCode'].astype('str') + '<br>'
+ '<b>Breed: </b>' + dogs_maxbreed['BreedName']
+ '<br>' + '<b>Dogs Number: </b>'
+ dogs_maxbreed['counts'].astype('str')

fig= go.Figure(go.Choroplethmapbox(geojson= nycgeo,
locations= dogs_maxbreed.ZipCode,
z= dogs_maxbreed['counts'],
featureidkey= "properties.postalCode",
colorscale= "Cividis",
zmin=0, zmax=600,
marker_opacity=0.6, marker_line_width=1,
hovertext= tooltip)
)

fig.update_layout(mapbox_style= "open-street-map",
mapbox_zoom=9,
mapbox_center= {"lat": 40.7831, "lon": -73.9712})

fig.update_layout(margin= {"r":0,"t":0,"l":0,"b":0},
width=600, height=600)

fig.show()
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The resulting map is like that of previous Figure 20.3, however, this way the
tooltip content could be carefully customized; we forward the interested reader to
the Plotly documentation for an overview of the many possibilities (https://plotly
.com/r/hover-text-and-formatting/).

20.1.3 GeoJSON Polygon, Multipolygon, and Missing id Element

We want to overly a second layer to the previous map, for that we need a second
geodataset from the NYC Open Data and choose the one of Dog Runs Areas.

dogRuns = json.load(open("datasets/NTC_opendata/
NYC Parks Dog Runs.geojson"))

Let us look at the organization of this GeoJSON, as before we are interested in
key features.

dogRuns['features'][0]
{'type': 'Feature',
'properties': {'zipcode': '10038',
'name': 'Fishbridge Garden Dog Run',
'system': 'M291-DOGAREA0043',
...

'seating': None,
'councildis': '1',
'borough': 'M'},
'geometry': {'type': 'MultiPolygon',
'coordinates': [[[[-74.0016459156729, 40.70932680472401],

[-74.00098833771662, 40.70879507039175],
[-74.00099960334362, 40.70878952584789],
...
[-74.00167338737218, 40.709306008827475],
[-74.0016459156729, 40.70932680472401]]]]}}

It has a different structure than the previous one. First, the geometry now is
Multipolygon instead of Polygon. In short, the difference is that:

● Polygon is a planar surface defined by an external border and possibly some
internal borders (basically, the shape can have holes).

● MultiPolygon is defined by multiple polygons.

Second, element id is missing, which is not a rare case but, nevertheless, does
not fully comply with the standard schema for a GeoJSON.

The missing id element might or might not be a problem, it depends on what
the GeoJSON is used for. For example, in previous examples it would not have been
a problem since for the choropleth map, we have specified a key element different
than the default id by using attribute featureidkey. But in this case, the usage

https://plotly.com/r/hover-text-and-formatting/
https://plotly.com/r/hover-text-and-formatting/
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is different, we do not use this layer to produce the choropleth map, instead, we
want to overlay it on top of the choropleth map to visualize dog runs areas, and to
do this the element id is required by Plotly, so if it is missing, that is a problem to
solve.

The solution is to add it to the GeoJSON file, one element id with a unique value
for each element of key features. Therefore, a possible solution (the reference is the
Plotly community’s comment at https://community.plotly.com/t/possible-bug-
plotting-multipolygons-in-scattermapbox/33479/5) is to execute two operations:

1. Go through every element of features key and create element id (i.e.
df["features"][i]["id"]), for example with a for-cycle.

2. Assign a unique value of type string to each element id, which could be just
the value of the for-cycle iterator converted into string type (i.e. str(i)).

for i in range(len(dogRuns["features"])):
dogRuns["features"][i]["id"]= str(i)

By checking with dogRuns[’features’][0], we will see the new pair
’id’:’0’, and similarly for all other elements of key features. The GeoJSON is
now ready to be overlaid as an additional layer.

20.2 Overlaid Layers

Let us start by simply adding the dog runs as the single layer over the base map
by using plotly.express. The main difference with respect to previous examples is
the configuration of attribute locations, which before was assigned with the
data frame column of zip codes, to produce the choropleth map. In general, this
attribute should have the list of values to use as keys to create associations with the
corresponding GeoJSON elements, which by default are those of the id element
or could be specified with attribute featureidkey.

However, the case we are considering is different, now we do not have a data
frame and a GeoJSON to logically join, but just a single GeoJSON, that of dog runs,
to place as a layer over another (i.e. the base map). Therefore, attribute loca-
tions should be assigned with an internal reference to values of the GeoJSON,
which should be the list of all elements id.

If the logic is clear, the only complication is that the GeoJSON has a dictionary
data organization, hence we cannot just specify the name (i.e. id) of the element
as for a data frame column, but they must be explicitly read, for example with an
iteration. This is why in the following code there is a for-cycle, written in the com-
pact form ([f["id"] for f in dogRuns["features"]]), as the value
of attribute locations, it reads all elements id nested in the main element
features.

https://community.plotly.com/t/possible-bug-plotting-multipolygons-in-scattermapbox/33479/5
https://community.plotly.com/t/possible-bug-plotting-multipolygons-in-scattermapbox/33479/5
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It may look a little complicated, but that is the price for dealing with dictionary
structures, however, once the logic is clear the remaining are technicalities.
fig= px.choropleth_mapbox(dogRuns, geojson= dogRuns,

locations= [f["id"] for f in dogRuns["features"]],
mapbox_style='open-street-map',
zoom=14, center= {"lat": 40.7831, "lon": -73.9712},
opacity=1.0, height=600
)

fig.update_layout(margin= {"r":0,"t":0,"l":0,"b":0},
width=600, height=600,
hoverlabel= dict(

bgcolor="white", font_size=16,
font_family= "Rockwell")

)

The same could be done with plotly go with syntax adapted as the only difference.
Figure 20.4 shows the map with the dog runs overlaid to a base map.
figure= go.Figure(

data= [go.Choroplethmapbox(
geojson= dogRuns,
locations= [f["id"] for f in dogRuns["features"]],

# The z attribute in this case sets the number
# of levels in the color scale

z= [1]*len(dogRuns["features"]),

# This sets the color of the border
marker= dict(opacity=.8,

line= dict(color="blue", width=2)),

# This fills the areas with a color
colorscale= [[0, "red"], [1, "red"]],

# The color scale is not visualized
showscale= False

)],
layout= go.Layout(

margin= dict(b=0, t=0, r=0, l=0),
width=600, height=600,
mapbox= dict(

style= "carto-positron",
zoom=14,
center_lat= 40.7831,
center_lon= -73.9712,

)
)

)
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Figure 20.4 NYC, plotly go, base map, and dog runs layer.

Now we want to overlay the two layers, the choropleth maps with the zip codes
and tooltips, and the dog runs. We start with the choropleth map and save the
resulting object in variable fig.

Here, there is a new function that we need to overlay a new layer:
add_trace() of plotly go. Using function add_trace() is the more general
and recommended technique to stack graphical layers on a Plotly map, which
makes plotly go the preferred Plotly module if these type of maps should be produced.
It is also possible with plotly.express but it is not that easy and there is basically no
reason to use that. The resulting map is shown in Figure 20.5, and the tiled web
map is Carto Positron.
fig= px.choropleth_mapbox(dogs_maxbreed,

geojson= nycgeo,
locations= 'ZipCode', color= 'counts',
featureidkey= "properties.postalCode",
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Figure 20.5 NYC, plotly go, overlaid layers, Choropleth map, and dog runs, Carto
Positron tiled web map.

color_continuous_scale= "Cividis",
hover_data= ["ZipCode","BreedName","counts"],
labels= {'BreedName':'Razza',

'counts':'Numero cani'},
mapbox_style= 'carto-positron',
zoom=13, opacity=0.4,
center= {"lat": 40.7831, "lon": -73.9712},
width=600, height=600

)

fig.add_trace(go.Choroplethmapbox(
geojson= dogRuns,
locations= [f["id"] for f in dogRuns["features"]],
z= [1]*len(dogRuns["features"]),
marker= dict(opacity=0.9, line=dict(color="red", width=2)),
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colorscale= [[0, "red"], [1, "red"]],
showscale=False,
))

fig.update_layout(margin= {"r":0,"t":0,"l":0,"b":0})

20.3 Geopandas: Base Map, Data Frame, and
Overlaid Layers

In previous examples, we omitted the presentation of cases that would have been
among the most basic ones, such as adding a layer composed of points, because
they would have been inexplicably difficult to realize, given the simplicity of the
result. This is due to Plotly that does not support well with transformations and
combinations of different geometries, for example from a format based on mul-
tipolygons to a format with separate attributes for longitude and latitude, or the
uneasiness in executing spatial joins based on geographic coordinates. These are
all features that we have seen being superbly supported by R package sf .

Package geopandas represents the best solution currently available to obtain
similar functionalities with Python, although some limitations remain and not all
functionalities are covered. Historically, it has suffered some installation problems
due to the many dependencies that it requires, which could produce conflicts or
have misaligned versions. For this reason, in addition to the recommendation
to rigorously follow the installation instructions provided by package documen-
tation (https://geopandas.org/en/stable/index.html), it may be safer to create a
Python virtual environment with pip or conda and start with the installation of
geopandas, so to install all dependencies in a pristine environment, with other
packages installed later.

With these potential troubles overcome, the excellent geopandas features turn
out to be almost indispensable and play the crucial role that package sf has in the
R environment. The key concept that geopandas introduces is of GeoDataFrame,
meaning a pandas data frame format extended to support geographic data through
the variable/column geometry. Hence, what was a dictionary when a GeoJSON was
read, with geopandas becomes a data frame, with all advantages and simplicity
of working with data frames rather than with dictionaries. The main function is
gpd.read_file(), being gpd the standard alias for geopandas. For example,
we use the same geodatabases from NYC Open Data of previous sections.

import geopandas as gpd

nyc_gpd= gpd.read_file('datasets/NYC_opendata/
nyc-zip-code-tabulation-areas-polygons.geojson')

https://geopandas.org/en/stable/index.html
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postalCode PO_NAME STATE borough geometry

0 11372 Jackson Heights NY Queens Polygon ((−73.86942
40.74916, −73.89507 40.746...

1 11004 Glen Oaks NY Queens Polygon ((−73.71068
40.75004, −73.70869 40.748...

2 11040 New Hyde Park NY Queens Polygon ((−73.70098
40.73890, −73.70309 40.744...

3 11426 Bellerose NY Queens Polygon ((−73.72270
40.75373, −73.72251 40.753...

4 11365 Fresh Meadows NY Queens Polygon ((−73.81089
40.72717, −73.81116 40.728...

We read also the GeoJSON dataset of dog runs with geopandas and reproduce
the map seen before.

dogruns_gpd= gpd.read_file('datasets/NYC_opendata/
NYC Parks Dog Runs.geojson')

Again, we should add the missing id attribute, operation that now is much eas-
ier being a traditional data frame column, as values we simply assign sequential
numbers.

dogruns_gpd= dogruns_gpd.assign(id= range(len(dogruns_gpd)))

20.3.1 Extended Dynamic Tooltips

Another remarkable advantage of using geopandas is that we could use for
dynamic tooltips and popups all columns of the GeoDataFrame, a possibility that
before, with a dictionary and a data frame as distinct data structures we did
not have.

To produce the choropleth map, attribute geojson should be set with the
geometry column of the GeoDataFrame, while attribute locationswith the col-
umn of area identifiers (respectively, dogruns_gpd.geometry and dogruns_gpd.id
in the example). The tooltip can now be extended by specifying the borough
and the precinct. We create the choropleth map using plotly.express. Figure 20.6
shows the resulting map by zooming in on a tooltip, the tiled web map is from
OpenStreetMap

fig= px.choropleth_mapbox(dogruns_gpd,
geojson= dogruns_gpd.geometry,
locations= dogruns_gpd.id,
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Figure 20.6 NYC, plotly.express and geopandas, dog runs, extended tooltip.

mapbox_style= 'open-street-map',
hover_name= 'name',
hover_data= {'id':False, "zipcode":True,

"borough":True, "precinct":True},
labels= {'zipcode':'<i>Zip Code</i>',

'borough':'<i>Borough</i>',
'precinct':'<i>Precinct</i>'},

center= {"lat": 40.7831, "lon": -73.9712},
zoom=14, opacity=1.0,
width=600, height=600
)

fig.update_layout(margin= {"r":0,"t":0,"l":0,"b":0},
hoverlabel=dict(
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bgcolor="white",
font_size=16,
font_family="Rockwell")

)

By using plotly go, two details need special attention. The first is that function
go.Choroplethmapbox still requires a dictionary for the geojson attribute,
not a data frame, therefore assigning it with dogruns_gpd.geometry as we did for
plotly.express produces an error. The data frame column should be transformed
with eval(dogruns_gpd.geometry.to_json()), which returns it as
dictionary type. The second important detail to take care of is that attribute
locations by default refers to element id of the GeoJSON, but when this ele-
ment is absent, an alternative solution that works is to refer to the implicit index of
the GeoDataFrame (a reference for this workaround is https://gis.stackexchange
.com/questions/424860/problem-plotting-geometries-in-choropleth-map-using-
plotly/436649#436649).

With these two tweaks, we can produce the choropleth map by using the Geo-
DataFrame and configure the tooltip as already seen. Figure 20.7 shows the result,
again zooming in on a tooltip and Carto Positron tiled web map.

tooltip= '<b>Name: </b>' + dogruns_gpd['name'].astype('str') \
+ '<br>' + '<br>' \
+ '<b>Zip Code: </b>' + dogruns_gpd['zipcode'] \
+ '<br>' \
+ '<b>Department: </b>' + dogruns_gpd['department'].astype('str')

figure= go.Figure(
data= [go.Choroplethmapbox(

geojson= eval(dogruns_gpd.geometry.to_json()),
locations= dogruns_gpd.index,
z= [1]*len(dogruns_gpd),
marker= dict(opacity=.8,

line= dict(color="blue", width=2)),
hovertext= tooltip,
colorscale= [[0, "red"], [1, "red"]],
showscale= False

)],

layout= go.Layout(
margin= dict(b=0, t=0, r=0, l=0),
width=600, height=600,
mapbox= dict(

style= "carto-positron",
zoom=14,
center_lat= 40.7831,
center_lon= -73.9712,

)))

https://gis.stackexchange.com/questions/424860/problem-plotting-geometries-in-choropleth-map-using-plotly/436649#436649
https://gis.stackexchange.com/questions/424860/problem-plotting-geometries-in-choropleth-map-using-plotly/436649#436649
https://gis.stackexchange.com/questions/424860/problem-plotting-geometries-in-choropleth-map-using-plotly/436649#436649


Figure 20.7 NYC, plotly go and geopandas, dog runs, extended tooltip.
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20.3.2 Overlaid Layers: Dog Breeds, Dog Runs, and Parks
Drinking Fountains

We generalize the example by overlaying more graphical layers, as did before with-
out geopandas. First, we stack just two layers, then we add a third one. We use
plotly go, which, as already seen, is easier for configuring multiple layers.

We start with the dog breeds for the choropleth map and dog runs area.
Differently from previous examples, we use geopandas, so data from the

datasets are of GeoDataFrame type, which lets us join data like traditional pandas
data frames. This way, we can prepare the data in order to obtain a single Geo-
DataFrame with all columns we need for the map and the geometry of polygons.
As mentioned, since function go.Choroplethmapbox by default makes use of
element id, being absent in our GeoJSON, we can simply transform into index a
data frame column having unique values and refer to it for attribute location
(i.e. in our example column OBJECTID is transformed into an index).

With regard to the join operation, column ZipCode of data frame dogs_maxbreed
and column postalCode of GeoDataFrame nyc_gpd are the keys, with the caveat
that the data types should be aligned, being in one case numerical and in the other
strings.

nyc_gpd['postalCode']= nyc_gpd['postalCode'].astype('int64')

nycdogs_gpd= nyc_gpd.merge(dogs_maxbreed, left_on='postalCode',
right_on='ZipCode').reset_index(inplace=True)

nycdogs_gpd= nycdogs_gpd.set_index('OBJECTID')

The single GeoDataFrame is ready, we can produce the map with two layers.
First, we define the two different tooltips we will produce by explicitly configuring
the layout with text, column names, and HTML elements. The combination of
attributes hovertext and hoverinfo produces the tooltips. As an alternative,
attribute hovertemplate can be used (more information at https://plotly.com/
python/hover-text-and-formatting/).

# First tooltip

tooltip1 = '<b>Neighborhood: </b>' + nycdogs_gpd['PO_NAME'] +
'<br>' + '<b>Borough: </b>' + nycdogs_gpd['borough'] +
'<br>' + '<b>Zip Code: </b>' + nycdogs_gpd['ZipCode'].astype('str') +
'<br>' + '<b>Breed: </b>' + nycdogs_gpd['BreedName'] +
'<br>' + '<b>Dogs number: </b>' + nycdogs_gpd['counts'].astype('str')

# Second tooltip

tooltip2 = '<b>Name: </b>' + dogruns_gpd['name'] + '<br>' +
'<br>' + '<b>Zip Code: </b>' + dogruns_gpd['zipcode'].astype('str') +
'<br>' + '<b>Department: </b>' + dogruns_gpd['department']

https://plotly.com/python/hover-text-and-formatting/
https://plotly.com/python/hover-text-and-formatting/
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Figure 20.8 NYC, plotly go and geopandas, dog breeds and dog runs with distinct
tooltips; a) full map; b) zoom in.

To create the map, we proceed as seen before. First, the figure is created with
function go.Figure() and assigned to object fig. Then the first layer with the
choropleth map is added with functionadd_trace(), next the second layer with
the dog runs areas, and finally some style options are configured. Figure 20.8a and
Figure 20.8b show two screenshots for the full map with the first tooltip about dog
breeds and detail by zooming in a specific zone with the second tooltip for the
dog runs.
fig= go.Figure()

fig.add_trace(
go.Choroplethmapbox(

geojson= eval(nycdogs_gpd.geometry.to_json()),
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Figure 20.8 (Continued)

locations= nycdogs_gpd.index,
z= nycdogs_gpd['counts'],
colorscale= "bluered", zmin=0, zmax=600,
marker_opacity=0.8, marker_line_width=1,
hovertext= tooltip1,
hoverinfo= 'text'

))

fig.add_trace(
go.Choroplethmapbox(

geojson= eval(dogruns_gpd.geometry.to_json()),
locations= dogruns_gpd.index,
z= [1]*len(dogruns_gpd),
marker= dict(opacity=.8,
line= dict(color="blue", width=2)),
hovertext= tooltip2,



20.3 Geopandas: Base Map, Data Frame, and Overlaid Layers 503

hoverinfo= 'text',
colorscale= [[0, "red"], [1, "red"]],
showscale= False

))

fig.update_layout(mapbox_style="open-street-map", mapbox_zoom=9,
mapbox_center= {"lat": 40.7831,

"lon": -73.9712},
margin= {"r":0,"t":0,"l":0,"b":0},
autosize= False, width=600, height=600)

We conclude this overview of geographic maps with Plotly and geopandas
by adding the third layer to the previous map. Data are from the geodataset of
Parks Drinkable Fountains and differently from the previous ones it has Point
as geometry, rather than multipolygons. The difference is that to configure the
layer, now we should use plotly go function go.Scattermapbox() instead of
go.Choroplethmapbox(). The detail to pay attention to is that for points, it is
required to have distinct columns for latitude and longitude in the GeoDataFrame
instead of the geometry column. A transformation is required because when read
by geopandas, the GeoDataFrame has column geometry. We proceed step-by-step.
fountains_gpd= gpd.read_file('datasets/NYC_opendata/

NYC Parks Drinking Fountains.geojson')

We have read the GeoJSON and we obtained the GeoDataFrame with column
geometry. Now we should extract from geometry the longitude and the latitude coor-
dinates and create two new columns (i.e. lon and lat) with corresponding values.
It is easy because we just need methods x and y applied to column geometry to
extract the two components, as the following instructions show.

fountains_gpd['lon']= fountains_gpd.geometry.x
fountains_gpd['lat']= fountains_gpd.geometry.y

fountain_ty signname borough descr geometry lon lat

0 F High
Low

Seth Low
Playground/
Bealin Square

B F High Low, Out
in Open

Point
(−73.98659
40.60753)

−73.9865 40.6075

1 C Robert Moses
Playground

M C, In
Playground

Point
(−73.96863
40.74809)

−73.9686 40.7480

2 D Chelsea Park M D, Under Tree,
Near Ballfield

Point
(−74.00036
40.75004)

−74.0003 40.7500

3 D John V.
Lindsay East
River Park

M D, Just Outside
Playground,
Near Ballfield

Point
(−73.97290
40.72386)

−73.9729 40.7238
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With the two columns for longitude and latitude, we can configure a third tooltip
for the drinkable fountains (tooltip3) and add the new layer composed of points.
Figure 20.9a, Figure 20.9b, Figure 20.9c, and Figure 20.9d show screenshots of the
final result with the full map, a detail with tooltip of a drinkable fountain, a detail
with tooltip of a dog run area, and a detail with tooltip for the most popular dog
breeds in zip codes.

tooltip3= '<b>Sign Name: </b>' + fountains_gpd['signname'] + \
'<br>' + '<br>' \
+ '<b>Position: </b>' + fountains_gpd['position']

fig= go.Figure()

fig.add_trace(
go.Choroplethmapbox(

geojson= eval(nycdogs_gpd.geometry.to_json()),

(a)

500

600

300

200

100

0

400

Figure 20.9 (a) NYC, plotly go and geopandas, dog breeds, dog run areas, and parks
drinkable fountains, full map. (b) NYC, zoom in on a tooltip for a drinkable fountain.
(c) NYC, zoom in on a tooltip for a dog run area. (d) NYC, zoom in on a tooltip for the most
popular dog breed in a zip code.
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(b)

Figure 20.9 (Continued)

locations= nycdogs_gpd.index,
z= nycdogs_gpd['counts'],
colorscale= "grays", zmin=0, zmax=600,
marker_opacity=0.8, marker_line_width=1,
hovertext= tooltip1,
hoverinfo= 'text'

))

fig.add_trace(
go.Scattermapbox(

lat= fountains_gpd.lat,
lon= fountains_gpd.lon,
mode='markers',
marker= go.scattermapbox.Marker(

size=5,
color= 'orangered',
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(c)

Figure 20.9 (Continued)

opacity=0.7
),
hovertext= tooltip3,
hoverlabel= dict(bgcolor =

['gray','#00FF00','rgb(252,141,89)']),
hoverinfo= 'text'

))

fig.add_trace(
go.Choroplethmapbox(

geojson= eval(dogruns_gpd.geometry.to_json()),
locations= dogruns_gpd.index,
z= [1]*len(dogruns_gpd),
marker= dict(opacity=.8,

line=dict(color="blue", width=2)),
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(d)

Figure 20.9 (Continued)

hovertext= tooltip2,
hoverinfo= 'text',
colorscale= [[0, "red"], [1, "red"]],
showscale= False

))

fig.update_layout(mapbox_style= "open-street-map",
mapbox_zoom=9,
mapbox_center= {"lat": 40.7831, "lon": -73.9712},
margin= {"r":0,"t":0,"l":0,"b":0},
autosize= False, width=1000, height=700)

20.4 Folium

Folium is a popular Python graphical library for choropleth maps, which could
be used as an alternative to Plotly (https://python-visualization.github.io/folium/
index.html). It shares with Plotly most of the logic and organization, but the aspect

https://python-visualization.github.io/folium/index.html
https://python-visualization.github.io/folium/index.html
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that mostly makes it worth consideration is its tight integration with Leaflet, which
we already had the opportunity to appreciate in the previous chapter. Like with
Plotly, the combination with geopandas is worthwhile also with Folium, easing
the configuration and extending the possibilities with respect to the only plotly go
and plotly.express.

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from PIL import Image
import json
import geopandas as gpd
import folium

20.4.1 Base Maps, Markers, and Circles

The main Folium graphical elements are those already encountered before and
basically shared by all modern graphic libraries for spatial data and maps, such
as tiled web maps, markers, tooltips, popups, and so on.

To define a base map, Folium has function folium.Map() that requires just
the coordinates of the center of the map, expressed as latitude and longitude with
attribute location.

We stay in NYC and choose a point in Central Park, adding a zoom level for
the initial visualization (attribute zoom_start), and the map size (attributes
width and height). To add a tiled web map there is attribute tiles and in case
of a commercial tiled web map, a specific attribute for the API_key is available.
Here we create the base map with the default tiled web map from OpenStreetMap
(see Figure 20.10).

map1= folium.Map(location=[40.78367, -73.96584,
zoom_start=11, width=500,height=500))

From this simple base map, it should be noted the default integration with
Leaflet, as indicated in the bottom-right footer. To save the map in HTML format,
it exists function save() (e.g., map1.save(’Map1.html’)).

To add markers, a feature imported from Leaflet, function folium.Marker()
should be used in combination with method add_to() needed to add the new
element to the base map. It has an intuitive usage showed in the next example.

We choose some popular Manhattan locations to place the corresponding mark-
ers and configuring them with style options through attribute icon and function
folium.Icon(), such as the marker’s color (attribute color) and the specific
icon (attribute icon), which we get from those freely available by FontAwesome
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Figure 20.10 NYC, Folium, base map with default tiled web map from OpenStreetMap.

v.4 (https://fontawesome.com/v4/icons/), specified with attribute prefix=’fa’
(i.e. fa indicates FontAwesome as the source). Alternative to FontAwesome icons
are the glyphicons from Bootstrap, for which Folium attribute prefix is not
required (https://getbootstrap.com/docs/3.3/components/). We also associate
markers to both popups (attribute popup) and tooltips (attribute tooltip) to
practice and test them.

Figure 20.11 shows the resulting Folium map, this time with Stamen Terrain
tiled web map.

folium.Marker([40.7116, -74.0132],
popup= "<i>The World Trade Center and the National \

September 11th Memorial and Museum</i>",
tooltip= "Ground Zero",
icon= folium.Icon(icon="building",

https://fontawesome.com/v4/icons/
https://getbootstrap.com/docs/3.3/components/


510 20 Geographic Maps with Python

Figure 20.11 NYC, Folium, markers, popups, and tooltips, Stamen Terrain tiled web map.

prefix='fa', color='black')
).add_to(map1)

folium.Marker([40.6892, -74.0445],
popup= "<b>The Statue of Liberty is a gift from the \

people of France</b>",
tooltip= "<b>Statue of Liberty</b>",
icon= folium.Icon(color="lightblue",

icon='ship', prefix='fa')
).add_to(map1)

folium.Marker([40.7813, -73.9740],
popup= "<b>200 Central Park West, New York, NY \

10024</b>" + "<br>" + \
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"Open Hours: 10AM:5.30PM",
tooltip= "<b>American Museum of Natural History</b>",
icon= folium.Icon(icon="institution", prefix='fa')

).add_to(map1)

folium.Marker([40.7580, -73.9855],
tooltip= "<b>Times Square</b>",
icon= folium.Icon(icon="square", prefix='fa',

color='red')
).add_to(map1)

In the same way, circular elements could be added instead of markers, which
have two forms: only the border of the circle (function folium.Circle()) or a
circle including the internal area (function folium.CircleMarker()). They
act exactly as markers, just with a circular shape.

20.4.2 Advanced Tooltips and Popups

Folium provides for a wide variety of possible configurations for the tooltips,
including the possibility to insert in them Vega/Altair graphics, tables, and
images (see https://nbviewer.org/github/python-visualization/folium/blob/
main/examples/Popups.ipynb).

We see an example with an image included in the popups (Note: the pictures are
free from Unsplash, https://unsplash.com/license).

Technically, an image should be included in the popup/tooltip as an HTML
iframe. To manage the iframe, we use functions from package branca (other
equivalent solutions are available). Having iframes to manage, we should expect
to tackle with common problems and limitations of HTML pages, like for
example the same-origin policy (https://developer.mozilla.org/en-US/docs/Web/
Security/Same-origin_policy) that forbids to load local resources. For this reason,
the images included in the popups are directly read online from Unsplash.
Figure 20.12a and Figure 20.12b show screenshots of the two marker’s popups
with images.

import branca

map2= folium.Map(location=[40.78367, -73.96584],
zoom_start=11, width=500,height=500,
tiles= 'Stamen Terrain')

# Iframes configuration with image, text, and html tags

# The World Trade Center Memorial

html1= """<div> <img src="https://images.unsplash.com/

https://nbviewer.org/github/python-visualization/folium/blob/main/examples/Popups.ipynb
https://nbviewer.org/github/python-visualization/folium/blob/main/examples/Popups.ipynb
https://unsplash.com/license
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
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photo-1495954283789-905ff632dca0?ixlib=rb-4.0.3&
ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&
auto=format&fit=crop&w=774&q=80" \
alt="The World Trade Center and the National September \
11th Memorial and Museum" width=200 height=300 > \
<br/><span>The World Trade Center and the National \
September 11th Memorial and Museum</span> </div>"""

# American Museum of Natural History

html = """<div> <img src="https://images.unsplash.com/

(a)

Figure 20.12 (a/b) NYC, Folium, marker’s popups with HTML iframe and image (Redd F /
Unsplash.com & Willian Justen de Vasconcellos / Unsplash.com).

https://images.unsplash.com/
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(b)

Figure 20.12 (Continued)

photo-1647962309326-b77f9732860e?ixlib=rb-4.0.3&
ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&
auto=format&fit=crop&w=774&q=80" \
alt="American Museum of Natural History" \
width=300 height=500 > \
<br/><span>American Museum of Natural History</span></div>"""

# Iframes definition with functions from library branca

iframe1= branca.element.IFrame(html=html1,
width=250, height=350)
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popup1= folium.Popup(iframe1,
max_width=250, max_height=1000)

iframe2= branca.element.IFrame(html=html2,
width=300, height=400)

popup2= folium.Popup(iframe2,
max_width=350, max_height=1000)

# Folium markers with popups

folium.Marker([40.7116, -74.0132], popup= popup1,
tooltip= "The World Trade Center and the National \

September 11th Memorial and Museum",
icon= folium.Icon(icon="building",

prefix='fa', color='black')
).add_to(map2)

folium.Marker([40.7813, -73.9740], popup= popup2,
tooltip= "<b>American Museum of Natural History</b>",
icon= folium.Icon(icon="institution", prefix='fa')

).add_to(map2)

#map2.save('./image/map2.html')

(Images free from Unsplash, https://unsplash.com/license)

20.4.3 Overlaid Layers and GeoJSON Datasets

When layers of graphic elements derived from a GeoJSON dataset should be over-
laid on a Folium map, we proceed similarly to what we have done with markers.
With function folium.GeoJson() the new layer is populated with data from a
GeoJSON dataset, and then with method add_to() it is overlaid on the map.

With the next example, we add to a base map a layer with elements from the
Sea Level Rise Maps (2050s 500-year Floodplain) GeoJSON dataset, whose data
represent estimates made by FEMA. For the details about the style options, we
forward the reader to the official Leaflet documentation (https://leafletjs.com/).
Figure 20.13 shows the resulting Folium map.
seaRise= json.load(open('datasets/FEMA/

Sea Level Rise Maps (2050s 500-year Floodplain).geojson'))

map3= folium.Map(location=[40.7831, -73.9712],
zoom_start=11, width=500, height=500)

style= {'weight':'1', 'color':'#295499', 'opacity':'0.5'}

folium.GeoJson(seaRise, name="geojson",
style_function = lambda x: style
).add_to(map1)

https://unsplash.com/license
https://leafletjs.com/
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Figure 20.13 NYC, Folium, base map, and GeoJSON layer with FEMA sea level rise
estimates.

20.4.4 Choropleth Maps

Creating a choropleth map with Folium is very similar to what we have seen with
Plotly. We change the example still using the GeoJSON data set with zip codes, but
this time, instead of data about dog licenses, we use data about Rodent Inspections.

nyc_zip= json.load(open('datasets/NYC_opendata/
nyc-zip-code-tabulation-areas-polygons.geojson'))

From all rodent inspections, we select only those that revealed the presence of
rodents (i.e. Rat Activity).

rats= pd.read_csv('datasets/NYC_opendata/Rodent_Inspection.csv')
rats1= rats[(rats.RESULT == 'Rat Activity')]
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STREET_
NAME

ZIP_
CODE

X_
COORD

Y_
COORD LAT LONG BOROUGH

INSPECTION_
DATE

1 NaN 10003 NaN NaN NaN NaN Manhattan 02/13/2023
01:40:15 PM

9 NaN 10025 NaN NaN NaN NaN Manhattan 01/27/2020
12:50:35 PM

11 NaN 11237 NaN NaN NaN NaN Brooklyn 07/22/2021
01:43:11 PM

13 93 Street NaN 102... 206... 0.0 0.0 Queens 10/29/2019
02:15:25 PM

17 Fordham
road

10458 NaN NaN NaN NaN Bronx 10/14/2022
11:53:12 AM

The data frame should be prepared for visualization by aggregating rows by zip
code and counting the number of inspections for each zip code.

inspTot= rats1.groupby('ZIP_CODE')[['RESULT']].count().\
reset_index().sort_values(by= 'RESULT', ascend-

ing= False)

inspTot.ZIP_CODE= inspTot.ZIP_CODE.astype('int64')

ZIP_CODE RESULT

121 11221 15827
116 11216 15355
74 10457 15093
136 11237 14821
75 10458 13691
· · · · · · · · ·

We are ready for the visualization. The Folium function to use is folium.
Choropleth() whose attribute geo_data is assigned with the name of the
object with geographic data, which has been read from the GeoJSON and is in
dictionary format. Data to be used for coloring the areas are set with attribute
data and they are the aggregated results from the rodent inspection dataset.
Now the association between the geographic data and the data frame should be
configured. On the one side, we need to specify the join key for the data frame. It
is declared with attribute columns, which has particular semantics: it should be
a Python list of two elements, so it requires square brackets, where the first column
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is the one used as key for the join with the geographic data, the second is the column
with values for the color scale (e.g., columns= ["ZIP_CODE","RESULT"]).
For the GeoJSON, instead, attribute key_on specifies the dictionary element
to use as key (e.g., "feature.properties.postalCode", reading the
following note is highly recommended).

Note

Pay attention to a tiny but important detail of Folium, which is different from
Plotly that for a similar attribute implicitly takes element features as the root
of the JSON hierarchy (e.g., featureidkey= "properties.postal
Code"), Folium uses the keyword feature as the explicit root of the GeoJSON
structure (e.g., key_on= "feature.properties.postalCode").

Do not confuse the Folium keyword feature with the actual element name
features of a standard GeoJSON file, otherwise you end up trying to write the
second with final ‘s’ and you do not get any data on the map for seemingly
incomprehensible reasons.

The remaining attributes are style options with self-explicative names. Finally,
method add_to() applied to function folium.LayerControl() places the
layer on the map. Figure 20.14 shows the result.

map1= folium.Map(
location=[40.7831, -73.9712],
zoom_start=10, width=500,
height=500)

folium.Choropleth(
geo_data= nyc_zip,
name= "choropleth",
data= inspTot,
columns= ["ZIP_CODE","RESULT"],
key_on= "feature.properties.postalCode",
fill_color="Grays",
fill_opacity=0.6,
line_opacity=0.2,
legend_name="Rat presence",
).add_to(map1)

folium.LayerControl().add_to(map1)
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Figure 20.14 NYC, Folium choropleth map, rodent inspections finding rat activity.

20.4.5 Geopandas

Even with geopandas the way to proceed in Folium reminds that of Plotly. The
geopandas documentation provides the details for using it with Folium (https://
geopandas.org/en/stable/gallery/plotting_with_folium.html).

We replicate the previous choropleth map, this time by reading the GeoJSON
dataset through geopandas and joining the resulting GeoDataFrame with data
frame inspTot of aggregated data on rodent inspections for zip code. The join
operation produces a single GeoDataFrame that we use to produce the choropleth
map.

nyc_gpd= gpd.read_file('datasets/NYC_opendata/
nyc-zip-code-tabulation-areas-polygons.geojson',
driver='GeoJSON')

https://geopandas.org/en/stable/gallery/plotting_with_folium.html
https://geopandas.org/en/stable/gallery/plotting_with_folium.html
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The traditional join between data frames is executed by using postalCode and
ZIP_CODE as join keys. A data type transformation is required to align the data
types.

nyc_gpd.postalCode= nyc_gpd.postalCode.astype('int64')

nycRats= nyc_gpd.merge(inspTot, left_on='postalCode',
right_on='ZIP_CODE')

We can produce the choropleth map. The detail to pay attention to, already
met with Plotly, is that now we have a single GeoDataFrame, which contains
both the geometry and the data. In function folium.Choropleth(), attribute
geo_data requires a dictionary data format, but now we have a data frame
format, hence we cannot just specify the name of the GeoDataFrame (nycRats),
we have to transform it into a dictionary with method to_json() (e.g.,
geo_data=nycRats.to_json()). Attribute data, instead, is expecting a
data frame, so the GeoDataFrame’s name nycRats is fine.

We also define a folium plugin, in this case a dynamic popup with function
GeoJsonPopup(). To add it, rather than the usual add_to() used to overlay
layers, a folium popup should be added to the map (variable fig1) with function
add_child() (e.g., fig1.geojson.add_child(popup)). Being a unique
GeoDataFrame, the popup could be configured with all information from its
columns. The resulting map is shown in Figure 20.15.

from folium.features import GeoJson, GeoJsonTooltip,
GeoJsonPopup, LatLngPopup

map1= folium.Map(location=[40.7831, -73.9712],
zoom_start=10, width=500,height=500)

fig1= folium.Choropleth(
geo_data= nycRats.to_json(),
name= "choropleth",
data= nycRats,
columns= ["ZIP_CODE","RESULT"],
key_on= "feature.properties.ZIP_CODE",
fill_color= "Reds",
fill_opacity=0.7, line_opacity=0.2,
legend_name= "Rat presence",

).add_to(map1)

popup= GeoJsonPopup(
fields= ["ZIP_CODE", "borough", "PO_NAME", "RESULT"],
aliases= ["Zip Code: ", "Borough: ", "Neighborhood: ",

"Num. Inspections: "],
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Zip code:

Borough:

Neighborhood:

Num. Inspections:

10,314

Staten Island

Staten Island

328

Figure 20.15 NYC, Folium and geopandas, rodent inspections finding rat activity.

localize= True, labels= True,
)
fig1.geojson.add_child(popup)
folium.TileLayer('cartodbpositron').add_to(map1)

20.4.6 Folium Heatmap

Folium has several plugins, in addition to popups seen in the previous example,
for all the details we forward the interested readers to the official documentation
(https://python-visualization.github.io/folium/plugins.html). Here we consider
the case of folium heatmaps, but it is recommended reading the following note
because the terminology used by Folium could easily mislead.

https://python-visualization.github.io/folium/plugins.html
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Note

What Folium calls heatmap is different from traditional heatmap as graphi-
cal representations of data in rectangular form. The so-called folium heatmap,
in other graphical tools (e.g., ggplot, seaborn) is more correctly called kernel
density plot or bivariate density plot.

We should prepare the data frame because the inspections are too many and
would produce an unclear result. We select just those made in year 2022 and omit
rows with missing values in date or coordinates, or that have value zero.

rats1['INSPECTION_DATE']=
pd.to_datetime(rats1['INSPECTION_DATE'])

rats1= rats1[∼rats1['INSPECTION_DATE'].isna()]
rats1['YEAR']=

rats1['INSPECTION_DATE'].dt.year.astype('Int64')
rats2022= rats1[rats1.YEAR == 2022]

rats2022= rats2022[
∼rats2022.LATITUDE.isna() & ∼rats2022.LONGITUDE.isna() &
(rats2022.LATITUDE != 0) & (rats2022.LONGITUDE != 0)]

The data frame is now ready. We can create the Folium map with function
folium.Map() setting global elements. Then, we need to subset the data frame
by just extracting the two columns for latitude and longitude (e.g., ratsHeat=
rats2022[[’LATITUDE’,’LONGITUDE’]]). This new data frame should
be the data for function plugins.HeatMap() creating the Folium heatmap,
which will be finally added to the map as a new layer with method add_to().
Style options are also specified for transparency and blur. Figure 20.16 shows the
result, which, as noted, does not look like a heatmap, as usually intended, but a
kernel density plot.

from folium import plugins

map4= folium.Map(location=[40.7831, -73.9712],
tiles="cartodbpositron",
zoom_start=10, width=500, height=500)

ratsHeat= rats2022[['LATITUDE','LONGITUDE']]

plugins.HeatMap(ratsHeat,
min_opacity=0.2, blur=11,
).add_to(map4)
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Figure 20.16 NYC, Folium heatmap of rodent inspections with rat activity.

20.5 Altair: Choropleth Map

We conclude Part 4 by mentioning how Altair supports choropleth maps.
Currently, Altair supports GeoJSON and GeoDataFrame formats but has limited
features for geographic visualizations and spatial data (at least up to version 4.2.2),
which makes it not a valid alternative to Plotly or Folium, to remain in the Python
environment. Not to mention Leaflet or R with the sf package, which are
on a completely different qualitative level with respect to what Altair is able
to offer. However, it is likely that it will improve in future versions and, for
its general graphical quality and clear organization, it deserves to be at least
mentioned.

Here, we just see how to produce some standard choropleth maps with Altair.
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import numpy as np
import pandas as pd
import altair as alt
import geopandas as gpd
import json

20.5.1 GeoJSON Maps

To read a GeoJSON dataset, we should employ geopandas or read it with
base Python method, either way the result could be used in Altair function
alt.Data(). Let us see this simple example. We start from the GeoJSON with
zip codes. Function alt.Data(), with attribute values, requires a dictionary
data format, so the base Python method to access a JSON file is fine. It also
has attribute format that specifies the root element in the nested JSON data
organization with Altair function alt.DataFormat(). For GeoJSON datasets,
it will be element features.
nycgeo= json.load(open('datasets/NYC_opendata/

nyc-zip-code-tabulation-areas-polygons.geojson'))

data_obj_geojson= alt.Data(values=nycgeo,
format=alt.DataFormat(property="features"))

Function mark_geoshape() is the reference function for visualizing geo-
graphic objects. In the following, we just visualize the areas defined by the zip
codes (plot_a), with no association to a variable for the color scale, then the
NYC boroughs (plot_b) as a choropleth map by setting attribute color with
the dictionary element containing borough names (i.e. ‘properties.borough’).
Figure 20.17a and Figure 20.17b show the two cases.

plot_a= alt.Chart(data_obj_geojson).mark_geoshape(
fill='ghostwhite', stroke='skyblue')

plot_b= alt.Chart(data_obj_geojson).mark_geoshape(
).encode(color='properties.borough:N')

20.5.2 Geopandas: NYC Subway Stations and Demographic Data

Next, we consider geopandas that, as usual, make working with geometries
easier. In the next example, we use the GeoJSON dataset of NYC Subway Stations.
Elements have point geometry indicating exact locations; therefore, we have
to extract latitude and longitude from the GeoJSON geometry. We have seen a
similar case with Plotly.
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(a)

(b)

Figure 20.17 (a/b) Altair, NYC zip code areas, and boroughs.
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stations= gpd.read_file('datasets/NYC_opendata/
Subway Stations.geojson')

stations['lon']= stations.geometry.x
stations['lat']= stations.geometry.y

name line notes geometry lon lat

0 Astor Pl 4-6-6 Express 4 nights ... Point (−73.99107
40.73005)

−73.9910 40.7300

1 Canal St 4-6-6 Express 4 nights ... Point (−74.00019
40.71880)

−74.0001 40.7188

2 50th St 1-2 1 all times ... Point (−73.98385
40.76173)

−73.9838 40.7617

To create the plot, the syntax is the same as seen in Part 2 for Altair graphics, with
the novelty of function mark_geoshape() and some geographical attributes
like latitude and longitude. Figure 20.18 shows the NYC map with points
corresponding to subway stations.

basemap= alt.Chart(data_obj_geojson).mark_geoshape(
fill= 'ghostwhite',
stroke= 'skyblue')

points= alt.Chart(stations).mark_circle(
size=10,
color= 'darkred'

).encode(
longitude= 'lon:Q',
latitude= 'lat:Q',
tooltip= ['name','line','notes'])

(basemap + points).properties(width= 500, height= 500)

To produce a choropleth map, we make use of dataset Demographic Statistics by
Zip Code, from the NYC Open Data.

residents = pd.read_csv('datasets/NYC_opendata/
Demographic_Statistics_By_Zip_Code.csv')

We transform in long form the columns corresponding to four ethnic groups and
execute some common data-wrangling operations.
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Name:  Times Sq - 42nd St

Line:  1-2-3

Notes:  1,2,3-all times

Figure 20.18 Altair, NYC subway stations with popups.

etnicGroups= residents.melt(id_vars= 'JURISDICTION NAME',
value_vars= ['PERCENT HISPANIC LATINO',

'PERCENT ASIAN NON HISPANIC',
'PERCENT WHITE NON HISPANIC',
'PERCENT BLACK NON HISPANIC']).\

sort_values(by= ['JURISDICTION NAME','value'],
ascending= [True,False])

etnicGroups= etnicGroups[∼etnicGroups.value.isna()]
etnicGroups.value= 100*etnicGroups.value
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JURISDICTION NAME variable value

708 10001 Percent Black Non-Hispanic 0.48
0 10001 Percent Hispanic Latino 0.36
236 10001 Percent Asian Non-Hispanic 0.07
472 10001 Percent White Non-Hispanic 0.02
237 10002 Percent Asian Non-Hispanic 0.80
· · · · · · · · · · · ·

Now we read the GeoJSON dataset with geopandas and join it with the data
frame of ethnic groups just derived.

nyc_gpd= gpd.read_file('datasets/NYC_opendata/
nyc-zip-code-tabulation-areas-polygons.geojson')

nyc_gpd.postalCode= nyc_gpd.postalCode.astype('Int64')

nycEtnies= nyc_gpd.merge(etnicGroups, left_on= 'postalCode',
right_on= 'JURISDICTION NAME',
how= 'inner')

We are ready to visualize the choropleth maps corresponding to each ethnic
group. Each ethnic group is a subset from the data – —pay attention to the peculiar
syntax to execute this selection based on a logical condition in Altair, chart |=
base.transform_filter(datum.variable == etnies) – and used to
produce a choropleth map. Figure 20.19 shows the four choropleth maps hor-
izontally aligned, respectively for Hispanic Latino, Asian Non-Hispanic, White
Non-Hispanic, and Black Non-Hispanic.

from altair.expr import datum

base= alt.Chart(nycEtnies).mark_geoshape().encode(
color= alt.Color('value:Q', title="%"),
tooltip= ['variable:N','postalCode:O', 'value:Q']

).properties(width=200, height=200)

list= ['PERCENT HISPANIC LATINO','PERCENT ASIAN NON HISPANIC',
'PERCENT WHITE NON HISPANIC','PERCENT BLACK NON HISPANIC']

chart= alt.hconcat()
for etnies in list:

chart |= base.transform_filter(datum.variable == etnies)



Figure 20.19 Altair, choropleth maps for ethnic groups (from left to right: Hispanic Latino, Asian Non-Hispanic, White Non-Hispanic, and
Black Non-Hispanic).
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