DATA SCIENCE SERIES

DATA SCIENCE

A First Introduction with Python

TIFFANY TIMBERS
TREVOR CAMPBELL
MELISSA LEE
JOEL OSTBLOM
LINDSEY HEAGY

A Chapman & Hall Book 'IE)IErEFrz[iseGsrfup

Data Science

Data Science: A First Introduction with Python focuses on using the Python programming lan-
guage in Jupyter notebooks to perform data manipulation and cleaning, create effective visual-
izations, and extract insights from data using classification, regression, clustering, and inference.
It emphasizes workflows that are clear, reproducible, and shareable, and includes coverage of the
basics of version control. Based on educational research and active learning principles, the book
uses a modern approach to Python and includes accompanying autograded Jupyter worksheets
for interactive, self-directed learning. The text will leave readers well-prepared for data science
projects. It is designed for learners from all disciplines with minimal prior knowledge of math-
ematics and programming. The authors have honed the material through years of experience
teaching thousands of undergraduates at the University of British Columbia.

Key Features:

* Includes autograded worksheets for interactive, self-directed learning.

* Introduces readers to modern data analysis and workflow tools such as Jupyter notebooks
and GitHub, and covers cutting-edge data analysis and manipulation Python libraries such
as pandas, scikit-learn, and altair.

* Is designed for a broad audience of learners from all backgrounds and disciplines.

CHAPMAN & HALL/CRC DATA SCIENCE SERIES

Reflecting the interdisciplinary nature of the field, this book series brings together researchers,
practitioners, and instructors from statistics, computer science, machine learning, and analyt-
ics. The series will publish cutting-edge research, industry applications, and textbooks in data
science.

The inclusion of concrete examples, applications, and methods is highly encouraged. The
scope of the series includes titles in the areas of machine learning, pattern recognition, predic-
tive analytics, business analytics, Big Data, visualization, programming, software, learning
analytics, data wrangling, interactive graphics, and reproducible research.

Recently Published Titles

Big Data Analytics
A Guide to Data Science Practitioners Making the Transition to Big Data
Ulrich Matter

Data Science for Sensory and Consumer Scientists
Thierry Worch, Julien Delarue, Vanessa Rios De Souza and John Ennis

Data Science in Practice
Tom Alby

Introduction to NFL Analytics with R
Bradley J. Congelio

Soccer Analytics
An Introduction Using R
Clive Beggs

Spatial Statistics for Data Science
Theory and Practice with R
Paula Moraga

Research Software Engineering
A Guide to the Open Source Ecosystem
Matthias Bannert

The Data Preparation Journey
Finding Your Way With R
Martin Hugh Monkman

Getting (more out of) Graphics
Practice and Principles of Data Visualisation
Antony Unwin

Introduction to Data Science
Data Wrangling and Visualization with R Second Edition
Rafael A. Irizarry

Data Science
A First Introduction with Python
Tiffany Timbers, Trevor Campbell, Melissa Lee, Joel Ostblom and Lindsey Heagy

For more information about this series, please visit: https://www.routledge.com/
Chapman--HallCRC-Data-Science-Series/book-series/ CHDSS

https://www.routledge.com/Chapman--HallCRC-Data-Science-Series/book-series/CHDSS
https://www.routledge.com/Chapman--HallCRC-Data-Science-Series/book-series/CHDSS

Data Science
A First Introduction with Python

Tiffany Timbers, Trevor Campbell,
Melissa Lee, Joel Ostblom and Lindsey Heagy

CRC Press
Taylor & Francis Group
Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

A CHAPMAN & HALL BOOK

https://www.crcpress.com

Designed cover image: © Jaki King

First edition published 2025
by CRC Press
2385 N'W Executive Center Drive, Suite 320, Boca Raton FL 33431

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC
© 2025 Tiffany Timbers, Trevor Campbell, Melissa Lee, Joel Ostblom and Lindsey Heagy

Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright
holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowl-
edged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or
utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including pho-
tocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission
from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the
Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are

not available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for
identification and explanation without intent to infringe.

ISBN: 978-1-032-57219-2 (hbk)
ISBN: 978-1-032-57223-9 (pbk)
ISBN: 978-1-003-43839-7 (ebk)
DOI: 10.1201/97810034:38397

Typeset in LM Roman
by KnowledgeWorks Global Ltd.

Publisher’s note: This book has been prepared from camera-ready copy provided by the authors.

https://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
https://doi.org/10.1201/9781003438397

Contents

Preface

Foreword

Acknowledgments

About the authors

1 Python and Pandas

1.1
1.2
1.3
1.4
1.5
1.6
1.7

1.8

1.9
1.10
1.11

1.12
1.13

Overview
Chapter learning objectives
Canadian languages dataset
Asking a questiono
Loading a tabular dataset
Naming things in Python
Creating subsets of data frames with [] & loc[]
1.7.1 Using [] to filterrows
1.7.2 Using [] to select columns

1.7.3 Using loc[] to filter rows and select columns
Using sort_values and head to select rows by

ordered values L oL
Adding and modifying columns

Combining steps with chaining and multiline expressions

Exploring data with visualizations
1.11.1 Using altair to create a bar plot
1.11.2 Formatting altair charts
1.11.3 Putting it all together
Accessing documentation
Exerciseso

2 Reading in data locally and from the web

2.1
2.2
2.3
2.4

Overview
Chapter learning objectives
Absolute and relative file paths
Reading tabular data from a plain text file into Python . . .

xiii

XV

xvii

© O N = =

11
12
14
14

16
18
19
22
22
23
27
28
31

32
32
33
36

vi

2.5
2.6

2.7
2.8

2.9

Contents

2.4.1 read_csv to read in comma-separated values files . .
2.4.2 Skipping rows when reading in data
2.4.3 Using the sep argument for different separators
2.4.4 Using the header argument to handle missing column
NAMES . . o v v e e e e e
2.4.5 Reading tabular data directly from a URL
2.4.6 Previewing a data file before reading it into Python .
Reading tabular data from a Microsoft Excel file
Reading data from a database
2.6.1 Reading data from a SQLite database
2.6.2 Reading data from a PostgreSQL database

Writing data from Python toa .csvfile
Obtaining data from the web
2.8.1 Webscraping

282 Usingan API
Exerciseso

2.10 Additional resources

3 Cleaning and wrangling data

3.1
3.2
3.3

3.4

3.5

OvVerview
Chapter learning objectives
Data frames and series
3.3.1 What is a data frame?
3.3.2 Whatisaseries?

3.3.4 Data structures in Python
Tidy datao
3.4.1 Tidying up: going from wide to long using melt . . .
3.4.2 Tidying up: going from long to wide using pivot
3.4.3 Tidying up: using str.split to deal with multiple

separators Lo
Using [] to extract rows or columns
3.5.1 Extracting columns by name
3.5.2 Extracting rows that have a certain value with == . .
3.5.3 Extracting rows that do not have a certain

value with '= oL
3.5.4 Extracting rows satisfying multiple conditions using &
3.5.5 Extracting rows satisfying at least one condition using

| e e e e
3.5.6 Extracting rows with values in a list using isin . . .

36
38
39

41
44
45
45
47
47
53
54
95
95
o7
65
71
72

73
73
74
74
()
7
78
80
82
86

91
96
96
97

98
98

99
99

Contents

vii

3.5.7 Extracting rows above or below a threshold using >

and < . .. 101
3.5.8 Extracting rows using query 101
3.6 Using loc[] to filter rows and select columns 102
3.7 Using iloc[] to extract rows and columns by position . . . 105
3.8 Aggregatingdata 106
3.8.1 Calculating summary statistics on individual columns 106
3.8.2 Calculating summary statistics on data frames 110
3.9 Performing operations on groups of rows using groupby . . 111
3.10 Apply functions across multiple columns 115
3.11 Modifying and adding columns 118
3.12 Using merge to combine data frames 124
3.13 Summary ... 125
3.14 Exercises 126
3.15 Additional resources 126
4 Effective data visualization 128
4.1 Overview 128
4.2 Chapter learning objectives 128
4.3 Choosing the visualization 129
4.4 Refining the visualization 131
4.5 Creating visualizations with altair 132
4.5.1 Scatter plots and line plots: the Mauna Loa CO, data
set ..o 133
4.5.2 Scatter plots: the Old Faithful eruption time data set 139
4.5.3 Axis transformation and colored scatter plots: the
Canadian languages dataset 141
4.5.4 Bar plots: the island landmass data set 154
4.5.5 Histograms: the Michelson speed of light data set . . 159
4.6 Explaining the visualization 169
4.7 Saving the visualization 172
4.8 Exercises 175
4.9 Additional resourceso 176
5 Classification I: training & predicting 177
5.1 Overview 177
5.2 Chapter learning objectives 177
5.3 The classification problem 178
54 Exploringadataset 179
5.4.1 Loading the cancer data 179
5.4.2 Describing the variables in the cancer data set 180

5.4.3 Exploring the cancer data 182

viii Contents

5.5 Classification with K-nearest neighbors 184
5.5.1 Distance between points 187

5.5.2 More than two explanatory variables 188

5.5.3 Summary of K-nearest neighbors algorithm 190

5.6 K-nearest neighbors with scikit-learn 191
5.7 Data preprocessing with scikit-learn 194
5.7.1 Centering and scaling 194

5.7.2 Balancingo 200

5.7.3 Missingdata 203

5.8 Putting it together in a Pipeline 206
5.9 Exercises 209
6 Classification II: evaluation & tuning 210
6.1 Overview 210
6.2 Chapter learning objectives 210
6.3 Evaluating performance 211
6.4 Randomness and seeds 215
6.5 Evaluating performance with scikit-learn 218
6.5.1 Create the train / test split 219

6.5.2 Preprocess thedata 221

6.5.3 Train the classifier 222

6.5.4 Predict the labels in the test set 223

6.5.5 Evaluate performance 223

6.5.6 Critically analyze performance 225

6.6 Tuning the classifier 0. 226
6.6.1 Cross-validation 227

6.6.2 Parameter value selection 231

6.6.3 Under/Overfitting 236

6.6.4 Evaluating on the test set 238

6.7 Summary ... 240
6.8 Predictor variable selection 242
6.8.1 The effect of irrelevant predictors 242

6.8.2 Finding a good subset of predictors 244

6.8.3 Forward selection in Python 247

6.9 Exercises 250
6.10 Additional resources 251
7 Regression I: K-nearest neighbors 252
7.1 Overview 252
7.2 Chapter learning objectives 252
7.3 The regression problem 253

7.4 Exploring adataset L. 254

Contents

10

7.5 K-nearest neighbors regression
7.6 Training, evaluating, and tuning the model
7.7 Underfitting and overfitting
7.8 Evaluating on the test set
7.9 Multivariable K-NN regression
7.10 Strengths and limitations of K-NN regression
7.11 Exerciseso

Regression II: linear regression
81 Overview
8.2 Chapter learning objectives
8.3 Simple linear regression
8.4 Linear regression in Python
8.5 Comparing simple linear and K-NN regression
8.6 Multivariable linear regression
8.7 Multicollinearity and outliers
87.1 Outliers
8.7.2 Multicollinearity
8.8 Designing new predictors
8.9 The other sides of regression
8.10 Exerciseso
8.11 Additional resources

Clustering
9.1 Overview
9.2 Chapter learning objectives
9.3 Clustering
9.4 Anillustrative example
9.5 K-means
9.5.1 Measuring cluster quality
9.5.2 The clustering algorithm
9.5.3 Randomrestarts.
9.54 Choosing K
9.6 K-meansin Python
9.7 Exercises
9.8 Additional resources

Statistical inference

10.1 Overview
10.2 Chapter learning objectives
10.3 Why do we need sampling?
10.4 Sampling distributions L.

ix

256
260
265
267
270
273
274

275
275
275
275
280
282
284
287
287
289
290
293
293
293

295
295
295
296
297
301
301
303
305
305
307
315
315

10.4.1 Sampling distributions for proportions
10.4.2 Sampling distributions for means
10.4.3 Summaryo
10.5 Bootstrapping o
10.5.1 Overview
10.5.2 Bootstrapping in Python
10.5.3 Using the bootstrap to calculate a plausible range . .
10.6 Exerciseso
10.7 Additional resources

11 Combining code and text with Jupyter

11.1 Overview oL
11.2 Chapter learning objectives
11.3 Jupyter
11.3.1 Accessing Jupyter

114 Codecells
11.4.1 Executing codecells.

11.4.2 The Kernel
11.4.3 Creating new code cells

11.5 Markdown cells oo
11.5.1 Editing Markdown cells

11.5.2 Creating new Markdown cells

11.6 Saving your worko
11.7 Best practices for running a notebook
11.7.1 Best practices for executing code cells

11.7.2 Best practices for including Python packages in note-
books

11.7.3 Summary of best practices for running a notebook . .

11.8 Exploring data files
11.9 Exporting to a different file format
11.9.1 Exporting to HTML

11.9.2 Exporting to PDFo

11.10 Creating a new Jupyter notebook
11.11 Additional resources

12 Collaboration with version control
12.1 Overview
12.2 Chapter learning objectives
12.3 What is version control, and why should I use it?
12.4 Version control repositories
12.5 Version control workflows
12.5.1 Committing changes to a local repository

Contents

360

Contents

12.5.2 Pushing changes to a remote repository
12.5.3 Pulling changes from a remote repository
12.6 Working with remote repositories using GitHub
12.6.1 Creating a remote repository on GitHub
12.6.2 Editing files on GitHub with the pen tool
12.6.3 Creating files on GitHub with the “Add file” menu . .
12.7 Working with local repositories using Jupyter
12.7.1 Generating a GitHub personal access token
12.7.2 Cloning a repository using Jupyter
12.7.3 Specifying files to commit
12.7.4 Making the commit
12.7.5 Pushing the commits to GitHub

12.8 Collaboration

12.8.1 Giving collaborators access to your project
12.8.2 Pulling changes from GitHub using Jupyter.
12.8.3 Handling merge conflicts
12.8.4 Communicating using GitHub issues

12.9 Exercises . .

12.10 Additional resources

13 Setting up your computer

13.1 Overview . .

13.2 Chapter learning objectives
13.3 Obtaining the worksheets for this book
13.4 Working with Docker

13.4.1 Windowso

13.4.2 MacOS
13.4.3 Ubuntu

13.5 Working with JupyterLab Desktop
13.5.1 Windows oo

13.5.2 MacOS
13.5.3 Ubuntu

Bibliography

Index

xi

371
372
373
374
375
379
382
382
383
387
388
390
393
393
396
400
402
403
406

407
407
407
408
408
409
412
413
413
414
416
416

419

425

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

https://taylorandfrancis.com

Preface

This textbook aims to be an approachable introduction to the world of data
science. In this book, we define data science as the process of generating
insight from data through reproducible and auditable processes. If you
analyze some data and give your analysis to a friend or colleague, they should
be able to rerun the analysis from start to finish and get the same result you
did (reproducibility). They should also be able to see and understand all the
steps in the analysis, as well as the history of how the analysis developed
(auditability). Creating reproducible and auditable analyses allows both you
and others to easily double-check and validate your work.

At a high level, in this book, you will learn how to

1. identify common problems in data science, and

2. solve those problems with reproducible and auditable workflows.

Fig. 1 summarizes what you will learn in each chapter of this book. Through-
out, you will learn how to use the Python programming language! to perform
all the tasks associated with data analysis. You will spend the first four chap-
ters learning how to use Python to load, clean, wrangle (i.e., restructure the
data into a usable format), and visualize data while answering descriptive and
exploratory data analysis questions. In the next six chapters, you will learn
how to answer predictive, exploratory, and inferential data analysis questions
with common methods in data science, including classification, regression, clus-
tering, and estimation. In the final chapters you will learn how to combine
Python code, formatted text, and images in a single coherent document with
Jupyter, use version control for collaboration, and install and configure the
software needed for data science on your own computer. If you are reading
this book as part of a course that you are taking, the instructor may have
set up all of these tools already for you; in this case, you can continue on
through the book reading the chapters in order. But if you are reading this
independently, you may want to jump to these last three chapters early before
going on to make sure your computer is set up in such a way that you can try
out the example code that we include throughout the book.

thttps://www.python.org/

xiii

https://www.python.org

Xiv Preface

Collect data Chapter 2 Chapter 3

Read in data Clean & wrangle
Chapter 1
Ask a question
Chapter 5-10 Chapter 4
Rt Model Visualize

Communicate
results

FIGURE 1 Where are we going?

Each chapter in the book has an accompanying worksheet that provides exer-
cises to help you practice the concepts you will learn. We strongly recommend
that you work through the worksheet when you finish reading each chapter
before moving on to the next chapter. All of the worksheets are available at
https://worksheets.python.datasciencebook.ca; the “Exercises” section at
the end of each chapter points you to the right worksheet for that chapter.
For each worksheet, you can either launch an interactive version of the work-
sheet in your browser by clicking the “launch binder” button or preview a
non-interactive version of the worksheet by clicking “view worksheet”. If you
instead decide to download the worksheet and run it on your own machine,
make sure to follow the instructions for computer setup found in Chapter 13.
This will ensure that the automated feedback and guidance that the work-
sheets provide will function as intended.

https://worksheets.python.datasciencebook.ca

Foreword

Roger D. Peng
Johns Hopkins Bloomberg School of Public Health
2023-11-530

The field of data science has expanded and grown significantly in recent years,
attracting excitement and interest from many different directions. The de-
mand for introductory educational materials has grown concurrently with the
growth of the field itself, leading to a proliferation of textbooks, courses, blog
posts, and tutorials. This book is an important contribution to this fast-
growing literature, but given the wide availability of materials, a reader should
be inclined to ask, “What is the unique contribution of this book?” In order
to answer that question, it is useful to step back for a moment and consider
the development of the field of data science over the past few years.

When thinking about data science, it is important to consider two questions:
“What is data science?” and “How should one do data science?” The former
question is under active discussion among a broad community of researchers
and practitioners and there does not appear to be much consensus to date.
However, there seems a general understanding that data science focuses on the
more “active” elements—data wrangling, cleaning, and analysis—of answering
questions with data. These elements are often highly problem-specific and
may seem difficult to generalize across applications. Nevertheless, over time
we have seen some core elements emerge that appear to repeat themselves as
useful concepts across different problems. Given the lack of clear agreement
over the definition of data science, there is a strong need for a book like this
one to propose a vision for what the field is and what the implications are for
the activities in which members of the field engage.

The first important concept addressed by this book is tidy data, which is a
format for tabular data formally introduced to the statistical community in a
2014 paper by Hadley Wickham. Although originally popularized within the
R programming language community via the Tidyverse package collection, the
tidy data format is a language-independent concept that facilitates the appli-
cation of powerful generalized data cleaning and wrangling tools. The second
key concept is the development of workflows for reproducible and auditable

XV

xvi Foreword

data analyses. Modern data analyses have only grown in complexity due to
the availability of data and the ease with which we can implement complex
data analysis procedures. Furthermore, these data analyses are often part of
decision-making processes that may have significant impacts on people and
communities. Therefore, there is a critical need to build reproducible analyses
that can be studied and repeated by others in a reliable manner. Statistical
methods clearly represent an important element of data science for building
prediction and classification models and for making inferences about unob-
served populations. Finally, because a field can succeed only if it fosters an
active and collaborative community, it has become clear that being fluent in
the tools of collaboration is a core element of data science.

This book takes these core concepts and focuses on how one can apply them
to do data science in a rigorous manner. Students who learn from this book
will be well-versed in the techniques and principles behind producing reliable
evidence from data. This book is centered around the implementation of the
tidy data framework within the Python programming language, and as such
employs the most recent advances in data analysis coding. The use of Jupyter
notebooks for exercises immediately places the student in an environment that
encourages auditability and reproducibility of analyses. The integration of git
and GitHub into the course is a key tool for teaching about collaboration and
community, key concepts that are critical to data science.

The demand for training in data science continues to increase. The availability
of large quantities of data to answer a variety of questions, the computational
power available to many more people than ever before, and the public aware-
ness of the importance of data for decision-making have all contributed to the
need for high-quality data science work. This book provides a sophisticated
first introduction to the field of data science and provides a balanced mix of
practical skills along with generalizable principles. As we continue to intro-
duce students to data science and train them to confront an expanding array
of data science problems, they will be well-served by the ideas presented here.

Acknowledgments

Acknowledgments for the R Edition

We'd like to thank everyone who has contributed to the development of Data
Science: A First Introduction®. This is an open-source textbook that began as
a collection of course readings for DSCI 100, a new introductory data science
course at the University of British Columbia (UBC). Several faculty members
in the UBC Department of Statistics were pivotal in shaping the direction of
that course, and as such, contributed greatly to the broad structure and list of
topics in this book. We would especially like to thank Matias Salibian-Barrera
for his mentorship during the initial development and roll-out of both DSCI
100 and this book. His door was always open when we needed to chat about
how to best introduce and teach data science to our first-year students. We
would also like to thank Gabriela Cohen Freue for her DSCI 561 (Regression
I) teaching materials from the UBC Master of Data Science program, as some
of our linear regression figures were inspired from these.

We would also like to thank all those who contributed to the process of pub-
lishing this book. In particular, we would like to thank all of our reviewers
for their feedback and suggestions: Rohan Alexander, Isabella Ghement, Vir-
gilio Gomez Rubio, Albert Kim, Adam Loy, Maria Prokofieva, Emily Riederer,
and Greg Wilson. The book was improved substantially by their insights. We
would like to give special thanks to Jim Zidek for his support and encourage-
ment throughout the process, and to Roger Peng for graciously offering to
write the Foreword.

Finally, we owe a debt of gratitude to all of the students of DSCI 100 over the
past few years. They provided invaluable feedback on the book and worksheets;
they found bugs for us (and stood by very patiently in class while we frantically
fixed those bugs); and they brought a level of enthusiasm to the class that
sustained us during the hard work of creating a new course and writing a
textbook. Our interactions with them taught us how to teach data science,
and that learning is reflected in the content of this book.

2https://datasciencebook.ca

xvii

https://datasciencebook.ca

xviii Acknowledgments

Acknowledgments for the Python Edition

We'd like to thank everyone who has contributed to the development of Data
Science: A First Introduction (Python Edition)®. This is an open-source
Python translation of the original book, which focused on the R programming
language. Both of these books are used to teach DSCI 100 at the University
of British Columbia (UBC). We would like to give special thanks to Navya
Dahiya and Gloria Ye for completing the first round of translation of the
R material to Python, and to Philip Austin for his leadership and guidance
throughout the translation process. We also gratefully acknowledge the UBC
Open Educational Resources Fund, the UBC Department of Statistics, and
the UBC Department of Earth, Ocean, and Atmospheric Sciences for support-
ing the translation of the original R textbook and exercises to the Python
programming language.

3https://python.datasciencebook.ca

https://python.datasciencebook.ca

About the authors

The original version of this textbook was developed by Tiffany Timbers, Trevor
Campbell, and Melissa Lee for the R programming language. The content of
the R textbook was adapted to Python by Trevor Campbell, Joel Ostblom,
and Lindsey Heagy.

Tiffany Timbers® is an Associate Professor of Teaching in the Department of
Statistics and Co-Director for the Master of Data Science program (Vancouver
Option) at the University of British Columbia. In these roles she teaches and
develops curriculum around the responsible application of Data Science to
solve real-world problems. One of her favorite courses she teaches is a graduate
course on collaborative software development, which focuses on teaching how
to create R and Python packages using modern tools and workflows.

Trevor Campbell® is an Associate Professor in the Department of Statistics
at the University of British Columbia. His research focuses on automated, scal-
able Bayesian inference algorithms, Bayesian nonparametrics, streaming data,
and Bayesian theory. He was previously a postdoctoral associate advised by
Tamara Broderick in the Computer Science and Artificial Intelligence Labora-
tory (CSAIL) and Institute for Data, Systems, and Society (IDSS) at MIT, a
Ph.D. candidate under Jonathan How in the Laboratory for Information and
Decision Systems (LIDS) at MIT, and before that he was in the Engineering
Science program at the University of Toronto.

Melissa Lee® is an Assistant Professor of Teaching in the Department of
Statistics at the University of British Columbia. She teaches and develops
curriculum for undergraduate statistics and data science courses. Her work
focuses on student-centered approaches to teaching, developing and assessing
open educational resources, and promoting equity, diversity, and inclusion
initiatives.

Joel Ostblom” is an Assistant Professor of Teaching in the Department of
Statistics at the University of British Columbia. During his PhD, Joel devel-
oped a passion for data science and reproducibility through the development

4https:/ /www.tiffanytimbers.com/
Shttps://trevorcampbell.me/
Shttps://www.stat.ubc.ca/users/melissa-lee
Thttps://joelostblom.com/

Xix

https://www.tiffanytimbers.com
https://trevorcampbell.me
https://www.stat.ubc.ca/users/melissa-lee
https://joelostblom.com

XX About the authors

of quantitative image analysis pipelines for studying stem cell and develop-
mental biology. He has since co-created or lead the development of several
courses and workshops at the University of Toronto and is now an assistant
professor of teaching in the statistics department at the University of British
Columbia. Joel cares deeply about spreading data literacy and excitement
over programmatic data analysis, which is reflected in his contributions to
open-source projects and data science learning resources.

Lindsey Heagy?® is an Assistant Professor in the Department of Earth, Ocean,
and Atmospheric Sciences and director of the Geophysical Inversion Facility
at the University of British Columbia. Her research combines computational
methods in numerical simulations, inversions, and machine learning to answer
questions about the subsurface of the Earth. Primary applications include
mineral exploration, carbon sequestration, groundwater, and environmental
studies. She completed her BSc at the University of Alberta, her PhD at the
University of British Columbia, and held a Postdoctoral research position at
the University of California Berkeley prior to starting her current position at
UBC.

8https://lindseyjh.ca/

https://lindseyjh.ca

1

Python and Pandas

1.1 Overview

This chapter provides an introduction to data science and the Python pro-
gramming language. The goal here is to get your hands dirty right from the
start. We will walk through an entire data analysis, and along the way intro-
duce different types of data analysis question, some fundamental programming
concepts in Python, and the basics of loading, cleaning, and visualizing data.
In the following chapters, we will dig into each of these steps in much more
detail, but for now, let’s jump in to see how much we can do with data science.

1.2 Chapter learning objectives
By the end of the chapter, readers will be able to do the following:

» Identify the different types of data analysis question and categorize a ques-
tion into the correct type.

» Load the pandas package into Python.
» Read tabular data with read_csv.
o Create new variables and objects in Python using the assignment symbol.

» Create and organize subsets of tabular data using [1, loc[], sort_values,
and head.

e Add and modify columns in tabular data using column assignment.
o Chain multiple operations in sequence.
o Visualize data with an altair bar plot.

e Use help () and ? to access help and documentation tools in Python.

DOI: 10.1201/9781003438397-1 1

https://doi.org/10.1201/9781003438397-1

2 CHAPTER 1. PYTHON AND PANDAS

1.3 Canadian languages data set

In this chapter, we will walk through a full analysis of a data set relating
to languages spoken at home by Canadian residents (Fig. 1.1). Many Indige-
nous peoples exist in Canada with their own cultures and languages; these
languages are often unique to Canada and not spoken anywhere else in the
world [Statistics Canada, 2018]. Sadly, colonization has led to the loss of many
of these languages. For instance, generations of children were not allowed to
speak their mother tongue (the first language an individual learns in child-
hood) in Canadian residential schools. Colonizers also renamed places they
had “discovered” [Wilson, 2018]. Acts such as these have significantly harmed
the continuity of Indigenous languages in Canada, and some languages are con-
sidered “endangered” as few people report speaking them. To learn more, see
Canadian Geographic’s article, “Mapping Indigenous Languages in Canada”
[Walker, 2017], They Came for the Children: Canada, Aboriginal peoples, and
Residential Schools [Truth and Reconciliation Commission of Canada, 2012],
and the Truth and Reconciliation Commission of Canada’s Calls to Action
[Truth and Reconciliation Commission of Canada, 2015].

FIGURE 1.1 Map of Canada.

1.3. CANADIAN LANGUAGES DATA SET 3

The data set we will study in this chapter is taken from the canlang R
data package! [Timbers, 2020], which has population language data collected
during the 2016 Canadian census [Statistics Canada, 2016]. In this data, there
are 214 languages recorded, each having six different properties:

1. category: Higher-level language category, describing whether the
language is an Official Canadian language, an Aboriginal (i.e., In-
digenous) language, or a Non-Official and Non-Aboriginal language.

2. language: The name of the language.

3. mother_tongue: Number of Canadian residents who reported the
language as their mother tongue. Mother tongue is generally defined
as the language someone was exposed to since birth.

4. most_at_home: Number of Canadian residents who reported the
language as being spoken most often at home.

5. most_at_work: Number of Canadian residents who reported the
language as being used most often at work.

6. lang_known: Number of Canadian residents who reported knowl-
edge of the language.

According to the census, more than 60 Aboriginal languages were reported
as being spoken in Canada. Suppose we want to know which are the most
common; then we might ask the following question, which we wish to answer
using our data:

Which ten Aboriginal languages were most often reported in 2016 as mother
tongues in Canada, and how many people speak each of them?

Note: Data science cannot be done without a deep understanding of the data
and problem domain. In this book, we have simplified the data sets used in our
examples to concentrate on methods and fundamental concepts. But in real
life, you cannot and should not practice data science without a domain expert.
Alternatively, it is common to practice data science in your own domain of
expertise. Remember that when you work with data, it is essential to think
about how the data were collected, which affects the conclusions you can draw.
If your data are biased, then your results will be biased.

Thttps://ttimbers.github.io/canlang/

https://ttimbers.github.io/canlang

4 CHAPTER 1. PYTHON AND PANDAS

1.4 Asking a question

Every good data analysis begins with a question—Ilike the above—that you
aim to answer using data. As it turns out, there are actually a number of
different types of question regarding data: descriptive, exploratory, predictive,
inferential, causal, and mechanistic, all of which are defined in Table 1.1. [Leek
and Peng, 2015; Peng and Matsui, 2015] Carefully formulating a question as
early as possible in your analysis—and correctly identifying which type of
question it is—will guide your overall approach to the analysis as well as the
selection of appropriate tools.

TABLE 1.1 Types of data analysis question.

Question type | Description Example

Descriptive | A question that asks about summa-| How many people live in
rized characteristics of a data set with- | each province and terri-
out interpretation (i.e., report a fact). | tory in Canada?

Exploratory | A question that asks if there are pat-| Does political party vot-
terns, trends, or relationships within a | ing change with indica-
single data set. Often used to propose | tors of wealth in a set
hypotheses for future study. of data collected on 2,000

people living in Canada?

Predictive A question that asks about predicting | What political party will
measurements or labels for individuals | someone vote for in the
(people or things). The focus is on | next Canadian election?
what things predict some outcome, but
not what causes the outcome.

Inferential A question that looks for patterns, | Does political party vot-
trends, or relationships in a single data | ing change with indica-
set and also asks for quantification of | tors of wealth for all peo-
how applicable these findings are to the | ple living in Canada?
wider population.

Causal A question that asks about whether | Does wealth lead to vot-
changing one factor will lead to a |ing for a certain political
change in another factor, on average, | party in Canadian elec-
in the wider population. tions?

Mechanistic | A question that asks about the under- | How does wealth lead to
lying mechanism of the observed pat- | voting for a certain po-
terns, trends, or relationships (i.e., how | litical party in Canadian
does it happen?) elections?

1.4. ASKING A QUESTION

In this book, you will learn techniques to answer the first four types of question:
descriptive, exploratory, predictive, and inferential;, causal and mechanistic
questions are beyond the scope of this book. In particular, you will learn how
to apply the following analysis tools:

1.

Summarization: computing and reporting aggregated values per-
taining to a data set. Summarization is most often used to answer
descriptive questions, and can occasionally help with answering ex-
ploratory questions. For example, you might use summarization to
answer the following question: What is the average race time for run-
ners in this data set? Tools for summarization are covered in detail
in Chapters 2 and 3, but appear regularly throughout the text.

Visualization: plotting data graphically. Visualization is typically
used to answer descriptive and exploratory questions, but plays a
critical supporting role in answering all of the types of question in
Table 1.1. For example, you might use visualization to answer the
following question: Is there any relationship between race time and
age for runners in this data set? This is covered in detail in Chapter
4 but again appears regularly throughout the book.

Classification: predicting a class or category for a new observation.
(Classification is used to answer predictive questions. For example,
you might use classification to answer the following question: Given
measurements of a tumor’s average cell area and perimeter, is the
tumor benign or malignant? Classification is covered in Chapters 5
and 6.

Regression: predicting a quantitative value for a new observation.
Regression is also used to answer predictive questions. For example,
you might use regression to answer the following question: What will
be the race time for a 20-year-old runner who weighs 50 kg? Regression
is covered in Chapters 7 and 8.

Clustering: finding previously unknown/unlabeled subgroups in a
data set. Clustering is often used to answer exploratory questions.
For example, you might use clustering to answer the following ques-
tion: What products are commonly bought together on Amazon? Clus-
tering is covered in Chapter 9.

Estimation: taking measurements for a small number of items from
a large group and making a good guess for the average or proportion
for the large group. Estimation is used to answer inferential ques-
tions. For example, you might use estimation to answer the following

6 CHAPTER 1. PYTHON AND PANDAS

question: Given a survey of cellphone ownership of 100 Canadi-
ans, what proportion of the entire Canadian population own Android
phones? Estimation is covered in Chapter 10.

Referring to Table 1.1, our question about Aboriginal languages is an example
of a descriptive question: we are summarizing the characteristics of a data set
without further interpretation. And referring to the list above, it looks like
we should use visualization and perhaps some summarization to answer the
question. So in the remainder of this chapter, we will work toward making
a visualization that shows us the ten most common Aboriginal languages in
Canada and their associated counts, according to the 2016 census.

1.5 Loading a tabular data set

A data set is, at its core essence, a structured collection of numbers and
characters. Aside from that, there are really no strict rules; data sets can
come in many different forms. Perhaps the most common form of data set
that you will find in the wild, however, is tabular data. Think spreadsheets in
Microsoft Excel: tabular data are rectangular-shaped and spreadsheet-like, as
shown in Fig. 1.2. In this book, we will focus primarily on tabular data.

Since we are using Python for data analysis in this book, the first step for
us is to load the data into Python. When we load tabular data into Python,
it is represented as a data frame object. Fig. 1.2 shows that a Python data
frame is very similar to a spreadsheet. We refer to the rows as observations;
these are the individual objects for which we collect data. In Fig. 1.2, the
observations are languages. We refer to the columns as variables; these
are the characteristics of each observation. In Fig. 1.2, the variables are the
language’s category, its name, the number of mother tongue speakers, etc.

The first kind of data file that we will learn how to load into Python as a
data frame is the comma-separated values format (.csv for short). These
files have names ending in .csv, and can be opened and saved using common
spreadsheet programs like Microsoft Excel and Google Sheets. For example,
the .csv file named can_lang.csv is included with the code for this book?.
If we were to open this data in a plain text editor (a program like Notepad
that just shows text with no formatting), we would see each row on its own
line, and each entry in the table separated by a comma:

2https://github.com/UBC-DSCI/introduction-to-datascience-python/tree/main /sourc
e/data

https://github.com/UBC-DSCI/introduction-to-datascience-python/tree/main/source/data
https://github.com/UBC-DSCI/introduction-to-datascience-python/tree/main/source/data

1.5. LOADING A TABULAR DATA SET 7

Spreadsheet
A B c D E F
1 category language mother_tongue most_at_home most_at_work lang_known
2 Aboriginal languages Aboriginal languages, n.o.s. 590 235 30 665
3 Non-Official & Non-Aboriginal languages Afrikaans 10260 4785 85 23415
4 Non-Official & Non-Aboriginal languages Afro-Asiatic languages, n.i.e. 1150 445 10 2775
5 Non-Official & Non-Aboriginal languages Akan (Twi) 13460 5985 25 22150
6 Non-Official & Non-Aboriginal languages Albanian 26895 13135 345 31930
. 7 Aboriginal languages Algonquian languages, n.i.e. 45 10 0 120
8 Aboriginal languages Algonquin 1260 370 40 2480
9 Non-Official & Non-Aboriginal languages American Sign Language 2685 3020 1145 21930
10 Non-Official & Non-Aboriginal languages Amharic 22465 12785 200 33670
11 Non-Official & Non-Aboriginal languages Arabic 419890 223535 5585 629055
DataFrame in Python

category language mother_tongue most_at_home most_at_work lang_known

0 Aboriginal languages Aboriginal languages, n.o.s. 590 235 30 665

1 Non-Official & Non-Aboriginal languages Afrikaans 10260 4785 85 23415

2 Non-Official & Non-Aboriginal languages Afro-Asiatic languages, n.i.e. 1150 445 10 2775

3 Non-Official & Non-Aboriginal languages Akan (Twi) 13460 5985 25 22150

4 Non-Official & Non-Aboriginal languages Albanian 26895 13135 345 31930

209 Non-Official & Non-Aboriginal languages Wolof 3990 1385 10 8240

210 Aboriginal languages Woods Cree 1840 800 75 2665

211 Non-Official & Non-Aboriginal languages Wu (Shanghainese) 12915 7650 105 16530

212 Non-Official & Non-Aboriginal languages Yiddish 13665 7085 895 20985

213 Non-Official & Non-Aboriginal languages Yoruba 9080 2615 15 22415

214 rows x 6 columns

FIGURE 1.2 A spreadsheet versus a data frame in Python.

category, language, mother_tongue,most_at_home, most_at_work, lang_known

Aboriginal languages, "Aboriginal languages, n.o.s.",590,235,30,665

Non-Official & Non-Aboriginal languages,Afrikaans,10260,4785,85,23415
Non-Official & Non-Aboriginal languages, "Afro-Asiatic languages, n.i.e.",1150,44
Non-Official & Non-Aboriginal languages,Akan (Twi),13460,5985,25,22150
Non-Official & Non-Aboriginal languages,Albanian,26895,13135,345,31930
Aboriginal languages, "Algonguian languages, n.i.e.",45,10,0,120

Aboriginal languages,Algonquin, 1260,370,40,2480

Non-Official & Non-Aboriginal languages,American Sign Language,2685,3020,1145,21
Non-Official & Non-Aboriginal languages,Amharic,22465,12785,200,33670

To load this data into Python so that we can do things with it (e.g., perform
analyses or create data visualizations), we will need to use a function. A
function is a special word in Python that takes instructions (we call these
arguments) and does something. The function we will use to load a .csv file
into Python is called read_csv. In its most basic use-case, read_csv expects
that the data file:

o has column names (or headers),

« uses a comma (,) to separate the columns, and

8 CHAPTER 1. PYTHON AND PANDAS

folder where the file is located

pd.read_csv('data/can_lang.csv")

name of the file we want to read into Python

FIGURE 1.3 Syntax for the read_csv function.

e does not have row names.

Below you’ll see the code used to load the data into Python using the
read_csv function. Note that the read_csv function is not included in the
base installation of Python, meaning that it is not one of the primary functions
ready to use when you install Python. Therefore, you need to load it from
somewhere else before you can use it. The place from which we will load it is
called a Python package. A Python package is a collection of functions that
can be used in addition to the built-in Python package functions once loaded.
The read_csv function, in particular, can be made accessible by loading the
pandas Python package® [The Pandas Development Team, 2020, Wes McKin-
ney, 2010] using the import command. The pandas package contains many
functions that we will use throughout this book to load, clean, wrangle, and
visualize data.

import pandas as pd

This command has two parts. The first is import pandas, which loads
the pandas package. The second is as pd, which give the pandas package
the much shorter alias (another name) pd. We can now use the read_csv
function by writing pd.read_csv, i.e., the package name, then a dot, then
the function name. You can see why we gave pandas a shorter alias; if we
had to type pandas before every function we wanted to use, our code would
become much longer and harder to read.

Now that the pandas package is loaded, we can use the read_csv function
by passing it a single argument: the name of the file, "can_lang.csv". We
have to put quotes around file names and other letters and words that we use
in our code to distinguish it from the special words (like functions!) that make
up the Python programming language. The file’s name is the only argument
we need to provide because our file satisfies everything else that the read_csv
function expects in the default use case. Fig. 1.3 describes how we use the
read_csv to read data into Python.

3https:/ /pypi.org/project /pandas/

https://pypi.org/project/pandas

1.6. NAMING THINGS IN PYTHON 9

pd.read_csv ("data/can_lang.csv")

category language o

<\
0 Aboriginal languages Aboriginal languages, n.o.s.
1 Non-Official & Non-Aboriginal languages Afrikaans
2 Non-Official & Non-Aboriginal languages Afro-Asiatic languages, n.i.e.
3 Non-Official & Non-Aboriginal languages Akan (Twi)
4 Non-Official & Non-Aboriginal languages Albanian
209 Non-Official & Non-Aboriginal languages Wolof
210 Aboriginal languages Woods Cree
211 Non-Official & Non-Aboriginal languages Wu (Shanghainese)
212 Non-Official & Non-Aboriginal languages Yiddish
213 Non-Official & Non-Aboriginal languages Yoruba

mother_tongue most_at_home most_at_work lang_known
0 590 235 30 665
1 10260 4785 85 23415
2 1150 445 10 2775
3 13460 5985 25 22150
4 26895 13135 345 31930
209 3990 1385 10 8240
210 1840 800 75 2665
211 12915 7650 105 16530
212 13555 7085 895 20985
213 9080 2615 15 22415

[214 rows x 6 columns]

1.6 Naming things in Python

When we loaded the 2016 Canadian census language data using read_csv,
we did not give this data frame a name. Therefore the data was just printed
on the screen, and we cannot do anything else with it. That isn’t very useful.
What would be more useful would be to give a name to the data frame that
read_csv outputs so that we can refer to it later for analysis and visualization.

The way to assign a name to a value in Python is via the assignment symbol
=. On the left side of the assignment symbol you put the name that you want
to use, and on the right side of the assignment symbol you put the value that
you want the name to refer to. Names can be used to refer to almost anything
in Python, such as numbers, words (also known as strings of characters), and
data frames. Below, we set my_number to 3 (the result of 1+2) and we set
name to the string "Alice".

my_number = 1 + 2
name = "Alice"

10 CHAPTER 1. PYTHON AND PANDAS

Note that when we name something in Python using the assignment symbol,
=, we do not need to surround the name we are creating with quotes. This is
because we are formally telling Python that this special word denotes the value
of whatever is on the right-hand side. Only characters and words that act as
values on the right-hand side of the assignment symbol—e.g., the file name
"data/can_lang.csv" that we specified before, or "Alice" above—need to
be surrounded by quotes.

After making the assignment, we can use the special name words we have
created in place of their values. For example, if we want to do something with
the value 3 later on, we can just use my_number instead. Let’s try adding 2
to my_number; you will see that Python just interprets this as adding 2 and
3:

my_number + 2
5

Object names can consist of letters, numbers, and underscores (_). Other sym-
bols won’t work since they have their own meanings in Python. For example,
- is the subtraction symbol; if we try to assign a name with the — symbol,
Python will complain and we will get an error.

my-number = 1
SyntaxError: cannot assign to expression here. Maybe you meant '==' instead.
wof '='?

There are certain conventions for naming objects in Python. When naming
an object we suggest using only lowercase letters, numbers, and underscores
_ to separate the words in a name. Python is case sensitive, which means
that Letter and letter would be two different objects in Python. You
should also try to give your objects meaningful names. For instance, you can
name a data frame x. However, using more meaningful terms, such as lan-
guage_data, will help you remember what each name in your code represents.
We recommend following the PEP 8 naming conventions outlined in the PEP
8' [Guido van Rossum, 2001]. Let’s now use the assignment symbol to give
the name can_lang to the 2016 Canadian census language data frame that
we get from read_csv.

can_lang = pd.read_csv("data/can_lang.csv")

4https://peps.python.org/pep-0008/

https://peps.python.org/pep-0008

1.7. CREATING SUBSETS OF DATA FRAMES WITH [] & LOC[] 11

Wait a minute, nothing happened this time. Where’s our data? Actu-
ally, something did happen: the data was loaded in and now has the name
can_lang associated with it. And we can use that name to access the data
frame and do things with it. For example, we can type the name of the data
frame to print both the first few rows and the last few rows. The three dots
(...)indicate that there are additional rows that are not printed. You will also
see that the number of observations (i.e., rows) and variables (i.e., columns)
are printed just underneath the data frame (214 rows and 6 columns in this
case). Printing a few rows from data frame like this is a handy way to get a
quick sense for what is contained in it.

can_lang
category language .

=\

0 Aboriginal languages Aboriginal languages, n.o.s.
1 Non-Official & Non-Aboriginal languages Afrikaans
2 Non-Official & Non-Aboriginal languages Afro-Asiatic languages, n.i.e.
3 Non-Official & Non-Aboriginal languages Akan (Twi)
4 Non-Official & Non-Aboriginal languages Albanian
209 Non-Official & Non-Aboriginal languages Wolof
210 Aboriginal languages Woods Cree
211 Non-Official & Non-Aboriginal languages Wu (Shanghainese)
212 Non-Official & Non-Aboriginal languages Yiddish
213 Non-Official & Non-Aboriginal languages Yoruba

mother_tongue most_at_home most_at_work lang_known

0 590 285 30 665
1 10260 4785 85 23415
2 1150 445 10 2775
3 13460 5985 28 22150
4 26895 13135 345 31930
209 3990 1385 10 8240
210 1840 800 75 2665
211 12915 7650 105 16530
212 315155 7085 895 20985
213 9080 2615 15 22415

[214 rows X 6 columns]

1.7 Creating subsets of data frames with [] & loc[]

Now that we’ve loaded our data into Python, we can start wrangling the
data to find the ten Aboriginal languages that were most often reported in
2016 as mother tongues in Canada. In particular, we want to construct a
table with the ten Aboriginal languages that have the largest counts in the
mother_tongue column. The first step is to extract from our can_lang data

12 CHAPTER 1. PYTHON AND PANDAS

only those rows that correspond to Aboriginal languages, and then the second
step is to keep only the 1anguage and mother_tongue columns. The [] and
loc[] operations on the pandas data frame will help us here. The [] allows
you to obtain a subset of (i.e., filter) the rows of a data frame, or to obtain
a subset of (i.e., select) the columns of a data frame. The loc[] operation
allows you to both filter rows and select columns at the same time. We will
first investigate filtering rows and selecting columns with the [] operation,
and then use loc[] to do both in our analysis of the Aboriginal languages
data.

Note: The [] and loc[] operations, and related operations, in pandas are
much more powerful than we describe in this chapter. You will learn more
sophisticated ways to index data frames later on in Chapter 3.

1.7.1 Using [] to filter rows

Looking at the can_lang data above, we see the column category contains
different high-level categories of languages, which include “Aboriginal lan-
guages”, “Non-Official & Non-Aboriginal languages”, and “Official languages”.
To answer our question we want to filter our data set so we restrict our atten-
tion to only those languages in the “Aboriginal languages” category.

We can use the [] operation to obtain the subset of rows with desired val-
ues from a data frame. Fig. 1.4 shows the syntax we need to use to filter
rows with the [] operation. First, we type the name of the data frame—

here, can_lang—followed by square brackets. Inside the square brackets, we
write a logical statement to use when filtering the rows. A logical statement
evaluates to either True or False for each row in the data frame; the [] oper-
ation keeps only those rows for which the logical statement evaluates to True.
For example, in our analysis, we are interested in keeping only languages in
the "Aboriginal languages" higher-level category. We can use the equiva-
lency operator == to compare the values of the category column—denoted by
can_lang["category"]—with the value "Aboriginal languages". You
will learn about many other kinds of logical statement in Chapter 3. Similar
to when we loaded the data file and put quotes around the file name, here
we need to put quotes around both "Aboriginal languages" and "cate-
gory". Using quotes tells Python that this is a string value (e.g., a column
name, or word data) and not one of the special words that make up the Python
programming language, or one of the names we have given to objects in the
code we have already written.

1.7. CREATING SUBSETS OF DATA FRAMES WITH [] & LOC[] 13

logical statement to keep only
name of the data frame object rows that satisfy this condition

| i \

can_lang[can_lang["category"] == "Aboriginal languages"]

name of the column we want to filter on value we want to look for in the column

FIGURE 1.4 Syntax for using the [] operation to filter rows.

Note: In Python, single quotes (') and double quotes (") are generally
treated the same. So we could have written 'Aboriginal languages' in-
stead of "Aboriginal languages" above, or 'category' instead of "cat-
egory". Try both out for yourself.

This operation returns a data frame that has all the columns of the input
data frame, but only those rows corresponding to Aboriginal languages that
we asked for in the logical statement.

can_lang[can_lang["category"] == "Aboriginal languages"]
category language mother_tongue \
0 Aboriginal languages Aboriginal languages, n.o.s. 590
5 Aboriginal languages Algonquian languages, n.i.e. 45
6 Aboriginal languages Algonquin 1260
12 Aboriginal languages Athabaskan languages, n.i.e. 50
13 Aboriginal languages Atikamekw 6150
191 Aboriginal languages Thompson (Ntlakapamux) 335
195 Aboriginal languages Tlingit 95
196 Aboriginal languages Tsimshian 200
206 Aboriginal languages Wakashan languages, n.i.e. 10
210 Aboriginal languages Woods Cree 1840

most_at_home most_at_work lang_known

0 235 30 665
5 10 0 120
6 370 40 2480
12 10 0 85
13 5465 1100 6645
191 20 0 450
195 0 10 260
196 30 10 410
206 0 0 28
210 800 75 2665

[67 rows x 6 columns]

14 CHAPTER 1. PYTHON AND PANDAS

name of the data frame object

can_lang[["language", "mother_tongue"]]

names of the columns we want to select

FIGURE 1.5 Syntax for using the [] operation to select columns.

1.7.2 Using [] to select columns

We can also use the [] operation to select columns from a data frame. Fig.
1.5 displays the syntax needed to select columns. We again first type the
name of the data frame—here, can_lang—followed by square brackets. In-
side the square brackets, we provide a [ist of column names. In Python,
we denote a [ist using square brackets, where each item is separated by a
comma (,). So if we are interested in selecting only the language and
mother_tongue columns from our original can_lang data frame, we put the
list ["language", "mother_tongue"] containing those two column names
inside the square brackets of the [] operation.

This operation returns a data frame that has all the rows of the input data
frame, but only those columns that we named in the selection list.

can_lang[["language", "mother_tongue"]]

language mother_tongue

0 Aboriginal languages, n.o.s. 590
1 Afrikaans 10260
2 Afro-Asiatic languages, n.i.e. 1150
3 Akan (Twi) 13460
4 Albanian 26895
209 Wolof 3990
210 Woods Cree 1840
211 Wu (Shanghainese) 12915
212 Yiddish 13555
213 Yoruba 9080

[214 rows X 2 columns]

1.7.3 Using loc[] to filter rows and select columns

The [] operation is only used when you want to filter rows or select columns; it
cannot be used to do both operations at the same time. But in order to answer
our original data analysis question in this chapter, we need to both filter the
rows for Aboriginal languages, and select the language and mother_tongue
columns. Fortunately, pandas provides the 1oc[] operation, which lets us
do just that. The syntax is very similar to the [] operation we have already

1.7. CREATING SUBSETS OF DATA FRAMES WITH [] & LOC[] 15

name of the data frame object

can_lang. loc[can_lang["category"] == "Aboriginal languages", ['"language", "mother_tongue"]]
L J) L

filter on the rows with this condition select the columns we are interested in

FIGURE 1.6 Syntax for using the 1oc[] operation to filter rows and select
columns.

covered: we will essentially combine both our row filtering and column se-
lection steps from before. In particular, we first write the name of the data
frame—can_lang again—then follow that with the .loc[] operation. In-
side the square brackets, we write our row filtering logical statement, then a
comma, then our list of columns to select (Fig. 1.6).

aboriginal_lang = can_lang.loc[can_lang["category"] == "Aboriginal languages", [
<"language", "mother_tongue"]]

There is one very important thing to notice in this code example. The first
is that we used the loc[] operation on the can_lang data frame by writ-
ing can_lang.loc[]—first the data frame name, then a dot, then loc[].
There’s that dot again. If you recall, earlier in this chapter we used the
read_csv function from pandas (aliased as pd), and wrote pd.read_csv.
The dot means that the thing on the left (pd, i.e., the pandas package)
provides the thing on the right (the read csv function). In the case of
can_lang.loc[], the thing on the left (the can_lang data frame) provides
the thing on the right (the 1oc[] operation). In Python, both packages (like
pandas) and objects (like our can_lang data frame) can provide functions
and other objects that we access using the dot syntax.

Note: A note on terminology: when an object obj provides a function f with
the dot syntax (as in obj. f ()), sometimes we call that function £ a method of
obj or an operation on obj. Similarly, when an object obj provides another
object x with the dot syntax (as in obj.x), sometimes we call the object
x an attribute of obj. We will use all of these terms throughout the book,
as you will see them used commonly in the community. And just because
we programmers like to be confusing for no apparent reason: we don’t use the
“method”, “operation”, or “attribute” terminology when referring to functions
and objects from packages, like pandas. So, for example, pd. read_csv would
typically just be referred to as a function, but not as a method or operation,
even though it uses the dot syntax.

16 CHAPTER 1. PYTHON AND PANDAS

At this point, if we have done everything correctly, aboriginal_lang should
be a data frame containing only rows where the category is "Aborigi-
nal languages", and containing only the language and mother_tongue
columns. Any time you take a step in a data analysis, it’s good practice to
check the output by printing the result.

aboriginal_lang

language mother_tongue

0 Aboriginal languages, n.o.s. 590
5 Algonquian languages, n.i.e. 45
6 Algonquin 1260
12 Athabaskan languages, n.i.e. 50
13 Atikamekw 6150
191 Thompson (Ntlakapamux) 335
195 Tlingit 95
196 Tsimshian 200
206 Wakashan languages, n.i.e. 10
210 Woods Cree 1840

[67 rows x 2 columns]

We can see the original can_lang data set contained 214 rows with multiple
kinds of category. The data frame aboriginal_lang contains only 67 rows,
and looks like it only contains Aboriginal languages. So it looks like the 1oc[]
operation gave us the result we wanted.

1.8 Using sort_values and head to select rows by ordered values

We have used the [] and 1loc[] operations on a data frame to obtain a table
with only the Aboriginal languages in the data set and their associated counts.
However, we want to know the ten languages that are spoken most often. As
a next step, we will order the mother_tongue column from largest to smallest
value and then extract only the top ten rows. This is where the sort_values
and head functions come to the rescue.

The sort_values function allows us to order the rows of a data frame by the
values of a particular column. We need to specify the column name by which
we want to sort the data frame by passing it to the argument by. Since we
want to choose the ten Aboriginal languages most often reported as a mother
tongue language, we will use the sort_values function to order the rows in
our selected_lang data frame by the mother_tongue column. We want to

1.8. USING SORT_VALUES AND HEAD TO SELECT ROWS BY ORDERED VALUES17

arrange the rows in descending order (from largest to smallest), so we specify
the argument ascending as False (Fig. 1.7).

name of the name of the column
data frame object we want to sort by sort in descending order

! !

aboriginal_lang.sort_values(by="mother_tongue", ascending=False)

FIGURE 1.7 Syntax for using sort_values to arrange rows in descending
order.

arranged_lang = aboriginal_lang.sort_values (by="mother_tongue", ascending=False)
arranged_lang

language mother_tongue

40 Cree, n.o.s. 64050
89 Inuktitut 35210
138 Ojibway 17885
137 Oji-Cree 12855
48 Dene 10700
5 Algongquian languages, n.i.e. 45
32 Cayuga 45
179 Squamish 40
90 Iroquoian languages, n.i.e. 35
206 Wakashan languages, n.i.e. 10

[67 rows x 2 columns]

Next, we will obtain the ten most common Aboriginal languages by selecting
only the first ten rows of the arranged_lang data frame. We do this using
the head function, and specifying the argument 10.

ten_lang = arranged_lang.head (10)

ten_lang

language mother_tongue
40 Cree, n.o.s. 64050
89 Inuktitut 35210
138 Ojibway 17885
137 0ji-Cree 12855
48 Dene 10700
125 Montagnais (Innu) 10235
119 Mi 'kmaq 6690
13 Atikamekw 6150
149 Plains Cree 3065

180 Stoney 3025

18 CHAPTER 1. PYTHON AND PANDAS

1.9 Adding and modifying columns

Recall that our data analysis question referred to the count of Canadians that
speak each of the top ten most commonly reported Aboriginal languages as
their mother tongue, and the ten_lang data frame indeed contains those
counts .. But perhaps, seeing these numbers, we became curious about the
percentage of the population of Canada associated with each count. It is com-
mon to come up with new data analysis questions in the process of answering
a first one—so fear not and explore. To answer this small question along the
way, we need to divide each count in the mother_tongue column by the to-
tal Canadian population according to the 2016 census—i.e., 35,151,728—and
multiply it by 100. We can perform this computation using the code 100 *
ten_lang["mother_tongue"] / canadian_population. Then to store
the result in a new column (or overwrite an existing column), we specify the
name of the new column to create (or old column to modify), then the assign-
ment symbol =, and then the computation to store in that column. In this
case, we will opt to create a new column called mother_tongue_percent.

Note: You will see below that we write the Canadian population in Python
as 35_151_728. The underscores (_) are just there for readability, and do
not affect how Python interprets the number. In other words, 35151728 and
35_151_728 are treated identically in Python, although the latter is much

clearer.

canadian_population = 35_151_728

ten_lang["mother_tongue_percent"] = 100 * ten_lang["mother_tongue"] / canadian_
—population

ten_lang

language mother_tongue mother_tongue_percent

40 Cree, n.o.s. 64050 0.182210
89 Inuktitut 35210 0.100166
138 Ojibway 17885 0.050879
137 0ji-Cree 12855 0.036570
48 Dene 10700 0.030439
125 Montagnais (Innu) 10235 0.029117
119 Mi'kmaqg 6690 0.019032
13 Atikamekw 6150 0.017496
149 Plains Cree 3065 0.008719
180 Stoney 3025 0.008606

The ten_lang_percent data frame shows that the ten Aboriginal languages
in the ten_lang data frame were spoken as a mother tongue by between
0.008% and 0.18% of the Canadian population.

1.10. COMBINING STEPS WITH CHAINING AND MULTILINE EXPRESSIONS 19

1.10 Combining steps with chaining and multiline expressions

It took us 3 steps to find the ten Aboriginal languages most often reported in
2016 as mother tongues in Canada. Starting from the can_lang data frame,
we:

1) wused loc to filter the rows so that only the Aboriginal languages
category remained, and selected the 1anguage and mother_tongue
columns,

2) used sort_values to sort the rows by mother_ tongue in descend-
ing order, and

3) obtained only the top 10 values using head.

One way of performing these steps is to just write multiple lines of code,
storing temporary, intermediate objects as you go.

aboriginal_lang = can_lang.loc[can_lang["category"] == "Aboriginal languages", [
<"language", "mother_tongue"]]

arranged_lang_sorted = aboriginal_lang.sort_values (by="mother_ tongue", .
—ascending=False)

ten_lang = arranged_lang_sorted.head (10)

You might find that code hard to read. You're not wrong; it is. There are two
main issues with readability here. First, each line of code is quite long. It is
hard to keep track of what methods are being called, and what arguments were
used. Second, each line introduces a new temporary object. In this case, both
aboriginal_lang and arranged_lang_sorted are just temporary results
on the way to producing the ten_lang data frame. This makes the code hard
to read, as one has to trace where each temporary object goes, and hard to
understand, since introducing many named objects also suggests that they are
of some importance, when really they are just intermediates. The need to call
multiple methods in a sequence to process a data frame is quite common, so
this is an important issue to address.

To solve the first problem, we can actually split the long expressions above
across multiple lines. Although in most cases, a single expression in Python
must be contained in a single line of code, there are a small number of situa-
tions where lets us do this. Let’s rewrite this code in a more readable format
using multiline expressions.

aboriginal_lang = can_lang.loc]|
can_lang["category"] == "Aboriginal languages",

(continues on next page)

20 CHAPTER 1. PYTHON AND PANDAS

(continued from previous page)

["language", "mother_tongue"]

]

arranged_lang_sorted = aboriginal_lang.sort_values (
by="mother_tongue",
ascending=False

)
ten_lang = arranged_lang_sorted.head (10)

This code is the same as the code we showed earlier; you can see the same
sequence of methods and arguments is used. But long expressions are split
across multiple lines when they would otherwise get long and unwieldy, im-
proving the readability of the code. How does Python know when to keep
reading on the next line for a single expression? For the line starting with
aboriginal_lang = ..., Python sees that the line ends with a left bracket
symbol [, and knows that our expression cannot end until we close it with
an appropriate corresponding right bracket symbol 1. We put the same two
arguments as we did before, and then the corresponding right bracket appears
after ["language", "mother_ tongue"]). For the line starting with ar-
ranged_lang_sorted = ..., Python sees that the line ends with a left
parenthesis symbol (, and knows the expression cannot end until we close it
with the corresponding right parenthesis symbol). Again we use the same
two arguments as before, and then the corresponding right parenthesis ap-
pears right after ascending=False. In both cases, Python keeps reading the
next line to figure out what the rest of the expression is. We could, of course,
put all of the code on one line of code, but splitting it across multiple lines
helps a lot with code readability.

We still have to handle the issue that each line of code—i.e., each step in
the analysis—introduces a new temporary object. To address this issue, we
can chain multiple operations together without assigning intermediate objects.
The key idea of chaining is that the output of each step in the analysis is a
data frame, which means that you can just directly keep calling methods that
operate on the output of each step in a sequence. This simplifies the code
and makes it easier to read. The code below demonstrates the use of both
multiline expressions and chaining together. The code is now much cleaner,
and the ten_lang data frame that we get is equivalent to the one from the
messy code above.

obtain the 10 most common Aboriginal languages

ten_lang = (
can_lang.loc|[
can_lang["category"] == "Aboriginal languages",
["language", "mother_tongue"]
]
.sort_values (by="mother_tongue", ascending=False)
.head (10)

(continues on next page)

1.10. COMBINING STEPS WITH CHAINING AND MULTILINE EXPRESSIONS 21

(continued from previous page)

ten_lang

language mother_tongue
40 Cree, n.o.s. 64050
89 Inuktitut 35210
138 Ojibway 17885
137 0ji-Cree 12855
48 Dene 10700
125 Montagnais (Innu) 10235
119 Mi'kmag 6690
13 Atikamekw 6150
149 Plains Cree 3065
180 Stoney 3025

Let’s parse this new block of code piece by piece. The code above starts with
a left parenthesis, (, and so Python knows to keep reading to subsequent
lines until it finds the corresponding right parenthesis symbol). The loc
method performs the filtering and selecting steps as before. The line after
this starts with a period (.) that “chains” the output of the loc step with
the next operation, sort_values. Since the output of loc is a data frame,
we can use the sort_values method on it without first giving it a name.
That is what the .sort_values does on the next line. Finally, we once again
“chain” together the output of sort_values with head to ask for the 10 most
common languages. Finally, the right parenthesis) corresponding to the very
first left parenthesis appears on the second last line, completing the multiline
expression. Instead of creating intermediate objects, with chaining, we take
the output of one operation and use that to perform the next operation. In
doing so, we remove the need to create and store intermediates. This can help
with readability by simplifying the code.

Now that we've shown you chaining as an alternative to storing
temporary objects and composing code, does this mean you should never
store temporary objects or compose code? Not necessarily. There are times
when temporary objects are handy to keep around. For example, you might
store a temporary object before feeding it into a plot function so you can itera-
tively change the plot without having to redo all of your data transformations.
Chaining many functions can be overwhelming and difficult to debug; you
may want to store a temporary object midway through to inspect your result
before moving on with further steps.

22 CHAPTER 1. PYTHON AND PANDAS

1.11 Exploring data with visualizations

The ten_lang table answers our initial data analysis question. Are we done?
Well, not quite; tables are almost never the best way to present the result
of your analysis to your audience. Even the ten_lang table with only two
columns presents some difficulty: for example, you have to scrutinize the table
quite closely to get a sense for the relative numbers of speakers of each lan-
guage. When you move on to more complicated analyses, this issue only gets
worse. In contrast, a visualization would convey this information in a much
more easily understood format. Visualizations are a great tool for summariz-
ing information to help you effectively communicate with your audience, and
creating effective data visualizations is an essential component of any data
analysis. In this section we will develop a visualization of the ten Aboriginal
languages that were most often reported in 2016 as mother tongues in Canada,
as well as the number of people that speak each of them.

1.11.1 Using altair to create a bar plot

In our data set, we can see that 1anguage and mother_tongue are in separate
columns (or variables). In addition, there is a single row (or observation) for
each language. The data is, therefore, in what we call a tidy data format. Tidy
data is a fundamental concept and will be a significant focus in the remainder
of this book: many of the functions from pandas require tidy data, as does
the altair package that we will use shortly for our visualization. We will
formally introduce tidy data in Chapter 3.

We will make a bar plot to visualize our data. A bar plot is a chart where the
lengths of the bars represent certain values, like counts or proportions. We
will make a bar plot using the mother_tongue and language columns from
our ten_lang data frame. To create a bar plot of these two variables using
the altair package, we must specify the data frame, which variables to put
on the x and y axes, and what kind of plot to create. First, we need to import
the altair package.

import altair as alt

The fundamental object in altair is the Chart, which takes a data frame as
an argument: alt.Chart (ten_lang). With a chart object in hand, we can
now specify how we would like the data to be visualized. We first indicate
what kind of graphical mark we want to use to represent the data. Here we set
the mark attribute of the chart object using the Chart .mark_bar function,
because we want to create a bar chart. Next, we need to encode the variables

1.11. EXPLORING DATA WITH VISUALIZATIONS 23

0

alt.Chart(ten_lang).mark_bar().encode(x="1language", y="mother_tongue")

@ create an altair chart object
@ provide the data frame
9 specify that we want a bar plot

@ call the encode function to specify which columns correspond to the x and y axes

FIGURE 1.8 Syntax for using altair to make a bar chart.

of the data frame using the x and y channels (which represent the x-axis
and y-axis position of the points). We use the encode () function to handle
this: we specify that the language column should correspond to the x-axis,
and that the mother_tongue column should correspond to the y-axis (Figs.
1.8-1.9).

barplot_mother_tongue = (
alt.Chart (ten_lang) .mark_bar () .encode (x="language", y="mother_tongue")

)

1.11.2 Formatting altair charts

It is exciting that we can already visualize our data to help answer our ques-
tion, but we are not done yet. We can (and should) do more to improve the
interpretability of the data visualization that we created. For example, by
default, Python uses the column names as the axis labels. Usually these col-
umn names do not have enough information about the variable in the column.
We really should replace this default with a more informative label. For the
example above, Python uses the column name mother_tongue as the label
for the y-axis, but most people will not know what that is. And even if they
did, they will not know how we measured this variable, or the group of people
on which the measurements were taken. An axis label that reads “Mother
Tongue (Number of Canadian Residents)” would be much more informative.
To make the code easier to read, we're spreading it out over multiple lines just
as we did in the previous section with pandas.

Adding additional labels to our visualizations that we create in altair is one
common and easy way to improve and refine our data visualizations. We can
add titles for the axes in the altair objects using alt.x and alt.Y with
the title method to make the axes titles more informative (you will learn
more about alt.x and alt.y in Chapter 4). Again, since we are specifying

24 CHAPTER 1. PYTHON AND PANDAS

60,000 -

50,000 -

40,000

gue

30,000

mother_ton

20,000

10,000~

Atikamekw

Cree, n.o.s.
Montagnais (Innu)
Plains Cree

language

FIGURE 1.9 Bar plot of the ten Aboriginal languages most often reported
by Canadian residents as their mother tongue.

words (e.g., "Mother Tongue (Number of Canadian Residents) ") as
arguments to the title method, we surround them with quotation marks.
We can do many other modifications to format the plot further, and we will
explore these in Chapter 4.

barplot_mother_tongue = alt.Chart (ten_lang) .mark_bar () .encode (
x=alt.X ("language") .title ("Language"),
y=alt .Y ("mother_tongue").title ("Mother Tongue (Number of Canadian Residents)
o)

)

The result is shown in Fig. 1.10. This is already quite an improvement. Let’s
tackle the next major issue with the visualization in Fig. 1.10: the vertical
x axis labels, which are currently making it difficult to read the different
language names. One solution is to rotate the plot such that the bars are
horizontal rather than vertical. To accomplish this, we will swap the x and y
coordinate axes:

barplot_mother_tongue_axis = alt.Chart (ten_lang) .mark_bar () .encode (
x=alt.X ("mother_tongue") .title ("Mother Tongue (Number of Canadian Residents)
(_)") 4

(continues on next page)

1.11. EXPLORING DATA WITH VISUALIZATIONS 25

60,000 -

50,000 -

40,000

30,000

20,000

10,000~

Mother Tongue (Number of Canadian Residents)

Atikamekw
Cree, n.o.s.
Montagnais (Innu)
Plains Cree

Language

FIGURE 1.10 Bar plot of the ten Aboriginal languages most often reported
by Canadian residents as their mother tongue with x and y labels. Note that
this visualization is not done yet; there are still improvements to be made.

(continued from previous page)

y=alt .Y ("language") .title ("Language")

Another big step forward, as shown in Fig. 1.11. There are no more serious
issues with the visualization. Now comes time to refine the visualization to
make it even more well-suited to answering the question we asked earlier in this
chapter. For example, the visualization could be made more transparent by
organizing the bars according to the number of Canadian residents reporting
each language, rather than in alphabetical order. We can reorder the bars
using the sort method, which orders a variable (here language) based on
the values of the variable (mother_tongue) on the x—axis.

ordered_barplot_mother_tongue = alt.Chart (ten_lang) .mark_bar () .encode (
x=alt.X("mother_tongue") .title("Mother Tongue (Number of Canadian Residents)
L’") 0
y=alt.Y("language") .sort ("x") .title ("Language")

26 CHAPTER 1. PYTHON AND PANDAS

Atikamekw
Cree, n.o.s.
Dene
Inuktitut

Mi'kmaq

Language

Montagnais (Innu)
Oji-Cree
Ojibway
Plains Cree

Stoney

T T T T T T
0 10,000 20,000 30,000 40,000 50,000 60,000
Mother Tongue (Number of Canadian Residents)

FIGURE 1.11 Horizontal bar plot of the ten Aboriginal languages most
often reported by Canadian residents as their mother tongue. There are no
more serious issues with this visualization, but it could be refined further.

Stoney

Plains Cree
Atikamekw
Mi'kmaqg
Montagnais (Innu)

Dene

Language

Oji-Cree

Ojibway
Inuktitut

Cree, n.o.s.

0 10,000 20,000 30,000 40,000 50,000 60,000
Mother Tongue (Number of Canadian Residents)

FIGURE 1.12 Bar plot of the ten Aboriginal languages most often reported
by Canadian residents as their mother tongue with bars reordered.

Fig. 1.12 provides a very clear and well-organized answer to our original ques-
tion; we can see what the ten most often reported Aboriginal languages were,
according to the 2016 Canadian census, and how many people speak each of
them. For instance, we can see that the Aboriginal language most often re-
ported was Cree n.o.s. with over 60,000 Canadian residents reporting it as
their mother tongue.

1.11. EXPLORING DATA WITH VISUALIZATIONS 27

Note: “n.o.s” means “not otherwise specified”, so Cree n.o.s. refers to
individuals who reported Cree as their mother tongue. In this data set, the
Cree languages include the following categories: Cree n.o.s., Swampy Cree,
Plains Cree, Woods Cree, and a “Cree not included elsewhere” category (which
includes Moose Cree, Northern East Cree and Southern East Cree) [Statistics
Canada, 2016].

1.11.3 Putting it all together

In the block of code below, we put everything from this chapter together,
with a few modifications. In particular, we have combined all of our steps into
one expression split across multiple lines using the left and right parenthesis
symbols (and). We have also provided comments next to many of the lines
of code below using the hash symbol #. When Python sees a # sign, it will
ignore all of the text that comes after the symbol on that line. So you can use
comments to explain lines of code for others, and perhaps more importantly,
your future self. It’s good practice to get in the habit of commenting your
code to improve its readability.

This exercise demonstrates the power of Python. In relatively few lines of
code, we performed an entire data science workflow with a highly effective data
visualization. We asked a question, loaded the data into Python, wrangled
the data (using [], loc[], sort_values, and head) and created a data
visualization to help answer our question (Fig. 1.13). In this chapter, you
got a quick taste of the data science workflow; continue on with the next few
chapters to learn each of these steps in much more detail!

load the data set
can_lang = pd.read_csv("data/can_lang.csv")

obtain the 10 most common Aboriginal languages
ten_lang = (
can_lang.loc[can_lang["category"] == "Aboriginal languages", ["language",
<"mother_tongue"]]
.sort_values (by="mother_tongue", ascending=False)
.head (10)
)

create the visualization
ten_lang_plot = alt.Chart (ten_lang) .mark_bar () .encode (
x=alt.X("mother_tongue") .title("Mother Tongue (Number of Canadian Residents)
r_)") ’
y=alt.Y("language") .sort ("x") .title ("Language")
)

28 CHAPTER 1. PYTHON AND PANDAS

Stoney

Plains Cree
Atikamekw
Mi'kmaqg
Montagnais (Innu)

Dene

Language

Oji-Cree
Ojibway
Inuktitut

Cree, n.o.s.

0 10,000 20,000 30,000 40,000 50,000 60,000
Mother Tongue (Number of Canadian Residents)

FIGURE 1.13 Bar plot of the ten Aboriginal languages most often reported
by Canadian residents as their mother tongue.

1.12 Accessing documentation

There are many Python functions in the pandas package (and beyond!), and
nobody can be expected to remember what every one of them does or all of
the arguments we have to give them. Fortunately, Python provides the help
function, which provides an easy way to pull up the documentation for most
functions quickly. To use the help function to access the documentation, you
just put the name of the function you are curious about as an argument inside
the help function. For example, if you had forgotten what the pd.read_csv
function did or exactly what arguments to pass in, you could run the following
code:

help (pd.read_csv)

Fig. 1.14 shows the documentation that will pop up, including a high-level
description of the function, its arguments, a description of each, and more.
Note that you may find some of the text in the documentation a bit too
technical right now. Fear not: as you work through this book, many of these
terms will be introduced to you, and slowly but surely you will become more
adept at understanding and navigating documentation like that shown in Fig.
1.14. But do keep in mind that the documentation is not written to teach
you about a function; it is just there as a reference to remind you about
the different arguments and usage of functions that you have already learned
about elsewhere.

1.12. ACCESSING DOCUMENTATION

Read a comma-separated values (csv) file into DataFrame.

Also supports optionally iterating or breaking of the file
into chunks.

Additional help can be found in the online docs for
"I0 Tools <https://pandas.pydata.org/pandas—docs/stable/user_guide/io.html>"_.

Parameters

filepath_or_buffer : str, path object or file-like object
Any valid string path is acceptable. The string could be a URL. Valid
URL schemes include http, ftp, s3, gs, and file. For file URLs, a host is
expected. A local file could be: file://localhost/path/to/table.csv.

If you want te pass in a path object, pandas accepts any " “os.PathLike .

By file-like object, we refer to objects with a "“read()" " method, such as
a file handle (e.g. via builtin '“open’® function) or "'StringI0*".
sep : str, default ','
Delimiter to use. If sep is MNone, the C engine cannot automatically detect
the separator, but the Python parsing engine can, meaning the latter will
be used and automatically detect the separator by Python's builtim sniffer
tool, "“csv.Sniffer’’. In addition, separators longer than 1 character and
different from " '\s+'"" will be interpreted as regular expressions and
will also force the use of the Python parsing engine. Mote that regex
delimiters are prone to ignoring guoted data. Regex example: "~ '\r\t'"".
delimiter : str, default *“None'"
Alias for sep.
header : int, list of int, None, default 'infer'
Row number(s) to use as the column names, and the start of the
data. Default behavior is to infer the column names: if no names
are passed the behavior is identical to " “header=0"" and column
names are inferred from the first line of the file, if column
names are passed explicitly then the behavier is identical to
"“header=None’ . Explicitly pass "“header=8"" to be able to
replace existing names. The header can be a list of integers that
specify row leocatiens for a multi-index on the columns
e.g. [8,1,3]. Intervening rows that are not specified will be
skipped (e.g. 2 in this example is skipped). MNote that this
parameter ignores commented lines and empty Llnes if

T i m Ve Tdemmm Tem.at T L T T PR [I e —

29

FIGURE 1.14 The documentation for the read csv function including a

high-level description, a list of arguments and their meanings, and more.

If you are working in a Jupyter Lab environment, there are some conveniences
that will help you lookup function names and access the documentation. First,
rather than help, you can use the more concise 2 character. So, for example,
to read the documentation for the pd.read_csv function, you can run the

following code:

?pd.read_csv

30 CHAPTER 1. PYTHON AND PANDAS

import pandas as pd

[]:‘pd.read

I read clipboard

N read csv function
N read_excel function
M read feather function
N read_fwf function
f read_gbq function
N read_hdf function
M read_html function
I8 read_json function
N read orc function

FIGURE 1.15 The suggestions that are shown after typing pd.read and
pressing Tab.

You can also type the first characters of the function you want to use, and
then press Tab to bring up small menu that shows you all the available func-
tions that starts with those characters. This is helpful both for remembering
function names and to prevent typos (Fig. 1.15).

To get more info on the function you want to use, you can type out the full
name and then hold Shift while pressing Tab to bring up a help dialogue
including the same information as when using help () (Fig. 1.16).

Finally, it can be helpful to have this help dialog open at all times, especially
when you start out learning about programming and data science. You can
achieve this by clicking on the Help text in the menu bar at the top and then
selecting Show Contextual Help.

1.15. EXERCISES 31

import pandas as pd

[1: pd.read_csv
Docstring:
Read a comma-separated values (csv) file into DataFrame.

Also supports optionally iterating or breaking of the file
into chunks.

Additional help can be found in the online docs for
"I0 Tools <https://pandas.pydata.org/pandas-docs/stable/user guide/io.html>" .

Parameters

filepath or buffer : str, path object or file-like object
Any valid string path is acceptable. The string could be a URL. Valid
URL schemes include http, ftp, s3, gs, and file. For file URLs, a host is
expected. A local file could be: file://localhost/path/to/table.csv.

If you want to pass in a path object, pandas accepts any " “os.PathLike'"

By file-like object, we refer to objects with a ““read()’ ' method, such as
a file handle (e.g. via builtin *“open’® function) or *'StringI0’".

FIGURE 1.16 The help dialog that is shown after typing pd.read_csv and
then pressing Shift + Tab.

1.13 Exercises

Practice exercises for the material covered in this chapter can be found in
the accompanying worksheets repository® in the “Python and Pandas” row.
You can launch an interactive version of the worksheet in your browser by
clicking the “launch binder” button. You can also preview a non-interactive
version of the worksheet by clicking “view worksheet”. If you instead decide to
download the worksheet and run it on your own machine, make sure to follow
the instructions for computer setup found in Chapter 13. This will ensure
that the automated feedback and guidance that the worksheets provide will
function as intended.

Shttps://worksheets.python.datasciencebook.ca

https://worksheets.python.datasciencebook.ca

2

Reading in data locally and from the web

2.1 Overview

In this chapter, you’ll learn to read tabular data of various formats into Python
from your local device (e.g., your laptop) and the web. “Reading” (or “load-
ing”) is the process of converting data (stored as plain text, a database, HTML,
etc.) into an object (e.g., a data frame) that Python can easily access and ma-
nipulate. Thus reading data is the gateway to any data analysis; you won'’t be
able to analyze data unless you've loaded it first. And because there are many
ways to store data, there are similarly many ways to read data into Python.
The more time you spend upfront matching the data reading method to the
type of data you have, the less time you will have to devote to re-formatting,
cleaning and wrangling your data (the second step to all data analyses). It’s
like making sure your shoelaces are tied well before going for a run so that
you don’t trip later on.

2.2 Chapter learning objectives
By the end of the chapter, readers will be able to do the following:
o Define the types of path and use them to locate files:
— absolute file path
— relative file path
— Uniform Resource Locator (URL)
» Read data into Python from various types of path using:
— read_csv
— read_excel

o Compare and contrast read_csv and read_excel.

DOI: 10.1201/9781003438397-2 32

https://doi.org/10.1201/9781003438397-2

2.8. ABSOLUTE AND RELATIVE FILE PATHS 33

Describe when to use the following read_csv function arguments:
— skiprows
— sep
— header
— names

Choose the appropriate read_csv function arguments to load a given plain
text tabular data set into Python.

Use the rename function to rename columns in a data frame.

Use pandas package’s read_excel function and arguments to load a sheet
from an excel file into Python.

Work with databases using functions from the ibis package:
— Connect to a database with connect.
— List tables in the database with 1ist_tables.
— Create a reference to a database table with table.
— Bring data from a database into Python with execute.
Use to_csv to save a data frame to a .csv file.

(Optional) Obtain data from the web using scraping and application pro-
gramming interfaces (APIs):

— Read HTML source code from a URL using the BeautifulSoup pack-
age.
— Read data from the NASA “Astronomy Picture of the Day” using the

requests package.

— Compare downloading tabular data from a plain text file (e.g., .csv),
accessing data from an API, and scraping the HTML source code from
a website.

2.3 Absolute and relative file paths

This chapter will discuss the different functions we can use to import data
into Python, but before we can talk about how we read the data into Python
with these functions, we first need to talk about where the data lives. When

34 CHAPTER 2. READING IN DATA LOCALLY AND FROM THE WEB

you load a data set into Python, you first need to tell Python where those files
live. The file could live on your computer (local) or somewhere on the internet
(remote).

The place where the file lives on your computer is referred to as its “path”.
You can think of the path as directions to the file. There are two kinds of
paths: relative paths and absolute paths. A relative path indicates where the
file is with respect to your working directory (i.e., “where you are currently”)
on the computer. On the other hand, an absolute path indicates where the file
is with respect to the computer’s filesystem base (or root) folder, regardless of
where you are working.

Suppose our computer’s filesystem looks like the picture in Fig. 2.1. We are
working in a file titled project3.ipynb, and our current working directory is
project3; typically, as is the case here, the working directory is the directory
containing the file you are currently working on.

Let’s say we wanted to open the happiness_report.csv file. We have two
options to indicate where the file is: using a relative path, or using an absolute
path. The absolute path of the file always starts with a slash /—representing
the root folder on the computer—and proceeds by listing out the sequence of
folders you would have to enter to reach the file, each separated by another
slash /. So in this case, happiness_report.csv would be reached by start-
ing at the root, and entering the home folder, then the dsci-100 folder, then
the project3 folder, and then finally the data folder. So its absolute path
would be /home/dsci-100/project3/data/happiness_report.csv. We
can load the file using its absolute path as a string passed to the read_csv
function from pandas.

happy_data = pd.read_csv("/home/dsci-100/project3/data/happiness_report.csv")

If we instead wanted to use a relative path, we would need to list out the
sequence of steps needed to get from our current working directory to the file,
with slashes / separating each step. Since we are currently in the project3
folder, we just need to enter the data folder to reach our desired file. Hence
the relative path is data/happiness_report.csv, and we can load the file
using its relative path as a string passed to read_csv.

happy_data = pd.read_csv("data/happiness_report.csv")

Note that there is no forward slash at the beginning of a relative path; if we
accidentally typed "/data/happiness_report.csv", Python would look
for a folder named data in the root folder of the computer—but that doesn’t
exist.

2.83. ABSOLUTE AND RELATIVE FILE PATHS 35

other files and folders

other files and folders

dsci-100

project1.ipynb marathon_small.csv project2.ipynb bike_share.csv project3.ipynb

happiness_report.csv

FIGURE 2.1 Example file system.

Aside from specifying places to go in a path using folder names (like data
and project3), we can also specify two additional special places: the current
directory and the previous directory. We indicate the current working directory
with a single dot ., and the previous directory with two dots ... So for
instance, if we wanted to reach the bike_share.csv file from the project3
folder, we could use the relative path ../project2/bike_share.csv. We
can even combine these two; for example, we could reach the bike_share.csv
file using the (very silly) path . ./project2/../project2/./bike_share.
csv with quite a few redundant directions: it says to go back a folder, then
open project?2, then go back a folder again, then open project2 again, then
stay in the current directory, then finally get to bike_share.csv. Whew,
what a long trip.

36 CHAPTER 2. READING IN DATA LOCALLY AND FROM THE WEB

So which kind of path should you use: relative, or absolute? Generally speak-
ing, you should use relative paths. Using a relative path helps ensure that
your code can be run on a different computer (and as an added bonus, rela-
tive paths are often shorter—easier to type!). This is because a file’s relative
path is often the same across different computers, while a file’s absolute path
(the names of all of the folders between the computer’s root, represented by
/, and the file) isn’t usually the same across different computers. For exam-
ple, suppose Fatima and Jayden are working on a project together on the
happiness_report.csv data. Fatima’s file is stored at

’/home/Fatima/project3/data/happiness_report.csv

while Jayden’s is stored at

’/home/Jayden/project3/data/happinessireport.csv

Even though Fatima and Jayden stored their files in the same place on their
computers (in their home folders), the absolute paths are different due to their
different usernames. If Jayden has code that loads the happiness_report.
csv data using an absolute path, the code won’t work on Fatima’s com-
puter. But the relative path from inside the project3 folder (data/
happiness_report.csv) is the same on both computers; any code that uses
relative paths will work on both. In the additional resources section, we in-
clude a link to a short video on the difference between absolute and relative
paths.

Beyond files stored on your computer (i.e., locally), we also need a way to
locate resources stored elsewhere on the internet (i.e., remotely). For this
purpose we use a Uniform Resource Locator (URL), i.e., a web address that
looks something like https://python.datasciencebook.ca/. URLs indicate the
location of a resource on the internet, and start with a web domain, followed
by a forward slash /, and then a path to where the resource is located on the
remote machine.

2.4 Reading tabular data from a plain text file into Python

2.4.1 read_csv to read in comma-separated values files

Now that we have learned about where data could be, we will learn about
how to import data into Python using various functions. Specifically, we will
learn how to read tabular data from a plain text file (a document containing
only text) into Python and write tabular data to a file out of Python. The

https://python.datasciencebook.ca

2.4. READING TABULAR DATA FROM A PLAIN TEXT FILE INTO PYTHON 37

function we use to do this depends on the file’s format. For example, in the last
chapter, we learned about using the read_csv function from pandas when
reading . csv (comma-separated values) files. In that case, the separator that
divided our columns was a comma (,). We only learned the case where the
data matched the expected defaults of the read_csv function (column names
are present, and commas are used as the separator between columns). In
this section, we will learn how to read files that do not satisfy the default
expectations of read_csv.

Before we jump into the cases where the data aren’t in the expected default
format for pandas and read_csv, let’s revisit the more straightforward case
where the defaults hold, and the only argument we need to give to the function
is the path to the file, data/can_lang.csv. The can_lang data set contains
language data from the 2016 Canadian census. We put data/ before the file’s
name when we are loading the data set because this data set is located in a
sub-folder, named data, relative to where we are running our Python code.
Here is what the text in the file data/can_lang.csv looks like.

category, language, mother_tongue,most_at_home, most_at_work, lang_known

Aboriginal languages, "Aboriginal languages, n.o.s.",590,235,30,665

Non-Official & Non-Aboriginal languages,Afrikaans,10260,4785,85,23415
Non-Official & Non-Aboriginal languages, "Afro-Asiatic languages, n.i.e.", 1150, 44
Non-Official & Non-Aboriginal languages,Akan (Twi),13460,5985,25,22150
Non-Official & Non-Aboriginal languages,Albanian,26895,13135,345,31930
Aboriginal languages, "Algonquian languages, n.i.e.",45,10,0,120

Aboriginal languages,Algonquin, 1260,370,40,2480

Non-Official & Non-Aboriginal languages,American Sign Language,2685,3020,1145,21
Non-Official & Non-Aboriginal languages,Amharic,22465,12785,200,33670

And here is a review of how we can use read_csv to load it into Python. First,
we load the pandas package to gain access to useful functions for reading the
data.

import pandas as pd

Next, we use read_csv to load the data into Python, and in that call we
specify the relative path to the file.

canlang_data = pd.read_csv("data/can_lang.csv")
canlang_data

category language o

<\

0 Aboriginal languages Aboriginal languages, n.o.s.
1 Non-Official & Non-Aboriginal languages Afrikaans
2 Non-Official & Non-Aboriginal languages Afro-Asiatic languages, n.i.e.
3 Non-Official & Non-Aboriginal languages Akan (Twi)
4 Non-Official & Non-Aboriginal languages Albanian
209 Non-Official & Non-Aboriginal languages Wolof

(continues on next page)

38 CHAPTER 2. READING IN DATA LOCALLY AND FROM THE WEB

(continued from previous page)

210 Aboriginal languages Woods Cree
211 Non-Official & Non-Aboriginal languages Wu (Shanghainese)
212 Non-Official & Non-Aboriginal languages Yiddish
213 Non-Official & Non-Aboriginal languages Yoruba

mother_tongue most_at_home most_at_work lang_known

0 590 285 30 665
1 10260 4785 85 23415
2 1150 445 10 2775
3 13460 5985 28 22150
4 26895 13135 345 31930
209 3990 1385 10 8240
210 1840 800 S, 2665
211 12915 7650 105 16530
212 13555 7085 895 20985
213 9080 2615 15 22415

[214 rows X 6 columns]

2.4.2 Skipping rows when reading in data

Oftentimes, information about how data was collected, or other relevant in-
formation, is included at the top of the data file. This information is usually
written in sentence and paragraph form, with no separator because it is not
organized into columns. An example of this is shown below. This informa-
tion gives the data scientist useful context and information about the data,
however, it is not well formatted or intended to be read into a data frame cell
along with the tabular data that follows later in the file.

Data source: https://ttimbers.github.io/canlang/

Data originally published in: Statistics Canada Census of Population 2016.
Reproduced and distributed on an as-is basis with their permission.

category, language, mother_tongue,most_at_home, most_at_work, lang_known
Aboriginal languages, "Aboriginal languages, n.o.s.",590,235,30,665
Non-Official & Non-Aboriginal languages,Afrikaans,10260,4785,85,23415
Non-Official & Non-Aboriginal languages, "Afro-Asiatic languages, n.i.e.", 1150, 445,
10,2775

Non-Official & Non-Aboriginal languages,Akan (Twi),13460,5985,25,22150
Non-Official & Non-Aboriginal languages,Albanian,26895,13135,345,31930
Aboriginal languages, "Algonquian languages, n.i.e.",45,10,0,120

Aboriginal languages,Algonquin, 1260,370,40,2480

Non-Official & Non-Aboriginal languages,American Sign Language,2685,3020,1145,
21930

Non-Official & Non-Aboriginal languages,Amharic,22465,12785,200,33670

With this extra information being present at the top of the file, using
read_csv as we did previously does not allow us to correctly load the data
into Python. In the case of this file, Python just prints a ParserError mes-
sage, indicating that it wasn’t able to read the file.

canlang_data = pd.read_csv("data/can_lang meta-data.csv")

2.4. READING TABULAR DATA FROM A PLAIN TEXT FILE INTO PYTHON 39

ParserError: Error tokenizing data. C error: Expected 1 fields in line 4, saw.
=6

To successfully read data like this into Python, the skiprows argument can
be useful to tell Python how many rows to skip before it should start reading
in the data. In the example above, we would set this value to 3 to read and
load the data correctly.

canlang_data = pd.read_csv("data/can_lang meta-data.csv", skiprows=3)
canlang_data

category language o

<\
0 Aboriginal languages Aboriginal languages, n.o.s.
1 Non-Official & Non-Aboriginal languages Afrikaans
2 Non-Official & Non-Aboriginal languages Afro-Asiatic languages, n.i.e.
3 Non-Official & Non-Aboriginal languages Akan (Twi)
4 Non-Official & Non-Aboriginal languages Albanian
209 Non-Official & Non-Aboriginal languages Wolof
210 Aboriginal languages Woods Cree
211 Non-Official & Non-Aboriginal languages Wu (Shanghainese)
212 Non-Official & Non-Aboriginal languages Yiddish
213 Non-Official & Non-Aboriginal languages Yoruba

mother_tongue most_at_home most_at_work lang_known
0 590 235 30 665
1 10260 4785 85 23415
2 1150 445 10 2775
3 13460 5985 25 22150
4 26895 13135 345 31930
209 3990 1385 10 8240
210 1840 800 75 2665
211 12915 7650 105 16530
212 13555 7085 895 20985
213 9080 2615 15 22415

[214 rows x 6 columns]

How did we know to skip three rows? We looked at the data. The first three
rows of the data had information we didn’t need to import:

Data source: https://ttimbers.github.io/canlang/
Data originally published in: Statistics Canada Census of Population 2016.
Reproduced and distributed on an as-is basis with their permission.

The column names began at row 4, so we skipped the first three rows.

2.4.3 Using the sep argument for different separators

Another common way data is stored is with tabs as the separator. Notice the
data file, can_lang.tsv, has tabs in between the columns instead of commas.

40 CHAPTER 2. READING IN DATA LOCALLY AND FROM THE WEB

category language mother_tongue most_at_home most_at_
—work lang_known

Aboriginal languages Aboriginal languages, Nn.o.s.

< 590 235 30 665

Non-Official & Non-Aboriginal.

~languages Afrikaans 10260 4785 85 23415
Non-Official & Non-Aboriginal languages Afro-Asiatic languages, n.i.e.

< 1150 445 10 2775

Non-Official & Non-Aboriginal languages Akan..

< (Twi) 13460 5985 25 22150

Non-Official & Non-Aboriginal..

~languages Albanian 26895 13135 345 31930
Aboriginal languages Algonquian languages, n.i.e.

< 45 10 0 120

Aboriginal languages Algonquin 1260 370 40 2480
Non-Official & Non-Aboriginal languages American Sign.

«Language 2685 3020 1145 21930

Non-Official & Non-Aboriginal..

—~languages Amharic 22465 12785 200 33670

To read in .tsv (tab separated values) files, we can set the sep argument in
the read_csv function to the tab character \t.

Note: \t is an example of an escaped character, which always starts with
a backslash (\). Escaped characters are used to represent non-printing char-
acters (like the tab) or characters with special meanings (such as quotation
marks).

canlang_data = pd.read_csv("data/can_lang.tsv", sep="\t")
canlang_data

category language .

<\
0 Aboriginal languages Aboriginal languages, n.o.s.
1 Non-Official & Non-Aboriginal languages Afrikaans
2 Non-Official & Non-Aboriginal languages Afro-Asiatic languages, n.i.e.
3 Non-Official & Non-Aboriginal languages Akan (Twi)
4 Non-Official & Non-Aboriginal languages Albanian
209 Non-Official & Non-Aboriginal languages Wolof
210 Aboriginal languages Woods Cree
211 Non-Official & Non-Aboriginal languages Wu (Shanghainese)
212 Non-Official & Non-Aboriginal languages Yiddish
213 Non-Official & Non-Aboriginal languages Yoruba

mother_tongue most_at_home most_at_work lang_known
0 590 235 30 665
1 10260 4785 85 23415
2 1150 445 10 2775
3 13460 5985 25 22150
4 26895 13135 345 31930
209 3990 1385 10 8240
210 1840 800 75 2665

(continues on next page)

2.4. READING TABULAR DATA FROM A PLAIN TEXT FILE INTO PYTHON 41

(continued from previous page)

211 12915 7650 105 16530
212 13555 7085 895 20985
213 9080 2615 15 22415

[214 rows X 6 columns]

If you compare the data frame here to the data frame we obtained in Section
2.4.1 using read_csv, you'll notice that they look identical: they have the
same number of columns and rows, the same column names, and the same
entries. So even though we needed to use different arguments depending on
the file format, our resulting data frame (canlang_data) in both cases was
the same.

2.4.4 Using the header argument to handle missing column names

The can_lang_no_names.tsv file contains a slightly different version of this
data set, except with no column names, and tabs for separators. Here is how
the file looks in a text editor:

Aboriginal languages Aboriginal languages, n.o.s.

< 590 235 30 665

Non-Official & Non-Aboriginal.

—~languages Afrikaans 10260 4785 85 23415
Non-Official & Non-Aboriginal languages Afro-Asiatic languages, n.i.e.
< 1150 445 10 2775

Non-Official & Non-Aboriginal languages Akan.

< (Twi) 13460 5985 25 22150

Non-Official & Non-Aboriginal.

—languages Albanian 26895 13135 345 31930
Aboriginal languages Algonquian languages, n.i.e.

< 45 10 0 120

Aboriginal languages Algonquin 1260 370 40 2480
Non-Official & Non-Aboriginal languages American Sign.

~Language 2685 3020 1145 21930

Non-Official & Non-Aboriginal.

—languages Amharic 22465 12785 200 33670

Data frames in Python need to have column names. Thus if you read in
data without column names, Python will assign names automatically. In this
example, Python assigns the column names 0, 1, 2, 3, 4, 5. To read
this data into Python, we specify the first argument as the path to the file
(as done with read_csv), and then provide values to the sep argument (here
a tab, which we represent by "\t"), and finally set header = None to tell
pandas that the data file does not contain its own column names.

canlang_data = pd.read_csv(
"data/can_lang_no_names.tsv",
sep=" \t" ,
header=None

)

canlang_data

42 CHAPTER 2. READING IN DATA LOCALLY AND FROM THE WEB

0 | -

<\
0 Aboriginal languages Aboriginal languages, n.o.s.
1 Non-Official & Non-Aboriginal languages Afrikaans
2 Non-Official & Non-Aboriginal languages Afro-Asiatic languages, n.i.e.
3 Non-Official & Non-Aboriginal languages Akan (Twi)
4 Non-Official & Non-Aboriginal languages Albanian
209 Non-Official & Non-Aboriginal languages Wolof
210 Aboriginal languages Woods Cree
211 Non-Official & Non-Aboriginal languages Wu (Shanghainese)
212 Non-Official & Non-Aboriginal languages Yiddish
213 Non-Official & Non-Aboriginal languages Yoruba

2 3 4 5
0 590 235 30 665
1 10260 4785 85 23415
2 1150 445 10 2775
3 13460 5985 25 22150
4 26895 13135 345 31930

209 3990 1385 10 8240
210 1840 800 75 2665
211 12915 7650 105 16530
212 13555 7085 895 20985
213 9080 2615 15 22415

[214 rows x 6 columns]

It is best to rename your columns manually in this scenario. The current
column names (0, 1, etc.) are problematic for two reasons: first, because
they not very descriptive names, which will make your analysis confusing;
and second, because your column names should generally be strings, but are
currently integers. To rename your columns, you can use the rename function
from the pandas package!'. The argument of the rename function is columns,
which takes a mapping between the old column names and the new column
names. In this case, we want to rename the old columns (0, 1, ..., 5)in
the canlang_data data frame to more descriptive names.

To specify the mapping, we create a dictionary: a Python object that repre-
sents a mapping from keys to values. We can create a dictionary by using a
pair of curly braces { }, and inside the braces placing pairs of key : value
separated by commas. Below, we create a dictionary called col_map that
maps the old column names in canlang_data to new column names, and
then pass it to the rename function.

col_map = {
0 : "category",
1 "language",
2 : "mother_tongue",
3 "most_at_home",

(continues on next page)

Thttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.rename.html#

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.rename.html#

2.4. READING TABULAR DATA FROM A PLAIN TEXT FILE INTO PYTHON 43

(continued from previous page)

4 : "most_at_work",

5 : "lang_known"
}
canlang_data_renamed = canlang_data.rename (columns=col_map)
canlang_data_renamed

category language o

<\
0 Aboriginal languages Aboriginal languages, n.o.s.
1 Non-Official & Non-Aboriginal languages Afrikaans
2 Non-Official & Non-Aboriginal languages Afro-Asiatic languages, n.i.e.
3 Non-Official & Non-Aboriginal languages Akan (Twi)
4 Non-Official & Non-Aboriginal languages Albanian
209 Non-Official & Non-Aboriginal languages Wolof
210 Aboriginal languages Woods Cree
211 Non-Official & Non-Aboriginal languages Wu (Shanghainese)
212 Non-Official & Non-Aboriginal languages Yiddish
213 Non-Official & Non-Aboriginal languages Yoruba

mother_tongue most_at_home most_at_work lang_known
0 590 235 30 665
1 10260 4785 85 23415
2 1150 445 10 2775
3 13460 5985 25 22150
4 26895 13135 345 31930
209 3990 1385 10 8240
210 1840 800 75 2665
211 12915 7650 105 16530
212 13555 7085 895 20985
213 9080 2615 15 22415

[214 rows x 6 columns]

The column names can also be assigned to the data frame immediately upon
reading it from the file by passing a list of column names to the names argu-
ment in read_csv.

canlang_data = pd.read_csv(
"data/can_lang_no_names.tsv",
sep="\t",
header=None,
names= [
"category",
"language",
"mother_tongue",
"most_at_home",
"most_at_work",
"lang_known",
]I
)
canlang_data

category language .
<\

0 Aboriginal languages Aboriginal languages, n.o.s.

(continues on next page)

44 CHAPTER 2. READING IN DATA LOCALLY AND FROM THE WEB

(continued from previous page)

1 Non-Official & Non-Aboriginal languages Afrikaans

2 Non-Official & Non-Aboriginal languages Afro-Asiatic languages, n.i.e.

3 Non-Official & Non-Aboriginal languages Akan (Twi)

4 Non-Official & Non-Aboriginal languages Albanian

209 Non-Official & Non-Aboriginal languages Wolof

210 Aboriginal languages Woods Cree

211 Non-Official & Non-Aboriginal languages Wu (Shanghainese)

212 Non-Official & Non-Aboriginal languages Yiddish

213 Non-Official & Non-Aboriginal languages Yoruba
mother_tongue most_at_home most_at_work lang_known

0 590 235 30 665

1 10260 4785 85 23415

2 1150 445 10 2775

3 13460 5985 25 22150

4 26895 13135 345 31930

209 3990 1385 10 8240

210 1840 800 75 2665

211 12915 7650 105 16530

212 13555 7085 895 20985

213 9080 2615 15 22415

[214 rows x 6 columns]

2.4.5 Reading tabular data directly from a URL

We can also use read_csv to read in data directly from a Uniform Resource
Locator (URL) that contains tabular data. Here, we provide the URL of a
remote file to read_csv, instead of a path to a local file on our computer. We
need to surround the URL with quotes similar to when we specify a path on
our local computer. All other arguments that we use are the same as when
using these functions with a local file on our computer.

url = "https://raw.githubusercontent.com/UBC-DSCI/introduction-to-datascience-
spython/reading/source/data/can_lang.csv"

pd.read_csv (url)

canlang_data = pd.read_csv(url)

canlang_data

category language .

<\

0 Aboriginal languages Aboriginal languages, n.o.s.
1 Non-Official & Non-Aboriginal languages Afrikaans
2 Non-Official & Non-Aboriginal languages Afro-Asiatic languages, n.i.e.
3 Non-Official & Non-Aboriginal languages Akan (Twi)
4 Non-Official & Non-Aboriginal languages Albanian
209 Non-Official & Non-Aboriginal languages Wolof
210 Aboriginal languages Woods Cree
211 Non-Official & Non-Aboriginal languages Wu (Shanghainese)
212 Non-Official & Non-Aboriginal languages Yiddish
213 Non-Official & Non-Aboriginal languages Yoruba

(continues on next page)

2.5. READING TABULAR DATA FROM A MICROSOFT EXCEL FILE 45

(continued from previous page)

mother_tongue most_at_home most_at_work lang_known

0 590 235 30 665
1 10260 4785 85 23415
2 1150 445 10 2775
3 13460 5985 25 22150
4 26895 L3S 345 31930
209 3990 1385 10 8240
210 1840 800 75 2665
211 12915 7650 105 16530
212 13555 7085 895 20985
213 9080 2615 15 22415

[214 rows x 6 columns]

2.4.6 Previewing a data file before reading it into Python

In many of the examples above, we gave you previews of the data file before
we read it into Python. Previewing data is essential to see whether or not
there are column names, what the separators are, and if there are rows you
need to skip. You should do this yourself when trying to read in data files:
open the file in whichever text editor you prefer to inspect its contents prior
to reading it into Python.

2.5 Reading tabular data from a Microsoft Excel file

There are many other ways to store tabular data sets beyond plain text files,
and similarly, many ways to load those data sets into Python. For example,
it is very common to encounter, and need to load into Python, data stored
as a Microsoft Excel spreadsheet (with the file name extension .x1sx). To
be able to do this, a key thing to know is that even though .csv and .x1sx
files look almost identical when loaded into Excel, the data themselves are
stored completely differently. While .csv files are plain text files, where the
characters you see when you open the file in a text editor are exactly the data
they represent, this is not the case for .x1sx files. Take a look at a snippet
of what a .x1sx file would look like in a text editor:

,2'0
_rels/.rels???J1?2?>E?2{7?
<?V??2?2?2w82'J?22'QrJr?Tf?d??d?0?wZ '?22?2@>24"'? | ?2?2h1Io??F
t 8£??3wn
$~Ed2?2?72<?w??
?PA(??2J-7E??2272't (?-GZ???2?22y??2?2c~N?g["_r?4
yG?0

(continues on next page)

46 CHAPTER 2. READING IN DATA LOCALLY AND FROM THE WEB

(continued from previous page)

?K??G?

X?a??4VT?,D?Jq

This type of file representation allows Excel files to store additional things that
you cannot store in a .csv file, such as fonts, text formatting, graphics, mul-
tiple sheets, and more. And despite looking odd in a plain text editor, we can
read Excel spreadsheets into Python using the pandas package’s read_excel
function developed specifically for this purpose.

canlang_data = pd.read_excel ("data/can_lang.xlsx")
canlang_data

category language .

=\
0 Aboriginal languages Aboriginal languages, n.o.s.
1 Non-Official & Non-Aboriginal languages Afrikaans
2 Non-Official & Non-Aboriginal languages Afro-Asiatic languages, n.i.e.
3 Non-Official & Non-Aboriginal languages Akan (Twi)
4 Non-Official & Non-Aboriginal languages Albanian
209 Non-Official & Non-Aboriginal languages Wolof
210 Aboriginal languages Woods Cree
211 Non-Official & Non-Aboriginal languages Wu (Shanghainese)
212 Non-Official & Non-Aboriginal languages Yiddish
213 Non-Official & Non-Aboriginal languages Yoruba

mother_tongue most_at_home most_at_work lang_known
0 590 235 30 665
1 10260 4785 85 23415
2 1150 445 10 2775
3 13460 5985 25 22150
4 26895 13135 345 31930
209 3990 1385 10 8240
210 1840 800 75 2665
211 12915 7650 105 16530
212 13555 7085 895 20985
213 9080 2615 15 22415

[214 rows X 6 columns]

If the .x1sx file has multiple sheets, you have to use the sheet_name argu-
ment to specify the sheet number or name. This functionality is useful when
a single sheet contains multiple tables (a sad thing that happens to many
Excel spreadsheets since this makes reading in data more difficult). You can
also specify cell ranges using the usecols argument (e.g., usecols="A:D"
for including columns from A to D).

As with plain text files, you should always explore the data file before import-
ing it into Python. Exploring the data beforehand helps you decide which

2.6. READING DATA FROM A DATABASE 47

arguments you need to load the data into Python successfully. If you do not
have the Excel program on your computer, you can use other programs to
preview the file. Examples include Google Sheets and Libre Office.

In Table 2.1 we summarize the read_csv and read_excel functions we cov-
ered in this chapter. We also include the arguments for data separated by
semicolons ;, which you may run into with data sets where the decimal is
represented by a comma instead of a period (as with some data sets from
European countries).

TABLE 2.1 Summary of read_csv and read__excel

Data File Type Python Arguments
Function

Comma (,) separated files read_csv | just the file path

Tab (\t) separated files read_csv | sep="\t"

Missing header read_csv | header=None

European-style numbers, semi-| read_csv | sep=";", thousands=".",

colon (;) separators decimal=","

Excel files (.xlsx) read_excglsheet_name, usecols
|

2.6 Reading data from a database

Another very common form of data storage is the relational database.
Databases are great when you have large data sets or multiple users work-
ing on a project. There are many relational database management systems,
such as SQLite, MySQL, PostgreSQL, Oracle, and many more. These differ-
ent relational database management systems each have their own advantages
and limitations. Almost all employ SQL (structured query language) to obtain
data from the database. But you don’t need to know SQL to analyze data
from a database; several packages have been written that allow you to connect
to relational databases and use the Python programming language to obtain
data. In this book, we will give examples of how to do this using Python with
SQLite and PostgreSQL databases.

2.6.1 Reading data from a SQLite database

SQLite is probably the simplest relational database system that one can use
in combination with Python. SQLite databases are self-contained, and are
usually stored and accessed locally on one computer from a file with a .db

48 CHAPTER 2. READING IN DATA LOCALLY AND FROM THE WEB

extension (or sometimes a .sglite extension). Similar to Excel files, these
are not plain text files and cannot be read in a plain text editor.

The first thing you need to do to read data into Python from a database is to
connect to the database. For an SQLite database, we will do that using the
connect function from the sgqlite backend in the ibis package. This com-
mand does not read in the data, but simply tells Python where the database
is and opens up a communication channel that Python can use to send SQL
commands to the database.

Note: There is another database package in python called sglalchemy.
That package is a bit more mature than ibis, so if you want to dig deeper
into working with databases in Python, that is a good next package to learn
about. We will work with ibis in this book, as it provides a more modern
and friendlier syntax that is more like pandas for data analysis code.

import ibis

conn = ibis.sglite.connect ("data/can_lang.db")

Often relational databases have many tables; thus, in order to retrieve data
from a database, you need to know the name of the table in which the data
is stored. You can get the names of all the tables in the database using the
list_tables function:

tables = conn.list_tables()
tables

['can_lang']

The 1ist_tables function returned only one name—"can_lang"—which
tells us that there is only one table in this database. To reference a table
in the database (so that we can perform operations like selecting columns
and filtering rows), we use the table function from the conn object. The
object returned by the table function allows us to work with data stored
in databases as if they were just regular pandas data frames; but secretly,
behind the scenes, ibis will turn your commands into SQL queries.

canlang_table = conn.table("can_lang")
canlang_table

DatabaseTable: can_lang
category string
language string

(continues on next page)

2.6. READING DATA FROM A DATABASE 49

(continued from previous page)

mother_tongue float64
most_at_home float64
most_at_work floato4
lang_known float64

Although it looks like we might have obtained the whole data frame from
the database, we didn’t. It’s a reference; the data is still stored only in the
SQLite database. The canlang_table object is a DatabaseTable, which,
when printed, tells you which columns are available in the table. But unlike a
usual pandas data frame, we do not immediately know how many rows are in
the table. In order to find out how many rows there are, we have to send an
SQL query (i.e., command) to the data base. In ibis, we can do that using
the count function from the table object.

canlang_table.count ()

r0 := DatabaseTable: can_lang
category string
language string

mother_tongue float64
most_at_home float64
most_at_work floato64
lang_known float64

CountStar (can_lang): CountStar (r0)

Wait a second ... this isn’t the number of rows in the database. In fact, we
haven’t actually sent our SQL query to the database yet. We need to explicitly
tell ibis when we want to send the query. The reason for this is that databases
are often more efficient at working with (i.e., selecting, filtering, joining, etc.)
large data sets than Python. And typically, the database will not even be
stored on your computer, but rather a more powerful machine somewhere on
the web. So ibis is lazy and waits to bring this data into memory until
you explicitly tell it to using the execute function. The execute function
actually sends the SQL query to the database, and gives you the result. Let’s
look at the number of rows in the table by executing the count command.

canlang_table.count () .execute ()
214

There we go. There are 214 rows in the can_lang table. If you are interested
in seeing the actual text of the SQL query that ibis sends to the database,
you can use the compile function instead of execute. But note that you
have to pass the result of compile to the str function to turn it into a
human-readable string first.

50 CHAPTER 2. READING IN DATA LOCALLY AND FROM THE WEB

str (canlang_table.count () .compile())
'"SELECT count (*) AS "CountStar (can_lang)" \nFROM can_lang AS tO'

The output above shows the SQL code that is sent to the database. When we
write canlang_table.count () .execute () in Python, in the background,
the execute function is translating the Python code into SQL, sending that
SQL to the database, and then translating the response for us. So ibis does
all the hard work of translating from Python to SQL and back for us; we can
just stick with Python.

The ibis package provides lots of pandas-like tools for working with database
tables. For example, we can look at the first few rows of the table by using
the head function, followed by execute to retrieve the response.

canlang_table.head (10) .execute ()

category language \

0 Aboriginal languages Aboriginal languages, n.o.s.
1 Non-Official & Non-Aboriginal languages Afrikaans
2 Non-Official & Non-Aboriginal languages Afro-Asiatic languages, n.i.e.
3 Non-Official & Non-Aboriginal languages Akan (Twi)
4 Non-Official & Non-Aboriginal languages Albanian
5 Aboriginal languages Algonquian languages, n.i.e.
6 Aboriginal languages Algonquin
7 Non-Official & Non-Aboriginal languages American Sign Language
8 Non-Official & Non-Aboriginal languages Amharic
9 Non-Official & Non-Aboriginal languages Arabic

mother_tongue most_at_home most_at_work lang_known
0 590.0 235.0 30.0 665.0
1 10260.0 4785.0 85.0 23415.0
2 1150.0 445.0 10.0 2775.0
3 13460.0 5985.0 25.0 22150.0
4 26895.0 13135.0 345.0 31930.0
5 45.0 10.0 0.0 120.0
6 1260.0 370.0 40.0 2480.0
7 2685.0 3020.0 1145.0 21930.0
8 22465.0 12785.0 200.0 33670.0
9 419890.0 223535.0 5585.0 629055.0

You can see that ibis actually returned a pandas data frame to us after
we executed the query, which is very convenient for working with the data
after getting it from the database. So now that we have the canlang_table
table reference for the 2016 Canadian Census data in hand, we can mostly
continue onward as if it were a regular data frame. For example, let’s do the
same exercise from Chapter 1: we will obtain only those rows corresponding
to Aboriginal languages, and keep only the language and mother_tongue
columns. We can use the [] operation with a logical statement to obtain only
certain rows. Below we filter the data to include only Aboriginal languages.

2.6. READING DATA FROM A DATABASE 51

canlang_table_filtered = canlang_table[canlang_table["category"] == "Aboriginal.
<languages"]
canlang_table_filtered

r0 := DatabaseTable: can_lang
category string
language string

mother_tongue float64
most_at_home float64
most_at_work floato4
lang_known floato4d

Selection[r0]
predicates:
rO.category == 'Aboriginal languages'

Above you can see that we have not yet executed this command; can-
lang_table filtered is just showing the first part of our query (the part
that starts with Selection[r0] above). We didn’t call execute because we
are not ready to bring the data into Python yet. We can still use the database
to do some work to obtain only the small amount of data we want to work
with locally in Python. Let’s add the second part of our SQL query: selecting
only the 1language and mother_tongue columns.

canlang_table_selected = canlang_table_filtered[["language", "mother_tongue"]]
canlang_table_selected

r0 := DatabaseTable: can_lang
category string
language string

mother_tongue float64
most_at_home float64
most_at_work floato64

lang_known float64
rl := Selection[rO0]
predicates:
rO.category == 'Aboriginal languages'

Selection([ril]
selections:
language: rl.language
mother_tongue: rl.mother_tongue

Now you can see that the ibis query will have two steps: it will first find rows
corresponding to Aboriginal languages, then it will extract only the 1anguage
and mother_tongue columns that we are interested in. Let’s actually execute
the query now to bring the data into Python as a pandas data frame, and
print the result.

aboriginal_lang_data = canlang_table_selected.execute ()
aboriginal_lang_data

52

CHAPTER 2. READING IN DATA LOCALLY AND FROM THE WEB

language mother_tongue

0 Aboriginal languages, n.o.s. 590.0
1 Algongquian languages, n.i.e. 45.0
2 Algonquin 1260.0
3 Athabaskan languages, n.i.e. 50.0
4 Atikamekw 6150.0
62 Thompson (Ntlakapamux) 335.0
63 Tlingit 95.0
64 Tsimshian 200.0
65 Wakashan languages, n.i.e. 10.0
66 Woods Cree 1840.0

[67 rows x 2 columns]

ibis provides many more functions (not just the [] operation) that you can
use to manipulate the data within the database before calling execute to
obtain the data in Python. But ibis does not provide every function that we
need for analysis; we do eventually need to call execute. For example, ibis
does not provide the tail function to look at the last rows in a database,
even though pandas does.

canlang_table_selected.tail (6)

AttributeError Traceback (most recent call last)
Cell In[24], line 1
—-——-> 1 canlang_table_selected.tail (6)

File /opt/conda/lib/python3.11/site-packages/ibis/expr/types/relations.py: 645,
< in Table.__getattr__ (self, key)

641 hint = common_typos|[key]

642 raise AttributeError (

643 f" {type (self).__name__} object has no attribute <{key!/r}, did.
oyou mean {hint!/r}"

644)

—-=> 645 raise AttributeError (f"'Table' object has no attribute {key!/r}")

AttributeError: 'Table' object has no attribute 'tail'

aboriginal_lang_data.tail (6)

language mother_tongue

61 Tahltan 95.0
62 Thompson (Ntlakapamux) 335.0
63 Tlingit 95.0
64 Tsimshian 200.0
65 Wakashan languages, n.i.e. 10.0
66 Woods Cree 1840.0

So once you have finished your data wrangling of the database reference object,
it is advisable to bring it into Python as a pandas data frame using the
execute function. But be very careful using execute: databases are often
very big, and reading an entire table into Python might take a long time to run

2.6. READING DATA FROM A DATABASE 53

or even possibly crash your machine. So make sure you select and filter the
database table to reduce the data to a reasonable size before using execute
to read it into Python.

2.6.2 Reading data from a PostgreSQL database

PostgreSQL (also called Postgres) is a very popular and open-source option for
relational database software. Unlike SQLite, PostgreSQL uses a client—server
database engine, as it was designed to be used and accessed on a network. This
means that you have to provide more information to Python when connecting
to Postgres databases. The additional information that you need to include
when you call the connect function is listed below:

« database: the name of the database (a single PostgreSQL instance can host
more than one database)

» host: the URL pointing to where the database is located (localhost if it
is on your local machine)

e port: the communication endpoint between Python and the PostgreSQL
database (usually 5432)

e user: the username for accessing the database
o password: the password for accessing the database

Below we demonstrate how to connect to a version of the can_mov_db
database, which contains information about Canadian movies. Note that
the host (fakeserver.stat.ubc.ca), user (userOOOl), and password
(abc123) below are not real; you will not actually be able to connect to a
database using this information.

conn = ibis.postgres.connect (
database="can_mov_db",
host="fakeserver.stat.ubc.ca",
port=5432,
user="user0001",
password="abcl123"

)

Aside from needing to provide that additional information, ibis makes it so
that connecting to and working with a Postgres database is identical to con-
necting to and working with an SQLite database. For example, we can again
use list_tables to find out what tables are in the can_mov_db database:

conn.list_tables()

54 CHAPTER 2. READING IN DATA LOCALLY AND FROM THE WEB

["themes", "medium", "titles", "title_aliases", "forms", "episodes", "names",
—~"names_occupations”, "occupation", "ratings"]

We see that there are 10 tables in this database. Let’s first look at the "rat-
ings" table to find the lowest rating that exists in the can_mov_db database.

ratings_table = conn.table("ratings")
ratings_table

AlchemyTable: ratings

title string
average_rating float64
num_votes int64

To find the lowest rating that exists in the data base, we first need to select
the average_rating column:

avg_rating = ratings_table[["average_rating"]]
avg_rating

r0 := AlchemyTable: ratings
title string
average_rating float64
num_votes int64

Selection[r0]
selections:
average_rating: rO.average_rating

Next, we use the order_by function from ibis order the table by aver-—
age_rating, and then the head function to select the first row (i.e., the
lowest score).

lowest = avg_rating.order_by ("average_rating") .head (1)
lowest .execute ()

average_rating
0 1.0

We see the lowest rating given to a movie is 1, indicating that it must have
been a really bad movie ...

2.6.3 Why should we bother with databases at all?

Opening a database involved a lot more effort than just opening a .csv, or
any of the other plain text or Excel formats. We had to open a connection
to the database, then use ibis to translate pandas-like commands (the []
operation, head, etc.) into SQL queries that the database understands, and
then finally execute them. And not all pandas commands can currently be

2.7. WRITING DATA FROM PYTHON TO A .CSV FILE 95

translated via ibis into database queries. So you might be wondering: why
should we use databases at all?

Databases are beneficial in a large-scale setting:
o They enable storing large data sets across multiple computers with backups.
o They provide mechanisms for ensuring data integrity and validating input.
o They provide security and data access control.

o They allow multiple users to access data simultaneously and remotely with-
out conflicts and errors. For example, there are billions of Google searches
conducted daily in 2021 [Real Time Statistics Project, 2021]. Can you imag-
ine if Google stored all of the data from those searches in a single . csv file!?
Chaos would ensue.

2.7 Writing data from Python to a .csv file

At the middle and end of a data analysis, we often want to write a data frame
that has changed (through selecting columns, filtering rows, etc.) to a file
to share it with others or use it for another step in the analysis. The most
straightforward way to do this is to use the to_csv function from the pandas
package. The default arguments are to use a comma (,) as the separator, and
to include column names in the first row. We also specify index = False to
tell pandas not to print row numbers in the .csv file. Below we demonstrate
creating a new version of the Canadian languages data set without the “Official
languages” category according to the Canadian 2016 Census, and then writing
this to a .csv file:

no_official_lang_data = canlang data[canlang_datal["category"] != "Official.

<languages"]
no_official_lang_data.to_csv("data/no_official_languages.csv", index=False)
|

2.8 Obtaining data from the web

Note: This section is not required reading for the remainder of the textbook.
It is included for those readers interested in learning a little bit more about
how to obtain different types of data from the web.

56 CHAPTER 2. READING IN DATA LOCALLY AND FROM THE WEB

Data doesn’t just magically appear on your computer; you need to get it from
somewhere. Earlier in the chapter we showed you how to access data stored
in a plain text, spreadsheet-like format (e.g., comma- or tab-separated) from
a web URL using the read_csv function from pandas. But as time goes on,
it is increasingly uncommon to find data (especially large amounts of data) in
this format available for download from a URL. Instead, websites now often
offer something known as an application programming interface (API), which
provides a programmatic way to ask for subsets of a data set. This allows
the website owner to control who has access to the data, what portion of the
data they have access to, and how much data they can access. Typically,
the website owner will give you a token or key (a secret string of characters
somewhat like a password) that you have to provide when accessing the API.

Another interesting thought: websites themselves are data. When you type
a URL into your browser window, your browser asks the web server (another
computer on the internet whose job it is to respond to requests for the website)
to give it the website’s data, and then your browser translates that data into
something you can see. If the website shows you some information that you’re
interested in, you could create a data set for yourself by copying and pasting
that information into a file. This process of taking information directly from
what a website displays is called web scraping (or sometimes screen scrap-
ing). Now, of course, copying and pasting information manually is a painstak-
ing and error-prone process, especially when there is a lot of information to
gather. So instead of asking your browser to translate the information that
the web server provides into something you can see, you can collect that data
programmatically—in the form of hypertext markup language (HTML) and
cascading style sheet (CSS) code—and process it to extract useful informa-
tion. HTML provides the basic structure of a site and tells the webpage how
to display the content (e.g., titles, paragraphs, bullet lists, etc.), whereas CSS
helps style the content and tells the webpage how the HTML elements should
be presented (e.g., colors, layouts, fonts, etc.).

This subsection will show you the basics of both web scraping with the Beau-
tifulSoup Python package? [Richardson, 2007] and accessing the NASA “As-
tronomy Picture of the Day” API using the requests Python package® [Reitz
and The Python Software Foundation, Accessed Online: 2023].

2https:/ /beautiful-soup-4.readthedocs.io/en /latest /
3https:/ /requests.readthedocs.io/en/latest/

https://beautiful-soup-4.readthedocs.io/en/latest
https://requests.readthedocs.io/en/latest

2.8. OBTAINING DATA FROM THE WEB o7

® O ® @ vancouver, BC aptsihousing I % +

< C @ https://vancouver.craigslist.org/search/apa?min_bedrooms=1&max_bedrooms=1&availabilityMode=08sale_date=all+dates v] & Y [+]

CL [vancouver. BC &> | allvancouver, BC #|>| housing 4| > | aptsmousing for rent % post ‘ accoun
i . save

aptf/housmg for search apts/housing for rent Q| search

ren

| search titles only = thumb ~ 1-120 /3000 next > newest ¥

7] has image

| posted toda (:

- gund\e dupliycates ¥ Jan 6 Shangrai-la Luxury Apt 2

1 include nearby areas §3995 1br - 7450t? - (Alberni&bute) pic map see in map view

KM FROM POSTAL CODE

km from pos| ¢ Jan 6 Top Floor 2 Room Suite 1 Bedroom Available, wifi Laundry

$675 | 1br - (SURREY CENTER HOSPITAL) pic map
PRICE.

min max .
Jané 1 bedroom Home in VENUE in Surrey Center
BEDROOMS $800 1br - (13768 108th Avenue) map
18- 5
BATHROOMS Jan 6 Luxury 1 Bedroom CentreView with View - Lonsdale
min §|-| max § . 2285 1br - 635it? - (Lonsdale / North Vancouver) pic map
F12
min max g Jané Cozy 1 bdrm fully furnished garden level suite January 15
i $1500| 1br - 750ft2 - (Clark and 17th Ave) pic map
AVAILABILITY
all dates : —
Jan 6 Brand New 1 bedroom walkout basement suite
"~ cats ok $1300 1br - 650ft? - (Central Coquitlam) pic map
"~ dogs ok
) furnished . . . ;
1 no smoking Jan 6 Brand New One bedroom plus Den condo in South Richmond available
~ wheelchair access “«i’# $1700 1br - 60742 - (10780 No.5 Road, Richmond) o'c map

& hnansins hine

FIGURE 2.2 Craigslist webpage of advertisements for one-bedroom apart-
ments.

2.8.1 Web scraping
2.8.1.1 HTML and CSS selectors

When you enter a URL into your browser, your browser connects to the web
server at that URL and asks for the source code for the website. This is
the data that the browser translates into something you can see; so if we
are going to create our own data by scraping a website, we have to first
understand what that data looks like. For example, let’s say we are interested
in knowing the average rental price (per square foot) of the most recently
available one-bedroom apartments in Vancouver on Craiglist?. When we visit
the Vancouver Craigslist website and search for one-bedroom apartments, we
should see something similar to Fig. 2.2.

Based on what our browser shows us, it’s pretty easy to find the size and
price for each apartment listed. But we would like to be able to obtain that
information using Python, without any manual human effort or copying and
pasting. We do this by examining the source code that the web server actually
sent our browser to display for us. We show a snippet of it below; the entire
source is included with the code for this book®:

4https://vancouver.craigslist.org
Shttps://github.com/UBC-DSCI/introduction-to-datascience-python /blob/main/sourc
e/data/website__source.txt

https://vancouver.craigslist.org
https://github.com/UBC-DSCI/introduction-to-datascience-python/blob/main/source/data/website_source.txt
https://github.com/UBC-DSCI/introduction-to-datascience-python/blob/main/source/data/website_source.txt

58 CHAPTER 2. READING IN DATA LOCALLY AND FROM THE WEB

$800

1br -

 (13768 108th Avenue)

map

hide this posting

restore
restore this posting

$2285

Oof ... you can tell that the source code for a web page is not really designed
for humans to understand easily. However, if you look through it closely, you
will find that the information we’re interested in is hidden among the muck.
For example, near the top of the snippet above you can see a line that looks
like

$800

That snippet is definitely storing the price of a particular apartment. With
some more investigation, you should be able to find things like the date and
time of the listing, the address of the listing, and more. So this source code
most likely contains all the information we are interested in.

Let’s dig into that line above a bit more. You can see that that bit of code
has an opening tag (words between < and >, like) and a closing tag
(the same with a slash, like). HTML source code generally stores
its data between opening and closing tags like these. Tags are keywords that
tell the web browser how to display or format the content. Above you can
see that the information we want ($800) is stored between an opening and
closing tag (and). In the opening tag, you can also see a very
useful “class” (a special word that is sometimes included with opening tags):
class="result-price". Since we want R to programmatically sort through
all of the source code for the website to find apartment prices, maybe we can
look for all the tags with the "result-price" class, and grab the information
between the opening and closing tag. Indeed, take a look at another line of
the source snippet above:

2.8. OBTAINING DATA FROM THE WEB 99

$2285

It’s yet another price for an apartment listing, and the tags surrounding it have
the "result-price" class. Wonderful! Now that we know what pattern we
are looking for—a dollar amount between opening and closing tags that have
the "result-price" class—we should be able to use code to pull out all of
the matching patterns from the source code to obtain our data. This sort of
“pattern” is known as a CSS selector (where CSS stands for cascading style
sheet).

The above was a simple example of “finding the pattern to look for”; many
websites are quite a bit larger and more complex, and so is their website source
code. Fortunately, there are tools available to make this process easier. For
example, SelectorGadget® is an open-source tool that simplifies identifying
the generating and finding of CSS selectors. At the end of the chapter in
the additional resources section, we include a link to a short video on how
to install and use the SelectorGadget tool to obtain CSS selectors for use in
web scraping. After installing and enabling the tool, you can click the website
element for which you want an appropriate selector. For example, if we click
the price of an apartment listing, we find that SelectorGadget shows us the
selector . result-price in its toolbar, and highlights all the other apartment
prices that would be obtained using that selector (Fig. 2.3).

If we then click the size of an apartment listing, SelectorGadget shows us the
span selector, and highlights many of the lines on the page; this indicates that
the span selector is not specific enough to capture only apartment sizes (Fig.
2.4).

To narrow the selector, we can click one of the highlighted elements that we
do not want. For example, we can deselect the “pic/map” links, resulting in
only the data we want highlighted using the .housing selector (Fig. 2.5).

So to scrape information about the square footage and rental price of apart-
ment listings, we need to use the two CSS selectors .housing and
result-price, respectively. The selector gadget returns them to us as a
comma-separated list (here .housing , .result-price), which is exactly
the format we need to provide to Python if we are using more than one CSS
selector.

Caution: are you allowed to scrape that website?

Before scraping data from the web, you should always check whether or not
you are allowed to scrape it. There are two documents that are important

Shttps:/ /selectorgadget.com/

https://selectorgadget.com

60

& C @ https: list. pa?min_| 18&max_| 1 0&sale_date=all+dat % B @ ¢ 'Y
CL [vancouver.BC | > [allvancouver,BC & /> housing &) > | aptsousing for rent % post aocoun(l
apts/housing for search apts/housing for rent Al b
rent

search titles only = thumb ~ < prev 1-120/3000 next > newest v

has image

posted today i .

bundle duplicates ¢ Shangrai-la Luxury Apt 2 . .

br - 745ft? - (Albemi&bute) pic map see in map view

include nearby areas

KM FROM POSTAL CODE
km from pos’|)

AVAILABLITY
all dates :

cats ok
) dogs ok
furnished
no smoking
wheelchair access

s haueinn tuna

o Chrome Web Store - selectorc X

CHAPTER 2. READING IN DATA LOCALLY AND FROM THE WEB

@ vancouver, BC apts/housing - X +

Jan 6 Top Floor 2 Room Suite 1 Bedroom Available, wifi Laundry
$675 1br - (SURREY CENTER HOSPITAL) pic map

a6 1 bedroom Home in VENUE in Surrey Center
$800 1br - (13768 108th Avenue) map

Jan 6 Luxury 1 Bedroom CentreView with View - Lonsdale
$2285 1br - 6352 - (Lonsdale / North Vancouver) pic map

Jun6 Cozy 1 bdrm fully furnished garden level suite January 15
$1500 1br - 750t - (Clark and 17th Ave) pic map

Jun 6 Brand New 1 bedroom walkout basement suite

$1300 1br - 650 - (Central Coquitlam) pic map

i

Ju26 Brand New One bedroom plus Den condo in South Richmond available
$1700 1br - 607 - (1r1 restitoprice

Clear (223) Toggle Position XPath ? X |

FIGURE

2.3 Using the SelectorGadget on a Craigslist webpage to obtain

the CCS selector useful for obtaining apartment prices.

€ C @ htips:

& Chrome Web Store - selector: X

@ vancouver, BC apts/housing I X =+

CL [vancouver.BC ¢/ > [allvancouver, BC ¢/ >

apts/housing for
rent

search titles only
has image

posted today

bundle duplicates
include nearby areas

KM FROM POSTAL CODE
km from pos’

BEDROOMS
1 8-[1 %

BATHROOMS
min § |-/ max §

AALABLTY
all dates :

) cats ok
~) dogs ok
furnished
no smoking
~ wheelchair access

. haueinn hna

FIGURE

craigslist. Vapa?min_t 1&max_| 1& 0&sale_date=all+dates % B E e >
housing #|> | aptsmousing for rent_§ post aceoun(l
search apts/housing for rent s:::;.
thumb ~ << <prev 1-120/3000 next > newest v
. 6 Shangrai-la Luxury Apt *
4% éb«nmm map see in map view

Jan 6 Top Floor 2 Room Suite 1 Bedroom Available, wifi Laundry
$675 1br - (SURREY CENTER HOSPITAL) pic map

Jun 6 1 bedroom Home in VENUE in Surrey Center
$800 1br - (13768 108th Avenue) map

Jan 6 Luxury 1 Bedroom CentreView with View - Lonsdale
$2285 1br - 635ft? - (Lonsdale / North Vancouver) pic map

Jun6 Cozy 1 bdrm fully furnished garden level suite January 15
$1500 1br - 750ft2 - (Clark and 17th Ave) pic map

Jun 6 Brand New 1 bedroom walkout basement suite
$1300 1br - B50ft? - (Central Coquitlam) pic map

e
=

Jas 6 Brand New One bedroom plus Den condo in South Richmond available
$1700 1br - 607A2 - (1 e

Clear (1743) Toggle Position XPath ? X I

CCS selector useful for obtaining apartment sizes.

2.4 Using the SelectorGadget on a Craigslist webpage to obtain a

2.8. OBTAINING DATA FROM THE WEB 61

® O ® . ChromeWeb Store - selectorc. X @) vancouver, BC apts/housing I X 4

€ C @ https/ .craigslist.org/search/apa?min_bedrooms=1&max_bedrooms=18&availabilityMode=0&sale_date=all+dates % B < N
CL | vancouver, BC $ > allvancouver, BC & > housing &> | aptshousing for rent $ post accoum'
i save
aptf/housmg for search apts/housing for rent Q search
ren
search titles only i=thumb ~ 1-120/3000 next > newest v
has image
::::: :loudpall)éa(es \ Jun 6 Shangrai-la Luxury Apt
include nearby areas $3995 1br- 74502 - (Albernidbute | NN see in map view
° span span

{MEROM POSTAL 00DR 226 Top Floor 2 Room Suite 1 Bedroom Available, wifi Laundry

km from pos' €
$675 1br - (SURREY CENTER HOSPITAL) pic map
PRICE
min max
jn6 1 bedroom Home in VENUE in Surrey Center
BEDROOMS $800 1br - (13768 108th Avenue) map
1 38/-11 2
BATHROOMS jan 6 Luxury 1 Bedroom CentreView with View - Lonsdale
min §/-| max § $2285 1br - 6352 - (Lonsdale / North Vancouver) pic map
Fr2
min max d Jun6 Cozy 1 bdrm fully furnished garden level suite January 15
‘ $1500 1br - 7501t - (Clark and 17th Ave) pic map
AVAILABILITY
all dates : —
jun 6 Brand New 1 bedroom walkout basement suite
cats ok $1300 1br - 650ft? - (Central Coquitlam) pic map
dogs ok

furnished

no smoking g Jun 6 Brand New One bedroom plus Den condo in South Richmond available
HesiEaceaes RO (31700 10r-6078-(19 1 515ing , result-price Clear (343) Toggle Position XPath 2 X l

FIGURE 2.5 Using the SelectorGadget on a Craigslist webpage to refine the
CCS selector to one that is most useful for obtaining apartment sizes.

for this: the robots.txt file and the Terms of Service document. If we
take a look at Craigslist’s Terms of Service document”, we find the following
text: “You agree not to copy/collect CL content via robots, spiders, scripts,
scrapers, crawlers, or any automated or manual equivalent (e.g., by hand)”.
So unfortunately, without explicit permission, we are not allowed to scrape
the website.

What to do now? Well, we could ask the owner of Craigslist for permission
to scrape. However, we are not likely to get a response, and even if we did
they would not likely give us permission. The more realistic answer is that we
simply cannot scrape Craigslist. If we still want to find data about rental prices
in Vancouver, we must go elsewhere. To continue learning how to scrape data
from the web, let’s instead scrape data on the population of Canadian cities
from Wikipedia. We have checked the Terms of Service document®, and it does
not mention that web scraping is disallowed. We will use the SelectorGadget
tool to pick elements that we are interested in (city names and population
counts) and deselect others to indicate that we are not interested in them
(province names), as shown in Fig. 2.6.

Thttps://www.craigslist.org/about /terms.of.use
8https://foundation.wikimedia.org/wiki/Terms _of Use/en

https://www.craigslist.org/about/terms.of.use
https://foundation.wikimedia.org/wiki/Terms_of_Use/en

62 CHAPTER 2. READING IN DATA LOCALLY AND FROM THE WEB

W Canada-wikipedia x|+ v 2@ ®
€ 5> C @ enwikipediaorg/wiki/Canada Q< ww= L0
Canaua’s pUpUIauUIT UETISILy, Al 4.2 INHaUiaits Pei SYUart KIVIICUE (LY 1), 15 aiiony
319
- the lowest in the world.*2%) Canada spans latitudinally from the 83rd parallel north to the Canada population density map (2014)°) &
Contents [hide]
[] 41st parallel north and approximately 95 percent of the population is found south of the
(Top) 55th parallel north.*2% About 80 percent of the population lives within 150 kilometres (93 mi) of the border with the contiguous United
Etymolo: States.[33% canada is highly urbanized, with over 80 percent of the population living urban centres.®3] The most densely populated part of
y! ay ighly. p pop 9 ly pop! P

> History the country, accounting for nearly 50 percent, is the Quebec City-Windsor Corridor in Southern Quebec and Southern Ontario along the Great
Lakes and the St. Lawrence River. 3321329
> Geography
The majority of Canadians (81.1 percent) live in family households, 12.1 percent report living alone, and those living with other relatives or
> Government and politics (333]
unrelated persons reported at 6.8 percent.! Fifty-one percent of households are couples with or without children, 8.7 percent are single-

> Economy parent households, 2.9 percent are multigenerational households, and 29.3 percent are single-person households. 333
Demographics " .
> grapl eree Largest metropolitan areas in Canada
Health 2021 Canadian census/334]
Education Rank Name Province Pop. Rank Name Province Pop.
1 [oronta foiitariol 6,202,225 11 London Ontario 543,551
> Culture
2 Montreal D :2oi72 12 Haliex Nova Scotia 465,703
See also
3 Vancouver British Columbia 2,642,825 13 St Catharines-Niagara Ontario 433,604
Notes 4 Ottawa-Gatineau Ontario-Quebec 1,488,307 14 Windsor Ontario 422,630
References 5 Calgary Alberta 1481806 15 Oshawa Ontario 415311
Eurther reading 6 Edmonton Alberta 1418118 16 Victoria British Columbia 397,237
External links 7 Quebec City Quebec 839311 17 Saskatoon Saskatchewan 317,480
8 Winnipeg Manitoba 834678 18 Regina Saskatchewan 249,217
9 Hamilton Ontario 785184 19 Sherbrooke Quebec 227,398
10 Kitchener-Cambridge-Waterioo Ontario 575847 20 Kelowna British Columbia 222,162
Ethnicity

Main article: Ethnic origins of people in Canada

According to the 207 td:nth-child(8) , td:nth-child(4) , .largestCities-cell-backgrounc Clear (40) ~ Toggle Position ~ XPath 2 X

arouns chosen were: Fironean (525 bercenh). North American (22.9 bercen). Asian (19.3 bercend). North American Indidenotis (6.1 bercent)

FIGURE 2.6 Using the SelectorGadget on a Wikipedia webpage.

We include a link to a short video tutorial on this process at the end of the
chapter in the additional resources section. SelectorGadget provides in its
toolbar the following list of CSS selectors to use:

td:nth-child(8) ,
td:nth-child(4) ,
.largestCities-cell-background+ td a

Now that we have the CSS selectors that describe the properties of the ele-
ments that we want to target, we can use them to find certain elements in
web pages and extract data.

2.8.1.2 Scraping with BeautifulSoup

We will use the requests and BeautifulSoup Python packages to scrape
data from the Wikipedia page. After loading those packages, we tell Python
which page we want to scrape by providing its URL in quotations to the
requests.get function. This function obtains the raw HTML of the page,
which we then pass to the BeautifulSoup function for parsing:

import requests
import bs4

wiki = requests.get ("https://en.wikipedia.org/wiki/Canada")
page bs4.BeautifulSoup (wiki.content, "html.parser")

The requests.get function downloads the HTML source code for the page
at the URL you specify, just like your browser would if you navigated to this

2.8. OBTAINING DATA FROM THE WEB 63

site. But instead of displaying the website to you, the requests.get func-
tion just returns the HTML source code itself—stored in the wiki.content
variable—which we then parse using BeautifulSoup and store in the page
variable. Next, we pass the CSS selectors we obtained from SelectorGadget to
the select method of the page object. Make sure to surround the selectors
with quotation marks; select expects that argument is a string. We store
the result of the select function in the population_nodes variable. Note
that select returns a list; below we slice the list to print only the first 5
elements for clarity.

population_nodes = page.select (
"td:nth-child(8) , td:nth-child(4) , .largestCities-cell-background+ td a"
)

population_nodes([:5]

[Toronto
“r

<td style="text-align:right;">6,202,225</td>,

London,

<td style="text-align:right;">543,551

</td>,

Montreal]

Each of the items in the population_nodes list is a node from the HTML
document that matches the CSS selectors you specified. A node is an HTML
tag pair (e.g., <td> and </td> which defines the cell of a table) combined with
the content stored between the tags. For our CSS selector td:nth-child(4),
an example node that would be selected would be:

<td style="text-align:left;">
London
</td>

Next, we extract the meaningful data—in other words, we get rid of the HTML
code syntax and tags—from the nodes using the get_text function. In the
case of the example node above, get_text function returns "London". Once
again we show only the first 5 elements for clarity.

[row.get_text () for row in population_nodes[:5]]
['Toronto', '6,202,225"', 'London', '543,551\n', 'Montreal']

Fantastic! We seem to have extracted the data of interest from the raw
HTML source code. But we are not quite done; the data is not yet in an
optimal format for data analysis. Both the city names and population are
encoded as characters in a single vector, instead of being in a data frame with
one character column for city and one numeric column for population (like a
spreadsheet). Additionally, the populations contain commas (not useful for

64 CHAPTER 2. READING IN DATA LOCALLY AND FROM THE WEB

programmatically dealing with numbers), and some even contain a line break
character at the end (\n). In Chapter 3, we will learn more about how to
wrangle data such as this into a more useful format for data analysis using
Python.

2.8.1.3 Scraping with read_html

Using requests and BeautifulSoup to extract data based on CSS selectors
is a very general way to scrape data from the web, albeit perhaps a little bit
complicated. Fortunately, pandas provides the read_htm1? function, which
is easier method to try when the data appear on the webpage already in a
tabular format. The read_html function takes one argument—the URL of
the page to scrape—and will return a list of data frames corresponding to all
the tables it finds at that URL. We can see below that read_html found 17
tables on the Wikipedia page for Canada.

canada_wiki_tables = pd.read_html ("https://en.wikipedia.org/wiki/Canada™)
len (canada_wiki_tables)

17

After manually searching through these, we find that the table containing the
population counts of the largest metropolitan areas in Canada is contained in
index 1. We use the droplevel method to simplify the column names in the
resulting data frame:

canada_wiki_df = canada_wiki_tables|[1]

canada_wiki_df.columns = canada_wiki_df.columns.droplevel ()
canada_wiki_df

Rank Name Province Pop. Rank.l \
0 1 Toronto Ontario 6202225 11
1 2 Montreal Quebec 4291732 12
2 3 Vancouver British Columbia 2642825 13
3 4 Ottawa—-Gatineau Ontario—Quebec 1488307 14
4 5 Calgary Alberta 1481806 15
5 6 Edmonton Alberta 1418118 16
6 7 Quebec City Quebec 839311 17
7 8 Winnipeg Manitoba 834678 18
8 9 Hamilton Ontario 785184 19
9 10 Kitchener-Cambridge-Waterloo Ontario 575847 20
Name.1 Province.l Pop..l Unnamed: 8_level_ 1 \
0 London Ontario 543551 NaN
1 Halifax Nova Scotia 465703 NaN
2 St. Catharines-Niagara Ontario 433604 NaN
3 Windsor Ontario 422630 NaN
4 Oshawa Ontario 415311 NaN
5 Victoria British Columbia 397237 NaN

(continues on next page)

Yhttps://pandas.pydata.org/docs/reference/api/pandas.read__html.html

https://pandas.pydata.org/docs/reference/api/pandas.read_html.html

2.8. OBTAINING DATA FROM THE WEB 65

(continued from previous page)

6 Saskatoon Saskatchewan 317480 NaN
7 Regina Saskatchewan 249217 NaN
8 Sherbrooke Quebec 227398 NaN
9 Kelowna British Columbia 222162 NaN

Unnamed: 9_level_1
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN

W o0 Joy U WP O

Once again, we have managed to extract the data of interest from the raw
HTML source code—but this time using the convenient read_html function,
without needing to explicitly use CSS selectors. However, once again, we still
need to do some cleaning of this result. Referring back to Fig. 2.6, we can see
that the table is formatted with two sets of columns (e.g., Name and Name. 1)
that we will need to somehow merge. In Chapter 3, we will learn more about
how to wrangle data into a useful format for data analysis.

2.8.2 Using an API

Rather than posting a data file at a URL for you to download, many web-
sites these days provide an API that can be accessed through a programming
language like Python. The benefit of using an API is that data owners have
much more control over the data they provide to users. However, unlike web
scraping, there is no consistent way to access an API across websites. Every
website typically has its own API designed especially for its own use case.
Therefore, we will just provide one example of accessing data through an API
in this book, with the hope that it gives you enough of a basic idea that you
can learn how to use another API if needed. In particular, in this book we will
show you the basics of how to use the requests package in Python to access
data from the NASA “Astronomy Picture of the Day” API (a great source of
desktop backgrounds, by the way—take a look at the stunning picture of the
Rho-Ophiuchi cloud complex [NASA et al., Accessed Online: 2023] in Fig. 2.7
from July 13, 2023!).

First, you will need to visit the NASA APIs page'® and generate an API key
(i.e., a password used to identify you when accessing the API). Note that a
valid email address is required to associate with the key. The signup form

Ohttps://api.nasa.gov/

https://api.nasa.gov

66 CHAPTER 2. READING IN DATA LOCALLY AND FROM THE WEB

FIGURE 2.7 The James Webb Space Telescope’s NIRCam image of the Rho
Ophiuchi molecular cloud complex.

looks something like Fig. 2.8. After filling out the basic information, you will
receive the token via email. Make sure to store the key in a safe place, and
keep it private.

Caution: think about your API usage carefully.

When you access an API, you are initiating a transfer of data from a web
server to your computer. Web servers are expensive to run and do not have
infinite resources. If you try to ask for too much data at once, you can use
up a huge amount of the server’s bandwidth. If you try to ask for data too

Generate APl Key

Required fields are marked with an asterisk (*).

First Name *
Last Name *
Email *

How will you use the APIs? (optional)

FIGURE 2.8 Generating the API access token for the NASA API.

2.8. OBTAINING DATA FROM THE WEB 67

Web Service Rate Limits

Limits are placed on the number of APl requests you may make using your API key. Rate limits may vary by service, but the defaults are:
* Hourly Limit: 1,000 requests per hour

For each API key, these limits are applied across all api.nasa.gov APl requests. Exceeding these limits will lead to your API key being
temporarily blocked from making further requests. The block will automatically be lifted by waiting an hour. If you need higher rate limits,
contact us.

FIGURE 2.9 The NASA website specifies an hourly limit of 1,000 requests.

frequently—e.g., if you make many requests to the server in quick succession—
you can also bog the server down and make it unable to talk to anyone else.
Most servers have mechanisms to revoke your access if you are not careful, but
you should try to prevent issues from happening in the first place by being
extra careful with how you write and run your code. You should also keep
in mind that when a website owner grants you API access, they also usually
specify a limit (or quota) of how much data you can ask for. Be careful not
to overrun your quota! So before we try to use the API, we will first visit the
NASA website!! to see what limits we should abide by when using the APIL
These limits are outlined in Fig. 2.9.

After checking the NASA website, it seems like we can send at most 1,000
requests per hour. That should be more than enough for our purposes in this
section.

2.8.2.1 Accessing the NASA API

The NASA API is what is known as an HTTP API: this is a particularly
common kind of API, where you can obtain data simply by accessing a partic-
ular URL as if it were a regular website. To make a query to the NASA API,
we need to specify three things. First, we specify the URL endpoint of the
API, which is simply a URL that helps the remote server understand which
API you are trying to access. NASA offers a variety of APIs, each with its
own endpoint; in the case of the NASA “Astronomy Picture of the Day” API,
the URL endpoint is https://api.nasa.gov/planetary/apod. Second,
we write ?, which denotes that a list of query parameters will follow. And
finally, we specify a list of query parameters of the form parameter=value,
separated by & characters. The NASA “Astronomy Picture of the Day” API
accepts the parameters shown in Fig. 2.10.

So, for example, to obtain the image of the day from July 13, 2023,
the API query would have two parameters: api_key=YOUR_API_KEY and
date=2023-07-13. Remember to replace YOUR_API_KEY with the API key

Hhttps://api.nasa.gov/

https://api.nasa.gov/planetary/apod
https://api.nasa.gov

68 CHAPTER 2. READING IN DATA LOCALLY AND FROM THE WEB

Parameter Type Default Description
YYYY-MM- .)
date DD today The date of the APOD image to retrieve
YYYY-MM- The start of a date range, when requesting date for a range of dates. Cannot be
start_date none .
DD used with date.
YYYY-MM- .
end_date oD today The end of the date range, when used with start_date.
. If this is specified then count randomly chosen images will be returned. Cannot
count int none .
be used with dateorstart dateand end date.
Return the URL of video thumbnail. If an APOD is not a video, this parameter is
thumbs bool False .
ignored.
api_key string DEMO_KEY | api.nasa.gov key for expanded usage

FIGURE 2.10 The set of parameters that you can specify when querying
the NASA “Astronomy Picture of the Day” API, along with syntax, default
settings, and a description of each.

you received from NASA in your email. Putting it all together, the query will
look like the following;:

https://api.nasa.gov/planetary/apod?api_key=YOUR_API_KEY&date=2023-07-13

If you try putting this URL into your web browser, you'll actually find that
the server responds to your request with some text:

{"date":"2023-07-13", "explanation":"A mere 390 light-years away, Sun-like stars
and future planetary systems are forming in the Rho Ophiuchi molecular cloud
complex, the closest star-forming region to our fair planet. The James Webb
Space Telescope's NIRCam peered into the nearby natal chaos to capture this
infrared image at an inspiring scale. The spectacular cosmic snapshot was
released to celebrate the successful first year of Webb's exploration of the
Universe. The frame spans less than a light-year across the Rho Ophiuchi region
and contains about 50 young stars. Brighter stars clearly sport Webb's
characteristic pattern of diffraction spikes. Huge jets of shocked molecular
hydrogen blasting from newborn stars are red in the image, with the large,
yellowish dusty cavity carved out by the energetic young star near its center.
Near some stars in the stunning image are shadows cast by their protoplanetary
disks.","hdurl":"https://apod.nasa.gov/apod/image/2307/STScI-01_RhoOph.png",
"media_type":"image", "service_version":"v1","title":"Webb's

Rho Ophiuchi","url":"https://apod.nasa.gov/apod/image/2307/STScI-01_RhoOphl024.png
<"}

Neat! There is definitely some data there, but it’s a bit hard to see what it all
is. As it turns out, this is a common format for data called JSON (JavaScript
Object Notation). We won’t encounter this kind of data much in this book,
but for now you can interpret this data just like you’d interpret a Python
dictionary: these are key : wvalue pairs separated by commas. For example,

2.8. OBTAINING DATA FROM THE WEB 69

if you look closely, you’ll see that the first entry is "date":"2023-07-13",
which indicates that we indeed successfully received data corresponding to
July 13, 2023.

So now our job is to do all of this programmatically in Python. We will load
the requests package, and make the query using the get function, which
takes a single URL argument; you will recognize the same query URL that we
pasted into the browser earlier. We will then obtain a JSON representation
of the response using the json method.

import requests

nasa_data_single = requests.get (
"https://api.nasa.gov/planetary/apod?api_key=YOUR_API_KEY&date=2023-07-13"
) -Json ()

nasa_data_single

{'date': '2023-07-13',

'explanation': "A mere 390 light-years away, Sun-like stars and future.
—planetary systems are forming in the Rho Ophiuchi molecular cloud complex, .
<~the closest star-forming region to our fair planet. The James Webb Space.
—Telescope's NIRCam peered into the nearby natal chaos to capture this.
~infrared image at an inspiring scale. The spectacular cosmic snapshot was.
—released to celebrate the successful first year of Webb's exploration of.
—~the Universe. The frame spans less than a light-year across the Rho.
<Ophiuchi region and contains about 50 young stars. Brighter stars clearly.
—sport Webb's characteristic pattern of diffraction spikes. Huge jets of.
<shocked molecular hydrogen blasting from newborn stars are red in the image,
< with the large, yellowish dusty cavity carved out by the energetic young.
<star near its center. Near some stars in the stunning image are shadows.
—~cast by their protoplanetary disks.",

'hdurl': 'https://apod.nasa.gov/apod/image/2307/STScI-01_RhoOph.png',
'media_type': 'image',

'service_version': 'vl',

'title': "Webb's Rho Ophiuchi",

'url': 'https://apod.nasa.gov/apod/image/2307/STScI-01_RhoOphl024.png'}

We can obtain more records at once by using the start_date and end_date
parameters, as shown in the table of parameters in Fig. 2.10. Let’s obtain all
the records between May 1, 2023, and July 13, 2023, and store the result in
an object called nasa_data; now the response will take the form of a Python
list. Each item in the list will correspond to a single day’s record (just like
the nasa_data_single object), and there will be 74 items total, one for each
day between the start and end dates:

nasa_data = requests.get (
"https://api.nasa.gov/planetary/apod?api_key=YOUR_API_KEY&start_date=2023-05-
—01l&end_date=2023-07-13"
) .Json()
len (nasa_data)

74

70 CHAPTER 2. READING IN DATA LOCALLY AND FROM THE WEB

For further data processing using the techniques in this book, you’ll need to
turn this list of dictionaries into a pandas data frame. Here we will extract
the date, title, copyright, and url variables from the JSON data, and
construct a pandas DataFrame using the extracted information.

Note: Understanding this code is not required for the remainder of the
textbook. It is included for those readers who would like to parse JSON data
into a pandas data frame in their own data analyses.

data_dict = {
"date":[1,
"title": [],
"copyright" : [],
"url": T[]

for item in nasa_data:
if "copyright" not in item:
item["copyright"] = None
for entry in ["url", "title", "date", "copyright"]:
data_dict[entry].append(item[entry])

nasa_df = pd.DataFrame (data_dict)

nasa_df
date title \
0 2023-05-01 Carina Nebula North
1 2023-05-02 Flat Rock Hills on Mars
2 2023-05-03 Centaurus A: A Peculiar Island of Stars
3 2023-05-04 The Galaxy, the Jet, and a Famous Black Hole
4 2023-05-05 Shackleton from ShadowCam
69 2023-07-09 Doomed Star Eta Carinae
70 2023-07-10 Stars, Dust and Nebula in NGC 6559
71 2023-07-11 Sunspots on an Active Sun
72 2023-07-12 Rings and Bar of Spiral Galaxy NGC 1398
73 2023-07-13 Webb's Rho Ophiuchi
copyright \
0 \nCarlos Taylor\n
1 \nNASA, \nJPL-Caltech, \nMSSS;\nProcessing: Ne...
2 \nMarco Lorenzi,\nAngus Lau & Tommy Tse; \nTex...
3 None
4 None

69 \nNASA, \nESA, \nHubble;\n Processing & \nLice...

70 \nAdam Block, \nTelescope Live\n
71 None
72 None
73 None

url

0 https://apod.nasa.gov/apod/image/2305/CarNorth. ..
https://apod.nasa.gov/apod/image/2305/FlatMars. ..
2 https://apod.nasa.gov/apod/image/2305/NGC5128_. ..

[N

(continues on next page)

2.9. EXERCISES 71

(continued from previous page)

3 https://apod.nasa.gov/apod/image/2305/pia23122...
4 https://apod.nasa.gov/apod/image/2305/shacklet. ..

69 https://apod.nasa.gov/apod/image/2307/EtaCarin...
70 https://apod.nasa.gov/apod/image/2307/NGC6559_. ..
71 https://apod.nasa.gov/apod/image/2307/SpottedS. ..
72 https://apod.nasa.gov/apod/image/2307/Ngcl1398_...
73 https://apod.nasa.gov/apod/image/2307/STScI-01...

[74 rows x 4 columns]

Success—we have created a small data set using the NASA API. This data is
also quite different from what we obtained from web scraping; the extracted
information is readily available in a JSON format, as opposed to raw HTML
code (although not every API will provide data in such a nice format). From
this point onward, the nasa_df data frame is stored on your machine, and you
can play with it to your heart’s content. For example, you can use pandas.
to_csv to save it to a file and pandas.read_csv to read it into Python again
later; and after reading the next few chapters you will have the skills to do
even more interesting things. If you decide that you want to ask any of the
various NASA APIs for more data (see the list of awesome NASA APIS here!?
for more examples of what is possible), just be mindful as usual about how
much data you are requesting and how frequently you are making requests.

2.9 Exercises

Practice exercises for the material covered in this chapter can be found in the
accompanying worksheets repository'® in the “Reading in data locally and
from the web” row. You can launch an interactive version of the worksheet in
your browser by clicking the “launch binder” button. You can also preview a
non-interactive version of the worksheet by clicking “view worksheet”. If you
instead decide to download the worksheet and run it on your own machine,
make sure to follow the instructions for computer setup found in Chapter
13. This will ensure that the automated feedback and guidance that the
worksheets provide will function as intended.

12https://api.nasa.gov/
13https://worksheets.python.datasciencebook.ca

https://api.nasa.gov
https://worksheets.python.datasciencebook.ca

72 CHAPTER 2. READING IN DATA LOCALLY AND FROM THE WEB

2.10 Additional resources

The pandas documentation'® provides the documentation for the functions
we cover in this chapter. It is where you should look if you want to learn
more about these functions, the full set of arguments you can use, and other
related functions.

Sometimes you might run into data in such poor shape that the reading
functions we cover in this chapter do not work. In that case, you can con-
sult the data loading chapter!'® from Python for Data Analysis'® [McKinney,
2012], which goes into a lot more detail about how Python parses text from
files into data frames.

A video!” from the Udacity course Linuz Command Line Basics provides a
good explanation of absolute versus relative paths.

If you read the subsection on obtaining data from the web via scraping and
APIs, we provide two companion tutorial video links for how to use the
SelectorGadget tool to obtain desired CSS selectors for:

— extracting the data for apartment listings on Craigslist'®, and

— extracting Canadian city names and populations from Wikipedia!®.

HMhttps:/ /pandas.pydata.org/docs /getting started/index.html
Bhttps://wesmckinney.com/book /accessing-data.html#io_flat_files
https: //wesmckinney.com/book/
"https://www.youtube.com/embed /ephId3mYu9o
Bhttps://www.youtube.com/embed /Y dIWI6K64z0
Bhttps://www.youtube.com/embed /O9HKbdhqYzk

https://pandas.pydata.org/docs/getting_started/index.html
https://wesmckinney.com/book/accessing-data.html#io_flat_files
https://wesmckinney.com/book
https://www.youtube.com/embed/ephId3mYu9o
https://www.youtube.com/embed/YdIWI6K64zo
https://www.youtube.com/embed/O9HKbdhqYzk

3

Cleaning and wrangling data

3.1 Overview

This chapter is centered around defining tidy data—a data format that is
suitable for analysis—and the tools needed to transform raw data into this
format. This will be presented in the context of a real-world data science
application, providing more practice working through a whole case study.

3.2 Chapter learning objectives

By the end of the chapter, readers will be able to do the following:
o Define the term “tidy data”.

o Discuss the advantages of storing data in a tidy data format.

o Define what series and data frames are in Python, and describe how they
relate to each other.

e Describe the common types of data in Python and their uses.
o Use the following functions for their intended data wrangling tasks:
— melt
— pivot
— reset_index
— str.split
— agg
— assign and regular column assignment
— groupby

— merge

DOI: 10.1201/9781003438397-3 73

https://doi.org/10.1201/9781003438397-3

74 CHAPTER 3. CLEANING AND WRANGLING DATA

o Use the following operators for their intended data wrangling tasks:

== l= <, > <= and >=
— 1isin

— & and |

— [1, loc[],and iloc[]

3.3 Data frames and series

In Chapters 1 and 2, data frames were the focus: we learned how to import
data into Python as a data frame, and perform basic operations on data frames
in Python. In the remainder of this book, this pattern continues. The vast
majority of tools we use will require that data are represented as a pandas
data frame in Python. Therefore, in this section, we will dig more deeply into
what data frames are and how they are represented in Python. This knowledge
will be helpful in effectively utilizing these objects in our data analyses.

3.3.1 What is a data frame?

A data frame is a table-like structure for storing data in Python. Data frames
are important to learn about because most data that you will encounter in
practice can be naturally stored as a table. In order to define data frames
precisely, we need to introduce a few technical terms:

« variable: a characteristic, number, or quantity that can be measured.
o observation: all of the measurements for a given entity.
« value: a single measurement of a single variable for a given entity.

Given these definitions, a data frame is a tabular data structure in Python
that is designed to store observations, variables, and their values. Most com-
monly, each column in a data frame corresponds to a variable, and each row
corresponds to an observation. For example, Fig. 3.1 displays a data set of
city populations. Here, the variables are “region, year, population”; each of
these are properties that can be collected or measured. The first observation
is “Toronto, 2016, 2235145”; these are the values that the three variables take
for the first entity in the data set. There are 13 entities in the data set in
total, corresponding to the 13 rows in Fig. 3.1.

3.8. DATA FRAMES AND SERIES 75

Variable

Toronto 20186 2235145

Vancouver 2016 Observation
Montreal 2016 1823281
Calgary 2016 544870
Ottawa 2016 571146
Winnipeg 2016 321484
Hamilton 2016 306034
Edmonton 2016 537634
Halifax 2016 187478
London 2016 220452
Victoria 2016 172559
St. John's 2016 92353
Saskatoon 2016 124766

FIGURE 3.1 A data frame storing data regarding the population of various
regions in Canada. In this example data frame, the row that corresponds to
the observation for the city of Vancouver is colored yellow, and the column
that corresponds to the population variable is colored blue.

3.3.2 What is a series?

In Python, pandas series are objects that can contain one or more elements
(like a list). They are a single column, are ordered, can be indexed, and can
contain any data type. The pandas package uses Series objects to represent
the columns in a data frame. Series can contain a mix of data types, but it is
good practice to only include a single type in a series because all observations
of one variable should be the same type. Python has several different basic
data types, as shown in Table 3.1. You can create a pandas series using the
pd.Series () function. For example, to create the series region as shown
in Fig. 3.2, you can write the following.

import pandas as pd

region = pd.Series(["Toronto", "Montreal", "Vancouver", "Calgary", "Ottawa"l])
region

0 Toronto

1 Montreal

(continues on next page)

76 CHAPTER 3. CLEANING AND WRANGLING DATA

Series
. Element
Toronto 1
Vancouver 2
All the same type

(character) Montreal 3
Calgary 4
Ottawa 5

FIGURE 3.2 Example of a pandas series whose type is string.

(continued from previous page)

2 Vancouver
3 Calgary
4 Ottawa
dtype: object

It is important in Python to make sure you represent your data with the correct
type. Many of the pandas functions we use in this book treat the various data
types differently. You should use int and float types to represent numbers
and perform arithmetic. The int type is for integers that have no decimal
point, while the float type is for numbers that have a decimal point. The
bool type are boolean variables that can only take on one of two values: True
or False. The string type is used to represent data that should be thought
of as “text”, such as words, names, paths, URLs, and more. A NoneType is
a special type in Python that is used to indicate no value; this can occur, for
example, when you have missing data. There are other basic data types in
Python, but we will generally not use these in this textbook.

TABLE 3.1 Basic data types in Python

Data type Abbrevia- | Description Example
tion

integer int positive/negative/zero whole | 42

numbers

floating point | float real number in decimal form | 3.14159

number

boolean bool true or false True

string str text "Hello

World"

none None- represents no value None

Type

3.8. DATA FRAMES AND SERIES 7

Series of type Series of type Series of type
character integer logical
==m

Toronto 2016 TRUE
Vancouver 2016 TRUE
Montreal 2016 TRUE
Calgary 2016 TRUE
Ottawa 2016 TRUE
Winnipeg 2016 TRUE
Hamilton 2016 TRUE
Edmonton 2016 TRUE
Halifax 2016 TRUE
London 2016 TRUE
Victoria 2016 TRUE
St. John's 2016 TRUE
Saskatoon 2016 TRUE

FIGURE 3.3 Data frame and series types.

3.3.3 What does this have to do with data frames?

A data frame is really just a collection of series that are stuck together, where
each series corresponds to one column and all must have the same length. But
not all columns in a data frame need to be of the same type. Fig. 3.3 shows a
data frame where the columns are series of different types. But each element
within one column should usually be the same type, since the values for a
single variable are usually all of the same type. For example, if the variable
is the name of a city, that name should be a string, whereas if the variable is
a year, that should be an integer. So even though series let you put different
types in them, it is most common (and good practice!) to have just one type
per column.

Note: You can use the function type on a data object. For example we can
check the class of the Canadian languages data set, can_lang, we worked with
in the previous chapters and we see it is a pandas.core.frame.DataFrame.

can_lang = pd.read_csv("data/can_lang.csv")
type (can_lang)

pandas.core.frame.DataFrame

78 CHAPTER 3. CLEANING AND WRANGLING DATA

3.3.4 Data structures in Python

The series and DataFrame types are data structures in Python, which are
core to most data analyses. The functions from pandas that we use often
give us back a DataFrame or a Series depending on the operation. Because
Series are essentially simple DataFrames, we will refer to both bataFrames
and Series as “data frames” in the text. There are other types that represent
data structures in Python. We summarize the most common ones in Table
3.2.

TABLE 3.2 Basic data structures in Python

Data Description

Structure

list An ordered collection of values that can store multiple data
types at once.

dict A labeled data structure where keys are paired with values.

Series An ordered collection of values with labels that can store multi-
ple data types at once.

DataFrame| A labeled data structure with Series columns of potentially
different types.

A 1ist is an ordered collection of values. To create a list, we put the con-
tents of the list in between square brackets [], where each item of the list is
separated by a comma. A list can contain values of different types. The
example below contains six str entries.

cities = ["Toronto", "Vancouver", "Montreal", "Calgary", "Ottawa", "Winnipeg"]
cities
['Toronto', 'Vancouver',6 'Montreal', 'Calgary', 'Ottawa', 'Winnipeg']

A list can directly be converted to a pandas Series.

cities_series = pd.Series(cities)
cities_series

Toronto
Vancouver
Montreal
Calgary
Ottawa
Winnipeg
type: object

0 U WN P O

A dict, or dictionary, contains pairs of “keys” and “values”. You use a key to
look up its corresponding value. Dictionaries are created using curly brackets

3.8. DATA FRAMES AND SERIES 79

{}. Each entry starts with the key on the left, followed by a colon symbol
:, and then the value. A dictionary can have multiple key-value pairs, each
separated by a comma. Keys can take a wide variety of types (int and str
are commonly used), and values can take any type; the key-value pairs in a
dictionary can all be of different types, too. In the example below, we create
a dictionary that has two keys: "cities" and "population". The values
associated with each are lists.

population_in_2016 = {

"cities": ["Toronto", "Vancouver", "Montreal", "Calgary", "Ottawa", "Winnipeg
(_)"] 4
"population": [2235145, 1027613, 1823281, 544870, 571146, 321484]

}
population_in_2016

{'cities': ['Toronto',
'Vancouver',
'Montreal’',
'Calgary',
'Ottawa',
'Winnipeg'],
'population': [2235145, 1027613, 1823281, 544870, 571146, 3214841}

A dictionary can be converted to a data frame. Keys become the column
names, and the values become the entries in those columns. Dictionaries
on their own are quite simple objects; it is preferable to work with a data
frame because then we have access to the built-in functionality in pandas
(e.g. locl], [], and many functions that we will discuss in the upcoming
sections).

population_in_2016_df = pd.DataFrame (population_in_2016)
population_in_2016_df

cities population

0 Toronto 2235145
1 Vancouver 1027613
2 Montreal 1823281
3 Calgary 544870
4 Ottawa 571146
5 Winnipeg 321484

Of course, there is no need to name the dictionary separately before passing
it to pd.DataFrame; we can instead construct the dictionary right inside the
call. This is often the most convenient way to create a new data frame.

population_in_2016_df = pd.DataFrame ({
"cities": ["Toronto", "Vancouver", "Montreal", "Calgary", "Ottawa", "Winnipeg
()"]I
"population": [2235145, 1027613, 1823281, 544870, 571146, 321484]
)
population_in_2016_df

80 CHAPTER 3. CLEANING AND WRANGLING DATA

cities population

0 Toronto 2235145
1 Vancouver 1027613
2 Montreal 1823281
3 Calgary 544870
4 Ottawa 571146
5 Winnipeg 321484
|

3.4 Tidy data

There are many ways a tabular data set can be organized. The data frames we
have looked at so far have all been using the tidy data format of organization.
This chapter will focus on introducing the tidy data format and how to make
your raw (and likely messy) data tidy. A tidy data frame satisfies the following
three criteria [Wickham, 2014]:

o cach row is a single observation,
e cach column is a single variable, and

« cach value is a single cell (i.e., its entry in the data frame is not shared with
another value).

Fig. 3.4 demonstrates a tidy data set that satisfies these three criteria.

There are many good reasons for making sure your data are tidy as a first step
in your analysis. The most important is that it is a single, consistent format
that nearly every function in the pandas recognizes. No matter what the
variables and observations in your data represent, as long as the data frame
is tidy, you can manipulate it, plot it, and analyze it using the same tools.
If your data is not tidy, you will have to write special bespoke code in your
analysis that will not only be error-prone, but hard for others to understand.
Beyond making your analysis more accessible to others and less error-prone,
tidy data is also typically easy for humans to interpret. Given these benefits,
it is well worth spending the time to get your data into a tidy format upfront.
Fortunately, there are many well-designed pandas data cleaning/wrangling
tools to help you easily tidy your data. Let’s explore them below.

Note: Is there only one shape for tidy data for a given data set? Not
necessarily! It depends on the statistical question you are asking and what
the variables are for that question. For tidy data, each variable should be its
own column. So, just as it’s essential to match your statistical question with
the appropriate data analysis tool, it’s important to match your statistical

3.4. TIDY DATA 81

Rows = Observations

FEREeT

Toronto 2016 2235145
Vancouver 2016 1027613
Montreal 2016 1823281
Calgary 2016 544870
Ottawa 2016 571146
Winnipeg 2016 321484

Columns = Variables

region year population

Toronto 2016 2235145
Vancouver 2016 1027613
Montreal 2016 1823281
Calgary 2016 544870
Ottawa 2016 571146
Winnipeg 2016 321484

Cells = Values

FIGURE 3.4 Tidy data satisfies three criteria.

82 CHAPTER 3. CLEANING AND WRANGLING DATA

question with the appropriate variables and ensure they are represented as
individual columns to make the data tidy.

3.4.1 Tidying up: going from wide to long using melt

One task that is commonly performed to get data into a tidy format is to
combine values that are stored in separate columns, but are really part of the
same variable, into one. Data is often stored this way because this format
is sometimes more intuitive for human readability and understanding, and
humans create data sets. In Fig. 3.5, the table on the left is in an untidy,
“wide” format because the year values (2006, 2011, 2016) are stored as column
names. And as a consequence, the values for population for the various cities
over these years are also split across several columns.

For humans, this table is easy to read, which is why you will often find data
stored in this wide format. However, this format is difficult to work with
when performing data visualization or statistical analysis using Python. For
example, if we wanted to find the latest year it would be challenging because
the year values are stored as column names instead of as values in a single
column. So before we could apply a function to find the latest year (for
example, by using max), we would have to first extract the column names to
get them as a list and then apply a function to extract the latest year. The
problem only gets worse if you would like to find the value for the population
for a given region for the latest year. Both of these tasks are greatly simplified
once the data is tidied.

Another problem with data in this format is that we don’t know what the
numbers under each year actually represent. Do those numbers represent
population size? Land area? It’s not clear. To solve both of these problems,
we can reshape this data set to a tidy data format by creating a column called
“year” and a column called “population”. This transformation—which makes
the data “longer”—is shown as the right table in Fig. 3.5. Note that the
number of entries in our data frame can change in this transformation. The
“untidy” data has 5 rows and 3 columns for a total of 15 entries, whereas the
“tidy” data on the right has 15 rows and 2 columns for a total of 30 entries.

We can achieve this effect in Python using the melt function from the pan-
das package. The melt function combines columns, and is usually used
during tidying data when we need to make the data frame longer and nar-
rower. To learn how to use melt, we will work through an example with the
region_lang_top5_cities_wide.csv data set. This data set contains the
counts of how many Canadians cited each language as their mother tongue
for five major Canadian cities (Toronto, Montréal, Vancouver, Calgary, and

3.4. TIDY DATA

Toronto
Vancouver
Montreal
Calgary

Ottawa

31612897

2116581

3635556

1079310

1133633

83

2006 2011 2016

33476688 5928040
2313328 2463431
3824221 4098927
1214839 1392609
1236324 1323783

Toronto
Vancouver
Montreal
Calgary
Ottawa
Toronto
Vancouver
Montreal
Calgary
Ottawa
Toronto
Vancouver
Montreal
Calgary

Ottawa

2006 31612897
2006 2116581
2006 3635656
2006 1079310
2006 1133633
2011 33476688
2011 2313328
2011 3824221
2011 1214839
2011 1236324
2016 5928040
2016 2463431
2016 4098927
2016 1392609

1323783

FIGURE 3.5 Melting data from a wide to long data format.

Edmonton) from the 2016 Canadian census. To get started, we will use pd.
read_csv to load the (untidy) data.

lang_wide = pd.read_csv("data/region_lang top5 cities_wide.csv")
lang_wide

S W N e O

209
210
211
212
213

w N - O

Non-Official
Non-Official
Non-Official
Non-Official

Non-Official
Non-Official

Non-Official
Non-Official

Aboriginal
Non-Aboriginal
Non-Aboriginal
Non-Aboriginal
Non-Aboriginal

& Non-Aboriginal

Aboriginal
& Non-Aboriginal
& Non-Aboriginal
& Non-Aboriginal

Toronto Montréal Vancouver

80
985
360

8485

30 70
90 1435
240 45
1015 400

category

languages
languages
languages
languages
languages

languages
languages
languages
languages
languages

Calgary
20

960

45

705

language o
Aboriginal languages, n.o.s.
Afrikaans
Afro-Asiatic languages, n.i.e.
Akan (Twi)
Albanian
Wolof
Woods Cree
Wu (Shanghainese)
Yiddish
Yoruba
Edmonton
25
575
65
885

(continues on next page)

84 CHAPTER 3. CLEANING AND WRANGLING DATA
(continued from previous page)

4 13260 2450 1090 1365 770

209 165 2440 30 120 130

210 5 0 20 10 155

211 5290 1025 4330 380 235

212 3355 8960 220 80 55

213 3380 210 190 1430 700

[214 rows x 7 columns]

What is wrong with the untidy format above? The table on the left in Fig.
3.6 represents the data in the “wide” (messy) format. From a data analysis
perspective, this format is not ideal because the values of the variable region
(Toronto, Montréal, Vancouver, Calgary, and Edmonton) are stored as column
names. Thus they are not easily accessible to the data analysis functions we
will apply to our data set. Additionally, the mother tongue variable values are
spread across multiple columns, which will prevent us from doing any desired
visualization or statistical tasks until we combine them into one column. For
instance, suppose we want to know the languages with the highest number of
Canadians reporting it as their mother tongue among all five regions. This
question would be tough to answer with the data in its current format. We
could find the answer with the data in this format, though it would be much
easier to answer if we tidy our data first. If mother tongue were instead
stored as one column, as shown in the tidy data on the right in Fig. 3.6, we
could simply use one line of code (df ["mother_tongue"] .max ()) to get the
maximum value.

Aboriginal 80 30 70 20 25 Aboriginal Ab:g?sulval Toronto 80

Aboriginal os

Non-Official &

Non-Aboriginal Afrlkeans 985

lang_wide.melt(

id_vars=["category", "language"],

var_name="region",

value_name="mother_tongue",

FIGURE 3.6 Going from wide to long with the melt function.

90

1435 960

Aboriginal

Aboriginal

Aboriginal

Aboriginal

Non-Official &
Non-Aboriginal

Non-Official &
Non-Aboriginal

Non-Official &
Non-Aboriginal

Non-Official &
Non-Aboriginal

Non-Official &
Non-Aboriginal

Aboriginal
N.0.8.

Aboriginal
nos.

Aboriginal
nos.

Aboriginal
nos.

Afrikaans

Afrikaans

Afrikaans

Afrikaans

Afrikaans

Montreal

Vancouver

Calgary

Edmonton

Toronto

Montreal

Vancouver

Calgary

Edmonton

30

70

20

25

985

90

1435

960

3.4. TIDY DATA

lang_wide.melt(

00

var_name="region",

value_name="mother_tongue",

data frame object we want to reshape

columns to be used as identifier variables

4)
id_vars=["category", "language"l],

names of the columns that we want to combine

85

name of the new column to be created whose values will come from the

@ name of the new column to be created whose values will come from the
values of the columns we want to combine

FIGURE 3.7 Syntax for the melt function.

Fig. 3.7 details the arguments that we need to specify in the melt function to

accomplish this data transformation.

We use melt to combine the Toronto, Montréal, Vancouver, Calgary, and
Edmonton columns into a single column called region, and create a column
called mother_tongue that contains the count of how many Canadians report
each language as their mother tongue for each metropolitan area.

lang_mother_tidy = lang_wide.melt (

id_vars=["category",
var_name="region",

"language"],

value_name="mother_tongue",

)

lang_mother_tidy

S w N e O

1065
1066
1067
1068
1069

Non-Official
Non-Official
Non-Official
Non-Official

Non-Official
Non-Official

Non-Official
Non-Official

2 =2 22 &

Aboriginal
Non-Aboriginal
Non-Aboriginal
Non-Aboriginal
Non-Aboriginal

Non-Aboriginal

Aboriginal
Non-Aboriginal
Non-Aboriginal
Non-Aboriginal

region mother_tongue

Toronto

80

category

languages
languages
languages
languages
languages

languages
languages
languages
languages
languages

language.

Aboriginal languages, n.o.s.
Afrikaans

Afro-Asiatic languages, n.i.e.
Akan (Twi)

Albanian

Wolof

Woods Cree

Wu (Shanghainese)

Yiddish

Yoruba

(continues on next page)

86 CHAPTER 3. CLEANING AND WRANGLING DATA

(continued from previous page)

1 Toronto 985
2 Toronto 360
3 Toronto 8485
4 Toronto 13260
1065 Edmonton 130
1066 Edmonton 155
1067 Edmonton 235
1068 Edmonton 55
1069 Edmonton 700

[1070 rows x 4 columns]

Note: In the code above, the call to the melt function is split across several
lines. Recall from Chapter 1 that this is allowed in certain cases. For example,
when calling a function as above, the input arguments are between parentheses
() and Python knows to keep reading on the next line. Each line ends with a
comma , making it easier to read. Splitting long lines like this across multiple
lines is encouraged as it helps significantly with code readability. Generally
speaking, you should limit each line of code to about 80 characters.

The data above is now tidy because all three criteria for tidy data have now
been met:

1. All the variables (category, 1language, region and
mother_tongue) are now their own columns in the data frame.

2. Each observation, i.e., each category, language, region, and
count of Canadians where that language is the mother tongue, are in
a single row.

3. Each value is a single cell, i.e., its row, column position in the data
frame is not shared with another value.

3.4.2 Tidying up: going from long to wide using pivot

Suppose we have observations spread across multiple rows rather than in a
single row. For example, in Fig. 3.8, the table on the left is in an untidy,
long format because the count column contains three variables (population,
commuter, and incorporated count) and information about each observation
(here, population, commuter, and incorporated counts for a region) is split
across three rows. Remember: one of the criteria for tidy data is that each
observation must be in a single row.

Using data in this format—where two or more variables are mixed together
in a single column—makes it harder to apply many usual pandas functions.

3.4. TIDY DATA 87

Toronto 2016 population 5928040 Toronto 2016 5928040 2566700 1834
Toronto 2016 commuters 2566700 Vancouver 2016 2463431 1006600 1886
Toronto 2016 incorporated 1834 Montreal 2016 4098927 1757100 1832
Vancouver 2016 population 2483431 Calgary 2016 1392609 587300 1884
Vancouver 2016 commuters 1006600 Ottawa 2016 1323783 595900 1855
Vancouver 2016 incorporated 1886 v

Montreal 2016 population 4098927

Montreal 2016 commuters 1757100 —

Montreal 2016 incorporated 1832

Calgary 2016 population 1392609

Calgary 2016 commuters 587300

Calgary 2016 incorporated 1884

Ottawa 2016 population 1323783

Ottawa 2016 commuters 595300

Ottawa 2016 incorporated 1855

FIGURE 3.8 Going from long to wide data.

For example, finding the maximum number of commuters would require an
additional step of filtering for the commuter values before the maximum can
be computed. In comparison, if the data were tidy, all we would have to do is
compute the maximum value for the commuter column. To reshape this untidy
data set to a tidy (and in this case, wider) format, we need to create columns
called “population”, “commuters”, and “incorporated”. This is illustrated in
the right table of Fig. 3.8.

To tidy this type of data in Python, we can use the pivot function. The pivot
function generally increases the number of columns (widens) and decreases the
number of rows in a data set. To learn how to use pivot, we will work through
an example with the region_lang_top5_cities_long.csv data set. This
data set contains the number of Canadians reporting the primary language at
home and work for five major cities (Toronto, Montréal, Vancouver, Calgary,
and Edmonton).

lang_long pd.read_csv ("data/region_lang_top5_cities_long.csv")
lang_long
region category \

0 Montréal Aboriginal languages

1 Montréal Aboriginal languages

2 Toronto Aboriginal languages

3 Toronto Aboriginal languages

4 Calgary Aboriginal languages

(continues on next page)

88 CHAPTER 3. CLEANING AND WRANGLING DATA

(continued from previous page)

2135 Calgary Non-Official & Non-Aboriginal languages
2136 Edmonton Non-Official & Non-Aboriginal languages
2137 Edmonton Non-Official & Non-Aboriginal languages
2138 Vancouver Non-Official & Non-Aboriginal languages
2139 Vancouver Non-Official & Non-Aboriginal languages

language type count
0 Aboriginal languages, n.o.s. most_at_home 15
1 Aboriginal languages, n.o.s most_at_work 0
2 Aboriginal languages, n.o.s. most_at_home 50
3 Aboriginal languages, n.o.s most_at_work 0
4 Aboriginal languages, n.o.s most_at_home 5
2135 Yoruba most_at_work 0
2136 Yoruba most_at_home 280
2137 Yoruba most_at_work 0
2138 Yoruba most_at_home 40
2139 Yoruba most_at_work 0

[2140 rows x 5 columns]

What makes the data set shown above untidy? In this example, each obser-
vation is a language in a region. However, each observation is split across
multiple rows: one where the count for most_at_home is recorded, and the
other where the count for most_at_work is recorded. Suppose the goal with
this data was to visualize the relationship between the number of Canadians
reporting their primary language at home and work. Doing that would be
difficult with this data in its current form, since these two variables are stored
in the same column. Fig. 3.9 shows how this data will be tidied using the
pivot function.

Fig. 3.10 details the arguments that we need to specify in the pivot function.

We will apply the function as detailed in Fig. 3.10, and then rename the
columns.

o

Aboriginal Aboriginal

Montreal Aboriginal Y most_at_home 15 Montreal Aboriginal orgir 15 ®
Monireal Aboriginal Ab:v;;gnal eSSt RO 0 Toronto Aboriginal Ab'?::gsinal 50 0
Toronto Aboriginal Aberiginal " most_at_home 50 Galgary Aboriginal Aboriginal . o

o no.s.

- ai Aboriginal 4
Toronto Aboriginal e most_at_work 0 |
lang_long. pivot (//i
i i " i " " oo " 4

Calgary Aboriginal Abnoggslnal most_at_home 5 index=["region", "category", "language"],

o columns=["type"],
Calgary Aboriginal Aboriginal most_at_work 0 values=["count"]

n.o.s.).reset_index()

FIGURE 3.9 Going from long to wide with the pivot function.

3.4. TIDY DATA

lang_long.pivot(

4)
index=["region", "category", "language"l,

columns=["type"],
values=["count"]
).reset_index() !

o data frame object we want to reshape

@ columns to use to make the new data frame’s index

e name of the column(s) from which to take the variable names
@ name of the column from which to take the values

6 reset the indexing

FIGURE 3.10 Syntax for the pivot function.

lang_home_tidy = lang_long.pivot (

index=["region", "category", "language"],
columns=["type"],
values=["count"]

) .reset_index ()

lang_home_tidy.columns = [
"region",

"category",
"language",
"most_at_home",
"most_at_work",

]

lang_home_tidy

region category
0 Calgary Aboriginal languages
1 Calgary Aboriginal languages
2 Calgary Aboriginal languages
3 Calgary Aboriginal languages
4 Calgary Aboriginal languages
1065 Vancouver Non-Official & Non-Aboriginal languages
1066 Vancouver Non-Official & Non-Aboriginal languages
1067 Vancouver Non-Official & Non-Aboriginal languages
1068 Vancouver Official languages
1069 Vancouver Official languages
language most_at_home most_a

0 Aboriginal languages, n.o.s. 5

1 Algonquian languages, n.i.e. 0

2 Algonquin 0

89

\
t_work
0
0
0

(continues on next page)

90 CHAPTER 3. CLEANING AND WRANGLING DATA

(continued from previous page)

3 Athabaskan languages, n.i.e. 0 0
4 Atikamekw 0 0
1065 Wu (Shanghainese) 2495 45
1066 Yiddish 10 0
1067 Yoruba 40 0
1068 English 1622735 1330555
1069 French 8630 3245

[1070 rows x 5 columns]

In the first step, note that we added a call to reset_index. When pivot
is called with multiple column names passed to the index, those entries be-
come the “name” of each row that would be used when you filter rows with
[1 or loc rather than just simple numbers. This can be confusing.. What
reset_index does is sets us back with the usual expected behavior where
each row is “named” with an integer. This is a subtle point, but the main
take-away is that when you call pivot, it is a good idea to call reset_index
afterwards.

The second operation we applied is to rename the columns. When we perform
the pivot operation, it keeps the original column name "count™ and adds
the "type" as a second column name. Having two names for a column can
be confusing. So we rename giving each column only one name.

We can print out some useful information about our data frame using the
info function. In the first row it tells us the type of lang_home_tidy (it
is a pandas DataFrame). The second row tells us how many rows there
are: 1070, and to index those rows, you can use numbers between 0 and 1069
(remember that Python starts counting at 0!). Next, there is a print out about
the data columns. Here there are 5 columns total. The little table it prints
out tells you the name of each column, the number of non-null values (e.g.
the number of entries that are not missing values), and the type of the entries.
Finally the last two rows summarize the types of each column and how much
memory the data frame is using on your computer.

lang_home_tidy.info ()

<class 'pandas.core.frame.DataFrame'>
RangelIndex: 1070 entries, 0 to 1069
Data columns (total 5 columns):

Column Non-Null Count Dtype
0 region 1070 non-null object
1 category 1070 non-null object
2 language 1070 non-null object
3 most_at_home 1070 non-null int64
4 most_at_work 1070 non-null inte4

(continues on next page)

3.4. TIDY DATA 91

(continued from previous page)

dtypes: int64(2), object (3)
memory usage: 41.9+ KB

The data is now tidy. We can go through the three criteria again to check
that this data is a tidy data set.

1. All the statistical variables are their own columns in the data frame
(i.e., most_at_home, and most_at_work have been separated into
their own columns in the data frame).

2. Each observation (i.e., each language in a region) is in a single row.

3. Each value is a single cell (i.e., its row, column position in the data
frame is not shared with another value).

You might notice that we have the same number of columns in the tidy data
set as we did in the messy one. Therefore pivot didn’t really “widen” the
data. This is just because the original type column only had two categories
in it. If it had more than two, pivot would have created more columns, and
we would see the data set “widen”.

3.4.3 Tidying up: using str.split to deal with multiple separators

Data are also not considered tidy when multiple values are stored in the same
cell. The data set we show below is even messier than the ones we dealt
with above: the Toronto, Montréal, Vancouver, Calgary, and Edmonton
columns contain the number of Canadians reporting their primary language
at home and work in one column separated by the separator (/). The column
names are the values of a variable, and each value does not have its own cell.
To turn this messy data into tidy data, we’ll have to fix these issues.

lang_messy = pd.read_csv("data/region_lang_top5_cities_messy.csv")
lang_messy

category language

<\

0 Aboriginal languages Aboriginal languages, n.o.s.
1 Non-Official & Non-Aboriginal languages Afrikaans
2 Non-Official & Non-Aboriginal languages Afro-Asiatic languages, n.i.e.
3 Non-Official & Non-Aboriginal languages Akan (Twi)
4 Non-Official & Non-Aboriginal languages Albanian
209 Non-Official & Non-Aboriginal languages Wolof
210 Aboriginal languages Woods Cree
211 Non-Official & Non-Aboriginal languages Wu (Shanghainese)
212 Non-Official & Non-Aboriginal languages Yiddish
213 Non-Official & Non-Aboriginal languages Yoruba

(continues on next page)

92

209
210
211
212
213

CHAPTER 3. CLEANING AND WRANGLING DATA

(continued from previous page)

Toronto Montréal Vancouver Calgary Edmonton

50/0
265/0
185/10
4045/20
6380/215 14
75/0
0/10
3130/30 7
350/20 666
1080/10

15/0
10/0
65/0
440/0
45/20
770/0
0/0
60/15
5/860
45/0

[214 rows x 7 columns]

15/0
520/10
10/0
125/10
530/10
5/0

5/0
2495/45
10/0
40/0

5/0
505/15

15/0
330/0
620/25 8

65/0

0/0
210/0

10/0
350/0

10/0
300/0
20/0
445/0
70/10
90/10
20/0
120/0
0/0
280/0

First, we’ll use melt to create two columns, region and value, similar to
what we did previously. The new region columns will contain the region
names, and the new column value will be a temporary holding place for the
data that we need to further separate, i.e., the number of Canadians reporting
their primary language at home and work.

lang_messy_longer = lang_messy.melt (

id_vars=["category",

var_name="region",

value_name="value",

lang_messy_longer

S w N e O

1065
1066
1067
1068
1069

S w D e o

1065
1066
1067
1068
1069

Non-Official
Non-Official
Non-Official
Non-Official

Non-Official

Non-Official
Non-Official
Non-Official

region
Toronto
Toronto
Toronto
Toronto 4
Toronto 63

Edmonton
Edmonton
Edmonton
Edmonton
Edmonton

& Non-—

& Non-—
& Non-
& Non-—

value
50/0
265/0
185/10
045/20
80/215
90/10
20/0
120/0
0/0
280/0

Non-—
Non-
Non-—
Non-

"language"],

Aboriginal
Aboriginal
Aboriginal
Aboriginal
Aboriginal

Aboriginal
Aboriginal
Aboriginal
Aboriginal
Aboriginal

category

languages
languages
languages
languages
languages

languages
languages
languages
languages
languages

language.

Aboriginal languages, n.o.s.
Afrikaans

Afro-Asiatic languages, n.i.e.
Akan (Twi)

Albanian

Wolof

Woods Cree

Wu (Shanghainese)

Yiddish

Yoruba

(continues on next page)

3.4. TIDY DATA 93

data frame separator on which to split

!

lang_messy_longer["value"].str.split("/", expand=True)

the column to split expand split strings into separate columns

FIGURE 3.11 Syntax for the str.split function.

(continued from previous page)

[1070 rows x 4 columns]

Next, we’ll split the value column into two columns. In basic Python, if we
wanted to split the string "50/0" into two numbers ["50", "0"] we would
use the split method on the string, and specify that the split should be made
on the slash character "/".

"50/0".split ("/"
['50', '0']

The pandas package provides similar functions that we can access by using
the str method. So to split all of the entries for an entire column in a data
frame, we will use the str.split method. The output of this method is a
data frame with two columns: one containing only the counts of Canadians
that speak each language most at home, and the other containing only the
counts of Canadians that speak each language most at work for each region.
We drop the no-longer-needed value column from the lang_messy_longer
data frame, and then assign the two columns from str.split to two new
columns. Fig. 3.11 outlines what we need to specify to use str.split.

tidy_lang = lang_messy_longer.drop (columns=["value"])

tidy_lang[["most_at_home", "most_at_work"]] = lang_messy_longer["value"].str.

~split ("/", expand=True)

tidy_lang

category language.

=\
0 Aboriginal languages Aboriginal languages, n.o.s.
1 Non-Official & Non-Aboriginal languages Afrikaans
2 Non-Official & Non-Aboriginal languages Afro-Asiatic languages, n.i.e.
3 Non-Official & Non-Aboriginal languages Akan (Twi)
4 Non-Official & Non-Aboriginal languages Albanian
1065 Non-Official & Non-Aboriginal languages Wolof
1066 Aboriginal languages Woods Cree
1067 Non-Official & Non-Aboriginal languages Wu (Shanghainese)

(continues on next page)

94 CHAPTER 3. CLEANING AND WRANGLING DATA

(continued from previous page)

1068 Non-Official & Non-Aboriginal languages Yiddish
1069 Non-Official & Non-Aboriginal languages Yoruba

region most_at_home most_at_work

0 Toronto 50 0
1 Toronto 265 0
2 Toronto 185 10
3 Toronto 4045 20
4 Toronto 6380 215
1065 Edmonton 90 10
1066 Edmonton 20 0
1067 Edmonton 120 0
1068 Edmonton 0 0
1069 Edmonton 280 0

[1070 rows x 5 columns]

Is this data set now tidy? If we recall the three criteria for tidy data:
o cach row is a single observation,

e each column is a single variable, and

o cach value is a single cell.

We can see that this data now satisfies all three criteria, making it easier to
analyze. But we aren’t done yet. Although we can’t see it in the data frame
above, all of the variables are actually object data types. We can check this
using the info method.

tidy_lang.info ()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1070 entries, 0 to 1069
Data columns (total 5 columns):

Column Non-Null Count Dtype

0 category 1070 non-null object
1 language 1070 non-null object
2 region 1070 non-null object
3 most_at_home 1070 non-null object

4 most_at_work 1070 non-null object
dtypes: object (5)
memory usage: 41.9+ KB

Object columns in pandas data frames are columns of strings or columns with
mixed types. In the previous example in Section 3.4.2, the most_at_home and
most_at_work variables were int64 (integer), which is a type of numeric
data. This change is due to the separator (/) when we read in this messy data
set. Python read these columns in as string types, and by default, str.split
will return columns with the object data type.

3.4. TIDY DATA 95

It makes sense for region, category, and language to be stored as an ob-
ject type since they hold categorical values. However, suppose we want to ap-
ply any functions that treat the most_at_home and most_at_work columns
as a number (e.g., finding rows above a numeric threshold of a column). That
won’t be possible if the variable is stored as an object. Fortunately, the
astype method from pandas provides a natural way to fix problems like this:
it will convert the column to a selected data type. In this case, we choose
the int data type to indicate that these variables contain integer counts.
Note that below we assign the new numerical series to the most_at_home
and most_at_work columns in tidy_lang; we have seen this syntax before
in Section 1.9, and we will discuss it in more depth later in this chapter in
Section 3.11.

tidy_lang["most_at_home"] = tidy_lang["most_at_home"].astype ("int")

tidy_lang["most_at_work"] = tidy_lang["most_at_work"].astype ("int")

tidy_lang

category language.

=\
0 Aboriginal languages Aboriginal languages, n.o.s.
1 Non-Official & Non-Aboriginal languages Afrikaans
2 Non-Official & Non-Aboriginal languages Afro-Asiatic languages, n.i.e.
3 Non-Official & Non-Aboriginal languages Akan (Twi)
4 Non-Official & Non-Aboriginal languages Albanian
1065 Non-Official & Non-Aboriginal languages Wolof
1066 Aboriginal languages Woods Cree
1067 Non-Official & Non-Aboriginal languages Wu (Shanghainese)
1068 Non-Official & Non-Aboriginal languages Yiddish
1069 Non-Official & Non-Aboriginal languages Yoruba

region most_at_home most_at_work

0 Toronto 50 0
1 Toronto 265 0
2 Toronto 185 10
3 Toronto 4045 20
4 Toronto 6380 215
1065 Edmonton 90 10
1066 Edmonton 20 0
1067 Edmonton 120 0
1068 Edmonton 0 0
1069 Edmonton 280 0

[1070 rows x 5 columns]
tidy_lang.info ()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1070 entries, 0 to 1069
Data columns (total 5 columns):

Column Non-Null Count Dtype

0 category 1070 non-null object
(continues on next page)

96 CHAPTER 3. CLEANING AND WRANGLING DATA

(continued from previous page)

1 language 1070 non-null object
2 region 1070 non-null object
3 most_at_home 1070 non-null int64

4 most_at_work 1070 non-null int64
dtypes: int64(2), object (3)
memory usage: 41.9+ KB

Now we see most_at_home and most_at_work columns are of int64 data
types, indicating they are integer data types (i.e., numbers).

3.5 Using []1 to extract rows or columns

Now that the tidy_lang data is indeed tidy, we can start manipulating it
using the powerful suite of functions from the pandas. We will first revisit
the [] from Chapter 1, which lets us obtain a subset of either the rows or
the columns of a data frame. This section will highlight more advanced usage
of the [] function, including an in-depth treatment of the variety of logical
statements one can use in the [] to select subsets of rows.

3.5.1 Extracting columns by name

Recall that if we provide a list of column names, [] returns the subset of
columns with those names as a data frame. Suppose we wanted to select the
columns language, region, most_at_home and most_at_work from the
tidy_lang data set. Using what we learned in Chapter 1, we can pass all of
these column names into the square brackets.

tidy_lang[["language", "region", "most_at_home", "most_at_work"]]

language region most_at_home most_at_work
0 Aboriginal languages, n.o.s. Toronto 50 0
1 Afrikaans Toronto 265 0
2 Afro-Asiatic languages, n.i.e. Toronto 185 10
3 Akan (Twi) Toronto 4045 20
4 Albanian Toronto 6380 215
1065 Wolof Edmonton 90 10
1066 Woods Cree Edmonton 20 0
1067 Wu (Shanghainese) Edmonton 120 0
1068 Yiddish Edmonton 0 0
1069 Yoruba Edmonton 280 0

[1070 rows x 4 columns]

Likewise, if we pass a list containing a single column name, a data frame with
this column will be returned.

3.5. USING [] TO EXTRACT ROWS OR COLUMNS 97

tidy_lang[["language"]]

language
0 Aboriginal languages, n.o.s.
1 Afrikaans
2 Afro-Asiatic languages, n.i.e.
3 Akan (Twi)
4 Albanian
1065 Wolof
1066 Woods Cree
1067 Wu (Shanghainese)
1068 Yiddish
1069 Yoruba

[1070 rows x 1 columns]

When we need to extract only a single column, we can also pass the column
name as a string rather than a list. The returned data type will now be a
series. Throughout this textbook, we will mostly extract single columns this
way, but we will point out a few occasions where it is advantageous to extract
single columns as data frames.

tidy_lang["language"]

0 Aboriginal languages, n.o.s.
1 Afrikaans
2 Afro-Asiatic languages, n.i.e.
3 Akan (Twi)
4 Albanian
1065 Wolof
1066 Woods Cree
1067 Wu (Shanghainese)
1068 Yiddish
1069 Yoruba

Name: language, Length: 1070, dtype: object

3.5.2 Extracting rows that have a certain value with ==

Suppose we are only interested in the subset of rows in tidy_lang correspond-
ing to the official languages of Canada (English and French). We can extract
these rows by using the equivalency operator (==) to compare the values of
the category column with the value "Official languages". With these
arguments, [] returns a data frame with all the columns of the input data
frame but only the rows we asked for in the logical statement, i.e., those where
the category column holds the value "Official languages". We name
this data frame official_langs.

official_langs = tidy_lang([tidy_lang["category"] == "Official languages"]
official_langs

98 CHAPTER 3. CLEANING AND WRANGLING DATA

category language region most_at_home most_at_work
54 Official languages English Toronto 3836770 3218725
59 Official languages French Toronto 29800 11940
268 Official languages English Montréal 620510 412120
273 Official languages French Montréal 2669195 1607550
482 Official languages English Vancouver 1622735 1330555
487 Official languages French Vancouver 8630 3245
696 Official languages English Calgary 1065070 844740
701 Official languages French Calgary 8630 2140
910 Official languages English Edmonton 1050410 792700
915 Official languages French Edmonton 10950 2520

3.5.3 Extracting rows that do not have a certain value with !=

What if we want all the other language categories in the data set except for
those in the "O0fficial languages" category? We can accomplish this with
the !'= operator, which means “not equal to”. So if we want to find all the
rows where the category does not equal "Official languages" we write
the code below.

tidy_lang[tidy_lang["category"] != "Official languages"]
category language..

=\

0 Aboriginal languages Aboriginal languages, n.o.s.
1 Non-Official & Non-Aboriginal languages Afrikaans
2 Non-Official & Non-Aboriginal languages Afro-Asiatic languages, n.i.e.
3 Non-Official & Non-Aboriginal languages Akan (Twi)
4 Non-Official & Non-Aboriginal languages Albanian
1065 Non-Official & Non-Aboriginal languages Wolof
1066 Aboriginal languages Woods Cree
1067 Non-Official & Non-Aboriginal languages Wu (Shanghainese)
1068 Non-Official & Non-Aboriginal languages Yiddish
1069 Non-Official & Non-Aboriginal languages Yoruba

region most_at_home most_at_work

0 Toronto 50 0
1 Toronto 265 0
2 Toronto 185 10
3 Toronto 4045 20
4 Toronto 6380 215
1065 Edmonton 90 10
1066 Edmonton 20 0
1067 Edmonton 120 0
1068 Edmonton 0 0
1069 Edmonton 280 0

[1060 rows x 5 columns]

3.5.4 Extracting rows satisfying multiple conditions using &

Suppose now we want to look at only the rows for the French language in
Montréal. To do this, we need to filter the data set to find rows that satisfy

3.5. USING [] TO EXTRACT ROWS OR COLUMNS 99

multiple conditions simultaneously. We can do this with the ampersand sym-
bol (&), which is interpreted by Python as “and”. We write the code as shown
below to filter the official_ langs data frame to subset the rows where

region == "Montréal" and language == "French".
tidy_lang][
(tidy_lang["region"] == "Montréal") &
(tidy_lang["language"] == "French")
]
category language region most_at_home most_at_work
273 Official languages French Montréal 2669195 1607550

3.5.5 Extracting rows satisfying at least one condition using |

Suppose we were interested in only those rows corresponding to cities in Al-
berta in the official_langs data set (Edmonton and Calgary). We can’t
use & as we did above because region cannot be both Edmonton and Cal-
gary simultaneously. Instead, we can use the vertical pipe (|) logical operator,
which gives us the cases where one condition or another condition or both are
satisfied. In the code below, we ask Python to return the rows where the
region columns are equal to “Calgary” or “Edmonton”.

official_langs]|

(official_langs["region"] == "Calgary") |
(official_langs|["region"] == "Edmonton")
]

category language region most_at_home most_at_work
696 Official languages English Calgary 1065070 844740
701 Official languages French Calgary 8630 2140
910 Official languages English Edmonton 1050410 792700
915 Official languages French Edmonton 10950 2520

3.5.6 Extracting rows with values in a list using isin

Next, suppose we want to see the populations of our five cities. Let’s read
in the region_data.csv file that comes from the 2016 Canadian census, as
it contains statistics for number of households, land area, population, and
number of dwellings for different regions.

region_data = pd.read_csv("data/region_data.csv")
region_data

region households area population dwellings
0 Belleville 43002 1354.65121 103472 45050
1 Lethbridge 45696 3046.69699 117394 48317
2 Thunder Bay 52545 2618.26318 121621 57146
3 Peterborough 50533 1636.98336 121721 55662

(continues on next page)

100 CHAPTER 3. CLEANING AND WRANGLING DATA

(continued from previous page)

4 Saint John 52872 3793.42158 126202 58398
30 Ottawa - Gatineau 535499 7168.96442 1323783 571146
31 Calgary 519693 5241.70103 1392609 544870
32 Vancouver 960894 3040.41532 2463431 1027613
33 Montréal 1727310 4638.24059 4098927 1823281
34 Toronto 2135909 6269.93132 5928040 2235145

[35 rows x 5 columns]

To get the population of the five cities we can filter the data set using the isin
method. The isin method is used to see if an element belongs to a list. Here
we are filtering for rows where the value in the region column matches any
of the five cities we are interested in: Toronto, Montréal, Vancouver, Calgary,
and Edmonton.

city_names = ["Toronto", "Montréal", "Vancouver", "Calgary", "Edmonton"]

five_cities = region_datalregion_data["region"].isin(city_names)]
five_cities

region households area population dwellings
29 Edmonton 502143 9857.77908 1321426 537634
31 Calgary 519693 5241.70103 1392609 544870
32 Vancouver 960894 3040.41532 2463431 1027613
33 Montréal 1727310 4638.24059 4098927 1823281
34 Toronto 2135909 6269.93132 5928040 2235145

Note: What'’s the difference between == and isin? Suppose we have two
Series, seriesA and seriesB. If you type seriesA == seriesB into Python
it will compare the series element by element. Python checks if the first
element of seriesa equals the first element of seriesB, the second element
of seriesA equals the second element of seriesB, and so on. On the other
hand, seriesA.isin (seriesB) compares the first element of seriesAa to all
the elements in seriesB. Then the second element of seriesaA is compared
to all the elements in seriesB, and so on. Notice the difference between ==
and isin in the example below.

pd.Series (["Vancouver", "Toronto"]) == pd.Series(["Toronto", "Vancouver"])
0 False
1 False

dtype: bool

pd.Series (["Vancouver", "Toronto"]).isin(pd.Series(["Toronto", "Vancouver"]))

3.5. USING [] TO EXTRACT ROWS OR COLUMNS 101

0 True
1 True
dtype: bool

3.5.7 Extracting rows above or below a threshold using > and <

We saw in Section 3.5.4 that 2,669,195 people reported speaking French in
Montréal as their primary language at home. If we are interested in finding
the official languages in regions with higher numbers of people who speak it
as their primary language at home compared to French in Montréal, then we
can use [] to obtain rows where the value of most_at_home is greater than
2,669,195. We use the > symbol to look for values above a threshold, and the <
symbol to look for values below a threshold. The >= and <= symbols similarly
look for equal to or above a threshold and equal to or below a threshold.

official_langs[official_langs["most_at_home"] > 2669195]

category language region most_at_home most_at_work
54 Official languages English Toronto 3836770 3218725

This operation returns a data frame with only one row, indicating that when
considering the official languages, only English in Toronto is reported by more
people as their primary language at home than French in Montréal according
to the 2016 Canadian census.

3.5.8 Extracting rows using query

You can also extract rows above, below, equal or not-equal to a threshold
using the query method. For example the following gives us the same result
as when we used official_langs[official_ langs["most_at_home"] >
2669195].

official_langs.query ("most_at_home > 2669195")

category language region most_at_home most_at_work
54 Official languages English Toronto 3836770 3218725

The query (criteria we are using to select values) is input as a string. The
query method is less often used than the earlier approaches we introduced,
but it can come in handy to make long chains of filtering operations a bit
easier to read.

102 CHAPTER 3. CLEANING AND WRANGLING DATA

3.6 Using loc[] to filter rows and select columns

The [] operation is only used when you want to either filter rows or select
columns; it cannot be used to do both operations at the same time. This is
where 1oc[] comes in. For the first example, recall 1oc[] from Chapter 1,
which lets us create a subset of the rows and columns in the tidy_lang data
frame. In the first argument to loc[], we specify a logical statement that
filters the rows to only those pertaining to the Toronto region, and the second
argument specifies a list of columns to keep by name.

tidy_lang.loc|

tidy_lang["region"] == "Toronto",
["language", "region", "most_at_home", "most_at_work"]
1

language region most_at_home most_at_work
0 Aboriginal languages, n.o.s. Toronto 50 0
1 Afrikaans Toronto 265 0
2 Afro-Asiatic languages, n.i.e. Toronto 185 10
3 Akan (Twi) Toronto 4045 20
4 Albanian Toronto 6380 215
209 Wolof Toronto 75 0
210 Woods Cree Toronto 0 10
211 Wu (Shanghainese) Toronto 3130 30
212 Yiddish Toronto 350 20
213 Yoruba Toronto 1080 10

[214 rows x 4 columns]

In addition to simultaneous subsetting of rows and columns, loc[] has two
more special capabilities beyond those of []. First, 1loc[] has the ability
to specify ranges of rows and columns. For example, note that the list of
columns language, region, most_at_home, most_at_work corresponds to
the range of columns from language to most_at_work. Rather than explic-
itly listing all of the column names as we did above, we can ask for the range of
columns "language":"most_at_work"; the :-syntax denotes a range, and
is supported by the 1oc[] function, but not by [].

tidy_lang.loc|

tidy_lang["region"] == "Toronto",
"language":"most_at_work"

language region most_at_home most_at_work
0 Aboriginal languages, n.o.s. Toronto 50 0
1 Afrikaans Toronto 265 0
2 Afro-Asiatic languages, n.i.e. Toronto 185 10
3 Akan (Twi) Toronto 4045 20

(continues on next page)

3.6. USING LOC[] TO FILTER ROWS AND SELECT COLUMNS 103

(continued from previous page)

4 Albanian Toronto 6380 215
209 Wolof Toronto 75 0
210 Woods Cree Toronto 0 10
211 Wu (Shanghainese) Toronto 3130 30
212 Yiddish Toronto 350 20
213 Yoruba Toronto 1080 10

[214 rows x 4 columns]

We can pass : by itself—without anything before or after—to denote that we
want to retrieve everything. For example, to obtain a subset of all rows and
only those columns ranging from language to most_at_work, we could use
the following expression.

tidy_lang.loc[:, "language":"most_at_work"]

language region most_at_home most_at_work
0 Aboriginal languages, n.o.s. Toronto 50 0
1 Afrikaans Toronto 265 0
2 Afro-Asiatic languages, n.i.e. Toronto 185 10
3 Akan (Twi) Toronto 4045 20
4 Albanian Toronto 6380 215
1065 Wolof Edmonton 90 10
1066 Woods Cree Edmonton 20 0
1067 Wu (Shanghainese) Edmonton 120 0
1068 Yiddish Edmonton 0 0
1069 Yoruba Edmonton 280 0

[1070 rows x 4 columns]

We can also omit the beginning or end of the : range expression to denote that
we want “everything up to” or “everything after” an element. For example, if
we want all of the columns including and after 1anguage, we can write the
expression:

tidy_lang.loc[:, "language":]

language region most_at_home most_at_work
0 Aboriginal languages, n.o.s. Toronto 50 0
1 Afrikaans Toronto 265 0
2 Afro-Asiatic languages, n.i.e. Toronto 185 10
3 Akan (Twi) Toronto 4045 20
4 Albanian Toronto 6380 215
1065 Wolof Edmonton 90 10
1066 Woods Cree Edmonton 20 0
1067 Wu (Shanghainese) Edmonton 120 0
1068 Yiddish Edmonton 0 0
1069 Yoruba Edmonton 280 0

[1070 rows x 4 columns]

104 CHAPTER 3. CLEANING AND WRANGLING DATA

By not putting anything after the :, Python reads this as “from language
until the last column” Similarly, we can specify that we want everything up
to and including language by writing the expression:

tidy_lang.loc[:, :"language"]

category language
0 Aboriginal languages Aboriginal languages, n.o.s.
1 Non-Official & Non-Aboriginal languages Afrikaans
2 Non-Official & Non-Aboriginal languages Afro-Asiatic languages, n.i.e.
3 Non-Official & Non-Aboriginal languages Akan (Twi)
4 Non-Official & Non-Aboriginal languages Albanian
1065 Non-Official & Non-Aboriginal languages Wolof
1066 Aboriginal languages Woods Cree
1067 Non-Official & Non-Aboriginal languages Wu (Shanghainese)
1068 Non-Official & Non-Aboriginal languages Yiddish
1069 Non-Official & Non-Aboriginal languages Yoruba

[1070 rows x 2 columns]

By not putting anything before the :, Python reads this as “from the first
column until 1anguage”. Although the notation for selecting a range using :
is convenient because less code is required, it must be used carefully. If you
were to re-order columns or add a column to the data frame, the output would
change. Using a list is more explicit and less prone to potential confusion, but
sometimes involves a lot more typing.

The second special capability of .1oc[] over [] is that it enables selecting
columns using logical statements. The [] operator can only use logical state-
ments to filter rows; .1loc[] can do both. For example, let’s say we wanted
only to select the columns most_at_home and most_at_work. We could then
use the .str.startswith method to choose only the columns that start with
the word “most”. The str.startswith expression returns a list of True or
False values corresponding to the column names that start with the desired
characters.

tidy_lang.loc[:, tidy_lang.columns.str.startswith ("most")]

most_at_home most_at_work

0 50 0
1 265 0
2 185 10
3 4045 20
4 6380 215
1065 90 10
1066 20 0
1067 120 0
1068 0 0
1069 280 0

(continues on next page)

3.7. USING ILOC[] TO EXTRACT ROWS AND COLUMNS BY POSITION 105

(continued from previous page)

[1070 rows x 2 columns]

We could also have chosen the columns containing an underscore _ by us-
ing the .str.contains ("_"), since we notice the columns we want contain
underscores and the others don’t.

tidy_lang.loc[:, tidy_lang.columns.str.contains("_")]

most_at_home most_at_work

0 50 0
1 265 0
2 185 10
S 4045 20
4 6380 215
1065 90 10
1066 20 0
1067 120 0
1068 0 0
1069 280 0

[1070 rows x 2 columns]

3.7 Using iloc[] to extract rows and columns by position

Another approach for selecting rows and columns is to use iloc[], which
provides the ability to index with the position rather than the label of
the columns. For example, the column labels of the tidy_lang data
frame are ["category", "language", "region", "most_at_home",
"most_at_work"]. Using iloc[], you can ask for the 1anguage column by
requesting the column at index 1 (remember that Python starts counting at
0, so the second column "language" has index 1!).

tidy_lang.iloc[:, 1]
0 Aboriginal languages, n.o.s.
1 Afrikaans
2 Afro-Asiatic languages, n.i.e.
3 Akan (Twi)
4 Albanian
1065 Wolof
1066 Woods Cree
1067 Wu (Shanghainese)
1068 Yiddish
1069 Yoruba

Name: language, Length: 1070, dtype: object

106 CHAPTER 3. CLEANING AND WRANGLING DATA

You can also ask for multiple columns. We pass 1: after the comma indicating
we want columns after and including index 1 (i.e., language).

tidy_lang.iloc[:, 1:]

language region most_at_home most_at_work
0 Aboriginal languages, n.o.s. Toronto 50 0
1 Afrikaans Toronto 265 0
2 Afro-Asiatic languages, n.i.e. Toronto 185 10
3 Akan (Twi) Toronto 4045 20
4 Albanian Toronto 6380 215
1065 Wolof Edmonton 90 10
1066 Woods Cree Edmonton 20 0
1067 Wu (Shanghainese) Edmonton 120 0
1068 Yiddish Edmonton 0 0
1069 Yoruba Edmonton 280 0

[1070 rows x 4 columns]

We can also use iloc[] to select ranges of rows, or simultaneously select
ranges of rows and columns, using a similar syntax. For example, to select
the first five rows and columns after and including index 1, we could use the
following;:

tidy_lang.iloc[:5, 1:]

language region most_at_home most_at_work
0 Aboriginal languages, n.o.s. Toronto 50 0
1 Afrikaans Toronto 265 0
2 Afro-Asiatic languages, n.i.e. Toronto 185 10
3 Akan (Twi) Toronto 4045 20
4 Albanian Toronto 6380 215

Note that the i1oc[] method is not commonly used, and must be used with
care. For example, it is easy to accidentally put in the wrong integer index. If
you did not correctly remember that the 1anguage column was index 1, and
used 2 instead, your code might end up having a bug that is quite hard to
track down.

3.8 Aggregating data

3.8.1 Calculating summary statistics on individual columns

As a part of many data analyses, we need to calculate a summary value for
the data (a summary statistic). Examples of summary statistics we might
want to calculate are the number of observations, the average/mean value
for a column, the minimum value, etc. Oftentimes, this summary statistic is

3.8. AGGREGATING DATA
(N R N N

-

>

107

FIGURE 3.12 Calculating summary statistics on one or more column(s)
in pandas generally creates a series or data frame containing the summary
statistic(s) for each column being summarized. The darker, top row of each
table represents column headers.

calculated from the values in a data frame column, or columns, as shown in

Fig. 3.12.

We will start by showing how to compute the minimum and maximum number
of Canadians reporting a particular language as their primary language at

home. First, a reminder of what region_lang looks like:

region_lang = pd.read_csv("data/region_lang.csv")
region_lang

S w N e o

7485
7486
7487
7488
7489

S w N e o

7485
7486
7487
7488
7489

[N

region

St. John's
Halifax
Moncton
Saint John
Saguenay

Ottawa - Gatineau

Non-Official &

Kelowna Non-Official &

Abbotsford - Mission Non-Official &
Vancouver Non-Official &

Victoria Non-Official &

language mother

Aboriginal languages,
Aboriginal languages,
Aboriginal languages,
Aboriginal languages,
Aboriginal languages,

lang_known
0
0
0

o 2= e Rile lia)
O O O O O
n n no non

Yoruba
Yoruba
Yoruba
Yoruba
Yoruba

Aboriginal
Aboriginal
Aboriginal
Aboriginal
Aboriginal

Non-Aboriginal
Non-Aboriginal
Non-Aboriginal
Non-Aboriginal
Non-Aboriginal
_tongue most_at_home
5
5
0
0
5
265
5
20
190
20

category
languages
languages
languages
languages
languages

languages
languages
languages
languages
languages

U O O O O

\

most_at_work.

o O O o o

el elNe oo

(continues on next page)

108 CHAPTER 3. CLEANING AND WRANGLING DATA

(continued from previous page)

3 0
4 0
7485 910
7486 0
7487 50
7488 505
7489 90

[7490 rows x 7 columns]

We use .min to calculate the minimum and .max to calculate maximum num-
ber of Canadians reporting a particular language as their primary language at
home, for any region.

region_lang["most_at_home"] .min ()

region_lang["most_at_home"] .max ()
3836770

From this we see that there are some languages in the data set that no one
speaks as their primary language at home. We also see that the most com-
monly spoken primary language at home is spoken by 3,836,770 people. If
instead we wanted to know the total number of people in the survey, we could
use the sum summary statistic method.

region_lang["most_at_home"].sum()
23171710

Other handy summary statistics include the mean, median and std for com-
puting the mean, median, and standard deviation of observations, respectively.
We can also compute multiple statistics at once using agg to “aggregate” re-
sults. For example, if we wanted to compute both the min and max at once, we
could use agg with the argument ["min", "max"]. Note that agg outputs
a Series object.

region_lang["most_at_home"].agg(["min", "max"])

min 0
max 3836770
Name: most_at_home, dtype: int64

3.8. AGGREGATING DATA 109

The pandas package also provides the describe method, which is a handy
function that computes many common summary statistics at once; it gives us
a summary of a variable.

region_lang["most_at_home"] .describe ()

7.490000e+03
3.093686e+03
6.401258e+04
0.000000e+00
25% 0.000000e+00
0.000000e+00
3.000000e+01
3.836770e+06
t_at_home, dtype: float64

In addition to the summary methods we introduced earlier, the describe
method outputs a count (the total number of observations, or rows, in our
data frame), as well as the 25th, 50th, and 75th percentiles. Table 3.3 provides
an overview of some of the useful summary statistics that you can compute
with pandas.

TABLE 3.3 Basic summary statistics

Function Description

count The number of observations (rows)

mean The mean of the observations

median The median value of the observations

std The standard deviation of the observations
max The largest value in a column

min The smallest value in a column

sum The sum of all observations

agg Aggregate multiple statistics together
describe | A summary

Note: In pandas, the value NaN is often used to denote missing data. By
default, when pandas calculates summary statistics (e.g., max, min, sum, etc.),
it ignores these values. If you look at the documentation for these functions,
you will see an input variable skipna, which by default is set to skipna=True.
This means that pandas will skip NaN values when computing statistics.

110 CHAPTER 3. CLEANING AND WRANGLING DATA

3.8.2 Calculating summary statistics on data frames

What if you want to calculate summary statistics on an entire data frame?
Well, it turns out that the functions in Table 3.3 can be applied to a whole
data frame. For example, we can ask for the maximum value of each column
has using max.

region_lang.max ()

region Winnipeg
category Official languages
language Yoruba
mother_tongue 3061820
most_at_home 3836770
most_at_work 3218725
lang_known 5600480

dtype: object

We can see that for columns that contain string data with words like "van-
couver" and "Halifax", the maximum value is determined by sorting the
string alphabetically and returning the last value. If we only want the maxi-
mum value for numeric columns, we can provide numeric_only=True:

region_lang.max (numeric_only=True)

mother_tongue 3061820
most_at_home 3836770
most_at_work 3218725
lang_known 5600480

dtype: int64

We could also ask for the mean for each columns in the data frame. It does
not make sense to compute the mean of the string columns, so in this case
we must provide the keyword numeric_only=True so that the mean is only
computed on columns with numeric values.

region_lang.mean (numeric_only=True)

mother_tongue 3200.341121
most_at_home 3093.686248
most_at_work 1853.757677
lang_known 5127.499332

dtype: float64

If there are only some columns for which you would like to get summary
statistics, you can first use [] or .loc[] to select those columns, and then
ask for the summary statistic as we did for a single column previously. For
example, if we want to know the mean and standard deviation of all of the
columns between "mother_tongue" and "lang_ known", we use .loc[] to
select those columns and then agg to ask for both the mean and std.

3.9. PERFORMING OPERATIONS ON GROUPS OF ROWS USING GROUPBY 111

I N S N
N S
— | —
[|

FIGURE 3.13 A summary statistic function paired with groupby is useful
for calculating that statistic on one or more column(s) for each group. It
creates a new data frame with one row for each group and one column for
each summary statistic. The darker, top row of each table represents the
column headers. The orange, blue, and green colored rows correspond to the
rows that belong to each of the three groups being represented in this cartoon
example.

region_lang.loc[:, "mother_tongue":"lang_known"].agg(["mean", "std"])
mother_tongue most_at_home most_at_work lang_known
mean 3200.341121 3093.686248 1853.757677 5127.499332

std 55231.640268 64012.578320 48574.532066 94001.162338

3.9 Performing operations on groups of rows using groupby

What happens if we want to know how languages vary by region? In this
case, we need a new tool that lets us group rows by region. This can be
achieved using the groupby function in pandas. Pairing summary functions
with groupby lets you summarize values for subgroups within a data set, as
illustrated in Fig. 3.13. For example, we can use groupby to group the regions
of the tidy_lang data frame and then calculate the minimum and maximum
number of Canadians reporting the language as the primary language at home
for each of the regions in the data set.

The groupby function takes at least one argument—the columns to use in the
grouping. Here we use only one column for grouping (region).

region_lang.groupby ("region")
<pandas.core.groupby.generic.DataFrameGroupBy object at 0x7fe56d8f£9950>

Notice that groupby converts a DataFrame object to a DataFrameGroupBy
object, which contains information about the groups of the data frame. We

112 CHAPTER 3. CLEANING AND WRANGLING DATA

can then apply aggregating functions to the bataFrameGroupBy object. Here
we first select the most_at_home column, and then summarize the grouped
data by their minimum and maximum values using agg.

region_lang.groupby ("region") ["most_at _home"].agg (["min", "max"])
min max
region
Abbotsford - Mission 0 137445
Barrie 0 182390
Belleville 0 97840
Brantford 0 124560
Calgary 0 1065070
Trois—-Riviéres 0 149835
Vancouver 0 1622735
Victoria 0 331375
Windsor 0 270715
Winnipeg 0 612595

[35 rows x 2 columns]

The resulting data frame has region as an index name. This is similar to
what happened when we used the pivot function in Section 3.4.2; and just
as we did then, you can use reset_index to get back to a regular data frame
with region as a column name.

region_lang.groupby ("region") ["most_at_home"].agg (["min", "max"]).reset_index ()

region min max
0 Abbotsford - Mission 0 137445
1 Barrie 0 182390
2 Belleville 0 97840
3 Brantford 0 124560
4 Calgary 0 1065070
30 Trois—-Riviéres 0 149835
31 Vancouver 0 1622735
32 Victoria 0 331375
33 Windsor 0 270715
34 Winnipeg 0 612595

[35 rows x 3 columns]

You can also pass multiple column names to groupby. For example, if we
wanted to know about how the different categories of languages (Aboriginal,
Non-Official & Non-Aboriginal, and Official) are spoken at home in different

regions, we would pass a list including region and category to groupby.

region_lang.groupby (["region”, "category"]) ["most_at home"].agg (["min", "max"]).
wreset_index ()

3.9. PERFORMING OPERATIONS ON GROUPS OF ROWS USING GROUPBY

S W N e O

100
101
102
103
104

S w N e o

100
101
102
103
104

Abbotsfor
Abbotsfor
Abbotsfor

max

5
23015
137445
0

875
8235
270715
365
23565
612595

region
d - Mission
d - Mission
d - Mission
Barrie
Barrie

Windsor
Windsor
Winnipeg
Winnipeg
Winnipeg

[105 rows x 4 columns]

Non-Official & Non-

Non-Official & Non-

Non-Official & Non-

Non-Official & Non-

Aboriginal
Aboriginal

Official
Aboriginal
Aboriginal

Aboriginal
Official
Aboriginal
Aboriginal
Official

category
languages
languages
languages
languages
languages

languages
languages
languages
languages
languages

2695

11185

113

You can also ask for grouped summary statistics on the whole data frame.

most_at_home .

region_lang.groupby ("region") .agg (["min", "max"]).reset_index ()
region category
min max
0 Abbotsford - Mission Aboriginal languages Official languages
1 Barrie Aboriginal languages Official languages
2 Belleville Aboriginal languages Official languages
3 Brantford Aboriginal languages Official languages
4 Calgary Aboriginal languages Official languages
30 Trois—-Riviéres Aboriginal languages Official languages
31 Vancouver Aboriginal languages Official languages
32 Victoria Aboriginal languages Official languages
33 Windsor Aboriginal languages Official languages
34 Winnipeg Aboriginal languages Official languages
language mother_tongue
=\
min max min max
0 Aboriginal languages, n.o.s Yoruba 0 122100
1 Aboriginal languages, n.o.s Yoruba 0 168990
2 Aboriginal languages, n.o.s Yoruba 0 93655
3 Aboriginal languages, n.o.s Yoruba 0 116645
4 Aboriginal languages, n.o.s Yoruba 0 937055
30 Aboriginal languages, n.o.s Yoruba 0 147805
31 Aboriginal languages, n.o.s Yoruba 0 1316635
32 Aboriginal languages, n.o.s Yoruba 0 302690
33 Aboriginal languages, n.o.s Yoruba 0 235990
34 Aboriginal languages, n.o.s Yoruba 0 530570

min

o O O O o

o O O O o -

(continues on next page)

114 CHAPTER 3. CLEANING AND WRANGLING DATA

(continued from previous page)

most_at_work lang_known

max min max min max
0 137445 0 93495 0 167835
1 182390 0 115125 0 193445
2 97840 0 54150 0 100855
3 124560 0 73910 0 130835
4 1065070 0 844740 0 1343335
30 149835 0 78610 0 149805
31 1622735 0 1330555 0 2289515
32 331375 0 211705 0 354470
33 270715 0 166220 0 318540
34 612595 0 437460 0 749285

[35 rows x 13 columns]

If you want to ask for only some columns, for example, the columns between
"most_at_home" and "lang_known", you might think about first apply-
ing groupby and then ["most_at_home":"lang_known"]; but groupby
returns a DataFrameGroupBy object, which does not work with ranges in-
side []. The other option is to do things the other way around: first use
["most_at_home":"lang_known"], then use groupby. This can work, but
you have to be careful! For example, in our case, we get an error.

region_lang["most_at _home":"lang_known"].groupby ("region") .max ()
KeyError: "region"

This is because when we use [] we selected only the columns between
"most_at_home" and "lang_known", which doesn’t include "region". In-
stead, we need to use groupby first and then call [] with a list of column
names that includes region; this approach always works.

region_lang.groupby ("region") [["most_at_home", "most_at_work", "lang_known"]].
—max () .reset_index ()

region most_at_home most_at_work lang_known

0 Abbotsford - Mission 137445 93495 167835
1 Barrie 182390 115125 193445
2 Belleville 97840 54150 100855
3 Brantford 124560 73910 130835
4 Calgary 1065070 844740 1343335
30 Trois—-Riviéres 149835 78610 149805
31 Vancouver 1622735 1330555 2289515
32 Victoria 331375 211705 354470
33 Windsor 270715 166220 318540
34 Winnipeg 612595 437460 749285

[35 rows x 4 columns]

3.10. APPLY FUNCTIONS ACROSS MULTIPLE COLUMNS 115

To see how many observations there are in each group, we can use
value_counts.

region_lang.value_counts ("region™)

region

Abbotsford - Mission 214
St. Catharines - Niagara 214
Québec 214
Regina 214
Saguenay 214
Kitchener - Cambridge - Waterloo 214
Lethbridge 214
London 214
Moncton 214
Winnipeg 214

Name: count, Length: 35, dtype: inté64

Which takes the normalize parameter to show the output as proportion
instead of a count.

region_lang.value_counts ("region", normalize=True)

region

Abbotsford - Mission 0.028571
St. Catharines - Niagara 0.028571
Québec 0.028571
Regina 0.028571
Saguenay 0.028571
Kitchener - Cambridge - Waterloo 0.028571
Lethbridge 0.028571
London 0.028571
Moncton 0.028571
Winnipeg 0.028571

Name: proportion, Length: 35, dtype: floaté64

3.10 Apply functions across multiple columns

Computing summary statistics is not the only situation in which we need
to apply a function across columns in a data frame. There are two other
common wrangling tasks that require the application of a function across
columns. The first is when we want to apply a transformation, such as a
conversion of measurement units, to multiple columns. We illustrate such a
data transformation in Fig. 3.14; note that it does not change the shape of
the data frame.

For example, imagine that we wanted to convert all the numeric columns in
the region_lang data frame from int64 type to int32 type using the .

116 CHAPTER 8. CLEANING AND WRANGLING DATA
(N S R I (N R R N

FIGURE 3.14 A transformation applied across many columns. The darker,
top row of each table represents the column headers.

astype function. When we revisit the region_lang data frame, we can see
that this would be the columns from mother_tongue to lang_known.

region_lang

region category \
0 St. John's Aboriginal languages
1 Halifax Aboriginal languages
2 Moncton Aboriginal languages
3 Saint John Aboriginal languages
4 Saguenay Aboriginal languages
7485 Ottawa - Gatineau Non-Official & Non-Aboriginal languages
7486 Kelowna Non-Official & Non-Aboriginal languages
7487 Abbotsford - Mission Non-Official & Non-Aboriginal languages
7488 Vancouver Non-Official & Non-Aboriginal languages
7489 Victoria ©Non-Official & Non-Aboriginal languages
language mother_tongue most_at_home most_at_work.

o\
0 Aboriginal languages, n.o.s 5 0 0
1 Aboriginal languages, n.o.s 5 0 0
2 Aboriginal languages, n.o.s 0 0 0
3 Aboriginal languages, n.o.s 0 0 0
4 Aboriginal languages, n.o.s 5 5 0
7485 Yoruba 265 65 10
7486 Yoruba 5 0 0
7487 Yoruba 20 0 0
7488 Yoruba 190 40 0
7489 Yoruba 20 0 0

lang_known
0 0
1 0
2 0
3 0
4 0
7485 910
7486 0
7487 50
7488 505
7489 90

[7490 rows x 7 columns]

3.10. APPLY FUNCTIONS ACROSS MULTIPLE COLUMNS 117

We can simply call the .astype function to apply it across the desired range
of columns.

region_lang_nums = region_lang.loc[:, "mother_tongue":"lang known"].astype ("int32
M)
region_lang_nums.info ()

<class 'pandas.core.frame.DataFrame'>
RangelIndex: 7490 entries, 0 to 7489
Data columns (total 4 columns):

Column Non-Null Count Dtype

0 mother_tongue 7490 non-null int32
1 most_at_home 7490 non-null int32
2 most_at_work 7490 non-null int32
3 lang_known 7490 non-null int32
dtypes: int32(4)
memory usage: 117.2 KB

You can now see that the columns from mother_tongue to lang_known are
type int32, and that we have obtained a data frame with the same number
of columns and rows as the input data frame.

The second situation occurs when you want to apply a function across columns
within each individual row, i.e., row-wise. This operation, illustrated in Fig.
3.15, will produce a single column whose entries summarize each row in the
original data frame; this new column can be added back into the original data.

FIGURE 3.15 A function applied row-wise across a data frame, producing a
new column. The darker, top row of each table represents the column headers.

For example, suppose we want to know the maximum value between
mother_tongue, and lang_known for each language and region in the re-
gion_lang_nums data set. In other words, we want to apply the max function
row-wise. In order to tell max that we want to work row-wise (as opposed to
acting on each column individually, which is the default behavior), we just
specify the argument axis=1.

region_lang_nums.max (axis=1)

w N - O
o o urw;,

(continues on next page)

118 CHAPTER 3. CLEANING AND WRANGLING DATA

(continued from previous page)

4 5
7485 910
7486 5
7487 50
7488 505
7489 90

Length: 7490, dtype: int32

We see that we obtain a series containing the maximum value between
mother_tongue, most_at_home, most_at_work and lang_known for each
row in the data frame. It is often the case that we want to include a column
result from a row-wise operation as a new column in the data frame, so that
we can make plots or continue our analysis. To make this happen, we will use
column assignment or the assign function to create a new column. This is
discussed in the next section.

Note: While pandas provides many methods (like max, astype, etc.) that
can be applied to a data frame, sometimes you may want to apply your own
function to multiple columns in a data frame. In this case you can use the
more general apply' method.

3.11 Modifying and adding columns

When we compute summary statistics or apply functions, a new data frame
or series is created. But what if we want to append that information to an
existing data frame? For example, say we wanted to compute the maximum
value in each row of the region_lang_nums data frame, and to append that
as an additional column of the region_lang data frame. In this case, we have
two options: we can either create a new column within the region_lang data
frame itself, or create an entirely new data frame with the assign method.
The first option we have seen already in earlier chapters, and is the more
commonly used pattern in practice:

region_lang["maximum"] = region_lang_nums.max (axis=1)
region_lang

region category \
0 St. John's Aboriginal languages

(continues on next page)

Thttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.apply.html

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.apply.html

3.11. MODIFYING AND ADDING COLUMNS 119

(continued from previous page)

1 Halifax Aboriginal languages
2 Moncton Aboriginal languages
3 Saint John Aboriginal languages
4 Saguenay Aboriginal languages
7485 Ottawa - Gatineau Non-Official & Non-Aboriginal languages
7486 Kelowna Non-Official & Non-Aboriginal languages
7487 Abbotsford - Mission Non-Official & Non-Aboriginal languages
7488 Vancouver Non-Official & Non-Aboriginal languages
7489 Victoria ©Non-Official & Non-Aboriginal languages
language mother_tongue most_at_home most_at_work.

=\
0 Aboriginal languages, n.o.s 5 0 0
1 Aboriginal languages, n.o.s 5 0 0
2 Aboriginal languages, n.o.s 0 0 0
3 Aboriginal languages, n.o.s 0 0 0
4 Aboriginal languages, n.o.s 5 5 0
7485 Yoruba 265 65 10
7486 Yoruba 5 0 0
7487 Yoruba 20 0 0
7488 Yoruba 190 40 0
7489 Yoruba 20 0 0

lang_known maximum
0 0 5
1 0 5
2 0 0
3 0 0
4 0 5
7485 910 910
7486 0 5
7487 50 50
7488 505 505
7489 90 90

[7490 rows x 8 columns]

You can see above that the region_lang data frame now has an additional
column named maximum. The maximum column contains the maximum value
between mother_tongue, most_at_home, most_at_work and lang_known
for each language and region, just as we specified.

To instead create an entirely new data frame, we can use the assign method
and specify one argument for each column we want to create. In this case we
want to create one new column named maximum, so the argument to assign
begins with maximum= . Then after the =, we specify what the contents of
that new column should be. In this case we use max just as we did previously
to give us the maximum values. Remember to specify axis=1 in the max
method so that we compute the row-wise maximum value.

region_lang.assign (

(continues on next page)

120 CHAPTER 3. CLEANING AND WRANGLING DATA

(continued from previous page)

maximum=region_lang_nums.max (axis=1)

)

region category \
0 St. John's Aboriginal languages
1 Halifax Aboriginal languages
2 Moncton Aboriginal languages
3 Saint John Aboriginal languages
4 Saguenay Aboriginal languages
7485 Ottawa - Gatineau Non-Official & Non-Aboriginal languages
7486 Kelowna Non-Official & Non-Aboriginal languages
7487 Abbotsford - Mission Non-Official & Non-Aboriginal languages
7488 Vancouver Non-Official & Non-Aboriginal languages
7489 Victoria Non-Official & Non-Aboriginal languages
language mother_tongue most_at_home most_at_work.

<\
0 Aboriginal languages, n.o.s 5 0 0
1 Aboriginal languages, n.o.s 5 0 0
2 Aboriginal languages, n.o.s 0 0 0
3 Aboriginal languages, n.o.s 0 0 0
4 Aboriginal languages, n.o.s 5 5 0
7485 Yoruba 265 65 10
7486 Yoruba 5 0 0
7487 Yoruba 20 0
7488 Yoruba 190 40 0
7489 Yoruba 20 0 0

lang_known maximum
0 0 5
1 0 5
2 0 0
3 0 0
4 0 5
7485 910 910
7486 0 5
7487 50 50
7488 505 505
7489 90 90

[7490 rows x 8 columns]

This data frame looks just like the previous one, except that it is a copy of
region_lang, not region_lang itself; making further changes to this data
frame will not impact the original region_lang data frame.

As another example, we might ask the question: “What proportion of the
population reported English as their primary language at home in the 2016
census?” For example, in Toronto, 3,836,770 people reported speaking English
as their primary language at home, and the population of Toronto was reported
to be 5,928,040 people. So the proportion of people reporting English as their
primary language in Toronto in the 2016 census was 0.65. How could we figure
this out starting from the region_lang data frame?

3.11. MODIFYING AND ADDING COLUMNS 121

First, we need to filter the region_lang data frame so that we only keep
the rows where the language is English. We will also restrict our attention
to the five major cities in the five_cities data frame: Toronto, Montréal,
Vancouver, Calgary, and Edmonton. We will filter to keep only those rows
pertaining to the English language and pertaining to the five aforementioned
cities. To combine these two logical statements we will use the & symbol. and
with the [] operation, "English" as the language and filter the rows, and
name the new data frame english_langs.

english_lang = region_lang]|
(region_lang["language"] == "English") &
(region_lang["region"].isin(five_cities["region"]))
]
english_lang

region category language mother_tongue most_at_home \
1898 Montréal Official languages English 444955 620510
1903 Toronto Official languages English 3061820 3836770
1918 Calgary Official languages English 937055 1065070
1919 Edmonton Official languages English 930405 1050410
1923 Vancouver Official languages English 1316635 1622735

most_at_work lang_known

1898 412120 2500590
1903 3218725 5600480
1918 844740 1343335
1919 792700 1275265
1923 1330555 2289515

Okay, now we have a data frame that pertains only to the English language
and the five cities mentioned earlier. In order to compute the proportion of
the population speaking English in each of these cities, we need to add the
population data from the five_cities data frame.

five_cities

region households area population dwellings
29 Edmonton 502143 9857.77908 1321426 537634
31 Calgary 519693 5241.70103 1392609 544870
32 Vancouver 960894 3040.41532 2463431 1027613
33 Montréal 1727310 4638.24059 4098927 1823281
34 Toronto 2135909 6269.93132 5928040 2235145

The data frame above shows that the populations of the five cities in 2016
were 5928040 (Toronto), 4098927 (Montréal), 2463431 (Vancouver), 1392609
(Calgary), and 1321426 (Edmonton). Next, we will add this information to
a new data frame column called city_pops. Once again, we will illustrate
how to do this using both the assign method and regular column assignment.
We specify the new column name (city_pops) as the argument, followed by
the equals symbol =, and finally the data in the column. Note that the order
of the rows in the english_lang data frame is Montréal, Toronto, Calgary,

122 CHAPTER 3. CLEANING AND WRANGLING DATA

Edmonton, Vancouver. So we will create a column called city_pops where
we list the populations of those cities in that order, and add it to our data
frame. And remember that by default, like other pandas functions, assign
does not modify the original data frame directly, so the english_lang data
frame is unchanged.
english_lang.assign(

city_pops=[4098927, 5928040, 1392609, 1321426, 2463431]
)

region category language mother_tongue most_at_home \
1898 Montréal Official languages English 444955 620510
1903 Toronto Official languages English 3061820 3836770
1918 Calgary Official languages English 937055 1065070
1919 Edmonton Official languages English 930405 1050410
1923 Vancouver Official languages English 1316635 1622735

most_at_work lang_known city_pops

1898 412120 2500590 4098927
1903 3218725 5600480 5928040
1918 844740 1343335 1392609
1919 792700 1275265 1321426
1923 1330555 2289515 2463431

Instead of using the assign method we can directly modify the en-
glish_lang data frame using regular column assignment. This would be
a more natural choice in this particular case, since the syntax is more conve-
nient for simple column modifications and additions.

english_lang["city_pops"] = [4098927, 5928040, 1392609, 1321426, 2463431]
english_lang

/tmp/ipykernel_12/2654974267.py:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/
—stable/user_guide/indexing.html#returning-a-view-versus-a-copy

english_lang["city_pops"] = [4098927, 5928040, 1392609, 1321426, 2463431]
region category language mother_tongue most_at_home \
1898 Montréal Official languages English 444955 620510
1903 Toronto Official languages English 3061820 3836770
1918 Calgary Official languages English 937055 1065070
1919 Edmonton Official languages English 930405 1050410
1923 Vancouver Official languages English 1316635 1622735

most_at_work lang_known city_pops

1898 412120 2500590 4098927
1903 3218725 5600480 5928040
1918 844740 1343335 1392609
1919 792700 1275265 1321426
1923 13308558 2289515 2463431

Wait a moment .. what is that warning message? It seems to suggest that
something went wrong, but if we inspect the english_lang data frame above,

3.11. MODIFYING AND ADDING COLUMNS 123

it looks like the city populations were added just fine. As it turns out, this
is caused by the earlier filtering we did from region_lang to produce the
original english_lang. The details are a little bit technical, but pandas
sometimes does not like it when you subset a data frame using [] or loc[]
followed by column assignment. For the purposes of your own data analysis,
if you ever see a SettingWithCopyWarning, just make sure to double check
that the result of your column assignment looks the way you expect it to
before proceeding. For the rest of the book, we will silence that warning to
help with readability.

Note: Inserting the data column [4098927, 5928040, ...] manually as
we did above is generally very error-prone and is not recommended. We do it
here to demonstrate another usage of assign and regular column assignment.
But in more advanced data wrangling, one would solve this problem in a less
error-prone way using the merge function, which lets you combine two data
frames. We will show you an example using merge at the end of the chapter.

Now we have a new column with the population for each city. Finally, we
can convert all the numerical columns to proportions of people who speak
English by taking the ratio of all the numerical columns with city_pops.
Let’s modify the english_lang column directly; in this case we can just
assign directly to the data frame. This is similar to what we did in Section
3.4.3, when we first read in the "region_lang_top5_cities_messy.csv"
data and we needed to convert a few of the variables to numeric types. Here
we assign to a range of columns simultaneously using loc[]. Note that it
is again possible to instead use the assign function to produce a new data
frame when modifying existing columns, although this is not commonly done.
Note also that we use the div method with the argument axis=0 to divide a
range of columns in a data frame by the values in a single column—the basic
division symbol / won’t work in this case.

english_lang.loc[:, "mother_tongue":"lang_known"] = english_lang.loc]|
S
"mother_tongue":"lang_known"
].div (english_lang["city_pops"], axis=0)

english_lang

region category language mother_tongue most_at_home \
1898 Montréal Official languages English 0.108554 0.151384
1903 Toronto Official languages English 0.516498 0.647224
1918 Calgary Official languages English 0.672877 0.764802
1919 Edmonton Official languages English 0.704092 0.794906
1923 Vancouver Official languages English 0.534472 0.658730

(continues on next page)

124 CHAPTER 3. CLEANING AND WRANGLING DATA

(continued from previous page)

most_at_work lang_known city_pops

1898 0.100543 0.610060 4098927
1903 0.542966 0.944744 5928040
1918 0.606588 0.964617 1392609
1919 0.599882 0.965067 1321426
1923 0.540123 0.929401 2463431

3.12 Using merge to combine data frames

Let’s return to the situation right before we added the city populations of
Toronto, Montréal, Vancouver, Calgary, and Edmonton to the english_lang
data frame. Before adding the new column, we had filtered region_lang to
create the english_lang data frame containing only English speakers in the
five cities of interest.

english_lang

region category language mother_tongue most_at_home \
1898 Montréal Official languages English 444955 620510
1903 Toronto Official languages English 3061820 3836770
1918 Calgary Official languages English 937055 1065070
1919 Edmonton Official languages English 930405 1050410
1923 Vancouver Official languages English 1316635 1622735

most_at_work lang_known

1898 412120 2500590
1903 3218725 5600480
1918 844740 1343335
1919 792700 1275265
1923 1330555 2289515

We then added the populations of these cities as a column (Toronto: 5928040,
Montréal: 4098927, Vancouver: 2463431, Calgary: 1392609, and Edmonton:
1321426). We had to be careful to add those populations in the right order;
this is an error-prone process. An alternative approach, that we demonstrate
here is to (1) create a new data frame with the city names and populations, and
(2) use merge to combine the two data frames, recognizing that the “regions”
are the same.

We create a new data frame by calling pd.DataFrame with a dictionary as
its argument. The dictionary associates each column name in the data frame
to be created with a list of entries. Here we list city names in a column called
"region" and their populations in a column called "population™.

city_populations = pd.DataFrame ({
(continues on next page)

3.13. SUMMARY 125

(continued from previous page)

"region" : ["Toronto", "Montréal", "Vancouver", "Calgary", "Edmonton"],
"population" : [5928040, 4098927, 2463431, 1392609, 1321426]
})

city_populations

region population

0 Toronto 5928040
1 Montréal 4098927
2 Vancouver 2463431
3 Calgary 1392609
4 Edmonton 1321426

This new data frame has the same region column as the english_lang
data frame. The order of the cities is different, but that is okay. We can use
the merge function in pandas to say we would like to combine the two data
frames by matching the region between them. The argument on="region"
tells pandas we would like to use the region column to match up the entries.

english_lang = english_lang.merge (city_populations, on="region")
english_lang

region category language mother_tongue most_at_home \

0 Montréal Official languages English 444955 620510
1 Toronto Official languages English 3061820 3836770
2 Calgary Official languages English 937055 1065070
3 Edmonton Official languages English 930405 1050410
4 Vancouver Official languages English 1316635 1622735

most_at_work lang_known population
0 412120 2500590 4098927
1 3218725 5600480 5928040
2 844740 1343335 1392609
3 792700 1275265 1321426
4 1330555 2289515 2463431

You can see that the populations for each city are correct (e.g. Montréal:
4098927, Toronto: 5928040), and we can proceed to with our analysis from
here.

3.13 Summary

Cleaning and wrangling data can be a very time-consuming process. However,
it is a critical step in any data analysis. We have explored many different
functions for cleaning and wrangling data into a tidy format. Table 3.4 sum-
marizes some of the key wrangling functions we learned in this chapter. In
the following chapters, you will learn how you can take this tidy data and do
so much more with it to answer your burning data science questions.

126 CHAPTER 3. CLEANING AND WRANGLING DATA

TABLE 3.4 Summary of wrangling functions

Function Description
agg calculates aggregated summaries of inputs
assign adds or modifies columns in a data frame
groupby | allows you to apply function(s) to groups of rows
iloc subsets columns/rows of a data frame using integer indices
loc subsets columns/rows of a data frame using labels
melt generally makes the data frame longer and narrower
merge combine two data frames
pivot generally makes a data frame wider and decreases the number
of rows
str. splits up a string column into multiple columns
split
|

3.14 Exercises

Practice exercises for the material covered in this chapter can be found in the
accompanying worksheets repository? in the “Cleaning and wrangling data”
row. You can launch an interactive version of the worksheet in your browser
by clicking the “launch binder” button. You can also preview a non-interactive
version of the worksheet by clicking “view worksheet”. If you instead decide to
download the worksheet and run it on your own machine, make sure to follow
the instructions for computer setup found in Chapter 13. This will ensure
that the automated feedback and guidance that the worksheets provide will
function as intended.

3.15 Additional resources

o The pandas package documentation® is another resource to learn more
about the functions in this chapter, the full set of arguments you can use,
and other related functions.

o Python for Data Analysis* [McKinney, 2012] has a few chapters related to

Zhttps://worksheets.python.datasciencebook.ca
3https://pandas.pydata.org/docs /reference/index.html
4https:/ /wesmckinney.com/book/

https://worksheets.python.datasciencebook.ca
https://pandas.pydata.org/docs/reference/index.html
https://wesmckinney.com/book

3.15. ADDITIONAL RESOURCES 127

data wrangling that go into more depth than this book. For example, the
data wrangling chapter® covers tidy data, melt and pivot, but also covers
missing values and additional wrangling functions (like stack). The data
aggregation chapter6 covers groupby, aggregating functions, apply, etc.

You will occasionally encounter a case where you need to iterate over items
in a data frame, but none of the above functions are flexible enough to do
what you want. In that case, you may consider using a for loop” [McKinney,
2012].

Shttps://wesmckinney.com /book /data-wrangling.html
Shttps://wesmckinney.com/book/data-aggregation.html
"https: //wesmckinney.com /book /python-basics.html#control_for

https://wesmckinney.com/book/data-wrangling.html
https://wesmckinney.com/book/data-aggregation.html
https://wesmckinney.com/book/python-basics.html#control_for

4

FEftective data visualization

4.1 Overview

This chapter will introduce concepts and tools relating to data visualization
beyond what we have seen and practiced so far. We will focus on guiding
principles for effective data visualization and explaining visualizations inde-
pendent of any particular tool or programming language. In the process, we
will cover some specifics of creating visualizations (scatter plots, bar plots, line
plots, and histograms) for data using Python.

4.2 Chapter learning objectives
By the end of the chapter, readers will be able to do the following:

o Describe when to use the following kinds of visualizations to answer specific
questions using a data set:

— scatter plots

— line plots

— bar plots

— histogram plots

o Given a data set and a question, select from the above plot types and use
Python to create a visualization that best answers the question.

o Evaluate the effectiveness of a visualization and suggest improvements to
better answer a given question.

o Referring to the visualization, communicate the conclusions in non-technical
terms.

o Identify rules of thumb for creating effective visualizations.

DOI: 10.1201/9781003438397-4 128

https://doi.org/10.1201/9781003438397-4

4.3. CHOOSING THE VISUALIZATION 129

o Use the altair library in Python to create and refine the above visualiza-
tions using:

— graphical marks: mark_point, mark_line, mark_circle, mark_bar,
mark_rule

— encoding channels: x, y, color, shape
— labeling: title
— transformations: scale
— subplots: facet
o Define the two key aspects of altair charts:
— graphical marks
— encoding channels
o Describe the difference in raster and vector output formats.

e Use chart.save () to save visualizations in .png and .svg format.

4.3 Choosing the visualization
Ask a question, and answer it

The purpose of a visualization is to answer a question about a data set of
interest. So naturally, the first thing to do before creating a visualization is
to formulate the question about the data you are trying to answer. A good
visualization will clearly answer your question without distraction; a great
visualization will suggest even what the question was itself without additional
explanation. Imagine your visualization as part of a poster presentation for a
project; even if you aren’t standing at the poster explaining things, an effective
visualization will convey your message to the audience.

Recall the different data analysis questions from Chapter 1. With the visual-
izations we will cover in this chapter, we will be able to answer only descriptive
and exploratory questions. Be careful to not answer any predictive, inferential,
causal or mechanistic questions with the visualizations presented here, as we
have not learned the tools necessary to do that properly just yet.

As with most coding tasks, it is totally fine (and quite common) to make
mistakes and iterate a few times before you find the right visualization for
your data and question. There are many different kinds of plotting graphics

130 CHAPTER 4. EFFECTIVE DATA VISUALIZATION

Scatter plot Line plot
12 12
e
[]
9 °°® 9
[] 'Y . Y
> 6 . > 6
o L]
[]
3 *e 3
o .
0 01
0 3 6 9 12 0 3 6 9 12
X
Bar plot Histogram
301
401
€ 20 i<
=2 3
o @]
[&] o 20 4
10 1
01 01
Group 1 Group 2 Group 3 10 20 30
category measurements

FIGURE 4.1 Examples of scatter, line and bar plots, as well as histograms.

available to use (see Chapter 5 of Fundamentals of Data Visualization [Wilke,
2019] for a directory). The types of plots that we introduce in this book are
shown in Fig. 4.1; which one you should select depends on your data and the
question you want to answer. In general, the guiding principles of when to
use each type of plot are as follows:

scatter plots visualize the relationship between two quantitative variables

 line plots visualize trends with respect to an independent, ordered quantity
(e.g., time)

» bar plots visualize comparisons of amounts

 histograms visualize the distribution of one quantitative variable (i.e., all
its possible values and how often they occur)

All types of visualization have their (mis)uses, but three kinds are usually
hard to understand or are easily replaced with an oft-better alternative. In
particular, you should avoid pie charts; it is generally better to use bars, as
it is easier to compare bar heights than pie slice sizes. You should also not use
3D visualizations, as they are typically hard to understand when converted

4.4. REFINING THE VISUALIZATION 131

to a static 2D image format. Finally, do not use tables to make numerical
comparisons; humans are much better at quickly processing visual information
than text and math. Bar plots are again typically a better alternative.

4.4 Refining the visualization
Convey the message, minimize noise

Just being able to make a visualization in Python with altair (or any other
tool for that matter) doesn’t mean that it effectively communicates your mes-
sage to others. Once you have selected a broad type of visualization to use,
you will have to refine it to suit your particular need. Some rules of thumb for
doing this are listed below. They generally fall into two classes: you want to
make your visualization convey your message, and you want to reduce visual
noise as much as possible. Humans have limited cognitive ability to process
information; both of these types of refinement aim to reduce the mental load
on your audience when viewing your visualization, making it easier for them
to understand and remember your message quickly.

Convey the message

o Make sure the visualization answers the question you have asked most simply
and plainly as possible.

o Use legends and labels so that your visualization is understandable without
reading the surrounding text.

o Ensure the text, symbols, lines, etc., on your visualization are big enough
to be easily read.

« Ensure the data are clearly visible; don’t hide the shape/distribution of the
data behind other objects (e.g., a bar).

o Make sure to use color schemes that are understandable by those with col-
orblindness (a surprisingly large fraction of the overall population—from
about 1% to 10%, depending on sex and ancestry [Deeb, 2005]). For exam-
ple, Color Schemes® provides the ability to pick such color schemes, and you
can check your visualizations after you have created them by uploading to
online tools such as a color blindness simulator?.

Thttps://altair-viz.github.io/user_guide/customization.html#customizing-colors
2https:/ /www.color-blindness.com/coblis-color-blindness-simulator/

https://altair-viz.github.io/user_guide/customization.html#customizing-colors
https://www.color-blindness.com/coblis-color-blindness-simulator

132 CHAPTER 4. EFFECTIVE DATA VISUALIZATION

o Redundancy can be helpful; sometimes conveying the same message in mul-
tiple ways reinforces it for the audience.

Minimize noise

o Use colors sparingly. Too many different colors can be distracting, create
false patterns, and detract from the message.

« Be wary of overplotting. Overplotting is when marks that represent the data
overlap, and is problematic as it prevents you from seeing how many data
points are represented in areas of the visualization where this occurs. If your
plot has too many dots or lines and starts to look like a mess, you need to
do something different.

o Only make the plot area (where the dots, lines, bars are) as big as needed.
Simple plots can be made small.

e Don’t adjust the axes to zoom in on small differences. If the difference is
small, show that it’s small.

4.5 Creating visualizations with altair
Build the visualization iteratively

This section will cover examples of how to choose and refine a visualization
given a data set and a question that you want to answer, and then how to
create the visualization in Python using altair. To use the altair package,
we need to first import it. We will also import pandas to use for reading in
the data.

import pandas as pd
import altair as alt

Note: In this chapter, we will provide example visualizations using relatively
small data sets, so we are fine using the default settings in altair. However,
altair will raise an error if you try to plot with a data frame that has more
than 5,000 rows. The simplest way to plot larger data sets is to enable the
vegafusion data transformer right after you import the altair package:
alt.data_transformers.enable ("vegafusion"). This will allow you to

4.5. CREATING VISUALIZATIONS WITH ALTAIR

plot up to 100,000 graphical objects (e.g., a scatter plot with 100,000 points).
To visualize even larger data sets, see the altair documentation?.

4.5.1 Scatter plots and line plots: the Mauna Loa CO, data set

The Mauna Loa CO, data set?, curated by Dr. Pieter Tans, NOAA/GML
Ralph Keeling, Scripps Institution of Oceanography, records the
atmospheric concentration of carbon dioxide (CO,, in parts per million) at the
Mauna Loa research station in Hawaii from 1959 onward [Tans and Keeling,
2020]. For this book, we are going to focus on the years 1980-2020.

and Dr.

Question: Does the concentration of atmospheric CO, change over time, and

are there any interesting patterns to note?

To get started, we will read and inspect the data:

mauna loa carbon dioxide data

co2_df = pd.read_csv(

"data/mauna_loa_data.csv",
parse_dates=["date_measured"]

)
co2_df

date_measured

S W N e O

479
480
481
482
483

1980-02-01
1980-03-01
1980-04-01
1980-05-01
1980-06-01

2020-02-01
2020-03-01
2020-04-01
2020-05-01
2020-06-01

338.
340.
340.
341.
341.

414.
414.
416.
417.
416.

[484 rows X 2 columns]

co2_df.info ()

<class

RangeIndex:
Data columns

ppm

01
93
48
38
11
51
21
07
39

'pandas.core.frame.DataFrame'>

484 entries,
(total 2 columns):

0 to 483

Column Non-Null Count Dtype

0 date_measured 484 non-null datetime64 [ns]

1 ppm 484 non-null float64
dtypes: datetime64[ns] (1), float64 (1)

memory

usage: 7.7 KB

3https://altair-viz.github.io/user__guide/large_ datasets
4https://www.esrl.noaa.gov/gmd/ccgg/trends/data.html

https://altair-viz.github.io/user_guide/large_datasets
https://www.esrl.noaa.gov/gmd/ccgg/trends/data.html

134 CHAPTER 4. EFFECTIVE DATA VISUALIZATION

We see that there are two columns in the co2_df data frame; date_measured
and ppm. The date_measured column holds the date the measurement was
taken, and is of type datetime64. The ppm column holds the value of CO,
in parts per million that was measured on each date, and is type float64;
this is the usual type for decimal numbers.

Note: read_csv was able to parse the date_measured column into the
datetime vector type because it was entered in the international standard
date format, called ISO 8601, which lists dates as year-month-day and we
used parse_dates=True. datetime vectors are double vectors with special
properties that allow them to handle dates correctly. For example, datetime
type vectors allow functions like altair to treat them as numeric dates and
not as character vectors, even though they contain non-numeric characters
(e.g., in the date_measured column in the co2_df data frame). This means
Python will not accidentally plot the dates in the wrong order (i.e., not al-
phanumerically as would happen if it was a character vector). More about
dates and times can be viewed here®.

Since we are investigating a relationship between two variables (CO, concen-
tration and date), a scatter plot is a good place to start. Scatter plots show
the data as individual points with x (horizontal axis) and y (vertical axis)
coordinates. Here, we will use the measurement date as the x coordinate and
the CO, concentration as the y coordinate. We create a chart with the alt.
Chart () function. There are a few basic aspects of a plot that we need to
specify:

o The name of the data frame to visualize.
— Here, we specify the co2_df data frame as an argument to alt.Chart

o The graphical mark, which specifies how the mapped data should be dis-
played.

— To create a graphical mark, we use Chart .mark_* methods (see the
altair reference® for a list of graphical mark).

— Here, we use the mark_point function to visualize our data as a scatter
plot.

e The encoding channels, which tells altair how the columns in the data
frame map to visual properties in the chart.

Shttps://wesmckinney.com /book /time-series.html
Shttps://altair-viz.github.io/user_guide/marks/index.html

https://wesmckinney.com/book/time-series.html
https://altair-viz.github.io/user_guide/marks/index.html

4.5. CREATING VISUALIZATIONS WITH ALTAIR 135

— To create an encoding, we use the encode function.

— The encode method builds a key-value mapping between encoding
channels (such as x, y) to fields in the data set, accessed by field name
(column names)

— Here, we set the x axis of the plot to the date_measured variable, and
on the y axis, we plot the ppm variable.

— For the y-axis, we also provided the method scale (zero=False). By
default, altair chooses the y-limits based on the data and will keep
yv=0 in view. This is often a helpful default, but here it makes it difficult
to see any trends in our data since the smallest value is >300 ppm. So
by providing scale (zero=False), we tell altair to choose a reasonable
lower bound based on our data, and that lower bound doesn’t have to
be zero.

— To change the properties of the encoding channels, we need to leverage
the helper functions alt .y and alt.X. These helpers have the role of
customizing things like order, titles, and scales. Here, we use alt.Y to
change the domain of the y-axis, so that it starts from the lowest value
in the date_measured column rather than from zero.

co2_scatter = alt.Chart (co2_df) .mark_point () .encode (
x="date_measured",
y=alt.Y ("ppm") .scale (zero=False)

)

The visualization in Fig. 4.2 shows a clear upward trend in the atmospheric
concentration of CO, over time. This plot answers the first part of our question
in the affirmative, but that appears to be the only conclusion one can make
from the scatter visualization.

One important thing to note about this data is that one of the variables we
are exploring is time. Time is a special kind of quantitative variable because
it forces additional structure on the data—the data points have a natural
order. Specifically, each observation in the data set has a predecessor and
a successor, and the order of the observations matters; changing their order
alters their meaning. In situations like this, we typically use a line plot to
visualize the data. Line plots connect the sequence of x and y coordinates of
the observations with line segments, thereby emphasizing their order.

We can create a line plot in altair using the mark_1line function. Let’s now
try to visualize the co2_df as a line plot with just the default arguments:

co2_line = alt.Chart (co2_df) .mark_line () .encode (

(continues on next page)

136 CHAPTER 4. EFFECTIVE DATA VISUALIZATION

420+,
410
400
390 -

380+

pm

o
370+
360~

350

340 SEERES

330

T T T T T T T T
1985 1990 1995 2000 2005 2010 2015 2020
date_measured

FIGURE 4.2 Scatter plot of atmospheric concentration of CO, over time.

(continued from previous page)

x="date_measured",
y=alt.Y("ppm") .scale (zero=False)
)

Aha! Fig. 4.3 shows us there is another interesting phenomenon in the data:
in addition to increasing over time, the concentration seems to oscillate as
well. Given the visualization as it is now, it is still hard to tell how fast
the oscillation is, but nevertheless, the line seems to be a better choice for
answering the question than the scatter plot was. The comparison between
these two visualizations also illustrates a common issue with scatter plots:
often, the points are shown too close together or even on top of one another,
muddling information that would otherwise be clear (overplotting).

Now that we have settled on the rough details of the visualization, it is time
to refine things. This plot is fairly straightforward, and there is not much
visual noise to remove. But there are a few things we must do to improve
clarity, such as adding informative axis labels and making the font a more
readable size. To add axis labels, we use the title method along with alt.x
and alt.y functions. To change the font size, we use the configure_axis
function with the titleFontSize argument (Fig. 4.4).

4.5. CREATING VISUALIZATIONS WITH ALTAIR 137

420+,
410
400
390 -

380+

pm

o
370+
360~
350+

340

330

T T T T T T T T
1985 1990 1995 2000 2005 2010 2015 2020
date_measured

FIGURE 4.3 Line plot of atmospheric concentration of CO, over time.

co2_line_labels = alt.Chart (co2_df) .mark_line () .encode (
x=alt.X ("date_measured") .title("Year"),
y=alt.Y("ppm") .scale (zero=False) .title ("Atmospheric CO2 (ppm)")
) .configure_axis (titleFontSize=12)

Note: The configure_* functions in altair support additional customiza-
tion, such as updating the size of the plot, changing the font color, and many
other options that can be viewed here”.

Finally, let’s see if we can better understand the oscillation by changing the
visualization slightly. Note that it is totally fine to use a small number of
visualizations to answer different aspects of the question you are trying to
answer. We will accomplish this by using scale, another important feature
of altair that easily transforms the different variables and set limits. In
particular, here, we will use the alt.Scale function to zoom in on just a few
years of data (say, 1990-1995) (Fig. 4.5). The domain argument takes a list
of length two to specify the upper and lower bounds to limit the axis. We
also added the argument clip=True to mark_line. This tells altair to
“clip” (remove) the data outside of the specified domain that we set so that
it doesn’t extend past the plot area. Since we are using both the scale and

Thttps://altair-viz.github.io/user_ guide/configuration.html

https://altair-viz.github.io/user_guide/configuration.html

138 CHAPTER 4. EFFECTIVE DATA VISUALIZATION

420+,
410
400
390
380
370

360+

Atmospheric CO2 (ppm)

350

340

330 T T T T T T T
1985 1990 1995 2000 2005 2010 2015 2020
Year

FIGURE 4.4 Line plot of atmospheric concentration of CO, over time with
clearer axes and labels.

title method on the encodings we stack them on separate lines to make the
code easier to read (Fig. 4.5).

co2_line_scale = alt.Chart (co2_df) .mark_line (clip=True) .encode (
x=alt.X ("date_measured")
.scale(domain=["1990", "1995"])
.title ("Measurement Date"),
y=alt.Y ("ppm")
.scale (zero=False)
.title ("Atmospheric CO2 (ppm)")
) .configure_axis (titleFontSize=12)

Interesting! It seems that each year, the atmospheric CO, increases until it
reaches its peak somewhere around April, decreases until around late Septem-
ber, and finally increases again until the end of the year. In Hawaii, there are
two seasons: summer from May through October, and winter from November
through April. Therefore, the oscillating pattern in CO, matches up fairly
closely with the two seasons.

A useful analogy to constructing a data visualization is painting a picture. We
start with a blank canvas, and the first thing we do is prepare the surface for
our painting by adding primer. In our data visualization this is akin to calling
alt.Chart and specifying the data set we will be using. Next, we sketch out
the background of the painting. In our data visualization, this would be when
we map data to the axes in the encode function. Then we add our key visual

4.5. CREATING VISUALIZATIONS WITH ALTAIR 139

420
410

400 —

w

©

o
]

380
370

360 /\/\/\/\/\/

350

Atmospheric CO2 (ppm)

340+

330

T T T T
1990 1991 1992 1993 1994 1995
Measurement Date

FIGURE 4.5 Line plot of atmospheric concentration of CO, from 1990 to
1995.

subjects to the painting. In our data visualization, this would be the graphical
marks (e.g., mark_point, mark_line, etc.). And finally, we work on adding
details and refinements to the painting. In our data visualization this would
be when we fine tune axis labels, change the font, adjust the point size, and
do other related things.

4.5.2 Scatter plots: the Old Faithful eruption time data set

The faithful data set contains measurements of the waiting time between
eruptions and the subsequent eruption duration (in minutes) of the Old Faith-
ful geyser in Yellowstone National Park, Wyoming, United States. First, we
will read the data and then answer the following question:

Question: Is there a relationship between the waiting time before an eruption
and the duration of the eruption?

faithful = pd.read_csv("data/faithful.csv")
faithful

eruptions waiting

0 3.600 79
1 1.800 54
2 SINSIES 74

(continues on next page)

140 CHAPTER 4. EFFECTIVE DATA VISUALIZATION

(continued from previous page)

3 2.283 62
4 4.533 85
267 4.117 81
268 2.150 46
269 4.417 90
270 1.817 46
271 4.467 74

[272 rows x 2 columns]

Here again, we investigate the relationship between two quantitative variables
(waiting time and eruption time). But if you look at the output of the data
frame, you'll notice that unlike time in the Mauna Loa CO, data set, neither
of the variables here have a natural order to them. So a scatter plot is likely
to be the most appropriate visualization. Let’s create a scatter plot using
the altair package with the waiting variable on the horizontal axis, the
eruptions variable on the vertical axis, and mark_point as the graphical
mark. The result is shown in Fig. 4.6.

faithful_scatter = alt.Chart (faithful) .mark_point () .encode (
x="waiting",
y="eruptions"

We can see in Fig. 4.6 that the data tend to fall into two groups: one with short
waiting and eruption times, and one with long waiting and eruption times.

5.5+
5.0
4.5

4.0+

eruptions

N
o
]

1.5

1.0

0.5

0.0 T T T T T T T T T 1
0 10 20 30 40 50 60 70 80 90 100

waiting

FIGURE 4.6 Scatter plot of waiting time and eruption time.

4.5. CREATING VISUALIZATIONS WITH ALTAIR 141

5.5+
5.0
4.5

4.0+

N w e
n o 3
1 1]

Eruption Duration (mins)
N
o
1

=
3y
1

=
o
1

o
3]
1

o
[=)

T T T T T T T T T 1
0 10 20 30 40 50 60 70 80 90 100

Waiting Time (mins)

FIGURE 4.7 Scatter plot of waiting time and eruption time with clearer
axes and labels.

Note that in this case, there is no overplotting: the points are generally nicely
visually separated, and the pattern they form is clear. In order to refine the
visualization, we need only to add axis labels and make the font more readable
(Fig. 4.7).

faithful_scatter_labels = alt.Chart (faithful) .mark_point () .encode (
x=alt.X("waiting") .title("Waiting Time (mins)"),
y=alt .Y ("eruptions") .title("Eruption Duration (mins)")

We can change the size of the point and color of the plot by specifying

mark_point (size=10, color="black") (Fig. 4.8).
faithful_scatter_labels_black = alt.Chart (faithful) .mark_point (size=10, color=
<"black™) .encode (

x=alt.X("waiting") .title("Waiting Time (mins)"),
y=alt.Y("eruptions") .title ("Eruption Duration (mins)")

4.5.3 Axis transformation and colored scatter plots: the Canadian
languages data set

Recall the can_lang data set [Timbers, 2020] from Chapters 1, 2, and 3. It
contains counts of languages from the 2016 Canadian census.

142 CHAPTER 4. EFFECTIVE DATA VISUALIZATION

o
n
]

a
o
]

»
0
1

»
o
1

e
3
]

w
o
1

N
o
1

N
o
]

Eruption Duration (mins)

=
wn
1

1.0

0.5

0.0 T T T T T T T T T 1
0 10 20 30 40 50 60 70 80 90 100

Waiting Time (mins)

FIGURE 4.8 Scatter plot of waiting time and eruption time with black
points.

Question: Is there a relationship between the percentage of people who speak
a language as their mother tongue and the percentage for whom that is the
primary language spoken at home? And is there a pattern in the strength
of this relationship in the higher-level language categories (Official languages,
Aboriginal languages, or non-official and non-Aboriginal languages)?

To get started, we will read and inspect the data:

can_lang = pd.read_csv("data/can_lang.csv")

can_lang
category language .

<\

0 Aboriginal languages Aboriginal languages, n.o.s.
1 Non-Official & Non-Aboriginal languages Afrikaans
2 Non-Official & Non-Aboriginal languages Afro-Asiatic languages, n.i.e.
3 Non-Official & Non-Aboriginal languages Akan (Twi)
4 Non-Official & Non-Aboriginal languages Albanian
209 Non-Official & Non-Aboriginal languages Wolof
210 Aboriginal languages Woods Cree
211 Non-Official & Non-Aboriginal languages Wu (Shanghainese)
212 Non-Official & Non-Aboriginal languages Yiddish
213 Non-Official & Non-Aboriginal languages Yoruba

mother_tongue most_at_home most_at_work lang_known
0 590 235 30 665

(continues on next page)

4.5. CREATING VISUALIZATIONS WITH ALTAIR 143

(continued from previous page)

1 10260 4785 85 23415
2 1150 445 10 2775
3 13460 5985 25 22150
4 26895 13135 345 31930
209 3990 1385 10 8240
210 1840 800 75 2665
211 12915 7650 105 16530
212 13555 7085 895 20985
213 9080 2615 15 22415

[214 rows X 6 columns]

We will begin with a scatter plot of the mother_tongue and most_at_home
columns from our data frame. As we have seen in the scatter plots in the
previous section, the default behavior of mark_point is to draw the outline
of each point. If we would like to fill them in, we can pass the argument
filled=True to mark_point or use the shortcut mark_circle. Whether
to fill points or not is mostly a matter of personal preferences, although hol-
low points can make it easier to see individual points when there are many
overlapping points in a chart. The resulting plot is shown in Fig. 4.9.

can_lang_plot = alt.Chart (can_lang) .mark_circle () .encode (
x="most_at_home",
y="mother_tongue"

To make an initial improvement in the interpretability of Fig. 4.9, we should
replace the default axis names with more informative labels. To make the
axes labels on the plots more readable, we can print long labels over multiple
lines. To achieve this, we specify the title as a list of strings where each string
in the list will correspond to a new line of text. We can also increase the font
size to further improve readability.

can_lang_plot_labels = alt.Chart (can_lang) .mark_circle () .encode (
x=alt.X("most_at_home")
.title (["Language spoken most at home", " (number of Canadian residents)
="1),

y=alt.Y ("mother_tongue")
.scale (zero=False)
.title(["Mother tongue", " (number of Canadian residents)"])
) .configure_axis (titleFontSize=12)

Okay! The axes and labels in Fig. 4.10 are much more readable and inter-
pretable now. However, the scatter points themselves could use some work;
most of the 214 data points are bunched up in the lower left-hand side of the
visualization. The data is clumped because many more people in Canada
speak English or French (the two points in the upper right corner) than
other languages. In particular, the most common mother tongue language has

144 CHAPTER 4. EFFECTIVE DATA VISUALIZATION

20,000,000
18,000,000 |
16,000,000

14,000,000

gue

12,000,000

10,000,000

8,000,000 ~

mother_ton

6,000,000
4,000,000

2,000,000

olo..

T T T T T T T T T 1
8,000,000 16,000,000 24,000,000
most_at_home

FIGURE 4.9 Scatter plot of number of Canadians reporting a language as
their mother tongue vs the primary language at home.

20,000,000
18,000,000 |
16,000,000 -|
14,000,000 |
12,000,000 |
10,000,000 |

8,000,000

Mother tongue
(number of Canadian residents)

6,000,000 -
4,000,000

2,000,000 -

olo..

T T T T T T T T T 1
8,000,000 16,000,000 24,000,000
Language spoken most at home
(number of Canadian residents)

FIGURE 4.10 Scatter plot of number of Canadians reporting a language as
their mother tongue vs the primary language at home with x and y labels.

4.5. CREATING VISUALIZATIONS WITH ALTAIR 145

19,460,850 speakers, while the least common has only 10. That’s a six-decimal-
place difference in the magnitude of these two numbers. We can confirm that
the two points in the upper right-hand corner correspond to Canada’s two
official languages by filtering the data:

can_lang.loc]|
(can_lang["language"]=="English")
| (can_lang["language"]=="French")

category language mother_tongue most_at_home most_at_work \
54 Official languages English 19460850 22162865 15265335
59 Official languages French 7166700 6943800 3825215

lang_known
54 29748265
59 10242945

Recall that our question about this data pertains to all languages; so to prop-
erly answer our question, we will need to adjust the scale of the axes so that
we can clearly see all of the scatter points. In particular, we will improve
the plot by adjusting the horizontal and vertical axes so that they are on a
logarithmic (or log) scale. Log scaling is useful when your data take both
very large and very small values, because it helps space out small values and
squishes larger values together. For example, log, (1) = 0, log,,(10) = 1,
log,,(100) = 2, and log,,(1000) = 3; on the logarithmic scale, the values 1,
10, 100, and 1000 are all the same distance apart. So we see that applying this
function is moving big values closer together and moving small values farther
apart. Note that if your data can take the value 0, logarithmic scaling may
not be appropriate (since 10g10 (0) is —inf in Python). There are other ways
to transform the data in such a case, but these are beyond the scope of the
book.

We can accomplish logarithmic scaling in the altair visualization using the
argument type="1log" in the scale method.

can_lang_plot_log = alt.Chart (can_lang) .mark_circle () .encode (
x=alt.X("most_at_home")
.scale (type="1log")
.title(["Language spoken most at home", " (number of Canadian residents)
="1),
y=alt.Y ("mother_tongue")
.scale (type="1log")
.title (["Mother tongue", " (number of Canadian residents)"])
) .configure_axis (titleFontSize=12)

You will notice two things in the chart in Fig. 4.11 above, changing the axis to
log creates many axis ticks and gridlines, which makes the appearance of the
chart rather noisy and it is hard to focus on the data. You can also see that
the second last tick label is missing on the x-axis; Altair dropped it because

146 CHAPTER 4. EFFECTIVE DATA VISUALIZATION

100,000,000 =
] o
10,000,000 = o

— 3

- 3

L -

f=

§ 1,000,000

a 3
o & :
°3 100,000~
273 -
] -
£0 10,000 =
O u= 3
= S 3

g -

[1,000= °

2 3)

- - “

] b £ 4
1005 o $ofe
10__|_|-H|T|T| TTTImT T T I TTTIOT T O T T T T T rrmm

1 10 100 1,000 10,000 100,000 10,000,000
Language spoken most at home
(number of Canadian residents)

FIGURE 4.11 Scatter plot of number of Canadians reporting a language as
their mother tongue vs the primary language at home with log-adjusted x and
y axes.

there wasn’t space to fit in all the large numbers next to each other. It is also
hard to see if the label for 100,000,000 is for the last or second last tick. To
fix these issue, we can limit the number of ticks and gridlines to only include
the seven major ones, and change the number formatting to include a suffix
which makes the labels shorter (Fig. 4.12).

can_lang_plot_log_revised = alt.Chart (can_lang) .mark_circle () .encode (
x=alt.X("most_at_home")
.scale (type="1log")
.title (["Language spoken most at home", " (number of Canadian residents)
="1)
.axis (tickCount=7, format="s"),
y=alt.Y ("mother_tongue")
.scale (type="1log")
.title(["Mother tongue", " (number of Canadian residents)"])
.axis (tickCount=7, format="s")
) .configure_axis(titleFontSize=12)

Similar to some of the examples in Chapter 3, we can convert the counts to
percentages to give them context and make them easier to understand. We
can do this by dividing the number of people reporting a given language as
their mother tongue or primary language at home by the number of people
who live in Canada and multiplying by 100%. For example, the percentage

4.5. CREATING VISUALIZATIONS WITH ALTAIR 147

100M

10M

-
<
1

[N

o

o

=~
1

10k

Mother tongue
(number of Canadian residents)

iy
=~
1

100

10 & T T T T T T 1
1 10 100 1k 10k 100k 1M 10M 100M
Language spoken most at home
(number of Canadian residents)

FIGURE 4.12 Scatter plot of number of Canadians reporting a language as
their mother tongue vs the primary language at home with log-adjusted x and
y axes. Only the major gridlines are shown. The suffix “k” indicates 1,000
(“kilo”), while the suffix “M” indicates 1,000,000 (“million”).

of people who reported that their mother tongue was English in the 2016
Canadian census was 19,460,850 / 35,151,728 x 100% = 55.36%

Below we assign the percentages of people reporting a given language as their
mother tongue and primary language at home to two new columns in the
can_lang data frame. Since the new columns are appended to the end of
the data table, we selected the new columns after the transformation so you
can clearly see the mutated output from the table. Note that we formatted
the number for the Canadian population using _ so that it is easier to read;
this does not affect how Python interprets the number and is just added for
readability.

canadian_population = 35_151_728

can_lang["mother_tongue_percent"] = can_lang["mother_tongue"]/canadian_
“population*100

can_lang["most_at_home_percent"] = can_lang["most_at_home"]/canadian_
—population*100

can_lang[["mother_tongue_percent", "most_at_home_percent"]]

mother_tongue_percent most_at_home_percent
0 0.001678 0.000669

(continues on next page)

148 CHAPTER 4. EFFECTIVE DATA VISUALIZATION

(continued from previous page)

1 0.029188 0.013612
2 0.003272 0.001266
3 0.038291 0.017026
4 0.076511 0.037367
209 0.011351 0.003940
210 0.005234 0.002276
211 0.036741 0.021763
212 0.038561 0.020155
213 0.025831 0.007439

[211 rows x 2 columns]

Next, we will edit the visualization to use the percentages we just computed
(and change our axis labels to reflect this change in units). Fig. 4.13 displays
the final result. Here all the tick labels fit by default so we are not changing the
labels to include suffixes. Note that suffixes can also be harder to understand,
so it is often advisable to avoid them (particularly for small quantities) unless
you are communicating to a technical audience.

can_lang_plot_percent = alt.Chart (can_lang) .mark_circle () .encode (
x=alt.X("most_at_home_percent")
.scale (type="1log")
.axis (tickCount=7)
.title(["Language spoken most at home", " (percentage of Canadian.
osresidents) ")),
y=alt.Y ("mother_tongue_percent")
.scale (type="1log")
.axis (tickCount=7)
.title (["Mother tongue", " (percentage of Canadian residents)"]),
) .configure_axis (titleFontSize=12)

Fig. 4.13 is the appropriate visualization to use to answer the first question
in this section, i.e., whether there is a relationship between the percentage
of people who speak a language as their mother tongue and the percentage
for whom that is the primary language spoken at home. To fully answer
the question, we need to use Fig. 4.13 to assess a few key characteristics of
the data:

o Direction: if the y variable tends to increase when the x variable increases,
then y has a positive relationship with x. If y tends to decrease when x
increases, then y has a negative relationship with x. If y does not meaning-
fully increase or decrease as x increases, then y has little or no relationship
with x.

o Strength: if the y variable reliably increases, decreases, or stays flat as x
increases, then the relationship is strong. Otherwise, the relationship is
weak. Intuitively, the relationship is strong when the scatter points are
close together and look more like a “line” or “curve” than a “cloud”.

4.5. CREATING VISUALIZATIONS WITH ALTAIR 149

100

10+

. .,:gsif

0.01

0.001

Mother tongue
(percentage of Canadian residents)
[

(]

0.0001

0.00001

T T T T T T 1
0.00001 0.0001 0.001 0.01 0.1 1 10 100

Language spoken most at home
(percentage of Canadian residents)

FIGURE 4.13 Scatter plot of percentage of Canadians reporting a language
as their mother tongue vs the primary language at home.

o Shape: if you can draw a straight line roughly through the data points, the
relationship is linear. Otherwise, it is nonlinear.

In Fig. 4.13, we see that as the percentage of people who have a language as
their mother tongue increases, so does the percentage of people who speak
that language at home. Therefore, there is a positive relationship between
these two variables. Furthermore, because the points in Fig. 4.13 are fairly
close together, and the points look more like a “line” than a “cloud”, we can
say that this is a strong relationship. And finally, because drawing a straight
line through these points in Fig. 4.13 would fit the pattern we observe quite
well, we say that the relationship is linear.

Onto the second part of our exploratory data analysis question. Recall that
we are interested in knowing whether the strength of the relationship we un-
covered in Fig. 4.13 depends on the higher-level language category (Official
languages, Aboriginal languages, and non-official, non-Aboriginal languages).
One common way to explore this is to color the data points on the scatter
plot we have already created by group. For example, given that we have
the higher-level language category for each language recorded in the 2016

150 CHAPTER 4. EFFECTIVE DATA VISUALIZATION

100+ category

@ Aboriginal languages
Non-Official & Non-Aboriginal lan...
10 Official languages

0.1+ -
0.01 s

0.001-| n % %e
L]
L 4

Mother tongue
(percentage of Canadian residents)
&

0.0001

0.00001

T T 1

T T T T
0.00001 0.0001 0.001 0.01 0.1 1 10 100
Language spoken most at home
(percentage of Canadian residents)

FIGURE 4.14 Scatter plot of percentage of Canadians reporting a language
as their mother tongue vs the primary language at home colored by language
category.

Canadian census, we can color the points in our previous scatter plot to rep-
resent each language’s higher-level language category.

Here we want to distinguish the values according to the category group with
which they belong. We can add the argument color to the encode method,
specifying that the category column should color the points. Adding this
argument will color the points according to their group and add a legend at
the side of the plot. Since the labels of the language category as descriptive
of their own, we can remove the title of the legend to reduce visual clutter
without reducing the effectiveness of the chart (Fig. 4.14).

can_lang_plot_category=alt.Chart (can_lang) .mark_circle () .encode (
x=alt.X("most_at_home_percent")
.scale (type="1log")
.axis (tickCount=7)
.title (["Language spoken most at home", " (percentage of Canadian.
—residents)"]),
y=alt.Y ("mother_tongue_percent")
.scale (type="1log")
.axis (tickCount=7)
.title (["Mother tongue", " (percentage of Canadian residents)"]),
color="category"
) .configure_axis (titleFontSize=12)

Another thing we can adjust is the location of the legend. This is a matter
of preference and not critical for the visualization. We move the legend title
using the alt.Legend method and specify that we want it on the top of the

4.5. CREATING VISUALIZATIONS WITH ALTAIR 151

chart. This automatically changes the legend items to be laid out horizontally
instead of vertically, but we could also keep the vertical layout by specifying
direction="vertical" inside alt.Legend.

can_lang_plot_legend = alt.Chart (can_lang) .mark_circle () .encode (
x=alt.X("most_at_home_percent")
.scale (type="1log")
.axis (tickCount=7)
.title(["Language spoken most at home", " (percentage of Canadian.
osresidents) ")),
y=alt.Y ("mother_tongue_percent")
.scale (type="1log")
.axis (tickCount=7)
.title (["Mother tongue", " (percentage of Canadian residents)"]),
color=alt.Color ("category")
.legend (orient="top")
.title("")
) .configure_axis (titleFontSize=12)

In Fig. 4.15, the points are colored with the default altair color scheme,
which is called "tableau10". This is an appropriate choice for most situations
and is also easy to read for people with reduced color vision. In general, the

@ Aboriginal languages Non-Official & Non-Aboriginal lan... Official languages
100
10|

Lol

7)

-

3

T 19

0 X

0)

-
[
S5 o
g’-.a-:s 0.1 3 Po
=] o ¢

c
58

R Qoo

% 001 %,
S o 2 _Of

2 ofets °

= ®

3 0.001- s 5

o LK Eed

o °% %¢

£ H : 0.0

T el
0.0001- &
0.00001 T T T T T T
0.00001 0.0001 0.001 0.01 0.1 1 10 100

Language spoken most at home
(percentage of Canadian residents)

FIGURE 4.15 Scatter plot of percentage of Canadians reporting a language
as their mother tongue vs the primary language at home colored by language
category with the legend edited.

152 CHAPTER 4. EFFECTIVE DATA VISUALIZATION

color schemes that are used by default in Altair are adapted to the type of data
that is displayed and selected to be easy to interpret both for people with good
and reduced color vision. If you are unsure about a certain color combination,
you can use this color blindness simulator® to check if your visualizations are
color-blind friendly.

All the available color schemes and information on how to create your own can
be viewed in the Altair documentation®. To change the color scheme of our
chart, we can add the scheme argument in the scale of the color encoding.
Below we pick the "dark2" theme, with the result shown in Fig. 4.16. We
also set the shape aesthetic mapping to the category variable as well; this
makes the scatter point shapes different for each language category. This kind
of visual redundancy—i.e., conveying the same information with both scatter
point color and shape—can further improve the clarity and accessibility of
your visualization, but can add visual noise if there are many different shapes
and colors, so it should be used with care. Note that we are switching back to
the use of mark_point here since mark_circle does not support the shape
encoding and will always show up as a filled circle.

can_lang_plot_theme = alt.Chart (can_lang) .mark_point (filled=True) .encode (
x=alt.X("most_at_home_percent")
.scale (type="1log")
.axis (tickCount=7)
.title (["Language spoken most at home", " (percentage of Canadian.
<sresidents)"]),
y=alt.Y ("mother_tongue_percent")
.scale (type="1log")
.axis (tickCount=7)
.title (["Mother tongue", " (percentage of Canadian residents)"]),
color=alt.Color ("category")
.legend (orient="top")
.title("™)
.scale (scheme="dark2"),
shape="category"
) .configure_axis (titleFontSize=12)

The chart above gives a good indication of how the different language cate-
gories differ, and this information is sufficient to answer our research question.
But what if we want to know exactly which language correspond to which
point in the chart? With a regular visualization library this would not be
possible, as adding text labels for each individual language would add a lot of
visual noise and make the chart difficult to interpret. However, since Altair is
an interactive visualization library we can add information on demand via the
Tooltip encoding channel, so that text labels for each point show up once
we hover over it with the mouse pointer. Here we also add the exact values of
the variables on the x and y-axis to the tooltip.

8https://www.color-blindness.com /coblis-color-blindness-simulator /
Yhttps://altair-viz.github.io/user__guide/customization.html#customizing-colors

https://www.color-blindness.com/coblis-color-blindness-simulator
https://altair-viz.github.io/user_guide/customization.html#customizing-colors

4.5. CREATING VISUALIZATIONS WITH ALTAIR

Mother tongue
(percentage of Canadian residents)

100

10+

0.1

0.01

0.001

0.0001

@ Aboriginal languages

0.00001

153

[Non-Official & Non-Aboriginal lan... A Official languages

T
0.00001 0.0001

T T T T T 1
0.001 0.01 0.1 1 10 100

Language spoken most at home
(percentage of Canadian residents)

FIGURE 4.16 Scatter plot of percentage of Canadians reporting a language
as their mother tongue vs the primary language at home colored by language
category with custom colors and shapes.

can_lang_plot_tooltip

alt.Chart (can_lang) .mark_point (filled=True) .encode (

x=alt.X("most_at_home_percent")
.scale (type="1log")
.axis (tickCount=7)

.title (["Language spoken most at home",

—residents)"]),
y=alt.Y ("mother_tongue_percent")

.scale (type="1log")

.axis (tickCount=7)

.title(["Mother tongue",

" (percentage of Canadian..

" (percentage of Canadian residents)"]),

color=alt.Color ("category")
.legend(orient="top")

tooltip=alt.Tooltip(["language",

.title(

W)

.scale (scheme="dark2"),
shape="category",

"mother_tongue", "most_at_home"])

) .configure_axis (titleFontSize=12)

From the visualization in Fig. 4.17, we can now clearly see that the vast
majority of Canadians reported one of the official languages as their mother
tongue and as the language they speak most often at home. What do we see
when considering the second part of our exploratory question? Do we see a

154 CHAPTER 4. EFFECTIVE DATA VISUALIZATION

@ Aboriginal languages Non-Official & Non-Aboriginal lan... Official languages
1004

10

1 . w®

D

0.14 -
! L3
i " - language: Inuktitut

A
0.014
1}4- mother_tongue: 35210

& v
R most_at_home: 29230

Mother tongue(percentage of Canadian residents)

LY
0.001-| oy gt
" !
H f:.-
0.0001- & **
0.00001 T T T . T . |
0.00001 0.0001 0.001 0.01 0.1 1 10 100

Language spoken most at home
(percentage of Canadian residents)
FIGURE 4.17 Scatter plot of percentage of Canadians reporting a language
as their mother tongue vs the primary language at home colored by language
category with custom colors and mouse hover tooltip.

difference in the relationship between languages spoken as a mother tongue
and as a primary language at home across the higher-level language categories?
Based on Fig. 4.17, there does not appear to be much of a difference. For each
higher-level language category, there appears to be a strong, positive, and
linear relationship between the percentage of people who speak a language
as their mother tongue and the percentage who speak it as their primary
language at home. The relationship looks similar regardless of the category.

Does this mean that this relationship is positive for all languages in the world?
And further, can we use this data visualization on its own to predict how many
people have a given language as their mother tongue if we know how many
people speak it as their primary language at home? The answer to both these
questions is “no!” However, with exploratory data analysis, we can create
new hypotheses, ideas, and questions (like the ones at the beginning of this
paragraph). Answering those questions often involves doing more complex
analyses, and sometimes even gathering additional data. We will see more of
such complex analyses later on in this book.

4.5.4 Bar plots: the island landmass data set

The islands.csv data set contains a list of Earth’s landmasses as well as
their area (in thousands of square miles) [McNeil, 1977].

4.5. CREATING VISUALIZATIONS WITH ALTAIR 155

Question: Are the continents (North / South America, Africa, Europe, Asia,
Australia, Antarctica) Earth’s seven largest landmasses? If so, what are the
next few largest landmasses after those?

To get started, we will read and inspect the data:

islands_df = pd.read_csv("data/islands.csv")

islands_df

landmass size landmass_type
0 Africa 11506 Continent
1 Antarctica 5500 Continent
2 Asia 16988 Continent
3 Australia 2968 Continent
4 Axel Heiberg 16 Other
5 Baffin 184 Other
6 Banks 23 Other
7 Borneo 280 Other
8 Britain 84 Other
9 Celebes 73 Other
10 Celon 25 Other
11 Cuba 43 Other
12 Devon 21 Other
13 Ellesmere 82 Other
14 Europe 3745 Continent
15 Greenland 840 Other
16 Hainan 13 Other
17 Hispaniola 30 Other
18 Hokkaido 30 Other
19 Honshu 89 Other
20 Iceland 40 Other
21 Ireland 33 Other
22 Java 49 Other
23 Kyushu 14 Other
24 Luzon 42 Other
25 Madagascar 227 Other
26 Melville 16 Other
27 Mindanao 36 Other
28 Moluccas 29 Other
29 New Britain 15 Other
30 New Guinea 306 Other
31 New Zealand (N) 44 Other
32 New Zealand (S) 58 Other
33 Newfoundland 43 Other
34 North America 9390 Continent
35 Novaya Zemlya 32 Other
36 Prince of Wales 13 Other
37 Sakhalin 29 Other
38 South America 6795 Continent
39 Southampton 16 Other
40 Spitsbergen 15 Other
41 Sumatra 183 Other
42 Taiwan 14 Other
43 Tasmania 26 Other
44 Tierra del Fuego 19 Other
45 Timor 13 Other
46 Vancouver 12 Other
47 Victoria 82 Other

Here, we have a data frame of Earth’s landmasses, and are trying to compare
their sizes. The right type of visualization to answer this question is a bar

156 CHAPTER 4. EFFECTIVE DATA VISUALIZATION

18,000
16,000
14,000
12,000

10,000

size

8,000

6,000

4,000

2,000

T T T T
- EEEEEEEEEE R EENEEEEEEEEEEEEE NS EE R R

New Britail
Sakhalin -{

T
Tierra del Fueg:

Axel Heibel

3
z 2 z g =
5 3

8 3 Z a

landmass

FIGURE 4.18 Bar plot of Earth’s landmass sizes. The plot is too wide with
the default settings.

plot. In a bar plot, the height of each bar represents the value of an amount
(a size, count, proportion, percentage, etc.). They are particularly useful
for comparing counts or proportions across different groups of a categorical
variable. Note, however, that bar plots should generally not be used to display
mean or median values, as they hide important information about the variation
of the data. Instead it’s better to show the distribution of all the individual
data points, e.g., using a histogram, which we will discuss further in Section
4.5.5.

We specify that we would like to use a bar plot via the mark_bar function in
altair. The result is shown in Fig. 4.18.

islands_bar = alt.Chart (islands_df) .mark_bar () .encode (
x="landmass",
y="size"

Alright, not bad! The plot in Fig. 4.18 is definitely the right kind of visualiza-
tion, as we can clearly see and compare sizes of landmasses. The major issues
are that the smaller landmasses’ sizes are hard to distinguish, and the plot
is so wide that we can’t compare them all. But remember that the question
we asked was only about the largest landmasses; let’s make the plot a little
bit clearer by keeping only the largest 12 landmasses. We do this using the
nlargest function: the first argument is the number of rows we want and
the second is the name of the column we want to use for comparing which is
largest. Then to help make the landmass labels easier to read we’ll swap the
x and y variables, so that the labels are on the y-axis and we don’t have to
tilt our head to read them.

4.5. CREATING VISUALIZATIONS WITH ALTAIR 157

Note: Recall that in Chapter 1, we used sort_values followed by head
to obtain the ten rows with the largest values of a variable. We could have
instead used the nlargest function from pandas for this purpose. The ns-
mallest and nlargest functions achieve the same goal as sort_values
followed by head, but are slightly more efficient because they are specialized
for this purpose. In general, it is good to use more specialized functions when
they are available.

islands_topl2 = islands_df.nlargest (12, "size")

islands_bar_top = alt.Chart (islands_topl2) .mark_bar () .encode (
x="size",
y="landmass"

The plot in Fig. 4.19 is definitely clearer now, and allows us to answer our
initial questions: “Are the seven continents Earth’s largest landmasses?” and
“Which are the next few largest landmasses?”. However, we could still improve
this visualization by coloring the bars based on whether they correspond to a
continent, and by organizing the bars by landmass size rather than by alpha-
betical order. The data for coloring the bars is stored in the landmass_type
column, so we set the color encoding to landmass_type. To organize the
landmasses by their size variable, we will use the altair sort function in the
y-encoding of the chart. Since the size variable is encoded in the x channel
of the chart, we specify sort ("x") on alt.Y. This plots the values on y axis

Africa
Antarctica
Asia
Australia
Baffin

Borneo

Europe

landmass

Greenland
Madagascar
New Guinea

North America

South America

T T T T T
0 4,000 8,000 12,000 16,000
size

FIGURE 4.19 Bar plot of size for Earth’s largest 12 landmasses.

158 CHAPTER 4. EFFECTIVE DATA VISUALIZATION

in the ascending order of x axis values. This creates a chart where the largest
bar is the closest to the axis line, which is generally the most visually appeal-
ing when sorting bars. If instead we wanted to sort the values on y-axis in
descending order of x-axis, we could add a minus sign to reverse the order
and specify sort="-x".

To finalize this plot we will customize the axis and legend labels using the
title method, and add a title to the chart by specifying the title argument
of alt.chart. Plot titles are not always required, especially when it would
be redundant with an already-existing caption or surrounding context (e.g.,
in a slide presentation with annotations). But if you decide to include one, a
good plot title should provide the take home message that you want readers
to focus on, e.g., “Earth’s seven largest landmasses are continents”, or a more
general summary of the information displayed, e.g., “Earth’s twelve largest
landmasses”.

islands_plot_sorted = alt.Chart (
islands_topl2,
title="Earth's seven largest landmasses are continents"
) .mark_bar () .encode (
x=alt.X("size") .title("Size (1000 square mi)"),
y=alt.Y("landmass") .sort ("x") .title ("Landmass"),
color=alt.Color ("landmass_type") .title ("Type")

The plot in Fig. 4.20 is now an effective visualization for answering our original
questions. Landmasses are organized by their size, and continents are colored

Earth's seven largest landmasses are continents

Baffin Type
[l Continent
Madagascar I Other

Borneo

New Guinea
Greenland
Australia

Europe

Landmass

Antarctica
South America
North America

Africa
Asia
0 4,000 8,000 12,000 16,000

Size (1000 square mi)

FIGURE 4.20 Bar plot of size for Earth’s largest 12 landmasses, colored by
landmass type, with clearer axes and labels.

4.5. CREATING VISUALIZATIONS WITH ALTAIR 159

differently than other landmasses, making it quite clear that all the seven
largest landmasses are continents.

4.5.5 Histograms: the Michelson speed of light data set

The morley data set contains measurements of the speed of light collected in
experiments performed in 1879. Five experiments were performed, and in each
experiment, 20 runs were performed—meaning that 20 measurements of the
speed of light were collected in each experiment [Michelson, 1882]. Because
the speed of light is a very large number (the true value is 299,792.458 km /sec),
the data is coded to be the measured speed of light minus 299,000. This coding
allows us to focus on the variations in the measurements, which are generally
much smaller than 299,000. If we used the full large speed measurements, the
variations in the measurements would not be noticeable, making it difficult to
study the differences between the experiments.

Question: Given what we know now about the speed of light (299,792.458
kilometers per second), how accurate were each of the experiments?

First, we read in the data.

morley_df = pd.read_csv("data/morley.csv")

morley_df

Expt Run Speed
0 1 1 850
1 1 2 740
2 1 3 900
3 1 4 1070
4 1 5 930
95 5 16 940
96 5 17 950
97 5 18 800
98 5 19 810
99 5 20 870

[100 rows x 3 columns]

In this experimental data, Michelson was trying to measure just a single quanti-
tative number (the speed of light). The data set contains many measurements
of this single quantity. To tell how accurate the experiments were, we need to
visualize the distribution of the measurements (i.e., all their possible values
and how often each occurs). We can do this using a histogram. A histogram
helps us visualize how a particular variable is distributed in a data set by
grouping the values into bins, and then using vertical bars to show how many
data points fell in each bin.

To understand how to create a histogram in altair, let’s start by creating a
bar chart just like we did in the previous section. Note that this time, we are

160 CHAPTER 4. EFFECTIVE DATA VISUALIZATION

Count of Records

600 700 800 900 1,000 1,100
Speed

FIGURE 4.21 A bar chart of Michelson’s speed of light data.

setting the y encoding to "count () ". There is no "count () " column-name
in morley_df; we use "count () " to tell altair that we want to count the
number of occurrences of each value in along the x-axis (which we encoded as
the speed column) (Fig. 4.21).

morley_bars = alt.Chart (morley_df) .mark_bar () .encode (
x="Speed",
y="count ()"

The bar chart above gives us an indication of which values are more common
than others, but because the bars are so thin it’s hard to get a sense for
the overall distribution of the data. We don’t really care about how many
occurrences there are of each exact Speed value, but rather where most of the
Speed values fall in general. To more effectively communicate this information
we can group the x-axis into bins (or “buckets”) using the bin method and
then count how many Speed values fall within each bin. A bar chart that
represent the count of values for a binned quantitative variable is called a
histogram.

morley_hist = alt.Chart (morley_df) .mark_bar () .encode (

x=alt.X("Speed") .bin(),
y="count ()"

4.5. CREATING VISUALIZATIONS WITH ALTAIR 161

25

N
o
|

Count of Records
[
]
1

800 900 1,000
Speed (binned)

1,100
FIGURE 4.22 Histogram of Michelson’s speed of light data.

4.5.5.1 Adding layers to an altair chart

Fig. 4.22 is a great start. However, we cannot tell how accurate the mea-
surements are using this visualization unless we can see the true value. In
order to visualize the true speed of light, we will add a vertical line with the
mark_rule function. To draw a vertical line with mark_rule, we need to
specify where on the x-axis the line should be drawn. We can do this by pro-
viding x=alt.datum(792.458), where the value 792.458 is the true speed
of light minus 299,000 and alt .datum tells altair that we have a single datum
(number) that we would like plotted (rather than a column in the data frame).
Similarly, a horizontal line can be plotted using the y axis encoding and the
data frame with one value, which would act as the be the y-intercept. Note
that vertical lines are used to denote quantities on the horizontal azis, while
horizontal lines are used to denote quantities on the vertical axis.

To fine tune the appearance of this vertical line, we can change it from a solid
to a dashed line with strokeDash=[5], where 5 indicates the length of each
dash. We also change the thickness of the line by specifying size=2. To
add the dashed line on top of the histogram, we add the mark_rule chart
to the morley_hist using the + operator. Adding features to a plot using
the + operator is known as layering in altair. This is a powerful feature of
altair; you can continue to iterate on a single chart, adding and refining one
layer at a time. If you stored your chart as a variable using the assignment

162 CHAPTER 4. EFFECTIVE DATA VISUALIZATION

symbol (=), you can add to it using the + operator. Below we add a vertical
line created using mark_rule to the morley_hist we created previously.

Note: Technically we could have left out the data argument when creating
the rule chart since we're not using any values from the morley_df data
frame, but we will need it later when we facet this layered chart, so we are
including it here already.

v_line = alt.Chart (morley_df) .mark_rule (strokeDash=[6], size=1.5) .encode (
x=alt.datum(792.458)
)

morley_hist_line = morley_hist + v_line

In Fig. 4.23, we still cannot tell which experiments (denoted by the Expt
column) led to which measurements; perhaps some experiments were more
accurate than others. To fully answer our question, we need to separate the
measurements from each other visually. We can try to do this using a colored
histogram, where counts from different experiments are stacked on top of each
other in different colors. We can create a histogram colored by the Expt
variable by adding it to the color argument.

25

N
o
1

[y
a1
1

Count of Records

600 700 800 900 1,000 1,100
Speed (binned)

FIGURE 4.23 Histogram of Michelson’s speed of light data with vertical
line indicating the true speed of light.

4.5. CREATING VISUALIZATIONS WITH ALTAIR 163

Expt

25

N
o
1

Count of Records
=
(6]
1

10

600 700 800 900 1,000 1,100
Speed (binned)

FIGURE 4.24 Histogram of Michelson’s speed of light data colored by ex-
periment.

morley_hist_colored = alt.Chart (morley_df) .mark_bar () .encode (
x=alt.X("Speed") .bin(),
y="count ()",
color="Expt"

)

morley_hist_colored = morley_hist_colored + v_line

Alright great, Fig. 4.24 looks.. wait a second! We are not able to easily
distinguish between the colors of the different Experiments in the histogram.
What is going on here? Well, if you recall from Chapter 3, the data type you
use for each variable can influence how Python and altair treats it. Here,
we indeed have an issue with the data types in the morley data frame. In
particular, the Expt column is currently an integer—specifically, an int64
type. But we want to treat it as a category, i.e., there should be one category
per type of experiment.

morley_df.info ()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100 entries, 0 to 99
Data columns (total 3 columns):

Column Non-Null Count Dtype

0 Expt 100 non-null int64
1 Run 100 non-null int64
2 Speed 100 non-null int64

(continues on next page)

164 CHAPTER 4. EFFECTIVE DATA VISUALIZATION

Expt

g~ w

Count of Records

600 700 800 900 1,000 1,100
Speed (binned)

FIGURE 4.25 Histogram of Michelson’s speed of light data colored by ex-
periment as a categorical variable.

(continued from previous page)

dtypes: int64 (3)
memory usage: 2.5 KB

To fix this issue we can convert the Expt variable into a nominal (i.e., cate-
gorical) type variable by adding a suffix :N to the Expt variable. Adding the
:N suffix ensures that altair will treat a variable as a categorical variable,
and hence use a discrete color map in visualizations (read more about data
types in the altair documentation!?). We also add the stack (False) method
on the y encoding so that the bars are not stacked on top of each other, but
instead share the same baseline. We try to ensure that the different colors
can be seen despite them sitting in front of each other by setting the opacity
argument in mark_bar to 0.5 to make the bars slightly translucent.

morley_hist_categorical = alt.Chart (morley_df) .mark_bar (opacity=0.5) .encode (
x=alt.X ("Speed") .bin(),
y=alt.Y("count () ") .stack (False),
color="Expt:N"

)

morley_hist_categorical = morley_hist_categorical + v_line

Unfortunately, the attempt to separate out the experiment number visually
has created a bit of a mess. All of the colors in Fig. 4.25 are blending together,

Ohttps://altair-viz.github.io/user guide/encodings/index.html#tencoding-data-types

https://altair-viz.github.io/user_guide/encodings/index.html#encoding-data-types

4.5. CREATING VISUALIZATIONS WITH ALTAIR 165

and although it is possible to derive some insight from this (e.g., experiments 1
and 3 had some of the most incorrect measurements), it isn’t the clearest way
to convey our message and answer the question. Let’s try a different strategy
of creating grid of separate histogram plots.

We can use the facet function to create a chart that has multiple subplots
arranged in a grid. The argument to facet specifies the variable(s) used to
split the plot into subplots (Expt in the code below), and how many columns
there should be in the grid. In this example, we chose to arrange our plots in
a single column (columns=1) since this makes it easier for us to compare the
location of the histograms along the x-axis in the different subplots. We also
reduce the height of each chart so that they all fit in the same view. Note
that we are re-using the chart we created just above, instead of re-creating the
same chart from scratch. We also explicitly specify that facet is a categorical
variable since faceting should only be done with categorical variables.

morley_hist_facet = morley_hist_categorical.properties(
height=100

) . facet (
"Expt:N",
columns=1

)

The visualization in Fig. 4.26 makes it clear how accurate the different ex-
periments were with respect to one another. The most variable measure-
ments came from Experiment 1, where the measurements ranged from about
650-1050 km/sec. The least variable measurements came from Experiment
2, where the measurements ranged from about 750-950 km/sec. The most
different experiments still obtained quite similar overall results.

There are three finishing touches to make this visualization even clearer. First
and foremost, we need to add informative axis labels using the alt.x and
alt.Y function, and increase the font size to make it readable using the con-
figure_axis function. We can also add a title; for a facet plot, this is
done by providing the title to the facet function. Finally, and perhaps most
subtly, even though it is easy to compare the experiments on this plot to one
another, it is hard to get a sense of just how accurate all the experiments were
overall. For example, how accurate is the value 800 on the plot, relative to
the true speed of light? To answer this question, we’ll transform our data to
a relative measure of error rather than an absolute measurement.

speed_of_light = 299792.458
morley_df["RelativeError"] = (
100 * (299000 + morley_df["Speed"] - speed_of_light) / speed_of_light
)
morley_df

166 CHAPTER 4. EFFECTIVE DATA VISUALIZATION

Expt

Expt

Count of Records
a b wWN

Count of Records

Count of Records

Count of Records
N
1

A O

N

Count of Records

0 1
I T T T T T
600 700 800 900
Speed (binned)

T T 1
1,000 1,100

FIGURE 4.26 Histogram of Michelson’s speed of light data split vertically
by experiment.

4.5. CREATING VISUALIZATIONS WITH ALTAIR 167

Expt Run Speed RelativeError
0 1 1 850 0.019194
1 1 2 740 -0.017498
2 1 8 900 0.035872
3 1 4 1070 0.092578
4 1 5 930 0.045879
95 5 16 940 0.049215
96 5 17 950 0.052550
97 5) 18 800 0.002516
98 5 19 810 0.005851
99 5 20 870 0.025865

[100 rows x 4 columns]

morley_hist_rel alt.Chart (morley_df) .mark_bar () .encode (
x=alt.X("RelativeError")

.bin ()
.title("Relative Error (%)"),
y=alt.Y("count () ") .title("# Measurements"),

color=alt.Color ("Expt:N") .title ("Experiment ID")
)

Recreating v_line to indicate that the speed of light is at 0% relative error
v_line = alt.Chart (morley_df) .mark_rule (strokeDash=[6], size=1.5) .encode (

x=alt .datum(0)
)

morley_hist_relative = (morley_hist_rel + v_line) .properties(
height=100
) . facet (
"Expt:N",
columns=1,
title="Histogram of relative error of Michelson’s speed of light data"

Wow, impressive! These measurements of the speed of light from 1879 had
errors around 0.05% of the true speed. Fig. 4.27 shows you that even though
experiments 2 and 5 were perhaps the most accurate, all of the experiments
did quite an admirable job given the technology available at the time.

4.5.5.2 Choosing a binwidth for histograms

When you create a histogram in altair, it tries to choose a reasonable number
of bins. We can change the number of bins by using the maxbins parameter
inside the bin method (Fig. 4.28).

morley_hist_maxbins = alt.Chart (morley_df) .mark_bar () .encode (
x=alt.X ("RelativeError") .bin (maxbins=30),
y="count ()"

But what number of bins is the right one to use? Unfortunately there is no
hard rule for what the right bin number or width is. It depends entirely on
your problem; the right number of bins or bin width is the one that helps you

168 CHAPTER 4. EFFECTIVE DATA VISUALIZATION

Histogram of relative error of Michelson’s speed of light data
Expt

1

=
o

! Experiment ID
I

i !

I 2

I W3

I
i

4
- -
o omm R —

Measurements
(6]

Measurements

Measurements

Measurements

Measurements

I T

T T
-0.060 -0.020

T T T 1
0.020 0.060 0.100

Relative Error (%)

FIGURE 4.27 Histogram of relative error split vertically by experiment with
clearer axes and labels.

4.6. EXPLAINING THE VISUALIZATION 169

18+

16

[N
~
1

[uy
N
1

Count of Records

-0.060 -0.020 0.020 0.060 0.100
RelativeError (binned)

FIGURE 4.28 Histogram of Michelson’s speed of light data.

answer the question you asked. Choosing the correct setting for your problem
is something that commonly takes iteration. It’s usually a good idea to try
out several maxbins to see which one most clearly captures your data in the
context of the question you want to answer.

To get a sense for how different bin affect visualizations, let’s experiment with
the histogram that we have been working on in this section. In Fig. 4.29,
we compare the default setting with three other histograms where we set the
maxbins to 200, 70, and 5. In this case, we can see that both the default
number of bins and the maxbins=70 of are effective for helping to answer our
question. On the other hand, the maxbins=200 and maxbins=5 are too small
and too big, respectively.

4.6 Explaining the visualization
Tell a story

Typically, your visualization will not be shown entirely on its own, but rather
it will be part of a larger presentation. Further, visualizations can provide
supporting information for any aspect of a presentation, from opening to
conclusion. For example, you could use an exploratory visualization in the

170 CHAPTER 4. EFFECTIVE DATA VISUALIZATION

Default (bin=True) maxbins=5
Expt Expt
1 1
104 ' 15 '
| |
| |
1 104 1
54 1 1
P milim.
2 2
10 ' 154
1
10
s
.. N
= w0 —

3
:
s 104
5]
= || Ly S— —
4
|
s 10
i]
* ol — * ol
5

5
104 154
10
5|
i i —
@ -)

-0060 -0020 0020 0060 0100 -010 -005 000 005 010
Relative error (%) Relative error (%)
maxbins=70 maxbins=200

Expt Expt

1 1
' €9 1
6 ' '
' '
o ' 41 '
' '

) | Il . i
' '

AN moaloohlll BN ' \ \
2 2
1 € 1
6 ' '
' 1
a4 ' “1 '
' 1
i illl I) |
1
= o il 1 a BN !
3 3
1 69 '
6 ' '
' '
2] ' “1 '
' '
'] '

21 I ' I 2 '

' '

o ' m =, '
4 4

' 69 1

6 ' '

' '

a4 ' “1 '

' '

'] '

'

= T TR T =, '
5 5

1 69 '

6 ' '

' '

] ' “1 '

' '

2 y I 24 :

% mbllh w : TN
e

-0060 -0020 0020 0060 -0058 -0026 0006 0038 0070

Relative error (%) Relative error (%)

FIGURE 4.29 Effect of varying number of max bins on histograms.

4.6. EXPLAINING THE VISUALIZATION 171

opening of the presentation to motivate your choice of a more detailed data
analysis / model, a visualization of the results of your analysis to show what
your analysis has uncovered, or even one at the end of a presentation to help
suggest directions for future work.

Regardless of where it appears, a good way to discuss your visualization is as
a story:

1) Establish the setting and scope, and describe why you did what you
did.

2) Pose the question that your visualization answers. Justify why the
question is important to answer.

3) Answer the question using your visualization. Make sure you describe
all aspects of the visualization (including describing the axes). But
you can emphasize different aspects based on what is important to
answer your question:

o trends (lines): Does a line describe the trend well? If so, the
trend is linear, and if not, the trend is nonlinear. Is the trend
increasing, decreasing, or neither? Is there a periodic oscillation
(wiggle) in the trend? Is the trend noisy (does the line “jump
around” a lot) or smooth?

o distributions (scatters, histograms): How spread out are
the data? Where are they centered, roughly? Are there any
obvious “clusters” or “subgroups”, which would be visible as
multiple bumps in the histogram?

« distributions of two variables (scatters): Is there a clear /
strong relationship between the variables (points fall in a distinct
pattern), a weak one (points fall in a pattern but there is some
noise), or no discernible relationship (the data are too noisy to
make any conclusion)?

«amounts (bars): How large are the bars relative to one an-
other? Are there patterns in different groups of bars?

4) Summarize your findings, and use them to motivate whatever you
will discuss next.

Below are two examples of how one might take these four steps in describing
the example visualizations that appeared earlier in this chapter. Each of the
steps is denoted by its numeral in parentheses, e.g. (3).

Mauna Loa Atmospheric CO, Measurements: (1) Many current forms
of energy generation and conversion—from automotive engines to natural gas

172 CHAPTER 4. EFFECTIVE DATA VISUALIZATION

power plants—rely on burning fossil fuels and produce greenhouse gases, typ-
ically primarily carbon dioxide (CO,), as a byproduct. Too much of these
gases in the Earth’s atmosphere will cause it to trap more heat from the sun,
leading to global warming. (2) In order to assess how quickly the atmospheric
concentration of CO, is increasing over time, we (3) used a data set from
the Mauna Loa observatory in Hawaii, consisting of CO, measurements from
1980 to 2020. We plotted the measured concentration of CO4 (on the vertical
axis) over time (on the horizontal axis). From this plot, you can see a clear,
increasing, and generally linear trend over time. There is also a periodic os-
cillation that occurs once per year and aligns with Hawaii’s seasons, with an
amplitude that is small relative to the growth in the overall trend. This shows
that atmospheric CO, is clearly increasing over time, and (4) it is perhaps
worth investigating more into the causes.

Michelson Light Speed Experiments: (1) Our modern understanding
of the physics of light has advanced significantly from the late 1800s when
Michelson and Morley’s experiments first demonstrated that it had a finite
speed. We now know, based on modern experiments, that it moves at roughly
299,792.458 kilometers per second. (2) But how accurately were we first able
to measure this fundamental physical constant, and did certain experiments
produce more accurate results than others? (3) To better understand this, we
plotted data from 5 experiments by Michelson in 1879, each with 20 trials,
as histograms stacked on top of one another. The horizontal axis shows the
error of the measurements relative to the true speed of light as we know it
today, expressed as a percentage. From this visualization, you can see that
most results had relative errors of at most 0.05%. You can also see that
experiments 1 and 3 had measurements that were the farthest from the true
value, and experiment 5 tended to provide the most consistently accurate
result. (4) It would be worth further investigating the differences between
these experiments to see why they produced different results.

4.7 Saving the visualization
Choose the right output format for your needs

Just as there are many ways to store data sets, there are many ways to store vi-
sualizations and images. Which one you choose can depend on several factors,
such as file size/type limitations (e.g., if you are submitting your visualization
as part of a conference paper or to a poster printing shop) and where it will be
displayed (e.g., online, in a paper, on a poster, on a billboard, in talk slides).

4.7. SAVING THE VISUALIZATION 173

Generally speaking, images come in two flavors: raster formats and wector
formats.

Raster images are represented as a 2D grid of square pixels, each with its
own color. Raster images are often compressed before storing so they take
up less space. A compressed format is lossy if the image cannot be perfectly
re-created when loading and displaying, with the hope that the change is not
noticeable. Lossless formats, on the other hand, allow a perfect display of the
original image.

o Common file types:
— JPEG!" (.4pg, .3peg): lossy, usually used for photographs

— PNG! (.png): lossless, usually used for plots / line drawings

BMP® (.bmp): lossless, raw image data, no compression (rarely used)

— TIFF™ (.tif, .tiff): typically lossless, no compression, used mostly
in graphic arts, publishing

« Open-source software: GIMP'

Vector images are represented as a collection of mathematical objects (lines,
surfaces, shapes, curves). When the computer displays the image, it redraws
all of the elements using their mathematical formulas.

o Common file types:

— SVG1!® (.svg): general-purpose use

— EPS!7 (.eps), general-purpose use (rarely used)
« Open-source software: Inkscape'®

Raster and vector images have opposing advantages and disadvantages. A
raster image of a fixed width / height takes the same amount of space and
time to load regardless of what the image shows (the one caveat is that the
compression algorithms may shrink the image more or run faster for certain
images). A vector image takes space and time to load corresponding to how
complex the image is, since the computer has to draw all the elements each

Hhttps://en.wikipedia.org/wiki/JPEG
2https://en.wikipedia.org/wiki/Portable_ Network_ Graphics
Bhttps://en.wikipedia.org/wiki/BMP_ file format

Mhttps:/ /en.wikipedia.org/wiki/TIFF
Bhttps://www.gimp.org/

https: //en.wikipedia.org/wiki/Scalable_ Vector Graphics
Thttps://en.wikipedia.org/wiki/Encapsulated PostScript
Bhttps://inkscape.org/

https://en.wikipedia.org/wiki/Portable_Network_Graphics
https://en.wikipedia.org/wiki/BMP_file_format
https://www.gimp.org
https://en.wikipedia.org/wiki/Scalable_Vector_Graphics
https://en.wikipedia.org/wiki/Encapsulated_PostScript
https://inkscape.org
https://en.wikipedia.org/wiki/JPEG
https://en.wikipedia.org/wiki/TIFF

174 CHAPTER 4. EFFECTIVE DATA VISUALIZATION

time it is displayed. For example, if you have a scatter plot with 1 million
points stored as an SVG file, it may take your computer some time to open
the image. On the other hand, you can zoom into / scale up vector graphics as
much as you like without the image looking bad, while raster images eventually
start to look “pixelated”.

Note: The portable document format PDF! (.pdf) is commonly used to
store both raster and vector formats. If you try to open a PDF and it’s taking
a long time to load, it may be because there is a complicated vector graphics
image that your computer is rendering.

Let’s learn how to save plot images to .png and .svg file formats using
the faithful_scatter_labels scatter plot of the Old Faithful data set?’
[Hardle, 1991] that we created earlier, shown in Fig. 4.7. To save the plot to
a file, we can use the save method. The save method takes the path to the
filename where you would like to save the file (e.g., img/viz/filename.png
to save a file named filename.png to the img/viz/ directory). The kind of
image to save is specified by the file extension. For example, to create a PNG
image file, we specify that the file extension is .png. Below we demonstrate
how to save PNG and SVG file types for the faithful_scatter_labels
plot.

faithful_scatter_labels.save ("img/viz/faithful _plot.png")
faithful_scatter_labels.save ("img/viz/faithful_plot.svg")

TABLE 4.1 File sizes of the scatter plot of the Old Faithful data set when
saved as different file formats.

Image type | File type | Image size
Raster PNG 0.07 MB
Vector SVG 0.09 MB

Take a look at the file sizes in Table 4.1. Wow, that’s quite a difference! In
this case, the .png image is almost 4 times smaller than the .svg image.
Since there are a decent number of points in the plot, the vector graphics
format image (.svg) is bigger than the raster image (.png), which just stores
the image data itself. In Fig. 4.30, we show what the images look like when
we zoom in to a rectangle with only 3 data points. You can see why vector
graphics formats are so useful: because they're just based on mathematical

Yhttps: //en.wikipedia.org/wiki/PDF
Ohttps: //www.stat.cmu.edu/~larry /all-of-statistics /=data/faithful.dat

https://www.stat.cmu.edu/~larry/all-of-statistics/=data/faithful.dat
https://en.wikipedia.org/wiki/PDF

4.8. EXERCISES 175

O O
O O

O
). onc

FIGURE 4.30 Zoomed in faithful, raster (PNG, left) and vector (SVG,
right) formats.

formulas, vector graphics can be scaled up to arbitrary sizes. This makes them
great for presentation media of all sizes, from papers to posters to billboards.

4.8 Exercises

Practice exercises for the material covered in this chapter can be found in the
accompanying worksheets repository?' in the “Effective data visualization”
row. You can launch an interactive version of the worksheet in your browser
by clicking the “launch binder” button. You can also preview a non-interactive
version of the worksheet by clicking “view worksheet”. If you instead decide to
download the worksheet and run it on your own machine, make sure to follow
the instructions for computer setup found in Chapter 13. This will ensure
that the automated feedback and guidance that the worksheets provide will
function as intended.

Zhttps: / /worksheets.python.datasciencebook.ca

https://worksheets.python.datasciencebook.ca

176 CHAPTER 4. EFFECTIVE DATA VISUALIZATION

4.9 Additional resources

o+ The altair documentation®® [VanderPlas et al., 2018] is where you should
look if you want to learn more about the functions in this chapter, the full
set of arguments you can use, and other related functions.

o The Fundamentals of Data Visualization® [Wilke, 2019] has a wealth of
information on designing effective visualizations. It is not specific to any
particular programming language or library. If you want to improve your
visualization skills, this is the next place to look.

o The dates and times?* chapter of Python for Data Analysis®® [McKinney,
2012] is where you should look if you want to learn about date and time,
including how to create them, and how to use them to effectively handle
durations, etc.

Zhttps://altair-viz.github.io/
Bhttps://clauswilke.com /dataviz/

Znhttps: //wesmckinney.com /book /time-series.html
Zhttps://wesmckinney.com /book/

https://altair-viz.github.io
https://clauswilke.com/dataviz
https://wesmckinney.com/book/time-series.html
https://wesmckinney.com/book

5

Classification I: training & predicting

5.1 Overview

In previous chapters, we focused solely on descriptive and exploratory data
analysis questions. This chapter and the next together serve as our first foray
into answering predictive questions about data. In particular, we will focus
on classification, i.e., using one or more variables to predict the value of a
categorical variable of interest. This chapter will cover the basics of classi-
fication, how to preprocess data to make it suitable for use in a classifier,
and how to use our observed data to make predictions. The next chapter
will focus on how to evaluate how accurate the predictions from our classifier
are, as well as how to improve our classifier (where possible) to maximize its
accuracy.

5.2 Chapter learning objectives
By the end of the chapter, readers will be able to do the following:

» Recognize situations where a classifier would be appropriate for making pre-
dictions.

o Describe what a training data set is and how it is used in classification.
o Interpret the output of a classifier.

« Compute, by hand, the straight-line (Euclidean) distance between points on
a graph when there are two predictor variables.

o Explain the K-nearest neighbors classification algorithm.

o Perform K-nearest neighbors classification in Python using scikit-learn.

DOI: 10.1201/9781003438397-5 177

https://doi.org/10.1201/9781003438397-5

178 CHAPTER 5. CLASSIFICATION I: TRAINING & PREDICTING

o Use methods from scikit-1learn to center, scale, balance, and impute data
as a preprocessing step.

e Combine preprocessing and model training into a Pipeline using
make_pipeline.

5.3 The classification problem

In many situations, we want to make predictions based on the current situation
as well as past experiences. For instance, a doctor may want to diagnose a
patient as either diseased or healthy based on their symptoms and the doctor’s
past experience with patients; an email provider might want to tag a given
email as “spam” or “not spam” based on the email’s text and past email text
data; or a credit card company may want to predict whether a purchase is
fraudulent based on the current purchase item, amount, and location as well as
past purchases. These tasks are all examples of classification, i.e., predicting
a categorical class (sometimes called a label) for an observation given its other
variables (sometimes called features).

Generally, a classifier assigns an observation without a known class (e.g., a new
patient) to a class (e.g., diseased or healthy) on the basis of how similar it is
to other observations for which we do know the class (e.g., previous patients
with known diseases and symptoms). These observations with known classes
that we use as a basis for prediction are called a training set; this name
comes from the fact that we use these data to train, or teach, our classifier.
Once taught, we can use the classifier to make predictions on new data for
which we do not know the class.

There are many possible methods that we could use to predict a categorical
class/label for an observation. In this book, we will focus on the widely used
K-nearest neighbors algorithm [Cover and Hart, 1967; Fix and Hodges,
1951]. In your future studies, you might encounter decision trees, support vec-
tor machines (SVMs), logistic regression, neural networks, and more; see the
additional resources section at the end of the next chapter for where to begin
learning more about these other methods. It is also worth mentioning that
there are many variations on the basic classification problem. For example,
we focus on the setting of binary classification where only two classes are
involved (e.g., a diagnosis of either healthy or diseased), but you may also run
into multiclass classification problems with more than two categories (e.g., a
diagnosis of healthy, bronchitis, pneumonia, or a common cold).

5.4. EXPLORING A DATA SET 179

5.4 Exploring a data set

In this chapter and the next, we will study a data set of digitized breast cancer
image features!, created by Dr. William H. Wolberg, W. Nick Street, and
Olvi L. Mangasarian [Street et al., 1993]. Each row in the data set represents
an image of a tumor sample, including the diagnosis (benign or malignant)
and several other measurements (nucleus texture, perimeter, area, and more).
Diagnosis for each image was conducted by physicians.

As with all data analyses, we first need to formulate a precise question that
we want to answer. Here, the question is predictive: can we use the tumor
image measurements available to us to predict whether a future tumor image
(with unknown diagnosis) shows a benign or malignant tumor? Answering
this question is important because traditional, non-data-driven methods for
tumor diagnosis are quite subjective and dependent upon how skilled and
experienced the diagnosing physician is. Furthermore, benign tumors are not
normally dangerous; the cells stay in the same place, and the tumor stops
growing before it gets very large. By contrast, in malignant tumors, the cells
invade the surrounding tissue and spread into nearby organs, where they can
cause serious damage [Stanford Health Care, 2021]. Thus, it is important to
quickly and accurately diagnose the tumor type to guide patient treatment.

5.4.1 Loading the cancer data

Our first step is to load, wrangle, and explore the data using visualizations in
order to better understand the data we are working with. We start by loading
the pandas and altair packages needed for our analysis.

import pandas as pd
import altair as alt

In this case, the file containing the breast cancer data set is a .csv file with
headers. We'll use the read_csv function with no additional arguments, and
then inspect its contents:

cancer = pd.read_csv("data/wdbc.csv")
cancer

ID Class Radius Texture Perimeter Area Smoothness \
0 842302 M 1.096100 -2.071512 1.268817 0.983510 1.567087
1 842517 M 1.828212 -0.353322 1.684473 1.907030 -0.826235

(continues on next page)

Thttps://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%
29

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29

180 CHAPTER 5. CLASSIFICATION I: TRAINING & PREDICTING

(continued from previous page)

2 84300903 M 1.578499 0.455786 1.565126 1.557513 0.941382
3 84348301 M -0.768233 0.253509 -0.592166 -0.763792 3.280667
4 84358402 M 1.748758 -1.150804 1.775011 1.824624 0.280125
564 926424 M 2.109139 0.720838 2.058974 2.341795 1.040926
565 926682 M 1.703356 2.083301 1.614511 1.722326 0.102368
566 926954 M 0.701667 2.043775 0.672084 0.577445 -0.839745
567 927241 M 1.836725 2.334403 1.980781 1.733693 1.524426
568 92751 B -1.806811 1.220718 -1.812793 -1.346604 -3.109349

Compactness Concavity Concave_Points Symmetry Fractal Dimension

0 3.280628 2.650542 2.530249 2.215566 2.253764
1 -0.486643 -0.023825 0.547662 0.001391 -0.867889
2 1.052000 1.362280 2.035440 0.938859 -0.397658
3 3.399917 1.914213 1.450431 2.864862 4.906602
4 0.538866 1.369806 1.427237 -0.009552 -0.561956
564 0.218868 1.945573 2.318924 -0.312314 -0.930209
565 -0.017817 0.692434 1.262558 -0.217473 -1.057681
566 -0.038646 0.046547 0.105684 -0.808406 -0.894800
567 3.269267 3.294046 2.656528 2.135315 1.042778
568 -1.149741 -1.113893 -1.260710 -0.819349 -0.560539

[569 rows x 12 columns]

5.4.2 Describing the variables in the cancer data set

Breast tumors can be diagnosed by performing a biopsy, a process where
tissue is removed from the body and examined for the presence of disease.
Traditionally these procedures were quite invasive; modern methods such as
fine needle aspiration, used to collect the present data set, extract only a small
amount of tissue and are less invasive. Based on a digital image of each breast
tissue sample collected for this data set, ten different variables were measured
for each cell nucleus in the image (items 3-12 of the list of variables below),
and then the mean for each variable across the nuclei was recorded. As part
of the data preparation, these values have been standardized (centered and
scaled); we will discuss what this means and why we do it later in this chapter.
Each image additionally was given a unique ID and a diagnosis by a physician.
Therefore, the total set of variables per image in this data set is:

ID: identification number
Class: the diagnosis (M = malignant or B = benign)

Radius: the mean of distances from center to points on the perimeter

1

2

3

4. Texture: the standard deviation of gray-scale values
5. Perimeter: the length of the surrounding contour

6

Area: the area inside the contour

5.4. EXPLORING A DATA SET 181

7. Smoothness: the local variation in radius lengths

8. Compactness: the ratio of squared perimeter and area

9. Concavity: severity of concave portions of the contour
10. Concave Points: the number of concave portions of the contour
11. Symmetry: how similar the nucleus is when mirrored

12. Fractal Dimension: a measurement of how “rough” the perimeter is

Below we use the info method to preview the data frame. This method can
make it easier to inspect the data when we have a lot of columns: it prints
only the column names down the page (instead of across), as well as their data
types and the number of non-missing entries.

cancer.info ()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 12 columns):

Column Non-Null Count Dtype

0 ID 569 non-null int64

1 Class 569 non-null object
2 Radius 569 non-null float64
3 Texture 569 non-null float64
4 Perimeter 569 non-null float64
5 Area 569 non-null float64
6 Smoothness 569 non-null float64
7 Compactness 569 non-null float64
8 Concavity 569 non-null float64
9 Concave_Points 569 non-null floato4d
10 Symmetry 569 non-null float64
11 Fractal_Dimension 569 non-null floato4d

dtypes: float64(10), int64 (1), object (1)
memory usage: 53.5+ KB

From the summary of the data above, we can see that Class is of type ob-
ject. We can use the unique method on the Class column to see all unique
values present in that column. We see that there are two diagnoses: benign,
represented by "B", and malignant, represented by "M".

cancer["Class"] .unique ()
array(['M', 'B'], dtype=object)

We will improve the readability of our analysis by renaming "M" to "Ma-
lignant" and "B" to "Benign" using the replace method. The replace
method takes one argument: a dictionary that maps previous values to desired
new values. We will verify the result using the unigque method.

182 CHAPTER 5. CLASSIFICATION I: TRAINING & PREDICTING

cancer["Class"] = cancer["Class"].replace ({
"M" : "Malignant",
"B" : "Benign"
})
cancer["Class"] .unique ()
array (['Malignant', 'Benign'], dtype=object)

5.4.3 Exploring the cancer data

Before we start doing any modeling, let’s explore our data set. Below we
use the groupby and size methods to find the number and percentage of
benign and malignant tumor observations in our data set. When paired with
groupby, size counts the number of observations for each value of the Class
variable. Then we calculate the percentage in each group by dividing by the
total number of observations and multiplying by 100. The total number of
observations equals the number of rows in the data frame, which we can access
via the shape attribute of the data frame (shape[0] is the number of rows
and shape[1] is the number of columns). We have 357 (63%) benign and
212 (37%) malignant tumor observations.

100 * cancer.groupby ("Class").size() / cancer.shapel[0]
Class
Benign 62.741652
Malignant 37.258348

dtype: float64

The pandas package also has a more convenient specialized value_counts
method for counting the number of occurrences of each value in a column. If we
pass no arguments to the method, it outputs a series containing the number of
occurrences of each value. If we instead pass the argument normalize=True,
it instead prints the fraction of occurrences of each value.

cancer["Class"] .value_counts ()

Class
Benign 357
Malignant 212

Name: count, dtype: inté4

cancer["Class"] .value_counts (normalize=True)
Class
Benign 0.627417
Malignant 0.372583

Name: proportion, dtype: float64

5.4. EXPLORING A DATA SET 183

Diagnosis

4 ° @ Benign
Malignant

Concavity (standardized)

-2 -1 0 1 2 3 4
Perimeter (standardized)

FIGURE 5.1 Scatter plot of concavity versus perimeter colored by diagnosis
label.

Next, let’s draw a colored scatter plot to visualize the relationship between the
perimeter and concavity variables. Recall that the default palette in altair
is colorblind-friendly, so we can stick with that here.

perim_concav = alt.Chart (cancer) .mark_circle () .encode (
x=alt.X("Perimeter") .title ("Perimeter (standardized)"),
y=alt.Y("Concavity") .title("Concavity (standardized)"),
color=alt.Color ("Class") .title("Diagnosis™")

)

perim_concav

In Fig. 5.1, we can see that malignant observations typically fall in the upper
right-hand corner of the plot area. By contrast, benign observations typically
fall in the lower left-hand corner of the plot. In other words, benign observa-
tions tend to have lower concavity and perimeter values, and malignant ones
tend to have larger values. Suppose we obtain a new observation not in the
current data set that has all the variables measured ezcept the label (i.e., an
image without the physician’s diagnosis for the tumor class). We could com-
pute the standardized perimeter and concavity values, resulting in values of,
say, 1 and 1. Could we use this information to classify that observation as
benign or malignant? Based on the scatter plot, how might you classify that
new observation? If the standardized concavity and perimeter values are 1
and 1 respectively, the point would lie in the middle of the orange cloud of
malignant points and thus we could probably classify it as malignant. Based

184 CHAPTER 5. CLASSIFICATION I: TRAINING & PREDICTING

on our visualization, it seems like it may be possible to make accurate predic-
tions of the Class variable (i.e., a diagnosis) for tumor images with unknown
diagnoses.

5.5 Classification with K-nearest neighbors

In order to actually make predictions for new observations in practice, we will
need a classification algorithm. In this book, we will use the K-nearest neigh-
bors classification algorithm. To predict the label of a new observation (here,
classify it as either benign or malignant), the K-nearest neighbors classifier
generally finds the K “nearest” or “most similar” observations in our training
set, and then uses their diagnoses to make a prediction for the new observa-
tion’s diagnosis. K is a number that we must choose in advance; for now, we
will assume that someone has chosen K for us. We will cover how to choose
K ourselves in the next chapter.

To illustrate the concept of K-nearest neighbors classification, we will walk
through an example. Suppose we have a new observation, with standardized
perimeter of 2.0 and standardized concavity of 4.0, whose diagnosis “Class” is
unknown. This new observation is depicted by the red, diamond point in Fig.
5.2.

Fig. 5.3 shows that the nearest point to this new observation is malignant
and located at the coordinates (2.1, 3.6). The idea here is that if a point is
close to another in the scatter plot, then the perimeter and concavity values
are similar, and so we may expect that they would have the same diagnosis.

Suppose we have another new observation with standardized perimeter 0.2
and concavity of 3.3. Looking at the scatter plot in Fig. 5.4, how would you
classify this red, diamond observation? The nearest neighbor to this new point
is a benign observation at (0.2, 2.7). Does this seem like the right prediction
to make for this observation? Probably not, if you consider the other nearby
points.

To improve the prediction we can consider several neighboring points, say
K = 3, that are closest to the new observation to predict its diagnosis class.
Among those 3 closest points, we use the majority class as our prediction
for the new observation. As shown in Fig. 5.5, we see that the diagnoses of
2 of the 3 nearest neighbors to our new observation are malignant. There-
fore we take majority vote and classify our new red, diamond observation as
malignant.

5.5. CLASSIFICATION WITH K-NEAREST NEIGHBORS 185

Diagnosis
4 (] Q @ Benign

Malignant
Unknown

Concavity (standardized)

Perimeter (standardized)

FIGURE 5.2 Scatter plot of concavity versus perimeter with new observation
represented as a red diamond.

Diagnosis
4 ° @ Benign
Malignant
Unknown
34
—_ °
] °
@
N
S
g 2- 8°
°
c ° >
b s
2 B
> s
B ® s
8 LK
£ g
o o?®
T T T T T 1
-2 -1 0 1 2 3 4

Perimeter (standardized)

FIGURE 5.3 Scatter plot of concavity versus perimeter. The new observa-
tion is represented as a red diamond with a line to the one nearest neighbor,
which has a malignant label.

186 CHAPTER 5. CLASSIFICATION I: TRAINING & PREDICTING

Diagnosis
4 ° @ Benign
Malignant
Unknown
3 | T
°
2 e ¢

Concavity (standardized)

Perimeter (standardized)

FIGURE 5.4 Scatter plot of concavity versus perimeter. The new observa-

tion is represented as a red diamond with a line to the one nearest neighbor,
which has a benign label.

Diagnosis
4 ° @ Benign
Malignant
Unknown
°
2 e ¢

Concavity (standardized)

Perimeter (standardized)

FIGURE 5.5 Scatter plot of concavity versus perimeter with three nearest
neighbors.

5.5. CLASSIFICATION WITH K-NEAREST NEIGHBORS 187

Here we chose the K = 3 nearest observations, but there is nothing special
about K = 3. We could have used K = 4,5 or more (though we may want to
choose an odd number to avoid ties). We will discuss more about choosing K
in the next chapter.

5.5.1 Distance between points

We decide which points are the K “nearest” to our new observation using the
straight-line distance (we will often just refer to this as distance). Suppose
we have two observations a and b, each having two predictor variables, = and
y. Denote a, and a, to be the values of variables z and y for observation
a; b, and b, have similar definitions for observation b. Then the straight-line
distance between observation a and b on the x-y plane can be computed using
the following formula:

Distance = \/(am —b,)%+ (a, — by>2

To find the K nearest neighbors to our new observation, we compute the
distance from that new observation to each observation in our training data,
and select the K observations corresponding to the K smallest distance values.
For example, suppose we want to use K = 5 neighbors to classify a new
observation with perimeter 0.0 and concavity 3.5, shown as a red diamond in
Fig. 5.6. Let’s calculate the distances between our new point and each of the
observations in the training set to find the K = 5 neighbors that are nearest
to our new point. You will see in the code below, we compute the straight-line
distance using the formula above: we square the differences between the two
observations’ perimeter and concavity coordinates, add the squared differences,
and then take the square root. In order to find the K = 5 nearest neighbors,
we will use the nsmallest function from pandas.
new_obs_Perimeter 0

new_obs_Concavity 3.5
cancer ["dist_from_new"] = (

(cancer["Perimeter"] — new_obs_Perimeter) ** 2
+ (cancer["Concavity"] - new_obs_Concavity) ** 2
) = (i/2)
cancer.nsmallest (5, "dist_from_new") [[
"Perimeter",
"Concavity",
"Class",

"dist_from_new"

Perimeter Concavity Class dist_from_new
112 0.241202 2.653051 Benign 0.880626
258 0.750277 2.870061 Malignant 0.979663
351 0.622700 2.541410 Malignant 1.143088
430 0.416930 2.314364 Malignant 1.256806
152 -1.160091 4.039155 Benign 1.279258

188 CHAPTER 5. CLASSIFICATION I: TRAINING & PREDICTING

Diagnosis
4 . Benign
Malignant
O Unknown
34
=)
@
N
S
g o
o
c
8
2
L
E 1_ P o L4
3 e >
< S
S ' 2 @
© ¢ ".3{’.. ®
0- 8 oV &
o -"' o8
s o B IR ©
: 3.
136 @ 0
T T T T T 1
-2 -1 0 1 2 3 4

Perimeter (standardized)

FIGURE 5.6 Scatter plot of concavity versus perimeter with new observation
represented as a red diamond.

In Table 5.1 we show in mathematical detail how we computed the
dist_from_new variable (the distance to the new observation) for each of
the 5 nearest neighbors in the training data.

TABLE 5.1 Evaluating the distances from the new observation to each of its
5 nearest neighbors

Perimeter | Concavity | Distance Class

0.24 2.65 V/(0—0.24)2 + (3.5 — 2.65)2 = 0.88 Benign
0.75 2.87 V(0 —0.75)2 + (3.5 — 2.87)2 = 0.98 Malignant
0.62 2.54 V(0 —0.62)% + (3.5 — 2.54)2 = 1.14 Malignant
0.42 2.31 V(0—0. 42)2 + (3.5 —2.31)2 = 1.26 Malignant
-1.16 4.04 V(0 —(—1.16))2 + (3.5 — 4.04)%2 = 1.28 | Benign

The result of this computation shows that 3 of the 5 nearest neighbors to our
new observation are malignant; since this is the majority, we classify our new
observation as malignant. These 5 neighbors are circled in Fig. 5.7.

5.5.2 More than two explanatory variables

Although the above description is directed toward two predictor variables, ex-
actly the same K-nearest neighbors algorithm applies when you have a higher

5.5. CLASSIFICATION WITH K-NEAREST NEIGHBORS 189

57 Diagnosis
Benign
Malignant

4 Unknown

Concavity (standardized)

AL
i3 P d
07" So cocopit. by
‘:' #‘," 0
¢ R |
13e @ 0
T T T T T 1
-2 -1 0 1 2 3 4

Perimeter (standardized)

FIGURE 5.7 Scatter plot of concavity versus perimeter with 5 nearest neigh-
bors circled.

number of predictor variables. Each predictor variable may give us new in-
formation to help create our classifier. The only difference is the formula for
the distance between points. Suppose we have m predictor variables for two
observations a and b, i.e., a = (ay, aq,...,a,,) and b = (by, by, ..., b,,).

The distance formula becomes

Distance = v/(a; — b;)2 + (ay — by)2 + -+ + (a,, — b,)2.

This formula still corresponds to a straight-line distance, just in a space with
more dimensions. Suppose we want to calculate the distance between a new
observation with a perimeter of 0, concavity of 3.5, and symmetry of 1, and
another observation with a perimeter, concavity, and symmetry of 0.417, 2.31,
and 0.837 respectively. We have two observations with three predictor vari-
ables: perimeter, concavity, and symmetry. Previously, when we had two
variables, we added up the squared difference between each of our (two) vari-
ables, and then took the square root. Now we will do the same, except for our
three variables. We calculate the distance as follows

Distance = /(0 — 0.417)2 + (3.5 — 2.31)2 + (1 — 0.837)% = 1.27.

190 CHAPTER 5. CLASSIFICATION I: TRAINING & PREDICTING

Let’s calculate the distances between our new observation and each of the
observations in the training set to find the K = 5 neighbors when we have
these three predictors.

new_obs_Perimeter = 0
new_obs_Concavity = 3.5
new_obs_Symmetry = 1
cancer["dist_from_new"] = (
(cancer["Perimeter"] - new_obs_Perimeter) ** 2
+ (cancer["Concavity"] - new_obs_Concavity) ** 2
+ (cancer["Symmetry"] - new_obs_Symmetry) ** 2
) =5 (1) 2)
cancer.nsmallest (5, "dist_from_new") [[
"Perimeter",
"Concavity",
"Symmetry",
"Class",

"dist_from_new"

Perimeter Concavity Symmetry Class dist_from_new
430 0.416930 2.314364 0.836722 Malignant 1.267368
400 1.334664 2.886368 1.099359 Malignant 1.472326
562 0.470430 2.084810 1.154075 Malignant 1.499268
68 -1.365450 2.812359 1.092064 Benign 1.531594
351 0.622700 2.541410 2.055065 Malignant 1, 858578

Based on K = 5 nearest neighbors with these three predictors we would clas-
sify the new observation as malignant since 4 out of 5 of the nearest neighbors
are malignant class. Fig. 5.8 shows what the data look like when we visualize
them as a 3D scatter with lines from the new observation to its five nearest
neighbors.

5.5.3 Summary of K-nearest neighbors algorithm
In order to classify a new observation using a K-nearest neighbors classifier,
we have to do the following:
1. Compute the distance between the new observation and each obser-
vation in the training set.

2. Find the K rows corresponding to the K smallest distances.

3. Classify the new observation based on a majority vote of the neighbor
classes.

5.6. K-NEAREST NEIGHBORS WITH SCIKIT-LEARN 191

Class
2 Malignant
Benign
Unknown

fapwwifs

), 2
Cﬂp@ »

™ g

FIGURE 5.8 3D scatter plot of the standardized symmetry, concavity, and
perimeter variables. Note that in general we recommend against using 3D
visualizations; here we show the data in 3D only to illustrate what higher
dimensions and nearest neighbors look like, for learning purposes.

5.6 K-nearest neighbors with scikit-learn

Coding the K-nearest neighbors algorithm in Python ourselves can get compli-
cated, especially if we want to handle multiple classes, more than two variables,
or predict the class for multiple new observations. Thankfully, in Python, the
K-nearest neighbors algorithm is implemented in the scikit-learn Python
package? [Buitinck et al., 2013] along with many other models® that you will
encounter in this and future chapters of the book. Using the functions in the
scikit-learn package (named sklearn in Python) will help keep our code
simple, readable and accurate; the less we have to code ourselves, the fewer
mistakes we will likely make. Before getting started with K-nearest neighbors,
we need to tell the sklearn package that we prefer using pandas data frames
over regular arrays via the set_config function.

Note: You will notice a new way of importing functions in the code below:
from ... import This lets us import just set_config from sklearn,
and then call set_config without any package prefix. We will import func-
tions using from extensively throughout this and subsequent chapters to avoid

2https:/ /scikit-learn.org/stable/index.html
3https://scikit-learn.org/stable/user__guide.html

https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/user_guide.html

192 CHAPTER 5. CLASSIFICATION I: TRAINING & PREDICTING

very long names from scikit-learn that clutter the code (like sklearn.
neighbors.KNeighborsClassifier, which has 38 characters!).

from sklearn import set_config

Output dataframes instead of arrays
set_config(transform_output="pandas")

We can now get started with K-nearest neighbors. The first step is to import
the KNeighborsClassifier from the sklearn.neighbors module.

from sklearn.neighbors import KNeighborsClassifier

Let’s walk through how to use KNeighborsClassifier to perform K-nearest
neighbors classification. We will use the cancer data set from above, with
perimeter and concavity as predictors and K = 5 neighbors to build our
classifier. Then we will use the classifier to predict the diagnosis label for a
new observation with perimeter 0, concavity 3.5, and an unknown diagnosis
label. Let’s pick out our two desired predictor variables and class label and
store them with the name cancer train:

cancer_train = cancer[["Class", "Perimeter", "Concavity"]]
cancer_train

Class Perimeter Concavity

0 Malignant 1.268817 2.650542
1 Malignant 1.684473 -0.023825
2 Malignant 1.565126 1.362280
3 Malignant -0.592166 1.914213
4 Malignant 1.775011 1.369806
564 Malignant 2.058974 1.945573
565 Malignant 1.614511 0.692434
566 Malignant 0.672084 0.046547
567 Malignant 1.980781 3.294046
568 Benign -1.812793 -1.113893

[569 rows x 3 columns]

Next, we create a model object for K-nearest neighbors classification by cre-
ating a KNeighborsClassifier instance, specifying that we want to use
K = 5 neighbors; we will discuss how to choose K in the next chapter.

Note: You can specify the weights argument in order to control how
neighbors vote when classifying a new observation. The default is "uniform",
where each of the K nearest neighbors gets exactly 1 vote as described above.

5.6. K-NEAREST NEIGHBORS WITH SCIKIT-LEARN 193

Other choices, which weigh each neighbor’s vote differently, can be found on
the scikit—-learn website’.

knn = KNeighborsClassifier (n_neighbors=5)
knn

KNeighborsClassifier ()

In order to fit the model on the breast cancer data, we need to call £it on the
model object. The X argument is used to specify the data for the predictor
variables, while the y argument is used to specify the data for the response vari-
able. So below, we set X=cancer_train[["Perimeter", "Concavity"]]
and y=cancer_train["Class"] to specify that Class is the response vari-
able (the one we want to predict), and both Perimeter and Concavity are
to be used as the predictors. Note that the fit function might look like it
does not do much from the outside, but it is actually doing all the heavy lifting
to train the K-nearest neighbors model, and modifies the knn model object.

knn.fit (X=cancer_train[["Perimeter", "Concavity"]], y=cancer_train["Class"]);

After using the fit function, we can make a prediction on a new observation by
calling predict on the classifier object, passing the new observation itself. As
above, when we ran the K-nearest neighbors classification algorithm manually,
the knn model object classifies the new observation as “Malignant”. Note that
the predict function outputs an array with the model’s prediction; you
can actually make multiple predictions at the same time using the predict
function, which is why the output is stored as an array.

new_obs = pd.DataFrame ({"Perimeter": [0], "Concavity": [3.5]})
knn.predict (new_obs)

array (['Malignant'], dtype=object)

Is this predicted malignant label the actual class for this observation? Well,
we don’t know because we do not have this observation’s diagnosis—that is
what we were trying to predict. The classifier’s prediction is not necessarily
correct, but in the next chapter, we will learn ways to quantify how accurate
we think our predictions are.

Yhttps://scikit-learn.org/stable/modules/generated /sklearn.neighbors. KNeighborsClass
ifier.html?highlight=kneighborsclassifier#sklearn.neighbors. KNeighborsClassifier

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html?highlight=kneighborsclassifier#sklearn.neighbors.KNeighborsClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html?highlight=kneighborsclassifier#sklearn.neighbors.KNeighborsClassifier

194 CHAPTER 5. CLASSIFICATION I: TRAINING & PREDICTING

5.7 Data preprocessing with scikit-learn
5.7.1 Centering and scaling

When using K-nearest neighbors classification, the scale of each variable (i.e.,
its size and range of values) matters. Since the classifier predicts classes by
identifying observations nearest to it, any variables with a large scale will
have a much larger effect than variables with a small scale. But just because
a variable has a large scale doesn’t mean that it is more important for making
accurate predictions. For example, suppose you have a data set with two
features, salary (in dollars) and years of education, and you want to predict
the corresponding type of job. When we compute the neighbor distances, a
difference of $1000 is huge compared to a difference of 10 years of education.
But for our conceptual understanding and answering of the problem, it’s the
opposite; 10 years of education is huge compared to a difference of $1,000 in
yearly salary.

In many other predictive models, the center of each variable (e.g., its mean)
matters as well. For example, if we had a data set with a temperature variable
measured in degrees Kelvin, and the same data set with temperature measured
in degrees Celsius, the two variables would differ by a constant shift of 273
(even though they contain exactly the same information). Likewise, in our
hypothetical job classification example, we would likely see that the center of
the salary variable is in the tens of thousands, while the center of the years
of education variable is in the single digits. Although this doesn’t affect the
K-nearest neighbors classification algorithm, this large shift can change the
outcome of using many other predictive models.

To scale and center our data, we need to find our variables’ mean (the average,
which quantifies the “central” value of a set of numbers) and standard devi-
ation (a number quantifying how spread out values are). For each observed
value of the variable, we subtract the mean (i.e., center the variable) and di-
vide by the standard deviation (i.e., scale the variable). When we do this,
the data is said to be standardized, and all variables in a data set will have
a mean of 0 and a standard deviation of 1. To illustrate the effect that stan-
dardization can have on the K-nearest neighbors algorithm, we will read in
the original, unstandardized Wisconsin breast cancer data set; we have been
using a standardized version of the data set up until now. We will apply the
same initial wrangling steps as we did earlier, and to keep things simple we
will just use the Area, Smoothness, and Class variables:

5.7. DATA PREPROCESSING WITH SCIKIT-LEARN 195

unscaled_cancer = pd.read_csv("data/wdbc_unscaled.csv") [["Class", "Area",
<"Smoothness"]]
unscaled_cancer["Class"] = unscaled_cancer["Class"].replace ({

"M" : "Malignant",

"B" : "Benign"

9]

unscaled_cancer

Class Area Smoothness
0 Malignant 1001.0 0.11840
1 Malignant 1326.0 0.08474
2 Malignant 1203.0 0.10960
3 Malignant 386.1 0.14250
4 Malignant 1297.0 0.10030
564 Malignant 1479.0 0.11100
565 Malignant 1261.0 0.09780
566 Malignant 858.1 0.08455
567 Malignant 1265.0 0.11780
568 Benign 181.0 0.05263

[569 rows x 3 columns]

Looking at the unscaled and uncentered data above, you can see that the
differences between the values for area measurements are much larger than
those for smoothness. Will this affect predictions? In order to find out, we
will create a scatter plot of these two predictors (colored by diagnosis) for both
the unstandardized data we just loaded, and the standardized version of that
same data. But first, we need to standardize the unscaled_cancer data set
with scikit-learn.

The scikit-learn framework provides a collection of preprocessors used
to manipulate data in the preprocessing module’. Here we will use the
StandardScaler transformer to standardize the predictor variables in the
unscaled_cancer data. In order to tell the SstandardScaler which vari-
ables to standardize, we wrap it in a ColumnTransformer® object using the
make_column_transformer7 function. ColumnTransformer Objects also
enable the use of multiple preprocessors at once, which is especially handy
when you want to apply different preprocessing to each of the predictor vari-
ables. The primary argument of the make_column_transformer function
is a sequence of pairs of (1) a preprocessor, and (2) the columns to which
you want to apply that preprocessor. In the present case, we just have the
one StandardScaler preprocessor to apply to the Area and Smoothness
columns.

Shttps://scikit-learn.org/stable/modules /preprocessing.html

Shttps://scikit-learn.org/stable/modules/generated /sklearn.compose.ColumnTransfo
rmer.html#sklearn.compose.ColumnTransformer

Thttps:/ /scikit-learn.org/stable/modules/generated /sklearn.compose.make__column__t
ransformer.html#sklearn.compose.make__column__transformer

https://scikit-learn.org/stable/modules/preprocessing.html
https://scikit-learn.org/stable/modules/generated/sklearn.compose.ColumnTransformer.html#sklearn.compose.ColumnTransformer
https://scikit-learn.org/stable/modules/generated/sklearn.compose.make_column_transformer.html#sklearn.compose.make_column_transformer
https://scikit-learn.org/stable/modules/generated/sklearn.compose.ColumnTransformer.html#sklearn.compose.ColumnTransformer
https://scikit-learn.org/stable/modules/generated/sklearn.compose.make_column_transformer.html#sklearn.compose.make_column_transformer

196 CHAPTER 5. CLASSIFICATION I: TRAINING & PREDICTING

from sklearn.preprocessing import StandardScaler
from sklearn.compose import make_column_transformer

preprocessor = make_column_transformer (
(StandardScaler (), ["Area", "Smoothness"]),
)

preprocessor

ColumnTransformer (transformers=[('standardscaler', StandardScaler(),
['Area', 'Smoothness'])])

You can see that the preprocessor includes a single standardization step that
is applied to the Area and Smoothness columns. Note that here we specified
which columns to apply the preprocessing step to by individual names; this
approach can become quite difficult, e.g., when we have many predictor vari-
ables. Rather than writing out the column names individually, we can instead
use the make_column_selector® function. For example, if we wanted to
standardize all numerical predictors, we would use make_column_selector
and specify the dtype_include argument to be "number". This creates a
preprocessor equivalent to the one we created previously.

from sklearn.compose import make_column_selector

preprocessor = make_column_transformer (
(StandardScaler (), make_column_selector (dtype_include="number")),
)

preprocessor

ColumnTransformer (transformers=[('standardscaler', StandardScaler(),

<sklearn.compose._column_transformer.make_
—column_selector object at 0x7£6674290910>)1])

We are now ready to standardize the numerical predictor columns in the un-
scaled_cancer data frame. This happens in two steps. We first use the fit
function to compute the values necessary to apply the standardization (the
mean and standard deviation of each variable), passing the unscaled_cancer
data as an argument. Then we use the transform function to actually apply
the standardization. It may seem a bit unnecessary to use two steps—fit
and transform—to standardize the data. However, we do this in two steps
so that we can specify a different data set in the transform step if we want.
This enables us to compute the quantities needed to standardize using one
data set, and then apply that standardization to another data set.

preprocessor.fit (unscaled_cancer)
scaled_cancer = preprocessor.transform(unscaled_cancer)
scaled_cancer

8https://scikit-learn.org/stable/modules/generated /sklearn.compose.make column_ s
elector.html#sklearn.compose.make column__ selector

https://scikit-learn.org/stable/modules/generated/sklearn.compose.make_column_selector.html#sklearn.compose.make_column_selector
https://scikit-learn.org/stable/modules/generated/sklearn.compose.make_column_selector.html#sklearn.compose.make_column_selector

5.7. DATA PREPROCESSING WITH SCIKIT-LEARN 197

standardscaler__Area standardscaler__Smoothness

0 0.984375 1.568466
1 1.908708 -0.826962
2 1.558884 0.942210
3 -0.764464 3.283553
4 1.826229 0.280372
564 2.343856 1.041842
565 1.723842 0.102458
566 0.577953 -0.840484
567 1.735218 1.525767
568 -1.347789 -3.112085

[569 rows x 2 columns]

It looks like our Smoothness and Area variables have been standardized.
Woohoo! But there are two important things to notice about the new
scaled_cancer data frame. First, it only keeps the columns from the in-
put to transform (here, unscaled_cancer) that had a preprocessing step
applied to them. The default behavior of the ColumnTransformer that we
build using make_column_transformer is to drop the remaining columns.
This default behavior works well with the rest of sklearn (as we will see
below in Section 5.8), but for visualizing the result of preprocessing it can be
useful to keep the other columns in our original data frame, such as the Class
variable here. To keep other columns, we need to set the remainder argu-
ment to "passthrough" in the make_column_transformer function. Fur-
thermore, you can see that the new column names—*“standardscaler _ Area”
and “standardscaler Smoothness”—include the name of the preprocessing
step separated by underscores. This default behavior is useful in sklearn
because we sometimes want to apply multiple different preprocessing steps to
the same columns; but again, for visualization it can be useful to preserve the
original column names. To keep original column names, we need to set the
verbose_feature_names_out argument to False.

Note: Only specify the remainder and verbose_feature_names_out
arguments when you want to examine the result of your preprocessing step.
In most cases, you should leave these arguments at their default values.

preprocessor_keep_all = make_column_transformer (
(StandardScaler (), make_column_selector (dtype_include="number")),
remainder="passthrough",
verbose_feature_names_out=False
)
preprocessor_keep_all.fit (unscaled_cancer)
scaled_cancer_all = preprocessor_keep_all.transform(unscaled_cancer)
scaled_cancer_all

198 CHAPTER 5. CLASSIFICATION I: TRAINING & PREDICTING

Area Smoothness Class
0 0.984375 1.568466 Malignant
1 1.908708 -0.826962 Malignant
2 1.558884 0.942210 Malignant
3 -0.764464 3.283553 Malignant
4 1.826229 0.280372 Malignant
564 2.343856 1.041842 Malignant
565 1.723842 0.102458 Malignant
566 0.577953 -0.840484 Malignant
567 1.735218 1.525767 Malignant
568 —-1.347789 -3.112085 Benign

[569 rows x 3 columns]

You may wonder why we are doing so much work just to center and scale our
variables. Can’t we just manually scale and center the Area and Smoothness
variables ourselves before building our K-nearest neighbors model? Well, tech-
nically yes; but doing so is error-prone. In particular, we might accidentally
forget to apply the same centering / scaling when making predictions, or
accidentally apply a different centering / scaling than what we used while
training. Proper use of a ColumnTransformer helps keep our code simple,
readable, and error-free. Furthermore, note that using fit and transform
on the preprocessor is required only when you want to inspect the result of
the preprocessing steps yourself. You will see further on in Section 5.8 that
scikit-learn provides tools to automatically streamline the preprocesser
and the model so that you can call fit and transform on the Pipeline as
necessary without additional coding effort.

Fig. 5.9 shows the two scatter plots side-by-side—one for unscaled_cancer
and one for scaled_cancer. Each has the same new observation annotated
with its ' = 3 nearest neighbors. In the original unstandardized data plot,
you can see some odd choices for the three nearest neighbors. In particular,
the “neighbors” are visually well within the cloud of benign observations, and
the neighbors are all nearly vertically aligned with the new observation (which
is why it looks like there is only one black line on this plot). Fig. 5.10 shows
a close-up of that region on the unstandardized plot. Here the computation
of nearest neighbors is dominated by the much larger-scale area variable. The
plot for standardized data on the right in Fig. 5.9 shows a much more in-
tuitively reasonable selection of nearest neighbors. Thus, standardizing the
data can change things in an important way when we are using predictive al-
gorithms. Standardizing your data should be a part of the preprocessing you
do before predictive modeling and you should always think carefully about
your problem domain and whether you need to standardize your data.

5.7. DATA PREPROCESSING WITH SCIKIT-LEARN 199

Unstandardized data Standardized data
0.18 54 Diagnosis
Benign
0.16 4+ Malignant

Unknown
0.14

0.12

Smoothness
o o
j=] =
o o
1 |

0.06

Smoothness (standardized)

0.04

0.02 -3+

0.00

T T T T T —4 T T T T T
0 500 1,000 1,500 2,000 2,500 -1 0 1 2 3 4 5

Area Area (standardized)

FIGURE 5.9 Comparison of K = 3 nearest neighbors with unstandardized
and standardized data.

Unstandardized data

Diagnosis
0.14 Benign
Malignant
Unknown
0.13
o 012+
(0]
]
c
<
5
© 0.11-
£
(7]
0.10 -
0.09+
0.08

T T T T T T T T T 1
395 396 397 398 399 400 401 402 403 404 405
Area

FIGURE 5.10 Close-up of three nearest neighbors for unstandardized data.

200 CHAPTER 5. CLASSIFICATION I: TRAINING & PREDICTING

5.7.2 Balancing

Another potential issue in a data set for a classifier is class imbalance, i.e.,
when one label is much more common than another. Since classifiers like the
K-nearest neighbors algorithm use the labels of nearby points to predict the
label of a new point, if there are many more data points with one label overall,
the algorithm is more likely to pick that label in general (even if the “pattern”
of data suggests otherwise). Class imbalance is actually quite a common and
important problem: from rare disease diagnosis to malicious email detection,
there are many cases in which the “important” class to identify (presence
of disease, malicious email) is much rarer than the “unimportant” class (no
disease, normal email).

To better illustrate the problem, let’s revisit the scaled breast cancer data,
cancer; except now we will remove many of the observations of malignant
tumors, simulating what the data would look like if the cancer was rare. We
will do this by picking only 3 observations from the malignant group, and
keeping all of the benign observations. We choose these 3 observations using
the .head () method, which takes the number of rows to select from the top.
We will then use the concat? function from pandas to glue the two resulting
filtered data frames back together. The concat function concatenates data
frames along an axis. By default, it concatenates the data frames vertically
along axis=0 yielding a single taller data frame, which is what we want to
do here. If we instead wanted to concatenate horizontally to produce a wider
data frame, we would specify axis=1. The new imbalanced data is shown
in Fig. 5.11, and we print the counts of the classes using the value_counts
function.

rare_cancer = pd.concat ((
cancer [cancer["Class"] == "Benign"],
cancer[cancer["Class"] == "Malignant"].head(3)

))

rare_plot = alt.Chart (rare_cancer) .mark_circle () .encode (
x=alt.X ("Perimeter") .title ("Perimeter (standardized)"),
y=alt.Y("Concavity") .title("Concavity (standardized)"),
color=alt.Color("Class") .title("Diagnosis")

)

rare_plot

rare_cancer["Class"] .value_counts ()
Class
Benign 357
Malignant 3

Name: count, dtype: inté64

Yhttps://pandas.pydata.org/docs/reference/api/pandas.concat.html

https://pandas.pydata.org/docs/reference/api/pandas.concat.html

5.7 DATA PREPROCESSING WITH SCIKIT-LEARN 201

Diagnosis
4 e @ Benign
Malignant
3_
—_ °
) °
@
N
B
3 27
c °
8
) °
2.
© ° °
° °
J o °
o ol o . o'.'.
® L O‘.ﬂ . Y
® o ©
o ’ .‘.
Poc €, [°
Ll et A
b o o
T T T 1

T T T T
-2.0 -15 -1.0 -0.5 0.0 0.5 1.0 15 20
Perimeter (standardized)

FIGURE 5.11 Imbalanced data.

Suppose we now decided to use K = 7 in K-nearest neighbors classification.
With only 3 observations of malignant tumors, the classifier will always predict
that the tumor is benign, no matter what its concavity and perimeter are. This
is because in a majority vote of 7 observations, at most 3 will be malignant (we
only have 3 total malignant observations), so at least 4 must be benign, and
the benign vote will always win. For example, Fig. 5.12 shows what happens
for a new tumor observation that is quite close to three observations in the
training data that were tagged as malignant.

Fig. 5.13 shows what happens if we set the background color of each area of
the plot to the prediction the K-nearest neighbors classifier would make for
a new observation at that location. We can see that the decision is always
“benign”, corresponding to the blue color.

Despite the simplicity of the problem, solving it in a statistically sound manner
is actually fairly nuanced, and a careful treatment would require a lot more
detail and mathematics than we will cover in this textbook. For the present
purposes, it will suffice to rebalance the data by oversampling the rare class. In
other words, we will replicate rare observations multiple times in our data set
to give them more voting power in the K-nearest neighbors algorithm. In order
to do this, we will first separate the classes out into their own data frames by
filtering. Then, we will use the sample method on the rare class data frame
to increase the number of Malignant observations to be the same as the

202 CHAPTER 5. CLASSIFICATION I: TRAINING & PREDICTING

Diagnosis
4] @ Benign
Malignant
Unknown
3_
—_ °
) @
IS
B
g 2 %
c °
8
A °
2.
3 ¢ >
5 ° o L
° o
O ® o, o _°©
o & ")
o4 $e .0‘. 4

o G 0
L Tk) 3 ¢
.. .'
13 e @

T T T T T T T 1
-20 -15 -10 -05 0.0 0.5 1.0 15 20

Perimeter (standardized)

FIGURE 5.12 Imbalanced data with 7 nearest neighbors to a new observa-
tion highlighted.

Imbalanced data

Diagnosis

@ Benign
35 Malignant

4.0 U

3.0+

2.5+

2.0

1.5

1.0

Concavity (standardized)

0.5

0.0

-0.54

-1.0

T T T
-2.0 -15 -1.0 -05 0.0 0.5 1.0 15

Perimeter (standardized)

FIGURE 5.13 Imbalanced data with background color indicating the deci-
sion of the classifier and the points represent the labeled data.

5.7. DATA PREPROCESSING WITH SCIKIT-LEARN 203

number of Benign observations. We set the n argument to be the number of
Malignant observations we want, and set replace=True to indicate that we
are sampling with replacement. Finally, we use the value_counts method to
see that our classes are now balanced. Note that sample picks which data to
replicate randomly; we will learn more about properly handling randomness
in data analysis in Chapter 6.

malignant_cancer = rare_cancer[rare_cancer["Class"] == "Malignant"]

benign_cancer = rare_cancer[rare_cancer|["Class"] == "Benign"]

malignant_cancer_upsample = malignant_cancer.sample (
n=benign_cancer.shape[0], replace=True

)
upsampled_cancer = pd.concat ((malignant_cancer_upsample, benign_cancer))
upsampled_cancer["Class"] .value_counts ()

Class
Malignant 357
Benign 357

Name: count, dtype: inté64

Now suppose we train our K-nearest neighbors classifier with K = 7 on this
balanced data. Fig. 5.14 shows what happens now when we set the back-
ground color of each area of our scatter plot to the decision the K-nearest
neighbors classifier would make. We can see that the decision is more rea-
sonable; when the points are close to those labeled malignant, the classifier
predicts a malignant tumor, and vice versa when they are closer to the benign
tumor observations.

5.7.3 Missing data

One of the most common issues in real data sets in the wild is missing data,
i.e., observations where the values of some of the variables were not recorded.
Unfortunately, as common as it is, handling missing data properly is very chal-
lenging and generally relies on expert knowledge about the data, setting, and
how the data were collected. One typical challenge with missing data is that
missing entries can be informative: the very fact that an entries were missing
is related to the values of other variables. For example, survey participants
from a marginalized group of people may be less likely to respond to certain
kinds of questions if they fear that answering honestly will come with negative
consequences. In that case, if we were to simply throw away data with missing
entries, we would bias the conclusions of the survey by inadvertently removing
many members of that group of respondents. So ignoring this issue in real
problems can easily lead to misleading analyses, with detrimental impacts. In
this book, we will cover only those techniques for dealing with missing entries
in situations where missing entries are just “randomly missing”, i.e., where

204 CHAPTER 5. CLASSIFICATION I: TRAINING & PREDICTING

Diagnosis
Benign
354 Malignant

4.0+ L

3.0

2.5

2.0

1.5+

1.0+

0.5+ ® ®

Concavity (standardized)

I T
-20 -15 -10 -05 0.0 0.5 1.0 15
Perimeter (standardized)

FIGURE 5.14 Upsampled data with background color indicating the deci-
sion of the classifier.

the fact that certain entries are missing isn’t related to anything else about
the observation.

Let’s load and examine a modified subset of the tumor image data that has a
few missing entries:

missing_cancer = pd.read_csv("data/wdbc _missing.csv") [["Class", "Radius",
o"Texture", "Perimeter"]]

missing_cancer["Class"] missing_cancer["Class"].replace ({
"M" : "Malignant",
"B" . llBenign"
)
missing_cancer
Class Radius Texture Perimeter
Malignant NaN NaN 1.268817
Malignant 1.828212 -0.353322 1.684473
Malignant 1.578499 NaN 1.565126

Malignant -0.768233 0.253509 -0.592166
Malignant 1.748758 -1.150804 1.775011
Malignant -0.475956 -0.834601 -0.386808
Malignant 1.169878 0.160508 1.137124

o b WN P O

Recall that K-nearest neighbors classification makes predictions by computing
the straight-line distance to nearby training observations, and hence requires
access to the values of all variables for all observations in the training data.
So how can we perform K-nearest neighbors classification in the presence of

5.7. DATA PREPROCESSING WITH SCIKIT-LEARN 205

missing data? Well, since there are not too many observations with missing
entries, one option is to simply remove those observations prior to building the
K-nearest neighbors classifier. We can accomplish this by using the dropna
method prior to working with the data.

no_missing_cancer = missing_cancer.dropna ()
no_missing_cancer

Class Radius Texture Perimeter
Malignant 1.828212 -0.353322 1.684473
Malignant -0.768233 0.253509 -0.592166
Malignant 1.748758 -1.150804 1.775011
Malignant -0.475956 -0.834601 -0.386808
Malignant 1.169878 0.160508 1.137124

o O W

However, this strategy will not work when many of the rows have missing
entries, as we may end up throwing away too much data. In this case, another
possible approach is to impute the missing entries, i.e., fill in synthetic values
based on the other observations in the data set. One reasonable choice is
to perform mean imputation, where missing entries are filled in using the
mean of the present entries in each variable. To perform mean imputation,
we use a SimpleImputer transformer with the default arguments, and use
make_column_transformer to indicate which columns need imputation.

from sklearn.impute import SimpleImputer

preprocessor = make_column_transformer (
(SimpleImputer (), ["Radius", "Texture", "Perimeter"]),
verbose_feature_names_out=False

)

preprocessor

ColumnTransformer (transformers=[('simpleimputer', SimpleImputer (),
['Radius', 'Texture', 'Perimeter'])],
verbose_feature_names_out=False)

To visualize what mean imputation does, let’s just apply the transformer di-
rectly to the missing_cancer data frame using the fit and transform
functions. The imputation step fills in the missing entries with the mean
values of their corresponding variables.

preprocessor.fit (missing_cancer)
imputed_cancer = preprocessor.transform(missing_cancer)
imputed_cancer

Radius Texture Perimeter
.846860 -0.384942 1.268817
.828212 -0.353322 1.684473
.578499 -0.384942 1.565126
.768233 0.253509 -0.592166

w N - O
o P O

(continues on next page)

206 CHAPTER 5. CLASSIFICATION I: TRAINING & PREDICTING

(continued from previous page)

4 1.748758 -1.150804 1.775011
5 -0.475956 -0.834601 -0.386808
6 1.169878 0.160508 1.137124

Many other options for missing data imputation can be found in the
scikit-learn documentation!®. However you decide to handle missing data
in your data analysis, it is always crucial to think critically about the setting,
how the data were collected, and the question you are answering.

5.8 Putting it together in a Pipeline

The scikit-learn package collection also provides the Pipeline!!, a way to

chain together multiple data analysis steps without a lot of otherwise necessary
code for intermediate steps. To illustrate the whole workflow, let’s start from
scratch with the wdbc_unscaled.csv data. First, we will load the data,
create a model, and specify a preprocessor for the data.

load the unscaled cancer data, make Class readable
unscaled_cancer = pd.read_csv("data/wdbc_unscaled.csv")

unscaled_cancer["Class"] = unscaled_cancer["Class"].replace ({
"M" : "Malignant",
IIB" : ||Benign"

B

unscaled_cancer

create the K-NN model
knn = KNeighborsClassifier (n_neighbors=7)

create the centering / scaling preprocessor
preprocessor = make_column_transformer (

(StandardScaler (), ["Area", "Smoothness"]),
)

Next, we place these steps in a Pipeline using the make_pipeline!? func-
tion. The make_pipeline function takes a list of steps to apply in your data
analysis; in this case, we just have the preprocessor and knn steps. Fi-
nally, we call £it on the pipeline. Notice that we do not need to separately
call fit and transform on the preprocessor; the pipeline handles doing
this properly for us. Also notice that when we call fit on the pipeline, we
can pass the whole unscaled_cancer data frame to the x argument, since

Ohttps: //scikit-learn.org/stable/modules /impute.html

Hhttps:/ /scikit-learn.org/stable/modules/generated /sklearn.pipeline. Pipeline.html?high
light=pipeline#sklearn.pipeline.Pipeline

2https:/ /scikit-learn.org/stable/modules/generated /sklearn.pipeline.make_ pipeline.ht
ml#£sklearn.pipeline.make_ pipeline

https://scikit-learn.org/stable/modules/impute.html
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html?highlight=pipeline#sklearn.pipeline.Pipeline
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.make_pipeline.html#sklearn.pipeline.make_pipeline
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html?highlight=pipeline#sklearn.pipeline.Pipeline
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.make_pipeline.html#sklearn.pipeline.make_pipeline

5.8. PUTTING IT TOGETHER IN A PIPELINE 207

the preprocessing step drops all the variables except the two we listed: Area
and Smoothness. For the y response variable argument, we pass the un-
scaled_cancer["Class"] series as before.

from sklearn.pipeline import make_pipeline

knn_pipeline = make_pipeline (preprocessor, knn)
knn_pipeline. fit (
X=unscaled_cancer,
y=unscaled_cancer["Class"]
)

knn_pipeline

Pipeline (steps=[('columntransformer',
ColumnTransformer (transformers=[('standardscaler',
StandardScaler (),
['Area', 'Smoothness'])])),

('kneighborsclassifier', KNeighborsClassifier (n_
—neighbors=7))1)

As before, the fit object lists the function that trains the model. But now
the fit object also includes information about the overall workflow, including
the standardization preprocessing step. In other words, when we use the
predict function with the knn_pipeline object to make a prediction for
a new observation, it will first apply the same preprocessing steps to the
new observation. As an example, we will predict the class label of two new
observations: one with Area = 500 and Smoothness = 0.075, and one with
Area = 1500 and Smoothness = 0.1.

new_observation = pd.DataFrame ({"Area": [500, 1500], "Smoothness": [0.075, 0.11})
prediction = knn_pipeline.predict (new_observation)
prediction

array (['Benign', 'Malignant'], dtype=object)

The classifier predicts that the first observation is benign, while the second
is malignant. Fig. 5.15 visualizes the predictions that this trained K-nearest
neighbors model will make on a large range of new observations. Although you
have seen colored prediction map visualizations like this a few times now, we
have not included the code to generate them, as it is a little bit complicated.
For the interested reader who wants a learning challenge, we now include it
below. The basic idea is to create a grid of synthetic new observations using
the meshgrid function from numpy, predict the label of each, and visualize
the predictions with a colored scatter having a very high transparency (low
opacity value) and large point radius. See if you can figure out what each
line is doing.

Note: Understanding this code is not required for the remainder of the

208 CHAPTER 5. CLASSIFICATION I: TRAINING & PREDICTING

textbook. It is included for those readers who would like to use similar visu-
alizations in their own data analyses.

import numpy as np

create the grid of area/smoothness vals, and arrange in a data frame
are_grid = np.linspace (

unscaled_cancer["Area"].min() * 0.95, unscaled_cancer["Area"].max() * 1.05,.
<50
)
smo_grid = np.linspace (

unscaled_cancer["Smoothness"].min() * 0.95, unscaled_cancer["Smoothness"].
omax () * 1.05, 50
)
asgrid = np.array(np.meshgrid(are_grid, smo_grid)) .reshape(2, -1).T
asgrid = pd.DataFrame (asgrid, columns=["Area", "Smoothness"])

use the fit workflow to make predictions at the grid points
knnPredGrid = knn_pipeline.predict (asgrid)

bind the predictions as a new column with the grid points
prediction_table = asgrid.copy ()

prediction_table["Class"] = knnPredGrid

plot:

1. the colored scatter of the original data
unscaled_plot = alt.Chart (unscaled_cancer) .mark_point (

opacity=0.6,
filled=True,

size=40
) .encode (
x=alt.X ("Area")
.scale(
nice=False,
domain= (
unscaled_cancer["Area"] .min() * 0.95,
unscaled_cancer["Area"] .max () * 1.05

),
y=alt.Y ("Smoothness")

.scale(
nice=False,
domain= (
unscaled_cancer["Smoothness"] .min() * 0.95,
unscaled_cancer["Smoothness"] .max () * 1.05
)
) 14
color=alt.Color("Class") .title("Diagnosis™")

2. the faded colored scatter for the grid points
prediction_plot = alt.Chart (prediction_table) .mark_point (
opacity=0.05,
filled=True,
size=300
) .encode (
x="Area",
y="Smoothness",
color=alt.Color("Class") .title("Diagnosis™")
)
unscaled_plot + prediction_plot

5.9. EXERCISES 209

Diagnosis
o Benign
016 Malignant
0.14
°
®
o® o &
1]
9 0.12- d 5 =
2 [’ » {
< e :
E ® § e &
] Y
& o.10- k & ‘k@o .
Deop 00 -
R A
0.08- ®
®
0.06 2
°
I I I I I I I I I T T T T
200 600 1,000 1,400 1,800 2,200 2,600
Area

FIGURE 5.15 Scatter plot of smoothness versus area where background
color indicates the decision of the classifier.

5.9 Exercises

Practice exercises for the material covered in this chapter can be found in the
accompanying worksheets repository'® in the “Classification I: training and
predicting” row. You can launch an interactive version of the worksheet in
your browser by clicking the “launch binder” button. You can also preview a
non-interactive version of the worksheet by clicking “view worksheet”. If you
instead decide to download the worksheet and run it on your own machine,
make sure to follow the instructions for computer setup found in Chapter
13. This will ensure that the automated feedback and guidance that the
worksheets provide will function as intended.

Bhttps://worksheets.python.datasciencebook.ca

https://worksheets.python.datasciencebook.ca

6

Classification II: evaluation & tuning

6.1 Overview

This chapter continues the introduction to predictive modeling through classi-
fication. While the previous chapter covered training and data preprocessing,
this chapter focuses on how to evaluate the performance of a classifier, as well
as how to improve the classifier (where possible) to maximize its accuracy.

6.2 Chapter learning objectives
By the end of the chapter, readers will be able to do the following:

o Describe what training, validation, and test data sets are and how they are
used in classification.

» Split data into training, validation, and test data sets.

e Describe what a random seed is and its importance in reproducible data
analysis.

o Set the random seed in Python using the numpy.random. seed function.
o Describe and interpret accuracy, precision, recall, and confusion matrices.

o Evaluate classification accuracy, precision, and recall in Python using a test
set, a single validation set, and cross-validation.

o Produce a confusion matrix in Python.

o Choose the number of neighbors in a K-nearest neighbors classifier by max-
imizing estimated cross-validation accuracy.

o Describe underfitting and overfitting, and relate it to the number of neigh-
bors in K-nearest neighbors classification.

o Describe the advantages and disadvantages of the K-nearest neighbors clas-
sification algorithm.

DOI: 10.1201/9781003438397-6 210

https://doi.org/10.1201/9781003438397-6

6.3. EVALUATING PERFORMANCE 211

Training Set

Original Data Collected
Benign -0.39874785 -0.332451413
Benign -0.39874785 osustats Benign -0.87966023 -1.253810272
Benign -0.87966023 -1.253810272 Malignant 1987839169 -0.249719577
Malignant 1987839169 -0.249719577 / Benign -0.97490322 -1.488018741

Benign -0.97490322 -1.488018741 Malignant 1.262132653 -0.114908349
Malignant 1.262132653 -0.114908349 Benign -0.21085026 -0.245850822
Benign -0.21085026 -0.245850822

Benign -1.03994838 -0.722600455

Test Set
Malignant 1278909223 -0.031581320

Benign -0.86355473 -0.702066304 \

Benign -1.03994838 -0.722600455

Malignant -0.605339335 0.492188574
Malignant 1278909223 -0.031581320
Benign -0.86355473 -0.702066304

Malignant -0.605339335 0.492188574

FIGURE 6.1 Splitting the data into training and testing sets.

6.3 Evaluating performance

Sometimes our classifier might make the wrong prediction. A classifier does
not need to be right 100% of the time to be useful, though we don’t want
the classifier to make too many wrong predictions. How do we measure how
“good” our classifier is? Let’s revisit the breast cancer images datal [Street
et al., 1993] and think about how our classifier will be used in practice. A
biopsy will be performed on a new patient’s tumor, the resulting image will be
analyzed, and the classifier will be asked to decide whether the tumor is benign
or malignant. The key word here is new: our classifier is “good” if it provides
accurate predictions on data not seen during training, as this implies that it
has actually learned about the relationship between the predictor variables and
response variable, as opposed to simply memorizing the labels of individual
training data examples. But then, how can we evaluate our classifier without
visiting the hospital to collect more tumor images?

The trick is to split the data into a training set and test set (Fig. 6.1) and
use only the training set when building the classifier. Then, to evaluate
the performance of the classifier, we first set aside the labels from the test
set, and then use the classifier to predict the labels in the test set. If our
predictions match the actual labels for the observations in the test set, then
we have some confidence that our classifier might also accurately predict the
class labels for new observations without known class labels.

Thttps://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%
29

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29

212 CHAPTER 6. CLASSIFICATION II: EVALUATION & TUNING

Note: If there were a golden rule of machine learning, it might be this:
you cannot use the test data to build the model. If you do, the model gets to
“see” the test data in advance, making it look more accurate than it really is.
Imagine how bad it would be to overestimate your classifier’s accuracy when
predicting whether a patient’s tumor is malignant or benign.

How exactly can we assess how well our predictions match the actual labels
for the observations in the test set? One way we can do this is to calculate the
prediction accuracy. This is the fraction of examples for which the classifier
made the correct prediction. To calculate this, we divide the number of correct
predictions by the number of predictions made. The process for assessing if
our predictions match the actual labels in the test set is illustrated in Fig. 6.2.

number of correct predictions

accuracy =
Y total number of predictions

Accuracy is a convenient, general-purpose way to summarize the performance
of a classifier with a single number. But prediction accuracy by itself does not
tell the whole story. In particular, accuracy alone only tells us how often
the classifier makes mistakes in general, but does not tell us anything about
the kinds of mistakes the classifier makes. A more comprehensive view of
performance can be obtained by additionally examining the confusion ma-
trix. The confusion matrix shows how many test set labels of each type are
predicted correctly and incorrectly, which gives us more detail about the kinds

Training Set
N
Benign -0.39874785 -0.332451413 Benign -0.87966023 -1.253810272
Fit/Train Model
B -0.8796602 -1.253810272 Malignant 1.987839160 -0.249719577
enign 66023 0: ig — (e.g., K-NN)
Malignant 1987839169 -0.249719577 / Benign 097490322 -1.488018741 Test Set
Benign -og7a00%2 -1.488018741 Malignant 1262132653 -0.114308349
Malignant 1262132653 -0.114908349 Benign 021085026 -0.245850822 103994838 -0.722600455 Benign
Benign -021085026 0245850822 | 1278900223 -0.031581320 Malignant
_________________ =
Benign 103094838 -0.722600455 -0.86355473 -0.702066304 Malignant
Test Set Test Set
Malignant 1278909223 -0.031581320 -0.605339335 0492188574 Malignant
Benign 086355473 -0.702066304
Benign 103094838 -0.722600455 103094838 -0.722600455
Malignant -0.605339335 0.492188574
Malignant 1278909223 -0.031581320 =———fp 1278909223 -0.031581320
Benign 086355473 -0.702066304 086355473 -0.702066304

FIGURE 6.2 Process for

racy.

Malignant -0.605339335 0.492188574

-0.605339335 0.492188574

Compare predicted
class to measured class
to calculate accuracy

accuracy =
Y # total predictions

correct predictions

splitting the data and finding the prediction accu-

6.3. EVALUATING PERFORMANCE 213

of mistakes the classifier tends to make. Table 6.1 shows an example of what
a confusion matrix might look like for the tumor image data with a test set
of 65 observations.

TABLE 6.1 An example confusion matrix for the tumor image data.

Predicted Malignant | Predicted Benign
Actually Malignant |1 3
Actually Benign 4 Y

In the example in Table 6.1, we see that there was 1 malignant observation
that was correctly classified as malignant (top left corner), and 57 benign
observations that were correctly classified as benign (bottom right corner).
However, we can also see that the classifier made some mistakes: it classified
3 malignant observations as benign, and 4 benign observations as malignant.
The accuracy of this classifier is roughly 89%, given by the formula

number of correct predictions 1+57

= = 0.892.
total number of predictions 1+57+44+3

accuracy =

But we can also see that the classifier only identified 1 out of 4 total malignant
tumors; in other words, it misclassified 75% of the malignant cases present in
the data set. In this example, misclassifying a malignant tumor is a potentially
disastrous error, since it may lead to a patient who requires treatment not
receiving it. Since we are particularly interested in identifying malignant cases,
this classifier would likely be unacceptable even with an accuracy of 89%.

Focusing more on one label than the other is common in classification prob-
lems. In such cases, we typically refer to the label we are more interested
in identifying as the positive label, and the other as the negative label. In
the tumor example, we would refer to malignant observations as positive, and
benign observations as negative. We can then use the following terms to talk
about the four kinds of prediction that the classifier can make, corresponding
to the four entries in the confusion matrix:

o True Positive: A malignant observation that was classified as malignant
(top left in Table 6.1).

» False Positive: A benign observation that was classified as malignant (bot-
tom left in Table 6.1).

« True Negative: A benign observation that was classified as benign (bottom
right in Table 6.1).

« False Negative: A malignant observation that was classified as benign (top
right in Table 6.1).

214 CHAPTER 6. CLASSIFICATION II: EVALUATION & TUNING

A perfect classifier would have zero false negatives and false positives (and
therefore, 100% accuracy). However, classifiers in practice will almost always
make some errors. So you should think about which kinds of error are most
important in your application, and use the confusion matrix to quantify and
report them. Two commonly used metrics that we can compute using the
confusion matrix are the precision and recall of the classifier. These are often
reported together with accuracy. Precision quantifies how many of the positive
predictions the classifier made were actually positive. Intuitively, we would
like a classifier to have a high precision: for a classifier with high precision,
if the classifier reports that a new observation is positive, we can trust that
the new observation is indeed positive. We can compute the precision of a
classifier using the entries in the confusion matrix, with the formula

number of correct positive predictions

Prectslon = = Stal number of positive predictions

Recall quantifies how many of the positive observations in the test set were
identified as positive. Intuitively, we would like a classifier to have a high
recall: for a classifier with high recall, if there is a positive observation in the
test data, we can trust that the classifier will find it. We can also compute
the recall of the classifier using the entries in the confusion matrix, with the
formula

number of correct positive predictions

recall = — . .
total number of positive test set observations

In the example presented in Table 6.1, we have that the precision and recall
are

1
=0.20 Il = —— =0.25.
, reca 153

recision = ——
P 1+4
So even with an accuracy of 89%, the precision and recall of the classifier
were both relatively low. For this data analysis context, recall is particularly
important: if someone has a malignant tumor, we certainly want to identify
it. A recall of just 25% would likely be unacceptable.

Note: It is difficult to achieve both high precision and high recall at the same
time; models with high precision tend to have low recall and vice versa. As
an example, we can easily make a classifier that has perfect recall: just always
guess positive. This classifier will of course find every positive observation in
the test set, but it will make lots of false positive predictions along the way and
have low precision. Similarly, we can easily make a classifier that has perfect
precision: never guess positive. This classifier will never incorrectly identify

6.4. RANDOMNESS AND SEEDS 215

an observation as positive, but it will make a lot of false negative predictions
along the way. In fact, this classifier will have 0% recall. Of course, most real
classifiers fall somewhere in between these two extremes. But these examples
serve to show that in settings where one of the classes is of interest (i.e., there
is a positive label), there is a trade-off between precision and recall that one
has to make when designing a classifier.

6.4 Randomness and seeds

Beginning in this chapter, our data analyses will often involve the use of
randomness. We use randomness any time we need to make a decision in our
analysis that needs to be fair, unbiased, and not influenced by human input.
For example, in this chapter, we need to split a data set into a training set and
test set to evaluate our classifier. We certainly do not want to choose how to
split the data ourselves by hand, as we want to avoid accidentally influencing
the result of the evaluation. So instead, we let Python randomly split the data.
In future chapters we will use randomness in many other ways, e.g., to help
us select a small subset of data from a larger data set, to pick groupings of
data, and more.

However, the use of randomness runs counter to one of the main tenets of good
data analysis practice: reproducibility. Recall that a reproducible analysis
produces the same result each time it is run; if we include randomness in
the analysis, would we not get a different result each time? The trick is that
in Python—and other programming languages—randomness is not actually
random. Instead, Python uses a random number generator that produces a
sequence of numbers that are completely determined by a seed value. Once
you set the seed value, everything after that point may look random, but is
actually totally reproducible. As long as you pick the same seed value, you
get the same result.

Let’s use an example to investigate how randomness works in Python. Say we
have a series object containing the integers from 0 to 9. We want to randomly
pick 10 numbers from that list, but we want it to be reproducible. Before
randomly picking the 10 numbers, we call the seed function from the numpy
package, and pass it any integer as the argument. Below we use the seed
number 1. At that point, Python will keep track of the randomness that
occurs throughout the code. For example, we can call the sample method on
the series of numbers, passing the argument n=10 to indicate that we want

216 CHAPTER 6. CLASSIFICATION II: EVALUATION & TUNING

10 samples. The to_list method converts the resulting series into a basic
Python list to make the output easier to read.

import numpy as np
import pandas as pd

np.random. seed (1)
nums_0_to_9 = pd.Series ([0, 1, 2, 3, 4, 5, 6, 7, 8, 91)

random_numbersl = nums_0_to_9.sample (n=10) .to_list ()
random_numbersl

You can see that random_numbers1 is a list of 10 numbers from 0 to 9 that,
from all appearances, looks random. If we run the sample method again, we
will get a fresh batch of 10 numbers that also look random.

random_numbers2 = nums_0_to_9.sample (n=10) .to_list ()
random_numbers2

If we want to force Python to produce the same sequences of random numbers,
we can simply call the np.random. seed function with the seed value 1—the
same as before—and then call the sample method again.

np.random.seed (1)
random_numbersl_again = nums_0_to_9.sample(n=10) .to_list ()
random_numbersl_again

random_numbers2_again = nums_0_to_9.sample (n=10) .to_list ()
random_numbers2_again

(9 5, 3, 0, 8 4, 2, 1, 6, 7]

Notice that after calling np.random.seed, we get the same two se-
quences of numbers in the same order. random_numbersl and ran-
dom_numbersi_again produce the same sequence of numbers, and the same
can be said about random_numbers2 and random_numbers2_again. And
if we choose a different value for the seed—say, 4235—we obtain a different
sequence of random numbers.

np.random.seed (4235)

random_numbersl_different = nums_0_to_9.sample(n=10) .to_list ()
random_numbersl_different

6.4. RANDOMNESS AND SEEDS 217

random_numbers2_different = nums_0_to_9.sample(n=10) .to_list ()
random_numbers2_different

6, 0, 1, 3, 2, 8 4, 9, 5, 7]

In other words, even though the sequences of numbers that Python is gener-
ating look random, they are totally determined when we set a seed value.

So what does this mean for data analysis? Well, sample is certainly not the
only place where randomness is used in Python. Many of the functions that
we use in scikit-learn and beyond use randomness—some of them without
even telling you about it. Also note that when Python starts up, it creates
its own seed to use. So if you do not explicitly call the np.random.seed
function, your results will likely not be reproducible. Finally, be careful to
set the seed only once at the beginning of a data analysis. Each time you
set the seed, you are inserting your own human input, thereby influencing the
analysis. For example, if you use the sample many times throughout your
analysis but set the seed each time, the randomness that Python uses will not
look as random as it should.

In summary: if you want your analysis to be reproducible, i.e., produce the
same result each time you run it, make sure to use np.random.seed ex-
actly once at the beginning of the analysis. Different argument values in
np.random. seed will lead to different patterns of randomness, but as long
as you pick the same value your analysis results will be the same. In the
remainder of the textbook, we will set the seed once at the beginning of each
chapter.

Note: When you use np.random.seed, you are really setting the seed
for the numpy package’s default random number generator. Using the global
default random number generator is easier than other methods, but has some
potential drawbacks. For example, other code that you may not notice (e.g.,
code buried inside some other package) could potentially also call np. random.
seed, thus modifying your analysis in an undesirable way. Furthermore, not
all functions use numpy’s random number generator; some may use another
one entirely. In that case, setting np.random.seed may not actually make
your whole analysis reproducible.

In this book, we will generally only use packages that play nicely with numpy’s
default random number generator, so we will stick with np.random.seed.
You can achieve more careful control over randomness in your analysis by

218 CHAPTER 6. CLASSIFICATION II: EVALUATION & TUNING

creating a numpy Generator object? once at the beginning of your analy-
sis, and passing it to the random_state argument that is available in many
pandas and scikit-learn functions. Those functions will then use your
Generator to generate random numbers instead of numpy’s default genera-
tor. For example, we can reproduce our earlier example by using a Generator
object with the seed value set to 1; we get the same lists of numbers once
again.

from numpy.random import Generator, PCG64

rng = Generator (PCG64 (seed=1))

random_numbersl_third = nums_0_to_9.sample (n=10, random_state=rng) .to_list ()
random_numbersl_third

array([2, 9, 6, 4, 0, 3, 1, 7, 8, 5])

random_numbers2_third = nums_0_to_9.sample (n=10, random_state=rng) .to_list ()
random_numbers2_third

6.5 Evaluating performance with scikit-learn

Back to evaluating classifiers now. In Python, we can use the scikit-learn
package not only to perform K-nearest neighbors classification, but also to
assess how well our classification worked. Let’s work through an example of
how to use tools from scikit-learn to evaluate a classifier using the breast
cancer data set from the previous chapter. We begin the analysis by loading
the packages we require, reading in the breast cancer data, and then making
a quick scatter plot visualization of tumor cell concavity versus smoothness
colored by diagnosis in Fig. 6.3. You will also notice that we set the random
seed using the np.random. seed function, as described in Section 6.4.

load packages

import altair as alt

import pandas as pd

from sklearn import set_config

Output dataframes instead of arrays
set_config(transform_output="pandas")

set the seed
np.random. seed (1)

(continues on next page)

2https://numpy.org/doc/stable/reference /random/generator.html

https://numpy.org/doc/stable/reference/random/generator.html

6.5. EVALUATING PERFORMANCE WITH SCIKIT-LEARN 219

0457 Diagnosis
° @ Benign
0.40 - Malignant
0.35 -
° L]
0.30 °
.
£025- .
S ° & 8
c 2 [
8 0.20+ e, O°
@ PPN ¢
0.15- P Cooge of 8
[]
0.10 o o © O ‘0 ®
[]
[]
0.05- ~
[] ° °
0.00- T T T
0.06 0.08 0.10 0.12 0.14 0.16
Smoothness

FIGURE 6.3 Scatter plot of tumor cell concavity versus smoothness colored
by diagnosis label.

(continued from previous page)

load data
cancer = pd.read_csv("data/wdbc_unscaled.csv")
re—-label Class "M" as "Malignant", and Class "B" as "Benign"

cancer["Class"] = cancer["Class"].replace ({
"M" : "Malignant",
"Bll . llBenign"

H)

create scatter plot of tumor cell concavity versus smoothness,
labeling the points be diagnosis class

perim_concav = alt.Chart (cancer) .mark_circle () .encode (
x=alt.X ("Smoothness") .scale (zero=False),
y="Concavity",
color=alt.Color ("Class") .title("Diagnosis")

)

perim_concav

6.5.1 Create the train / test split

Once we have decided on a predictive question to answer and done some
preliminary exploration, the very next thing to do is to split the data into the
training and test sets. Typically, the training set is between 50% and 95% of
the data, while the test set is the remaining 5% to 50%; the intuition is that
you want to trade off between training an accurate model (by using a larger

220 CHAPTER 6. CLASSIFICATION II: EVALUATION & TUNING

training data set) and getting an accurate evaluation of its performance (by
using a larger test data set). Here, we will use 75% of the data for training,
and 25% for testing.

The train_test_split function from scikit-learn handles the procedure
of splitting the data for us. We can specify two very important parameters
when using train_test_split to ensure that the accuracy estimates from
the test data are reasonable. First, setting shuffle=True (which is the de-
fault) means the data will be shuffled before splitting, which ensures that any
ordering present in the data does not influence the data that ends up in the
training and testing sets. Second, by specifying the stratify parameter to
be the response variable in the training set, it stratifies the data by the class
label, to ensure that roughly the same proportion of each class ends up in
both the training and testing sets. For example, in our data set, roughly 63%
of the observations are from the benign class (Benign), and 37% are from the
malignant class (Malignant), so specifying stratify as the class column
ensures that roughly 63% of the training data are benign, 37% of the training
data are malignant, and the same proportions exist in the testing data.

Let’s use the train_test_split function to create the training and testing
sets. We first need to import the function from the sklearn package. Then
we will specify that train_size=0.75 so that 75% of our original data set
ends up in the training set. We will also set the stratify argument to
the categorical label variable (here, cancer["Class"]) to ensure that the
training and testing subsets contain the right proportions of each category of
observation.

from sklearn.model_selection import train_test_split

cancer_train, cancer_test = train_test_split (
cancer, train_size=0.75, stratify=cancer["Class"]
)

cancer_train.info ()

<class 'pandas.core.frame.DataFrame'>
Index: 426 entries, 196 to 296
Data columns (total 12 columns):

Column Non-Null Count Dtype

0 ID 426 non-null int64

1 Class 426 non-null object
2 Radius 426 non-null float64
3 Texture 426 non-null float64
4 Perimeter 426 non-null float64
5 Area 426 non-null float64
6 Smoothness 426 non-null float64
7 Compactness 426 non-null float64
8 Concavity 426 non-null float64
9 Concave_Points 426 non-null floato4d
10 Symmetry 426 non-null float64

(continues on next page)

6.5. EVALUATING PERFORMANCE WITH SCIKIT-LEARN 221

(continued from previous page)

11 Fractal_Dimension 426 non-null floatoe4
dtypes: float64(10), int64 (1), object (1)
memory usage: 43.3+ KB

cancer_test.info ()

<class 'pandas.core.frame.DataFrame'>
Index: 143 entries, 116 to 15
Data columns (total 12 columns):

Column Non-Null Count Dtype

0 ID 143 non-null int64

1 Class 143 non-null object
2 Radius 143 non-null float64
3 Texture 143 non-null float64
4 Perimeter 143 non-null float64
5 Area 143 non-null float64
6 Smoothness 143 non-null float64
7 Compactness 143 non-null float64
8 Concavity 143 non-null float64d
9 Concave_Points 143 non-null floato4d
10 Symmetry 143 non-null float64
11 Fractal_Dimension 143 non-null floato4d

dtypes: float64(10), int64 (1), object (1)
memory usage: 14.5+ KB

We can see from the info method above that the training set contains 426
observations, while the test set contains 143 observations. This corresponds
to a train / test split of 756% / 25%, as desired. Recall from Chapter 5 that
we use the info method to preview the number of rows, the variable names,
their data types, and missing entries of a data frame.

We can use the value_counts method with the normalize argument set to
True to find the percentage of malignant and benign classes in cancer_train.
We see about 63% of the training data are benign and 37% are malignant,
indicating that our class proportions were roughly preserved when we split
the data.

cancer_train["Class"].value_counts (normalize=True)
Class
Benign 0.626761
Malignant 0.373239

Name: proportion, dtype: float64

6.5.2 Preprocess the data

As we mentioned in the last chapter, K-nearest neighbors is sensitive to the
scale of the predictors, so we should perform some preprocessing to standardize

222 CHAPTER 6. CLASSIFICATION II: EVALUATION & TUNING

them. An additional consideration we need to take when doing this is that
we should create the standardization preprocessor using only the training
data. This ensures that our test data does not influence any aspect of our
model training. Once we have created the standardization preprocessor, we
can then apply it separately to both the training and test data sets.

Fortunately, scikit—-learn helps us handle this properly as long as we wrap
our analysis steps in a Pipeline, as in Chapter 5. So below we construct and
prepare the preprocessor using make_column_transformer just as before.

from sklearn.preprocessing import StandardScaler
from sklearn.compose import make_column_transformer

cancer_preprocessor = make_column_transformer (
(StandardScaler (), ["Smoothness", "Concavity"]),

)

6.5.3 Train the classifier

Now that we have split our original data set into training and test sets, we can
create our K-nearest neighbors classifier with only the training set using the
technique we learned in the previous chapter. For now, we will just choose the
number K of neighbors to be 3, and use only the concavity and smoothness
predictors by selecting them from the cancer_train data frame. We will
first import the KNeighborsClassifier model and make_pipeline from
sklearn. Then as before we will create a model object, combine the model
object and preprocessor into a Pipeline using the make_pipeline function,
and then finally use the £it method to build the classifier.

from sklearn.neighbors import KNeighborsClassifier
from sklearn.pipeline import make_pipeline

knn = KNeighborsClassifier (n_neighbors=3)

X = cancer_train[["Smoothness", "Concavity"]]
y = cancer_train["Class"]

knn_pipeline = make_pipeline (cancer_preprocessor, knn)
knn_pipeline.fit (X, y)

knn_pipeline

Pipeline (steps=[('columntransformer',
ColumnTransformer (transformers=[('standardscaler',
StandardScaler (),
["Smoothness"',
'Concavity'l)1)),

('kneighborsclassifier', KNeighborsClassifier (n_
—neighbors=3))1)

6.5. EVALUATING PERFORMANCE WITH SCIKIT-LEARN 223

6.5.4 Predict the labels in the test set

Now that we have a K-nearest neighbors classifier object, we can use it to
predict the class labels for our test set and augment the original test data
with a column of predictions. The Class variable contains the actual diag-
noses, while the predicted contains the predicted diagnoses from the clas-
sifier. Note that below we print out just the ID, Class, and predicted
variables in the output data frame.

cancer_test["predicted"] = knn_pipeline.predict (cancer_test[["Smoothness",

<"Concavity"]])

cancer_test[["ID", "Class", "predicted"]]

D Class predicted

116 864726 Benign Malignant
146 869691 Malignant Malignant
86 86135501 Malignant Malignant
12 846226 Malignant Malignant
105 863030 Malignant Malignant
244 884180 Malignant Malignant
23 851509 Malignant Malignant
125 86561 Benign Benign
281 8912055 Benign Benign

15 84799002 Malignant Malignant

[143 rows x 3 columns]

6.5.5 Evaluate performance

Finally, we can assess our classifier’s performance. First, we will examine
accuracy. To do this we will use the score method, specifying two arguments:
predictors and the actual labels. We pass the same test data for the predictors
that we originally passed into predict when making predictions, and we
provide the actual labels via the cancer_test ["Class"] series.

knn_pipeline.score (
cancer_test|[["Smoothness", "Concavity"l],
cancer_test["Class"]

0.8951048951048951

The output shows that the estimated accuracy of the classifier on the test
data was 90%. To compute the precision and recall, we can use the preci-
sion_score and recall_score functions from scikit-learn. We specify
the true labels from the Class variable as the y_t rue argument, the predicted
labels from the predicted variable as the y_pred argument, and which label
should be considered to be positive via the pos_label argument.

224 CHAPTER 6. CLASSIFICATION II: EVALUATION & TUNING

from sklearn.metrics import recall_score, precision_score

precision_score (
y_true=cancer_test["Class"],
y_pred=cancer_test ["predicted"],
pos_label="Malignant"

0.8275862068965517

recall_score(
y_true=cancer_test["Class"],
y_pred=cancer_test ["predicted"],
pos_label="Malignant"

0.9056603773584906

The output shows that the estimated precision and recall of the classifier on
the test data was 83% and 91%, respectively. Finally, we can look at the
confusion matriz for the classifier using the crosstab function from pandas.
The crosstab function takes two arguments: the actual labels first, then the
predicted labels second. Note that crosstab orders its columns alphabeti-
cally, but the positive label is still Malignant, even if it is not in the top left
corner as in the example confusion matrix earlier in this chapter.

pd.crosstab (

cancer_test["Class"],
cancer_test ["predicted"]

predicted Benign Malignant

Class
Benign 80 10
Malignant 5 48

The confusion matrix shows 48 observations were correctly predicted as ma-
lignant, and 80 were correctly predicted as benign. It also shows that the
classifier made some mistakes; in particular, it classified 5 observations as be-
nign when they were actually malignant, and 10 observations as malignant
when they were actually benign. Using our formulas from earlier, we see that
the accuracy, precision, and recall agree with what Python reported.

number of correct predictions 80 + 48 80.51
accuracy = — — 39
Y total number of predictions 80+484+ 1045
o number of correct positive predictions 48
precision = — — = = 82.76
total number of positive predictions 48 + 10
recall — number of correct positive predictions 48 9057

total number of positive test set observations T 48 +5

6.5. EVALUATING PERFORMANCE WITH SCIKIT-LEARN 225

6.5.6 Critically analyze performance

We now know that the classifier was 90% accurate on the test data set, and
had a precision of 83% and a recall of 91%. That sounds pretty good! Wait,
is it good? Or do we need something higher?

In general, a good value for accuracy (as well as precision and recall, if applica-
ble) depends on the application; you must critically analyze your accuracy in
the context of the problem you are solving. For example, if we were building
a classifier for a kind of tumor that is benign 99% of the time, a classifier
with 99% accuracy is not terribly impressive (just always guess benign!). And
beyond just accuracy, we need to consider the precision and recall: as men-
tioned earlier, the kind of mistake the classifier makes is important in many
applications as well. In the previous example with 99% benign observations,
it might be very bad for the classifier to predict “benign” when the actual
class is “malignant” (a false negative), as this might result in a patient not
receiving appropriate medical attention. In other words, in this context, we
need the classifier to have a high recall. On the other hand, it might be less
bad for the classifier to guess “malignant” when the actual class is “benign” (a
false positive), as the patient will then likely see a doctor who can provide an
expert diagnosis. In other words, we are fine with sacrificing some precision
in the interest of achieving high recall. This is why it is important not only
to look at accuracy, but also the confusion matrix.

However, there is always an easy baseline that you can compare to for any
classification problem: the majority classifier. The majority classifier always
guesses the majority class label from the training data, regardless of the pre-
dictor variables’ values. It helps to give you a sense of scale when considering
accuracies. If the majority classifier obtains a 90% accuracy on a problem,
then you might hope for your K-nearest neighbors classifier to do better than
that. If your classifier provides a significant improvement upon the major-
ity classifier, this means that at least your method is extracting some useful
information from your predictor variables. Be careful though: improving on
the majority classifier does not necessarily mean the classifier is working well
enough for your application.

As an example, in the breast cancer data, recall the proportions of benign and
malignant observations in the training data are as follows:

cancer_train["Class"].value_counts (normalize=True)
Class
Benign 0.626761
Malignant 0.373239

Name: proportion, dtype: floaté64

226 CHAPTER 6. CLASSIFICATION II: EVALUATION & TUNING

Since the benign class represents the majority of the training data, the ma-
jority classifier would always predict that a new observation is benign. The
estimated accuracy of the majority classifier is usually fairly close to the ma-
jority class proportion in the training data. In this case, we would suspect
that the majority classifier will have an accuracy of around 63%. The K-
nearest neighbors classifier we built does quite a bit better than this, with an
accuracy of 90%. This means that from the perspective of accuracy, the K-
nearest neighbors classifier improved quite a bit on the basic majority classifier.
Hooray! But we still need to be cautious; in this application, it is likely very
important not to misdiagnose any malignant tumors to avoid missing patients
who actually need medical care. The confusion matrix above shows that the
classifier does, indeed, misdiagnose a significant number of malignant tumors
as benign (5 out of 53 malignant tumors, or 9%!). Therefore, even though the
accuracy improved upon the majority classifier, our critical analysis suggests
that this classifier may not have appropriate performance for the application.

6.6 Tuning the classifier

The vast majority of predictive models in statistics and machine learning have
parameters. A parameter is a number you have to pick in advance that deter-
mines some aspect of how the model behaves. For example, in the K-nearest
neighbors classification algorithm, K is a parameter that we have to pick
that determines how many neighbors participate in the class vote. By pick-
ing different values of K, we create different classifiers that make different
predictions.

So then, how do we pick the best value of K, i.e., tune the model? And is
it possible to make this selection in a principled way? In this book, we will
focus on maximizing the accuracy of the classifier. Ideally, we want somehow
to maximize the accuracy of our classifier on data it hasn’t seen yet. But we
cannot use our test data set in the process of building our model. So we will
play the same trick we did before when evaluating our classifier: we’ll split
our training data itself into two subsets, use one to train the model, and then
use the other to evaluate it. In this section, we will cover the details of this
procedure, as well as how to use it to help you pick a good parameter value
for your classifier.

And remember: don’t touch the test set during the tuning process. Tuning
is a part of model training.

6.6. TUNING THE CLASSIFIER 227

6.6.1 Cross-validation

The first step in choosing the parameter K is to be able to evaluate the
classifier using only the training data. If this is possible, then we can compare
the classifier’s performance for different values of K—and pick the best—using
only the training data. As suggested at the beginning of this section, we will
accomplish this by splitting the training data, training on one subset, and
evaluating on the other. The subset of training data used for evaluation is
often called the validation set.

There is, however, one key difference from the train/test split that we per-
formed earlier. In particular, we were forced to make only a single split of
the data. This is because at the end of the day, we have to produce a sin-
gle classifier. If we had multiple different splits of the data into training and
testing data, we would produce multiple different classifiers. But while we are
tuning the classifier, we are free to create multiple classifiers based on multiple
splits of the training data, evaluate them, and then choose a parameter value
based on all of the different results. If we just split our overall training data
once, our best parameter choice will depend strongly on whatever data was
lucky enough to end up in the validation set. Perhaps using multiple different
train/validation splits, we'll get a better estimate of accuracy, which will lead
to a better choice of the number of neighbors K for the overall set of training
data.

Let’s investigate this idea in Python. In particular, we will generate five
different train/validation splits of our overall training data, train five different
K-nearest neighbors models, and evaluate their accuracy. We will start with
just a single split.

create the 25/75 split of the *training data* into sub-training and validation
cancer_subtrain, cancer_validation = train_test_split(
cancer_train, train_size=0.75, stratify=cancer_train["Class"]

)

fit the model on the sub-training data

knn = KNeighborsClassifier (n_neighbors=3)

X = cancer_subtrain[["Smoothness", "Concavity"]]

y = cancer_subtrain["Class"]

knn_pipeline = make_pipeline (cancer_preprocessor, knn)
knn_pipeline.fit (X, vy)

compute the score on validation data
acc = knn_pipeline.score (
cancer_validation|[["Smoothness", "Concavity"]],

cancer_validation["Class"]

acc

0.897196261682243

228 CHAPTER 6. CLASSIFICATION II: EVALUATION & TUNING

The accuracy estimate using this split is 89.7%. Now we repeat the above
code 4 more times, which generates 4 more splits. Therefore we get five dif-
ferent shuffles of the data, and therefore five different values for accuracy:
[89.7%, 88.8%, 87.9%, 86.0%, 87.9%]. None of these values are necessarily
“more correct” than any other; they're just five estimates of the true, under-
lying accuracy of our classifier built using our overall training data. We can
combine the estimates by taking their average (here 88.0%) to try to get a
single assessment of our classifier’s accuracy; this has the effect of reducing
the influence of any one (un)lucky validation set on the estimate.

In practice, we don’t use random splits, but rather use a more structured split-
ting procedure so that each observation in the data set is used in a validation
set only a single time. The name for this strategy is cross-validation. In
cross-validation, we split our overall training data into C evenly sized
chunks. Then, iteratively use 1 chunk as the validation set and combine
the remaining C' — 1 chunks as the training set. This procedure is shown in
Fig. 6.4. Here, C' = 5 different chunks of the data set are used, resulting in 5
different choices for the validation set; we call this 5-fold cross-validation.

v Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
2166
Mokt odstsss arrars
2216001 v289747 Validation Training Training Training Training
a0 1asce
tovsis o
o7 osirze
B T wws | BRI T
senion a7z
oscer:

06355 070207 Training Validation Training Training Training

000474

Benign o482 1140845 Training Training Validation Training Training

0624144 0135073

. ousts oz
Benion ossast tser Training Training Training Validation Training

Benign 4698536

080666

027877
0.48838

Training Training Training Training Validation

0051344

080538

Malignant 0510063 1.274867

accuracy, accuracy, accuracy, accuracy, accuracy,

accuracy, + accuracy, + accuracy, + accuracy, + accuracy,

#folds

cross validation accuracy =

FIGURE 6.4 5-fold cross-validation.

6.6. TUNING THE CLASSIFIER 229

To perform 5-fold cross-validation in Python with scikit-learn, we use
another function: cross_validate. This function requires that we specify
a modelling Pipeline as the estimator argument, the number of folds as
the cv argument, and the training data predictors and labels as the X and vy
arguments. Since the cross_validate function outputs a dictionary, we use
pd.DataFrame to convert it to a pandas data frame for better visualization.
Note that the cross_validate function handles stratifying the classes in
each train and validate fold automatically.

from sklearn.model_selection import cross_validate

knn = KNeighborsClassifier (n_neighbors=3)
cancer_pipe = make_pipeline (cancer_preprocessor, knn)
X = cancer_train[["Smoothness", "Concavity"]]
y = cancer_train["Class"]
cv_5_df = pd.DataFrame (
cross_validate (

estimator=cancer_pipe,

cv=5,

X=X,

Y=y

cv_5_df

fit_time score_time test_score

0 0.007128 0.009620 0.837209
1 0.006880 0.009117 0.870588
2 0.006588 0.009156 0.894118
3 0.006859 0.009262 0.870588
4 0.006076 0.009073 0.882353

The validation scores we are interested in are contained in the test_score
column. We can then aggregate the mean and standard error of the classifier’s
validation accuracy across the folds. You should consider the mean (mean) to
be the estimated accuracy, while the standard error (sem) is a measure of
how uncertain we are in that mean value. A detailed treatment of this is
beyond the scope of this chapter; but roughly, if your estimated mean is 0.87
and standard error is 0.01, you can expect the true average accuracy of the
classifier to be somewhere roughly between 86% and 88% (although it may
fall outside this range). You may ignore the other columns in the metrics data
frame.

cv_5_metrics = cv_5_df.agg(["mean", "sem"])
cv_5_metrics

fit_time score_time test_score
mean 0.006706 0.009246 0.870971
sem 0.000179 0.000099 0.009501

230 CHAPTER 6. CLASSIFICATION II: EVALUATION & TUNING

We can choose any number of folds, and typically the more we use the better
our accuracy estimate will be (lower standard error). However, we are limited
by computational power: the more folds we choose, the more computation it
takes, and hence the more time it takes to run the analysis. So when you
do cross-validation, you need to consider the size of the data, the speed of
the algorithm (e.g., K-nearest neighbors), and the speed of your computer.
In practice, this is a trial-and-error process, but typically C' is chosen to be
either 5 or 10. Here we will try 10-fold cross-validation to see if we get a lower
standard error.

cv_10 = pd.DataFrame (
cross_validate (
estimator=cancer_pipe,
cv=10,
X=X,
Y=y

)

cv_10_df = pd.DataFrame (cv_10)
cv_10_metrics = cv_10_df.agg(["mean", "sem"])
cv_10_metrics

fit_time score_time test_score
mean 0.006202 0.007249 0.884939
sem 0.000178 0.000156 0.006718

In this case, using 10-fold instead of 5-fold cross validation did reduce the
standard error very slightly. In fact, due to the randomness in how the data
are split, sometimes you might even end up with a higher standard error when
increasing the number of folds. We can make the reduction in standard error
more dramatic by increasing the number of folds by a large amount. In the
following code we show the result when C' = 50; picking such a large number
of folds can take a long time to run in practice, so we usually stick to 5 or 10.

cv_50_df = pd.DataFrame (
cross_validate (
estimator=cancer_pipe,
cv=50,
X=X,
Y=y
)
)
cv_50_metrics = cv_50_df.agg(["mean", "sem"])
cv_50_metrics

fit_time score_time test_score
mean 0.006529 0.005576 0.888056
sem 0.000104 0.000099 0.003005

6.6. TUNING THE CLASSIFIER 231

6.6.2 Parameter value selection

Using 5- and 10-fold cross-validation, we have estimated that the prediction
accuracy of our classifier is somewhere around 88%. Whether that is good
or not depends entirely on the downstream application of the data analysis.
In the present situation, we are trying to predict a tumor diagnosis, with
expensive, damaging chemo/radiation therapy or patient death as potential
consequences of misprediction. Hence, we might like to do better than 88%
for this application.

In order to improve our classifier, we have one choice of parameter: the number
of neighbors, K. Since cross-validation helps us evaluate the accuracy of
our classifier, we can use cross-validation to calculate an accuracy for each
value of K in a reasonable range, and then pick the value of K that gives us
the best accuracy. The scikit-learn package collection provides built-in
functionality, named GridSearchCV, to automatically handle the details for
us. Before we use GridSearchCv, we need to create a new pipeline with a
KNeighborsClassifier that has the number of neighbors left unspecified.

knn = KNeighborsClassifier ()
cancer_tune_pipe = make_pipeline (cancer_preprocessor, knn)

Next, we specify the grid of parameter values that we want to try for each
tunable parameter. We do this in a Python dictionary: the key is the identifier
of the parameter to tune, and the value is a list of parameter values to try when
tuning. We can find the “identifier” of a parameter by using the get_params
method on the pipeline.

cancer_tune_pipe.get_params ()

{'memory': None,
'steps': [('columntransformer',
ColumnTransformer (transformers=[('standardscaler', StandardScaler (),
['Smoothness', 'Concavity']l)l)),
('kneighborsclassifier', KNeighborsClassifier())],
'verbose': False,
'columntransformer': ColumnTransformer (transformers=[('standardscaler', .
—~StandardScaler (),
['Smoothness', 'Concavity'l)l),

'kneighborsclassifier': KNeighborsClassifier(),
'columntransformer__n_jobs': None,
'columntransformer__remainder': 'drop',
'columntransformer__sparse_threshold': 0.3,
'columntransformer__transformer_weights': None,

'columntransformer__transformers': [('standardscaler',
StandardScaler (),
['Smoothness', 'Concavity'])l],
'columntransformer_ verbose': False,
'columntransformer__ verbose_feature_names_out': True,
'columntransformer_ standardscaler': StandardScaler (),

'columntransformer__standardscaler_ _copy': True,

(continues on next page)

232 CHAPTER 6. CLASSIFICATION II: EVALUATION & TUNING

(continued from previous page)

'columntransformer___standardscaler_ with_mean': True,
'columntransformer_ standardscaler_ with_std': True,
'kneighborsclassifier__algorithm': 'auto',
'kneighborsclassifier_ leaf _size': 30,
'kneighborsclassifier_ _metric': 'minkowski',

'kneighborsclassifier_metric_params': None,
'kneighborsclassifier__n_jobs': None,

'kneighborsclassifier_ n _neighbors': 5,
'kneighborsclassifier__p': 2,
'kneighborsclassifier_ _weights': 'uniform'}

Wow, there’s quite a bit of stuff there! If you sift through the muck a little bit,
you will see one parameter identifier that stands out: "kneighborsclassi-
fier_ n_neighbors". This identifier combines the name of the K nearest
neighbors classification step in our pipeline, kneighborsclassifier, with
the name of the parameter, n_neighbors. We now construct the param-
eter_grid dictionary that will tell GridSearchCv what parameter values
to try. Note that you can specify multiple tunable parameters by creating a
dictionary with multiple key-value pairs, but here we just have to tune the
number of neighbors.

parameter_grid = {
"kneighborsclassifier_ _n_neighbors": range (1, 100, 5),

t

The range function in Python that we used above allows us to specify a
sequence of values. The first argument is the starting number (here, 1), the
second argument is one greater than the final number (here, 100), and the
third argument is the number to values to skip between steps in the sequence
(here, 5). So in this case we generate the sequence 1, 6, 11, 16, ..., 96. If we
instead specified range (0, 100, 5), we would get the sequence 0, 5, 10,
15, .., 90, 95. The number 100 is not included because the third argument
is one greater than the final possible number in the sequence. There are
two additional useful ways to employ range. If we call range with just one
argument, Python counts up to that number starting at 0. So range (4) is
the same as range (0, 4, 1) and generates the sequence 0, 1, 2, 3. If we call
range with two arguments, Python counts starting at the first number up to
the second number. So range (1, 4) is the same as range (1, 4, 1) and
generates the sequence 1, 2, 3.

Okay! We are finally ready to create the GridSearchCv object. First,
we import it from the sklearn package. Then we pass it the can-
cer_tune_pipe pipeline in the estimator argument, the parameter_grid
in the param_grid argument, and specify cv=10 folds. Note that this does
not actually run the tuning yet; just as before, we will have to use the fit
method.

6.6. TUNING THE CLASSIFIER 233

from sklearn.model_selection import GridSearchCV

cancer_tune_grid = GridSearchCV (
estimator=cancer_tune_pipe,
param_grid=parameter_grid,
cv=10

Now we use the £it method on the GridSearchCV object to begin the tuning
process. We pass the training data predictors and labels as the two arguments
to fit as usual. The cv_results_ attribute of the output contains the
resulting cross-validation accuracy estimate for each choice of n_neighbors,
but it isn’t in an easily used format. We will wrap it in a pd.DataFrame to
make it easier to understand, and print the info of the result.

cancer_tune_grid. fit (
cancer_train[["Smoothness", "Concavity"l1],
cancer_train["Class"]
)
accuracies_grid = pd.DataFrame (cancer_tune_grid.cv_results_)
accuracies_grid.info ()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20 entries, 0 to 19
Data columns (total 19 columns):

Column Non-Null Count Dtype

0 mean_fit_time 20 non-null float64
1 std_fit_time 20 non-null floato4
2 mean_score_time 20 non-null floato64
3 std_score_time 20 non-null floato4
4 param_kneighborsclassifier n neighbors 20 non-null object
5 params 20 non-null object
6 splitO_test_score 20 non-null floato4d
7 splitl_test_score 20 non-null floato4d
8 split2_test_score 20 non-null floato4
9 split3_test_score 20 non-null floato64
10 split4_test_score 20 non-null floato4
11 split5_test_score 20 non-null float64
12 split6_test_score 20 non-null floato4d
13 split7_test_score 20 non-null float64
14 split8_test_score 20 non-null float64
15 split9_test_score 20 non-null floato4
16 mean_test_score 20 non-null float64
17 std_test_score 20 non-null floato4
18 rank_test_score 20 non-null int32

dtypes: float64(16), int32(1), object(2)
memory usage: 3.0+ KB

There is a lot of information to look at here, but we are
most interested in three quantities: the number of neighbors
(param_kneighbors_classifier n_neighbors), the cross-validation
accuracy estimate (mean_test_score), and the standard error of the
accuracy estimate. Unfortunately Gridsearchcv does not directly output
the standard error for each cross-validation accuracy; but it does output the

234 CHAPTER 6. CLASSIFICATION II: EVALUATION & TUNING

standard deviation (std_test_score). We can compute the standard error
from the standard deviation by dividing it by the square root of the number
of folds, i.e.,

Standard Deviation
v/ Number of Folds

Standard Error =

We will also rename the parameter name column to be a bit more readable,
and drop the now unused std_test_score column.

accuracies_grid["sem_test_score"] = accuracies_grid["std_test_score"] / 10**(1/2)
accuracies_grid = (
accuracies_gridl[[
"param_kneighborsclassifier__n_neighbors",
"mean_test_score",
"sem_test_score"
11
.rename (columns={"param_kneighborsclassifier__n_neighbors": "n_neighbors"})
)

accuracies_grid

n_neighbors mean_test_score sem_test_score

0 1 0.845127 0.019966
1 6 0.873200 0.015680
2 11 0.861517 0.019547
3 16 0.861573 0.017787
4 21 0.866279 0.017889
5 26 0.875637 0.016026
6 31 0.885050 0.015406
7 36 0.887375 0.013694
8 41 0.887375 0.013694
9 46 0.887320 0.013314
10 51 0.882669 0.014523
11 56 0.878018 0.014414
12 61 0.880343 0.014299
13 66 0.873200 0.015416
14 71 0.877962 0.013660
15 76 0.873200 0.014698
16 81 0.873200 0.014698
17 86 0.880288 0.011277
18 91 0.875581 0.012967
19 96 0.875581 0.008193

We can decide which number of neighbors is best by plotting the accuracy
versus K, as shown in Fig. 6.5. Here we are using the shortcut point=True
to layer a point and line chart.

accuracy_vs_k = alt.Chart (accuracies_grid) .mark_line (point=True) .encode (
x=alt.X("n_neighbors") .title ("Neighbors"),
y=alt.Y("mean_test_score")
.scale (zero=False)
.title ("Accuracy estimate")

)

accuracy_vs_k

6.6. TUNING THE CLASSIFIER 235

0.890

0.885

0.880

0.875+

0.870+

0.865

Accuracy estimate

0.860

0.855

0.850

0.845 T T T T T T T T T 1
0 10 20 30 40 50 60 70 80 90 100

Neighbors

FIGURE 6.5 Plot of estimated accuracy versus the number of neighbors.

We can also obtain the number of neighbors with the highest accuracy pro-
grammatically by accessing the best_params_ attribute of the fit Grid-
SearchCV object. Note that it is still useful to visualize the results as we
did above since this provides additional information on how the model perfor-
mance varies.

cancer_tune_grid.best_params_
{'kneighborsclassifier_ _n_neighbors': 36}

Setting the number of neighbors to K = 36 provides the highest cross-
validation accuracy estimate (88.7%). But there is no exact or perfect answer
here; any selection from K = 30 to 80 or so would be reasonably justified, as
all of these differ in classifier accuracy by a small amount. Remember: the
values you see on this plot are estimates of the true accuracy of our classifier.
Although the K = 36 value is higher than the others on this plot, that doesn’t
mean the classifier is actually more accurate with this parameter value. Gen-
erally, when selecting K (and other parameters for other predictive models),
we are looking for a value where:

o we get roughly optimal accuracy, so that our model will likely be accurate;

 changing the value to a nearby one (e.g., adding or subtracting a small
number) doesn’t decrease accuracy too much, so that our choice is reliable
in the presence of uncertainty;

236 CHAPTER 6. CLASSIFICATION II: EVALUATION & TUNING

o the cost of training the model is not prohibitive (e.g., in our situation, if K
is too large, predicting becomes expensive!).

We know that K = 36 provides the highest estimated accuracy. Further, Fig.
6.5 shows that the estimated accuracy changes by only a small amount if we
increase or decrease K near K = 36. And finally, K = 36 does not create
a prohibitively expensive computational cost of training. Considering these
three points, we would indeed select K = 36 for the classifier.

6.6.3 Under/Overfitting

To build a bit more intuition, what happens if we keep increasing the number
of neighbors K7 In fact, the cross-validation accuracy estimate actually starts
to decrease. Let’s specify a much larger range of values of K to try in the
param_grid argument of GridSearchcCvV. Fig. 6.6 shows a plot of estimated
accuracy as we vary K from 1 to almost the number of observations in the
data set.

large_param_grid = {
"kneighborsclassifier__n_neighbors": range (1, 385, 10),

t

large_cancer_tune_grid = GridSearchCV (
estimator=cancer_tune_pipe,
param_grid=large_param_grid,
cv=10

)

large_cancer_tune_grid.fit(
cancer_train[["Smoothness", "Concavity"]],
cancer_train["Class"]

)
large_accuracies_grid = pd.DataFrame (large_cancer_tune_grid.cv_results_)

large_accuracy_vs_k = alt.Chart (large_accuracies_grid) .mark_line (point=True) .
—encode (
x=alt.X ("param_kneighborsclassifier__n_neighbors") .title ("Neighbors"),
y=alt.Y("mean_test_score")
.scale (zero=False)
.title ("Accuracy estimate")

)

large_accuracy_vs_k

Underfitting: What is actually happening to our classifier that causes this?
As we increase the number of neighbors, more and more of the training ob-
servations (and those that are farther and farther away from the point) get a
“say” in what the class of a new observation is. This causes a sort of “aver-
aging effect” to take place, making the boundary between where our classifier
would predict a tumor to be malignant versus benign to smooth out and be-
come simpler. If you take this to the extreme, setting K to the total training

6.6. TUNING THE CLASSIFIER 237

0.90+

0.85-,

0.80+

0.75

Accuracy estimate

0.70+

0.65+

T T T T T T T 1
0 50 100 150 200 250 300 350 400

Neighbors

FIGURE 6.6 Plot of accuracy estimate versus number of neighbors for many
K values.

data set size, then the classifier will always predict the same label regardless of
what the new observation looks like. In general, if the model isn’t influenced
enough by the training data, it is said to underfit the data.

Overfitting: In contrast, when we decrease the number of neighbors, each
individual data point has a stronger and stronger vote regarding nearby points.
Since the data themselves are noisy, this causes a more “jagged” boundary cor-
responding to a less simple model. If you take this case to the extreme, setting
K =1, then the classifier is essentially just matching each new observation
to its closest neighbor in the training data set. This is just as problematic as
the large K case, because the classifier becomes unreliable on new data: if we
had a different training set, the predictions would be completely different. In
general, if the model is influenced too much by the training data, it is said to
overfit the data.

Both overfitting and underfitting are problematic and will lead to a model
that does not generalize well to new data. When fitting a model, we need to
strike a balance between the two. You can see these two effects in Fig. 6.7,
which shows how the classifier changes as we set the number of neighbors K
to 1, 7, 20, and 300.

238 CHAPTER 6. CLASSIFICATION II: EVALUATION & TUNING

K=1 K=7
0.40 0.40
0.35- 0.35-
°® °®
0.30 e 0.30
L} L}
20254 b 20254 -
£ 0.20 % &0 £ 0.20
S X, S
o 2% o o
0.15 #l;a‘ 8 0.15
s o, ¥ o
® 9’ ' 29 g o
0.10 % “f{“’.. o 9 % . 0.10 ®
° .;Q«
- b @ ®
® ® oo o *
0.05 "‘ “«' - 0.05
oy
* 88
00046 & L 0.00-
T T
0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.06 0.07 0.08 0.09 0.0 0.11 0.12 0.13 0.14 0.15 0.16 0.17
Smoothness Smoothness
K =20 K =300
0.40 0.40
0.35 0.35+
°o® o®
0.30 - 0.30
L) .
§.0.25— 8 EO.ZS—
€ 0.20 o oo € 0.20|
<] ~ S
o 228 B o
0.15+ 0.15+
0.104 ® 0.104 ®
0.05 0.05
L 4 ®
0.00+ & 0.00+ &
T T
0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.06 0.07 0.08 0.09 0.0 0.11 0.12 0.13 0.14 0.15 0.16 0.17

Smoothness Smoothness

Diagnosis
@ Benign Malignant

FIGURE 6.7 Effect of K in overfitting and underfitting.

6.6.4 Evaluating on the test set

Now that we have tuned the K-NN classifier and set K = 36, we are done
building the model and it is time to evaluate the quality of its predictions
on the held out test data, as we did earlier in Section 6.5.5. We first need
to retrain the K-NN classifier on the entire training data set using the se-
lected number of neighbors. Fortunately we do not have to do this ourselves
manually; scikit-learn does it for us automatically. To make predictions
and assess the estimated accuracy of the best model on the test data, we can
use the score and predict methods of the fit GridSearchcv object. We

6.6. TUNING THE CLASSIFIER 239

can then pass those predictions to the precision, recall, and crosstab
functions to assess the estimated precision and recall, and print a confusion
matrix.

cancer_test["predicted"] = cancer_tune_grid.predict (
cancer_test|[["Smoothness", "Concavity"]]

)

cancer_tune_grid.score (
cancer_test[["Smoothness", "Concavity"ll],
cancer_test["Class"]

0.9090909090909091

precision_score (
y_true=cancer_test["Class"],
y_pred=cancer_test ["predicted"],
pos_label="Malignant'

0.8846153846153846

recall_score(
y_true=cancer_test["Class"],
y_pred=cancer_test ["predicted"],
pos_label="Malignant'

0.8679245283018868

pd.crosstab (
cancer_test["Class"],
cancer_test ["predicted"]

predicted Benign Malignant

Class
Benign 84 6
Malignant 7 46

At first glance, this is a bit surprising: the accuracy of the classifier has not
changed much despite tuning the number of neighbors. Our first model with
K = 3 (before we knew how to tune) had an estimated accuracy of 90%,
while the tuned model with K = 36 had an estimated accuracy of 91%. Upon
examining Fig. 6.5 again to see the cross validation accuracy estimates for
a range of neighbors, this result becomes much less surprising. From 1 to
around 96 neighbors, the cross validation accuracy estimate varies only by
around 3%, with each estimate having a standard error around 1%. Since
the cross-validation accuracy estimates the test set accuracy, the fact that

240 CHAPTER 6. CLASSIFICATION II: EVALUATION & TUNING

Cross Validation

Validation
Training
Training Set msw)> Training = F:ztt;a;:
Split the
data set Training
Data Set |:>
Training
Choose K H
| |
J
Testing Set 4 =

Evaluate “model” built with whole training set on test set

FIGURE 6.8 Overview of K-NN classification.

the test set accuracy also doesn’t change much is expected. Also note that
the K = 3 model had a precision precision of 83% and recall of 91%, while
the tuned model had a precision of 88% and recall of 87%. Given that the
recall decreased—remember, in this application, recall is critical to making
sure we find all the patients with malignant tumors—the tuned model may
actually be less preferred in this setting. In any case, it is important to think
critically about the result of tuning. Models tuned to maximize accuracy are
not necessarily better for a given application.

6.7 Summary

Classification algorithms use one or more quantitative variables to predict the
value of another categorical variable. In particular, the K-nearest neighbors
algorithm does this by first finding the K points in the training data nearest
to the new observation, and then returning the majority class vote from those
training observations. We can tune and evaluate a classifier by splitting the
data randomly into a training and test data set. The training set is used
to build the classifier, and we can tune the classifier (e.g., select the number
of neighbors in K-nearest neighbors) by maximizing estimated accuracy via
cross-validation. After we have tuned the model, we can use the test set to
estimate its accuracy. The overall process is summarized in Fig. 6.8.

6.7 SUMMARY 241

The overall workflow for performing K-nearest neighbors classification using
scikit-learn is as follows:

1. Usethe train_test_split function to split the data into a training
and test set. Set the stratify argument to the class label column
of the data frame. Put the test set aside for now.

2. Create a Pipeline that specifies the preprocessing steps and the
classifier.

3. Define the parameter grid by passing the set of K values that you
would like to tune.

4. Use GridSearchCV to estimate the classifier accuracy for a range of
K values. Pass the pipeline and parameter grid defined in steps 2.
and 3. as the param_grid argument and the estimator argument,
respectively.

5. Execute the grid search by passing the training data to the fit
method on the GridSearchCvV instance created in step 4.

6. Pick a value of K that yields a high cross-validation accuracy estimate
that doesn’t change much if you change K to a nearby value.

7. Create a new model object for the best parameter value (i.e., K), and
retrain the classifier by calling the fit method.

8. Evaluate the estimated accuracy of the classifier on the test set using
the score method.

In these last two chapters, we focused on the K-nearest neighbors algorithm,
but there are many other methods we could have used to predict a categorical
label. All algorithms have their strengths and weaknesses, and we summarize
these for the K-NN here.

Strengths: K-nearest neighbors classification

1. is a simple, intuitive algorithm,
2. requires few assumptions about what the data must look like, and

3. works for binary (two-class) and multi-class (more than 2 classes)
classification problems.

Weaknesses: K-nearest neighbors classification

1. becomes very slow as the training data gets larger,

242 CHAPTER 6. CLASSIFICATION II: EVALUATION & TUNING

2. may not perform well with a large number of predictors, and

3. may not perform well when classes are imbalanced.

6.8 Predictor variable selection

Note: This section is not required reading for the remainder of the textbook.
It is included for those readers interested in learning how irrelevant variables
can influence the performance of a classifier, and how to pick a subset of useful
variables to include as predictors.

Another potentially important part of tuning your classifier is to choose which
variables from your data will be treated as predictor variables. Technically,
you can choose anything from using a single predictor variable to using every
variable in your data; the K-nearest neighbors algorithm accepts any number
of predictors. However, it is not the case that using more predictors always
yields better predictions. In fact, sometimes including irrelevant predictors
can actually negatively affect classifier performance.

6.8.1 The effect of irrelevant predictors

Let’s take a look at an example where K-nearest neighbors performs worse
when given more predictors to work with. In this example, we modified the
breast cancer data to have only the Smoothness, Concavity, and Perime—
ter variables from the original data. Then, we added irrelevant variables
that we created ourselves using a random number generator. The irrelevant
variables each take a value of 0 or 1 with equal probability for each observa-
tion, regardless of what the value Class variable takes. In other words, the
irrelevant variables have no meaningful relationship with the class variable.

cancer_irrelevant [
["Class", "Smoothness", "Concavity", "Perimeter", "Irrelevantl", "Irrelevant2
on

]

Class Smoothness Concavity Perimeter Irrelevantl Irrelevant2

0 Malignant 0.11840 0.30010 122.80 1
1 Malignant 0.08474 0.08690 132.90 0 1
2 Malignant 0.10960 0.19740 130.00 1 0
3 Malignant 0.14250 0.24140 77.58 1 0
4 Malignant 0 0 1 0

.10030 .19800 135.10

(continues on next page)

6.8. PREDICTOR VARIABLE SELECTION 243
0.93-
<

0.92+

0.91+

Model Accuracy Estimate
o o o o o
[© [o] [o0) ©
o ~ co © o
1 1 1 1 1

0.83 T T T T T T T 1
0 5 10 15 20 25 30 35 40

Number of Irrelevant Predictors

FIGURE 6.9 Effect of inclusion of irrelevant predictors.

(continued from previous page)

564 Malignant 0.11100 0.24390 142.00 0 0
565 Malignant 0.09780 0.14400 131.20 1
566 Malignant 0.08455 0.09251 108.30 1 1
567 Malignant 0.11780 0.35140 140.10 0 0
568 Benign 0.05263 0.00000 47.92 1 1

[569 rows x 6 columns]

Next, we build a sequence of K-NN classifiers that include Smoothness, Con—
cavity, and Perimeter as predictor variables, but also increasingly many
irrelevant variables. In particular, we create 6 data sets with 0, 5, 10, 15, 20,
and 40 irrelevant predictors. Then we build a model, tuned via 5-fold cross-
validation, for each data set. Fig. 6.9 shows the estimated cross-validation
accuracy versus the number of irrelevant predictors. As we add more irrel-
evant predictor variables, the estimated accuracy of our classifier decreases.
This is because the irrelevant variables add a random amount to the distance
between each pair of observations; the more irrelevant variables there are, the
more (random) influence they have, and the more they corrupt the set of
nearest neighbors that vote on the class of the new observation to predict.

Although the accuracy decreases as expected, one surprising thing about Fig.
6.9 is that it shows that the method still outperforms the baseline majority
classifier (with about 63% accuracy) even with 40 irrelevant variables. How
could that be? Fig. 6.10 provides the answer: the tuning procedure for the

244 CHAPTER 6. CLASSIFICATION II: EVALUATION & TUNING
20+
18-

16

[N
~
1

=
N
1

Tuned number of neighbors
o 5
& 1

T T T T T T 1
0 5 10 15 20 25 30 35 40

Number of Irrelevant Predictors

FIGURE 6.10 Tuned number of neighbors for varying number of irrelevant
predictors.

K-nearest neighbors classifier combats the extra randomness from the irrele-
vant variables by increasing the number of neighbors. Of course, because of
all the extra noise in the data from the irrelevant variables, the number of
neighbors does not increase smoothly; but the general trend is increasing. Fig.
6.11 corroborates this evidence; if we fix the number of neighbors to K = 3,
the accuracy falls off more quickly.

6.8.2 Finding a good subset of predictors

So then, if it is not ideal to use all of our variables as predictors without
consideration, how do we choose which variables we should use? A simple
method is to rely on your scientific understanding of the data to tell you which
variables are not likely to be useful predictors. For example, in the cancer data
that we have been studying, the ID variable is just a unique identifier for the
observation. As it is not related to any measured property of the cells, the ID
variable should therefore not be used as a predictor. That is, of course, a very
clear-cut case. But the decision for the remaining variables is less obvious, as
all seem like reasonable candidates. It is not clear which subset of them will
create the best classifier. One could use visualizations and other exploratory
analyses to try to help understand which variables are potentially relevant,
but this process is both time-consuming and error-prone when there are many

6.8. PREDICTOR VARIABLE SELECTION 245

0.94 Type

< ®K=3

0.924 @ Tuned K

0.90+

0.88

Accuracy

T T T T T T 1
10 15 20 25 30 35 40

Number of Irrelevant Predictors

o
[&)]

FIGURE 6.11 Accuracy versus number of irrelevant predictors for tuned
and untuned number of neighbors.

variables to consider. Therefore we need a more systematic and programmatic
way of choosing variables. This is a very difficult problem to solve in general,
and there are a number of methods that have been developed that apply in
particular cases of interest. Here we will discuss two basic selection methods
as an introduction to the topic. See the additional resources at the end of
this chapter to find out where you can learn more about variable selection,
including more advanced methods.

The first idea you might think of for a systematic way to select predictors is
to try all possible subsets of predictors and then pick the set that results in
the “best” classifier. This procedure is indeed a well-known variable selection
method referred to as best subset selection [Beale et al., 1967, Hocking and
Leslie, 1967]. In particular, you

1. create a separate model for every possible subset of predictors,
2. tune each one using cross-validation, and

3. pick the subset of predictors that gives you the highest cross-
validation accuracy.

Best subset selection is applicable to any classification method (K-NN or other-
wise). However, it becomes very slow when you have even a moderate number

246 CHAPTER 6. CLASSIFICATION II: EVALUATION & TUNING

of predictors to choose from (say, around 10). This is because the number of
possible predictor subsets grows very quickly with the number of predictors,
and you have to train the model (itself a slow process!) for each one. For
example, if we have 2 predictors—Ilet’s call them A and B—then we have 3
variable sets to try: A alone, B alone, and finally A and B together. If we
have 3 predictors—A, B, and C—then we have 7 to try: A, B, C, AB, BC,
AC, and ABC. In general, the number of models we have to train for m pre-
dictors is 2" — 1; in other words, when we get to 10 predictors we have over
one thousand models to train, and at 20 predictors we have over one million
models to train. So although it is a simple method, best subset selection is
usually too computationally expensive to use in practice.

Another idea is to iteratively build up a model by adding one predictor variable
at a time. This method—known as forward selection [Draper and Smith, 1966,
Eforymson, 1966]—is also widely applicable and fairly straightforward. It
involves the following steps:

1. Start with a model having no predictors.
2. Run the following 3 steps until you run out of predictors:

1. For each unused predictor, add it to the model to form a candidate
model.

2. Tune all of the candidate models.

3. Update the model to be the candidate model with the highest
cross-validation accuracy.

3. Select the model that provides the best trade-off between accuracy
and simplicity.

Say you have m total predictors to work with. In the first iteration, you have to
make m candidate models, each with 1 predictor. Then in the second iteration,
you have to make m—1 candidate models, each with 2 predictors (the one you
chose before and a new one). This pattern continues for as many iterations as
you want. If you run the method all the way until you run out of predictors
to choose, you will end up training $m(m + 1) separate models. This is a big
improvement from the 2”* — 1 models that best subset selection requires you
to train. For example, while best subset selection requires training over 1000
candidate models with 10 predictors, forward selection requires training only
55 candidate models. Therefore we will continue the rest of this section using
forward selection.

Note: One word of caution before we move on. Every additional model

6.8. PREDICTOR VARIABLE SELECTION 247

that you train increases the likelihood that you will get unlucky and stumble
on a model that has a high cross-validation accuracy estimate, but a low
true accuracy on the test data and other future observations. Since forward
selection involves training a lot of models, you run a fairly high risk of this
happening. To keep this risk low, only use forward selection when you have a
large amount of data and a relatively small total number of predictors. More
advanced methods do not suffer from this problem as much; see the additional
resources at the end of this chapter for where to learn more about advanced
predictor selection methods.

6.8.3 Forward selection in Python

We now turn to implementing forward selection in Python. First, we will
extract a smaller set of predictors to work with in this illustrative example—
Smoothness, Concavity, Perimeter, Irrelevantl, Irrelevant2, and
Irrelevant3—as well as the Class variable as the label. We will also extract
the column names for the full set of predictors.

cancer_subset = cancer_irrelevant [
[

"Class",

"Smoothness",

"Concavity",

"Perimeter",
"Irrelevantl",
"Irrelevant2",
"Irrelevant3",

names = list (cancer_subset.drop (
columns=["Class"]
) .columns.values)

cancer_subset

Class Smoothness Concavity Perimeter Irrelevantl Irrelevant2 \

0 Malignant 0.11840 0.30010 122.80 0 1
1 Malignant 0.08474 0.08690 132.90 0 1
2 Malignant 0.10960 0.19740 130.00 1 0
3 Malignant 0.14250 0.24140 77.58 1 0
4 Malignant 0.10030 0.19800 135.10 1 0
564 Malignant 0.11100 0.24390 142.00 0 0
565 Malignant 0.09780 0.14400 131.20 0 1
566 Malignant 0.08455 0.09251 108.30 1 1
567 Malignant 0.11780 0.35140 140.10 0 0
568 Benign 0.05263 0.00000 47.92 1 1
Irrelevant3
0 0
1 0

(continues on next page)

248 CHAPTER 6. CLASSIFICATION II: EVALUATION & TUNING

(continued from previous page)

2 0
5
4

[l]

564
565
566
567
568

O oo o -

[569 rows x 7 columns]

To perform forward selection, we could use the SequentialFeatureSelec—
tor® from scikit-learn; but it is difficult to combine this approach with
parameter tuning to find a good number of neighbors for each set of features.
Instead we will code the forward selection algorithm manually. In particular,
we need code that tries adding each available predictor to a model, finding
the best, and iterating. If you recall the end of the wrangling chapter, we
mentioned that sometimes one needs more flexible forms of iteration than
what we have used earlier, and in these cases one typically resorts to a for
loop; see the control flow section* in Python for Data Analysis [McKinney,
2012]. Here we will use two for loops: one over increasing predictor set sizes
(where you see for i in range(l, n_total + 1): below), and another
to check which predictor to add in each round (where you see for j in
range (len (names)) below). For each set of predictors to try, we extract
the subset of predictors, pass it into a preprocessor, build a Pipeline that
tunes a K-NN classifier using 10-fold cross-validation, and finally records the
estimated accuracy.

from sklearn.compose import make_column_selector
accuracy_dict = {"size": [], "selected_predictors": [], "accuracy": []}

store the total number of predictors
n_total = len(names)

start with an empty list of selected predictors
selected = []

create the pipeline and CV grid search objects
param_grid = {
"kneighborsclassifier__n_neighbors": range(1, 61, 5),
t
cancer_preprocessor = make_column_transformer (
(StandardScaler (), make_column_selector (dtype_include="number"))
)

cancer_tune_pipe = make_pipeline (cancer_preprocessor, KNeighborsClassifier())

(continues on next page)

3https:/ /scikit-learn.org/stable/modules/generated /sklearn.feature_selection.Sequent
ialFeatureSelector.html
4https:/ /wesmckinney.com/book /python-basics.html#control for

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SequentialFeatureSelector.html
https://wesmckinney.com/book/python-basics.html#control_for
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SequentialFeatureSelector.html

6.8. PREDICTOR VARIABLE SELECTION

249

(continued from previous page)

cancer_tune_grid = GridSearchCV (
estimator=cancer_tune_pipe,
param_grid=param_grid,
cv=10,
n_jobs=-1

)

for every possible number of predictors
for i in range(l, n_total + 1):
accs = np.zeros (len(names))
for every possible predictor to add
for j in range (len(names)) :
Add remaining predictor j to the model
X = cancer_subset[selected + [names[j]]]
y = cancer_subset["Class"]

Find the best K for this set of predictors
cancer_tune_grid.fit (X, y)

accuracies_grid = pd.DataFrame (cancer_tune_grid.cv_results_)

Store the tuned accuracy for this set of predictors
accs[j] = accuracies_grid["mean_test_score"].max ()

get the best new set of predictors that maximize cv accuracy

best_set = selected + [names[accs.argmax()]]

store the results for this round of forward selection
accuracy_dict["size"] .append (i)

accuracy_dict["selected_predictors"].append (", ".join (best_set))

accuracy_dict["accuracy"] .append(accs.max ())
update the selected & available sets of predictors
selected = best_set

del names[accs.argmax()]

accuracies = pd.DataFrame (accuracy_dict)

accuracies

size selected_predictors
0 1 Perimeter
1 2 Perimeter, Concavity
2 3 Perimeter, Concavity, Smoothness
3 4 Perimeter, Concavity, Smoothness, Irrelevantl
4 5 Perimeter, Concavity, Smoothness, Irrelevantl,...
5 6 Perimeter, Concavity, Smoothness, Irrelevantl, ...

accuracy
0.891103
0.917450
0.931454
0.926253
0.926253
0.906955

Interesting! The forward selection procedure first added the three meaningful
variables Perimeter, Concavity, and Smoothness, followed by the irrele-
vant variables. Fig. 6.12 visualizes the accuracy versus the number of pre-
dictors in the model. You can see that as meaningful predictors are added,
the estimated accuracy increases substantially; and as you add irrelevant vari-
ables, the accuracy either exhibits small fluctuations or decreases as the model
attempts to tune the number of neighbors to account for the extra noise. In
order to pick the right model from the sequence, you have to balance high ac-
curacy and model simplicity (i.e., having fewer predictors and a lower chance
of overfitting). The way to find that balance is to look for the elbow in Fig.

250 CHAPTER 6. CLASSIFICATION II: EVALUATION & TUNING

0.935+

0.930+

0.925

0.920 4

0.915+

0.910+

Estimated Accuracy

0.905

0.900

0.895

[
0.890 T T T T T T T T T 1
10 15 20 25 30 35 40 45 50 655 60

Number of Predictors

FIGURE 6.12 Estimated accuracy versus the number of predictors for the
sequence of models built using forward selection.

6.12, i.e., the place on the plot where the accuracy stops increasing dramati-
cally and levels off or begins to decrease. The elbow in Fig. 6.12 appears to
occur at the model with 3 predictors; after that point the accuracy levels off.
So here the right trade-off of accuracy and number of predictors occurs with 3
variables: Perimeter, Concavity, Smoothness. In other words, we have
successfully removed irrelevant predictors from the model. It is always worth
remembering, however, that what cross-validation gives you is an estimate of
the true accuracy; you have to use your judgement when looking at this plot
to decide where the elbow occurs, and whether adding a variable provides a
meaningful increase in accuracy.

Note: Since the choice of which variables to include as predictors is part of
tuning your classifier, you cannot use your test data for this process.

6.9 Exercises

Practice exercises for the material covered in this chapter can be found in
the accompanying worksheets repository® in the “Classification II: evaluation

Shttps://worksheets.python.datasciencebook.ca

https://worksheets.python.datasciencebook.ca

6.10. ADDITIONAL RESOURCES 251

and tuning” row. You can launch an interactive version of the worksheet in
your browser by clicking the “launch binder” button. You can also preview a
non-interactive version of the worksheet by clicking “view worksheet”. If you
instead decide to download the worksheet and run it on your own machine,
make sure to follow the instructions for computer setup found in Chapter
13. This will ensure that the automated feedback and guidance that the
worksheets provide will function as intended.

6.10 Additional resources

e The scikit-learn website® is an excellent reference for more details on,
and advanced usage of, the functions and packages in the past two chapters.
Aside from that, it also offers many useful tutorials” to get you started.
It’s worth noting that the scikit-learn package does a lot more than
just classification, and so the examples on the website similarly go beyond
classification as well. In the next two chapters, you’ll learn about another
kind of predictive modeling setting, so it might be worth visiting the website
only after reading through those chapters.

o An Introduction to Statistical Learning® [James et al., 2013] provides a great
next stop in the process of learning about classification. Chapter 4 discusses
additional basic techniques for classification that we do not cover, such as
logistic regression, linear discriminant analysis, and naive Bayes. Chapter 5
goes into much more detail about cross-validation. Chapters 8 and 9 cover
decision trees and SVMs, two very popular but more advanced classifica-
tion methods. Finally, Chapter 6 covers a number of methods for selecting
predictor variables. Note that while this book is still a very accessible in-
troductory text, it requires a bit more mathematical background than we
require.

Shttps://scikit-learn.org/stable/
"https://scikit-learn.org/stable/tutorial /index.html
8https://www.statlearning.com/

https://scikit-learn.org/stable
https://scikit-learn.org/stable/tutorial/index.html
https://www.statlearning.com

7

Regression I: K-nearest neighbors

7.1 Overview

This chapter continues our foray into answering predictive questions. Here
we will focus on predicting numerical variables and will use regression to
perform this task. This is unlike the past two chapters, which focused on
predicting categorical variables via classification. However, regression does
have many similarities to classification: for example, just as in the case of
classification, we will split our data into training, validation, and test sets, we
will use scikit-learn workflows, we will use a K-nearest neighbors (K-NN)
approach to make predictions, and we will use cross-validation to choose K.
Because of how similar these procedures are, make sure to read Chapters 5
and 6 before reading this one—we will move a little bit faster here with the
concepts that have already been covered. This chapter will primarily focus on
the case where there is a single predictor, but the end of the chapter shows how
to perform regression with more than one predictor variable, i.e., multivariable
regression. It is important to note that regression can also be used to answer
inferential and causal questions, however that is beyond the scope of this book.

7.2 Chapter learning objectives
By the end of the chapter, readers will be able to do the following:

» Recognize situations where a regression analysis would be appropriate for
making predictions.

o Explain the K-NN regression algorithm and describe how it differs from
K-NN classification.

o Interpret the output of a K-NN regression.

o In a data set with two or more variables, perform K-NN regression in Python.

DOI: 10.1201/9781003438397-7 252

https://doi.org/10.1201/9781003438397-7

7.3. THE REGRESSION PROBLEM 253

o Evaluate K-NN regression prediction quality in Python using the root mean
squared prediction error (RMSPE).

o Estimate the RMSPE in Python using cross-validation or a test set.

o Choose the number of neighbors in K-NN regression by minimizing estimated
cross-validation RMSPE.

e Describe underfitting and overfitting, and relate it to the number of neigh-
bors in K-NN regression.

o Describe the advantages and disadvantages of K-NN regression.

7.3 The regression problem

Regression, like classification, is a predictive problem setting where we want
to use past information to predict future observations. But in the case of
regression, the goal is to predict numerical values instead of categorical values.
The variable that you want to predict is often called the response variable.
For example, we could try to use the number of hours a person spends on
exercise each week to predict their race time in the annual Boston marathon.
As another example, we could try to use the size of a house to predict its
sale price. Both of these response variables—race time and sale price—are
numerical, and so predicting them given past data is considered a regression
problem.

Just like in the classification setting, there are many possible methods that we
can use to predict numerical response variables. In this chapter, we will focus
on the K-NN algorithm [Cover and Hart, 1967, Fix and Hodges, 1951], and in
the next chapter we will study linear regression. In your future studies, you
might encounter regression trees, splines, and general local regression methods;
see the additional resources section at the end of the next chapter for where
to begin learning more about these other methods.

Many of the concepts from classification map over to the setting of regression.
For example, a regression model predicts a new observation’s response variable
based on the response variables for similar observations in the data set of past
observations. When building a regression model, we first split the data into
training and test sets, in order to ensure that we assess the performance of
our method on observations not seen during training. And finally, we can use
cross-validation to evaluate different choices of model parameters (e.g., K in a

254 CHAPTER 7. REGRESSION I: K-NEAREST NEIGHBORS

K-NN model). The major difference is that we are now predicting numerical
variables instead of categorical variables.

Note: You can usually tell whether a variable is numerical or categorical—
and therefore whether you need to perform regression or classification—by
taking the response variable for two observations X and Y from your data,
and asking the question, “is response variable X more than response variable
Y?” If the variable is categorical, the question will make no sense. (Is blue
more than red? Is benign more than malignant?) If the variable is numerical,
it will make sense. (Is 1.5 hours more than 2.25 hours? Is $500,000 more
than $400,0007) Be careful when applying this heuristic, though: sometimes
categorical variables will be encoded as numbers in your data (e.g., “1” repre-
sents “benign”, and “0” represents “malignant”). In these cases you have to
ask the question about the meaning of the labels (“benign” and “malignant”),
not their values (“1” and “07).

7.4 Exploring a data set

In this chapter and the next, we will study a data set of 932 real estate
transactions in Sacramento, Californial originally reported in the Sacramento
Bee newspaper. We first need to formulate a precise question that we want to
answer. In this example, our question is again predictive: Can we use the size
of a house in the Sacramento, CA area to predict its sale price? A rigorous,
quantitative answer to this question might help a realtor advise a client as to
whether the price of a particular listing is fair, or perhaps how to set the price
of a new listing. We begin the analysis by loading and examining the data, as
well as setting the seed value.

import altair as alt

import numpy as np

import pandas as pd

from sklearn.model_selection import GridSearchCV, train_test_split
from sklearn.compose import make_column_transformer

from sklearn.pipeline import make_pipeline

from sklearn.preprocessing import StandardScaler

from sklearn import set_config

Output dataframes instead of arrays
set_config(transform_output="pandas")

(continues on next page)

thttps://support.spatialkey.com/spatialkey-sample-csv-data/

https://support.spatialkey.com/spatialkey-sample-csv-data

7.4. EXPLORING A DATA SET 255

(continued from previous page)

np.random.seed (10)

sacramento = pd.read_csv("data/sacramento.csv")
sacramento
city zip beds Dbaths sgft type price \

0 SACRAMENTO 295838 2 1.0 836 Residential 59222
1 SACRAMENTO 295823 3 1.0 1167 Residential 68212
2 SACRAMENTO 295815 2 1.0 796 Residential 68880
3 SACRAMENTO 295815 2 N0 852 Residential 69307
4 SACRAMENTO 295824 2 1.0 797 Residential 81900
927 SACRAMENTO 295829 4 3.0 2280 Residential 232425
928 SACRAMENTO 295823 3 2.0 1477 Residential 234000
929 CITRUS_HEIGHTS 295610 3 2.0 1216 Residential 235000
930 ELK_GROVE 295758 4 2.0 1685 Residential 235301
931 EL_DORADO_HILLS 295762 3 2.0 1362 Residential 235738

latitude longitude
38.631913 -121.434879
38.478902 -121.431028
38.618305 -121.443839
38.616835 -121.439146
38.519470 -121.435768

S w D e o

927 38.457679 -121.359620
928 38.499893 -121.458890
929 38.708824 -121.256803
930 38.417000 -121.397424
931 38.655245 -121.075915

[932 rows x 9 columns]

The scientific question guides our initial exploration: the columns in the data
that we are interested in are sgft (house size, in livable square feet) and
price (house sale price, in US dollars (USD)). The first step is to visualize
the data as a scatter plot where we place the predictor variable (house size)
on the x-axis, and we place the response variable that we want to predict (sale
price) on the y-axis.

Note: Given that the y-axis unit is dollars in Fig. 7.1, we format the axis
labels to put dollar signs in front of the house prices, as well as commas to
increase the readability of the larger numbers. We can do this in altair by
using .axis (format="$,.0f") on the y encoding channel.

scatter = alt.Chart (sacramento) .mark_circle () .encode (
x=alt.X("sqft")
.scale (zero=False)
.title ("House size (square feet)"),
y=alt.Y("price")
.axis (format="5, .0f")

(continues on next page)

256 CHAPTER 7. REGRESSION I: K-NEAREST NEIGHBORS

(continued from previous page)

.title("Price (USD)")
)

scatter

The plot is shown in Fig. 7.1. We can see that in Sacramento, CA, as the size
of a house increases, so does its sale price. Thus, we can reason that we may
be able to use the size of a not-yet-sold house (for which we don’t know the
sale price) to predict its final sale price. Note that we do not suggest here that
a larger house size causes a higher sale price; just that house price tends to
increase with house size, and that we may be able to use the latter to predict
the former.

7.5 K-nearest neighbors regression

Much like in the case of classification, we can use a K-NN-based approach
in regression to make predictions. Let’s take a small sample of the data in
Fig. 7.1 and walk through how K-NN works in a regression context before
we dive in to creating our model and assessing how well it predicts house sale
$900,000
$800,000 |
$700,000 -|
$600,000 -|
$500,000

$400,000

Price (USD)

$300,000

$200,000

$100,000

$0 T T
0 1,000

T T T T 1
2,000 3,000 4,000 5,000

House size (square feet)

FIGURE 7.1 Scatter plot of price (USD) versus house size (square feet).

7.5. K-NEAREST NEIGHBORS REGRESSION 257

price. This subsample is taken to allow us to illustrate the mechanics of K-NN
regression with a few data points; later in this chapter we will use all the data.

To take a small random sample of size 30, we’ll use the sample method on
the sacramento data frame, specifying that we want to select n=30 rows.

small_sacramento = sacramento.sample (n=30)

Next, let’s say we come across a 2,000 square-foot house in Sacramento we are
interested in purchasing, with an advertised list price of $350,000. Should we
offer to pay the asking price for this house, or is it overpriced and we should
offer less? Absent any other information, we can get a sense for a good answer
to this question by using the data we have to predict the sale price given the
sale prices we have already observed. But in Fig. 7.2, you can see that we
have no observations of a house of size ezactly 2,000 square feet. How can we
predict the sale price?

small_plot = alt.Chart (small_sacramento) .mark_circle (opacity=1) .encode (
x=alt.X("sqgft")
.scale (zero=False)
.title ("House size (square feet)"),
y=alt.Y("price")
.axis (format="3, .0f")
.title("Price (USD)")
)

add an overlay to the base plot

line_df = pd.DataFrame ({"x": [2000]})

rule = alt.Chart (line_df) .mark_rule (strokeDash=[6], size=1.5, color="black").
—encode (x="x")

small_plot + rule

We will employ the same intuition from Chapters 5 and 6, and use the neigh-
boring points to the new point of interest to suggest/predict what its sale
price might be. For the example shown in Fig. 7.2, we find and label the 5
nearest neighbors to our observation of a house that is 2,000 square feet.
small_sacramento["dist"] = (2000 - small_sacramento["sgft"]) .abs ()

nearest_neighbors = small_sacramento.nsmallest (5, "dist")
nearest_neighbors

city zip beds Dbaths sgft type price \
298 SACRAMENTO 295823 4 2.0 1900 Residential 361745
718 ANTELOPE 295843 4 2.0 2160 Residential 290000
748 ROSEVILLE 295678 3 2.0 1744 Residential 326951
252 SACRAMENTO 295835 3 2.5 1718 Residential 250000
211 RANCHO_CORDOVA 295670 3 2.0 1671 Residential 175000

latitude longitude dist
298 38.487409 -121.461413 100
718 38.704554 -121.354753 160

(continues on next page)

258 CHAPTER 7. REGRESSION I: K-NEAREST NEIGHBORS

$600,000

$500,000

$400,000 |

$300,000

Price (USD)

°
$200,000 — ®

$100,000 -7

$0

T T T T T T
1,000 1,500 2,000 2,500 3,000 3,500
House size (square feet)

FIGURE 7.2 Scatter plot of price (USD) versus house size (square feet) with
vertical line indicating 2,000 square feet on x-axis.

(continued from previous page)

748 38.771917 -121.304439 256
252 38.676658 -121.528128 282
211 38.591477 -121.315340 329

Fig. 7.3 illustrates the difference between the house sizes of the 5 nearest neigh-
bors (in terms of house size) to our new 2,000 square-foot house of interest.
Now that we have obtained these nearest neighbors, we can use their values
to predict the sale price for the new home. Specifically, we can take the mean
(or average) of these 5 values as our predicted value, as illustrated by the red
point in Fig. 7.4.

prediction = nearest_neighbors["price"] .mean ()
prediction

280739.2

Our predicted price is $280,739 (shown as a red point in Fig. 7.4), which is
much less than $350,000; perhaps we might want to offer less than the list
price at which the house is advertised. But this is only the very beginning of
the story. We still have all the same unanswered questions here with K-NN
regression that we had with K-NN classification: which K do we choose, and

7.5. K-NEAREST NEIGHBORS REGRESSION 259

$600,000

$500,000

$400,000 |

$300,000

Price (USD)

U L A S

$200,000 —

$100,000 -7

$0

T T T T T T
1,000 1,500 2,000 2,500 3,000 3,500
House size (square feet)

FIGURE 7.3 Scatter plot of price (USD) versus house size (square feet) with
lines to 5 nearest neighbors (highlighted in orange).

$600,000
$500,000

1
1
1
1
1
1
1
1
$400,000 1
: o
R
$300,000 - !
—
— °

Price (USD)

[]
$200,000 &
[] W
[]
[]
) []
$100,000 -7

$0

T T T T T T
1,000 1,500 2,000 2,500 3,000 3,500
House size (square feet)

FIGURE 7.4 Scatter plot of price (USD) versus house size (square feet) with
predicted price for a 2,000 square-foot house based on 5 nearest neighbors
represented as a red dot.

260 CHAPTER 7. REGRESSION I: K-NEAREST NEIGHBORS

is our model any good at making predictions? In the next few sections, we
will address these questions in the context of K-NN regression.

One strength of the K-NN regression algorithm that we would like to draw
attention to at this point is its ability to work well with non-linear relation-
ships (i.e., if the relationship is not a straight line). This stems from the
use of nearest neighbors to predict values. The algorithm really has very few
assumptions about what the data must look like for it to work.

7.6 Training, evaluating, and tuning the model

As usual, we must start by putting some test data away in a lock box that
we will come back to only after we choose our final model. Let’s take care of
that now. Note that for the remainder of the chapter we’ll be working with
the entire Sacramento data set, as opposed to the smaller sample of 30 points
that we used earlier in the chapter (Fig. 7.2).

Note: We are not specifying the stratify argument here like we did in
Chapter 6, since the train_test_split function cannot stratify based on a
quantitative variable.

sacramento_train, sacramento_test = train_test_split (
sacramento, train_size=0.75

)

Next, we’ll use cross-validation to choose K. In K-NN classification, we used
accuracy to see how well our predictions matched the true labels. We cannot
use the same metric in the regression setting, since our predictions will almost
never exactly match the true response variable values. Therefore in the context
of K-NN regression we will use root mean square prediction error (RMSPE)
instead. The mathematical formula for calculating RMSPE is:

1 n
RMSPE = , | — 52
\/n Zl(y 7:)

where:
e n is the number of observations,
o 1y, is the observed value for the i*® observation, and

o 7, is the forecasted /predicted value for the i*" observation.

7.6. TRAINING, EVALUATING, AND TUNING THE MODEL 261

$600,000

$500,000

$400,000 |

$300,000

Price (USD)

$200,000 —

$100,000

$0

T T T T T T 1
500 1,000 1,500 2,000 2,500 3,000 3,500 4,000
House size (square feet)

FIGURE 7.5 Scatter plot of price (USD) versus house size (square feet) with
example predictions (orange line) and the error in those predictions compared
with true response values (vertical lines).

In other words, we compute the squared difference between the predicted and
true response value for each observation in our test (or validation) set, com-
pute the average, and then finally take the square root. The reason we use
the squared difference (and not just the difference) is that the differences can
be positive or negative, i.e., we can overshoot or undershoot the true response
value. Fig. 7.5 illustrates both positive and negative differences between pre-
dicted and true response values. So if we want to measure error—a notion of
distance between our predicted and true response values—we want to make
sure that we are only adding up positive values, with larger positive values
representing larger mistakes. If the predictions are very close to the true val-
ues, then RMSPE will be small. If, on the other-hand, the predictions are very
different from the true values, then RMSPE will be quite large. When we use
cross-validation, we will choose the K that gives us the smallest RMSPE.

Note: When using many code packages, the evaluation output we will
get to assess the prediction quality of our K-NN regression models is labeled
“RMSE”, or “root mean squared error”. Why is this so, and why not RMSPE?
In statistics, we try to be very precise with our language to indicate whether we
are calculating the prediction error on the training data (in-sample prediction)

262 CHAPTER 7. REGRESSION I: K-NEAREST NEIGHBORS

versus on the testing data (out-of-sample prediction). When predicting and
evaluating prediction quality on the training data, we say RMSE. By contrast,
when predicting and evaluating prediction quality on the testing or validation
data, we say RMSPE. The equation for calculating RMSE and RMSPE is
exactly the same; all that changes is whether the ys are training or testing
data. But many people just use RMSE for both, and rely on context to denote
which data the root mean squared error is being calculated on.

Now that we know how we can assess how well our model predicts a nu-
merical value, let’s use Python to perform cross-validation and to choose the
optimal K. First, we will create a column transformer for preprocessing our
data. Note that we include standardization in our preprocessing to build good
habits, but since we only have one predictor, it is technically not necessary;
there is no risk of comparing two predictors of different scales. Next, we create
a model pipeline for K-NN regression. Note that we use the KNeighborskRe-
gressor model object now to denote a regression problem, as opposed to
the classification problems from the previous chapters. The use of KNeigh-
borsRegressor essentially tells scikit-1learn that we need to use different
metrics (instead of accuracy) for tuning and evaluation. Next, we specify a pa-
rameter grid containing numbers of neighbors ranging from 1 to 200. Then we
create a 5-fold GridSearchCV object, and pass in the pipeline and parameter
grid. There is one additional slight complication: unlike classification models
in scikit-learn—which by default use accuracy for tuning, as desired—
regression models in scikit-learn do not use the RMSPE for tuning by
default. So we need to specify that we want to use the RMSPE for tuning by
setting the scoring argument to "neg_root_mean_squared_error".

Note: We obtained the identifier of the parameter representing the number
of neighbors, "kneighborsregressor__n_neighbors" by examining the
output of sacr_pipeline.get_params (), as we did in Chapter 5.

import the K-NN regression model
from sklearn.neighbors import KNeighborsRegressor

preprocess the data, make the pipeline
sacr_preprocessor = make_column_transformer ((StandardScaler (), ["sqgft"]))
sacr_pipeline = make_pipeline (sacr_preprocessor, KNeighborsRegressor())

create the 5-fold GridSearchCV object
param_grid = {
"kneighborsregressor__n_neighbors": range (1, 201, 3),
}
sacr_gridsearch = GridSearchCV (
estimator=sacr_pipeline,

(continues on next page)

7.6. TRAINING, EVALUATING, AND TUNING THE MODEL 263

(continued from previous page)

param_grid=param_grid,
cv=5,
scoring="neg_root_mean_squared_error",

Next, we use the run cross validation by calling the fit method on
sacr_gridsearch. Note the use of two brackets for the input features
(sacramento_train[["sgft"]]), which creates a data frame with a sin-
gle column. As we learned in Chapter 3, we can obtain a data frame with
a subset of columns by passing a list of column names; ["sgft"] is a list
with one item, so we obtain a data frame with one column. If instead we
used just one bracket (sacramento_train["sqgft"]), we would obtain a se-
ries. In scikit-learn, it is easier to work with the input features as a data
frame rather than a series, so we opt for two brackets here. On the other
hand, the response variable can be a series, so we use just one bracket there
(sacramento_train ["price"])

As in Chapter 6, once the model has been fit we will wrap the cv_results_
output in a data frame, extract only the relevant columns, compute the stan-
dard error based on 5 folds, and rename the parameter column to be more
readable.

fit the GridSearchCV object

sacr_gridsearch.fit (
sacramento_train[["sgft"]], # A single-column data frame
sacramento_train["price"] # A series

)

Retrieve the CV scores
sacr_results = pd.DataFrame (sacr_gridsearch.cv_results_)
sacr_results["sem_test_score"] = sacr_results["std_test_score"] / 5**(1/2)
sacr_results = (
sacr_results|[[
"param_kneighborsregressor__n_neighbors",
"mean_test_score",
"sem_test_score"
11
.rename (columns={"param_kneighborsregressor__n_neighbors": "n_neighbors"})
)

sacr_results

n_neighbors mean_test_score sem_test_score

0 1 -117365.988307 2715.383001
1 4 -93956.523683 2466.200227
2 7 -89859.401722 2739.713448
3 10 -87893.534919 2958.587153
4 13 -86444.413831 3383.712997
62 187 -92909.550051 2562.784826
63 190 -93137.289780 2511.564001
64 193 -93395.588763 2492.272799
65 196 -93671.588088 2473.312705

(continues on next page)

264 CHAPTER 7. REGRESSION I: K-NEAREST NEIGHBORS

(continued from previous page)
66 199 ~93986.752272 2473.048651

[67 rows x 3 columns]

In the sacr_results results data frame, we see that the n_neighbors
variable contains the values of K, and mean_test_score variable contains
the value of the RMSPE estimated via cross-validation ..Wait a moment!
Isn’t the RMSPE supposed to be nonnegative? Recall that when we speci-
fied the scoring argument in the GridSearchCV object, we used the value
"neg_root_mean_squared_error". See the neg_ at the start? That stands
for negative. As it turns out, scikit-learn always tries to maximize a score
when it tunes a model. But we want to minimize the RMSPE when we tune
a regression model. So scikit—-learn gets around this by working with the
negative RMSPE instead. It is a little convoluted, but we need to add one
more step to convert the negative RMSPE back to the regular RMSPE.

sacr_results["mean_test_score"] = -sacr_results|["mean_test_score"]
sacr_results

n_neighbors mean_test_score sem_test_score

0 1 117365.988307 2715.383001
1 4 93956.523683 2466.200227
2 7 89859.401722 2739.713448
3 10 87893.534919 2958.587153
4 13 86444.413831 3383.712997
62 187 92909.550051 2562.784826
63 190 93137.289780 2511.564001
64 193 93395.588763 2492.272799
65 196 93671.588088 2473.312705
66 199 93986.752272 2473.048651

[67 rows x 3 columns]

Alright, now the mean_test_score variable actually has values of the RM-
SPE for different numbers of neighbors. Finally, the sem_test_score vari-
able contains the standard error of our cross-validation RMSPE estimate,
which is a measure of how uncertain we are in the mean value. Roughly,
if your estimated mean RMSPE is $100,000 and standard error is $1,000, you
can expect the true RMSPE to be somewhere roughly between $99,000 and
$101,000 (although it may fall outside this range).

Fig. 7.6 visualizes how the RMSPE varies with the number of neighbors K.
We take the minimum RMSPE to find the best setting for the number of
neighbors. The smallest RMSPE occurs when K is 55.

To see which parameter value corresponds to the minimum RMSPE, we can
also access the best_params_ attribute of the original fit GridSearchcv

7.7. UNDERFITTING AND OVERFITTING 265

120,000

115,000

imate

110,000

105,000

100,000

95,000 -

Cross-Validation RMSPE Est

90,000 -

85,000 T T T T T T T T T 1
0 20 40 60 80 100 120 140 160 180 200

Neighbors

FIGURE 7.6 Effect of the number of neighbors on the RMSPE.

object. Note that it is still useful to visualize the results as we did above since
this provides additional information on how the model performance varies.

sacr_gridsearch.best_params_

{'kneighborsregressor__n_neighbors': 55}

7.7 Underfitting and overfitting

Similar to the setting of classification, by setting the number of neighbors to
be too small or too large, we cause the RMSPE to increase, as shown in Fig.
7.6. What is happening here?

Fig. 7.7 visualizes the effect of different settings of K on the regression model.
Each plot shows the predicted values for house sale price from our K-NN
regression model for 6 different values for K: 1, 3, 25, 55, 250, and 699 (i.e.,
all of the training data). For each model, we predict prices for the range of
possible home sizes we observed in the data set (here 500 to 5,000 square feet)
and we plot the predicted prices as an orange line.

Fig. 7.7 shows that when K = 1, the orange line runs perfectly through (al-
most) all of our training observations. This happens because our predicted

266

CHAPTER 7. REGRESSION I: K-NEAREST NEIGHBORS

K=3
$900,000 $900,000 .
. .
$800,000 $800,000
.
$700,000 $700,000
$600,000 - $600,000 -
& $500,000- 3 $500,000-]
2 2
@ o
-2 $400,000| -2 $400,000 -
[a
$300,000 - $300,000-
$200,000 $200,000
$100,000| $100,000
$0 T T T T T T T 1 $0 T T T T T T T 1
0 1,000 2,000 3,000 4000 5,000 0 1,000 2,000 3,000 4,000 5,000
House size (square feet) House size (square feet)
K =25 K =55
$900,000 . $900,000 .
. ° . .
$800,000 $800,000
. .
$700,000 | $700,000
$600,000 $600,000
2 $500,000- 2 $500,000-
2 2
@ @
-2 $400,000 -2 $400,000
[a
$300,000| $300,000
$200,000 $200,000
$100,000 $100,000 -
$0 T T T T T T T 1 $0 T T T T T T T 1
0 1,000 2,000 3,000 4,00 5,000 0 1,000 2,000 3,000 4,000 5,000
House size (square feet) House size (square feet)
K =250 K =699
$900,000 . $900,000 .
. . .
$800,000 $800,000
. .
$700,000| $700,000
$600,000 | $600,000
2 $500,000-| 2 $500,000-]
2 2
@ @
-2 $400,000 -2 $400,000~
[a
$300,000 $300,000
$200,000 $200,000
$100,000 $100,000
$0 T T T T T T T 1 $0 T T T T T T J
0 1,000 2,000 3,000 4,00 5,000 0 1,000 2,000 3,000 4,00 5,000

House size (square feet)

House size (square feet)

FIGURE 7.7 Predicted values for house price (represented as an orange line)
from K-NN regression models for six different values for K.

7.8. EVALUATING ON THE TEST SET 267

values for a given region (typically) depend on just a single observation. In
general, when K is too small, the line follows the training data quite closely,
even if it does not match it perfectly. If we used a different training data set
of house prices and sizes from the Sacramento real estate market, we would
end up with completely different predictions. In other words, the model is
influenced too much by the data. Because the model follows the training data
so closely, it will not make accurate predictions on new observations which,
generally, will not have the same fluctuations as the original training data.
Recall from the classification chapters that this behavior—where the model is
influenced too much by the noisy data—is called overfitting; we use this same
term in the context of regression.

What about the plots in Fig. 7.7 where K is quite large, say, K = 250 or
6997 In this case the orange line becomes extremely smooth, and actually
becomes flat once K is equal to the number of datapoints in the entire data
set. This happens because our predicted values for a given x value (here,
home size), depend on many neighboring observations; in the case where K is
equal to the size of the data set, the prediction is just the mean of the house
prices in the data set (completely ignoring the house size). In contrast to the
K =1 example, the smooth, inflexible orange line does not follow the training
observations very closely. In other words, the model is not influenced enough
by the training data. Recall from the classification chapters that this behavior
is called underfitting; we again use this same term in the context of regression.

Ideally, what we want is neither of the two situations discussed above. Instead,
we would like a model that (1) follows the overall “trend” in the training data,
so the model actually uses the training data to learn something useful, and (2)
does not follow the noisy fluctuations, so that we can be confident that our
model will transfer /generalize well to other new data. If we explore the other
values for K, in particular K = 55 (as suggested by cross-validation), we can
see it achieves this goal: it follows the increasing trend of house price versus
house size, but is not influenced too much by the idiosyncratic variations in
price. All of this is similar to how the choice of K affects K-NN classification,
as discussed in the previous chapter.

7.8 Evaluating on the test set

To assess how well our model might do at predicting on unseen data, we will
assess its RMSPE on the test data. To do this, we first need to retrain the
K-NN regression model on the entire training data set using K = 55 neigh-
bors. As we saw in Chapter 6 we do not have to do this ourselves manually;

268 CHAPTER 7. REGRESSION I: K-NEAREST NEIGHBORS

scikit-learn does it for us automatically. To make predictions with the
best model on the test data, we can use the predict method of the fit Grid-
SearchCV object. We then use the mean_squared_error function (with the
y_true and y_pred arguments) to compute the mean squared prediction er-
ror, and finally take the square root to get the RMSPE. The reason that we do
not just use the score method—as in Chapter 6—is that the KNeighborsRe-
gressor model uses a different default scoring metric than the RMSPE.

from sklearn.metrics import mean_squared_error

sacramento_test ["predicted"] = sacr_gridsearch.predict (sacramento_test)
RMSPE = mean_squared_error (
y_true=sacramento_test["price"],
y_pred=sacramento_test ["predicted"]
) =5 (L) 2)
RMSPE

87498.86808211416

Our final model’s test error as assessed by RMSPE is $87,499. Note that RM-
SPE is measured in the same units as the response variable. In other words, on
new observations, we expect the error in our prediction to be roughly $87,499.
From one perspective, this is good news: this is about the same as the cross-
validation RMSPE estimate of our tuned model (which was $85,578, so we can
say that the model appears to generalize well to new data that it has never
seen before. However, much like in the case of K-NN classification, whether
this value for RMSPE is good—i.e., whether an error of around $87,499 is
acceptable—depends entirely on the application. In this application, this er-
ror is not prohibitively large, but it is not negligible either; $87,499 might
represent a substantial fraction of a home buyer’s budget, and could make or
break whether or not they could afford put an offer on a house.

Finally, Fig. 7.8 shows the predictions that our final model makes across the
range of house sizes we might encounter in the Sacramento area. Note that
instead of predicting the house price only for those house sizes that happen
to appear in our data, we predict it for evenly spaced values between the
minimum and maximum in the data set (roughly 500 to 5000 square feet).
We superimpose this prediction line on a scatter plot of the original housing
price data, so that we can qualitatively assess if the model seems to fit the
data well. You have already seen a few plots like this in this chapter, but here
we also provide the code that generated it as a learning opportunity.

Create a grid of evenly spaced values along the range of the sqgft data
sqft_prediction_grid = pd.DataFrame ({

"sgft": np.arange (sacramento["sgft"].min (), sacramento["sgft"].max(), 10)
B
Predict the price for each of the sqgft values in the grid

(continues on next page)

7.8. EVALUATING ON THE TEST SET 269

(continued from previous page)

sqft_prediction_grid["predicted"] = sacr_gridsearch.predict (sqft_prediction_grid)

Plot all the houses
base_plot = alt.Chart (sacramento) .mark_circle (opacity=0.4) .encode (
x=alt.X("sqgft")
.scale (zero=False)
.title ("House size (square feet)"),
y=alt.Y("price")
.axis (format="5, .0f")
.title ("Price (USD)")
)

Add the predictions as a line
sacr_preds_plot = base_plot + alt.Chart(
sqft_prediction_grid,
title=f"K = {best_k_sacr}"
) .mark_line (
color="#f£7£0e"
) .encode (
X:"Sqft" ,
y="predicted"

sacr_preds_plot

$900,000 -
$800,000
$700,000
$600,000 = Ve u
$500,000

$400,000 —

Price (USD)

$300,000

$200,000

$100,000

$0 T T T

T T T T 1
2,000 3,000 4,000 5,000

House size (square feet)

FIGURE 7.8 Predicted values of house price (orange line) for the final K-NN
regression model.

270 CHAPTER 7. REGRESSION I: K-NEAREST NEIGHBORS

7.9 Multivariable K-NN regression

As in K-NN classification, we can use multiple predictors in K-NN regression.
In this setting, we have the same concerns regarding the scale of the predictors.
Once again, predictions are made by identifying the K observations that are
nearest to the new point we want to predict; any variables that are on a large
scale will have a much larger effect than variables on a small scale. Hence, we
should re-define the preprocessor in the pipeline to incorporate all predictor
variables.

Note that we also have the same concern regarding the selection of predictors
in K-NN regression as in K-NN classification: having more predictors is not
always better, and the choice of which predictors to use has a potentially
large influence on the quality of predictions. Fortunately, we can use the
predictor selection algorithm from Chapter 6 in K-NN regression as well. As
the algorithm is the same, we will not cover it again in this chapter.

We will now demonstrate a multivariable K-NN regression analysis of the
Sacramento real estate data using scikit-learn. This time we will use
house size (measured in square feet) as well as number of bedrooms as our
predictors, and continue to use house sale price as our response variable that
we are trying to predict. It is always a good practice to do exploratory data
analysis, such as visualizing the data, before we start modeling the data. Fig.
7.9 shows that the number of bedrooms might provide useful information to
help predict the sale price of a house.

plot_beds = alt.Chart (sacramento) .mark_circle () .encode (
x=alt.X ("beds") .title ("Number of Bedrooms"),
y=alt.Y("price") .title("Price (USD)").axis(format="5,.0£f"),
)
plot_beds

Fig. 7.9 shows that as the number of bedrooms increases, the house sale price
tends to increase as well, but that the relationship is quite weak. Does adding
the number of bedrooms to our model improve our ability to predict price?
To answer that question, we will have to create a new K-NN regression model
using house size and number of bedrooms, and then we can compare it to the
model we previously came up with that only used house size. Let’s do that
now.

First, we’ll build a new model object and preprocessor for the anal-
ysis. Note that we pass the list ["sgft", "beds"] into the
make_column_transformer function to denote that we have two predictors.

7.9. MULTIVARIABLE K-NN REGRESSION 271

3 4 5 6 7 8
Number of Bedrooms

$900,000

$800,000

$700,000

$600,000 —

$500,000

$400,000

Price (USD)

$300,000

$200,000

$100,000

$0

- 060 @B ow

N —

FIGURE 7.9 Scatter plot of the sale price of houses versus the number of
bedrooms.

Moreover, we do not specify n_neighbors in KNeighborsRegressor, indi-
cating that we want this parameter to be tuned by GridSearchcCv.

sacr_preprocessor = make_column_transformer ((StandardScaler (), ["sgft", "beds"]))
sacr_pipeline = make_pipeline (sacr_preprocessor, KNeighborsRegressor())

Next, we'll use 5-fold cross-validation with a GridsearchCv object to choose
the number of neighbors via the minimum RMSPE:

create the 5-fold GridSearchCV object
param_grid = {
"kneighborsregressor__n_neighbors": range(l, 50),

}

sacr_gridsearch = GridSearchCV (
estimator=sacr_pipeline,
param_grid=param_grid,
cv=5,
scoring="neg_root_mean_squared_error"

)

sacr_gridsearch.fit (
sacramento_train[["sqgft", "beds"]1],
sacramento_train["price"]

)

retrieve the CV scores
sacr_results = pd.DataFrame (sacr_gridsearch.cv_results_)

(continues on next page)

272 CHAPTER 7. REGRESSION I: K-NEAREST NEIGHBORS

(continued from previous page)

sacr_results["sem_test_score"] = sacr_results["std_test_score"] / 5**(1/2)
sacr_results["mean_test_score"] = -sacr_results|["mean_test_score"]
sacr_results = (
sacr_results|[[
"param_kneighborsregressor__n_neighbors",
"mean_test_score",
"sem_test_score"

11

.rename (columns={"param_kneighborsregressor__n_neighbors" : "n_neighbors"})

)

show only the row of minimum RMSPE
sacr_results.nsmallest (1, "mean_test_score")

n_neighbors mean_test_score sem_test_score
28 29 85156.027067 3376.143313

Here we see that the smallest estimated RMSPE from cross-validation occurs
when K = 29. If we want to compare this multivariable K-NN regression
model to the model with only a single predictor as part of the model tuning
process (e.g., if we are running forward selection as described in the chapter
on evaluating and tuning classification models), then we must compare the
RMSPE estimated using only the training data via cross-validation. Looking
back, the estimated cross-validation RMSPE for the single-predictor model
was $85,578. The estimated cross-validation RMSPE for the multivariable
model is $85,156. Thus in this case, we did not improve the model by a large
amount by adding this additional predictor.

Regardless, let’s continue the analysis to see how we can make predictions
with a multivariable K-NN regression model and evaluate its performance on
test data. As previously, we will use the best model to make predictions on the
test data via the predict method of the fit Gridsearchcv object. Finally,
we will use the mean_squared_error function to compute the RMSPE.

sacramento_test ["predicted"] = sacr_gridsearch.predict (sacramento_test)
RMSPE_mult = mean_squared_error (
y_true=sacramento_test["price"],
y_pred=sacramento_test ["predicted"]
) **(1/2)
RMSPE_mult

85083.2902421959

This time, when we performed K-NN regression on the same data set, but also
included number of bedrooms as a predictor, we obtained a RMSPE test error
of $85,083. Fig. 7.10 visualizes the model’s predictions overlaid on top of the
data. This time the predictions are a surface in 3D space, instead of a line in
2D space, as we have 2 predictors instead of 1.

7.10. STRENGTHS AND LIMITATIONS OF K-NN REGRESSION 273

Price (USD)
800k 500k
450k

400k

350k

(asn) @44

300k

250k

200k

S, ©
e W S
S

150k
O
N

FIGURE 7.10 K-NN regression model’s predictions represented as a surface
in 3D space overlaid on top of the data using three predictors (price, house size,
and the number of bedrooms). Note that in general we recommend against
using 3D visualizations; here we use a 3D visualization only to illustrate what
the surface of predictions looks like for learning purposes.

We can see that the predictions in this case, where we have 2 predictors, form
a surface instead of a line. Because the newly added predictor (number of
bedrooms) is related to price (as price changes, so does number of bedrooms)
and is not totally determined by house size (our other predictor), we get
additional and useful information for making our predictions. For example,
in this model we would predict that the cost of a house with a size of 2,500
square feet generally increases slightly as the number of bedrooms increases.
Without having the additional predictor of number of bedrooms, we would
predict the same price for these two houses.

7.10 Strengths and limitations of K-NIN regression

As with K-NN classification (or any prediction algorithm for that matter),
K-NN regression has both strengths and weaknesses. Some are listed here:

Strengths: K-NN regression

1. is a simple, intuitive algorithm,

2. requires few assumptions about what the data must look like, and

274 CHAPTER 7. REGRESSION I: K-NEAREST NEIGHBORS

3. works well with non-linear relationships (i.e., if the relationship is not
a straight line).

Weaknesses: K-NN regression

1. becomes very slow as the training data gets larger,
2. may not perform well with a large number of predictors, and

3. may not predict well beyond the range of values input in your training
data.

7.11 Exercises

Practice exercises for the material covered in this chapter can be found in the
accompanying worksheets repository? in the “Regression I: K-nearest neigh-
bors” row. You can launch an interactive version of the worksheet in your
browser by clicking the “launch binder” button. You can also preview a non-
interactive version of the worksheet by clicking “view worksheet”. If you in-
stead decide to download the worksheet and run it on your own machine, make
sure to follow the instructions for computer setup found in Chapter 13. This
will ensure that the automated feedback and guidance that the worksheets
provide will function as intended.

2https://worksheets.python.datasciencebook.ca

https://worksheets.python.datasciencebook.ca

8

Regression 1I: linear regression

8.1 Overview

Up to this point, we have solved all of our predictive problems—both classi-
fication and regression—using K-nearest neighbors (K-NN)-based approaches.
In the context of regression, there is another commonly used method known as
linear regression. This chapter provides an introduction to the basic concept
of linear regression, shows how to use scikit-learn to perform linear regres-
sion in Python, and characterizes its strengths and weaknesses compared to
K-NN regression. The focus is, as usual, on the case where there is a single
predictor and single response variable of interest; but the chapter concludes
with an example using multivariable linear regression when there is more than
one predictor.

8.2 Chapter learning objectives

By the end of the chapter, readers will be able to do the following:

o Use Python to fit simple and multivariable linear regression models on train-
ing data.

o Evaluate the linear regression model on test data.

o Compare and contrast predictions obtained from K-NN regression to those
obtained using linear regression from the same data set.

o Describe how linear regression is affected by outliers and multicollinearity.

8.3 Simple linear regression

At the end of the previous chapter, we noted some limitations of K-NN regres-
sion. While the method is simple and easy to understand, K-NN regression

DOI: 10.1201/9781003438397-8 275

https://doi.org/10.1201/9781003438397-8

276 CHAPTER 8. REGRESSION II: LINEAR REGRESSION

does not predict well beyond the range of the predictors in the training data,
and the method gets significantly slower as the training data set grows. For-
tunately, there is an alternative to K-NN regression—I/inear regression—that
addresses both of these limitations. Linear regression is also very commonly
used in practice because it provides an interpretable mathematical equation
that describes the relationship between the predictor and response variables.
In this first part of the chapter, we will focus on simple linear regression, which
involves only one predictor variable and one response variable; later on, we
will consider multivariable linear regression, which involves multiple predictor
variables. Like K-NN regression, simple linear regression involves predicting
a numerical response variable (like race time, house price, or height); but how
it makes those predictions for a new observation is quite different from K-NN
regression. Instead of looking at the K-NN and averaging over their values for
a prediction, in simple linear regression, we create a straight line of best fit
through the training data and then “look up” the prediction using the line.

Note: Although we did not cover it in earlier chapters, there is another pop-
ular method for classification called logistic regression (it is used for classifica-
tion even though the name, somewhat confusingly, has the word “regression”
in it). In logistic regression—similar to linear regression—you “fit” the model
to the training data and then “look up” the prediction for each new observation.
Logistic regression and K-NN classification have an advantage/disadvantage
comparison similar to that of linear regression and K-NN regression. It is
useful to have a good understanding of linear regression before learning about
logistic regression. After reading this chapter, see the “Additional Resources”
section at the end of the classification chapters to learn more about logistic
regression.

Let’s return to the Sacramento housing data from Chapter 7 to learn how to
apply linear regression and compare it to K-NN regression. For now, we will
consider a smaller version of the housing data to help make our visualizations
clear. Recall our predictive question: can we use the size of a house in the
Sacramento, CA area to predict its sale price? In particular, recall that we
have come across a new 2,000 square-foot house we are interested in purchasing
with an advertised list price of $350,000. Should we offer the list price, or is
that over/undervalued? To answer this question using simple linear regression,
we use the data we have to draw the straight line of best fit through our existing
data points. The small subset of data as well as the line of best fit are shown
in Fig. 8.1.

8.8. SIMPLE LINEAR REGRESSION 277
$550,000
$500,000
$450,000
$400,000
$350,000

$300,000 -

Price (USD)

$250,000

$200,000

$150,000

$100,000

$50,000 T T
500 1,500

T T T 1
2,500 3,500 4,500

House size (square feet)

FIGURE 8.1 Scatter plot of sale price versus size with line of best fit for
subset of the Sacramento housing data.

The equation for the straight line is:
house sale price = 3, + f; - (house size),

where
o [, is the wvertical intercept of the line (the price when house size is 0)

o [3; is the slope of the line (how quickly the price increases as you increase
house size)

Therefore using the data to find the line of best fit is equivalent to finding
coefficients 3, and B, that parametrize (correspond to) the line of best fit.
Now of course, in this particular problem, the idea of a 0 square-foot house
is a bit silly; but you can think of 3, here as the “base price”, and [3; as
the increase in price for each square foot of space. Let’s push this thought
even further: what would happen in the equation for the line if you tried to
evaluate the price of a house with size 6 million square feet? Or what about
negative 2,000 square feet? As it turns out, nothing in the formula breaks;
linear regression will happily make predictions for crazy predictor values if
you ask it to. But even though you can make these wild predictions, you
shouldn’t. You should only make predictions roughly within the range of your
original data, and perhaps a bit beyond it only if it makes sense. For example,

278 CHAPTER 8. REGRESSION II: LINEAR REGRESSION
$550,000
$500,000 -
$450,000 -
$400,000 -
$350,000 -

$300,000

Price (USD)

$250,000

$200,000

$150,000

$100,000

$50,000 T T
500 1,500

T T T 1
2,500 3,500 4,500

House size (square feet)

FIGURE 8.2 Scatter plot of sale price versus size with line of best fit and a
red dot at the predicted sale price for a 2,000 square-foot home.

the data in Fig. 8.1 only reaches around 600 square feet on the low end, but
it would probably be reasonable to use the linear regression model to make a
prediction at 500 square feet, say.

Back to the example. Once we have the coefficients 3, and 3,, we can use the
equation above to evaluate the predicted sale price given the value we have
for the predictor variable—here 2,000 square feet. Fig. 8.2 demonstrates this
process.

By using simple linear regression on this small data set to predict the sale
price for a 2,000 square-foot house, we get a predicted value of $276,027. But
wait a minute .. how exactly does simple linear regression choose the line of
best fit? Many different lines could be drawn through the data points. Some
plausible examples are shown in Fig. 8.3.

Simple linear regression chooses the straight line of best fit by choosing the line
that minimizes the average squared vertical distance between itself and
each of the observed data points in the training data (equivalent to minimizing
the RMSE). Fig. 8.4 illustrates these vertical distances as lines. Finally, to
assess the predictive accuracy of a simple linear regression model, we use
RMSPE-—the same measure of predictive performance we used with K-NN
regression.

8.8. SIMPLE LINEAR REGRESSION 279

$800,000

$700,000 -

$600,000

$500,000 -

$400,000

Price (USD)

$300,000 -

$200,000

$100,000 —

$0 T T
500 1,500

T T T 1
2,500 3,500 4,500

House size (square feet)

FIGURE 8.3 Scatter plot of sale price versus size with many possible lines
that could be drawn through the data points.

$550,000
$500,000
$450,000
$400,000

$350,000

$300,000 -

Price (USD)

$250,000

$200,000

$150,000

$100,000

$50,000 T T T
500 1,500 2,500

House size (square feet)

T T 1
3,500 4,500

FIGURE 8.4 Scatter plot of sale price versus size with lines denoting the
vertical distances between the predicted values and the observed data points.

280 CHAPTER 8. REGRESSION II: LINEAR REGRESSION

8.4 Linear regression in Python

We can perform simple linear regression in Python using scikit-learn in
a very similar manner to how we performed K-NN regression. To do this,
instead of creating a KNeighborsRegressor model object, we use a Lin-
earRegression model object; and as usual, we first have to import it from
sklearn. Another difference is that we do not need to choose K in the con-
text of linear regression, and so we do not need to perform cross-validation.
Below we illustrate how we can use the usual scikit-learn workflow to
predict house sale price given house size. We use a simple linear regression
approach on the full Sacramento real estate data set.

As usual, we start by loading packages, setting the seed, loading data, and
putting some test data away in a lock box that we can come back to after we
choose our final model. Let’s take care of that now.

import numpy as np

import altair as alt

import pandas as pd

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

from sklearn import set_config

Output dataframes instead of arrays
set_config(transform_output="pandas")

np.random. seed (1)
sacramento = pd.read_csv("data/sacramento.csv")
sacramento_train, sacramento_test = train_test_split (

sacramento, train_size=0.75
)

Now that we have our training data, we will create and fit the linear regression
model object. We will also extract the slope of the line via the coef_[0]
property, as well as the intercept of the line via the intercept_ property.

fit the linear regression model
Ilm = LinearRegression ()

Im. fit (
sacramento_train[["sgft"]], # A single-column data frame
sacramento_train["price"] # A series

)

make a dataframe containing slope and intercept coefficients
pd.DataFrame ({"slope": [lm.coef_[0]], "intercept": [lm.intercept_]})

8.4. LINEAR REGRESSION IN PYTHON 281

slope intercept
0 137.285652 15642.309105

Note: An additional difference that you will notice here is that we do not
standardize (i.e., scale and center) our predictors. In K-NN models, recall
that the model fit changes depending on whether we standardize first or not.
In linear regression, standardization does not affect the fit (it does affect the
coefficients in the equation, though!). So you can standardize if you want—it
won’t hurt anything—but if you leave the predictors in their original form, the
best fit coefficients are usually easier to interpret afterward.

Our coefficients are (intercept) 5, = 15642 and (slope) $; = 137. This means
that the equation of the line of best fit is

house sale price = 15642 + 137 -(house size).

In other words, the model predicts that houses start at $15,642 for 0 square
feet, and that every extra square foot increases the cost of the house by $137.
Finally, we predict on the test data set to assess how well our model does.

make predictions
sacramento_test ["predicted"] = lm.predict (sacramento_test[["sgft"]])

calculate RMSPE

RMSPE = mean_squared_error (
y_true=sacramento_test["price"],
y_pred=sacramento_test ["predicted"]

) **(1/2)

RMSPE

85376.59691629931

Our final model’s test error as assessed by RMSPE is $85,377. Remember that
this is in units of the response variable, and here that is US Dollars (USD).
Does this mean our model is “good” at predicting house sale price based off
of the predictor of home size? Again, answering this is tricky and requires
knowledge of how you intend to use the prediction.

To visualize the simple linear regression model, we can plot the predicted
house sale price across all possible house sizes we might encounter. Since our
model is linear, we only need to compute the predicted price of the minimum
and maximum house size, and then connect them with a straight line. We
superimpose this prediction line on a scatter plot of the original housing price
data, so that we can qualitatively assess if the model seems to fit the data
well. Fig. 8.5 displays the result.

282 CHAPTER 8. REGRESSION II: LINEAR REGRESSION

$900,000
$800,000
$700,000
$600,000
$500,000

$400,000

Price (USD)

$300,000

$200,000

$100,000

$0 T

T T T
0 1,000

T T T 1
2,000 3,000 4,000 5,000

House size (square feet)

FIGURE 8.5 Scatter plot of sale price versus size with line of best fit for the
full Sacramento housing data.

sgft_prediction_grid = sacramento[["sgft"]].agg(["min", "max"])
sqft_prediction_grid["predicted"] = lm.predict (sqft_prediction_grid)
all_points = alt.Chart (sacramento) .mark_circle () .encode (

x=alt . X ("sgft")
.scale (zero=False)
.title ("House size (square feet)"),
y=alt.Y("price")
.axis (format="$, .0f")
.scale (zero=False)
.title("Price (USD)")
)

sacr_preds_plot = all_points + alt.Chart (sqft_prediction_grid) .mark_line (
color="#f£7£0e"

) .encode (
x:"sqft" ,
y="predicted"

)

sacr_preds_plot

8.5 Comparing simple linear and K-NN regression

Now that we have a general understanding of both simple linear and K-NN
regression, we can start to compare and contrast these methods as well as

8.5. COMPARING SIMPLE LINEAR AND K-NN REGRESSION

linear regression

$900,000

$800,000

$700,000

$600,000

$500,000 -

(UsD)

ice

$400,000 -

Pri

$300,000

$200,000

$100,000

$0

T T T T T T T
0 1,000 2,000 3,000
House size (square feet)

T
4,000

T 1
5,000

Price (USD)

$900,000

$800,000 -

$700,000

$600,000

$500,000 -

$400,000

$300,000

$200,000

$100,000

$0

283

K-NN regression

RMSPE = 87499

T T T
1,000

T T T T 1
2,000 3,000 4,000 5,000

House size (square feet)

FIGURE 8.6 Comparison of simple linear regression and K-NN regression.

the predictions made by them. To start, let’s look at the visualization of
the simple linear regression model predictions for the Sacramento real estate
data (predicting price from house size) and the “best” K-NN regression model
obtained from the same problem, shown in Fig. 8.6.

What differences do we observe in Fig. 8.67 One obvious difference is the
shape of the orange lines. In simple linear regression we are restricted to
a straight line, whereas in K-NN regression our line is much more flexible
and can be quite wiggly. But there is a major interpretability advantage in
limiting the model to a straight line. A straight line can be defined by two
numbers, the vertical intercept and the slope. The intercept tells us what the
prediction is when all of the predictors are equal to 0; and the slope tells us
what unit increase in the response variable we predict given a unit increase in
the predictor variable. K-NN regression, as simple as it is to implement and
understand, has no such interpretability from its wiggly line.

There can, however, also be a disadvantage to using a simple linear regression
model in some cases, particularly when the relationship between the response
variable and the predictor is not linear, but instead some other shape (e.g.,
curved or oscillating). In these cases the prediction model from a simple linear
regression will underfit, meaning that model/predicted values do not match
the actual observed values very well. Such a model would probably have a
quite high RMSE when assessing model goodness of fit on the training data
and a quite high RMSPE when assessing model prediction quality on a test
data set. On such a data set, K-NN regression may fare better. Additionally,
there are other types of regression you can learn about in future books that
may do even better at predicting with such data.

284 CHAPTER 8. REGRESSION II: LINEAR REGRESSION

How do these two models compare on the Sacramento house prices data set?
In Fig. 8.6, we also printed the RMSPE as calculated from predicting on the
test data set that was not used to train/fit the models. The RMSPE for the
simple linear regression model is slightly lower than the RMSPE for the K-NN
regression model. Considering that the simple linear regression model is also
more interpretable, if we were comparing these in practice we would likely
choose to use the simple linear regression model.

Finally, note that the K-NN regression model becomes “flat” at the left and
right boundaries of the data, while the linear model predicts a constant slope.
Predicting outside the range of the observed data is known as extrapolation; K-
NN and linear models behave quite differently when extrapolating. Depending
on the application, the flat or constant slope trend may make more sense. For
example, if our housing data were slightly different, the linear model may
have actually predicted a negative price for a small house (if the intercept f,
was negative), which obviously does not match reality. On the other hand, the
trend of increasing house size corresponding to increasing house price probably
continues for large houses, so the “flat” extrapolation of K-NN likely does not
match reality.

8.6 Multivariable linear regression

As in K-NN classification and K-NN regression, we can move beyond the
simple case of only one predictor to the case with multiple predictors, known
as multivariable linear regression. To do this, we follow a very similar approach
to what we did for K-NN regression: we just specify the training data by
adding more predictors. But recall that we do not need to use cross-validation
to choose any parameters, nor do we need to standardize (i.e., center and
scale) the data for linear regression. Note once again that we have the same
concerns regarding multiple predictors as in the settings of multivariable K-
NN regression and classification: having more predictors is not always better.
But because the same predictor selection algorithm from Chapter 6 extends
to the setting of linear regression, it will not be covered again in this chapter.

We will demonstrate multivariable linear regression using the Sacramento real
estate data with both house size (measured in square feet) as well as number
of bedrooms as our predictors, and continue to use house sale price as our
response variable. The scikit-learn framework makes this easy to do: we
just need to set both the sgft and beds variables as predictors, and then use
the £it method as usual.

8.6. MULTIVARIABLE LINEAR REGRESSION 285

mlm LinearRegression ()
mlm. fit (

sacramento_train[["sgft", "beds"]],
sacramento_train["price"]

LinearRegression ()

Finally, we make predictions on the test data set to assess the quality of our
model.

sacramento_test ["predicted"]

mlm.predict (sacramento_test[["sgft", "beds"]1])

Im_mult_test_RMSPE mean_squared_error (
y_true=sacramento_test["price"],

y_pred=sacramento_test ["predicted"]
) **(1/2)

Im_mult_test_RMSPE

82331.04630202598

Our model’s test error as assessed by RMSPE is $82,331. In the case of two

predictors, we can plot the predictions made by our linear regression creates
a plane of best fit, as shown in Fig. 8.7.

Price (USD)
800k

700k

600k 600K

400K 500k

(asn) 3d

400k

300k

200k

100k

FIGURE 8.7 Linear regression plane of best fit overlaid on top of the data
(using price, house size, and number of bedrooms as predictors). Note that
in general we recommend against using 3D visualizations; here we use a 3D

visualization only to illustrate what the regression plane looks like for learning
purposes.

286 CHAPTER 8. REGRESSION II: LINEAR REGRESSION

We see that the predictions from linear regression with two predictors form
a flat plane. This is the hallmark of linear regression, and differs from the
wiggly, flexible surface we get from other methods such as K-NN regression.
As discussed, this can be advantageous in one aspect, which is that for each
predictor, we can get slopes/intercept from linear regression, and thus de-
scribe the plane mathematically. We can extract those slope values from the
coef_ property of our model object, and the intercept from the intercept_
property, as shown below.

mlm.coef_

array ([154.59235377, -20333.43213798])
mlm.intercept_

53180.26906624224

When we have multiple predictor variables, it is not easy to know which vari-
able goes with which coefficient in mlm.coef_. In particular, you will see
that mlm.coef_ above is just an array of values without any variable names.
Unfortunately you have to do this mapping yourself: the coefficients in m1m.
coef_ appear in the same order as the columns of the predictor data frame
you used when training. So since we used sacramento_train[["sgft",
"beds"]] when training, we have that mlm.coef_[0] corresponds to sqgft,
and mlm.coef_[1] corresponds to beds. Once you sort out the correspon-
dence, you can then use those slopes to write a mathematical equation to
describe the prediction plane:

house sale price = 3, + f; - (house size) + 5 - (number of bedrooms),

where:

o [, is the vertical intercept of the hyperplane (the price when both house size
and number of bedrooms are 0)

e (3, is the slope for the first predictor (how quickly the price increases as you
increase house size)

e [y is the slope for the second predictor (how quickly the price increases as
you increase the number of bedrooms)

Finally, we can fill in the values for 3,, 8;, and S5 from the model output
above to create the equation of the plane of best fit to the data:

house sale price = 53,180 + 155 -(house size) —20,333 -(number of bedrooms)

8.7. MULTICOLLINEARITY AND OUTLIERS 287

This model is more interpretable than the multivariable K-NN regression
model; we can write a mathematical equation that explains how each pre-
dictor is affecting the predictions. But as always, we should question how
well multivariable linear regression is doing compared to the other tools we
have, such as simple linear regression and multivariable K-NN regression. If
this comparison is part of the model tuning process—for example, if we are
trying out many different sets of predictors for multivariable linear and K-NN
regression—we must perform this comparison using cross-validation on only
our training data. But if we have already decided on a small number (e.g., 2
or 3) of tuned candidate models and we want to make a final comparison, we
can do so by comparing the prediction error of the methods on the test data.

Im_mult_test_RMSPE
82331.04630202598

We obtain an RMSPE for the multivariable linear regression model of $82,331.
This prediction error is less than the prediction error for the multivariable K-
NN regression model, indicating that we should likely choose linear regression
for predictions of house sale price on this data set. Revisiting the simple linear
regression model with only a single predictor from earlier in this chapter, we
see that the RMSPE for that model was $85,377, which is slightly higher than
that of our more complex model. Our model with two predictors provided a
slightly better fit on test data than our model with just one. As mentioned
earlier, this is not always the case: sometimes including more predictors can
negatively impact the prediction performance on unseen test data.

8.7 Multicollinearity and outliers

What can go wrong when performing (possibly multivariable) linear regres-
sion? This section will introduce two common issues—outliers and collinear
predictors—and illustrate their impact on predictions.

8.7.1 Outliers

Outliers are data points that do not follow the usual pattern of the rest of the
data. In the setting of linear regression, these are points that have a vertical
distance to the line of best fit that is either much higher or much lower than
you might expect based on the rest of the data. The problem with outliers is
that they can have too much influence on the line of best fit. In general, it

288 CHAPTER 8. REGRESSION II: LINEAR REGRESSION

is very difficult to judge accurately which data are outliers without advanced
techniques that are beyond the scope of this book.

But to illustrate what can happen when you have outliers, Fig. 8.8 shows a
small subset of the Sacramento housing data again, except we have added a
single data point (highlighted in red). This house is 5,000 square feet in size,
and sold for only $50,000. Unbeknownst to the data analyst, this house was
sold by a parent to their child for an absurdly low price. Of course, this is not
representative of the real housing market values that the other data points
follow; the data point is an outlier. In orange we plot the original line of best
fit, and in red we plot the new line of best fit including the outlier. You can
see how different the red line is from the orange line, which is entirely caused
by that one extra outlier data point.

$800,000
$700,000 -
$600,000 -
$500,000

$400,000

Price (USD)

$300,000 -

$200,000

$100,000 —

$0 T T
500 1,500

T T T
2,500 3,500 4,500

House size (square feet)

FIGURE 8.8 Scatter plot of a subset of the data, with outlier highlighted
in red.

Fortunately, if you have enough data, the inclusion of one or two outliers—as
long as their values are not too wild—will typically not have a large effect
on the line of best fit. Fig. 8.9 shows how that same outlier data point from
earlier influences the line of best fit when we are working with the entire
original Sacramento training data. You can see that with this larger data set,
the line changes much less when adding the outlier. Nevertheless, it is still
important when working with linear regression to critically think about how
much any individual data point is influencing the model.

8.7. MULTICOLLINEARITY AND OUTLIERS 289

$900,000
$800,000
$700,000 ° J
$600,000
$500,000

$400,000

Price (USD)

$300,000

$200,000

$100,000
L

$0 T

T T T 1
2,000 3,000 4,000 5,000

House size (square feet)

FIGURE 8.9 Scatter plot of the full data, with outlier highlighted in red.

8.7.2 Multicollinearity

The second, and much more subtle, issue can occur when performing multi-
variable linear regression. In particular, if you include multiple predictors that
are strongly linearly related to one another, the coefficients that describe the
plane of best fit can be very unreliable—small changes to the data can result
in large changes in the coefficients. Consider an extreme example using the
Sacramento housing data where the house was measured twice by two people.
Since the two people are each slightly inaccurate, the two measurements might
not agree exactly, but they are very strongly linearly related to each other, as
shown in Fig. 8.10.

If we again fit the multivariable linear regression model on this data, then the
plane of best fit has regression coefficients that are very sensitive to the exact
values in the data. For example, if we change the data ever so slightly—e.g.,
by running cross-validation, which splits up the data randomly into different
chunks—the coefficients vary by large amounts:

Best Fit 1: house sale price = 17,238 + 169 -(house size 1 (ft*))+ —32
-(house size 2 (ft%)).

Best Fit 2: house sale price = 7,041 + —28 -(house size 1 (ft*))+ 166
-(house size 2 (ft*)).

290 CHAPTER 8. REGRESSION II: LINEAR REGRESSION
5,000 °

4,500

N

o

o

o

1
%

3,500+

3,000+

2,500+

2,000+

1,500

1,000

House size measurement 2 (square feet)

500 o

O T T T T T T 1
0 1,000 2,000 3,000 4,000 5,000
House size measurement 1 (square feet)

FIGURE 8.10 Scatter plot of house size (in square feet) measured by person
1 versus house size (in square feet) measured by person 2.

Best Fit 3: house sale price = 15,539 + 135 -(house size 1 (ft°))+ 2
-(house size 2 (ft*)).

Therefore, when performing multivariable linear regression, it is important to
avoid including very linearly related predictors. However, techniques for doing
so are beyond the scope of this book; see the list of additional resources at the
end of this chapter to find out where you can learn more.

8.8 Designing new predictors

We were quite fortunate in our initial exploration to find a predictor variable
(house size) that seems to have a meaningful and nearly linear relationship
with our response variable (sale price). But what should we do if we can-
not immediately find such a nice variable? Well, sometimes it is just a fact
that the variables in the data do not have enough of a relationship with the
response variable to provide useful predictions. For example, if the only avail-
able predictor was “the current house owner’s favorite ice cream flavor”, we
likely would have little hope of using that variable to predict the house’s
sale price (barring any future remarkable scientific discoveries about the

8.8. DESIGNING NEW PREDICTORS 291

relationship between the housing market and homeowner ice cream prefer-
ences). In cases like these, the only option is to obtain measurements of more
useful variables.

There are, however, a wide variety of cases where the predictor variables do
have a meaningful relationship with the response variable, but that relation-
ship does not fit the assumptions of the regression method you have chosen.
For example, a data frame df with two variables—x and y—with a nonlinear
relationship between the two variables will not be fully captured by simple
linear regression, as shown in Fig. 8.11.

df

W NP O

95
96
97
98
99

o O O O o

O O O o o

X

.5994
.1688
> 988
.9160
.6400
L7341
.8434
.3329
L7170
.7895

o O OO

O O O O o

[100 rows x 2

y
.288853
.092090
.021194
.812375
.212624
.333609
.656970
.106273
.311442
.567003

columns]

1.0

-0.2 T T 1
00 01 02 03 04 05 06 07 08 09 10

FIGURE 8.11 Example of a data set with a nonlinear relationship between
the predictor and the response.

292 CHAPTER 8. REGRESSION II: LINEAR REGRESSION

I T T T T T T T T T 1
00 01 02 03 04 05 06 07 08 09 10

FIGURE 8.12 Relationship between the transformed predictor and the re-
sponse.

Instead of trying to predict the response y using a linear regression on x, we
might have some scientific background about our problem to suggest that v
should be a cubic function of x. So before performing regression, we might
create a new predictor variable z:

df["z"] = df["x"] ** 3

Then we can perform linear regression for y using the predictor variable z, as
shown in Fig. 8.12. Here you can see that the transformed predictor z helps
the linear regression model make more accurate predictions. Note that none
of the y response values have changed between Figs. 8.11 and 8.12; the only
change is that the x values have been replaced by z values.

The process of transforming predictors (and potentially combining multiple
predictors in the process) is known as feature engineering. In real data analysis
problems, you will need to rely on a deep understanding of the problem—as
well as the wrangling tools from previous chapters—to engineer useful new
features that improve predictive performance.

Note: Feature engineering is part of tuning your model, and as such you must
not use your test data to evaluate the quality of the features you produce. You
are free to use cross-validation, though.

8.9. THE OTHER SIDES OF REGRESSION 293

8.9 The other sides of regression

So far in this textbook we have used regression only in the context of prediction.
However, regression can also be seen as a method to understand and quantify
the effects of individual variables on a response variable of interest. In the
housing example from this chapter, beyond just using past data to predict
future sale prices, we might also be interested in describing the individual
relationships of house size and the number of bedrooms with house price,
quantifying how strong each of these relationships are, and assessing how
accurately we can estimate their magnitudes. And even beyond that, we may
be interested in understanding whether the predictors cause changes in the
price. These sides of regression are well beyond the scope of this book; but
the material you have learned here should give you a foundation of knowledge
that will serve you well when moving to more advanced books on the topic.

8.10 Exercises

Practice exercises for the material covered in this chapter can be found in the
accompanying worksheets repository! in the “Regression II: linear regression”
row. You can launch an interactive version of the worksheet in your browser
by clicking the “launch binder” button. You can also preview a non-interactive
version of the worksheet by clicking “view worksheet”. If you instead decide to
download the worksheet and run it on your own machine, make sure to follow
the instructions for computer setup found in Chapter 13. This will ensure
that the automated feedback and guidance that the worksheets provide will
function as intended.

8.11 Additional resources

e The scikit-learn website? is an excellent reference for more details on,
and advanced usage of, the functions and packages in the past two chapters.
Aside from that, it also offers many useful tutorials® and an extensive list of

Thttps://worksheets.python.datasciencebook.ca
2https:/ /scikit-learn.org/stable/
3https:/ /scikit-learn.org/stable/tutorial /index.html

https://worksheets.python.datasciencebook.ca
https://scikit-learn.org/stable
https://scikit-learn.org/stable/tutorial/index.html

294 CHAPTER 8. REGRESSION II: LINEAR REGRESSION

more advanced examples® that you can use to continue learning beyond the
scope of this book.

An Introduction to Statistical Learning [James et al., 2013] provides a great
next stop in the process of learning about regression. Chapter 3 covers linear
regression at a slightly more mathematical level than we do here, but it is
not too large a leap and so should provide a good stepping stone. Chapter
6 discusses how to pick a subset of “informative” predictors when you have
a data set with many predictors, and you expect only a few of them to be
relevant. Chapter 7 covers regression models that are more flexible than
linear regression models but still enjoy the computational efficiency of linear
regression. In contrast, the K-NN methods we covered earlier are indeed
more flexible but become very slow when given lots of data.

4https:/ /scikit-learn.org/stable/auto_examples/index.html#general-examples

https://scikit-learn.org/stable/auto_examples/index.html#general-examples

9

Clustering

9.1 Overview

As part of exploratory data analysis, it is often helpful to see if there are
meaningful subgroups (or clusters) in the data. This grouping can be used
for many purposes, such as generating new questions or improving predictive
analyses. This chapter provides an introduction to clustering using the K-
means algorithm, including techniques to choose the number of clusters.

9.2 Chapter learning objectives

By the end of the chapter, readers will be able to do the following:

Describe a situation in which clustering is an appropriate technique to use,
and what insight it might extract from the data.

Explain the K-means clustering algorithm.
Interpret the output of a K-means analysis.
Differentiate between clustering, classification, and regression.

Identify when it is necessary to scale variables before clustering, and do this
using Python.

Perform K-means clustering in Python using scikit-learn.
Use the elbow method to choose the number of clusters for K-means.

Visualize the output of K-means clustering in Python using a colored scatter
plot.

Describe advantages, limitations and assumptions of the K-means clustering
algorithm.

DOI: 10.1201/9781003438397-9 295

https://doi.org/10.1201/9781003438397-9

296 CHAPTER 9. CLUSTERING

9.3 Clustering

Clustering is a data analysis task involving separating a data set into sub-
groups of related data. For example, we might use clustering to separate a
data set of documents into groups that correspond to topics, a data set of
human genetic information into groups that correspond to ancestral subpop-
ulations, or a data set of online customers into groups that correspond to
purchasing behaviors. Once the data are separated, we can, for example, use
the subgroups to generate new questions about the data and follow up with
a predictive modeling exercise. In this course, clustering will be used only for
exploratory analysis, i.e., uncovering patterns in the data.

Note that clustering is a fundamentally different kind of task than classifica-
tion or regression. In particular, both classification and regression are super-
vised tasks where there is a response variable (a category label or value), and
we have examples of past data with labels/values that help us predict those
of future data. By contrast, clustering is an unsupervised task, as we are try-
ing to understand and examine the structure of data without any response
variable labels or values to help us. This approach has both advantages and
disadvantages. Clustering requires no additional annotation or input on the
data. For example, while it would be nearly impossible to annotate all the ar-
ticles on Wikipedia with human-made topic labels, we can cluster the articles
without this information to find groupings corresponding to topics automati-
cally. However, given that there is no response variable, it is not as easy to
evaluate the “quality” of a clustering. With classification, we can use a test
data set to assess prediction performance. In clustering, there is not a single
good choice for evaluation. In this book, we will use visualization to ascertain
the quality of a clustering, and leave rigorous evaluation for more advanced
courses.

Given that there is no response variable, it is not as easy to evaluate the
“quality” of a clustering. With classification, we can use a test data set to
assess prediction performance. In clustering, there is not a single good choice
for evaluation. In this book, we will use visualization to ascertain the quality
of a clustering, and leave rigorous evaluation for more advanced courses.

As in the case of classification, there are many possible methods that we could
use to cluster our observations to look for subgroups. In this book, we will
focus on the widely used K-means algorithm [Lloyd, 1982]. In your future stud-
ies, you might encounter hierarchical clustering, principal component analysis,
multidimensional scaling, and more; see the additional resources section at
the end of this chapter for where to begin learning more about these other
methods.

9.4. AN ILLUSTRATIVE EXAMPLE 297

Note: There are also so-called semisupervised tasks, where only some of the
data come with response variable labels/values, but the vast majority don’t.
The goal is to try to uncover underlying structure in the data that allows one
to guess the missing labels. This sort of task is beneficial, for example, when
one has an unlabeled data set that is too large to manually label, but one is
willing to provide a few informative example labels as a “seed” to guess the
labels for all the data.

9.4 An illustrative example

In this chapter, we will focus on a data set from the palmerpenguins R
package! [Horst et al., 2020]. This data set was collected by Dr. Kristen
Gorman and the Palmer Station, Antarctica Long Term Ecological Research
Site, and includes measurements for adult penguins (Fig. 9.1) found near there
[Gorman et al., 2014]. Our goal will be to use two variables—penguin bill and
flipper length, both in millimeters—to determine whether there are distinct
types of penguins in our data. Understanding this might help us with species
discovery and classification in a data-driven way. Note that we have reduced
the size of the data set to 18 observations and 2 variables; this will help
us make clear visualizations that illustrate how clustering works for learning
purposes.

Before we get started, we will set a random seed. This will ensure that our
analysis will be reproducible. As we will learn in more detail later in the
chapter, setting the seed here is important because the K-means clustering
algorithm uses randomness when choosing a starting position for each cluster.

import numpy as np

np.random. seed (6)

Now we can load and preview the penguins data.

import pandas as pd

penguins = pd.read_csv("data/penguins.csv")
penguins

Thttps://allisonhorst.github.io/palmerpenguins /

https://allisonhorst.github.io/palmerpenguins

298 CHAPTER 9. CLUSTERING

FIGURE 9.1 A Gentoo penguin.

bill_length_mm flipper_length_mm

0 39.2 196
1 36.5 182
2 34.5 187
3 36.7 187
4 38.1 181
5 39.2 190
6 36.0 195
7 37.8 193
8 46.5 213
9 46.1 215
10 47.8 248
11 45.0 220
12 49.1 212
13 43.3 208
14 46.0 195
15 46.7 195
16 52.2 197
17 46.8 189

We will begin by using a version of the data that we have standardized, pen-
guins_standardized, to illustrate how K-means clustering works (recall
standardization from Chapter 5). Later in this chapter, we will return to the
original penguins data to see how to include standardization automatically
in the clustering pipeline.

penguins_standardized

9.4. AN ILLUSTRATIVE EXAMPLE 299

bill_length_standardized flipper_length_standardized

0 -0.641361 -0.189773
1 -1.144917 -1.328412
2 -1.517922 -0.921755
3 -1.107617 =0, 921785
4 -0.846513 -1.409743
8 -0.641361 -0.677761
6 -1.238168 -0.271104
7 -0.902464 -0.433767
8 0.720106 1.192860
9 0.645505 1, 855522
10 0.962559 1.355522
11 0.440353 1.762179
12 1.205012 1.111528
13 0.123299 0.786203
14 0.626855 -0.271104
15 0.757407 -0.271104
16 1.783170 -0.108442
17 0.776057 -0.759092

Next, we can create a scatter plot using this data set to see if we can detect
subtypes or groups in our data set.

import altair as alt

scatter_plot = alt.Chart (penguins_standardized) .mark_circle () .encode (

x=alt.X ("flipper_length_standardized") .title("Flipper Length (standardized)
(_>") 4

y=alt .Y ("bill_length_standardized") .title("Bill Length (standardized)")

Based on the visualization in Fig. 9.2, we might suspect there are a few sub-
types of penguins within our data set. We can see roughly 3 groups of obser-
vations in Fig. 9.2, including:

1. asmall flipper and bill length group,
2. a small flipper length, but large bill length group, and
3. a large flipper and bill length group.

Data visualization is a great tool to give us a rough sense of such patterns
when we have a small number of variables. But if we are to group data—
and select the number of groups—as part of a reproducible analysis, we need
something a bit more automated. Additionally, finding groups via visualiza-
tion becomes more difficult as we increase the number of variables we consider
when clustering. The way to rigorously separate the data into groups is to
use a clustering algorithm. In this chapter, we will focus on the K-means al-
gorithm, a widely used and often very effective clustering method, combined
with the elbow method for selecting the number of clusters. This procedure
will separate the data into groups; Fig. 9.3 shows these groups denoted by
colored scatter points.

300 CHAPTER 9. CLUSTERING

2.0

1.5

1.0 o

0.5

0.0

Bill Length (standardized)

-1.5- °

-2.0 T T T T T
-15 -10 -0.5 0.0 0.5 1.0 15 2.0
Flipper Length (standardized)

FIGURE 9.2 Scatter plot of standardized bill length versus standardized
flipper length.

2.07 cluster

0
1.5 1

2
1.0
0.5+

0.0

-0.5

Bill Length (standardized)

-1.0-

-1.5-

-2.0 T T T T T
-15 -10 -0.5 0.0 0.5 1.0 15 2.0
Flipper Length (standardized)

FIGURE 9.3 Scatter plot of standardized bill length versus standardized
flipper length with colored groups.

9.5. K-MEANS 301

What are the labels for these groups? Unfortunately, we don’t have any. K-
means, like almost all clustering algorithms, just outputs meaningless “cluster
labels” that are typically whole numbers: 0, 1, 2, 3, etc. But in a simple case
like this, where we can easily visualize the clusters on a scatter plot, we can
give human-made labels to the groups using their positions on the plot:

 small flipper length and small bill length (orange cluster),
 small flipper length and large bill length (blue cluster).
 and large flipper length and large bill length (red cluster).

Once we have made these determinations, we can use them to inform our
species classifications or ask further questions about our data. For example, we
might be interested in understanding the relationship between flipper length
and bill length, and that relationship may differ depending on the type of
penguin we have.

9.5 K-means
9.5.1 Measuring cluster quality

The K-means algorithm is a procedure that groups data into K clusters. It
starts with an initial clustering of the data, and then iteratively improves it
by making adjustments to the assignment of data to clusters until it cannot
improve any further. But how do we measure the “quality” of a clustering,
and what does it mean to improve it? In K-means clustering, we measure the
quality of a cluster by its within-cluster sum-of-squared-distances (WSSD), also
called inertia. Computing this involves two steps. First, we find the cluster
centers by computing the mean of each variable over data points in the cluster.
For example, suppose we have a cluster containing four observations, and we
are using two variables, x and y, to cluster the data. Then we would compute
the coordinates, u, and p,, of the cluster center via

1 1
o = g(@1 oyt ag o) py =W+ 4+ Ys +4)
In the first cluster from the example, there are 4 data points. These are shown
with their cluster center (standardized flipper length -0.35, standardized bill
length 0.99) highlighted in Fig. 9.4

The second step in computing the WSSD is to add up the squared distance
between each point in the cluster and the cluster center. We use the straight-
line / Euclidean distance formula that we learned about in Chapter 5. In the

302 CHAPTER 9. CLUSTERING

2.0+
1.8+ Y
1.6
1.4+

1.2+

1.0 .

0.8 ®

Bill Length (standardized)

0.6+

0.4

T T T T T T T T 1
-09-08 -07 -06 -05 -04 -03 -02 -01 0.0
Flipper Length (standardized)

FIGURE 9.4 Cluster 0 from the penguins_standardized data set exam-
ple. Observations are small blue points, with the cluster center highlighted as
a large blue point with a black outline.

4-observation cluster example above, we would compute the WSSD S? via

S = ((xy — p)® + (Y1 — 11y)?) + (g — p)* + (Y2 — 11,)?)
+ (x5 — p1)* + (w3 — 11)%) + (g — p)* + (g — 11)?)

These distances are denoted by lines in Fig. 9.5 for the first cluster of the
penguin data example.

The larger the value of S2, the more spread out the cluster is, since large S?
means that points are far from the cluster center. Note, however, that “large”
is relative to both the scale of the variables for clustering and the number of
points in the cluster. A cluster where points are very close to the center might
still have a large S? if there are many data points in the cluster.

After we have calculated the WSSD for all the clusters, we sum them together
to get the total WSSD. For our example, this means adding up all the squared
distances for the 18 observations. These distances are denoted by black lines
in Fig. 9.6.

Since K-means uses the straight-line distance to measure the quality of a
clustering, it is limited to clustering based on quantitative variables. How-
ever, note that there are variants of the K-means algorithm, as well as other

9.5. K-MEANS 303

2.0

1.8+

=
o
1

I
N
1

Bill Length (standardized)
= =
o N
| !

©
©
1

0.6+

0.4

T T T T T T T T 1
-09-08 -07 -06 -05 -04 -03 -02 -01 0.0
Flipper Length (standardized)

FIGURE 9.5 Cluster 0 from the penguins_standardized data set exam-
ple. Observations are small blue points, with the cluster center highlighted as
a large blue point with a black outline. The distances from the observations
to the cluster center are represented as black lines.

clustering algorithms entirely, that use other distance metrics to allow for
non-quantitative data to be clustered. These are beyond the scope of this
book.

9.5.2 The clustering algorithm

We begin the K-means algorithm by picking K, and randomly assigning a
roughly equal number of observations to each of the K clusters. An example
random initialization is shown in Fig. 9.7

Then K-means consists of two major steps that attempt to minimize the sum
of WSSDs over all the clusters, i.e., the total WSSD:

1. Center update: Compute the center of each cluster.

2. Label update: Reassign each data point to the cluster with the

nearest center.

These two steps are repeated until the cluster assignments no longer change.
We show what the first three iterations of K-means would look like in Fig. 9.8.
Each row corresponds to an iteration, where the left column depicts the center

304 CHAPTER 9. CLUSTERING

2.07 cluster

®o0
1.5 o1
o2

1.0

0.5

0.0

Bill Length (standardized)
s
T

|

=

o
1

-1.5-

-2.0 T T T T T
-1.5 -1.0 -0.5 0.0 0.5 1.0 15 2.0

Flipper Length (standardized)

FIGURE 9.6 All clusters from the penguins_standardized data set ex-
ample. Observations are small orange, blue, and yellow points with cluster
centers denoted by larger points with a black outline. The distances from the
observations to each of the respective cluster centers are represented as black
lines.

update, and the right column depicts the label update (i.e., the reassignment
of data to clusters).

Note that at this point, we can terminate the algorithm since none of the
assignments changed in the third iteration; both the centers and labels will
remain the same from this point onward.

Note: Is K-means guaranteed to stop at some point, or could it iterate for-
ever? As it turns out, thankfully, the answer is that K-means is guaranteed to
stop after some number of iterations. For the interested reader, the logic for
this has three steps: (1) both the label update and the center update decrease
total WSSD in each iteration, (2) the total WSSD is always greater than or
equal to 0, and (3) there are only a finite number of possible ways to assign
the data to clusters. So at some point, the total WSSD must stop decreas-
ing, which means none of the assignments are changing, and the algorithm
terminates.

9.5. K-MEANS 305

2.0

1.5

1.0+ ®

0.5+ A

0.0

Bill Length (standardized)
s
T

|

=

o
1

-1.5-)

-2.0 T T T T T
-1.5 -1.0 -0.5 0.0 0.5 1.0 15 2.0

Flipper Length (standardized)

FIGURE 9.7 Random initialization of labels. Each cluster is depicted as a
different color and shape.

9.5.3 Random restarts

Unlike the classification and regression models we studied in previous chapters,
K-means can get “stuck” in a bad solution. For example, Fig. 9.9 illustrates
an unlucky random initialization by K-means.

Fig. 9.10 shows what the iterations of K-means would look like with the un-
lucky random initialization shown in Fig. 9.9

This looks like a relatively bad clustering of the data, but K-means cannot
improve it. To solve this problem when clustering data using K-means, we
should randomly re-initialize the labels a few times, run K-means for each
initialization, and pick the clustering that has the lowest final total WSSD.

9.5.4 Choosing K

In order to cluster data using K-means, we also have to pick the number of
clusters, K. But unlike in classification, we have no response variable and
cannot perform cross-validation with some measure of model prediction error.
Further, if K is chosen too small, then multiple clusters get grouped together;
if K is too large, then clusters get subdivided. In both cases, we will potentially
miss interesting structure in the data. Fig. 9.11 illustrates the impact of K on

306 CHAPTER 9. CLUSTERING

Center Update Label Update
2_
A A
=) ® A
& 14 N ° A
S)
I (] Ay 2 A\
c 2 A A A A
S s A =
g o o
272 H . H .
4, u) u [
E A © = [] =
°
2
2_
A)
§ A A
N 1 A A
~ E @41 AL @;: AL
c T A A
o g A A
=i o 0+
S
g g [| | |
| u [u [
= -1
So L Ee 1
]]
2
2_
))
%‘ . A ’ A
N 14 A A
® 5 * 3 A ° 3 A
c T A A
O 3 A A
= o 04
S =
2 g Em o
] | |] | u
= -1-
R 1
|] ||
=2 T T T 1 r T T T 1
-2 -1 0 1 2 -2 -1 0 1 2
Flipper Length (standardized) Flipper Length (standardized)

FIGURE 9.8 First three iterations of K-means clustering on the pen-
guins_standardized example data set. Each pair of plots corresponds to
an iteration. Within the pair, the first plot depicts the center update, and the
second plot depicts the reassignment of data to clusters. Cluster centers are
indicated by larger points that are outlined in black.

9.6. K-MEANS IN PYTHON 307

2.0

1.5

1.0+ ®

0.5+ A

0.0

-0.5

Bill Length (standardized)

-1.0-

-1.5- A

-2.0 T T T T T
-1.5 -1.0 -0.5 0.0 0.5 1.0 15 2.0

Flipper Length (standardized)

FIGURE 9.9 Random initialization of labels.

K-means clustering of our penguin flipper and bill length data by showing the
different clusterings for K’s ranging from 1 to 9.

If we set K less than 3, then the clustering merges separate groups of data; this
causes a large total WSSD, since the cluster center (denoted by large shapes
with black outlines) is not close to any of the data in the cluster. On the other
hand, if we set K greater than 3, the clustering subdivides subgroups of data;
this does indeed still decrease the total WSSD, but by only a diminishing
amount. If we plot the total WSSD versus the number of clusters, we see that
the decrease in total WSSD levels off (or forms an “elbow shape”) when we
reach roughly the right number of clusters (Fig. 9.12).

9.6 K-means in Python

We can perform K-means in Python using a workflow similar to those in
the earlier classification and regression chapters. Returning to the original
(unstandardized) penguins data, recall that K-means clustering uses straight-
line distance to decide which points are similar to each other. Therefore, the
scale of each of the variables in the data will influence which cluster data
points end up being assigned. Variables with a large scale will have a much

308 CHAPTER 9. CLUSTERING

Center Update Label Update
2
° °
T n °
&1 . °
—l g ° ‘ A, R L4 ‘ LN R
c °
o §] A
= o 0] B
< 2
g % A A
= £ A o H A
- 3—1 [A u A
=™ o A A A,
A A
Py
2.
° °
T ° °
N1 @) L] O °
N E ° L7 N A %%
c T ®
S s A A
- m m
= £
g g n WA n WA
3, = A L) A
= A A, A,
A A
2
2-
° °
=) ° °
E 14 ‘ ° ‘ ®
™ 5 ° 8 ®e A | %o
c T [] []
Re) E A o
g &
g %
= < m A A A
-3, =@ A " A
- -1
3 A, LN
A u
o
2
° °
=) ° °
E 14 o ®
< 3 s ©® s O
c T L o
o = ° °
g &
= £
32 A,A A,A
=3, = A . A
S e . L N
]]
72_\ T T T 1 r T T T 1
-2 -1 0 1 2 =2 -1 0 1 2
Flipper Length (standardized) Flipper Length (standardized)

FIGURE 9.10 First four iterations of K-means clustering on the pen-
guins_standardized example data set with a poor random initialization.
Each pair of plots corresponds to an iteration. Within the pair, the first plot
depicts the center update, and the second plot depicts the reassignment of

data to clusters. Cluster centers are indicated by larger points that are out-
lined in black.

Bill Length (standardized) Bill Length (standardized)

Bill Length (standardized)

2.0

15+

1.0

0.5

0.0

-0.5-

-1.0

-15-

2.0+

1.5

1.0+

0.5

0.0

-0.5

-1.0

-15-

2.0

154

1.0+

0.5

0.0

—0.5

-1.0

-1.5-

9.6. K-MEANS IN PYTHON 309
1 Cluster 2 Clusters 3 Clusters
| | | A
l. |] - I.] . AAA
n n m A
" | " . - ° (] ‘ - ° (] ¢ 1)
H B " " (] ’ ¢ " [] ’ ‘ "
n ® e ®e
4 Clusters 5 Clusters 6 Clusters
[| | []
.. [] ' | | , []
J o >
n .l “A ° .. AA +¥+ x ’
u A ° A + A
& i & i & &
* * g
7 Clusters 8 Clusters 9 Clusters
v < [
i . N Q.
[] A \V4
* * + <o
¥, 4 8 S
. o " A U
<o >
2 4 0 1 2 4 0 1 2 4 0 1 2

Flipper Length (standardized)

Flipper Length (standardized)

Flipper Length (standardized)

FIGURE 9.11 Clustering of the penguin data for K clusters ranging from 1
to 9. Cluster centers are indicated by larger points that are outlined in black.

310 CHAPTER 9. CLUSTERING

35+

= N N w
(6] o (&) o
1 | 1 |

Total within-cluster sum of squares
=
o
1

0 T T T T T T T 1
1 2 3 4 5 6 7 8 9

Number of clusters

FIGURE 9.12 Total WSSD for K clusters ranging from 1 to 9.

larger effect on deciding cluster assignment than variables with a small scale.
To address this problem, we typically standardize our data before clustering,
which ensures that each variable has a mean of 0 and standard deviation of 1.
The standardScaler function in scikit-learn can be used to do this.

from sklearn.preprocessing import StandardScaler
from sklearn.compose import make_column_transformer
from sklearn import set_config

Output dataframes instead of arrays
set_config(transform_output="pandas")

preprocessor = make_column_transformer (
(StandardScaler (), ["bill_length_mm", "flipper_length_mm"]),
verbose_feature_names_out=False,

)

preprocessor

ColumnTransformer (transformers=[('standardscaler', StandardScaler(),
['bill_length_mm', 'flipper_length_mm'])],
verbose_feature_names_out=False)

To indicate that we are performing K-means clustering, we will create a
KMeans model object. It takes at least one argument: the number of clus-
ters n_clusters, which we set to 3.

9.6. K-MEANS IN PYTHON 311

from sklearn.cluster import KMeans

kmeans = KMeans (n_clusters=3)
kmeans

KMeans (n_clusters=3)

To actually run the K-means clustering, we combine the preprocessor and
model object in a Pipeline, and use the fit function. Note that the K-
means algorithm uses a random initialization of assignments, but since we
set the random seed in the beginning of this chapter, the clustering will be
reproducible.

from sklearn.pipeline import make_pipeline

penguin_clust = make_pipeline (preprocessor, kmeans)
penguin_clust.fit (penguins)
penguin_clust

Pipeline (steps=[('columntransformer',
ColumnTransformer (transformers=|[('standardscaler',
StandardScaler (),
['bill_length_mm',
'flipper_length_mm'])],
verbose_feature_names_out=False)),
("kmeans', KMeans (n_clusters=3))])

The fit KMeans object—which is the second item in the pipeline, and can
be accessed as penguin_clust[1]—has a lot of information that can be
used to visualize the clusters, pick K, and evaluate the total WSSD. Let’s
start by visualizing the clusters as a colored scatter plot. In order to do
that, we first need to augment our original penguins data frame with the
cluster assignments. We can access these using the labels_ attribute of the
clustering object (“labels” is a common alternative term to “assignments” in
clustering), and add them to the data frame.

penguins["cluster"] = penguin_clust[1].labels_
penguins

bill_length_mm flipper_length_mm cluster

0 392 196 1
1 36.5 182 1
2 34.5 187 1
3 36.7 187 1
4 38.1 181 1
5 39.2 190 1
6 36.0 195 1
7 37.8 193 1
8 46.5 213 2
9 46.1 215 2
10 47.8 215 2

(continues on next page)

312 CHAPTER 9. CLUSTERING

(continued from previous page)

11 45.0 220 2
12 49.1 212 2
13 43.3 208 2
14 46.0 195 0
15 46.7 195 0
16 52.2 197 0
17 46.8 189 0

Now that we have the cluster assignments included in the penguins data
frame, we can visualize them as shown in Fig. 9.13. Note that we are plotting
the un-standardized data here; if we for some reason wanted to visualize the
standardized data, we would need to use the fit and transform functions on
the standardScaler preprocessor directly to obtain that first. Asin Chapter
4, adding the :N suffix ensures that altair will treat the cluster variable
as a nominal/categorical variable, and hence use a discrete color map for the
visualization.

cluster_plot=alt.Chart (penguins) .mark_circle () .encode (
x=alt . X ("flipper_ length mm").title("Flipper Length").scale (zero=False),
y=alt.Y("bill_ length_mm").title("Bill Length") .scale (zero=False),
color=alt.Color ("cluster:N") .title("Cluster"),

547 Cluster

®o
°
52+ 1

2
50

48 3

Bill Length
S S
S o
1 1
®

N
)
1

40

38

36

34 T T T T T T T 1
180 185 190 195 200 205 210 215 220

Flipper Length

FIGURE 9.13 The data colored by the cluster assignments returned by K-
means.

9.6. K-MEANS IN PYTHON 313

)

As mentioned above, we also need to select K by finding where the “elbow’
occurs in the plot of total WSSD versus the number of clusters. The total
WSSD is stored in the .inertia_ attribute of the clustering object (“inertia”
is the term scikit-learn uses to denote WSSD).

penguin_clust[1].inertia_
4.730719092276117

To calculate the total WSSD for a variety of Ks, we will create a data frame
that contains different values of k and the WSSD of running K-means with
each values of k. To create this data frame, we will use what is called a “list
comprehension” in Python, where we repeat an operation multiple times and
return a list with the result. Here is an examples of a list comprehension that
stores the numbers 0-2 in a list:

[n for n in range(3)]
(0, 1, 2]

We can change the variable n to be called whatever we prefer and we can
also perform any operation we want as part of the list comprehension. For
example, we could square all the numbers from 1 to 4 and store them in a list:

[number**2 for number in range (1, 5)]
(1, 4, 9, 1le]

Next, we will use this approach to compute the WSSD for the K-values 1
through 9. For each value of K, we create a new KMeans model and wrap it in
a scikit-learn pipeline with the preprocessor we created earlier. We store
the WSSD values in a list that we will use to create a data frame of both the
K-values and their corresponding WSSDs.

Note: We are creating the variable ks to store the range of possible k-values,
so that we only need to change this range in one place if we decide to change
which values of k we want to explore. Otherwise it would be easy to forget to
update it in either the list comprehension or in the data frame assignment. If
you are using a value multiple times, it is always the safest to assign it to a
variable name for reuse.

ks = range(l, 10)
wssds = [
make_pipeline (

(continues on next page)

314 CHAPTER 9. CLUSTERING

(continued from previous page)

preprocessor,

KMeans (n_clusters=k) # Create a new KMeans model with 'k clusters
) .fit (penguins) [1].inertia_
for k in ks

]

penguin_clust_ks = pd.DataFrame ({
"k": ks,
"wssd": wssds,

H)

penguin_clust_ks

wssd
36.000000
11.576264
4.730719
3.343613
.362131
.678383
.293320
.975016
.785232

0 Jo U w NP O
O 0 ~J o b WN P R

ol e

Now that we have wssd and k as columns in a data frame, we can make a line
plot (Fig. 9.14) and search for the “elbow” to find which value of K to use.

elbow_plot = alt.Chart (penguin_clust_ks) .mark_line (point=True) .encode (
x=alt.X("k") .title ("Number of clusters"),
y=alt.Y("wssd") .title("Total within-cluster sum of squares"),

It looks like three clusters is the right choice for this data, since that is where
the “elbow” of the line is the most distinct. In the plot, you can also see that
the WSSD is always decreasing, as we would expect when we add more clusters.
However, it is possible to have an elbow plot where the WSSD increases at
one of the steps, causing a small bump in the line. This is because K-means
can get “stuck” in a bad solution due to an unlucky initialization of the initial
center positions as we mentioned earlier in the chapter.

Note: [t is rare that the implementation of K-means from scikit-learn
gets stuck in a bad solution, because scikit-learn tries to choose the
initial centers carefully to prevent this from happening. If you still find
yourself in a situation where you have a bump in the elbow plot, you
can increase the n_init parameter when creating the KMeans object, e.g.,
KMeans (n_clusters=k, n_init=10), to try more different random center
initializations. The larger the value the better from an analysis perspective,
but there is a trade-off that doing many clusterings could take a long time.

9.7. EXERCISES 315

w S
a1 o
Lo J

w
o
1

N
(&)
1

=
(4]
|

Total within-cluster sum of squares
= N
o o
1 1

Number of clusters

FIGURE 9.14 A plot showing the total WSSD versus the number of clusters.

9.7 Exercises

Practice exercises for the material covered in this chapter can be found in
the accompanying worksheets repository? in the “Clustering” row. You can
launch an interactive version of the worksheet in your browser by clicking the
“launch binder” button. You can also preview a non-interactive version of the
worksheet by clicking “view worksheet”. If you instead decide to download the
worksheet and run it on your own machine, make sure to follow the instructions
for computer setup found in Chapter 13. This will ensure that the automated
feedback and guidance that the worksheets provide will function as intended.

9.8 Additional resources

« Chapter 10 of An Introduction to Statistical Learning [James et al., 2013]
provides a great next stop in the process of learning about clustering and
unsupervised learning in general. In the realm of clustering specifically,
it provides a great companion introduction to K-means, but also covers

2https:/ /worksheets.python.datasciencebook.ca

https://worksheets.python.datasciencebook.ca

316 CHAPTER 9. CLUSTERING

hierarchical clustering for when you expect there to be subgroups, and then
subgroups within subgroups, etc., in your data. In the realm of more gen-
eral unsupervised learning, it covers principal components analysis (PCA),
which is a very popular technique for reducing the number of predictors in
a data set.

10

Statistical inference

10.1 Overview

A typical data analysis task in practice is to draw conclusions about some un-
known aspect of a population of interest based on observed data sampled from
that population; we typically do not get data on the entire population. Data
analysis questions regarding how summaries, patterns, trends, or relationships
in a data set extend to the wider population are called inferential questions.
This chapter will start with the fundamental ideas of sampling from popula-
tions and then introduce two common techniques in statistical inference: point
estimation and interval estimation.

10.2 Chapter learning objectives
By the end of the chapter, readers will be able to do the following:

e Describe real-world examples of questions that can be answered with statis-
tical inference.

e Define common population parameters (e.g., mean, proportion, standard
deviation) that are often estimated using sampled data, and estimate these
from a sample.

o Define the following statistical sampling terms: population, sample, popula-
tion parameter, point estimate, and sampling distribution.

o Explain the difference between a population parameter and a sample point
estimate.

e Use Python to draw random samples from a finite population.
o Use Python to create a sampling distribution from a finite population.
e Describe how sample size influences the sampling distribution.

o Define bootstrapping.

DOI: 10.1201/9781003438397-10 317

https://doi.org/10.1201/9781003438397-10

318 CHAPTER 10. STATISTICAL INFERENCE

o Use Python to create a bootstrap distribution to approximate a sampling
distribution.

o Contrast the bootstrap and sampling distributions.

10.3 Why do we need sampling?

We often need to understand how quantities we observe in a subset of data
relate to the same quantities in the broader population. For example, suppose
a retailer is considering selling iPhone accessories, and they want to estimate
how big the market might be. Additionally, they want to strategize how they
can market their products on North American college and university campuses.
This retailer might formulate the following question:

What proportion of all undergraduate students in North America own an
iPhone?

In the above question, we are interested in making a conclusion about all un-
dergraduate students in North America; this is referred to as the population.
In general, the population is the complete collection of individuals or cases we
are interested in studying. Further, in the above question, we are interested in
computing a quantity—the proportion of iPhone owners—based on the entire
population. This proportion is referred to as a population parameter. In
general, a population parameter is a numerical characteristic of the entire pop-
ulation. To compute this number in the example above, we would need to ask
every single undergraduate in North America whether they own an iPhone. In
practice, directly computing population parameters is often time-consuming
and costly, and sometimes impossible.

A more practical approach would be to make measurements for a sample, i.e.,
a subset of individuals collected from the population. We can then compute a
sample estimate—a numerical characteristic of the sample—that estimates
the population parameter. For example, suppose we randomly selected ten
undergraduate students across North America (the sample) and computed
the proportion of those students who own an iPhone (the sample estimate).
In that case, we might suspect that proportion is a reasonable estimate of the
proportion of students who own an iPhone in the entire population. Fig. 10.1
illustrates this process. In general, the process of using a sample to make a
conclusion about the broader population from which it is taken is referred to
as statistical inference.

Note that proportions are not the only kind of population parameter we might
be interested in. For example, suppose an undergraduate student studying at

10.5. WHY DO WE NEED SAMPLING? 319

Population Sample
All undergraduate students 10 undergraduate students
in North America in North America

® o
0000 %0450, ° ,

Point Estimation
Parameter — Point Estimate
unknown p p=6/10=0.60

(proportion of population who own an iPhone) (proportion of sample who own an iPhone)

FIGURE 10.1 The process of using a sample from a broader population to
obtain a point estimate of a population parameter. In this case, a sample of 10
individuals yielded 6 who own an iPhone, resulting in an estimated population
proportion of 60% iPhone owners. The actual population proportion in this
example illustration is 53.8%.

the University of British Columbia in Canada is looking for an apartment
to rent. They need to create a budget, so they want to know something
about studio apartment rental prices in Vancouver, BC. This student might
formulate the following question:

What is the average price-per-month of studio apartment rentals in Vancouver,
Canada?

In this case, the population consists of all studio apartment rentals in Vancou-
ver, and the population parameter is the average price-per-month. Here we
used the average as a measure of the center to describe the “typical value” of
studio apartment rental prices. But even within this one example, we could
also be interested in many other population parameters. For instance, we

320 CHAPTER 10. STATISTICAL INFERENCE

know that not every studio apartment rental in Vancouver will have the same
price per month. The student might be interested in how much monthly prices
vary and want to find a measure of the rentals’ spread (or variability), such
as the standard deviation. Or perhaps the student might be interested in the
fraction of studio apartment rentals that cost more than $1000 per month.
The question we want to answer will help us determine the parameter we
want to estimate. If we were somehow able to observe the whole population
of studio apartment rental offerings in Vancouver, we could compute each of
these numbers exactly; therefore, these are all population parameters. There
are many kinds of observations and population parameters that you will run
into in practice, but in this chapter, we will focus on two settings:

1. Using categorical observations to estimate the proportion of a cate-
gory

2. Using quantitative observations to estimate the average (or mean)

10.4 Sampling distributions
10.4.1 Sampling distributions for proportions

We will look at an example using data from Inside Airbnb! [Cox, n.d.]. Airbnb
is an online marketplace for arranging vacation rentals and places to stay. The
data set contains listings for Vancouver, Canada, in September 2020. Our data
includes an ID number, neighborhood, type of room, the number of people the
rental accommodates, number of bathrooms, bedrooms, beds, and the price
per night.

import pandas as pd

airbnb = pd.read_csv("data/listings.csv")

airbnb
id neighbourhood room_type accommodates \
0 1 Downtown Entire home/apt 5
1 2 Downtown Eastside Entire home/apt 4
2 3 West End Entire home/apt 2
3 4 Kensington-Cedar Cottage Entire home/apt 2
4 5 Kensington-Cedar Cottage Entire home/apt 4
4589 4590 Downtown Eastside Entire home/apt 5
4590 4591 Oakridge Private room 2
4591 4592 Dunbar Southlands Private room 2
4592 4593 West End Entire home/apt 4

(continues on next page)

Thttp://insideairbnb.com/

http://insideairbnb.com

10.4. SAMPLING DISTRIBUTIONS 321

(continued from previous page)
4593 4594 Shaughnessy Entire home/apt 6

bathrooms bedrooms beds price

0 2 baths 2 150.00
1 2 baths 2 2 132.00
2 1 bath 1 1 85.00
3 1 bath 1 0 146.00
4 1 bath 1 2 110.00
4589 1 bath 1 1 99.00
4590 1.5 baths 1 1 42.51
4591 1.5 shared baths 1 1 53.29
4592 1 bath 2 2 145.00
4593 1 bath 3 4 135.00

[4594 rows x 8 columns]

Suppose the city of Vancouver wants information about Airbnb rentals to
help plan city bylaws, and they want to know how many Airbnb places are
listed as entire homes and apartments (rather than as private or shared rooms).
Therefore they may want to estimate the true proportion of all Airbnb listings
where the room type is listed as “entire home or apartment”. Of course, we
usually do not have access to the true population, but here let’s imagine (for
learning purposes) that our data set represents the population of all Airbnb
rental listings in Vancouver, Canada. We can find the proportion of listings
for each room type by using the value_counts function with the normalize
parameter as we did in previous chapters.

airbnb["room_type"].value_counts (normalize=True)

room_type

Entire home/apt 0.747497
Private room 0.246408
Shared room 0.005224
Hotel room 0.000871

Name: proportion, dtype: float64

We can see that the proportion of Entire home/apt listings in the data
set is 0.747. This value, 0.747, is the population parameter. Remember, this
parameter value is usually unknown in real data analysis problems, as it is
typically not possible to make measurements for an entire population.

Instead, perhaps we can approximate it with a small subset of data. To
investigate this idea, let’s try randomly selecting 40 listings (i.e., taking a
random sample of size 40 from our population), and computing the proportion
for that sample. We will use the sample method of the bataFrame object
to take the sample. The argument n of sample is the size of the sample to
take and since we are starting to use randomness here, we are also setting the
random seed via numpy to make the results reproducible.

322 CHAPTER 10. STATISTICAL INFERENCE

import numpy as np

np.random. seed (155)

airbnb.sample (n=40) ["room_type"].value_counts (normalize=True)

room_type

Entire home/apt 0.725
Private room 0.250
Shared room 0.025

Name: proportion, dtype: float64

Here we see that the proportion of entire home/apartment listings in this
random sample is 0.725. Wow—that’s close to our true population value! But
remember, we computed the proportion using a random sample of size 40. This
has two consequences. First, this value is only an estimate, i.e., our best guess
of our population parameter using this sample. Given that we are estimating
a single value here, we often refer to it as a point estimate. Second, since
the sample was random, if we were to take another random sample of size
40 and compute the proportion for that sample, we would not get the same
answer:

airbnb.sample (n=40) ["room_type"].value_counts (normalize=True)

room_type

Entire home/apt 0.625
Private room 0.350
Shared room 0.025

Name: proportion, dtype: float64

Confirmed! We get a different value for our estimate this time. That means
that our point estimate might be unreliable. Indeed, estimates vary from
sample to sample due to sampling variability. But just how much should
we expect the estimates of our random samples to vary? Or in other words,
how much can we really trust our point estimate based on a single sample?

To understand this, we will simulate many samples (much more than just
two) of size 40 from our population of listings and calculate the proportion
of entire home/apartment listings in each sample. This simulation will create
many sample proportions, which we can visualize using a histogram. The
distribution of the estimate for all possible samples of a given size (which we
commonly refer to as n) from a population is called a sampling distribution.
The sampling distribution will help us see how much we would expect our
sample proportions from this population to vary for samples of size 40.

We again use the sample to take samples of size 40 from our population
of Airbnb listings. But this time we use a list comprehension to repeat the

10.4. SAMPLING DISTRIBUTIONS 323

operation multiple times (as we did previously in Chapter 9). In this case we
repeat the operation 20,000 times to obtain 20,000 samples of size 40. To make
it clear which rows in the data frame come which of the 20,000 samples, we
also add a column called replicate with this information using the assign
function, introduced previously in Chapter 3. The call to concat concatenates
all the 20,000 data frames returned from the list comprehension into a single
big data frame.

samples = pd.concat ([
airbnb.sample (40) .assign(replicate=n)
for n in range (20_000)

1)

samples
id neighbourhood room_type accommodates bathrooms.

<\
605 606 Marpole Entire home/apt 3 1 bath
4579 4580 Downtown Entire home/apt 3 1 bath
1739 1740 West End Entire home/apt 2 1 bath
3904 3905 Oakridge Private room 6 1 private bath
1596 1597 Kitsilano Entire home/apt 1 1 bath
3060 3061 Hastings—-Sunrise Private room 2 3.5 shared baths
527 528 Kitsilano Private room 4 1 private bath
1587 1588 Downtown Entire home/apt 6 1 bath
3860 3861 Downtown Entire home/apt 3 1 bath
2747 2748 Downtown Entire home/apt 3 1 bath

bedrooms beds price replicate
605 1 1 91.0 0
4579 1 2 160.0 0
1739 1 2 151.0 0
3904 3 3 185.0 0
1596 1 1 99.0 0
3060 1 1 78.0 19999
527 1 1 99.0 19999
1587 1 3 169.0 19999
3860 1 1 100.0 19999
2747 1 1 285.0 19999

[800000 rows x 9 columns]

Since the column replicate indicates the replicate/sample number, we can
verify that we indeed seem to have 20,0000 samples starting at sample 0 and
ending at sample 19,999.

Now that we have obtained the samples, we need to compute the proportion of
entire home/apartment listings in each sample. We first group the data by the
replicate variable—to group the set of listings in each sample together—and
then use value_counts with normalize=True to compute the proportion
in each sample. Both the first and last few entries of the resulting data frame
are printed below to show that we end up with 20,000 point estimates, one
for each of the 20,000 samples.

324 CHAPTER 10. STATISTICAL INFERENCE

samples

.groupby ("replicate")
["room_type"]

.value_counts (normalize=True)

replicate room_type

0 Entire home/apt 0.750
Private room 0.250
1 Entire home/apt 0.775
Private room 0.225
2 Entire home/apt 0.750
19998 Entire home/apt .700

0
Private room 0.275
Shared room 0.025
19999 Entire home/apt 0.750
Private room 0.250
Name: proportion, Length: 44552, dtype: float64

The returned object is a series, and as we have previously learned we can use
reset_index to change it to a data frame. However, there is one caveat
here: when we use the value_counts function on a grouped series and try
to reset_index we will end up with two columns with the same name and
therefore get an error (in this case, room_type will occur twice). Fortunately,
there is a simple solution: when we call reset_index, we can specify the
name of the new column with the name parameter:

samples

.groupby ("replicate")

["room_type"]

.value_counts (normalize=True)
.reset_index (name="sample_proportion")

replicate room_type sample_proportion
0 Entire home/apt 0.750
1 0 Private room 0.250
2 1 Entire home/apt 0.775
3 1 Private room 0.225
4 2 Entire home/apt 0.750
44547 19998 Entire home/apt 0.700
44548 19998 Private room 0.275
44549 19998 Shared room 0.025
44550 19999 Entire home/apt 0.750
44551 19999 Private room 0.250

[44552 rows x 3 columns]

Below we put everything together and also filter the data frame to keep only
the room types that we are interested in.

10.4. SAMPLING DISTRIBUTIONS

sample_estimates =

samples

(

.groupby ("replicate")
["room_type"]
.value_counts (normalize=True)
.reset_index (name="sample_proportion")

)

sample_estimates =

“home/apt"]

sample_estimates

replicate
0 0
2 1
4 2
6 3
8 4
44541 19995
44543 19996
44545 19997
44547 19998
44550 19999

sample_estimates[sample_estimates["room_type"]

Entire
Entire
Entire
Entire
Entire

Entire
Entire
Entire
Entire
Entire

[20000 rows x 3 columns]

room_type
home/apt
home/apt
home/apt
home/apt
home/apt

home/apt
home/apt
home/apt
home/apt
home/apt

sample_proportion

0.

750

0.775

o O O

o O O O o

.750
.675
.725
775
.750
o VA

.700
.750

"Entire.

325

We can now visualize the sampling distribution of sample proportions for
samples of size 40 using a histogram in Fig. 10.2. Keep in mind: in the real
world, we don’t have access to the full population. So we can’t take many
samples and can’t actually construct or visualize the sampling distribution.
We have created this particular example such that we do have access to the
full population, which lets us visualize the sampling distribution directly for
learning purposes.

sampling_distribution = alt.Chart (sample_estimates) .mark_bar () .encode (
x=alt.X ("sample_proportion")
.bin (maxbins=20)

.title ("Sample proportions"),
y=alt.Y ("count ()").title("Count"),

)

sampling_distribution

The sampling distribution in Fig. 10.2 appears to be bell-shaped, is roughly

symmetric, and has one peak.

It is centered around 0.75 and the sample

proportions range from about 0.55 to about 0.95. In fact, we can calculate

the mean of the sample proportions.

sample_estimates["sample_proportion"] .mean ()

0.74848375

326 CHAPTER 10. STATISTICAL INFERENCE

6,000

5,000+

4,000

3,000+

Count

2,000+

1,000

0.40 0.50 0.60 0.70 0.80 0.90 1.00
Sample proportions

FIGURE 10.2 Sampling distribution of the sample proportion for sample
size 40.

We notice that the sample proportions are centered around the population
proportion value, 0.748. In general, the mean of the sampling distribution
should be equal to the population proportion. This is great news because it
means that the sample proportion is neither an overestimate nor an underesti-
mate of the population proportion. In other words, if you were to take many
samples as we did above, there is no tendency toward over or underestimating
the population proportion. In a real data analysis setting where you just have
access to your single sample, this implies that you would suspect that your
sample point estimate is roughly equally likely to be above or below the true
population proportion.

10.4.2 Sampling distributions for means

In the previous section, our variable of interest—room_type—was categorical,
and the population parameter was a proportion. As mentioned in the chapter
introduction, there are many choices of the population parameter for each
type of variable. What if we wanted to infer something about a population
of quantitative variables instead? For instance, a traveler visiting Vancouver,
Canada may wish to estimate the population mean (or average) price per
night of Airbnb listings. Knowing the average could help them tell whether a

10.4. SAMPLING DISTRIBUTIONS 327

T T L
400 600 800 1,000

Price per night (dollars)

FIGURE 10.3 Population distribution of price per night (dollars) for all
Airbnb listings in Vancouver, Canada.

particular listing is overpriced. We can visualize the population distribution
of the price per night with a histogram.

population_distribution = alt.Chart (airbnb) .mark_bar () .encode (
x=alt.X("price")
.bin (maxbins=30)
.title("Price per night (dollars)"),
y=alt.Y("count ()", title="Count"),
)

population_distribution

In Fig. 10.3, we see that the population distribution has one peak. It is also
skewed (i.e., is not symmetric): most of the listings are less than $250 per
night, but a small number of listings cost much more, creating a long tail
on the histogram’s right side. Along with visualizing the population, we can
calculate the population mean, the average price per night for all the Airbnb
listings.

airbnb["price"] .mean ()
154.5109773617762

The price per night of all Airbnb rentals in Vancouver, BC is $154.51, on
average. This value is our population parameter since we are calculating it
using the population data.

328 CHAPTER 10. STATISTICAL INFERENCE

Count

T T
600 700

T T T
0 100 200 300 400 500

Price per night (dollars)

FIGURE 10.4 Distribution of price per night (dollars) for sample of 40
Airbnb listings.

Now suppose we did not have access to the population data (which is usually
the casel), yet we wanted to estimate the mean price per night. We could
answer this question by taking a random sample of as many Airbnb listings as
our time and resources allow. Let’s say we could do this for 40 listings. What
would such a sample look like? Let’s take advantage of the fact that we do
have access to the population data and simulate taking one random sample of
40 listings in Python, again using sample.

one_sample = airbnb.sample (n=40)

We can create a histogram to visualize the distribution of observations in the
sample (Fig. 10.4), and calculate the mean of our sample.

sample_distribution = alt.Chart (one_sample) .mark_bar () .encode (
x=alt.X("price")
.bin (maxbins=30)
.title("Price per night (dollars)"),
y=alt.Y("count () ") .title("Count"),
)

sample_distribution

one_sample["price"] .mean ()

153.48225

10.4. SAMPLING DISTRIBUTIONS 329

The average value of the sample of size 40 is $153.48. This number is a point
estimate for the mean of the full population. Recall that the population mean
was $154.51. So our estimate was fairly close to the population parameter: the
mean was about 0.7% off. Note that we usually cannot compute the estimate’s
accuracy in practice since we do not have access to the population parameter;
if we did, we wouldn’t need to estimate it.

Also, recall from the previous section that the point estimate can vary; if
we took another random sample from the population, our estimate’s value
might change. So then, did we just get lucky with our point estimate above?
How much does our estimate vary across different samples of size 40 in this
example? Again, since we have access to the population, we can take many
samples and plot the sampling distribution of sample means to get a sense for
this variation. In this case, we’ll use the 20,000 samples of size 40 that we
already stored in the samples variable. First, we will calculate the sample
mean for each replicate and then plot the sampling distribution of sample
means for samples of size 40.

sample_estimates = (

samples

.groupby ("replicate")

["price"]

.mean ()

.reset_index ()

.rename (columns={"price": "mean_price"})
)

sample_estimates

replicate mean_price

0 0 187.00000
1 1 148.56075
2 2 165.50500
g S 140.93925
4 4 139.14650
19995 19995 198.50000
19996 19996 192.66425
19997 19997 144.88600
19998 19998 146.08800
19999 19999 156.25000

[20000 rows x 2 columns]

sampling_distribution = alt.Chart (sample_estimates) .mark_bar () .encode (
x=alt.X("mean_price")
.bin (maxbins=30)
.title ("Sample mean price per night (dollars)"),
y=alt.Y("count () ") .title("Count")
)

sampling_distribution

330 CHAPTER 10. STATISTICAL INFERENCE

4,500

Count

100 120 140 160 180 200 220 240 260
Sample mean price per night (dollars)

FIGURE 10.5 Sampling distribution of the sample means for sample size of
40.

In Fig. 10.5, the sampling distribution of the mean has one peak and is bell-
shaped. Most of the estimates are between about $140 and $170; but there is
a good fraction of cases outside this range (i.e., where the point estimate was
not close to the population parameter). So it does indeed look like we were
quite lucky when we estimated the population mean with only 0.7% error.

Let’s visualize the population distribution, distribution of the sample, and the
sampling distribution on one plot to compare them in Fig. 10.6. Comparing
these three distributions, the centers of the distributions are all around the
same price (around $150). The original population distribution has a long
right tail, and the sample distribution has a similar shape to that of the
population distribution. However, the sampling distribution is not shaped
like the population or sample distribution. Instead, it has a bell shape, and it
has a lower spread than the population or sample distributions. The sample
means vary less than the individual observations because there will be some
high values and some small values in any random sample, which will keep the
average from being too extreme.

Given that there is quite a bit of variation in the sampling distribution of the
sample mean—i.e., the point estimate that we obtain is not very reliable—is
there any way to improve the estimate? One way to improve a point estimate
is to take a larger sample. To illustrate what effect this has, we will take

10.4. SAMPLING DISTRIBUTIONS 331

Population
600 -
€ 400+
=]
[=]
o
200
0
0 40 80 120160200 240 280 320 360 400 440 480 520 560 600 640
Price per night (dollars)
Sample (n = 40)
6_
€ 4
>
=]
o
2_
O_ rTrrrrrrrrrrr7T 11T
0 40 80 120160200 240 280 320 360 400 440 480 520 560 600 640
Price per night (dollars)
Sampling distribution of the mean
For 20,000 samples of size 40
8,000 -
6,000
=
[=
3
S 4,000
2,000
0 rrrrrrrrrrrrrrrrrrrri

0 40 80 120160200 240280320360400440480520560600640
Price per night (dollars)

FIGURE 10.6 Comparison of population distribution, sample distribution,
and sampling distribution.

332 CHAPTER 10. STATISTICAL INFERENCE

many samples of size 20, 50, 100, and 500, and plot the sampling distribution
of the sample mean. We indicate the mean of the sampling distribution with
a vertical line.

Based on the visualization in Fig. 10.7, three points about the sample mean
become clear:

1. The mean of the sample mean (across samples) is equal to the pop-
ulation mean. In other words, the sampling distribution is centered
at the population mean.

2. Increasing the size of the sample decreases the spread (i.e., the vari-
ability) of the sampling distribution. Therefore, a larger sample size
results in a more reliable point estimate of the population parameter.

3. The distribution of the sample mean is roughly bell-shaped.

Note: You might notice that in the n = 20 case in Fig. 10.7, the distribution
is not quite bell-shaped. There is a bit of skew toward the right. You might
also notice that in the n = 50 case and larger, that skew seems to disappear.
In general, the sampling distribution—for both means and proportions—only
becomes bell-shaped once the sample size is large enough. How large is “large
enough?” Unfortunately, it depends entirely on the problem at hand. But as
a rule of thumb, often a sample size of at least 20 will suffice.

10.4.3 Summary

1. A point estimate is a single value computed using a sample from a
population (e.g., a mean or proportion).

2. The sampling distribution of an estimate is the distribution of the
estimate for all possible samples of a fixed size from the same popu-
lation.

3. The shape of the sampling distribution is usually bell-shaped with
one peak and centered at the population mean or proportion.

4. The spread of the sampling distribution is related to the sample size.
As the sample size increases, the spread of the sampling distribution
decreases.

10.4. SAMPLING DISTRIBUTIONS 333

3,000+

DY

[=]

S

S
|

Count of Records
=
f=)
o
o
1

5,000~

w »
[=] [=)
S s)
S S
| 1

Count of Records
N
k)
o
o
1

1,000

0-

6,000

Ex

[=]

S

S
1

Count of Records
N
f=)
o
o
1

10,000+

5,000+

Count of Records

o-

Sample size = 20
! Mean = 154.3

1

Sample size =50

Mean = 154.5

Sample size = 100

l Mean = 154.7
I| II-

Sample size = 500
Mean = 154.5

80 100 120 140 160 180 200 220 240 260 280 300 320

Sample mean price per night (dollars)

FIGURE 10.7 Comparison of sampling distributions, with mean highlighted

as a vertical line.

334 CHAPTER 10. STATISTICAL INFERENCE

10.5 Bootstrapping
10.5.1 Overview

Why all this emphasis on sampling distributions?

We saw in the previous section that we could compute a point estimate of
a population parameter using a sample of observations from the population.
And since we constructed examples where we had access to the population,
we could evaluate how accurate the estimate was, and even get a sense of
how much the estimate would vary for different samples from the population.
But in real data analysis settings, we usually have just one sample from our
population and do not have access to the population itself. Therefore we
cannot construct the sampling distribution as we did in the previous section.
And as we saw, our sample estimate’s value can vary significantly from the
population parameter. So reporting the point estimate from a single sample
alone may not be enough. We also need to report some notion of uncertainty
in the value of the point estimate.

Unfortunately, we cannot construct the exact sampling distribution without
full access to the population. However, if we could somehow approzimate
what the sampling distribution would look like for a sample, we could use
that approximation to then report how uncertain our sample point estimate
is (as we did above with the eract sampling distribution). There are several
methods to accomplish this; in this book, we will use the bootstrap. We will
discuss interval estimation and construct confidence intervals using just
a single sample from a population. A confidence interval is a range of plausible
values for our population parameter.

Here is the key idea. First, if you take a big enough sample, it looks like the
population. Notice the histograms’ shapes for samples of different sizes taken
from the population in Fig. 10.8. We see that the sample’s distribution looks
like that of the population for a large enough sample.

In the previous section, we took many samples of the same size from our
population to get a sense of the variability of a sample estimate. But if our
sample is big enough that it looks like our population, we can pretend that our
sample is the population, and take more samples (with replacement) of the
same size from it instead. This very clever technique is called the bootstrap.
Note that by taking many samples from our single, observed sample, we do
not obtain the true sampling distribution, but rather an approximation that
we call the bootstrap distribution.

10.5. BOOTSTRAPPING

n=10

TT T T T T T T T T T T T T T T T 111
240 320 400 480 560

Price per night (dollars)

(=}

80 160

n =50

80 160 240 320 400

Price per night (dollars)

480

560

n =200

Count

80

160

240 320 400
Price per night (dollars)

480

335

lIIIIlIIIIIlIIIII

160 240 320 400 480 560
Price per night (dollars)

0 80

n =100

15+

10+

Count

160 240 320 400

Price per night (dollars)

480 560

Population distribution

160

240 320 400
Price per night (dollars)

560

FIGURE 10.8 Comparison of samples of different sizes from the population.

Note:

We must sample with replacement when using the bootstrap. Oth-

erwise, if we had a sample of size n, and obtained a sample from it of size n
without replacement, it would just return our original sample.

This section will explore how to create a bootstrap distribution from a single
sample using Python. The process is visualized in Fig. 10.9. For a sample of

size n, you would do the following;:

1. Randomly select an observation from the original sample, which was

drawn from the population.

Replace that observation.

Record the observation’s value.

336

Sample
with

replacement

Sample

CHAPTER 10. STATISTICAL INFERENCE

Bootstrap sample #1

Bootstrap sample #2

Bootstrap sample #3

—— [mean = 45|

‘
_.‘—»——»

/

with replacement...

Keep sampling >

Calculate
means...

FIGURE 10.9 Overview of the bootstrap process.

Bootstrap distribution

.|I||||I.L
means

4. Repeat steps 1-3 (sampling with replacement) until you have n ob-
servations, which form a bootstrap sample.

5. Calculate the bootstrap point estimate (e.g., mean, median, propor-
tion, slope, etc.) of the n observations in your bootstrap sample.

6. Repeat steps 1-5 many times to create a distribution of point esti-
mates (the bootstrap distribution).

7. Calculate the plausible range of values around our observed point
estimate.

10.5.2 Bootstrapping in Python

Let’s continue working with our Airbnb example to illustrate how we might
create and use a bootstrap distribution using just a single sample from the
population. Once again, suppose we are interested in estimating the popula-
tion mean price per night of all Airbnb listings in Vancouver, Canada, using a
single sample size of 40. Recall our point estimate was $153.48. The histogram
of prices in the sample is displayed in Fig. 10.10.

one_sample

4025
1977
4008
1543

id
4026
1978
4009

neighbourhood
Renfrew-Collingwood
Fairview

Downtown

1544 Kensington-Cedar Cottage

room_type
Private room
Private room
Entire home/apt
Entire home/apt

accommodates \
1
1
4
6

(continues on next page)

10.5. BOOTSTRAPPING

3350 3351

804 805

2286 2287

1010 1011

1878 1879

1644 1645

4579 4580

2771 2772 Dun

4151 4152

4495 4496

1308 1309

2246 2247

2335 2336 Kensington

4059 4060

1280 1281 Ha

4324 4325 Renfr

3403 3404

1729 1730 Renfr

3722 3723

241 242 Ha

3955 3956 Dun

1042 1043

649 650

1995 1996

363 364 Kensington

1783 1784 Dow

805 806

254 255

3365 3366

4562 4563

2124 2125

18 19

1997 1998

4329 4330

3408 3409

635 636 Gran
bathrooms

4025 1 shared bath

1977 2 baths

4008 1 bath

1543 2 baths

3350 1 bath

804 1 private bath

2286 1 bath

1010 1 bath

1878 1 private bath

1644 2 baths

4579 1 bath

2771 1 bath

4151 1 bath

4495 1 bath

1308 1 bath

2246 1 bath

2335 1 bath

4059 2 baths

1280 1 bath

4324 1 shared bath

3403 4 baths

1729 1 bath

3722 1 bath

Downtown

Mount Pleasant
Marpole
Strathcona
Fairview
Downtown
Downtown

bar Southlands
Kitsilano
Riley Park
Riley Park
Mount Pleasant
—Cedar Cottage
Downtown
stings-Sunrise
ew—-Collingwood
Arbutus Ridge
ew—-Collingwood
Downtown
stings-Sunrise
bar Southlands
Kitsilano
Sunset

Riley Park
—Cedar Cottage
ntown Eastside
Mount Pleasant
Downtown
Sunset
Downtown
Downtown
Downtown
Downtown

West End
Downtown
dview-Woodland

bedrooms

WNORPNMNNOMNNRPRPPPRPNNRPNRPRNREREWRE WRE

beds

O WO WWNNEPRREPENNERPREPENDERERORRPRE

337

(continued from previous page)

Entire home/apt

Private room
Entire home/apt
Entire home/apt

Private room
Entire home/apt
Entire home/apt
Entire home/apt
Entire home/apt
Entire home/apt
Entire home/apt
Entire home/apt
Entire home/apt
Entire home/apt
Entire home/apt

Private room
Entire home/apt
Entire home/apt
Entire home/apt

Private room

Private room

Private room
Entire home/apt

Private room
Entire home/apt

Private room
Entire home/apt
Entire home/apt

Private room

Private room
Entire home/apt
Entire home/apt
Entire home/apt
Entire home/apt
Entire home/apt
Entire home/apt

price

40.00

70.00
269.00
320.00
140.00

77.00
105.00
120.00
175.00
150.00
160.00
130.00
289.00
115.00
105.00
105.00

85.00
250.00
100.00

25.00
664.00

93.00
275.00

S}

NN DR DEDDNNDWDNORPRPNDNDSOCEOOUC WDBEDNDDNDNDOWDSDNDNDDSDND

(continues on next page)

338 CHAPTER 10. STATISTICAL INFERENCE

(continued from previous page)

241 1 shared bath 1 1 50.00
3955 1.5 shared baths 1 1 60.00
1042 1 shared bath 1 1 66.00
649 1 bath 2 2 196.00
1995 1 shared bath 1 1 70.00
363 1 bath 1 2 120.00
1783 1 private bath 1 1 60.00
805 1 bath 2 2 150.00
254 1.5 baths 2 2 300.00
3365 1 private bath 1 1 100.00
4562 1 shared bath 1 1 64.29
2124 1 bath 2 3 200.00
18 2 baths 2 2 200.00
1997 2 baths 3 3 257.00
4329 1 bath 1 0 92.00
3408 2 baths 2 2 189.00
635 2 baths 1 2 103.00
one_sample_dist = alt.Chart (one_sample) .mark_bar () .encode (

x=alt.X("price")
.bin (maxbins=30)
.title("Price per night (dollars)"),
y=alt.Y("count () ") .title("Count"),
)

one_sample_dist

The histogram for the sample is skewed, with a few observations out to the
right. The mean of the sample is $153.48. Remember, in practice, we usually

Count

T T
0 100 200 300 400 500 600 700
Price per night (dollars)

FIGURE 10.10 Histogram of price per night (dollars) for one sample of size
40.

10.5. BOOTSTRAPPING 339

only have this one sample from the population. So this sample and estimate
are the only data we can work with.

We now perform steps 1-5 listed above to generate a single bootstrap sample
in Python and calculate a point estimate from that bootstrap sample. We will
continue using the sample function of our data frame. Critically, note that
we now set frac=1 (“fraction”) to indicate that we want to draw as many
samples as there are rows in the data frame (we could also have set n=40
but then we would need to manually keep track of how many rows there are).
Since we need to sample with replacement when bootstrapping, we change the
replace parameter to True.

bootl = one_sample.sample (frac=1, replace=True)
bootl_dist = alt.Chart (bootl) .mark_bar () .encode (
x=alt.X("price")
.bin (maxbins=30)
.title("Price per night (dollars)"),
y=alt.Y("count ()", title="Count"),
)

bootl_dist
bootl["price"] .mean ()

132.65

Notice in Fig. 10.11 that the histogram of our bootstrap sample has a similar
shape to the original sample histogram. Though the shapes of the distribu-

20 60 100 140 180 220 260 300
Price per night (dollars)

FIGURE 10.11 Bootstrap distribution.

340 CHAPTER 10. STATISTICAL INFERENCE

tions are similar, they are not identical. You’ll also notice that the original
sample mean and the bootstrap sample mean differ. How might that happen?
Remember that we are sampling with replacement from the original sample,
so we don’t end up with the same sample values again. We are pretending
that our single sample is close to the population, and we are trying to mimic
drawing another sample from the population by drawing one from our original
sample.

Let’s now take 20,000 bootstrap samples from the original sample
(one_sample) and calculate the means for each of those replicates. Recall
that this assumes that one_sample looks [ike our original population; but
since we do not have access to the population itself, this is often the best we
can do. Note that here we break the list comprehension over multiple lines so
that it is easier to read.

boot20000 = pd.concat ([
one_sample.sample (frac=1, replace=True) .assign(replicate=n)
for n in range (20_000)

1)

boot20000
id neighbourhood room_type accommodates bathrooms .

<\

2286 2287 Marpole Entire home/apt 4 1 bath
254 21515 Downtown Entire home/apt 4 1.5 baths
2246 2247 Mount Pleasant Entire home/apt 4 1 bath
4579 4580 Downtown Entire home/apt 3 1 bath
4495 4496 Riley Park Entire home/apt 2 1 bath
1997 1998 Downtown Entire home/apt 6 2 baths
241 242 Hastings—-Sunrise Private room 2 1 shared bath
1878 1879 Fairview Private room 2 1 private bath
1783 1784 Downtown Eastside Private room 2 1 private bath
4495 4496 Riley Park Entire home/apt 2 1 bath

bedrooms beds price replicate

2286 2 2 105.0 0
254 2 2 300.0 0
2246 1 2 105.0 0
4579 1 2 160.0 0
4495 1 1 115.0 0
1997 S 8 257.0 19999
241 1 1 50.0 19999
1878 1 1 175.0 19999
1783 1 1 60.0 19999
4495 1 1 115.0 19999

[800000 rows x 9 columns]

Let’s take a look at the histograms of the first six replicates of our bootstrap
samples.

10.5. BOOTSTRAPPING 341

six_bootstrap_samples = boot20000.query ("replicate < 6")
six_bootstrap_fig = alt.Chart (six_bootstrap_samples, height=150) .mark_bar () .
—encode (
x=alt.X("price")
.bin (maxbins=20)
.title("Price per night (dollars)"),
y=alt.Y("count () ") .title("Count")
) . facet (
"replicate:N", # Recall that ':N' converts the variable to a categorical.
stype
columns=2
)

six_bootstrap_fig

We see in Fig. 10.12 how the distributions of the bootstrap samples differ.
If we calculate the sample mean for each of these six samples, we can see

replicate
0 1
10
-
c
F]
Q
o
5
0 l I I. . | -l. |
2 3
10
-
=
=
o
o
) |||
N Ill = II- C
4 5
10
-
c
F]
Q
o

o
1

—rtr T T T T T T

0 100 20

III. [IIII-II [
T T 1 rr T _T1r 1T 1T T T T T T T T 1
0 300 600 700 0 100 200 300 400

T T T T
400 500 500 600 700
Price per night (dollars) Price per night (dollars)

FIGURE 10.12 Histograms of the first six replicates of the bootstrap sam-
ples.

342 CHAPTER 10. STATISTICAL INFERENCE

that these are also different between samples. To compute the mean for each
sample, we first group by the “replicate” which is the column containing the
sample/replicate number. Then we compute the mean of the price column
and rename it to mean_price for it to be more descriptive. Finally, we use
reset_index to get the replicate values back as a column in the data
frame.

six_bootstrap_samples

.groupby ("replicate")

["price"]

.mean ()

.reset_index ()

.rename (columns={"price": "mean_price"})

replicate mean_price

0 0 155.67175
1 1 154.42500
2 2 149.35000
3 3 169.13225
4 4 179.79675
5 5 188.28225

The distributions and the means differ between the bootstrapped samples
because we are sampling with replacement. If we instead would have sampled
without replacement, we would end up with the exact same values in the sample
each time.

We will now calculate point estimates of the mean for our 20,000 bootstrap
samples and generate a bootstrap distribution of these point estimates. The
bootstrap distribution (Fig. 10.13) suggests how we might expect our point
estimate to behave if we take multiple samples.

boot20000_means = (
boot20000
.groupby ("replicate™)
["price"]
.mean ()
.reset_index ()
.rename (columns={"price": "mean_price"}

)

boot20000_means

replicate mean_price

0 0 155.67175
1 1 154.42500
2 2 149.35000
3 3 169.13225
4 4 179.79675
19995 19995 159.29675

(continues on next page)

10.5. BOOTSTRAPPING 343

4,500
4,000
3,500+
3,000+

2,500+

Count

2,000+

1,500

1,000

500

0
90 110 130 150 170 190 210 230 250
Sample mean price per night (dollars)

FIGURE 10.13 Distribution of the bootstrap sample means.

(continued from previous page)

19996 19996 137.20000
19997 19997 136.55725
19998 19998 161.93950
19999 19999 170.22500

[20000 rows x 2 columns]

boot_est_dist = alt.Chart (boot20000_means) .mark_bar () .encode (
x=alt.X("mean_price")
.bin (maxbins=20)
.title ("Sample mean price per night (dollars)"),
y=alt.Y("count () ") .title("Count"),
)

boot_est_dist

Let’s compare the bootstrap distribution—which we construct by taking
many samples from our original sample of size 40— with the true sampling
distribution—which corresponds to taking many samples from the population.

There are two essential points that we can take away from Fig. 10.14. First,
the shape and spread of the true sampling distribution and the bootstrap
distribution are similar; the bootstrap distribution lets us get a sense of the
point estimate’s variability. The second important point is that the means
of these two distributions are slightly different. The sampling distribution
is centered at $154.51, the population mean value. However, the bootstrap

344 CHAPTER 10. STATISTICAL INFERENCE

Sampling distribution

Mean = 154.5
4,000
3,000+
-
[=
3
& 2,000+
1,000
O_
90 110 130 150 170 190 210 230 250
Sample mean price per night (dollars)
Bootstrap distribution
Ly Mean = 153.7
4,000
3,000
-
[=
3
S 2,000+
1,000 -

90 110 130 150 170 190 210 230 250
Sample mean price per night (dollars)

FIGURE 10.14 Comparison of the distribution of the bootstrap sample
means and sampling distribution.

distribution is centered at the original sample’s mean price per night, $153.48.
Because we are resampling from the original sample repeatedly, we see that
the bootstrap distribution is centered at the original sample’s mean value
(unlike the sampling distribution of the sample mean, which is centered at the
population parameter value).

Fig. 10.15 summarizes the bootstrapping process. The idea here is that we
can use this distribution of bootstrap sample means to approximate the sam-
pling distribution of the sample means when we only have one sample. Since
the bootstrap distribution pretty well approximates the sampling distribution
spread, we can use the bootstrap spread to help us develop a plausible range
for our population parameter along with our estimate.

10.5.3 Using the bootstrap to calculate a plausible range

Now that we have constructed our bootstrap distribution, let’s use it to create
an approximate 95% percentile bootstrap confidence interval. A confidence
interval is a range of plausible values for the population parameter. We will

10.5. BOOTSTRAPPING 345

Population Samples with Replacement
Bootstrap
—* mean = 164 Distribution
\ [| III o
| Price
Price Sample
— III —» mean = 130/
- -
Price Sample means
. |

Price

II —» mean = 164
II lll

Price

many resamples...—% many means...

FIGURE 10.15 Summary of bootstrapping process.

find the range of values covering the middle 95% of the bootstrap distribu-
tion, giving us a 95% confidence interval. You may be wondering, what does
“95% confidence” mean? If we took 100 random samples and calculated 100
95% confidence intervals, then about 95% of the ranges would capture the
population parameter’s value. Note there’s nothing special about 95%. We
could have used other levels, such as 90% or 99%. There is a balance between
our level of confidence and precision. A higher confidence level corresponds
to a wider range of the interval, and a lower confidence level corresponds to
a narrower range. Therefore the level we choose is based on what chance we
are willing to take of being wrong based on the implications of being wrong
for our application. In general, we choose confidence levels to be comfortable
with our level of uncertainty but not so strict that the interval is unhelpful.
For instance, if our decision impacts human life and the implications of be-
ing wrong are deadly, we may want to be very confident and choose a higher
confidence level.

To calculate a 95% percentile bootstrap confidence interval, we will do the
following:

346 CHAPTER 10. STATISTICAL INFERENCE

1. Arrange the observations in the bootstrap distribution in ascending
order.

2. Find the value such that 2.5% of observations fall below it (the 2.5%
percentile). Use that value as the lower bound of the interval.

3. Find the value such that 97.5% of observations fall below it (the 97.5%

percentile). Use that value as the upper bound of the interval.

To do this in Python, we can use the quantile function of our DataFrame.
Quantiles are expressed in proportions rather than percentages, so the 2.5th
and 97.5th percentiles would be the 0.025 and 0.975 quantiles, respectively.

ci_bounds = boot20000_means|["mean_price"].quantile([0.025, 0.975])
ci_bounds

0.025 121.607069
0.975 191.525362
Name: mean_price, dtype: floaté64

Our interval, $121.61 to $191.53, captures the middle 95% of the sample mean
prices in the bootstrap distribution. We can visualize the interval on our
distribution in Fig. 10.16.

2500 2.5th percentile (121.6) 97.5th percentile (191.5)
,500 1

4,000
3,500+
3,000+

2,500+

Count

2,000+

1,500

I
I
|
I
I
|
I
I
I
I
I
I
I
I
I
I
I
I
I
1,000 !
I
I
I

500

T T T T
90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250
Sample mean price per night (dollars)

FIGURE 10.16 Distribution of the bootstrap sample means with percentile
lower and upper bounds.

10.6. EXERCISES 347

To finish our estimation of the population parameter, we would report the
point estimate and our confidence interval’s lower and upper bounds. Here
the sample mean price-per-night of 40 Airbnb listings was $153.48, and we are
95% “confident” that the true population mean price-per-night for all Airbnb
listings in Vancouver is between $121.61 and $191.53. Notice that our interval
does indeed contain the true population mean value, $154.51. However, in
practice, we would not know whether our interval captured the population
parameter or not because we usually only have a single sample, not the entire
population. This is the best we can do when we only have one sample.

This chapter is only the beginning of the journey into statistical inference.
We can extend the concepts learned here to do much more than report point
estimates and confidence intervals, such as testing for real differences between
populations, tests for associations between variables, and so much more. We
have just scratched the surface of statistical inference; however, the material
presented here will serve as the foundation for more advanced statistical tech-
niques you may learn about in the future.

10.6 Exercises

Practice exercises for the material covered in this chapter can be found in the
accompanying worksheets repository? in the two “Statistical inference” rows.
You can launch an interactive version of each worksheet in your browser by
clicking the “launch binder” button. You can also preview a non-interactive
version of each worksheet by clicking “view worksheet”. If you instead decide
to download the worksheets and run them on your own machine, make sure
to follow the instructions for computer setup found in Chapter 13. This will
ensure that the automated feedback and guidance that the worksheets provide
will function as intended.

10.7 Additional resources

o Chapters 4 to 7 of Openlntro Statistics [Diez et al., 2019] provide a good
next step in learning about inference. Although it is still certainly an intro-
ductory text, things get a bit more mathematical here. Depending on your
background, you may actually want to start going through Chapters 1 to 3
first, where you will learn some fundamental concepts in probability theory.

2https:/ /worksheets.python.datasciencebook.ca

https://worksheets.python.datasciencebook.ca

348 CHAPTER 10. STATISTICAL INFERENCE

Although it may seem like a diversion, probability theory is the language of
statistics; if you have a solid grasp of probability, more advanced statistics
will come naturally to you.

11

Combining code and text with Jupyter

11.1 Overview

A typical data analysis involves not only writing and executing code, but also
writing text and displaying images that help tell the story of the analysis. In
fact, ideally, we would like to interleave these three media, with the text and
images serving as narration for the code and its output. In this chapter, we will
show you how to accomplish this using Jupyter notebooks, a common coding
platform in data science. Jupyter notebooks do precisely what we need: they
let you combine text, images, and (executable!) code in a single document.
In this chapter, we will focus on the use of Jupyter notebooks to program in
Python and write text via a web interface. These skills are essential to getting
your analysis running; think of it like getting dressed in the morning. Note
that we assume that you already have Jupyter set up and ready to use. If
that is not the case, please first read Chapter 13 to learn how to install and
configure Jupyter on your own computer.

11.2 Chapter learning objectives

By the end of the chapter, readers will be able to do the following:
» Create new Jupyter notebooks.

o Write, edit, and execute Python code in a Jupyter notebook.

o Write, edit, and view text in a Jupyter notebook.

e Open and view plain text data files in Jupyter.

« Export Jupyter notebooks to other standard file types (e.g., .html, .pdf).

DOI: 10.1201/9781003438397-11 349

https://doi.org/10.1201/9781003438397-11

350 CHAPTER 11. COMBINING CODE AND TEXT WITH JUPYTER

= File Edit View Run Kernel Nbgrader Tabs Settings Help

= + c A canadian_langspynb X+
Filter files by name Q rom

8/ release / canadian_langs /

(ipykernel) O

wngue

— Name - Last Modified First we load the necessary packages:
T mdata 12 minutes ago
« () canadian_langs.ipynb 40 seconds ago import pandas as pd
» import altair as alt
Then we load and inspect the data:
can_lang = pd.read_csv("data/can_lang.csv")
can_lang
category language mother_tongue most_at_home most_at_work lang_known
0 Aboriginal languages Aboriginal languages, n.o.s. 590 235 30 665
1 Non-Official & Non-Aboriginal languages Afrikaans 10260 4785 85 23415
2 Non-Official & Non-Aboriginal languages ~ Afro-Asiatic languages, n.i.e. 1150 aa5 10 2775
3 Non-Official & Non-Aboriginal languages Akan (Twi) 13460 5985 25 22150
4 Non-Official & Non-Aboriginal languages Albanian 26895 13135 345 31930
209 Non-Official & Non-Aboriginal languages Wolof 3990 1385 10 8240
210 Aboriginal languages Woods Cree 1840 800 75 2665
211 Non-Official & Non-Aboriginal languages Wu (Shanghainese) 12915 7650 105 16530
212 Non-Official & Non-Aboriginal languages Yiddish 13555 7085 895 20985
213 Non-Official & Non-Aboriginal languages Yoruba 9080 2615 15 22415
214 rows x 6 columns
Then we can create the scatter plot to answer our question:
Simple O [1 @ Python3 (ipykernel) | idle Mode: Command @ Ln1,Col50 canadian_langs.ipynb 0

FIGURE 11.1 A screenshot of a Jupyter Notebook.

11.3 Jupyter

Jupyter [Kluyver et al., 2016] is a web-based interactive development environ-
ment for creating, editing, and executing documents called Jupyter notebooks.
Jupyter notebooks are documents that contain a mix of computer code (and
its output) and formattable text. Given that they combine these two anal-
ysis artifacts in a single document—code is not separate from the output or
written report—notebooks are one of the leading tools to create reproducible
data analyses. Reproducible data analysis is one where you can reliably and
easily re-create the same results when analyzing the same data. Although
this sounds like something that should always be true of any data analysis, in
reality, this is not often the case; one needs to make a conscious effort to per-
form data analysis in a reproducible manner. An example of what a Jupyter
notebook looks like is shown in Fig. 11.1.

11.3.1 Accessing Jupyter

One of the easiest ways to start working with Jupyter is to use a web-based
platform called JupyterHub. JupyterHubs often have Jupyter, Python, a num-
ber of Python packages, and collaboration tools installed, configured and ready
to use. JupyterHubs are usually created and provisioned by organizations, and
require authentication to gain access. For example, if you are reading this book
as part of a course, your instructor may have a JupyterHub already set up for

11.4. CODE CELLS 351

7 canadian_langs.ipynb e |+
B + X OO » m C » Code v Validate ~Openin.. B & Python 3 (ipykernel) O
TUTE @NyUayE Udtd CONETLEU TIT UITE £UTO CaTIauTali CENsus, 15 UTETe d TEdUosIp UECWEETT UTE TIUNUET U PEUPIE WU SPEaK d [@yUdye as UTen THOCTEr tongue S

and the number of people who speak that language as their primary spoken language at home?
First we load the necessary packages:

import pandas as pd
import altair as alt

Then we load and inspect the data:

[1: can_lang = pd.read_csv("data/can_lang.csv")
can_lang

Then we can create the scatter plot to answer our question:

can_lang = can lang[can_lang|"most at home"] > 0]
can_lang_plot = alt.Chart(can_lang).mark_circle().encode(
x=alt.X("most at home")
.scale(type="1log")
.title(["Language spoken most at home", "(number of Canadian residents)"])
.axis(tickCount=7, format='s'),
y=alt.Y("mother tongue")
.scale(type="1lo0g")
.title(["Mother tongue", "(number of Canadian residents)"])
.axis(tickCount=7, format='s')
}.configure axis(titleFontSize=12)
can_lang_plot

FIGURE 11.2 A code cell in Jupyter that has not yet been executed.

you to use. Jupyter can also be installed on your own computer; see Chapter
13 for instructions.

11.4 Code cells

The sections of a Jupyter notebook that contain code are referred to as code
cells. A code cell that has not yet been executed has no number inside the
square brackets to the left of the cell (Fig. 11.2). Running a code cell will
execute all of the code it contains, and the output (if any exists) will be
displayed directly underneath the code that generated it. Outputs may include
printed text or numbers, data frames and data visualizations. Cells that have
been executed also have a number inside the square brackets to the left of the
cell. This number indicates the order in which the cells were run (Fig. 11.3).

11.4.1 Executing code cells

Code cells can be run independently or as part of executing the entire notebook
using one of the “Run all” commands found in the Run or Kernel menus
in Jupyter. Running a single code cell independently is a workflow typically
used when editing or writing your own Python code. Executing an entire
notebook is a workflow typically used to ensure that your analysis runs in its
entirety before sharing it with others, and when using a notebook as part of
an automated process.

352 CHAPTER 11. COMBINING CODE AND TEXT WITH JUPYTER

7 canadian_langs.ipynb X |+

B + X O » m C » Makdown v Validate ~Openin.. B & Python 3 (ipykernel) O
11T UTE 1@NyUdyE Udta COUETLEU 1T UIE ZUTO Callduldli CETISUS, 15 LIETE d TeldUoNsITp UELWEETT UTE TIUTTUET Ul PEUPIE WU SPEdK d [dYUdye ds Liel THUUTer tongue =
and the number of people who speak that language as their primary spoken language at home?

First we load the necessary packages:

import pandas as pd
import altair as alt

Then we load and inspect the data:

can_lang = pd.read_csv("data/can_lang.csv")

can_lang
category language mother_tongue most_at_home most_at_work lang_known
[1] Aboriginal languages Aboriginal languages, n.o.s. 590 235 30 665
1 Non-Official & Non-Aboriginal languages Afrikaans 10260 4785 85 23415
2 Non-Official & Non-Aboriginal languages Afro-Asiatic languages, n.i.e. 1150 445 10 2775
3 Non-Official & Non-Aboriginal languages Akan (Twi) 13460 5985 25 22150
4 Non-Official & Non-Aboriginal languages Albanian 26895 13135 345 31930
209 Non-Official & Non-Aboriginal languages Wolof 3990 1385 10 8240
210 Aboriginal languages ‘Woods Cree 1840 800 75 2665
211 Non-Official & Non-Aboriginal languages Wu (Shanghainese) 12915 7650 105 16530
212 Non-Official & Non-Aboriginal languages Yiddish 13555 7085 895 20985
213 Non-Official & Non-Aboriginal languages Yoruba 9080 2615 15 22415
214 rows x 6 columns
l Then we can create the scatter plot to answer our question:

FIGURE 11.3 A code cell in Jupyter that has been executed.

To run a code cell independently, the cell needs to first be activated. This is
done by clicking on it with the cursor. Jupyter will indicate a cell has been
activated by highlighting it with a blue rectangle to its left. After the cell has
been activated (Fig. 11.4), the cell can be run by either pressing the Run (§»)
button in the toolbar, or by using a keyboard shortcut of shift + Enter.

To execute all of the code cells in an entire notebook, you have three options:

1. Select Run » Run All Cells from the menu.

2. Select Kernel » Restart Kernel and Run All Cells... from the
menu (Fig. 11.5).

3. Click the () button in the tool bar.

All of these commands result in all of the code cells in a notebook being
run. However, there is a slight difference between them. In particular, only
options 2 and 3 above will restart the Python session before running all of
the cells; option 1 will not restart the session. Restarting the Python session
means that all previous objects that were created from running cells before
this command was run will be deleted. In other words, restarting the session
and then running all cells (options 2 or 3) emulates how your notebook code
would run if you completely restarted Jupyter before executing your entire
notebook.

11.4. CODE CELLS 353

7 canadian_langs.ipynb e |+
B+ X 0D = C o~

wrue En

Code ~ Validate ~Openin.. © &% Python3 (ipykernel) O

€ UdLd LULELLEU 11T UIE ZUT0 LalIdUIdIT CeTisus, 15 UITETe d TeidUonsip UELWER UTE ITUITUET U PEUPIE WU SPEdK J [dIigudyge ds Uien mouier wiigue

and the number of people who speak that language as their primary spoken language at home?

First we load the necessary packages:

import pandas as pd
import altair as alt

Then we load and inspect the data:

can_lang =
can_lang

pd.read_csv("data/can_lang.csv")

Then we can create the scatter plot to answer our question:

can_lang = can_lang[can_lang["most_at _home"] > @]
can_lang_plot = alt.Chart(can_lang).mark_circle().encode(
x=alt.X("most at_home")
.scale(type="1log")
.title(["Language spoken most at home",
.axis(tickCount=7, format='s'),
y=alt.Y("mother_tongue")
.scale(type="1log")
.title(["Mother tongue", "(number of Canadian residents)"])
.axis(tickCount=7, format='s")
).configure_axis(titleFontSize=12)
can_lang_plot

"(number of Canadian residents)"])

FIGURE 11.4 An activated cell that is ready to be run. The red arrow points
to the blue rectangle to the cell’s left. The blue rectangle indicates that it is
ready to be run. This can be done by clicking the run button (circled in red).

Z File Edit View Run

.
Filter files by name

 / release / canadian_la

Kernel | Nbgrader Tabs Settings Help

Interrupt Kernel L
Restart Kernel... 00 » Code v Validate ~Openin.. T % Python3 (ipykemel) O

IECLEU 1T LI U T0 CaITaural Census, 15 UTETe @ TEM@UOISTIp DELWEETT e TIUMIDET UF PEUPIE WITU SPEaK @ @Igusye &5 Uiem Motner wigue =
Restart Kernel and Clear Outputs of Al Cells.. o

ple who speak that language as their primary spoken language at home?

Restart Kernel and Run up to Selected Cell...

Name - Restart Kernel and Run All Cells....

o data

sary packages:

al [A] canadian_langs.ipynb i

Reconnect to Kernel

Shut Down Kernel
Shut Down All Kernels...

Change Kernel...

It
ict the data:

Lcsv("data/can_lang.csv")

Then we can create the scatter plot to answer our question:

can_lang = can_lang[can_lang["most at_home"] > 0]
can_lang_plot = alt.Chart(can_lang).mark_circle().encode(
x=alt.X("most_at_home")
.scale(type="log")

.title(["Language spoken most at home",
.axis(tickCount=7, format='s'),
y=alt.Y("mother_tongue")
.scale(type="log")

.title(["Mother tongue”,

.axis(tickCount=7, forma
).configure_axis(titleFontSize=12)
can_lang_plot

" (number of Canadian residents)"])

" (number of Canadian residents)"])

FIGURE 11.5 Restarting the Python session can be accomplished by clicking
Restart Kernel and Run All Cells.

354 CHAPTER 11. COMBINING CODE AND TEXT WITH JUPYTER

11.4.2 The Kernel

The kernel is a program that executes the code inside your notebook and
outputs the results. Kernels for many different programming languages have
been created for Jupyter, which means that Jupyter can interpret and execute
the code of many different programming languages. To run Python code, your
notebook will need a Python kernel. In the top right of your window, you can
see a circle that indicates the status of your kernel. If the circle is empty (),
the kernel is idle and ready to execute code. If the circle is filled in (), the
kernel is busy running some code.

You may run into problems where your kernel is stuck for an excessive amount
of time, your notebook is very slow and unresponsive, or your kernel loses its
connection. If this happens, try the following steps:

1. At the top of your screen, click Kernel, then Interrupt Kernel.

2. If that doesn’t help, click Kernel, then Restart Kernel... If you
do this, you will have to run your code cells from the start of your
notebook up until where you paused your work.

3. If that still doesn’t help, restart Jupyter. First, save your work by
clicking File at the top left of your screen, then Save Notebook.
Next, if you are accessing Jupyter using a JupyterHub server, from
the File menu click Hub Control Panel. Choose Stop My Server
to shut it down, then the My Server button to start it back up. If
you are running Jupyter on your own computer, from the File menu
click Shut Down, then start Jupyter again. Finally, navigate back
to the notebook you were working on.

11.4.3 Creating new code cells

To create a new code cell in Jupyter (Fig. 11.6), click the + button in the
toolbar. By default, all new cells in Jupyter start out as code cells, so after
this, all you have to do is write Python code within the new cell you just
created.

11.5 Markdown cells

Text cells inside a Jupyter notebook are called Markdown cells. Markdown
cells are rich formatted text cells, which means you can bold and italicize text,

11.5. MARKDOWN CELLS 355

7 canadian_langs.ipynb e |+
B + X OO » m C » Code v Validate ~Openin.. B & Python 3 (ipykernel) O

can_lang = pd.read_csv("data/can_lang.csv")
can_lang

Then we can create the scatter plot to answer our question:

can_lang = can lang[can_lang|"most at home"] > 0]
can_lang_plot = alt.Chart(can_lang).mark_circle().encode(
x=alt.X("most at home")
.scale(type="1log")
.title(["Language spoken most at home", "(number of Canadian residents)"])
.axis(tickCount=7, format='s'),
y=alt.Y("mother tongue")
.scale(type="1lo0g")
.title(["Mother tongue", "(number of Canadian residents)"])
.axis(tickCount=7, format='s')
}.configure axis(titleFontSize=12)
can_lang_plot

I [1:

FIGURE 11.6 New cells can be created by clicking the + button, and are
by default code cells.

create subject headers, create bullet and numbered lists, and more. These
cells are given the name “Markdown” because they use Markdown language to
specify the rich text formatting. You do not need to learn Markdown to write
text in the Markdown cells in Jupyter; plain text will work just fine. However,
you might want to learn a bit about Markdown eventually to enable you to
create nicely formatted analyses. See the additional resources at the end of
this chapter to find out where you can start learning Markdown.

11.5.1 Editing Markdown cells

To edit a Markdown cell in Jupyter, you need to double click on the cell. Once
you do this, the unformatted (or unrendered) version of the text will be shown
(Fig. 11.7). You can then use your keyboard to edit the text. To view the
formatted (or rendered) text (Fig. 11.8), click the Run (W) button in the
toolbar, or use the shift + Enter keyboard shortcut.

11.5.2 Creating new Markdown cells

To create a new Markdown cell in Jupyter, click the + button in the toolbar.
By default, all new cells in Jupyter start as code cells, so the cell format needs
to be changed to be recognized and rendered as a Markdown cell. To do this,
click on the cell with your cursor to ensure it is activated. Then click on the
drop-down box on the toolbar that says “Code” (it is next to the P button),
and change it from “Code” to “Markdown” (Fig. 11.9).

356 CHAPTER 11. COMBINING CODE AND TEXT WITH JUPYTER

A canadian_langs.ipynb e |+
B + ¥ O » m C » Markdown ~ Validate ~Openin.. E # Python3 (ipykernel) O

Mother tongue and languages spoken at home in Canada

In the language data collected in the 2016 Canadian census, is there a relationship between the number of people who speak a
language as their mother tongue and the number of people who speak that language as their primary spoken language at home?

First we load the necessary packages:

import pandas as pd
import altair as alt

Then we load and inspect the data:

can_lang = pd.read_csv("data/can_lang.csv")
can_lang

Then we can create the scatter plot to answer our question:

can_lang = can lang[can_lang["most at home"] > 0]
can_lang_plot = alt.Chart(can_lang).mark circle().encode(
x=alt.X("most_at_home")
.scale(type="1log")
.title(["Language spoken most at home", "(number of Canadian residents)"])
.axis(tickCount=7, format='s'),
y=alt.Y("mother_tongue")
.scale(type="1log")
.title(["Mother tongue™, " (number of Canadian residents)"])
.axis(tickCount=7, format='s"')
).configure axis(titleFontSize=12)
can_lang_plot

FIGURE 11.7 A Markdown cell in Jupyter that has not yet been rendered
and can be edited.

A canadian_langs.ipynb e +
B + X B [» ®m C » Makdown v Validate ~Openin.. ® #& Python3 (ipykernel) O

- Mother tongue and languages spoken at home in Canada

In the language data collected in the 2016 Canadian census, is there a relationship between the number of people who speak a language as their mother tongue
and the number of people who speak that language as their primary spoken language at home?

First we load the necessary packages:

import pandas as pd
import altair as alt

Then we load and inspect the data:

can_lang = pd.read_csv("data/can_lang.csv")
can_lang

Then we can create the scatter plot to answer our question:

can_lang = can_lang[can_lang["most_at_home"] > 8]
can_lang_plot = alt.Chart(can_lang).mark circle().encode(
x=alt.X("most_at home")
.scale(type="log")
.title(["Language spoken most at home", "(number of Canadian residents)"])
.axis(tickCount=7, format='s'"),
y=alt.Y("mother_tongue")
.scale(type="log")
.title(["Mother tongue", "(number of Canadian residents)"])
.axis(tickCount=7, format='s')
).configure axis(titleFontSize=12)
can_lang_plot

FIGURE 11.8 A Markdown cell in Jupyter that has been rendered and
exhibits rich text formatting.

11.6. SAVING YOUR WORK 357

7 canadian_langs.ipynb e |+

B + X O [» m C » | Markdown v | Validate ~Openin.. B # Python 3 (ipykernel) O
can_lang = pd.read_csv(| ’che g.csv") -
LT Markdown
Then we can create the scatter our question:

can_lang = can_lang[can_lang["most at home"] > 0]
can_lang_plot = alt.Chart(can_lang).mark circle().encode(
x=alt.X("most_at home")
.scale(type="log")
.title(["Language spoken most at home", "(number of Canadian residents)"])

.axis(tickCount=7, format='s'),
y=alt.Y("mother_tongue")
.scale(type="log")
.title(["Mother tongue", "(number of Canadian residents)"])
.axis(tickCount=7, format='s"')
) .configure axis(titleFontSize=12)
can_lang_plot

FIGURE 11.9 New cells are by default code cells. To create Markdown cells,
the cell format must be changed.

11.6 Saving your work

As with any file you work on, it is critical to save your work often so you
don’t lose your progress. Jupyter has an autosave feature, where open files
are saved periodically. The default for this is every two minutes. You can also
manually save a Jupyter notebook by selecting Save Notebook from the
File menu, by clicking the disk icon on the toolbar, or by using a keyboard
shortcut (Control + s for Windows, or Command + S for Mac OS).

11.7 Best practices for running a notebook

11.7.1 Best practices for executing code cells

As you might know (or at least imagine) by now, Jupyter notebooks are great
for interactively editing, writing, and running Python code; this is what they
were designed for. Consequently, Jupyter notebooks are flexible in regard to
code cell execution order. This flexibility means that code cells can be run
in any arbitrary order using the Run (P>) button. But this flexibility has a
downside: it can lead to Jupyter notebooks whose code cannot be executed
in a linear order (from top to bottom of the notebook). A nonlinear notebook
is problematic because a linear order is the conventional way code documents
are run, and others will have this expectation when running your notebook.
Finally, if the code is used in some automated process, it will need to run in
a linear order, from top to bottom of the notebook.

358 CHAPTER 11. COMBINING CODE AND TEXT WITH JUPYTER

| canadian_langs.ipynb X | A maze_of code.ipynb e +

B + X O » m C » Code v Validate ~ Openin
I [1: x=7

X + Yy

y=28

FIGURE 11.10 Code that was written out of order, but not yet executed.

The most common way to inadvertently create a nonlinear notebook is to rely
solely on using the () button to execute cells. For example, suppose you
write some Python code that creates a Python object, say a variable named
y. When you execute that cell and create v, it will continue to exist until
it is deliberately deleted with Python code, or when the Jupyter notebook
Python session (i.e., kernel) is stopped or restarted. It can also be referenced
in another distinct code cell (Fig. 11.10). Together, this means that you could
then write a code cell further above in the notebook that references y and
execute it without error in the current session (Fig. 11.11). This could also be
done successfully in future sessions if, and only if, you run the cells in the same
unconventional order. However, it is difficult to remember this unconventional
order, and it is not the order that others would expect your code to be executed
in. Thus, in the future, this would lead to errors when the notebook is run in
the conventional linear order (Fig. 11.12).

You can also accidentally create a nonfunctioning notebook by creating an ob-
ject in a cell that later gets deleted. In such a scenario, that object only exists
for that one particular Python session and will not exist once the notebook is
restarted and run again. If that object was referenced in another cell in that
notebook, an error would occur when the notebook was run again in a new
session.

7| canadian_langs.ipynb » W maze_of_code.ipynb e +

B + X O 5 » m C » Code v~ Validate ~ Openin.

x =17

FIGURE 11.11 Code that was written out of order, and was executed using
the run button in a nonlinear order without error. The order of execution can
be traced by following the numbers to the left of the code cells; their order
indicates the order in which the cells were executed.

11.7. BEST PRACTICES FOR RUNNING A NOTEBOOK 359

| canadian_langs.ipynb X | A maze_of code.ipynb e +

B + X O » m C » Code v Validate ~ Openin

NameError Traceback (most recent call last)
Cell In[2], line 1

---->1x +§

NameError: name 'y' is not defined

y=8

FIGURE 11.12 Code that was written out of order, and was executed in a
linear order using “Restart Kernel and Run All Cells..” This resulted in an
error at the execution of the second code cell and it failed to run all code cells
in the notebook.

These events may not negatively affect the current Python session when the
code is being written; but as you might now see, they will likely lead to errors
when that notebook is run in a future session. Regularly executing the entire
notebook in a fresh Python session will help guard against this. If you restart
your session and new errors seem to pop up when you run all of your cells
in linear order, you can at least be aware that there is an issue. Knowing
this sooner rather than later will allow you to fix the issue and ensure your
notebook can be run linearly from start to finish.

We recommend as a best practice to run the entire notebook in a fresh Python
session at least 2-3 times within any period of work. Note that, critically, you
must do this in a fresh Python session by restarting your kernel. We rec-
ommend using either the Kernel » Restart Kernel and Run All Cells...
command from the menu or the PM button in the toolbar. Note that the Run »
Run All Cells menu item will not restart the kernel, and so it is not sufficient
to guard against these errors.

11.7.2 Best practices for including Python packages in notebooks

Most data analyses these days depend on functions from external Python
packages that are not built into Python. One example is the pandas package
that we heavily rely on in this book. This package provides us access to
functions like read_csv for reading data, and 1oc[] for subsetting rows and
columns. We also use the altair package for creating high-quality graphics.

As mentioned earlier in the book, external Python packages need to be loaded
before the functions they contain can be used. Our recommended way to do
this is via import package_name, and perhaps also to give it a shorter alias

360 CHAPTER 11. COMBINING CODE AND TEXT WITH JUPYTER

like import package_name as pn. But where should this line of code be
written in a Jupyter notebook? One idea could be to load the library right be-
fore the function is used in the notebook. However, although this technically
works, this causes hidden, or at least non-obvious, Python package dependen-
cies when others view or try to run the notebook. These hidden dependencies
can lead to errors when the notebook is executed on another computer if the
needed Python packages are not installed. Additionally, if the data analysis
code takes a long time to run, uncovering the hidden dependencies that need
to be installed so that the analysis can run without error can take a great deal
of time to uncover.

Therefore, we recommend you load all Python packages in a code cell near the
top of the Jupyter notebook. Loading all your packages at the start ensures
that all packages are loaded before their functions are called, assuming the
notebook is run in a linear order from top to bottom as recommended above.
It also makes it easy for others viewing or running the notebook to see what
external Python packages are used in the analysis, and hence, what packages
they should install on their computer to run the analysis successfully.

11.7.3 Summary of best practices for running a notebook

1. Write code so that it can be executed in a linear order.

2. Asyou write code in a Jupyter notebook, run the notebook in a linear
order and in its entirety often (2-3 times every work session) via the
Kernel » Restart Kernel and Run All Cells... command from
the Jupyter menu or the P button in the toolbar.

3. Write the code that loads external Python packages near the top of
the Jupyter notebook.

11.8 Exploring data files

It is essential to preview data files before you try to read them into Python
to see whether or not there are column names, what the separators are, and if
there are lines you need to skip. In Jupyter, you preview data files stored as
plain text files (e.g., comma- and tab-separated files) in their plain text format
(Fig. 11.14) by right-clicking on the file’s name in the Jupyter file explorer,
selecting Open with, and then selecting Editor (Fig. 11.13). Suppose you

11.8. EXPLORING DATA FILES

361

File Edit View Run Kemnel Nbgrader Tabs Settings Help

o BEl-~- *+ & Launcher +

Filter files
PP —r— release/canadian_langs/data
Name - Last Modified [#] Notebook
=
8 Open
» Open With

» CSV Viewer
+ Open in New Browser Tab

Editor

7 Rename F2 on3
(ipykernel)

X Delete Del

% cut Ctrlsx

0 Copy crl+C ! Console

(%) Paste cerlsv

) Duplicate Ctrl+D.

Download ‘

I5) Copy Download Link Python 3
D CopyPath (ipykernel)
© Copy Shareable Link
New File

A New Notebook

T 5| M & m

Terminal TextFile Markdown File Python File

Other

show
Contextual Help

FIGURE 11.13 Opening data files with an editor in Jupyter.

do not specify to open the data file with an editor. In that case, Jupyter
will render a nice table for you, and you will not be able to see the column

separators, and therefore you will not know which function to use, nor which
arguments to use and values to specify for them.

File Edit View Run Kernel Nbgrader Tabs Settings Help

Bl @+ c Launcher x
Filter files ame

™/ -/ canadian_langs / data /

can_lang.csv X |+

category, language,mother_tongue,most_at_home,most_at_work,lang_known =
Aboriginal languages,"Aboriginal languages, n.o.s.",590,235,30,665
Non-0fficial & Non-Aboriginal languages,Afrikaans,10260,4785,85,23415
Non-0fficial & Non-Aboriginal languages,"Afro-Asiatic languages, n.i.e.",1150,445,10,2775
Non-Official & Non-Aboriginal languages,Akan (Twi),13460,5985,25,22150
Non-0fficial & Non-Aboriginal languages,Albanian,26895,13135,345,31930
Aboriginal languages,"Algonquian languages, n.i.e.",45,10,0,120
Aboriginal languages,Algonquin,1260,370,40,2480
Non-Official & Non-Aboriginal languages,American Sign Language,2685,3020,1145,21930
Non-Official & Non-Aboriginal languages,Amharic,22465,12785,200,33670
Non-0fficial & Non-Aboriginal languages,Arabic,419890,223535,5585,629055
Non-0fficial & Non-Aboriginal languages,Armenian,33460,21510,450,41295
Non-0fficial & Non-Aboriginal languages,Assyrian Neo-Aramaic,16070,10510,205,19740
Aboriginal languages, "Athabaskan languages, n.i.e.",50,10,0,85
Aboriginal languages,Atikamekw,6150,5465,1100, 6645
Non-0fficial & Non-Aboriginal languages,“Austro-Asiatic languages, n.i.e",170,80,0,190
Non-0fficial & Non-Aboriginal languages,"Austronesian languages, n.i.e.",4195,1160,35,5585
Non-Official & Non-Aboriginal languages,Azerbaijani,3255,1245,25,5455
19 Aboriginal languages,Babine (Wetsuwet'en),110,20,10,210
20 Non-Official & Non-Aboriginal languages,Bamanankan,1535,345,0,3190
21 Aboriginal languages,Beaver,199,50,0,340
Non-0fficial & Non-Aboriginal languages,Belarusan,810,225,0,2265
Non-Official & Non-Aboriginal languages,Bengali,73125,47350,525,91220
Non-0fficial & Non-Aboriginal languages,'Berber languages, n.i.e.",8985,2615,15,12510
Non-0fficial & Non-Aboriginal languages,Bikol,1785,290,0,2075
Non-0fficial & Non-Aboriginal languages,Bilen,805,615,15,1085
27 Aboriginal languages,Blackfoot,2815,1110,85,5645
28 Non-0fficial & Non-Aboriginal languages,Bosnian,12215,6045,155,18265

Non-0fficial & Non-Aboriginal languages,Bulgarian,20020,11985,200,22425
Non-0fficial & Non-Aboriginal languages,Burmese,3585,2245,75,4995
31 Non-Official & Non-Aboriginal languages,Cantonese,565270,400220,58820,699125
32 Aboriginal languages,Carrier,1025,250,15,2100
33 Non-Official & Non-Aboriginal languages,Catalan,870,350,30,2035

Aboriginal languages,Cayuga,45,10,10,125
Non-0fficial & Non-Aboriginal languages,Cebuano,19890,7205,70,27640
36 Non-Official & Non-Aboriginal languages,"Celtic languages, n.i.e.",525,80,10,3595
37 Non-Official & Non-Aboriginal languages,Chaldean Neo-Aramaic,5545,3445,35,7115

Name - Last Modified

H can_lang.csv 21 minutes ago

PN s wWN -

©

10
1
12

{rd

14
15
16

S

23
24

8k

88

2

35

simple OM2 @ none

Ln1,Col1 Spaces:4 can_lang.csv

o

FIGURE 11.14 A data file as viewed in an editor in Jupyter.

362 CHAPTER 11. COMBINING CODE AND TEXT WITH JUPYTER

11.9 Exporting to a different file format

In Jupyter, viewing, editing and running Python code is done in the Jupyter
notebook file format with file extension .ipynb. This file format is not easy
to open and view outside of Jupyter. Thus, to share your analysis with people
who do not commonly use Jupyter, it is recommended that you export your
executed analysis as a more common file type, such as an .html file, or a
.pdf. We recommend exporting the Jupyter notebook after executing the
analysis so that you can also share the outputs of your code. Note, however,
that your audience will not be able to run your analysis using a .html or
.pdf file. If you want your audience to be able to reproduce the analysis, you
must provide them with the .ipynb Jupyter notebook file.

11.9.1 Exporting to HTML

Exporting to .html will result in a shareable file that anyone can open using
a web browser (e.g., Firefox, Safari, Chrome, or Edge). The .html output
will produce a document that is visually similar to what the Jupyter notebook
looked like inside Jupyter. One point of caution here is that if there are images
in your Jupyter notebook, you will need to share the image files and the .html
file to see them.

11.9.2 Exporting to PDF

Exporting to .pdf will result in a shareable file that anyone can open using
many programs, including Adobe Acrobat, Preview, web browsers, and many
more. The benefit of exporting to PDF is that it is a standalone document,
even if the Jupyter notebook included references to image files. Unfortunately,
the default settings will result in a document that visually looks quite different
from what the Jupyter notebook looked like. The font, page margins, and
other details will appear different in the .pdf output.

11.10 Creating a new Jupyter notebook

At some point, you will want to create a new, fresh Jupyter notebook for your
own project instead of viewing, running or editing a notebook that was started
by someone else. To do this, navigate to the Launcher tab, and click on the
Python icon under the Notebook heading. If no Launcher tab is visible,

11.11. ADDITIONAL RESOURCES 363

Fil View Run Kernel Nbgrader Tabs Settings Help

[t c @ Launcher aF
‘M by name Q ‘
o M / release / canadian_langs / release/canadian_langs
.— Name - Last Modified |E| Notebook
e — TP
- [canadian_langs.ipynb 2 minutes ago /
* « [A] maze_of_code.ipynb 24 seconds ago P
Python 3
(ipykernely
Console
Python 3
(ipykernely
Other

FIGURE 11.15 Clicking on the Python icon under the Notebook heading
will create a new Jupyter notebook with a Python kernel.

you can get a new one via clicking the + button at the top of the Jupyter file
explorer (Fig. 11.15).

Once you have created a new Jupyter notebook, be sure to give it a descriptive
name, as the default file name is Untitled.ipynb. You can rename files by
first right-clicking on the file name of the notebook you just created, and then
clicking Rename. This will make the file name editable. Use your keyboard
to change the name. Pressing Enter or clicking anywhere else in the Jupyter
interface will save the changed file name.

We recommend not using white space or non-standard characters in file names.
Doing so will not prevent you from using that file in Jupyter. However, these
sorts of things become troublesome as you start to do more advanced data
science projects that involve repetition and automation. We recommend nam-
ing files using lower case characters and separating words by a dash (=) or an
underscore (_).

11.11 Additional resources

« The JupyterLab Documentation! is a good next place to look for more infor-
mation about working in Jupyter notebooks. This documentation goes into

Thttps://jupyterlab.readthedocs.io/en/latest /

https://jupyterlab.readthedocs.io/en/latest

364 CHAPTER 11. COMBINING CODE AND TEXT WITH JUPYTER

significantly more detail about all of the topics we covered in this chapter,
and covers more advanced topics as well.

If you are keen to learn about the Markdown language for rich text format-
ting, two good places to start are CommonMark’s Markdown cheatsheet?
and Markdown tutorial®.

2https://commonmark.org/help/
3https://commonmark.org/help /tutorial /

https://commonmark.org/help
https://commonmark.org/help/tutorial

12

Collaboration with version control

You mostly collaborate with yourself, and me-from-two-months-ago never re-
sponds to email.

—Mark T. Holder

12.1 Overview

This chapter will introduce the concept of using version control systems to
track changes to a project over its lifespan, to share and edit code in a collab-
orative team, and to distribute the finished project to its intended audience.
This chapter will also introduce how to use the two most common version
control tools: Git for local version control, and GitHub for remote version
control. We will focus on the most common version control operations used
day-to-day in a standard data science project. There are many user interfaces
for Git; in this chapter we will cover the Jupyter Git interface.

12.2 Chapter learning objectives
By the end of the chapter, readers will be able to do the following:

e Describe what version control is and why data analysis projects can benefit
from it.

o Create a remote version control repository on GitHub.

o Use Jupyter’s Git version control tools for project versioning and collabora-
tion:

DOI: 10.1201/9781003438397-12 365

https://doi.org/10.1201/9781003438397-12

366 CHAPTER 12. COLLABORATION WITH VERSION CONTROL

— Clone a remote version control repository to create a local repository.
— Commit changes to a local version control repository.
— Push local changes to a remote version control repository.

— Pull changes from a remote version control repository to a local version
control repository.

— Resolve merge conflicts.
o Give collaborators access to a remote GitHub repository.
o Communicate with collaborators using GitHub issues.

» Use best practices when collaborating on a project with others.

12.3 What is version control, and why should I use it?

Data analysis projects often require iteration and revision to move from an
initial idea to a finished product ready for the intended audience. Without
deliberate and conscious effort toward tracking changes made to the analy-
sis, projects tend to become messy. This mess can have serious, negative
repercussions on an analysis project, including results that your code cannot
reproduce, temporary files with snippets of ideas that are forgotten or not
easy to find, mind-boggling file names that make it unclear which is the cur-
rent working version of the file (e.g., document_final draft_ final.txt,
to_hand_in_final v2.txt, etc.), and more.

Additionally, the iterative nature of data analysis projects means that most of
the time, the final version of the analysis that is shared with the audience is
only a fraction of what was explored during the development of that analysis.
Changes in data visualizations and modeling approaches, as well as some neg-
ative results, are often not observable from reviewing only the final, polished
analysis. The lack of observability of these parts of the analysis development
can lead to others repeating things that did not work well, instead of seeing
what did not work well, and using that as a springboard to new, more fruitful
approaches.

Finally, data analyses are typically completed by a team of people rather than
a single person. This means that files need to be shared across multiple com-
puters, and multiple people often end up editing the project simultaneously.

12.3. WHAT IS VERSION CONTROL, AND WHY SHOULD I USE IT? 367

In such a situation, determining who has the latest version of the project—and
how to resolve conflicting edits—can be a real challenge.

Version control helps solve these challenges. Version control is the process of
keeping a record of changes to documents, including when the changes were
made and who made them, throughout the history of their development. It
also provides the means both to view earlier versions of the project and to re-
vert changes. Version control is most commonly used in software development,
but can be used for any electronic files for any type of project, including data
analyses. Being able to record and view the history of a data analysis project
is important for understanding how and why decisions to use one method or
another were made, among other things. Version control also facilitates collab-
oration via tools to share edits with others and resolve conflicting edits. But
even if you're working on a project alone, you should still use version control.
It helps you keep track of what you’ve done, when you did it, and what you’re
planning to do next.

To version control a project, you generally need two things: a version control
system and a repository hosting service. The version control system is the soft-
ware responsible for tracking changes, sharing changes you make with others,
obtaining changes from others, and resolving conflicting edits. The reposi-
tory hosting service is responsible for storing a copy of the version-controlled
project online (a repository), where you and your collaborators can access it
remotely, discuss issues and bugs, and distribute your final product. For both
of these items, there is a wide variety of choices. In this textbook we’ll use
Git for version control, and GitHub for repository hosting, because both are
currently the most widely used platforms. In the additional resources section
at the end of the chapter, we list many of the common version control systems
and repository hosting services in use today.

Note: Technically you don’t have to use a repository hosting service. You
can, for example, version control a project that is stored only in a folder on
your computer—never sharing it on a repository hosting service. But using
a repository hosting service provides a few big benefits, including managing
collaborator access permissions, tools to discuss and track bugs, and the ability
to have external collaborators contribute work, not to mention the safety of
having your work backed up in the cloud. Since most repository hosting
services now offer free accounts, there are not many situations in which you
wouldn’t want to use one for your project.

368 CHAPTER 12. COLLABORATION WITH VERSION CONTROL

LOCAL REPOSITORY REMOTE REPOSITORY
jupyterhub or ‘:l O G|tHub
o~ [—]
Repository History Repository History
884c7ce 884c7ce
Added analysis draft Added analysis draft
Daa29d6 Daa29d6
Created README.md Created README.md
r——— === === == \
Staging Area Working Directory

D analysis.ipynb
[") README.md

Working Directory

D analysis.ipynb
[") README.md

[notes.txt

FIGURE 12.1 Schematic of local and remote version control repositories.

12.4 Version control repositories

Typically, when we put a data analysis project under version control, we cre-
ate two copies of the repository (Fig. 12.1). One copy we use as our primary
workspace where we create, edit, and delete files. This copy is commonly re-
ferred to as the local repository. The local repository most commonly exists
on our computer or laptop, but can also exist within a workspace on a server
(e.g., JupyterHub). The other copy is typically stored in a repository hosting
service (e.g., GitHub), where we can easily share it with our collaborators.
This copy is commonly referred to as the remote repository.

Both copies of the repository have a working directory where you can create,
store, edit, and delete files (e.g., analysis.ipynb in Fig. 12.1). Both copies
of the repository also maintain a full project history (Fig. 12.1). This history
is a record of all versions of the project files that have been created. The
repository history is not automatically generated; Git must be explicitly told
when to record a version of the project. These records are called commits.
They are a snapshot of the file contents as well metadata about the repository
at that time the record was created (who made the commit, when it was
made, etc.). In the local and remote repositories shown in Fig. 12.1, there
are two commits represented as rectangles inside the “Repository History”

12.5. VERSION CONTROL WORKFLOWS 369

sections. The white rectangle represents the most recent commit, while faded
rectangles represent previous commits. Each commit can be identified by a
human-readable message, which you write when you make a commit, and a
commit hash that Git automatically adds for you.

The purpose of the message is to contain a brief, rich description of what work
was done since the last commit. Messages act as a very useful narrative of the
changes to a project over its lifespan. If you ever want to view or revert to an
earlier version of the project, the message can help you identify which commit
to view or revert to. In Fig. 12.1, you can see two such messages, one for each
commit: Created README.md and Added analysis draft.

The hash is a string of characters consisting of about 40 letters and numbers.
The purpose of the hash is to serve as a unique identifier for the commit, and is
used by Git to index project history. Although hashes are quite long—imagine
having to type out 40 precise characters to view an old project version!—Git
is able to work with shorter versions of hashes. In Fig. 12.1, you can see two
of these shortened hashes, one for each commit: Daa29d6 and 884c7ce.

12.5 Version control workflows

When you work in a local version-controlled repository, there are generally
three additional steps you must take as part of your regular workflow. In
addition to just working on files—creating, editing, and deleting files as you
normally would—you must:

1. Tell Git when to make a commit of your own changes in the local
repository.

2. Tell Git when to send your new commits to the remote GitHub repos-
itory.
3. Tell Git when to retrieve any new changes (that others made) from

the remote GitHub repository.

In this section we will discuss all three of these steps in detail.

12.5.1 Committing changes to a local repository

When working on files in your local version control repository (e.g., using
Jupyter) and saving your work, these changes will only initially exist in the
working directory of the local repository (Fig. 12.2).

370 CHAPTER 12. COLLABORATION WITH VERSION CONTROL

LOCAL REPOSITORY REMOTE REPOSITORY
jupyterhub or ‘:l O G|tHub
.\./ [—]
Repository History Repository History
884c7ce 884c7ce
Added analysis draft Added analysis draft
Daa29d6 Daa29d6
Created README.md Created README.md
r——— === === == \
Staging Area Working Directory

D analysis.ipynb
[") README.md

Working Directory

D analysis.ipynb (changes)
[") README.md (changes)

[) notes.txt (changes)

FIGURE 12.2 Local repository with changes to files.

Once you reach a point that you want Git to keep a record of the current
version of your work, you need to commit (i.e., snapshot) your changes. A
prerequisite to this is telling Git which files should be included in that snapshot.
We call this step adding the files to the staging area. Note that the staging
area is not a real physical location on your computer; it is instead a conceptual
placeholder for these files until they are committed. The benefit of the Git
version control system using a staging area is that you can choose to commit
changes in only certain files. For example, in Fig. 12.3, we add only the
two files that are important to the analysis project (analysis.ipynb and
README .md) and not our personal scratch notes for the project (notes.txt).

Once the files we wish to commit have been added to the staging area, we
can then commit those files to the repository history (Fig. 12.4). When we do
this, we are required to include a helpful commit message to tell collaborators
(which often includes future you!) about the changes that were made. In Fig.
12.4, the message is Message about changes...; in your work you should
make sure to replace this with an informative message about what changed.
It is also important to note here that these changes are only being committed
to the local repository’s history. The remote repository on GitHub has not
changed, and collaborators would not yet be able to see your new changes.

12.5. VERSION CONTROL WORKFLOWS 371

Staging Area

D analysis.ipynb (changes) G

| | |
|] |
I I I T
I I I [
I | i [) README.md (ehanges) —
I I I |
I I I I
____________ e — = >
o
o
Working Directory Working Directory
analysis.ipynb (changes) [D analysis.ipynb (changes)]—
[") README.md (ehanges) [D A @]_,
[) notes.txt (changes)
notes.txt (changes)

FIGURE 12.3 Adding modified files to the staging area in the local reposi-
tory.

12.5.2 Pushing changes to a remote repository

Once you have made one or more commits that you want to share with your
collaborators, you need to push (i.e., send) those commits back to GitHub
(Fig. 12.5). This updates the history in the remote repository (i.e., GitHub)
to match what you have in your local repository. Now when collaborators
interact with the remote repository, they will be able to see the changes you
made. And you can also take comfort in the fact that your work is now backed
up in the cloud.

Repository History Repository History
884c7ce efdéacb
Added analysis draft Message about changes...
884c7ce
Added analysis draft
- (9]
cLo TS T ! E‘dhgxg(jaﬁr'm’r d 2
. eated EADME
| Staging Area | fested HEADMEM §
| 1 =
e -1
| analysis.ipynb (changes) | f————— o ————— N
I [™) README.md (changes) | I Staging Area |
| | = |
| | | [| analysis.ipynb (changes)][—
| |

| |
____________ | [") README.md (changes)][—»

FIGURE 12.4 Committing the modified files in the staging area to the local
repository history, with an informative message about what changed.

372 CHAPTER 12. COLLABORATION WITH VERSION CONTROL

LOCAL REPOSITORY REMOTE REPOSITORY

o am® .

jupyterhub or |:| 0 GltHub
o~ [—]

Repository History Repository History

6fdéacb 884c7ce

Message about changes. Added analysis draft

884c7ce Daa29d6

Added analysis draft Created README.md

Daa29d6

Created README.md Working Directory

D analysis.ipynb

[") README.md
LOCAL REPOSITORY REMOTE REPOSITORY
PP .
jupyterhub or E O G.tHub
o~]
Repository History Repository History
efdéacb 6fdéacb
Message about changes. Message about changes.

1 README.md

Working Directory

D analysis.ipynb (changes)
[") README.md (changes)

FIGURE 12.5 Pushing the commit to send the changes to the remote repos-
itory on GitHub.

12.5.3 Pulling changes from a remote repository

If you are working on a project with collaborators, they will also be making
changes to files (e.g., to the analysis code in a Jupyter notebook and the
project’s README file), committing them to their own local repository, and
pushing their commits to the remote GitHub repository to share them with
you. When they push their changes, those changes will only initially exist in
the remote GitHub repository and not in your local repository (Fig. 12.6).

To obtain the new changes from the remote repository on GitHub, you will
need to pull those changes to your own local repository. By pulling changes,
you synchronize your local repository to what is present on GitHub (Fig. 12.7).

12.6. WORKING WITH REMOTE REPOSITORIES USING GITHUB 373

LOCAL REPOSITORY REMOTE REPOSITORY
o am® .
jupyterhub o l:l 0 G|tHub
o~ [—]
Repository History Repository History
6fdéacb 04cb528
Message about changes. More changes!

Working Directory

D analysis.ipynb (more changes!)

[") README.md (more changes)

Working Directory

D analysis.ipynb
[") README.md

[) notes.txt

FIGURE 12.6 Changes pushed by collaborators, or created directly on
GitHub will not be automatically sent to your local repository.

Additionally, until you pull changes from the remote repository, you will not
be able to push any more changes yourself (though you will still be able to
work and make commits in your own local repository).

12.6 Working with remote repositories using GitHub

Now that you have been introduced to some of the key general concepts and
workflows of Git version control, we will walk through the practical steps.
There are several different ways to start using version control with a new
project. For simplicity and ease of setup, we recommend creating a remote
repository first. This section covers how to both create and edit a remote
repository on GitHub. Once you have a remote repository set up, we rec-
ommend cloning (or copying) that repository to create a local repository in
which you primarily work. You can clone the repository either on your own
computer or in a workspace on a server (e.g., a JupyterHub server). Section
12.7 below will cover this second step in detail.

374 CHAPTER 12. COLLABORATION WITH VERSION CONTROL

LOCAL REPOSITORY REMOTE REPOSITORY
jupyterhub or ‘:l O G|tHub
o~ [——]
Repository History Repository History
04cb528 04cb528
More changes! More changes!

6fd|

b PULL
ge about changes. —

884c7ce
Added ana

884c7ce

Added analysis draf

Daa29d6 Daa29d6
Created README.md Created README.md

Working Directory

D analysis.ipynb (more changes!)

[™) README.md (more changes)

Working Directory

D analysis.ipynb (more changes!)
[") README.md (more changes)

[notes.txt

FIGURE 12.7 Pulling changes from the remote GitHub repository to syn-
chronize your local repository.

12.6.1 Creating a remote repository on GitHub

Before you can create remote repositories on GitHub, you will need a GitHub
account; you can sign up for a free account at github.com!. Once you have
logged into your account, you can create a new repository to host your project
by clicking on the “4” icon in the upper right-hand corner, and then on “New
Repository”, as shown in Fig. 12.8.

Repositories can be set up with a variety of configurations, including a name,
optional description, and the inclusion (or not) of several template files. One
of the most important configuration items to choose is the visibility to the
outside world, either public or private. Public repositories can be viewed by
anyone. Private repositories can be viewed by only you. Both public and
private repositories are only editable by you, but you can change that by
giving access to other collaborators.

To get started with a public repository having a template README . md file, take
the following steps shown in Fig. 12.9:

Thttps://github.com/

https://github.com

12.6. WORKING WITH REMOTE REPOSITORIES USING GITHUB

O Search or jump to...

Pullrequests Issues Marketplace Explore

New repository

‘- ttimbers ~ " Import repository
You've been added to the openworm New gist
- organization! New organization
Repositories m

Find a repository...

[uBC-DSCI/rudaux
& UBC-DSCl/rudaux-test
E uBC-DSCl/jupyterdays

& usc-pscl/
introduction-to-datascience

a8 ttimbers/rudaux-backup
& ttimbers/canlang

% UBC-MDS/
UBC-MDS.github.io

Here are some quick tips for a first-time organization member.

n defunkt -

« Use the switch context button in the
upper left corner of this page to switch
between your personal context
(ttimbers) and organizations you are a member of.

* After you switch contexts you'll see an organization-
focused dashboard that lists out organization repositories
and activities.

Recent activity

New project

Explore repositories

wilkelab/ggtext
Improved text rendering support for
ggplot2

OR Y455

r-lib/cli
Tools for making beautiful & useful
command line interfaces

$1 Module1 slides1 @ os
OR Y¥257
Show more UBC-MDS/e y-d: iz - Youcommented 2 days ago
19 Index (2=l fbachl/inlabru
Your teams UBC-DSCl/introduction-to-datascience - You commented 2 days ago inlabru
i . R 27
Find a team.. 19 1.3lines and layers & 0 or ¥

UBC-MDS/exploratory-data-viz - Your review was requested 5 days ago

Explore more -

niosamnconnes -~ MDS/students

FIGURE 12.8 New repositories on GitHub can be created by clicking on
“New Repository” from the + menu.

1. Enter the name of your project repository. In the example below,
Most repositories follow a similar
naming convention involving only lowercase letter words separated
by either underscores or hyphens.

we use canadian_languages.

2. Choose an option for the privacy of your repository.

3. Select “Add a README file”. This creates a template README . md
file in your repository’s root folder.

4. When you are happy with your repository name and configuration,

click on the green “Create Repository” button.

A newly created public repository with a README . md template file should look
something like what is shown in Fig. 12.10.

12.6.2 Editing files on GitHub with the pen tool

The pen tool can be used to edit existing plain text files. When you click on
the pen tool, the file will be opened in a text box where you can use your
keyboard to make changes (Figs. 12.11 and 12.12).

After you are done with your edits, they can be “saved” by committing your
changes. When you commit a file in a repository, the version control system

376 CHAPTER 12. COLLABORATION WITH VERSION CONTROL

1 or jump to. Pull requests Issues Marketplace Explore

Create a new repository
Arepository contains all project files, including the revision history. Already have a project repository
elsewhere? Import a repository.

Repository template
Start your repository with a template repository’s contents.

No template ~

Owner * Repository name *

@ ttimbers- / Ccanadian_languages v

Great repository names are short and memorable. Need inspiration? How about improved-adventure?

Description (optional)

Public

Anyone on L

=

ternet can see this repository. You choose who can commit.

Private
You choose who can see and commit to this repository.

Initialize this repository with:

Skip this step if you're importing an existing repository.
Add a README file
This is where you cafirite a long description for your project. Learn more.
Add gitignore

Choose which files not to track from a st of templates. Learn more.

Choose a license
Alicense tells o

what they can and can't do with your code. Learn more.

This will set ¥ sain as the default branch. Change the default name in your settings.

Create repository /

FIGURE 12.9 Repository configuration for a project that is public and
initialized with a README.md? template file.

O Search or jump to Pullrequests Issues Marketplace Explore L5+~

& ttimbers / canadian_languages ®Unwatch ~ 1 ¢ Star 0 %W Fork 0

<> Code Issues Pull requests Actions Projects Wiki) Security |~ Insights Settings

¥ main ~ F1branch ©O0tags Go to file Add file ~ About e

No description, website, or topics

S‘ ttimbers Initial commit 07dc13f now 91 commit provided.
[) READMEmd Initial commit now ' Readme
README.md 4 Releases

No releases published

canadian_languages

Packages

No packages published
Publish your first package

©2020 GitHub, Inc. Terms Privacy Security Status Help Contact GitHub Pricing API Training Blog About

FIGURE 12.10 Repository configuration for a project that is public and
initialized with a README.md? template file.

12.6. WORKING WITH REMOTE REPOSITORIES USING GITHUB 377

O Search or jump to. Pullrequests Issues Marketplace Explore

& ttimbers / canadian_languages ®Unwatch ~ 1 ¢ Star 0 %W Fork 0

<> Code Issues Pull requests Actions Projects Wiki) Security Insights Settings

¥ main ~ P 1branch ©O0tags Go to file Add file ~ About e

No description, website, or topics
S- ttimbers Initial commit 07dc13f now 91 commit provided.

[README.md Initial commit 00 Readme

now
README.md Releases

No releases published

canadian_languages

Packages

No packages published
Publish your first package

© 2020 GitHub, Inc. Terms Privacy Security Status Help Contact GitHub Pricing API Training Blog About

FIGURE 12.11 Clicking on the pen tool opens a text box for editing plain
text files.

O Search or jump to. Pullrequests Issues Marketplace Explore

& ttimbers / canadian_languages ®Unwatch ~ 1 ¢ Star 0 %W Fork 0
<> Code Issues Pull requests Actions Projects Wiki) Security Insights Settings
canadian_languages / README.md Cancel
<> Editfile Preview changes Spaces & 2 2 Softwrap &

canadian_languages

Authors: Trevor Campbell, Melissa Lee & Tiffany Timbers /

FIGURE 12.12 The text box where edits can be made after clicking on the
pen tool.

378 CHAPTER 12. COLLABORATION WITH VERSION CONTROL

takes a snapshot of what the file looks like. As you continue working on the
project, over time you will possibly make many commits to a single file; this
generates a useful version history for that file. On GitHub, if you click the
green “Commit changes” button, it will save the file and then make a commit
(Fig. 12.13).

Recall from Section 12.5.1 that you normally have to add files to the staging
area before committing them. Why don’t we have to do that when we work
directly on GitHub? Behind the scenes, when you click the green “Commit
changes” button, GitHub s adding that one file to the staging area prior
to committing it. But note that on GitHub you are limited to committing
changes to only one file at a time. When you work in your own local repository,
you can commit changes to multiple files simultaneously. This is especially
useful when one “improvement” to the project involves modifying multiple
files. You can also do things like run code when working in a local repository,
which you cannot do on GitHub. In general, editing on GitHub is reserved for
small edits to plain text files.

D
)
‘; Commit changes

Add an optional extended description,

tiffany.timbers@gmail.com

Choose which email address to associate with this commit

® -O- Commit directly to the main branch.

1% Create a new branch for this commit and start a pull request. Learn more about pull requests.

Commit changes Cancel

© 2020 GitHub, Inc. Terms Privacy Security Status Help Contact GitHub Pricing API Training Blog About

FIGURE 12.13 Saving changes using the pen tool requires committing those
changes, and an associated commit message.

12.6. WORKING WITH REMOTE REPOSITORIES USING GITHUB 379

O Search or jump to Pullrequests Issues Marketplace Explore L5+ § 3 -
B ttimbers / canadian_languages ®Unwatch ~ 1 ¢ Star 0 %W Fork 0
<> Code (1) Issues 1 Pull requests () Actions Projects 1 wiki () Security |~ Insights 5 Settings
¥ main ~ ¥ 1branch ©O0tags Goto file Add file About @
No description, website, or topics
s‘ ttimbers added name of collaborators Upload files O 2 commits provided.
[README.md added name of collaborators 11 seconds ago [0 Readme
README.md 4 Releases
No releases published
H Create a new release
canadian_languages
Authors: Trevor Campbell, Melissa Lee & Tiffany Timbers Packages

No packages published
Publish your first package

© 2020 GitHub, Inc. Terms Privacy Security Status Help Contact GitHub Pricing API Training Blog About

FIGURE 12.14 New plain text files can be created directly on GitHub.

12.6.3 Creating files on GitHub with the “Add file” menu

The “Add file” menu can be used to create new plain text files and upload
files from your computer. To create a new plain text file, click the “Add file”
drop-down menu and select the “Create new file” option (Fig. 12.14).

A page will open with a small text box for the file name to be entered, and
a larger text box where the desired file content text can be entered. Note
the two tabs, “Edit new file” and “Preview”. Toggling between them lets
you enter and edit text and view what the text will look like when rendered,
respectively (Fig. 12.15). Note that GitHub understands and renders .md files
using a markdown syntax very similar to Jupyter notebooks, so the “Preview”
tab is especially helpful for checking markdown code correctness.

Save and commit your changes by clicking the green “Commit changes” button
at the bottom of the page (Fig. 12.16).

You can also upload files that you have created on your local machine by using
the “Add file” drop-down menu and selecting “Upload files” (Fig. 12.17). To
select the files from your local computer to upload, you can either drag and
drop them into the gray box area shown in Fig. 12.18, or click the “choose your
files” link to access a file browser dialog. Once the files you want to upload
have been selected, click the green “Commit changes” button at the bottom
of the page (Fig. 12.18).

380 CHAPTER 12. COLLABORATION WITH VERSION CONTROL

O Search or jump to, Pullrequests Issues Marketplace Explore L5+ & ’ -
& ttimbers / canadian_languages ®Unwatch ~ 1 ¢ Star 0 %W Fork 0
<> Code () Issues {1 Pull requests ») Actions Projects 1 wiki) Security |~ Insights 5 Settings
canadian_languages / (CODE_OF_CONDUCT.1 Cancel Choose a code of conduct template
<> Editnew file © Preview Spaces & 2 2 Softwrap &

Code of Conduct /

For this project, we are committed to create a friendly and respectful place for contributing. All participants in our project and communications are
expected to show respect and courtesy to others.

FIGURE 12.15 New plain text files require a file name in the text box circled
in red, and file content entered in the larger text box (red arrow).

N
)
6; Commit new file
- N

Add an optional extended description.

tiffany.timbers@gmail.com 5

Choose which email address to associate with this commit

® -0- Commit directly tothe main branch.

O 1% Create a new branch for this commit and start a pull request. Learn more about pull requests.

Commit new file Cancel

© 2020 GitHub, Inc. Terms Privacy Security Status Help Contact GitHub Pricing API Training Blog About

FIGURE 12.16 To be saved, newly created files are required to be committed
along with an associated commit message.

12.6. WORKING WITH REMOTE REPOSITORIES USING GITHUB 381

O Search or jump to. Pullrequests Issues Marketplace Explore

& ttimbers / canadian_languages ® Unwatch ~ 1 vy Star 0 % Fork 0
<> Code Issues 1 Pullrequests ») Actions Projects Wiki) Security Insights } Settings
¥ main ~ # 1branch ©Otags Goto file Add file ~ ¥ Code ~ About e
Create new file No description, website, or topics
S' ttimbers Create CODE_OF_CONDUCT.md Upload files O 3 commits provided.
[CODE_OF_CONDUCT.md Create CODE_OF_CONDUCT.md now @ Readme
[README.md added name of collaborators 4 minutes ago
Releases
README.md 2 No releases published
Create a new release
canadian_languages
Packages
Authors: Trevor Campbell, Melissa Lee & Tiffany Timbers No packages published
Publish your first package
© 2020 GitHub, Inc. Terms Privacy Security Status Help Contact GitHub Pricing API Training Blog About

FIGURE 12.17 New files of any type can be uploaded to GitHub.

o Search or jump to. Pull requests Issues Marketplace Explore
& ttimbers / canadian_languages ®uUnwatch + 1 ¢ star 0 Y Fork 0
<> Code Issues Pullrequests () Actions Projects Wiki Security Insights Settings

canadian_languages /

D

Drag files here to add them to your repository

Or choose your files

N
6. Commit changes

Add an optional extended description.

® -o- Commit directly to the main branch.

17 Create a new branch for this commit and start a pull request. Learn more about pull requests.

Commit changes [0S

FIGURE 12.18 Specify files to upload by dragging them into the GitHub
website (red circle) or by clicking on “choose your files”. Uploaded files are
also required to be committed along with an associated commit message.

382 CHAPTER 12. COLLABORATION WITH VERSION CONTROL

Note that Git and GitHub are designed to track changes in individual files.
Do not upload your whole project in an archive file (e.g., .zip). If you do,
then Git can only keep track of changes to the entire . zip file, which will not
be human-readable. Committing one big archive defeats the whole purpose of
using version control: you won’t be able to see, interpret, or find changes in
the history of any of the actual content of your project.

12.7 Working with local repositories using Jupyter

Although there are several ways to create and edit files on GitHub, they are not
quite powerful enough for efficiently creating and editing complex files, or files
that need to be executed to assess whether they work (e.g., files containing
code). For example, you wouldn’t be able to run an analysis written with
Python code directly on GitHub. Thus, it is useful to be able to connect the
remote repository that was created on GitHub to a local coding environment.
This can be done by creating and working in a local copy of the repository. In
this chapter, we focus on interacting with Git via Jupyter using the Jupyter
Git extension. The Jupyter Git extension can be run by Jupyter on your local
computer, or on a JupyterHub server. We recommend reading Chapter 11 to
learn how to use Jupyter before reading this chapter.

12.7.1 Generating a GitHub personal access token

To send and retrieve work between your local repository and the remote repos-
itory on GitHub, you will frequently need to authenticate with GitHub to
prove you have the required permission. There are several methods to do
this, but for beginners we recommend using the HT'TPS method because it is
easier and requires less setup. In order to use the HT'TPS method, GitHub
requires you to provide a personal access token. A personal access token is like
a password—so keep it a secret!—but it gives you more fine-grained control
over what parts of your account the token can be used to access, and lets
you set an expiry date for the authentication. To generate a personal access
token, you must first visit https://github.com/settings/tokens, which will
take you to the “Personal access tokens” page in your account settings. Once
there, click “Generate new token” (Fig. 12.19). Note that you may be asked
to re-authenticate with your username and password to proceed.

You will be asked to add a note to describe the purpose for your personal
access token. Next, you need to select permissions for the token; this is where
you can control what parts of your account the token can be used to access.
Make sure to choose only those permissions that you absolutely require. In

https://github.com/settings/tokens

12.7. WORKING WITH LOCAL REPOSITORIES USING JUPYTER 383

O Search or jump to... Pulls Issues Marketplace Explore

Settings / Developer settings

Y

GitHub Apps Personal access tokens Generate new token Revoke all

OAuth Apps Tokens you have generated that can be used to access the GitHub API.

Personal access tokens

FIGURE 12.19 The “Generate new token” button used to initiate the cre-
ation of a new personal access token. It is found in the “Personal access
tokens” section of the “Developer settings” page in your account settings.

Fig. 12.20, we tick only the “repo” box, which gives the token access to our
repositories (so that we can push and pull) but none of our other GitHub
account features. Finally, to generate the token, scroll to the bottom of that
page and click the green “Generate token” button (Fig. 12.20).

Finally, you will be taken to a page where you will be able to see and copy the
personal access token you just generated (Fig. 12.21). Since it provides access
to certain parts of your account, you should treat this token like a password;
for example, you should consider securely storing it (and your other passwords
and tokens, too!) using a password manager. Note that this page will only
display the token to you once, so make sure you store it in a safe place right
away. If you accidentally forget to store it, though, do not fret—you can delete
that token by clicking the “Delete” button next to your token, and generate
a new one from scratch. To learn more about GitHub authentication, see the
additional resources section at the end of this chapter.

12.7.2 Cloning a repository using Jupyter

Cloning a remote repository from GitHub to create a local repository results
in a copy that knows where it was obtained from so that it knows where to
send/receive new committed edits. In order to do this, first copy the URL
from the HTTPS tab of the Code drop-down menu on GitHub (Fig. 12.22).

Open Jupyter, and click the Git+ icon on the file browser tab (Fig. 12.23).

Paste the URL of the GitHub project repository you created and click the
blue “CLONE” button (Fig. 12.24).

On the file browser tab, you will now see a folder for the repository. Inside
this folder will be all the files that existed on GitHub (Fig. 12.25).

384 CHAPTER 12. COLLABORATION WITH VERSION CONTROL

O Search or jump to... Pulls Issues Marketplace Explore

Settings / Developer settings

GitHub Apps New personal access token
OAuth Apps
Personal access tokens function like ordinary OAuth access tokens. They can be used instead of a
Personal access tokens password for Git over HTTPS, or can be used to authenticate to the API over Basic Authentication.
Note

ds-project

What'’s this token for?
Expiration *

30 days $ The token will expire on Fri, Nov 19 2021

Select scopes

Scopes define the access for personal tokens. Read more about OAuth scopes.

repo Full control of private repositories
repo:status Access commit status
repo_deployment Access deployment status
public_repo Access public repositories
repo:invite Access repository invitations
security_events Read and write security events
O workflow Update GitHub Action workflows
O admin:gpg_key Full control of public user GPG keys (Developer Preview)
O write:gpg_key Write public user GPG keys
@] read:gpg_key Read public user GPG keys

Generate token Cancel

FIGURE 12.20 Webpage for creating a new personal access token.

O Search or jump to... Pulls Issues Marketplace Explore

Some of the scopes you've selected are included in other scopes. Only the minimum set of necessary scopes has been saved. X

Settings / Developer settings

GitHub Apps Personal access tokens Generate new token Revoke all

OAuth Apps Tokens you have generated that can be used to access the GitHub API.

Personal access tokens

Make sure to copy your personal access token now. You won't be able to see it again!

e

v ghp_4hLMfUxFZW6vsIKRKDVCqpixFhOYZROKLNQi (3 Delete

FIGURE 12.21 Display of the newly generated personal access token.

12.7. WORKING WITH LOCAL REPOSITORIES USING JUPYTER 385

O Search or jump to. Pullrequests Issues Marketplace Explore L5 +- & ’ -
& ttimbers / canadian_languages @uUmwatch 1 ¥ Star 0 Y Fork 0
<> Code (© Issues ‘1 Pull requests ») Actions [Projects 10 Wiki @ Security |~ Insights 1 Settings

¥ main + ¥ 1branch © O0tags Goto file Add file ~ About &

No description, website, or topics

s' ttimbers Create CODE_OF_CONDUCT.md B] _Clone ® provided.
SSH GitHub CLI
[CODE_OF CONDUCT.md Create CODE OF CONDUCT.md “pf 1 on/ttimbers,/canadic EJ/ [Readme
[README.md added name of collaborators Use Git or checkout with SVN using the web URL.
Releases
README.md X Open with GitHub Desktop

No releases published
Create a new release

.) Download ZIP
canadian_languages

Packages

Authors: Trevor Campbell, Melissa Lee & Tiffany Timbers No packages published

Publish your first package

© 2020 GitHub, Inc. Terms Privacy Security Status Help Contact GitHub Pricing API Training Blog About

FIGURE 12.22 The green “Code” drop-down menu contains the remote
address (URL) corresponding to the location of the remote GitHub repository.

File Edit View Run Kernel Git Tabs Settings Help

-t 8 ot c GOl x

./
o Name = Last Modified
[E Notebook
&8 ¢ R
Python 3 R
%
Console
Python 3 R
Other
= v E
Terminal Text File Markdown File Show Contextual
1M 3 & Gitide Launcher

FIGURE 12.23 The Jupyter Git Clone icon (red circle).

386 CHAPTER 12. COLLABORATION WITH VERSION CONTROL

Clone arepo

Enter the Clone URI of the repository

[n/tﬁ i nil]

FIGURE 12.24 Prompt where the remote address (URL) corresponding to
the location of the GitHub repository needs to be input in Jupyter.

: File Edit View Run Kernel Git Tabs Settings Help

+ t o o [~ ———

]
— Vi
o Name - Last Modified
B8 canadian_languages <« seconds ago E Notebook
@& @®
B ©
Python 3 R
h
o Console
* A
i
w
Python 3 R
Other
= T B8
Terminal Text File Markdown File Show Contextual
Help
13 @ Gitide Launcher

FIGURE 12.25 Cloned GitHub repositories can been seen and accessed via
the Jupyter file browser.

12.7. WORKING WITH LOCAL REPOSITORIES USING JUPYTER 387

~ File Edit View Run Kernel Git Tabs Settings Help
. + B * c “HWedaipynb X+

B8 / canadian_languages / B + X DO O » m C » Code v Validate
o Name - Last Modified

IF] CODE.OF CONDUCT.md 14 minutes ago Mother tongue and languages spoken at home in Canac

@ " eda.ipynb 2 minutes ago
[%] README.md 14 minutes ago In the language data collected in the 2016 Canadian census, is there a relationship between the number of people wt
and the number of people who speak that language as their primary spoken language at home?

First we load the necessary packages:

import pandas as pd
import altair as alt

Then we load and inspect the data:

» 0 « B

I [4]: can_lang = pd.read csv("data/can lang.csv")
Then we can create the scatter plot to answer our question:

can_lang = can_lang[can_lang["most_at_home"] > 0]
can_lang_plot = alt.Chart(can_lang).mark_circle().encode(
x=alt.X("most_at_home")
.scale(type="1log")
.title(["Language spoken most at home", "(number of Canadian residents)"])
.axis(tickCount=7, format='s'),
y=alt.Y("mother_tongue")
.scale(type="log")
.title(["Mother tongue", "(number of Canadian residents)"])
.axis(tickCount=7, format='s")
).configure axis(titleFontSize=12)
can_lang_plot
100M

10M

1M1 & Gitide R|Idle Saving completed Mode: Command & Ln1,Col20 eda.ipynb

FIGURE 12.26 Jupyter Git extension icon (circled in red).

12.7.3 Specifying files to commit

Now that you have cloned the remote repository from GitHub to create a
local repository, you can get to work editing, creating, and deleting files. For
example, suppose you created and saved a new file (named eda.ipynb) that
you would like to send back to the project repository on GitHub (Fig. 12.26).
To “add” this modified file to the staging area (i.e., flag that this is a file whose
changes we would like to commit), click the Jupyter Git extension icon on the
far left-hand side of Jupyter (Fig. 12.26).

This opens the Jupyter Git graphical user interface pane. Next, click the plus
sign (4) beside the file(s) that you want to “add” (Fig. 12.27). Note that
because this is the first change for this file, it falls under the “Untracked”
heading. However, next time you edit this file and want to add the changes,
you will find it under the “Changed” heading.

You will also see an eda-checkpoint . ipynb file under the “Untracked” head-
ing. This is a temporary “checkpoint file” created by Jupyter when you work
on eda.ipynb. You generally do not want to add auto-generated files to Git
repositories; only add the files you directly create and edit.

Clicking the plus sign (+) moves the file from the “Untracked” heading to the
“Staged” heading, so that Git knows you want a snapshot of its current state
as a commit (Fig. 12.28). Now you are ready to “commit” the changes. Make

388 CHAPTER 12. COLLABORATION WITH VERSION CONTROL

~ File Edit View Run Kemel Git Tabs Settings Help

» [} & LY c #) eda.ipynb X +

Current Repository B + X O » m C » Code v Validate

o canadian_languages
s Current Branch . Mother tongue and languages spoken at home in Canac
® main
Changes History In the language data collected in the 2016 Canadian census, is there a relationship between the number of people wt
q and the number of people who speak that language as their primary spoken language at home?
E | staged (0)
First we load the necessary packages:
% » Changed (0)
import pandas as pd
~ Untracked (2) import altair as alt
[eda-checkpoint.ipynb ipynb_checkpoints u
O = yoal Then we load and inspect the data:
W eda.ipynb +u
* I [4]: can_lang = pd.read_csv("data/can_lang.csv")
Then we can create the scatter plot to answer our question:
can_lang = can_lang[(can_lang|["most_at_home"] > 0]
can_lang_plot = alt.Chart(can_lang).mark circle().encode(
x=alt.X("most_at_home")
.scale(type="log")
.title(["Language spoken most at home", "(number of Canadian residents)"])
.axis(tickCount=7, format='s'),
Summe squire y=alt.Y("mother tongue")
.scale(type="log")
.title(["Mother tongue", "(number of Canadian residents)"])
peseription .axis(tickCount=7, format='s")
).configure axis(titleFontSize=12)
can_lang_plot
100M+
10M-
1 M1 & Gitrefreshing.. R|Idle Saving completed Mode: Command & Ln1,Col20 eda.ipynb

FIGURE 12.27 eda.ipynb is added to the staging area via the plus sign
(+)-

sure to include a (clear and helpful!) message about what was changed so that
your collaborators (and future you) know what happened in this commit.

12.7.4 Making the commit

To snapshot the changes with an associated commit message, you must put a
message in the text box at the bottom of the Git pane and click on the blue
“Commit” button (Fig. 12.29). It is highly recommended to write useful and
meaningful messages about what was changed. These commit messages, and
the datetime stamp for a given commit, are the primary means to navigate
through the project’s history in the event that you need to view or retrieve
a past version of a file, or revert your project to an earlier state. When you
click the “Commit” button for the first time, you will be prompted to enter
your name and email. This only needs to be done once for each machine you
use Git on.

After “committing” the file(s), you will see there are 0 “Staged” files. You
are now ready to push your changes to the remote repository on GitHub (Fig.
12.30).

12.7. WORKING WITH LOCAL REPOSITORIES USING JUPYTER 389

File Edit View Run Kernel Git Tabs Settings Help

(@}

(o) & L c eda.ipynb X |+

]
s .
o Current Repository B + X @O () » m C » Code v Validate
o canadian_languages
. Current Branch . Mother tongue and languages spoken at home in Canac
® main
Changes History In the language data collected in the 2016 Canadian census, is there a relationship between the number of people wt
Q and the number of people who speak that language as their primary spoken language at home?
B Staged (1)
First we load the necessary packages:
A
% » Changed (0) import pandas as pd
import altair as alt
o ~ Untracked m
— Then we load and inspect the data:
[ed: ipynb .ipynb ¢ 6+ v
» l [4]: can_lang = pd.read_csv("data/can_lang.csv")
Then we can create the scatter plot to answer our question:
can_lang = can_lang[can_lang["most at home"] > 0]
can_lang_plot = alt.Chart(can_lang).mark_circle().encode(
x=alt.X("most_at_home")
.scale(type="log")
.title(["Language spoken most at home", "(number of Canadian residents)"])
.axis(tickCount=7, format='s'),
Summary (required y=alt.Y("mother_tongue")
.scale(type="log")
N ipti .title(["Mother tongue", "(number of Canadian residents)"])
eseriprion .axis(tickCount=7, format='s')
).configure_axis(titleFontSize=12)
can_lang_plot
100M
10M-{
| .
1 M1 & Gitrefreshing.. R|Idle Saving completed Mode: Command & Ln1,Col20 eda.ipynb

FIGURE 12.28 Adding eda.ipynb makes it visible in the staging area.

File Edit View Run Kernel Git Tabs Settings Help

0.

[LY c #) eda.ipynb X+

Current Repository B + X O » 8 C » Code v Validate

canadian_languages

=]

. Current Branch . Mother tongue and languages spoken at home in Canac

¢ O &

In the language data collected in the 2016 Canadian census, is there a relationship between the number of people wt

Changes History
Q [—— and the number of people who speak that language as their primary spoken language at home?
B . Staged)
First we load the necessary packages:
W] eda.ipynb A P 9
°° » Changed (0) import pandas as pd
import altair as alt
(™ - Untracked U]
o Then we load and inspect the data:
] ed ipynb .ipynb u
» l [4]: can_lang = pd.read_csv("data/can_lang.csv")

Then we can create the scatter plot to answer our question:

can_lang = can_lang[can_lang["most_at home"] > 0]
can_lang_plot = alt.Chart(can_lang).mark circle().encode(
x=alt.X("most_at_home")
.scale(type="log")
.title(["Language spoken most at home", "(number of Canadian residents)"])
.axis(tickCount=7, format='s'),
y=alt.Y("mother_tongue")
.scale(type="1log")
.title(["Mother tongue", "(number of Canadian residents)"])
.axis(tickCount=7, format='s"')
).configure_axis(titleFontSize=12)
can_lang_plot

Created an eda notebook

Started to perform exploratory data
analysis to understand the data set to
help choose the analysis to address my

search question.

100M

10m-

1M1 & Gitide R|ldle Saving completed Mode: Command & Ln1,Col20 eda.ipynb

FIGURE 12.29 A commit message must be added into the Jupyter Git
extension commit text box before the blue Commit button can be used to
record the commit.

390 CHAPTER 12. COLLABORATION WITH VERSION CONTROL

~ File Edit View Run Kemel Git Tabs Settings Help

» [} & LY c #) eda.ipynb X |+

¢ 7 . ’
Current Repository B + X DO O » m C » Code Validate

o canadian_languages
 Curent Branch . Mother tongue and languages spoken at home in Canac
® main
Changes History In the language data collected in the 2016 Canadian census, is there a relationship between the number of people wt
a and the number of people who speak that language as their primary spoken language at home?
BG Staged (0
First we load the necessary packages:
% » Changed (0)
import pandas as pd
~ Untracked m import altair as alt
[®ed int.ipynb .ipynb. o u
Then we load and inspect the data:
» I [4]: can_lang = pd.read csv("data/can lang.csv")
Then we can create the scatter plot to answer our question:
can_lang = can_lang[can_lang["most_at_home"] > 0]
can_lang_plot = alt.Chart(can_lang).mark_circle().encode(
x=alt.X("most_at_home")
.scale(type="1log")
.title(["Language spoken most at home", "(number of Canadian residents)"])
.axis(tickCount=7, format='s'),
Summary (require y=alt.Y("mother_tongue")
.scale(type="log")
.title(["Mother tongue", "(number of Canadian residents)"])
Description .axis(tickCount=7, format='s')
).configure_axis(titleFontSize=12)
can_lang_plot
100M
.
10M-
1M1 & Gitide R|Idle Saving completed Mode: Command & Ln1,Col20 eda.ipynb

FIGURE 12.30 After recording a commit, the staging area should be empty.

12.7.5 Pushing the commits to GitHub

To send the committed changes back to the remote repository on GitHub, you
need to push them. To do this, click on the cloud icon with the up arrow on
the Jupyter Git tab (Fig. 12.31).

You will then be prompted to enter your GitHub username and the personal
access token that you generated earlier (not your account password!). Click
the blue “OK” button to initiate the push (Fig. 12.32).

If the files were successfully pushed to the project repository on GitHub, you
will be shown a success message (Fig. 12.33). Click “Dismiss” to continue
working in Jupyter.

If you visit the remote repository on GitHub, you will see that the changes
now exist there too (Fig. 12.34).

12.7. WORKING WITH LOCAL REPOSITORIES USING JUPYTER 391

: File Edit View Run Kernel Git Tabs Settings Help

o (@) o [Fwwm <+ ———

]
Dmmmposmy B + X) » m C » Code v Validate
o canadian_languages
© | p CurntBranch . Mother tongue and languages spoken at home in Canac
L1 "
Changes History In the language data collected in the 2016 Canadian census, is there a relationship between the number of people wt
—— and the number of people who speak that language as their primary spoken language at home?
E | staged (0
First we load the necessary packages:
% » Changed (0)
[2]: dimport pandas as pd
~ Untracked m import altair as alt
[Wed int.ipynb .ipynb_ i u
Then we load and inspect the data:
* I [4]: can_lang = pd.read_csv("data/can_lang.csv")

Then we can create the scatter plot to answer our question:

[5]: can_lang = can_lang[can_lang["most at_home"] > 0]
can_lang_plot = alt.Chart(can_lang).mark circle().encode(
x=alt.X("most_at_home")
.scale(type="1log")
.title(["Language spoken most at home", "(number of Canadian residents)"])
.axis(tickCount=7, format='s'),
Summary (required) y=alt.Y("mother_tongue")
.scale(type="1log")
.title(["Mother tongue", "(number of Canadian residents)"])

Description .axis(tickCount=7, format='s')
).configure_axis(titleFontSize=12)
can_lang_plot
[51: 1oom
:
10M s
11 & Gitide R|Idle Saving completed Mode: Command @ Ln1,Col20 eda.ipynb

FIGURE 12.31 The Jupyter Git extension “push” button (circled in red).

Git credentials required
Enter credentials for remote repository

ttimbers

R

]

FIGURE 12.32 Enter your Git credentials to authorize the push to the
remote repository.

392 CHAPTER 12. COLLABORATION WITH VERSION CONTROL

Git Push

Git Push completed successfully

FIGURE 12.33 The prompt that the push was successful.

(@)

B ttimbers / canadian_languages ®Unwatch ~ 1 7 star 0 %ok 0

Pullrequests Issues Marketplace Explore L +~ 24

<> Code (1) Issues 1% Pullrequests () Actions (7] Projects 1 Wiki © Security |~ Insights 5 Settings

¥ main ~ ¥ 1branch ©O0tags Go to file Add file ~ About &

No description, website, or topics

. ttimbers Created an eda notebook - 7bd4068 1 minuteago O 4 commits provided.
[CODE_OF CONDUCT.md Create CODE_OF_ CONDUCT.md 21 minutes ago @ Readme
[README.md added name of collaborators 25 minutes ago

@ Created an eda notebook 1 minute ago, Releases

No releases published
Create a new release

y

README.md

Packages

canadian_languages

No packages published

Publish your first package
Authors: Trevor Campbell, Melissa Lee & Tiffany Timbers

© 2020 GitHub, Inc. Terms Privacy Security Status Help Contact GitHub Pricing API Training Blog About

FIGURE 12.34 The GitHub web interface shows a preview of the commit
message, and the time of the most recently pushed commit for each file.

12.8. COLLABORATION 393

o Search or jump to. Pullrequests Issues Marketplace Explore L ++ & \ 2
& ttimbers / canadian_languages @ Unwatch ~ 1 v¢ Star 0 % Fork 0
<> Code 1) lssues 1 Pullrequests ») Actions [T Projects I Wiki \) Security ~ Insights
¥ main ~ P 1branch ©O0tags Gotofile Add file ~ ¥ Code ~ About &
No description, website, or topics
" ttimbers Created an eda notebook - 7bd4068 13 minutesago Y 4 commits provided.
[CODE_OF CONDUCT.md Create CODE_OF_CONDUCT.md 33 minutes ago @ Readme
[README.md added name of collaborators 37 minutes ago
[edaipynb Created an eda notebook 13 minutes ago Releases
No releases published
Create a new release
README.md 7
Packages

canadian_languages

No packages published
X) . Publish your first package
Authors: Trevor Campbell, Melissa Lee & Tiffany Timbers

Languages

® Jupyter Notebook 100.0%

hitps://github.comttimbers/canadian languages/settings

FIGURE 12.35 The “Settings” tab on the GitHub web interface.

12.8 Collaboration

12.8.1 Giving collaborators access to your project

As mentioned earlier, GitHub allows you to control who has access to your
project. The default of both public and private projects are that only the
person who created the GitHub repository has permissions to create, edit
and delete files (write access). To give your collaborators write access to the
projects, navigate to the “Settings” tab (Fig. 12.35).

Then click “Manage access” (Fig. 12.36).
Then click the green “Invite a collaborator” button (Fig. 12.37).

Type in the collaborator’s GitHub username or email, and select their name
when it appears (Fig. 12.38).

Finally, click the green “Add <COLLABORA-
TORS_GITHUB_USER_NAME> to this repository” button (Fig. 12.39).

After this, you should see your newly added collaborator listed under the
“Manage access” tab. They should receive an email invitation to join the

394 CHAPTER 12. COLLABORATION WITH VERSION CONTROL

O Search or jump to. Pullrequests Issues Marketplace Explore

& ttimbers / canadian_languages ® Unwatch ~ 1 Y7 Star 0 % Fork 0
Code Issues Pull requests Actions Projects Wiki Security Insights £33 Settings
Options Settings
Repository name
canadian_languages Rename

Security & analysis

) Template repository
Branches Template repositories let users generate new repositories with the same directory structure and files. Learn more.
Webhooks

o Social preview
Notifications
Upload an image to customize your repository’s social media preview.

Integrations Images should be at least 640x320px (1280x640px for best display).
Download template

Deploy keys

Autolink references

Actions

Secrets

Madaratinn cattinme

FIGURE 12.36 The “Manage access” tab on the GitHub web interface.

O Search or jump to. Pullrequests Issues Marketplace Explore
& ttimbers / canadian_languages ®Unwatch ~ 1 ¢ Star 0 W Fork 0
Code Issues Pull requests Actions Projects Wiki) Security |~ Insights £§I Settings
Options Who has access
Manage access PUBLIC REPOSITORY ® DIRECT ACCESS A
N . This repository is public and visible to 0 collaborators have access to this
Security & analysis y q
anyone. repository. Only you can contribute to
this repository.
Branches Manage
Webhooks
Notifications Manage access
Integrations
Deploy keys (=]

Autolink references
You haven't invited any collaborators yet
Actions

Invite a collaborator
Secrets

Moderation settings

FIGURE 12.37 The “Invite a collaborator” button on the GitHub web in-
terface.

12.8. COLLABORATION 395

.Q

Invite a collaborator to
canadian_languages

[Q yourcollab

te collaborator

FIGURE 12.38 The text box where a collaborator’s GitHub username or
email can be entered.

.Q

Invite a collaborator to
canadian_languages

Your Collaborator
yourcollab

Add yourcollab to this repository

FIGURE 12.39 The confirmation button for adding a collaborator to a
repository on the GitHub web interface.

396 CHAPTER 12. COLLABORATION WITH VERSION CONTROL

O Search or jump to. Pullrequests Issues Marketplace Explore
& ttimbers / canadian_languages ®Unwatch ~ 2 77 star 0 YFork 0
<> Code Issues Pull requests () Actions Projects Wiki Security Insights Settings
main ~ ¥ 1branch ©0tags Go to file Add file ~ About i
No description, website, or topics
§€) trevorcampbell changed axes scales for plot ¢f73514 2 minutesago D 5 commits provided.
[CODE_OF.CONDUCT.md Create CODE_OF_CONDUCT.md 1 hour ago [Readme
[README.md added name of collaborators wourago/
O edaipynb changed axes scales for plot 2 minutes ago Releases
No releases published
Create a new release
README.md Va

canadian_languages Packages

No packages published
Publish your first package
Authors: Trevor Campbell, Melissa Lee & Tiffany Timbers

Contributors 2
& ctimvers Tiftany A, Timoers

9 trevorcampbell Trevor Campbell

Languages

® Jupyter Notebook 100.0%

FIGURE 12.40 The GitHub interface indicates the name of the last person
to push a commit to the remote repository, a preview of the associated commit
message, the unique commit identifier, and how long ago the commit was
snapshotted.

GitHub repository as a collaborator. They need to accept this invitation to
enable write access.

12.8.2 Pulling changes from GitHub using Jupyter

We will now walk through how to use the Jupyter Git extension tool to pull
changes to our eda.ipynb analysis file that were made by a collaborator (Fig.
12.40).

You can tell Git to “pull” by clicking on the cloud icon with the down arrow
in Jupyter (Fig. 12.41).

Once the files are successfully pulled from GitHub, you need to click “Dismiss”
to keep working (Fig. 12.42).

And then when you open (or refresh) the files whose changes you just pulled,
you should be able to see them (Fig. 12.43).

It can be very useful to review the history of the changes to your project.
You can do this directly in Jupyter by clicking “History” in the Git tab (Fig.
12.44).

12.8. COLLABORATION 397

File Edit View Run Kernel Git Tabs Settings Help

- @ e s c [T <+ ———
Dc“ Repository B + X) » m C » Code v Validate
o canadian_languages
© | p CurntBranch . Mother tongue and languages spoken at home in Canac
L1 "
Changes History In the language data collected in the 2016 Canadian census, is there a relationship between the number of people wt
and the number of people who speak that language as their primary spoken language at home?
E | staged (0
First we load the necessary packages:
o » Changed (0)
[2]: dimport pandas as pd
~ Untracked m import altair as alt
[Wed int.ipynb .ipynb_ i u
Then we load and inspect the data:
* I [4]: can_lang = pd.read_csv("data/can_lang.csv")
Then we can create the scatter plot to answer our question:
[5]: can_lang = can_lang[can_lang["most at_home"] > 0]
can_lang_plot = alt.Chart(can_lang).mark circle().encode(
x=alt.X("most_at_home")
.scale(type="1log")
.title(["Language spoken most at home", "(number of Canadian residents)"])
.axis(tickCount=7, format='s'),
Summary (required) m y=alt.Y("mother_tongue")
.scale(type="1log")
L .title(["Mother tongue", "(number of Canadian residents)"])
Description .axis(tickCount=7, format='s')
).configure_axis(titleFontSize=12)
can_lang_plot
[51: 1oom
-
10M s
11 & Gitide R|Idle Saving completed Mode: Command @ Ln1,Col20 eda.ipynb

FIGURE 12.41 The Jupyter Git extension clone button.

Git Pull

Git Pull completed successfully

FIGURE 12.42 The prompt after changes have been successfully pulled from
a remote repository.

398

Z File Edit View Run Kemel Git Tabs Settings
- & & ¥ cC
= Current Repository
o canadian_languages
P Current Branch
o main
Changes History
Q
B » Staged (0)
» Changed (0)
%
~ Untracked m
™ [ed ipynb .ipynb_ u
-
Description
1M1 & Gitide R|lde

CHAPTER 12. COLLABORATION WITH VERSION CONTROL

Help
eda.ipynb X+
B + XB O » m C » Code v Validate

Mother tongue and languages spoken at home in Canad

In the language data collected in the 2016 Canadian census, is there a relationship between the number of people whc
and the number of people who speak that language as their primary spoken language at home?

First we load the necessary packages:

import pandas as pd
import altair as alt

Then we load and inspect the data:

can_lang = pd.read_csv("data/can_lang.csv")

Then we can create the scatter plot to answer our question:

can_lang = can_lang[can_lang["most_at home"] > 0]
can_lang_plo alt.Chart(can_lang).mark_circle().encode(
x=alt.X("most_at_home")
.scale(type="sqrt")
.title(["Language spoken most at home",
.axis(tickCount=7, format='s'),
y=alt.Y("mother tongue")
.scale(type="sqrt")
.title(["Mother tongue", "(number of Canadian residents)"])
.axis(tickCount=7, format='s")
).configure axis(titleFontSize=12)
can_lang_plot

"(number of Canadian residents)"])

Mode: Command & Ln1,Col1 eda.ipynb

FIGURE 12.43 Changes made by the collaborator to eda.ipynb (code
highlighted by red arrows).

(@}

File Edit View Run Kernel Git Tabs Settings

& & ¥ ¢

Current Repository
canadian_languages

=

Current Branch

v -

8minutesago ~

¢ O &

Changes

Trevor Campbell cf73514

changed axes scales for plot

Tiffany Timbers 7bd4068
Created an eda notebook

60 minutes ago ~

«

» 0 « B

Tiffany A. Timb... 9bace99
Create CODE_OF_CONDUCT.md

80 minutes ago

Tiffany A. Timb... 7e018aa
added name of collaborators

84 minutes ago

Tiffany A. Timb... 07dc13f
Initial commit

87 minutesago ¥

1TH1 8 Gitide

FIGURE 12.44 Version
Git extension.

R|Idle

Help
7 eda.ipynb X+
B + X© O » m C » Code v Validate

Mother tongue and languages spoken at home in Canad

In the language data collected in the 2016 Canadian census, is there a relationship between the number of people whc
and the number of people who speak that language as their primary spoken language at home?

First we load the necessary packages:

import pandas as pd
import altair as alt

Then we load and inspect the data:

can_lang = pd.read_csv("data/can_lang.csv")

Then we can create the scatter plot to answer our question:

can_lang = can_lang[can_lang["most_at home"] > 0]
can_lang_plot = alt.Chart(can_lang).mark circle().encode(
x=alt.X("most_at_home")
.scale(type="sqrt")
.title(["Language spoken most at home",
.axis(tickCount=7, format='s'),
y=alt.Y("mother tongue")
.scale(type="sqrt")
.title(["Mother tongue", "(number of Canadian residents)"])
.axis(tickCount=7, format='s")
) .configure_axis(titleFontSize=12)
can_lang_plot

"(number of Canadian residents)"])

Mode: Command @ Ln1,Col1 eda.ipynb

control repository history viewed using the Jupyter

12.8. COLLABORATION 399

Git Push

Git Push failed with error:
To it i git ! [rej HEAD -> main (fetch first) error: failed to push some refs to

git' hint: Updates were rejected because the remote contains work that you do hint: not have locally. This is usually
caused by another repository pushing hint: to the same ref. You may want to first integrate the remote changes hint: (e.g., 'git pull ...") before pushing again. hint:
See the 'Note about fast-forwards' in 'git push --help' for details.

FIGURE 12.45 Error message that indicates that there are changes on the
remote repository that you do not have locally.

It is good practice to pull any changes at the start of every work session
before you start working on your local copy. If you do not do this, and your
collaborators have pushed some changes to the project to GitHub, then you
will be unable to push your changes to GitHub until you pull. This situation
can be recognized by the error message shown in Fig. 12.45.

Usually, getting out of this situation is not too troublesome. First you need
to pull the changes that exist on GitHub that you do not yet have in the
local repository. Usually when this happens, Git can automatically merge the
changes for you, even if you and your collaborators were working on different
parts of the same file.

If, however, you and your collaborators made changes to the same line of the
same file, Git will not be able to automatically merge the changes—it will not
know whether to keep your version of the line(s), your collaborators version
of the line(s), or some blend of the two. When this happens, Git will tell you
that you have a merge conflict in certain file(s) (Fig. 12.46).

400 CHAPTER 12. COLLABORATION WITH VERSION CONTROL

Git Pull

Git Pull failed with error:

Auto-merging eda.ipynb CONFLICT (content): Merge conflict in eda.ipynb Automatic merge failed; fix conflicts and then commit the result.

DISMISS

FIGURE 12.46 Error message that indicates you and your collaborators
made changes to the same line of the same file and that Git will not be able
to automatically merge the changes.

12.8.3 Handling merge conflicts

To fix the merge conflict, you need to open the offending file in a plain text
editor and look for special marks that Git puts in the file to tell you where
the merge conflict occurred (Fig. 12.47).

The beginning of the merge conflict is preceded by <<<<<<< HEAD and the
end of the merge conflict is marked by >>>>>>>. Between these markings,
Git also inserts a separator (=======). The version of the change before the
separator is your change, and the version that follows the separator was the
change that existed on GitHub. In Fig. 12.48, you can see that in your local
repository there is a line of code that sets the axis scaling to "sgrt". It looks
like your collaborator made an edit to that line too, except with axis scaling
"log".

Once you have decided which version of the change (or what combination!) to
keep, you need to use the plain text editor to remove the special marks that
Git added (Fig. 12.49).

The file must be saved, added to the staging area, and then committed before
you will be able to push your changes to GitHub.

12.8. COLLABORATION 401

: File Edit View Run Kernel Git Tabs Settings Help

» + * c 7 eda.ipynb X+
B / canadian_languages / 8 + X O [» m C » Code v Validate
Name - Last Modified
[%] CODE_OF_CONDUCT.md an hour ago H
< Mother tongue and languages spoken at home in Canad
eda.ipy]
@ Open
[%] READM 3 . guage data collected in the 2016 Canadian census, is there a relationship between the number of people whc
Open With » [W Notebook
umber of people who speak that language as their primary spoken language at home?
B + Open in New Browser Tab Editor
/' Rename {3 JSON oad the necessary packages:
% X Delete
¢ import pandas as pd
¥ Cut .
import altair as alt
) D Copy
D) Duplicate Then we load and inspect the data:
* Download
» W Shut Down Kernel l [4]: can_lang = pd.read _csv("data/can_lang.csv")
@ Copy Shareable Link Then we can create the scatter plot to answer our question:
[Copy Path
) Copy Download Link can_lang = can_lang[can lang[“most at_home"] > 0]
can_lang plot = alt.Chart(can_lang).mark circle().encode(
New Folder x=alt.X("most_at_home")
= NewFile .scale(type="log")
M New Markdown File -title(["Language spoken most at home”, "(number of Canadian residents)"])
.axis(tickCount=7, format='s'),
[] Paste y=alt.Y("mother_tongue")
Shift+Right Click for Browser Menu .scale(type="log")
" .title(["Mother tongue", "(number of Canadian residents)"])
.axis(tickCount=7, format='s')
).configure_axis(titleFontSize=12)
can_lang_plot
100»1w
10 -
1 1 & Git:refreshing... R|Idle Saving completed Mode: Command @ Ln1,Col1 eda.ipynb

FIGURE 12.47 How to open a Jupyter notebook as a plain text file view in
Jupyter.

: File Edit View Run Kernel Git Tabs Settings Help

. + * c da.ipynb X = edaipynb ° +
B8 / canadian_languages / -3
Name - Last Modified 53 "metadata”: {},
[A] CODE_OF_CONDUCT.md anhourago | 24 "source”: [)
55 “Then we can create the scatter plot to answer our question:"
A eda.ipynb seconds ago 56]
[%] README.md an hour ago :; h
B 59 "cell type": "code",
60 "execution_count": null,
61 "id": "d52ff882-5e33-4ed4b-90d4-535b769b04db",
% 62 "metadata”: {},
63 “outputs”: [],
64 “source": [
65 “can_lang = can_lang[can_lang[\"most_at_home\"] > @]\n",
D 66 “can_lang_plot = alt.Chart(can_lang).mark_circle().encode(\n",
67 - x=alt.X(\"most_at_home\")\n",
68 [<<<<<<< WEAD
» 69 . .scale(type=\"log\")\n",
70 |=
71 .scale(type=\"sqrt\")\n",
72 |>>>>>>> bf956¢3a4c079f69676059e6c6c6e69a4858a7cb
73 " .title([\"Language spoken most at home\", \"(number of Canadian residents)\"])\n",
74 N .axis(tickCount=7, format='s"),\n",
75 " y=alt.Y(\"mother_tongue\")\n",
76 - .scale(type=\"sqrt\")\n",
77 " .title([\"Mother tongue\", \"(number of Canadian residents)\"])\n",
78 " .axis(tickCount=7, format='s')\n",
79 ").configure_axis(titleFontSize=12)\n",
80 “can_lang_plot”
81]
82 1},
83
84 "cell_type": "markdown",
85 "id": "4bac3ea9-b251-41ba-8e8b-5e467e2e95¢5",
86 "metadata": {},
87 "source": []
88)}
1 1 & PlainText Git:idle Saving completed Ln73,Col 49 Spaces:4 eda.ipynb

FIGURE 12.48 Merge conflict identifiers (highlighted in red).

402 CHAPTER 12. COLLABORATION WITH VERSION CONTROL

~ File Edit View Run Kemel Git Tabs Settings Help

- + * c # eda.ipynb X = edaipynb X+
B8 / canadian_languages / &
Name - Last Modified 53 "metadata": {},
7| CODE_OF_CONDUCT.md an hour ago = "source”: [.
55 "Then we can create the scatter plot to answer our question:"
X B
[%] README.md an hour ago 57 h
58 {
B% 59 "cell_type": "code",
60 "execution_count": null,
61 "id": "d52ff882-5e33-4ed4b-90d4-535b769b04db",
% 62 "metadata”: {},
63 "outputs”: [],
64 "source": [
o 65 “can_lang = can_lang[can_lang[\"most_at_home\"] > @]\n",
66 “can_lang_plot = alt.Chart(can_lang).mark_circle().encode(\n",
67 " x=alt.X(\"most_at_home\")\n",
68 " .scale(type=\"sqrt\")\n", —
» 69 " .title([\"Language spoken most at home\", \"(number of Canadian residents)\"])\n",
70 " .axis(tickCount=7, format='s'),\n",
71 " y=alt.Y(\"mother_tongue\")\n",
72 " .scale(type=\"sqrt\")\n",
73 " .title([\"Mother tongue\", \"(number of Canadian residents)\"])\n",
74 " .axis(tickCount=7, forpmat='s')\n",
75 ").configure axis(titleFontSize=12)\n",
76 “can_lang_plot”
77]
78},
79 {
80 "cell_type": "markdown",
81 "id": "4bac3ea9-b251-41ba-8e8b-5e467e2e95¢c5",
82 "metadata”: {},
83 “source": []
84)}
85 1,
86 "metadata": {
87 "kernelspec": {
88 "display_name": "Python 3 (ipykernel)"”,
1M1 & PanText Gitidle Saving completed Ln69,Col 76 Spaces: 4 eda.ipynb

FIGURE 12.49 File where a merge conflict has been resolved.

12.8.4 Communicating using GitHub issues

When working on a project in a team, you don’t just want a historical record of
who changed what file and when in the project—you also want a record of de-
cisions that were made, ideas that were floated, problems that were identified
and addressed, and all other communication surrounding the project. Email
and messaging apps are both very popular for general communication, but are
not designed for project-specific communication: they both generally do not
have facilities for organizing conversations by project subtopics, searching for
conversations related to particular bugs or software versions, etc.

GitHub issues are an alternative written communication medium to email and
messaging apps, and were designed specifically to facilitate project-specific
communication. Issues are opened from the “Issues” tab on the project’s
GitHub page, and they persist there even after the conversation is over and
the issue is closed (in contrast to email, issues are not usually deleted). One
issue thread is usually created per topic, and they are easily searchable using
GitHub’s search tools. All issues are accessible to all project collaborators,
so no one is left out of the conversation. Finally, issues can be set up so
that team members get email notifications when a new issue is created or a
new post is made in an issue thread. Replying to issues from email is also
possible. Given all of these advantages, we highly recommend the use of issues
for project-related communication.

12.9. EXERCISES 403

o Search or jump to. Pullrequests Issues Marketplace Explore L ++ & \ 2
& ttimbers / canadian_languages ®Unwatch ~ 2 v¢ Star 0 Y Fork 0
<> Code 1 Pullrequests ») Actions [Projects I Wiki \) Security ~ Insights it Settings
¥ main ~ P 1branch ©O0tags Gotofile Add file ~ ¥ Code ~ About &
No description, website, or topics
" ttimbers Fixed merge conflict on colours .- 22cd96a 3minutesago O 8 commits provided.
[CODE_OF CONDUCT.md Create CODE_OF_ CONDUCT.md 2 hours ago [Readme
[README.md added name of collaborators 2 hours ago
[eda.ipynb Fixed merge conflict on colours 3 minutes ago Releases

No releases published
Create anew release

README.md 7

canadian_languages Packages

No packages published

Publish your first package
Authors: Trevor Campbell, Melissa Lee & Tiffany Timbers

Contributors 2

6 ttimbers Tiffany A. Timbers

@ trevorcampbell Trevor Campbell

hitps://github.comttimbers/canadian_anguages/issues

FIGURE 12.50 The “Issues” tab on the GitHub web interface.

To open a GitHub issue, first click on the “Issues” tab (Fig. 12.50).
Next click the “New issue” button (Fig. 12.51).

Add an issue title (which acts like an email subject line), and then put the
body of the message in the larger text box. Finally, click “Submit new issue”
to post the issue to share with others (Fig. 12.52).

You can reply to an issue that someone opened by adding your written response
to the large text box and clicking comment (Fig. 12.53).

When a conversation is resolved, you can click “Close issue”. The closed issue
can be later viewed by clicking the “Closed” header link in the “Issue” tab
(Fig. 12.54).

12.9 Exercises

Practice exercises for the material covered in this chapter can be found in
the accompanying worksheets repository* in the “Collaboration with version
control” row. You can launch an interactive version of the worksheet in your

4https:/ /worksheets.python.datasciencebook.ca

https://worksheets.python.datasciencebook.ca

404 CHAPTER 12. COLLABORATION WITH VERSION CONTROL

O Search or jump to. Pullrequests Issues Marketplace Explore
& ttimbers / canadian_languages @Unwatch ~ 2 ¢ Star 0 Y Fork 0
Code Q@ Issues) Pullrequests ») Actions ("] Projects Wiki Security Insights 1 Settings
Label issues and pull requests for new contributors Dismiss

Now, GitHub will help potential first-time contributors discover issues labeled with

Filters ~) is:issue is:open © Labels 9 P Milestones 0

Welcome to issues!

Issues are used to track todos, bugs, feature requests, and more. As issues are created, they'll
appear here in a searchable and filterable list. To get started, you should create an issue.

FIGURE 12.51 The “New issues” button on the GitHub web interface.

O Search or jump to. Pullrequests Issues Marketplace Explore
B ttimbers / canadian_languages ®Unwatch ~ 2 ¢ Star 0 %W Fork 0
Code (D Issues ‘I Pull requests ») Actions Projects 7 Wiki (J Security |~ Insights Settings

A/ - Assignees

No one—assign yourself

D
6. Propose to create a plot of mother tongue vs most at work

Write Preview H B I = O @ = a-
e Labels
| am proposing to add to our eda.ipynb preliminary analysis notebook: a plot of mother tongue None yet
versus most at work. | think we might see an interesting pattern here. What are your thoughts?
Projects
None yet
Milestone

No milestone

Attach files by dragging & dropping, selecting or pasting them.
Linked pull requests
£ Styling with Markdown is supported Submit new issue Successfully merging a pull request may close

this issue.

(@ Remember, contributions to this repository should follow its code of conduct. None yet

Helpful resources

Code of conduct
GitHub Community Guidelines

FIGURE 12.52 Dialog boxes and submission button for creating new
GitHub issues.

12.9. EXERCISES 405

Propose to create a plot of mother tongue vs most at work #1 e

ttimbers opened this issue 2 minutes ago - 1 comment

S~
65 ttimbers commented 2 minutes ago Oowner @ - Assignees &

No one—assign yourself
| am proposing to add to our eda.ipynb preliminary analysis notebook: a plot of mother tongue

versus most at work. | think we might see an interesting pattern here. What are your thoughts?

Labels &
None yet
@ trevorcampbell commented now Collaborator @ +** .
Projects 8
Sounds like a good idea to me, go for it! None yet
Milestone &
R, N lests
] = = e o milestone
s? Write Preview H B I B ® & = = @ @ a-

Linked pull requests
Leave a comment
Successfully merging a pull request may close

this issue
None yet
Attach files by dragging & dropping, selecting or pasting them. o
Notifications Customize
& Closeissue R Unsubscribe
You're receiving notifications because you're
(® Remember, contributions to this repository should follow its code of conduct. watching this repository.

2 participants

FIGURE 12.53 Dialog box for replying to GitHub issues.

O Search or jump to... Pullrequests Issues Marketplace Explore
& ttimbers / canadian_languages @®Unwatch ~ 2 V¢ Star 0 Y Fork 0
<> Code Q@ lIssues 1 19 Pullrequests () Actions [Projects 11 Wiki () Security |~ Insights
Label issues and pull requests for new contributors Dismiss

Now, GitHub will help potential first-time contributors discover issues labeled with

Filters v Q is:issue is:closed © Labels 9 P Milestones 0 m

Clear current search query, filters, and sorts

@ 10Open @ Author ~ Label ~ Projects v Milestones ~ Assignee v Sort v

e o1

(] Propose to create a plot of mother tongue vs most at work

#1 by ttimbers was closed 1 minute ago

Q ProTip! Adding no:label will show everything without a label.

FIGURE 12.54 The “Closed” issues tab on the GitHub web interface.

406 CHAPTER 12. COLLABORATION WITH VERSION CONTROL

browser by clicking the “launch binder” button. You can also preview a non-
interactive version of the worksheet by clicking “view worksheet”. If you in-
stead decide to download the worksheet and run it on your own machine, make
sure to follow the instructions for computer setup found in Chapter 13. This
will ensure that the automated feedback and guidance that the worksheets
provide will function as intended.

12.10 Additional resources

Now that you've picked up the basics of version control with Git and GitHub,
you can expand your knowledge through the resources listed below:

« GitHub’s guides website® is a great source to take the next steps in learning
about Git and GitHub.

« Good enough practices in scientific computing® [Wilson et al., 2017] pro-
vides more advice on useful workflows and “good enough” practices in data
analysis projects.

« In addition to GitHub", there are other popular Git repository hosting ser-
vices such as GitLab® and BitBucket?. Comparing all of these options is
beyond the scope of this book, and until you become a more advanced user,
you are perfectly fine to just stick with GitHub. Just be aware that you
have options!

« GitHub’s documentation on creating a personal access token'? is an excellent
additional resource to consult if you need help generating and using personal
access tokens.

Shttps://guides.github.com/

Shttps://journals.plos.org/ploscompbiol /article?id=10.1371/journal.pcbi.1005510sec
014

Thttps://github.com

8https://gitlab.com

Yhttps://bitbucket.org

Ohttps://docs.github.com/en/authentication/keeping-your-account-and-data-secure/c

reating-a-personal-access-token

https://guides.github.com
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005510#sec014
https://github.com
https://gitlab.com
https://bitbucket.org
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005510#sec014
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token

13

Setting up your computer

13.1 Overview

In this chapter, you'll learn how to set up the software needed to follow along
with this book on your own computer. Given that installation instructions can
vary based on computer setup, we provide instructions for multiple operating
systems (Ubuntu Linux, MacOS, and Windows). Although the instructions
in this chapter will likely work on many systems, we have specifically verified
that they work on a computer that:

o runs Windows 10 Home, MacOS 13 Ventura, or Ubuntu 22.04,
e uses a 64-bit CPU,
e has a connection to the internet,

o uses English as the default language.

13.2 Chapter learning objectives
By the end of the chapter, readers will be able to do the following:

o Download the worksheets that accompany this book.
o Install the Docker virtualization engine.

« Edit and run the worksheets using JupyterLab running inside a Docker con-
tainer.

o Install Git, JupyterLab Desktop, and Python packages.
o Edit and run the worksheets using JupyterLab Desktop.

DOI: 10.1201/9781003438397-13 407

https://doi.org/10.1201/9781003438397-13

408 CHAPTER 13. SETTING UP YOUR COMPUTER

13.3 Obtaining the worksheets for this book

The worksheets containing exercises for this book are online at https://work
sheets.python.datasciencebook.ca. The worksheets can be launched directly
from that page using the Binder links in the rightmost column of the table.
This is the easiest way to access the worksheets, but note that you will not
be able to save your work and return to it again later. In order to save your
progress, you will need to download the worksheets to your own computer and
work on them locally. You can download the worksheets as a compressed zip
file using the link at the top of the page!. Once you unzip the downloaded
file, you will have a folder containing all of the Jupyter notebook worksheets
accompanying this book. See Chapter 11 for instructions on working with
Jupyter notebooks.

13.4 Working with Docker

Once you have downloaded the worksheets, you will next need to install and
run the software required to work on Jupyter notebooks on your own com-
puter. Doing this setup manually can be quite tricky, as it involves quite
a few different software packages, not to mention getting the right versions
of everything—the worksheets and autograder tests may not work unless all
the versions are exactly right. To keep things simple, we instead recommend
that you install Docker?. Docker lets you run your Jupyter notebooks inside a
pre-built container that comes with precisely the right versions of all software
packages needed run the worksheets that come with this book.

Note: A container is a virtual user space within your computer. Within
the container, you can run software in isolation without interfering with the
other software that already exists on your machine. In this book, we use a
container to run a specific version of the Python programming language, as
well as other necessary packages. The container ensures that the worksheets
function correctly, even if you have a different version of Python installed on
your computer—or even if you haven’t installed Python at all.

Thttps://github.com/UBC-DSCI/data-science-a-first-intro-python-worksheets /archive
/refs/heads/main.zip
2https://docker.com

https://worksheets.python.datasciencebook.ca
https://github.com/UBC-DSCI/data-science-a-first-intro-python-worksheets/archive/refs/heads/main.zip
https://docker.com
https://worksheets.python.datasciencebook.ca
https://github.com/UBC-DSCI/data-science-a-first-intro-python-worksheets/archive/refs/heads/main.zip

13.4. WORKING WITH DOCKER 409

13.4.1 Windows

Installation To install Docker on Windows, visit the online Docker documen-
tation®, and download the Docker Desktop Installer.exe file. Double-
click the file to open the installer and follow the instructions on the installation
wizard, choosing WSL-2 instead of Hyper-V when prompted.

Note: Occasionally, when you first run Docker on Windows, you will en-
counter an error message. Some common errors you may see:

o If you need to update WSL, you can enter cmd.exe in the Start menu to
run the command line. Type ws1l --update to update WSL.

o If the admin account on your computer is different to your user account, you
must add the user to the “docker-users” group. Run Computer Management
as an administrator and navigate to Local Users and Groups -> Groups
-> docker-users. Right-click to add the user to the group. Log out and
log back in for the changes to take effect.

 If you need to enable virtualization, you will need to edit your BIOS. Restart
your computer, and enter the BIOS using the hotkey (usually Delete, Esc,
and/or one of the F# keys). Look for an “Advanced” menu, and under your
CPU settings, set the “Virtualization” option to “enabled”. Then save the
changes and reboot your machine. If you are not familiar with BIOS editing,
you may want to find an expert to help you with this, as editing the BIOS
can be dangerous. Detailed instructions for doing this are beyond the scope
of this book.

Running JupyterLab Run Docker Desktop. Once it is running, you need
to download and run the Docker image that we have made available for the
worksheets (an image is like a “snapshot” of a computer with all the right
packages pre-installed). You only need to do this step one time; the image will
remain the next time you run Docker Desktop. In the Docker Desktop search
bar, enter ubcdsci/py-dsci-100, as this is the name of the image. You
will see the ubcdsci/py-dsci-100 image in the list (Fig. 13.1), and “latest”
in the Tag drop down menu. We need to change “latest” to the right image
version before proceeding. To find the right tag, open the Dockerfile in the
worksheets repository*, and look for the line FROM ubcdsci/py-dsci-100:
followed by the tag consisting of a sequence of numbers and letters. Back in

3https://docs.docker.com /desktop/install /windows-install /
4https://raw.githubusercontent.com/UBC-DSCI/data-science-a-first-intro-python-
worksheets/main/Dockerfile

https://docs.docker.com/desktop/install/windows-install
https://raw.githubusercontent.com/UBC-DSCI/data-science-a-first-intro-python-worksheets/main/Dockerfile
https://raw.githubusercontent.com/UBC-DSCI/data-science-a-first-intro-python-worksheets/main/Dockerfile

410 CHAPTER 13. SETTING UP YOUR COMPUTER

search

rubddscvpy-dscl-wu x Q I

Images (2) Containers (0) Velumes (0) Extensions (0) Docs (0)

@ Hubimages(2) | Remote repositories () [Local images (0)

& ubcdsci/py-dsci-100-grading $30 . 40

Tag
@ ubcdsci/py-dsci-100 - %0 latest m
= toopen

T4 to navigate ESC 1o close SCROLL for more resuits Give feedback R

FIGURE 13.1 The Docker Desktop search window. Make sure to click the
Tag drop down menu and find the right version of the image before clicking
the Pull button to download it.

Docker Desktop, in the “Tag” drop down menu, click that tag to select the
correct image version. Then click the “Pull” button to download the image.

Once the image is done downloading, click the “Images” button on the left
side of the Docker Desktop window (Fig. 13.2). You will see the recently
downloaded image listed there under the “Local” tab.

To start up a container using that image, click the play button beside the
image. This will open the run configuration menu (Fig. 13.3). Expand the
“Optional settings” drop down menu. In the “Host port” textbox, enter 8888.
In the “Volumes” section, click the “Host path” box and navigate to the folder
where your Jupyter worksheets are stored. In the “Container path” text box,
enter /home/jovyan/work. Then click the “Run” button to start the con-
tainer.

After clicking the “Run” button, you will see a terminal. The terminal will
then print some text as the Docker container starts. Omnce the text stops
scrolling, find the URL in the terminal that starts with http://127.0.0.
1:8888 (highlighted by the red box in Fig. 13.4), and paste it into your
browser to start JupyterLab.

When you are done working, make sure to shut down and remove the container
by clicking the red trash can symbol (in the top right corner of Fig. 13.4). You

13.4. WORKING WITH DOCKER 411

Docker Desktop Upgrade plan Q, Search:

@ Containers Images sive feednack o

3 Images |
Local Hub Artifactory earwy access |

&

i@ Volumes |
|
@) DevEnvironments e 0 Bytes / 0 Bytes inuse 1 Images Last refresh: 5 minutes ago
v
(87 Docker Scout earw access
St h =
@ Learning center Q searc S m
o . |:\ Name Tag Status Created Size Actions
ensions H
ubcdsci/py-dsci-100 N
@ Add Extensions O 42361645058 T 20230831022048aa49aa Unused 17 days ago 5.25GB >]
Showing 1 item
|

RAM7.97 GB CPU 21.95% % Not signed in v4230

FIGURE 13.2 The Docker Desktop images tab.

Run a new container
ubcdsci/py-dsci-100:20230831022048aa49aa

Optional settings

Container name
A random name is generated if you do not provide one.

Ports.

Enter "0" to assign randomly generated host ports
Host port

8888 8888/tcp

Volumes
Host path

Comainer path
CiUsersitrevo\Docum - /homefjovyan/work| +

Environment variables

Variable

FIGURE 13.3 The Docker Desktop container run configuration menu.

412 CHAPTER 13. SETTING UP YOUR COMPUTER

Docker Desktop Upgrade plan Q, Search: ubedsci/py-dsci-100 & o signin — (m]

condescending_block

@ Containers < ® ubedsci/py-dsci-100:202308310220. STATUS N 9
- 231¢1¢47906¢ T Running (5 seconds ago) C

£ Images
8888:8888 (3

i Volumes
L Logs Inspect Bind mounts Exec Files Stats

@) Dev Environments et 2023-89-16 16-52:45 [I 2023-09-16 23:52:45.427 LabApp] Extension Manager 15 'pypi’.

2023-89-16 16:52:45 [1 2023-69-16 23:52:45.420 Serverpp] jupyterlab | extension was successfully loaded. Q
| 80 DockerScout esmvaccess 2023-89-16 16:52:45 [1 2023-89-16 23:52:45.433 ServerApp] jupyterlab_git | extension was successfully Loaded. ‘
i 2023-89-16 16:52:45 [2023-69-16 23:52:45.438 Serverapp] nbclassic | extension was successfully loaded. 0o |
@ Learning center 2023-89-16 16-52:45 [2023-89-16 23:52:45.589 ServerApp] nbdime | extension was successfully loaded.
2023-89-16 16:52:45 [2023-69-16 23:52:45.510 Serverdpp] nbgitpuller | extension was successfully loaded. | ®© ‘
2023-89-16 16:52:45 [2023-69-16 23:52:45.512 Serverapp] notebook | extension was successfully loaded.
2023-89-16 16-52:45 [2023-89-16 23:52:45.512 Serverapp] Serving notebooks from local directory: fhome/jovyan/werk i
2023-89-16 16:52:45 [1 2023-69-16 23:52:45.512 Serverapp] Jupyter Server 2.7.1 is running at:
2023-09-16 16:52:45 [2023-80-16 23:52:45.512 Serverdpp] http://231clcdT005¢:8888/Lab?token=301d87dCFa51075F78707b41022e06d40CT3F6CO53a

Extensions

:]
Add Extensions 2act
@ 2023-89-16 16:52:45 [I 2023-09-16 23:52:45.513 Serverapp] http://127.6.0.1:8888/ Lab2 token=391d87dc F451975F78757b41522e06d43C 73F6c F553
aaacl
2023-89-16 16:52:45 [I 2023-89-16 23:52:45.513 ServerApp] Use Control-C to stop this server and shut down all kermels (twice to skip conf
irmaticn)

2023-05-16 16:52:45 [C 2023-89-16 23:52:45.515 Serveripp]
2023-09-16 16:52:45
2023-89-16 16:52:45 To access the server, open this file in a browser

2023-09-16 16:52:45 file://fhome/jovyan/ . local fshare/jupyter/runtine/pserver-7-open.html

2023-09-16 16:52:45 or copy and paste one of these URLs:

2023-09-16 16:52:45 =

2023-09-16 16:52:45 I http://127.0.0.1:8888,1ab?token=301d87dcf451975F7870Fbd1922e06d49cT3F6c Fo53aaach [

er-nodejs, javascript-typescript-langserver, jedi-language-server, julia-language-server, pyright, python-language-server, python-lsp-ser
ver, r-languageserver, sql-language-server, texlab, typescript-language-server, unified-language-server, vscode-css-languageserver-bin, v |

scode-htril-languageserver-bin, vscode-json-languageserver-bin, yaml-language-server v
RAM293GB CPU2.84% & Notsignedin v4230

FIGURE 13.4 The terminal text after running the Docker container. The
red box indicates the URL that you should paste into your browser to open
JupyterLab.

‘ 2023-09-16 16:52:46 [I T , dockerfile-L v

will not be able to start the container again until you do so. More information
on installing and running Docker on Windows, as well as troubleshooting tips,
can be found in the online Docker documentation®.

13.4.2 MacOS

Installation To install Docker on MacOS, visit the online Docker documen-
tation®, and download the Docker.dmg installation file that is appropriate
for your computer. To know which installer is right for your machine, you
need to know whether your computer has an Intel processor (older machines)
or an Apple processor (newer machines); the Apple support page’ has infor-
mation to help you determine which processor you have. Once downloaded,
double-click the file to open the installer, then drag the Docker icon to the
Applications folder. Double-click the icon in the Applications folder to start
Docker. In the installation window, use the recommended settings.

Running JupyterLab Run Docker Desktop. Once it is running, follow the
instructions above in the Windows section on Running JupyterLab (the user
interface is the same). More information on installing and running Docker on

Shttps://docs.docker.com/desktop/install /windows-install /
Shttps://docs.docker.com/desktop/install /mac-install /
"https://support.apple.com/en-ca/HT211814

https://docs.docker.com/desktop/install/windows-install
https://docs.docker.com/desktop/install/mac-install
https://support.apple.com/en-ca/HT211814

13.5. WORKING WITH JUPYTERLAB DESKTOP 413

MacOS, as well as troubleshooting tips, can be found in the online Docker
documentation®.

13.4.3 Ubuntu

Installation To install Docker on Ubuntu, open the terminal and enter the
following five commands.

sudo apt update

sudo apt install ca-certificates curl gnupg

curl —-fsSL https://get.docker.com -o get-docker.sh
sudo chmod u+x get-docker.sh

sudo sh get-docker.sh

Running JupyterLab First, open the Dockerfile in the worksheets repos-
itory?, and look for the line FROM ubcdsci/py-dsci-100: followed by a
tag consisting of a sequence of numbers and letters. Then in the terminal,
navigate to the directory where you want to run JupyterLab, and run the
following command, replacing TAG with the tag you found earlier.

docker run —--rm -v $(pwd):/home/jovyan/work -p 8888:8888 ubcdsci/py-dsci-100:TAG.
~jupyter lab

The terminal will then print some text as the Docker container starts. Once
the text stops scrolling, find the URL in your terminal that starts with http:/
/127.0.0.1:8888 (highlighted by the red box in Fig. 13.5), and paste it into
your browser to start JupyterLab. More information on installing and running
Docker on Ubuntu, as well as troubleshooting tips, can be found in the online

Docker documentation'®.

13.5 Working with JupyterLab Desktop

You can also run the worksheets accompanying this book on your computer
using JupyterLab Desktop!!. The advantage of JupyterLab Desktop over
Docker is that it can be easier to install; Docker can sometimes run into some
fairly technical issues (especially on Windows computers) that require expert
troubleshooting. The downside of JupyterLab Desktop is that there is a (very)
small chance that you may not end up with the right versions of all the Python

8https://docs.docker.com/desktop/install /mac-install /

9https://raw.githubusercontent.com/UBC-DSCI/data-science-a-first-intro-python-
worksheets/main/Dockerfile

Ohttps://docs.docker.com /engine/install /ubuntu/

Hhttps://github.com/jupyterlab/jupyterlab-desktop

https://docs.docker.com/desktop/install/mac-install
https://raw.githubusercontent.com/UBC-DSCI/data-science-a-first-intro-python-worksheets/main/Dockerfile
https://raw.githubusercontent.com/UBC-DSCI/data-science-a-first-intro-python-worksheets/main/Dockerfile
https://docs.docker.com/engine/install/ubuntu
https://github.com/jupyterlab/jupyterlab-desktop

414 CHAPTER 13. SETTING UP YOUR COMPUTER

er run —rm -v $(pwd):/home/jovyan/work -p 8888:8888 jupyter lab

FIGURE 13.5 The terminal text after running the Docker container in
Ubuntu. The red box indicates the URL that you should paste into your
browser to open JupyterLab.

packages needed for the worksheets. Docker, on the other hand, guarantees
that the worksheets will work exactly as intended.

In this section, we will cover how to install JupyterLab Desktop, Git and the
JupyterLab Git extension (for version control, as discussed in Chapter 12),
and all of the Python packages needed to run the code in this book.

13.5.1 Windows

Installation First, we will install Git for version control. Go to the Git down-
load page'? and download the Windows version of Git. Once the download
has finished, run the installer and accept the default configuration for all pages.
Next, visit the “Installation” section of the JupyterLab Desktop homepage!.
Download the JupyterLab-Setup-Windows.exe installer file for Windows.
Double-click the installer to run it, use the default settings. Run JupyterLab
Desktop by clicking the icon on your desktop.

Configuring JupyterLab Desktop Next, in the JupyterLab Desktop graph-
ical interface that appears (Fig. 13.6), you will see text at the bottom saying
“Python environment not found”. Click “Install using the bundled installer”
to set up the environment.

Next, we need to add the JupyterLab Git extension (so that we can use ver-
sion control directly from within JupyterLab Desktop), the IPython kernel
(to enable the Python programming language), and various Python software
packages. Click “New session..” in the JupyterLab Desktop user interface,

2https://git-scm.com/download /win
Bhttps://github.com /jupyterlab/jupyterlab-desktop#installation

https://git-scm.com/download/win
https://github.com/jupyterlab/jupyterlab-desktop#installation

13.5. WORKING WITH JUPYTERLAB DESKTOP 415

Welcome = -0Ox
Start Jupyter News
Desktop GIS software i the cloud with JupyterHub
Generative Al in Jupyter
@ European Commission Funds Jupyter Bug Bounty Program
Announcing Jupyter Notebook 7
JupyterCon 2023 recordings now live on YouTube!
anywidget: Jupyter Widgets Made Easy
& Connect.
- Atheme editor for JupyterLab
From intern to mentor
" JupyterLab 4.0 is Here
Recent sessions o
Collaborative CAD in JupyterLab
No history yet
(4 Jupyter Blog
Python environment not found. Instal using the bundied installer or Change the defauit Python environment o

FIGURE 13.6 The JupyterLab Desktop graphical user interface.

JupyterLab = conda jlab_server = — [X
= He Edt Vew Run Kemel Gi Nogader Tabs Setings Hep
m ¢ 3
Feyrm—" O o
Name N Last Modified B
° J
= < co oo oo
i
» 3
oz .
Other
I! = v o0
Simple omMo® &

FIGURE 13.7 A JupyterLab Desktop session, showing the Terminal option
at the bottom.

then scroll to the bottom, and click “Terminal” under the “Other” heading
(Fig. 13.7).

In this terminal, run the following commands:

pip install —-upgrade jupyterlab-git
conda env update --file https://raw.githubusercontent.com/UBC-DSCI/data-science-
—a-first-intro-python-worksheets/main/environment.yml

The second command installs the specific Python and package versions spec-
ified in the environment.yml file found in the worksheets repository'*. We
will always keep the versions in the environment.yml file updated so that

Mhttps://worksheets.python.datasciencebook.ca

https://worksheets.python.datasciencebook.ca

416 CHAPTER 13. SETTING UP YOUR COMPUTER

they are compatible with the exercise worksheets that accompany the book.
Once all of the software installation is complete, it is a good idea to restart
JupyterLab Desktop entirely before you proceed to doing your data analysis.
This will ensure all the software and settings you put in place are correctly
set up and ready for use.

13.5.2 MacOS

Installation First, we will install Git for version control. Open the terminal
(how-to video'®) and type the following command:

xcode-select —-install

Next, visit the “Installation” section of the JupyterLab Desktop
homepage'®. Download the JupyterLab-Setup-MacO0S-x64.dmg or
JupyterLab-Setup-MacOS-armé4.dmg installer file. To know which in-
staller is right for your machine, you need to know whether your computer has
an Intel processor (older machines) or an Apple processor (newer machines);
the Apple support page!” has information to help you determine which pro-
cessor you have. Once downloaded, double-click the file to open the installer,
then drag the JupyterLab Desktop icon to the Applications folder. Double-
click the icon in the Applications folder to start JupyterLab Desktop.

Configuring JupyterLab Desktop From this point onward, with Jupyter-
Lab Desktop running, follow the instructions in the Windows section on Con-
figuring JupyterLab Desktop to set up the environment, install the JupyterLab
Git extension, and install the various Python software packages needed for the
worksheets.

13.5.3 Ubuntu

Installation First, we will install Git for version control. Open the terminal
and type the following commands:

sudo apt update
sudo apt install git

Next, visit the “Installation” section of the JupyterLab Desktop home-
page'®. Download the JupyterLab-Setup-Debian.deb installer file for
Ubuntu/Debian. Open a terminal, navigate to where the installer file was
downloaded, and run the command

https://youtu.be/5SAJbWEWwnbY

https://github.com /jupyterlab/jupyterlab-desktop#installation
Thttps:/ /support.apple.com/en-ca/HT211814
Bhttps://github.com/jupyterlab/jupyterlab-desktop#installation

https://github.com/jupyterlab/jupyterlab-desktop#installation
https://support.apple.com/en-ca/HT211814
https://github.com/jupyterlab/jupyterlab-desktop#installation
https://youtu.be/5AJbWEWwnbY

18.5. WORKING WITH JUPYTERLAB DESKTOP 417
sudo dpkg -1 JupyterLab-Setup-Debian.deb

Run JupyterLab Desktop using the command
jlab

Configuring JupyterLab Desktop From this point onward, with Jupyter-
Lab Desktop running, follow the instructions in the Windows section on Con-
figuring JupyterLab Desktop to set up the environment, install the JupyterLab
Git extension, and install the various Python software packages needed for the

worksheets.

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

https://taylorandfrancis.com

Bibliography

[GvRO1] Nick Coghlan Guido van Rossum, Barry Warsaw. PEP 8 — Style

[LP15]

[PM15]

[Tim20]

[Wall7]

[Wil18]

Guide for Python Code. 2001. URL: https://peps.python.org/pep-
0008/

Jeffrey Leek and Roger Peng. What is the question? Science,
347(6228):1314-1315, 2015.

Roger D Peng and Elizabeth Matsui. The Art of Data Science: A
Guide for Anyone Who Works with Data. Skybrude Consulting, LLC,
2015. URL: https://bookdown.org/rdpeng/artofdatascience/.

Tiffany Timbers. canlang: Canadian Census language data. 2020. R
package version 0.0.9. URL: https://ttimbers.github.io/canlang/.

Nick Walker. Mapping indigenous languages in Canada. Canadian
Geographic, 2017. URL: https://www.canadiangeographic.ca/articl
e/mapping-indigenous-languages-canada (visited on 2021-05-27).

Kory Wilson. Pulling Together: Foundations Guide. BCcampus,
2018. URL: https://opentextbc.ca/indigenizationfoundations/
(visited on 2021-05-27).

[StatisticsCanadal6a] Statistics Canada. Population census. 2016. URL: http

s://wwwl2.statcan.ge.ca/census-recensement /2016 /dp-pd/index-
eng.cfm.

[StatisticsCanadal6b] Statistics Canada. The Aboriginal languages of First

Nations people, Métis and Inuit. 2016. URL: https://www12.statca
n.ge.ca/census-recensement /2016 /as-sa/98-200-x,/2016022/98-200-
x2016022-eng.cfm.

[StatisticsCanadal8] Statistics Canada. The evolution of language popula-

tions in Canada, by mother tongue, from 1901 to 2016. 2018. URL:
https://wwwlh0.statcan.ge.ca/nl/pub/11-630-x/11-630-x2018001-
eng.htm (visited on 2021-05-27).

419

https://peps.python.org/pep-0008
https://bookdown.org/rdpeng/artofdatascience
https://ttimbers.github.io/canlang
https://www.canadiangeographic.ca/article/mapping-indigenous-languages-canada
https://opentextbc.ca/indigenizationfoundations
https://www12.statcan.gc.ca/census-recensement/2016/as-sa/98-200-x/2016022/98-200-x2016022-eng.cfm
https://www150.statcan.gc.ca/n1/pub/11-630-x/11-630-x2018001-eng.htm
https://peps.python.org/pep-0008
https://www12.statcan.gc.ca/census-recensement/2016/as-sa/98-200-x/2016022/98-200-x2016022-eng.cfm
https://www12.statcan.gc.ca/census-recensement/2016/as-sa/98-200-x/2016022/98-200-x2016022-eng.cfm
https://www150.statcan.gc.ca/n1/pub/11-630-x/11-630-x2018001-eng.htm
https://www12.statcan.gc.ca/census-recensement/2016/dp-pd/index-eng.cfm
https://www12.statcan.gc.ca/census-recensement/2016/dp-pd/index-eng.cfm
https://www12.statcan.gc.ca/census-recensement/2016/dp-pd/index-eng.cfm
https://www.canadiangeographic.ca/article/mapping-indigenous-languages-canada

420 Bibliography

[ThePDTeam20] The Pandas Development Team. pandas-dev/pandas: Pan-
das. February 2020. URL: https://doi.org/10.5281/zenodo.3509134,
doi:10.5281/zenodo.3509134%.

[TruthaRCoCanadal2] Truth and Reconciliation Commission of Canada.
They Came for the Children: Canada, Aboriginal Peoples, and the
Residential Schools. Public Works & Government Services Canada,
2012.

[TruthaRCoCanadalb] Truth and Reconciliation Commission of Canada.
Calls to Action. 2015. URL: https://www2.gov.bc.ca/assets/gov/
british-columbians-our-governments/indigenous-people /aboriginal-
peoples-documents/calls_to_action_english2.pdf.

[WesMcKinney10] Wes McKinney. Data Structures for Statistical Computing
in Python. In Stéfan van der Walt and Jarrod Millman, editors,
Proceedings of the 9th Python in Science Conference, 56 — 61. 2010.
doi:10.25080 /Majora-92bf1922-00a%.

[McK12] Wes McKinney. Python for data analysis: Data wrangling with Pan-
das, NumPy, and [Python. ” O’'Reilly Media, Inc.”, 2012.

[RThePSFoundation23] Kenneth ~ Reitz ~and The Python Soft-
ware Foundation. Requests: http for humans. URL:
https:/ /requests.readthedocs.io/en/latest/, Accessed Online: 2023.

[Ric07] Leonard Richardson. Beautiful soup documentation. April, 2007.

[INASAESACSA+23] NASA, ESA, CSA, STScl, K. Pontoppidan (STScI),
and A. Pagan (STScl). Rho ophiuchi cloud complex. URL:
https://esawebb.org/images /weic2316a/, Accessed Online: 2023.

[RealTSProject21] Real Time Statistics Project. Internet live stats: google
search statistics. 2021. URL: https://www.internetlivestats.com/go
ogle-search-statistics//.

[McK12] Wes McKinney. Python for data analysis: Data wrangling with Pan-
das, NumPy, and [Python. ” O’Reilly Media, Inc.”, 2012.

[Wicl4] Hadley Wickham. Tidy data. Journal of Statistical Software,
59(10):1-23, 2014.

[Dee05] Sameer Deeb. The molecular basis of variation in human color vision.
Clinical Genetics, 67:369-377, 2005.

Yhttps://doi.org/10.5281/zenodo.3509134
2Ohttps://doi.org/10.25080/Majora-92bf1922-00a

https://doi.org/10.5281/zenodo.3509134
https://www2.gov.bc.ca/assets/gov/british-columbians-our-governments/indigenous-people/aboriginal-peoples-documents/calls_to_action_english2.pdf
https://requests.readthedocs.io/en/latest
https://esawebb.org/images/weic2316a
https://www.internetlivestats.com/google-search-statistics
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.5281/zenodo.3509134
https://www2.gov.bc.ca/assets/gov/british-columbians-our-governments/indigenous-people/aboriginal-peoples-documents/calls_to_action_english2.pdf
https://www2.gov.bc.ca/assets/gov/british-columbians-our-governments/indigenous-people/aboriginal-peoples-documents/calls_to_action_english2.pdf
https://doi.org/10.25080/Majora-92bf1922-00a
https://www.internetlivestats.com/google-search-statistics

Bibliography 421

[Har91]

[McK12]

[McN77]

[Mic82]

[TK20]

[Tim20]

Wolfgang Hardle. Smoothing Techniques with Implementation in S.
Springer, New York, 1991.

Wes McKinney. Python for data analysis: Data wrangling with Pan-
das, NumPy, and I[Python. ” O’'Reilly Media, Inc.”, 2012.

Donald R. McNeil. Interactive Data Analysis: A Practical Primer.
Wiley, 1977.

Albert Michelson. Experimental determination of the velocity of
light made at the United States Naval Academy, Annapolis. As-
tronomic Papers, 1:135-8, 1882.

Pieter Tans and Ralph Keeling. Trends in atmospheric carbon diox-
ide. 2020. URL: https://gml.noaa.gov/ccgg/trends/data.html
(visited on 2020-07-04).

Tiffany Timbers. canlang: Canadian Census language data. 2020. R
package version 0.0.9. URL: https://ttimbers.github.io/canlang/.

[VGH+18] Jacob VanderPlas, Brian Granger, Jeffrey Heer, Dominik Moritz,

[Wil19]

Kanit Wongsuphasawat, Arvind Satyanarayan, Eitan Lees, Ilia Tim-
ofeev, Ben Welsh, and Scott Sievert. Altair: interactive statisti-
cal visualizations for python. Journal of Open Source Software,
3(32):1057, 2018. URL: https://doi.org/10.21105/joss.01057,
doi:10.21105/joss.010572L.

Claus Wilke. Fundamentals of Data Visualization. O’Reilly Media,
2019. URL: https://clauswilke.com/dataviz/.

[BLB+13] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa,

[CH67]

[FH51]

Andreas Mueller, Olivier Grisel, Vlad Niculae, Peter Prettenhofer,
Alexandre Gramfort, Jaques Grobler, Robert Layton, Jake Vander-
Plas, Arnaud Joly, Brian Holt, and Gaél Varoquaux. API design for
machine learning software: experiences from the scikit-learn project.
In ECML PKDD Workshop: Languages for Data Mining and Ma-
chine Learning, 108-122. 2013.

Thomas Cover and Peter Hart. Nearest neighbor pattern classifica-
tion. IEEE Transactions on Information Theory, 13(1):21-27, 1967.

Evelyn Fix and Joseph Hodges. Discriminatory analysis. nonpara-
metric discrimination: consistency properties. Technical Report,
USAF School of Aviation Medicine, Randolph Field, Texas, 1951.

Zhttps://doi.org/10.21105/joss.01057

https://gml.noaa.gov/ccgg/trends/data.html
https://ttimbers.github.io/canlang
https://doi.org/10.21105/joss.01057
https://clauswilke.com/dataviz
https://doi.org/10.21105/joss.01057
https://doi.org/10.21105/joss.01057

422 Bibliography

[SWM93] William Nick Street, William Wolberg, and Olvi Mangasarian. Nu-
clear feature extraction for breast tumor diagnosis. In International
Symposium on Electronic Imaging: Science and Technology. 1993.

[StanfordHCare21] Stanford Health Care. What is cancer? 2021. URL: https:
//stanfordhealthcare.org/medical-conditions/cancer /cancer.html.

[BKM67] Evelyn Martin Lansdowne Beale, Maurice George Kendall, and
David Mann. The discarding of variables in multivariate analysis.
Biometrika, 54(3-4):357-366, 1967.

[DS66] Norman Draper and Harry Smith. Applied Regression Analysis. Wi-
ley, 1966.

[Efo66] M. Eforymson. Stepwise regression—a backward and forward look.
In Eastern Regional Meetings of the Institute of Mathematical Statis-
tics. 1966.

[HL67] Ronald Hocking and R. N. Leslie. Selection of the best subset in
regression analysis. Technometrics, 9(4):531-540, 1967.

[JWHT13] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshi-
rani. An Introduction to Statistical Learning. Springer, 1st edition,
2013. URL: https://www.statlearning.com/.

[McK12] Wes McKinney. Python for data analysis: Data wrangling with Pan-
das, NumPy, and [Python. ” O’Reilly Media, Inc.”, 2012.

[SWM93] William Nick Street, William Wolberg, and Olvi Mangasarian. Nu-
clear feature extraction for breast tumor diagnosis. In International
Symposium on Electronic Imaging: Science and Technology. 1993.

[CH67] Thomas Cover and Peter Hart. Nearest neighbor pattern classifica-
tion. IEEE Transactions on Information Theory, 13(1):21-27, 1967.

[FH51] Evelyn Fix and Joseph Hodges. Discriminatory analysis. nonpara-
metric discrimination: consistency properties. Technical Report,
USAF School of Aviation Medicine, Randolph Field, Texas, 1951.

[JWHT13] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshi-
rani. An Introduction to Statistical Learning. Springer, 1st edition,
2013. URL: https://www.statlearning.com/.

[GWF14] Kristen Gorman, Tony Williams, and William Fraser. Ecological
sexual dimorphism and environmental variability within a commu-
nity of Antarctic penguins (genus pygoscelis). PLoS ONE, 2014.

https://www.statlearning.com
https://www.statlearning.com
https://stanfordhealthcare.org/medical-conditions/cancer/cancer.html
https://stanfordhealthcare.org/medical-conditions/cancer/cancer.html

Bibliography 423

[HHG20] Allison Horst, Alison Hill, and Kristen Gorman. palmerpenguins:

Palmer Archipelago penguin data. 2020. R package version 0.1.0.
URL: https://allisonhorst.github.io/palmerpenguins/ .

[JWHT13] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshi-

[L1o82]

[Coxd.]

rani. An Introduction to Statistical Learning. Springer, 1st edition,
2013. URL: https://www.statlearning.com/.

Stuart Lloyd. Least square quantization in PCM. IEEFE Transactions
on Information Theory, 28(2):129-137, 1982. Originally released as
a Bell Telephone Laboratories Paper in 1957.

Murray Cox. Inside Airbnb. n.d. URL: http://insideairbnb.com/
(visited on 2020-09-01).

[DcCetinkayaRB19] David Diez, Mine Cetinkaya-Rundel, and Christopher

Barr. Openlintro Statistics. Openlntro, Inc., 2019. URL: https:
//openintro.org/book/os/.

[KRKPerez+16] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez,

Brian Granger, Matthias Bussonnier, Jonathan Frederic, Kyle Kel-
ley, Jessica Hamrick, Jason Grout, Sylvain Corlay, Paul Ivanov,
Damian Avila, Safia Abdalla, Carol Willing, and Jupyter Develop-
ment Team. Jupyter notebooks: a publishing format for reproducible
computational workflows. In Positioning and Power in Academic
Publishing: Players, Agents and Agendas: Proceedings of the 20th
international conference on electronic publishing, volume 87. Ams-
terdam, 2016. 1IOS Press.

[WBC+17] Greg Wilson, Jennifer Bryan, Karen Cranston, Justin Kitzes, Lex

Nederbragt, and Tracy Teal. Good enough practices in scientific com-
puting. PLoS Computational Biology, 2017.

https://allisonhorst.github.io/palmerpenguins
https://www.statlearning.com
http://insideairbnb.com
https://openintro.org/book/os
https://openintro.org/book/os

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

https://taylorandfrancis.com

Index

=, see logical operator

., see chaining, see path
.., see path

:, see column range

<, see logical operator
<=, see logical operator
=, see assignment symbol
==, see logical operator
>, see logical operator
>=, see logical operator
#, see comment

&, see logical operator
~doc__, see documentation
|, see logical operator

], see DataFrame

accuracy, 212
assessment, 225

adding columns, 18

Airbnb, 320

altair, 22, 132, 300
+, 161
:N, 164, 312
alt.Legend, 151
alt.Scale, 137
alt. Tooltip, 152
alt. X, 23, 136, 165
alt.Y, 23, 136, 165
configure axis, 136, 165
count, 159
encoding channel, 22, 134
facet, 165
graphical mark, 134
histogram, 159
layers, 161
logarithmic scaling, 145

mark bar, 22, 156, 328
mark circle, 143, 255, 300
mark line, 135
mark point, 134
mark rule, 161
maxbins, 167
multiline labels, 143
sort, 25, 158
tick count, 146
tick formatting, 146
title, 23
API, 55, 65
endpoint, 67
HTTP, 67
query parameters, 67
token, 65
application programming interface,
see API
argument, 7
assign, 118
assignment symbol, 9
auditable, i

balance, 200
BeautifulSoup, 62
bitmap, see raster graphics
bool, see data types
bootstrap, 334
distribution, 334
in Python, 339
breast cancer, 179, 211

Canadian languages, 2, 82, 141
canlang data, 37

cascading style sheet, see CSS

categorical variable, 178, 254

425

426

causal question
definition, 4
centering, 194
chaining, 20
class, 178
classification, 178, 240, 296
binary, 178
comparison to regression, 253
majority, 225
overview, 5
clustering, 296
overview, 5
color blindness simulator, 151
color palette, 151
column assignment, 118
column range, 85, 105
comma-separated values, see csv
comment, 27
compile, see ibis
concat, 200
confidence interval, 334, 344
confusion matrix, 212
container, 408
count, see ibis, see altair
Craiglist, 57
cross-validation, 228, 240, 260
cross_validate, 228
folds, 230
GridSearchCV, 232
crosstab, 224, 239
CSS, 56
selector, 57
csv, 6, 36

data frame, see DataFrame
definition, 74, 77
overview, 6

data science
definition, i
good practices, 3

data structures
dictionary (dict), 78

Index

list, 78
set, 78
tuple, 78

data types

boolean (bool), 76

floating point number (float), 76
integer (int), 76

NoneType (none), 76

string (str), 76

database, 47, see ibis

connection, 48
filter rows, 50
ordering, 54
PostgreSQL, 53
reasons to use, b4
select columns, 51
SQLite, 47

table, 48

DataFrame, 74

], 11, 12, 14, 96, 118, 147, 321,
346

abs, 257

agg, 229

apply, 117

astype, 117

column assignment, 147

groupby, 111, 182, 323, 342

head, 16

iloc[], 105

info, 90, 181, 221

loc[], 11, 14, 102, 117, 145

melt, 82

merge, 123, 124

nlargest, 157

nsmallest, 157, 257

pivot, 86

quantile, 346

rename, 42, 342

reset_index, 90, 323, 342

sample, 201, 257, 321, 322, 327

sample (bootstrap), 339

sort_ values, 16

Indezx

tail, 52

to_csv, b5

value counts, 115, 321, 322
dates and times, 134
delimiter, see separator
descriptive question

definition, 4
dict, see data structures
distance

K-means, 301

K-nearest neighbors, 187

more than two variables, 189
distribution, 130, 159
Docker, 408

image, 409

installation, 409

tag, 409
documentation, 28

elbow method, 300, 307
escape character, 40
estimation
overview, 5
Excel spreadsheet, 45
reading, 46
exploratory question
definition, 4
extrapolation, 284

false negative, 213

false positive, 213

feature, see predictor

feature engineering, see predictor
design

filtering rows, 12

fit, see scikit-learn

float, see data types

function, 7

git, 365
add, 369, 387
clone, 373, 383
commit, 368, 369, 388

427

installation, 414

Jupyter extension, 382

merge conflict, 400

pull, 372, 396

push, 371, 390
GitHub, 365, 373

add file, 379

collaborator access, 393

commit, 375

issues, 402

pen tool, 375

personal access token, 382
golden rule of machine learning, 211

hash, 369
help, see documentation
HTML, 56
selector, 57
tag, 58
hypertext markup language, see
HTML

ibis, see database
], 50, 54
compile, 49
connect, 48, 53
count, 49
execute, 49
head, 50, 54
list_tables, 48, 53
order_ by, 54
postgres, 53
sqlite, 48
table, 48, 54
imbalance, 200
import, 8
inference, 318
inferential question
definition, 4
int, see data types
integer, 163
interval, see confidence interval
irrelevant predictors, 242

428

isin, see logical operator
Island landmasses, 154

JavaScript Object Notation, see
JSON
JSON, 68
Jupyter notebook, 350
best practices, 357
cell execution, 351
code cell, 351
export, 362
kernel, 354
markdown cell, 354
JupyterHub, 350
JupyterLab Desktop, 414

K-means, 296, 300, 307
algorithm, 303
restart, 305
standardization, 310
termination, 304

K-nearest neighbors, 178, 256
classification, 184, 240
multivariable regression, 270
regression, 256

kernel, 354
interrupt, 354
restart, 354

KMeans, see scikit-learn
inertia_ , 311, 312
labels , 311
n_clusters, 310
n_init, 314

line, see straight line
list comprehension, 313
loading, see reading
location, see path
loc[], see DataFrame
logarithmic scale, 145
logical operator

and (&), 98

containment (isin), 99

Index

equivalency (==), 12, 97
greater than (> and >=), 101
inequivalency (=), 98
less than (< and <=), 101
or (|), 99

logical statement, 12, see logical

operator, 96

query, 101

make column_transformer, see
scikit-learn
make pipeline, see scikit-learn
markdown, 354, 379
Mauna Loa, 133, 171
mean_ squared_error, see scikit-learn
mechanistic question
definition, 4
Michelson speed of light, 159, 172
Microsoft Excel, see Excel
spreadsheet
missing data, 109, 203
dropna, 205
mean imputation, 205
modifying columns, 18
multi-line expression, 19
multicollinearity, 289
multivariable linear equation, see
plane equation

NaN, see missing data
NASA, 65

negative label, 213
nominal, 164

NoneType, see data types
nsmallest, 187

numerical variable, 254

object, 10
naming convention, 10
observation, 6, 74
Old Faithful, 139
outliers, 287
overfitting

Indezx

classification, 237

regression, 265
overplotting, 136
oversampling, 201

package, 8
Palmer penguins, 297
pandas, 8, 37, 42
parameter, 226
ParserError, 39
path
absolute, 33
current, 34
local, 33
previous, 34
relative, 33
remote, 33
PDF, 174
percentile, 346
Pipeline, see scikit-learn
plane equation, 286
plot, see visualization
axis labels, 23
labels, 23
population, 318
distribution, 327
parameter, 318, 327
portable document format, see PDF
positive label, 213
precision, 214
assessment, 225
predict, see scikit-learn
prediction accuracy, see accuracy
predictive question, 178, 253
definition, 4
predictor design, 291
predictor selection, see variable
selection

question
classification, 179
data analysis, 4
regression, 254, 276

429

visualization, 129, 133, 139, 141,
154, 159

random, 215
random seed, see seed
RandomState, see seed, 217
raster graphics, 172
file types, 173
read function
header argument, 41
names argument, 43
read_csv, 7, 36, 179, 297
read_excel, 46
read__html, 64
sep argument, 40
skiprows argument, 39
reading
definition, 32
separator, 36, 41
recall, 214
assessment, 225
regression, 296
comparison of methods, 282
comparison to classification, 253
linear, 275
logistic, 276
multivariable linear, 284
multivariable linear equation, 284
overview, b
relationship
linear, 148
negative, 148
none, 148
nonlinear, 148
positive, 148
strong, 148
weak, 148
repository, see version control, 368
local, 368
private, 374
public, 374
remote, 368, 373

430

reproducible, i, 215, 350
requests, 62, 65
get, 68
json, 68
response variable, 253
RMSPE, 260, 278, 281, 287
comparison with RMSE, 261
root mean square prediction error,

see RMSPE

Sacramento real estate, 254, 270, 276,

284
sample, 215, 318
estimate, 318
sampling distribution, 322, 329
compared to bootstrap
distribution, 343
compared to population
distribution, 330
effect of sample size, 332
shape, 325, 329
scaling, 194
scikit-learn, 191, 218, 262, 280
cross_ validate, 228
fit, 193, 196, 206, 280, 311
GridSearchCV, 232, 262
KMeans, 307, 310
KNeighborsClassifier, 192
make column_selector, 196

make column_ transformer, 195,

196, 222, 262
make pipeline, 206, 231, 262,
311
mean_ squared__error, 285
model object, 192

Pipeline, 195, 206, 222, 240, 262,

311
precision_ score, 223, 239
predict, 193, 223, 239, 285
predictors, 193
RandomizedSearchCV, 232
recall score, 223, 239

Index

response, 193

score, 223, 239

Simplelmputer, 205

StandardScaler, 196, 222, 310

train_ test_ split, 220

transform, 196
seed, 215

numpy.random.seed, 215, 254,

280, 297, 321

selecting columns, 11, 14
sem, see standard error
semisupervised, 296
separator, 91, 360
Series, 75

astype, 117

max, 108

mean, 108, 342

median, 108

min, 108

replace, 181

size, 182

std, 108

str.contains, 105

str.split, 91

str.startswith, 106

sum, 108

unique, 181

value counts, 182, 221
SettingWithCopyWarning, 122
shuffling, 220
staging area, see git, 369
standard error, 229
standardization, 281

K-means, 310

K-nearest neighbors, 194
StandardScaler, see scikit-learn
statistical inference, see inference
str, 49, see data types
straight line

distance, 187

equation, 276
stratification, 220

Indezx

string, 9, 12
summarization
overview, 5
summarize, 106
summary statistic, 108
supervised, 296

tab-separated values, see tsv
table, 48
tabular data, 6
test set, 211, 260
tidy data
arguments for, 80
definition, 80
to_list, 215
training set, 178, 211, 260
true negative, 213
true positive, 213
tsv, 40

tuning parameter, see parameter

type, 77

underfitting
classification, 236
regression, 267, 283
unsupervised, 296
URL, 36
reading from, 44

validation set, 227
value, 74
variable, 6, 74
variable selection
best subset, 245
elbow method, 249
forward, 246
implementation, 247
vector graphics, 172
file types, 173
version control, 367
repository hosting, 367
system, 367
visualization, see altair, 22

bar, 22, 130

explanation, 171
histogram, 130

line, 130

overview, b

scatter, 130, 183, 218, 255

web scraping, 56, 57
permission, 59

Wikipedia, 61

within-cluster sum of squared

distances, see WSSD

working directory, 368

write function
to_csv, 5b

WSSD, 301, see KMeans
total, 303, 312

xlsx, see Excel spreadsheet

431

	Cover
	Half Title
	Series Page
	Title Page
	Copyright Page
	Contents
	Preface
	Foreword
	Acknowledgments
	About the authors
	1. Python and Pandas
	1.1. Overview
	1.2. Chapter learning objectives
	1.3. Canadian languages data set
	1.4. Asking a question
	1.5. Loading a tabular data set
	1.6. Naming things in Python
	1.7. Creating subsets of data frames with [] & loc[]
	1.7.1. Using [] to filter rows
	1.7.2. Using [] to select columns
	1.7.3. Using loc[] to filter rows and select columns

	1.8. Using sort_values and head to select rows by ordered values
	1.9. Adding and modifying columns
	1.10. Combining steps with chaining and multiline expressions
	1.11. Exploring data with visualizations
	1.11.1. Using altair to create a bar plot
	1.11.2. Formatting altair charts
	1.11.3. Putting it all together

	1.12. Accessing documentation
	1.13. Exercises

	2. Reading in data locally and from the web
	2.1. Overview
	2.2. Chapter learning objectives
	2.3. Absolute and relative file paths
	2.4. Reading tabular data from a plain text file into Python
	2.4.1. read_csv to read in comma-separated values files
	2.4.2. Skipping rows when reading in data
	2.4.3. Using the sep argument for different separators
	2.4.4. Using the header argument to handle missing column names
	2.4.5. Reading tabular data directly from a URL
	2.4.6. Previewing a data file before reading it into Python

	2.5. Reading tabular data from a Microsoft Excel file
	2.6. Reading data from a database
	2.6.1. Reading data from a SQLite database
	2.6.2. Reading data from a PostgreSQL database
	2.6.3. Why should we bother with databases at all?

	2.7. Writing data from Python to a .csv file
	2.8. Obtaining data from the web
	2.8.1. Web scraping
	2.8.2. Using an API

	2.9. Exercises
	2.10. Additional resources

	3. Cleaning and wrangling data
	3.1. Overview
	3.2. Chapter learning objectives
	3.3. Data frames and series
	3.3.1. What is a data frame?
	3.3.2. What is a series?
	3.3.3. What does this have to do with data frames?
	3.3.4. Data structures in Python

	3.4. Tidy data
	3.4.1. Tidying up: going from wide to long using melt
	3.4.2. Tidying up: going from long to wide using pivot
	3.4.3. Tidying up: using str.split to deal with multiple separators

	3.5. Using [] to extract rows or columns
	3.5.1. Extracting columns by name
	3.5.2. Extracting rows that have a certain value with ==
	3.5.3. Extracting rows that do not have a certain value with !=
	3.5.4. Extracting rows satisfying multiple conditions using &
	3.5.5. Extracting rows satisfying at least one condition using |
	3.5.6. Extracting rows with values in a list using isin
	3.5.7. Extracting rows above or below a threshold using > and <
	3.5.8. Extracting rows using query

	3.6. Using loc[] to filter rows and select columns
	3.7. Using iloc[] to extract rows and columns by position
	3.8. Aggregating data
	3.8.1. Calculating summary statistics on individual columns
	3.8.2. Calculating summary statistics on data frames

	3.9. Performing operations on groups of rows using groupby
	3.10. Apply functions across multiple columns
	3.11. Modifying and adding columns
	3.12. Using merge to combine data frames
	3.13. Summary
	3.14. Exercises
	3.15. Additional resources

	4. Effective data visualization
	4.1. Overview
	4.2. Chapter learning objectives
	4.3. Choosing the visualization
	4.4. Refining the visualization
	4.5. Creating visualizations with altair
	4.5.1. Scatter plots and line plots: the Mauna Loa CO2 data set
	4.5.2. Scatter plots: the Old Faithful eruption time data set
	4.5.3. Axis transformation and colored scatter plots: the Canadian languages data set
	4.5.4. Bar plots: the island landmass data set
	4.5.5. Histograms: the Michelson speed of light data set

	4.6. Explaining the visualization
	4.7. Saving the visualization
	4.8. Exercises
	4.9. Additional resources

	5. Classification I: training & predicting
	5.1. Overview
	5.2. Chapter learning objectives
	5.3. The classification problem
	5.4. Exploring a data set
	5.4.1. Loading the cancer data
	5.4.2. Describing the variables in the cancer data set
	5.4.3. Exploring the cancer data

	5.5. Classification with K-nearest neighbors
	5.5.1. Distance between points
	5.5.2. More than two explanatory variables
	5.5.3. Summary of K-nearest neighbors algorithm

	5.6. K-nearest neighbors with scikit-learn
	5.7. Data preprocessing with scikit-learn
	5.7.1. Centering and scaling
	5.7.2. Balancing
	5.7.3. Missing data

	5.8. Putting it together in a Pipeline
	5.9. Exercises

	6. Classification II: evaluation & tuning
	6.1. Overview
	6.2. Chapter learning objectives
	6.3. Evaluating performance
	6.4. Randomness and seeds
	6.5. Evaluating performance with scikit-learn
	6.5.1. Create the train / test split
	6.5.2. Preprocess the data
	6.5.3. Train the classifier
	6.5.4. Predict the labels in the test set
	6.5.5. Evaluate performance
	6.5.6. Critically analyze performance

	6.6. Tuning the classifier
	6.6.1. Cross-validation
	6.6.2. Parameter value selection
	6.6.3. Under/Overfitting
	6.6.4. Evaluating on the test set

	6.7. Summary
	6.8. Predictor variable selection
	6.8.1. The effect of irrelevant predictors
	6.8.2. Finding a good subset of predictors
	6.8.3. Forward selection in Python

	6.9. Exercises
	6.10. Additional resources

	7. Regression I: K-nearest neighbors
	7.1. Overview
	7.2. Chapter learning objectives
	7.3. The regression problem
	7.4. Exploring a data set
	7.5. K-nearest neighbors regression
	7.6. Training, evaluating, and tuning the model
	7.7. Underfitting and overfitting
	7.8. Evaluating on the test set
	7.9. Multivariable K-NN regression
	7.10. Strengths and limitations of K-NN regression
	7.11. Exercises

	8. Regression II: linear regression
	8.1. Overview
	8.2. Chapter learning objectives
	8.3. Simple linear regression
	8.4. Linear regression in Python
	8.5. Comparing simple linear and K-NN regression
	8.6. Multivariable linear regression
	8.7. Multicollinearity and outliers
	8.7.1. Outliers
	8.7.2. Multicollinearity

	8.8. Designing new predictors
	8.9. The other sides of regression
	8.10. Exercises
	8.11. Additional resources

	9. Clustering
	9.1. Overview
	9.2. Chapter learning objectives
	9.3. Clustering
	9.4. An illustrative example
	9.5. K-means
	9.5.1. Measuring cluster quality
	9.5.2. The clustering algorithm
	9.5.3. Random restarts
	9.5.4. Choosing K

	9.6. K-means in Python
	9.7. Exercises
	9.8. Additional resources

	10. Statistical inference
	10.1. Overview
	10.2. Chapter learning objectives
	10.3. Why do we need sampling?
	10.4. Sampling distributions
	10.4.1. Sampling distributions for proportions
	10.4.2. Sampling distributions for means
	10.4.3. Summary

	10.5. Bootstrapping
	10.5.1. Overview
	10.5.2. Bootstrapping in Python
	10.5.3. Using the bootstrap to calculate a plausible range

	10.6. Exercises
	10.7. Additional resources

	11. Combining code and text with Jupyter
	11.1. Overview
	11.2. Chapter learning objectives
	11.3. Jupyter
	11.3.1. Accessing Jupyter

	11.4. Code cells
	11.4.1. Executing code cells
	11.4.2. The Kernel
	11.4.3. Creating new code cells

	11.5. Markdown cells
	11.5.1. Editing Markdown cells
	11.5.2. Creating new Markdown cells

	11.6. Saving your work
	11.7. Best practices for running a notebook
	11.7.1. Best practices for executing code cells
	11.7.2. Best practices for including Python packages in notebooks
	11.7.3. Summary of best practices for running a notebook

	11.8. Exploring data files
	11.9. Exporting to a different file format
	11.9.1. Exporting to HTML
	11.9.2. Exporting to PDF

	11.10. Creating a new Jupyter notebook
	11.11. Additional resources

	12. Collaboration with version control
	12.1. Overview
	12.2. Chapter learning objectives
	12.3. What is version control, and why should I use it?
	12.4. Version control repositories
	12.5. Version control workflows
	12.5.1. Committing changes to a local repository
	12.5.2. Pushing changes to a remote repository
	12.5.3. Pulling changes from a remote repository

	12.6. Working with remote repositories using GitHub
	12.6.1. Creating a remote repository on GitHub
	12.6.2. Editing files on GitHub with the pen tool
	12.6.3. Creating files on GitHub with the “Add file” menu

	12.7. Working with local repositories using Jupyter
	12.7.1. Generating a GitHub personal access token
	12.7.2. Cloning a repository using Jupyter
	12.7.3. Specifying files to commit
	12.7.4. Making the commit
	12.7.5. Pushing the commits to GitHub

	12.8. Collaboration
	12.8.1. Giving collaborators access to your project
	12.8.2. Pulling changes from GitHub using Jupyter
	12.8.3. Handling merge conflicts
	12.8.4. Communicating using GitHub issues

	12.9. Exercises
	12.10. Additional resources

	13. Setting up your computer
	13.1. Overview
	13.2. Chapter learning objectives
	13.3. Obtaining the worksheets for this book
	13.4. Working with Docker
	13.4.1. Windows
	13.4.2. MacOS
	13.4.3. Ubuntu

	13.5. Working with JupyterLab Desktop
	13.5.1. Windows
	13.5.2. MacOS
	13.5.3. Ubuntu

	Bibliography
	Index

