

Create GUI Applications with Python & Qt5
The hands-on guide to making apps with Python

Martin Fitzpatrick

Version 4.0, 2020-06-26

Table of Contents

Introduction . 1

1. A very brief history of the GUI . 3

2. A bit about Qt. 5

3. Thankyou . 7

4. Copyright. 8

Basic PyQt5 Features . 9

5. My first Application . 10

6. Signals & Slots . 21

7. Widgets . 32

8. Layouts . 63

9. Actions, Toolbars & Menus . 91

10. Dialogs . 114

11. Windows . 130

12. Events . 139

Qt Designer . 148

13. Installing Qt Designer . 149

14. Getting started with Qt Designer . 153

15. The Qt Resource system . 172

Theming . 182

16. Styles . 183

17. Palettes . 186

18. Icons . 197

19. Qt Style Sheets (QSS). 205

Model View Architecture . 259

20. The Model View Architecture — Model View Controller 260

21. A simple Model View — a Todo List. 263

22. Tabular data in ModelViews, with numpy & pandas 279

23. Querying SQL databases with Qt models. 304

Further PyQt5 Features . 335

24. Extending Signals . 336

25. Routing . 348

26. Working with command-line arguments. 353

27. System tray & macOS menus . 358

28. Enums & the Qt Namespace . 368

Custom Widgets. 378

29. Bitmap Graphics in Qt . 379

30. Creating Custom Widgets. 411

Concurrent Execution . 444

31. Introduction to Threads & Processes . 445

32. Using the thread pool . 451

33. Threading examples . 460

34. Running external commands & processes. 525

Plotting . 535

35. Plotting with PyQtGraph. 536

36. Plotting with Matplotlib . 557

Packaging & Distribution . 573

37. Packaging with fbs . 574

Example applications. 594

38. Mozzarella Ashbadger . 595

39. Moonsweeper . 614

Appendix A: Installing PyQt5 . 637

Appendix B: Translating C++ Examples to Python. 640

Appendix C: PyQt5 and PySide2 — What’s the difference? 652

Appendix D: What next?. 663

Index . 664

Introduction
If you want to create GUI applications with Python it can be tricky to know

where to start. There are a lot of new concepts you need to understand to get

anything to work. But, like any coding problem, the first step is learning to

approach the problem in the right way. In this book I take you right from the

basic principles of GUI development to creating your own, fully functional,

desktop apps with PyQt5.

The first edition of this book was released in 2016. Since then it has been

updated 4 times, adding and expanding chapters in response to reader

feedback. There are more PyQt5 resources available now than when I started,

but there is still a shortage of in-depth, practical guides to building complete

apps. This book fills that gap!

The book is formatted as a series of chapters exploring different aspects of

PyQt5 in turn. They are arranged to put the simpler chapters toward the

beginning, but if you have specific requirements for your project, don’t be

afraid to jump around! Each chapter will guide you through learning the

fundamental concepts before taking you through a series of coding

examples to gradually explore and learn how to apply the ideas yourself.

You can download source code and resources for all examples in this book.

But don’t be tempted just to read the code and move on — you will learn

much more if you experiment along the way.

It is not possible to give you a complete overview of the Qt system in a book

of this size, so there are links to external resources — both on the

LearnPyQt.com website and elsewhere. If you find yourself thinking "I

wonder if I can do that?" the best thing you can do is put this book down,

then go and find out! Just keep regular backups of your code along the way

so you always have something to come back to if you royally mess it up.

1

http://www.learnpyqt.com/d/pyqt5-source.zip



Throughout this book there are boxes like this, giving info,

tips and warnings. All of them can be safely skipped over if

you are in a hurry, but reading them will give you a deeper

and more rounded knowledge of the Qt framework.

Finally, this book is written to be compatible with Python 3.4+. Python 3 is the

future of the language and if you’re starting out now is where you should be

focusing your efforts. However, many of the examples can be changed with

minimal effort to work with Python 2.7.

2

1. A very brief history of the GUI

The Graphical User Interface has a long and venerable history dating back

as far as the 1960s. Stanford’s NLS (oN-Line System) introduced the the

mouse and windows concept, first demonstrated publicly in 1968. This was

followed by the Xerox PARC Smalltalk system GUI 1973, which is the

foundation of most modern general purpose GUIs.

These early systems already had many of the features we take for granted in

modern desktop GUIs, including windows, menus, radio buttons, check

boxes and later icons. This combination of features — gave us the early

acronym used for these types of interfaces: WIMP (windows, icons, menus,

pointing device — a mouse).

In 1979 the first commercial system featuring a GUI was released — the PERQ

workstation. This spurred a number of other GUI efforts including notably the

Apple Lisa (1983), which added the concept of the menu bar and window

controls. As well as many other systems from the Atari ST (GEM), Amiga. On

UNIX (and later Linux) the X Window System emerged in 1984. The first

version of Windows for PC was released in 1985.

Figure 1. The desktop on Microsoft Windows 3.1 (1992) and Apple System 7 (1991)

Early GUIs were not the instant hit we might assume, due to the lack of

compatible software at launch and expensive hardware

requirements — particularly for home users. Slowly, but steadily, the GUI

3

interface become the preferred way to interact with computers and the

WIMP metaphor became firmly established as the standard. That’s not to say

there haven’t been attempts to replace the WIMP metaphor on the desktop.

Microsoft Bob (1995), for example, was Microsoft’s much maligned attempt to

replace the desktop with a house.

Figure 2. Microsoft Bob — Discarding the desktop metaphor for a cartoon house.

There have been no shortage of other GUIs hailed as revolutionary in their

time, from the launch of Windows 95 (1995) through to Mac OS X (2001),

GNOME Shell (2011) and Windows 10 (2015). Each of these overhauled the UIs

of their respective desktop systems, often with much fanfare. But

fundamentally nothing really changed. These new UIs are still very much

WIMP systems and function in exactly the same way as GUIs have since the

1980s.

When the revolution came, it was mobile — the mouse has been replaced by

touch, and windows by full-screen apps. But even in a world where we all

walk around with smartphones in our pocket, a huge amount of daily work is

still done on desktop computers. WIMP has survived 40 years of innovation

and looks to survive many more.

4

2. A bit about Qt

Qt is a free and open-source widget toolkit for creating cross-platform GUI

applications, allowing applications to target multiple platforms from

Windows, macOS, Linux and Android with a single codebase. But Qt is much

more than a widget toolkit and features built in support for multimedia,

databases, vector graphics and MVC interfaces, it is more accurate to think of

it as an application development framework.

Qt was started by Eirik Chambe-Eng and Haavard Nord in 1991, founding the

first Qt company Trolltech in 1994. Qt is currently developed by The Qt

Company and continues to be regularly updated, adding features and

extending mobile and cross-platform support.

Qt and PyQt5

PyQt5 is a Python binding of the Qt toolkit, developed by Riverbank

Computing. When you write applications using PyQt5 what you area really

doing is writing applications in Qt. The PyQt5 library is simply.[1] a wrapper

around the C++ Qt library, to allow it to be used in Python.

Because this is a Python interface to a C++ library the naming conventions

used within PyQt5 do not adhere to PEP8 standards. Most notably functions

and variables are named using mixedCase rather than snake_case. Whether you

adhere to this standard in your own applications is entirely up to you,

however I find it helped to follow Python standards for my own code, to help

clarify where the PyQt5 code ends and your own begins.

Lastly, while there is PyQt5 specific documentation available, you will often

find yourself reading the Qt documentation itself as it is more complete. If

you do you will need to translate object syntax and some methods

containing Python-reserved function names as follows:

5

Qt PyQt5

Qt::SomeValue Qt.SomeValue

object.exec() object.exec_()

object.print() object.print_()


If you need to convert an entire Qt code example to Python,

take a look at Translating C++ Examples to Python.

This book is written to work with the latest version of Qt (and PyQt5). As of

writing this is Qt 5.14. However, many of the examples will work fine with

earlier and later versions of Qt.

[1] Not really that simple.

6

3. Thankyou

This book continues to be expanded and updated in response to reader

feedback. Thankyou to the following readers for their contributions, which

helped make this edition what it is!

• James Battat, Associate Professor of Physics, Wellesley College

• Andries Broekema

• Richard Hohlfield

• Olivier Girard, Blog

• Alex Lombardi

• Cody Jackson, Mentor, Code-a-Mom

• John E Kadwell

• Jeffrey R Kennedy

• Juan Pablo Donayre Quintana

• Guido Tognan

If you have feedback or suggestions for future editions, just let me know.

7

https://www.wellesley.edu/physics/people/faculty/battat
https://linuxevolution.wordpress.com/
https://www.youtube.com/channel/UCSDsXfziPVrrsVtumb4QJ6A
mailto:martin@learnpyqt.com

4. Copyright

This book is licensed under the Creative Commons Attribution Share-alike

Non-commercial license (CC BY-NC-SA) ©2020 Martin Fitzpatrick.

• You are free to share unaltered copies of this book with anyone you

choose.

• If you modify this book and distribute your altered version it must be

distributed under the same license.

• You are not permitted to sell this book or derivatives in any format.

• If you would like to support the author you can legally purchase a copy

direct from the author(s).

Contributions and corrections from readers (CC BY-NC-SA) are most

welcome.

8

Basic PyQt5 Features
It’s time to take your first steps in creating GUI applications with PyQt5!

In this chapter you will be introduced to the basics of PyQt5 that are the

foundations of any application you create. We will develop a simple

windowed application on your desktop. We’ll add widgets, arrange them

using layouts and connect these widgets to functions, allowing you to trigger

application behavior from your GUI.

Use the provided code as your guide, but always feel free to experiment.

That’s the best way to learn how things work.


Before you get started, you need a working installation of

PyQt5. If you don’t have one yet, check out Installing PyQt5.


Don’t forget to download the source code that accompanies

this book.

9

http://www.learnpyqt.com/d/pyqt5-source.zip

5. My first Application

Let’s create our first application! To start create a new Python file — you can

call it whatever you like (e.g. myapp.py) and save it somewhere accessible. We’ll

write our simple app in this file.


We’ll be editing within this file as we go along, and you may

want to come back to earlier versions of your code, so

remember to keep regular backups.

Creating your App

The source code for your very first application is shown below. Type it in

verbatim, and be careful not to make mistakes. If you do mess up, Python will

let you know what’s wrong. If you don’t feel like typing it all in, the file is

included in the source code with this book.

10

Listing 1. basic/creating_a_window_1.py

from PyQt5.QtWidgets import QApplication, QWidget

Only needed for access to command line arguments

import sys

You need one (and only one) QApplication instance per application.

Pass in sys.argv to allow command line arguments for your app.

If you know you won't use command line arguments QApplication([])

works too.

app = QApplication(sys.argv)

Create a Qt widget, which will be our window.

window = QWidget()

window.show() # IMPORTANT!!!!! Windows are hidden by default.

Start the event loop.

app.exec_()

Your application won't reach here until you exit and the event

loop has stopped.

First, launch your application. You can run it from the command line like any

other Python script, for example — 

python MyApp.py

Or, for Python 3 — 

python3 MyApp.py

From now on, you’ll see the following box as a hint to run your application

and test it out, along with an indication of what you’ll see.

11

 Run it! You will now see your window. Qt automatically creates a

window with the normal window decorations and you can drag it

around and resize it like any window.

What you’ll see will depend on what platform you’re running this example

on. The image below shows the window as displayed on Windows, macOS

and Linux (Ubuntu).

Figure 3. Our window, as seen on Windows, macOS and Linux.

Stepping through the code

Let’s step through the code line by line, so we understand exactly what is

happening.

First, we import the PyQt5 classes that we need for the application. Here

we’re importing QApplication, the application handler and QWidget, a basic

empty GUI widget, both from the QtWidgets module.

from PyQt5.QtWidgets import QApplication, QWidget

The main modules for Qt are QtWidgets, QtGui and QtCore.


You could do from <module> import * but this kind of global

import is generally frowned upon in Python, so we’ll avoid it

here.

Next we create an instance of QApplication, passing in sys.arg, which is

12

Python list containing the command line arguments passed to the

application.

app = QApplication(sys.argv)

If you know you won’t be using command line arguments to control Qt you

can pass in an empty list instead, e.g.

app = QApplication([])

Next we create an instance of a QWidget using the variable name window.

window = QWidget()

window.show()

In Qt all top level widgets are windows — that is, they don’t have a parent and

are not nested within another widget or layout. This means you can

technically create a window using any widget you like.



I can’t see my window!

Widgets without a parent are invisible by default. So, after

creating the window object, we must always call .show() to

make it visible. You can remove the .show() and run the app,

but you’ll have no way to quit it!



What is a window?

• Holds the user-interface of your application

• Every application needs at least one (…but can have more)

• Application will (by default) exit when last window is

closed

Finally, we call app.exec_() to start up the event loop.

13

What’s the event loop?

Before getting the window on the screen, there are a few key concepts to

introduce about how applications are organised in the Qt world. If you’re

already familiar with event loops you can safely skip to the next section.

The core of every Qt Applications is the QApplication class. Every application

needs one — and only one — QApplication object to function. This object

holds the event loop of your application — the core loop which governs all

user interaction with the GUI.

Figure 4. The event loop in Qt.

Each interaction with your application — whether a press of a key, click of a

mouse, or mouse movement — generates an event which is placed on the

event queue. In the event loop, the queue is checked on each iteration and if

a waiting event is found, the event and control is passed to the specific event

handler for the event. The event handler deals with the event, then passes

control back to the event loop to wait for more events. There is only one

running event loop per application.

14



The QApplication class

• QApplication holds the Qt event loop

• One QApplication instance required

• You application sits waiting in the event loop until an

action is taken

• There is only one event loop at any time

The underscore is there because exec was a reserved word in Python 2.7.

PyQt5 handles this by appending an underscore to the name used in the C++

library. You’ll also see .print_() methods on widgets for example.

QMainWindow

As we discovered in the last part, in Qt any widgets can be windows. For

example, if you replace QtWidget with QPushButton. In the example below, you

would get a window with a single push-able button in it.

Listing 2. basic/creating_a_window_2.py

from PyQt5.QtWidgets import QApplication, QPushButton

window = QPushButton("Push Me")

window.show()

This is neat, but not really very useful — it’s rare that you need a UI that

consists of only a single control! But, as we’ll discover later, the ability to nest

widgets within other widgets using layouts means you can construct

complex UIs inside an empty QWidget.

But, Qt already has a solution for you — the QMainWindow. This is a pre-made

widget which provides a lot of standard window features you’ll make use of

in your apps, including toolbars, menus, a statusbar, dockable widgets and

more. We’ll look at these advanced features later, but for now, we’ll add a

simple empty QMainWindow to our application.

15

Listing 3. basic/creating_a_window_3.py

from PyQt5.QtWidgets import QApplication, QMainWindow

import sys

app = QApplication(sys.argv)

window = QMainWindow()

window.show() # IMPORTANT!!!!! Windows are hidden by default.

Start the event loop.

app.exec_()

 Run it! You will now see your main window. It looks exactly the same

as before!

So our QMainWindow isn’t very interesting at the moment. We can fix that by

adding some content. If you want to create a custom window, the best

approach is to subclass QMainWindow and then include the setup for the

window in the __init__ block. This allows the window behavior to be self

contained. We can add our own subclass of QMainWindow — call it MainWindow to

keep things simple.

16

Listing 4. basic/creating_a_window_4.py

import sys

from PyQt5.QtCore import QSize, Qt

from PyQt5.QtWidgets import QApplication, QMainWindow, QPushButton ①

Subclass QMainWindow to customize your application's main window

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__() ②

 self.setWindowTitle("My App")

 button = QPushButton("Press Me!")

 # Set the central widget of the Window.

 self.setCentralWidget(button) ③

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()

① Common Qt widgets are always imported from the QtWidgets namespace.

② We must always call the __init__ method of the super() class.

③ Use .setCentralWidget to place a widget in the QMainWindow.


When you subclass a Qt class you must always call the super

__init__ function to allow Qt to set up the object.

In our __init__ block we first use .setWindowTitle() to change the title of our

main window. Then we add our first widget — a QPushButton — to the middle

of the window. This is one of the basic widgets available in Qt. When creating

the button you can pass in the text that you want the button to display.

17

Finally, we call .setCentralWidget() on the the window. This is a QMainWindow

specific function that allows you to set the widget that goes in the middle of

the window.

 Run it! You will now see your window again, but this time with the

QPushButton widget in the middle. Pressing the button will do nothing,

we’ll sort that next.

Figure 5. Our QMainWindow with a single QPushButton on Windows, macOS and

Linux.



Hungry for widgets?

We’ll cover more widgets in detail shortly but if you’re

impatient and would like to jump ahead you can take a look

at the QWidget documentation. Try adding the different

widgets to your window!

Sizing windows and widgets

The window is currently freely resizable — if you grab any corner with your

mouse you can drag and resize it to any size you want. While it’s good to let

your users resize your applications, sometimes you may want to place

restrictions on minimum or maximum sizes, or lock a window to a fixed size.

In Qt sizes are defined using a QSize object. This accepts width and height

parameters in that order. For example, the following will create a fixed size

18

http://doc.qt.io/qt-5/widget-classes.html#basic-widget-classes

window of 400x300 pixels.

Listing 5. basic/creating_a_window_end.py

import sys

from PyQt5.QtCore import QSize, Qt

from PyQt5.QtWidgets import QApplication, QMainWindow, QPushButton

Subclass QMainWindow to customize your application's main window

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 button = QPushButton("Press Me!")

 self.setFixedSize(QSize(400, 300)) ①

 # Set the central widget of the Window.

 self.setCentralWidget(button)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()

① Setting the size on the window.

 Run it! You will see a fixed size window — try and resize it, it won’t

work.

19

Figure 6. Our fixed-size window, notice that the maximize control is disabled on

Windows & Linux. On macOS you can maximize the app to fill the screen, but

the central widget will not resize.

As well as .setFixedSize() you can also call .setMinimumSize() and

.setMaximumSize() to set the minimum and maximum sizes respectively.

Experiment with this yourself!

 You can use these size methods on any widget.

In this section we’ve covered the QApplication class, the QMainWindow class, the

event loop and experimented with adding a simple widget to a window. In

the next section we’ll take a look at the mechanisms Qt provides for widgets

and windows to communicate with one another and your own code.

 Save a copy of your file as myapp.py as we’ll need it again later.

20

6. Signals & Slots

So far we’ve created a window and added a simple push button widget to it,

but the button doesn’t do anything. That’s not very useful at all — when you

create GUI applications you typically want them to do something! What we

need is a way to connect the action of pressing the button to making

something happen. In Qt, this is provided by signals and slots.

Signals are notifications emitted by widgets when something happens. That

something can be any number of things, from pressing a button, to the text

of an input box changing, to the text of the window changing. Many signals

are initiated by user action, but this is not a rule.

In addition to notifying about something happening, signals can also send

data to provide additional context about what happened.


You can also create your own custom signals, which we’ll

explore later in Extending Signals.

Slots is the name Qt uses for the receivers of signals. In Python any function

(or method) in your application can be used as a slot — simply by connecting

the signal to it. If the signal sends data, then the receiving function will

receive that data too. Many Qt widgets also have their own built-in slots,

meaning you can hook Qt widgets together directly.

Let’s take a look at the basics of Qt signals and how you can use them to

hook widgets up to make things happen in your apps.


Load up a fresh copy of myapp.py and save it under a new

name for this section.

QPushButton Signals

Our simple application currently has a QMainWindow with a QPushButton set as

the central widget. Let’s start by hooking up this button to a custom Python

method. Here we create a simple custom slot named the_button_was_clicked

21

which accepts the clicked signal from the QPushButton.

Listing 6. basic/signals_and_slots_1.py

from PyQt5.QtWidgets import QApplication, QMainWindow, QPushButton ①

from PyQt5.QtCore import Qt

import sys

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__() ②

 self.setWindowTitle("My App")

 button = QPushButton("Press Me!")

 button.setCheckable(True)

 button.clicked.connect(self.the_button_was_clicked)

 # Set the central widget of the Window.

 self.setCentralWidget(button)

 def the_button_was_clicked(self):

 print("Clicked!")

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()

 Run it! If you click the button you’ll see the text "Clicked!" on the

console.

22

Listing 7. Console output

Clicked!

Clicked!

Clicked!

Clicked!

Receiving data

That’s a good start! We’ve heard already that signals can also send data to

provide more information about what has just happened. The .clicked signal

is no exception, also providing a checked (or toggled) state for the button.

For normal buttons this is always False, so our first slot ignored this data.

However, we can make our button checkable and see the effect.

In the following example, we add a second slot which outputs the

checkstate.

23

Listing 8. basic/signals_and_slots_1b.py

import sys

from PyQt5.QtCore import Qt

from PyQt5.QtWidgets import QApplication, QMainWindow, QPushButton ①

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__() ②

 self.setWindowTitle("My App")

 button = QPushButton("Press Me!")

 button.setCheckable(True)

 button.clicked.connect(self.the_button_was_clicked)

 button.clicked.connect(self.the_button_was_toggled)

 # Set the central widget of the Window.

 self.setCentralWidget(button)

 def the_button_was_clicked(self):

 print("Clicked!")

 def the_button_was_toggled(self, checked):

 print("Checked?", checked)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()

 Run it! If you press the button you’ll see it highlighted as checked.

Press it again to release it. Look for the check state in the console.

24

Listing 9. Console output

Clicked!

Checked? True

Clicked!

Checked? False

Clicked!

Checked? True

Clicked!

Checked? False

Clicked!

Checked? True

You can connect as many slots to a signal as you like and can respond to

different versions of signals at the same time on your slots.

Storing data

Often it is useful to store the current state of a widget in a Python variable.

This allows you to work with the values like any other Python variable and

without accessing the original widget. You can either store these values as

individual variables or use a dictionary if you prefer. In the next example we

store the checked value of our button in a variable called button_is_checked on

self.

25

Listing 10. basic/signals_and_slots_1c.py

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.button_is_checked = True ①

 self.setWindowTitle("My App")

 button = QPushButton("Press Me!")

 button.setCheckable(True)

 button.clicked.connect(self.the_button_was_toggled)

 button.setChecked(self.button_is_checked) ②

 # Set the central widget of the Window.

 self.setCentralWidget(button)

 def the_button_was_toggled(self, checked):

 self.button_is_checked = checked ③

 print(self.button_is_checked)

① Set the default value for our variable.

② Use the default value to set the initial state of the widget.

③ When the widget state changes, update the variable to match.

You can use this same pattern with any PyQt5 widgets. If a widget does not

provide a signal that sends the current state, you will need to retrieve the

value from the widget directly in your handler. For example, here we’re

checking the checked state in a pressed handler.

26

Listing 11. basic/signals_and_slots_1d.py

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.button_is_checked = True

 self.setWindowTitle("My App")

 self.button = QPushButton("Press Me!") ①

 self.button.setCheckable(True)

 self.button.released.connect(self.the_button_was_released) ②

 self.button.setChecked(self.button_is_checked)

 # Set the central widget of the Window.

 self.setCentralWidget(self.button)

 def the_button_was_released(self):

 self.button_is_checked = self.button.isChecked() ③

 print(self.button_is_checked)

① We need to keep a reference to the button on self so we can access it in

our slot.

② The released signal fires when the button is released, but does not send

the check state.

③ .isChecked() returns the check state of the button.

Changing the interface

So far we’ve seen how to accept signals and print output to the console. But

how about making something happen in the interface when we click the

button? Let’s update our slot method to modify the button, changing the

text and disabling the button so it is no longer clickable. We’ll also turn off

the checkable state for now.

27

Listing 12. basic/signals_and_slots_2.py

from PyQt5.QtWidgets import QApplication, QMainWindow, QPushButton ①

from PyQt5.QtCore import Qt

import sys

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__() ②

 self.setWindowTitle("My App")

 self.button = QPushButton("Press Me!") ①

 self.button.clicked.connect(self.the_button_was_clicked)

 # Set the central widget of the Window.

 self.setCentralWidget(self.button)

 def the_button_was_clicked(self):

 self.button.setText("You already clicked me.") ②

 self.button.setEnabled(False) ③

 # Also change the window title.

 self.setWindowTitle("My Oneshot App")

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()

① We need to be able to access the button in our the_button_was_clicked

method, so we keep a reference to it on self.

② You can change the text of a button by passing a str to .setText().

③ To disable a button call .setEnabled() with False.

28

 Run it! If you click the button the text will change and the button will

become unclickable.

You’re not restricted to changing the button that triggers the signal, you can

do anything you want in your slot methods. For example, try adding the

following line to the_button_was_clicked method to also change the window

title.

self.setWindowTitle("A new window title")

Most widgets have their own signals — and the QMainWindow we’re using for our

window is no exception. In the following more complex example, we connect

the .windowTitleChanged signal on the QMainWindow to a custom

In the following example we connect the .windowTitleChanged signal on the

QMainWindow to a method slot the_window_title_changed. This slot also receives

the new window title.

Listing 13. basic/signals_and_slots_3.py

from PyQt5.QtWidgets import QApplication, QMainWindow, QPushButton

from PyQt5.QtCore import Qt

import sys

from random import choice

window_titles = [①

 'My App',

 'My App',

 'Still My App',

 'Still My App',

 'What on earth',

 'What on earth',

 'This is surprising',

 'This is surprising',

 'Something went wrong'

]

29

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.n_times_clicked = 0

 self.setWindowTitle("My App")

 self.button = QPushButton("Press Me!")

 self.button.clicked.connect(self.the_button_was_clicked)

 self.windowTitleChanged.connect(self.the_window_title_changed)

②

 # Set the central widget of the Window.

 self.setCentralWidget(self.button)

 def the_button_was_clicked(self):

 print("Clicked.")

 new_window_title = choice(window_titles)

 print("Setting title: %s" % new_window_title)

 self.setWindowTitle(new_window_title) ③

 def the_window_title_changed(self, window_title):

 print("Window title changed: %s" % window_title) ④

 if window_title == 'Something went wrong':

 self.button.setDisabled(True)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()

① A list of window titles we’ll select from using random.choice().

30

② Hook up our custom slot method the_window_title_changed to the windows

.windowTitleChanged signal.

③ Set the window title to the new title.

④ If the new window title equals "Something went wrong" disable the

button.

 Run it! Click the button repeatedly until the title changes to

"Something went wrong" and the button will become disabled.

There are a few things to notice in this example.

Firstly, the windowTitleChanged signal is not always emitted when setting the

window title. The signal only fires if they new title is a change from the

previous one. It’s important to know exactly what conditions signals fire

under, to avoid being surprised!

Secondly, notice how we are able to chain things together using signals. One

thing happening — a button press — can trigger multiple other things to

happen in turn. These subsequent effects do not need to know what caused

them, but simply follow as a consequence of simple rules. This decoupling of

effects from their triggers is one of the key concepts to understand when

building GUI applications. We’ll keep coming back to this throughout the

book!

In this section we’ve covered signals and slots. We’ve demonstrated some

simple signals and how to use them to pass data and state around your

application. Next we’ll look at the widgets which Qt provides for use in your

applications — together with the signals they provide.

31

7. Widgets

In Qt widget is the name given to a component of the UI that the user can

interact with. User interfaces are made up of multiple widgets, arranged

within the window. Qt comes with a large selection of widgets available, and

even allows you to create your own custom widgets.

In the code examples for the book there is a file widgets_list.py which you

can run to display a collection of widgets in a window. It uses a few complex

tricks which we’ll cover later, so don’t worry about the code just now.

 Run it! You will see a window with multiple, interactive, widgets.

Figure 7. The example widgets app shown on Windows, macOS and Linux

(Ubuntu).

32

The widgets shown in the example are given below, from top to bottom.

Widget What it does

QCheckbox A checkbox

QComboBox A dropdown list box

QDateEdit For editing dates and datetimes

QDateTimeEdit For editing dates and datetimes

QDial Rotateable dial

QDoubleSpinbox A number spinner for floats

QFontComboBox A list of fonts

QLCDNumber A quite ugly LCD display

QLabel Just a label, not interactive

QLineEdit Enter a line of text

QProgressBar A progress bar

QPushButton A button

QRadioButton A group with only one active choice

QSlider A slider

QSpinBox An integer spinner

QTimeEdit For editing times

There are far more widgets than this, but they don’t fit so well! For a full list

see the Qt documentation. Here we’re going to take a closer look at some of

the most useful.


Load up a fresh copy of myapp.py and save it under a new

name for this section.

33

https://doc.qt.io/qt-5/qtwidgets-module.html

QLabel

We’ll start the tour with QLabel, arguably one of the simplest widgets available

in the Qt toolbox. This is a simple one-line piece of text that you can position

in your application. You can set the text by passing in a string as you create

it — 

widget = QLabel("Hello")

Or, by using the .setText() method — 

widget = QLabel("1") # The label is created with the text 1

widget.setText("2") # The label now shows 2

You can also adjust font parameters, such as the size or alignment of text in

the widget.

34

Listing 14. basic/widgets_1.py

import sys

from PyQt5.QtCore import Qt

from PyQt5.QtWidgets import QApplication, QLabel, QMainWindow

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 widget = QLabel("Hello")

 font = widget.font() ①

 font.setPointSize(30)

 widget.setFont(font)

 widget.setAlignment(Qt.AlignHCenter | Qt.AlignVCenter) ②

 self.setCentralWidget(widget)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()

① We get the current font, using <widget>.font(), modify it and then apply it

back. This ensures the font face remains in keeping with the desktop

conventions.

② The alignment is specified by using a flag from the Qt. namespace.

 Run it! Adjust the font parameters and see the effect.

35

Figure 8. A QLabel on Windows, macOS and Ubuntu


The Qt namespace (Qt.) is full of all sorts of attributes that

you can use to customize and control Qt widgets. We’ll cover

that in detail later in Enums & the Qt Namespace.

36

The flags available for horizontal alignment are — 

Flag Behaviour

Qt.AlignLeft Aligns with the left edge.

Qt.AlignRight Aligns with the right edge.

Qt.AlignHCenter Centers horizontally in the available

space.

Qt.AlignJustify Justifies the text in the available

space.

The flags available for vertical alignment are — 

Flag Behaviour

Qt.AlignTop Aligns with the top.

Qt.AlignBottom Aligns with the bottom.

Qt.AlignVCenter Centers vertically in the available

space.

You can combine flags together using pipes (|), however note that you can

only use one vertical or horizontal alignment flag at a time.

align_top_left = Qt.AlignLeft | Qt.AlignTop

 Run it! Try combining the different alignment flags and seeing the

effect on text position.

37



Qt Flags

Note that you use an OR pipe (|) to combine the two flags by

convention. The flags are non-overlapping bitmasks. e.g.

Qt.AlignLeft has the binary value 0b0001, while Qt.AlignBottom

is 0b0100. By ORing together we get the value 0b0101

representing 'bottom left'.

We’ll take a more detailed look at the Qt namespace and Qt

flags later in Enums & the Qt Namespace.

Finally, there is also a shorthand flag that centers in both directions

simultaneously — 

Flag Behaviour

Qt.AlignCenter Centers horizontally and vertically

Weirdly, you can also use QLabel to display an image using the .setPixmap()

method. This accepts an pixmap (a pixel array), which you can create by

passing an image filename to QPixmap. In the example files provided with this

book you can find a file otje.jpg which you can display in your window as

follows:

widget.setPixmap(QPixmap('otje.jpg'))

Figure 9. Otje. What a lovely face.

38

 Run it! Resize the window, and the image will be surrounded by

empty space.

By default the image scales while maintaining its aspect ratio. If you want it

to stretch and scale to fit the window completely you can set

.setScaledContents(True) on the QLabel.

widget.setScaledContents(True)

For example — 

Listing 15. basic/widgets_2.py

import sys

from PyQt5.QtGui import QPixmap

from PyQt5.QtWidgets import QApplication, QLabel, QMainWindow

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 widget = QLabel("Hello")

 widget.setPixmap(QPixmap("otje.jpg"))

 widget.setScaledContents(True)

 self.setCentralWidget(widget)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()

39

 Run it! Resize the window and the picture will deform to fit.

Figure 10. Showing a pixmap with QLabel on Windows, macOS and Ubuntu

40

QCheckBox

The next widget to look at is QCheckBox which, as the name suggests, presents

a checkable box to the user. However, as with all Qt widgets there are

number of configurable options to change the widget behaviors.

Listing 16. basic/widgets_3.py

import sys

from PyQt5.QtCore import Qt

from PyQt5.QtWidgets import QApplication, QCheckBox, QMainWindow

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 widget = QCheckBox("This is a checkbox")

 widget.setCheckState(Qt.Checked)

 # For tristate: widget.setCheckState(Qt.PartiallyChecked)

 # Or: widget.setTriState(True)

 widget.stateChanged.connect(self.show_state)

 self.setCentralWidget(widget)

 def show_state(self, s):

 print(s == Qt.Checked)

 print(s)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()

41

 Run it! You’ll see a checkbox with label text.

Figure 11. QCheckBox on Windows, macOS and Ubuntu

You can set a checkbox state programmatically using .setChecked or

.setCheckState. The former accepts either True or False representing checked

or unchecked respectively. However, with .setCheckState you also specify a

particially checked state using a Qt. namespace flag — 

Flag Behaviour

Qt.Unchecked Item is unchecked

Qt.PartiallyChecked Item is partially checked

Qt.Checked Item is unchecked

A checkbox that supports a partially-checked (Qt.PartiallyChecked) state is

commonly referred to as 'tri-state', that is being neither on nor off. A

checkbox in this state is commonly shown as a greyed out checkbox, and is

commonly used in hierarchical checkbox arrangements where sub-items are

linked to parent checkboxes.

If you set the value to Qt.PartiallyChecked the checkbox will become tri-

state — that is have three possible states. You can also set a checkbox to be

tri-state without setting the current state to partially checked by using

.setTriState(True)

42



You may notice that when the script is running the current

state number is displayed as an int with checked = 2,

unchecked = 0, and partially checked = 1. You don’t need to

remember these values, the Qt.Checked namespace variable

== 2 for example. This is the value of these state’s respective

flags. This means you can test state using state == Qt.Checked.

43

QComboBox

The QComboBox is a drop down list, closed by default with an arrow to open it.

You can select a single item from the list, with the currently selected item

being shown as a label on the widget. The combo box is suited to selection of

a choice from a long list of options.



You have probably seen the combo box used for selection of

font faces, or size, in word processing applications. Although

Qt actually provides a specific font-selection combo box as

QFontComboBox.

You can add items to a QComboBox by passing a list of strings to .addItems().

Items will be added in the order they are provided.

44

Listing 17. basic/widgets_4.py

import sys

from PyQt5.QtCore import Qt

from PyQt5.QtWidgets import QApplication, QComboBox, QMainWindow

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 widget = QComboBox()

 widget.addItems(["One", "Two", "Three"])

 widget.currentIndexChanged.connect(self.index_changed)

 widget.currentTextChanged.connect(self.text_changed)

 self.setCentralWidget(widget)

 def index_changed(self, i): # i is an int

 print(i)

 def text_changed(self, s): # s is a str

 print(s)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()

 Run it! You’ll see a combo box with 3 entries. Select one and it will be

shown in the box.

45

Figure 12. QComboBox on Windows, macOS and Ubuntu

The .currentIndexChanged signal is triggered when the currently selected item

is updated, by default passing the index of the selected item in the list.

However, when connecting to the signal you can also request an alternative

version of the signal by appending [str] (think of the signal as a dict). This

alternative interface instead provides the label of the currently selected item,

which is often more useful.

QComboBox can also be editable, allowing users to enter values not currently in

the list and either have them inserted, or simply used as a value. To make the

box editable:

widget.setEditable(True)

You can also set a flag to determine how the insert is handled. These flags are

stored on the QComboBox class itself and are listed below — 

Flag Behaviour

QComboBox.NoInsert No insert

QComboBox.InsertAtTop Insert as first item

QComboBox.InsertAtCurrent Replace currently selected item

QComboBox.InsertAtBottom Insert after last item

QComboBox.InsertAfterCurrent Insert after current item

QComboBox.InsertBeforeCurrent Insert before current item

46

Flag Behaviour

QComboBox.InsertAlphabetically Insert in alphabetical order

To use these, apply the flag as follows:

widget.setInsertPolicy(QComboBox.InsertAlphabetically)

You can also limit the number of items allowed in the box by using

.setMaxCount, e.g.

widget.setMaxCount(10)

47

QListBox

Next up is QListBox. This widget is similar to QComboBox, except options are

presented as a scrollable list of items. It also supports selection of multiple

items at once. A QListBox offers an currentItemChanged signal which sends the

QListItem (the element of the list box), and a currentTextChanged signal which

sends the text of the current item.

48

Listing 18. basic/widgets_5.py

import sys

from PyQt5.QtWidgets import QApplication, QListWidget, QMainWindow

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 widget = QListWidget()

 widget.addItems(["One", "Two", "Three"])

 # In QListWidget there are two separate signals for the item,

and the str

 widget.currentItemChanged.connect(self.index_changed)

 widget.currentTextChanged.connect(self.text_changed)

 self.setCentralWidget(widget)

 def index_changed(self, i): # Not an index, i is a QListItem

 print(i.text())

 def text_changed(self, s): # s is a str

 print(s)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()

 Run it! You’ll see the same three items, now in a list. The selected item

(if any) is highlighted.

49

Figure 13. A QListBox on Windows, macOS and Ubuntu

50

QLineEdit

The QLineEdit widget is a simple single-line text editing box, into which users

can type input. These are used for form fields, or settings where there is no

restricted list of valid inputs. For example, when entering an email address, or

computer name.

Listing 19. basic/widgets_6.py

import sys

from PyQt5.QtCore import Qt

from PyQt5.QtWidgets import QApplication, QLineEdit, QMainWindow

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 widget = QLineEdit()

 widget.setMaxLength(10)

 widget.setPlaceholderText("Enter your text")

 # widget.setReadOnly(True) # uncomment this to make readonly

 widget.returnPressed.connect(self.return_pressed)

 widget.selectionChanged.connect(self.selection_changed)

 widget.textChanged.connect(self.text_changed)

 widget.textEdited.connect(self.text_edited)

 self.setCentralWidget(widget)

 def return_pressed(self):

 print("Return pressed!")

 self.centralWidget().setText("BOOM!")

 def selection_changed(self):

 print("Selection changed")

 print(self.centralWidget().selectedText())

51

 def text_changed(self, s):

 print("Text changed...")

 print(s)

 def text_edited(self, s):

 print("Text edited...")

 print(s)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()

 Run it! You’ll see a simple text entry box, with a hint.

Figure 14. QLineEdit on Windows, macOS and Ubuntu

As demonstrated in the above code, you can set a maximum length for the

text field by using .setMaxLength. Placeholder text, which is text shown until

something is entered by the user can be added using .setPlaceholderText.

The QLineEdit has a number of signals available for different editing events

including when return is pressed (by the user), when the user selection is

changed. There are also two edit signals, one for when the text in the box has

been edited and one for when it has been changed. The distinction here is

between user edits and programmatic changes. The textEdited signal is only

52

sent when the user edits text.

Additionally, it is possible to perform input validation using an input mask to

define which characters are supported and where. This can be applied to the

field as follows:

widget.setInputMask('000.000.000.000;_')

The above would allow a series of 3-digit numbers separated with periods,

and could therefore be used to validate IPv4 addresses.

53

QSpinBox and QDoubleSpinBox

QSpinBox provides a small numerical input box with arrows to increase and

decrease the value. QSpinBox supports integers while the related widget

QDoubleSpinBox supports floats.

54

Listing 20. basic/widgets_7.py

import sys

from PyQt5.QtCore import Qt

from PyQt5.QtWidgets import QApplication, QMainWindow, QSpinBox

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 widget = QSpinBox()

 # Or: widget = QDoubleSpinBox()

 widget.setMinimum(-10)

 widget.setMaximum(3)

 # Or: widget.setRange(-10,3)

 widget.setPrefix("$")

 widget.setSuffix("c")

 widget.setSingleStep(3) # Or e.g. 0.5 for QDoubleSpinBox

 widget.valueChanged.connect(self.value_changed)

 widget.valueChanged[str].connect(self.value_changed_str)

 self.setCentralWidget(widget)

 def value_changed(self, i):

 print(i)

 def value_changed_str(self, s):

 print(s)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()

55

 Run it! You’ll see a numeric entry box. The value shows pre and post

fix units, and is limited to the range +3 to -10.

Figure 15. QSpinBox on Windows, macOS and Ubuntu

The demonstration code above shows the various features that are available

for the widget.

To set the range of acceptable values you can use setMinimum and setMaximum,

or alternatively use setRange to set both simultaneously. Annotation of value

types is supported with both prefixes and suffixes that can be added to the

number, e.g. for currency markers or units using .setPrefix and .setSuffix

respectively.

Clicking on the up and down arrows on the widget will increase or decrease

the value in the widget by an amount, which can be set using .setSingleStep.

Note that this has no effect on the values that are acceptable to the widget.

Both QSpinBox and QDoubleSpinBox have a .valueChanged signal which fires

whenever their value is altered. The raw .valueChanged signal sends the

numeric value (either an int or a float) while the str alternate signal,

accessible via .valueChanged[str] sends the value as a string, including both

the prefix and suffix characters.

56

QSlider

QSlider provides a slide-bar widget, which functions internally much like a

QDoubleSpinBox. Rather than display the current value numerically, it is

represented by the position of the slider handle along the length of the

widget. This is often useful when providing adjustment between two

extremes, but where absolute accuracy is not required. The most common

use of this type of widget is for volume controls.

There is an additional .sliderMoved signal that is triggered whenever the slider

moves position and a .sliderPressed signal that emits whenever the slider is

clicked.

Listing 21. basic/widgets_8.py

import sys

from PyQt5.QtCore import Qt

from PyQt5.QtWidgets import QApplication, QMainWindow, QSlider

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 widget = QSlider()

 widget.setMinimum(-10)

 widget.setMaximum(3)

 # Or: widget.setRange(-10,3)

 widget.setSingleStep(3)

 widget.valueChanged.connect(self.value_changed)

 widget.sliderMoved.connect(self.slider_position)

 widget.sliderPressed.connect(self.slider_pressed)

 widget.sliderReleased.connect(self.slider_released)

 self.setCentralWidget(widget)

57

 def value_changed(self, i):

 print(i)

 def slider_position(self, p):

 print("position", p)

 def slider_pressed(self):

 print("Pressed!")

 def slider_released(self):

 print("Released")

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()

 Run it! You’ll see a slider widget. Drag the slider to change the value.

Figure 16. QSlider on Windows, macOS and Ubuntu. On Windows the handle

expands to the size of the widget.

You can also construct a slider with a vertical or horizontal orientation by

passing the orientation in as you create it. The orientation flags are defined in

the Qt. namespace. For example — 

58

widget.QSlider(Qt.Vertical)

Or — 

widget.QSlider(Qt.Horizontal)

59

QDial

Finally, the QDial is a rotatable widget that functions just like the slider, but

appears as an analogue dial. This looks nice, but from a UI perspective is not

particularly user friendly. However, they are often used in audio applications

as representation of real-world analogue dials.

Listing 22. basic/widgets_9.py

import sys

from PyQt5.QtCore import Qt

from PyQt5.QtWidgets import QApplication, QDial, QMainWindow

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 widget = QDial()

 widget.setRange(-10, 100)

 widget.setSingleStep(0.5)

 widget.valueChanged.connect(self.value_changed)

 widget.sliderMoved.connect(self.slider_position)

 widget.sliderPressed.connect(self.slider_pressed)

 widget.sliderReleased.connect(self.slider_released)

 self.setCentralWidget(widget)

 def value_changed(self, i):

 print(i)

 def slider_position(self, p):

 print("position", p)

 def slider_pressed(self):

 print("Pressed!")

 def slider_released(self):

60

 print("Released")

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()

 Run it! You’ll see a dial, rotate it to select a number from the range.

Figure 17. QDial on Windows, macOS and Ubuntu

The signals are the same as for QSlider and retain the same names (e.g.

.sliderMoved).

This concludes our brief tour through the Qt widgets available in PyQt5. To

see the full list of available widgets, including all their signals and attributes,

take a look at the Qt documentation.

61

http://doc.qt.io/qt-5/

QWidget

There is a QWidget in our demo, but you can’t see it. We previously used

QWidget in our first example to create an empty window. But QWidget can also

be used as a container for other widgets, together with Layouts, to construct

windows or compound widgets. We’ll cover Creating Custom Widgets in

more detail later.

Keep QWidget in mind, as you’ll be seeing a lot of it!

62

8. Layouts

So far we’ve successfully created a window and we’ve added a widget to it.

However, you will usually want to add more than one widget to a window,

and have some control over where the widgets you add end up. To arrange

widgets together in Qt we use layouts. There are 4 basic layouts available in

Qt, which are listed in the following table.

Layout Behaviour

QHBoxLayout Linear horizontal layout

QVBoxLayout Linear vertical layout

QGridLayout In indexable grid XxY

QStackedLayout Stacked (z) in front of one another

There are three 2-dimensional layouts available in Qt. The QVBoxLayout,

QHBoxLayout and QGridLayout. In addition there is also QStackedLayout which

allows you to place widgets one on top of the other within the same space,

yet showing only one layout at a time.

In this chapter we’ll go through each of these layouts in turn, showing how

we can use them to position widgets in our applications.



Qt Designer

You can actually design and lay out your interface graphically

using the Qt Designer, which we will cover later. Here we’re

using code, as it’s simpler to understand and experiment

with the underlying system.

63

Placeholder widget


Load up a fresh copy of myapp.py and save it under a new

name for this section.

To make it easier to visualize the layouts, we’ll first create a simple custom

widget that displays a solid color of our choosing. This will help to distinguish

widgets that we add to the layout. Add the following code to your file as a

new class at the top level — 

Listing 23. basic/layout_colorwidget.py

from PyQt5.QtGui import QColor, QPalette

from PyQt5.QtWidgets import QWidget

class Color(QWidget):

 def __init__(self, color):

 super().__init__()

 self.setAutoFillBackground(True)

 palette = self.palette()

 palette.setColor(QPalette.Window, QColor(color))

 self.setPalette(palette)

In this code we subclass QWidget to create our own custom widget Color. We

accept a single parameter when creating the widget — color (a str). We first

set .setAutoFillBackground to True to tell the widget to automatically fill it’s

background with the window color. Next we change the widget’s

QPalette.Window color to a new QColor described by the value color we passed

in. Finally we apply this palette back to the widget. The end result is a widget

that is filled with a solid color, that we specify when we create it.

If you find the above confusing, don’t worry too much! We cover Creating

Custom Widgets and Palettes in detail later. For now it’s sufficient that you

understand that you can create a solid-filled red widget by with the following

code — 

64

Color('red')

First let’s test our new Color widget by using it to fill the entire window in a

single color. Once it’s complete we can add it to the main window using

.setCentralWidget and we get a solid red window.

Listing 24. basic/layout_1.py

import sys

from PyQt5.QtCore import Qt

from PyQt5.QtWidgets import QApplication, QMainWindow

from layout_colorwidget import Color

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 widget = Color("red")

 self.setCentralWidget(widget)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()

 Run it! The window will appear, filled completely with the color red.

Notice how the widget expands to fill all the available space.

65

Figure 18. Our Color widget, filled with solid red color.

Next we’ll look at each of the available Qt layouts in turn. Note that to add our

layouts to the window we will need a dummy QWidget to hold the layout.

66

QVBoxLayout vertically arranged widgets

With QVBoxLayout you arrange widgets one above the other linearly. Adding a

widget adds it to the bottom of the column.

Figure 19. A QVBoxLayout, filled from top to bottom.

Lets add our widget to a layout. Note that in order to add a layout to the

QMainWindow we need to apply it to a dummy QWidget. This allows us to then use

.setCentralWidget to apply the widget (and the layout) to the window. Our

colored widgets will arrange themselves in the layout, contained within the

QWidget in the window. First we just add the red widget as before.

67

Listing 25. basic/layout_2a.py

import sys

from PyQt5.QtCore import Qt

from PyQt5.QtWidgets import QApplication, QMainWindow, QVBoxLayout,

QWidget

from layout_colorwidget import Color

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 layout = QVBoxLayout()

 layout.addWidget(Color("red"))

 widget = QWidget()

 widget.setLayout(layout)

 self.setCentralWidget(widget)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()

 Run it! Notice the border now visible around the red widget. This is

the layout spacing — we’ll see how to adjust that later.

68

Figure 20. Our Color widget, in a layout.

Next add a few more colored widgets to the layout:

69

Listing 26. basic/layout_2b.py

import sys

from PyQt5.QtCore import Qt

from PyQt5.QtWidgets import QApplication, QMainWindow, QVBoxLayout,

QWidget

from layout_colorwidget import Color

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 layout = QVBoxLayout()

 layout.addWidget(Color("red"))

 layout.addWidget(Color("green"))

 layout.addWidget(Color("blue"))

 widget = QWidget()

 widget.setLayout(layout)

 self.setCentralWidget(widget)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()

As we add widgets they line themselves up vertically in the order they are

added.

70

Figure 21. Three Color widgets arranged vertically in a QVBoxLayout.

71

QHBoxLayout horizontally arranged widgets

QHBoxLayout is the same, except moving horizontally. Adding a widget adds it

to the right hand side.

Figure 22. A QHBoxLayout, filled from left to right.

To use it we can simply change the QVBoxLayout to a QHBoxLayout. The boxes

now flow left to right.

72

Listing 27. basic/layout_3.py

import sys

from PyQt5.QtCore import Qt

from PyQt5.QtWidgets import QApplication, QHBoxLayout, QLabel,

QMainWindow, QWidget

from layout_colorwidget import Color

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 layout = QHBoxLayout()

 layout.addWidget(Color("red"))

 layout.addWidget(Color("green"))

 layout.addWidget(Color("blue"))

 widget = QWidget()

 widget.setLayout(layout)

 self.setCentralWidget(widget)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()

 Run it! The widgets should arrange themselves horizontally.

73

Figure 23. Three Color widgets arranged horizontally in a QHBoxLayout.

74

Nesting layouts

For more complex layouts you can nest layouts inside one another using

.addLayout on a layout. Below we add a QVBoxLayout into the main QHBoxLayout.

If we add some widgets to the QVBoxLayout, they’ll be arranged vertically in the

first slot of the parent layout.

Listing 28. basic/layout_4.py

import sys

from PyQt5.QtCore import Qt

from PyQt5.QtWidgets import (

 QApplication,

 QHBoxLayout,

 QLabel,

 QMainWindow,

 QVBoxLayout,

 QWidget,

)

from layout_colorwidget import Color

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 layout1 = QHBoxLayout()

 layout2 = QVBoxLayout()

 layout3 = QVBoxLayout()

 layout2.addWidget(Color("red"))

 layout2.addWidget(Color("yellow"))

 layout2.addWidget(Color("purple"))

 layout1.addLayout(layout2)

 layout1.addWidget(Color("green"))

75

 layout3.addWidget(Color("red"))

 layout3.addWidget(Color("purple"))

 layout1.addLayout(layout3)

 widget = QWidget()

 widget.setLayout(layout1)

 self.setCentralWidget(widget)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()

 Run it! The widgets should arrange themselves in 3 columns

horizontally, with the first column also containing 3 widgets stacked

vertically. Experiment!

Figure 24. Nested QHBoxLayout and QVBoxLayout layouts.

You can set the spacing around the layout using .setContentMargins or set the

spacing between elements using .setSpacing.

layout1.setContentsMargins(0,0,0,0)

layout1.setSpacing(20)

The following code shows the combination of nested widgets and layout

margins and spacing.

76

Listing 29. basic/layout_5.py

import sys

from PyQt5.QtCore import Qt

from PyQt5.QtWidgets import (

 QApplication,

 QHBoxLayout,

 QLabel,

 QMainWindow,

 QVBoxLayout,

 QWidget,

)

from layout_colorwidget import Color

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 layout1 = QHBoxLayout()

 layout2 = QVBoxLayout()

 layout3 = QVBoxLayout()

 layout1.setContentsMargins(0, 0, 0, 0)

 layout1.setSpacing(20)

 layout2.addWidget(Color("red"))

 layout2.addWidget(Color("yellow"))

 layout2.addWidget(Color("purple"))

 layout1.addLayout(layout2)

 layout1.addWidget(Color("green"))

 layout3.addWidget(Color("red"))

 layout3.addWidget(Color("purple"))

 layout1.addLayout(layout3)

77

 widget = QWidget()

 widget.setLayout(layout1)

 self.setCentralWidget(widget)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()

 Run it! You should see the effects of spacing and margins.

Experiment with the numbers until you get a feel for them.

Figure 25. Nested QHBoxLayout and QVBoxLayout layouts with spacing and margins

around the widgets.

78

QGridLayout widgets arranged in a grid

As useful as they are, if you try and using QVBoxLayout and QHBoxLayout for

laying out multiple elements, e.g. for a form, you’ll find it very difficult to

ensure differently sized widgets line up. The solution to this is QGridLayout.

Figure 26. A QGridLayout showing the grid positions for each location.

QGridLayout allows you to position items specifically in a grid. You specify row

and column positions for each widget. You can skip elements, and they will

be left empty.

Figure 27. A QGridLayout with unfilled slots.

79

Listing 30. basic/layout_6.py

import sys

from PyQt5.QtCore import Qt

from PyQt5.QtWidgets import QApplication, QGridLayout, QLabel,

QMainWindow, QWidget

from layout_colorwidget import Color

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 layout = QGridLayout()

 layout.addWidget(Color("red"), 0, 0)

 layout.addWidget(Color("green"), 1, 0)

 layout.addWidget(Color("blue"), 1, 1)

 layout.addWidget(Color("purple"), 2, 1)

 widget = QWidget()

 widget.setLayout(layout)

 self.setCentralWidget(widget)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()

 Run it! You should see the widgets arranged in a grid, aligned despite

missing entries.

80

Figure 28. Four Color widgets in a QGridLayout.

81

QStackedLayout multiple widgets in the same

space

The final layout we’ll cover is the QStackedLayout. As described, this layout

allows you to position elements directly in front of one another. You can then

select which widget you want to show. You could use this for drawing layers

in a graphics application, or for imitating a tabbed interface. Note there is

also QStackedWidget which is a container widget that works in exactly the

same way. This is useful if you want to add a stack directly to a QMainWindow

with .setCentralWidget.

Figure 29. QStackedLayout — in use only the uppermost widget is visible, which

is by default the first widget added to the layout.

82

Figure 30. QStackedLayout, with the 2nd (1) widget selected and brought to the

front

83

Listing 31. basic/layout_7.py

import sys

from PyQt5.QtCore import Qt

from PyQt5.QtWidgets import QApplication, QLabel, QMainWindow,

QStackedLayout, QWidget

from layout_colorwidget import Color

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 layout = QStackedLayout()

 layout.addWidget(Color("red"))

 layout.addWidget(Color("green"))

 layout.addWidget(Color("blue"))

 layout.addWidget(Color("yellow"))

 layout.setCurrentIndex(3)

 widget = QWidget()

 widget.setLayout(layout)

 self.setCentralWidget(widget)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()

 Run it! You will see only the last widget you added.

84

Figure 31. A stack widget, showing one widget only (the last-added widget).

QStackedWidget is how tabbed views in applications work. Only one view ('tab')

is visible at any one time. You can control which widget to show at any time

by using .setCurrentIndex() or .setCurrentWidget() to set the item by either

the index (in order the widgets were added) or by the widget itself.

Below is a short demo using QStackedLayout in combination with QButton to to

provide a tab-like interface to an application — 

Listing 32. basic/layout_8.py

import sys

from PyQt5.QtCore import Qt

from PyQt5.QtWidgets import (

 QApplication,

 QHBoxLayout,

 QLabel,

 QMainWindow,

 QPushButton,

 QStackedLayout,

 QVBoxLayout,

 QWidget,

)

from layout_colorwidget import Color

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

85

 pagelayout = QVBoxLayout()

 button_layout = QHBoxLayout()

 self.stacklayout = QStackedLayout()

 pagelayout.addLayout(button_layout)

 pagelayout.addLayout(self.stacklayout)

 btn = QPushButton("red")

 btn.pressed.connect(self.activate_tab_1)

 button_layout.addWidget(btn)

 self.stacklayout.addWidget(Color("red"))

 btn = QPushButton("green")

 btn.pressed.connect(self.activate_tab_2)

 button_layout.addWidget(btn)

 self.stacklayout.addWidget(Color("green"))

 btn = QPushButton("yellow")

 btn.pressed.connect(self.activate_tab_3)

 button_layout.addWidget(btn)

 self.stacklayout.addWidget(Color("yellow"))

 widget = QWidget()

 widget.setLayout(pagelayout)

 self.setCentralWidget(widget)

 def activate_tab_1(self):

 self.stacklayout.setCurrentIndex(0)

 def activate_tab_2(self):

 self.stacklayout.setCurrentIndex(1)

 def activate_tab_3(self):

 self.stacklayout.setCurrentIndex(2)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()

86

 Run it! You’ll can now change the visible widget with the button.

Figure 32. A stack widget, with buttons to control the active widget.

Helpfully, Qt provides a built-in tab widget that provides this kind of layout

out of the box - although it’s actually a widget, not a layout. Below the tab

demo is recreated using QTabWidget — 

87

Listing 33. basic/layout_9.py

import sys

from PyQt5.QtCore import Qt

from PyQt5.QtWidgets import (

 QApplication,

 QLabel,

 QMainWindow,

 QPushButton,

 QTabWidget,

 QWidget,

)

from layout_colorwidget import Color

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 tabs = QTabWidget()

 tabs.setTabPosition(QTabWidget.West)

 tabs.setMovable(True)

 for n, color in enumerate(["red", "green", "blue", "yellow"]):

 tabs.addTab(Color(color), color)

 self.setCentralWidget(tabs)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()

As you can see, it’s a little more straightforward — and a bit more attractive!

You can set the position of the tabs using the cardinal directions and toggle

88

whether tabs are moveable with .setMoveable.

Figure 33. The QTabWidget containing our widgets, with tabs shown on the left

(West). Screenshots show Windows, macOS and Ubuntu appearance.

You’ll notice that the macOS tab bar looks quite different to the others — by

default on macOS tabs take on a pill or bubble style. On macOS this is

typically used for tabbed configuration panels. For documents, you can turn

on document mode to give slimline tabs similar to what you see on other

platforms. This option has no effect on other platforms.

Listing 34. basic/layout_9b.py

 tabs = QTabWidget()

 tabs.setDocumentMode(True)

89

Figure 34. QTabWidget with document mode set to True on macOS.

90

9. Actions, Toolbars & Menus

Next we’ll look at some of the common user interface elements, that you’ve

probably seen in many other applications — toolbars and menus. We’ll also

explore the neat system Qt provides for minimising the duplication between

different UI areas — QAction.

Toolbars

One of the most commonly seen user interface elements is the toolbar.

Toolbars are bars of icons and/or text used to perform common tasks within

an application, for which accessing via a menu would be cumbersome. They

are one of the most common UI features seen in many applications. While

some complex applications, particularly in the Microsoft Office suite, have

migrated to contextual 'ribbon' interfaces, the standard toolbar is sufficient

for the majority of applications you will create.

Figure 35. Standard GUI elements - The toolbar

Qt toolbars support display of icons, text, and can also contain any standard

Qt widget. However, for buttons the best approach is to make use of the

QAction system to place buttons on the toolbar.

Let’s start by adding a toolbar to our application.


Load up a fresh copy of myapp.py and save it under a new

name for this section.

In Qt toolbars are created from the QToolBar class. To start you create an

instance of the class and then call .addToolbar on the QMainWindow. Passing

a string in as the first parameter to QToolBar sets the toolbar’s name, which

will be used to identify the toolbar in the UI.

91

Listing 35. basic/toolbars_and_menus_1.py

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 label = QLabel("Hello!")

 label.setAlignment(Qt.AlignCenter)

 self.setCentralWidget(label)

 toolbar = QToolBar("My main toolbar")

 self.addToolBar(toolbar)

 def onMyToolBarButtonClick(self, s):

 print("click", s)

 Run it! You’ll see a thin grey bar at the top of the window. This is your

toolbar. Right click and click the name to toggle it off.

Figure 36. A window with a toolbar.



I can’t get my toolbar back!?

Unfortunately once you remove a toolbar there is now no

place to right click to re-add it. So as a general rule you want

to either keep one toolbar un-removeable, or provide an

alternative interface to turn toolbars on and off.

Let’s make the toolbar a bit more interesting. We could just add a QButton

92

widget, but there is a better approach in Qt that gets you some cool features

— and that is via QAction. QAction is a class that provides a way to describe

abstract user interfaces. What this means in English, is that you can define

multiple interface elements within a single object, unified by the effect that

interacting with that element has. For example, it is common to have

functions that are represented in the toolbar but also the menu — think of

something like Edit→Cut which is present both in the Edit menu but also on

the toolbar as a pair of scissors, and also through the keyboard shortcut Ctrl-

X (Cmd-X on macOS).

Without QAction you would have to define this in multiple places. But with

QAction you can define a single QAction, defining the triggered action, and

then add this action to both the menu and the toolbar. Each QAction has

names, status messages, icons and signals that you can connect to (and

much more).

See the code below for how to add your first QAction.

93

Listing 36. basic/toolbars_and_menus_2.py

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 label = QLabel("Hello!")

 label.setAlignment(Qt.AlignCenter)

 self.setCentralWidget(label)

 toolbar = QToolBar("My main toolbar")

 self.addToolBar(toolbar)

 button_action = QAction("Your button", self)

 button_action.setStatusTip("This is your button")

 button_action.triggered.connect(self.onMyToolBarButtonClick)

 toolbar.addAction(button_action)

 def onMyToolBarButtonClick(self, s):

 print("click", s)

To start with we create the function that will accept the signal from the

QAction so we can see if it is working. Next we define the QAction itself. When

creating the instance we can pass a label for the action and/or an icon. You

must also pass in any QObject to act as the parent for the action — here we’re

passing self as a reference to our main window. Strangely for QAction the

parent element is passed in as the final parameter.

Next, we can opt to set a status tip — this text will be displayed on the status

bar once we have one. Finally we connect the .triggered signal to the custom

function. This signal will fire whenever the QAction is 'triggered' (or activated).

 Run it! You should see your button with the label that you have

defined. Click on it and the our custom function will emit "click" and the

status of the button.

94

Figure 37. Toolbar showing our QAction button.



Why is the signal always false?

The signal passed indicates whether the action is checked,

and since our button is not checkable — just clickable — it is

always false. This is just like the QPushButton we saw earlier.

Let’s add a statusbar.

We create a status bar object by calling QStatusBar and passing the result into

.setStatusBar. Since we don’t need to change the statusBar settings we can

just pass it in as we create it. We can create and define the status bar in a

single line:

95

Listing 37. basic/toolbars_and_menus_3.py

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 label = QLabel("Hello!")

 label.setAlignment(Qt.AlignCenter)

 self.setCentralWidget(label)

 toolbar = QToolBar("My main toolbar")

 self.addToolBar(toolbar)

 button_action = QAction("Your button", self)

 button_action.setStatusTip("This is your button")

 button_action.triggered.connect(self.onMyToolBarButtonClick)

 toolbar.addAction(button_action)

 self.setStatusBar(QStatusBar(self))

 def onMyToolBarButtonClick(self, s):

 print("click", s)

 Run it! Hover your mouse over the toolbar button and you will see the

status text appear in the status bar at the bottom of the window.

96

Figure 38. Status bar text is updated as we hover our actions.

Next we’re going to turn our QAction toggleable — so clicking will turn it on,

clicking again will turn it off. To do this, we simple call setCheckable(True) on

the QAction object.

97

Listing 38. basic/toolbars_and_menus_4.py

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 label = QLabel("Hello!")

 label.setAlignment(Qt.AlignCenter)

 self.setCentralWidget(label)

 toolbar = QToolBar("My main toolbar")

 self.addToolBar(toolbar)

 button_action = QAction("Your button", self)

 button_action.setStatusTip("This is your button")

 button_action.triggered.connect(self.onMyToolBarButtonClick)

 button_action.setCheckable(True)

 toolbar.addAction(button_action)

 self.setStatusBar(QStatusBar(self))

 def onMyToolBarButtonClick(self, s):

 print("click", s)

 Run it! Click on the button to see it toggle from checked to

unchecked state. Note that custom slot function we create now

alternates outputting True and False.

Figure 39. The toolbar button toggled on.

98



The .toggled signal

There is also a .toggled signal, which only emits a signal when

the button is toggled. But the effect is identical so it is mostly

pointless.

Things look pretty shabby right now — so let’s add an icon to our button. For

this I recommend you download the fugue icon set by designer Yusuke

Kamiyamane. It’s a great set of beautiful 16x16 icons that can give your apps a

nice professional look. It is freely available with only attribution required

when you distribute your application — although I am sure the designer

would appreciate some cash too if you have some spare.

Figure 40. Fugue Icon Set — Yusuke Kamiyamane

Select an image from the set (in the examples here I’ve selected the file

bug.png) and copy it into the same folder as your source code. To add the icon

to the QAction (and therefore the button) we simply pass it in as the first

parameter when creating the QAction. If the icon is in the same folder as your

source code you can just copy it to

You also need to let the toolbar know how large your icons are, otherwise

your icon will be surrounded by a lot of padding. You can do this by calling

.setIconSize() with a QSize object.

99

http://p.yusukekamiyamane.com/
http://p.yusukekamiyamane.com/
http://p.yusukekamiyamane.com/

Listing 39. basic/toolbars_and_menus_5.py

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 label = QLabel("Hello!")

 label.setAlignment(Qt.AlignCenter)

 self.setCentralWidget(label)

 toolbar = QToolBar("My main toolbar")

 toolbar.setIconSize(QSize(16, 16))

 self.addToolBar(toolbar)

 button_action = QAction(QIcon("bug.png"), "Your button", self)

 button_action.setStatusTip("This is your button")

 button_action.triggered.connect(self.onMyToolBarButtonClick)

 button_action.setCheckable(True)

 toolbar.addAction(button_action)

 self.setStatusBar(QStatusBar(self))

 def onMyToolBarButtonClick(self, s):

 print("click", s)

 Run it! The QAction is now represented by an icon.

Everything should function exactly as it did before.

Figure 41. Our action button with an icon.

100

Note that Qt uses your operating system default settings to determine

whether to show an icon, text or an icon and text in the toolbar. But you can

override this by using .setToolButtonStyle. This slot accepts any of the

following flags from the Qt. namespace:

Flag Behaviour

Qt.ToolButtonIconOnly Icon only, no text

Qt.ToolButtonTextOnly Text only, no icon

Qt.ToolButtonTextBesideIcon Icon and text, with text beside the

icon

Qt.ToolButtonTextUnderIcon Icon and text, with text under the

icon

Qt.ToolButtonIconOnly Icon only, no text

Qt.ToolButtonFollowStyle Follow the host desktop style



Which style should I use?

The default value is Qt.ToolButtonFollowStyle, meaning that

your application will default to following the standard/global

setting for the desktop on which the application runs. This is

generally recommended to make your application feel as

native as possible.

Next we’ll add a few more bits and bobs to the toolbar. We’ll add a second

button and a checkbox widget. As mentioned you can literally put any

widget in here, so feel free to go crazy. Don’t worry about the QCheckBox type,

we’ll cover that later.

101

Listing 40. basic/toolbars_and_menus_6.py

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 label = QLabel("Hello!")

 label.setAlignment(Qt.AlignCenter)

 self.setCentralWidget(label)

 toolbar = QToolBar("My main toolbar")

 toolbar.setIconSize(QSize(16, 16))

 self.addToolBar(toolbar)

 button_action = QAction(QIcon("bug.png"), "Your button", self)

 button_action.setStatusTip("This is your button")

 button_action.triggered.connect(self.onMyToolBarButtonClick)

 button_action.setCheckable(True)

 toolbar.addAction(button_action)

 toolbar.addSeparator()

 button_action2 = QAction(QIcon("bug.png"), "Your button2",

self)

 button_action2.setStatusTip("This is your button2")

 button_action2.triggered.connect(self.onMyToolBarButtonClick)

 button_action2.setCheckable(True)

 toolbar.addAction(button_action)

 toolbar.addWidget(QLabel("Hello"))

 toolbar.addWidget(QCheckBox())

 self.setStatusBar(QStatusBar(self))

 def onMyToolBarButtonClick(self, s):

 print("click", s)

102

 Run it! Now you see multiple buttons and a checkbox.

Figure 42. Toolbar with an action and two widgets.

Menus

Menus are another standard component of UIs. Typically they are on the top

of the window, or the top of a screen on macOS. They allow access to all

standard application functions. A few standard menus exist — for example

File, Edit, Help. Menus can be nested to create hierarchical trees of functions

and they often support and display keyboard shortcuts for fast access to their

functions.

Figure 43. Standard GUI elements - Menus

To create a menu, we create a menubar we call .menuBar() on the

QMainWindow. We add a menu on our menu bar by calling .addMenu(),

passing in the name of the menu. I’ve called it '&File'. The ampersand

103

defines a quick key to jump to this menu when pressing Alt.


Quick Keys on macOS

This won’t be visible on macOS. Note that this is different to a

keyboard shortcut — we’ll cover that shortly.

This is where the power of actions comes in to play. We can reuse the already

existing QAction to add the same function to the menu. To add an action you

call .addAction passing in one of our defined actions.

Listing 41. basic/toolbars_and_menus_7.py

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 label = QLabel("Hello!")

 label.setAlignment(Qt.AlignCenter)

 self.setCentralWidget(label)

 toolbar = QToolBar("My main toolbar")

 toolbar.setIconSize(QSize(16, 16))

 self.addToolBar(toolbar)

 button_action = QAction(QIcon("bug.png"), "&Your button",

self)

 button_action.setStatusTip("This is your button")

 button_action.triggered.connect(self.onMyToolBarButtonClick)

 button_action.setCheckable(True)

 toolbar.addAction(button_action)

 toolbar.addSeparator()

 button_action2 = QAction(QIcon("bug.png"), "Your &button2",

self)

 button_action2.setStatusTip("This is your button2")

 button_action2.triggered.connect(self.onMyToolBarButtonClick)

 button_action2.setCheckable(True)

104

 toolbar.addAction(button_action)

 toolbar.addWidget(QLabel("Hello"))

 toolbar.addWidget(QCheckBox())

 self.setStatusBar(QStatusBar(self))

 menu = self.menuBar()

 file_menu = menu.addMenu("&File")

 file_menu.addAction(button_action)

 def onMyToolBarButtonClick(self, s):

 print("click", s)

Click the item in the menu and you will notice that it is toggleable — it

inherits the features of the QAction.

Figure 44. Menu shown on the window — on macOS this will be at the top of the

screen.

Let’s add some more things to the menu. Here we’ll add a separator to the

menu, which will appear as a horizontal line in the menu, and then add the

105

second QAction we created.

Listing 42. basic/toolbars_and_menus_8.py

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 label = QLabel("Hello!")

 label.setAlignment(Qt.AlignCenter)

 self.setCentralWidget(label)

 toolbar = QToolBar("My main toolbar")

 toolbar.setIconSize(QSize(16, 16))

 self.addToolBar(toolbar)

 button_action = QAction(QIcon("bug.png"), "&Your button",

self)

 button_action.setStatusTip("This is your button")

 button_action.triggered.connect(self.onMyToolBarButtonClick)

 button_action.setCheckable(True)

 toolbar.addAction(button_action)

 toolbar.addSeparator()

 button_action2 = QAction(QIcon("bug.png"), "Your &button2",

self)

 button_action2.setStatusTip("This is your button2")

 button_action2.triggered.connect(self.onMyToolBarButtonClick)

 button_action2.setCheckable(True)

 toolbar.addAction(button_action)

 toolbar.addWidget(QLabel("Hello"))

 toolbar.addWidget(QCheckBox())

 self.setStatusBar(QStatusBar(self))

 menu = self.menuBar()

 file_menu = menu.addMenu("&File")

106

 file_menu.addAction(button_action)

 file_menu.addSeparator()

 file_menu.addAction(button_action2)

 def onMyToolBarButtonClick(self, s):

 print("click", s)

 Run it! You should see two menu items with a line between them.

Figure 45. Our actions showing in the menu.

You can also use ampersand to add accelerator keys to the menu to allow a

single key to be used to jump to a menu item when it is open. Again this

doesn’t work on macOS.

To add a submenu, you simply create a new menu by calling addMenu() on the

parent menu. You can then add actions to it as normal. For example:

Listing 43. /toolbars_and_menus_9.py

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 label = QLabel("Hello!")

 label.setAlignment(Qt.AlignCenter)

107

 self.setCentralWidget(label)

 toolbar = QToolBar("My main toolbar")

 toolbar.setIconSize(QSize(16, 16))

 self.addToolBar(toolbar)

 button_action = QAction(QIcon("bug.png"), "&Your button",

self)

 button_action.setStatusTip("This is your button")

 button_action.triggered.connect(self.onMyToolBarButtonClick)

 button_action.setCheckable(True)

 toolbar.addAction(button_action)

 toolbar.addSeparator()

 button_action2 = QAction(QIcon("bug.png"), "Your &button2",

self)

 button_action2.setStatusTip("This is your button2")

 button_action2.triggered.connect(self.onMyToolBarButtonClick)

 button_action2.setCheckable(True)

 toolbar.addAction(button_action)

 toolbar.addWidget(QLabel("Hello"))

 toolbar.addWidget(QCheckBox())

 self.setStatusBar(QStatusBar(self))

 menu = self.menuBar()

 file_menu = menu.addMenu("&File")

 file_menu.addAction(button_action)

 file_menu.addSeparator()

 file_submenu = file_menu.addMenu("Submenu")

 file_submenu.addAction(button_action2)

 def onMyToolBarButtonClick(self, s):

 print("click", s)

108

Figure 46. Submenu nested in the File menu.

Finally we’ll add a keyboard shortcut to the QAction. You define a keyboard

shortcut by passing setKeySequence() and passing in the key sequence. Any

defined key sequences will appear in the menu.



Hidden shortcuts

Note that the keyboard shortcut is associated with the

QAction and will still work whether or not the QAction is added

to a menu or a toolbar.

Key sequences can be defined in multiple ways - either by passing as text,

using key names from the Qt namespace, or using the defined key

sequences from the Qt namespace. Use the latter wherever you can to

ensure compliance with the operating system standards.

The completed code, showing the toolbar buttons and menus is shown

below.

Listing 44. /toolbars_and_menus_end.py

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 label = QLabel("Hello!")

109

 # The `Qt` namespace has a lot of attributes to customize

 # widgets. See: http://doc.qt.io/qt-5/qt.html

 label.setAlignment(Qt.AlignCenter)

 # Set the central widget of the Window. Widget will expand

 # to take up all the space in the window by default.

 self.setCentralWidget(label)

 toolbar = QToolBar("My main toolbar")

 toolbar.setIconSize(QSize(16, 16))

 self.addToolBar(toolbar)

 button_action = QAction(QIcon("bug.png"), "&Your button",

self)

 button_action.setStatusTip("This is your button")

 button_action.triggered.connect(self.onMyToolBarButtonClick)

 button_action.setCheckable(True)

 # You can enter keyboard shortcuts using key names (e.g.

Ctrl+p)

 # Qt.namespace identifiers (e.g. Qt.CTRL + Qt.Key_P)

 # or system agnostic identifiers (e.g. QKeySequence.Print)

 button_action.setShortcut(QKeySequence("Ctrl+p"))

 toolbar.addAction(button_action)

 toolbar.addSeparator()

 button_action2 = QAction(QIcon("bug.png"), "Your &button2",

self)

 button_action2.setStatusTip("This is your button2")

 button_action2.triggered.connect(self.onMyToolBarButtonClick)

 button_action2.setCheckable(True)

 toolbar.addAction(button_action)

 toolbar.addWidget(QLabel("Hello"))

 toolbar.addWidget(QCheckBox())

 self.setStatusBar(QStatusBar(self))

 menu = self.menuBar()

 file_menu = menu.addMenu("&File")

 file_menu.addAction(button_action)

110

 file_menu.addSeparator()

 file_submenu = file_menu.addMenu("Submenu")

 file_submenu.addAction(button_action2)

 def onMyToolBarButtonClick(self, s):

 print("click", s)

111

 Organising menus & toolbars

If your users can’t find your application’s actions, they can’t use your

app to it’s full potential. Making actions discoverable is key to creating a

user-friendly application. It is a common mistake to try and address this

by adding actions everywhere and end up overwhelming and

confusing your users.

Put common and necessary actions first, making sure they are easy to

find and recall. Think of the File › Save in most editing applications.

Quickly accessible at the top of the File menu and bound with a simple

keyboard shortcut Ctrl  +  S . If Save file… was accessible through File ›

Common operations › File operations › Active document › Save or

the shortcut Ctrl  +  Alt  +  J users would have a harder time finding it, a

harder time using it, and be less likely to save their documents.

Arrange actions into logical groups. It is easier to find something

among a small number of alternatives, than in a long list. It’s even

easier to find if it is among similar things.

Figure 47. Grouped toolbars in Qt Designer.

Avoid replicating actions in multiple menus, as this introduces an

ambiguity of "do these do the same thing?" even if they have an

identical label. Lastly, don’t be tempted to simplify menus by

hiding/removing entries dynamically. This leads to confusion as users

hunt for something that doesn’t exist "…it was here a minute ago".

Different states should be indicated by disabling menu items or

separate windows and dialogs.

112

 DO

• Organize your menus into a logical hierarchy.

• Replicate the most common functions onto your toolbars.

• Group toolbar actions logically.

• Disable items in menus when they can’t be used.

 DON’T

• Add the same action to multiple menus.

• Add all your menu actions onto the toolbar.

• Use different names or icons for the same action in different places.

• Remove items from your menus — disable them instead.

113

10. Dialogs

Dialogs are useful GUI components that allow you to communicate with the

user (hence the name dialog). They are commonly used for file Open/Save,

settings, preferences, or for functions that do not fit into the main UI of the

application. They are small modal (or blocking) windows that sit in front of

the main application until they are dismissed. Qt actually provides a number

of 'special' dialogs for the most common use-cases, allowing you to provide a

platform-native experience for a better user experience.

Figure 48. Standard GUI features — A search dialog

Figure 49. Standard GUI features — A file Open dialog

In Qt dialog boxes are handled by the QDialog class. To create a new dialog

box simply create a new object of QDialog type passing in a parent widget, e.g.

QMainWindow, as its parent.

Let’s create our own QDialog. We’ll start with a simple skeleton app with a

button to press hooked up to a slot method.

114

Listing 45. basic/dialogs_1.py

import sys

from PyQt5.QtWidgets import QApplication, QMainWindow, QPushButton

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 button = QPushButton("Press me for a dialog!")

 button.clicked.connect(self.button_clicked)

 self.setCentralWidget(button)

 def button_clicked(self, s):

 print("click", s)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()

In the slot button_clicked (which receives the signal from the button press) we

create the dialog instance, passing our QMainWindow instance as a parent. This

will make the dialog a modal window of QMainWindow. This means the dialog

will completely block interaction with the parent window.

115

Listing 46. basic/dialogs_1.py

import sys

from PyQt5.QtWidgets import QApplication, QDialog, QMainWindow,

QPushButton

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("My App")

 button = QPushButton("Press me for a dialog!")

 button.clicked.connect(self.button_clicked)

 self.setCentralWidget(button)

 # end::__init__[]

 # def __init__ etc.

 # ... not shown for clarity

 def button_clicked(self, s):

 print("click", s)

 dlg = QDialog(self)

 dlg.setWindowTitle("HELLO!")

 dlg.exec_()

end::MainWindow[]

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()

116

 Run it! Click the button and you’ll see an empty dialog appear.

Once we have created the dialog, we start it using .exec_() - just like we did

for QApplication to create the main event loop of our application. That’s not a

coincidence: when you exec the QDialog an entirely new event loop - specific

for the dialog - is created.



One event loop to rule them all

Remember I said there can only be one Qt event loop

running at any time? I meant it! The QDialog completely

blocks your application execution. Don’t start a dialog and

expect anything else to happen anywhere else in your app.

We’ll see later how you can use multithreading to get you

out of this pickle.

Figure 50. Our empty dialog overlaying the window.

Like our very first window, this isn’t very interesting. Let’s fix that by adding a

dialog title and a set of OK and Cancel buttons to allow the user to accept or

reject the modal.

To customize the QDialog we can subclass it.

117

Listing 47. basic/dialogs_2.py

class CustomDialog(QDialog):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("HELLO!")

 QBtn = QDialogButtonBox.Ok | QDialogButtonBox.Cancel

 self.buttonBox = QDialogButtonBox(QBtn)

 self.buttonBox.accepted.connect(self.accept)

 self.buttonBox.rejected.connect(self.reject)

 self.layout = QVBoxLayout()

 message = QLabel("Something happened, is that OK?")

 self.layout.addWidget(message)

 self.layout.addWidget(self.buttonBox)

 self.setLayout(self.layout)

In the above code, we first create our subclass of QDialog which we’ve called

CustomDialog. As for the QMainWindow we customize it within the __init__ block

to ensure that our customizations are created as the object is created. First

we set a title for the QDialog using .setWindowTitle(), exactly the same as we

did for our main window.

The next block of code is concerned with creating and displaying the dialog

buttons. This is probably a bit more involved than you were expecting.

However, this is due to Qt’s flexibility in handling dialog button positioning

on different platforms.



Easy way out?

You could of course choose to ignore this and use a standard

QButton in a layout, but the approach outlined here ensures

that your dialog respects the host desktop standards (OK on

left vs. right for example). Messing around with these

behaviors can be incredibly annoying to your users, so I

wouldn’t recommend it.

118

The first step in creating a dialog button box is to define the buttons want to

show, using namespace attributes from QDialogButtonBox. The full list of

buttons available is below:

119

Table 1. QDialogButtonBox available button types.

Button types

QDialogButtonBox.Ok

QDialogButtonBox.Open

QDialogButtonBox.Save

QDialogButtonBox.Cancel

QDialogButtonBox.Close

QDialogButtonBox.Discard

QDialogButtonBox.Apply

QDialogButtonBox.Reset

QDialogButtonBox.RestoreDefaults

QDialogButtonBox.Help

QDialogButtonBox.SaveAll

QDialogButtonBox.Yes

QDialogButtonBox.YesToAll

QDialogButtonBox.No

QDialogButtonBox.NoToAll

QDialogButtonBox.Abort

QDialogButtonBox.Retry

QDialogButtonBox.Ignore

QDialogButtonBox.NoButton

These should be sufficient to create any dialog box you can think of. You can

construct a line of multiple buttons by OR-ing them together using a pipe (|).

Qt will handle the order automatically, according to platform standards. For

example, to show an OK and a Cancel button we used:

buttons = QDialogButtonBox.Ok | QDialogButtonBox.Cancel

120

The variable buttons now contains an integer value representing those two

buttons. Next, we must create the QDialogButtonBox instance to hold the

buttons. The flag for the buttons to display is passed in as the first parameter.

To make the buttons have any effect, you must connect the correct

QDialogButtonBox signals to the slots on the dialog. In our case we’ve

connected the .accepted and .rejected signals from the QDialogButtonBox to

the handlers for .accept() and .reject() on our subclass of QDialog.

Lastly, to make the QDialogButtonBox appear in our dialog box we must add it

to the dialog layout. So, as for the main window we create a layout, and add

our QDialogButtonBox to it (QDialogButtonBox is a widget), and then set that

layout on our dialog.

Finally, we launch the CustomDialog in our MainWindow.button_clicked slot.

Listing 48. basic/dialogs_2.py

 def button_clicked(self, s):

 print("click", s)

 dlg = CustomDialog(self)

 if dlg.exec_():

 print("Success!")

 else:

 print("Cancel!")

 Run it! Click to launch the dialog and you will see a dialog box with

buttons in it.

121

Figure 51. Our dialog with a label and buttons.

Congratulations! You’ve created your first dialog box. Of course, you can

continue to add any other content to the dialog box that you like. Simply

insert it into the layout as normal.

Simple message dialogs with QMessageBox

There are many dialogs which follow the simple pattern we just saw — a

message with buttons with which you can accept or cancel the dialog. While

you can construct these dialogs yourself, Qt also provides a built-in message

dialog class called QMessageBox. This can be used to create information,

warning, about or question dialogs.

The example below creates a simple QMessageBox and shows it.

Listing 49. basic/dialogs_3.py

 def button_clicked(self, s):

 dlg = QMessageBox(self)

 dlg.setWindowTitle("I have a question!")

 dlg.setText("This is a simple dialog")

 button = dlg.exec_()

 if button == QMessageBox.Ok:

 print("OK!")

 Run it! You’ll see a simple dialog with an OK button.

122

Figure 52. A QMessageBox dialog.

As with the dialog button box we looked at already, the buttons shown on a

QMessageBox are also configured with a set of constants which can be

combined with | to show multiple buttons. The full list of available button

types is shown below.

Table 2. QMessageBox available button types.

Button types

QMessageBox.Ok

QMessageBox.Open

QMessageBox.Save

QMessageBox.Cancel

QMessageBox.Close

QMessageBox.Discard

QMessageBox.Apply

QMessageBox.Reset

QMessageBox.RestoreDefaults

QMessageBox.Help

QMessageBox.SaveAll

QMessageBox.Yes

QMessageBox.YesToAll

QMessageBox.No

QMessageBox.NoToAll

QMessageBox.Abort

123

Button types

QMessageBox.Retry

QMessageBox.Ignore

QMessageBox.NoButton

You can also tweak the icon shown on the dialog by setting the icon with one

of the following.

Table 3. QMessageBox icon constants.

Icon state Description

QMessageBox.NoIcon The message box does not have an

icon.

QMessageBox.Question The message is asking a question.

QMessageBox.Information The message is informational only.

QMessageBox.Warning The message is warning.

QMessageBox.Critical The message indicates a critical

problem.

For example, the following creates a question dialog with Yes and No

buttons.

124

Listing 50. basic/dialogs_4.py

from PyQt5.QtWidgets import QApplication, QDialog, QMainWindow,

QMessageBox, QPushButton

class MainWindow(QMainWindow):

 # __init__ skipped for clarity

 def button_clicked(self, s):

 dlg = QMessageBox(self)

 dlg.setWindowTitle("I have a question!")

 dlg.setText("This is a question dialog")

 dlg.setStandardButtons(QMessageBox.Yes | QMessageBox.No)

 dlg.setIcon(QMessageBox.Question)

 button = dlg.exec_()

 if button == QMessageBox.Yes:

 print("Yes!")

 else:

 print("No!")

 Run it! You’ll see a question dialog with Yes and No buttons.

Figure 53. Question dialog created using QMessageBox.

Built in QMessageBox dialogs

To make things even simpler the QMessageBox has a number of methods which

can be used to construct these types of message dialog. These methods are

shown below — 

125

QMessageBox.about(parent, title, message)

QMessageBox.critical(parent, title, message)

QMessageBox.information(parent, title, message)

QMessageBox.question(parent, title, message)

QMessageBox.warning(parent, title, message)

The parent parameter is the window which the dialog will be a child of. If

you’re launching your dialog from your main window, you can just pass in

self. The following example creates a question dialog, as before, with Yes and

No buttons.

Listing 51. basic/dialogs_5.py

 def button_clicked(self, s):

 button = QMessageBox.question(self, "Question dialog", "The

longer message")

 if button == QMessageBox.Yes:

 print("Yes!")

 else:

 print("No!")

 Run it! You’ll see the same result, this time using the built in

.question() method.

Figure 54. The built-in question dialog.

Notice that rather than call exec() we now simply call the dialog method and

the dialog is created. The return value of each of the methods is the button

126

which was pressed. We can detect what has been pressed by comparing the

return value to the button constants.

The four information, question, warning and critical methods also accept

optional buttons and defaultButton arguments which can be used to tweak

the buttons shown on the dialog and select one by default. Generally though

you don’t want to change this from the default.

Listing 52. basic/dialogs_6.py

 def button_clicked(self, s):

 button = QMessageBox.critical(

 self,

 "Oh dear!",

 "Something went very wrong.",

 buttons=QMessageBox.Discard | QMessageBox.NoToAll |

QMessageBox.Ignore,

 defaultButton=QMessageBox.Discard,

)

 if button == QMessageBox.Yes:

 print("Yes!")

 else:

 print("No!")

 Run it! You’ll see a critical dialog with customized buttons.

Figure 55. Critical error! This is a terrible dialog.

For most situations these simple dialogs are all you need.

127

 Dialogs

It’s particularly easy to create bad dialogs. From dialogs that trap users

with confusing options to nested never-ending popups. There are

plenty of ways to hurt your users.

Figure 56. Some examples of bad dialogs.[2]

Dialog buttons are defined by system standards. You may never have

noticed that the OK & Cancel buttons are in different locations on

macOS & Linux vs. Windows, but your brain did. If you do not follow

system standards, you’ll confuse your users, and make them make

mistakes.

Figure 57. Dialog button order is platform dependent.

With Qt you get this consistency for free when using the built-in

QDialogButtonBox controls. But you must use them!

Error dialogs annoy users. When you show an error dialog you’re giving

your users bad news. When you give someone bad news, you need to

consider the impact it will have on them.

Take for example this (thankfully imaginary) dialog produced when we

encounter an error in a document. The dialog tells you there is a error,

but neither what the consequences are or what to do about it. Reading

this your users will ask (possibly scream) "…and now what?"

128

Figure 58. An example of a bad error dialog.

This real dialog from Acrobat Reader DC is better. This explains that

there is an error, what the consequences may be, and potentially how

to resolve it.

Figure 59. Adobe Acrobat Reader DC dialog

But this still isn’t perfect. The error is shown as an information dialog,

which doesn’t suggest anything is wrong. The error is fired on every

page, and can appear multiple times in a document — a warning dialog

should be fired only once. The error could also be improved by making

it clear that the error is permanent.

Figure 60. An improved version of the Adobe Acrobat Reader DC dialog



Good error messages should explain.

☐ What happened

☐ What was affected

☐ What are the consequences of it

☐ What can be done about it

129

11. Windows

In the previous chapter we looked at how to open dialog windows. These are

special windows which (by default) grab the focus of the user, and run their

own event loop, effectively blocking the execution of the rest of your app.

However, quite often you will want to open a second window in an

application, without blocking the main window – for example, to show the

output of some long-running process, or to display graphs or other

visualizations. Alternatively, you may want to create an application that

allows you to work on multiple documents at once, all in their own windows.

It’s relatively straightforward to open new windows in PyQt5, but there are a

few things to keep in mind to make sure they work well. In this tutorial we’ll

step through how to create a new window and how to show and hide

external windows on demand.

Creating a new window

To create a new window in PyQt5 you just need to create a new instance of a

widget object without a parent. This can be any widget (technically any

subclass of QWidget) including another QMainWindow if you prefer.


There is no restriction on the number of QMainWindow instances

you can have, and if you need toolbars or menus on your

second window you will need to use QMainWindow for that too.

As with your main window, creating a window is not sufficient, you must also

show it.

Listing 53. basic/windows_1.py

import sys

from PyQt5.QtWidgets import (

 QApplication,

 QLabel,

130

 QMainWindow,

 QPushButton,

 QVBoxLayout,

 QWidget,

)

class AnotherWindow(QWidget):

 """

 This "window" is a QWidget. If it has no parent, it

 will appear as a free-floating window as we want.

 """

 def __init__(self):

 super().__init__()

 layout = QVBoxLayout()

 self.label = QLabel("Another Window")

 layout.addWidget(self.label)

 self.setLayout(layout)

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.button = QPushButton("Push for Window")

 self.button.clicked.connect(self.show_new_window)

 self.setCentralWidget(self.button)

 def show_new_window(self, checked):

 w = AnotherWindow()

 w.show()

app = QApplication(sys.argv)

w = MainWindow()

w.show()

app.exec_()

If you run this, you’ll see the main window. Clicking the button may show the

second window, but if you see it it will only be visible for a fraction of a

second. What’s happening?

131

 def show_new_window(self, checked):

 w = AnotherWindow()

 w.show()

We are creating our second window inside this method, storing it in the

variable w and showing it. However, once we leave this method the w variable

will be cleaned up by Python, and the window destroyed. To fix this we need

to keep a reference to the window somewhere — on the main window self

object, for example.

Listing 54. basic/windows_1b.py

 def show_new_window(self, checked):

 self.w = AnotherWindow()

 self.w.show()

Now, when you click the button to show the new window, it will persist.

Figure 61. The second window persisting.

However, what happens if you click the button again? The window will be re-

created! This new window will replace the old in the self.w variable, and the

previous window will be destroyed. You can see this more clearly if you

change the AnotherWindow definition to show a random number in the label

each time it is created.

132

Listing 55. basic/windows_2.py

from random import randint

class AnotherWindow(QWidget):

 """

 This "window" is a QWidget. If it has no parent, it

 will appear as a free-floating window as we want.

 """

 def __init__(self):

 super().__init__()

 layout = QVBoxLayout()

 self.label = QLabel("Another Window % d" % randint(0, 100))

 layout.addWidget(self.label)

 self.setLayout(layout)

The init block is only run when creating the window. If you keep clicking the

button the number will change, showing that the window is being re-

created.

Figure 62. The number will change if the button is pressed again.

One solution is to simply check whether the window has already being

created before creating it. The full example below shows this in action

133

Listing 56. basic/windows_3.py

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.w = None # No external window yet.

 self.button = QPushButton("Push for Window")

 self.button.clicked.connect(self.show_new_window)

 self.setCentralWidget(self.button)

 def show_new_window(self, checked):

 if self.w is None:

 self.w = AnotherWindow()

 self.w.show()

This approach is fine for windows that you create temporarily, or need to

change dependent on the current state of the program – for example if you

want to show a particular plot, or log output. However, for many applications

you have a number of standard windows that you want to be able to

show/hide on demand.

In the next part we’ll look at how to work with these types of windows.

Closing a window

As we previously saw, if no reference to a window is kept, it will be discarded

(and closed). We can use this behavior to close a window, replacing the

show_new_window method from the previous example with –

Listing 57. basic/windows_4.py

 def show_new_window(self, checked):

 if self.w is None:

 self.w = AnotherWindow()

 self.w.show()

 else:

 self.w = None # Discard reference, close window.

134

By setting self.w to None (or any other value) the reference to the window will

be lost, and the window will close. However, if we set it to any other value

than None the first test will not pass, and we will not be able to recreate a

window.

This will only work if you have not kept a reference to this window

somewhere else. To make sure the window closes regardless, you may want

to explicitly call .close() on it.

Listing 58. basic/windows_4b.py

 def show_new_window(self, checked):

 if self.w is None:

 self.w = AnotherWindow()

 self.w.show()

 else:

 self.w.close()

 self.w = None # Discard reference, close window.

Persistent windows

So far we’ve looked at how to create new windows on demand. However,

sometimes you have a number of standard application windows. In this case

it can often make more sense to create the additional windows first, then use

.show() to display them when needed.

In the following example we create our external window in the __init__ block

for the main window, and then our show_new_window method simply calls

self.w.show() to display it.

Listing 59. basic/windows_5.py

import sys

from random import randint

from PyQt5.QtWidgets import (

 QApplication,

 QLabel,

135

 QMainWindow,

 QPushButton,

 QVBoxLayout,

 QWidget,

)

class AnotherWindow(QWidget):

 """

 This "window" is a QWidget. If it has no parent, it

 will appear as a free-floating window as we want.

 """

 def __init__(self):

 super().__init__()

 layout = QVBoxLayout()

 self.label = QLabel("Another Window % d" % randint(0, 100))

 layout.addWidget(self.label)

 self.setLayout(layout)

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.w = AnotherWindow()

 self.button = QPushButton("Push for Window")

 self.button.clicked.connect(self.show_new_window)

 self.setCentralWidget(self.button)

 def show_new_window(self, checked):

 self.w.show()

app = QApplication(sys.argv)

w = MainWindow()

w.show()

app.exec_()

If you run this, clicking on the button will show the window as before. Note

that the window is only created once and calling .show() on an already visible

window has no effect.

136

Showing & hiding windows

Once you have created a persistent window you can show and hide it

without recreating it. Once hidden the window still exists, but will not be

visible and accept mouse/other input. However you can continue to call

methods on the window and update it’s state – including changing it’s

appearance. Once re-shown any changes will be visible.

Below we update our main window to create a toggle_window method which

checks, using .isVisible() to see if the window is currently visible. If it is not, it

is shown using .show() , if it is already visible we hide it with .hide().

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.w = AnotherWindow()

 self.button = QPushButton("Push for Window")

 self.button.clicked.connect(self.toggle_window)

 self.setCentralWidget(self.button)

 def toggle_window(self, checked):

 if self.w.isVisible():

 self.w.hide()

 else:

 self.w.show()

The complete working example of this persistent window and toggling the

show/hide state is shown below.

Listing 60. basic/windows_6.py

import sys

from random import randint

from PyQt5.QtWidgets import (

 QApplication,

 QLabel,

137

 QMainWindow,

 QPushButton,

 QVBoxLayout,

 QWidget,

)

class AnotherWindow(QWidget):

 """

 This "window" is a QWidget. If it has no parent, it

 will appear as a free-floating window as we want.

 """

 def __init__(self):

 super().__init__()

 layout = QVBoxLayout()

 self.label = QLabel("Another Window % d" % randint(0, 100))

 layout.addWidget(self.label)

 self.setLayout(layout)

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.w = AnotherWindow()

 self.button = QPushButton("Push for Window")

 self.button.clicked.connect(self.show_new_window)

 self.setCentralWidget(self.button)

 def show_new_window(self, checked):

 self.w.show()

app = QApplication(sys.argv)

w = MainWindow()

w.show()

app.exec_()

Again, the window is only created once – the window’s __init__ block is not

re-run (so the number in the label does not change) each time the window is

re-shown.

138

12. Events

Every interaction the user has with a Qt application is an event. There are

many types of event, each representing a different type of interaction. Qt

represents these events using event objects which package up information

about what happened. These events are passed to specific event handlers on

the widget where the interaction occurred.

By defining custom, or extended event handlers you can alter the way your

widgets respond to these events. Event handlers are defined just like any

other method, but the name is specific for the type of event they handle.

One of the main events which widgets receive is the QMouseEvent.

QMouseEvent events are created for each and every mouse movement and

button click on a widget. The following event handlers are available for

handling mouse events — 

Event handler Event type moved

mouseMoveEvent Mouse moved

mousePressEvent Mouse button pressed

mouseReleaseEvent Mouse button released

mouseDoubleClickEvent Double click detected

For example, clicking on a widget will cause a QMouseEvent to be sent to the

.mousePressEvent event handler on that widget. This handler can use the event

object to find out information about what happened, such as what triggered

the event and where specifically it occurred.

You can intercept events by sub-classing and overriding the handler method

on the class. You can choose to filter, modify, or ignore events, passing them

up to the normal handler for the event by calling the parent class function

with super(). These could be added to your main window class as follows. In

each case e will receive the incoming event.

139

Listing 61. basic/events_1.py

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.label = QLabel("Click in this window")

 self.setCentralWidget(self.label)

 def mouseMoveEvent(self, e):

 self.label.setText("mouseMoveEvent")

 def mousePressEvent(self, e):

 self.label.setText("mousePressEvent")

 def mouseReleaseEvent(self, e):

 self.label.setText("mouseReleaseEvent")

 def mouseDoubleClickEvent(self, e):

 self.label.setText("mouseDoubleClickEvent")

 Run it! Try moving and clicking (and double-clicking) in the window

and watch the events appear.

You’ll notice that mouse move events are only registered when you have the

button pressed down. You can change this by calling

self.setMouseTracking(True) on the window. You may also notice that the

press (click) and double-click events both fire when the button is pressed

down. Only the release event fires when the button is released. Typically to

register a click from a user you should watch for both the mouse down and

the release.

Inside the event handlers you have access to an event object. This object

contains information about the event and can be used to respond differently

depending on what exactly has occurred. We’ll look at the mouse event

objects next.

140

Mouse events

All mouse events in Qt are tracked with the QMouseEvent object, with

information about the event being readable from the following event

methods.

Method Returns

.button() Specific button that trigger this event

.buttons() State of all mouse buttons (OR’ed

flags)

.globalPos() Application-global position as a

QPoint

.globalX() Application-global horizontal X

position

.globalY() Application-global vertical Y position

.pos() Widget-relative position as a QPoint

integer

.posF() Widget-relative position as a QPointF

float

You can use these methods within an event handler to respond to different

events differently, or ignore them completely. The positional methods

provide both global and local (widget-relative) position information as QPoint

objects, while buttons are reported using the mouse button types from the

Qt namespace.

For example, the following allows us to respond differently to a left, right or

middle click on the window.

141

Listing 62. basic/events_2.py

 def mousePressEvent(self, e):

 if e.button() == Qt.LeftButton:

 # handle the left-button press in here

 self.label.setText("mousePressEvent LEFT")

 elif e.button() == Qt.MiddleButton:

 # handle the middle-button press in here.

 self.label.setText("mousePressEvent MIDDLE")

 elif e.button() == Qt.RightButton:

 # handle the right-button press in here.

 self.label.setText("mousePressEvent RIGHT")

 def mouseReleaseEvent(self, e):

 if e.button() == Qt.LeftButton:

 self.label.setText("mouseReleaseEvent LEFT")

 elif e.button() == Qt.MiddleButton:

 self.label.setText("mouseReleaseEvent MIDDLE")

 elif e.button() == Qt.RightButton:

 self.label.setText("mouseReleaseEvent RIGHT")

 def mouseDoubleClickEvent(self, e):

 if e.button() == Qt.LeftButton:

 self.label.setText("mouseDoubleClickEvent LEFT")

 elif e.button() == Qt.MiddleButton:

 self.label.setText("mouseDoubleClickEvent MIDDLE")

 elif e.button() == Qt.RightButton:

 self.label.setText("mouseDoubleClickEvent RIGHT")



On right-handed mice the left and right button positions are

reversed, i.e. pressing the right-most button will return

Qt.LeftButton. This means you don’t need to account for the

mouse orientation in your code.

142

The button identifiers are defined in the Qt namespace, as follows — 

Identifier Value (binary) Represents

Qt.NoButton 0 (000) No button pressed, or

the event is not related

to button press.

Qt.LeftButton 1 (001) The left button is

pressed

Qt.RightButton 2 (010) The right button is

pressed.

Qt.MiddleButton 4 (100) The middle button is

pressed.


For a more in-depth look at how this all works check out

Enums & the Qt Namespace later.

Context menus

Context menus are small context-sensitive menus which typically appear

when right clicking on a window. Qt has support for generating these

menus, and widgets have a specific event used to trigger them. In the

following example we’re going to intercept the .contextMenuEvent a

QMainWindow. This event is fired whenever a context menu is about to be

shown, and is passed a single value event of type QContextMenuEvent.

To intercept the event, we simply override the object method with our new

method of the same name. So in this case we can create a method on our

MainWindow subclass with the name contextMenuEvent and it will receive all

events of this type.

143

Listing 63. basic/events_3.py

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 def contextMenuEvent(self, e):

 context = QMenu(self)

 context.addAction(QAction("test 1", self))

 context.addAction(QAction("test 2", self))

 context.addAction(QAction("test 3", self))

 context.exec_(e.globalPos())

If you run the above code and right-click within the window, you’ll see a

context menu appear. You can set up .triggered slots on your menu actions

as normal (and re-use actions defined for menus and toolbars).



When passing the initial position to the exec_ function, this

must be relative to the parent passed in while defining. In

this case we pass self as the parent, so we can use the global

position.

Just for completeness, there is actually a signal-based approach to creating

context menus.

144

Listing 64. basic/events_4.py

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.show()

 self.setContextMenuPolicy(Qt.CustomContextMenu)

 self.customContextMenuRequested.connect(self.on_context_menu)

 def on_context_menu(self, pos):

 context = QMenu(self)

 context.addAction(QAction("test 1", self))

 context.addAction(QAction("test 2", self))

 context.addAction(QAction("test 3", self))

 context.exec_(self.mapToGlobal(pos))

It’s entirely up to you which you choose.

Event hierarchy

In pyqt5 every widget is part of two distinct hierarchies: the Python object

hierarchy, and the Qt layout hierarchy. How you respond or ignore events can

affect how your UI behaves.

Python inheritance forwarding

Often you may want to intercept an event, do something with it, yet still

trigger the default event handling behavior. If your object is inherited from a

standard widget, it will likely have sensible behavior implemented by default.

You can trigger this by calling up to the parent implementation using

super().

 This is the Python parent class, not the pyqt5 .parent().

145

def mousePressEvent(self, event):

 print("Mouse pressed!")

 super(self, MainWindow).contextMenuEvent(event)

The event will continue to behave as normal, yet you’ve added some non-

interfering behavior.

Layout forwarding

When you add a widget to your application, it also gets another parent from

the layout. The parent of a widget can be found by calling .parent().

Sometimes you specific these parents manually, such as for QMenu or QDialog,

often it is automatic. When you add a widget to your main window for

example, the main window will become it’s parent.

When events are created for user interaction with the UI, these events are

passed to the uppermost widget in the UI. So, if you have a button on a

window, and click the button, the button will receive the event first.

The the first widget cannot handle the event, or chooses not to, the event will

bubble up to the parent widget, which will be given a turn. This bubbling

continues all the way up nested widgets, until the event is handled or it

reaches the main window.

In your own event handlers you can choose to mark an event as handled

calling .accept() — 

 class CustomButton(Qbutton)

 def mousePressEvent(self, e):

 e.accept()

Alternatively, you can mark it as unhandled by calling .ignore() on the event

object. In this case the event will continue to bubble up the hierarchy.

146

 class CustomButton(Qbutton)

 def event(self, e):

 e.ignore()

If you want your widget to appear transparent to events, you can safely

ignore events which you’ve actually responded to in some way. Similarly, you

can choose to accept events you are not responding to in order to silence

them.

147

Qt Designer
So far we have been creating apps using Python code. This works great in

many cases, but as your applications get larger or interfaces more

complicated, it can get a bit cumbersome to define all widgets

programmatically. The good news is that Qt comes with a graphical editor —

Qt Designer — which contains a drag-and-drop UI editor. Using Qt Designer

you can define your UIs visually and then simply hook up the application

logic later.

In this chapter we’ll cover the basics of creating UIs with Qt Designer. The

principles, layouts and widgets are identical, so you can apply everything

you’ve already learnt. You’ll also need your knowledge of the Python API to

hook up your application logic later.

148

13. Installing Qt Designer

Qt Designer is available in the installation packages for Qt available from the

Qt downloads page. Download and run the appropriate installer for your

system, the following the platform-specific instructions below. Installing Qt

Designer will not affect your PyQt5 installation.



Qt Creator vs. Qt Designer

You may also see mentions of Qt Creator. Qt Creator a fully-

fledged IDE for Qt projects, while Qt Designer is the UI

design component. Qt Designer is available within Qt

Creator so you can install that instead if you wish, although it

doesn’t provide any added value for Python projects.

Windows

Qt Designer is not mentioned in the Windows Qt installer, but is

automatically installed when you install any version of the Qt core libraries.

For example, in the following screenshot we’ve opted to install the MSVC

2017 64-bit version of Qt — what you choose will have no effect on your

Designer install.

149

https://www.qt.io/download-qt-installer
https://www.qt.io/download-qt-installer

Figure 63. Installing Qt, will also install Qt Designer.

If you want to install Qt Creator it is listed under "Developer and Designer

Tools". Rather confusingly, Qt Designer isn’t in here.

Figure 64. Installing the Qt Creator component.

macOS

Qt Designer is not mentioned in the macOS Qt installer, but is automatically

installed when you install any version of the Qt core libraries. Download the

installer from the Qt website — you can opt for the open source version.

150

Figure 65. Inside the downloaded .dmg file you’ll find the installer.

Open the installer to start the installation. Go through to where it asks you to

choose which components to install. Select the macOS package under the

latest version of Qt.

Figure 66. You only need the macOS package under the latest version.

Once the installation is complete, open the folder where you installed Qt. The

launcher for Designer is under <version>/clang_64/bin. You’ll notice that Qt

Creator is also installed in the root of the Qt installation folder.

151

Figure 67. You can find the Designer launcher under the <version>/clang_64/bin

folder.

You can run Designer from where it is located, or move it into your

Applications folder so it is available to launch from the macOS Launchpad.

Linux (Ubuntu)

You can install Qt Designer from the command line with the following. Qt

Designer is in the qttools5-dev-tools package.

sudo apt-get install qttools5-dev-tools

Once installed, Qt Designer will be available in the launcher.

Figure 68. Qt Designer in Ubuntu launcher.

152

14. Getting started with Qt Designer

In this chapter we’ll take a quick tour through using Qt Designer to design a

UI and exporting that UI for use in your PyQt5 application. We’ll only scratch

the surface of what you can do with Qt Designer here, but once you’ve got

the basics down, feel free to experiment in more detail.

Open up Qt Designer and you will be presented with the main window. The

designer is available via the tab on the left hand side. However, to activate

this you first need to start creating a .ui file.

Qt Designer

Qt Designer starts up with the New Form dialog. Here you can choose the

type of interface you’re building — this decides the base widget you will build

your interface on. If you are starting an application then Main Window is

usually the right choice. However, you can also create .ui files for dialog

boxes and custom compound widgets.


Form is the technical name given to a UI layout, since many

UIs resemble a paper form with various input boxes.

Figure 69. The Qt Designer interface

153

If you click Create then a new UI will be created, with a single empty widget

in it. You’re now ready to start designing your app.

Figure 70. The Qt Designer editor interface, with an empty QMainWindow widget.

Qt Creator

If you’ve installed Qt Creator the interface and process is slightly different.

The left-hand side has a tab-like interface where you can select from the

various components of the application. One of these is Design which shows

Qt Designer in the main panel.

154

Figure 71. The Qt Creator interface, with the Design section selected on the left.

The Qt Designer interface is identical to the nested Designer.


All the features of Qt Designer are available in Qt Creator but

some aspects of the user interface are different.

To create a .ui file go to File → New File or Project… In the window that

appears select Qt under Files and Classes on the left, then select Qt Designer

Form on the right. You’ll notice the icon has "ui" on it, showing the type of file

you’re creating.

155

Figure 72. Create a new Qt .ui file.

In the next step you’ll be asked what type of UI you want to create. For most

applications Main Window is the right choice. However, you can also create

.ui files for other dialog boxes or build custom widgets using QWidget (listed

as "Widget").

156

Figure 73. Select the type of widget to create, for most applications this will be

Main Window.

Next choose a filename and save folder for your file. Save your .ui file with the

same name as the class you’ll be creating, just to make make subsequent

commands simpler.

157

Figure 74. Choose save name and folder your your file.

Finally, you can choose to add the file to your version control system if you’re

using one. Feel free to skip this step — it doesn’t affect your UI.

158

Figure 75. Optionally add the file to your version control, e.g. Git.

Laying out your Main Window

You’ll be presented with your newly created main window in the UI designer.

There isn’t much to see to begin with, just a grey working area representing

the window, together with the beginnings of a window menu bar.

159

Figure 76. The initial view of the created main window.

You can resize the window by clicking the window and dragging the blue

handles on each corner.

Figure 77. The initial view of the created main window.

The first step in building an application is to add some widgets to your

window. In our first applications we learnt that to set the central widget for a

160

QMainWindow we need to use .setCentralWidget(). We also saw that to add

multiple widgets with a layout, we need an intermediary QWidget to apply the

layout to, rather than adding the layout to the window directly.

Qt Designer takes care of this for you automatically, although it’s not

particularly obvious about it.

To add multiple widgets to the main window with a layout, first drag your

widgets onto the QMainWindow. Here we’re dragging 3 labels. It doesn’t matter

where you drop them.

Figure 78. Main window with 1 labels and 1 button added.

We’ve created 2 widgets by dragging them onto the window, made them

children of that window. We can now apply a layout.

Find the QMainWindow in the right hand panel (it should be right at the top).

Underneath you see centralwidget representing the window’s central

widget. The icon for the central widget shows the current layout applied.

Initially it has a red circle-cross through it, showing that there is no layout

active. Right click on the QMainWindow object, and find 'Layout' in the resulting

dropdown.

161

Figure 79. Right click on the main window, and choose layout.

Next you’ll see a list of layouts which you can apply to the window. Select Lay

Out Horizontally and the layout will be applied to the widget.

Figure 80. Select layout to apply to the main window.

The selected layout is applied to the the centralwidget of the QMainWindow and

the widgets are added the layout, being laid out depending on the selected

layout. Note that in Qt Creator you can actually drag and re-order the

widgets within the layout, or select a different layout, as you like. This makes

it especially nice to prototyping and trying out things.

162

Figure 81. Horizontal layout applied to widgets on the main window.

We’ve created a very simple UI in Qt Designer. The next step is to get this UI

into our Python code and use it to construct a working application.

First save your .ui file — by default it will save at the location you chosen

while creating it, although you can choose another location if you like. The

.ui file is in XML format. To use our UI in Python we can either load it directly

from Python, or first convert it to a Python .py file using the pyuic5 tool.

Loading your .ui file in Python

To load .ui files we can use the uic module included with PyQt5, specifically

the uic.loadUI() method. This takes the filename of a UI file and loads it

creating a fully-functional PyQt5 object.

163

Listing 65. designer/example_1.py

import sys

from PyQt5 import QtWidgets, uic

app = QtWidgets.QApplication(sys.argv)

window = uic.loadUi("mainwindow.ui")

window.show()

app.exec_()

To load a UI from the __init__ block of an existing widget (e.g. a

QMainWindow) you can use uic.loadUI(filename, self).

Listing 66. designer/example_2.py

import sys

from PyQt5 import QtCore, QtGui, QtWidgets, uic

class MainWindow(QtWidgets.QMainWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 uic.loadUi("mainwindow.ui", self)

app = QtWidgets.QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()

Converting your .ui file to Python

To generate a Python output file we can use the PyQt5 command line utility

pyuic5. We run this, passing in the filename of the .ui file and the target file

for output, with a -o parameter. The following will generate a Python file

named MainWindow.py which contains our created UI. I use CamelCase on the

164

filename to remind myself its a PyQt5 class file.

pyuic5 mainwindow.ui -o MainWindow.py

You can open the resulting MainWindow.py file in an editor to take a look,

although you should not edit this file — if you do, any changes will be lost if

you regenerate the UI from Qt Designer. The power of using Qt Designer is

being able to edit and update your application as you go.

Building your application

Importing the resulting Python file works as for any other. You can import

your class as follows. The pyuic5 tool appends Ui_ to the name of the object

defined in Qt Designer, and it is this object you want to import.

from MainWindow import Ui_MainWindow

To create the main window in your application, create a class as normal but

subclassing from both QMainWindow and your imported Ui_MainWindow class.

Finally, call self.setupUi(self) from within the __init__ to trigger the setup of

the interface.

class MainWindow(QMainWindow, Ui_MainWindow):

 def __init__(self, *args, obj=None, **kwargs):

 super(MainWindow, self).__init__(*args, **kwargs)

 self.setupUi(self)

That’s it. Your window is now fully set up.

Adding application logic

You can interact with widgets created through Qt Designer just as you would

those created with code. To make things simpler, pyuic5 adds all widgets to

the window object.

165


The name used for objects can be found through Qt

Designer. Simply click on it in the editor window, and then

look for objectName in the properties panel.

In the follow example we use the generated main window class to build a

working application.

166

import random

import sys

from PyQt5.QtCore import Qt

from PyQt5.QtWidgets import QApplication, QMainWindow

from MainWindow import Ui_MainWindow

class MainWindow(QMainWindow, Ui_MainWindow):

 def __init__(self):

 super().__init__()

 self.setupUi(self)

 self.show()

 # You can still override values from your UI file within your

code,

 # but if possible, set them in Qt Creator. See the properties

panel.

 f = self.label.font()

 f.setPointSize(25)

 self.label.setAlignment(Qt.AlignHCenter | Qt.AlignVCenter)

 self.label.setFont(f)

 # Signals from UI widgets can be connected as normal.

 self.pushButton.pressed.connect(self.update_label)

 def update_label(self):

 n = random.randint(1, 6)

 self.label.setText("%d" % n)

app = QApplication(sys.argv)

w = MainWindow()

app.exec_()

Notice that because we haven’t set font size and alignment in the Qt

Designer .ui definition, we must do so manually with code. You can change

any widget parameters in this way, just as before. However, it is usually better

to configure these things within Qt Designer itself.

167

You can set any widget properties through the properties panel on the

bottom right of the window. Most widget properties are exposed here, for

example, below we are updating the font size on the QLabel widget — 

Figure 82. Setting the font size for the QLabel.

You can also configure alignment. For compound properties (where you can

set multiple values, such as left + middle) they are nested.

168

Figure 83. Detailed font properties.

All object properties are able to be edited from both places — it’s up to you

whether you make a particular modification in code or in Qt Designer. As a

general rule, it makes sense to keep dynamic changes in your code and the

base or default state in your designed UI.

This introduction has only scratched the surface of what Qt Designer is

capable of. I highly recommend you dig a little deeper and experiment —

remember you can still add or adjust widgets from code afterwards.

169

 Aesthetics

If you’re not a designer, it can be hard to create beautiful interfaces, or

even know what they are. Thankfully there are simple rules you can

follow to create interfaces that, if not beautiful at least won’t be ugly.

The key concepts are — alignment, groups and space.

Alignment is about reducing visual noise. Think of the corners of

widgets as alignment points and aim to minimize the number of

unique alignment points in the UI. In practice, this means making sure

the edges of elements in the interface line up with one another.

Figure 84. The effect of alignment of interface clarity.


If you have differently sized inputs, align the edge you

read from. English is a left-to-right language, so if your

app is in English align the left.

Groups of related widgets gain context making them easier to

understand. Structure your interface so related things are found

together.

Space is key to creating visually distinct regions in your

interface — without space between groups, there are no groups! Keep

spacing consistent and meaningful.

170

Figure 85. Group elements and add space between groups.

171

15. The Qt Resource system

Building applications takes more than just code. Usually your interface will

need icons for actions, you may want to add illustrations or branding logos,

or perhaps your application will need to load data files to pre-populate

widgets. These data files are separate from the source code of your

application but will ultimately need to be packaged and distributed with it in

order for it to work.

Distributing data files with applications is a common cause of problems. If

you reference data files with paths, your application won’t work properly

unless the exact same paths are available on the target computer. This can

get even trickier when packaging applications for cross-platform (Windows,

macOS and Linux) use. Thankfully, Qt comes to the rescue with it’s resource

system.

Since we’re using Qt for our GUI we can make use of Qt Resource system to

bundle, identify and load resources in our application. Resources are bundled

into Python files which can be distributed along with your source code,

guaranteeing they will continue to work on other platforms. You can manage

Qt resources through Qt Designer (or Qt Creator) and use resource library to

add icons (and other graphics) to your apps.

The QRC file

The core of the Qt Resources system is the resource file or QRC. The .qrc file is

a simple XML file, which can be opened in any text editor.


You can also create QRC files and add and remove resources

using Qt Designer, which we’ll cover later.

Simple QRC example

A very simple resource file is shown below, containing a single resource (a

single icon animal-penguin.png we might add to a button).

172

<!DOCTYPE RCC>

<RCC version="1.0">

 <qresource prefix="icons">

 <file alias="animal-penguin.png">animal-penguin.png</file>

 </qresource>

</RCC>

The name between the <file> </file> tags is the path to the file, relative to

the resource file. The alias is the name which this resource will be known by

from within your application. You can use this rename icons to something

more logical or simpler in your app, while keeping the original name

externally.

For example, if we wanted to use the name penguin.png internally, we could

change this line to.

<file alias="penguin.png">animal-penguin.png</file>


This only changes the name used inside your application, the

filename remains unchanged.

Outside this tag is the qresource tag which specifies a prefix. This is a

namespace which can be used to group resources together. This is

effectively a virtual folder, under which nested resources can all be found.

Using resources in Qt Creator and Qt

Designer

Once the Resource file is loaded you will be able to access it from the

designer properties. The screenshot below shows the Designer with our

counter app open, and the increment button selected. The icon for the

button can be chosen by clicking the small black down arrow and selecting

"Choose Resource…"

173

Figure 86. Select the location

The Resource chooser window that appears allows you to pick icons from the

resource file(s) in the project to use in your UI.

174

Figure 87. Select the location

Selecting the icons from the resource file in this way ensures that they will

always work, as long as you compile and bundle the compiled resource file

with your app.

Adding Resources in Qt Designer

If you’re using the standalone Qt Designer, the resource browser is available

as a dockable widget, visible in the bottom right by default. If the Resource

Browser is hidden you can show it through the "View" menu on the toolbar.

To add, edit and remove resource files click on the pencil icon in the

Resource browser panel. This will open the resource editor.

175

Figure 88. Standalone Qt Designer view

In the resource editor view you can open an existing resource file by clicking

on the document folder icon (middle icon) on the bottom left.

176

Figure 89. Edit Resources in Qt Designer

On the left hand panel you can also create and delete resource files from

your UI. While on the right you can create new prefixes, add files to the prefix

and delete items. Changes to the resource file are saved automatically.

Adding Resources in Qt Creator

In order to be able to add icons using the Qt Resource system from within Qt

Creator you need to have an active Qt Project, and add both your UI and

resource files to it.



If you don’t have a Qt Creator project set up you can create

one in your existing source folder. Qt Creator will prompt

before overwriting any of your files. Click on "+ New", choose

"Qt for Python - Empty" for project type. Select the folder

above your source folder for "Create in", and provide the

name of your source folder as the project name. You can

delete any files created, except the .pyproject which holds

the project settings.

177

Figure 90. Select the location

To add resources to your existing project, select the "Edit" view on the left

hand panel. You will see a file tree browser in the left hand panel. Right-click

on the folder and choose "Add existing files…" and add your existing .qrc file

to the project.

178

Figure 91. The Edit view, showing the added files


The UI doesn’t update when you add/remove things here,

this seems to be a bug in Qt Creator. If you close and re-open

Qt Creator the files will be there.

Once you have added the QRC file to the file listing you should be able to

expand the file as if it were a folder, and browser the resources within. You

can also add and remove resources using this interface.

Using a QRC file

To use a .qrc file in your application you first need to compile it to Python.

PyQt5 comes with a command line tool to do this, which takes a .qrc file as

input and outputs a Python file containing the compiled data. This can then

be imported into your app as for any other Python file or module.

To compile our resources.qrc file to a Python file named resources.py we can

179

use — 

pyrcc5 resources.qrc -o resources_rc.py

To use the resource file in our application we need to make a few small

changes. Firstly, we need to import resources at the top of our app, to load the

resources into the Qt resource system, and then secondly we need to update

the path to the icon file to use the resource path format as follows:

The prefix :/ indicates that this is a resource path. The first name "icons" is

the prefix namespace and the filename is taken from the file alias, both as

defined in our resources.qrc file.

The updated application is shown below.

import sys

from PyQt5 import QtGui, QtWidgets

import resources # Import the compiled resource file.

class MainWindow(QtWidgets.QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("Hello World")

 b = QtWidgets.QPushButton("My button")

 icon = QtGui.QIcon(":/icons/penguin.png")

 b.setIcon(icon)

 self.setCentralWidget(b)

 self.show()

app = QtWidgets.QApplication(sys.argv)

w = MainWindow()

app.exec_()

180

Using a QRC file with compiled UI files

If you’re designing your UIs in Qt Designer and compiling the resulting UI file

to Python, then UI compiler automatically adds imports to a compiled

version of your Qt Resource file for you. For example, if you run the

following — 

pyuic5 mainwindow.ui -o MainWindow.py

This build process also adds imports to MainWindow.py for the compiled version

of the resources using in the UI, in our case resources.qrc. This means you do

not need to import the resources separately into your app. However, we still

need to build them, and use the specific name that is used for the import in

MainWindow.py, here resources_rc.

pyrcc5 resources.qrc -o resources_rc.py



pyuic5 follows the pattern <resource name>_rc.py when adding

imports for the resource file, so you will need to follow this

when compiling resources yourself. You can check your

compiled UI file (e.g. MainWindow.py) to double check the name

of the import if you have problems.

When to use QResource?

You may be wondering when (or even whether) you should use the QResource

system.

The main advantage of this method is that your data files are guaranteed to

work cross-platform when distributed. The downside of course is you need to

re-compile your resources any time you add/remove new resources. Whether

this trade-off is worth it for your project is up to you, but if you plan to

distribute your application to other people it almost always is.

181

Theming
Out of the box Qt applications look platform native. That is, they take on the

look and feel of the operating system they are running on. This means they

look at home on any system and feel natural to users. But it can also mean

they look a bit boring. Helpfully, Qt gives you complete control over the

appearance of widgets in your application.

Whether you want your application to stand out, or you are designing

custom widgets and want them to fit in, this chapter will explain how to do

that in PyQt5.

182

16. Styles

Styles are Qt’s way of making broad look and feel changes to

applications,modifying how widgets are displayed and behave. Qt

automatically applies platform-specific styles when running your application

on a given platform — this is why your application looks like an macOS

application when run on macOS and a Windows application on Windows.

These platform-specific styles make use of native widgets on the host

platform, meaning they are not available to use on other platforms.

However, the platform styles are not the only options you have for styling

your applications. Qt also ships with a cross-platform style called Fusion,

which provides a consistent cross-platform, modern, style for your

applications.

Fusion

Qt’s Fusion style gives you the benefit of UI consistency across all systems, at

the expense of some consistency with the operating system standards.

Which is more important will depend on how much control you need over

the UI you are creating, how much you are customizing it and which widgets

you are using.

The Fusion style is a platform-agnostic style that offers a

desktop-oriented look’n’feel. It implements the same

design language as the Fusion style for Qt Widgets.

— Qt Documentation

To enable the style, call .setStyle() on the QApplication instance, passing in

the name of the style (in this case Fusion) as a string.

183

app = QApplication(sys.argv)

app.setStyle('Fusion')

#...

app.exec_()

The widgets list example from earlier, but with the Fusion style applied, is

shown below.

Figure 92. "Fusion" style widgets. They look identical on all platforms.


There are more examples of widgets with Fusion style

applied in the Qt documentation.

3rd Party Styles

In addition to the Fusion style provided with Qt there are a number of 3rd

party styles available too. These are all based on modifications to the base

Fusion style. For example — 

• Qt Modern provides a frameless window style, together with a dark mode

palette and custom window decorations to give a modern macOS-like

184

https://doc.qt.io/archives/qt-5.8/gallery-fusion.html
https://github.com/gmarull/qtmodern

look.

• Frameless Window Darkstyle provides a frameless window, dark mode

palette and Windows 10-like window decorations.

Figure 93. "Qt Modern" styles: Palette & window decorations.

185

https://github.com/Jorgen-VikingGod/Qt-Frameless-Window-DarkStyle

17. Palettes

The selection of colors used to draw the user interface in Qt are termed

palettes. Both application level and widget-specific palettes are managed

through QPalette objects. Palettes can be set at both the application and

widget level, allowing you to set a global standard palette and override this

on a per-widget basis. The global palette is normally defined by the Qt theme

(itself normally dependent on the OS) but you can override this to change

the look of your entire app.

The active global palette can be accessed from QApplication.palette() or by

creating a new empty QPalette instance. For example — 

from PyQt5.QtGui import QPalette

palette = QPalette()

You can modify the palette by calling palette.setColor(role, color) where

role determines what the color is used for, QColor the color to use. The color

used can either by a custom QColor object, or one of the built-in basic colors

from the Qt namespace.

palette.setColor(QPalette.Window, QColor(53,53,53))

palette.setColor(QPalette.WindowText, Qt.white)


There are some limitations when using palettes on Windows

10 and macOS platform-specific themes.

There are rather a lot of different roles. The main roles are shown in the table

below — 

Table 4. Main roles

Constant Value Description

QPalette.Window 10 Background color for windows.

186

Constant Value Description

QPalette.WindowText 0 Default text color for windows.

QPalette.Base 9 Background of text entry widgets, combobox

drop down lists and toolbar handles. Usually

white or light

QPalette.AlternateBase 16 Second Base color used in striped

(alternating) rows — e.g.

QAbstractItemView.setAlternatingRowColors()

QPalette.ToolTipBase 18 Background color for QToolTip and QWhatsThis

hover indicators. Both tips use the Inactive

group (see later) because they are not active

windows.

QPalette.ToolTipText 19 Foreground color for QToolTip and QWhatsThis.

Both tips use the Inactive group (see later)

because they are not active windows.

QPalette.PlaceholderTe

xt

20 Color for placeholder text in widgets.

QPalette.Text 6 Text color for widgets colored with Base

background. Must provide a good contrast

with both Window and Base.

QPalette.Button 1 Default button background color. This can

differ from Window but must provide good

contrast with ButtonText.

QPalette.ButtonText 8 Text color used on buttons, must contrast

with Button color.

QPalette.BrightText 7 Text color which is very different from

WindowText, contrasts well with black. Used

were other Text and WindowText colors would

give poor contrast. Note: Not just used for

text.

187


You don’t necessarily have to modify or set all of these in your

custom palette, depending on widgets used in your

application some can be omitted.

There are also smaller sets of roles used for 3D beveling on widgets and

highlighting selected entries or links.

Table 5. 3D bevel roles

Constant Value Description

QPalette.Light 2 Lighter than Button color.

QPalette.Midlight 3 Between Button and Light.

QPalette.Dark 4 Darker than Button.

QPalette.Mid 5 Between Button and Dark.

QPalette.Shadow 11 A very dark color. By default, the shadow

color is Qt.black.

Table 6. Highlighting & links

Constant Value Description

QPalette.Highlight 12 A color to indicate a selected item or the

current item. By default, the highlight color is

Qt.darkBlue.

QPalette.HighlightedTe

xt

13 A text color that contrasts with Highlight. By

default, the highlighted text Qt.white.

QPalette.Link 14 A text color used for unvisited hyperlinks. By

default, the link color is Qt.blue.

QPalette.LinkVisited 15 A text color used for already visited

hyperlinks. By default, the link-visited color is

Qt.magenta.

188


There is also technically a QPalette.NoRole value for widget

drawing states where no role is assigned, this can be ignored

when creating palettes.

For parts of the UI which change when a widget is active, inactive or disabled

you must set a color for each of these states. To do this, you can call

palette.setColor(group, role, color) passing additional group parameter. The

available groups are shown below — 

Constant Value

QPalette.Disabled 1

QPalette.Active 0

QPalette.Inactive 2

QPalette.Normal synonym for Active 0

For example, the following will set the WindowText color for a disabled window

to white in the palette.

palette.setColor(QPalette.Disabled, QPalette.WindowText, Qt.white)

Once the palette is defined, you can use .setPalette() to set it onto the

QApplication object to apply it to your application, or to a a single widget. For

example, the following example will change the color of the window text and

background (here text is added using a QLabel).

189

Listing 67. themes/palette_test.py

from PyQt5.QtWidgets import QApplication, QLabel

from PyQt5.QtGui import QPalette, QColor

from PyQt5.QtCore import Qt

import sys

app = QApplication(sys.argv)

palette = QPalette()

palette.setColor(QPalette.Window, QColor(0, 128, 255))

palette.setColor(QPalette.WindowText, Qt.white)

app.setPalette(palette)

w = QLabel("Palette Test")

w.show()

app.exec_()

When run, this gives the following output. The background of the window is

changed to a light blue, and the window text is white.

Figure 94. Changing the Window and WindowText colors.

To show palette use in practice and see some limitations of it, we’ll now

create an application using a custom dark palette.


Using this palette all widgets will be drawn with a dark

background, regardless of the dark mode state of your app.

See later for using system dark modes.

While you should avoid overriding user settings in general, it can make sense

in certain classes of applications such as photo viewers or video editors,

where a bright UI will interfere with the users ability to judge color. The

190

following app skeleton uses a custom palette by Jürgen Skrotzky to give the

application a global dark theme.

191

https://github.com/Jorgen-VikingGod/Qt-Frameless-Window-DarkStyle/blob/master/DarkStyle.cpp

from PyQt5.QtWidgets import QApplication, QMainWindow

from PyQt5.QtGui import QPalette, QColor

from PyQt5.QtCore import Qt

import sys

darkPalette = QPalette()

darkPalette.setColor(QPalette.Window, QColor(53, 53, 53))

darkPalette.setColor(QPalette.WindowText, Qt.white)

darkPalette.setColor(QPalette.Disabled, QPalette.WindowText, QColor

(127, 127, 127))

darkPalette.setColor(QPalette.Base, QColor(42, 42, 42))

darkPalette.setColor(QPalette.AlternateBase, QColor(66, 66, 66))

darkPalette.setColor(QPalette.ToolTipBase, Qt.white)

darkPalette.setColor(QPalette.ToolTipText, Qt.white)

darkPalette.setColor(QPalette.Text, Qt.white)

darkPalette.setColor(QPalette.Disabled, QPalette.Text, QColor(127,

127, 127))

darkPalette.setColor(QPalette.Dark, QColor(35, 35, 35))

darkPalette.setColor(QPalette.Shadow, QColor(20, 20, 20))

darkPalette.setColor(QPalette.Button, QColor(53, 53, 53))

darkPalette.setColor(QPalette.ButtonText, Qt.white)

darkPalette.setColor(QPalette.Disabled, QPalette.ButtonText, QColor

(127, 127, 127))

darkPalette.setColor(QPalette.BrightText, Qt.red)

darkPalette.setColor(QPalette.Link, QColor(42, 130, 218))

darkPalette.setColor(QPalette.Highlight, QColor(42, 130, 218))

darkPalette.setColor(QPalette.Disabled, QPalette.Highlight, QColor(80,

80, 80))

darkPalette.setColor(QPalette.HighlightedText, Qt.white)

darkPalette.setColor(QPalette.Disabled, QPalette.HighlightedText,

QColor(127, 127, 127))

app = QApplication(sys.argv)

app.setPalette(darkPalette)

w = QMainWindow() # Replace with your QMainWindow instance.

w.show()

app.exec_()

192

As before, once the palette is constructed it must be applied to take effect.

Here we apply it to the application as a whole by calling app.setPalette(). All

widgets will adopt the theme once applied. You can use this skeleton to

construct your own applications using this theme.

In the code examples with this book you can also find

themes/palette_dark_widgets.py which reproduces the widgets demo, using

this palette. The result on each platform is shown below.

Figure 95. Custom dark palette on different platforms and themes

You’ll notice that when using the default Windows and macOS themes some

widgets do not have their colors applied correctly. This is because these

themes make use of platform-native controls to give a true native feel. If you

want to use a dark or heavily customized theme on Windows 10, it is

recommended to use the Fusion style on these platforms.

Dark Mode

Dark mode is becoming popular as people spend more and more time on

screens. Darker themed OS and applications help to minimize eye strain and

reduce sleep distribution if working in the evening.

Windows, macOS and Linux all provide support for dark mode themes, and

193

the good news is that if you build your application with PyQt5 you get dark

mode support for free. However, the support is incomplete in earlier versions

of PyQt5. Remember to test your application with dark mode enabled and

disabled on all your target platforms.



When building macOS packages for distribution you will

need to set NSRequiresAquaSystemAppearance to False in your

app for dark mode to be respected by the bundled .app — this

is covered in the packaging chapter.

194

 Color

Your operating system has a standard theme which is respected by

most software. Qt picks up this color scheme automatically and will

apply it to your PyQt5 applications to help them fit in. Using these

colors has some advantages — 

1. Your app will look at home on your users desktop

2. Your users are familiar with the meaning of contextual colors

3. Somebody else has spent time designing colors that work

If you want to replace the color scheme, make sure that the benefits

outweigh the costs.

Sometimes your applications may require additional contextual colors

or tweaks to highlights. For data visualization a good resource is Color

Brewer from Cynthia Brewer which has both qualitative and

quantitative schemes. If you only need a few colors coolors.co lets you

generate custom well-matched 4-color themes.

Figure 96. Example color scheme from coolors.co

Use colors simply and effectively, restricting your palette as far as

possible. If particular colors have meaning somewhere use the same

meaning everywhere. Avoid using multiple shades unless those shades

have meaning.

 DO

• Consider using GUI-standard colors in your app first.

• When using custom colors define a color scheme and stick to it.

195

https://colorbrewer2.org
https://colorbrewer2.org
https://coolors.co

• Keep color-blind users in mind when choosing colors and contrasts.

 DON’T

• Use standard colors for non-standard purposes, e.g. Red = OK.

196

18. Icons

Icons are small pictures which are used to aid navigation or understanding

within a user interface. They are commonly found on buttons, either

alongside or in place of text, or alongside actions in menus. By using easily

recognizable indicators you can make your interface easier to use.

In PyQt5 you have a number of different options for how to source and

integrate icons into your application. In this section we’ll look at those

options and the pros and cons of each.

Qt Standard Icons

The easiest way to add simple icons to your application is to use the built-in

icons which ship with Qt itself. This small set of icons cover a number of

standard use cases, from file operations, forward & backward arrows and

message box indicators.

The full list of built-in icons is shown below.

197

Figure 97. Qt Builtin icons

You’ll notice that this set of icons is a bit restrictive. If that’s not a problem for

the app you’re building, or if you only need a few icons for your app it might

still be a viable option for you.

The icons are accessible through the current application style using

QStyle.standardIcon(name) or QStyle.<constant>. The full table of built-in icon

names is shown below — 

SP_ArrowBack SP_DirIcon SP_MediaSkipBackward

SP_ArrowDown SP_DirLinkIcon SP_MediaSkipForward

SP_ArrowForward SP_DirOpenIcon SP_MediaStop

SP_ArrowLeft SP_DockWidgetCloseButton SP_MediaVolume

SP_ArrowRight SP_DriveCDIcon SP_MediaVolumeMuted

SP_ArrowUp SP_DriveDVDIcon SP_MessageBoxCritical

198

SP_BrowserReload SP_DriveFDIcon SP_MessageBoxInformation

SP_BrowserStop SP_DriveHDIcon SP_MessageBoxQuestion

SP_CommandLink SP_DriveNetIcon SP_MessageBoxWarning

SP_ComputerIcon SP_FileDialogBack SP_TitleBarCloseButton

SP_CustomBase SP_FileDialogContentsVie

w

SP_TitleBarContextHelpBu

tton

SP_DesktopIcon SP_FileDialogDetailedVie

w

SP_TitleBarMaxButton

SP_DialogApplyButton SP_FileDialogEnd SP_TitleBarMenuButton

SP_DialogCancelButton SP_FileDialogInfoView SP_TitleBarMinButton

SP_DialogCloseButton SP_FileDialogListView SP_TitleBarNormalButton

SP_DialogDiscardButton SP_FileDialogNewFolder SP_TitleBarShadeButton

SP_DialogHelpButton SP_FileDialogStart SP_TitleBarUnshadeButton

SP_DialogNoButton SP_FileDialogToParent SP_ToolBarHorizontalExte

nsionButton

SP_DialogOkButton SP_FileIcon SP_ToolBarVerticalExtens

ionButton

SP_DialogResetButton SP_FileLinkIcon SP_TrashIcon

SP_DialogSaveButton SP_MediaPause SP_VistaShield

SP_DialogYesButton SP_MediaPlay SP_DirClosedIcon

SP_MediaSeekBackward SP_DirHomeIcon SP_MediaSeekForward

You can access these icons directly via the QStyle namespace, as follows.

style = button.style() # Get the QStyle object from the widget.

icon = style.standardIcon(QStyle.SP_MessageBoxCritical)

button.setIcon(icon)

You can also use the style object from a specific widget. It doesn’t matter

which you use, since we’re only accessing the built-ins anyway.

199

style = button.style() # Get the QStyle object from the widget.

icon = style.standardIcon(style.SP_MessageBoxCritical)

button.setIcon(icon)

If you can’t find an icon you need in this standard set, you will need to use

one of the other approaches outlined below.


While you can mix and match icons from different icon sets

together, it’s better to use a single style throughout to keep

your app feeling coherent.

Icon files

If the standard icons aren’t what your looking for, or you need icons not

available, you can use any custom icons you like. Icons can be any of the Qt

supported image types on your platform, although for most use cases PNG

or SVG images are preferable.


To get list of supported image formats on your own platform

you can call QtGui.QImageReader.supportedImageFormats().

Icon sets

If you’re not a graphic designer you will save yourself a lot of time (and

trouble) by using one of the many available icon sets. There are thousands of

these available online, with varying licenses depending on their use in open

source or commercial software.

In this book and example apps I’ve used the Fugue icon set, which is also free

to use in your software with acknowledgement of the author. The Tango icon

set is a large icon set developed for use on Linux, however there are no

licensing requirements and it can be used on any platform.

200

http://p.yusukekamiyamane.com/

Resource Description License

Fugue by

p.yusukekamiyamane

3,570 16x16 icons in PNG

format

CC BY 3.0

Diagona by

p.yusukekamiyamane

400 16x16 and 10x10

icons in PNG format

CC BY 3.0

Tango Icons by The

Tango Desktop Project

Icons using the Tango

project color theme.

Public domain


While you do have control over the size of icons using in

menus and toolbars, in most cases you should leave these as-

is. A good standard icon size for menus is 20x20 pixels.


Sizes smaller than this are fine too, the icon will be centered

rather than scaled up.

Create your own

If you don’t like any of the available icon sets, or want a unique look to your

application, you can of course design your own icons. Icons can be created

using any standard graphics software and saved as PNG images with

transparent background. The icons should be square and of a resolution that

they do not need to be scaled up or down when used in your application.

Using icon files

Once you have your icon files — whether from icon sets or self-drawn — they

can be used in your Qt applications by creating instances of QtGui.QIcon,

passing in the filename of the icon directly.

QtGui.QIcon("<filename>")

While you can use both absolute (complete) and relative (partial) to point to

your file, absolute paths are prone to break when distributing your

applications. Relative paths will work as long as the icon files are stored in the

201

http://p.yusukekamiyamane.com/
http://p.yusukekamiyamane.com/
http://p.yusukekamiyamane.com/
http://p.yusukekamiyamane.com/
http://tango.freedesktop.org/Tango_Icon_Library
http://tango.freedesktop.org/Tango_Icon_Library

same location relative to your script, although even this can be difficult to

manage when packaging. If you are using many icons in your application, or

will be distributing your application, you may want to use the The Qt

Resource system.



In order to create icon instances you must have already

created a QApplication instance. To ensure this is the case, you

can create your app instance at the top of your source file, or

create your QIcon instances in the __init__ for the widget or

window that uses them.

Free Desktop Specification Icons (Linux)

On Linux desktops there is a thing called the Free Desktop Specification

which defines standard names for icons for specific actions.

If your application uses these specific icon names (and loads the icon from a

"theme") then on Linux your application will use the current icon set which is

enabled on the desktop. The idea is making all application have the same

look & feel while remaining configurable.

To use these within Qt Designer you would select the drop-down and choose

"Set Icon From Theme…"

Figure 98. Selecting an icon theme

You then enter the name of the icon you want to use, e.g. document-new (the

full list of valid names).

202

https://specifications.freedesktop.org/icon-naming-spec/latest/ar01s04.html

Figure 99. Selecting an icon theme

In code, you can get icons from the active Linux desktop theme using icon =

QtGui.QIcon.fromTheme("document-new"). The following snippet produces a small

window (button) with the "new document" icon showing, from the active

theme.

Listing 68. icons/linux.py

from PyQt5.QtWidgets import QApplication, QPushButton

from PyQt5.QtGui import QIcon

import sys

app = QApplication(sys.argv)

button = QPushButton("Hello")

icon = QIcon.fromTheme("document-new")

button.setIcon(icon)

button.show()

app.exec_()

The resulting window will look like the following on Ubuntu, with the default

icon theme.

203

Figure 100. Linux Free Desktop Specification "document-new" icon

If you’re developing a cross-platform application you can still make use of

these standard icons on Linux. To do this, use your own icons for Windows

and macOS and create a custom theme in Qt Designer, using the Free

Desktop Specification names for the icons.

204

19. Qt Style Sheets (QSS)

So far we’ve looked at how you can apply custom colors to your PyQt5 apps

using QPalette. However, there are many other customizations you can make

to the appearance of widgets in Qt5. The system provided to allow this

customization is called Qt Style Sheets (QSS).

QSS is conceptually very similar to Cascading Style Sheets (CSS) used to style

the web, sharing a similar syntax and approach. In this section we’ll look at

some examples of QSS and how you can use it to modify widget appearance.



Using QSS on widgets has a small performance impact, due

to the need to look up the appropriate rules when redrawing

widgets. However, unless you are doing very widget-heavy

work this is unlikely to be of consequence.

Style editor

To make experimenting with QSS rules a little bit easier, we can create a

simple demo app which allows rules to be input and applied to some

example widgets. We’ll use this to test out the various style properties and

rules.


The source code for the style viewer is shown below, but it’s

also available in the source code with this book.

Listing 69. themes/qss_tester.py

import sys

from PyQt5.QtCore import Qt

from PyQt5.QtGui import QColor, QPalette

from PyQt5.QtWidgets import (

 QApplication,

 QCheckBox,

 QComboBox,

 QLabel,

205

 QLineEdit,

 QMainWindow,

 QPlainTextEdit,

 QPushButton,

 QSpinBox,

 QVBoxLayout,

 QWidget,

)

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("QSS Tester")

 self.editor = QPlainTextEdit()

 self.editor.textChanged.connect(self.update_styles)

 layout = QVBoxLayout()

 layout.addWidget(self.editor)

 # Define a set of simple widgets.

 cb = QCheckBox("Checkbox")

 layout.addWidget(cb)

 combo = QComboBox()

 combo.setObjectName("thecombo")

 combo.addItems(["First", "Second", "Third", "Fourth"])

 layout.addWidget(combo)

 sb = QSpinBox()

 sb.setRange(0, 99999)

 layout.addWidget(sb)

 l = QLabel("This is a label")

 layout.addWidget(l)

 le = QLineEdit()

 le.setObjectName("mylineedit")

 layout.addWidget(le)

 pb = QPushButton("Push me!")

206

 layout.addWidget(pb)

 self.container = QWidget()

 self.container.setLayout(layout)

 self.setCentralWidget(self.container)

 def update_styles(self):

 qss = self.editor.toPlainText()

 self.setStyleSheet(qss)

app = QApplication(sys.argv)

app.setStyle("Fusion")

w = MainWindow()

w.show()

app.exec_()

Running this app you’ll see the following window, with a text editor at the

top (where you can enter QSS rules) and a set of widgets to which these rules

will be applied — we’ll look at how applying rules and inheritance works in a

bit.

Figure 101. QSS tester application, no rules applied.

Try entering the following style rules in the box at the top, and comparing

207

the result with the screenshots to make sure it’s working.

QLabel { background-color: yellow }

Figure 102. Applying background-color: yellow to QLabel

QLineEdit { background-color: rgb(255, 0, 0) }

Figure 103. Applying background-color: rgb(255, 0, 0) (red) to QLineEdit

208

QLineEdit {

 border-width: 7px;

 border-style: dashed;

 border-color: red;

}

Figure 104. Applying dashed red border to QLineEdit

Next we’ll look in some detail at how these QSS rules are styling the widgets,

gradually building up to some more complex rule sets.


A full list of styleable widgets is available in the Qt

documentation.

209

https://doc.qt.io/qt-5/stylesheet-reference.html
https://doc.qt.io/qt-5/stylesheet-reference.html

Styling properties

Next we’ll got through the properties available to style widgets with QSS.

These have been broken down into logical sections, containing properties

that are related to one another to make it easier to digest. You can use the

QSS rule tester app we just created to test these styles out on the various

widgets.

The types used in the following tables are listed below. Some of these are

compound types, made up of other entries.


You can skip over this table for now, but will need it as a

reference for interpreting the valid values for each property.

Property Type Description

Alignment top | bottom | left |

right | center

Horizontal and/or vertical alignment.

Attachment scroll | fixed Scroll or fixed attachment.

Background Brush | Url | Repeat |

Alignment

Compound type of Brush, Url,Repeat,

andAlignment.

Boolean 0 | 1 True (1) or False (0).

Border Border Style | Length

| Brush

Shorthand border property.

Border Image none | Url Number

(stretch | repeat)

An image composed of nine parts

(top left, top center, top right, center

left, center, center right, bottom left,

bottom center, and bottom right).

Border Style dashed | dot-dash |

dot-dot-dash | dotted

| double | groove |

inset | outset | ridge |

solid | none

The pattern used to draw a border.

210

Property Type Description

Box Colors Brush Up to four values ofBrush, specifying

the top, right, bottom, and left edges

of a box, respectively. If the left color

omitted will copy right, if bottom

omitted will copy top.

Box Lengths Length Up to four values of Length,

specifying the top, right, bottom, and

left edges of a box, respectively. If the

left color omitted will copy right, if

bottom omitted will copy top.

Brush Color | Gradient |

PaletteRole

A Color, Gradient or an entry in the

Palette.

Color rgb(r,g,b) |

rgba(r,g,b,a) |

hsv(h,s,v) |

hsva(h,s,v,a) | hsl(h,s,l)

| hsla(h,s,l,a) | #rrggbb

| Color Name

Specifies a color as RGB (red, green,

blue), RGBA (red, green, blue, alpha),

HSV (hue, saturation, value), HSVA

(hue, saturation, value, alpha), HSL

(hue, saturation, lightness), HSLA

(hue, saturation, lightness, alpha) or a

named color. Thergb()orrgba()syntax

can be used with integer values

between 0 and 255, or with

percentages.

Font (Font Style | Font

Weight)Font Size

Shorthand font property.

Font Size Length The size of a font.

Font Style normal | italic |

oblique

The style of a font.

Font Weight normal | bold | 100 |

200… | 900

The weight of a font.

211

Property Type Description

Gradient qlineargradient |

qradialgradient |

qconicalgradient

Lineargradients between start and

end points. Radialgradients between

a focal point and end points on a

circle surrounding it. Conical

gradients around a center point. See

the QLinearGradient documentation

for syntax.

Icon Url(disabled | active |

normal | selected) (on

| off)

A list of

url,QIcon.ModeandQIcon.State. e.g.

file-icon: url(file.png),

url(file_selected.png) selected;

Length Number(px | pt | em |

ex)

A number followed by a

measurement unit. If no unit is given,

uses pixels in most contexts. One of

px: pixels pt: the size of one point (i.e.,

1/72 of an inch), em: the em `width of

the font (i.e., the width of 'M'), ex: the

ex width of the font (i.e., the height of

'x')

Number A decimal integer or a

real number

e.g. 123, or 12.2312

Origin margin | border |

padding | content

See box model for more details.

212

https://doc.qt.io/qt-5/stylesheet-reference.html#gradient

Property Type Description

PaletteRole alternate-base | base |

bright-text | button |

button-text | dark |

highlight |

highlighted-text |

light | link | link-

visited | mid |

midlight | shadow |

text | window |

window-text

These values correspond theColor

roles in the widget’sQPalette, e.g.

color: palette(dark);

Radius Length One or two occurrences of Length.

Repeat repeat-x | repeat-y |

repeat | no-repeat

repeat-x: Repeat horizontally. repeat-

y: Repeat vertically. repeat: Repeat

horizontally and vertically. no-repeat:

Don’t repeat.

Url url(filename) filenameis the name of a file on the

local disk or stored usingThe Qt

Resource System.

The full details of these properties and types are also available in the QSS

reference documentation.

Text styles

We’ll start with text properties which can be used to modify fonts, colors and

styles (bold, italic, underline) of text. These can be applied to any widget or

control.

Property Type (Default) Description

color Brush (QPalette

Foreground)

The color used to render

text.

213

https://doc.qt.io/Qt-5/stylesheet-reference.html#list-of-properties
https://doc.qt.io/Qt-5/stylesheet-reference.html#list-of-properties

Property Type (Default) Description

font Font Shorthand notation for

setting the text’s font.

Equivalent to specifying

font-family, font-size,

font-style, and/or font-

weight

font-family String The font family.

font-size Font Size The font size. In this

version of Qt, only pt

and px metrics are

supported.

font-style normal | italic | oblique The font style.

font-weight Font Weight The weight of the font.

selection-background-

color

Brush (QPalette

Highlight)

The background of

selected text or items.

selection-color Brush (Palette

HighlightedText)

The foreground of

selected text or items.

text-align Alignment The alignment of text

and icon within the

contents of the widget.

text-decoration none | underline |

overline | line-through

Additional text effects

The example snippet below, sets the color on the QLineEdit to red, the

background color for selected text to yellow and the color of selected text to

blue.

214

QLineEdit {

 color: red;

 selection-color: blue;

 selection-background-color: yellow;

}

Try this in the QSS tester to see the effect on the QLineEdit and it will give the

following result. Notice that only the targeted widget (QLineEdit) is affected

by the styles.

Figure 105. Applying text styles to a QLineEdit

We can apply this rule to two distinct types of widgets by giving them both

as the target, separated by a comma.

QSpinBox, QLineEdit {

 color: red;

 selection-color: blue;

 selection-background-color: yellow;

}

215

Figure 106. Applying text styles to a QLineEdit & QSpinBox

In this final example, we make the font bold & italic and align the text in both

widgets to the right.

QSpinBox, QLineEdit {

 color: red;

 selection-color: blue;

 selection-background-color: yellow;

 text-align: right;

 font-style: italic;

 font-weight: bold;

}

Figure 107. Applying some more text styles to a QLineEdit & QSpinBox

216

Backgrounds

In addition to styling text you can also style the widget background, with

both solid colors and images. For images there are a number of additional

properties which define how the image is repeated and positioned within the

widget area.

Property Type (Default) Description

background Background Shorthand notation for

setting the background.

Equivalent to specifying

background-color,

background-image,

background-repeat,

and/or background-

position. See also

background-origin,

selection-background-

color, background-clip,

background-

attachment and

alternate-background-

color.

background-color Brush The background color

used for the widget.

background-image Url The background image

used for the widget.

Semi-transparent parts

of the image let the

background-color shine

through.

217

Property Type (Default) Description

background-repeat Repeat (both) Whether and how the

background image is

repeated to fill the

background-origin

rectangle.

background-position Alignment (top-left) The alignment of the

background image

within the background-

origin rectangle.

background-clip Origin (border) The widget’s rectangle,

in which the

background is drawn.

background-origin Origin (padding) The widget’s

background rectangle,

to use in conjunction

with background-

position and

background-image.

The following example will apply the specified image over the background of

our QPlainTextEdit which we are using to enter the rules.

QPlainTextEdit {

 color: white;

 background-image: url(../otje.jpg);

}

Images are referenced using the url() syntax, passing in the path to the file.

Here we’re using ../otje.jpg to point to a file in the parent directory. You can

also use resource path syntax, e.g. url(:/images/<imagename>.png) to select

images from the currently loaded resources.

218

Figure 108. A background image.


While this syntax is identical to that used in CSS, remote files

cannot be loaded with URLs.

To position the background in the widget you can use the background-position

property. This defines the point of the image which will be aligned with the

same point on the widget’s origin rectangle. By default the origin rectangle

is the padded area of the widget.

Figure 109. Examples of background position

A position of center, center therefore means the center of the image will be

aligned with the center of the widget, along both axes.

QPlainTextEdit {

 color: white;

 background-image: url(../otje.jpg);

 background-position: center center;

}

219

Figure 110. Centered background image.

To align the bottom-right of the image to the bottom-right of the origin

rectangle of the widget, you would use.

QPlainTextEdit {

 color: white;

 background-image: url(../otje.jpg);

 background-position: bottom right;

}

The origin rectangle can be modified using the background-origin property.

This accepts one of the values margin, border, padding or content which defines

that specific box as the reference of background position alignment.

To understand what this means we’ll need to take a look at the widget box

model.

The widget Box Model

The term box model describes the relationships between the boxes

(rectangles) which surround each widget and the effect these boxes have on

the size or layout of widgets in relationship to one another. Each Qt widget is

surrounded by four concentric boxes — from inside out, these are content,

padding, border and margin.

220

Figure 111. The box model.

Increasing the size of the inner boxes, increases the size of the outer boxes.

This arrangement means, for example, that increasing the padding of a

widget will add space between the content the border, while increasing the

dimensions of the border itself.

Figure 112. The effect on other boxes of adding padding to the right.

The properties available to modify the various boxes are given below.

221

Property Type (Default) Description

border Border Shorthand notation for setting the

widget’s border. Equivalent to

specifying border-color, border-style,

and/or border-width. Also border-top,

border-right, border-bottom and

border-left.

border-color Box Colors (QPalette

Foreground)

The color of all the border’s edges.

Also border-top-color, border-right-

color, border-bottom-color, border-

left-color for specific edges.

border-image Border Image The image used to fill the border. The

image is cut into nine parts and

stretched appropriately if necessary.

border-radius Radius The radius (curve) of the border’s

corners. Also border-top-left-radius,

border-top-right-radius, border-

bottom-right-radius and border-

bottom-left-radius for specific corners.

border-style Border Style (none) The style of all the border’s edges.

Also border-top-style, border-right-

style, border-bottom-style and border-

left-style for specific edges.

border-width Box Lengths The width of the border. Also border-

top-width, border-right-width, border-

bottom-width and border-left-width.

margin Box Lengths The widget’s margins. Also margin-top,

margin-right, margin-bottom and

margin-left.

outline The outline drawn around the

object’s border.

222

Property Type (Default) Description

outline-color Color The color of the outline. See also

border-color

outline-offset Length The outline’s offset from the border of

the widget.

outline-style Specifies the pattern used to draw

the outline. See also border-style

outline-radius Adds rounded corners to the outline.

Also outline-bottom-left-radius,

outline-bottom-right-radius, outline-

top-left-radius and outline-top-

right-radius

padding Box Lengths The widget’s padding. Also padding-

top, padding-right, padding-bottom and

padding-left.

The following example modifies the margin, border and padding of the

QPlainTextEdit widget.

QPlainTextEdit {

 margin: 10;

 padding: 10px;

 border: 5px solid red;

}

223



A note on units

In this example we’re using px or pixel units for the padding

and border The value for margin is also in pixels, as this is the

default unit when none is specified. You can also use one of

the following units — 

• px pixels

• pt the size of one point (i.e. 1/72 of an inch)

• em the em width of the font (i.e. the width of 'M')

• ex the ex width of the font (i.e. the height of 'x')

Looking at the result in the QSS tester, you can see the padding inside the

red border and the margin outside the red border.

Figure 113. The box model

You can also add a radius to the outline to add curved edges.

QPlainTextEdit {

 margin: 10;

 padding: 10px;

 border: 5px solid red;

 border-radius: 15px;

}

224

Figure 114. Borders with 15px radius (curve)

Sizing widgets

It is possible to control the size of widgets with QSS. However, while there are

specific width and height properties (see later) these are only used to specify

the sizes of sub-controls. To control widgets you must instead use the max-

and min- properties.

Property Type (Default) Description

max-height Length The widget’s or a subcontrol’s

maximum height.

max-width Length The widget’s or a subcontrol’s

maximum width.

min-height Length The widget’s or a subcontrol’s

minimum height.

min-width Length The widget’s or a subcontrol’s

minimum width.

If you provide a min-height property larger than the widget usually is, then the

widget will be enlarged.

225

QLineEdit {

 min-height: 50;

}

Figure 115. Setting a min-height on a QLineEdit, to enlarge it.

However, when setting min-height the widget can of course be larger than

this. To specify an exact size for a widget, you can specify both a min- and max-

value for the dimension.

QLineEdit {

 min-height: 50;

 max-height: 50;

}

This will lock the widget to this height, preventing it from resizing in

response to changes in content.


Be careful about using this, as you can render widgets

unreadable!

226

Widget specific styles

The styles we’ve looked at so far are generic and can be used with most

widgets. However, there are also a number of widget-specific properties

which can be set.

Property Type (Default) Description

alternate-background-

color

Brush (QPalette

AlternateBase)

The alternate

background color used

in QAbstractItemView

subclasses.

background-attachment Attachment (scroll) Determines whether the

background-image in a

QAbstractScrollArea is

scrolled or fixed with

respect to the viewport.

button-layout Number

(SH_DialogButtonLayout)

The layout of buttons in

a QDialogButtonBox or a

QMessageBox. The possible

values are 0 (Win), 1

(Mac), 2 (KDE), 3

(Gnome) and 5

(Android).

dialogbuttonbox-buttons-

have-icons

Boolean Whether the buttons in

a QDialogButtonBox show

icons. If this property is

set to 1, the buttons of a

QDialogButtonBox show

icons; if it is set to 0, the

icons are not shown.

gridline-color Color

(SH_Table_GridLineColor)

The color of the grid line

in a QTableView.

227

Property Type (Default) Description

icon Url+ The widget icon. The

only widget currently

supporting this property

is QPushButton.

icon-size Length The width and height of

the icon in a widget.

lineedit-password-

character

Number

(SH_LineEdit_PasswordChar

acter)

The QLineEdit password

character as a Unicode

number.

lineedit-password-mask-

delay

Number

(SH_LineEdit_PasswordMask

Delay)

The QLineEdit password

mask delay in

milliseconds before

lineedit-password-

character is applied.

messagebox-text-

interaction-flags

Number

(SH_MessageBox_TextIntera

ctionFlags)

The interaction behavior

for text in a message

box.(from

Qt.TextInteractionFlags)

opacity Number

(SH_ToolTipLabel_Opacity)

The opacity for a widget

(tooltips only) 0-255.

paint-alternating-row-

colors-for-empty-area

bool Whether a QTreeView

paints alternating rows

past the end of the data.

show-decoration-selected Boolean

(SH_ItemView_ShowDecorati

onSelected)

Controls whether

selections in a QListView

cover the entire row or

just the extent of the

text.

228

Property Type (Default) Description

titlebar-show-tooltips-

on-buttons

bool Whether tool tips are

shown on window title

bar buttons.

widget-animation-

duration

Number How long an animation

should last

(milliseconds).

These only apply to the widgets specified in the description (or their

subclasses).

Targeting

We’ve seen a range of different QSS properties and applied them to widgets

based on their type. But how can you target individual widgets and how does

Qt decide which rules to apply to which widgets and when? Next, we’ll look

at other options for targeting QSS rules and the effect of inheritance.

Type Example Description

Universal * Matches all widgets.

Type QPushButton Instances of QPushButton or

its subclasses.

Property QPushButton[flat="fals

e"]

Instances of QPushButton that

are not flat. Can compare

with any property that

supports .toString(). Can also

use class="classname"

Property contains QPushButton[property~=

"something"]

Instances of QPushButton

where property (a list of

QString) does not contain the

given value.

229

Type Example Description

Class `.QPushButton Instances of QPushButton

but not subclasses.

ID QPushButton#okButton A QPushButton instance

whose object name is

okButton.

Descendant QDialog QPushButton Instances of QPushButton

that are descendants

(children, grandchildren, etc.)

of a QDialog.

Child QDialog > QPushButton Instances of QPushButton

that are immediate children

of a QDialog.

We’ll look at each of these targeting rules in turn now, trying them out with

our QSS tester.

Type

We’ve already seen type targeting in action in our QSS tester. Here we

targeted rules against the type name of the individual widgets, for example

QComboBox or QLineEdit.

230

Figure 116. Targeting a QComboBox does not affect other unrelated types.

However, targeting types in this way also targets any subclasses of that type.

So for example, we can target QAbstractButton to target any types that derive

from it.

QAbstractButton {

 background: orange;

}

Figure 117. Targeting a QAbstractButton affects all child classes

This behavior means that all widgets can be targeted using QWidget. For

example, the following will set the background of all widgets to red.

231

QWidget {

 background: red;

}

Figure 118. QSS selection via parent classes.

Class .

Sometimes however you want to only target a specific class of widget, and

not any subclasses. To do this you can use class targeting — by prepending a

. to the name of the type.

The following targets instances of QWidget but not any classes derived from

QWidget. In our QSS tester the only QWidget we have is the central widget used

for holding the layout. So the following will change the background of that

container widget orange.

.QWidget {

 background: orange;

}

232

Figure 119. Targeting a class specifically will not target subclasses

ID targeting #

All Qt widgets have an object name which uniquely identifies them. When

creating widgets in Qt Designer you use the object name to specify the

name that the object is available under on the parent window. However, this

relationship is just for convenience — you can set any object name you want

for a widget in your own code. These names can then be used to target QSS

rules directly to specific widgets.

In our QSS tester app we’ve set IDs on our QComboBox and QLineEdit for testing.

combo.setObjectName('thecombo')

le.setObjectName('mylineedit')

Property [property="<value>"]

You can target widgets by any widget property which is available as a string

(or who’s value has a .toString() method). This can be used to define some

quite complex states on widgets.

The following is a simple example targeting a QPushButton by the text label.

233

QPushButton[text="Push me!"] {

 background: red;

}

Figure 120. Targeting a QPushButton by the label text


Targeting widgets by their visible text is a very bad idea in

general as it will introduce bugs as you try and translate your

application or change labels.

Rules are applied to widgets when the stylesheet is first set and will not

respond to changes in properties. If a property targeted by a QSS rule is

modified, you must trigger a stylesheet recalculation for it to take effect — for

example by re-setting the stylesheet again.

Descendant

To target descendants of a given type of widget, you can chain widgets

together. The following example targets any QComboBox which is a child of a

QMainWindow — whether it is an immediate child, or nested within other

widgets or layouts.

234

QMainWindow QComboBox {

 background: yellow;

}

Figure 121. Targeting a QComboBox which is a child of a QMainWindow

To target all descendants you can use the global selector as the final element

in the targeting. You can also chain many types together to target only those

places in your app where that hierarchy exists.

QMainWindow QWidget * {

 background: yellow;

}

In our QSS tester application we have an outer QMainWindow, with a QWidget

central widget holding the layout, and then our widgets in that layout. The

rule above therefore matches only the individual widgets (which all have

QMainWindow QWidget as parents, in that order).)

235

Figure 122. Targeting a QComboBox which is a child of a QMainWindow

Child >

You can also target a widget which is a direct child of another widget using

the > selector. This will only match where that exact hierarchy is in place.

For example, the following will only target the QWidget container which is a

direct child of the QMainWindow.

QMainWindow > QWidget {

 background: green;

}

But the following will not match anything, since in our QSS app the QComboBox

widget is not a direct child of the QMainWindow.

QMainWindow > QComboBox { /* matches nothing */

 background: yellow;

}

236

Figure 123. Targeting a QComboBox which is a direct child of a QWidget

Inheritance

Style sheets can be applied to QApplication and widgets and will apply to the

styled widget and all of it’s children. A widget’s effective style sheet is

determined by combining the style sheets of all it’s ancestors (parent,

grandparent, …all the way up to the window) plus style sheets on QApplication

itself.

Rules are applied in order of specificity. That means, a rule which targets a

specific widget by ID, will override a rule which targets all widgets of that

type. For example, the following will set the background of the QLineEdit in

our QSS tester app to blue — the specific ID overrides the generic widget rule.

QLineEdit#mylineedit {

 background: blue;

}

QLineEdit {

 background: red;

}

237

Figure 124. Specific ID targeting overrules generic widget targeting.

In cases where there are two conflicting rules the widgets' own style sheet

will be preferred over inherited styles, and nearer ancestors will be preferred

over more distance — parents will be preferred to grandparents for example.

No inherited properties

Widgets are only affected by rules which target them specifically. While rules

can be set on a parent, they must still reference the target widget to affect it.

Take the following rule — 

QLineEdit {

 background: red;

}

If set on a QMainWindow all QLineEdit objects in that window will have a red

background (assuming no other rules). However, if the following is set…

QMainWindow {

 background: red;

}

…only the QMainWindow itself will be set with a red background. The

background color itself does not propogate to child widgets.

238

Figure 125. QSS properties do not propagate to children.


If the child widgets have transparent backgrounds, the red

will show through however.

Unless targeted by a matching rule, a widget will use it’s default system style

values for each property. Widgets do not inherit style properties from parent

widgets, even inside compound widgets, and widgets must be targeted by

rules directly to be affected by them.


This is in contrast with CSS, where elements can inherit

values from their parents.

Pseudo-selectors

So far we’ve looked at static styling, using properties to change the default

appearance of a widget. However, QSS also allows you to style in response to

dynamic widget states. An example of this is the highlight you see when

buttons are hovered with the mouse — the highlight helps to indicate that

the widget has focus and will respond if you click it.

There are many other uses for active styling, from usability (highlighting lines

of data, or specific tabs) to visualizing data hierarchies. These can all be

achieved using pseudo-selectors in QSS. Pseudo-selectors make QSS rules

apply only in particular circumstances.

239

There are a lot of different pseudo selectors which you can apply to widgets.

Some such as :hover are generic and can be used with all widgets, others are

widget-specific. The full list is given below — 

Pseudo-State Description

:active Widget is part of an active window.

:adjoins-item The ::branch of a QTreeView is adjacent to an item.

:alternate Set for every alternate row when painting the row of

a QabstractItemView

(QabstractItemView.alternatingRowColors() is True)

:bottom Positioned at the bottom, e.g. a QTabBar that has its

tabs at the bottom.

:checked Item is checked, e.g. the checked state of

QAbstractButton.

:closable Items can be closed, e.g. a QDockWidget has

QdockWidget.DockWidgetClosable enabled.

:closed Item is in the closed state, e.g. an non-expanded

item in a QtreeView

:default Item is the default action, e.g. a default QPushButton or

a default action in a QMenu.

:disabled Item is disabled.

:editable QcomboBox is editable.

:enabled Item is enabled.

:exclusive Item is part of an exclusive item group, e.g. a menu

item in a exclusive QActionGroup.

:first Item is the first in a list, e.g. the first tab in a QtabBar.

:flat Item is flat, e.g. a flat QpushButton.

:floatable Items can be floated, e.g. the QDockWidget has

QDockWidget.DockWidgetFloatable enabled.

240

Pseudo-State Description

:focus Item has input focus.

:has-children Item has children, e.g. an item in a QTreeView with

child items.

:has-siblings Item has siblings, e.g. an item in a QTreeView with

siblings.

:horizontal Item has horizontal orientation

:hover Mouse is hovering over the item.

:indeterminate Item has indeterminate state, e.g. a QCheckBox or

QRadioButton is partially checked.

:last Item is the last (in a list), e.g. the last tab in a QTabBar.

:left Item is positioned at the left, e.g. a QTabBar that has its

tabs positioned at the left.

:maximized Item is maximized, e.g. a maximized QMdiSubWindow.

:middle Item is in the middle (in a list), e.g. a tab that is not in

the beginning or the end in a QTabBar.

:minimized Item is minimized, e.g. a minimized QMdiSubWindow.

:movable Item can be moved around, e.g. the QDockWidget

has QDockWidget.DockWidgetMovable enabled.

:no-frame Item has no frame, e.g. a frameless QSpinBox or

QLineEdit.

:non-exclusive Item is part of a non-exclusive item group, e.g. a

menu item in a non-exclusive QActionGroup.

:off Items that can be toggled, this applies to items in

the "off" state.

:on Items that can be toggled, this applies to widgets in

the "on" state.

241

Pseudo-State Description

:only-one Item is the only one (in a list), e.g. a lone tab in a

QTabBar.

:open Item is in the open state, e.g. an expanded item in a

QTreeView, or a QComboBox or` QPushButton` with an

open menu.

:next-selected Next item is selected, e.g. the selected tab of a

QTabBar is next to this item.

:pressed Item is being pressed using the mouse.

:previous-selected Previous item is selected, e.g. a tab in a QTabBar that is

next to the selected tab.

:read-only Item is marked read only or non-editable, e.g. a read

only QLineEdit or a non-editable QComboBox.

:right Item is positioned at the right, e.g. a QTabBar that has

its tabs positioned at the right.

:selected Item is selected, e.g. the selected tab in a QTabBar or

the selected item in a QMenu.

:top Item is positioned at the top, e.g. a QTabBar that has

its tabs positioned at the top.

:unchecked Item is unchecked.

:vertical Item has vertical orientation.

:window Widget is a window (i.e a top level widget)

We can use the QSS tester to see pseudo-selectors in action. For example,

the following will change the background of the QPushButton red when the

mouse hovers over the widget.

QPushButton:hover {

 background: red;

}

242

The following will change the background of all widgets when they are

hovered.

*:hover {

 background: red;

}

Hovering a widget means all it’s parents are also hovered (the mouse is

within their bounding box) as the image below shows.

Figure 126. Left, QPushButton highlighted when hovered. Right, when a widget is

hovered all parent widgets are also hovered.

You can also negate pseudo-selectors using !. This means that the rule will

become active when that selector is inactive. For example the following…

QPushButton:!hover {

 background: yellow;

}

…will make the QPushButton yellow when it is not hovered.

You can also chain multiple pseudo-selectors together. For example, the

243

following will set the background of a QCheckBox green when it is checked and

not hovered, and yellow when it is checked and hovered.

QCheckBox:checked:!hover {

 background: green;

}

QCheckBox:checked:hover {

 background: yellow;

}

Figure 127. Chained pseudo selectors for hover state.

As for all other rules, you can also chain them using , separators to make the

defined rule apply to both (or many) cases. For example, the following will set

a checkbox background green when it is checked OR hovered.

QCheckBox:checked, QCheckBox:hover {

 background: yellow;

}

244

Styling Widget Sub controls

Many widgets are constructed from a combination of other sub-widgets or

controls. QSS provides syntax for addressing these sub-controls directly, so

you can make style changes to sub-controls individually. These sub-controls

can be addressed by using the :: (double-colon) selector, followed by an

identifier for the given sub control.

A good example of such a widget is the QComboBox. The following style snipped

applies a custom style directly to the down-arrow on the right hand of the

combo box.

QComboBox::drop-down {

 background: yellow;

 image: url('puzzle.png')

}

Figure 128. Setting background and icon for a QComboBox dropdown with QSS.

There are quite a few sub-control selectors available in QSS, which are listed

below. You’ll notice that many of them apply only to specific widgets (or

types of widgets).

245

Sub-Control Description

::add-line Button to move to next line on a QScrollBar.

::add-page Space between the handle and the add-line of a

QScrollBar.

::branch Branch indicator of a QTreeView.

::chunk Progress chunk of a QProgressBar.

::close-button Close button of a QDockWidget or tabs of QTabBar

::corner Corner between two scrollbars in a

QAbstractScrollArea

::down-arrow Down arrow of a QComboBox, QHeaderView, QScrollBar or

QSpinBox.

::down-button Down button of a QScrollBar or a QSpinBox.

::drop-down Drop-down button of a QComboBox.

::float-button Float button of a QDockWidget.

::groove Groove of a QSlider.

::indicator Indicator of a QAbstractItemView, a QCheckBox, a

QRadioButton, a checkable QMenu item or a checkable

QGroupBox.

::handle Handle of a QScrollBar, a QSplitter, or a QSlider.

::icon Icon of a QAbstractItemView or a QMenu.

::item Item of a QAbstractItemView, a QMenuBar, a QMenu, or a

QStatusBar.

::left-arrow Left arrow of a QScrollBar.

::left-corner Left corner of a QTabWidget, e.g. control the left corner

widget in a QTabWidget.

::menu-arrow Arrow of a QToolButton with a menu.

::menu-button Menu button of a QToolButton.

246

Sub-Control Description

::menu-indicator Menu indicator of a QPushButton.

::right-arrow Right arrow of a QMenu or a QScrollBar.

::pane The pane (frame) of a QTabWidget.

::right-corner The right corner of a QTabWidget. For example, this

control can be used to control the position the right

corner widget in a QTabWidget.

::scroller The scroller of a QMenu or QTabBar.

::section The section of a QHeaderView.

::separator The separator of a QMenu or in a QMainWindow.

::sub-line The button to subtract a line of a QScrollBar.

::sub-page The region between the handle (slider) and the sub-

line of a QScrollBar.

::tab The tab of a QTabBar or QToolBox.

::tab-bar The tab bar of a QTabWidget. This subcontrol exists

only to control the position of the QTabBar inside the

QTabWidget. To style the tabs using the ::tab

subcontrol.

::tear The tear indicator of a QTabBar.

::tearoff The tear-off indicator of a QMenu.

::text The text of a QAbstractItemView.

::title The title of a QGroupBox or a QDockWidget.

::up-arrow The up arrow of a QHeaderView (sort indicator),

QScrollBar or a QSpinBox.

::up-button The up button of a QSpinBox.

The following targets the up and down buttons of a QSpinBox turning the

background red and green respectively.

247

QSpinBox::up-button {

 background: green;

}

QSpinBox::down-button {

 background: red;

}

Figure 129. Setting background to the QSpinBox up and down buttons.

The arrows inside the up down buttons are also separately targetable. Below

we’re setting them with custom plus and minus icons — note we also need to

resize the buttons to fit.

248

QSpinBox {

 min-height: 50;

}

QSpinBox::up-button {

 width: 50;

}

QSpinBox::up-arrow {

 image: url('plus.png');

}

QSpinBox::down-button {

 width: 50;

}

QSpinBox::down-arrow {

 image: url('minus.png')

}

Figure 130. Setting background to the QSpinBox up and down buttons.

Subcontrol pseudostates

You can use pseudostates to target subcontrols, just as for other widgets. To

do this, simply chain the pseudostate after the control. For example — 

249

QSpinBox::up-button:hover {

 background: green;

}

QSpinBox::down-button:hover {

 background: red;

}

Figure 131. Combining subcontrol selectors with pseudo-selectors.

Positioning Sub-controls

Using QSS you also get precise control over the position of subcontrols inside

widgets. These allow adjustment in position either relative to their normal

position, or in absolute reference to their parent widget. We’ll look at these

positioning methods below.

250

Property Type (Default) Description

position relative | absolute

(relative)

Whether offsets

specified using left,

right, top, and bottom

are relative or absolute

coordinates.

bottom Length If position is relative (the

default), moves a

subcontrol by a certain

offset up; specifying

bottom: y is then

equivalent to specifying

top: -y. If position is

absolute, the bottom

property specifies the

subcontrol’s bottom

edge in relation to the

parent’s bottom edge

(see also subcontrol-

origin).

left Length If position=relative move

a subcontrol right by the

given offset (i.e. specifies

additional space on the

left). If position is

absolute, specifies the

distance from the left

edge of the parent.

251

Property Type (Default) Description

right Length If position=relative move

a subcontrol left by the

given offset (i.e. specifies

additional space on the

right). If position is

absolute, specifies the

distance from the right

edge of the parent.

top Length If position=relative move

a subcontrol down the

given offset (i.e. specifies

additional space on the

top). If position is

absolute, specifies the

distance from the top

edge of the parent.

By default, positioning is relative. In this mode, the left, right, top and bottom

properties define additional spacing to be added on the respective side. This

means, somewhat confusingly, that left moves widgets right.


To help you remember, think of these as "add space to the

left" and so on.

252

QSpinBox {

 min-height: 100;

}

QSpinBox::up-button {

 width: 50;

}

QSpinBox::down-button {

 width: 50;

 left: 5;

}

Figure 132. Adjusting the position of subcontrols with left.

When position is set to absolute, the left, right, top and bottom properties

define the spacing between the widget and and it’s parent’s identical edges.

So, for example, top: 5, left: 5 will position a widget so it’s top and left

edges are 5 pixels from it’s parent’s top and left edge.

253

QSpinBox {

 min-height: 100;

}

QSpinBox::up-button {

 width: 50;

}

QSpinBox::down-button {

 position: absolute;

 width: 50;

 right: 25;

}

Below you can see the effect of positioning the down button using absolute,

placing it 25 pixels from the right.

Figure 133. Adjusting the position of subcontrols absolute.

This is not the most practical example, but it demonstrates one constraint on

positioning sub-controls in this way — you cannot position a subcontrol

outside it’s parent’s bounding box.

Subcontrol styles

Finally, there are number of QSS properties which specifically target sub-

controls for styling. These are shown below — see the description for the

254

specific affected widgets and controls.

Property Type (Default) Description

image Url+ The image that is drawn in

the contents rectangle of a

subcontrol. Setting the image

property on sub controls

implicitly sets the width and

height of the sub-control

(unless the image in a SVG).

image-position alignment The alignment of the image

image’s position can be

specified using relative or

absolute position. See relative

and absolute for explanation.

height Length The height of a subcontrol. If

you want a widget with a

fixed height, set the min-

height and max-height to the

same value.

spacing Length Internal spacing in the

widget.

subcontrol-origin Origin (padding) The origin rectangle of the

subcontrol within the parent

element.

subcontrol-position Alignment The alignment of the

subcontrol within the origin

rectangle specified by

subcontrol-origin.

255

Property Type (Default) Description

width Length The width of a subcontrol. If

you want a widget with a

fixed width , set the min-

width and max-width to the

same value.

Editing Stylesheets in Qt Designer

So far the examples we’ve seen have applied QSS to widgets using code.

However, you can also set stylesheets on widgets from within Qt Designer.

To set a QSS stylesheet on a widget in Qt Designer, right-click on the widget

and select "Change stylesheet…" from the context menu.

Figure 134. Accessing the QSS editor for a widget.

This will open up the following window, where you can enter QSS rules as

text, which will be applied to this widget (and any children which match the

rules).

256

Figure 135. The QSS editor in Qt Designer.

As well as entering rules as text, the QSS editor in Qt Designer gives you

access to a resource lookup tool, color selection widget and a gradient

designer. This tool (shown below) provides a number of built-in gradients you

can add to your rules, but you can also define your own custom gradients if

you prefer.

Figure 136. The QSS gradient designer in Qt Designer.

Gradients are defined using QSS rules so you can copy and paste them

elsewhere (including into your code) to re-use them if you like.

257

Listing 70. The Dutch flag using a QSS qlineargradient rule.

QWidget {

background: qlineargradient(spread:pad, x1:0, y1:0, x2:0, y2:1, stop:0

rgba(255, 0, 0, 255), stop:0.339795 rgba(255, 0, 0, 255), stop

:0.339799 rgba(255, 255, 255, 255), stop:0.662444 rgba(255, 255, 255,

255), stop:0.662469 rgba(0, 0, 255, 255), stop:1 rgba(0, 0, 255, 255))

}

Figure 137. The "Dutch flag" QSS gradient applied to a QWidget in Qt Designer

258

Model View Architecture

…with proper design, the features come cheaply.

— Dennis Ritchie

As you start to build more complex applications with PyQt5 you’ll likely come

across issues keeping widgets in sync with your data.

Data stored in widgets (e.g. a simple QListWidget) is not easy to manipulate

from Python — changes require you to get an item, get the data, and then

set it back. The default solution to this is to keep an external data

representation in Python, and then either duplicate updates to the both the

data and the widget, or simply rewrite the whole widget from the data. As

you start to work with larger data this approach can start to have

performance impacts on your application.

Thankfully Qt has a solution for this — ModelViews. ModelViews are a

powerful alternative to the standard display widgets, which use a

standardized model interface to interact with data sources — from simple

data structures to external databases. This isolates your data, meaning you

can keep it in any structure you like, while the view takes care of presentation

and updates.

This chapter introduces the key aspects of Qt’s ModelView architecture and

uses it to build simple desktop Todo application in PyQt5.

259

20. The Model View Architecture —

Model View Controller

Model–View–Controller (MVC) is an architectural pattern used for developing

user interfaces. It divides an application into three interconnected parts,

separating the internal representation of data from how it is presented to

and accepted from the user.

The MVC pattern splits the interface into the following components —

• Model holds the data structure which the app is working with.

• View is any representation of information as shown to the user, whether

graphical or tables. Multiple views of the same data are allowed.

• Controller accepts input from the user, transforms it into commands and

applies these to the model or view.

In Qt land the distinction between the View & Controller gets a little murky.

Qt accepts input events from the user via the OS and delegates these to the

widgets (Controller) to handle. However, widgets also handle presentation of

their own state to the user, putting them squarely in the View. Rather than

agonize over where to draw the line, in Qt-speak the View and Controller are

instead merged together creating a Model/ViewController architecture —

called "Model View" for simplicity.

260

Figure 138. Comparing the MVC model and the Qt Model/View architecture.

Importantly, the distinction between the data and how it is presented is

preserved.

The Model View

The Model acts as the interface between the data store and the

ViewController. The Model holds the data (or a reference to it) and presents

this data through a standardized API which Views then consume and

present to the user. Multiple Views can share the same data, presenting it in

completely different ways.

You can use any "data store" for your model, including for example a

standard Python list or dictionary, or a database (via Qt itself, or SQLAlchemy)

— it’s entirely up to you.

The two parts are essentially responsible for —

1. The model stores the data, or a reference to it and returns individual or

ranges of records, and associated metadata or display instructions.

2. The view requests data from the model and displays what is returned on

the widget.

261


There is a good introduction to the Qt Model/View

architecture in the Qt documentation.

262

http://doc.qt.io/qt-5/model-view-programming.html

21. A simple Model View — a Todo

List

To demonstrate how to use the ModelViews in practice, we’ll put together a

very simple implementation of a desktop Todo List. This will consist of a

QListView for the list of items, a QLineEdit to enter new items, and a set of

buttons to add, delete, or mark items as done.

 The files for this example are in the source code.

The UI

The simple UI was laid out using Qt Creator and saved as mainwindow.ui. The

.ui file is included in the downloads for this book.

Figure 139. Designing the UI in Qt Creator

The running app is shown below.

263

Figure 140. The MainWindow

The widgets available in the interface were given the IDs shown in the table

below.

objectName Type Description

todoView QListView The list of current todos

todoEdit QLineEdit The text input for creating a new

todo item

addButton QPushButton Create the new todo, adding it to the

todos list

deleteButton QPushButton Delete the current selected todo,

removing it from the todos list

completeButton QPushButton Mark the current selected todo as

done

We’ll use these identifiers to hook up the application logic later.

264

The Model

We define our custom model by subclassing from a base implementation,

allowing us to focus on the parts unique to our model. Qt provides a number

of different model bases, including lists, trees and tables (ideal for

spreadsheets).

For this example we are displaying the result to a QListView. The matching

base model for this is QAbstractListModel. The outline definition for our model

is shown below.

class TodoModel(QtCore.QAbstractListModel):

 def __init__(self, *args, todos=None, **kwargs):

 super(TodoModel, self).__init__(*args, **kwargs)

 self.todos = todos or []

 def data(self, index, role):

 if role == Qt.DisplayRole:

 # See below for the data structure.

 status, text = self.todos[index.row()]

 # Return the todo text only.

 return text

 def rowCount(self, index):

 return len(self.todos)

The`.todos` variable is our data store. The two methods rowcount() and data()

are standard Model methods we must implement for a list model. We’ll go

through these in turn below.

.todos list

The data store for our model is .todos, a simple Python list in which we’ll store

a tuple of values in the format [(bool, str), (bool, str), (bool, str)] where

bool is the done state of a given entry, and str is the text of the todo.

We initialize self.todo to an empty list on startup, unless a list is passed in via

the todos keyword argument.

265



self.todos = todos or [] will set self.todos to the provided

todos value if it is truthy (i.e. anything other than an empty

list, the bool ` False` or None the default value), otherwise it

will be set to the empty list [].

To create an instance of this model we can simply do —

model = TodoModel() # create an empty todo list

Or to pass in an existing list —

todos = [(False, 'an item'), (False, 'another item')]

model = TodoModel(todos)

.rowcount()

The .rowcount() method is called by the view to get the number of rows in the

current data. This is required for the view to know the maximum index it can

request from the data store (row count-1). Since we’re using a Python list as

our data store, the return value for this is simply the len() of the list.

.data()

This is the core of your model, which handles requests for data from the view

and returns the appropriate result. It receives two parameters index and role.

index is the position/coordinates of the data which the view is requesting,

accessible by two methods .row() and .column() which give the position in

each dimension. For a list view column can be ignored.


For our QListView the column is always 0 and can be ignored,

but you would need to use this for 2D data in a spreadsheet

view.

role is a flag indicating the type of data the view is requesting. This is

266

because the .data() method actually has more responsibility than just the

core data. It also handles requests for style information, tooltips, status bars,

etc. — basically anything that could be informed by the data itself.

The naming of Qt.DisplayRole is a bit weird, but this indicates that the view is

asking us "please give me data for display". There are other roles which the

data can receive for styling requests or requesting data in "edit-ready" format.

Role Value Description

Qt.DisplayRole 0 The key data to be rendered in the

form of text. QString

Qt.DecorationRole 1 The data to be rendered as a

decoration in the form of an icon.

QColor, QIcon or QPixmap

Qt.EditRole 2 The data in a form suitable for editing

in an editor. QString

Qt.ToolTipRole 3 The data displayed in the item’s

tooltip. QString

Qt.StatusTipRole 4 The data displayed in the status bar.

QString

Qt.WhatsThisRole 5 The data displayed for the item in

"What’s This?" mode. QString

Qt.SizeHintRole 13 The size hint for the item that will be

supplied to views. QSize

For a full list of available roles that you can receive see the Qt ItemDataRole

documentation. Our todo list will only be using Qt.DisplayRole and

Qt.DecorationRole.

Basic implementation

Below is the basic stub application needed to load the UI and display it. We’ll

add our model code and application logic to this base.

267

https://doc.qt.io/qt-5/qstring.html
https://doc.qt.io/qt-5/qcolor.html
https://doc.qt.io/qt-5/qicon.html
https://doc.qt.io/qt-5/qpixmap.html
https://doc.qt.io/qt-5/qstring.html
https://doc.qt.io/qt-5/qstring.html
https://doc.qt.io/qt-5/qstring.html
https://doc.qt.io/qt-5/qstring.html
https://doc.qt.io/qt-5/qsize.html
https://doc.qt.io/qt-5/qt.html#ItemDataRole-enum
https://doc.qt.io/qt-5/qt.html#ItemDataRole-enum

Listing 71. model-views/todo_1.py

import sys

from PyQt5 import QtCore, QtGui, QtWidgets

from PyQt5.QtCore import Qt

from MainWindow import Ui_MainWindow

class TodoModel(QtCore.QAbstractListModel):

 def __init__(self, todos=None):

 super().__init__()

 self.todos = todos or []

 def data(self, index, role):

 if role == Qt.DisplayRole:

 status, text = self.todos[index.row()]

 return text

 def rowCount(self, index):

 return len(self.todos)

class MainWindow(QtWidgets.QMainWindow, Ui_MainWindow):

 def __init__(self):

 super().__init__()

 self.setupUi(self)

 self.model = TodoModel()

 self.todoView.setModel(self.model)

app = QtWidgets.QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()

We define our TodoModel as before, and initialize the MainWindow object. In the

__init__ for the MainWindow we create an instance of our todo model and

set this model on the todo_view. Save this file as todo.py and run it with —

268

python3 todo.py

While there isn’t much to see yet, the QListView and our model are actually

working — if you add some default data you’ll see it appear in the list.

self.model = TodoModel(todos=[(False, 'my first todo')])

Figure 141. QListView showing hard-coded todo item

You can keep adding items manually like this and they will show up in order

in the QListView. Next we’ll make it possible to add items from within the

application.

First create a new method on the MainWindow named add. This is our callback

which will take care of adding the current text from the input as a new todo.

Connect this method to the addButton.pressed signal at the end of the __init__

269

block.

class MainWindow(QtWidgets.QMainWindow, Ui_MainWindow):

 def __init__(self):

 QtWidgets.QMainWindow.__init__(self)

 Ui_MainWindow.__init__(self)

 self.setupUi(self)

 self.model = TodoModel()

 self.todoView.setModel(self.model)

 # Connect the button.

 self.addButton.pressed.connect(self.add)

 def add(self):

 """

 Add an item to our todo list, getting the text from the

QLineEdit .todoEdit

 and then clearing it.

 """

 text = self.todoEdit.text()

 text = text.strip() # Remove whitespace from the ends of the

string.

 if text: # Don't add empty strings.

 # Access the list via the model.

 self.model.todos.append((False, text))

 # Trigger refresh.

 self.model.layoutChanged.emit() ①

 # Empty the input

 self.todoEdit.setText("")

① Here we’re emitting a model signal .layoutChanged to let the view know

that the shape of the data has been altered. This triggers a refresh of the

entirety of the view. If you omit this line, the todo will still be added but

the QListView won’t update.

If just the data is altered, but the number of rows/columns are unaffected

you can use the .dataChanged() signal instead. This also defines an altered

region in the data using a top-left and bottom-right location to avoid

redrawing the entire view.

270

Hooking up the other actions

We can now connect the rest of the button’s signals and add helper

functions for performing the delete and complete operations. We add the

button signals to the __init__ block as before.

 self.addButton.pressed.connect(self.add)

 self.deleteButton.pressed.connect(self.delete)

 self.completeButton.pressed.connect(self.complete)

Then define a new delete method as follows —

 def delete(self):

 indexes = self.todoView.selectedIndexes()

 if indexes:

 # Indexes is a list of a single item in single-select

mode.

 index = indexes[0]

 # Remove the item and refresh.

 del self.model.todos[index.row()]

 self.model.layoutChanged.emit()

 # Clear the selection (as it is no longer valid).

 self.todoView.clearSelection()

We use self.todoView.selectedIndexes to get the indexes (actually a list of a

single item, as we’re in single-selection mode) and then use the .row() as an

index into our list of todos on our model. We delete the indexed item using

Python’s del operator, and then trigger a layoutChanged signal because the

shape of the data has been modified.

Finally, we clear the active selection since the item it relates to may now out

of bounds (if you had selected the last item).


You could try make this smarter, and select the last item in

the list instead.

The complete method looks like this —

271

 def complete(self):

 indexes = self.todoView.selectedIndexes()

 if indexes:

 index = indexes[0]

 row = index.row()

 status, text = self.model.todos[row]

 self.model.todos[row] = (True, text)

 # .dataChanged takes top-left and bottom right, which are

equal

 # for a single selection.

 self.model.dataChanged.emit(index, index)

 # Clear the selection (as it is no longer valid).

 self.todoView.clearSelection()

This uses the same indexing as for delete, but this time we fetch the item

from the model .todos list and then replace the status with True.


We have to do this fetch-and-replace, as our data is stored as

Python tuples which cannot be modified.

The key difference here vs. standard Qt widgets is that we make changes

directly to our data, and simply need to notify Qt that some change has

occurred — updating the widget state is handled automatically.

Using Qt.DecorationRole

If you run the application you should now find that adding and deleting both

work, but while completing items is working, there is no indication of it in the

view. We need to update our model to provide the view with an indicator to

display when an item is complete. The updated model is shown below.

272

tick = QtGui.QImage('tick.png')

class TodoModel(QtCore.QAbstractListModel):

 def __init__(self, *args, todos=None, **kwargs):

 super(TodoModel, self).__init__(*args, **kwargs)

 self.todos = todos or []

 def data(self, index, role):

 if role == Qt.DisplayRole:

 _, text = self.todos[index.row()]

 return text

 if role == Qt.DecorationRole:

 status, _ = self.todos[index.row()]

 if status:

 return tick

 def rowCount(self, index):

 return len(self.todos)

We’re using a tick icon tick.png to indicate completed items, which we load

into a QImage object named tick. In the model we’ve implemented a handler

for the Qt.DecorationRole which returns the tick icon for rows who’s status is

True (for complete).


The icon I’m using is taken from the Fugue set by

p.yusukekamiyamane


Instead of an icon you can also return a color, e.g.

QtGui.QColor('green') which will be drawn as solid square.

Running the app you should now be able to mark items as complete.

273

http://p.yusukekamiyamane.com/

Figure 142. Todos complete

A persistent data store

Our todo app works nicely, but it has one fatal flaw — it forgets your todos as

soon as you close the application While thinking you have nothing to do

when you do may help to contribute to short-term feelings of Zen, long term

it’s probably a bad idea.

The solution is to implement some sort of persistent data store. The simplest

approach is a simple file store, where we load items from a JSON or Pickle file

at startup and write back any changes.

To do this we define two new methods on our MainWindow class — load and

save. These load data from a JSON file name data.json (if it exists, ignoring the

error if it doesn’t) to self.model.todos and write the current self.model.todos

out to the same file, respectively.

274

 def load(self):

 try:

 with open('data.json', 'r') as f:

 self.model.todos = json.load(f)

 except Exception:

 pass

 def save(self):

 with open('data.json', 'w') as f:

 data = json.dump(self.model.todos, f)

To persist the changes to the data we need to add the .save() handler to the

end of any method that modifies the data, and the .load() handler to the

__init__ block after the model has been created.

The final code looks like this —

Listing 72. mode-views/todo_complete.py

import json

import sys

from PyQt5 import QtCore, QtGui, QtWidgets

from PyQt5.QtCore import Qt

from MainWindow import Ui_MainWindow

tick = QtGui.QImage("tick.png")

class TodoModel(QtCore.QAbstractListModel):

 def __init__(self, todos=None):

 super().__init__()

 self.todos = todos or []

 def data(self, index, role):

 if role == Qt.DisplayRole:

 _, text = self.todos[index.row()]

 return text

 if role == Qt.DecorationRole:

275

 status, _ = self.todos[index.row()]

 if status:

 return tick

 def rowCount(self, index):

 return len(self.todos)

class MainWindow(QtWidgets.QMainWindow, Ui_MainWindow):

 def __init__(self):

 super().__init__()

 self.setupUi(self)

 self.model = TodoModel()

 self.load()

 self.todoView.setModel(self.model)

 self.addButton.pressed.connect(self.add)

 self.deleteButton.pressed.connect(self.delete)

 self.completeButton.pressed.connect(self.complete)

 def add(self):

 """

 Add an item to our todo list, getting the text from the

QLineEdit .todoEdit

 and then clearing it.

 """

 text = self.todoEdit.text()

 if text: # Don't add empty strings.

 # Access the list via the model.

 self.model.todos.append((False, text))

 # Trigger refresh.

 self.model.layoutChanged.emit()

 # Empty the input

 self.todoEdit.setText("")

 self.save()

 def delete(self):

 indexes = self.todoView.selectedIndexes()

 if indexes:

 # Indexes is a list of a single item in single-select

mode.

 index = indexes[0]

 # Remove the item and refresh.

276

 del self.model.todos[index.row()]

 self.model.layoutChanged.emit()

 # Clear the selection (as it is no longer valid).

 self.todoView.clearSelection()

 self.save()

 def complete(self):

 indexes = self.todoView.selectedIndexes()

 if indexes:

 index = indexes[0]

 row = index.row()

 status, text = self.model.todos[row]

 self.model.todos[row] = (True, text)

 # .dataChanged takes top-left and bottom right, which are

equal

 # for a single selection.

 self.model.dataChanged.emit(index, index)

 # Clear the selection (as it is no longer valid).

 self.todoView.clearSelection()

 self.save()

 def load(self):

 try:

 with open("data.json", "r") as f:

 self.model.todos = json.load(f)

 except Exception:

 pass

 def save(self):

 with open("data.json", "w") as f:

 data = json.dump(self.model.todos, f)

app = QtWidgets.QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()

If the data in your application has the potential to get large or more complex,

you may prefer to use an actual database to store it. Qt provides models for

interacting with SQL databases which we’ll cover shortly.

277



For another interesting example of a QListView see my

example media player application. This uses the Qt built-in

QMediaPlaylist as the datastore, with the contents displayed

to a QListView.

278

https://www.learnpyqt.com/apps/failamp-multimedia-player/

22. Tabular data in ModelViews,

with numpy & pandas

In the previous section we covered an introduction to the Model View

architecture. However, we only touched on one of the model views —

QListView. There are two other Model Views available in Qt5 — QTableView and

QTreeView which provide tabular (Excel-like) and tree (file directory browser-

like) views using the same QStandardItemModel.

In this part we’ll look at how to use QTableView from PyQt5, including how to

model your data, format values for display and add conditional formatting.

You can use model views with any data source, as long as your model returns

that data in a format that Qt can understand. Working with tabular data in

Python opens up a number of possibilities for how we load and work with

that data. Here we’ll start with a simple nested list of list and then move

onto integrating your Qt application with the popular numpy and pandas

libraries. This will provide you with a great foundation for building data-

focused applications.

Introduction to QTableView

QTableView is a Qt view widget which presents data in a spreadsheet-like table

view. Like all widgets in the Model View Architecture this uses a separate

model to provide data and presentation information to the view. Data in the

model can be updated as required, and the view notified of these changes to

redraw/display the changes. By customizing the model it is possible to have a

huge amount of control over how the data is presented.

To use the model we’ll need a basic application structure and some dummy

data. A simple working example is shown below, which defines a custom

model with a simple nested-list as a data store.

279

Listing 73. tableview_demo.py

import sys

from PyQt5 import QtCore, QtGui, QtWidgets

from PyQt5.QtCore import Qt

class TableModel(QtCore.QAbstractTableModel):

 def __init__(self, data):

 super().__init__()

 self._data = data

 def data(self, index, role):

 if role == Qt.DisplayRole:

 # See below for the nested-list data structure.

 # .row() indexes into the outer list,

 # .column() indexes into the sub-list

 return self._data[index.row()][index.column()]

 def rowCount(self, index):

 # The length of the outer list.

 return len(self._data)

 def columnCount(self, index):

 # The following takes the first sub-list, and returns

 # the length (only works if all rows are an equal length)

 return len(self._data[0])

class MainWindow(QtWidgets.QMainWindow):

 def __init__(self):

 super().__init__()

 self.table = QtWidgets.QTableView()

 data = [

 [4, 9, 2],

 [1, 0, 0],

 [3, 5, 0],

 [3, 3, 2],

 [7, 8, 9],

]

280

 self.model = TableModel(data)

 self.table.setModel(self.model)

 self.setCentralWidget(self.table)

app = QtWidgets.QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()

As in our earlier model view examples, we create the QTableView widget, then

create an instance of our custom model (which we’ve written to accept the

data source as a parameter) and then we set the model on the view. That’s all

we need to do — the view widget now uses the model to get the data, and

determine how to draw it.

Figure 143. Basic table example

Nested list as a 2-dimensional data store

For a table you need a 2D data structure, with columns and rows. As shown

in the example above you can model a simple 2D data structure using a

nested Python list. We’ll take a minute to look at this data structure, and it’s

limitations, below —

281

table = [

 [4, 1, 3, 3, 7],

 [9, 1, 5, 3, 8],

 [2, 1, 5, 3, 9],

]

The nested list is a "list of lists of values" — an outer list containing a number

of sub-lists which themselves contain the values. With this structure, to index

into individual values (or "cells") you must index twice, first to return one of

the inner list objects and then again to index into that list.

The typical arrangement is for the outer list to hold the rows and each nested

list to contain the values for the columns. With this arrangement when you

index, you index first by row, then by column — making our example table a 3

row, 5 column table. Helpfully, this matches the visual layout in the source

code. The typical arrangement is for the outer list to hold the rows and each

nested list to contain the values for the columns. With this arrangement

when you index, you index first by row, then by column — making our

example table a 3 row, 5 column table. Helpfully, this matches the visual

layout in the source code.

The first index into the table will return a nested sub-list —

row = 2

col = 4

>>> table[row]

[2, 1, 5, 3, 9]

Which you then index again to return the value —

>>> table[row][col]

9

Note that using this type of structure you can’t easily return an entire

column, you would instead need to iterate all the rows. However, you are of

282

course free to flip things on their head and use the first index as column

depending on whether accessing by column or row is more useful to you.

table = [

 [4, 9, 2],

 [1, 1, 1],

 [3, 5, 5],

 [3, 3, 2],

 [7, 8, 9],

]

row = 4 # reversed

col = 2 # reversed

>>> table[col]

[3, 5, 5]

>>> table[col][row]

9



Nothing about this data structure enforces equal row or

column lengths — one row can be 5 elements long, another

200. Inconsistencies can lead to unexpected errors on the

table view. See the alternative data stores later if you’re

working with large or complex data tables.

Next we’ll look in a bit more detail at our custom TableModel and see how it

works with this simple data structure to display the values.

Writing a custom QAbstractTableModel

In the Model View Architecture the model is responsible for providing both

the data and presentation metadata for display by the view. In order to

interface between our data object and the view we need to write our own

custom model, which understands the structure of our data.

To write our custom model we can create a subclass of QAbstractTableModel.

The only required methods for a custom table model are data, rowCount and

283

columnCount. The first returns data (or presentation information) for given

locations in the table, while the latter two must return a single integer value

for the dimensions of the data source.

class TableModel(QtCore.QAbstractTableModel):

 def __init__(self, data):

 super(TableModel, self).__init__()

 self._data = data

 def data(self, index, role):

 if role == Qt.DisplayRole:

 # See below for the nested-list data structure.

 # .row() indexes into the outer list,

 # .column() indexes into the sub-list

 return self._data[index.row()][index.column()]

 def rowCount(self, index):

 # The length of the outer list.

 return len(self._data)

 def columnCount(self, index):

 # The following takes the first sub-list, and returns

 # the length (only works if all rows are an equal length)

 return len(self._data[0])


QtCore.QAbstractTableModel is an abstract base class meaning

it does not have implementations for the methods. If you try

and use it directly, it will not work. You must sub-class it.

In the __init__ constructor we accept a single parameter data which we store

as the instance attribute self._data so we can access it from our methods.

The passed in data structure is stored by reference, so any external changes

will be reflected here.


To notify the model of changes you need to trigger the

model’s layoutChanged signal, using

self.model.layoutChanged.emit().

284

The data method is called with two values index and role. The index parameter

gives the location in the table for which information is currently being

requested, and has two methods .row() and .column() which give the row and

column number in the view respectively. In our example the data is stored as

a nested list, and the row and column indices are used to index as follows

data[row][column].

The view has no knowledge of the structure of the source data, and is the

responsibility of the model to translate between the view’s row and column

and the relevant positions in your own data store.

The role parameter describes what kind of information the method should

return on this call. To get the data to display the view calls this model

method with the role of Qt.DisplayRole. However, role can have many other

values including Qt.BackgroundRole, Qt.CheckStateRole, Qt.DecorationRole,

Qt.FontRole, Qt.TextAlignmentRole and Qt.ForegroundRole, which each expect

particular values in response (see later).



Qt.DisplayRole actually expects a string to be returned,

although other basic Python types including float, int and

bool will also be displayed using their default string

representations. However, formatting these types to your

strings is usually preferable.

We’ll cover how to use these other role types later, for now it is only necessary

to know that you must check the role type is Qt.DisplayRole before returning

your data for display.

The two custom methods columnCount and rowCount return the number of

columns and rows in our data structure. In the case of a nested list of list in

the arrangement we’re using here, the number of rows is simply the number

of elements in the outer list, and the number of columns is the number of

elements in one of the inner lists — assuming they are all equal.

285


If these methods return values that are too high you will see

out of bounds errors, if they return values that are too low,

you’ll see the table cut off.

Formatting numbers and dates

The data returned by the model for display is expected to be a string. While

int and float values will also be displayed, using their default string

representation, complex Python types will not. To display these, or to override

the default formatting of float , int or bool values, you must format these to

strings yourself.

You might be tempted to do this by converting your data to a table of strings

in advance. However, by doing this you make it very difficult to continue

working with the data in your table, whether for calculations or for updates.

Instead, you should use the model’s data method to perform the string

conversion on demand. By doing this you can continue to work with the

original data, yet have complete control over how it is presented to the user

— including changing this on the fly while through configuration.

Below is a simple custom formatter which looks up the values in our data

table, and displays them in a number of different ways depending on the

Python type of the data.

286

Listing 74. tableview_format_1.py

 def data(self, index, role):

 if role == Qt.DisplayRole:

 # Get the raw value

 value = self._data[index.row()][index.column()]

 # Perform per-type checks and render accordingly.

 if isinstance(value, datetime):

 # Render time to YYY-MM-DD.

 return value.strftime("%Y-%m-%d")

 if isinstance(value, float):

 # Render float to 2 dp

 return "%.2f" % value

 if isinstance(value, str):

 # Render strings with quotes

 return '"%s"' % value

 # Default (anything not captured above: e.g. int)

 return value

287

def data(self, index, role):

 if role == Qt.DisplayRole:

 # Get the raw value

 value = self._data[index.row()][index.column()]

 # Perform per-type checks and render accordingly.

 if isinstance(value, datetime):

 # Render time to YYY-MM-DD.

 return value.strftime("%Y-%m-%d")

 if isinstance(value, float):

 # Render float to 2 dp

 return "%.2f" % value

 if isinstance(value, str):

 # Render strings with quotes

 return '"%s"' % value

 # Default (anything not captured above: e.g. int)

 return value

Use this together with the modified sample data below to see it in action.

data = [

 [4, 9, 2],

 [1, -1, 'hello'],

 [3.023, 5, -5],

 [3, 3, datetime(2017,10,1)],

 [7.555, 8, 9],

]

288

Figure 144. Custom data formatting

So far we’ve only looked at how we can customize how the data itself is

formatted. However, the model interface gives you far more control over the

display of table cells including colors and icons. In the next part we’ll look at

how to use the model to customize QTableView appearance.

Styles & Colours with Roles

Using colors and icons to highlight cells in data tables can help make data

easier to find and understand, or help users to select or mark data of interest.

Qt allows for complete control of all of these from the model, by responding

to the relevant role on the data method.

The types expected to be returned in response to the various role types are

shown below.

Role Type

Qt.BackgroundRole QBrush (also QColor)

Qt.CheckStateRole Qt.CheckState

Qt.DecorationRole QIcon, QPixmap, QColor

Qt.DisplayRole QString (also int, float, bool)

Qt.FontRole QFont

Qt.SizeHintRole QSize

Qt.TextAlignmentRole Qt.Alignment

Qt.ForegroundRole QBrush (also QColor)

289

By responding to a particular combination of role and index we can modify

the appearance of particular cells, columns or rows in the table — for

example, setting a blue background for all cells in the 3rd column.

Listing 75. tableview_format_2.py

 def data(self, index, role):

 if role == Qt.BackgroundRole and index.column() == 2:

 # See below for the data structure.

 return QtGui.QColor(Qt.blue)

 # existing `if role == Qt.DisplayRole:` block hidden

 # hidden for clarity.

By using the index to lookup values from our own data, we can also

customize appearance based on values in our data. We’ll go through some of

the more common use-cases below.

Text alignment

In our previous formatting examples we had used text formatting to display

float down to 2 decimal places. However, it’s also common when displaying

numbers to right-align them, to make it easier to compare across lists of

numbers. This can be accomplished by returning Qt.AlignRight in response to

Qt.TextAlignmentRole for any numeric values.

The modified data method is shown below. We check for role ==

Qt.TextAlignmentRole and look up the value by index as before, then

determine if the value is numeric. If it is we can return Qt.AlignVCenter +

Qt.AlignRight to align in the middle vertically, and on the right horizontally.

290

Listing 76. tableview_format_3.py

 def data(self, index, role):

 if role == Qt.TextAlignmentRole:

 value = self._data[index.row()][index.column()]

 if isinstance(value, int) or isinstance(value, float):

 # Align right, vertical middle.

 return Qt.AlignVCenter | Qt.AlignRight

 # existing `if role == Qt.DisplayRole:` block hidden

 # hidden for clarity.


Other alignments are possible, including Qt.AlignHCenter to

align center horizontally. You can combine them together by

adding them together e.g. Qt.AlignBottom + Qt.AlignRight.

Figure 145. QTableView cell alignment

Text colors

If you’ve used spreadsheets like Excel you might be familiar with the concept

of conditional formatting. These are rules you can apply to cells (or rows, or

columns) which change text and background colors of cells depending on

their value.

This can be useful to help visualize data, for example using red for negative

numbers or highlighting ranges of numbers (e.g. low … high) with a gradient

of blue to red.

First, the below example implements a Qt.ForegroundRole handler which

291

checks if the value in the indexed cell is numeric, and below zero. If it is, then

the handler returns the text (foreground) color red.

Listing 77. tableview_format_4.py

 def data(self, index, role):

 if role == Qt.ForegroundRole:

 value = self._data[index.row()][index.column()]

 if (isinstance(value, int) or isinstance(value, float))

and value < 0:

 return QtGui.QColor("red")

 # existing `if role == Qt.DisplayRole:` block hidden

 # hidden for clarity.

If you add this to your model’s data handler, all negative numbers will now

appear red.

Figure 146. QTableView text formatting, with red negative numbers

Number range gradients

The same principle can be used to apply gradients to numeric values in a

table to, for example, highlight low and high values. First we define our color

scale, which is taken from colorbrewer2.org.

COLORS = ['#053061', '#2166ac', '#4393c3', '#92c5de', '#d1e5f0',

'#f7f7f7', '#fddbc7', '#f4a582', '#d6604d', '#b2182b', '#67001f']

Next we define our custom handler, this time for Qt.BackgroundRole. This takes

292

http://colorbrewer2.org/#type=diverging&scheme=RdBu&n=11

the value at the given index, checks that this is numeric then performs a

series of operations to constrain it to the range 0…10 required to index into

our list.

Listing 78. tableview_format_5.py

 def data(self, index, role):

 if role == Qt.BackgroundRole:

 value = self._data[index.row()][index.column()]

 if isinstance(value, int) or isinstance(value, float):

 value = int(value) # Convert to integer for indexing.

 # Limit to range -5 ... +5, then convert to 0..10

 value = max(-5, value) # values < -5 become -5

 value = min(5, value) # valaues > +5 become +5

 value = value + 5 # -5 becomes 0, +5 becomes + 10

 return QtGui.QColor(COLORS[value])

 # existing `if role == Qt.DisplayRole:` block hidden

 # hidden for clarity.

The logic used here for converting the value to the gradient is very basic,

cutting off high/low values, and not adjusting to the range of the data.

However, you can adapt this as needed, as long as the end result of your

handler is to return a QColor or QBrush

Figure 147. QTableView with number-range color gradients

Icon & Image decoration

Each table cell contains a small decoration area which can be used to display

293

icons, images or a solid block of color, on the left hand side next to the data.

This can be used to indicate data type, e.g. calendars for dates, ticks and

crosses for bool values, or for a more subtle conditional-formatting for

number ranges.

Below are some simple implementations of these ideas.

Indicating bool/date data types with icons

For dates we’ll use Python’s built-in datetime type. First, add the following

import to the top of your file to import this type.

from datetime import datetime

Then, update the data (set in the MainWindow.__init__) to add datetime and bool

(True or False values), for example.

data = [

 [True, 9, 2],

 [1, 0, -1],

 [3, 5, False],

 [3, 3, 2],

 [datetime(2019, 5, 4), 8, 9],

]

With these in place, you can update your model data method to show icons

and formatted dates for date types, with the following.

294

Listing 79. tableview_format_6.py

 def data(self, index, role):

 if role == Qt.DisplayRole:

 value = self._data[index.row()][index.column()]

 if isinstance(value, datetime):

 return value.strftime("%Y-%m-%d")

 return value

 if role == Qt.DecorationRole:

 value = self._data[index.row()][index.column()]

 if isinstance(value, datetime):

 return QtGui.QIcon("calendar.png")

Figure 148. QTableView formatted dates with indicator icon

The following shows how to use ticks and cross for boolean True and False

values respectively.

Listing 80. tableview_format_7.py

 def data(self, index, role):

 if role == Qt.DecorationRole:

 value = self._data[index.row()][index.column()]

 if isinstance(value, bool):

 if value:

 return QtGui.QIcon("tick.png")

 return QtGui.QIcon("cross.png")

You can of course combine the above together, or any other mix of

295

Qt.DecorationRole and Qt.DisplayRole handlers. It’s usually simpler to keep

each type grouped under the same if branch, or as your model becomes

more complex, to create sub-methods to handle each role.

Figure 149. QTableView boolean indicators

Colour blocks

If you return a QColor for Qt.DecorationRole a small square of color will be

displayed on the left hand side of the cell, in the icon location. This is identical

to the earlier Qt.BackgroundRole conditional formatting example, except now

handling and responding to Qt.DecorationRole.

296

Listing 81. tableview_format_8.py

 def data(self, index, role):

 if role == Qt.DecorationRole:

 value = self._data[index.row()][index.column()]

 if isinstance(value, datetime):

 return QtGui.QIcon("calendar.png")

 if isinstance(value, bool):

 if value:

 return QtGui.QIcon("tick.png")

 return QtGui.QIcon("cross.png")

 if isinstance(value, int) or isinstance(value, float):

 value = int(value)

 # Limit to range -5 ... +5, then convert to 0..10

 value = max(-5, value) # values < -5 become -5

 value = min(5, value) # valaues > +5 become +5

 value = value + 5 # -5 becomes 0, +5 becomes + 10

 return QtGui.QColor(COLORS[value])

Figure 150. QTableView color block decorations

Alternative Python data structures

So far in our examples we’ve used simple nested Python lists to hold our data

for display. This is fine for simple tables of data, however if you’re working

with large data tables there are some other better options in Python, which

297

come with additional benefits. In the next parts we’ll look at two Python data

table libraries — numpy and pandas — and how to integrate these with Qt.

Numpy

Numpy is a library which provides support for large multi-dimensional arrays

or matrix data structures in Python. The efficient and high-performance

handling of large arrays makes numpy ideal for scientific and mathematical

applications. This also makes numpy arrays an good data store for large,

single-typed, data tables in PyQt5.

Using numpy as a data source

To support numpy arrays we need to make a number of changes to the

model, first modifying the indexing in the data method, and then changing

the row and column count calculations for rowCount and columnCount.

The standard numpy API provides element-level access to 2D arrays, by

passing the row and column in the same slicing operation, e.g.

_data[index.row(), index.column()]. This is more efficient than indexing in two

steps, as for the list of list examples.

In numpy the dimensions of an array are available through .shape which

returns a tuple of dimensions along each axis in turn. We get the length of

each axis by selecting the correct item from this tuple, e.g. _data.shape[0]

gets the size of the first axis.

The following complete example shows how to display a numpy array using

Qt’s QTableView via a custom model.

Listing 82. model-views/tableview_numpy.py

import sys

import numpy as np

from PyQt5 import QtCore, QtGui, QtWidgets

from PyQt5.QtCore import Qt

298

class TableModel(QtCore.QAbstractTableModel):

 def __init__(self, data):

 super().__init__()

 self._data = data

 def data(self, index, role):

 if role == Qt.DisplayRole:

 # Note: self._data[index.row()][index.column()] will also

work

 value = self._data[index.row(), index.column()]

 return str(value)

 def rowCount(self, index):

 return self._data.shape[0]

 def columnCount(self, index):

 return self._data.shape[1]

class MainWindow(QtWidgets.QMainWindow):

 def __init__(self):

 super().__init__()

 self.table = QtWidgets.QTableView()

 data = np.array([[1, 9, 2], [1, 0, -1], [3, 5, 2], [3, 3, 2],

[5, 8, 9],])

 self.model = TableModel(data)

 self.table.setModel(self.model)

 self.setCentralWidget(self.table)

 self.setGeometry(600, 100, 400, 200)

app = QtWidgets.QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()

299



While simple Python types such as int and float are

displayed without converting to strings, numpy uses it’s own

types (e.g. numpy.int32) for array values. In order for these to

be displayed we must first convert them to strings.

Figure 151. QTableView with numpy array



With QTableView only 2D arrays can be displayed, however if

you have a higher dimensional data structure you can

combine the QTableView with a tabbed or scrollbar UI, to allow

access to and display of these higher dimensions.

Pandas

Pandas is a Python library commonly used for data manipulation and

analysis. It provides a nice API for loading 2D tabular data from various data

sources and performing data analysis on it. By using the numpy DataTable as

your QTableView model you can use these APIs to load and analyse your data

from right within your application.

Using Pandas as a data source

The modifications of the model to work with numpy are fairly minor,

requiring changes to the indexing in the data method and modifications to

rowCount and columnCount. The changes for rowCount and columnCount are

identical to numpy with pandas using a _data.shape tuple to represent the

dimensions of the data.

For indexing we use the pandas .iloc method, for indexed locations — i.e.

300

lookup by column and/or row index. This is done by passing the row, and

then column to the slice _data.iloc[index.row(), index.column()] .

The following complete example shows how to display a pandas data frame

using Qt QTableView via a custom model.

Listing 83. model-views/tableview_pandas.py

import sys

import pandas as pd

from PyQt5 import QtCore, QtGui, QtWidgets

from PyQt5.QtCore import Qt

class TableModel(QtCore.QAbstractTableModel):

 def __init__(self, data):

 super().__init__()

 self._data = data

 def data(self, index, role):

 if role == Qt.DisplayRole:

 value = self._data.iloc[index.row(), index.column()]

 return str(value)

 def rowCount(self, index):

 return self._data.shape[0]

 def columnCount(self, index):

 return self._data.shape[1]

 def headerData(self, section, orientation, role):

 if role == Qt.DisplayRole:

 if orientation == Qt.Horizontal:

 return str(self._data.columns[section])

 if orientation == Qt.Vertical:

 return str(self._data.index[section])

class MainWindow(QtWidgets.QMainWindow):

 def __init__(self):

301

 super().__init__()

 self.table = QtWidgets.QTableView()

 data = pd.DataFrame(

 [[1, 9, 2], [1, 0, -1], [3, 5, 2], [3, 3, 2], [5, 8, 9],],

 columns=["A", "B", "C"],

 index=["Row 1", "Row 2", "Row 3", "Row 4", "Row 5"],

)

 self.model = TableModel(data)

 self.table.setModel(self.model)

 self.setCentralWidget(self.table)

 self.setGeometry(600, 100, 400, 200)

app = QtWidgets.QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()

An interesting extension here is to use the table header of the QTableView to

display row and pandas column header values, which can be taken from

DataFrame.index and DataFrame.columns respectively.

Figure 152. QTableView pandas DataTable, with column and row headers

For this we need to implement a Qt.DisplayRole handler in a custom

headerData method. This receives section, the index of the row/column (0…n),

orientation which can be either Qt.Horizontal for the column headers, or

Qt.Vertical for the row headers, and role which works the same as for the

302

data method.


The headerData method also receives other roles, which can be

used to customize the appearance of the headers further.

Conclusion

In this chapter we’ve covered the basics of using QTableView and a custom

model to display tabular data in your applications. This was extended to

demonstrate how to format data and decorate cells with icons and colors.

Finally, we demonstrated using QTableView with tabular data from numpy and

pandas structures including displaying custom column and row headers.


If you want to run calculations on your table data, take a look

at Using the thread pool.

303

23. Querying SQL databases with Qt

models

So far we’ve used table models to access data loaded or stored in the

application itself — from simple lists of lists to numpy and pandas tables.

However, all of these approaches have in common that the data that you are

viewing must be loaded entirely into memory.

To simplify interaction with SQL databases Qt provides a number of SQL

models which can be connected to views to display the output of SQL

queries, or database tables. In this chapter we’ll look at two

alternatives — displaying database data in a QTableView and with

QDataWidgetMapper which allows you to map database fields to Qt widgets.

Which model you use depends on whether you want read-only access to a

database, read-write access or read-only access with relationships (querying

more than one table). In the next sections we’ll look at each of those options

in turn.

The following examples start from this simple skeleton, showing a table view

in a window, but with no model set.

304

Listing 84. databases/tableview.py

import sys

from PyQt5.QtWidgets import QMainWindow, QApplication, QTableView

from PyQt5.QtCore import Qt

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.table = QTableView()

 # self.model = ?

 # self.table.setModel(self.model)

 self.setCentralWidget(self.table)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()

Before we connect a model, running this will just show an empty window.


For these examples we’re using a SQLite file database

demo.sqlite which is included in the downloads for this book.



You can use your own database if you prefer, including both

SQLite databases or database servers (PostgreSQL, MySQL,

etc.). See Authenticating with QSqlDatabase for instructions on

how to connect to remote servers.

Connecting to a database

To be able to display data from a database in your app, you must first

connect with it. Both server (IP, e.g. PostgreSQL or MySQL) and file-based

305

(SQLite) databases are supported by Qt, the only difference being in how you

set them up.

For all these examples we’re using the Chinook sample database — a sample

database designed for testing and demos. The database represents a digital

media store, including tables for artists, albums, media tracks, invoices and

customers.


A copy of the SQLite version of this database is included in

the code with this book, named chinook.sqlite. You can also

download the latest version from here.

from PyQt5.QtSql import QSqlDatabase

db = QSqlDatabase("QSQLITE")

db.setDatabaseName("chinook.sqlite")

db.open()



Where you place this code will depend on your application.

Often you want to create a single database connection and

use it throughout your app — in this case it’s best to create a

separate module, e.g. db.py to hold this (and other related

functionality).

The process is the same for all databases — create the database object, set

the name and the open the database to initialize the connection. However, if

you want to connect to a remote database there are a few extra parameters.

See Authenticating with QSqlDatabase for more information.

Displaying a table with QSqlTableModel

The simplest thing you can do once you’ve connected your app to a database

store, is to display a single table in your application. To do this we can use

QSqlTableModel. This model displays data directly from the table, allowing

editing.

306

https://github.com/lerocha/chinook-database
https://github.com/lerocha/chinook-database/raw/master/ChinookDatabase/DataSources/Chinook_Sqlite.sqlite

First we need to create the instance of the table mode, passing in the

database we’ve created above. Then we need to set the table to query

from — this is the name of the table in the database, here <table name>.

Finally we need to call .select() on the model.

model = QSqlTableModel(db=db)

model.setTable('<table name>')

model.select()

By calling .select() we tell the model to query the database and keep the

result, ready for display. To display this data in a QTableView we simply need to

pass it to the the views .setModel() method.

table = QTableView()

table.setModel(self.model)

The data will be displayed in the table model and can be browsed using the

scrollbar. See below for the full code, which loads the database and displays

the track table in the view.

307

Listing 85. tableview_tablemodel.py

import sys

from PyQt5.QtCore import QSize, Qt

from PyQt5.QtSql import QSqlDatabase, QSqlTableModel

from PyQt5.QtWidgets import QApplication, QMainWindow, QTableView

db = QSqlDatabase("QSQLITE")

db.setDatabaseName("chinook.sqlite")

db.open()

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.table = QTableView()

 self.model = QSqlTableModel(db=db)

 self.table.setModel(self.model)

 self.model.setTable("Track")

 self.model.select()

 self.setMinimumSize(QSize(1024, 600))

 self.setCentralWidget(self.table)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()

This will give you the following window when run.

308

Figure 153. The tracks table displayed in a QTableView.


You can resize the columns by dragging the right hand edge.

Resize to fit the contents by double-clicking on the right

hand edge.

Editing the data

Database data displayed in a QTableView is editable by default — just double-

click on any cell and you will be able to modify the contents. The changes are

persisted back to the database immediately after you finish editing.

Qt provides some control over this editing behavior, which you may want to

change depending on the type of app you are building. Qt terms these

behaviors editing strategy and they can be one of the following -

Strategy Description

QSqlTableModel.OnFieldChange Changes are applied automatically, when the

user deselects the edited cell.

QSqlTableModel.OnRowChange Changes are applied automatically, when the

user selects a different row.

309

Strategy Description

QSqlTableModel.OnManualSubmit Changes are cached in the model, and

written to the database only when

.submitAll() is called, or discarded when

revertAll() is called.

You can set the current edit strategy for the model by calling .setEditStrategy

on it. For example — 

self.model.setEditStrategy(QSqlTableModel.OnRowChange)

Sorting columns

To sort the table by a given column, we can call .setSort() on the model,

passing in the column index and Qt.AscendingOrder or Qt.DescendingOrder.

310

Listing 86. databases/tableview_tablemodel_sort.py

import sys

from PyQt5.QtCore import QSize, Qt

from PyQt5.QtSql import QSqlDatabase, QSqlTableModel

from PyQt5.QtWidgets import QApplication, QMainWindow, QTableView

db = QSqlDatabase("QSQLITE")

db.setDatabaseName("chinook.sqlite")

db.open()

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.table = QTableView()

 self.model = QSqlTableModel(db=db)

 self.table.setModel(self.model)

 # tag::sortTable[]

 self.model.setTable("Track")

 self.model.setSort(2, Qt.DescendingOrder)

 self.model.select()

 # end::sortTable[]

 self.setMinimumSize(QSize(1024, 600))

 self.setCentralWidget(self.table)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()

This must be done before the call to .select(). If you want to sort after you’ve

got the data, you can perform another .select() call to refresh.

311

Figure 154. The tracks table sorted on column index 2, the album_id.

You may prefer to sort the table using the column name rather than the

column index. To do this, you can look up the column index with the name.

Listing 87. databases/tableview_tablemodel_sortname.py

 self.model.setTable("Track")

 idx = self.model.fieldIndex("Milliseconds")

 self.model.setSort(idx, Qt.DescendingOrder)

 self.model.select()

The table is now sorted on the milliseconds column.

Figure 155. The tracks table sorted on the milliseconds column.

312

Column titles

By default the column header titles on the table come from the column

names in the database. Often this isn’t very user-friendly, so you can replace

them with proper titles using .setHeaderData, passing in the column index, the

direction — horizontal (top) or vertical (left) header — and the label.

Listing 88. database/tableview_tablemodel_titles.py

 self.model.setTable("Track")

 self.model.setHeaderData(1, Qt.Horizontal, "Name")

 self.model.setHeaderData(2, Qt.Horizontal, "Album (ID)")

 self.model.setHeaderData(3, Qt.Horizontal, "Media Type (ID)")

 self.model.setHeaderData(4, Qt.Horizontal, "Genre (ID)")

 self.model.setHeaderData(5, Qt.Horizontal, "Composer")

 self.model.select()

Figure 156. The tracks table with nicer column titles.

As when sorting, it is not always convenient to use the column indexes for

this — if the column order changes on the database, the names set in your

application will be out of sync.

As before, we can use .fieldIndex() to lookup the index for a given name. You

can go a step further and define a Python dict of column name and title to

apply in one go, when setting up the model.

313

Listing 89. database/tableview_tablemodel_titlesname.py

 self.model.setTable("Track")

 column_titles = {

 "Name": "Name",

 "AlbumId": "Album (ID)",

 "MediaTypeId": "Media Type (ID)",

 "GenreId": "Genre (ID)",

 "Composer": "Composer",

 }

 for n, t in column_titles.items():

 idx = self.model.fieldIndex(n)

 self.model.setHeaderData(idx, Qt.Horizontal, t)

 self.model.select()

Selecting columns

Often you will not want to display all the columns from a table. You can select

which columns to display by removing columns from the model. To do this

call .removeColumns() passing in the index of the first column to remove and

the number of subsequent columns.

self.model.removeColumns(2, 5)

Once removed the columns will no longer be shown on the table. You can

use the same name-lookup approach used for column labelling to remove

columns by name.

columns_to_remove = ['name', 'something']

for cn in columns_to_remove

 idx = self.model.fieldIndex(n)

 self.model.removeColumns(idx, 1)

314


Removing columns in this way just removes them from the

view. If you want to filter the columns out with SQL see the

query models below.

Filtering a table

We can filter the table by calling .setFilter() on the model, passing in a

parameter which describes the filter. The filter parameter can be any valid

SQL WHERE clause without the WHERE prepended. For example name="Martin" to

match exactly, or name LIKE "Ma%" to match fields beginning with "Ma".

In case you’re not familiar with SQL, below are a few example search patterns

you can use to perform different types of searches.

Pattern Description

field="{}" Field matches the string exactly.

field LIKE "{}%" Field begins with the given string.

field LIKE "%{}" Field ends with the given string.

field LIKE "%{}%" Field contains the given string.

In each example {} is the search string, which you must interpolate using

python "{}".format(search_str). Unlike the sort, the filter will be applied

automatically to the data, without the need to call .select() again.


If .select() hasn’t been called yet, the filter will be applied the

first time it is.

In the following example we add a QLineEdit field and hook this up to search

the table on the track name field. We connect the line edit changed signal to

construct and apply the filter to the model.

Listing 90. databases/tableview_tablemodel_sortname.py

import sys

315

from PyQt5.QtCore import QSize, Qt

from PyQt5.QtSql import QSqlDatabase, QSqlTableModel

from PyQt5.QtWidgets import (

 QApplication,

 QLineEdit,

 QMainWindow,

 QTableView,

 QVBoxLayout,

 QWidget,

)

db = QSqlDatabase("QSQLITE")

db.setDatabaseName("chinook.sqlite")

db.open()

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 container = QWidget()

 layout = QVBoxLayout()

 self.search = QLineEdit()

 self.search.textChanged.connect(self.update_filter)

 self.table = QTableView()

 layout.addWidget(self.search)

 layout.addWidget(self.table)

 container.setLayout(layout)

 self.model = QSqlTableModel(db=db)

 self.table.setModel(self.model)

 self.model.setTable("Track")

 self.model.select()

 self.setMinimumSize(QSize(1024, 600))

 self.setCentralWidget(container)

 def update_filter(self, s):

 filter_str = 'Name LIKE "%{}%"'.format(s)

316

 self.model.setFilter(filter_str)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()

Figure 157. Filtering the tracks table on the name.

 This is prone to SQL injection attacks.

While this works, this is really bad way to enable searching on a table, since

the user can construct invalid or malicious SQL statements. For example, try

entering the single character " in the search box — the filtering will stop

working, and won’t work again until you restart the app.

This is because you’ve created an invalid SQL statement e.g.

'name LIKE "%"%"'

The ideal way to work around this problem is to use parameterized

queries — leaving escaping of the input to the database, to ensure that

nothing dangerous or malformed is passed. However, this isn’t possible with

the Qt filter interface, we can only pass a string.

317

For simple plain-text searching we can instead simply strip out any non-

alphanumeric or space characters from the string. It will depend on your use

case whether this is appropriate.

import re

s = re.sub('[\W_]+', '', s)

query = 'field="%s"' % s

Putting that into our filter method from our example, we get the following

code.

Listing 91. databases/tableview_tablemodel_filter_clean.py

 def update_filter(self, s):

 s = re.sub("[\W_]+", "", s)

 filter_str = 'Name LIKE "%{}%"'.format(s)

 self.model.setFilter(filter_str)

Try running the example again, and entering " — and any other garbage you

can think of. You should find that the search continues to work.

Displaying related data with
QSqlRelationalTableModel

In the previous examples we’ve used QSqlTableModel to display data from a

single table. However, in relational databases tables can have relationships

with other tables and it is often useful to be able to view that related data

inline.

Relationships in relational databases are handled through foreign keys. These

are a (usually) numeric value, stored in a column of one table, which

references the primary key for a row in another table.

An example of a foreign key in our example tracks table would be album_id or

genre_id. Both are numeric values which point to records in the album and

genre table respectively. Displaying these values to the user (1, 2, 3.. etc.) is not

318

helpful because they have no meaning themselves.

What would be nicer, would be to pull through the name of the album, or the

genre and display it in our table view. For that, we can use

QSqlRelationalTableModel.

The setup for this model is identical for the previous. To define the

relationships we call .setRelation() passing the column index, and a

QSqlRelation object.

include::{codedir}/_snippet_relational_.py

The QSqlRelation object accepts three arguments, first the related table we

will be pulling data from, the foreign key column on that table, and finally the

column to pull data from.

For our test database tracks table, the following will pull data from the

related tables for album ID, media_type ID and genre ID (columns 3, 4, 5

respectively).

Listing 92. databases/tableview_relationalmodel.py

 self.model.setTable("Track")

 self.model.setRelation(2, QSqlRelation("Album", "AlbumId",

"Title"))

 self.model.setRelation(3, QSqlRelation("MediaType",

"MediaTypeId", "Name"))

 self.model.setRelation(4, QSqlRelation("Genre", "GenreId",

"Name"))

 self.model.select()

When run you will see the three _id columns have been replaced by the data

pulled through from the related tables. The columns take the names of the

related fields, if they don’t clash, or have a name constructed for them.

319

Figure 158. Displaying data from related fields.

Using QSqlRelationalDelegate to edit related

fields.

If you try and edit fields in a QSqlRelationalTableModel you’ll notice a

problem — while you can edit the fields on the base table (here Tracks) any

edits you make to the related fields (e.g. Album Title) are not saved. These

fields are currently only views to the data.

Valid values for related fields are limited by the values in the related

table — to have more choices, we need to add another row to the related

table. Since the options are restricted, it often makes sense to display the

choices in a QComboBox. Qt comes with a model item delegate which can do

this lookup and display for us — QSqlRelationalTableModel.

320

Listing 93. databases/tableview_relationalmodel_delegate.py

 self.model.setTable("Track")

 self.model.setRelation(2, QSqlRelation("Album", "AlbumId",

"Title"))

 self.model.setRelation(3, QSqlRelation("MediaType",

"MediaTypeId", "Name"))

 self.model.setRelation(4, QSqlRelation("Genre", "GenreId",

"Name"))

 delegate = QSqlRelationalDelegate(self.table)

 self.table.setItemDelegate(delegate)

 self.model.select()

This delegate automatically handles the mapping for any relational fields. We

simply create the delegate passing in the QTableView instance, and then set

the resulting delegate on the model, everything is taken care of

automatically.

Running this you will see drop-downs when you edit the related fields.

Figure 159. Making relatable fields editable through a drop-down with

QSqlRelationalDelegate

321

Generic queries with QSqlQueryModel

So far we’ve been displaying an entire database table on our QTableView with

some optional column filtering and sorting. However, Qt also allows for

displaying more complex queries using QSqlQueryModel. In this part we’ll look

at how we can use QSqlQueryModel to display an SQL query, starting first with a

simple single-table query and then relational and parameterized queries.

The process for querying with this model is slightly different. Rather than

passing the database to the model constructor, here we instead create a

QSqlQuery object which takes the database connection, and then pass that to

the model.

query = QSqlQuery("SELECT name, composer FROM track ", db=db)

This means that you can use a single QSqlQueryModel and perform queries on

different databases if you like. The complete working example of this query is

shown below.

322

Listing 94. databases/tableview_querymodel.py

import sys

from PyQt5.QtCore import QSize, Qt

from PyQt5.QtSql import QSqlDatabase, QSqlQuery, QSqlQueryModel

from PyQt5.QtWidgets import QApplication, QMainWindow, QTableView

db = QSqlDatabase("QSQLITE")

db.setDatabaseName("chinook.sqlite")

db.open()

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.table = QTableView()

 self.model = QSqlQueryModel()

 self.table.setModel(self.model)

 query = QSqlQuery("SELECT Name, Composer FROM track ", db=db)

 self.model.setQuery(query)

 self.setMinimumSize(QSize(1024, 600))

 self.setCentralWidget(self.table)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()

323

Figure 160. Performing a simple query.

In this first example we’ve performed a very simple query against our track

table, only returning two fields from that table. However, the QSqlQuery object

can be used for more complex queries, including cross-table joins and

parameterized queries — where we can pass values in to modify the query.


Parameterized queries protect your app from SQL injection

attacks.

In the following example we extend the simple query to add a related look

up on the album table. In addition we bind a album_title parameter which is

used for a contains search against the album table.

324

Listing 95. databases/tableview_querymodel_parameter.py

import sys

from PyQt5.QtCore import QSize, Qt

from PyQt5.QtSql import QSqlDatabase, QSqlQuery, QSqlQueryModel

from PyQt5.QtWidgets import QApplication, QMainWindow, QTableView

db = QSqlDatabase("QSQLITE")

db.setDatabaseName("chinook.sqlite")

db.open()

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.table = QTableView()

 self.model = QSqlQueryModel()

 self.table.setModel(self.model)

 query = QSqlQuery(db=db)

 query.prepare(

 "SELECT Name, Composer, Album.Title FROM Track "

 "INNER JOIN Album ON Track.AlbumId = Album.AlbumId "

 "WHERE Album.Title LIKE '%' || :album_title || '%' "

)

 query.bindValue(":album_title", "Sinatra")

 query.exec_()

 self.model.setQuery(query)

 self.setMinimumSize(QSize(1024, 600))

 self.setCentralWidget(self.table)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()

Now that we want to add parameters to the query, we cannot pass it to

325

QSqlQuery as it is created. Doing this would execute it immediately, without

the parameter-replacement. Instead we now need to pass the query into

.prepare(), telling the driver to identify parameters in the query and wait for

the values.

Next, we bind each of our parameters using .bindValue() and finally call

query.exec_() to actually perform the query on the database.

This parameterized query is the equivalent of the following SQL — 

SELECT Name, Composer, Album.Title FROM Track

INNER JOIN Album ON Track.AlbumId = Album.AlbumId

WHERE Album.Title LIKE '%Sinatra%'

This gives the following result — 

Figure 161. The result of the parameterised query.

In this last example we add three search fields — one for the track title, one

for the artist and one for the album title. We connect the .textChanged signals

from each of these to a custom method that updates the parameters for the

query.

Listing 96. databases/tableview_querymodel_search.py

import sys

326

from PyQt5.QtCore import QSize, Qt

from PyQt5.QtSql import QSqlDatabase, QSqlQuery, QSqlQueryModel

from PyQt5.QtWidgets import (

 QApplication,

 QHBoxLayout,

 QLineEdit,

 QMainWindow,

 QTableView,

 QVBoxLayout,

 QWidget,

)

db = QSqlDatabase("QSQLITE")

db.setDatabaseName("chinook.sqlite")

db.open()

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 container = QWidget()

 layout_search = QHBoxLayout()

 self.track = QLineEdit()

 self.track.setPlaceholderText("Track name...")

 self.track.textChanged.connect(self.update_query)

 self.composer = QLineEdit()

 self.composer.setPlaceholderText("Artist name...")

 self.composer.textChanged.connect(self.update_query)

 self.album = QLineEdit()

 self.album.setPlaceholderText("Album name...")

 self.album.textChanged.connect(self.update_query)

 layout_search.addWidget(self.track)

 layout_search.addWidget(self.composer)

 layout_search.addWidget(self.album)

 layout_view = QVBoxLayout()

 layout_view.addLayout(layout_search)

327

 self.table = QTableView()

 layout_view.addWidget(self.table)

 container.setLayout(layout_view)

 self.model = QSqlQueryModel()

 self.table.setModel(self.model)

 self.query = QSqlQuery(db=db)

 self.query.prepare(

 "SELECT Name, Composer, Album.Title FROM Track "

 "INNER JOIN Album ON Track.AlbumId=Album.AlbumId WHERE "

 "Track.Name LIKE '%' || :track_name || '%' AND "

 "Track.Composer LIKE '%' || :track_composer || '%' AND "

 "Album.Title LIKE '%' || :album_title || '%'"

)

 self.update_query()

 self.setMinimumSize(QSize(1024, 600))

 self.setCentralWidget(container)

 def update_query(self, s=None):

 # Get the text values from the widgets.

 track_name = self.track.text()

 track_composer = self.composer.text()

 album_title = self.album.text()

 self.query.bindValue(":track_name", track_name)

 self.query.bindValue(":track_composer", track_composer)

 self.query.bindValue(":album_title", album_title)

 self.query.exec_()

 self.model.setQuery(self.query)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

328

app.exec_()

If you run this you can search the database using each of the fields

independently, with the results updating automatically each time the search

query changes.

Figure 162. The result of the multi-parameter search query.

QDataWidgetMapper

In all the examples so far we’ve displayed the output data from the database

in a table, using QTableView. While this often makes sense for viewing data, for

data input or editing it is usually preferable to display the inputs as a form

which can be typed into and tabbed between.


These are called create, read, update and delete (CRUD)

operations and interfaces.

The full working example is shown below.

Listing 97. databases/widget_mapper.py

import sys

from PyQt5.QtCore import QSize, Qt

from PyQt5.QtSql import QSqlDatabase, QSqlTableModel

329

from PyQt5.QtWidgets import (

 QApplication,

 QComboBox,

 QDataWidgetMapper,

 QDoubleSpinBox,

 QFormLayout,

 QLabel,

 QLineEdit,

 QMainWindow,

 QSpinBox,

 QTableView,

 QWidget,

)

db = QSqlDatabase("QSQLITE")

db.setDatabaseName("chinook.sqlite")

db.open()

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 form = QFormLayout()

 self.track_id = QSpinBox()

 self.track_id.setDisabled(True)

 self.name = QLineEdit()

 self.album = QComboBox()

 self.media_type = QComboBox()

 self.genre = QComboBox()

 self.composer = QLineEdit()

 self.milliseconds = QSpinBox()

 self.milliseconds.setRange(0, 2147483647) ①

 self.milliseconds.setSingleStep(1)

 self.bytes = QSpinBox()

 self.bytes.setRange(0, 2147483647)

 self.bytes.setSingleStep(1)

 self.unit_price = QDoubleSpinBox()

 self.unit_price.setRange(0, 999)

330

 self.unit_price.setSingleStep(0.01)

 self.unit_price.setPrefix("$")

 form.addRow(QLabel("Track ID"), self.track_id)

 form.addRow(QLabel("Track name"), self.name)

 form.addRow(QLabel("Composer"), self.composer)

 form.addRow(QLabel("Milliseconds"), self.milliseconds)

 form.addRow(QLabel("Bytes"), self.bytes)

 form.addRow(QLabel("Unit Price"), self.unit_price)

 self.model = QSqlTableModel(db=db)

 self.mapper = QDataWidgetMapper() ②

 self.mapper.setModel(self.model)

 self.mapper.addMapping(self.track_id, 0) ③

 self.mapper.addMapping(self.name, 1)

 self.mapper.addMapping(self.composer, 5)

 self.mapper.addMapping(self.milliseconds, 6)

 self.mapper.addMapping(self.bytes, 7)

 self.mapper.addMapping(self.unit_price, 8)

 self.model.setTable("Track")

 self.model.select() ④

 self.mapper.toFirst() ⑤

 self.setMinimumSize(QSize(400, 400))

 widget = QWidget()

 widget.setLayout(form)

 self.setCentralWidget(widget)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()

① Widgets must be configured to accept all valid values from the table.

② One QDataWidgetMapper for all widgets.

331

③ Widgets are mapped to _columns.

④ Perform the select to populate the model.

⑤ Step the mapper forward to the first record.

If you run this example, you’ll see the following window. The

self.mapper.toFirst() call selects the first record in the table and this is then

displayed in the mapped widgets.

Figure 163. Viewing a record via mapped widgets.

We currently can’t change which record we are viewing or save any changes

we make to records. In the next example we add 3 buttons which allow us to

browse previous and next through the records, and save to commit changes

to the database. To do this we can hook up some QPushButton widgets to the

mapper slots .toPrevious, .toNext and .submit.

332

Listing 98. databases/widget_mapper.py

 prev_rec = QPushButton("Previous")

 prev_rec.clicked.connect(self.mapper.toPrevious)

 next_rec = QPushButton("Next")

 next_rec.clicked.connect(self.mapper.toNext)

 save_rec = QPushButton("Save Changes")

 save_rec.clicked.connect(self.mapper.submit)

Now you can browse between records in the Tracks table, make changes to

the track data and submit these changes to the database.

Figure 164. Viewing records, with previous/next controls and save to submit.

Authenticating with QSqlDatabase

In the examples so far we’ve used SQLite database files. But often you’ll want

to connect to a remote SQL server instead. That requires a few additional

parameters, including the hostname (where the database is located) and a

username and password if appropriate.

333

Create database connection.

db = QSqlDatabase('<driver>')

db.setHostName('<localhost>')

db.setDatabaseName('<databasename>')

db.setUserName('<username>')

db.setPassword('<password>')

db.open()

NOTE: The value of <driver> can be any one of the following ['QSQLITE',

'QMYSQL', 'QMYSQL3', 'QODBC', 'QODBC3', 'QPSQL', 'QPSQL7']. To get this list on

your system run QSqlDatabase.drivers().

That’s it! Once the connection is established, the models will behave exactly

as before.

334

Further PyQt5 Features
The topics we’ve covered so far are enough to build perfectly functional

desktop applications with PyQt5. In this chapter we’ll take a look at some

more technical and lesser-known aspects of the Qt framework to gain a

deeper understanding of how things work.

For many applications the topics covered here are unnecessary, but they are

good to have in your toolbox for when you need them!

335

24. Extending Signals

We’ve seen a basic introduction to signals already, but that only scratches

the surface of what you can do with them. In this chapter we’ll look at how

you can create your own signals and customize the data sent with them.

Custom Signals

So far we’ve only looked at signals that Qt itself provides on the built-in

widgets. However, you can also make use of signals in your own code for. This

is a great way to decouple modular parts of your application — parts of your

app can respond to things happening elsewhere, without needing to know

anything about the structure of your app.


A good indication that you need to decouple is use of

.parent() to access data on other unrelated widgets.

By putting these updates in the event queue you also help to keep your app

responsive — rather than having one big update method, you can split the

work up into multiple slots and trigger them with a single signal.

You can define your own signals using the pyqtSignal method provided by

PyQt5. Signals are defined as class attributes passing in the Python type (or

types) that will emitted with the signal. You can choose any valid Python

variable name for the name of the signal, and any Python type for the signal

type.

336

Listing 99. further/signals_custom.py

import sys

from PyQt5.QtCore import Qt, pyqtSignal

from PyQt5.QtWidgets import QApplication, QMainWindow

class MainWindow(QMainWindow):

 message = pyqtSignal(str) ①

 value = pyqtSignal(int, str, int) ②

 another = pyqtSignal(list) ③

 onemore = pyqtSignal(dict) ④

 anything = pyqtSignal(object) ⑤

 def __init__(self):

 super().__init__()

 self.message.connect(self.custom_slot)

 self.value.connect(self.custom_slot)

 self.another.connect(self.custom_slot)

 self.onemore.connect(self.custom_slot)

 self.anything.connect(self.custom_slot)

 self.message.emit("my message")

 self.value.emit(23, "abc", 1)

 self.another.emit([1, 2, 3, 4, 5])

 self.onemore.emit({"a": 2, "b": 7})

 self.anything.emit(1223)

 def custom_slot(self, a):

 print(a)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()

① Signal emitting a string.

337

② Signal emitting 3 integer values.

③ Signal emitting a list.

④ Signal emitting a dictionary.

⑤ Signal emitting anything.

As you can see the signals can be connected and emitted as normal. You can

send any Python type, including multiple types, and compound types (e.g.

dictionaries, lists).

If you define your signal as pyqtSignal(object) it will be able to transmit

absolutely any Python type at all. But this isn’t usually a good idea as

receiving slots will then need to deal with all types.


You can create signals on any class that is a subclass of

QObject. That includes all widgets, including the main window

and dialog boxes.

Forwarding Signals

Each signal object has an .emit method which triggers the sending of data.

Like any other method this can be used as a slot target for a signal. This

allows you to chain signals, so one being triggered can trigger another.

Unless you modify the data (see the next section) the chained signal must

carry the same data as the original signal.

338

Listing 100. further/signals_forward.py

import sys

from PyQt5.QtCore import Qt, pyqtSignal

from PyQt5.QtWidgets import QApplication, QLineEdit, QMainWindow

class MainWindow(QMainWindow):

 message = pyqtSignal(str)

 def __init__(self):

 super().__init__()

 self.message.connect(self.my_custom_fn)

 le = QLineEdit("Enter some text")

 le.textChanged.connect(self.message.emit) ①

 self.setCentralWidget(le)

 def my_custom_fn(self, s):

 print(s)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()

① By connecting the signal to the .emit of another, we can forward the

signal to the receiving signals listeners.

If it’s not immediately obvious why this would be useful, don’t worry — it

usually isn’t! But it can help to maintain isolation between components,

particularly where the receiving slot you are targeting is a private method. By

hooking into the public signals you can have the intended effect while

keeping your components properly decoupled.

339

Modifying Signal Data

Signals are connected to slots which are functions (or methods) which will be

run every time the signal fires. Many signals also transmit data, providing

information about the state change or widget that fired them. The receiving

slot can use this data to perform different actions in response to the same

signal.

However, there is a limitation — the signal can only emit the data it was

designed to. Take for example, the QPushButton.clicked signal which fires

when the button is clicked. The clicked+ signal emits a single piece of

data — the _checked state of the button after being clicked.

 For non-checkable buttons, this will always be False.

The slot receives this data, but nothing more. It does not know which widget

triggered it, or anything about it. This is usually fine. You can tie a particular

widget to a unique function which does precisely what that widget requires.

Sometimes however you want to add additional data so your slot methods

can be a little smarter. There’s a neat trick to do just that.

The additional data you send could be the triggered widget itself, or some

associated metadata which your slot needs to perform the intended result of

the signal.

Intercepting the signal

Instead of connecting the signal directly to the target slot function, you use

an intermediate function to intercept the signal, modify the signal data and

forward that on to your target slot. If you define the intermediate function in

a context that has access to the widget that emitted the signal, you can pass

that with the signal too.

This slot function must accept the value sent by the signal (here the checked

state) and then call the real slot, passing any additional data with the

arguments.

340

def fn(checked):

 self.button_clicked(checked, <additional args>)

Rather than define this intermediate function like this, you can also achieve

the same thing inline using a lambda function. As above, this accepts a single

parameter checked and then calls the real slot.

lambda checked: self.button_clicked(checked, <additional args>)

In both examples the <additional args> can be replaced with anything you

want to forward to your slot. In the example below we’re forwarding the

QPushButton object action to the receiving slot.

btn = QPushButton()

btn.clicked.connect(lambda checked: self.button_clicked(checked, btn)

)

Our button_clicked slot method will receive both the original checked value

and the QPushButton object. Our receiving slot could look something like

this — 

a class method.

def button_clicked(self, checked, btn):

 # do something here.


You can reorder arguments in your intermediate function if

you like.

The following example shows it in practice, with our button_clicked slot

receiving the check state and the widget object. In this example, we hide the

button in the handler so you can’t click it again!

341

Listing 101. further/signals_extra_1.py

import sys

from PyQt5.QtCore import Qt

from PyQt5.QtWidgets import QApplication, QMainWindow, QPushButton

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 btn = QPushButton("Press me")

 btn.setCheckable(True)

 btn.clicked.connect(lambda checked: self.button_clicked

(checked, btn))

 self.setCentralWidget(btn)

 def button_clicked(self, checked, btn):

 print(btn, checked)

 btn.hide()

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()

Problems with loops

A common reason for wanting to connect signals in this way is when you’re

building a series of widgets and connecting signals programmatically in a

loop. Unfortunately, then things aren’t always so simple.

If you construct intercepted signals in a loop and want to pass the loop

variable to the receiving slot, you’ll hit a problem. For example, in the

following example, we’re creating a series of buttons, and trying to pass the

sequence number with the signal. Clicking a button should update the label

342

with the value of the button.

Listing 102. further/signals_extra_2.py

import sys

from PyQt5.QtCore import Qt

from PyQt5.QtWidgets import (

 QApplication,

 QHBoxLayout,

 QLabel,

 QMainWindow,

 QPushButton,

 QVBoxLayout,

 QWidget,

)

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 v = QVBoxLayout()

 h = QHBoxLayout()

 for a in range(10):

 button = QPushButton(str(a))

 button.clicked.connect(lambda checked: self.

button_clicked(a)) ①

 h.addWidget(button)

 v.addLayout(h)

 self.label = QLabel("")

 v.addWidget(self.label)

 w = QWidget()

 w.setLayout(v)

 self.setCentralWidget(w)

 def button_clicked(self, n):

 self.label.setText(str(n))

343

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()

① We accept the checked variable on our lambda but discard it. This button is

not checkable, so it will always be False.

If you run this you’ll see the problem — no matter which button you click, you

get the same number (9) shown on the label. Why 9? It’s the last value of the

loop.

Figure 165. No matter which button you press, the label always shows 9.

The issue is here — 

for a in range(10):

 button = QPushButton(str(a))

 button.clicked.connect(

 lambda checked: self.button_clicked(a)

)

The problem is the line lambda: self.button_clicked(a) where we define the

call to the final slot. Here we are passing a, but this remains bound to the loop

variable. When the lambda is evaluated (when the signal fires) the value of a

will be the value it had at the end of the loop, so clicking any of them will

result in the same value being sent (here 9).

The solution is to pass the value in as a named parameter. By doing this the

value is bound at the time the lamdba is created, and will hold value of a at

that iteration of the loop. This ensures the correct value whenever it is called.

344


If this is gobbledygook, don’t worry! Just remember to always

used named parameters for your intermediate functions.

lambda checked, a=a: self.button_clicked(a))


You don’t have to use the same variable name, you could use

lambda val=a: self.button_clicked(val) if you prefer. The

important thing is to use named parameters.

Putting this into our loop, it would look like this:

Listing 103. further/signals_extra_3.py

 for a in range(10):

 button = QPushButton(str(a))

 button.clicked.connect(lambda checked, a=a: self

.button_clicked(a)) ①

 h.addWidget(button)

If you run this now, you’ll see the expected behavior — clicking on a button

will show the correct value in the label.

Figure 166. When you press a button, the number pressed is shown below.

Below are a few more examples using inline lambda functions to modify the

data sent with the MainWindow.windowTitleChanged signal. They will all fire once

the .setWindowTitle line is reached and the my_custom_fn slot will output what

they receive.

Listing 104. further/signals_extra_4.py

import sys

345

from PyQt5.QtCore import Qt

from PyQt5.QtWidgets import QApplication, QLabel, QMainWindow

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 # SIGNAL: The connected function will be called whenever the

window

 # title is changed. The new title will be passed to the

function.

 self.windowTitleChanged.connect(self.on_window_title_changed)

 # SIGNAL: The connected function will be called whenever the

window

 # title is changed. The new title is discarded in the lambda

and the

 # function is called without parameters.

 self.windowTitleChanged.connect(lambda x: self.my_custom_fn())

 # SIGNAL: The connected function will be called whenever the

window

 # title is changed. The new title is passed to the function

 # and replaces the default parameter

 self.windowTitleChanged.connect(lambda x: self.my_custom_fn(

x))

 # SIGNAL: The connected function will be called whenever the

window

 # title is changed. The new title is passed to the function

 # and replaces the default parameter. Extra data is passed

from

 # within the lambda.

 self.windowTitleChanged.connect(lambda x: self.my_custom_fn(x,

25))

 # This sets the window title which will trigger all the above

signals

 # sending the new title to the attached functions or lambdas

as the

 # first parameter.

 self.setWindowTitle("This will trigger all the signals.")

346

 # SLOT: This accepts a string, e.g. the window title, and prints

it

 def on_window_title_changed(self, s):

 print(s)

 # SLOT: This has default parameters and can be called without a

value

 def my_custom_fn(self, a="HELLLO!", b=5):

 print(a, b)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()

347

25. Routing

In building maintainable software a good rule of thumb is that a function

should do one thing and only one thing. This makes more readable and more

maintainable code — it becomes easier to reason about what a function

should be doing and spot bugs.

It can at times feel like Qt is actively working against you achieving

this — there are many methods that receive multiple types of events, or

states, and must handle them all. There is a good chance your PyQt5

application uses code like the following, with nested ifs and long function

bodies.

Listing 105. further/routing_1.py

import sys

from PyQt5.QtCore import QSize, Qt

from PyQt5.QtWidgets import QApplication, QLabel, QMainWindow

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.label = QLabel("Click in this window")

 self.status = self.statusBar()

 self.setFixedSize(QSize(200, 100))

 self.setCentralWidget(self.label)

 def mouseMoveEvent(self, e):

 self.label.setText("mouseMoveEvent")

 def mousePressEvent(self, e):

 button = e.button()

 if button == Qt.LeftButton:

 self.label.setText("mousePressEvent LEFT")

 if e.x() < 100:

 self.status.showMessage("Left click on left")

 self.move(self.x() - 10, self.y())

 else:

348

 self.status.showMessage("Left click on right")

 self.move(self.x() + 10, self.y())

 elif button == Qt.MiddleButton:

 self.label.setText("mousePressEvent MIDDLE")

 elif button == Qt.RightButton:

 self.label.setText("mousePressEvent RIGHT")

 if e.x() < 100:

 self.status.showMessage("Right click on left")

 print("Something else here.")

 self.move(10, 10)

 else:

 self.status.showMessage("Right click on right")

 self.move(400, 400)

app = QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()


This is a fun example that moves the window around the

desktop depending where you click.

This code is a mess. Inside our mousePressEvent we’re doing multiple

things — one branch for each button. It’s not immediately obvious if these

buttons are self-contained or how differently we handle the middle button.

Any time you want to change how any button behaves, you have to read

through unrelated code to understand the context.

But, how can a method which handles multiple states ever have a single

purpose? By redefining the purpose of the method! We modify our method

not to handle the event, but to route it. Routing in this sense means taking

state information and calling another method to handle that specific state.

The handling of your events than can then split out into separate methods,

349

one for each event type, or state. This means better maintainability — no 100

line methods of if / else branches to wade through, but methods with single

purpose routed through a single point.

Routing dictionaries

Some languages have case statements which allow you to branch off and

handle different values of a variable. There is no direct equivalent in Python,

but we can use dictionaries for the same result.

This makes use of the fact that in Python functions (and methods) are

objects and can be stored as dictionary values. Using the input to our routing

function we can look up which specific method to call, and pass through the

data.

The following code shows how to do this for our example above.

350

Listing 106. further/routing_2.py

 def mousePressEvent(self, e):

 route = { ①

 Qt.LeftButton: self.left_mousePressEvent,

 Qt.MiddleButton: self.middle_mousePressEvent,

 Qt.RightButton: self.right_mousePressEvent,

 }

 button = e.button()

 fn = route[button] ②

 return fn(e) ③

 def left_mousePressEvent(self, e):

 self.label.setText("mousePressEvent LEFT")

 if e.x() < 100:

 self.status.showMessage("Left click on left")

 self.move(self.x() - 10, self.y())

 else:

 self.status.showMessage("Left click on right")

 self.move(self.x() + 10, self.y())

 def middle_mousePressEvent(self, e):

 self.label.setText("mousePressEvent MIDDLE")

 def right_mousePressEvent(self, e):

 if e.x() < 100:

 self.status.showMessage("Right click on left")

 print("Something else here.")

 self.move(10, 10)

 else:

 self.status.showMessage("Right click on right")

 self.move(400, 400)

① Define the routing dictionary, keyed by the event type and with handler

methods as the values.

② Get the route method from the dictionary.

③ Call the method, passing the event argument.

The value of e.button() is used to perform a lookup in our routing dictionary.

This returns a single method, which we can call to handle that particular

351

button state. We pass the e object as an argument, and return the return

value (if any).

This will only work if the states handled are all in our routing dictionary — if

there is a state which we haven’t prepared for, the lookup will throw a

KeyError and crash the application. To avoid needing to define routes for all

states all the time, we need to handle this.

Listing 107. further/routing_3.py

 def mousePressEvent(self, e):

 route = { ①

 Qt.LeftButton: self.left_mousePressEvent,

 Qt.MiddleButton: self.middle_mousePressEvent,

 # Qt.RightButton missing!

 }

 button = e.button()

 fn = route.get(button) ②

 if fn: ③

 return fn(e)

① Define the routing dictionary, we dropped the right-click state here.

② Using .get() will return None if there is no match.

③ Any method is truthy, None is falsey.

If you run this and right click, your app will handle it fine (and do nothing).


An alternative is to define an empty function and set that as

the default return value for the lookup. This will be returned

and called for any states not in the routing dictionary.

Now we have a single routing method which calls a series of specific, well-

defined methods, with descriptive names that say what they do. This is one of

the most powerful methods for improving the maintainability of your event

and model view code. You can use this same approach in model view .data

handlers, and anywhere else that Qt passes state information into a method.

352

26. Working with command-line

arguments

If you have created an application which works with specific file types — for

example a video editor that opens videos, a document editor that opens

document files — it can be useful to have your application open these files

automatically. On all platforms, when you tell the OS to open a file with a

specific application, the filename to open is passed to that application as a

command-line argument.

When your application is run, the arguments passed to the application are

always available in sys.argv. To open files automatically, you can check the

value of sys.argv at startup and, if you find a filename in there, open it.

The following app when run will open a window with all the command line

arguments received displayed.

353

Listing 108. further/arguments.py

from PyQt5.QtWidgets import QApplication, QWidget, QLabel, QVBoxLayout

import sys

class Window(QWidget):

 def __init__(self):

 super().__init__()

 layout = QVBoxLayout()

 for arg in sys.argv: ①

 l = QLabel(arg)

 layout.addWidget(l)

 self.setLayout(layout)

 self.setWindowTitle("Arguments")

app = QApplication(sys.argv)

w = Window()

w.show()

app.exec_()

① sys.argv is a list of strings. All arguments are strings.

Run this app from the command line, passing in a filename (you can make

anything up, we don’t load it). You can pass as many, or as few, arguments as

you like.

Arguments ae passed to your application as a list of str. All arguments are

strings, even numeric ones. You can access any argument you like using

normal list indexing — for example `sys.argv[1] would return the 2nd

argument.

Try running the script above with the following — 

354

python arguments.py filename.mp4

This will produce the window below. Notice that when run with python the

first argument is actually the Python file which is being executed.

Figure 167. The window open showing the command line arguments.

If you package your application for distribution, this may no longer be the

case — the first argument may now be the file you are opening, as there is no

Python file passed as an argument. This can cause problems, but a simple

way around this is to use the last argument passed to your application as the

filename, e.g.

if len(sys.argv) > 0:

 filename_to_open = sys.argv[-1]

Alternatively, you can remove the currently executing script name if it is in

the list. The currently executing Python script name is always available in

__file__.

if __file__ in sys.argv:

 sys.argv.remove(__file__)


It will always be in the list, unless you have packaged your

app.

Below is a further example, where we accept a filename on the command

line, and then open that text file for display in a QTextEdit.

355

Listing 109. further/arguments_open.py

from PyQt5.QtWidgets import QApplication, QMainWindow, QTextEdit

import sys

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.editor = QTextEdit()

 if __file__ in sys.argv: ①

 sys.argv.remove(__file__)

 if sys.argv: ②

 filename = sys.argv[0] ③

 self.open_file(filename)

 self.setCentralWidget(self.editor)

 self.setWindowTitle("Text viewer")

 def open_file(self, fn):

 with open(fn, "r") as f:

 text = f.read()

 self.editor.setPlainText(text)

app = QApplication(sys.argv)

w = MainWindow()

w.show()

app.exec_()

① If the script name is in sys.argv remove it.

② If there is still something in sys.argv (not empty).

③ Take the first argument as the filename to open.

356

You can run this as follows, to view the passed in text file.

python arguments_open.py notes.txt

357

27. System tray & macOS menus

System tray applications (or menu bar applications) can be useful for making

common functions available in a small number of clicks. For full desktop

applications they’re a useful shortcut to control apps without opening up the

whole window.

Qt provides a simple interface for building cross-platform system tray

(Windows) or menu bar (macOS) apps. Below is a minimal working example

for showing an icon in the toolbar/system tray with a menu. The action in the

menu isn’t connected and so doesn’t do anything yet.

358

from PyQt5.QtWidgets import QApplication, QSystemTrayIcon,

QColorDialog, QMenu, QAction

from PyQt5.QtGui import QIcon

import sys

app = QApplication(sys.argv)

app.setQuitOnLastWindowClosed(False)

Create the icon

icon = QIcon("icon.png")

Create the tray

tray = QSystemTrayIcon()

tray.setIcon(icon)

tray.setVisible(True)

Create the menu

menu = QMenu()

action = QAction("A menu item")

menu.addAction(action)

Add a Quit option to the menu.

quit = QAction("Quit")

quit.triggered.connect(app.quit)

menu.addAction(quit)

Add the menu to the tray

tray.setContextMenu(menu)

app.exec_()

You’ll notice that there isn’t a QMainWindow, simply because we don’t have any

window to show. You can create a window as normal without affecting the

behavior of the system tray icon.

359



The default behavior in Qt is to close an application once all

the active windows have closed. This won’t affect this toy

example, but will be an issue in application where you do

create windows and then close them. Setting

app.setQuitOnLastWindowClosed(False) stops this and will

ensure your application keeps running.

The provided icon shows up in the toolbar (you can see it on the left hand

side of the icons grouped on the right of the system tray or menubar).

Figure 168. The icon showing on the menubar.

Clicking (or right-clicking on Windows) on the icon shows the added menu.

Figure 169. The menubar app menu.

This application doesn’t do anything yet, so in the next part we’ll expand this

example to create a mini color-picker.

Below is a more complete working example using the built in QColorDialog

from Qt to give a toolbar accessible color picker. The menu lets you choose to

get the picked color as HTML-format #RRGGBB, rgb(R,G,B) or hsv(H,S,V).

from PyQt5.QtWidgets import QApplication, QSystemTrayIcon,

360

QColorDialog, QMenu, QAction

from PyQt5.QtGui import QIcon

import sys

app = QApplication(sys.argv)

app.setQuitOnLastWindowClosed(False)

Create the icon

icon = QIcon("color.png")

clipboard = QApplication.clipboard()

dialog = QColorDialog()

def copy_color_hex():

 if dialog.exec_():

 color = dialog.currentColor()

 clipboard.setText(color.name())

def copy_color_rgb():

 if dialog.exec_():

 color = dialog.currentColor()

 clipboard.setText(

 "rgb(%d, %d, %d)" % (color.red(), color.green(), color

.blue())

)

def copy_color_hsv():

 if dialog.exec_():

 color = dialog.currentColor()

 clipboard.setText(

 "hsv(%d, %d, %d)" % (color.hue(), color.saturation(),

color.value())

)

Create the tray

tray = QSystemTrayIcon()

tray.setIcon(icon)

361

tray.setVisible(True)

Create the menu

menu = QMenu()

action1 = QAction("Hex")

action1.triggered.connect(copy_color_hex)

menu.addAction(action1)

action2 = QAction("RGB")

action2.triggered.connect(copy_color_rgb)

menu.addAction(action2)

action3 = QAction("HSV")

action3.triggered.connect(copy_color_hsv)

menu.addAction(action3)

quit = QAction("Quit")

quit.triggered.connect(app.quit)

menu.addAction(quit)

Add the menu to the tray

tray.setContextMenu(menu)

app.exec_()

As in the previous example there is no QMainWindow for this example. The menu

is created as before, but adding 3 actions for the different output formats.

Each action is connected to a specific handler function for the format it

represents. Each handler shows a dialog and, if a color is selected, copies that

color to the clipboard in the given format.

As before, the icon appears in the toolbar.

Figure 170. The Color picker on the toolbar.

Clicking the icon shows a menu, from which you can select the format of

362

image you want to return.

Figure 171. The Color picker menu

Once you’ve chosen the format, you’ll see the standard Qt color picker

window.

Figure 172. The system Color picker window

Select the color you want and click OK. The chosen color will be copied to the

clipboard in the requested format. The formats available will product the

following output:

363

Value Ranges

#a2b3cc 00-FF

rgb(25, 28, 29) 0-255

hsv(14, 93, 199) 0-255

Adding a system tray icon for a full app

So far we’ve shown how to create a standalone system tray application with

no main window. However, sometimes you may wish to have a system tray

icon as well as a window. When this is done, typically the main window can

be opened and closed (hidden) from the tray icon, without closing the

application. In this section we’ll look at how to build this kind of application

with Qt5.

In principle it’s quite straightforward — create our main window, and connect

a signal from an action to the .show() method of the window.

Below is a small tray notes application called "PenguinNotes". When run, it

puts a small penguin icon in your system track or macOS toolbar.

Clicking the small penguin icon in the tray will show the window. The

window contains a QTextEdit editor into which you can write notes. You can

close the window as normal, or by clicking again on the tray icon. The and

app will remain running in the tray. To close the app you can use File ›

Close — closing will automatically save the notes.

from PyQt5.QtWidgets import (

 QApplication,

 QSystemTrayIcon,

 QMainWindow,

 QTextEdit,

 QMenu,

 QAction,

)

from PyQt5.QtGui import QIcon

364

import sys

app = QApplication(sys.argv)

app.setQuitOnLastWindowClosed(False)

Create the icon

icon = QIcon("animal-penguin.png")

Create the tray

tray = QSystemTrayIcon()

tray.setIcon(icon)

tray.setVisible(True)

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 menu = self.menuBar()

 file_menu = menu.addMenu("&File")

 self.quit = QAction("&Quit")

 self.quit.triggered.connect(app.quit)

 file_menu.addAction(self.quit)

 self.editor = QTextEdit()

 self.load() # Load up the text from file.

 self.setCentralWidget(self.editor)

 self.setWindowTitle("PenguinNotes")

 def load(self):

 with open("notes.txt", "r") as f:

 text = f.read()

 self.editor.setPlainText(text)

 def save(self):

 text = self.editor.toPlainText()

 with open("notes.txt", "w") as f:

 f.write(text)

365

 def activate(self, reason):

 if reason == QSystemTrayIcon.Trigger: # Icon clicked.

 self.show()

w = MainWindow()

tray.activated.connect(w.activate)

app.aboutToQuit.connect(w.save)

app.exec_()

Below is a screenshot of the notes app with the window open.

Figure 173. The notes editor window.

The control of showing and hiding the window is handled in the activate

method on our QMainWindow. This is connected to the tray icon .activated

signal at the bottom of the code, using tray.activated.connect(w.activate).

366

 def activate(self, reason):

 if reason == QSystemTrayIcon.Trigger: # Icon clicked.

 if self.isVisible():

 self.hide()

 else:

 self.show()

This signal is triggered under a number of different circumstances, so we

must first check to ensure we are only using QSystemTrayIcon.Trigger.

Reason Value Description

QSystemTrayIcon.Unknown 0 Unknown reason.

QSystemTrayIcon.Context 1 Context menu requested (single click

macOS, right-click Windows).

QSystemTrayIcon.DoubleClick 2 Icon double clicked. On macOS

double-click only fires if no context

menu is set, as the menu opens with

a single click.

QSystemTrayIcon.Trigger 3 Icon clicked once.

QSystemTrayIcon.MiddleClick 4 Icon clicked with the middle mouse

button.

By listening to these events you should be able to construct any type of

system tray behavior you wish. However, be sure to check the behavior on all

your target platforms.

367

28. Enums & the Qt Namespace

When you see a line like the following in your application, you might have

wondered what the Qt.DisplayRole or Qt.CheckStateRole objects actually are.

 def data(self, role, index):

 if role == Qt.DisplayRole:

 # do something

Qt makes use of these types extensively for meaningful constants in code.

Many of them are available in the Qt namespace, that is as Qt.<something>,

although there are object-specific types such as QDialogButtonBox.Ok which

work in exactly the same way.

But how do they work? In this chapter we’ll take a close look at how these

constants are formed and how to work with them effectively. To do that we’ll

need to touch on some fundamentals like binary numbers. But

understanding these deeply isn’t necessary to get something from this

chapter — as always we’ll focus on how we can apply things as we learn them.

All just numbers

If you check the type() of a flag you’ll see the name of a class. These classes

are the group that a given flag belongs to. For example, Qt.DecorationRole is of

type Qt.ItemDataRole — you can see these groups in the Qt documentation.


You can run the following code in a Python shell, just import

the Qt namespace first with from PyQt5.QtCore import Qt.

>>> type(Qt.DecorationRole)

<class 'PyQt5.QtCore.Qt.ItemDataRole'>

These types are enums — a type which restricts its values to a set of

predefined values. In PyQt5 they are presented as a set of pre-defined class

368

https://doc.qt.io/qt-5/qt.html#ItemDataRole-enum

types.

Each of these values is actually a wrapper around a simple integer number.

The value of Qt.DisplayRole is 0, while Qt.EditRole has a value of 2. The integer

values themselves are meaningless but have a meaning in the particular

context in which they are used.

>>> int(Qt.DecorationRole)

1

For example, would you expect the following to evaluate to True?

>>> Qt.DecorationRole == Qt.AlignLeft

True

Probably not. But both Qt.DecorationRole and Qt.AlignLeft have an integer

value of 1 and so are numerically equal. These numeric values can usually be

ignored. As long as you use the constants in their appropriate context they

will always work as expected.

Table 7. Values given in the documentation can be in decimal or binary.

Identifier Value (hex) Value (decimal) Description

Qt.AlignLeft 0x0001 1 Aligns with the

left edge.

Qt.AlignRight 0x0002 2 Aligns with the

right edge.

Qt.AlignHCenter 0x0004 4 Centers

horizontally in the

available space.

Qt.AlignJustify 0x0008 8 Justifies the text

in the available

space.

369

Identifier Value (hex) Value (decimal) Description

Qt.AlignTop 0x0020 32 Aligns with the

top.

Qt.AlignBottom 0x0040 64 Aligns with the

bottom.

Qt.AlignVCenter 0x0080 128 Centers vertically

in the available

space.

Qt.AlignBaseline 0x0100 256 Aligns with the

baseline.

If you look at the numbers in the table above you may notice something odd.

Firstly, they don’t increase by 1 for each constant, but double each time.

Secondly, the horizontal alignment hex numbers are all in one column, while

the vertical alignment numbers are in another.

This pattern of numbers is intentional and it allows us to do something very

neat — combine flags together to create compound flags. To understand this

we’ll need to take a quick look at how integer numbers are represented by a

computer.

Binary & Hexadecimal

When we count normally we use decimal a base-10 number system. It has 10

digits, from 0-9 and each digit in a decimal number is worth 10x that which

preceded it. In the following example, our number 1251 is made up of 1x1000,

2x100, 5x10 and 1x1.

1000 100 10 1

1 2 5 1

Computers store data in binary, a series of on and off states represented in

written form as 1s and 0s. Binary is a base-2 number system. It has 2 digits,

from 0-1 and each digit in a binary number is worth 2x that which preceded

370

it. In the following example, our number 5 is made up of 1x4 and 1x1.

8 4 2 1 Decim

al

0 1 0 1 5

Writing binary numbers gets cumbersome quickly — 5893 in binary is

1011100000101 — but converting back and forward to decimal is not much

better. To make it easier to work with binary numbers hexadecimal is

frequently used in computing. This is a numeric system with 16 digits (0-9A-

F). Each hexadecimal digit has a value between 0-15 (0-A) equivalent to 4

binary digits. This makes it straightforward to convert between the two.

The table below shows the numbers 0-15, together with the same value in

binary and hexadecimal. The value of a given binary number can be

calculated by adding up the numbers at the top of each column with a 1 in

them.

8 4 2 1 Hex Dec

0 0 0 0 0 0

0 0 0 1 1 1

0 0 1 0 2 2

0 0 1 1 3 3

0 1 0 0 4 4

0 1 0 1 5 5

0 1 1 0 6 6

0 1 1 1 7 7

1 0 0 0 8 8

1 0 0 1 9 9

1 0 1 0 A 10

1 0 1 1 B 11

371

8 4 2 1 Hex Dec

1 1 0 0 C 12

1 1 0 1 D 13

1 1 1 0 E 14

1 1 1 1 F 15

This pattern continues for higher numbers. For example, below is the

number 25 in binary, constructed from 16 x 1, 8 x 1 and 1 x 1.

16 8 4 2 1

1 1 0 0 1

Because each digit in a binary value is either a 1 or a 0 (True or False) we can

use individual binary digits as boolean flags. A single integer value can store

multiple flags, using unique binary digits for each. Each of these flags would

have their own numerical value based on the position of the binary digit they

set to 1.

That is exactly how the Qt flags work. Looking at our alignment flags again,

we can now see why the numbers were chosen — each flag is a unique non-

overlapping bit. The values of the flags come from the binary digit the flag

has set to 1.

Qt.AlignLeft 1 00000001

Qt.AlignRight 2 00000010

Qt.AlignHCenter 4 00000100

Qt.AlignJustify 8 00001000

Qt.AlignTop 32 00100000

Qt.AlignBottom 64 01000000

Qt.AlignVCenter 128 10000000

When testing these flags directly with == you don’t need to worry about all

372

this. But this arrangement of values unlocks the ability to combine the flags

together to create compound flags which represent more than one state at

the same time. This allows you to have a single flag variable representing, for

example, left & bottom aligned.

Bitwise OR (|) combination

Any two numbers, with non-overlapping binary representations can be

added together while leaving their original binary digits in place. For

example, below we add 1 and 2 together, to get 3 — 

Table 8. Add

001 1

010 + 2

011 = 3

The 1 digits in the original numbers are preserved in the output. In contrast, if

we add together 1 and 3 to get 4, the 1 digits of the original numbers are not

in the result — both are now zero.

001 1

011 + 3

100 = 4


You can see the same effect in decimal — compare adding

100 and 50 to give 150 vs. adding 161 and 50 to give 211.

Since we’re using 1 values in specific binary positions to mean something,

this poses a problem. For example, if we added the value of an alignment

flag twice, we would get something else both entirely right (mathematically)

and entirely wrong (in meaning).

Table 9. Add

00000001 1 Qt.AlignLeft

373

00000001 + 1 + Qt.AlignLeft

00000010 = 2 =

Qt.AlignRight

>>> Qt.AlignLeft + Qt.AlignLeft == Qt.AlignRight

True

For this reason, when working with binary flags we combine them using a

bitwise OR — which is performed in Python using the | (pipe) operator. In a

bitwise OR you combine two numbers together by comparing them at the

binary level. The result is a new number, where binary digits are set to 1 if they

were 1 in either of the inputs. But importantly, digits are not carried and do

not affect adjacent digits.


When you have non-overlapping digits bitwise OR is the

same as add (+).

Qt.AlignLe

ft

00000001

Qt.AlignTo

p

00100000

Taking the two alignment constants above, we can combine their values

together using a bitwise OR to produce the output to give align top left.

Table 10. Bitwise OR

00000001 1 Qt.AlignLeft

00100000 OR 32 | Qt.AlignTop

00100001 = 33 Qt.AlignLeft |

Qt.AlignTop

>>> int(Qt.AlignLeft | Qt.AlignTop)

33

374

So, if we combine 32 with 1 we get 33. This should hopefully not be too

surprising. But what if we accidentally add Qt.AlignLeft multiple times?

>>> int(Qt.AlignLeft | Qt.AlignLeft | Qt.AlignTop)

33

The same result! The bitwise OR outputs a 1 in a binary position if there is a 1

in any of the inputs. It doesn’t add them up, carry or overflow anything into

other digits — meaning you can | the same value together multiple times

and you just end up with what you started with.

>>> int(Qt.AlignLeft | Qt.AlignLeft | Qt.AlignLeft)

1

Or, in binary — 

Table 11. Bitwise OR

00000001 1 Qt.AlignLeft

00000001 OR 1 | Qt.AlignLeft

00000001 = 1 = Qt.AlignLeft

And finally, comparing the values.

>>> Qt.AlignLeft | Qt.AlignLeft == Qt.AlignLeft

True

>>> Qt.AlignLeft | Qt.AlignLeft == Qt.AlignRight

False

Checking compound flags

We can check simple flags by comparing against the flag itself, as we’ve

already seen — 

375

>>> align = Qt.AlignLeft

>>> align == Qt.AlignLeft

True

For combined flags we can also check equality with the combination of

flags — 

>>> align = Qt.AlignLeft | Qt.AlignTop

>>> align == Qt.AlignLeft | Qt.AlignTop

True

But sometimes, you want to know if a given variable contains a specific flag.

For example, perhaps we want to know if align has the align left flag set,

regardless of any other alignment state.

How can we check that an element has Qt.AlignLeft applied, once it’s been

combined with another? In this case a == comparison will not work, since

they are not numerically equal.

>> alignment = Qt.AlignLeft | Qt.AlignTop

>> alignment == Qt.AlignLeft # 33 == 1

False

We need a way to compare the Qt.AlignLeft flag against the bits of our

compound flag. For this we can use a bitwise AND.

Bitwise AND (&) checks

In Python, bitwise AND operations are performed using the & operator.

In the previous step we combined together Qt.AlignLeft (1) and Qt.AlignTop

(32) to produce "Top Left" (33). Now we want to check if the resulting

combined flag has the align left flag set. To test we need to use bitwise AND

which checks bit by bit to see if both input values are 1, returning a 1 in that

place if it is true.

376

Table 12. Bitwise AND

00100001 33 Qt.AlignLeft |

Qt.AlignTop

00000001 AND 1 & Qt.AlignLeft

00000001 = 1 = Qt.AlignLeft

This has the effect of filtering the bits in our input variable to only those that

are set in our target flag Qt.AlignLeft. If this one bit is set, the result is non-

zero, if it is unset the result is 0.

>>> int(alignment & Qt.AlignLeft)

1 # result is the numerical value of the flag, here 1.

For example, if we tested our alignment variable against Qt.AlignRight the

result is 0.

00100001 33 Qt.AlignLeft |

Qt.AlignTop

00000010 2 &

Qt.AlignRight

00000000 0 = Qt.AlignLeft

>>> int(alignment & Qt.AlignRight)

0

Because in Python 0 is equal to False and any other value is True. This means

that when testing two numbers against one another with bitwise AND, if any

bits are in common the result will be > 0, and be True.

With a combination of bitwise OR and AND you should be able to achieve

everything you need with the Qt flags.

377

Custom Widgets
As we’ve seen, Qt comes with a wide range of widgets built-in, which you can

use to build your applications. Even so, sometimes these simple widgets are

not enough — maybe you need an input for some custom types, or want to

visualize data in a unique way. In Qt you are free to create your own widgets,

either from scratch or by combining existing widgets.

In this chapter we’ll see how to use bitmap graphics and custom signals to

create your very own widgets.

Figure 174. A custom color-gradient input, one of the widgets in our library.

 You may also want to check out our custom widget library.

378

https://www.learnpyqt.com/widgets/

29. Bitmap Graphics in Qt

The first step towards creating custom widgets in PyQt5 is understanding

bitmap (pixel-based) graphic operations. All standard widgets draw

themselves as bitmaps on a rectangular "canvas" that forms the shape of the

widget. Once you understand how this works you can draw any custom

widget you like!

INFO: Bitmaps are rectangular grids of pixels, where each pixel (and its color)

is represented by a number of "bits". They are distinct from vector graphics,

where the image is stored as a series of line (or vector) drawing shapes which

are used to form the image. If you’re viewing vector graphics on your screen

they are being rasterised — converted into a bitmap image — to be displayed

as pixels on the screen.

In this tutorial we’ll take a look at QPainter, Qt’s API for performing bitmap

graphic operations and the basis for drawing your own widgets. We’ll go

through some basic drawing operations and finally put it all together to

create our own little Paint app.

QPainter

Bitmap drawing operations in Qt are handled through the QPainter class. This

is a generic interface which can be used to draw on various surfaces

including, for example, QPixmap. In this chapter we’ll look at the QPainter

drawing methods, first using primitive operations on a QPixmap surface, and

then building a simple Paint application using what we’ve learnt.

To make this easy to demonstrate we’ll be using the following stub

application which handles creating our container (a QLabel) creating a

pixmap canvas, setting that into the container and adding the container to

the main window.

379

Listing 110. bitmap/stub.py

import sys

from PyQt5 import QtCore, QtGui, QtWidgets

from PyQt5.QtCore import Qt

class MainWindow(QtWidgets.QMainWindow):

 def __init__(self):

 super().__init__()

 self.label = QtWidgets.QLabel()

 canvas = QtGui.QPixmap(400, 300) ①

 canvas.fill(Qt.white) ②

 self.setCentralWidget(self.label)

 self.draw_something()

 def draw_something(self):

 pass

app = QtWidgets.QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()

① Create the QPixmap object we’ll draw onto.

② Fill the entire canvas with white (so we can see our line).


Why do we use QLabel to draw on? The QLabel widget can also

be used to show images, and it’s the simplest widget

available for displaying a QPixmap.

We need to fill our canvas with white to begin with as depending on the

platform and current dark mode, the background can be anything from light

gray to black. We can start by drawing something really simple.

380

Listing 111. /bitmap/line.py

import sys

from PyQt5 import QtCore, QtGui, QtWidgets

from PyQt5.QtCore import Qt

class MainWindow(QtWidgets.QMainWindow):

 def __init__(self):

 super().__init__()

 self.label = QtWidgets.QLabel()

 canvas = QtGui.QPixmap(400, 300) ①

 canvas.fill(Qt.white) ②

 self.label.setPixmap(canvas)

 self.setCentralWidget(self.label)

 self.draw_something()

 def draw_something(self):

 painter = QtGui.QPainter(self.label.pixmap())

 painter.drawLine(10, 10, 300, 200) ③

 painter.end()

app = QtWidgets.QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()

① Create the QPixmap object we’ll draw onto.

② Fill the entire canvas with white (so we can see our line).

③ Draw a line from (10, 10) to (300, 200). The coordinates are x, y with 0, 0 in

the top left.

Save this to a file and run it and you should see the following — a single black

line inside the window frame —

381

Figure 175. A single black line on the canvas.

All the drawing occurs within the draw_something method — we create a

QPainter instance, passing in the canvas (self.label.pixmap()) and then issue a

command to draw a line. Finally we call .end() to close the painter and apply

the changes.



You would usually also need to call .update() to trigger a

refresh of the widget, but as we’re drawing before the

application window is shown a refresh is already going to

occur automatically.

The coordinate system of QPainter puts 0, 0 in the top-left of the canvas, with

x increasing towards the right and y increasing down the image. This may be

surprising if you’re used to graphing where 0, 0 is in the bottom-left.

382

Figure 176. Black line annotated with the coordinates.

Drawing primitives

QPainter provides a huge number of methods for drawing shapes and lines

on a bitmap surface (in 5.12 there are 192 QPainter specific non-event

methods). The good news is that most of these are overloaded methods

which are simply different ways of calling the same base methods.

For example, there are 5 different drawLine methods, all of which draw the

same line, but differ in how the coordinates of what to draw are defined.

Method Description

drawLine(line) Draw a QLine instance

drawLine(line) Draw a QLineF instance

drawLine(x1, y1, x2, y2) Draw a line between x1, y2 and x2, y2

(both int).

drawLine(p1, p2) Draw a line between point p1 and p2

(both QPoint)

383

Method Description

drawLine(p1, p2) Draw a line between point p1 and p2

(both QPointF)

If you’re wondering what the difference is between a QLine and a QLineF , the

latter has its coordinates specified as float. This is convenient if you have float

positions as the result of other calculations, but otherwise not so much.

Ignoring the F-variants, we have 3 unique ways to draw a line — with a line

object, with two sets of coordinates (x1, y1), (x2, y2) or with two QPoint

objects. When you discover that a QLine itself is defined as `QLine(const

QPoint & p1, const QPoint & p2)`or`QLine(int x1, int y1, int x2, int y2)`you see

that they are all in fact, exactly the same thing. The different call signatures

are simply there for convenience.


Given the x1, y1, x2, y2 coordinates, the two QPoint objects

would be defined as QPoint(x1, y1) and QPoint(x2, y2).

So, leaving out the duplicates we have the following draw operations

—drawArc , drawChord, drawConvexPolygon, drawEllipse,drawLine, drawPath, drawPie,

drawPoint, drawPolygon, drawPolyline, drawRect, drawRects and drawRoundedRect. To

avoid get overwhelmed we’ll focus first on the primitive shapes and lines first

and return to the more complicated operations once we have the basics

down.


For each example, replace the draw_something method in your

stub application and re-run it to see the output.

drawPoint

This draws a point, or pixel at a given point on the canvas. Each call to

drawPoint draws one pixel. Replace your draw_something code with the

following.

384

Listing 112. bitmap/point.py

 def draw_something(self):

 painter = QtGui.QPainter(self.label.pixmap())

 painter.drawPoint(200, 150)

 painter.end()

If you re-run the file you will see a window, but this time there is a single dot,

in black in the middle of it. You may need to move the window around to

spot it.

Figure 177. Drawing a single point (pixel) with QPainter.

That really isn’t much to look at. To make things more interesting we can

change the color and size of the point we’re drawing. In PyQt5 the color and

thickness of lines is defined using the active pen on the QPainter. You can set

this by creating a QPen instance and applying it.

385

Listing 113. bitmap/point_with_pen.py

 def draw_something(self):

 painter = QtGui.QPainter(self.label.pixmap())

 pen = QtGui.QPen()

 pen.setWidth(40)

 pen.setColor(QtGui.QColor('red'))

 painter.setPen(pen)

 painter.drawPoint(200, 150)

 painter.end()

This will give the following mildly more interesting result..

Figure 178. A big red dot.

You are free to perform multiple draw operations with your QPainter until the

painter is ended. Drawing onto the canvas is very quick — here we’re

drawing 10k dots at random.

386

Listing 114. bitmap/points.py

from random import choice, randint ①

 def draw_something(self):

 painter = QtGui.QPainter(self.label.pixmap())

 pen = QtGui.QPen()

 pen.setWidth(3)

 painter.setPen(pen)

 for n in range(10000):

 painter.drawPoint(

 200 + randint(-100, 100), 150 + randint(-100, 100) #

x # y

)

 painter.end()

① Add this import at the top of the file.

The dots are 3 pixel-width and black (the default pen).

Figure 179. 10k 3-pixel dots on a canvas.

You will often want to update the current pen while drawing — e.g. to draw

387

multiple points in different colors while keeping other characteristics (width)

the same. To do this without recreating a new QPen instance each time you

can get the current active pen from the QPainter`using `pen = painter.pen().

You can also re-apply an existing pen multiple times, changing it each time.

Listing 115. bitmap/points_color.py

 def draw_something(self):

 colors = ["#FFD141", "#376F9F", "#0D1F2D", "#E9EBEF",

"#EB5160"]

 painter = QtGui.QPainter(self.label.pixmap())

 pen = QtGui.QPen()

 pen.setWidth(3)

 painter.setPen(pen)

 for n in range(10000):

 # pen = painter.pen() you could get the active pen here

 pen.setColor(QtGui.QColor(choice(colors)))

 painter.setPen(pen)

 painter.drawPoint(

 200 + randint(-100, 100), 150 + randint(-100, 100) #

x # y

)

 painter.end()

Will produce the following output —

388

Figure 180. Random pattern of 3 width dots.


There can only ever be one QPen active on a QPainter — the

current pen.

That’s about as much excitement as you can have drawing dots onto a

screen, so we’ll move on to look at some other drawing operations.

drawLine

We already drew a line on the canvas at the beginning to test things are

working. But what we didn’t try was setting the pen to control the line

appearance.

389

Listing 116. bitmap/line_with_pen.py

 def draw_something(self):

 painter = QtGui.QPainter(self.label.pixmap())

 pen = QtGui.QPen()

 pen.setWidth(15)

 pen.setColor(QtGui.QColor("blue"))

 painter.setPen(pen)

 painter.drawLine(QtCore.QPoint(100, 100), QtCore.QPoint(300,

200))

 painter.end()

In this example we’re also using QPoint to define the two points to connect

with a line, rather than passing individual x1, y1, x2, y2 parameters

— remember that both methods are functionally identical.

Figure 181. A thick blue line.

drawRect, drawRects and drawRoundedRect

These functions all draw rectangles, defined by a series of points, or by QRect

or QRectF instances.

390

Listing 117. bitmap/rect.py

 def draw_something(self):

 painter = QtGui.QPainter(self.label.pixmap())

 pen = QtGui.QPen()

 pen.setWidth(3)

 pen.setColor(QtGui.QColor("#EB5160"))

 painter.setPen(pen)

 painter.drawRect(50, 50, 100, 100)

 painter.drawRect(60, 60, 150, 100)

 painter.drawRect(70, 70, 100, 150)

 painter.drawRect(80, 80, 150, 100)

 painter.drawRect(90, 90, 100, 150)

 painter.end()

 A square is just a rectangle with the same width and height

Figure 182. Drawing rectangles.

You can also replace the multiple calls to drawRect with a single call to

drawRects passing in multiple QRect objects. This will product exactly the same

result.

391

painter.drawRects(

 QtCore.QRect(50, 50, 100, 100),

 QtCore.QRect(60, 60, 150, 100),

 QtCore.QRect(70, 70, 100, 150),

 QtCore.QRect(80, 80, 150, 100),

 QtCore.QRect(90, 90, 100, 150),

)

Drawn shapes can be filled in PyQt5 by setting the current active painter

brush, passing in a QBrush instance to painter.setBrush(). The following

example fills all rectangles with a patterned yellow color.

Listing 118. bitmap/rect_with_brush.py

 def draw_something(self):

 painter = QtGui.QPainter(self.label.pixmap())

 pen = QtGui.QPen()

 pen.setWidth(3)

 pen.setColor(QtGui.QColor("#376F9F"))

 painter.setPen(pen)

 brush = QtGui.QBrush()

 brush.setColor(QtGui.QColor("#FFD141"))

 brush.setStyle(Qt.Dense1Pattern)

 painter.setBrush(brush)

 painter.drawRects(

 QtCore.QRect(50, 50, 100, 100),

 QtCore.QRect(60, 60, 150, 100),

 QtCore.QRect(70, 70, 100, 150),

 QtCore.QRect(80, 80, 150, 100),

 QtCore.QRect(90, 90, 100, 150),

)

 painter.end()

392

Figure 183. Filled rectangles.

As for the pen, there is only ever one brush active on a given painter, but you

can switch between them or change them while drawing. There are a

number of brush style patterns available. You’ll probably use Qt.SolidPattern

more than any others though.


You must set a style to see any fill at all as the default is

Qt.NoBrush.

The drawRoundedRect methods draw a rectangle, but with rounded edges, and

so take two extra parameters for the x & y radius of the corners.

393

https://doc.qt.io/qt-5/qt.html#BrushStyle-enum
https://doc.qt.io/qt-5/qt.html#BrushStyle-enum

Listing 119. bitmap/roundrect.py

 def draw_something(self):

 painter = QtGui.QPainter(self.label.pixmap())

 pen = QtGui.QPen()

 pen.setWidth(3)

 pen.setColor(QtGui.QColor("#376F9F"))

 painter.setPen(pen)

 painter.drawRoundedRect(40, 40, 100, 100, 10, 10)

 painter.drawRoundedRect(80, 80, 100, 100, 10, 50)

 painter.drawRoundedRect(120, 120, 100, 100, 50, 10)

 painter.drawRoundedRect(160, 160, 100, 100, 50, 50)

 painter.end()

Figure 184. Rounded rectangles.



There is an optional final parameter to toggle between the x

& y ellipse radii of the corners being defined in absolute pixel

terms Qt.RelativeSize (the default) or relative to the size of

the rectangle (passed as a value 0…100). Pass Qt.RelativeSize

to enable this.

394

drawEllipse

The final primitive draw method we’ll look at now is drawEllipse which can be

used to draw an ellipse or a circle.

 A circle is just an ellipse with an equal width and height.

Listing 120. bitmap/ellipse.py

 def draw_something(self):

 painter = QtGui.QPainter(self.label.pixmap())

 pen = QtGui.QPen()

 pen.setWidth(3)

 pen.setColor(QtGui.QColor(204, 0, 0)) # r, g, b

 painter.setPen(pen)

 painter.drawEllipse(10, 10, 100, 100)

 painter.drawEllipse(10, 10, 150, 200)

 painter.drawEllipse(10, 10, 200, 300)

 painter.end()

In this example drawEllipse is taking 4 parameters, with the first two being

the x & y position of the top left of the rectangle in which the ellipse will be

drawn, while the last two parameters are the width and height of that

rectangle respectively.

395

Figure 185. Drawing an ellipse with x, y, width, height or QRect.

 You can achieve the same by passing in a QRect

There is another call signature which takes the center of the ellipse as the

first parameter, provided as QPoint or QPointF object, and then a x and y

radius. The example below shows it in action.

painter.drawEllipse(QtCore.QPoint(100, 100), 10, 10)

painter.drawEllipse(QtCore.QPoint(100, 100), 15, 20)

painter.drawEllipse(QtCore.QPoint(100, 100), 20, 30)

painter.drawEllipse(QtCore.QPoint(100, 100), 25, 40)

painter.drawEllipse(QtCore.QPoint(100, 100), 30, 50)

painter.drawEllipse(QtCore.QPoint(100, 100), 35, 60)

396

Figure 186. Drawing an ellipse using Point & radius.

You can fill ellipses using the same QBrush approach described for rectangles.

Text

Finally, we’ll take a brief tour through the QPainter text drawing methods. To

control the current font on a QPainter you use setFont passing in a QFont

instance. With this you can control the family, weight and size (among other

things) of the text you write. The color of the text is still defined using the

current pen, however the width of the pen has no effect.

397

Listing 121. bitmap/text.py

 def draw_something(self):

 painter = QtGui.QPainter(self.label.pixmap())

 pen = QtGui.QPen()

 pen.setWidth(1)

 pen.setColor(QtGui.QColor("green"))

 painter.setPen(pen)

 font = QtGui.QFont()

 font.setFamily("Times")

 font.setBold(True)

 font.setPointSize(40)

 painter.setFont(font)

 painter.drawText(100, 100, "Hello, world!")

 painter.end()

 You can also specify location with QPoint or QPointF.

Figure 187. Bitmap text hello world example.

398

There are also methods for drawing text within a specified area. Here the

parameters define the x & y position and the width & height of the bounding

box. Text outside this box is clipped (hidden). The 5th parameter flags can be

used to control alignment of the text within the box among other things.

painter.drawText(100, 100, 100, 100, Qt.AlignHCenter, 'Hello, world!')

Figure 188. Bounding box clipped on drawText.

You have complete control over the display of text by setting the active font

on the painter via a QFont object. Check out the QFont documentation for

more information.

A bit of fun with QPainter

That got a bit heavy, so let’s take a breather and make something fun. So far

we’ve been programmatically defining the draw operations to perform on

the QPixmap surface. But we can just as easily draw in response to user input —

for example allowing a user to scribble all over the canvas. Let’s take what

we’ve learned so far and use it to build a rudimentary Paint app.

399

https://doc.qt.io/archives/qt-4.8/qfont.html

We can start with the same simple application outline, adding a

mouseMoveEvent handler to the MainWindow class in place of our draw method.

Here we take the current position of the user’s mouse and draw it to the

canvas.

Listing 122. bitmap/paint_start.py

import sys

from PyQt5 import QtCore, QtGui, QtWidgets

from PyQt5.QtCore import Qt

class MainWindow(QtWidgets.QMainWindow):

 def __init__(self):

 super().__init__()

 self.label = QtWidgets.QLabel()

 canvas = QtGui.QPixmap(400, 300)

 self.label.setPixmap(canvas)

 self.setCentralWidget(self.label)

 def mouseMoveEvent(self, e):

 painter = QtGui.QPainter(self.label.pixmap())

 painter.drawPoint(e.x(), e.y())

 painter.end()

 self.update()

app = QtWidgets.QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()



Widgets by default only receive mouse move events when a

mouse button is pressed, unless mouse tracking is enabled.

This can be configured using the .setMouseTracking method —

setting this to True (it is False by default) will track the mouse

continuously.

400

If you save this and run it you should be able to move your mouse over the

screen and click to draw individual points. It should look something like this

—

Figure 189. Drawing individual mouseMoveEvent points.

The issue here is that when you move the mouse around quickly it actually

jumps between locations on the screen, rather than moving smoothly from

one place to the next. The `mouseMoveEvent`is fired for each location the

mouse is in, but that’s not enough to draw a continuous line, unless you

move very slowly.

The solution to this is to draw lines instead of points. On each event we

simply draw a line from where we were (previous e.x() and e.y()) to where

we are now (current e.x() and e.y()). We can do this by tracking last_x and

last_y ourselves.

401

We also need to forget the last position when releasing the mouse, or we’ll

start drawing from that location again after moving the mouse across the

page — i.e. we won’t be able to break the line.

Listing 123. bitmap/paint_line.py

import sys

from PyQt5 import QtCore, QtGui, QtWidgets

from PyQt5.QtCore import Qt

class MainWindow(QtWidgets.QMainWindow):

 def __init__(self):

 super().__init__()

 self.label = QtWidgets.QLabel()

 canvas = QtGui.QPixmap(400, 300)

 self.label.setPixmap(canvas)

 self.setCentralWidget(self.label)

 self.last_x, self.last_y = None, None

 def mouseMoveEvent(self, e):

 if self.last_x is None: # First event.

 self.last_x = e.x()

 self.last_y = e.y()

 return # Ignore the first time.

 painter = QtGui.QPainter(self.label.pixmap())

 painter.drawLine(self.last_x, self.last_y, e.x(), e.y())

 painter.end()

 self.update()

 # Update the origin for next time.

 self.last_x = e.x()

 self.last_y = e.y()

 def mouseReleaseEvent(self, e):

 self.last_x = None

 self.last_y = None

402

app = QtWidgets.QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()

If you run this you should be able to scribble on the screen as you would

expect.

Figure 190. Drawing with the mouse, using a continuous line.

It’s still a bit dull, so let’s add a simple palette to allow us to change the pen

color.

This requires a bit of re-architecting to ensure the mouse position is detected

accurately. So far we’ve using the mouseMoveEvent on the QMainWindow . When we

403

only have a single widget in the window this is fine — as long as you don’t

resize the window, the coordinates of the container and the single nested

widget line up. However, if we add other widgets to the layout this won’t hold

— the coordinates of the QLabel will be offset from the window, and we’ll be

drawing in the wrong location.

This is easily fixed by moving the mouse handling onto the QLabel itself— it’s

event coordinates are always relative to itself. This we wrap up as an

individual Canvas object, which handles the creation of the pixmap surface,

sets up the x & y locations and the holds the current pen color (set to black by

default).


This self-contained Canvas is a drop-in drawable surface you

could use in your own apps.

404

Listing 124. bitmap/paint.py

import sys

from PyQt5 import QtCore, QtGui, QtWidgets

from PyQt5.QtCore import Qt

class Canvas(QtWidgets.QLabel):

 def __init__(self):

 super().__init__()

 pixmap = QtGui.QPixmap(600, 300)

 pixmap.fill(Qt.white)

 self.setPixmap(pixmap)

 self.last_x, self.last_y = None, None

 self.pen_color = QtGui.QColor("#000000")

 def set_pen_color(self, c):

 self.pen_color = QtGui.QColor(c)

 def mouseMoveEvent(self, e):

 if self.last_x is None: # First event.

 self.last_x = e.x()

 self.last_y = e.y()

 return # Ignore the first time.

 painter = QtGui.QPainter(self.pixmap())

 p = painter.pen()

 p.setWidth(4)

 p.setColor(self.pen_color)

 painter.setPen(p)

 painter.drawLine(self.last_x, self.last_y, e.x(), e.y())

 painter.end()

 self.update()

 # Update the origin for next time.

 self.last_x = e.x()

 self.last_y = e.y()

 def mouseReleaseEvent(self, e):

 self.last_x = None

 self.last_y = None

405

For the color selection we’re going to build a custom widget, based off

QPushButton. This widget accepts a color parameter which can be a QColor

instance, or a color name ('red', 'black') or hex value. This color is set on the

background of the widget to make it identifiable. We can use the standard

QPushButton.pressed signal to hook it up to any actions.

Listing 125. bitmap/paint.py

COLORS = [

 # 17 undertones https://lospec.com/palette-list/17undertones

 "#000000",

 "#141923",

 "#414168",

 "#3a7fa7",

 "#35e3e3",

 "#8fd970",

 "#5ebb49",

 "#458352",

 "#dcd37b",

 "#fffee5",

 "#ffd035",

 "#cc9245",

 "#a15c3e",

 "#a42f3b",

 "#f45b7a",

 "#c24998",

 "#81588d",

 "#bcb0c2",

 "#ffffff",

]

class QPaletteButton(QtWidgets.QPushButton):

 def __init__(self, color):

 super().__init__()

 self.setFixedSize(QtCore.QSize(24, 24))

 self.color = color

 self.setStyleSheet("background-color: %s;" % color)

With those two new parts defined, we simply need to iterate over our list of

colors, create a QPaletteButton for each, passing in the color. Then connect its

pressed signal to the set_pen_color handler on the canvas (indirectly through

406

a lambda to pass the additional color data) and add it to the palette layout.

Listing 126. bitmap/paint.py

class MainWindow(QtWidgets.QMainWindow):

 def __init__(self):

 super().__init__()

 self.canvas = Canvas()

 w = QtWidgets.QWidget()

 l = QtWidgets.QVBoxLayout()

 w.setLayout(l)

 l.addWidget(self.canvas)

 palette = QtWidgets.QHBoxLayout()

 self.add_palette_buttons(palette)

 l.addLayout(palette)

 self.setCentralWidget(w)

 def add_palette_buttons(self, layout):

 for c in COLORS:

 b = QPaletteButton(c)

 b.pressed.connect(lambda c=c: self.canvas.set_pen_color(

c))

 layout.addWidget(b)

app = QtWidgets.QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()

This should give you a fully-functioning multicolor paint application, where

you can draw lines on the canvas and select colors from the palette.

407

Figure 191. Unfortunately, it doesn’t make you good.

Unfortunately, it doesn’t make you a good artist.

Spray

For a final bit of fun you can switch out the mouseMoveEvent with the following

to draw with a "spray can" effect instead of a line. This is simulated using

random.gauss to generate a series of normally distributed dots around the

current mouse position which we plot with drawPoint.

408

Listing 127. bitmap/spraypaint.py

import random

import sys

from PyQt5 import QtCore, QtGui, QtWidgets

from PyQt5.QtCore import Qt

class Canvas(QtWidgets.QLabel):

 def __init__(self):

 super().__init__()

 pixmap = QtGui.QPixmap(600, 300)

 pixmap.fill(Qt.white)

 self.setPixmap(pixmap)

 self.pen_color = QtGui.QColor("#000000")

 def set_pen_color(self, c):

 self.pen_color = QtGui.QColor(c)

 def mouseMoveEvent(self, e):

 painter = QtGui.QPainter(self.pixmap())

 p = painter.pen()

 p.setWidth(1)

 p.setColor(self.pen_color)

 painter.setPen(p)

 for n in range(SPRAY_PARTICLES):

 xo = random.gauss(0, SPRAY_DIAMETER)

 yo = random.gauss(0, SPRAY_DIAMETER)

 painter.drawPoint(e.x() + xo, e.y() + yo)

 self.update()


For the spray can we don’t need to track the previous

position, as we always spray around the current point.

Define the SPRAY_PARTICLES and SPRAY_DIAMETER variables at the top of your file

and import the random standard library module. The image below shows the

spray behavior when using the following settings:

409

import random

SPRAY_PARTICLES = 100

SPRAY_DIAMETER = 10

Figure 192. Just call me Picasso.

If you want a challenge, you could try adding an additional button to toggle

between draw and spray mode, or an input widget to define the brush/spray

diameter.


For a fully-functional drawing app written with Python & Qt

check out Piecasso in our "Minute apps" repository on

Github.

This introduction should have given you a good idea of what you can do with

QPainter. As described, this system is the basis of all widget drawing. If you

want to look further, check out the widget .paint() method, which receives a

QPainter instance, to allow the widget to draw on itself. The same methods

you’ve learnt here can be used in .paint() to draw some basic custom

widgets.

410

https://github.com/learnpyqt/minute-apps/tree/master/paint

30. Creating Custom Widgets

In the previous chapter we introduced QPainter and looked at some basic

bitmap drawing operations which you can used to draw dots, lines,

rectangles and circles on a QPainter surface such as a QPixmap. This process of

drawing on a surface with QPainter is in fact the basis by which all widgets in

Qt are drawn. Now you know how to use QPainter you know how to draw your

own custom widgets! In this chapter we’ll take what we’ve learnt so far and

use it to construct a completely new custom widget. For a working example

we’ll be building the following widget -- a customizable PowerBar meter

with a dial control.

Figure 193. PowerBar meter.

This widget is actually a mix of a compound widget and custom widget in

that we are using the built-in Qt QDial component for the dial, while drawing

the power bar ourselves. We then assemble these two parts together into a

parent widget which can be dropped into place seamlessly in any

application, without needing to know how it’s put together. The resulting

widget provides the common QAbstractSlider interface with some additions

for configuring the bar display.

After following this example you will be able to build your very own custom

411

widgets — whether they are compounds of built-ins or completely novel self-

drawn wonders.

Getting started

As we’ve previously seen compound widgets are simply widgets with a

layout applied, which itself contains >1 other widget. The resulting "widget"

can then be used as any other, with the internals hidden/exposed as you like.

The outline for our PowerBar widget is given below — we’ll build our custom

widget up gradually from this outline stub.

412

Listing 128. custom-widgets/stub.py

import sys

from PyQt5 import QtCore, QtGui, QtWidgets

from PyQt5.QtCore import Qt

class _Bar(QtWidgets.QWidget):

 pass

class PowerBar(QtWidgets.QWidget):

 """

 Custom Qt Widget to show a power bar and dial.

 Demonstrating compound and custom-drawn widget.

 """

 def __init__(self, steps=5):

 super().__init__()

 layout = QtWidgets.QVBoxLayout()

 self._bar = _Bar()

 layout.addWidget(self._bar)

 self._dial = QtWidgets.QDial()

 layout.addWidget(self._dial)

 self.setLayout(layout)

app = QtWidgets.QApplication(sys.argv)

volume = PowerBar()

volume.show()

app.exec_()

This simply defines our custom power bar is defined in the _Bar object — here

just unaltered subclass of QWidget. The PowerBar widget (which is the complete

widget) combines this, using a QVBoxLayout with the built in QDial to display

them together.

413


We don’t need to create a QMainWindow since any widget

without a parent is a window in it’s own right. Our custom

PowerBar widget will appear as any normal window.

You can run this file at any time to see your widget in action. Run it now and

you should see something like this:

Figure 194. PowerBar dial.

If you stretch the window down you’ll see the dial has more space above it

than below -- this is being taken up by our (currently invisible) _Bar widget.

paintEvent

The paintEvent handler is the core of all widget drawing in PyQt5. Every

complete and partial re-draw of a widget is triggered through a paintEvent

which the widget handles to draw itself. A paintEvent can be triggered by — 

• repaint() or update() was called

• the widget was obscured and has now been uncovered

• the widget has been resized

 — but it can also occur for many other reasons. What is important is that

when a paintEvent is triggered your widget is able to redraw it.

If a widget is simple enough (like ours is) you can often get away with simply

redrawing the entire thing any time anything happens. But for more

complicated widgets this can get very inefficient. For these cases the

414

https://doc.qt.io/qt-5/qwidget.html#repaint
https://doc.qt.io/qt-5/qwidget.html#update

paintEvent includes the specific region that needs to be updated. We’ll make

use of this in later, more complicated examples.

For now we’ll do something very simple, and just fill the entire widget with a

single color. This will allow us to see the area we’re working with to start

drawing the bar. Add the following code to the _Bar class.

Listing 129. custom-widgets/powerbar_1.py

 def paintEvent(self, e):

 painter = QtGui.QPainter(self)

 brush = QtGui.QBrush()

 brush.setColor(QtGui.QColor("black"))

 brush.setStyle(Qt.SolidPattern)

 rect = QtCore.QRect(0, 0, painter.device().width(), painter

.device().height())

 painter.fillRect(rect, brush)

Positioning

Now we can see the _Bar widget we can tweak its positioning and size. If you

drag around the shape of the window you’ll see the two widgets changing

shape to fit the space available. This is what we want, but the QDial is also

expanding vertically more than it should, and leaving empty space we could

use for the bar.

415

Figure 195. PowerBar stretched leaves empty space.

We can use setSizePolicy on our _Bar widget to make sure it expands as far as

possible. By using the QSizePolicy.MinimumExpanding the provided sizeHint will

be used as a minimum, and the widget will expand as much as possible.

416

Listing 130. custom-widgets/powerbar_2.py

class _Bar(QtWidgets.QWidget):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.setSizePolicy(

 QtWidgets.QSizePolicy.MinimumExpanding,

 QtWidgets.QSizePolicy.MinimumExpanding,

)

 def sizeHint(self):

 return QtCore.QSize(40, 120)

 def paintEvent(self, e):

 painter = QtGui.QPainter(self)

 brush = QtGui.QBrush()

 brush.setColor(QtGui.QColor("black"))

 brush.setStyle(Qt.SolidPattern)

 rect = QtCore.QRect(0, 0, painter.device().width(), painter

.device().height())

 painter.fillRect(rect, brush)

It’s still not perfect as the QDial widget resizes itself a bit awkwardly, but our

bar is now expanding to fill all the available space.

417

Figure 196. PowerBar with policy set to QSizePolicy.MinimumExpanding.

With the positioning sorted we can now move on to define our paint

methods to draw our PowerBar meter in the top part (currently black) of the

widget.

Updating the display

We now have our canvas completely filled in black, next we’ll use QPainter

draw commands to actually draw something on the widget.

Before we start on the bar, we’ve got a bit of testing to do to make sure we

can update the display with the values of our dial. Update the _Bar.paintEvent

with the following code.

418

Listing 131. custom-widgets/powerbar_3.py

 def paintEvent(self, e):

 painter = QtGui.QPainter(self)

 brush = QtGui.QBrush()

 brush.setColor(QtGui.QColor("black"))

 brush.setStyle(Qt.SolidPattern)

 rect = QtCore.QRect(0, 0, painter.device().width(), painter

.device().height())

 painter.fillRect(rect, brush)

 # Get current state.

 dial = self.parent()._dial

 vmin, vmax = dial.minimum(), dial.maximum()

 value = dial.value()

 pen = painter.pen()

 pen.setColor(QtGui.QColor("red"))

 painter.setPen(pen)

 font = painter.font()

 font.setFamily("Times")

 font.setPointSize(18)

 painter.setFont(font)

 painter.drawText(25, 25, "{}-->{}<--{}".format(vmin, value,

vmax))

 painter.end()

This draws the black background as before, then uses .parent() to access our

parent PowerBar widget and through that the QDial via _dial. From there we

get the current value, as well as the allowed range minimum and maximum

values. Finally we draw those using the painter, just like we did in the

previous part.

419



We’re leaving handling of the current value, min and max

values to the QDial here, but we could also store that value

ourselves and use signals to/from the dial to keep things in

sync.

Run this, wiggle the dial around and …..nothing happens. Although we’ve

defined the paintEvent handler we’re not triggering a repaint when the dial

changes.


You can force a refresh by resizing the window, as soon as

you do this you should see the text appear. Neat, but terrible

UX — "just resize your app to see your settings!"

To fix this we need to hook up our _Bar`widget to repaint itself in response

to changing values on the dial. We can do this using the

`QDial.valueChanged`signal, hooking it up to a custom slot method which calls

`.refresh() — triggering a full-repaint.

Add the following method to the _Bar widget.

Listing 132. custom-widgets/powerbar_4.py

 def _trigger_refresh(self):

 self.update()

…and add the following to the __init__ block for the parent PowerBar widget.

Listing 133. custom-widgets/powerbar_4.py

 self._dial = QtWidgets.QDial()

 self._dial.valueChanged.connect(self._bar._trigger_refresh)

 layout.addWidget(self._dial)

If you re-run the code now, you will see the display updating automatically as

you turn the dial (click and drag with your mouse). The current value is

displayed as text.

420

Figure 197. PowerBar displaying current value as text.

Drawing the bar

Now we have the display updating and displaying the current value of the

dial, we can move onto drawing the actual bar display. This is a little

complicated, with a bit of maths to calculate bar positions, but we’ll step

through it to make it clear what’s going on.

The sketch below shows what we are aiming for — a series of N boxes, inset

from the edges of the widget, with spaces between them.

Figure 198. The bar segments and layout we’re aiming for.

421

Calculating what to draw

The number of boxes to draw is determined by the current value — and how

far along it is between the minimum and maximum value configured for the

QDial. We already have that information in the example above.

dial = self.parent()._dial

vmin, vmax = dial.minimum(), dial.maximum()

value = dial.value()

If value is half way between vmin and vmax then we want to draw half of the

boxes (if we have 4 boxes total, draw 2). If value is at vmax we want to draw

them all.

To do this we first convert our value into a number between 0 and 1, where 0

= vmin and 1 = vmax. We first subtract vmin from value to adjust the range of

possible values to start from zero — i.e. from vmin…vmax to 0…(vmax-vmin).

Dividing this value by vmax-vmin (the new maximum) then gives us a number

between 0 and 1.

The trick then is to multiply this value (called pc below) by the number of

steps and that gives us a number between 0 and 5 — the number of boxes to

draw.

pc = (value - vmin) / (vmax - vmin)

n_steps_to_draw = int(pc * 5)

We’re wrapping the result in int to convert it to a whole number (rounding

down) to remove any partial boxes.

Update the drawText method in your paint event to write out this number

instead.

422

Listing 134. custom-widgets/powerbar_5.py

 def paintEvent(self, e):

 painter = QtGui.QPainter(self)

 brush = QtGui.QBrush()

 brush.setColor(QtGui.QColor("black"))

 brush.setStyle(Qt.SolidPattern)

 rect = QtCore.QRect(0, 0, painter.device().width(), painter

.device().height())

 painter.fillRect(rect, brush)

 # Get current state.

 dial = self.parent()._dial

 vmin, vmax = dial.minimum(), dial.maximum()

 value = dial.value()

 pen = painter.pen()

 pen.setColor(QtGui.QColor("red"))

 painter.setPen(pen)

 font = painter.font()

 font.setFamily("Times")

 font.setPointSize(18)

 painter.setFont(font)

 pc = (value - vmin) / (vmax - vmin)

 n_steps_to_draw = int(pc * 5)

 painter.drawText(25, 25, "{}".format(n_steps_to_draw))

 painter.end()

As you turn the dial you will now see a number between 0 and 5.

Drawing boxes

Next we want to convert this number 0…5 to a number of bars drawn on the

canvas. Start by removing the drawText and font and pen settings, as we no

longer need those.

To draw accurately we need to know the size of our canvas — i.e the size of

the widget. We will also add a bit of padding around the edges to give space

423

around the edges of the blocks against the black background.

 All measurements in the QPainter are in pixels.

Listing 135. custom-widgets/powerbar_6.py

 padding = 5

 # Define our canvas.

 d_height = painter.device().height() - (padding * 2)

 d_width = painter.device().width() - (padding * 2)

We take the height and width and subtract 2 * padding from each -- it’s 2x

because we’re padding both the left and right (and top and bottom) edges.

This gives us our resulting active canvas area in d_height and d_width.

Figure 199. The padding on the outside of the layout.

We need to break up our d_height into 5 equal parts, one for each block -- we

can calculate that height simply by d_height / 5. Additionally, since we want

spaces between the blocks we need to calculate how much of this step size

is taken up by space (top and bottom, so halved) and how much is actual

block.

424

Listing 136. custom-widgets/powerbar_6.py

 step_size = d_height / 5

 bar_height = step_size * 0.6

 bar_spacer = step_size * 0.4 / 2

These values are all we need to draw our blocks on our canvas. To do this we

count up to the number of steps-1 starting from 0 using range and then draw

a fillRect over a region for each block.

Listing 137. custom-widgets/powerbar_6.py

 brush.setColor(QtGui.QColor("red"))

 for n in range(n_steps_to_draw):

 rect = QtCore.QRect(

 padding,

 padding + d_height - ((n + 1) * step_size) +

bar_spacer,

 d_width,

 bar_height,

)

 painter.fillRect(rect, brush)

There is a lot going on in the placement calculations for the blocks, so let’s

step through those first.

The box to draw with fillRect is defined as a QRect object to which we pass, in

turn, the left x, top y, width and height.

The width is the full canvas width minus the padding, which we previously

calculated and stored in d_width. The left x is similarly just the padding value

(5px) from the left hand side of the widget.

The height of the bar bar_height`we calculated as 0.6 times the `step_size.

This leaves parameter 2 d_height - ((1 + n) * step_size) + bar_spacer which

gives the top y position of the rectangle to draw. This is the only calculation

that changes as we draw the blocks.

425


Remember that y coordinates in QPainter start at the top and

increase down the canvas. This means that plotting at

d_height will be plotting at the very bottom of the canvas.


To draw a block at the very bottom we must start drawing at

d_height-step_size i.e. one block up to leave space to draw

downwards.

In our bar meter we’re drawing blocks, in turn, starting at the bottom and

working upwards. So our very first block must be placed at d_height-step_size

and the second at d_height-(step_size*2). Our loop iterates from 0 upwards,

so we can achieve this with the following formula — 

d_height - ((1 + n) * step_size)

The final adjustment is to account for our blocks only taking up part of each

step_size (currently 0.6). We add a little padding to move the block away

from the edge of the box and into the middle, and finally add the padding for

the bottom edge. That gives us the final formula — 

padding + d_height - ((n+1) * step_size) + bar_spacer,

This produces the following layout.



In the picture below the current value of n has been printed

over the box, and a blue box has been drawn around the

complete step_size so you can see the padding and spacers

in effect.

426

Figure 200. Showing the whole area (in blue) taken up by each segment.

Putting this all together gives the following code, which when run will

produce a working power-bar widget with blocks in red. You can drag the

wheel back and forth and the bars will move up and down in response.

Listing 138. custom-widgets/powerbar_6.py

include::{codedir}/powerbar_6.py

Figure 201. The basic complete PowerBar.

That already does the job, but we can go further to provide more

customization, add some UX improvements and improve the API for working

with our widget.

427

Customizing the Bar

We now have a working power bar, controllable with a dial. But it’s nice when

creating widgets to provide options to configure the behavior of your widget

to make it more flexible. In this part we’ll add methods to set customizable

numbers of segments, colors, padding and spacing.

The elements we’re going to provide customization for are — 

Option Description

number of bars How many bars are displayed on the

widget

colors Individual colors for each of the bars

background color The color of the draw canvas (default

black)

padding Space around the widget edge,

between bars and edge of canvas

bar height / bar percent Proportion (0…1) of the bar which is

solid (the rest will be spacing

between adjacent bars)

We can store each of these as attributes on the _bar object, and use them

from the paintEvent method to change its behavior.

The Bar.__init_ is updated to accept an initial argument for either the

number of bars (as an integer) or the colors of the bars (as a list of QColor, hex

values or names). If a number is provided, all bars will be colored red. If the a

list of colors is provided the number of bars will be determined from the

length of the color list. Default values for`self._bar_solid_percent`,

self._background_color, self._padding are also set.

428

Listing 139. custom-widgets/powerbar_7.py

class _Bar(QtWidgets.QWidget):

 clickedValue = QtCore.pyqtSignal(int)

 def __init__(self, steps, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.setSizePolicy(

 QtWidgets.QSizePolicy.MinimumExpanding,

 QtWidgets.QSizePolicy.MinimumExpanding,

)

 if isinstance(steps, list):

 # list of colors.

 self.n_steps = len(steps)

 self.steps = steps

 elif isinstance(steps, int):

 # int number of bars, defaults to red.

 self.n_steps = steps

 self.steps = ["red"] * steps

 else:

 raise TypeError("steps must be a list or int")

 self._bar_solid_percent = 0.8

 self._background_color = QtGui.QColor("black")

 self._padding = 4.0 # n-pixel gap around edge.

Likewise we update the PowerBar.__init__ to accept the steps parameter, and

pass it through.

429

Listing 140. custom-widgets/powerbar_7.py

class PowerBar(QtWidgets.QWidget):

 def __init__(self, steps=5, *args, **kwargs):

 super().__init__(*args, **kwargs)

 layout = QtWidgets.QVBoxLayout()

 self._bar = _Bar(steps)

 layout.addWidget(self._bar)

 self._dial = QtWidgets.QDial()

 self._dial.valueChanged.connect(self._bar._trigger_refresh)

 layout.addWidget(self._dial)

 self.setLayout(layout)

We now have the parameters in place to update the paintEvent method. The

modified code is shown below.

430

Listing 141. custom-widgets/powerbar_7.py

 def paintEvent(self, e):

 painter = QtGui.QPainter(self)

 brush = QtGui.QBrush()

 brush.setColor(self._background_color)

 brush.setStyle(Qt.SolidPattern)

 rect = QtCore.QRect(0, 0, painter.device().width(), painter

.device().height())

 painter.fillRect(rect, brush)

 # Get current state.

 dial = self.parent()._dial

 vmin, vmax = dial.minimum(), dial.maximum()

 value = dial.value()

 # Define our canvas.

 d_height = painter.device().height() - (self._padding * 2)

 d_width = painter.device().width() - (self._padding * 2)

 # Draw the bars.

 step_size = d_height / self.n_steps

 bar_height = step_size * self._bar_solid_percent

 bar_spacer = step_size * (1 - self._bar_solid_percent) / 2

 # Calculate the y-stop position, from the value in range.

 pc = (value - vmin) / (vmax - vmin)

 n_steps_to_draw = int(pc * self.n_steps)

 for n in range(n_steps_to_draw):

 brush.setColor(QtGui.QColor(self.steps[n]))

 rect = QtCore.QRect(

 self._padding,

 self._padding + d_height - ((1 + n) * step_size) +

bar_spacer,

 d_width,

 bar_height,

)

 painter.fillRect(rect, brush)

 painter.end()

431

You can now experiment with passing in different values for the __init__ to

PowerBar, e.g. increasing the number of bars, or providing a color list. Some

examples are shown below.

 A good source of hex color palettes is the Bokeh source.

PowerBar(10)

PowerBar(3)

PowerBar(["#5e4fa2", "#3288bd", "#66c2a5", "#abdda4", "#e6f598",

"#ffffbf", "#fee08b", "#fdae61", "#f46d43", "#d53e4f", "#9e0142"])

PowerBar(["#a63603", "#e6550d", "#fd8d3c", "#fdae6b", "#fdd0a2",

"#feedde"])

Figure 202. Some PowerBar examples.

You could fiddle with the padding settings through the variables e.g.

self._bar_solid_percent but it’d be nicer to provide proper methods to set

these.


We’re following the Qt standard of camelCase method

names for these external methods for consistency with the

others inherited from QDial.

432

https://github.com/bokeh/bokeh/blob/master/bokeh/palettes.py

Listing 142. custom-widgets/powerbar_8.py

 def setColor(self, color):

 self._bar.steps = [color] * self._bar.n_steps

 self._bar.update()

 def setColors(self, colors):

 self._bar.n_steps = len(colors)

 self._bar.steps = colors

 self._bar.update()

 def setBarPadding(self, i):

 self._bar._padding = int(i)

 self._bar.update()

 def setBarSolidPercent(self, f):

 self._bar._bar_solid_percent = float(f)

 self._bar.update()

 def setBackgroundColor(self, color):

 self._bar._background_color = QtGui.QColor(color)

 self._bar.update()

In each case we set the private variable on the _bar object and then call

_bar.update() to trigger a redraw of the widget. The method support

changing the color to a single color, or updating a list of them — setting a list

of colors can also be used to change the number of bars.


There is no method to set the bar count, since expanding a

list of colors would be faffy. But feel free to try adding this

yourself!

Here’s an example using 25px padding, a fully solid bar and a grey

background.

433

bar = PowerBar(["#49006a", "#7a0177", "#ae017e", "#dd3497", "#f768a1",

"#fa9fb5", "#fcc5c0", "#fde0dd", "#fff7f3"])

bar.setBarPadding(2)

bar.setBarSolidPercent(0.9)

bar.setBackgroundColor('gray')

With these settings you get the following result.

Figure 203. Configuring the PowerBar.

Adding the QAbstractSlider Interface

We’ve added methods to configure the behavior of the power bar. But we

currently provide no way to configure the standard QDial methods -- for

example, setting the min, max or step size -- from our widget. We could work

through and add wrapper methods for all of these, but it would get very

tedious very quickly.

Example of a single wrapper, we'd need 30+ of these.

def setNotchesVisible(self, b):

 return self._dial.setNotchesVisible(b)

Instead we can add a little handler onto our outer widget to automatically

look for methods (or attributes) on the QDial instance, if they don’t exist on

our class directly. This way we can implement our own methods, yet still get

all the QAbstractSlider goodness for free.

434

The wrapper is shown below, implemented as a custom __getattr__ method.

Listing 143. custom-widgets/powerbar_8.py

 def __getattr__(self, name):

 if name in self.__dict__:

 return self[name]

 try:

 return getattr(self._dial, name)

 except AttributeError:

 raise AttributeError(

 "'{}' object has no attribute '{}'".format(

 self.__class__.__name__, name

)

)

When accessing a property (or method) -- e.g. when when call

PowerBar.setNotchesVisible(true) Python internally uses __getattr__ to get the

property from the current object. This handler does this through the object

dictionary self.__dict__. We’ve overridden this method to provide our

custom handling logic.

Now, when we call PowerBar.setNotchesVisible(true), this handler first looks on

our current object (a PowerBar instance) to see if .setNotchesVisible exists and

if it does uses it. If not it then calls getattr() on self._dial instead returning

what it finds there. This gives us access to all the methods of QDial from our

custom `PowerBar`widget.

If QDial doesn’t have the attribute either, and raises an AttributeError we

catch it and raise it again from our custom widget, where it belongs.


This works for any properties or methods, including signals.

So the standard QDial signals such as .valueChanged are

available too.

435

Updating from the Meter display

Currently you can update the current value of the PowerBar meter by

twiddling with the dial. But it would be nice if you could also update the

value by clicking a position on the power bar, or by dragging you mouse up

and down. To do this we can update our _Bar widget to handle mouse events.

Listing 144. custom-widgets/powerbar_9.py

class _Bar(QtWidgets.QWidget):

 clickedValue = QtCore.pyqtSignal(int)

In the __init__ block for the PowerBar widget we can connect to the

_Bar.clickedValue signal and send the values to self._dial.setValue to set the

current value on the dial.

Take feedback from click events on the meter.

self._bar.clickedValue.connect(self._dial.setValue)

If you run the widget now, you’ll be able to click around in the bar area and

the value will update, and the dial rotate in sync.

The final code

Below is the complete final code for our PowerBar meter widget, called

PowerBar. You can save this as a separate file, e.g. power_bar.py and then import

with from power_bar import PowerBar to use this widget in your own apps.

Listing 145. custom-widgets/powerbar_final.py

from PyQt5 import QtCore, QtGui, QtWidgets

from PyQt5.QtCore import Qt

class _Bar(QtWidgets.QWidget):

 clickedValue = QtCore.pyqtSignal(int)

436

 def __init__(self, steps, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.setSizePolicy(

 QtWidgets.QSizePolicy.MinimumExpanding,

 QtWidgets.QSizePolicy.MinimumExpanding,

)

 if isinstance(steps, list):

 # list of colors.

 self.n_steps = len(steps)

 self.steps = steps

 elif isinstance(steps, int):

 # int number of bars, defaults to red.

 self.n_steps = steps

 self.steps = ["red"] * steps

 else:

 raise TypeError("steps must be a list or int")

 self._bar_solid_percent = 0.8

 self._background_color = QtGui.QColor("black")

 self._padding = 4.0 # n-pixel gap around edge.

 def paintEvent(self, e):

 painter = QtGui.QPainter(self)

 brush = QtGui.QBrush()

 brush.setColor(self._background_color)

 brush.setStyle(Qt.SolidPattern)

 rect = QtCore.QRect(0, 0, painter.device().width(), painter

.device().height())

 painter.fillRect(rect, brush)

 # Get current state.

 parent = self.parent()

 vmin, vmax = parent.minimum(), parent.maximum()

 value = parent.value()

 # Define our canvas.

 d_height = painter.device().height() - (self._padding * 2)

437

 d_width = painter.device().width() - (self._padding * 2)

 # Draw the bars.

 step_size = d_height / self.n_steps

 bar_height = step_size * self._bar_solid_percent

 bar_spacer = step_size * (1 - self._bar_solid_percent) / 2

 # Calculate the y-stop position, from the value in range.

 pc = (value - vmin) / (vmax - vmin)

 n_steps_to_draw = int(pc * self.n_steps)

 for n in range(n_steps_to_draw):

 brush.setColor(QtGui.QColor(self.steps[n]))

 rect = QtCore.QRect(

 self._padding,

 self._padding + d_height - ((1 + n) * step_size) +

bar_spacer,

 d_width,

 bar_height,

)

 painter.fillRect(rect, brush)

 painter.end()

 def sizeHint(self):

 return QtCore.QSize(40, 120)

 def _trigger_refresh(self):

 self.update()

 def _calculate_clicked_value(self, e):

 parent = self.parent()

 vmin, vmax = parent.minimum(), parent.maximum()

 d_height = self.size().height() + (self._padding * 2)

 step_size = d_height / self.n_steps

 click_y = e.y() - self._padding - step_size / 2

 pc = (d_height - click_y) / d_height

 value = vmin + pc * (vmax - vmin)

 self.clickedValue.emit(value)

 def mouseMoveEvent(self, e):

 self._calculate_clicked_value(e)

438

 def mousePressEvent(self, e):

 self._calculate_clicked_value(e)

class PowerBar(QtWidgets.QWidget):

 """

 Custom Qt Widget to show a power bar and dial.

 Demonstrating compound and custom-drawn widget.

 Left-clicking the button shows the color-chooser, while

 right-clicking resets the color to None (no-color).

 """

 colorChanged = QtCore.pyqtSignal()

 def __init__(self, steps=5, *args, **kwargs):

 super().__init__(*args, **kwargs)

 layout = QtWidgets.QVBoxLayout()

 self._bar = _Bar(steps)

 layout.addWidget(self._bar)

 # Create the QDial widget and set up defaults.

 # - we provide accessors on this class to override.

 self._dial = QtWidgets.QDial()

 self._dial.setNotchesVisible(True)

 self._dial.setWrapping(False)

 self._dial.valueChanged.connect(self._bar._trigger_refresh)

 # Take feedback from click events on the meter.

 self._bar.clickedValue.connect(self._dial.setValue)

 layout.addWidget(self._dial)

 self.setLayout(layout)

 def __getattr__(self, name):

 if name in self.__dict__:

 return self[name]

 return getattr(self._dial, name)

 def setColor(self, color):

439

 self._bar.steps = [color] * self._bar.n_steps

 self._bar.update()

 def setColors(self, colors):

 self._bar.n_steps = len(colors)

 self._bar.steps = colors

 self._bar.update()

 def setBarPadding(self, i):

 self._bar._padding = int(i)

 self._bar.update()

 def setBarSolidPercent(self, f):

 self._bar._bar_solid_percent = float(f)

 self._bar.update()

 def setBackgroundColor(self, color):

 self._bar._background_color = QtGui.QColor(color)

 self._bar.update()

You should be able to use many of these ideas in creating your own custom

widgets. For some more examples, take a look at the Learn PyQt widget

library -- these widgets are all open source and free to use in your own

projects.

440

https://www.learnpyqt.com/widgets/
https://www.learnpyqt.com/widgets/

 Familiarity & Skeuomorphism

One of the most powerful tools you can exploit when building user

interfaces is familiarity. That is, giving your users the sense that your

interface is something they have used before.

Good interfaces are often described as being intuitive. There is nothing

naturally intuitive about moving a mouse pointer around a screen and

clicking on square-ish bumps. But, after spending years of our lives

doing exactly that, there is something very familiar about it. There is

nothing more guaranteed to make an application incredibly user

unfriendly than to ignore the value of this experience.

The search for familiarity in user interfaces led to the use of

skeuomorphism in GUI design. Skeuomorphism is the application of

non-functional design cues from other objects, where those design

elements are functional. That can mean using common interface

elements, or replicating some aspects of the manual process you’re

replacing. In the context of GUIs this often means user interfaces that

look like real objects.

Figure 204. RealPhone — One of IBM’s RealThings™

Apple was a big proponent of skeuomorphism during the Steve Jobs

era. In recent years GUIs have, inspired by the web, moved increasingly

to "flat" designs. Yet, modern user-interfaces all still have elements of

441

skeuomorphism in them. Even though floppy disks are now defunct

technology, they are still used to represent the File › Save and File ›

Save As.. actions, and we put deleted documents in a trash can.

But there are more subtle ways to exploit familiarity in your interfaces.

You can adapt the structure and layout of a manual process into your

UI. The modern desktop calculator is a good example of this kind of

abstract skeuomorphism.

Figure 205. Calculator & Upside down calculator — Windows 10

When we perform calculations we typically put the result at the

bottom. So why is the screen at the top on a calculator? Because

otherwise it would be obscured by your hand. The position of the

screen is functional.

This position persists in calculators on computers, even though the

screen position is no longer required — the mouse pointer will not

obscure the screen and manual input is via the keyboard. But if you

opened up a calculator and it had the screen at the bottom you would

be confused. It looks upside down. It’s weird or unintuitive despite

being perfectly functional. That is the essence of skeuomorphism in

GUI design — making user interfaces feel more intuitive by exploiting

442

the familiarity of users with existing objects.

Where your own software sits on this scale is of course up to you. The

important thing is to be aware of existing interfaces and to exploit

them where you can to improve usability of your own apps. Your users

will thank you for it!

 DO

• Take inspiration from existing interfaces when designing your own.

• Include skeuomorphic elements where they help your users.

443

Concurrent Execution

A computer shall not waste your time or require you to do

more work than is strictly necessary.

— Jef Raskin, Second Law of User Interface Design

The event loop started by calling .exec_() on your QApplication object runs

within the same thread as your Python code. The thread which runs this

event loop — commonly referred to as the GUI thread — also handles all

window communication with the host operating system.

By default, any execution triggered by the event loop will also run

synchronously within this thread. In practise this means that any time your

PyQt5 application spends doing something in your code, window

communication and GUI interaction are frozen.

If what you’re doing is simple, and returns control to the GUI loop quickly, this

freeze will be imperceptible to the user. However, if you need to perform

longer-running tasks, for example opening/writing a large file, downloading

some data, or rendering some complex image, there are going to be

problems. To your user the application will appear to be unresponsive.

Because your app is no longer communicating with the OS the OS will think

it has crashed — on macOS you see the spinning wheel of death, on Windows

the window will dim. That’s not a good look.

The solution is simple — get your work out of the GUI thread. PyQt5 provides

straightforward interfaces to accomplish exactly that.

444

31. Introduction to Threads &

Processes

Below is a minimal stub application for PyQt5 which will allow us to

demonstrate the problem and later to fix it. You can copy and paste this into

a new file, and save it with an appropriate filename like concurrent.py.

Listing 146. bad_example_1.py

import sys

import time

from PyQt5.QtCore import QTimer

from PyQt5.QtWidgets import (

 QApplication,

 QLabel,

 QMainWindow,

 QPushButton,

 QVBoxLayout,

 QWidget,

)

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.counter = 0

 layout = QVBoxLayout()

 self.l = QLabel("Start")

 b = QPushButton("DANGER!")

 b.pressed.connect(self.oh_no)

 layout.addWidget(self.l)

 layout.addWidget(b)

 w = QWidget()

 w.setLayout(layout)

445

 self.setCentralWidget(w)

 self.show()

 self.timer = QTimer()

 self.timer.setInterval(1000)

 self.timer.timeout.connect(self.recurring_timer)

 self.timer.start()

 def oh_no(self):

 time.sleep(5)

 def recurring_timer(self):

 self.counter += 1

 self.l.setText("Counter: %d" % self.counter)

app = QApplication(sys.argv)

window = MainWindow()

app.exec_()

 Run it! A window will appear, containing a button and a number

counting upwards.

Figure 206. The number will increase by 1 every second, as long as the event loop

is running.

This is generated by a simple recurring timer, firing once per second. Think of

this as our event loop indicator — a simple way to let us known that out

application is ticking over normally. There is also a button with the word

"DANGER!". Push it.

446

Figure 207. Push the button.

You’ll notice that each time you push the button the counter stops ticking

and your application freezes entirely. On Windows you may see the window

turn pale, indicating it is not responding, while on macOS you may see the

spinning wheel of death.

What appears as a frozen interface is in fact caused by the Qt event loop

being blocked from processing (and responding to) window events. Your

clicks on the window as still registered by the host OS and sent to your

application, but because it’s sat in your big ol' lump of code (time.sleep), it

can’t accept or react to them. Your app does not respond and the OS and it

interprets this as a freeze or hang.

The wrong approach

The simplest way get around this is to accept events from within your code.

This allows Qt to continue to respond to the host OS and your application will

stay responsive. You can do this easily by using the static .processEvents()

function on the QApplication class. Simply add a line like the following,

somewhere in your long-running code block:

QApplication.processEvents()

If we take our long-running time.sleep code and break it down into multiple

447

steps, we can insert .processEvents in between. The code for this would be:

def oh_no(self):

 for n in range(5):

 QApplication.processEvents()

 time.sleep(1)

Now when you push the button your code is entered as before. However,

now QApplication.processEvents() intermittently passes control back to Qt,

and allows it to respond to OS events as normal. Qt will now accept events

and handle them before returning to run the remainder of your code.

This works, but it’s horrible for a couple of reasons.

Firstly, when you pass control back to Qt, your code is no longer running. This

means that whatever long-running thing you’re trying to do will take longer.

That is probably not what you want.

Secondly, processing events outside the main event loop (app.exec_()) causes

your application to branch off into handling code (e.g. for triggered slots, or

events) while in your loop. If your code depends on/responds to external state

this can cause undefined behavior. The code below demonstrates this in

action:

Listing 147. bad_example_2.py

import sys

import time

from PyQt5.QtCore import QTimer

from PyQt5.QtWidgets import (

 QApplication,

 QLabel,

 QMainWindow,

 QPushButton,

 QVBoxLayout,

 QWidget,

)

448

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.counter = 0

 layout = QVBoxLayout()

 self.l = QLabel("Start")

 b = QPushButton("DANGER!")

 b.pressed.connect(self.oh_no)

 c = QPushButton("?")

 c.pressed.connect(self.change_message)

 layout.addWidget(self.l)

 layout.addWidget(b)

 layout.addWidget(c)

 w = QWidget()

 w.setLayout(layout)

 self.setCentralWidget(w)

 self.show()

 def change_message(self):

 self.message = "OH NO"

 def oh_no(self):

 self.message = "Pressed"

 for _ in range(100):

 time.sleep(0.1)

 self.l.setText(self.message)

 QApplication.processEvents()

app = QApplication(sys.argv)

window = MainWindow()

app.exec_()

449

If you run this code you’ll see the counter as before. Pressing "DANGER!" will

change the displayed text to "Pressed", as defined at the entry point to the

oh_no function. However, if you press the "?" button while oh_no is still running

you’ll see that the message changes. State is being changed from outside

your loop.

This is a toy example. However, if you have multiple long-running processes

within your application, with each calling QApplication.processEvents() to

keep things ticking, your application behavior can quickly become

unpredictable.

Threads and Processes

If you take a step back and think about what you want to happen in your

application, it can probably be summed up with "stuff to happen at the same

time as other stuff happens". There are two main approaches to running

independent tasks on a computer: threads and processes.

Threads share the same memory space, so are quick to start up and

consume minimal resources. The shared memory makes it trivial to pass data

between threads, however reading/writing memory from different threads

can lead to race conditions or segfaults. In Python there is the added issue

that multiple threads are bound by the same Global Interpreter Lock GIL —

meaning non-GIL-releasing Python code can only execute in one thread at a

time. However, this is not a major issue with PyQt5 where most of the time is

spent outside of Python.

Processes use separate memory space (and an entirely separate Python

interpreter). This side-steps any potential problems with the GIL, but at the

cost of slower start-up times, larger memory overhead and complexity in

sending/receiving data.

For simplicity’s sake it usually makes sense to use threads. Processes in Qt

are better suited to running and communicating with external programs. In

this chapter we’ll look at the options available to you from within Qt to move

work onto separate threads and processes.

450

32. Using the thread pool

Qt provides a very simple interface for running jobs in other threads, which is

exposed nicely in PyQt5. This is built around two classes — QRunnable and

QThreadPool. The former is the container for the work you want to perform,

while the latter is the manager for your working threads.

The neat thing about using QThreadPool is that it handles queuing and

execution of workers for you. Other than queuing up jobs and retrieving the

results there is not very much to do at all.

To define a custom QRunnable you can subclass the base QRunnable class, then

place the code you wish you execute within the run() method. The following

is an implementation of our long running time.sleep job as a QRunnable. Add

the following code to multithread.py, above the MainWindow class definition.

Listing 148. concurrent/qrunner_1.py

class Worker(QRunnable):

 """

 Worker thread

 """

 @pyqtSlot()

 def run(self):

 """

 Your code goes in this function

 """

 print("Thread start")

 time.sleep(5)

 print("Thread complete")

Executing our function in another thread is simply a matter of creating an

instance of the Worker and then pass it to our QThreadPool instance and it will

be executed automatically.

Next add the following within the __init__ block, to set up our thread pool.

451

Listing 149. concurrent/qrunner_1.py

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.threadpool = QThreadPool()

 print(

 "Multithreading with maximum %d threads" % self.

threadpool.maxThreadCount()

)

Finally, replace the oh_no method with the following.

Listing 150. concurrent/qrunner_1.py

 def oh_no(self):

 worker = Worker()

 self.threadpool.start(worker)

Now, clicking on the button will create a worker to handle the (long-running)

process and spin that off into another thread via QThreadPool` pool. If there are

not enough threads available to process incoming workers, they’ll be queued

and executed in order at a later time.

 Run it! You’ll see that your application now handles you frantically

bashing the button with no problems.

Figure 208. The simple QRunner example app. The counter will increase by one

every second — as long as the GUI thread is running.

452

Look at the output in the console to see workers starting and finishing.

Multithreading with maximum 12 threads

Thread start

Thread start

Thread start

Thread complete

Thread complete

Thread complete

Check what happens if you hit the button multiple times. You should see

your threads executed immediately up to the number reported by

.maxThreadCount. If you hit the button again after there are already this

number of active workers, the subsequent workers will be queued until a

thread becomes available.

In this example we’ve let QThreadPool decide the ideal number of active

threads to use. This number differs on different computers and is designed to

get the optimum performance. However, sometimes you have a need for a

specific number of threads — in that case, you can use .setMaxThreadCount to

set this value explicitly. This value is per thread pool.

Extended Runners

If you want to pass custom data into the execution function you can set up

your runner to take arguments or keywords and then store that data on the

QRunner self object. The data will then accessible from within the run method.

453

Listing 151. concurrent/qrunner_2.py

class Worker(QRunnable):

 """

 Worker thread

 :param args: Arguments to make available to the run code

 :param kwargs: Keywords arguments to make available to the run

 :code

 :

 """

 def __init__(self, *args, **kwargs):

 super().__init__()

 self.args = args

 self.kwargs = kwargs

 @pyqtSlot()

 def run(self):

 """

 Initialize the runner function with passed self.args,

self.kwargs.

 """

 print(self.args, self.kwargs)

 def oh_no(self):

 worker = Worker("some", "arguments", keywords=2)

 self.threadpool.start(worker)


As functions are also objects in Python, you can also pass a

function to execute in to your runner. See The Generic for an

example.

Thread IO

Sometimes it’s helpful to be able to pass back state and data from running

workers. This could include the outcome of calculations, raised exceptions or

ongoing progress (think progress bars). Qt provides the signals and slots

454

framework which allows you to do just that and is thread-safe, allowing safe

communication directly from running threads to your GUI frontend. Signals

allow you to .emit values, which are then picked up elsewhere in your code

by slot functions which have been linked with .connect.

Below is a simple WorkerSignals class defined to contain a number of example

signals.



Custom signals can only be defined on objects derived from

QObject. Since QRunnable is not derived from QObject we can’t

define the signals there directly. A custom QObject to hold the

signals is the simplest solution.

Listing 152. concurrent/qrunner_3.py

class WorkerSignals(QObject):

 """

 Defines the signals available from a running worker thread.

 Supported signals are:

 finished

 No data

 error

 `str` Exception string

 result

 `dict` data returned from processing

 """

 finished = pyqtSignal()

 error = pyqtSignal(str)

 result = pyqtSignal(dict)

In this example we’ve defined 3 custom signals:

1. finished signal, with no data to indicate when the task is complete.

455

2. error signal which receives a tuple of Exception type, Exception value and

formatted traceback.

3. result signal receiving any object type from the executed function.

You may not find a need for all of these signals, but they are included to give

an indication of what is possible. In the following code we use these signals

to notify about completion and errors in a simple calculation worker.

Listing 153. concurrent/qrunner_3.py

import random

import sys

import time

from PyQt5.QtCore import QObject, QRunnable, QThreadPool, QTimer,

pyqtSignal, pyqtSlot

from PyQt5.QtWidgets import (

 QApplication,

 QLabel,

 QMainWindow,

 QPushButton,

 QVBoxLayout,

 QWidget,

)

class WorkerSignals(QObject):

 """

 Defines the signals available from a running worker thread.

 Supported signals are:

 finished

 No data

 error

 `str` Exception string

 result

 `dict` data returned from processing

 """

456

 finished = pyqtSignal()

 error = pyqtSignal(str)

 result = pyqtSignal(dict)

class Worker(QRunnable):

 """

 Worker thread

 :param args: Arguments to make available to the run code

 :param kwargs: Keywords arguments to make available to the run

 :code

 :

 """

 def __init__(self, iterations=5):

 super().__init__()

 self.signals = WorkerSignals() # Create an instance of our

signals class.

 self.iterations = iterations

 @pyqtSlot()

 def run(self):

 """

 Initialize the runner function with passed self.args,

self.kwargs.

 """

 try:

 for n in range(self.iterations):

 time.sleep(0.01)

 v = 5 / (40 - n)

 except Exception as e:

 self.signals.error.emit(str(e))

 else:

 self.signals.finished.emit()

 self.signals.result.emit({"n": n, "value": v})

class MainWindow(QMainWindow):

 def __init__(self):

457

 super().__init__()

 self.threadpool = QThreadPool()

 print(

 "Multithreading with maximum %d threads" % self.

threadpool.maxThreadCount()

)

 self.counter = 0

 layout = QVBoxLayout()

 self.l = QLabel("Start")

 b = QPushButton("DANGER!")

 b.pressed.connect(self.oh_no)

 layout.addWidget(self.l)

 layout.addWidget(b)

 w = QWidget()

 w.setLayout(layout)

 self.setCentralWidget(w)

 self.show()

 self.timer = QTimer()

 self.timer.setInterval(1000)

 self.timer.timeout.connect(self.recurring_timer)

 self.timer.start()

 def oh_no(self):

 worker = Worker(iterations=random.randint(10, 50))

 worker.signals.result.connect(self.worker_output)

 worker.signals.finished.connect(self.worker_complete)

 worker.signals.error.connect(self.worker_error)

 self.threadpool.start(worker)

 def worker_output(self, s):

 print("RESULT", s)

 def worker_complete(self):

 print("THREAD COMPLETE!")

458

 def worker_error(self, t):

 print("ERROR: %s" % t)

 def recurring_timer(self):

 self.counter += 1

 self.l.setText("Counter: %d" % self.counter)

app = QApplication(sys.argv)

window = MainWindow()

app.exec_()

You can connect your own handler functions to these signals to receive

notification of completion (or the result) of threads. The example is designed

to occasionally throw a division by zero exception, which you’ll see in the

output.

Multithreading with maximum 12 threads

THREAD COMPLETE!

RESULT {'n': 16, 'value': 0.20833333333333334}

ERROR: division by zero

THREAD COMPLETE!

RESULT {'n': 11, 'value': 0.1724137931034483}

THREAD COMPLETE!

RESULT {'n': 22, 'value': 0.2777777777777778}

ERROR: division by zero

In the next section we’ll look at a number of different variations on this

approach which allow you to do some interesting things using QThreadPool in

your own applications.

459

33. Threading examples

QThreadPool and QRunnable are an incredibly flexible way to run things in other

threads. By tweaking the signals and parameters you can perform any tasks

you can imagine. In this chapter we’ll look some examples for how to

construct runners for particular scenarios.

All the examples follow the same general pattern — a custom QRunnable class

with custom WorkerSignals. The difference is in what we pass to the runner,

what it does with those parameters, and how we hook up the signals.

460

Listing 154. concurrent/qrunner_base.py

import sys

import time

import traceback

from PyQt5.QtCore import QObject, QRunnable, QThreadPool, pyqtSignal,

pyqtSlot

from PyQt5.QtWidgets import QApplication, QMainWindow

class WorkerSignals(QObject):

 pass

class Worker(QRunnable):

 def __init__(self, *args, **kwargs):

 super().__init__()

 # Store constructor arguments (re-used for processing)

 self.args = args

 self.kwargs = kwargs

 self.signals = WorkerSignals()

 @pyqtSlot()

 def run(self):

 pass

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

app = QApplication(sys.argv)

window = MainWindow()

app.exec_()

The progress watcher

If you’re using threads to perform long-running actions you should keep your

users informed about how the task is progressing. A common way to do this

461

is by showing the user a progress bar which indicates, with a bar filling left to

right, how much of the task is complete. In order to show a progress bar for

your tasks, you need to emit the current progress state from your worker.

To do this we can define another signal called progress on the WorkerSignals

object. This signal emits on each loop a number from 0..100 as the "task"

progresses. The output of this progress signal is connected to a standard

QProgressBar shown on the statusbar of our main window.

Listing 155. concurrent/qrunner_progress.py

import time

from PyQt5.QtCore import QObject, QRunnable, QThreadPool, QTimer,

pyqtSignal, pyqtSlot

from PyQt5.QtWidgets import (

 QApplication,

 QLabel,

 QMainWindow,

 QProgressBar,

 QPushButton,

 QVBoxLayout,

 QWidget,

)

class WorkerSignals(QObject):

 """

 Defines the signals available from a running worker thread.

 progress

 int progress complete,from 0-100

 """

 progress = pyqtSignal(int)

class Worker(QRunnable):

 """

 Worker thread

462

 Inherits from QRunnable to handle worker thread setup, signals

 and wrap-up.

 """

 def __init__(self):

 super().__init__()

 self.signals = WorkerSignals()

 @pyqtSlot()

 def run(self):

 total_n = 1000

 for n in range(total_n):

 progress_pc = int(100 * float(n + 1) / total_n) #

Progress 0-100% as int

 self.signals.progress.emit(progress_pc)

 time.sleep(0.01)

class MainWindow(QMainWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 layout = QVBoxLayout()

 self.progress = QProgressBar()

 button = QPushButton("START IT UP")

 button.pressed.connect(self.execute)

 layout.addWidget(self.progress)

 layout.addWidget(button)

 w = QWidget()

 w.setLayout(layout)

 self.setCentralWidget(w)

 self.show()

 self.threadpool = QThreadPool()

 print(

 "Multithreading with maximum %d threads" % self.

463

threadpool.maxThreadCount()

)

 def execute(self):

 worker = Worker()

 worker.signals.progress.connect(self.update_progress)

 # Execute

 self.threadpool.start(worker)

 def update_progress(self, progress):

 self.progress.setValue(progress)

app = QApplication(sys.argv)

window = MainWindow()

app.exec_()

Figure 209. Progress bar showing current progress for a long-running worker.

If you press the button while another runner is already working, you’ll notice

a problem — the two runners emit their progress to the same progress bar, so

the values will jump back and forward.

Tracking multiple workers with a single progress bar is possible — we just

need two things: somewhere to store the progress values for each worker,

and a unique identifier for each worker. On each progress update, we can

then calculate the average progress across all workers, and display that.

Listing 156. concurrent/qrunner_progress_many.py

import random

import sys

import time

464

import uuid

from PyQt5.QtCore import QObject, QRunnable, QThreadPool, QTimer,

pyqtSignal, pyqtSlot

from PyQt5.QtWidgets import (

 QApplication,

 QLabel,

 QMainWindow,

 QProgressBar,

 QPushButton,

 QVBoxLayout,

 QWidget,

)

class WorkerSignals(QObject):

 """

 Defines the signals available from a running worker thread.

 progress

 int progress complete,from 0-100

 """

 progress = pyqtSignal(str, int)

 finished = pyqtSignal(str)

class Worker(QRunnable):

 """

 Worker thread

 Inherits from QRunnable to handle worker thread setup, signals

 and wrap-up.

 """

 def __init__(self):

 super().__init__()

 self.job_id = uuid.uuid4().hex ①

 self.signals = WorkerSignals()

 @pyqtSlot()

 def run(self):

 total_n = 1000

465

 delay = random.random() / 100 # Random delay value.

 for n in range(total_n):

 progress_pc = int(100 * float(n + 1) / total_n) ②

 self.signals.progress.emit(self.job_id, progress_pc)

 time.sleep(delay)

 self.signals.finished.emit(self.job_id)

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 layout = QVBoxLayout()

 self.progress = QProgressBar()

 button = QPushButton("START IT UP")

 button.pressed.connect(self.execute)

 self.status = QLabel("0 workers")

 layout.addWidget(self.progress)

 layout.addWidget(button)

 layout.addWidget(self.status)

 w = QWidget()

 w.setLayout(layout)

 # Dictionary holds the progress of current workers.

 self.worker_progress = {}

 self.setCentralWidget(w)

 self.show()

 self.threadpool = QThreadPool()

 print(

 "Multithreading with maximum %d threads" % self.

threadpool.maxThreadCount()

)

 self.timer = QTimer()

466

 self.timer.setInterval(100)

 self.timer.timeout.connect(self.refresh_progress)

 self.timer.start()

 def execute(self):

 worker = Worker()

 worker.signals.progress.connect(self.update_progress)

 worker.signals.finished.connect(self.cleanup) ③

 # Execute

 self.threadpool.start(worker)

 def cleanup(self, job_id):

 if job_id in self.worker_progress:

 del self.worker_progress[job_id] ④

 # Update the progress bar if we've removed a value.

 self.refresh_progress()

 def update_progress(self, job_id, progress):

 self.worker_progress[job_id] = progress

 def calculate_progress(self):

 if not self.worker_progress:

 return 0

 return sum(v for v in self.worker_progress.values()) / len

(self.worker_progress)

 def refresh_progress(self):

 # Calculate total progress.

 progress = self.calculate_progress()

 print(self.worker_progress)

 self.progress.setValue(progress)

 self.status.setText("%d workers" % len(self.worker_progress))

app = QApplication(sys.argv)

window = MainWindow()

app.exec_()

① Use a unique UUID4 identifier for this runner.

467

② Progress 0-100% as an integer.

③ When the job finishes, we need to cleanup (delete) the workers progress.

④ Delete the progress for the finished worker.

If you run this, you’ll see the global progress bar along with an indicator to

show how many active workers there are running.

Figure 210. The window showing the global progress state, together with the

number of active workers.

Checking the console output for the script you can see the actual status for

each of the individual workers.

Figure 211. Check the shell output to see the individual worker progress.

Removing the worker immediately means that the progress will jump

backwards when a job finishes — removing 100 from the average calculation

will cause the average to fall. You can postpone the cleanup if you like, for

example the following will only remove the entries when all progress bars

reach 100.

Listing 157. concurrent/qrunner_progress_many_2.py

import random

468

import sys

import time

import uuid

from PyQt5.QtCore import QObject, QRunnable, QThreadPool, QTimer,

pyqtSignal, pyqtSlot

from PyQt5.QtWidgets import (

 QApplication,

 QLabel,

 QMainWindow,

 QProgressBar,

 QPushButton,

 QVBoxLayout,

 QWidget,

)

class WorkerSignals(QObject):

 """

 Defines the signals available from a running worker thread.

 progress

 int progress complete,from 0-100

 """

 progress = pyqtSignal(str, int)

 finished = pyqtSignal(str)

class Worker(QRunnable):

 """

 Worker thread

 Inherits from QRunnable to handle worker thread setup, signals

 and wrap-up.

 """

 def __init__(self):

 super().__init__()

 self.job_id = uuid.uuid4().hex ①

 self.signals = WorkerSignals()

 @pyqtSlot()

469

 def run(self):

 total_n = 1000

 delay = random.random() / 100 # Random delay value.

 for n in range(total_n):

 progress_pc = int(100 * float(n + 1) / total_n) ②

 self.signals.progress.emit(self.job_id, progress_pc)

 time.sleep(delay)

 self.signals.finished.emit(self.job_id)

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 layout = QVBoxLayout()

 self.progress = QProgressBar()

 button = QPushButton("START IT UP")

 button.pressed.connect(self.execute)

 self.status = QLabel("0 workers")

 layout.addWidget(self.progress)

 layout.addWidget(button)

 layout.addWidget(self.status)

 w = QWidget()

 w.setLayout(layout)

 # Dictionary holds the progress of current workers.

 self.worker_progress = {}

 self.setCentralWidget(w)

 self.show()

 self.threadpool = QThreadPool()

 print(

 "Multithreading with maximum %d threads" % self.

threadpool.maxThreadCount()

)

470

 self.timer = QTimer()

 self.timer.setInterval(100)

 self.timer.timeout.connect(self.refresh_progress)

 self.timer.start()

 def execute(self):

 worker = Worker()

 worker.signals.progress.connect(self.update_progress)

 worker.signals.finished.connect(self.cleanup) ③

 # Execute

 self.threadpool.start(worker)

 def cleanup(self, job_id):

 if all(v == 100 for v in self.worker_progress.values()):

 self.worker_progress.clear() # Empty the dict.

 # Update the progress bar if we've removed a value.

 self.refresh_progress()

 def update_progress(self, job_id, progress):

 self.worker_progress[job_id] = progress

 def calculate_progress(self):

 if not self.worker_progress:

 return 0

 return sum(v for v in self.worker_progress.values()) / len

(self.worker_progress)

 def refresh_progress(self):

 # Calculate total progress.

 progress = self.calculate_progress()

 print(self.worker_progress)

 self.progress.setValue(progress)

 self.status.setText("%d workers" % len(self.worker_progress))

app = QApplication(sys.argv)

window = MainWindow()

app.exec_()

471

While this works, and is fine for simple use-cases, it would be nicer if this

worker state (and control) could be wrapped up into it’s own manager

component rather than being handled through the main window. Take a

look at the later The Manager section to see how we can do that.

472

The calculator

Threading is a good option when you need to perform complex calculations.

If you’re using the Python numpy, scipy or pandas libraries then these

calculations may also release the GIL meaning both your GUI and calculation

thread can run at full speed.

In this example we’ll create a number of workers which are all performing

some simple calculations. The results of these calculations will be returned to

the GUI thread and displayed in a plot.


We cover PyQtGraph in detail in Plotting with PyQtGraph, for

now just focus on the QRunner.

Listing 158. concurrent/qrunner_logger.py

import random

import sys

import time

import uuid

import pyqtgraph as pg

from PyQt5.QtCore import QObject, QRunnable, QThreadPool, QTimer,

pyqtSignal, pyqtSlot

from PyQt5.QtWidgets import QApplication, QMainWindow, QPushButton,

QVBoxLayout, QWidget

from pyqtgraph import PlotWidget, plot

class WorkerSignals(QObject):

 """

 Defines the signals available from a running worker thread.

 data

 tuple data point (worker_id, x, y)

 """

 data = pyqtSignal(tuple) ①

473

class Worker(QRunnable):

 """

 Worker thread

 Inherits from QRunnable to handle worker thread setup, signals

 and wrap-up.

 """

 def __init__(self):

 super().__init__()

 self.worker_id = uuid.uuid4().hex # Unique ID for this

worker.

 self.signals = WorkerSignals()

 @pyqtSlot()

 def run(self):

 total_n = 1000

 y2 = random.randint(0, 10)

 delay = random.random() / 100 # Random delay value.

 value = 0

 for n in range(total_n):

 # Dummy calculation, each worker will produce different

values,

 # because of the random y & y2 values.

 y = random.randint(0, 10)

 value += n * y2 - n * y

 self.signals.data.emit((self.worker_id, n, value)) ②

 time.sleep(delay)

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.threadpool = QThreadPool()

 self.x = {} # Keep timepoints.

 self.y = {} # Keep data.

 self.lines = {} # Keep references to plotted lines, to

update.

474

 layout = QVBoxLayout()

 self.graphWidget = pg.PlotWidget()

 self.graphWidget.setBackground("w")

 layout.addWidget(self.graphWidget)

 button = QPushButton("Create New Worker")

 button.pressed.connect(self.execute)

 # layout.addWidget(self.progress)

 layout.addWidget(button)

 w = QWidget()

 w.setLayout(layout)

 self.setCentralWidget(w)

 self.show()

 def execute(self):

 worker = Worker()

 worker.signals.data.connect(self.receive_data)

 # Execute

 self.threadpool.start(worker)

 def receive_data(self, data):

 worker_id, x, y = data ③

 if worker_id not in self.lines:

 self.x[worker_id] = [x]

 self.y[worker_id] = [y]

 # Generate a random color.

 pen = pg.mkPen(

 width=2,

 color=(

 random.randint(100, 255),

 random.randint(100, 255),

 random.randint(100, 255),

),

)

 self.lines[worker_id] = self.graphWidget.plot(

475

 self.x[worker_id], self.y[worker_id], pen=pen

)

 return

 # Update existing plot/data

 self.x[worker_id].append(x)

 self.y[worker_id].append(y)

 self.lines[worker_id].setData(self.x[worker_id], self.y

[worker_id])

app = QApplication(sys.argv)

window = MainWindow()

app.exec_()

① Setup a custom signal to pass out the data. Using tuple allows you to send

out any number of values wrapped in a tuple.

② Here we’re emitting a worker_id, x and y value.

③ Receiver slot unpacks the data.

Once you’ve received the data from a worker, you can do what you like with

it — perhaps add it to a table or model view. Here we’re storing the x and y

values in dict objects keyed by the worker_id. That keeps the data for each

worker separate and allows us to plot them individually.

If you run this example press the button you’ll see a line appear on the plot

and gradually extend. If you press the button again, another worker will start,

returning more data and adding another line to the plot. Each worker

generates data at a different rate, each generating 100 values.

476

Figure 212. Plot output from a single runner after a few iterations.

You can start new workers up to the max threads available on your machine.

After generating 100 values workers will shut-down and the next queued

worker will start up — adding it’s values as a new line.

Figure 213. Plot from multiple runners.

The tuple is of course optional, you could send back bare strings if you have

only one runner, or don’t need to associated outputs with a source. It is also

possible to send a bytestring, or any other type of data, by setting up the

signals appropriately.

477

Stopping a running QRunner

Once you’ve started a QRunner there is, by default, no way to stop it. This isn’t

very nice from a usability point of view — if a user starts task by mistake, they

then have to sit and wait for it to finish. Unfortunately, there is no way to kill a

runner, however we can ask it nicely to stop. In this example we’ll look at how

we can use flags to indicate to the runner that it needs to stop.



In computing flags are variables that are used to signal a

current or change in state. Think of how ships use flags to

communicate with one another.

Figure 214. Lima, "You should stop your vessel instantly."

The code below implements a simple runner with a progress bar which

increases every 0.01 seconds from left to right, and a [ Stop ] button. If you

click [ Stop ] the worker will exit, stopping the progress bar permanently.

Listing 159. concurrent/qrunner_stop.py

import sys

import time

from PyQt5.QtCore import QObject, QRunnable, Qt, QThreadPool,

pyqtSignal, pyqtSlot

from PyQt5.QtWidgets import (

 QApplication,

 QHBoxLayout,

 QMainWindow,

 QProgressBar,

 QPushButton,

 QWidget,

)

class WorkerKilledException(Exception):

 pass

478

class WorkerSignals(QObject):

 progress = pyqtSignal(int)

class JobRunner(QRunnable):

 signals = WorkerSignals()

 def __init__(self):

 super().__init__()

 self.is_killed = False ①

 @pyqtSlot()

 def run(self):

 try:

 for n in range(100):

 self.signals.progress.emit(n + 1)

 time.sleep(0.1)

 if self.is_killed: ②

 raise WorkerKilledException

 except WorkerKilledException:

 pass ③

 def kill(self): ④

 self.is_killed = True

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 # Some buttons

 w = QWidget()

 l = QHBoxLayout()

 w.setLayout(l)

 btn_stop = QPushButton("Stop")

479

 l.addWidget(btn_stop)

 self.setCentralWidget(w)

 # Create a statusbar.

 self.status = self.statusBar()

 self.progress = QProgressBar()

 self.status.addPermanentWidget(self.progress)

 # Thread runner

 self.threadpool = QThreadPool()

 # Create a runner

 self.runner = JobRunner()

 self.runner.signals.progress.connect(self.update_progress)

 self.threadpool.start(self.runner)

 btn_stop.pressed.connect(self.runner.kill)

 self.show()

 def update_progress(self, n):

 self.progress.setValue(n)

app = QApplication(sys.argv)

w = MainWindow()

app.exec_()

① The flag to indicate whether the runner should be killed is called

.is_killed.

② On each loop we test to see whether .is_killed is True in which case we

throw an exception.

③ Catch the exception, we could emit a finished or error signal here.

④ .kill() convenience function so we can call worker.kill() to kill it.

If you want to stop the worker without throwing an error, you can simply

return from the run method, e.g.

480

 def run(self):

 for n in range(100):

 self.signals.progress.emit(n + 1)

 time.sleep(0)

 if self.is_killed:

 return

In the above example we only have a single worker. However, in many

applications you will have more. How do you handle stopping workers when

you have multiple runners running?

If you want the stop to stop all workers, then nothing is changed. You can

simply hook all the workers up to the same "Stop" signal, and when that

signal is fired — e.g. by pressing a button — all the workers will stop

simultaneously.

If you want to be able to stop individual workers you would either need to

create a separate button somewhere in your UI for each runner, or

implement a manager to keep track of workers and provide a nicer interface

to kill them. Take a look at The Manager for a working example.

Pausing a runner

Pausing a runner is a rarer requirement — normally you want things to go as

fast as possible. But sometimes you may want to put a worker to "sleep" so it

temporarily stops reading from a data source. You can do this with a small

modification to the approach used to stop the runner. The code to do this is

shown below.

Listing 160. concurrent/qrunner_pause.py

import sys

import time

from PyQt5.QtCore import (QObject, QRunnable, Qt, QThreadPool,

pyqtSignal,

481

 pyqtSlot)

from PyQt5.QtWidgets import (QApplication, QHBoxLayout, QMainWindow,

 QProgressBar, QPushButton, QWidget)

class WorkerKilledException(Exception):

 pass

class WorkerSignals(QObject):

 progress = pyqtSignal(int)

class JobRunner(QRunnable):

 signals = WorkerSignals()

 def __init__(self):

 super().__init__()

 self.is_paused = False

 self.is_killed = False

 @pyqtSlot()

 def run(self):

 for n in range(100):

 self.signals.progress.emit(n + 1)

 time.sleep(0.1)

 while self.is_paused:

 time.sleep(0) ①

 if self.is_killed:

 raise WorkerKilledException

 def pause(self):

 self.is_paused = True

 def resume(self):

 self.is_paused = False

 def kill(self):

 self.is_killed = True

482

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 # Some buttons

 w = QWidget()

 l = QHBoxLayout()

 w.setLayout(l)

 btn_stop = QPushButton("Stop")

 btn_pause = QPushButton("Pause")

 btn_resume = QPushButton("Resume")

 l.addWidget(btn_stop)

 l.addWidget(btn_pause)

 l.addWidget(btn_resume)

 self.setCentralWidget(w)

 # Create a statusbar.

 self.status = self.statusBar()

 self.progress = QProgressBar()

 self.status.addPermanentWidget(self.progress)

 # Thread runner

 self.threadpool = QThreadPool()

 # Create a runner

 self.runner = JobRunner()

 self.runner.signals.progress.connect(self.update_progress)

 self.threadpool.start(self.runner)

 btn_stop.pressed.connect(self.runner.kill)

 btn_pause.pressed.connect(self.runner.pause)

 btn_resume.pressed.connect(self.runner.resume)

 self.show()

 def update_progress(self, n):

 self.progress.setValue(n)

483

app = QApplication(sys.argv)

w = MainWindow()

app.exec_()

① You can put a higher value that 0 in the sleep call if you don’t want to

check if it’s time to wake up very often.

If you run this example you’ll see a progress bar moving from left to right. If

you click [ Pause ] the worker will pause. If you then click [ Resume ] the

worker will continue from where it started. If you click [ Stop ] the worker will

stop, permanently, as before.

Rather than throw an exception when receiving the is_paused signal, we

enter a pause loop. This stops execution of the worker, but does not exit the

run method or terminate the worker.

By using while self.is_paused: for this loop, we will exit the loop as soon as

the worker is unpaused, and resume what we were doing before.



You must include the time.sleep() call. This zero-second

pause allows for Python to release the GIL, so this loop will

not block other execution. Without that sleep you have a

busy loop which will waste resources while doing nothing.

Increase the sleep value if you want to check less often.

484

The Communicator

When running a thread you frequently want to be able get output from what

is happening, while it’s happening.

In this example we’ll create a runner which performs requests to remote

servers in a separate thread, and dumps the output to a logger. We’ll also

look at how we can pass a custom parser into the runner to extra data we’re

interested in from the requests.


If you want to log data from external processes, rather than

threads, take a look at Running External processes and

Running external commands & processes.

Dumping data

In this first example we’ll just dump the raw data (HTML) from each request

to the output, using a custom signal.

Listing 161. concurrent/qrunner_io.py

import sys

import requests

from PyQt5.QtCore import QObject, QRunnable, QThreadPool, QTimer,

pyqtSignal, pyqtSlot

from PyQt5.QtWidgets import (

 QApplication,

 QLabel,

 QMainWindow,

 QPlainTextEdit,

 QPushButton,

 QVBoxLayout,

 QWidget,

)

class WorkerSignals(QObject):

 """

485

 Defines the signals available from a running worker thread.

 data

 tuple of (identifier, data)

 """

 data = pyqtSignal(tuple)

class Worker(QRunnable):

 """

 Worker thread

 Inherits from QRunnable to handle worker thread setup, signals

 and wrap-up.

 :param id: The id for this worker

 :param url: The url to retrieve

 """

 def __init__(self, id, url):

 super().__init__()

 self.id = id

 self.url = url

 self.signals = WorkerSignals()

 @pyqtSlot()

 def run(self):

 r = requests.get(self.url)

 for line in r.text.splitlines():

 self.signals.data.emit((self.id, line))

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.urls = [

 "https://www.learnpyqt.com/",

 "https://www.mfitzp.com/",

 "https://www.google.com",

486

 "https://www.udemy.com/create-simple-gui-applications-

with-python-and-qt/",

]

 layout = QVBoxLayout()

 self.text = QPlainTextEdit()

 self.text.setReadOnly(True)

 button = QPushButton("GO GET EM!")

 button.pressed.connect(self.execute)

 layout.addWidget(self.text)

 layout.addWidget(button)

 w = QWidget()

 w.setLayout(layout)

 self.setCentralWidget(w)

 self.show()

 self.threadpool = QThreadPool()

 print(

 "Multithreading with maximum %d threads" % self.

threadpool.maxThreadCount()

)

 def execute(self):

 for n, url in enumerate(self.urls):

 worker = Worker(n, url)

 worker.signals.data.connect(self.display_output)

 # Execute

 self.threadpool.start(worker)

 def display_output(self, data):

 id, s = data

 self.text.appendPlainText("WORKER %d: %s" % (id, s))

app = QApplication(sys.argv)

window = MainWindow()

487

app.exec_()

If you run this example and press the button you’ll see the HTML output from

a number of websites, prepended by the worker ID that retrieve them. Note

that output from different workers is interleaved.

Figure 215. Logging output from multiple workers to the main window.

The tuple is of course optional, you could send back bare strings if you have

only one runner, or don’t need to associated outputs with a source. It is also

possible to send a bytestring, or any other type of data, by setting up the

signals appropriately.

Parsing data

Often you are not interested in the raw data from the thread (whether from a

server or other external device) and instead want to process the data in some

way first. In this example we create custom parsers, which can extract

specific data from pages requested. We can create multiple workers, each

receiving a different list of sites and parsers.

488

Listing 162. concurrent/qrunner_io_parser.py

 self.parsers = { ①

 # Regular expression parsers, to extract data from the

HTML.

 "title": re.compile(r"<title.*?>(.*?)<\/title>", re.M |

re.S),

 "h1": re.compile(r"<h1.*?>(.*?)<\/h1>", re.M | re.S),

 "h2": re.compile(r"<h2.*?>(.*?)<\/h2>", re.M | re.S),

 }

① The parsers are defined as a series of compiled regular expressions. But

you can define parsers however you like.

Listing 163. concurrent/qrunner_io_parser.py

 def execute(self):

 for n, url in enumerate(self.urls):

 worker = Worker(n, url, self.parsers) ①

 worker.signals.data.connect(self.display_output)

 # Execute

 self.threadpool.start(worker)

① Pass the list of parsers to each worker.

489

Listing 164. concurrent/qrunner_io_parser.py

class Worker(QRunnable):

 """

 Worker thread

 Inherits from QRunnable to handle worker thread setup, signals

 and wrap-up.

 :param id: The id for this worker

 :param url: The url to retrieve

 """

 def __init__(self, id, url, parsers):

 super().__init__()

 self.id = id

 self.url = url

 self.parsers = parsers

 self.signals = WorkerSignals()

 @pyqtSlot()

 def run(self):

 r = requests.get(self.url)

 data = {}

 for name, parser in self.parsers.items(): ①

 m = parser.search(r.text)

 if m: ②

 data[name] = m.group(1).strip()

 self.signals.data.emit((self.id, data))

① Iterate the parser list we passed to the worker. Run each parser on the

data for this page.

② If the regular expression matched, add the data to out our data dictionary.

Running this, you’ll see the output from each worker, with the H1, H2 and

TITLE tags extracted.

490

Figure 216. Displaying parsed output from multiple workers.


If you are building tools to extract data from websites, take a

look at BeautifulSoup 4 which is far more robust than using

regular expressions.

491

https://www.crummy.com/software/BeautifulSoup/bs4/doc/

The Generic

You won’t always know ahead of time what you want to use workers for. Or

you may have a number of similar functions to perform and want a regular

API for running them. In that case you can take advantage of the fact that in

Python functions are objects to build a generic runner which accepts not just

arguments, but also the function to run.

In the following example we create a single Worker class and then use it to run

a number of different functions. With this setup you can pass in any Python

function and have it executed in a separate thread.

The complete working example is given below, showcasing the custom

QRunnable worker together with the worker & progress signals. You should be

able to adapt this code to any application you develop.

Listing 165. concurrent/qrunner_generic.py

import sys

import time

import traceback

from PyQt5.QtCore import QObject, QRunnable, QThreadPool, QTimer,

pyqtSignal, pyqtSlot

from PyQt5.QtWidgets import (

 QApplication,

 QLabel,

 QMainWindow,

 QPushButton,

 QVBoxLayout,

 QWidget,

)

def execute_this_fn():

 for _ in range(0, 5):

 time.sleep(1)

 return "Done."

492

class WorkerSignals(QObject):

 """

 Defines the signals available from a running worker thread.

 Supported signals are:

 finished

 No data

 error

 `tuple` (exctype, value, traceback.format_exc())

 result

 `object` data returned from processing, anything

 """

 finished = pyqtSignal()

 error = pyqtSignal(tuple)

 result = pyqtSignal(object)

class Worker(QRunnable):

 """

 Worker thread

 Inherits from QRunnable to handle worker thread setup, signals and

wrap-up.

 :param callback: The function callback to run on this worker

 :thread. Supplied args and

 kwargs will be passed through to the runner.

 :type callback: function

 :param args: Arguments to pass to the callback function

 :param kwargs: Keywords to pass to the callback function

 :

 """

 def __init__(self, fn, *args, **kwargs):

 super().__init__()

 # Store constructor arguments (re-used for processing)

 self.fn = fn

493

 self.args = args

 self.kwargs = kwargs

 self.signals = WorkerSignals()

 @pyqtSlot()

 def run(self):

 """

 Initialize the runner function with passed args, kwargs.

 """

 # Retrieve args/kwargs here; and fire processing using them

 try:

 result = self.fn(*self.args, **self.kwargs)

 except:

 traceback.print_exc()

 exctype, value = sys.exc_info()[:2]

 self.signals.error.emit((exctype, value, traceback

.format_exc()))

 else:

 self.signals.result.emit(result) # Return the result of

the processing

 finally:

 self.signals.finished.emit() # Done

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.counter = 0

 layout = QVBoxLayout()

 self.l = QLabel("Start")

 b = QPushButton("DANGER!")

 b.pressed.connect(self.oh_no)

 layout.addWidget(self.l)

 layout.addWidget(b)

 w = QWidget()

 w.setLayout(layout)

494

 self.setCentralWidget(w)

 self.show()

 self.threadpool = QThreadPool()

 print(

 "Multithreading with maximum %d threads" % self.

threadpool.maxThreadCount()

)

 self.timer = QTimer()

 self.timer.setInterval(1000)

 self.timer.timeout.connect(self.recurring_timer)

 self.timer.start()

 def print_output(self, s):

 print(s)

 def thread_complete(self):

 print("THREAD COMPLETE!")

 def oh_no(self):

 # Pass the function to execute

 worker = Worker(

 execute_this_fn

) # Any other args, kwargs are passed to the run function

 worker.signals.result.connect(self.print_output)

 worker.signals.finished.connect(self.thread_complete)

 # Execute

 self.threadpool.start(worker)

 def recurring_timer(self):

 self.counter += 1

 self.l.setText("Counter: %d" % self.counter)

app = QApplication(sys.argv)

window = MainWindow()

app.exec_()

The generic function approach adds a limitation that may not be

495

immediately obvious — the run function does not have access to the self

object of your runner, and therefore cannot access the signals to emit the

data itself. Only the return value of the function can be omitted.

This prevents you from emitting progress signals or other data. However,

since you can pass anything you want into the custom function you can also

pass self or the self.signals object.

Listing 166. concurrent/qrunner_generic_callback.py

import sys

import time

import traceback

from PyQt5.QtCore import QObject, QRunnable, QThreadPool, QTimer,

pyqtSignal, pyqtSlot

from PyQt5.QtWidgets import (

 QApplication,

 QLabel,

 QMainWindow,

 QPushButton,

 QVBoxLayout,

 QWidget,

)

def execute_this_fn(signals):

 for n in range(0, 5):

 time.sleep(1)

 signals.progress.emit(n * 100 / 4)

 return "Done."

class WorkerSignals(QObject):

 """

 Defines the signals available from a running worker thread.

 Supported signals are:

 finished

 No data

496

 error

 `tuple` (exctype, value, traceback.format_exc())

 result

 `object` data returned from processing, anything

 progress

 `int` indicating % progress

 """

 finished = pyqtSignal()

 error = pyqtSignal(tuple)

 result = pyqtSignal(object)

 progress = pyqtSignal(int)

class Worker(QRunnable):

 """

 Worker thread

 Inherits from QRunnable to handle worker thread setup, signals and

wrap-up.

 :param callback: The function callback to run on this worker

 :thread. Supplied args and

 kwargs will be passed through to the runner.

 :type callback: function

 :param args: Arguments to pass to the callback function

 :param kwargs: Keywords to pass to the callback function

 :

 """

 def __init__(self, fn, *args, **kwargs):

 super().__init__()

 # Store constructor arguments (re-used for processing)

 self.fn = fn

 self.args = args

 self.kwargs = kwargs

 self.signals = WorkerSignals()

 # Add the callback to our kwargs

497

 kwargs["signals"] = self.signals

 @pyqtSlot()

 def run(self):

 """

 Initialize the runner function with passed args, kwargs.

 """

 # Retrieve args/kwargs here; and fire processing using them

 try:

 result = self.fn(*self.args, **self.kwargs)

 except Exception:

 traceback.print_exc()

 exctype, value = sys.exc_info()[:2]

 self.signals.error.emit((exctype, value, traceback

.format_exc()))

 else:

 self.signals.result.emit(result) # Return the result of

the processing

 finally:

 self.signals.finished.emit() # Done

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.counter = 0

 layout = QVBoxLayout()

 self.l = QLabel("Start")

 b = QPushButton("DANGER!")

 b.pressed.connect(self.oh_no)

 layout.addWidget(self.l)

 layout.addWidget(b)

 w = QWidget()

 w.setLayout(layout)

 self.setCentralWidget(w)

498

 self.show()

 self.threadpool = QThreadPool()

 print(

 "Multithreading with maximum %d threads" % self.

threadpool.maxThreadCount()

)

 self.timer = QTimer()

 self.timer.setInterval(1000)

 self.timer.timeout.connect(self.recurring_timer)

 self.timer.start()

 def progress_fn(self, n):

 print("%d%% done" % n)

 def print_output(self, s):

 print(s)

 def thread_complete(self):

 print("THREAD COMPLETE!")

 def oh_no(self):

 # Pass the function to execute

 worker = Worker(

 execute_this_fn

) # Any other args, kwargs are passed to the run function

 worker.signals.result.connect(self.print_output)

 worker.signals.finished.connect(self.thread_complete)

 worker.signals.progress.connect(self.progress_fn)

 # Execute

 self.threadpool.start(worker)

 def recurring_timer(self):

 self.counter += 1

 self.l.setText("Counter: %d" % self.counter)

app = QApplication(sys.argv)

window = MainWindow()

app.exec_()

499

Note that for this to work, all your custom functions must be able to accept

the additional argument. You can do this by defining the functions with

**kwargs to silently swallow the extra arguments if they aren’t used.

def execute_this_fn(**kwargs): ①

 for _ in range(0, 5):

 time.sleep(1)

 return "Done."

① The signals keyword argument is swallowed up by **kwargs.

500

Running External processes

So far we’ve looked how we can run Python code in another thread.

Sometimes however you need to run external programs — such as command

line programs — in another process.

You actually have two options when starting external processes with PyQt5.

You can either use Python’s built-in subprocess module to start the processes,

or you can use Qt’s QProcess.


For more information on running external processes using

QProcess take a look at the Running external commands &

processes chapter.

Starting a new process always comes with a small execution cost and will

block your GUI momentarily. This is usually not perceptible but it can add up

depending on your use case and may have performance impacts. You can

get around this by starting your processes in another thread.

If you want to communicate with the process in real-time you will need a

separate thread to avoid blocking the GUI. QProcess handles this separate

thread for you internally, but with Python subprocess you will need to do this

yourself.

In this QRunner example we use instances of workers to handle starting

external processes through Python subprocess. This keeps the startup cost of

the process out of the GUI thread and also allows us to interact with the

processes directly through Python.

Listing 167. concurrent/qrunner_process.py

import subprocess

import sys

import time

import traceback

import uuid

from collections import namedtuple

501

from PyQt5.QtCore import (

 QObject,

 QRunnable,

 Qt,

 QThreadPool,

 QTimer,

 pyqtSignal,

 pyqtSlot,

)

from PyQt5.QtWidgets import (

 QApplication,

 QMainWindow,

 QPlainTextEdit,

 QPushButton,

 QVBoxLayout,

 QWidget,

)

class WorkerSignals(QObject):

 """

 Defines the signals available from a running worker thread.

 Supported signals are:

 finished: No data

 result: str

 """

 result = pyqtSignal(str) # Send back the output from the process

as a string.

 finished = pyqtSignal()

class SubProcessWorker(QRunnable):

 """

 ProcessWorker worker thread

 Inherits from QRunnable to handle worker thread setup, signals and

wrap-up.

 :param command: command to execute with `subprocess`.

502

 """

 def __init__(self, command):

 super().__init__()

 # Store constructor arguments (re-used for processing).

 self.signals = WorkerSignals()

 # The command to be executed.

 self.command = command

 @pyqtSlot()

 def run(self):

 """

 Execute the command, returning the result.

 """

 output = subprocess.getoutput(self.command)

 self.signals.result.emit(output)

 self.signals.finished.emit()

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 # Some buttons

 layout = QVBoxLayout()

 self.text = QPlainTextEdit()

 layout.addWidget(self.text)

 btn_run = QPushButton("Execute")

 btn_run.clicked.connect(self.start)

 layout.addWidget(btn_run)

 w = QWidget()

 w.setLayout(layout)

 self.setCentralWidget(w)

 # Thread runner

 self.threadpool = QThreadPool()

503

 self.show()

 def start(self):

 # Create a runner

 self.runner = SubProcessWorker("python dummy_script.py")

 self.runner.signals.result.connect(self.result)

 self.threadpool.start(self.runner)

 def result(self, s):

 self.text.appendPlainText(s)

app = QApplication(sys.argv)

w = MainWindow()

app.exec_()


The "external program" in this example is a simple Python

script python dummy_script.py. However can replace this with

any other program you like.

Running processes have two streams of output — standard out and standard

error. The standard output returns the actual result of the execution (if any)

while standard error returns any error or logging information.

In this example we’re running the external script using subprocess.getoutput.

This runs the external program, waiting for it to complete before returning.

Once it has completed, getoutput returns both the standard output and

standard error together as a single string.

Parsing the result

You don’t have to pass the output as-is. If you have post-processing to do on

the output from the command, it can make sense to handle this in your

worker thread as well, to keep it self-contained. The worker can then return

the data to your GUI thread in a structured format, ready to be used.

In the following example, we pass in a function to post-process the result of

the demo script to extract the values of interest into a dictionary. This data is

504

used to update widgets on the GUI side.

Listing 168. concurrent/qrunner_process.py

import subprocess

import sys

import time

import traceback

import uuid

from collections import namedtuple

from PyQt5.QtCore import (QObject, QRunnable, Qt, QThreadPool, QTimer,

 pyqtSignal, pyqtSlot)

from PyQt5.QtWidgets import (

 QApplication, QLineEdit, QMainWindow, QPushButton, QSpinBox,

QVBoxLayout,

 QWidget)

def extract_vars(l):

 """

 Extracts variables from lines, looking for lines

 containing an equals, and splitting into key=value.

 """

 data = {}

 for s in l.splitlines():

 if '=' in s:

 name, value = s.split('=')

 data[name] = value

 data['number_of_lines'] = len(l)

 return data

class WorkerSignals(QObject):

 """

 Defines the signals available from a running worker thread.

 Supported signals are:

 finished: No data

 result: dict

 """

505

 result = pyqtSignal(dict) # Send back the output as dictionary.

 finished = pyqtSignal()

class SubProcessWorker(QRunnable):

 """

 ProcessWorker worker thread

 Inherits from QRunnable to handle worker thread setup, signals and

wrap-up.

 :param command: command to execute with `subprocess`.

 """

 def __init__(self, command, process_result=None):

 super().__init__()

 # Store constructor arguments (re-used for processing).

 self.signals = WorkerSignals()

 # The command to be executed.

 self.command = command

 # The post-processing fn.

 self.process_result = process_result

 @pyqtSlot()

 def run(self):

 """

 Execute the command, returning the result.

 """

 output = subprocess.getoutput(self.command)

 if self.process_result:

 output = self.process_result(output)

 self.signals.result.emit(output)

 self.signals.finished.emit()

class MainWindow(QMainWindow):

506

 def __init__(self):

 super().__init__()

 # Some buttons

 layout = QVBoxLayout()

 self.name = QLineEdit()

 layout.addWidget(self.name)

 self.country = QLineEdit()

 layout.addWidget(self.country)

 self.website = QLineEdit()

 layout.addWidget(self.website)

 self.number_of_lines = QSpinBox()

 layout.addWidget(self.number_of_lines)

 btn_run = QPushButton("Execute")

 btn_run.clicked.connect(self.start)

 layout.addWidget(btn_run)

 w = QWidget()

 w.setLayout(layout)

 self.setCentralWidget(w)

 # Thread runner

 self.threadpool = QThreadPool()

 self.show()

 def start(self):

 # Create a runner

 self.runner = SubProcessWorker(

 "python dummy_script.py", process_result=extract_vars

)

 self.runner.signals.result.connect(self.result)

 self.threadpool.start(self.runner)

 def result(self, data):

 print(data)

 self.name.setText(data['name'])

507

 self.country.setText(data['country'])

 self.website.setText(data['website'])

 self.number_of_lines.setValue(data['number_of_lines'])

app = QApplication(sys.argv)

w = MainWindow()

app.exec_()

The simple parser in this case looks for any lines with a = in them, splits on

this to produce a name and a value, which are then stored in a dict. However,

you can use any tools you like to extract data from the string output.

Because getoutput blocks until the program is complete, we cannot see how

the program is running — for example, to get progress information. In the

next example we’ll show how to get live output from a running process.

Tracking progress

Often external programs will output progress information to the console. You

might want to capture this and either show it to your users, or sue it to

generate a progress bar.

For the result of the execution you usually want to capture standard out, for

the progress to capture standard error. In this following example we capture

both. As well as the command, we pass a custom parser function to the

worker, to capture the current worker progress and emit it as a number 0-99.

This example is quite complex. The full source code is available in the source

for with the book, but here we’ll cover the key differences to the simpler one.

508

Listing 169. concurrent/qrunner_process_parser.py

 @pyqtSlot()

 def run(self):

 """

 Initialize the runner function with passed args, kwargs.

 """

 result = []

 with subprocess.Popen(①

 self.command,

 bufsize=1,

 stdout=subprocess.PIPE,

 stderr=subprocess.STDOUT, ②

 universal_newlines=True,

) as proc:

 while proc.poll() is None:

 data = proc.stdout.readline() ③

 result.append(data)

 if self.parser: ④

 value = self.parser(data)

 if value:

 self.signals.progress.emit(value)

 output = "".join(result)

 self.signals.result.emit(output)

① Run using Popen to give us access to output streams.

② We pipe standard error out together with standard output.

③ Read a line from the process (or wait for one).

④ Pass all collected data so far to the parser.

Parsing is handled by this simple parser function, which takes in a string and

matches the regular expression Total complete: (\d+)%.

509

Listing 170. concurrent/qrunner_process_parser.py

progress_re = re.compile("Total complete: (\d+)%")

def simple_percent_parser(output):

 """

 Matches lines using the progress_re regex,

 returning a single integer for the % progress.

 """

 m = progress_re.search(output)

 if m:

 pc_complete = m.group(1)

 return int(pc_complete)

The parser is passed into the runner along with the command — this means

we can use a generic runner for all subprocesses and handle the output

differently for different commands.

Listing 171. concurrent/qrunner_process_parser.py

 def start(self):

 # Create a runner

 self.runner = SubProcessWorker(

 command="python dummy_script.py", parser

=simple_percent_parser

)

 self.runner.signals.result.connect(self.result)

 self.runner.signals.progress.connect(self.progress.setValue)

 self.threadpool.start(self.runner)

In this simple example we only pass the latest line from the process, since

our custom script outputs lines like Total complete: 25%. That means that we

only need the latest line to be able to calculate the current progress.

Sometimes however, scripts can be a bit less helpful. For example ffmpeg the

video encoder outputs the duration of the video file to be processed once at

the beginning, then outputs the duration that has currently been processed.

To calculate the % of progress you need both values.

510

To do that, you can pass the collected output to the parser instead. There is

an example of this in the source code with the book, named

concurrent/qrunner_process_parser_elapsed.py.

511

The Manager

In the previous examples we’ve created a number of different QRunner

implementations that can be used for different purposes in your application.

In all cases you can run as many of these runners as you like, on the same or

multiple QThreadPool pools. However, sometimes you will want to keep track

of the runners which you have running in order to do something with their

output, or provide users with control over the runners directly.

QThreadPool itself does not give you access to the currently running runners,

so we need to create our own manager ourselves, through which we start

and control our workers.

The example below brings together some of the other worker features

already introduced — progress, pause and stop control — together with the

model views to present individual progress bars. This manager will likely

work as a drop-in for most use-cases you have for running threads.


This is quite a complex example, the full source code is

available in the resources for the book. Here we’ll go through

the key parts of the QRunner manager in turn.

The worker manager

The worker manager class holds the threadpool, our workers and their

progress and state information. It is derived from QAbstractListModel meaning

it also provides a Qt model-like interface, allowing for it to be used as the

model for a QListView — providing a per-worker progress bar and status

indicator. The status tracking is handled through a number of internal

signals, which attach automatically to every added worker.

Listing 172. concurrent/qrunner_manager.py

class WorkerManager(QAbstractListModel):

 """

 Manager to handle our worker queues and state.

 Also functions as a Qt data model for a view

512

 displaying progress for each worker.

 """

 _workers = {}

 _state = {}

 status = pyqtSignal(str)

 def __init__(self):

 super().__init__()

 # Create a threadpool for our workers.

 self.threadpool = QThreadPool()

 # self.threadpool.setMaxThreadCount(1)

 self.max_threads = self.threadpool.maxThreadCount()

 print("Multithreading with maximum %d threads" % self

.max_threads)

 self.status_timer = QTimer()

 self.status_timer.setInterval(100)

 self.status_timer.timeout.connect(self.notify_status)

 self.status_timer.start()

 def notify_status(self):

 n_workers = len(self._workers)

 running = min(n_workers, self.max_threads)

 waiting = max(0, n_workers - self.max_threads)

 self.status.emit(

 "{} running, {} waiting, {} threads".format(

 running, waiting, self.max_threads

)

)

 def enqueue(self, worker):

 """

 Enqueue a worker to run (at some point) by passing it to the

QThreadPool.

 """

 worker.signals.error.connect(self.receive_error)

 worker.signals.status.connect(self.receive_status)

 worker.signals.progress.connect(self.receive_progress)

 worker.signals.finished.connect(self.done)

513

 self.threadpool.start(worker)

 self._workers[worker.job_id] = worker

 # Set default status to waiting, 0 progress.

 self._state[worker.job_id] = DEFAULT_STATE.copy()

 self.layoutChanged.emit()

 def receive_status(self, job_id, status):

 self._state[job_id]["status"] = status

 self.layoutChanged.emit()

 def receive_progress(self, job_id, progress):

 self._state[job_id]["progress"] = progress

 self.layoutChanged.emit()

 def receive_error(self, job_id, message):

 print(job_id, message)

 def done(self, job_id):

 """

 Task/worker complete. Remove it from the active workers

 dictionary. We leave it in worker_state, as this is used to

 to display past/complete workers too.

 """

 del self._workers[job_id]

 self.layoutChanged.emit()

 def cleanup(self):

 """

 Remove any complete/failed workers from worker_state.

 """

 for job_id, s in list(self._state.items()):

 if s["status"] in (STATUS_COMPLETE, STATUS_ERROR):

 del self._state[job_id]

 self.layoutChanged.emit()

 # Model interface

 def data(self, index, role):

 if role == Qt.DisplayRole:

 # See below for the data structure.

 job_ids = list(self._state.keys())

514

 job_id = job_ids[index.row()]

 return job_id, self._state[job_id]

 def rowCount(self, index):

 return len(self._state)

Workers are constructed outside the manager and passed in via .enqueue().

This connects all signals and adds the worker to the thread pool`. It will be

executed, as normal once a thread is available.

The worker’s are kept in an internal dictionary _workers keyed by the job id.

There is a separate dictionary _state which stores the status and progress

information about the workers. We keep them separate so we can delete

jobs once complete, keeping an accurate count, yet continue to show

information about completed jobs until cleared.

Signals from each submitted workers are connected to slots on the manager,

which update the _state dictionary, print error messages or delete the

completed job. Once any state is updated, we must call .layoutChanged() to

trigger a refresh of the model view. The _clear_ method iterates through the

_state list and removes any that are complete or have failed.

Lastly, we set up a timer to regularly trigger a method to emit the current

thread counts as a status message. The number of active threads is the

minimum of the number of _workers and the max_threads. The waiting threads

is the number of _workers _minus_ the max_threads (as long as it is more than

zero). The message is shown on the main window status bar.

The worker

The worker itself follows the same pattern as all our previous examples. The

only requirement for our manager is the addition of a .job_id property which

is set when the worker is created.

The signals from the workers must include this job id so the manager knows

which worker sent the signal — updating the correct status, progress and

finished states.

515

The worker itself is a simply dummy worker, which iterates 100 times (1 for

each % progress) and performs a simple calculation. This worker calculation

generates a series of numbers, but is constructed to occasionally throw

division by zero errors.

Listing 173. concurrent/qrunner_manager.py

class WorkerSignals(QObject):

 """

 Defines the signals available from a running worker thread.

 Supported signals are:

 finished

 No data

 error

 `tuple` (exctype, value, traceback.format_exc())

 result

 `object` data returned from processing, anything

 progress

 `int` indicating % progress

 """

 error = pyqtSignal(str, str)

 result = pyqtSignal(str, object) # We can send anything back.

 finished = pyqtSignal(str)

 progress = pyqtSignal(str, int)

 status = pyqtSignal(str, str)

class Worker(QRunnable):

 """

 Worker thread

 Inherits from QRunnable to handle worker thread setup, signals and

wrap-up.

516

 :param args: Arguments to pass for the worker

 :param kwargs: Keywords to pass for the worker

 """

 def __init__(self, *args, **kwargs):

 super().__init__()

 # Store constructor arguments (re-used for processing).

 self.signals = WorkerSignals()

 # Give this job a unique ID.

 self.job_id = str(uuid.uuid4())

 # The arguments for the worker

 self.args = args

 self.kwargs = kwargs

 self.signals.status.emit(self.job_id, STATUS_WAITING)

 @pyqtSlot()

 def run(self):

 """

 Initialize the runner function with passed args, kwargs.

 """

 self.signals.status.emit(self.job_id, STATUS_RUNNING)

 x, y = self.args

 try:

 value = random.randint(0, 100) * x

 delay = random.random() / 10

 result = []

 for n in range(100):

 # Generate some numbers.

 value = value / y

 y -= 1

 # The following will sometimes throw a division by

zero error.

517

 result.append(value)

 # Pass out the current progress.

 self.signals.progress.emit(self.job_id, n + 1)

 time.sleep(delay)

 except Exception as e:

 print(e)

 # We swallow the error and continue.

 self.signals.error.emit(self.job_id, str(e))

 self.signals.status.emit(self.job_id, STATUS_ERROR)

 else:

 self.signals.result.emit(self.job_id, result)

 self.signals.status.emit(self.job_id, STATUS_COMPLETE)

 self.signals.finished.emit(self.job_id)

In addition to the progress signals we’ve seen before, we also have a status

signal which emits one of the following statuses. Exceptions are caught and

both the exception text and the error state are emitted using error and

status.

Listing 174. concurrent/qrunner_manager.py

STATUS_WAITING = "waiting"

STATUS_RUNNING = "running"

STATUS_ERROR = "error"

STATUS_COMPLETE = "complete"

STATUS_COLORS = {

 STATUS_RUNNING: "#33a02c",

 STATUS_ERROR: "#e31a1c",

 STATUS_COMPLETE: "#b2df8a",

}

DEFAULT_STATE = {"progress": 0, "status": STATUS_WAITING}

Each of the active statuses have assigned colors which will be used in

518

drawing on the progress bar.

Custom row display

We’re using a QListView for the progress bar display. Normally a list view

displays a simple text value for each row. To modify this we use a

QItemDelegate which allows us to paint a custom widget for each row.

Listing 175. concurrent/qrunner_manager.py

class ProgressBarDelegate(QStyledItemDelegate):

 def paint(self, painter, option, index):

 # data is our status dict, containing progress, id, status

 job_id, data = index.model().data(index, Qt.DisplayRole)

 if data["progress"] > 0:

 color = QColor(STATUS_COLORS[data["status"]])

 brush = QBrush()

 brush.setColor(color)

 brush.setStyle(Qt.SolidPattern)

 width = option.rect.width() * data["progress"] / 100

 rect = QRect(option.rect) # Copy of the rect, so we can

modify.

 rect.setWidth(width)

 painter.fillRect(rect, brush)

 pen = QPen()

 pen.setColor(Qt.black)

 painter.drawText(option.rect, Qt.AlignLeft, job_id)

We get the data for the current row from the model using

index.model().data(index, Qt.DisplayRole). This is calling the .data() method

on our custom model (manager) passing in the index and role. In our .data()

method we are returning two bits of data — job_id and the state dictionary,

containing progress and status keys.

For active jobs (progress > 0) status is used to select a color for the bar. This is

519

drawn as a rectangle of the item row size option.rect(), with the width

adjusted by the % completion. Finally, we write the job_id text over the top of

this.

Starting a job

With everything in place, we can now enqueue jobs by calling

.self.worker.enqueue() passing in arguments to the worker.

Listing 176. concurrent/qrunner_manager.py

 def start_worker(self):

 x = random.randint(0, 1000)

 y = random.randint(0, 1000)

 w = Worker(x, y)

 w.signals.result.connect(self.display_result)

 w.signals.error.connect(self.display_result)

 self.workers.enqueue(w)

The .enqueue() method accepts a constructed worker and attaches the

internal signals to it to track progress. However, we can still attach any other

external signals that we want.

520

Figure 217. The manager interface, where you can start new jobs and see

progress.

Also, while this example has only a single worker class, you can use this same

manager with any other QRunner-derived classes, as long as they have the

same signals available. This means you can use a single worker manager to

manage all the workers in your app.



Take a look at the full code in the source files with this book

and experiment modifying the manager to your needs — for

example, try adding kill & pause functionality, generic

function runners.

Stopping jobs

We can start jobs, and some of them die due to errors. But what if we want to

stop jobs that are taking too long? The QListView allows us to select rows and

through the selected row we can kill a specific worker. The method below is

linked to a button, and looks up the worker from the current selected item in

the list.

521

Listing 177. concurrent/qrunner_manager_stop.py

 def stop_worker(self):

 selected = self.progress.selectedIndexes()

 for idx in selected:

 job_id, _ = self.workers.data(idx, Qt.DisplayRole)

 self.workers.kill(job_id)

In addition to this we need to modify the delegate to draw the currently

selected item and update the worker and manager to pass through the kill

signal. Take a look at the full source for this example to see how it all fits

together.

Figure 218. The manager, selecting a job allows you to stop it.

522

 A sense of progress

When a user does something in your application, the consequences of

that action should be immediately apparent — either through the result

of the action itself, or through an indication that something is being

done that will provide the result. This is particularly important for long-

running tasks, such as calculations or network requests, where a lack of

feedback could prompt the user to repeatedly mash buttons and

seeing nothing in return.

One simple approach is to disable buttons once an operation has been

triggered. But with no other indicator this looks a lot like "broken". A

better alternative is to update the button with a "Working" message

and an active progress indicator nearby. Progress bars are a common

way to address this by informing the user of what is going on. But don’t

fall into the trap of thinking progress bars are always useful. They

should always present a linear progress towards a task, if they don’t

they can be worse than no information ---

Progress bars are not helpful if -

• they go backwards and forward

• they don’t increase linearly with the task progress

• they complete too quickly

Any of these behaviors can give users the sense that something isn’t

right whether "it’s getting worse" to "what was that dialog I missed?"

Your users must always feel in control.

523

 DO

• Provide progress bars for long-running tasks.

• Provide granular detail of sub-tasks where appropriate.

• Estimate how long something will take, when you can.

 DON’T

• Assume your users know what tasks are long- and short-running.

• Use progress bars when you have no idea of progress.

• Use progress bars that go up and down.

524

34. Running external commands &

processes

So far we’ve looked at how to run things in separate threads, including

external programs using Python subprocess. But in PyQt5 we can also make

use of the Qt-based system for running external programs, QProcess. Creating

and executing a job with QProcess is relatively straightforward.

The simplest possible example is shown below — we create a QProcess object

and then call .start passing in the command line to execute. In this case

we’re passing in our custom demo script, running it with Python python

dummy_script.py.

p = QProcess()

p.start("python dummy_script.py")


Remember to keep a reference to the created QProcess

instance, either on self or elsewhere.

The simple example is enough if you just want to run a program and don’t

care what happens to it. However, if you want to know more about what a

program is doing, QProcess provides a number of signals which can be used

to track the progress and state of processes.

One of the most useful is the are the .readyReadStandardOutput and

.readyReadStandardError which fire whenever there is standard output and

standard error ready to be read from the process. All running processes have

two streams of output — standard out and standard error. The standard

output returns the actual result of the execution (if any) while standard error

returns any error or logging information.

525

p = QProcess()

p.readyReadStandardOutput.connect(self.handle_stdout)

p.readyReadStandardError.connect(self.handle_stderr)

p.stateChanged.connect(self.handle_state)

p.finished.connect(self.cleanup)

p.start("python dummy_script.py")

Additionally, there is a .finished signal which is fired when the process

completes, and a .stateChanged signal which fires when the process status

changes. Valid values — defined in the QProcess.ProcessState enum —  are

shown below.

Constant Value Description

QProcess.NotRunnin

g

0 The process is not running.

QProcess.Starting 1 The process is starting, but the

program has not yet been invoked.

QProcess.Running 2 The process is running and is ready

for reading and writing.

In the following example we extend this basic QProcess setup to add handlers

for the standard out and standard err. The signals notifying of available data

connect to these handlers and trigger a request of the data from the process,

using .readAllStandardError() and .readAllStandardOutput().

 The methods output raw bytes, so you need to decode it first.

In this example, our demo script dummy_script.py return a series of strings,

which are parsed to provide progress information and structured data. The

state of the process is also displayed on the statusbar.

The full code is shown below — 

Listing 178. concurrent/qprocess.py

526

from PyQt5.QtCore import (

 Qt, QObject, QRunnable, pyqtSlot, pyqtSignal, QProcess, QTimer,

QThreadPool

)

from PyQt5.QtWidgets import (

 QApplication, QMainWindow, QVBoxLayout, QPlainTextEdit,

QPushButton, QWidget, QProgressBar

)

from collections import namedtuple

import re

import subprocess

import time

import traceback, sys

STATES = {

 QProcess.NotRunning: 'Not running',

 QProcess.Starting: 'Starting...',

 QProcess.Running: 'Running...',

}

progress_re = re.compile("Total complete: (\d+)%")

def simple_percent_parser(output):

 """

 Matches lines using the progress_re regex,

 returning a single integer for the % progress.

 """

 m = progress_re.search(output)

 if m:

 pc_complete = m.group(1)

 return int(pc_complete)

def extract_vars(l):

 """

 Extracts variables from lines, looking for lines

 containing an equals, and splitting into key=value.

 """

 data = {}

 for s in l.splitlines():

 if '=' in s:

527

 name, value = s.split('=')

 data[name] = value

 return data

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 # Hold process reference.

 self.p = None

 layout = QVBoxLayout()

 self.text = QPlainTextEdit()

 layout.addWidget(self.text)

 self.progress = QProgressBar()

 layout.addWidget(self.progress)

 btn_run = QPushButton("Execute")

 btn_run.clicked.connect(self.start)

 layout.addWidget(btn_run)

 w = QWidget()

 w.setLayout(layout)

 self.setCentralWidget(w)

 self.show()

 def start(self):

 if self.p is not None:

 return

 self.p = QProcess()

 self.p.readyReadStandardOutput.connect(self.handle_stdout)

 self.p.readyReadStandardError.connect(self.handle_stderr)

 self.p.stateChanged.connect(self.handle_state)

 self.p.finished.connect(self.cleanup)

 self.p.start("python dummy_script.py")

528

 def handle_stderr(self):

 result = bytes(self.p.readAllStandardError()).decode('utf8')

 progress = simple_percent_parser(result)

 self.progress.setValue(progress)

 def handle_stdout(self):

 result = bytes(self.p.readAllStandardOutput()).decode('utf8')

 data = extract_vars(result)

 self.text.appendPlainText(str(data))

 def handle_state(self, state):

 self.statusBar().showMessage(STATES[state])

 def cleanup(self):

 self.p = None

app = QApplication(sys.argv)

w = MainWindow()

app.exec_()

In this example we store a reference to the process in self.p, meaning we

can only run a single process at once. But you are free to run as many

processes as you like alongside your application. If you don’t need to track

information from them, you can simply store references to the processes in a

list.

However, if you want to track progress and parse output from workers

individually, you may want to consider creating a manager class to handle

and track all your processes. There is an example of this in the source files

with the book, named qprocess_manager.py.

The full source code for the example is available in the source code for the

book, but below we’ll look at the JobManager class itself.

Listing 179. concurrent/qprocess_manager.py

class JobManager(QAbstractListModel):

529

 """

 Manager to handle active jobs and stdout, stderr

 and progress parsers.

 Also functions as a Qt data model for a view

 displaying progress for each process.

 """

 _jobs = {}

 _state = {}

 _parsers = {}

 status = pyqtSignal(str)

 result = pyqtSignal(str, object)

 def __init__(self):

 super().__init__()

 self.status_timer = QTimer()

 self.status_timer.setInterval(100)

 self.status_timer.timeout.connect(self.notify_status)

 self.status_timer.start()

 def notify_status(self):

 n_jobs = len(self._jobs)

 self.status.emit("{} jobs".format(n_jobs))

 def execute(self, command, parsers=no_parsers):

 """

 Enqueue a worker to run (at some point) by passing it to the

QThreadPool.

 """

 job_id = uuid.uuid4().hex

 # By default, the signals do not have access to any

information about

 # the process that sent it. So we use this constructor to

annotate

 # each signal with a job_id.

 def fwd_signal(target):

 return lambda *args: target(job_id, *args)

530

 self._parsers[job_id] = parsers

 # Set default status to waiting, 0 progress.

 self._state[job_id] = DEFAULT_STATE.copy()

 p = QProcess()

 p.readyReadStandardOutput.connect(fwd_signal(self

.handle_output))

 p.readyReadStandardError.connect(fwd_signal(self.

handle_output))

 p.stateChanged.connect(fwd_signal(self.handle_state))

 p.finished.connect(fwd_signal(self.done))

 self._jobs[job_id] = p

 p.start(command)

 self.layoutChanged.emit()

 def handle_output(self, job_id):

 p = self._jobs[job_id]

 stderr = bytes(p.readAllStandardError()).decode("utf8")

 stdout = bytes(p.readAllStandardOutput()).decode("utf8")

 output = stderr + stdout

 parser = self._parsers.get(job_id)

 if parser.progress:

 progress = parser.progress(output)

 if progress:

 self._state[job_id]["progress"] = progress

 self.layoutChanged.emit()

 if parser.data:

 data = parser.data(output)

 if data:

 self.result.emit(job_id, data)

 def handle_state(self, job_id, state):

 self._state[job_id]["status"] = state

 self.layoutChanged.emit()

 def done(self, job_id, exit_code, exit_status):

531

 """

 Task/worker complete. Remove it from the active workers

 dictionary. We leave it in worker_state, as this is used to

 to display past/complete workers too.

 """

 del self._jobs[job_id]

 self.layoutChanged.emit()

 def cleanup(self):

 """

 Remove any complete/failed workers from worker_state.

 """

 for job_id, s in list(self._state.items()):

 if s["status"] == QProcess.NotRunning:

 del self._state[job_id]

 self.layoutChanged.emit()

 # Model interface

 def data(self, index, role):

 if role == Qt.DisplayRole:

 # See below for the data structure.

 job_ids = list(self._state.keys())

 job_id = job_ids[index.row()]

 return job_id, self._state[job_id]

 def rowCount(self, index):

 return len(self._state)

This class provides a model view interface allowing it to be used as the basis

for a QListView. The custom delegate ProgressBarDelegate delegate draws a

progress bar for each item, along with the job identifier. The color of the

progress bar is determined by the status of the process — dark green if active,

or light green if complete.

Parsing of progress information from workers is tricky in this setup, because

the .readyReadStandardError and .readyReadStandardOutput signals do not pass

the data, or information about the job that is ready. To work around this we

define our custom job_id and intercept the signals to add this data to them.

Parsers for the jobs are passed in when executing the command and stored

532

in _parsers. Output received from each job is passed through the respective

parser and used to emit the data, or update the job’s progress.

Listing 180. concurrent/qprocess_manager.py

def simple_percent_parser(output):

 """

 Matches lines using the progress_re regex,

 returning a single integer for the % progress.

 """

 m = progress_re.search(output)

 if m:

 pc_complete = m.group(1)

 return int(pc_complete)

def extract_vars(l):

 """

 Extracts variables from lines, looking for lines

 containing an equals, and splitting into key=value.

 """

 data = {}

 for s in l.splitlines():

 if "=" in s:

 name, value = s.split("=")

 data[name] = value

 return data

You can start multiple jobs, and watch them complete, updating their

current progress as they go. Experiment with adding additional commands

and parsers for your own jobs.

533

Figure 219. The process manager, showing active processes and progress.

534

Plotting
One of the major strengths of Python is in data science and visualization,

using tools such as Pandas, numpy and sklearn for data analysis. Buiding

GUI applications with PyQt5 gives you access to all these Python tools

directly from within your app, allowing you to build complex data-driven

apps and interactive dashboards. We’ve already covered the model views,

which allow us to show data in lists and tables. In this chapter we’ll look at

the final piece of that puzzle — plotting data.

When building apps with PyQt5 you have two main choices — matplotlib

(which also gives access to Pandas plots) and PyQtGraph, which creates plots

with Qt-native graphics. In this chapter we’ll look at how you can use these

libraries to visualize data in your applications.

535

35. Plotting with PyQtGraph

While it is possible to embed matplotlib plots in PyQt5 the experience does

not feel entirely native. For simple and highly interactive plots you may want

to consider using PyQtGraph instead. PyQtGraph is built on top of PyQt5

native QGraphicsScene giving better drawing performance, particularly for live

data, as well as providing interactivity and the ability to easily customize plots

with Qt graphics widgets.

In this chapter we’ll walk through the first steps of creating a plot widget

with PyQtGraph and then demonstrate plot customization using line colors,

line type, axis labels, background color and plotting multiple lines.

Getting started

To be able to use PyQtGraph with PyQt5 you first need to install the package

to your Python environment. You can do this as normal using pip.

pip install pyqtgraph

Once the installation is complete you should be able to import the module as

normal.

Creating a PyQtGraph widget

In PyQtGraph all plots are created using the PlotWidget widget. This widget

provides a contained canvas on which plots of any type can be added and

configured. Under the hood, this plot widget uses Qt native QGraphicsScene

meaning it fast and efficient yet simple to integrate with the rest of your app.

You can create a PlotWidget as for any other widget.

The basic template app, with a single PlotWidget in a QMainWindow is shown

below.

536


In the following examples we’ll create the PyQtGraph widget

in code. However, you can also embed PyQtGraph widgets

from Qt Designer.

Listing 181. plotting/pyqtgraph_1.py

import sys

from PyQt5 import QtWidgets # import PyQt5 before PyQtGraph

import pyqtgraph as pg

from pyqtgraph import PlotWidget, plot

class MainWindow(QtWidgets.QMainWindow):

 def __init__(self):

 super().__init__()

 self.graphWidget = pg.PlotWidget()

 self.setCentralWidget(self.graphWidget)

 hour = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

 temperature = [30, 32, 34, 32, 33, 31, 29, 32, 35, 45]

 # plot data: x, y values

 self.graphWidget.plot(hour, temperature)

app = QtWidgets.QApplication(sys.argv)

main = MainWindow()

main.show()

app.exec_()



In all our examples below we import PyQtGraph using

import pyqtgraph as pg. This is a common convention in

PyQtGraph examples to keep things tidy & reduce typing.

You can import as import pyqtgraph if you prefer.

537

Figure 220. The custom PyQtGraph widget showing dummy data.

The default plot style of PyQtGraph is quite bare - a black background with a

thin (barely visible) white line. In the next section we’ll look at what options

we have available to us in PyQtGraph to improve the appearance and

usability of our plots.

Styling plots

PyQtGraph uses Qt’s QGraphicsScene to render the graphs. This gives us access

to all the standard Qt line and shape styling options for use in plots. However,

PyQtGraph provides an API for using these to draw plots and manage the

plot canvas.

Below we’ll go through the most common styling features you’ll need to

create and customize your own plots.

Background Colour

Beginning with the app skeleton above, we can change the background

color by calling .setBackground on our PlotWidget instance (in self.graphWidget).

The code below will set the background to white, by passing in the string 'w'.

self.graphWidget.setBackground('w')

You can set (and update) the background color of the plot at any time.

538

Listing 182. plotting/pyqtgraph_2.py

import sys

from PyQt5 import QtWidgets # import PyQt5 before PyQtGraph

import pyqtgraph as pg

from pyqtgraph import PlotWidget, plot

class MainWindow(QtWidgets.QMainWindow):

 def __init__(self):

 super().__init__()

 self.graphWidget = pg.PlotWidget()

 self.setCentralWidget(self.graphWidget)

 hour = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

 temperature = [30, 32, 34, 32, 33, 31, 29, 32, 35, 45]

 self.graphWidget.setBackground("w")

 self.graphWidget.plot(hour, temperature)

app = QtWidgets.QApplication(sys.argv)

main = MainWindow()

main.show()

app.exec_()

Figure 221. Changed PyQtGraph Plot Background to White.

539

There are a number of simple colors available using single letters, based on

the standard colors used in matplotlib. They’re pretty unsurprising, except

that 'k' is used for black.

Table 13. Common color codes

Colour Letter code

blue b

green g

red r

cyan (bright blue-green) c

magenta (bright pink) m

yellow y

black k

white w

In addition to these single letter codes, you can also set colors using hex

notation eg. #672922 as a string.

self.graphWidget.setBackground('#bbccaa') # hex

RGB and RGBA values can be passed in as a 3-tuple or 4-tuple respectively,

using values 0-255.

self.graphWidget.setBackground((100,50,255)) # RGB each 0-255

self.graphWidget.setBackground((100,50,255,25)) # RGBA (A = alpha

opacity)

Lastly, you can also specify colors using Qt’s QColor type directly.

self.graphWidget.setBackground(QtGui.QColor(100,50,254,25))

This can be useful if you’re using specific QColor objects elsewhere in your

540

application, or to set your plot background to the default GUI background

color.

color = self.palette().color(QtGui.QPalette.Window) # Get the default

window background,

self.graphWidget.setBackground(color)

Line Color, Width & Style

Lines in PyQtGraph are drawn using standard Qt QPen types. This gives you

the same full control over line drawing as you would have in any other

QGraphicsScene drawing. To use a pen to plot a line, you simply create a new

QPen instance and pass it into the plot method.

Below we create a QPen object, passing in a 3-tuple of int values specifying an

RGB value (of full red). We could also define this by passing 'r', or a QColor

object. Then we pass this into plot with the pen parameter.

pen = pg.mkPen(color=(255, 0, 0))

self.graphWidget.plot(hour, temperature, pen=pen)

The complete code is shown below.

541

Listing 183. plotting/pyqtgraph_3.py

import sys

from PyQt5 import QtWidgets # import PyQt5 before PyQtGraph

import pyqtgraph as pg

from pyqtgraph import PlotWidget, plot

class MainWindow(QtWidgets.QMainWindow):

 def __init__(self):

 super().__init__()

 self.graphWidget = pg.PlotWidget()

 self.setCentralWidget(self.graphWidget)

 hour = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

 temperature = [30, 32, 34, 32, 33, 31, 29, 32, 35, 45]

 self.graphWidget.setBackground("w")

 pen = pg.mkPen(color=(255, 0, 0))

 self.graphWidget.plot(hour, temperature, pen=pen)

app = QtWidgets.QApplication(sys.argv)

main = MainWindow()

main.show()

app.exec_()

542

Figure 222. Changing Line Colour.

By changing the QPen object we can change the appearance of the line,

including both line width in pixels and style (dashed, dotted, etc.) using

standard Qt line styles. For example, the following example creates a 15px

width dashed line in red.

pen = pg.mkPen(color=(255, 0, 0), width=15, style=QtCore.Qt.DashLine)

The result is shown below, giving a 15px dashed red line.

Figure 223. Changing Line Width and Style.

The standard Qt line styles can all be used, including Qt.SolidLine, Qt.DashLine,

Qt.DotLine, Qt.DashDotLine and Qt.DashDotDotLine. Examples of each of these

lines are shown in the image below, and you can read more in the Qt

543

https://doc.qt.io/qt-5/qpen.html#pen-style

Documentation.

Line Markers

For many plots it can be helpful to place markers in addition or instead of

lines on the plot. To draw a marker on the plot, pass the symbol to use as a

marker when calling .plot as shown below.

self.graphWidget.plot(hour, temperature, symbol='+')

In addition to symbol you can also pass in symbolSize, symbolBrush and symbolPen

parameters. The value passed as symbolBrush can be any color, or QBrush type,

while symbolPen can be passed any color or a QPen instance. The pen is used to

draw the outline of the shape, while brush is used for the fill.

For example the below code will give a blue cross marker of size 30, on a

thick red line.

pen = pg.mkPen(color=(255, 0, 0), width=15, style=QtCore.Qt.DashLine)

self.graphWidget.plot(hour, temperature, pen=pen, symbol='+',

symbolSize=30, symbolBrush=('b'))

Figure 224. Symbols are shown at each data point on the line.

In addition to the + plot marker, PyQtGraph supports the following standard

markers shown in the table below. These can all be used in the same way.

544

https://doc.qt.io/qt-5/qpen.html#pen-style

Variable Marker Type

o Circular

s Square

t Triangular

d Diamond

+ Cross


If you have more complex requirements you can also pass in

any QPainterPath object, allowing you to draw completely

custom marker shapes.

Plot Titles

Chart titles are important to provide context to what is shown on a given

chart. In PyQtGraph you can add a main plot title using the setTitle()

method on the PlotWidget, passing in your title string.

self.graphWidget.setTitle("Your Title Here")

You can apply text styles, including colors, font sizes and weights to your

titles (and any other labels in PyQtGraph) by passing additional arguments.

The available syle arguments are shown below.

Style Type

color (str) e.g. 'CCFF00'

size (str) e.g. '8pt'

bold (bool) True or False

italic (bool) True or False

The code below sets the color to blue with a font size of 30pt.

545

self.graphWidget.setTitle("Your Title Here", color="b", size="30pt")

You can also style your headers with HTML tag syntax if you prefer, although

it’s less readable.

self.graphWidget.setTitle("<span style=\"color:blue;font-size:30pt

\">Your Title Here")

Figure 225. Plot with a styled title.

Axis Labels

Similar to titles, we can use the setLabel() method to create our axis titles.

This requires two parameters, position and text. The position can be any one

of 'left,'right','top','bottom' which describe the position of the axis on

which the text is placed. The 2nd parameter text is the text you want to use

for the label.

You can pass additional style parameters into the method. These differ

slightly than for the title, in that they need to be valid CSS name-value pairs.

For example, the size is now font-size. Because the name font-size has a

hyphen in it, you cannot pass it directly as a parameter, but must use the

**dictionary method.

546

styles = {'color':'r', 'font-size':'30pt'}

self.graphWidget.setLabel('left', 'Temperature (°C)', **styles)

self.graphWidget.setLabel('bottom', 'Hour (H)', **styles)

These also support HTML syntax if you prefer.

self.graphWidget.setLabel('left', "<span style=\"color:red;font-

size:30px\">Temperature (°C)")

self.graphWidget.setLabel('bottom', "<span style=\"color:red;font-

size:30px\">Hour (H)")

Figure 226. Axis labels with a custom style.

Legends

In addition to the axis and plot titles you will often want to show a legend

identifying what a given line represents. This is particularly important when

you start adding multiple lines to a plot. Adding a legend to a plot can be

accomplished by calling .addLegend on the PlotWidget, however before this will

work you need to provide a name for each line when calling .plot().

The example below assigns a name "Sensor 1" to the line we are plotting with

.plot(). This name will be used to identify the line in the legend.

547

self.graphWidget.plot(hour, temperature, name = "Sensor 1", pen =

NewPen, symbol='+', symbolSize=30, symbolBrush=('b'))

self.graphWidget.addLegend()

Figure 227. The plot with the legend, showing a single item.



The legend appears in the top left by default. If you would

like to move it, you can easily drag and drop the legend

elsewhere. You can also specify a default offset by passing a

2-tuple to the offset parameter when creating the legend.

Background Grid

Adding a background grid can make your plots easier to read, particularly

when trying to compare relative x & y values against each other. You can turn

on a background grid for your plot by calling .showGrid on your PlotWidget.

You can toggle x and y grids independently.

The following with create the grid for both the X and Y axis.

self.graphWidget.showGrid(x=True, y=True)

548

Figure 228. The plot grid.

Setting Axis Limits

Sometimes it can be useful to restrict the range of data which is visible on

the plot, or to lock the axis to a consistent range regardless of the data input

(e.g. a known min-max range). In PyQtGraph this can be done using the

.setXRange() and .setYRange() methods. These force the plot to only show

data within the specified ranges on each axis.

Below we set two ranges, one on each axis. The 1st argument is the

minimum value and the 2nd is the maximum.

self.graphWidget.setXRange(5, 20, padding=0)

self.graphWidget.setYRange(30, 40, padding=0)

A optional padding argument causes the range to be set larger than

specified by the specified fraction (this between 0.02 and 0.1 by default,

depending on the size of the ViewBox). If you want to remove this padding

entirely, pass 0.

self.graphWidget.setXRange(5, 20, padding=0)

self.graphWidget.setYRange(30, 40, padding=0)

The complete code so far is shown below:

549

Listing 184. plotting/pyqtgraph_4.py

import sys

from PyQt5 import QtWidgets # import PyQt5 before PyQtGraph

import pyqtgraph as pg

from pyqtgraph import PlotWidget, plot

class MainWindow(QtWidgets.QMainWindow):

 def __init__(self):

 super().__init__()

 self.graphWidget = pg.PlotWidget()

 self.setCentralWidget(self.graphWidget)

 hour = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

 temperature = [30, 32, 34, 32, 33, 31, 29, 32, 35, 45]

 # Add Background color to white

 self.graphWidget.setBackground("w")

 # Add Title

 self.graphWidget.setTitle("Your Title Here", color="b", size

="30pt")

 # Add Axis Labels

 styles = {"color": "#f00", "font-size": "20px"}

 self.graphWidget.setLabel("left", "Temperature (°C)", **

styles)

 self.graphWidget.setLabel("bottom", "Hour (H)", **styles)

 # Add legend

 self.graphWidget.addLegend()

 # Add grid

 self.graphWidget.showGrid(x=True, y=True)

 # Set Range

 self.graphWidget.setXRange(0, 10, padding=0)

 self.graphWidget.setYRange(20, 55, padding=0)

 pen = pg.mkPen(color=(255, 0, 0))

 self.graphWidget.plot(

 hour,

 temperature,

 name="Sensor 1",

 pen=pen,

550

 symbol="+",

 symbolSize=30,

 symbolBrush=("b"),

)

app = QtWidgets.QApplication(sys.argv)

main = MainWindow()

main.show()

app.exec_()

Figure 229. Limiting the range of the axis.

Plotting multiple lines

It is common for plots to involve more than one line. In PyQtGraph this is as

simple as calling .plot() multiple times on the same PlotWidget. In the

following example we’re going to plot two lines of similar data, using the

same line styles, thicknesses etc. for each, but changing the line color.

To simplify this we can create our own custom plot method on our

MainWindow. This accepts x and y parameters to plot, the name of the line (for

the legend) and a color. We use the color for both the line and marker color.

551

 def plot(self, x, y, plotname, color):

 pen = pg.mkPen(color=color)

 self.graphWidget.plot(x, y, name=plotname, pen=pen, symbol=

'+', symbolSize=30, symbolBrush=(color))

To plot separate lines we’ll create a new array called temperature_2 and

populate it with random numbers similar to temperature (now temperature_1).

Plotting these alongside each other allows us to compare them together.

Now, you can call plot function twice and this will generate 2 lines on the

plot.

self.plot(hour, temperature_1, "Sensor1", 'r')

self.plot(hour, temperature_2, "Sensor2", 'b')

Listing 185. plotting/pyqtgraph_5.py

import sys

from PyQt5 import QtWidgets # import PyQt5 before PyQtGraph

import pyqtgraph as pg

from pyqtgraph import PlotWidget, plot

class MainWindow(QtWidgets.QMainWindow):

 def __init__(self):

 super().__init__()

 self.graphWidget = pg.PlotWidget()

 self.setCentralWidget(self.graphWidget)

 hour = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

 temperature_1 = [30, 32, 34, 32, 33, 31, 29, 32, 35, 45]

 temperature_2 = [50, 35, 44, 22, 38, 32, 27, 38, 32, 44]

 # Add Background color to white

 self.graphWidget.setBackground("w")

 # Add Title

 self.graphWidget.setTitle("Your Title Here", color="b", size

="30pt")

552

 # Add Axis Labels

 styles = {"color": "#f00", "font-size": "20px"}

 self.graphWidget.setLabel("left", "Temperature (°C)", **

styles)

 self.graphWidget.setLabel("bottom", "Hour (H)", **styles)

 # Add legend

 self.graphWidget.addLegend()

 # Add grid

 self.graphWidget.showGrid(x=True, y=True)

 # Set Range

 self.graphWidget.setXRange(0, 10, padding=0)

 self.graphWidget.setYRange(20, 55, padding=0)

 self.plot(hour, temperature_1, "Sensor1", "r")

 self.plot(hour, temperature_2, "Sensor2", "b")

 def plot(self, x, y, plotname, color):

 pen = pg.mkPen(color=color)

 self.graphWidget.plot(

 x, y, name=plotname, pen=pen, symbol="+", symbolSize=30,

symbolBrush=(color)

)

app = QtWidgets.QApplication(sys.argv)

main = MainWindow()

main.show()

app.exec_()

Figure 230. A plot with two lines.

553


Play around with this function, customizing your markers,

line widths, colors and other parameters.

Clearing the plot

Finally, sometimes you might want to clear and refresh the plot periodically.

You can easily do that by calling .clear().

self.graphWidget.clear()

This will remove the lines from the plot but keep all other attributes the

same.

Updating the plot

While you can simply clear the plot and redraw all your elements again, this

means Qt has to destroy and recreate all your QGraphicsScene objects. For

small or simple plots this is probably not noticeable, but if you want to create

high-peformance streaming plots it is much better to update the data in

place. PyQtGraph takes the new data and updates the plotted line to match

without affecting any other elements in the plot.

To update a line we need a reference to the line object. This reference is

returned when first creating the line using .plot and we can simply store this

in a variable. Note that this is a reference to the line not to the plot.

my_line_ref = graphWidget.plot(x, y)

Once we have the reference, updating the plot is simply a case of calling

.setData on the reference to apply the new data.

Listing 186. plotting/pyqtgraph_6.py

import os

import sys # We need sys so that we can pass argv to QApplication

554

from random import randint

from PyQt5 import QtWidgets, QtCore # import PyQt5 before PyQtGraph

import pyqtgraph as pg

from pyqtgraph import PlotWidget, plot

class MainWindow(QtWidgets.QMainWindow):

 def __init__(self):

 super().__init__()

 self.graphWidget = pg.PlotWidget()

 self.setCentralWidget(self.graphWidget)

 self.x = list(range(100)) # 100 time points

 self.y = [randint(0, 100) for _ in range(100)] # 100 data

points

 self.graphWidget.setBackground("w")

 pen = pg.mkPen(color=(255, 0, 0))

 self.data_line = self.graphWidget.plot(self.x, self.y, pen=

pen) ①

 self.timer = QtCore.QTimer()

 self.timer.setInterval(50)

 self.timer.timeout.connect(self.update_plot_data)

 self.timer.start()

 def update_plot_data(self):

 self.x = self.x[1:] # Remove the first y element.

 self.x.append(self.x[-1] + 1) # Add a new value 1 higher than

the last.

 self.y = self.y[1:] # Remove the first

 self.y.append(randint(0, 100)) # Add a new random value.

 self.data_line.setData(self.x, self.y) # Update the data.

app = QtWidgets.QApplication(sys.argv)

w = MainWindow()

555

w.show()

app.exec_()

① Here we take a reference to the line we plotted, storing it as

self.data_line.

We use a QTimer to update the data every 50ms, setting the trigger to call a

custom slot method update_plot_data where we’ll change the data. We define

this timer in the __init__ block so it is automatically started.

If you run the app you will see a plot with random data scrolling rapidly to the

left, with the X values also updating and scrolling in time, as if streaming

data. You can replace the random data with your own real data, taken for

example from a live sensor readout or API. PyQtGraph is performant enough

to support multiple plots using this method.

Conclusion

In this chapter we’ve discovered how to draw simple plots with PyQtGraph

and customize lines, markers and labels. For a complete overview of

PyQtGraph methods and capabilities see the PyQtGraph Documentation &

API Reference. The PyQtGraph repository on Github also has complete set of

more complex example plots in Plotting.py (shown below).

Figure 231. Example plots taken from the PyQtGraph documentation.

556

http://www.pyqtgraph.org/documentation/
http://www.pyqtgraph.org/documentation/
https://github.com/pyqtgraph/pyqtgraph

36. Plotting with Matplotlib

In the previous part we covered plotting in PyQt5 using PyQtGraph. That

library uses the Qt vector-based QGraphicsScene to draw plots and provides

a great interface for interactive and high performance plotting.

However, there is another plotting library for Python which is used far more

widely, and which offers a richer assortment of plots — Matplotlib. If you’re

migrating an existing data analysis tool to a PyQt5 GUI, or if you simply want

to have access to the array of plot abilities that Matplotlib offers, then you’ll

want to know how to include Matplotlib plots within your application.

In this chapter we’ll cover how to embed Matplotlib plots in your PyQt5

applications



Many other Python libraries — such as seaborn and pandas

— make use of Matplotlib for plotting. These plots can be

embedded in PyQt5 in the same way shown here, and the

reference to the axes passed when plotting. There is a

pandas example at the end of this chapter.

Installing Matplotlib

The following examples assume you have Matplotlib installed. If not you can

install it as normal using pip, with the following —

pip install matplotlib

A simple example

The following minimal example sets up a Matplotlib canvas FigureCanvasQTAgg

which creates the Figure and adds a single set of axes to it. This canvas object

is also a QWidget and so can be embedded straight into an application as any

other Qt widget.

557

https://www.matplotlib.org
https://github.com/mwaskom/seaborn
https://pandas.pydata.org/pandas-docs/version/0.13/visualization.html

Listing 187. plotting/matplotlib_1.py

import sys

from PyQt5 import QtWidgets # import PyQt5 before matplotlib

import matplotlib

from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg

from matplotlib.figure import Figure

matplotlib.use("Qt5Agg")

class MplCanvas(FigureCanvasQTAgg):

 def __init__(self, parent=None, width=5, height=4, dpi=100):

 fig = Figure(figsize=(width, height), dpi=dpi)

 self.axes = fig.add_subplot(111)

 super().__init__(fig)

class MainWindow(QtWidgets.QMainWindow):

 def __init__(self):

 super().__init__()

 # Create the maptlotlib FigureCanvas object,

 # which defines a single set of axes as self.axes.

 sc = MplCanvas(self, width=5, height=4, dpi=100)

 sc.axes.plot([0, 1, 2, 3, 4], [10, 1, 20, 3, 40])

 self.setCentralWidget(sc)

 self.show()

app = QtWidgets.QApplication(sys.argv)

w = MainWindow()

app.exec_()

In this case we’re adding our MplCanvas widget as the central widget on the

window with .setCentralWidget(). This means it will take up the entirety of the

window and resize together with it. The plotted data [0,1,2,3,4],

[10,1,20,3,40] is provided as two lists of numbers (x and y respectively) as

558

required by the .plot method.

Figure 232. A simple plot.

Plot controls

Plots from Matplotlib displayed in PyQt5 are actually rendered as simple

(bitmap) images by the Agg backend. The FigureCanvasQTAgg class wraps this

backend and displays the resulting image on a Qt widget. The effect of this

architecture is that Qt is unaware of the positions of lines and other plot

elements — only the x, y coordinates of any clicks and mouse movements

over the widget.

However, support for handling Qt mouse events and transforming them into

interactions on the plot is built into Matplotlib. This can be controlled

through a custom toolbar which can be added to your applications alongside

the plot. In this section we’ll look at adding these controls so we can zoom,

pan and get data from embedded Matplotlib plots.

The complete code, importing the toolbar widget NavigationToolbar2QT and

adding it to the interface within a QVBoxLayout, is shown below —

Listing 188. plotting/matplotlib_2.py

import sys

from PyQt5 import QtWidgets # import PyQt5 before matplotlib

559

import matplotlib

from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg

from matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as

NavigationToolbar

from matplotlib.figure import Figure

matplotlib.use("Qt5Agg")

class MplCanvas(FigureCanvasQTAgg):

 def __init__(self, parent=None, width=5, height=4, dpi=100):

 fig = Figure(figsize=(width, height), dpi=dpi)

 self.axes = fig.add_subplot(111)

 super().__init__(fig)

class MainWindow(QtWidgets.QMainWindow):

 def __init__(self):

 super().__init__()

 sc = MplCanvas(self, width=5, height=4, dpi=100)

 sc.axes.plot([0, 1, 2, 3, 4], [10, 1, 20, 3, 40])

 # Create toolbar, passing canvas as first parament, parent

(self, the MainWindow) as second.

 toolbar = NavigationToolbar(sc, self)

 layout = QtWidgets.QVBoxLayout()

 layout.addWidget(toolbar)

 layout.addWidget(sc)

 # Create a placeholder widget to hold our toolbar and canvas.

 widget = QtWidgets.QWidget()

 widget.setLayout(layout)

 self.setCentralWidget(widget)

 self.show()

app = QtWidgets.QApplication(sys.argv)

w = MainWindow()

560

app.exec_()

We’ll step through the changes.

First we import the toolbar widget from

matplotlib.backends.backend_qt5agg.NavigationToolbar2QT renaming it with the

simpler name NavigationToolbar. We create an instance of the toolbar by

calling NavigationToolbar with two parameters, first the canvas object sc and

then the parent for the toolbar, in this case our MainWindow object self. Passing

in the canvas links the created toolbar to it, allowing it to be controlled. The

resulting toolbar object is stored in the variable toolbar.

We need to add two widgets to the window, one above the other, so we use

a QVBoxLayout. First we add our toolbar widget toolbar and then the canvas

widget sc to this layout. Finally, we set this layout onto our simple widget

layout container which is set as the central widget for the window.

Running the above code will produce the following window layout, showing

the plot at the bottom and the controls on top as a toolbar.

Figure 233. Matplotlib canvas with toolbar.

The buttons provided by NavigationToolbar2QT allow for control of the

following actions —

561

• Home, Back/Forward, Pan & Zoom which are used to navigate through

the plots. The Back/Forward buttons can step backwards and forwards

through navigation steps, for example zooming in and then clicking Back

will return to the previous zoom. Home returns to the initial state of the

plot.

• Plot margin/position configuration which can adjust the plot within the

window.

• Axis/curve style editor, where you can modify plot titles and axes scales,

along with setting plot line colors and line styles. The color selection uses

the platform-default color picker, allowing any available colors to be

selected.

• Save, to save the resulting figure as an image (all Matplotlib supported

formats).

A few of these configuration settings are shown below.

Figure 234. Matplotlib figure options.

562

Figure 235. Matplotlib curve options.

For more information on navigating and configuring Matplotlib plots, take a

look at the official Matplotlib toolbar documentation.

Updating plots

Quite often in applications you’ll want to update the data shown in plots,

whether in response to input from the user or updated data from an API.

There are two ways to update plots in Matplotlib, either

1. clearing and redrawing the canvas (simpler, but slower) or,

2. by keeping a reference to the plotted line and updating the data.

If performance is important to your app it is recommended you do the latter,

but the first is simpler. We start with the simple clear-and-redraw method

first below —

563

https://matplotlib.org/3.1.1/users/navigation_toolbar.html

Clear and redraw

Listing 189. plotting/matplotlib_3.py

import random

import sys

from PyQt5 import QtCore, QtWidgets # import PyQt5 before matplotlib

import matplotlib

from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as

FigureCanvas

from matplotlib.figure import Figure

matplotlib.use("Qt5Agg")

class MplCanvas(FigureCanvas):

 def __init__(self, parent=None, width=5, height=4, dpi=100):

 fig = Figure(figsize=(width, height), dpi=dpi)

 self.axes = fig.add_subplot(111)

 super().__init__(fig)

class MainWindow(QtWidgets.QMainWindow):

 def __init__(self):

 super().__init__()

 self.canvas = MplCanvas(self, width=5, height=4, dpi=100)

 self.setCentralWidget(self.canvas)

 n_data = 50

 self.xdata = list(range(n_data))

 self.ydata = [random.randint(0, 10) for i in range(n_data)]

 self.update_plot()

 self.show()

 # Setup a timer to trigger the redraw by calling update_plot.

 self.timer = QtCore.QTimer()

 self.timer.setInterval(100)

 self.timer.timeout.connect(self.update_plot)

564

 self.timer.start()

 def update_plot(self):

 # Drop off the first y element, append a new one.

 self.ydata = self.ydata[1:] + [random.randint(0, 10)]

 self.canvas.axes.cla() # Clear the canvas.

 self.canvas.axes.plot(self.xdata, self.ydata, "r")

 # Trigger the canvas to update and redraw.

 self.canvas.draw()

app = QtWidgets.QApplication(sys.argv)

w = MainWindow()

app.exec_()

In this example we’ve moved the plotting to a update_plot method to keep it

self-contained. In this method we take our ydata array and drop off the first

value with [1:] then append a new random integer between 0 and 10. This

has the effect of scrolling the data to the left.

To redraw we simply call axes.cla() to clear the axes (the entire canvas) and

the axes.plot(…) to re-plot the data, including the updated values. The

resulting canvas is then redrawn to the widget by calling canvas.draw().

The update_plot method is called every 100 msec using a QTimer. The clear-

and-refresh method is fast enough to keep a plot updated at this rate, but as

we’ll see shortly, falters as the speed increases.

In-place redraw

The changes required to update the plotted lines in-place are fairly minimal,

requiring only an addition variable to store and retrieve the reference to the

plotted line. The updated MainWindow code is shown below.

Listing 190. plotting/matplotlib_4.py

class MainWindow(QtWidgets.QMainWindow):

 def __init__(self):

 super().__init__()

565

 self.canvas = MplCanvas(self, width=5, height=4, dpi=100)

 self.setCentralWidget(self.canvas)

 n_data = 50

 self.xdata = list(range(n_data))

 self.ydata = [random.randint(0, 10) for i in range(n_data)]

 # We need to store a reference to the plotted line

 # somewhere, so we can apply the new data to it.

 self._plot_ref = None

 self.update_plot()

 self.show()

 # Setup a timer to trigger the redraw by calling update_plot.

 self.timer = QtCore.QTimer()

 self.timer.setInterval(100)

 self.timer.timeout.connect(self.update_plot)

 self.timer.start()

 def update_plot(self):

 # Drop off the first y element, append a new one.

 self.ydata = self.ydata[1:] + [random.randint(0, 10)]

 # Note: we no longer need to clear the axis.

 if self._plot_ref is None:

 # First time we have no plot reference, so do a normal

plot.

 # .plot returns a list of line <reference>s, as we're

 # only getting one we can take the first element.

 plot_refs = self.canvas.axes.plot(self.xdata, self.ydata,

"r")

 self._plot_ref = plot_refs[0]

 else:

 # We have a reference, we can use it to update the data

for that line.

 self._plot_ref.set_ydata(self.ydata)

 # Trigger the canvas to update and redraw.

 self.canvas.draw()

566

First, we need a variable to hold a reference to the plotted line we want to

update, which here we’re calling _plot_ref. We initialize self._plot_ref with

None so we can check its value later to determine if the line has already been

drawn — if the value is still None we have not yet drawn the line.


If you were drawing multiple lines you would probably want

to use a list or dict data structure to store the multiple

references and keep track of which is which.

Finally, we update the ydata data as we did before, rotating it to the left and

appending a new random value. Then we either —

1. if self._plotref is None (i.e. we have not yet drawn the line) draw the line

and store the reference in self._plot_ref, or

2. update the line in place by calling self._plot_ref.set_ydata(self.ydata)

We obtain a reference to the plotted when calling .plot. However .plot

returns a list (to support cases where a single .plot call can draw more than

one line). In our case we’re only plotting a single line, so we simply want the

first element in that list – a single Line2D object. To get this single value into

our variable we can assign to a temporary variable plot_refs and then assign

the first element to our self._plot_ref variable.

plot_refs = self.canvas.axes.plot(self.xdata, self.ydata, 'r')

self._plot_ref = plot_refs[0]

You could also use tuple-unpacking, picking off the first (and only) element in

the list with —

self._plot_ref, = self.canvas.axes.plot(self.xdata, self.ydata, 'r')

If you run the resulting code, there will be no noticeable difference in

performance between this and the previous method at this speed. However

if you attempt to update the plot faster (e.g. down to every 10 msec) you’ll

start to notice that clearing the plot and re-drawing takes longer, and the

567

updates do not keep up with the timer. Whether this performance difference

is enough to matter in your application depends on what you’re building,

and should be weighed against the added complication of keeping and

managing the references to plotted lines.

Embedding plots from Pandas

Pandas is a Python package focused on working with table (data frames) and

series data structures, which is particularly useful for data analysis workflows.

It comes with built-in support for plotting with Matplotlib and here we’ll take

a quick look at how to embed these plots into PyQt5. With this you will be

able to start building PyQt5 data-analysis applications built around Pandas.

Pandas plotting functions are directly accessible from the DataFrame objects.

The function signature is quite complex, giving a lot of options to control how

the plots will be drawn.

DataFrame.plot(

 x=None, y=None, kind='line', ax=None, subplots=False,

 sharex=None, sharey=False, layout=None, figsize=None,

 use_index=True, title=None, grid=None, legend=True, style=None,

 logx=False, logy=False, loglog=False, xticks=None, yticks=None,

 xlim=None, ylim=None, rot=None, fontsize=None, colormap=None,

 table=False, yerr=None, xerr=None, secondary_y=False,

 sort_columns=False, **kwargs

)

The parameter we’re most interested in is ax which allows us to pass in our

own matplotlib.Axes instance on which Pandas will plot the DataFrame.

Listing 191. plotting/matplotlib_5.py

import sys

from PyQt5 import QtCore, QtWidgets # import PyQt5 before matplotlib

import matplotlib

import pandas as pd

568

from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg

from matplotlib.figure import Figure

matplotlib.use("Qt5Agg")

class MplCanvas(FigureCanvasQTAgg):

 def __init__(self, parent=None, width=5, height=4, dpi=100):

 fig = Figure(figsize=(width, height), dpi=dpi)

 self.axes = fig.add_subplot(111)

 super().__init__(fig)

class MainWindow(QtWidgets.QMainWindow):

 def __init__(self):

 super().__init__()

 # Create the maptlotlib FigureCanvas object,

 # which defines a single set of axes as self.axes.

 sc = MplCanvas(self, width=5, height=4, dpi=100)

 # Create our pandas DataFrame with some simple

 # data and headers.

 df = pd.DataFrame(

 [[0, 10], [5, 15], [2, 20], [15, 25], [4, 10],], columns=

["A", "B"]

)

 # plot the pandas DataFrame, passing in the

 # matplotlib Canvas axes.

 df.plot(ax=sc.axes)

 self.setCentralWidget(sc)

 self.show()

app = QtWidgets.QApplication(sys.argv)

w = MainWindow()

app.exec_()

The key step here is passing the canvas axes in when calling the plot method

569

on the DataFrame `on the line `df.plot(ax=sc.axes). You can use this same

pattern to update the plot any time, although bear in mind that Pandas

clears and redraws the entire canvas, meaning that it is not ideal for high

performance plotting.

The resulting plot generated through Pandas is shown below —

Figure 236. Pandas generated plot, in matplotlib Canvas.

Just as before, you can add the Matplotlib toolbar and control support to

plots generated using Pandas, allowing you to zoom/pan and modify them

live. The following code combines our earlier toolbar example with the

Pandas example.

Listing 192. plotting/matplotlib_6.py

import sys

from PyQt5 import QtCore, QtWidgets # import PyQt5 before matplotlib

import matplotlib

import pandas as pd

from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg

from matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as

NavigationToolbar

from matplotlib.figure import Figure

matplotlib.use("Qt5Agg")

570

class MplCanvas(FigureCanvasQTAgg):

 def __init__(self, parent=None, width=5, height=4, dpi=100):

 fig = Figure(figsize=(width, height), dpi=dpi)

 self.axes = fig.add_subplot(111)

 super().__init__(fig)

class MainWindow(QtWidgets.QMainWindow):

 def __init__(self):

 super().__init__()

 # Create the maptlotlib FigureCanvas object,

 # which defines a single set of axes as self.axes.

 sc = MplCanvas(self, width=5, height=4, dpi=100)

 # Create our pandas DataFrame with some simple

 # data and headers.

 df = pd.DataFrame(

 [[0, 10], [5, 15], [2, 20], [15, 25], [4, 10],], columns=

["A", "B"]

)

 # plot the pandas DataFrame, passing in the

 # matplotlib Canvas axes.

 df.plot(ax=sc.axes)

 # Create toolbar, passing canvas as first parament, parent

(self, the MainWindow) as second.

 toolbar = NavigationToolbar(sc, self)

 layout = QtWidgets.QVBoxLayout()

 layout.addWidget(toolbar)

 layout.addWidget(sc)

 # Create a placeholder widget to hold our toolbar and canvas.

 widget = QtWidgets.QWidget()

 widget.setLayout(layout)

 self.setCentralWidget(widget)

 self.show()

571

app = QtWidgets.QApplication(sys.argv)

w = MainWindow()

app.exec_()

Running this you should see the following window, showing a Pandas plot

embedded in PyQt5 alongside the Matplotlib toolbar.

Figure 237. Pandas plot with matplotlib toolbar.

What’s next

In this chapter we looked at how you can embed Matplotlib plots in your

PyQt5 applications. Being able to use Matplotlib plots in your applications

allows you to create custom data analysis and visualization tools from

Python.

Matplotlib is a huge library and too big to cover in detail. If you’re not familiar

with Matplotlib plotting and want to give it a try, take a look at the

documentation and example plots to see what is possible.

572

https://matplotlib.org/
https://matplotlib.org/
https://matplotlib.org/3.1.1/gallery/index.html

Packaging & Distribution

Design isn’t finished until somebody is using it.

— Brenda Laurel, PhD

There is not much fun in creating your own application if you can’t share it

with other people — whether that means publishing it commercially, sharing

it online or just giving it to someone you know. Sharing your apps allows

other people to benefit from your hard work!

Packaging Python applications for distribution has typically been a little

tricky, particularly when targeting multiple platforms (Windows, macOS and

Linux). This is in part because of the need to bundle the source, data files, the

Python runtime and all associated libraries in a way that will work reliably on

the target system.

In this chapter we’ll look at one of the simpler options you have for

packaging PyQt5 packages for distribution — fbs.

573

37. Packaging with fbs

fbs is a cross-platform PyQt5 packaging system which supports building

desktop applications for Windows, macOS and Linux (Ubuntu, Fedora and

Arch). Built on top of PyInstaller it wraps some of the rough edges and

defines a standard project structure which allows the build process to be

entirely automated. The included resource API is particularly useful,

simplifying the handling of external data files, images or third-party libraries

— a common pain point when bundling apps.



fbs is licensed under the GPL. This means you can use the fbs

system for free in open-source packages distributed with the

GPL. For commercial (or non-GPL) packages you must buy a

commercial license. See the fbs licensing page for up-to-date

information.

If you’re unable to use fbs take a look at PyInstaller itself.

If you’re impatient, you can grab the Moonsweeper installers directly for

Windows, macOS or Linux (Ubuntu).

Requirements

fbs works out of the box with PyQt5. The only other requirement is

PyInstaller which handles the packaging itself. You can install these in a

virtual environment (or your applications virtual environment) to keep your

environment clean.

 fbs only supports Python versions 3.5 and 3.6

python3 -m venv fbsenv

Once created, activate the virtual environment by running from the

command line —

574

https://build-system.fman.io/#licensing
https://www.pyinstaller.org/
http://download.mfitzp.com/MoonsweeperSetup.exe
http://download.mfitzp.com/Moonsweeper.dmg
http://download.mfitzp.com/Moonsweeper.deb

On macOS/Linux:

source fbsenv/bin/activate

On Windows:

call fbsenv\scripts\activate.bat

Finally, install the required libraries — 

pip3 install fbs PyQt5 PyInstaller==3.4

fbs installs a command line tool fbs into your path which provides access to

all fbs management commands. To see the complete list of commands

available run fbs.

martin@Martins-Laptop testapp $ fbs

usage: fbs [-h]

positional arguments:

 startproject Start a new project in the current directory

 run Run your app from source

 freeze Compile your code to a standalone executable

 installer Create an installer for your app

 sign_installer Sign installer, so the user\'s OS trusts it

 repo Generate files for automatic updates

 upload Upload installer and repository to fbs.sh

 release Bump version and run clean,freeze,...,upload

 test Execute your automated tests

 clean Remove previous build outputs

 buildvm Build a Linux VM. Eg.: buildvm ubuntu

 runvm Run a Linux VM. Eg.: runvm ubuntu

 gengpgkey Generate a GPG key for Linux code signing

 register Create an account for uploading your files

 login Save your account details to secret.json

 init_licensing Generate public/private keys for licensing

optional arguments:

 -h, --help show this help message and exit

575

Starting an app

If you’re starting a PyQt5 application from scratch, you can use the fbs

startproject management command to create a complete, working and

packageable application stub in the current folder. This has the benefit of

allowing you to test (and continue to test) the packageability of your

application as you develop it, rather than leaving it to the end.

fbs startproject

The command walks you through a few questions, allowing you to fill in

details of your application. These values will be written into your app source

and configuration. The bare-bones app will be created under the src/ folder

in the current directory.

martin@Martins-Laptop ~ $ fbs startproject

App name [MyApp] : HelloWorld

Author [Martin] : Martin Fitzpatrick

Mac bundle identifier (eg. com.martin.helloworld, optional):



If you already have your own working PyQt5 app you will

need to either a) use the generated app as a guideline for

converting yours to the same structure, or b) create a new

app using startproject and migrate the code over.

Running your new project

You can run this new application using the following fbs command in the

same folder you ran startproject from.

fbs run

If everything is working this should show you a small empty window with

your apps' title — exciting eh?

576

Figure 238. HelloWorld on Windows, macOS and Linux (Ubuntu)

The application structure

The startproject command generates the required folder structure for a fbs

PyQt5 application. This includes a src/build which contains the build settings

for your package, main/icons which contains the application icons, and

src/python for the source.

577

.

└── src

 ├── build

 │ └── settings

 │ ├── base.json

 │ ├── linux.json

 │ └── mac.json

 └── main

 ├── icons

 │ ├── Icon.ico

 │ ├── README.md

 │ ├── base

 │ │ ├── 16.png

 │ │ ├── 24.png

 │ │ ├── 32.png

 │ │ ├── 48.png

 │ │ └── 64.png

 │ ├── linux

 │ │ ├── 1024.png

 │ │ ├── 128.png

 │ │ ├── 256.png

 │ │ └── 512.png

 │ └── mac

 │ ├── 1024.png

 │ ├── 128.png

 │ ├── 256.png

 │ └── 512.png

 └── python

 └── main.py

Your bare-bones PyQt5 application is generated in src/main/python/main.py

and is a complete working example you can use to base your own code on.

578

import sys

from fbs_runtime.application_context import ApplicationContext

from PyQt5.QtWidgets import QMainWindow

class AppContext(ApplicationContext): # 1. Subclass

ApplicationContext

 def run(self): # 2. Implement run()

 window = QMainWindow()

 version = self.build_settings["version"]

 window.setWindowTitle("HelloWorld v" + version)

 window.resize(250, 150)

 window.show()

 return self.app.exec_() # 3. End run() with this line

if __name__ == "__main__":

 appctxt = AppContext() # 4. Instantiate the subclass

 exit_code = appctxt.run() # 5. Invoke run()

 sys.exit(exit_code)

If you’ve built PyQt5 applications before you’ll notice that building an

application with fbs introduces a new concept — the ApplicationContext.

The ApplicationContext

When building PyQt5 applications there are typically a number of

components or resources that are used throughout your app. These are

commonly stored in the QMainWindow or as global vars which can get a bit

messy as your application grows. The ApplicationContext provides a central

location for initialising and storing these components, as well as providing

access to some core fbs features.

The ApplicationContext object also creates and holds a reference to a global

QApplication object — available under ApplicationContext.app. Every Qt

application must have one (and only one) QApplication to hold the event loop

and core settings. Without fbs you would usually define this at the base of

579

your script, and call .exec() to start the event loop.

Without fbs this would look something like this —

app = QApplication()

w = MyCustomWindow()

app.exec_()

The equivalent with fbs would be —

ctx = ApplicationContext()

w = MyCustomWindow()

ctx.app.exec_()


If you want to create your own custom QApplication

initialization you can overwrite the .app property on your

ApplicationContext subclass using cached_property (see below).

This basic example is clear to follow. However, once you start adding custom

styles and translations to your application the initialization can grow quite a

bit. To keep things nicely structured fbs recommends creating a .run method

on your ApplicationContext.

This method should handle the setup of your application, such as creating

and showing a window, finally starting up the event loop on the .app object.

This final step is performed by calling self.app.exec_() at the end of the

method.

class AppContext(ApplicationContext):

 def run(self):

 ...

 return self.app.exec_()

As your initialization gets more complicated you can break out subsections

into separate methods for clarity, for example —

580

class AppContext(ApplicationContext):

 def run(self):

 self.setup_fonts()

 self.setup_styles()

 self.setup_translations()

 return self.app.exec_()

 def setup_fonts(self):

 # ...do something ...

 def setup_styles(self):

 # ...do something ...

 def setup_translations(self):

 # ...do something ...



On execution the .run() method will be called and your event

loop started. Execution continues in this event loop until the

application is exited, at which point your .run() method will

return (with the appropriate exit code).

Building a real application

The bare-bones application doesn’t do very much, so below we’ll look at

something more complete — the Moonsweeper application from the

previous chapter. The modified source code is available to download here.



Only the changes required to convert Moonsweeper over to

fbs are covered here. If you want to see how Moonsweeper

itself works, see the previous chapter. The custom application

icons were created using icon art by Freepik.

The project follows the same basic structure as for the stub application we

created above.

.

581

http://download.mfitzp.com/moonsweeper-fbs-src.zip
https://www.flaticon.com/authors/freepik/

├── README.md

├── requirements.txt

├── screenshot-minesweeper1.jpg

├── screenshot-minesweeper2.jpg

└── src

 ├── build

 │ └── settings

 │ ├── base.json

 │ ├── linux.json

 │ └── mac.json

 └── main

 ├── Installer.nsi

 ├── icons

 │ ├── Icon.ico

 │ ├── README.md

 │ ├── base

 │ │ ├── 16.png

 │ │ ├── 24.png

 │ │ ├── 32.png

 │ │ ├── 48.png

 │ │ └── 64.png

 │ ├── linux

 │ │ ├── 1024.png

 │ │ ├── 128.png

 │ │ ├── 256.png

 │ │ └── 512.png

 │ └── mac

 │ ├── 1024.png

 │ ├── 128.png

 │ ├── 256.png

 │ └── 512.png

 ├── python

 │ ├── __init__.py

 │ └── main.py

 └── resources

 ├── base

 │ └── images

 │ ├── bomb.png

 │ ├── bug.png

 │ ├── clock-select.png

 │ ├── cross.png

 │ ├── flag.png

 │ ├── plus.png

582

 │ ├── rocket.png

 │ ├── smiley-lol.png

 │ └── smiley.png

 └── mac

 └── Contents

 └── Info.plist

The src/build/settings/base.json stores the basic details about the

application, including the entry point to run the app with fbs run or once

packaged.

{

 "app_name": "Moonsweeper",

 "author": "Martin Fitzpatrick",

 "main_module": "src/main/python/main.py",

 "version": "0.0.0"

}

The script entry point is at the base of src/main/python/main.py. This creates

the AppContext object and calls the .run() method to start up the app.

if __name__ == '__main__':

 appctxt = AppContext()

 exit_code = appctxt.run()

 sys.exit(exit_code)

The ApplicationContext defines a .run() method to handle initialization. In this

case that consists of creating and showing the main window, then starting

up the event loop.

583

from fbs_runtime.application_context import ApplicationContext, \

 cached_property

class AppContext(ApplicationContext):

 def run(self):

 self.main_window.show()

 return self.app.exec_()

 @cached_property

 def main_window(self):

 return MainWindow(self) # Pass context to the window.

 # ... snip ...

The cached_property decorator

The .run() method accesses self.main_window. You’ll notice that this method is

wrapped in an fbs @cached_property decorator. This decorator turns the

method into a property (like the Python @property decorator) and caches the

return value.

The first time the property is accessed the method is executed and the

return value cached. On subsequent calls, the cached value is returned

directly without executing anything. This also has the side-effect of

postponing creation of these objects until they are needed.

You can use @cached_property to define each application component (a

window, a toolbar, a database connection or other resources). However, you

don’t have to use the @cached_property — you could alternatively declare all

properties in your ApplicationContext.init block as shown below.

584

from fbs_runtime.application_context import ApplicationContext

class AppContext(ApplicationContext):

 def __init__(self, *args, _kwargs):

 super(AppContent, self).__init__(*args, _kwargs)

 self.window = Window()

 def run(self):

 self.window.show()

 return self.app.exec_()

Accessing resources with .get_resource

Applications usually require additional data files beyond the source code —

for example files icons, images, styles (Qt’s .qss files) or documentation. You

may also want to bundle platform-specific libraries or binaries. To simplify

this fbs defines a folder structure and access method which work seamlessly

across development and distributed versions.

The top level folder resources/ should contain a folder base plus any

combination of the other folders shown below. The base folder contains files

common to all platforms, while the platform-specific folders can be used for

any files specific to a given OS.

base/ # for files required on all OSs

windows/ # for files only required on Windows

mac/ # " " " " " macOS

linux/ # " " " " " Linux

arch/ # " " " " " Arch Linux

fedora/ # " " " " " Debian Linux

ubuntu/ # " " " " " Ubuntu Linux

585



Getting files into the right place to load from a distributed

app across all platforms is usually one of the faffiest bits of

distributing PyQt5 applications. It’s really handy that fbs

handles this for you.

To simplify the loading of resources from your resources/ folder in your

applications fbs provides the ApplicationContext\.get_resource() method. This

method takes the name of a file which can be found somewhere in the

resources/ folder and returns the absolute path to that file. You can use this

returned absolute path to open the file as normal.

586

from fbs_runtime.application_context import ApplicationContext,

cached_property

class AppContext(ApplicationContext):

 # ... snip ...

 @cached_property

 def img_bomb(self):

 return QImage(self.get_resource('images/bug.png'))

 @cached_property

 def img_flag(self):

 return QImage(self.get_resource('images/flag.png'))

 @cached_property

 def img_start(self):

 return QImage(self.get_resource('images/rocket.png'))

 @cached_property

 def img_clock(self):

 return QImage(self.get_resource('images/clock-select.png'))

 @cached_property

 def status_icons(self):

 return {

 STATUS_READY: QIcon(self.get_resource("images/plus.png")),

 STATUS_PLAYING: QIcon(self.get_resource

("images/smiley.png")),

 STATUS_FAILED: QIcon(self.get_resource(

"images/cross.png")),

 STATUS_SUCCESS: QIcon(self.get_resource("images/smiley-

lol.png"))

 }

 # ... snip ...

In our Moonsweeper application above, we have a bomb image file available

at src/main/resources/base/images/bug.jpg. By calling

ctx.get_resource('images/bug.png') we get the absolute path to that image file

587

on the filesystem, allowing us to open the file within our app.


If the file does not exist FileNotFoundError will be raised

instead.

The handy thing about this method is that it transparently handles the

platform folders under src/main/resources giving OS-specific files precedence.

For example, if the same file was also present under

src/main/resources/mac/images/bug.jpg and we called

ctx.get_resource('images/bug.jpg') we would get the macOS version of the

file.

Additionally get_resource works both when running from source and when

running a frozen or installed version of your application. If your resources/

load correctly locally you can be confident they will load correctly in your

distributed applications.

Using the ApplicationContext from app

As shown above, our ApplicationContext object has cached properties to load

and return the resources. To allow us to access these from our QMainWindow we

can pass the context in and store a reference to it in our window __init__.

class MainWindow(QMainWindow):

 def __init__(self, ctx):

 super(MainWindow, self).__init__()

 self.ctx = ctx # Store a reference to the context for

resources, etc.

... snip ...

Now that we have access to the context via self.ctx we can use it this in any

place we want to reference these external resources.

588

 l = QLabel()

 l.setPixmap(QPixmap.fromImage(self.ctx.img_bomb))

 l.setAlignment(Qt.AlignRight | Qt.AlignVCenter)

 hb.addWidget(l)

... snip ...

 l = QLabel()

 l.setPixmap(QPixmap.fromImage(self.ctx.img_clock))

 l.setAlignment(Qt.AlignLeft | Qt.AlignVCenter)

 hb.addWidget(l)

The first time we access self.ctx.img_bomb the file will be loaded, the QImage

created and returned. On subsequent calls, we’ll get the image from the

cache.

 def init_map(self):

 # Add positions to the map

 for x in range(0, self.b_size):

 for y in range(0, self.b_size):

 w = Pos(x, y, self.ctx.img_flag, self.ctx.img_start,

self.ctx.img_bomb)

 self.grid.addWidget(w, y, x)

 # Connect signal to handle expansion.

 w.clicked.connect(self.trigger_start)

 w.expandable.connect(self.expand_reveal)

 w.ohno.connect(self.game_over)

... snip ...

 self.button.setIcon(self.ctx.status_icons[STATUS_PLAYING])

... snip ...

 def update_status(self, status):

 self.status = status

 self.button.setIcon(self.ctx.status_icons[self.status])

Those are all the changes needed to get the Moonsweeper app packageable

589

with fbs. If you open up the source folder you should be able to start it up as

before.

fbs run

If that’s working, you’re ready to move onto freezing and building in the

installer.

Freezing the app

Freezing is the process of turning a Python application into a standalone

executable that can run on another user’s computer. Use the following

command to turn the app’s source code into a standalone executable:

fbs freeze

The resulting executable depends on the platform you freeze on — the

executable will only work on the OS you built it on (e.g. an executable built on

Windows will run on another Windows computer, but not on a Mac).

• Windows will create an .exe executable in the folder target/<AppName>

• macOS will create an .app application bundle in target/<AppName>.app

• Linux will create an executable in the folder target/<AppName>


On Windows you may need to install the Windows 10 SDK,

although fbs will prompt you if this is the case.

Creating an installer

While you can share the executable files with users, desktop applications are

normally distributed with installers which handle the process of putting the

executable (and any other files) in the correct place. See the following

sections for platform-specific notes before creating

590

https://dev.windows.com/en-us/downloads/windows-10-sdk

 You must freeze your app first then create the installer.

Windows installer

The Windows installer allows your users to pick the installation directory for

the executable and adds your app to the user’s Start Menu. The app is also

added to installed programs, allowing it to be uninstalled by your users.

Before you create installers on Windows you will need to install NSIS and

ensure its installation directory is in your PATH. You can then build an installer

using —

fbs installer

The Windows installer will be created at target/<AppName>Setup.exe.

Figure 239. The Windows NSIS installer.

Download the MoonsweeperSetup .exe

macOS installer

There are no additional steps to create a macOS installer. Just run the fbs

command —

fbs installer

591

http://nsis.sourceforge.net/Main_Page
http://download.mfitzp.com/MoonsweeperSetup.exe
http://download.mfitzp.com/MoonsweeperSetup.exe
http://download.mfitzp.com/MoonsweeperSetup.exe

On macOS the command will generate a disk image at target/<AppName>.dmg.

This disk image will contain the app bundle and a shortcut to the

Applications folder. When your users open it they can drag the app to the

Applications folder to install it.

Figure 240. The .dmg installer on macOS.

Download the Moonsweeper .dmg bundle

Linux installer

To build installers on Linux you need to install the Ruby tool Effing package

management! — use the installation guide to get it set up. Once that is in

place you can use the standard command to create the Linux package file.

fbs installer

The resulting package will be created under the target/ folder. Depending on

your platform the package file will be named <AppName>.deb,

<AppName>.pkg.tar.xz or <AppName>.rpm. Your users can install this file with their

package manager.

Download the Moonsweeper .deb file

Find out more about fbs

More information about how the fbs packaging system works can be found

in the manual which also introduces more advanced features should as

592

http://download.mfitzp.com/Moonsweeper.dmg
http://download.mfitzp.com/Moonsweeper.dmg
http://download.mfitzp.com/Moonsweeper.dmg
https://github.com/jordansissel/fpm
https://github.com/jordansissel/fpm
https://fpm.readthedocs.io/en/latest/installing.html
http://download.mfitzp.com/Moonsweeper.deb
http://download.mfitzp.com/Moonsweeper.deb
http://download.mfitzp.com/Moonsweeper.deb
https://build-system.fman.io/manual/

distributing releases of Linux apps, reporting errors to the Sentry error

logging platform and adding license keys to your software.

593

https://build-system.fman.io/manual/#releasing
https://build-system.fman.io/manual/#error-tracking
https://build-system.fman.io/manual/#error-tracking
https://build-system.fman.io/manual/#license-keys

Example applications
By now you should have a firm grasp of how to go about building simple

applications with PyQt5. To show how you can put what you’ve learnt into

practice, I’ve included a couple of example applications in this chapter. These

applications are functional, simple and in some ways incomplete. Use them

for inspiration, to pull apart and as an opportunity to improve. Read on for a

walkthrough of each app’s most interesting parts.

The full source for both applications is available for download, along with 13

other applications in my 15 Minute Apps repository on Github. Have fun!

There are also other examples of miniature apps throughout this book — for

example the Paint and Todo apps — I encourage you to extend these too, it’s

the best way to learn.

594

https://github.com/learnpyqt/minute-apps

38. Mozzarella Ashbadger

Mozzarella Ashbadger is the latest revolution in web browsing! Go back and

forward! Print! Save files! Get help! (you’ll need it). Any similarity to other

browsers is entirely coincidental.

Figure 241. Mozzarella Ashbadger.


This application makes use of features covered in Signals &

Slots, Extending Signals and Widgets.

The source code for Mozzarella Ashbadger is provided in two forms, one with

tabbed browsing and one without. Adding tabs complicates the signal

handling a little bit, so the tab-less version is covered first.

To create the browser we need to install an additional PyQt5

component — PyQtWebEngine. You can do this with pip from the command

line as follows.

pip3 install PyQtWebEngine

Source code

The full source for the tab-less browser is included in the downloads for this

book. The browser code has the name browser.py.

python3 browser.py

595

 Run it! Explore the Mozzarella Ashbadger interface and features

before moving onto the code.

The browser widget

The core of our browser is the QWebEngineView which we import from

QtWebEngineWidgets. This provides a complete browser window, which handles

the rendering of the downloaded pages.

Below is the bare-minimum of code required to use web browser widget in

PyQt5.

Listing 193. app/browser_skeleton.py

import sys

from PyQt5.QtCore import QUrl

from PyQt5.QtWebEngineWidgets import QWebEngineView

from PyQt5.QtWidgets import QApplication, QMainWindow

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.browser = QWebEngineView()

 self.browser.setUrl(QUrl("https://www.google.com"))

 self.setCentralWidget(self.browser)

 self.show()

app = QApplication(sys.argv)

window = MainWindow()

app.exec_()

596

If you click around a bit you’ll discover that the browser behaves as

expected — links work correctly, and you can interact with the pages.

However, you’ll also notice things you take for granted are missing — like an

URL bar, controls or any sort of interface whatsoever. This makes it a little

tricky to use.

Navigation

To convert this bare-bones browser into something usable we add some

controls, as a series of QActions on a QToolbar. We add these definitions to the

__init__ block of the QMainWindow.

Listing 194. app/browser.py

 navtb = QToolBar("Navigation")

 navtb.setIconSize(QSize(16, 16))

 self.addToolBar(navtb)

 back_btn = QAction(QIcon(os.path.join("icons", "arrow-

180.png")), "Back", self)

 back_btn.setStatusTip("Back to previous page")

 back_btn.triggered.connect(self.browser.back)

 navtb.addAction(back_btn)

The QWebEngineView includes slots for forward, back and reload navigation,

which we can connect to directly to our action’s .triggered signals.

We use the same QAction structure for the remaining controls.

597

Listing 195. app/browser.py

 next_btn = QAction(

 QIcon(os.path.join("icons", "arrow-000.png")), "Forward",

self

)

 next_btn.setStatusTip("Forward to next page")

 next_btn.triggered.connect(self.browser.forward)

 navtb.addAction(next_btn)

 reload_btn = QAction(

 QIcon(os.path.join("icons", "arrow-circle-315.png")),

"Reload", self

)

 reload_btn.setStatusTip("Reload page")

 reload_btn.triggered.connect(self.browser.reload)

 navtb.addAction(reload_btn)

 home_btn = QAction(QIcon(os.path.join("icons", "home.png")),

"Home", self)

 home_btn.setStatusTip("Go home")

 home_btn.triggered.connect(self.navigate_home)

 navtb.addAction(home_btn)

Notice that while forward, back and reload can use built-in slots, the navigate

home button requires a custom slot function. The slot function is defined on

our QMainWindow class, and simply sets the URL of the browser to the Google

homepage. Note that the URL must be passed as a QUrl object.

Listing 196. app/browser.py

 def navigate_home(self):

 self.browser.setUrl(QUrl("http://www.google.com"))


Challenge

Try making the home navigation location configurable. You

could create a Preferences QDialog with an input field.

Any decent web browser also needs an URL bar, and some way to stop the

598

navigation — either when it’s by mistake, or the page is taking too long.

Listing 197. app/browser.py

 self.httpsicon = QLabel() # Yes, really!

 self.httpsicon.setPixmap(QPixmap(os.path.join("icons", "lock-

nossl.png")))

 navtb.addWidget(self.httpsicon)

 self.urlbar = QLineEdit()

 self.urlbar.returnPressed.connect(self.navigate_to_url)

 navtb.addWidget(self.urlbar)

 stop_btn = QAction(

 QIcon(os.path.join("icons", "cross-circle.png")), "Stop",

self

)

 stop_btn.setStatusTip("Stop loading current page")

 stop_btn.triggered.connect(self.browser.stop)

 navtb.addAction(stop_btn)

As before the 'stop' functionality is available on the QWebEngineView, and we

can simply connect the .triggered signal from the stop button to the existing

slot. However, other features of the URL bar we must handle independently.

First we add a QLabel to hold our SSL or non-SSL icon to indicate whether the

page is secure. Next, we add the URL bar which is simply a QLineEdit. To

trigger the loading of the URL in the bar when entered (return key pressed)

we connect to the .returnPressed signal on the widget to drive a custom slot

function to trigger navigation to the specified URL.

Listing 198. app/browser.py

 def navigate_to_url(self): # Does not receive the Url

 q = QUrl(self.urlbar.text())

 if q.scheme() == "":

 q.setScheme("http")

 self.browser.setUrl(q)

599

We also want the URL bar to update in response to page changes. To do this

we can use the .urlChanged and .loadFinished signals from the QWebEngineView.

We set up the connections from the signals in the __init__ block as follows:

Listing 199. app/browser.py

 self.browser.urlChanged.connect(self.update_urlbar)

 self.browser.loadFinished.connect(self.update_title)

Then we define the target slot functions which for these signals. The first, to

update the URL bar accepts a QUrl object and determines whether this is a

http or https URL, using this to set the SSL icon.


This is a terrible way to test if a connection is 'secure'. To be

correct we should perform a certificate validation.

The QUrl is converted to a string and the URL bar is updated with the value.

Note that we also set the cursor position back to the beginning of the line to

prevent the QLineEdit widget scrolling to the end.

Listing 200. app/browser.py

 def update_urlbar(self, q):

 if q.scheme() == "https":

 # Secure padlock icon

 self.httpsicon.setPixmap(QPixmap(os.path.join("icons",

"lock-ssl.png")))

 else:

 # Insecure padlock icon

 self.httpsicon.setPixmap(QPixmap(os.path.join("icons",

"lock-nossl.png")))

 self.urlbar.setText(q.toString())

 self.urlbar.setCursorPosition(0)

It’s also a nice touch to update the title of the application window with the

title of the current page. We can get this via browser.page().title() which

600

returns the contents of the <title></title> tag in the currently loaded web

page.

Listing 201. app/browser.py

 def update_title(self):

 title = self.browser.page().title()

 self.setWindowTitle("%s - Mozzarella Ashbadger" % title)

File operations

A standard File menu with self.menuBar().addMenu("&File") is created

assigning the F key as a Alt-shortcut (as normal). Once we have the menu

object, we can can assign QAction objects to create the entries. We create two

basic entries here, for opening and saving HTML files (from a local disk).

These both require custom slot functions.

Listing 202. app/browser.py

 file_menu = self.menuBar().addMenu("&File")

 open_file_action = QAction(

 QIcon(os.path.join("icons", "disk--arrow.png")), "Open

file...", self

)

 open_file_action.setStatusTip("Open from file")

 open_file_action.triggered.connect(self.open_file)

 file_menu.addAction(open_file_action)

 save_file_action = QAction(

 QIcon(os.path.join("icons", "disk--pencil.png")), "Save

Page As...", self

)

 save_file_action.setStatusTip("Save current page to file")

 save_file_action.triggered.connect(self.save_file)

 file_menu.addAction(save_file_action)

The slot function for opening a file uses the built-in

QFileDialog.getOpenFileName() function to create a file-open dialog and get a

601

name. We restrict the names by default to files matching *.htm or *.html.

We read the file into a variable html using standard Python functions, then

use .setHtml() to load the HTML into the browser.

Listing 203. app/browser.py

 def open_file(self):

 filename, _ = QFileDialog.getOpenFileName(

 self,

 "Open file",

 "",

 "Hypertext Markup Language (*.htm *.html);;" "All files

(*.*)",

)

 if filename:

 with open(filename, "r") as f:

 html = f.read()

 self.browser.setHtml(html)

 self.urlbar.setText(filename)

Similarly to save the HTML from the current page, we use the built-in

QFileDialog.getSaveFileName() to get a filename. However, this time we get the

HTML using self.browser.page().toHtml().

This is an asynchronous method, meaning that we do not receive the HTML

immediately. Instead we must pass in a callback method which will receive

the HTML once it is prepared. Here we create a simple writer function that

handles it for us, using the filename from the local scope.

602

Listing 204. app/browser.py

 def save_file(self):

 filename, _ = QFileDialog.getSaveFileName(

 self,

 "Save Page As",

 "",

 "Hypertext Markup Language (*.htm *html);;" "All files

(*.*)",

)

 if filename:

 # Define callback method to handle the write.

 def writer(html):

 with open(filename, "w") as f:

 f.write(html)

 self.browser.page().toHtml(writer)

Printing

We can add a print option to the File menu using the same approach we

used earlier. Again this needs a custom slot function to perform the print

action.

Listing 205. app/browser.py

 print_action = QAction(

 QIcon(os.path.join("icons", "printer.png")), "Print...",

self

)

 print_action.setStatusTip("Print current page")

 print_action.triggered.connect(self.print_page)

 file_menu.addAction(print_action)

 # Create our system printer instance.

 self.printer = QPrinter()

Qt provides a complete print framework which is based around QPrinter

objects, on which you paint the pages to be printed. To start the process we

603

open a QPrintDialog for the user. This allows them to choose the target printer

and configure the print.

We created the QPrinter object in our __init__ and stored it as self.printer. In

our print handler method we pass this printer to the QPrintDialog so it can be

configured. If the dialog is accepted we pass the (now configured) printer

object to self.browser.page().print to trigger the print.

Listing 206. app/browser.py

 def print_page(self):

 page = self.browser.page()

 def callback(*args):

 pass

 dlg = QPrintDialog(self.printer)

 dlg.accepted.connect(callback)

 if dlg.exec_() == QDialog.Accepted:

 page.print(self.printer, callback)

Notice that .print also accepts a second parameter — a callback function

which receives the result of the print. This allows you to show a notification

that the print has completed, but here we’re just swallowing the callback

silently.

Help

Finally, to complete the standard interface we can add a Help menu. This is

defined as before, two two custom slot functions to handle the display of a

About dialog, and to load the 'browser page' with more information.

604

Listing 207. app/browser.py

 help_menu = self.menuBar().addMenu("&Help")

 about_action = QAction(

 QIcon(os.path.join("icons", "question.png")),

 "About Mozzarella Ashbadger",

 self,

)

 about_action.setStatusTip("Find out more about Mozzarella

Ashbadger") # Hungry!

 about_action.triggered.connect(self.about)

 help_menu.addAction(about_action)

 navigate_mozzarella_action = QAction(

 QIcon(os.path.join("icons", "lifebuoy.png")),

 "Mozzarella Ashbadger Homepage",

 self,

)

 navigate_mozzarella_action.setStatusTip("Go to Mozzarella

Ashbadger Homepage")

 navigate_mozzarella_action.triggered.connect(self

.navigate_mozzarella)

 help_menu.addAction(navigate_mozzarella_action)

We define two methods to be used as slots for the Help menu signals. The

first navigate_mozzarella opens up a page with more information on the

browser (or in this case, this book). The second creates and executes a

custom QDialog class AboutDialog which we will define next.

Listing 208. app/browser.py

 def navigate_mozzarella(self):

 self.browser.setUrl(QUrl("https://www.learnpyqt.com/"))

 def about(self):

 dlg = AboutDialog()

 dlg.exec_()

The definition for the about dialog is given below. The structure follows that

605

seen earlier in the book, with a QDialogButtonBox and associated signals to

handle user input, and a series of QLabels to display the application

information and a logo.

The only trick here is adding all the elements to the layout, then iterate over

them to set the alignment to the center in a single loop. This saves

duplication for the individual sections.

606

Listing 209. app/browser.py

class AboutDialog(QDialog):

 def __init__(self):

 super().__init__()

 QBtn = QDialogButtonBox.Ok # No cancel

 self.buttonBox = QDialogButtonBox(QBtn)

 self.buttonBox.accepted.connect(self.accept)

 self.buttonBox.rejected.connect(self.reject)

 layout = QVBoxLayout()

 title = QLabel("Mozzarella Ashbadger")

 font = title.font()

 font.setPointSize(20)

 title.setFont(font)

 layout.addWidget(title)

 logo = QLabel()

 logo.setPixmap(QPixmap(os.path.join("icons", "ma-icon-

128.png")))

 layout.addWidget(logo)

 layout.addWidget(QLabel("Version 23.35.211.233232"))

 layout.addWidget(QLabel("Copyright 2015 Mozzarella Inc."))

 for i in range(0, layout.count()):

 layout.itemAt(i).setAlignment(Qt.AlignHCenter)

 layout.addWidget(self.buttonBox)

 self.setLayout(layout)

607

Tabbed Browsing

Figure 242. Mozzarella Ashbadger (Tabbed).

Source code

The full source for the tabbed browser is included in the downloads for this

book. The browser code has the name browser_tabs.py.

 Run it! Explore the Mozzarella Ashbadger Tabbed Edition before

moving onto the code.

Creating a QTabWidget

Adding a tabbed interface to our browser is simple using a QTabWidget. This

provides a simple container for multiple widgets (in our case QWebEngineView

widgets) with a built-in tabbed interface for switching between them.

Two customizations we use here are .setDocumentMode(True) which provides a

Safari-like interface on macOS, and .setTabsClosable(True) which allows the

user to close the tabs in the application.

We also connect QTabWidget signals tabBarDoubleClicked, currentChanged and

tabCloseRequested to custom slot methods to handle these behaviors.

608

Listing 210. app/browser_tabs.py

 self.tabs = QTabWidget()

 self.tabs.setDocumentMode(True)

 self.tabs.tabBarDoubleClicked.connect(self

.tab_open_doubleclick)

 self.tabs.currentChanged.connect(self.current_tab_changed)

 self.tabs.setTabsClosable(True)

 self.tabs.tabCloseRequested.connect(self.close_current_tab)

 self.setCentralWidget(self.tabs)

The three slot methods accept an i (index) parameter which indicates which

tab the signal resulted from (in order).

We use a double-click on an empty space in the tab bar (represented by an

index of -1 to trigger creation of a new tab. For removing a tab, we use the

index directly to remove the widget (and so the tab), with a simple check to

ensure there are at least 2 tabs — closing the last tab would leave you unable

to open a new one.

The current_tab_changed handler uses a self.tabs.currentWidget() construct to

access the widget (QWebEngineView browser) of the currently active tab, and

then uses this to get the URL of the current page. This same construct is

used throughout the source for the tabbed browser, as a simple way to

interact with the current browser view.

609

Listing 211. app/browser_tabs.py

 def tab_open_doubleclick(self, i):

 if i == -1: # No tab under the click

 self.add_new_tab()

 def current_tab_changed(self, i):

 qurl = self.tabs.currentWidget().url()

 self.update_urlbar(qurl, self.tabs.currentWidget())

 self.update_title(self.tabs.currentWidget())

 def close_current_tab(self, i):

 if self.tabs.count() < 2:

 return

 self.tabs.removeTab(i)

Listing 212. app/browser_tabs.py

 def add_new_tab(self, qurl=None, label="Blank"):

 if qurl is None:

 qurl = QUrl("")

 browser = QWebEngineView()

 browser.setUrl(qurl)

 i = self.tabs.addTab(browser, label)

 self.tabs.setCurrentIndex(i)

Signal & Slot changes

While the setup of the QTabWidget and associated signals is simple, things get

a little trickier in the browser slot methods.

Whereas before we had a single QWebEngineView now there are multiple views,

all with their own signals. If signals for hidden tabs are handled things will

get all mixed up. For example, the slot handling a loadCompleted signal must

check that the source view is in a visible tab.

610

We can do this using our trick for sending additional data with signals. In the

tabbed browser we’re using the lambda style syntax to do this.

Below is an example of doing this when creating a new QWebEngineView in the

add_new_tab function.

Listing 213. app/browser_tabs.py

 # More difficult! We only want to update the url when it's

from the

 # correct tab

 browser.urlChanged.connect(

 lambda qurl, browser=browser: self.update_urlbar(qurl,

browser)

)

 browser.loadFinished.connect(

 lambda _, i=i, browser=browser: self.tabs.setTabText(

 i, browser.page().title()

)

)

As you can see, we set a lambda as the slot for the urlChanged signal, accepting

the qurl parameter that is sent by this signal. We add the recently created

browser object to pass into the update_urlbar function.

The result is, whenever this urlChanged signal fires update_urlbar will receive

both the new URL and the browser it came from. In the slot method we can

then check to ensure that the source of the signal matches the currently

visible browser — if not, we simply discard the signal.

611

Listing 214. app/browser_tabs.py

 def update_urlbar(self, q, browser=None):

 if browser != self.tabs.currentWidget():

 # If this signal is not from the current tab, ignore

 return

 if q.scheme() == "https":

 # Secure padlock icon

 self.httpsicon.setPixmap(QPixmap(os.path.join("icons",

"lock-ssl.png")))

 else:

 # Insecure padlock icon

 self.httpsicon.setPixmap(QPixmap(os.path.join("icons",

"lock-nossl.png")))

 self.urlbar.setText(q.toString())

 self.urlbar.setCursorPosition(0)

Going further

Explore the rest of the source code for the tabbed version of the browser

paying particular attention to the user of self.tabs.currentWidget() and

passing additional data with signals. This a good practical use case for what

you’ve learnt, so experiment and see if you can break/improve it in

interesting ways.

612



Challenges

You might like to try adding some additional features — 

• Bookmarks (or Favorites) — you could store these in a

simple text file, and show them in a menu.

• Favicons -- those little website icons, would look great on

the tabs.

• View source code -- add a menu option to see the source

code for the page.

• Open in New Tab — add a right-click context menu, or

keyboard shortcut, to open a link in a new tab.

613

39. Moonsweeper

Explore the mysterious moon of Q’tee without getting too close to the alien

natives!

Moonsweeper is a single-player puzzle video game. The objective of the

game is to explore the area around your landed space rocket, without

coming too close to the deadly B’ug aliens. Your trusty tricounter will tell you

the number of B’ugs in the vicinity.


Suggested reading

This application makes use of features covered in Signals &

Slots, and Events.

Figure 243. Moonsweeper.

This a simple single-player exploration game modelled on Minesweeper

where you must reveal all the tiles without hitting hidden mines. This

implementation uses custom QWidget objects for the tiles, which individually

hold their state as mines, status and the adjacent count of mines. In this

version, the mines are replaced with alien bugs (B’ug) but they could just as

easily be anything else.

614

In many Minesweeper variants the initial turn is considered a free go -- if you

hit a mine on the first click, it is moved somewhere else. Here we cheat a little

bit by taking the first go for the player, ensuring that it is on a non-mine spot.

This allows us not to worry about the bad first move which would require us

to recalculate the adjacencies. We can explain this away as the "initial

exploration around the rocket" and make it sound completely sensible.



Challenge!

If you want to implement this, you can catch the first click on

a position and at that point generate mines/adjacencies,

excluding your location, before handling the click. You will

need to give your custom widgets access to the parent

window object.

Source code

The full source for the Moonsweeper game is included in the downloads for

this book. The game file is saved with the name minesweeper.py.

python3 minesweeper.py

Playing Field

The playing area for Moonsweeper is a NxN grid, containing a set number of

mines. The dimensions and mine counts we’ll used are taken from the

default values for the Windows version of Minesweeper. The values used are

shown in the table below:

Table 14. Table Dimensions and mine counts

Level Dimensions Number of Mines

Easy 8 x 8 10

Medium 16 x 16 40

615

Hard 24 x 24 99

We store these values as a constant LEVELS defined at the top of the file. Since

all the playing fields are square we only need to store the value once (8, 16 or

24).

Listing 215. app/minesweeper.py

LEVELS = [("Easy", 8, 10), ("Medium", 16, 40), ("Hard", 24, 99)]

The playing grid could be represented in a number of ways, including for

example a 2D 'list of lists' representing the different states of the playing

positions (mine, revealed, flagged).

However, in our implementation we’ll be using an object-orientated

approach, where individual positions on the map hold all relevant data about

themselves. Taking this a step further, we can make these objects

individually responsible for drawing themselves. In Qt we can do this simply

by subclassing from QWidget and then implementing a custom paint function.

We’ll cover the construction and behavior of these custom widgets before

moving onto it’s appearance. Since our tile objects are subclassing from

QWidget we can lay them out like any other widget. We do this, by setting up a

QGridLayout.

Listing 216. app/minesweeper.py

 self.grid = QGridLayout()

 self.grid.setSpacing(5)

 self.grid.setSizeConstraint(QLayout.SetFixedSize)

Next we need to set up the playing field, creating our position tile widgets

and adding them our grid. The initial setup for the level is defined in custom

method, which reads from LEVELS and assigns a number of variables to the

window. The window title and mine counter are updated, and then the setup

of the grid is begun.

616

Listing 217. app/minesweeper.py

 def set_level(self, level):

 self.level_name, self.b_size, self.n_mines = LEVELS[level]

 self.setWindowTitle("Moonsweeper - %s" % (self.level_name))

 self.mines.setText("%03d" % self.n_mines)

 self.clear_map()

 self.init_map()

 self.reset_map()

The setup functions will be covered next.

We’re using a custom Pos class here, which we’ll look at in detail later. For

now you just need to know that this holds all the relevant information for the

relevant position in the map — including, for example, whether it’s a mine,

revealed, flagged and the number of mines in the immediate vicinity.

Each Pos object also has 3 custom signals clicked, revealed and expandable

which we connect to custom slot methods. Finally, we call resize to adjust the

size of the window to the new contents. Note that this is actually only

necessary when the window shrinks — it will grow automatically.

617

Listing 218. app/minesweeper.py

 def init_map(self):

 # Add positions to the map

 for x in range(0, self.b_size):

 for y in range(0, self.b_size):

 w = Pos(x, y)

 self.grid.addWidget(w, y, x)

 # Connect signal to handle expansion.

 w.clicked.connect(self.trigger_start)

 w.revealed.connect(self.on_reveal)

 w.expandable.connect(self.expand_reveal)

 # Place resize on the event queue, giving control back to Qt

before.

 QTimer.singleShot(0, lambda: self.resize(1, 1)) ①

① The singleShot timer is required to ensure the resize runs after Qt is aware

of the new contents. By using a timer we guarantee control will return to

Qt before the resize occurs.

We also need to implement the inverse of the init_map function to remove

tile objects from the map. Removing tiles will be necessary when moving

from a higher to a lower level. It would be possible to be a little smarter here

and adding/removing only those tiles that are necessary to get to the correct

size. But, since we already have the function to add all up to the right size, we

can cheat a bit.


Challenge

Update this code to add/remove the neccessary tiles to size

the new level dimensions.

Notice that we both remove the item from the grid with

self.grid.removeItem(c) and clear the parent c.widget().setParent(None). This

second step is necessary, since adding the items assigning them the parent

window as a parent. Just removing them leaves them floating in the window

outside the layout.

618

Listing 219. app/minesweeper.py

 def clear_map(self):

 # Remove all positions from the map, up to maximum size.

 for x in range(0, LEVELS[-1][1]): ①

 for y in range(0, LEVELS[-1][1]):

 c = self.grid.itemAtPosition(y, x)

 if c: ②

 self.grid.removeItem(c)

 c.widget().setParent(None)

① To ensure we clear all sizes of maps we take the dimension of the highest

level.

② If there isn’t anything in the grid at this location, we can skip it.

Now we have our grid of positional tile objects in place, we can begin

creating the initial conditions of the playing board. This process is rather

complex, so it’s broken down into a number of functions. We name them

_reset (the leading underscore is a convention to indicate a private function,

not intended for external use). The main function reset_map calls these

functions in turn to set it up.

The process is as follows — 

1. Remove all mines (and reset data) from the field.

2. Add new mines to the field.

3. Calculate the number of mines adjacent to each position.

4. Add a starting marker (the rocket) and trigger initial exploration.

5. Reset the timer.

619

Listing 220. app/minesweeper.py

 def reset_map(self):

 self._reset_position_data()

 self._reset_add_mines()

 self._reset_calculate_adjacency()

 self._reset_add_starting_marker()

 self.update_timer()

The separate steps from 1-5 are described in detail in turn below, with the

code for each step.

The first step is to reset the data for each position on the map. We iterate

through every position on the board, calling .reset() on the widget at each

point. The code for the .reset() function is defined on our custom Pos class,

we’ll explore in detail later. For now it’s enough to know it clears mines, flags

and sets the position back to being unrevealed.

Listing 221. app/minesweeper.py

 def _reset_position_data(self):

 # Clear all mine positions

 for x in range(0, self.b_size):

 for y in range(0, self.b_size):

 w = self.grid.itemAtPosition(y, x).widget()

 w.reset()

Now all the positions are blank, we can begin the process of adding mines to

the map. The maximum number of mines n_mines is defined by the level

settings, described earlier.

620

Listing 222. app/minesweeper.py

 def _reset_add_mines(self):

 # Add mine positions

 positions = []

 while len(positions) < self.n_mines:

 x, y = (

 random.randint(0, self.b_size - 1),

 random.randint(0, self.b_size - 1),

)

 if (x, y) not in positions:

 w = self.grid.itemAtPosition(y, x).widget()

 w.is_mine = True

 positions.append((x, y))

 # Calculate end-game condition

 self.end_game_n = (self.b_size * self.b_size) - (self.n_mines

+ 1)

 return positions

With mines in position, we can now calculate the 'adjacency' number for

each position -- simply the number of mines in the immediate vicinity, using

a 3x3 grid around the given point. The custom function get_surrounding

simply returns those positions around a given x and y location. We count the

number of these that is a mine is_mine == True and store.


Pre-calculation

Pre-calculating the adjacent counts in this way helps simplify

the reveal logic later.

621

Listing 223. app/minesweeper.py

 def _reset_calculate_adjacency(self):

 def get_adjacency_n(x, y):

 positions = self.get_surrounding(x, y)

 return sum(1 for w in positions if w.is_mine)

 # Add adjacencies to the positions

 for x in range(0, self.b_size):

 for y in range(0, self.b_size):

 w = self.grid.itemAtPosition(y, x).widget()

 w.adjacent_n = get_adjacency_n(x, y)

A starting marker is used to ensure that the first move is always valid. This is

implemented as a brute force search through the grid space, effectively

trying random positions until we find a position which is not a mine. Since we

don’t know how many attempts this will take, we need to wrap it in an

continuous loop.

Once that location is found, we mark it as the start location and then trigger

the exploration of all surrounding positions. We break out of the loop, and

reset the ready status.

622

Listing 224. app/minesweeper.py

 def _reset_add_starting_marker(self):

 # Place starting marker.

 # Set initial status (needed for .click to function)

 self.update_status(STATUS_READY)

 while True:

 x, y = (

 random.randint(0, self.b_size - 1),

 random.randint(0, self.b_size - 1),

)

 w = self.grid.itemAtPosition(y, x).widget()

 # We don't want to start on a mine.

 if not w.is_mine:

 w.is_start = True

 w.is_revealed = True

 w.update()

 # Reveal all positions around this, if they are not

mines either.

 for w in self.get_surrounding(x, y):

 if not w.is_mine:

 w.click()

 break

 # Reset status to ready following initial clicks.

 self.update_status(STATUS_READY)

623

Figure 244. Initial exploration around rocket.

Position Tiles

As previously described, we’ve structured the game so that individual tile

positions hold their own state information. This means that Pos objects are

ideally positioned to handle game logic which reacts to to interactions that

relate to their own state — in other words, this is where the magic is.

Since the Pos class is relatively complex, it is broken down here in to main

themes, which are discussed in turn. The initial setup __init__ block is simple,

accepting an x and y position and storing it on the object. Pos positions never

change once created.

To complete setup the .reset() function is called which resets all object

attributes back to default, zero values. This flags the mine as not the start

position, not a mine, not revealed and not flagged. We also reset the

adjacent count.

624

Listing 225. app/minesweeper.py

class Pos(QWidget):

 expandable = pyqtSignal(int, int)

 revealed = pyqtSignal(object)

 clicked = pyqtSignal()

 def __init__(self, x, y):

 super().__init__()

 self.setFixedSize(QSize(20, 20))

 self.x = x

 self.y = y

 self.reset()

 def reset(self):

 self.is_start = False

 self.is_mine = False

 self.adjacent_n = 0

 self.is_revealed = False

 self.is_flagged = False

 self.update()

Gameplay is centered around mouse interactions with the tiles in the

playfield, so detecting and reacting to mouse clicks is central. In Qt we catch

mouse clicks by detecting the mouseReleaseEvent. To do this for our custom Pos

widget we define a handler on the class. This receives QMouseEvent with the

information containing what happened. In this case we are only interested in

whether the mouse release occurred from the left or the right mouse button.

For a left mouse click we check whether the tile is flagged or already

revealed. If it is either, we ignore the click — making flagged tiles 'safe', unable

to be click by accident. If the tile is not flagged we simply initiation the

.click() method (see later).

For a right mouse click, on tiles which are not revealed, we call our

.toggle_flag() method to toggle a flag on and off.

625

Listing 226. app/minesweeper.py

 def mouseReleaseEvent(self, e):

 if e.button() == Qt.RightButton and not self.is_revealed:

 self.toggle_flag()

 elif e.button() == Qt.LeftButton:

 # Block clicking on flagged mines.

 if not self.is_flagged and not self.is_revealed:

 self.click()

The methods called by the mouseReleaseEvent handler are defined below.

The .toggle_flag handler simply sets .is_flagged to the inverse of itself (True

becomes False, False becomes True) having the effect of toggling it on and

off. Note that we have to call .update() to force a redraw having changed the

state. We also emit our custom .clicked signal, which is used to start the

timer -- because placing a flag should also count as starting, not just

revealing a square.

The .click() method handles a left mouse click, and in turn triggers the

reveal of the square. If the number of adjacent mines to this Pos is zero, we

trigger the .expandable signal to begin the process of auto-expanding the

region explored (see later). Finally, we again emit .clicked to signal the start

of the game.

Finally, the .reveal() method checks whether the tile is already revealed, and

if not sets .is_revealed to True. Again we call .update() to trigger a repaint of

the widget.

The optional emit of the .revealed signal is used only for the endgame full-

map reveal. Because each reveal triggers a further lookup to find what tiles

are also revealable, revealing the entire map would create a large number of

redundant callbacks. By suppressing the signal here we avoid that.

626

Listing 227. app/minesweeper.py

 def toggle_flag(self):

 self.is_flagged = not self.is_flagged

 self.update()

 self.clicked.emit()

 def click(self):

 self.reveal()

 if self.adjacent_n == 0:

 self.expandable.emit(self.x, self.y)

 self.clicked.emit()

 def reveal(self, emit=True):

 if not self.is_revealed:

 self.is_revealed = True

 self.update()

 if emit:

 self.revealed.emit(self)

Finally, we define a custom paintEvent method for our Pos widget to handle

the display of the current position state. As described in [chapter] to perform

custom paint over a widget canvas we take a QPainter and the event.rect()

which provides the boundaries in which we are to draw -- in this case the

outer border of the Pos widget.

Revealed tiles are drawn differently depending on whether the tile is a start

position, bomb or empty space. The first two are represented by icons of a

rocket and bomb respectively. These are drawn into the tile QRect using

.drawPixmap. Note we need to convert the QImage constants to pixmaps, by

passing through QPixmap by passing.

627



QPixmap vs. QImages

You might think "why not just store these as QPixmap objects

since that’s what we’re using? We can’t do this and store

them in constants because you can’t create QPixmap objects

before your QApplication is up and running.

For empty positions (not rockets, not bombs) we optionally show the

adjacency number if it is larger than zero. To draw text onto our QPainter we

use .drawText() passing in the QRect, alignment flags and the number to draw

as a string. We’ve defined a standard color for each number (stored in

NUM_COLORS) for usability.

For tiles that are not revealed we draw a tile, by filling a rectangle with light

gray and draw a 1 pixel border of darker grey. If .is_flagged is set, we also

draw a flag icon over the top of the tile using drawPixmap and the tile QRect.

628

Listing 228. app/minesweeper.py

 def paintEvent(self, event):

 p = QPainter(self)

 p.setRenderHint(QPainter.Antialiasing)

 r = event.rect()

 if self.is_revealed:

 if self.is_start:

 p.drawPixmap(r, QPixmap(IMG_START))

 elif self.is_mine:

 p.drawPixmap(r, QPixmap(IMG_BOMB))

 elif self.adjacent_n > 0:

 pen = QPen(NUM_COLORS[self.adjacent_n])

 p.setPen(pen)

 f = p.font()

 f.setBold(True)

 p.setFont(f)

 p.drawText(r, Qt.AlignHCenter | Qt.AlignVCenter, str

(self.adjacent_n))

 else:

 p.fillRect(r, QBrush(Qt.lightGray))

 pen = QPen(Qt.gray)

 pen.setWidth(1)

 p.setPen(pen)

 p.drawRect(r)

 if self.is_flagged:

 p.drawPixmap(r, QPixmap(IMG_FLAG))

Mechanics

We commonly need to get all tiles surrounding a given point, so we have a

custom function for that purpose. It simple iterates across a 3x3 grid around

the point, with a check to ensure we do not go out of bounds on the grid

edges (0 ≥ x ≤ self.b_size). The returned list contains a Pos widget from

629

each surrounding location.

Listing 229. app/minesweeper.py

 def get_surrounding(self, x, y):

 positions = []

 for xi in range(max(0, x - 1), min(x + 2, self.b_size)):

 for yi in range(max(0, y - 1), min(y + 2, self.b_size)):

 if not (xi == x and yi == y):

 positions.append(self.grid.itemAtPosition(yi, xi

).widget())

 return positions

The expand_reveal method is triggered in response to a click on a tile with zero

adjacent mines. In this case we want to expand the area around the click to

any spaces which also have zero adjacent mines, and also reveal any squares

around the border of that expanded area (which aren’t mines).

This can be achieved by looking at all squares around the clicked square, and

triggering a .click() on any that do not have .n_adjacent == 0. The normal

game logic takes over and expands the area automatically. However, this is a

bit inefficient, resulting in a large number of redundant signals (each square

triggers up to 9 signals for each surrounding square).

Instead we use a self-contained method to determine the area to be

revealed, and then trigger the reveal (using .reveal() to avoid the .clicked

signals.

We start with a list to_expand containing the positions to check on the next

iteration, a list to_reveal containing the tile widgets to reveal, and a flag

any_added to determine when to exit the loop. The loop stops the first time no

new widgets are added to to_reveal.

Inside the loop we reset any_added to False, and empty the to_expand list,

keeping a temporary store in l for iterating over.

For each x and y location we get the 8 surrounding widgets. If any of these

630

widgets is not a mine, and is not already in the to_reveal list we add it. This

ensures that the edges of the expanded area are all revealed. If the position

has no adjacent mines, we append the coordinates onto to_expand to be

checked on the next iteration.

By adding any non-mine tiles to to_reveal, and only expanding tiles that are

not already in to_reveal, we ensure that we won’t visit a tile more than once.

Listing 230. app/minesweeper.py

 def expand_reveal(self, x, y):

 """

 Iterate outwards from the initial point, adding new locations

to the

 queue. This allows us to expand all in a single go, rather

than

 relying on multiple callbacks.

 """

 to_expand = [(x, y)]

 to_reveal = []

 any_added = True

 while any_added:

 any_added = False

 to_expand, l = [], to_expand

 for x, y in l:

 positions = self.get_surrounding(x, y)

 for w in positions:

 if not w.is_mine and w not in to_reveal:

 to_reveal.append(w)

 if w.adjacent_n == 0:

 to_expand.append((w.x, w.y))

 any_added = True

 # Iterate an reveal all the positions we have found.

 for w in to_reveal:

 w.reveal()

631

Endgames

Endgame states are detected during the reveal process following a click on a

title. There are two possible outcomes --

1. Tile is a mine, game over.

2. Tile is not a mine, decrement the self.end_game_n.

This continues until self.end_game_n reaches zero, which triggers the win

game process by calling either game_over or game_won. Success/failure is

triggered by revealing the map and setting the relevant status, in both cases.

Listing 231. app/minesweeper.py

 def on_reveal(self, w):

 if w.is_mine:

 self.game_over()

 else:

 self.end_game_n -= 1 # decrement remaining empty spaces

 if self.end_game_n == 0:

 self.game_won()

 def game_over(self):

 self.reveal_map()

 self.update_status(STATUS_FAILED)

 def game_won(self):

 self.reveal_map()

 self.update_status(STATUS_SUCCESS)

632

Figure 245. Oh no. Eaten by a B’ug.

Status

The user interface for Moonsweeper is pretty simple: one display showing the

number of mines, one showing the amount of time elapsed, and a button to

start/restart the game.

Both the labels are defined as QLabel objects with the with the same QFont

size and color. These are defined on the QMainWindow object so we can access

and update them at a later time. Two additional icons (a clock and a mine)

are also defined as QLabel objects.

The button is a QPushButton with a defined icon, which is updated in set_status

in response to status changes. The .pressed signal is connected to a custom

slot method button_pressed which handles the signal differently depending

on the game state.

633

Listing 232. app/minesweeper.py

 self.mines = QLabel()

 self.mines.setAlignment(Qt.AlignHCenter | Qt.AlignVCenter)

 self.clock = QLabel()

 self.clock.setAlignment(Qt.AlignHCenter | Qt.AlignVCenter)

 f = self.mines.font()

 f.setPointSize(24)

 f.setWeight(75)

 self.mines.setFont(f)

 self.clock.setFont(f)

 self.clock.setText("000")

 self.button = QPushButton()

 self.button.setFixedSize(QSize(32, 32))

 self.button.setIconSize(QSize(32, 32))

 self.button.setIcon(QIcon("./icons/smiley.png"))

 self.button.setFlat(True)

 self.button.pressed.connect(self.button_pressed)

 self.statusBar()

 l = QLabel()

 l.setPixmap(QPixmap.fromImage(IMG_BOMB))

 l.setAlignment(Qt.AlignRight | Qt.AlignVCenter)

 hb.addWidget(l)

 hb.addWidget(self.mines)

 hb.addWidget(self.button)

 hb.addWidget(self.clock)

 l = QLabel()

 l.setPixmap(QPixmap.fromImage(IMG_CLOCK))

 l.setAlignment(Qt.AlignLeft | Qt.AlignVCenter)

 hb.addWidget(l)

 vb = QVBoxLayout()

 vb.setSizeConstraint(QLayout.SetFixedSize)

 vb.addLayout(hb)

634

If the game is currently in progress self.status == STATUS_PLAYING a button

press is interpreted as "I give up" and the the game_over state is triggered.

If the game is currently won self.status == STATUS_SUCCESS or lost self.status

== STATUS_FAILED the press is taken to mean "Try again" and the game map is

reset.

Listing 233. app/minesweeper.py

 def button_pressed(self):

 if self.status == STATUS_PLAYING:

 self.game_over()

 elif self.status == STATUS_FAILED or self.status ==

STATUS_SUCCESS:

 self.reset_map()

Menus

There is only a single menu for Moonsweeper which holds the game controls.

We create a QMenu by calling .addMenu() on the QMainWindow.menuBar() as normal.

The first menu item is a standard QAction for "New game" wit the .triggered

action connected to the .reset_map function, which performs the entire map

setup process. For new games we keep the existing board size & layout so do

not need to re-init the map.

In addition we add a submenu "Levels" which contains a QAction for each

level defined in LEVELS. The level name is taken from the same constant, and

custom status message is built from the stored dimensions. We connect the

action .triggered signal to .set_level, using the lambda method to discard the

default signal data and instead pass along the level number.

635

Listing 234. app/minesweeper.py

 game_menu = self.menuBar().addMenu("&Game")

 new_game_action = QAction("New game", self)

 new_game_action.setStatusTip(

 "Start a new game (your current game will be lost)"

)

 new_game_action.triggered.connect(self.reset_map)

 game_menu.addAction(new_game_action)

 levels = game_menu.addMenu("Levels")

 for n, level in enumerate(LEVELS):

 level_action = QAction(level[0], self)

 level_action.setStatusTip("{1}x{1} grid, with {2} mines"

.format(*level))

 level_action.triggered.connect(lambda _, n=n: self

.set_level(n))

 levels.addAction(level_action)

Going further

Take a look through the rest of the source code we’ve not covered.



Challenge

You might like to try make the following changes — 

• Try changing the graphics to make you’re own themed

version of Minesweeper.

• Add support for non-square playing fields. Rectangular?

Try a circle!

• Change the timer to count down — explore the Moon

against the clock!

• Add power-ups: squares give bonuses, extra time,

invincibility.

636

Appendix A: Installing PyQt5

Before you start coding you will first need to have a working installation of

PyQt5 on your system. If you don’t have PyQt5 set up yet, the following

sections will guide you through how to do this on Windows, macOS and

Linux.



Note that the following instructions are only for installation

of the GPL licensed version of PyQt. If you need to use PyQt

in a non-GPL project you will need to purchase an alternative

license from Riverbank Computing to release your software.

Installation on Windows

PyQt5 for Windows can be installed as for any other application or library. As

of Qt 5.6 installers are available to install via PyPi, the Python Package

archive. To install PyQt5 from Python3 simply run — 

pip3 install pyqt5

After install is finished, you should be able to run python and import PyQt5.

Note that if you want access to Qt Designer or Qt Creator you will need to

download this from the Qt downloads site.

Installation on macOS

If you already have a working installation of Python 3 on macOS, you can go

ahead and install PyQt5 as for any other Python package, using the

following — 

pip3 install pyqt5

If you don’t have an installation of Python 3, you will need to install one first.

637

https://www.riverbankcomputing.com
https://qt.io/download

You can download macOS installers for Python 3 from the Python

homepage. Once installed, you should be able to use the pip3 install

command above to install PyQt5.

Another alternative is to use Homebrew. Homebrew is a package manager

for command-line software on macOS. Homebrew has both Python 3 and

PyQt5 available in their repositories.

Figure 246. Homebrew — the missing package manager for macOS.

To install homebrew run the following from the command line — 

ruby -e "$(curl -fsSL

https://raw.githubusercontent.com/Homebrew/install/master/install)"


This is also available to copy and paste from the Homebrew

homepage.

Once Homebrew is installed you can then install Python with — 

brew install python3

With Python installed, you can then install PyQt5 as normal, using pip3

install pyqt5, or alternatively choose to install it using Homebrew with — 

brew install pyqt5

638

https://www.python.org/
https://www.python.org/
http://brew.sh/

Installation on Linux (Ubuntu)

Installation on Linux is very straightforward as packages for PyQt5 are

available in the repositories of most distributions. In Ubuntu you can install

either from the command line or via "Software Center". The package you are

looking for is named python3-pyqt5.

You can also install these from the command line as follows — 

apt-get install python3-pyqt5

Once the installation is finished, you should be able to run python3 or python

and import PyQt5.

639

Appendix B: Translating C++

Examples to Python

C++ When writing applications with PyQt5 we are really writing applications

with Qt.

PyQt5 acts as a wrapper around the Qt libraries, translating Python method

calls to C++, handling type conversions and transparently creating Python

objects to represent Qt objects in your applications. The result of all this

cleverness is that you can use Qt from Python while writing mostly Pythonic

code — if we ignore the camelCase.

While there is a lot of PyQt5 example code out there, there are far more Qt

C++ examples. The core documentation is written for C++. The library is

written in C++. This means that sometimes, when you’re looking how to do

something, the only resource you’ll find is a C++ tutorial or some C++ code.

Can you use it? Yes! If you have no experience with C++ (or C-like languages)

then the code can look like gibberish. But before you were familiar with

Python, Python probably looked a bit like gibberish too. You don’t need to be

able to write C++ to be able to read it. Understanding and decoding is easier

than writing.

With a little bit of effort you’ll be able to take any C++ example code and

translate it into fully-functional Python & PyQt5. In this chapter we’ll take a

snippet of Qt5 code and step-by-step convert it into fully-working Python

code.

The example code

We’ll start with the following example block of code creating a simple

window with a QPushButton and a QLineEdit. Pressing on the button will clear

the line edit. Pretty exciting stuff, but this includes a few key parts of

translating Qt examples to PyQt5 — namely, widgets, layouts and signals.

640

#include <QtWidgets>

int main(int argc, char *argv[])

{

 QApplication app(argc, argv);

 QWidget window;

 QLineEdit *lineEdit = new QLineEdit();

 QPushButton *button = new QPushButton("Clear");

 QHBoxLayout *layout = new QHBoxLayout();

 layout->addWidget(lineEdit);

 layout->addWidget(button);

 QObject::connect(&button, &QPushButton::pressed,

 &lineEdit, &QLineEdit::clear);

 window.setLayout(layout);

 window.setWindowTitle("Why?");

 window.show();

 return app.exec();

}


Remember that a Qt widget without a parent is always a

separate window. Here we have a single window created as a

QWidget.

Below we’ll step through the process of converting this code to Python.

Imports

In C++ imports are called includes. They’re found at the top of the file, just as

in Python (though only by convention) and look like this — 

#include <QtWidgets>

In C-like languages the # indicates that include is a pre-processor directive

not a comment. The value between <> is the name of the module to import.

Note that unlike Python, importing a module makes all contents of that

641

module available in the global namespace. This is the equivalent of doing the

following in Python — 

from PyQt5.QtWidgets import *

Global imports like this are generally frowned upon in Python, and you

should instead either — 

1. only import the objects you need, or

2. import the module itself and use it to reference it’s children

from PyQt5.QtWidgets import QApplication, QWidget, QLineEdit,

QPushButton, QHBoxLayout

Or, alternatively…

from PyQt5 import QtWidgets

…and then reference as QtWidgets.QApplication(). Which you choose for your

own code is entirely up to you, however in this example we’re going to follow

the first style. Applying that to the code gives us the following result so far.

642

from PyQt5.QtWidgets import (

 QApplication, QWidget, QLineEdit, QPushButton, QHBoxLayout

)

int main(int argc, char *argv[])

{

 QApplication app(argc, argv);

 QWidget window;

 QLineEdit *lineEdit = new QLineEdit();

 QPushButton *button = new QPushButton("Clear");

 QHBoxLayout *layout = new QHBoxLayout();

 layout->addWidget(lineEdit);

 layout->addWidget(button);

 QObject::connect(&button, &QPushButton::pressed,

 &lineEdit, &QLineEdit::clear);

 window.setLayout(layout);

 window.setWindowTitle("Why?");

 window.show();

 return app.exec();

}


Since we’re making changes iteratively, the code won’t work

until the very end.

int main(int argc, char *argv[])

Every C++ program needs a main(){} block which contains the first code to be

run when the application is executed. In Python any code at the top-level of

the module (i.e. not indented inside a function, class or methods) will be run

when the script is executed.

643

from PyQt5.QtWidgets import (

 QApplication, QWidget, QLineEdit, QPushButton, QHBoxLayout

)

QApplication app(argc, argv);

QWidget window;

QLineEdit *lineEdit = new QLineEdit();

QPushButton *button = new QPushButton("Clear");

QHBoxLayout *layout = new QHBoxLayout();

layout->addWidget(lineEdit);

layout->addWidget(button);

QObject::connect(&button, &QPushButton::pressed,

 &lineEdit, &QLineEdit::clear);

window.setLayout(layout);

window.setWindowTitle("Why?");

window.show();

app.exec();

You may have seen the following code block in Python application code,

which is also often referred to as the main block.

if __name__ == '__main__':

 ...your code here...

However, this works in a subtly different way. While this block will be run

when a script is executed, so would any code that is not indented. The

purpose of this block is actually to prevent this code executing when the

module is imported, rather than executed as a script.

You can nest your code inside this block if you wish, although unless your file

is going to be imported as a module it isn’t strictly necessary.

C++ types

Python is a dynamically typed language, meaning you can change the type

of a variable after it has been defined. For example, the following is perfectly

644

valid Python.

a = 1

a = 'my string'

a = [1,2,3]

Many other languages, C++ included, are statically typed, meaning that once

you define the type of a variable it cannot be changed. For example, the

following is very definitely not valid C++.

int a = 1;

a = 'my string';

The above highlights an immediate consequence of static typing in

languages: you define the type of a variable when you create it.

In C++ this is done explicitly by providing a type decorator on the line when

the variable is defined, above int.

In lines like the following the first name is the name of type (class) that is

being created by the remainder of the line.

QApplication app(argc, argv);

QWidget window;

QLineEdit *lineEdit = new QLineEdit();

QPushButton *button = new QPushButton("Clear");

QHBoxLayout *layout = new QHBoxLayout();

In Python we do not need these type definitions, so we can just delete them.

lineEdit = new QLineEdit();

button = new QPushButton("Clear");

layout = new QHBoxLayout();

For application and window it’s exactly the same principle. However, if you’re

645

not familiar with C++ it might not be obvious those lines are creating an

variable at all.

There are differences between creating objects with new and without in C++

but you don’t need to concern yourself with that in Python and can consider

them both equivalent.

QWidget *window = new QWidget();

QWidget window;

QApplication *app = new QApplication(argc, argv);

QApplication app;

To convert to Python, take the class name (e.g. QApplication) from the left, and

place it in front of open and closing brackets (), adding them if they aren’t

already there. Then move the name of the variable to the left, with an =. For

window that gives us — 

window = QWidget()

In Python QApplication only accepts a single parameter, a list of arguments

from sys.argv (equivalent to argv). This gives us the code — 

import sys

app = QApplication(sys.argv);

So far our complete code block is looking like the following.

646

from PyQt5.QtWidgets import (

 QApplication, QWidget, QLineEdit, QPushButton, QHBoxLayout

)

import sys

app = QApplication(argc, argv);

window = QWidget()

lineEdit = QLineEdit();

button = QPushButton("Clear");

layout = QHBoxLayout();

layout->addWidget(lineEdit);

layout->addWidget(button);

QObject::connect(&button, &QPushButton::pressed,

 &lineEdit, &QLineEdit::clear);

window.setLayout(layout);

window.setWindowTitle("Why?");

window.show();

app.exec();

Signals

Signals are key to making the example work, and unfortunately the C++

syntax for Qt signals is a little tricky. The example signal we’re working with is

shown below.

QObject::connect(&button, &QPushButton::pressed,

 &lineEdit, &QLineEdit::clear);

If you’re not familiar with C++ this will be quite difficult to parse. But if we

remove all the syntax it will get much clearer.

connect(button, QPushButton.pressed, lineEdit, QLineEdit.clear)

// or...

connect(<from object>, <from signal>, <to object>, <to slot>>)

647

Working from left to right we have, the object we’re connecting from, the

signal we’re connecting from on that object, then the object we’re

connecting to, then finally the slot (or function) we’re connecting to on that

object. This is the equivalent of writing the following in PyQt5 — 

button.pressed.connect(lineedit.clear)

Making that change gives us the following in progress code.

from PyQt5.QtWidgets import (

 QApplication, QWidget, QLineEdit, QPushButton, QHBoxLayout

)

app = QApplication(sys.argv)

window = QWidget()

lineEdit = QLineEdit()

button = QPushButton("Clear")

layout = QHBoxLayout()

layout->addWidget(lineEdit);

layout->addWidget(button);

button.pressed.connect(lineEdit.clear)

window.setLayout(layout);

window.setWindowTitle("Why?");

window.show();

app.exec();

Syntax

By now we’ve converted all the really troublesome parts, so we can do a final

syntax-correction pass. These are a simple search-replace.

First search for all instances of -> or :: and replace with .. You’ll notice that

the C++ code also uses . in some places — this comes back to how those

variables were created earlier (new vs. not). Again, you can ignore that here

and simply use . everywhere.

648

layout.addWidget(lineEdit);

layout.addWidget(button);

Finally, remove all line-ending semi-colon ; marks.

layout.addWidget(lineEdit)

layout.addWidget(button)


You technically don’t have to do this, as ; is a valid line-

terminator in Python. It’s just not necessary.

The following code is now working Python.

import sys

from PyQt5.QtWidgets import QApplication, QHBoxLayout, QLineEdit,

QPushButton, QWidget

app = QApplication(sys.argv)

window = QWidget()

lineEdit = QLineEdit()

button = QPushButton("Clear")

layout = QHBoxLayout()

layout.addWidget(lineEdit)

layout.addWidget(button)

button.pressed.connect(lineEdit.clear)

window.setLayout(layout)

window.setWindowTitle("Why?")

window.show()

app.exec_()

In Python code it is normal (though not required) to subclass the window

class so the initialization code can be self-contained within the __init__ block.

The code below has been reworked into that structure, moving all except the

creation of the window object (now MyWindow) and app, and app.exec() call into

649

the __init__ block.

import sys

from PyQt5.QtWidgets import QApplication, QHBoxLayout, QLineEdit,

QPushButton, QWidget

class MyWindow(QWidget):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 lineEdit = QLineEdit()

 button = QPushButton("Clear")

 layout = QHBoxLayout()

 layout.addWidget(lineEdit)

 layout.addWidget(button)

 button.pressed.connect(lineEdit.clear)

 self.setLayout(layout)

 self.setWindowTitle("Why?")

 self.show()

app = QApplication(sys.argv)

window = MyWindow()

app.exec_()

Applying the process to your own code

This is a very simple example, however if you follow the same process you can

reliably convert any C++ Qt code over to it’s Python equivalent. When

converting your own sample of code try and stick to this stepwise approach

to minimize the risk of missing something or inadvertently breaking it. If you

end up with Python code that runs but is subtly different it can be hard to

debug.

650


If you have a code example you would like help with

translating, you can always get in touch and I’ll try and help

you out.

651

Appendix C: PyQt5 and PySide2 —

What’s the difference?

If you start building Python application with Qt5 you’ll soon discover that

there are in fact two packages which you can use to do this — PyQt5 and

PySide2.

In this short chapter I’ll run through why exactly this is, whether you need to

care (spoiler: you really don’t), what the (few) differences are and how to work

around them. By the end you should be comfortable re-using code examples

from both PyQt5 and PySide2 tutorials to build your apps, regardless of

which package you’re using yourself.



If you bought a copy of this ebook you can have access to

both PyQt5 and PySide2 versions of this book. Just let me

know and I’ll add them onto your account on

www.learnpyqt.com.

Background

Why are there two libraries?

PyQt is developed by Phil Thompson of Riverbank Computing Ltd. and has

existed for a very long time — supporting versions of Qt going back to 2.x. In

2009 Nokia, who owned Qt toolkit at the time, wanted to make the Python

bindings for Qt available in a more permissive LGPL license. Unable to come

to agreement with Riverbank (who would lose money from this, so fair

enough) they then released their own bindings as _PySide.

 It’s called PySide because "side" is Finnish for "binder".

The two interfaces were basically equivalent, but over time development of

PySide lagged behind PyQt. This was particularly noticeable following the

release of Qt 5 — the Qt5 version of PyQt (PyQt5) has been available since

mid-2016, while the first stable release of PySide2 was 2 years later.

652

https://www.learnpyqt.com
https://www.riverbankcomputing.com/software/pyqt/intro

With that in mind, it is unsurprising that many Qt5 on Python examples use

PyQt5 — if only because it was available. However, the Qt project has

recently adopted PySide as the official Qt for Python release which should

ensure its viability going forward.

PyQt5 PySide2

First stable release Apr 2016 Jul 2018

Developed by Riverbank Computing

Ltd.

Qt

License GPL or commercial LGPL

Platforms Python 3 Python 3 and Python 2.7

(Linux and macOS only)

Which should you use? Well, honestly, it doesn’t really matter.

Both packages are wrapping the same library — Qt5 — and so have 99.9%

identical APIs (see below for the few differences). Code that is written for one

can often be used as-is with other, simply changing the imports from PyQt5 to

PySide2. Anything you learn for one library will be easily applied to a project

using the other.

Also, no matter with one you choose to use, it’s worth familiarizing yourself

with the other so you can make the best use of all available online resources

— using PyQt5 tutorials to build your PySide2 applications for example, and

vice versa.

In this short chapter I’ll run through the few notable differences between the

two packages and explain how to write code which works seamlessly with

both. After reading this you should be able to take any PyQt5 example online

and convert it to work with PySide2.

Licensing

The main notable difference between the two versions is licensing — with

PyQt5 being available under a GPL or commercial license, and PySide2 under

653

https://www.qt.io/qt-for-python

a LGPL license.

If you are planning to release your software itself under the GPL, or you are

developing software which will not be distributed, the GPL requirement of

PyQt5 is unlikely to be an issue. However, if you want to distribute your

software but not share your source code you will need to purchase a

commercial license from Riverbank for PyQt5 or use PySide2.


Qt itself is available under a Qt Commercial License, GPL 2.0,

GPL 3.0 and LGPL 3.0 licenses.

UI files

The only major difference between the two libraries is in their handling of

loading .ui files exported from Qt Creator/Designer. PyQt5 provides the uic

submodule which can be used to load UI files directly, to produce an object.

This feels pretty Pythonic (if you ignore the camelCase).

import sys

from PyQt5 import QtWidgets, uic

app = QtWidgets.QApplication(sys.argv)

window = uic.loadUi("mainwindow.ui")

window.show()

app.exec()

The equivalent with PySide2 is one line longer, since you need to create a

QUILoader object first. Unfortunately the API of these two interfaces is different

too (.load vs .loadUI).

654

import sys

from PySide2 import QtCore, QtGui, QtWidgets

from PySide2.QtUiTools import QUiLoader

loader = QUiLoader()

app = QtWidgets.QApplication(sys.argv)

window = loader.load("mainwindow.ui", None)

window.show()

app.exec_()

To load a UI onto an existing object in PyQt5, for example in your

QMainWindow.init you can call uic.loadUI passing in self(the existing widget) as

the second parameter.

import sys

from PyQt5 import QtCore, QtGui, QtWidgets

from PyQt5 import uic

class MainWindow(QtWidgets.QMainWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 uic.loadUi("mainwindow.ui", self)

app = QtWidgets.QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()

The PySide2 loader does not support this — the second parameter to .load is

the parent widget of the widget you’re creating. This prevents you adding

custom code to the init block of the widget, but you can work around this

with a separate function.

655

import sys

from PySide2 import QtWidgets

from PySide2.QtUiTools import QUiLoader

loader = QUiLoader()

def mainwindow_setup(w):

 w.setWindowTitle("MainWindow Title")

app = QtWidgets.QApplication(sys.argv)

window = loader.load("mainwindow.ui", None)

mainwindow_setup(window)

window.show()

app.exec()

Converting UI files to Python

Both libraries provide identical scripts to generate Python importable

modules from Qt Designer .ui files. For PyQt5 the script is named pyuic5 —

pyuic5 mainwindow.ui -o MainWindow.py

You can then import the UI_MainWindow object, subclass using multiple

inheritance from the base class you’re using (e.g. QMainWIndow) and then call

self.setupUI(self) to set the UI up.

656

import sys

from PyQt5 import QtWidgets

from MainWindow import Ui_MainWindow

class MainWindow(QtWidgets.QMainWindow, Ui_MainWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.setupUi(self)

app = QtWidgets.QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec()

For PySide2 it is named pyside2-uic —

pyside2-uic mainwindow.ui -o MainWindow.py

The subsequent setup is identical.

import sys

from PySide2 import QtWidgets

from MainWindow import Ui_MainWindow

class MainWindow(QtWidgets.QMainWindow, Ui_MainWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.setupUi(self)

app = QtWidgets.QApplication(sys.argv)

window = MainWindow()

window.show()

app.exec_()

657


For more information in using Qt Designer with either PyQt5

or PySide2 see the Qt Creator chapter.

exec() or exec_()

The .exec() method is used in Qt to start the event loop of your QApplication

or dialog boxes. In Python 2.7 exec was a keyword, meaning it could not be

used for variable, function or method names. The solution used in both

PyQt4 and PySide was to rename uses of .exec to .exec_() to avoid this

conflict.

Python 3 removed the exec keyword, freeing the name up to be used. As

PyQt5 targets only Python 3 it could remove the workaround, and .exec()

calls are named just as in Qt itself. However, the .exec_() names are

maintained for backwards compatibility.

PySide2 is available on both Python 3 and Python 2.7 and so still uses

.exec_(). It is however only available for 64bit Linux and macOS.

If you’re targeting both PySide2 and PyQt5 use .exec_()

Slots and Signals

Defining custom slots and signals uses slightly different syntax between the

two libraries. PySide2 provides this interface under the names Signal and Slot

while PyQt5 provides these as pyqtSignal and pyqtSlot respectively. The

behavior of them both is identical for defining and slots and signals.

The following PyQt5 and PySide2 examples are identical —

my_custom_signal = pyqtSignal() # PyQt5

my_custom_signal = Signal() # PySide2

my_other_signal = pyqtSignal(int) # PyQt5

my_other_signal = Signal(int) # PySide2

658

Or for a slot —

@pyqtslot

def my_custom_slot():

 pass

@Slot

def my_custom_slot():

 pass

If you want to ensure consistency across PyQt5 and PySide2 you can use the

following import pattern for PyQt5 to use the Signal and @Slot style there too.

from PyQt5.QtCore import pyqtSignal as Signal, pyqtSlot as Slot


You could of course do the reverse from PySide2.QtCore import

Signal as pyqtSignal, Slot as pyqtSlot although that’s a bit

confusing.

Supporting both in libraries


You don’t need to worry about this if you’re writing a

standalone app, just use whichever API you prefer.

If you’re writing a library, widget or other tool you want to be compatible with

both PyQt5 and PySide2 you can do so easily by adding both sets of imports.

659

import sys

if 'PyQt5' in sys.modules:

 # PyQt5

 from PyQt5 import QtGui, QtWidgets, QtCore

 from PyQt5.QtCore import pyqtSignal as Signal, pyqtSlot as Slot

else:

 # PySide2

 from PySide2 import QtGui, QtWidgets, QtCore

 from PySide2.QtCore import Signal, Slot

This is the approach used in our custom widgets library, where we support

for PyQt5 and PySide2 with a single library import. The only caveat is that you

must ensure PyQt5 is imported before (as in on the line above or earlier)

when importing this library, to ensure it is in sys.modules.


An alternative would be to use an environment variable to

switch between them — see QtPy later.

If you’re doing this in multiple files it can get a bit cumbersome. A nice

solution to this is to move the import logic to its own file, e.g. named qt.py in

your project root. This module imports the Qt modules (QtCore, QtGui,

QtWidgets, etc.) from one of the two libraries, and then you import into your

application from there.

The contents of the qt.py are the same as we used earlier —

660

import sys

if 'PyQt5' in sys.modules:

 # PyQt5

 from PyQt5 import QtGui, QtWidgets, QtCore

 from PyQt5.QtCore import pyqtSignal as Signal, pyqtSlot as Slot

else:

 # PySide2

 from PySide2 import QtGui, QtWidgets, QtCore

 from PySide2.QtCore import Signal, Slot

You must remember to add any other PyQt5 modules you use (browser,

multimedia, etc.) in both branches of the if block. You can then import Qt5

into your own application as follows —

from .qt import QtGui, QtWidgets, QtCore

…and it will work seamlessly across either library.

QtPy

If you need to target more than just Qt5 support (e.g. including PyQt4 and

PySide v1) take a look at QtPy. This provides a standardized PySide2-like API

for PyQt4, PySide, PyQt5 and PySide2. Using QtPy you can control which API

to load from your application using the QT_API environment variable e.g.

import os

os.environ['QT_API'] = 'pyside2'

from qtpy import QtGui, QtWidgets, QtCore # imports PySide2.

That’s really it

There’s not much more to say — the two libraries really are that similar.

However, if you do stumble across any other PyQt5/PySide2 examples or

661

https://github.com/spyder-ide/qtpy

features which you can’t easily convert, drop me a note.

662

Appendix D: What next?

This book covers the key things you need to know to start creating GUI

applications with Python. If you’ve made it here you should be well on your

way to create your own apps!

But there is still a lot to discover while you build your applications. To help

with this I post regular tips, tutorials and code snippets on the accompanying

website. Like this book all samples are MIT licensed and free to mix into your

own apps.

You can also drop by the forum to ask questions and get help from me &

fellow students. You may also be interested in my related video course which

allows you to follow through and see the development of PyQt applications

live.

Thanks for reading, and if you have any feedback or suggestions please let

me know!

Get access to updates

If you bought this book direct from me, you will have an account on

www.learnpyqt.com where you will receive automatic updates to this book.

If you bought this book elsewhere, create an account at learnpyqt.com and

then email your receipt to me at martin@learnpyqt.com. I’ll add the books to

your account for you right away.

Documentation

Resource

Qt5.10 Documentation

PyQt5 Library documentation

PySide "Qt for Python" Library documentation

663

https://www.learnpyqt.com/
https://www.learnpyqt.com/
https://forum.learnpyt.com
https://www.learnpyqt.com/purchase
mailto:martin@learnpyqt.com
mailto:martin@learnpyqt.com
https://www.learnpyqt.com/
https://www.learnpyqt.com
mailto:martin@learnpyqt.com
http://doc.qt.io/qt-5/
http://pyqt.sourceforge.net/Docs/PyQt5/
https://doc.qt.io/qtforpython/

Index

A

accelerator keys, 107

accept, 117

actions, 104

aesthetic, 170

alignment points, 170

arguments, 13

B

bitmap graphics, 378

bitmap image, 379

bitwise, 374

C

C++, 5, 640

Cancel, 117

checkable, 95, 97

checkbox, 101

checked, 23

class, 93

click, 14

clicked, 23

color, 64

columns, 76

command line, 13

command-line arguments, 353

currentItemChanged, 48

currentTextChanged, 48

D

dark mode, 193

database, 304

DecorationRole, 272

dialog box, 121

dialog buttons, 118

dialogs, 114

dismissed, 114

document mode, 89

drawLine, 383

drawPoint, 384

drawRect, 390

drawRects, 390

drawRoundedRect, 390

E

editing strategy, 309

event, 139, 14

event filter, 139

event handler, 14

event loop, 117, 13, 14

event queue, 14

events, 139

F

familiarity, 441

fbs, 574

filter, 315

Free Desktop Specification, 202

Fugue icons, 99

Fusion, 183, 193

G

GIL, 450

H

horizontally, 76

664

I

icons, 197, 91

intercept events, 139

intuitive, 441

K

key sequence, 109

keyboard shortcut, 109

L

layouts, 63

M

main window, 16

matplotlib, 557

menubar, 358

menus, 91

modal, 114

Model View, 260

mouse movement, 14

mouseDoubleClickEvent, 139

mouseMoveEvent, 139, 403

mousePressEvent, 139, 141

mouseReleaseEvent, 139

MVC, 260, 279

MySQL, 334

N

numpy, 298

O

OK, 117

P

palettes, 186

Pandas, 300

PEP8, 5

PNG, 200

PostgreSQL, 334

processes, 450

processEvents, 447

pseudo-selectors, 239

PyQtGraph, 473, 536

pyrcc5, 181

pyuic5, 181

Q

QAbstractSlider, 411

QAbstractTableModel, 283

QApplication, 10, 447

QBrush, 392

QCheckBox, 41

QColor, 406

QComboBox, 44, 48

QContextMenuEvent, 143

QDataWidgetMapper, 329

QDial, 413, 435, 60

QDialogButtonBox, 121

QDoubleSpinBox, 54

QEvent, 139

QFont, 397

QGridLayout, 63

QHBoxLayout, 63

QIcon, 197

QLabel, 34, 38

QLineEdit, 51

QListBox, 48

QListItem, 48

QListView, 263

QMouseEvent, 139

665

QPainter, 379, 411

QPalette, 186

QPen, 388

QPixmap, 379, 38

QProcess, 525

QPushButton, 406

QRC, 179

QRect, 390

QRectF, 390

QResource, 172

QRunnable, 460

QSlider, 57

QSpinBox, 54

QSqlQuery, 324

QSqlQueryModel, 322

QSqlRelation, 319

QSqlRelationalDelegate, 320

QSqlRelationalTableModel, 318

QSqlTableModel, 306

QSS, 205

QStackedLayout, 63

QStandardItemModel, 279

QStyle, 199

Qt Creator, 149, 154, 177

Qt Designer, 149, 153, 175, 202, 63

Qt namespace, 101, 109, 143, 36, 368

QTableView, 279

QTabWidget, 87

QThreadPool, 460

QVBoxLayout, 63

QWidget, 413, 62

R

reject, 117

remove a toolbar, 92

ribbon, 91

roles, 289

routing, 348

S

setSizePolicy, 416

signals, 21, 31, 336, 340

skeuomorphism, 441

slots, 21, 31, 340

SQL, 304

SQLite, 305

stacked, 76

standardIcon, 198

status tip, 94

style sheets, 205

subclass, 117

subprocess, 525

SVG, 200

sys.argv, 353

system tray, 358

T

tabbed, 82

threads, 450

timer, 446

toggleable, 97

toggled, 99

toolbar, 99

toolbars, 91

triggered action, 93

U

usability, 112, 128, 170, 195, 441, 523

666

V

vertically, 76

W

widget, 91

widgets, 32

window, 12

window decorations, 12

windowTitleChanged, 29

667

	Create GUI Applications with Python & Qt5: The hands-on guide to making apps with Python
	Table of Contents
	Introduction
	1. A very brief history of the GUI
	2. A bit about Qt
	3. Thankyou
	4. Copyright

	Basic PyQt5 Features
	5. My first Application
	6. Signals & Slots
	7. Widgets
	8. Layouts
	9. Actions, Toolbars & Menus
	10. Dialogs
	11. Windows
	12. Events

	Qt Designer
	13. Installing Qt Designer
	14. Getting started with Qt Designer
	15. The Qt Resource system

	Theming
	16. Styles
	17. Palettes
	18. Icons
	19. Qt Style Sheets (QSS)

	Model View Architecture
	20. The Model View Architecture — Model View Controller
	21. A simple Model View — a Todo List
	22. Tabular data in ModelViews, with numpy & pandas
	23. Querying SQL databases with Qt models

	Further PyQt50〠Features
	24. Extending Signals
	25. Routing
	26. Working with command-line arguments
	27. System tray & macOS menus
	28. Enums & the Qt Namespace

	Custom Widgets
	29. Bitmap Graphics in Qt
	30. Creating Custom Widgets

	Concurrent Execution
	31. Introduction to Threads & Processes
	32. Using the thread pool
	33. Threading examples
	34. Running external commands & processes

	Plotting
	35. Plotting with PyQtGraph
	36. Plotting with Matplotlib

	Packaging & Distribution
	37. Packaging with fbs

	Example applications
	38. Mozzarella Ashbadger
	39. Moonsweeper

	Appendix A: Installing PyQt5
	Appendix B: Translating C++ Examples to Python
	Appendix C: PyQt5 and PySide2 — What’s the difference?
	Appendix D: What next?
	Index

