Create GUI 4
Applications win

Q PYt hong&
The hands-on
guide to making
apps with Python

‘ PyQt5 Edition

Martin Fitzpatrick



Create GUI Applications with Python & Qt5
The hands-on guide to making apps with Python

Martin Fitzpatrick

Version 4.0, 2020-06-26



Table of Contents

Introduction
1. A very brief history of the GUI
2. A bit about Qt
3. Thankyou
4, Copyright
Basic PyQt5 Features
5. My first Application
6. Signals & Slots
7. Widgets
8. Layouts
9. Actions, Toolbars & Menus
10. Dialogs
1. Windows
12. Events
Qt Designer
13. Installing Qt Designer
14. Getting started with Qt Designer
15. The Qt Resource system
Theming
16. Styles
17. Palettes
18. Icons
19. Qt Style Sheets (QSS)
Model View Architecture

20. The Model View Architecture — Model View Controller
21. A simple Model View — a Todo List

22. Tabular data in ModelViews, with numpy & pandas

23. Querying SQL databases with Qt models

Further PyQt5 Features
24, Extending Signals
25. Routing

26. Working with command-line arguments

27.System tray & macOS menus
28. Enums & the Qt Namespace
Custom Widgets

O 0 J U1 N —

10

32
63
91
N4
130
139
148
149
153
172
182
183
186
197
205
259
260
263
279
304
335
336
348
353
358
368
378



29. Bitmayp Graphics in Qt 379

30. Creating Custom Widgets 411
Concurrent Execution 444
31. Introduction to Threads & Processes 445
32. Using the thread pool 45]
33. Threading examples 460
34. Running external commands & processes 525
Plotting 535
35. Plotting with PyQtGraph 536
36. Plotting with Matplotlib 557
Packaging & Distribution 573
37. Packaging with fbs 574
Example applications 594
38. Mozzarella Ashbadger 595
39. Moonsweeper 614
Appendix A: Installing PyQt5 637
Appendix B: Translating C++ Examples to Python 640
Appendix C: PyQt5 and PySide2 — What's the difference? 652
Appendix D: What next? 663

Index 664



Introduction

If you want to create GUI applications with Python it can be tricky to know
where to start. There are a lot of new concepts you need to understand to get
anything to work. But, like any coding problem, the first step is learning to
approach the problem in the right way. In this book | take you right from the
basic principles of GUI development to creating your own, fully functional,

desktop apps with PyQt5.

The first edition of this book was released in 2016. Since then it has been
updated 4 times, adding and expanding chapters in response to reader
feedback. There are more PyQt5 resources available now than when | started,
but there is still a shortage of in-depth, practical guides to building complete

apps. This book fills that gap!

The book is formatted as a series of chapters exploring different aspects of
PyQt5 in turn. They are arranged to put the simpler chapters toward the
beginning, but if you have specific requirements for your project, don't be
afraid to jump around! Each chapter will guide you through learning the
fundamental concepts before taking you through a series of coding

examples to gradually explore and learn how to apply the ideas yourself.

You can download source code and resources for all examples in this book.
But don't be tempted just to read the code and move on—you will learn

much more if you experiment along the way.

It is not possible to give you a complete overview of the Qt system in a book
of this size, so there are links to external resources—both on the
LearnPyQt.com website and elsewhere. If you find yourself thinking "I
wonder if | can do that?" the best thing you can do is put this book down,
then go and find out! Just keep regular backups of your code along the way

so you always have something to come back to if you royally mess it up.


http://www.learnpyqt.com/d/pyqt5-source.zip

Throughout this book there are boxes like this, giving info,
O tips and warnings. All of them can be safely skipped over if
- you are in a hurry, but reading them will give you a deeper

and more rounded knowledge of the Qt framework.

Finally, this book is written to be compatible with Python 3.4+. Python 3 is the
future of the language and if you're starting out now is where you should be
focusing your efforts. However, many of the examples can be changed with

minimal effort to work with Python 2.7.



1. A very brief history of the GUI

The Graphical User Interface has a long and venerable history dating back
as far as the 1960s. Stanford's NLS (oN-Line System) introduced the the
mouse and windows concept, first demonstrated publicly in 1968. This was
followed by the Xerox PARC Smalltalk system GUI 1973, which is the

foundation of most modern general purpose GUIs.

These early systems already had many of the features we take for granted in
modern desktop GUIs, including windows, menus, radio buttons, check
boxes and later icons. This combination of features—gave us the early
acronym used for these types of interfaces: WIMP (windows, icons, menus,

pointing device—a mouse).

In 1979 the first commercial system featuring a GUI was released—the PERQ
workstation. This spurred a number of other GUI efforts including notably the
Apple Lisa (1983), which added the concept of the menu bar and window
controls. As well as many other systems from the Atari ST (GEM), Amiga. On
UNIX (and later Linux) the X Window System emerged in 1984. The first

version of Windows for PC was released in 1985.

Accessories Startllp Main

Microsoft Windows 3.1 Apple System 7 (Emulated)
Figure 1. The desktop on Microsoft Windows 3.1 (1992) and Apple System 7 (1991)

Early GUIs were not the instant hit we might assume, due to the lack of
compatible software at launch and expensive hardware

requirements—particularly for home users. Slowly, but steadily, the GUI



interface become the preferred way to interact with computers and the
WIMP metaphor became firmly established as the standard. That's not to say
there haven't been attempts to replace the WIMP metaphor on the desktop.
Microsoft Bob (1995), for example, was Microsoft's much maligned attempt to

replace the desktop with a house.

A
pragraem ju choh m

P T ——_
i i bl o T FL oy

ks
0".1\-: ipdeane

Figure 2. Microsoft Bob— Discarding the desktop metaphor for a cartoon house.

There have been no shortage of other GUIs hailed as revolutionary in their
time, from the launch of Windows 95 (1995) through to Mac OS X (2001),
GNOME Shell (2011) and Windows 10 (2015). Each of these overhauled the Uls
of their respective desktop systems, often with much fanfare. But
fundamentally nothing really changed. These new Uls are still very much
WIMP systems and function in exactly the same way as GUIs have since the
1980s.

When the revolution came, it was mobile—the mouse has been replaced by
touch, and windows by full-screen apps. But even in a world where we all
walk around with smartphones in our pocket, a huge amount of daily work is
still done on desktop computers. WIMP has survived 40 years of innovation

and looks to survive many more.



2. A bit about Qt

Qt is a free and open-source widget toolkit for creating cross-platform GUI
applications, allowing applications to target multiple platforms from
Windows, macOS, Linux and Android with a single codebase. But Qt is much
more than a widget toolkit and features built in support for multimedia,
databases, vector graphics and MVC interfaces, it is more accurate to think of

it as an application development framework.

Qt was started by Eirik Chambe-Eng and Haavard Nord in 1991, founding the
first Qt company Trolltech in 1994. Qt is currently developed by The Qt
Company and continues to be regularly updated, adding features and

extending mobile and cross-platform support.

Qt and PyQt5

PyQt5 is a Python binding of the Qt toolkit, developed by Riverbank
Computing. When you write applications using PyQt5 what you area really
doing is writing applications in Qt. The PyQt5 library is simply." a wrapper
around the C++ Qt library, to allow it to be used in Python.

Because this is a Python interface to a C++ library the naming conventions
used within PyQt5 do not adhere to PEP8 standards. Most notably functions
and variables are named using mixedCase rather than snake_case. Whether you
adhere to this standard in your own applications is entirely up to you,
however | find it helped to follow Python standards for my own code, to help

clarify where the PyQt5 code ends and your own begins.

Lastly, while there is PyQt5 specific documentation available, you will often
find yourself reading the Qt documentation itself as it is more complete. If
you do you will need to translate object syntax and some methods

containing Python-reserved function names as follows:



Qt PyQt5
Qt: :SomeValue Qt.SomeValue
object.exec() object.exec_()

object.print() object.print_()

(,-7 If you need to convert an entire Qt code example to Python,

- take a look at Translating C++ Examples to Python.

This book is written to work with the latest version of Qt (and PyQt5). As of
writing this is Qt 5.14. However, many of the examples will work fine with

earlier and later versions of Qt.

[1] Not really that simple.



3. Thankyou

This book continues to be expanded and updated in response to reader
feedback. Thankyou to the following readers for their contributions, which
helped make this edition what it is!

- James Battat, Associate Professor of Physics, Wellesley College

- Andries Broekema

- Richard Hohlfield

- Olivier Girard, Blog

- Alex Lombardi

- Cody Jackson, Mentor, Code-a-Mom

- John E Kadwell

- Jeffrey R Kennedy

- Juan Pablo Donayre Quintana

- Guido Tognan

If you have feedback or suggestions for future editions, just let me know.


https://www.wellesley.edu/physics/people/faculty/battat
https://linuxevolution.wordpress.com/
https://www.youtube.com/channel/UCSDsXfziPVrrsVtumb4QJ6A
mailto:martin@learnpyqt.com

4. Copyright

This book is licensed under the Creative Commons Attribution Share-alike
Non-commercial license (CC BY-NC-SA) ©2020 Martin Fitzpatrick.

- You are free to share unaltered copies of this book with anyone you
choose.

- If you modify this book and distribute your altered version it must be

distributed under the same license.
- You are not permitted to sell this book or derivatives in any format.
- If you would like to support the author you can legally purchase a copy

direct from the author(s).

Contributions and corrections from readers (CC BY-NC-SA) are most

welcome.



Basic PyQtS Features

It's time to take your first steps in creating GUI applications with PyQt5!

In this chapter you will be introduced to the basics of PyQt5 that are the
foundations of any application you create. We will develop a simple
windowed application on your desktop. We'll add widgets, arrange them
using layouts and connect these widgets to functions, allowing you to trigger

application behavior from your GUI.

Use the provided code as your guide, but always feel free to experiment.

That's the best way to learn how things work.

(,) Before you get started, you need a working installation of
- PyQt5. If you don’t have one yet, check out Installing PyQt5.
o Don't forget to download the source code that accompanies

this book.


http://www.learnpyqt.com/d/pyqt5-source.zip

5. My first Application

Let's create our first application! To start create a new Python file — you can
call it whatever you like (e.g. myapp.py) and save it sommewhere accessible. We'll

write our simple app in this file.

We'll be editing within this file as we go along, and you may
r . .
O want to come back to earlier versions of your code, so

w
remember to keep regular backups.

Creating your App

The source code for your very first application is shown below. Type it in
verbatim, and be careful not to make mistakes. If you do mess up, Python will
let you know what's wrong. If you don't feel like typing it all in, the file is

included in the source code with this book.

10



Listing 1. basic/creating_a_window_1.py

from PyQt5.QtWidgets import QApplication, QWidget

# Only needed for access to command line arguments
import sys

# You need one (and only one) QApplication instance per application.
# Pass in sys.argv to allow command line arguments for your app.

# If you know you won't use command line arguments QApplication([])
works too.

app = QApplication(sys.argv)

# Create a Qt widget, which will be our window.

window = QWidget()

# Start the event loop.
app.exec_()

# Your application won't reach here until you exit and the event
# loop has stopped.

First, launch your application. You can run it from the command line like any

other Python script, for example—

python MyApp.py

Or, for Python 3—

python3 MyApp.py

From now on, you'll see the following box as a hint to run your application

and test it out, along with an indication of what you'll see.

M



4 Run it! You will now see your window. Qt automatically creates a
window with the normal window decorations and you can drag it

around and resize it like any window.

What you'll see will depend on what platform you're running this example
on. The image below shows the window as displayed on Windows, macOS
and Linux (Ubuntu).

W7 python - 0 *
creating_a_window_1.py - 0O X

Figure 3. Our window, as seen on Windows, macOS and Linux.

Stepping through the code

Let's step through the code line by line, so we understand exactly what is

happening.

First, we import the PyQt5 classes that we need for the application. Here
we're importing QApplication, the application handler and QWidget, a basic

empty GUI widget, both from the QtWidgets module.
from PyQt5.QtWidgets import QApplication, QWidget

The main modules for Qt are QtWidgets, QtGui and QtCore.

You could do from <module> import * but this kind of global

(r) import is generally frowned upon in Python, so we'll avoid it
w

here.

Next we create an instance of QApplication, passing in sys.arg, which is

12



Python 1list containing the command line arguments passed to the

application.
app = QApplication(sys.argv)

If you know you won't be using command line arguments to control Qt you

can pass in an empty list instead, e.g.

app = QApplication([])
Next we create an instance of a QWidget using the variable name window.

window = QWidget()
window. show()

In Qt all top level widgets are windows—that is, they don't have a parent and
are not nested within another widget or layout. This means you can

technically create a window using any widget you like.

| can’t see my window!

Widgets without a parent are invisible by default. So, after
A creating the window object, we must always call .show() to
make it visible. You can remove the .show() and run the app,

but you'll have no way to quit it!

What is a window?

- Holds the user-interface of your application
-
Q - Every application needs at least one (..but can have more)

- Application will (by default) exit when last window is

closed

Finally, we call app.exec_() to start up the event loop.

13



What’s the event loop?

Before getting the window on the screen, there are a few key concepts to
introduce about how applications are organised in the Qt world. If you're

already familiar with event loops you can safely skip to the next section.

The core of every Qt Applications is the QApplication class. Every application
needs one — and only one — QApplication object to function. This object
holds the event loop of your application — the core loop which governs all

user interaction with the GUI.

Interactions

|

| |

! | Accept or

! Event | Propagate

. Event
| !
g_i Event | Handled Event
= ! Event | handler
= ! Event Loop

' Event ! I

| | Collect -7

| Event +----- -

Figure 4. The event loop in Qt.

Each interaction with your application — whether a press of a key, click of a
mouse, or mouse movement — generates an event which is placed on the
event queue. In the event loop, the queue is checked on each iteration and if
a waiting event is found, the event and control is passed to the specific event
handler for the event. The event handler deals with the event, then passes
control back to the event loop to wait for more events. There is only one

running event loop per application.

14



The QApplication class

- QApplication holds the Qt event loop
O - One QApplication instance required

- You application sits waiting in the event loop until an

action is taken

- There is only one event loop at any time

The underscore is there because exec was a reserved word in Python 2.7.
PyQt5 handles this by appending an underscore to the name used in the C++

library. You'll also see .print_() methods on widgets for example.

QMainWindow

As we discovered in the last part, in Qt any widgets can be windows. For
example, if you replace QtWidget with QPushButton. In the example below, you

would get a window with a single push-able button in it.

Listing 2. basic/creating_a_window_2.py

from PyQt5.QtWidgets import QApplication, QPushButton
window = QPushButton("Push Me")
window.show()

This is neat, but not really very useful—it's rare that you need a Ul that
consists of only a single control! But, as we'll discover later, the ability to nest
widgets within other widgets using layouts means you can construct

complex Uls inside an empty QWidget.

But, Qt already has a solution for you—the QMainWindow. This is a pre-made
widget which provides a lot of standard window features you'll make use of
in your apps, including toolbars, menus, a statusbar, dockable widgets and
more. We'll look at these advanced features later, but for now, we'll add a

simple empty QMainWindow to our application.

15



Listing 3. basic/creating_a_window_3.py

from PyQt5.QtWidgets import QApplication, QMainWindow

import sys

app = QApplication(sys.argv)

window = QMainWindow()

# Start the event loop.
app.exec_()

4 Run it! You will now see your main window. It looks exactly the same

as before!

So our QMainWindow isn't very interesting at the moment. We can fix that by
adding some content. If you want to create a custom window, the best
approach is to subclass QMainWindow and then include the setup for the
window in the __init__ block. This allows the window behavior to be self
contained. We can add our own subclass of QMainWindow — call it MainWindow to

keep things simple.

16



Listing 4. basic/creating_a_window_4.py

import sys
from PyQt5.QtCore import QSize, Qt
from PyQt5.QtWidgets import QApplication, QMainWindow, QPushButton @

# Subclass QMainWindow to customize your application's main window
class MainWindow(QMainWindow):
def __init__(self):
super().__init__() @

self.setWindowTitle("My App")
button = QPushButton("Press Me!")
# Set the central widget of the Window.
self.setCentralWidget(button) ®
app = QApplication(sys.argv)

window = MainWindow()
window.show()

app.exec_()

@® Common Qt widgets are always imported from the QtWidgets namespace.
@ We must always call the __init__ method of the super() class.

® Use .setCentralllidget to place a widget in the QMainWindow.

(,) When you subclass a Qt class you must always call the super

- __init__ function to allow Qt to set up the object.

In our __init__ block we first use .setWindowTitle() to change the title of our
main window. Then we add our first widget — a QPushButton — to the middle
of the window. This is one of the basic widgets available in Qt. When creating

the button you can pass in the text that you want the button to display.

17



Finally, we call .setCentralWidget() on the the window. This is a QMainWindow
specific function that allows you to set the widget that goes in the middle of

the window.

4 Run it! You will now see your window again, but this time with the
QPushButton widget in the middle. Pressing the button will do nothing,

we'll sort that next.

Press Me!

Press Me! Press Me!

Figure 5. Our QMainWindow with a single QPushButton on Windows, macOS and

Linux.
Hungry for widgets?
We'll cover more widgets in detail shortly but if you're
r
Q impatient and would like to jump ahead you can take a look

at the QWidget documentation. Try adding the different

widgets to your window!

Sizing windows and widgets

The window is currently freely resizable—if you grab any corner with your
mouse you can drag and resize it to any size you want. While it's good to let
your users resize your applications, sometimes you may want to place

restrictions on minimum or maximum sizes, or lock a window to a fixed size.

In Qt sizes are defined using a QSize object. This accepts width and height

parameters in that order. For example, the following will create a fixed size

18


http://doc.qt.io/qt-5/widget-classes.html#basic-widget-classes

window of 400x300 pixels.

Listing 5. basic/creating_a_window_end.py
import sys
from PyQt5.QtCore import QSize, Qt

from PyQt5.QtWidgets import QApplication, QMainWindow, QPushButton

# Subclass QMainWindow to customize your application's main window
class MainWindow(QMainWindow):
def __init__ (self):

super().__init__()
self.setWindowTitle("My App")
button = QPushButton("Press Me!")
self.setFixedSize(QSize(400, 300)) @
# Set the central widget of the Window.
self.setCentralWidget(button)

app = QApplication(sys.argv)

window = MainWindow()
window. show()

app.exec_()

@ Setting the size on the window.

4 Run it! You will see a fixed size window—try and resize it, it won't

work.

19



m] My App = X e @ My App My App - @

Press Met Press Me! Press Me!

Figure 6. Our fixed-size window, notice that the maximize control is disabled on
Windows & Linux. On macOS you can maximize the app to fill the screen, but

the central widget will not resize.

As well as .setFixedSize() you can also call .setMinimumSize() and
.setMaximumSize() to set the minimum and maximum sizes respectively.

Experiment with this yourself!
o You can use these size methods on any widget.

In this section we've covered the QApplication class, the QMainWindow class, the
event loop and experimented with adding a simple widget to a window. In
the next section we'll take a look at the mechanisms Qt provides for widgets

and windows to communicate with one another and your own code.

O Save a copy of your file as myapp.py as we'll need it again later.
w

20



6. Signals & Slots

So far we've created a window and added a simple push button widget to it,
but the button doesn’'t do anything. That's not very useful at all—when you
create GUI applications you typically want them to do something! What we
need is a way to connect the action of pressing the button to making

something happen. In Qt, this is provided by signals and slots.

Signals are notifications emitted by widgets when something happens. That
something can be any number of things, from pressing a button, to the text
of an input box changing, to the text of the window changing. Many signals

are initiated by user action, but this is not a rule.

In addition to notifying about something happening, signals can also send

data to provide additional context about what happened.

a You can also create your own custom signals, which we'll

- explore later in Extending Signals.

Slots is the name Qt uses for the receivers of signals. In Python any function
(or method) in your application can be used as a slot—simply by connecting
the signal to it. If the signal sends data, then the receiving function will
receive that data too. Many Qt widgets also have their own built-in slots,

meaning you can hook Qt widgets together directly.

Let's take a look at the basics of Qt signals and how you can use them to

hook widgets up to make things happen in your apps.

(,) Load up a fresh copy of myapp.py and save it under a new

- name for this section.

QPushButton Signals

Our simple application currently has a QMainWindow with a QPushButton set as
the central widget. Let's start by hooking up this button to a custom Python

method. Here we create a simple custom slot named the_button_was_clicked

21



which accepts the clicked signal from the QPushButton.

Listing 6. basic/signals_and_slots_1.py

from PyQt5.QtWidgets import QApplication, QMainWindow, QPushButton @
from PyQt5.QtCore import Qt

import sys
class MainWindow(QMainWindow):
def __init__(self):
super().__init__() @
self.setWindowTitle("My App")
button = QPushButton("Press Me!")
button.setCheckable(True)

button.clicked.connect(self.the button was_clicked)

# Set the central widget of the Window.
self.setCentralWidget(button)

def the_button_was_clicked(self):
print("Clicked!")
app = QApplication(sys.argv)

window = MainWindow()
window. show()

app.exec_()

4 Run it! If you click the button you'll see the text "Clicked!" on the

console.

22



Listing 7. Console output

Clicked!
Clicked!
Clicked!
Clicked!

Receiving data

That's a good start! We've heard already that signals can also send data to
provide more information about what has just happened. The .clicked signal
is Nno exception, also providing a checked (or toggled) state for the button.
For normal buttons this is always False, so our first slot ignored this data.

However, we can make our button checkable and see the effect.

In the following example, we add a second slot which outputs the

checkstate.

23



Listing 8. basic/signals_and_slots_1b.py
import sys
from PyQt5.QtCore import Qt

from PyQt5.QtWidgets import QApplication, QMainWindow, QPushButton @

class MainWindow(QMainWindow):
def __init_ (self):

super().__init__() @
self.setWindowTitle("My App")
button = QPushButton("Press Me!")
button.setCheckable(True)
button.clicked.connect(self.the_button _was_clicked)
button.clicked.connect(self.the_button_was_toggled)

# Set the central widget of the Window.
self.setCentralWidget(button)

def the_button_was_clicked(self):
print("Clicked!")

def the_button_was_toggled(self, checked):
print("Checked?", checked)
app = QApplication(sys.argv)

window = MainWindow()
window. show()

app.exec_()

« Run it! If you press the button you'll see it highlighted as checked.

Press it again to release it. Look for the check state in the console.

24



Listing 9. Console output

Clicked!
Checked? True
Clicked!
Checked? False
Clicked!
Checked? True
Clicked!
Checked? False
Clicked!
Checked? True

You can connect as many slots to a signal as you like and can respond to

different versions of signals at the same time on your slots.

Storing data

Often it is useful to store the current state of a widget in a Python variable.
This allows you to work with the values like any other Python variable and
without accessing the original widget. You can either store these values as
individual variables or use a dictionary if you prefer. In the next example we
store the checked value of our button in a variable called button_is_checked on
self.

25



Listing 10. basic/signals_and_slots_Ic.py

class MainWindow(QMainWindow):
def __init__(self):
super().__init__()

self.button_is_checked = True @
self.setWindowTitle("My App")

button = QPushButton("Press Me!")
button.setCheckable(True)
button.clicked.connect(self.the_button_was_toggled)
button.setChecked(self.button_is_checked) @

# Set the central widget of the Window.
self.setCentralWidget(button)

def the_button_was_toggled(self, checked):
self.button_is_checked = checked ®

print(self.button_is_checked)

@ Set the default value for our variable.

@ Use the default value to set the initial state of the widget.

® When the widget state changes, update the variable to match.

You can use this same pattern with any PyQt5 widgets. If a widget does not
provide a signal that sends the current state, you will need to retrieve the

value from the widget directly in your handler. For example, here we're

checking the checked state in a pressed handler.

26



Listing 11. basic/signals_and_slots_Id.py

class MainWindow(QMainWindow):
def __init__(self):
super().__init__()

self.button_is_checked = True
self.setWindowTitle("My App")

self.button = QPushButton("Press Me!") @
self.button.setCheckable(True)
self.button.released.connect(self.the button was released) @
self.button.setChecked(self.button_is_checked)

# Set the central widget of the Window.
self.setCentralWidget(self.button)

def the_button_was_released(self):
self.button_is_checked = self.button.isChecked() ®

print(self.button_is_checked)

@ We need to keep a reference to the button on self so we can access it in

our slot.

@ The released signal fires when the button is released, but does not send

the check state.

® .isChecked() returns the check state of the button.

Changing the interface

So far we've seen how to accept signals and print output to the console. But
how about making something happen in the interface when we click the
button? Let's update our slot method to modify the button, changing the
text and disabling the button so it is no longer clickable. We'll also turn off

the checkable state for now.

27



Listing 12. basic/signals_and_slots_2.py

from PyQt5.QtWidgets import QApplication, QMainWindow, QPushButton @
from PyQt5.QtCore import Qt

import sys
class MainWindow(QMainWindow):
def __init_ (self):
super().__init__() @

self.setWindowTitle("My App")

self.button = QPushButton("Press Me!") @
self.button.clicked.connect(self.the button_was _clicked)

# Set the central widget of the Window.
self.setCentralWidget(self.button)

def the_button_was_clicked(self):
self.button.setText("You already clicked me.") @
self.button.setEnabled(False) ®
# Also change the window title.
self.setWindowTitle("My Oneshot App")

app = QApplication(sys.argv)

window = MainWindow()
window.show()

app.exec_()

® We need to be able to access the button in our the button was_clicked
method, so we keep a reference to it on self.

@ You can change the text of a button by passing a str to .setText().

® To disable a button call .setEnabled() with False.

28



4 Run it! If you click the button the text will change and the button will

become unclickable.

You're not restricted to changing the button that triggers the signal, you can
do anything you want in your slot methods. For example, try adding the
following line to the_button_was_clicked method to also change the window

title.

self.setWindowTitle("A new window title")

Most widgets have their own signals—and the QMainWindow we're using for our
window is no exception. In the following more complex example, we connect

the .windowTitleChanged signal on the QMainWindow to a custom

In the following example we connect the .windowTitleChanged signal on the
QMainWindow to a method slot the_window_title_changed. This slot also receives

the new window title.

Listing 13. basic/signals_and_slots_3.py

from PyQt5.QtWidgets import QApplication, QMainWindow, QPushButton
from PyQt5.QtCore import Qt

import sys
from random import choice

window_titles = [ @

‘My App',

"My App',

'Still My App',

"Still My App',

"What on earth',

'What on earth',

'This is surprising',
'This is surprising',
'Something went wrong'

29



class MainWindow(QMainWindow):
def __init__(self):
super().__init__()
self.n_times _clicked = @

self.setWindowTitle("My App")

self.button = QPushButton("Press Me!")
self.button.clicked.connect(self.the button_was _clicked)

self.windowTitleChanged.connect(self.the_window_title_changed)
# Set the central widget of the Window.
self.setCentralWidget(self.button)

def the button_was_clicked(self):
print("Clicked.")
new_window_title = choice(window_titles)
print("Setting title: %s" % new_window_title)

self.setWindowTitle(new window title) ®

def the_window_title_changed(self, window_title):
print("Window title changed: %s" % window_title) @

if window_title == 'Something went wrong':
self.button.setDisabled(True)

app = QApplication(sys.argv)

window = MainWindow()
window. show()

app.exec_()

@ A list of window titles we'll select from using random.choice().

30



@ Hook up our custom slot method the_window_title_changed to the windows

.windowTitleChanged signal.
® Set the window title to the new title.

@ If the new window title equals "Something went wrong" disable the

button.

4 Run it! Click the button repeatedly until the title changes to

"Something went wrong" and the button will become disabled.

There are a few things to notice in this example.

Firstly, the windowTitleChanged signal is not always emitted when setting the
window title. The signal only fires if they new title is a change from the
previous one. It's important to know exactly what conditions signals fire

under, to avoid being surprised!

Secondly, notice how we are able to chain things together using signals. One
thing happening—a button press—can trigger multiple other things to
happen in turn. These subsequent effects do not need to know what caused
them, but simply follow as a consequence of simple rules. This decoupling of
effects from their triggers is one of the key concepts to understand when
building GUI applications. We'll keep coming back to this throughout the
book!

In this section we've covered signals and slots. We've demonstrated some
simple signals and how to use them to pass data and state around your
application. Next we'll look at the widgets which Qt provides for use in your

applications—together with the signals they provide.

31



7. Widgets

In Qt widget is the name given to a component of the Ul that the user can
interact with. User interfaces are made up of multiple widgets, arranged
within the window. Qt comes with a large selection of widgets available, and

even allows you to create your own custom widgets.

In the code examples for the book there is a file widgets_list.py which you
can run to display a collection of widgets in a window. It uses a few complex

tricks which we'll cover later, so don’t worry about the code just now.

« Run it! You will see a window with multiple, interactive, widgets.

m Wi B, —
Widgets A. O X ®" e Widgets App widgets App o &
J
01/01/2000 = = -
01/01/2000 00:00 % DLRI2000 01-01-2000 2
01/01/2000 00:00
01-01-2000 00:00 -
| | e
\ / |
0.00 o 000 0.00 -
MS Shell Dig 2 b Al Bayan Sl : .
= Ubuntu ¥
O
- -
0 S 2 . E
00:00 3 00:00 - 00:00 o

Figure 7. The example widgets app shown on Windows, macOS and Linux
(Ubuntu).

32



The widgets shown in the example are given below, from top to bottom.

Widget What it does

QCheckbox A checkbox

QComboBox A dropdown list box

QDateEdit For editing dates and datetimes
QDateTimeEdit For editing dates and datetimes
QDial Rotateable dial

QDoubleSpinbox A number spinner for floats
QFontComboBox A list of fonts

QLCDNumber A quite ugly LCD display

QLabel Just a label, not interactive
QLineEdit Enter a line of text

QProgressBar A progress bar

QPushButton A button

QRadioButton A group with only one active choice
QSlider A slider

QSpinBox An integer spinner

QTimeEdit For editing times

There are far more widgets than this, but they don't fit so well! For a full list
see the Qt documentation. Here we're going to take a closer look at some of

the most useful.

(,7 Load up a fresh copy of myapp.py and save it under a new

- name for this section.

33


https://doc.qt.io/qt-5/qtwidgets-module.html

QLabel

We'll start the tour with QLabel, arguably one of the simplest widgets available
in the Qt toolbox. This is a simple one-line piece of text that you can position
in your application. You can set the text by passing in a string as you create
it—

widget = QLabel("Hello")
Or, by using the .setText() method—

widget = QLabel("1") # The label is created with the text 1
widget.setText("2") # The label now shows 2

You can also adjust font parameters, such as the size or alignment of text in

the widget.

34



Listing 14. basic/widgets_1.py
import sys

from PyQt5.QtCore import Qt
from PyQt5.QtWidgets import QApplication, QLabel, QMainWindow

class MainWindow(QMainWindow):
def __init_ (self):
super().__init__()

self.setWindowTitle("My App")

widget = QLabel("Hello")

font = widget.font() @

font.setPointSize(30)

widget.setFont(font)

widget.setAlignment(Qt.AlignHCenter | Qt.AlignVCenter) @

self.setCentralWidget(widget)

app = QApplication(sys.argv)

window = MainWindow()
window.show()

app.exec_()

® We get the current font, using <widget>.font(), modify it and then apply it

back. This ensures the font face remains in keeping with the desktop
conventions.

@ The alignment is specified by using a flag from the Qt. namespace.

+ Run it! Adjust the font parameters and see the effect.

35



s - O X | ®  ® Myapp MyApp - 0O @&

Hello Hello Hello

Figure 8. A QLabel on Windows, macOS and Ubuntu

The Qt namespace (Qt.) is full of all sorts of attributes that
r : .
O you can use to customize and control Qt widgets. We'll cover

w
that in detail later in Enums & the Qt Namespace.

36



The flags available for horizontal alignment are—

Flag Behaviour

Qt.AlignLeft Aligns with the left edge.

Qt.AlignRight Aligns with the right edge.

Qt.AlignHCenter Centers horizontally in the available
space.

Qt.AlignJustify Justifies the text in the available
space.

The flags available for vertical alignment are—

Flag Behaviour

Qt.AlignTop Aligns with the top.

Qt.AlignBottom Aligns with the bottom.

Qt.AlignVCenter Centers vertically in the available
space.

You can combine flags together using pipes (|), however note that you can

only use one vertical or horizontal alignment flag at a time.

align_top_left = Qt.AlignLeft | Qt.AlignTop

4 Run it! Try combining the different alignment flags and seeing the

effect on text position.

37



Qt Flags

Note that you use an OR pipe (|) to combine the two flags by
convention. The flags are non-overlapping bitmasks. e.g.
@ Qt.AlignLeft has the binary value 0b0001, while Qt.AlignBottom
is 0b0100. By ORing together we get the value 0b0101

representing 'bottom left'.

We'll take a more detailed look at the Qt namespace and Qt

flags later in Enums & the Qt Namespace.

Finally, there is also a shorthand flag that centers in both directions

simultaneously —

Flag Behaviour

Qt.AlignCenter Centers horizontally and vertically

Weirdly, you can also use QlLabel to display an image using the .setPixmap()
method. This accepts an pixmap (a pixel array), which you can create by
passing an image filename to QPixmap. In the example files provided with this
book you can find a file otje.jpg which you can display in your window as

follows:

widget.setPixmap(QPixmap('otje.jpg"))

3’." Sk ﬂ‘ .:\_“',':'{ ?l‘}’,,u y Wig’ =
Figure 9. Otje. What a lovely face.

38



# Run it! Resize the window, and the image will be surrounded by

empty space

By default the image scales while maintaining its aspect ratio. If you want it
to stretch and scale to fit the window completely you can set

.setScaledContents(True) on the QLabel.
widget.setScaledContents(True)

For example—
Listing 15. basic/widgets_2.py
import sys
from PyQt5.QtGui import QPixmap

from PyQt5.QtWidgets import QApplication, QLabel, QMainWindow

class MainWindow(QMainWindow):
def __init__(self):
super().__init__()
self.setWindowTitle("My App")
widget = QLabel("Hello")
widget.setPixmap(QPixmap("otje.jpg"))
widget.setScaledContents(True)

self.setCentralWidget(widget)

app = QApplication(sys.argv)

window = MainWindow()
window. show()

app.exec_()

39



4 Run it! Resize the window and the picture will deform to fit.

Figure 10. Showing a pixmap with QLabel on Windows, macOS and Ubuntu

40



QCheckBox

The next widget to look at is QCheckBox which, as the name suggests, presents
a checkable box to the user. However, as with all Qt widgets there are

number of configurable options to change the widget behaviors.
Listing 16. basic/widgets_3.py

import sys

from PyQt5.QtCore import Qt

from PyQt5.QtWidgets import QApplication, QCheckBox, QMainWindow

class MainWindow(QMainWindow):
def __init__(self):
super().__init__()
self.setWindowTitle("My App")

widget = QCheckBox("This is a checkbox")
widget.setCheckState(Qt.Checked)

# For tristate: widget.setCheckState(Qt.PartiallyChecked)
# Or: widget.setTriState(True)
widget.stateChanged.connect(self.show_state)
self.setCentralWidget(widget)

def show_state(self, s):
print(s == Qt.Checked)
print(s)

app = QApplication(sys.argv)

window = MainWindow()
window.show()

app.exec_()

41



4 Run it! You'll see a checkbox with label text.

— - % | @ @ MyApp MyApp - 0O X

This is a checkbox v This is a checkbox v This is a checkbox

Figure 11. QCheckBox on Windows, macOS and Ubuntu

You can set a checkbox state programmatically using .setChecked or
.setCheckState. The former accepts either True or False representing checked
or unchecked respectively. However, with .setCheckState you also specify a

particially checked state using a Qt. namespace flag—

Flag Behaviour

Qt.Unchecked [tem is unchecked
Qt.PartiallyChecked ltem is partially checked
Qt.Checked [tem is unchecked

A checkbox that supports a partially-checked (Qt.PartiallyChecked) state is
commonly referred to as 'tri-state', that is being neither on nor off. A
checkbox in this state is commonly shown as a greyed out checkbox, and is
commonly used in hierarchical checkbox arrangements where sub-items are

linked to parent checkboxes.

If you set the value to Qt.PartiallyChecked the checkbox will become tri-
state—that is have three possible states. You can also set a checkbox to be

tri-state without setting the current state to partially checked by using
.setTriState(True)

42



You may notice that when the script is running the current
state number is displayed as an int with checked = 2,
unchecked = 0, and partially checked = 1. You don’t need to
remember these values, the Qt.Checked namespace variable
== 2 for example. This is the value of these state's respective

flags. This means you can test state using state == Qt.Checked.

43



QComboBox

The QComboBox is a drop down list, closed by default with an arrow to open it.
You can select a single item from the list, with the currently selected item
being shown as a label on the widget. The combo box is suited to selection of

a choice from a long list of options.

You have probably seen the combo box used for selection of
font faces, or size, in word processing applications. Although

o Qt actually provides a specific font-selection combo box as
QFontComboBox.

You can add items to a QComboBox by passing a list of strings to .addItems().

ltems will be added in the order they are provided.

44



Listing 17. basic/widgets_4.py
import sys
from PyQt5.QtCore import Qt

from PyQt5.QtWidgets import QApplication, QComboBox, QMainWindow

class MainWindow(QMainWindow):
def __init_ (self):
super().__init__()
self.setWindowTitle("My App")

widget = QComboBox()
widget.addItems(["One", "Two", "Three"])

widget.currentIndexChanged.connect(self.index_changed)
widget.currentTextChanged.connect(self.text_changed)

self.setCentralWidget(widget)

def index_changed(self, i): # i is an int
print(i)

def text_changed(self, s): # s is a str
print(s)
app = QApplication(sys.argv)

window = MainWindow()
window. show()

app.exec_()

4 Run it! You'll see a combo box with 3 entries. Select one and it will be

shown in the box.



One b = One < One -

<>

Figure 12. QComboBox on Windows, macOS and Ubuntu

The .currentIndexChanged signal is triggered when the currently selected item
is updated, by default passing the index of the selected item in the list.
However, when connecting to the signal you can also request an alternative
version of the signal by appending [str] (think of the signal as a dict). This
alternative interface instead provides the label of the currently selected item,

which is often more useful.

QComboBox can also be editable, allowing users to enter values not currently in
the list and either have them inserted, or simply used as a value. To make the

box editable:

widget.setEditable(True)

You can also set a flag to determine how the insert is handled. These flags are

stored on the QComboBox class itself and are listed below—

Flag Behaviour

QComboBox.NoInsert No insert

QComboBox.InsertAtTop Insert as first item

QComboBox. InsertAtCurrent Replace currently selected item
QComboBox.InsertAtBottom Insert after last item
QComboBox.InsertAfterCurrent Insert after current item
QComboBox.InsertBeforeCurrent Insert before current item

46



Flag Behaviour

QComboBox.InsertAlphabetically Insert in alphabetical order

To use these, apply the flag as follows:

widget.setInsertPolicy(QComboBox.InsertAlphabetically)

You can also limit the number of items allowed in the box by using

.setMaxCount, e.g.

widget.setMaxCount(10)

47



QL1stBox

Next up is QListBox. This widget is similar to QComboBox, except options are
presented as a scrollable list of items. It also supports selection of multiple
items at once. A QListBox offers an currentItemChanged signal which sends the
QListItem (the element of the list box), and a currentTextChanged signal which

sends the text of the current item.

48



Listing 18. basic/widgets_5.py

import sys

from PyQt5.QtWidgets import QApplication, QListWidget, QMainWindow

class MainWindow(QMainWindow):

def

and the

def

def

__init__(self):
super().__init__()

self.setWindowTitle("My App")

widget = QListWidget()
widget.addItems(["One", "Two", "Three"])

# In QListWidget there are two separate signals for the item,
str

widget.currentItemChanged.connect(self.index_changed)
widget.currentTextChanged.connect(self.text_changed)

self.setCentralWidget(widget)

index_changed(self, i): # Not an index, i is a QListItem
print(i.text())

text_changed(self, s): # s is a str
print(s)

app = QApplication(sys.argv)

window = MainWindow()
window. show()

app.exec_()

4 Run it! You'll see the same three items, now in a list. The selected item

(if any) is highlighted.

49



] MyA..

One
Two
Three

Figure 13. AQListBox on Windows, macOS and Ubuntu

50

[ EoN ]
One

Two
Three

My App

One
Two
Three



QLineEdit

The QLineEdit widget is a simple single-line text editing box, into which users

can type input. These are used for form fields, or settings where there is no

restricted list of valid inputs. For example, when entering an email address, or

computer name.

Listing 19. basic/widgets_6.py

import sys

from PyQt5.QtCore import Qt
from PyQt5.QtWidgets import QApplication, QLineEdit, QMainWindow

class MainWindow(QMainWindow):

def

def

def

__init__(self):
super().__init__()

self.setWindowTitle("My App")

widget = QLineEdit()
widget.setMaxLength(10)
widget.setPlaceholderText("Enter your text")

# widget.setReadOnly(True) # uncomment this to make readonly

widget.returnPressed.connect(self.return_pressed)
widget.selectionChanged.connect(self.selection_changed)
widget.textChanged.connect(self.text_changed)
widget.textEdited.connect(self.text_edited)

self.setCentralWidget(widget)
return_pressed(self):

print("Return pressed!")
self.centralWidget().setText("BOOM!")
selection_changed(self):

print("Selection changed")
print(self.centralWidget().selectedText())

51



def text_changed(self, s):
print("Text changed...")
print(s)

def text_edited(self, s):
print("Text edited...")
print(s)

app = QApplication(sys.argv)

window = MainWindow()
window.show()

app.exec_()

# Run it! You'll see a simple text entry box, with a hint.

W — O x ®°® Myapp MyApp - 0O @&

Lnlr-l your text Enter your text l,} your text

Figure 14. QLineEdit on Windows, macOS and Ubuntu

As demonstrated in the above code, you can set a maximum length for the
text field by using .setMaxLength. Placeholder text, which is text shown until

something is entered by the user can be added using .setPlaceholderText.

The QLineEdit has a number of signals available for different editing events
including when return is pressed (by the user), when the user selection is
changed. There are also two edit signals, one for when the text in the box has
been edited and one for when it has been changed. The distinction here is

between user edits and programmatic changes. The textEdited signal is only

52



sent when the user edits text.

Additionally, it is possible to perform input validation using an input mask to
define which characters are supported and where. This can be applied to the

field as follows:

widget.setInputMask('000.000.000.000;_")

The above would allow a series of 3-digit numbers separated with periods,

and could therefore be used to validate IPv4 addresses.

53



QSpinBox and QDoubleSpinBox

QSpinBox provides a small numerical input box with arrows to increase and
decrease the value. QSpinBox supports integers while the related widget

QDoubleSpinBox supports floats.

54



Listing 20. basic/widgets_7.py

import sys

from PyQt5.QtCore import Qt
from PyQt5.QtWidgets import QApplication, QMainWindow, QSpinBox

class MainWindow(QMainWindow):

def

def

def

__init__(self):
super().__init__()

self.setWindowTitle("My App")

widget = QSpinBox()
# Or: widget = QDoubleSpinBox()

widget.setMinimum(-10)
widget.setMaximum(3)
# Or: widget.setRange(-10,3)

widget.setPrefix("$")

widget.setSuffix("c")

widget.setSingleStep(3) # Or e.g. 0.5 for QDoubleSpinBox
widget.valueChanged.connect(self.value_changed)
widget.valueChanged[str].connect(self.value_changed_str)

self.setCentralWidget(widget)

value_changed(self, i):
print(i)

value_changed_str(self, s):
print(s)

app = QApplication(sys.argv)

window = MainWindow()
window. show()

app.exec_()

55



 Run it! You'll see a numeric entry box. The value shows pre and post

fix units, and is limited to the range +3 to -10.

g e g doc

Figure 15. QSpinBox on Windows, macOS and Ubuntu

The demonstration code above shows the various features that are available

for the widget.

To set the range of acceptable values you can use setMinimum and setMaximum,
or alternatively use setRange to set both simultaneously. Annotation of value
types is supported with both prefixes and suffixes that can be added to the
number, e.g. for currency markers or units using .setPrefix and .setSuffix

respectively.

Clicking on the up and down arrows on the widget will increase or decrease
the value in the widget by an amount, which can be set using .setSingleStep.

Note that this has no effect on the values that are acceptable to the widget.

Both QSpinBox and QDoubleSpinBox have a .valueChanged signal which fires
whenever their value is altered. The raw .valueChanged signal sends the
numeric value (either an int or a float) while the str alternate signal,
accessible via .valueChanged[str] sends the value as a string, including both

the prefix and suffix characters.

56



QSlider

QSlider provides a slide-bar widget, which functions internally much like a
QDoubleSpinBox. Rather than display the current value numerically, it is
represented by the position of the slider handle along the length of the
widget. This is often useful when providing adjustment between two
extremes, but where absolute accuracy is not required. The most common

use of this type of widget is for volume controls.

There is an additional .sliderMoved signal that is triggered whenever the slider
moves position and a .sliderPressed signal that emits whenever the slider is

clicked.

Listing 21. basic/widgets_8.py
import sys
from PyQt5.QtCore import Qt

from PyQt5.QtWidgets import QApplication, QMainWindow, QSlider

class MainWindow(QMainWindow):
def __init__(self):

super().__init__()
self.setWindowTitle("My App")
widget = QSlider()
widget.setMinimum(-10)
widget.setMaximum(3)
# Or: widget.setRange(-10,3)
widget.setSingleStep(3)

widget.valueChanged.connect(self.value_changed)
widget.sliderMoved.connect(self.slider_position)
widget.sliderPressed.connect(self.slider_pressed)
widget.sliderReleased.connect(self.slider_released)

self.setCentralWidget(widget)

57



def value_changed(self, 1i):
print(i)

def slider_position(self, p):
print("position", p)

def slider_pressed(self):
print("Pressed!")

def slider_released(self):
print("Released")
app = QApplication(sys.argv)

window = MainWindow()
window. show()

app.exec_()

# Run it! You'll see a slider widget. Drag the slider to change the value.

Figure 16. QSlider on Windows, macOS and Ubuntu. On Windows the handle

expands to the size of the widget.

You can also construct a slider with a vertical or horizontal orientation by
passing the orientation in as you create it. The orientation flags are defined in

the Qt. namespace. For example—

58



widget.QSlider(Qt.Vertical)

Or—

widget.QSlider(Qt.Horizontal)

59



QD1al

Finally, the QDial is a rotatable widget that functions just like the slider, but
appears as an analogue dial. This looks nice, but from a Ul perspective is not
particularly user friendly. However, they are often used in audio applications

as representation of real-world analogue dials.

Listing 22. basic/widgets_9.py
import sys

from PyQt5.QtCore import Qt
from PyQt5.QtWidgets import QApplication, QDial, QMainWindow

class MainWindow(QMainWindow):
def __init__ (self):
super().__init__()

self.setWindowTitle("My App")

widget = QDial()
widget.setRange(-10, 100)
widget.setSingleStep(0.5)

widget.valueChanged.connect(self.value_changed)
widget.sliderMoved.connect(self.slider_position)
widget.sliderPressed.connect(self.slider_pressed)
widget.sliderReleased.connect(self.slider_released)

self.setCentralWidget(widget)

def value_changed(self, 1i):
print(i)

def slider_position(self, p):
print("position", p)

def slider_pressed(self):
print("Pressed!")

def slider_released(self):

60



print("Released")

app = QApplication(sys.argv)

window = MainWindow()
window. show()

app.exec_()

 Run it! You'll see a dial, rotate it to select a number from the range.

Figure 17. QDial on Windows, macOS and Ubuntu

The signals are the same as for QSlider and retain the same names (e.qg.

.sliderMoved).

This concludes our brief tour through the Qt widgets available in PyQt5. To
see the full list of available widgets, including all their signals and attributes,

take a look at the Qt documentation.

61


http://doc.qt.io/qt-5/

QWidget

There is a QWidget in our demo, but you can't see it. We previously used
QWidget in our first example to create an empty window. But QWidget can also
be used as a container for other widgets, together with Layouts, to construct
windows or compound widgets. We'll cover Creating Custom Widgets in

more detail later.

Keep QWidget in mind, as you'll be seeing a lot of it!

62



8. Layouts

So far we've successfully created a window and we've added a widget to it.
However, you will usually want to add more than one widget to a window,
and have some control over where the widgets you add end up. To arrange
widgets together in Qt we use layouts. There are 4 basic layouts available in

Qt, which are listed in the following table.

Layout Behaviour

QHBoxLayout Linear horizontal layout
QVBoxLayout Linear vertical layout

QGridLayout In indexable grid XxY
QStackedLayout Stacked (z) in front of one another

There are three 2-dimensional layouts available in Qt. The QVBoxlLayout,
QHBoxLayout and QGridLayout. In addition there is also QStackedlLayout which
allows you to place widgets one on top of the other within the same space,

yet showing only one layout at a time.

In this chapter we'll go through each of these layouts in turn, showing how

we can use them to position widgets in our applications.

Qt Designer

You can actually design and lay out your interface graphically
3
Q using the Qt Designer, which we will cover later. Here we're

using code, as it's simpler to understand and experiment

with the underlying system.

63



Placeholder widget

(,) Load up a fresh copy of myapp.py and save it under a new
- name for this section.

To make it easier to visualize the layouts, we'll first create a simple custom
widget that displays a solid color of our choosing. This will help to distinguish
widgets that we add to the layout. Add the following code to your file as a

new class at the top level—

Listing 23. basic/layout_colorwidget.py

from PyQt5.QtGui import QColor, QPalette
from PyQt5.QtWidgets import QWidget

class Color(QWidget):
def __init__(self, color):
super().__init__()
self.setAutoFillBackground(True)

palette = self.palette()
palette.setColor(QPalette.Window, QColor(color))
self.setPalette(palette)

In this code we subclass QWidget to create our own custom widget Color. We
accept a single parameter when creating the widget — color (a str). We first
set .setAutoFillBackground to True to tell the widget to automatically fill it's
background with the window color. Next we change the widget's
QPalette.Window color to a new QColor described by the value color we passed
in. Finally we apply this palette back to the widget. The end result is a widget

that is filled with a solid color, that we specify when we create it.

If you find the above confusing, don't worry too much! We cover Creating
Custom Widgets and Palettes in detail later. For now it's sufficient that you
understand that you can create a solid-filled red widget by with the following

code—

64



Color('red")

First let's test our new Color widget by using it to fill the entire window in a
single color. Once it's complete we can add it to the main window using

.setCentralWidget and we get a solid red window.
Listing 24. basic/layout_1.py
import sys

from PyQt5.QtCore import Qt
from PyQt5.QtWidgets import QApplication, QMainWindow

from layout_colorwidget import Color
class MainWindow(QMainWindow):
def __init__(self):

super().__init__()
self.setWindowTitle("My App")
widget = Color("red")
self.setCentralWidget(widget)

app = QApplication(sys.argv)

window = MainWindow()
window. show()

app.exec_()

 Run it! The window will appear, filled completely with the color red.

Notice how the widget expands to fill all the available space.

65



Figure 18. Our Color widget, filled with solid red color.

Next we'll look at each of the available Qt layouts in turn. Note that to add our

layouts to the window we will need a dummy QWidget to hold the layout.

66



QVBoxLayout vertically arranged widgets

With QVBoxLayout you arrange widgets one above the other linearly. Adding a

widget adds it to the bottom of the column.

Figure 19. A QVBoxLayout, filled from top to bottom.

Lets add our widget to a layout. Note that in order to add a layout to the
QMainWindow we need to apply it to a dummy QWidget. This allows us to then use
.setCentralWWidget to apply the widget (and the layout) to the window. Our
colored widgets will arrange themselves in the layout, contained within the

QWidget in the window. First we just add the red widget as before.

67



Listing 25. basic/layout_2a.py

import sys

from PyQt5.QtCore import Qt

from PyQt5.QtWidgets import QApplication, QMainWindow, QVBoxLayout,

QWidget

from layout_colorwidget import Color

class MainWindow(QMainWindow):

def __init__ (self):

super().__init__()
self.setWindowTitle("My App")
layout = QVBoxLayout()
layout.addWidget(Color("red"))
widget = QWidget()
widget.setlLayout(layout)
self.setCentralWidget(widget)

app = QApplication(sys.argv)

window = MainWindow()
window. show()

app.exec_()

4 Run it! Notice the border now visible around the red widget. This is

the layout spacing — we'll see how to adjust that later.

68



m — O pd

Figure 20. Our Color widget, in a layout.

Next add a few more colored widgets to the layout:

69



Listing 26. basic/layout_2b.py

import sys

from PyQt5.QtCore import Qt

from PyQt5.QtWidgets import QApplication, QMainWindow, QVBoxLayout,

QWidget

from layout_colorwidget import Color

class MainWindow(QMainWindow):

def __init__ (self):

super().__init__()
self.setWindowTitle("My App")
layout = QVBoxLayout()
layout.addWidget(Color("red"))
layout.addWidget(Color("green"))
layout.addWidget(Color("blue"))
widget = QWidget()
widget.setlLayout(layout)
self.setCentralWidget(widget)

app = QApplication(sys.argv)

window = MainWindow()
window.show()

app.exec_()

As we add widgets they line themselves up vertically in the order they are
added.

70



=
I

O

et

Figure 21. Three Color widgets arranged vertically in a QVBoxLayout.

71



QHBoxLayout horizontally arranged widgets

QHBoxLayout is the same, except moving horizontally. Adding a widget adds it
to the right hand side.

0 1 P 3

Figure 22. A QHBoxLayout, filled from left to right.

To use it we can simply change the QVBoxLayout to a QHBoxLayout. The boxes

now flow left to right.

72



Listing 27. basic/layout_3.py
import sys
from PyQt5.QtCore import Qt
from PyQt5.QtWidgets import QApplication, QHBoxLayout, QLabel,
QMainWindow, QWidget
from layout_colorwidget import Color
class MainWindow(QMainWindow):
def __init__ (self):
super().__init__()
self.setWindowTitle("My App")
layout = QHBoxLayout()
layout.addWidget(Color("red"))
layout.addWidget(Color("green"))
layout.addWidget(Color("blue"))
widget = QWidget()
widget.setlLayout(layout)
self.setCentralWidget(widget)

app = QApplication(sys.argv)

window = MainWindow()
window.show()

app.exec_()

 Run it! The widgets should arrange themselves horizontally.

73



) — O X

Figure 23. Three Color widgets arranged horizontally in a QHBoxLayout.

74



Nesting layouts

For more complex layouts you can nest layouts inside one another using

.addLayout on a layout. Below we add a QVBoxLayout into the main QHBoxLayout.

If we add some widgets to the QVBoxLayout, they'll be arranged vertically in the

first slot of the parent layout.

Listing 28. basic/layout_4.py

import sys

from PyQt5.QtCore import Qt
from PyQt5.QtWidgets import (
QApplication,

QHBoxLayout,

QLabel,

QMainWindow,
QVBoxLayout,

QWidget,
)

from layout_colorwidget import Color

class MainWindow(QMainWindow):

def __init__
super().

(self):
_init__ ()

self.setWindowTitle("My App")

layout1
layout?
layout3

layout?2.
layout2.
layout?.

layout1

layout1

= QHBoxLayout()
= QVBoxLayout()
= QVBoxLayout()

addWidget(Color("red"))
addWidget(Color("yellow"))
addWidget(Color("purple"))

.addLayout(layout2)

.addWidget(Color("green"))

75



layout3.addWidget(Color("red"))
layout3.addWidget(Color("purple™))

layout1.addLayout(layout3)

widget = QWidget()

widget.setlLayout(layout1)

self.setCentralWidget(widget)
app = QApplication(sys.argv)

window = MainWindow()
window.show()

app.exec_()

# Run it! The widgets should arrange themselves in 3 columns
horizontally, with the first column also containing 3 widgets stacked

vertically. Experiment!

m] —

O pd
.
-1 |

Figure 24. Nested QHBoxLayout and QVBoxLayout /ayouts.

You can set the spacing around the layout using .setContentMargins or set the

spacing between elements using .setSpacing.

layout1.setContentsMargins(0,0,0,0)
layout1.setSpacing(20)

The following code shows the combination of nested widgets and layout

margins and spacing.

76



Listing 29. basic/layout_5.py

import sys

from PyQt5.QtCore import Qt
from PyQt5.QtWidgets import (
QApplication,

QHBoxLayout,

QLabel,

QMainWindow,
QVBoxLayout,

QWidget,
)

from layout_colorwidget import Color

class MainWindow(QMainWindow):

def __init__
super().

(self):
_init__ ()

self.setWindowTitle("My App")

layout1
layout?
layout3

layout1
layout1

layout2.
layout2.
.addWidget(Color("purple"))

layout?2
layout1

layout1

layout3.
.addWidget(Color("purple"))

layout3

layout1

= QHBoxLayout()
= QVBoxLayout()
= QVBoxLayout()

.setContentsMargins(@, 0, @, @)
.setSpacing(20)

addWidget(Color("red"))
addWidget(Color("yellow"))

.addLayout(layout2)

.addWidget(Color("green"))

addWidget(Color("red"))

.addLayout(layout3)

77



widget = QWidget()
widget.setlLayout(layout1)
self.setCentralWidget(widget)

app = QApplication(sys.argv)

window = MainWindow()
window. show()

app.exec_()

# Run it! You should see the effects of spacing and margins.

Experiment with the numbers until you get a feel for them.

Figure 25. Nested QHBoxLayout and QVBoxLayout /ayouts with spacing and margins

around the widgets.

78



QGridLayout widgets arranged in a grid

As useful as they are, if you try and using QVBoxLayout and QHBoxLayout for
laying out multiple elements, e.g. for a form, you'll find it very difficult to

ensure differently sized widgets line up. The solution to this is QaridLayout.

Figure 26. A QGridLayout showing the grid positions for each location.

QGridLayout allows you to position items specifically in a grid. You specify row
and column positions for each widget. You can skip elements, and they will

be left empty.

Figure 27. A QGridLayout with unfilled slots.

79



Listing 30. basic/layout_6.py
import sys
from PyQt5.QtCore import Qt
from PyQt5.QtWidgets import QApplication, QGridLayout, QLabel,
QMainWindow, QWidget
from layout_colorwidget import Color
class MainWindow(QMainWindow):
def __init__ (self):
super().__init__()
self.setWindowTitle("My App")
layout = QGridLayout()
layout.addWidget(Color("red"), @, 9)
layout.addWidget(Color("green"), 1, @)
layout.addWidget(Color("blue"), 1, 1)
layout.addWidget(Color("purple"), 2, 1)
widget = QWidget()
widget.setlLayout(layout)
self.setCentralWidget(widget)

app = QApplication(sys.argv)

window = MainWindow()
window. show()

app.exec_()

4 Run it! You should see the widgets arranged in a grid, aligned despite

missing entries.

80



) — O X

Figure 28. Four Color widgets in a QGridLayout.

81



QStackedLayout multiple widgets in the same
space

The final layout we'll cover is the QStackedlLayout. As described, this layout
allows you to position elements directly in front of one another. You can then
select which widget you want to show. You could use this for drawing layers
in a graphics application, or for imitating a tabbed interface. Note there is
also (QStackedWidget which is a container widget that works in exactly the
same way. This is useful if you want to add a stack directly to a QMainWindow

with .setCentralWidget.

Figure 29. QStackedlLayout — in use only the uppermost widget is visible, which
is by default the first widget added to the layout.

82



Figure 30. QStackedLayout, with the 2nd (1) widget selected and brought to the

front

83



Listing 31. basic/layout_7.py
import sys
from PyQt5.QtCore import Qt
from PyQt5.QtWidgets import QApplication, QLabel, QMainWindow,
QStackedLayout, QWidget
from layout_colorwidget import Color
class MainWindow(QMainWindow):
def __init__ (self):
super().__init__()
self.setWindowTitle("My App")
layout = QStackedLayout()
layout.addWidget(Color("red"))
layout.addWidget(Color("green"))
layout.addWidget(Color("blue"))
layout.addWidget(Color("yellow"))
layout.setCurrentIndex(3)
widget = QWidget()
widget.setlLayout(layout)
self.setCentralWidget(widget)

app = QApplication(sys.argv)

window = MainWindow()
window. show()

app.exec_()

« Run it! You will see only the last widget you added.

84



Figure 31. A stack widget, showing one widget only (the last-added widget).

QStackedWidget is how tabbed views in applications work. Only one view ('tab')
is visible at any one time. You can control which widget to show at any time
by using .setCurrentIndex() or .setCurrentWidget() to set the item by either
the index (in order the widgets were added) or by the widget itself.

Below is a short demo using QStackedLayout in combination with QButton to to

provide a tab-like interface to an application—

Listing 32. basic/layout_8.py
import sys

from PyQt5.QtCore import Qt
from PyQt5.QtWidgets import (
QApplication,
QHBoxLayout,
QLabel,
QMainWindow,
QPushButton,
QStackedLayout,
QVBoxLayout,
QWidget,
)

from layout_colorwidget import Color

class MainWindow(QMainWindow):
def __init__(self):
super().__init__()

self.setWindowTitle("My App")

85



def

def

def

pagelayout = QVBoxLayout()
button_layout = QHBoxLayout()
self.stacklayout = QStackedlLayout()

pagelayout.addLayout(button_layout)
pagelayout.addLayout(self.stacklayout)

btn = QPushButton("red")
btn.pressed.connect(self.activate_tab_1)
button_layout.addWidget(btn)
self.stacklayout.addWidget(Color("red"))

btn = QPushButton("green")
btn.pressed.connect(self.activate_tab_2)
button_layout.addWidget(btn)
self.stacklayout.addWidget(Color("green"))

btn = QPushButton("yellow")
btn.pressed.connect(self.activate_tab_3)
button_layout.addWidget(btn)
self.stacklayout.addWidget(Color("yellow"))

widget = QWidget()
widget.setlayout(pagelayout)
self.setCentralWidget(widget)

activate_tab_1(self):
self.stacklayout.setCurrentIndex(0)

activate_tab_2(self):
self.stacklayout.setCurrentIndex(1)

activate_tab_3(self):
self.stacklayout.setCurrentIndex(2)

app = QApplication(sys.argv)

window = MainWindow()
window. show()

app.exec_()

86



 Run it! You'll can now change the visible widget with the button.

5 My App - O X

red green blue yellow

Figure 32. A stack widget, with buttons to control the active widget.

Helpfully, Qt provides a built-in tab widget that provides this kind of layout

out of the box - although it's actually a widget, not a layout. Below the tab

demo is recreated using QTabWidget —

87



Listing 33. basic/layout_9.py
import sys

from PyQt5.QtCore import Qt
from PyQt5.QtWidgets import (
QApplication,
QLabel,
QMainWindow,
QPushButton,
QTabWidget,
QWidget,
)

from layout_colorwidget import Color

class MainWindow(QMainWindow):
def __init__(self):
super().__init__()
self.setWindowTitle("My App")
tabs = QTabWidget()
tabs.setTabPosition(QTabWidget.West)
tabs.setMovable(True)

for n, color in enumerate(["red", "green", "blue", "yellow"]):
tabs.addTab(Color(color), color)

self.setCentralWidget(tabs)

app = QApplication(sys.argv)

window = MainWindow()
window.show()

app.exec_()

As you can see, it's a little more straightforward — and a bit more attractive!

You can set the position of the tabs using the cardinal directions and toggle

88



whether tabs are moveable with .setMoveable.

&

B My App - m} * ® MyApp

red

vellow [ESIVERE green

Figure 33. The QTabWidget containing our widgets, with tabs shown on the left

(West). Screenshots show Windows, macOS and Ubuntu appearance.

You'll notice that the macOS tab bar looks quite different to the others—by
default on macOS tabs take on a pill or bubble style. On mMmacOS this is
typically used for tabbed configuration panels. For documents, you can turn
on document mode to give slimline tabs similar to what you see on other

platforms. This option has no effect on other platforms.

Listing 34. basic/layout_9b.py

tabs = QTabWidget()
tabs.setDocumentMode(True)

89



@ O@® MyApp

blue green red

yellow

Figure 34. QTabWidget with document mode set to True on macOS.

90



9. Actions, Toolbars & Menus

Next we'll look at some of the commmon user interface elements, that you've
probably seen in many other applications — toolbars and menus. We'll also
explore the neat system Qt provides for minimising the duplication between

different Ul areas — QAction.

Toolbars

One of the most commonly seen user interface elements is the toolbar.
Toolbars are bars of icons and/or text used to perform common tasks within
an application, for which accessing via a menu would be cumbersome. They
are one of the most common Ul features seen in many applications. While
some complex applications, particularly in the Microsoft Office suite, have
migrated to contextual 'ribbon' interfaces, the standard toolbar is sufficient

for the majority of applications you will create.

sEHEHR 3 .@E”%I By @) 2 e|d el x '%|L'._":'—";'-:‘;|?1| 'nfj@“ﬂ!gi DR =Eay =g

Figure 35. Standard GUI elements - The toolbar

Qt toolbars support display of icons, text, and can also contain any standard
Qt widget. However, for buttons the best approach is to make use of the

QAction system to place buttons on the toolbar.

Let's start by adding a toolbar to our application.

(,) Load up a fresh copy of myapp.py and save it under a new

[ name for this section.

In Qt toolbars are created from the QToolBar class. To start you create an
instance of the class and then call .addToolbar on the QMainWindow. Passing
a string in as the first parameter to QToolBar sets the toolbar's name, which

will be used to identify the toolbar in the Ul.

91



Listing 35. basic/toolbars_and_menus_1.py

class MainWindow(QMainWindow):
def __init__(self):
super().__init__()
self.setWindowTitle("My App")

label = QLabel("Hello!")
label.setAlignment(Qt.AlignCenter)

self.setCentralWidget(label)

toolbar = QToolBar("My main toolbar")
self.addToolBar(toolbar)

def onMyToolBarButtonClick(self, s):
print("click", s)

# Run it! You'll see a thin grey bar at the top of the window. This is your
toolbar. Right click and click the name to toggle it off.

m] — O pd

Hello!

Figure 36. A window with a toolbar.

| can’t get my toolbar back!?

Unfortunately once you remove a toolbar there is now no
A place to right click to re-add it. So as a general rule you want
to either keep one toolbar un-removeable, or provide an

alternative interface to turn toolbars on and off.

Let's make the toolbar a bit more interesting. We could just add a QButton

92



widget, but there is a better approach in Qt that gets you some cool features
— and that is via QAction. QAction is a class that provides a way to describe
abstract user interfaces. What this means in English, is that you can define
multiple interface elements within a single object, unified by the effect that
interacting with that element has. For example, it is common to have
functions that are represented in the toolbar but also the menu — think of
something like Edit-Cut which is present both in the Edit menu but also on
the toolbar as a pair of scissors, and also through the keyboard shortcut Ctrl-
X (Cmd-X on macOSs).

Without QAction you would have to define this in multiple places. But with
QAction you can define a single QAction, defining the triggered action, and
then add this action to both the menu and the toolbar. Each QAction has
names, status messages, icons and signals that you can connect to (and

much more).

See the code below for how to add your first QAction.

93



Listing 36. basic/toolbars_and_menus_2.py

class MainWindow(QMainWindow):
def __init__(self):
super().__init__()

self.setWindowTitle("My App")

label = QLabel("Hello!")
label.setAlignment(Qt.AlignCenter)

self.setCentralWidget(label)

toolbar = QToolBar("My main toolbar")
self.addToolBar(toolbar)

button_action = QAction("Your button", self)
button_action.setStatusTip("This is your button")
button_action.triggered.connect(self.onMyToolBarButtonClick)
toolbar.addAction(button_action)

def onMyToolBarButtonClick(self, s):
print("click", s)

To start with we create the function that will accept the signal from the
QAction so we can see if it is working. Next we define the QAction itself. When
creating the instance we can pass a label for the action and/or an icon. You
must also pass in any Q0bject to act as the parent for the action — here we're
passing self as a reference to our main window. Strangely for QAction the

parent element is passed in as the final parameter.

Next, we can opt to set a status tip — this text will be displayed on the status
bar once we have one. Finally we connect the .triggered signal to the custom

function. This signal will fire whenever the QAction is 'triggered' (or activated).

4 Run it! You should see your button with the label that you have
defined. Click on it and the our custom function will emit "click" and the

status of the button.

9%



m] — O pd

Your button

Hello!

Figure 37. Toolbar showing our QAction button.

Why is the signal always false?

O The signal passed indicates whether the action is checked,
- and since our button is not checkable — just clickable — it is
always false. This is just like the QPushButton we saw earlier.

Let's add a statusbar.

We create a status bar object by calling QStatusBar and passing the result into
.setStatusBar. Since we don’t need to change the statusBar settings we can

just pass it in as we create it. We can create and define the status bar in a

single line:

95



Listing 37. basic/toolbars_and_menus_3.py

class MainWindow(QMainWindow):
def __init__(self):
super().__init__()
self.setWindowTitle("My App")

label = QLabel("Hello!")
label.setAlignment(Qt.AlignCenter)

self.setCentralWidget(label)

toolbar = QToolBar("My main toolbar")
self.addToolBar(toolbar)

button_action = QAction("Your button", self)
button_action.setStatusTip("This is your button")
button_action.triggered.connect(self.onMyToolBarButtonClick)
toolbar.addAction(button_action)
self.setStatusBar(QStatusBar(self))

def onMyToolBarButtonClick(self, s):
print("click", s)

+ Run it! Hover your mouse over the toolbar button and you will see the

status text appear in the status bar at the bottom of the window.

96



Figure 38. Status bar text is updated as we hover our actions.

my — O

Your button
Your button |

This is your button

Next we're going to turn our QAction toggleable — so clicking will turn it on,

clicking again will turn it off. To do this, we simple call setCheckable(True) on

the QAction object.

97



Listing 38. basic/toolbars_and_menus_4.py

class MainWindow(QMainWindow):
def __init__(self):
super().__init__()

self.setWindowTitle("My App")

label = QLabel("Hello!")
label.setAlignment(Qt.AlignCenter)

self.setCentralWidget(label)

toolbar = QToolBar("My main toolbar")
self.addToolBar(toolbar)

button_action = QAction("Your button", self)
button_action.setStatusTip("This is your button")
button_action.triggered.connect(self.onMyToolBarButtonClick)
button_action.setCheckable(True)
toolbar.addAction(button_action)

self.setStatusBar(QStatusBar(self))

def onMyToolBarButtonClick(self, s):
print("click", s)

4 Run it! Click on the button to see it toggle from checked to
unchecked state. Note that custom slot function we create now

alternates outputting True and False.

m| — O K

Your button

Hello!

Figure 39. The toolbar button toggled on.

98



The .toggled signal

@ There is also a .toggled signal, which only emits a signal when
- the button is toggled. But the effect is identical so it is mostly
pointless.

Things look pretty shabby right now — so let's add an icon to our button. For
this | recommend you download the fugue icon set by designer Yusuke
Kamiyamane. It's a great set of beautiful 16x16 icons that can give your apps a
nice professional look. It is freely available with only attribution required
when you distribute your application — although | am sure the designer
would appreciate some cash too if you have some spare.

R B B B @& 6

blueprint--plus.png blusprint- blueprint- blueprint png blueprints o0g blustooth.prg
horizontalprg medium.png

B U U

book-open-listpng

book--minus.png

book.png

box-zipperpng boxpng

brisfcase--plus.prg  brefcase-smallpog
broom.png bug--arrowpng

ouilding- buiding-oldpng  building-smallng  buiking.eng burn--arrowpng burn- burn-—minus. o0g  bum-pencipng  bum--pluspg burn-smallpg
]

Figure 40. Fugue Icon Set — Yusuke Kamiyamane

Select an image from the set (in the examples here I've selected the file
bug.png) and copy it into the same folder as your source code. To add the icon
to the QAction (and therefore the button) we simply pass it in as the first
parameter when creating the QAction. If the icon is in the same folder as your

source code you can just copy it to

You also need to let the toolbar know how large your icons are, otherwise
your icon will be surrounded by a lot of padding. You can do this by calling

.setIconSize() with a QSize object.

99


http://p.yusukekamiyamane.com/
http://p.yusukekamiyamane.com/
http://p.yusukekamiyamane.com/

Listing 39. basic/toolbars_and_menus_5.py

class MainWindow(QMainWindow):

__init__(self):
super().__init__()

self.setWindowTitle("My App")

label = QLabel("Hello!")
label.setAlignment(Qt.AlignCenter)

self.setCentralWidget(label)

toolbar = QToolBar("My main toolbar")
toolbar.setIconSize(QSize(16, 16))
self.addToolBar(toolbar)

button_action = QAction(QIcon("bug.png"), "Your button", self)
button_action.setStatusTip("This is your button")
button_action.triggered.connect(self.onMyToolBarButtonClick)
button_action.setCheckable(True)
toolbar.addAction(button_action)

self.setStatusBar(QStatusBar(self))

def onMyToolBarButtonClick(self, s):

print("click", s)

4 Run it! The QAction is now represented by an icon.

Everything should function exactly as it did before.

m] — O P
: 3

Hello!

Figure 41. Our action button with an icon.

100



Note that Qt uses your operating system default settings to determine
whether to show an icon, text or an icon and text in the toolbar. But you can
override this by using .setToolButtonStyle. This slot accepts any of the

following flags from the Qt. namespace:

Flag Behaviour

Qt.ToolButtonIconOnly Icon only, no text

Qt.ToolButtonTextOnly Text only, no icon

Qt.ToolButtonTextBesideIcon Icon and text, with text beside the
icon

Qt.ToolButtonTextUnderIcon Icon and text, with text under the
icon

Qt.ToolButtonIconOnly Icon only, no text

Qt.ToolButtonFollowStyle Follow the host desktop style

Which style should | use?

The default value is Qt.ToolButtonFollowStyle, meaning that
(r) your application will default to following the standard/global
- setting for the desktop on which the application runs. This is
generally recommended to make your application feel as

native as possible.

Next we'll add a few more bits and bobs to the toolbar. We'll add a second
button and a checkbox widget. As mentioned you can literally put any
widget in here, so feel free to go crazy. Don't worry about the QCheckBox type,

we'll cover that later.

101



Listing 40. basic/toolbars_and_menus_6.py

class MainWindow(QMainWindow):

def

self)

102

def

__init__(self):
super().__init__()

self.setWindowTitle("My App")

label = QLabel("Hello!")
label.setAlignment(Qt.AlignCenter)

self.setCentralWidget(label)

toolbar = QToolBar("My main toolbar")
toolbar.setIconSize(QSize(16, 16))
self.addToolBar(toolbar)

button_action = QAction(QIcon("bug.png"), "Your button", self)
button_action.setStatusTip("This is your button")
button_action.triggered.connect(self.onMyToolBarButtonClick)
button_action.setCheckable(True)
toolbar.addAction(button_action)

toolbar.addSeparator()

button_action2 = QAction(QIcon("bug.png"), "Your button2",
button_action2.setStatusTip("This is your button2")
button_action2.triggered.connect(self.onMyToolBarButtonClick)
button_action2.setCheckable(True)
toolbar.addAction(button_action)

toolbar.addWidget(QLabel("Hello"))
toolbar.addWidget(QCheckBox())

self.setStatusBar(QStatusBar(self))

onMyToolBarButtonClick(self, s):
print("click", s)



+ Run it! Now you see multiple buttons and a checkbox.

m] — O pd
4 Hello[_]

Hello!

Figure 42. Toolbar with an action and two widgets.

Menus

Menus are another standard component of Uls. Typically they are on the top
of the window, or the top of a screen on macOS. They allow access to all
standard application functions. A few standard menus exist — for example
File, Edit, Help. Menus can be nested to create hierarchical trees of functions
and they often support and display keyboard shortcuts for fast access to their

functions.

IZICW Edit View Insert Formr

New Presentation 38N
New from Template... {3P
Open... %80
Open URL... 30
Open Recent >
Close ®’W
Save #S
Save As... 2 38S

Save as Pictures...
Save as Movie...

Share >

Reduce File Size...

Restrict Permissions >
Passwords...

Page Setup...

Print... ®’P
Properties...

Figure 43. Standard GUI elements - Menus

To create a menu, we create a menubar we call .menuBar() on the
QMainWindow. We add a menu on our menu bar by calling .addMenu(),

passing in the name of the menu. I've called it '&File'. The ampersand

103



defines a quick key to jump to this menu when pressing Alt.

Quick Keys on macQOS
A This won't be visible on macOS. Note that this is different to a

keyboard shortcut — we'll cover that shortly

This is where the power of actions comes in to play. We can reuse the already
existing QAction to add the same function to the menu. To add an action you

call .addAction passing in one of our defined actions.

Listing 41. basic/toolbars_and_menus_7.py

class MainWindow(QMainWindow):
def __init__(self):
super().__init__()
self.setWindowTitle("My App")

label = QLabel("Hello!")
label.setAlignment(Qt.AlignCenter)

self.setCentralWidget(label)

toolbar = QToolBar("My main toolbar")
toolbar.setIconSize(QSize(16, 16))
self.addToolBar(toolbar)

button_action = QAction(QIcon("bug.png"), "&Your button",

self)
button_action.setStatusTip("This is your button")
button_action.triggered.connect(self.onMyToolBarButtonClick)
button_action.setCheckable(True)
toolbar.addAction(button_action)
toolbar.addSeparator()
button_action2 = QAction(QIcon("bug.png"), "Your &button2",
self)

button_action2.setStatusTip("This is your button2")
button_action2.triggered.connect(self.onMyToolBarButtonClick)
button_action2.setCheckable(True)

104



toolbar.addAction(button_action)

toolbar.addWidget(QLabel("Hello"))
toolbar.addWidget(QCheckBox())

self.setStatusBar(QStatusBar(self))
menu = self.menuBar()

file_menu = menu.addMenu("&File")
file_menu.addAction(button_action)

def onMyToolBarButtonClick(self, s):
print("click", s)

Click the item in the menu and you will notice that it is toggleable — it

inherits the features of the QAction.

i - O X § - O X
File File
& Hello_] # Your button
Hella! Hella!
nl — O * n — O x
File File
4 Your button # Your button
Hello! Hello
This is your button

Figure 44. Menu shown on the window—on macOS this will be at the top of the

SCreen.

Let's add some more things to the menu. Here we'll add a separator to the

menu, which will appear as a horizontal line in the menu, and then add the

105



second QAction we created.

Listing 42. basic/toolbars_and_menus_8.py

class MainWindow(QMainWindow):

def

self)

self)

106

_init__(self):
super().__init__()

self.setWindowTitle("My App")

label = QLabel("Hello!")
label.setAlignment(Qt.AlignCenter)

self.setCentralWidget(label)

toolbar = QToolBar("My main toolbar")
toolbar.setIconSize(QSize(16, 16))

self.addToolBar(toolbar)

button_action = QAction(QIcon("bug.png"), "&Your button",
button_action.setStatusTip("This is your button")
button_action.triggered.connect(self.onMyToolBarButtonClick)
button_action.setCheckable(True)
toolbar.addAction(button_action)

toolbar.addSeparator()

button_action2 = QAction(QIcon("bug.png"), "Your &button2",
button_action2.setStatusTip("This is your button2")
button_action2.triggered.connect(self.onMyToolBarButtonClick)
button_action2.setCheckable(True)
toolbar.addAction(button_action)

toolbar.addWidget(QLabel("Hello"))
toolbar.addWidget(QCheckBox())

self.setStatusBar(QStatusBar(self))
menu = self.menuBar()

file_menu = menu.addMenu("&File")



file_menu.addAction(button_action)
file_menu.addSeparator()
file_menu.addAction(button_action2)

def onMyToolBarButtonClick(self, s):
print("click", s)

4 Run it! You should see two menu items with a line between them.

wl — 1 x
File
## Your button

£ Your button2

Figure 45. Our actions showing in the menu.

You can also use ampersand to add accelerator keys to the menu to allow a
single key to be used to jump to a menu item when it is open. Again this

doesn’'t work on macOS.

To add a submenu, you simply create a new menu by calling addMenu() on the

parent menu. You can then add actions to it as normal. For example:

Listing 43. /toolbars_and_menus_9.py

class MainWindow(QMainWindow):
def __init__(self):
super().__init__()
self.setWindowTitle("My App")

label = QLabel("Hello!")
label.setAlignment(Qt.AlignCenter)

107



self)

self)

108

def

self.setCentralWidget(label)

toolbar = QToolBar("My main toolbar")
toolbar.setIconSize(QSize(16, 16))
self.addToolBar(toolbar)

button_action = QAction(QIcon("bug.png"), "&Your button",

button_action.setStatusTip("This is your button")
button_action.triggered.connect(self.onMyToolBarButtonC