

Coffee Break Python
Workbook

127 Python Puzzles to Push You from
Zero to Hero in Your Coffee Breaks

Christian Mayer, Lukas Rieger, and Zohaib Riaz

January 23, 2020

A puzzle a day to learn, code, and play.

i

Contents

Contents ii

1 Introduction 1

2 A Case for Puzzle-based Learning 4
2.1 Overcome the Knowledge Gap 5
2.2 Embrace the Eureka Moment 6
2.3 Divide and Conquer 7
2.4 Improve From Immediate Feedback 7
2.5 Measure Your Skills 8
2.6 Individualized Learning 10
2.7 Small is Beautiful 11
2.8 Active Beats Passive Learning 12
2.9 Make Code a First-class Citizen 14
2.10 What You See is All There is 16

3 Elo 17
3.1 How to Use This Book 17

ii

CONTENTS iii

3.2 How to Test and Train Your Skills? 19
3.3 What Can This Book Do For You? 22

4 A Quick Overview of the Python Language 27
4.1 Keywords 28
4.2 Basic Data Types 31
4.3 Complex Data Types 34
4.4 Classes . 38
4.5 Functions and Tricks 41

5 Puzzles: Basic to Scholar 45
5.1 Printing values 45
5.2 Basics of variables 46
5.3 Getting started with strings 47
5.4 Types of variables I 48
5.5 Types of Variables II 49
5.6 Minimum 50
5.7 String Concatenation 51
5.8 Line Breaks I 52
5.9 Line Breaks II 53
5.10 List Length 54
5.11 Comparison Operators I 55
5.12 Comparison Operators II 56
5.13 Multiple Initializations 57

6 Puzzles: Scholar to Intermediate 59
6.1 Maximum 59
6.2 Memory addresses 60
6.3 Swapping Values 61
6.4 The Boolean Operator AND 62

iv CONTENTS

6.5 The Boolean Operator OR 64
6.6 Boolean Operators 66
6.7 Arithmetic Expressions 67
6.8 Integer Division and Modulo 69
6.9 Building Strings 71
6.10 The len() Function 72
6.11 String Indices 73
6.12 The upper() Function 74
6.13 The lower() Function 75
6.14 Somebody Is Shouting 76
6.15 Counting Characters 77
6.16 String Lengths 78
6.17 Finding Characters in Strings 79
6.18 Not Finding Characters in Strings 80
6.19 Counting Letters 81
6.20 Min() and Max() of a String 82
6.21 Reversed Strings 83
6.22 String Equality 84
6.23 Slicing I 86
6.24 Slicing II 87
6.25 Slicing III 88
6.26 Slicing IV 89
6.27 Slicing V 90
6.28 Memory Addresses and Slicing 91
6.29 Accessing List Items I 92
6.30 Accessing List Items II 93
6.31 List as Stack 94
6.32 More String Operations 95
6.33 Checking for Substrings 96

CONTENTS v

6.34 Stripping String Boundaries 97
6.35 Strings: Stripping vs. Replacement 98
6.36 Gluing Strings Together 99
6.37 The Copy Operation 100
6.38 Growing List Contents I 101
6.39 Growing List Contents II 102
6.40 List Operations I 104
6.41 List Operations II 105
6.42 List Operations III 106
6.43 List Operations IV 107
6.44 List Operations V 107
6.45 List Operations VI 108
6.46 List Operations VII 109
6.47 List Operations VIII 110
6.48 List Operations IX 111
6.49 List Operations X 112
6.50 Lists and the Range Function I 113
6.51 Lists and the Range Function II 114
6.52 Lists and the Range Function III 115
6.53 Python’s Multiple Assignment I 116
6.54 Slice Assignments 117
6.55 Strings and Lists II 118
6.56 String Comparisons 119
6.57 From Booleans to Strings 120
6.58 Boolean Trickery I 121
6.59 Boolean Trickery II 122
6.60 Boolean Trickery III 123
6.61 Looping over Ranges 124
6.62 Reversed Loops 126

vi CONTENTS

6.63 Boolean Trickery IV 127
6.64 Lists and Memory Addresses 128
6.65 List Objects 129
6.66 Boolean Tricks 130
6.67 Complex Numbers 131
6.68 Tuples . 132
6.69 Multiple Assignments 133
6.70 Boolean Integer Conversion 134
6.71 The any() Function 135
6.72 The sum() Function 137
6.73 Accessing Complex Numbers 139
6.74 Tuple Confusion 140
6.75 Understanding While ... Else (1/3) 141
6.76 Understanding While ... Else (2/3) 143
6.77 Understanding While ... Else (3/3) 145
6.78 Basic Arithmetic 147
6.79 Dictionary 148
6.80 Dictionary of Dictionaries 150
6.81 Reverse Dictionary Index 152
6.82 Default Arguments 154

7 Puzzles: Intermediate to Professional 156
7.1 Building Strings II 156
7.2 String: Slicing and Indexing 158
7.3 Built-in Python Operations 159
7.4 Strings and Lists I 160
7.5 Formatting Printouts 161
7.6 Floating Point Comparisons 163
7.7 Python’s Multiple Assignment II 165
7.8 The Not-So-Obvious Case 167

CONTENTS vii

7.9 Rounding Values 168
7.10 Initializing Integers 170
7.11 Basic Typing 171
7.12 Short Circuiting 172
7.13 While Arithmetic 174
7.14 The Lambda Function 176
7.15 Zip . 177
7.16 Basic Filtering 178
7.17 List Comprehension 181
7.18 Encryption by Obfuscation 182
7.19 String Dictionary 184
7.20 Functions are Objects 186
7.21 Dictionary of Dictionaries 188
7.22 Sorting Dictionary Keys 190
7.23 Pythonic Loop Iteration 192
7.24 Filtering with List Comprehension 194
7.25 Aggregating with List Comprehension . . . 196
7.26 Maximum of Tuples 198
7.27 The Key Argument 200
7.28 Puzzle 123 202
7.29 Set Operations (1/2) 204
7.30 Set Operations (2/2) 205
7.31 Recursive Algorithm 207
7.32 Fibonacci 210

8 Final Remarks 214
Your skill level 214
Where to go from here? 215

9 50 Bonus Workouts 222

viii CONTENTS

9.1 Arithmetic 222
9.2 Whitespace 223
9.3 Modulo 224
9.4 Tuple . 225
9.5 Dictionary 226
9.6 Asterisk 227
9.7 Slicing 1 228
9.8 Slicing 2 229
9.9 Nested Loop 230
9.10 List Arithmetic 231
9.11 Exception 232
9.12 Insert . 233
9.13 Sorted Dictionary 234
9.14 Default . 235
9.15 Keyword Argument 236
9.16 Global . 237
9.17 Flow 1 . 238
9.18 Flow 2 . 239
9.19 Enumerate 240
9.20 Reverse 241
9.21 Hierarchical Functions 242
9.22 Sorting++ 243
9.23 Indexing 244
9.24 Count . 245
9.25 Power . 246
9.26 Lambda 247
9.27 Recursion 248
9.28 Kwargs . 249
9.29 Dictionary Magic 250

CONTENTS ix

9.30 Sort Key 251
9.31 Print . 252
9.32 Logic . 253
9.33 Argument Confusion 254
9.34 Pass . 255
9.35 List Magic 256
9.36 Zipzip . 257
9.37 Comprehension 258
9.38 Slice Extend 259
9.39 Max . 260
9.40 Zip . 261
9.41 Unpack 262
9.42 Minimax 263
9.43 Sort . 264
9.44 Tuple List 265
9.45 While . 266
9.46 String Logic 267
9.47 Unorthodox Dict 268
9.48 Count . 269
9.49 Cut . 270
9.50 End . 271

1

Introduction

The main driver for mastery is neither a character trait
nor talent. Mastery comes from intense, structured train-
ing. The author Malcolm Gladwell formulated the famous
rule of 10,000 hours after collecting research from various
fields such as psychology and neurological science.1 The
rule states that if you have average talent, you will reach
mastery in any discipline after investing approximately
10,000 hours of intense training. Bill Gates, the founder
of Microsoft, reached mastery at a young age as a result
of coding for more than 10,000 hours. He was commit-
ted and passionate about coding and worked long nights
to develop his skills. He was anything but an overnight
success.

If you are reading this book, you are an aspiring coder
and seek ways to advance your coding skills. Nurtur-
ing your ambition to learn will pay dividends to you and

1Malcolm Gladwell Outliers: The Story of Success

1

2 CHAPTER 1. INTRODUCTION

your family for as long as you live. It will make you a
respectable member of society. Plus you provide value to
different parts of society such as information technology,
automation, and digitization. Ultimately, it will give you
confidence. So, keeping your ambition to learn is the one
thing you must place above all else.

The Coffee Break Python Workbook is the fourth book in
the series.2 In a way, it’s an extension of its predeces-
sor Coffee Break Python3—but with 127 brand-new code
puzzles teaching new Python concepts, it stands on its
own.

This book aims to be a stepping stone on your path to
becoming a Python master. It helps you to learn faster by
using the principles of good teaching. It contains 15-25
hours of Python training using one of the most efficient
learning techniques: practice testing. This technique is
guaranteed to improve your ability to read, write, and
understand Python source code.

The idea is that you solve code puzzles. They start simple
and become more and more complex as you read the book.
In essence, you play the Python interpreter and compute
the output of each code snippet in your head. Then you
check whether you were right. Using the accompanying
feedback and explanations, you will adapt and improve
your coding skills over time. To make this idea a real-

2The third book is more advanced. It’s about NumPy, Python’s
library for data science and numerical computation: https://
blog.finxter.com/coffee-break-numpy/

3https://blog.finxter.com/coffee-break-python/

https://blog.finxter.com/coffee-break-numpy/
https://blog.finxter.com/coffee-break-numpy/
https://blog.finxter.com/coffee-break-python/

3

ity, I developed the online coding academy Finxter.com.
The next section explains the advantages of the Finxter
method of puzzle-based learning. If you already know
about the benefits of puzzle-based learning from previous
books, and you want to dive right into the puzzles, you
can skip the following chapter and start at Chapter 5.

Finxter.com

2

A Case for Puzzle-based Learning

Definition: A code puzzle is an educational
snippet of source code that teaches a single
computer science concept by activating the
learner’s curiosity and involving them in the
learning process.

Before diving into practical puzzle-solving, let’s first study
10 reasons why puzzle-based learning accelerates your
learning speed and improves retention of the learned ma-
terial. There is robust evidence in psychological science
for each of these reasons. Yet, none of the existing cod-
ing books lift code puzzles to being first-class citizens.
Instead, they mostly focus on one-directional teaching.
This book attempts to change that. In brief, the 10 rea-
sons for puzzle-based learning are:

1. Overcome the Knowledge Gap (Section 2.1)

4

2.1. OVERCOME THE KNOWLEDGE GAP 5

2. Embrace the Eureka Moment (Section 2.2)

3. Divide and Conquer (Section 2.3)

4. Improve From Immediate Feedback (Section 2.4)

5. Measure Your Skills (Section 2.5)

6. Individualized Learning (Section 2.6)

7. Small is Beautiful (Section 2.7)

8. Active Beats Passive Learning (Section 2.8)

9. Make Source Code a First-class Citizen (Section 2.9)

10. What You See is All There is (Section 2.10)

2.1 Overcome the Knowledge Gap
The great teacher Socrates delivered complex knowledge
by asking a sequence of questions. Each question built on
answers to previous questions provided by the student.
This teaching is more than 2400 years old and is still in
widespread use today. A good teacher opens a gap be-
tween their knowledge and the learner’s. The knowledge
gap makes the learner realize that they do not know the
answer to a burning question. This creates tension in the
learner’s mind. To close this gap, the learner waits for
the missing piece of knowledge from the teacher. Better
yet, the learner starts developing their own answers. The
learner craves knowledge.

6
CHAPTER 2. A CASE FOR PUZZLE-BASED

LEARNING

Code puzzles open an immediate knowledge gap. When
you first look at the code, you do not understand the
meaning of the puzzle. The puzzle’s semantics are hidden.
But only you can transform the unsolved puzzle into a
solved one.

The problem of many teachers is that they open a knowl-
edge gap that is too large. The learner feels frustrated be-
cause they cannot cross this gap. Rated code puzzles solve
this problem because, by design, they are not too great a
challenge. You must stretch yourself to solve them, but
you can do it if you go all-out.

2.2 Embrace the Eureka Moment

Humans are unique because of their ability to learn. Fast
and thorough learning has always increased our chances
of survival. Thus, evolution created a brilliant biological
reaction to reinforce learning in your body. Your brain
is wired to seek new information; it is wired to always
process data, to always learn.

Did you ever feel the sudden burst of happiness after ex-
periencing a eureka moment? Your brain releases endor-
phins, the moment you close a knowledge gap. The in-
stant gratification from learning is highly addictive and
this addiction makes you smarter. Solving puzzles gives
your brain instant gratification. Easy puzzles lead to
harder puzzles, which open large knowledge gaps. Each
one you solve, shortens the knowledge gap and you learn

2.3. DIVIDE AND CONQUER 7

in the process.

2.3 Divide and Conquer

Learning to code is a complex task. You must learn a
myriad of new concepts and language features. Many
aspiring coders are overwhelmed by this complexity. So
they seek a clear path to mastery.

As any productivity expert will tell you: break a big goal
into a series of smaller steps. Finishing each tiny step
brings you one step closer to your big goal. Divide and
conquer makes you feel in control and takes you one step
closer to mastery.

Code puzzles do this for you. They break up the huge
task of learning to code into a series of smaller steps.
You experience laser focus on one learning task at a time
such as recursion, the for loop, or keyword arguments.
Each puzzle is a step toward your bigger goal of mastering
computer science. Keep solving puzzles and you keep
improving your skills.

2.4 Improve From Immediate
Feedback

As a child, you learned to walk by trial and error—try,
receive feedback, adapt, and repeat. Unconsciously, you
will minimize negative and maximize positive feedback.

8
CHAPTER 2. A CASE FOR PUZZLE-BASED

LEARNING

You avoid falling because it hurts, and you seek the ap-
proval of your parents. To learn anything, you need feed-
back so that you can adapt your actions.

However, an excellent learning environment provides you
not just with feedback but with immediate feedback for
your actions. If you were to slap your friend each time
he lit a cigarette—a not overly drastic measure to save
his life—he would quickly stop smoking. Puzzle-based
learning with this book offers you an environment with
immediate feedback. This makes learning to code easy
and fast. Over time, your brain will absorb the mean-
ing of a code snippet quicker and with higher precision.
Learning this skill will take you to the top 10% of all
coders.

2.5 Measure Your Skills

Think about an experienced Python programmer you know.
How good are their Python skills compared to yours? On
a scale from your grandmother to Bill Gates, where is that
person and where are you? These questions are difficult
to answer because there is no simple way to measure the
skill level of a programmer. This creates a problem for
your learning progress. The concept of being a good pro-
grammer has become fuzzy and diluted. What you can’t
measure, you can’t improve.

So what should be your measurable goal when learning
to program? To answer this, let’s travel briefly to the

2.5. MEASURE YOUR SKILLS 9

world of chess. This sport provides an excellent learning
environment for aspiring players. Every player has an
Elo rating number that measures their skill level. You
get an Elo rating when playing against other players—
if you win, your Elo rating increases. Victories against
stronger players lead to a higher increase in the Elo rating.
Every ambitious chess player simply focuses on one thing:
increasing their Elo rating. The ones that manage to push
their Elo rating very high, earn grandmaster titles. They
become respected among chess players and in the outside
world.

Every chess player dreams of being a grandmaster. The
goal is as measurable as it can be: reaching an Elo of 2400
and master level (see Section 3). Thus, chess is a great
learning environment as every player is always aware of
their skill level. A player can measure how their decisions
and habits impact their Elo number. Do they improve
when sleeping enough before important games? When
training opening variants? When solving chess puzzles?
What you can measure, you can improve.

The main idea of this book and the associated learning
app Finxter.com is to transfer this method of measuring
skills from the chess world to programming. Suppose you
want to learn Python. The Finxter website assigns you a
rating that reflects your coding skills. Every Python puz-
zle has a rating number according to its difficulty level.
You ‘play’ against a puzzle at your difficulty level. The
puzzle and you will have a similar Elo rating so that your
learning is personalized. If you solve the puzzle, your Elo

Finxter.com

10
CHAPTER 2. A CASE FOR PUZZLE-BASED

LEARNING

increases and the puzzle’s Elo decreases. Otherwise, your
Elo decreases and the puzzle’s Elo increases. Hence, the
Elo ratings of the difficult puzzles increase over time. But
only learners with high Elo ratings will see them. This
self-organizing system ensures that you are always chal-
lenged but not overwhelmed. Plus you constantly receive
feedback about how good your skills are in comparison
to others. You always know exactly where you stand on
your path to mastery.

2.6 Individualized Learning

Today, the education system is built around the idea
of classes and courses. In these environments, all stu-
dents consume the same learning material from the same
teacher applying the same teaching methods.

In the digital era, however, computer servers and intelli-
gent machines provide individualized learning with ease.
Puzzle-based learning is a perfect example of automated,
individualized learning. The ideal puzzle stretches the
student’s abilities and is neither boring nor overwhelm-
ing. Finding the perfect learning material for each learner
is an important and challenging problem. Finxter uses a
simple but effective solution to solve this problem: the
Elo rating system. The student solves puzzles at their
skill level. This book and the book’s web backend Finx-
ter push teaching towards individualized learning.

2.7. SMALL IS BEAUTIFUL 11

2.7 Small is Beautiful

The 21st century has seen the rise of microcontent. Mi-
crocontent is a short and accessible piece of information
such as the weather forecast, a news headline, or a cat
video. Social media giants like Facebook and Twitter of-
fer a stream of never-ending microcontent. Microcontent
has many benefits: the consumer stays engaged and it is
easily digestible in a short amount of time. Each piece
of microcontent pushes your knowledge horizon a bit fur-
ther. Today, millions of people are addicted to microcon-
tent.

However, this addiction will become a problem. The com-
puter science professor, Cal Newport, shows in his book
Deep Work that modern society values deep work more
than shallow work. Deep work is a high-value activity
that needs intense focus and skill. Examples of deep work
are programming, writing, or researching. On the other
hand, shallow work is a low-value activity that can be
done by anybody e.g., posting cat videos to social me-
dia. The demand for deep work has grown with the rise
of the information society. At the same time, the sup-
ply has stayed constant or decreased. One reason for this
is the addictiveness of shallow social media. People that
see and understand this trend can benefit tremendously.
In a free market, the prices of scarce and high-demand
resources rise. Because of this, surgeons, lawyers, and
software developers earn $100,000+ per year. Their work
cannot easily be replaced or outsourced to unskilled work-

12
CHAPTER 2. A CASE FOR PUZZLE-BASED

LEARNING

ers. If you can do deep work and focus your attention on
a challenging problem, society pays you generously.

What if we could marry the concept of microcontent with
deep work? This is the promise of puzzle-based learning.
Finxter offers a stream of self-contained microcontent in
the form of hundreds of small code puzzles. But instead
of just being unrelated nonsense, each puzzle is a tiny
stimulus that teaches a coding concept or language fea-
ture. Hence, each puzzle pushes your knowledge in the
same direction.

Puzzle-based learning breaks the big goal of reach mas-
tery level in Python into tiny actionable steps: solve and
understand one code puzzle per day. A clear path to suc-
cess.

2.8 Active Beats Passive Learning

Robust scientific evidence shows that active learning dou-
bles students’ learning performance. In a study on this
matter, test scores of active learners improved by more
than a grade compared to their passive learning counter-
parts.1 Not using active learning techniques wastes your
time and hinders you if you want to reach your full poten-
tial. Switching to active learning is a simple tweak that
instantly improves your performance.

1 https://en.wikipedia.org/wiki/Active_learning#
Research_evidence

https://en.wikipedia.org/wiki/Active_learning#Research_evidence
https://en.wikipedia.org/wiki/Active_learning#Research_evidence

2.8. ACTIVE BEATS PASSIVE LEARNING 13

How does active learning work? Active learning requires
the student to interact with the material, rather than sim-
ply consume it. It is student-centric rather than teacher-
centric. Great active learning techniques are asking and
answering questions, self-testing, teaching, and summa-
rizing. A popular study shows that one of the best learn-
ing techniques is practice testing.2 In this technique, you
test your knowledge before you have learned everything.
Rather than learning by doing, it’s learning by testing.

The study argues that students must feel safe during these
tests. Therefore, the tests must be low-stakes, i.e., stu-
dents have little to lose. After the test, students get feed-
back on how well they did. The study shows that practice
testing boosts long-term retention by almost a factor of
10. So, solving a daily code puzzle is not just another
learning technique—it is one of the best.

Although active learning is twice as effective, most books
focus on passive learning. The author delivers informa-
tion; the student passively consumes the information. Some
programming books include active learning elements by
adding tests or by asking the reader to try out the code
examples. Yet, I’ve always found this impractical when
reading on the train, bus or in bed. If these active ele-
ments drop out, learning becomes 100% passive again.

Fixing this mismatch between research and common prac-
tice drove me to write this book about puzzle-based learn-

2 http://journals.sagepub.com/doi/abs/10.1177/
1529100612453266

http://journals.sagepub.com/doi/abs/10.1177/1529100612453266
http://journals.sagepub.com/doi/abs/10.1177/1529100612453266

14
CHAPTER 2. A CASE FOR PUZZLE-BASED

LEARNING

ing. In contrast to other books, this book makes active
learning a first-class citizen. Solving code puzzles is an in-
herent active learning technique. You must figure out the
solution yourself for every single puzzle. The teacher is
as much in the background as possible—they only explain
the correct solution if you couldn’t work it out yourself.
But before telling you the correct solution, your knowl-
edge gap is already ripped wide open. Thus, you are
mentally ready to digest new material.

2.9 Make Code a First-class
Citizen

Each chess grandmaster has spent tens of thousands of
hours looking at a nearly infinite number of chess po-
sitions. Over time, they develop a powerful skill: the
intuition of the expert. When presented with a new posi-
tion, they can name a small number of strong candidate
moves within seconds. They operate on a higher level
than normal people. For normal people, the position of
a single chess piece is one chunk of information. Hence
they can only memorize the position of about six chess
pieces. But chess grandmasters view a whole position or a
sequence of moves as a single chunk of information. This
extensive training and experience has burned strong pat-
terns into their biological neural networks. Their brain
can hold much more information—a result of the good
learning environment they have put themselves in.

2.9. MAKE CODE A FIRST-CLASS CITIZEN 15

Chess exemplifies principles of good learning that are
valid in any field you want to master.

First, transform the object you want to learn into a stim-
ulus and then look at that it over and over. In chess,
study as many chess positions as you can. In math, read
mathematical papers containing theorems and proofs. In
coding, expose yourself to lots of code.

Second, seek feedback. Immediate feedback is better than
delayed feedback. However, delayed feedback is still bet-
ter than no feedback at all.

Third, take your time to learn and understand thoroughly.
Although it is possible to learn on-the-go, you will cut
corners. The person who prepares beforehand always has
an edge. In the world of coding, some people recommend
learning by coding practical projects and doing nothing
more. Chess grandmasters, sports stars, and intelligent
machines do not follow this advice. They learn by practic-
ing small parts again and again until they have mastered
them. Then they move on to more complex bits.

Puzzle-based learning is code-centric. You will find your-
self staring at the code for a long time until the insight
strikes. This creates new synapses in your brain that help
you understand, write, and read code fast. Placing code
in the center of the learning process means you will de-
velop an intuition as powerful as the experts. Maximize
the learning time you spend looking at code rather than
other things.

16
CHAPTER 2. A CASE FOR PUZZLE-BASED

LEARNING

2.10 What You See is All There is
My professor of theoretical computer science used to tell
us that if we stare long enough at a proof, the meaning
will transfer to our brains by osmosis. This fosters deep
thinking, a state of mind where learning is more produc-
tive. In my experience, his staring method works—but
only if the proof contains everything you need to know to
solve it. It must be self-contained.

A good code puzzle beyond the most basic level is self-
contained. You can solve it by staring at it until your
mind follows your eyes, i.e., your mind develops a solution
from rational thinking. There is no need to look things
up. If you are a great programmer, you will find the
solution quickly. If not, it will take more time but you
will still find the solution—it is just more challenging.

My gold standard was to design each puzzle such that
they are (mostly) self-contained. However, to ensure you
learn new concepts, puzzles must introduce new syntac-
tical language elements as well. Even if the syntax in a
puzzle challenges you, develop your own solutions based
on your imperfect knowledge. This probabilistic thinking
opens the knowledge gap and prepares your brain to re-
ceive and digest the explained solution. After all, your
goal is long-term retention of the material.

3

The Elo Rating for Python

Pick any sport you’ve always loved to play. How good
are you compared to others? The Elo rating answers this
question with surprising accuracy. It assigns a number to
each player that represents their skill in the sport. The
higher the Elo number, the better the player.

Table 3.1 shows the ranks for each Elo rating level. The
table is an opportunity for you to estimate your Python
skill level. In the following, I’ll describe how you can use
this book to test your Python skills.

3.1 How to Use This Book

This book contains 127 code puzzles and explanations to
test and train your Python skills. The puzzles start from
beginner-level and become gradually harder. At the end,
you will be an intermediate-level coder. The Elo ranges

17

18 CHAPTER 3. ELO

Elo rating Rank

2500 World Class
2400-2500 Grandmaster
2300-2400 International Master
2200-2300 Master
2100-2200 National Master
2000-2100 Master Candidate
1900-2000 Authority
1800-1900 Professional
1700-1800 Expert
1600-1700 Experienced Intermediate
1500-1600 Intermediate
1400-1500 Experienced Learner
1300-1400 Learner
1200-1300 Scholar
1100-1200 Autodidact
1000-1100 Beginner
0-1000 Basic Knowledge

Table 3.1: Elo ratings and skill levels.

3.2. HOW TO TEST AND TRAIN YOUR SKILLS? 19

from 987 to 1899 points (between beginner and profes-
sional level in the table). Follow-up books cover more
advanced levels. This book is perfect for you if you are
between the beginner and intermediate levels. Yet, even
experts will improve their speed of code understanding if
they follow the outlined strategy.

3.2 How to Test and Train Your
Skills?

I recommend solving at least one code puzzle every day,
e.g. as you drink your morning coffee. Then spend the
rest of your learning time on real projects that matter to
you. The puzzles guarantee that your skills will improve
over time and the real project brings you results.

To test your Python skills, do the following:

1. Track your Elo rating as you read the book and
solve the code puzzles. Write your current Elo rat-
ing in the book. Start with an initial rating of 1000
if you are a beginner, 1500 if you are an intermedi-
ate, and 2000 if you are an advanced Python pro-
grammer. Of course, if you already have an online
rating on finxter.com, start with that. Figure 3.2
shows five different examples of how your Elo will
change while working through the book. Two fac-
tors impact the final rating: how you select your

finxter.com

20 CHAPTER 3. ELO

0 20 40 60 80 100 120
Number of Solved Puzzles

0

500

1000

1500

2000

2500

Yo
ur

 E
lo

Grand masterIntermediate, 20% correct
Intermediate, 60% correct
Intermediate, 80% correct

Figure 3.1: This is an example of how your Elo rat-
ing could change while working through the 127 puzzles.
Your final Elo rating depends on where you started and
(to a larger extent) on the percentage of correctly solved
puzzles.

initial rating and how good you perform (the latter
being more important).

2. If your solution is correct, add the Elo points given
with the puzzle. Otherwise, subtract the points
from your current Elo number.

3.2. HOW TO TEST AND TRAIN YOUR SKILLS? 21

Solve the puzzles sequentially because they build upon
each other. Advanced readers can solve them in the se-
quence they wish—the Elo rating will work just as well.

Use the following training plan to develop a strong learn-
ing habit with puzzle-based learning.

1. Choose or create a daily trigger after which you’ll
solve code puzzles for 10 minutes. For example,
decide on your Coffee Break Python. Or solve code
puzzles as you brush your teeth or sit on the train
to work, university, or school.

2. Scan over the puzzle and ask yourself: what is the
unique idea of this puzzle?

3. Dive deeply into the code. Try to understand the
purpose of each symbol, even if it seems trivial at
first. Avoid being shallow and lazy. Instead, solve
each puzzle thoroughly and take your time. It may
seem counter intuitive at first but to learn faster,
you must take your time and allow yourself to dig
deep. There is no shortcut.

4. Stay objective when evaluating your solution—we
all tend to lie to ourselves.

5. Look up the solution and read the explanation with
care. Do you understand every aspect of the code?
Write any questions down that you have and look
up the answers later. Or send them to me (admin@

admin@finxter.com
admin@finxter.com
admin@finxter.com

22 CHAPTER 3. ELO

finxter.com). I will do everything I can to come
up with a good explanation.

6. If your solution was 100% correct—including whites-
paces, data types, and formatting of the output—
you get the Elo points for this puzzle. Otherwise,
your solution was wrong and you should subtract
Elo points. This rule is strict because code is either
right or wrong. If you miss some whitespace in the
’real world’, you may get an error. So make sure
you don’t forget it in training.

As you follow this simple training plan, your ability to
quickly understand source code will improve. In the long
term, this will have a huge impact on your career, in-
come, and work satisfaction. You do not have to invest
much time because the training plan requires only 10–20
minutes per day. But you must be persistent with your
effort. If you get off track, get right back on the next day.
When you run out of code puzzles, feel free to checkout
Finxter.com. It has more than 300 hand-crafted code
puzzles and I regularly publish new ones.

3.3 What Can This Book Do For
You?

Before we dive into puzzle-solving, let me address some
common misconceptions about this book.

admin@finxter.com
admin@finxter.com
admin@finxter.com
Finxter.com

3.3. WHAT CAN THIS BOOK DO FOR YOU? 23

The puzzles are too easy/too hard. This book is for you if
you already have some coding experience. Your Python
skill level ranges from beginner to intermediate. If you
are already an advanced coder, this book is for you too—
if you read it differently. Simply measure the time you
need to solve the puzzles and limit your solution time
to 10–20 seconds. This introduces an additional chal-
lenge for solving the puzzles: time pressure. Solving puz-
zles under time pressure sharpens your rapid code under-
standing skills even more. Eventually, you will feel that
your coding intuition has improved. If the puzzles are too
hard, great. Your knowledge gap must be open before you
can effectively absorb information. Just take your time
to thoroughly understand every bit of new information.
Study the cheat sheets in Chapter 4 properly.

Why is this book not conventionally structured by topic?
The puzzles are sorted by Elo and not structured by topic.
Puzzles with a small Elo rating are easier and more funda-
mental. Puzzles with a higher Elo rating are harder. To
solve them, you need to combine the fundamental lessons
from the easier puzzles. Ordering puzzles by difficulty
has many advantages one being that you can solve puz-
zles at your skill level. As you get better, the puzzles
get harder. Finally, ordering by complexity allows us to
combine many topics in a single puzzle. For example, a
Python one-liner may use two topics: list comprehension
and lambda functions.

Learning to code is best done via coding projects. I agree
but it’s only part of the truth. Yes, you can improve

24 CHAPTER 3. ELO

your skills by diving into practical projects. But, as in
every other discipline, your skills will quickly hit an upper
limit. These limits come from a lack of understanding of
the basic concepts. You cannot understand high level
knowledge without first understanding the basic building
blocks. Have you ever used machine learning techniques
in your work? Without theoretical foundations, you are
doomed. Theory pushes your ceiling upwards and gets
rid of the limitations that hold you back.

Abraham Lincoln said: “Give me six hours to chop down
a tree and I will spend the first four sharpening the ax.”
Do not fool yourself into the belief that just doing it is
the most effective road to reach any goal. You must con-
stantly sharpen the saw to be successful in any discipline.
Learning to code is best done via practical coding and
investing time into your personal growth. Millions of
computer scientists have an academic background. They
know that solving hundreds or thousands of toy examples
in their studies built a strong foundation.

How am I supposed to solve this puzzle if I do not know the
meaning of this specific Python language feature? Guess
it! Python is an intuitive language. Think about po-
tential meanings. Solve the puzzle for each of them—a
good exercise for your brain. The more you work on the
puzzle, even with imperfect knowledge, the better you
prepare your brain to absorb the puzzle’s explanation.

How does this book interplay with the puzzles at Finxter.
com ? My goal is to remove barriers to learning Python.

Finxter.com
Finxter.com

3.3. WHAT CAN THIS BOOK DO FOR YOU? 25

Thus, many puzzles are available for free online. This
book is based on some puzzles available at Finxter, but
it extends them with more detailed and structured infor-
mation. Nevertheless, if you don’t like reading books, feel
free to check out the website.

Anyway, why do some people thrive in their fields and
become valued experts while others stagnate? They read
books in their field. They increase their value to the
marketplace by feeding themselves valuable information.
Over time, they have a huge advantage over their peers.
They get opportunities to develop themselves even fur-
ther. They enjoy much higher job satisfaction and life
quality. Belonging to the top ten percent of your field
yields hundreds of thousands of dollars throughout your
career. However, there is a price to pay to unlock the
gates of this world: invest in books and personal devel-
opment. The more time and money you spend on books,
the more valuable you become to the marketplace!

The Elo-based rating is not accurate.

The Elo rating will get more accurate the more puzzles
you solve. Although only an estimate, your Elo rating
is an objective measure to compare your skills with the
skills of others. Several Finxter users have reported that
the rating is fair and surprisingly accurate. It provides
a good indication of where one stands in comparison to
other Python coders. If you feel the rating is not accurate,
ask yourself whether you are objective. If you think you
are, please let me know so that I can improve this book

26 CHAPTER 3. ELO

and the Finxter back-end.

4

A Quick Overview of the Python
Language

Before diving into the puzzles, work through the follow-
ing five cheat sheets. By reading htem, you’ll learn 80%
of Python’s language features in 20% of the time it takes
most people. They are definitely worth your time invest-
ment.

Read them thoroughly. If you try to understand every
single line of code, you will catapult your skills to the
next level. Most Python coders don’t invest enough time
into learning the basics such as the core language features,
data types, and language tricks. Be different and absorb
the examples in each cheat sheet. Open up your path to
become a master coder and join the top ten percent of
coders.

You can download all five cheat sheets as concise PDFs.
Post them to your wall until you know them by heart:

27

28
CHAPTER 4. A QUICK OVERVIEW OF THE

PYTHON LANGUAGE

https://blog.finxter.com/subscribe/.

4.1 Keywords
All programming languages reserve certain words to have
a special meaning. These words are called keywords.
With keywords, you can issue commands to the compiler
or interpreter. They let you tell the computer what to
do. Without keywords, the computer would not be able
to understand the seemingly random text in your code
file. Note that, as keywords are reserved words, you can-
not use them as variable names.

The most important Python keywords are:

False True and or
not break continue class
def if elif else
for while in is
None lambda return

The next cheat sheet introduces the most important key-
words in Python. In each row, you’ll find the keyword, a
short description, and an example of its usage.

https://blog.finxter.com/subscribe/

4.1. KEYWORDS 29

Keyword Description Code example
False​,
True

Data values from the data
type Boolean

False​ == (​1 ​> ​2​)
True​ == (​2 ​> ​1​)

and​, ​or​,
not

Logical operators:
(x ​and​ y)​ → both x and y
must be True
(x ​or​ y)​ → either x or y
must be True
(​not​ x)​ → x must be false

x, y = ​True​, ​False
(x ​or​ y) == ​True

True

(x ​and​ y) == ​False

True

(​not​ y) == ​True

True

break Ends loop prematurely while​(​True​):
 ​break​ ​# no infinite loop
print(​"hello world"​)

c​ontinue Finishes current loop
iteration

while​(​True​):
 ​continue
 print(​"43"​) ​# dead code

class

def

Defines a new class → a
real-world concept (object
oriented programming)

Defines a new function or
class method. For latter, first
parameter ​self ​points to
the class object. When
calling class method, first
parameter is implicit.

class​ ​Beer​:

 ​def​ ​__init__​(self)​:
 self.content = ​1.0

 ​def​ ​drink​(self)​:
 self.content = ​0.0

constructor creates class

becks = Beer()

empty beer bottle

becks.drink()

if​,
elif​,

Conditional program
execution: program starts

x = int(input(​"your val: "​))
if​ x > ​3​: print(​"Big"​)

30
CHAPTER 4. A QUICK OVERVIEW OF THE

PYTHON LANGUAGE

else with “if” branch, tries “elif”
branches, and finishes with
“else” branch (until one
evaluates to True).

elif​ x == ​3​: print(​"Medium"​)
else​: print(​"Small"​)

for​,
while

For loop

declaration

for​ i ​in​ [​0​,​1​,​2​]:
 print(i)

While loop - same

semantics

j = ​0
while​ j < ​3​:
 print(j)

 j = j + ​1

in Checks whether element is
in sequence

42​ ​in​ [​2​, ​39​, ​42​] ​# True

is Checks whether both
elements point to the same
object

y = x = 3

x​ ​is​ ​y​ ​# True
[​3​] ​is​ [​3​] ​# False

None Empty value constant def​ ​f​()​:
 x = ​2
f() ​is​ ​None​ ​# True

lambda Function with no name
(anonymous)

(lambda​ x: x + ​3)(3)​ ​#
returns 6

return Terminates function
execution and passes the
execution flow to the caller.
An optional value after the
return keyword specifies the
result.

def​ ​incrementor​(x)​:
 ​return​ x + ​1
incrementor(​4​) ​# returns 5

4.2. BASIC DATA TYPES 31

4.2 Basic Data Types
Many programmers call basic data types primitive data
types. They provide the primitives on which the higher-
level concepts are built. A house is built from bricks.
Likewise, a complex data type is built from basic data
types. I introduce basic data types in the next cheat
sheet and complex data types in Section 4.3.

Specifically, the next cheat sheet explains the three most
important (classes of) basic data types in Python. First,
the boolean data type encodes truth values. For example,
the expression 42 > 3 evaluates to True and 1 ∈ {2, 4, 6}
evaluates to False. Second, the numerical types integer,
float, and complex numbers encode integer values, float-
ing point values and complex values respectively. For
example, 41 is an integer value, 41.99 is a float value, and
41.999 + 0.1 ∗ i is a complex value (the first part being
the real number and the second the imaginary number).
Third, the string data type encodes textual data. An ex-
ample of a string value is the Shakespeare quote ‘Give
every man thy ear, but few thy voice’.

32
CHAPTER 4. A QUICK OVERVIEW OF THE

PYTHON LANGUAGE

Data Type + Description Example

Boolean
The Boolean data type is a
truth value, either ​True​ ​or
False​.

These are important Boolean
operators ordered by priority
(from highest to lowest):
not​ x​ →
“if x is False, then x, else y”

x ​and​ y​ →
“if x is False, then x, else y”

x ​or​ y ​ →
“if x is False, then y, else x”

x, y = ​True​, ​False
print(x ​and​ ​not​ y) ​# True
print(​not​ x ​and​ y ​or​ x) ​# True

All of those evaluate to False

if​ (​None​ ​or​ ​0​ ​or​ ​0.0​ ​or​ ​''​ ​or​ []
 ​or​ {} ​or​ set()):
 print(​"Dead code"​)

All of those evaluate to True

if​ (​1​ < ​2​ ​and​ ​3​ > ​2​ ​and​ ​2​ >=​2
 ​and​ ​1​ == ​1​ ​and​ ​1​ != ​0​):
 print(​"True"​)

Integer
An integer is a positive or
negative number without
floating point (e.g. ​3​).

Float
A float is a positive or
negative number with floating
point precision (e.g.
3.14159265359​).

The ‘​//​’ operator performs
integer division. The result is
an integer value that is
rounded towards the smaller
integer number (e.g. ​3​ // ​2
== ​1​).

Arithmetic Operations

x, y = ​3​, ​2
print(x + y) ​# = 5
print(x - y) ​# = 1
print(x * y) ​# = 6
print(x / y) ​# = 1.5
print(x // y) ​# = 1
print(x % y) ​# = 1s
print(-x) ​# = -3
print(abs(-x)) ​# = 3
print(int(​3.9​)) ​# = 3
print(float(​3​)) ​# = 3.0
print(x ** y) ​# = 9

4.2. BASIC DATA TYPES 33

String
Python Strings are sequences
of characters. They are
immutable which means that
you can not alter the
characters without creating a
new string.

The four main ways to create
strings are the following.

1. Single quotes
'Yes'

2. Double quotes
"Yes"

3. Triple quotes (multi-line)
"""Yes

We Can"""

4. String method
str(​5​) == ​'5'​ ​# True
5. Concatenation
"Ma"​ + ​"hatma"​ ​#
'Mahatma'

These are whitespace
characters in strings.

● Newline ​\n
● Space ​\s
● Tab ​\t

Indexing & Slicing

s = ​"The youngest pope was 11 years
old"

print(s[​0​]) ​# 'T'
print(s[​1​:​3​]) ​# 'he'
print(s[​-3​:​-1​]) ​# 'ol'
print(s[​-3​:]) ​# 'old'
x = s.split() ​# string array
print(x[​-3​] + ​" "​ + x[​-1​] + ​" "​ +
x[​2​] + ​"s"​) ​# '11 old popes'

Key String Methods

y = ​" This is lazy\t\n"
print(y.strip()) ​# 'This is lazy'
print(​"DrDre"​.lower()) ​# 'drdre'
print(​"stop"​.upper()) ​# 'STOP'
s = ​"smartphone"
print(s.startswith(​"smart"​)) ​# True
print(s.endswith(​"phone"​)) ​# True
print(​"another"​.find(​"other"​)) ​# 2
print(​"cheat"​.replace(​"ch"​, ​"m"​))
'meat'

print(​','​.join([​"F"​, ​"B"​, ​"I"​]))
'F,B,I'

print(len(​"Rumpelstiltskin"​)) ​# 15
print(​"ear"​ ​in​ ​"earth"​) ​# True

34
CHAPTER 4. A QUICK OVERVIEW OF THE

PYTHON LANGUAGE

4.3 Complex Data Types
In the previous section, you learned about basic data
types. These are the building blocks for complex data
types. Think of complex data types as containers—each
holds a multitude of (potentially different) data types.

Specifically, the complex data types in this cheat sheet are
lists, sets, and dictionaries. A list is an ordered sequence
of data values (that can be either basic or complex data
types). An example for such an ordered sequence is the
list of all US presidents:
['Washington',
'Adams',
'Jefferson', ...,
'Obama',
'Trump'].

In contrast, a set is an unordered sequence of data values:
{'Trump',
'Washington',
'Jefferson', ...,
'Obama'}.

Expressing the US presidents as a set loses all order-
ing information—it’s not a sequence anymore. But sets
do have an advantage over lists. Retrieving information
about particular data values in the set is much faster.
For instance, checking whether the string 'Obama' is in
the set of US presidents is blazingly fast even for large
sets. I provide the most important methods and ideas for
complex data types in the following cheat sheet.

4.3. COMPLEX DATA TYPES 35

Complex Data Type +
Description

Example

List
A container data type
that stores a sequence of
elements. Unlike strings,
lists are mutable:
modification possible.

l = [​1​, ​2​, ​2​]
print(len(l)) ​# 3

Adding elements
to a list with append,
insert, or list
concatenation. The
append operation is
fastest.

[​1​, ​2​, ​2​].append(​4​) ​# [1, 2, 2, 4]
[​1​, ​2​, ​4​].insert(​2​,​2​) ​# [1, 2, 2, 4]
[​1​, ​2​, ​2​] + [​4​] ​# [1, 2, 2, 4]

Removing elements
is slower (find it first).

[​1​, ​2​, ​2​, ​4​].remove(​1​) ​# [2, 2, 4]

Reversing
the order of elements.

[​1​, ​2​, ​3​].reverse() ​# [3, 2, 1]

Sorting a list
Slow for large lists: O(n
log n), n list elements.

[​2​, ​4​, ​2​].sort() ​# [2, 2, 4]

Indexing
Finds index of the first
occurence of an element
in the list. Is slow when
traversing the whole list.

[​2​, ​2​, ​4​].index(​2​)
index of element 4 is "0"

[​2​, ​2​, ​4​].index(​2​,​1​)
index of el. 2 after pos 1 is "1"

Stack
Python lists can be used
intuitively as stack via
the two list operations
append() and pop().

stack = [3]

stack.append(​42​) ​# [3, 42]
stack.pop() ​# 42 (stack: [3])
stack.pop() ​# 3 (stack: []​)

Set basket = {​'apple'​, ​'eggs'​,
 ​'banana'​, ​'orange'​}

36
CHAPTER 4. A QUICK OVERVIEW OF THE

PYTHON LANGUAGE

Unordered collection of
unique elements
(​at-most-once​).

same = set([​'apple'​, ​'eggs'​,
 ​'banana'​, ​'orange'​])
print(basket == same) ​# True

Dictionary
A useful data structure
for storing (key, value)
pairs.

calories = {​'apple'​ : ​52​,
 'banana'​ : ​89​,
 'choco'​ : ​546​}

Reading and writing
Read and write elements
by specifying the key
within the brackets. Use
the keys() and values()
functions to access all
keys and values of the
dictionary.

c = calories

print(c[​'apple'​] < c[​'choco'​]) ​# True
c[​'cappu'​] = ​74
print(c[​'banana'​] < c[​'cappu'​]) ​# False
print(​'apple'​ ​in​ c.keys()) ​# True
print(​52​ ​in​ c.values()) ​# True

Dictionary Looping
You can access the (key,
value) pairs of a
dictionary with the
items()​ method.

for​ k, v ​in​ calories.items():
print(k) ​if​ v > ​500​ ​else​ ​None

'chocolate'

Membership operator
Check with the keyword
in​ ​whether the set, list,
or dictionary contains an
element. Set
containment is faster
than list containment.

basket = {​'apple'​, ​'eggs'​,
 'banana'​, ​'orange'​}
print(​'eggs'​ ​in​ basket} ​# True
print(​'mushroom'​ ​in​ basket} ​# False

List and Set
Comprehension
List comprehension is
the concise Python way
to create lists. Use
brackets plus an
expression, followed by
a for clause. Close with

List comprehension

[(​'Hi '​ + x) ​for​ x ​in​ [​'Alice'​, ​'Bob'​,
'Pete'​]]
['Hi Alice', 'Hi Bob', 'Hi Pete']

[x * y ​for​ x ​in​ range(​3​) ​for​ y ​in
range(​3​) ​if​ x>y]
[0, 0, 2]

4.3. COMPLEX DATA TYPES 37

zero or more for or if
clauses.

Set comprehension is
similar to list
comprehension.

Set comprehension

squares = { x**​2​ ​for​ x ​in​ [​0​,​2​,​4​] ​if​ x
< ​4​ } ​# {0, 4}

38
CHAPTER 4. A QUICK OVERVIEW OF THE

PYTHON LANGUAGE

4.4 Classes
Object-oriented programming (OOP) is an influential, pow-
erful, and expressive programming paradigm. The pro-
grammer thinks in terms of classes and objects. A class
is a blueprint for an object. An object contains specific
data and provides the functionality specified in the class.

Say, you are programming a game to build, simulate, and
grow cities. In object-oriented programming, you would
represent all things (buildings, persons, or cars) as ob-
jects. For example, each building object stores data such
as name, size, and price tag. Additionally, each building
provides a defined functionality such as calculate_monthly_earnings().
This simplifies the reading and understanding of your
code for other programmers. Even more important, you
can now easily divide responsibilities between program-
mers. For example, you code the buildings and your col-
league codes the moving cars.

In short, object-oriented programming helps you to write
readable code. By learning it, your ability to collaborate
with others on complex problems improves. The next
cheat sheet introduces the most basic concepts.

4.4. CLASSES 39

40
CHAPTER 4. A QUICK OVERVIEW OF THE

PYTHON LANGUAGE

4.5. FUNCTIONS AND TRICKS 41

4.5 Functions and Tricks
Python is full of extra tricks and special functionality.
Learning these tricks makes you more efficient and pro-
ductive. But more importantly, these tricks make pro-
gramming easy and fun. In the next cheat sheet, I show
you the most important ones.

42
CHAPTER 4. A QUICK OVERVIEW OF THE

PYTHON LANGUAGE

ADVANCED FUNCTIONS

map(func, iter)
Executes the function on all elements of the iterable. Example:
list(map(​lambda​ x: x[​0​], [​'red'​, ​'green'​, ​'blue'​]))
Result: ['r', 'g', 'b']

map(func, i1, ..., ik)

Executes the function on all k elements of the k iterables. Example:
list(map(​lambda​ x, y: str(x) + ​' '​ + y + ​'s'​ , [​0​, ​2​, ​2​],
[​'apple'​, ​'orange'​, ​'banana'​]))
Result: ['0 apples', '2 oranges', '2 bananas']

string.join(iter)

Concatenates iterable elements separated by ​string​. Example:
' marries '​.join(list([​'Alice'​, ​'Bob'​]))
Result: 'Alice marries Bob'

filter(func, iterable)

Filters out elements in iterable for which function returns False (or 0). Example:
list(filter(​lambda​ x: ​True​ ​if​ x>​17​ ​else​ ​False​, [​1​, ​15​, ​17​,
18​])) ​# Result: [18]

string.strip()

Removes leading and trailing whitespaces of string. Example:
print(​"\n \t 42 \t "​.strip()) ​# Result: 42

sorted(iter)

Sorts iterable in ascending order. Example:
sorted([​8​, ​3​, ​2​, ​42​, ​5​]) ​# Result: [2, 3, 5, 8, 42]

sorted(iter, key=key)

Sorts according to the key function in ascending order. Example:
sorted([​8​, ​3​, ​2​, ​42​, ​5​], key=​lambda​ x: ​0​ ​if​ x==​42​ ​else​ x)
[42, 2, 3, 5, 8]

help(func)

Returns documentation of func. Example:

4.5. FUNCTIONS AND TRICKS 43

help(str.upper()) ​# Result: '... to uppercase.'

zip(i1, i2, ...)

Groups the i-th elements of iterators i1, i2, … together. Example:
list(zip([​'Alice'​, ​'Anna'​], [​'Bob'​, ​'Jon'​, ​'Frank'​]))
Result: [('Alice', 'Bob'), ('Anna', 'Jon')]

Unzip
Equal to: 1) unpack the zipped list, 2) zip the result. Example:
list(zip(*[(​'Alice'​, ​'Bob'​), (​'Anna'​, ​'Jon'​)]
Result: [('Alice', 'Anna'), ('Bob', 'Jon')]

enumerate(iter)

Assigns a counter value to each element of the iterable. Example:
list(enumerate([​'Alice'​, ​'Bob'​, ​'Jon'​]))
Result: [(0, 'Alice'), (1, 'Bob'), (2, 'Jon')]

TRICKS

python -m http.server <P>
Want to share files between your PC and your phone? Run this command in
your PC’s shell. <P> is any port number between 0–65535. Type < IP address
of PC>:<P> in the phone’s browser. Now, you can browse the files in the PC’s
directory.

Read comic
import​ antigravity
Opens the comic series xkcd in your web browser

Zen of Python
import​ this
'...Beautiful is better than ugly. Explicit is ...'

Swapping variables
This is a breeze in Python. No offense, Java! Example:
a, b = ​'Jane'​, ​'Alice'
a, b = b, a

Result: a = 'Alice', b = 'Jane'

44
CHAPTER 4. A QUICK OVERVIEW OF THE

PYTHON LANGUAGE

Unpacking arguments
Use a sequence as function arguments via asterisk operator *. Use a dictionary
(key, value) via double asterisk operator **. Example:
def​ ​f​(x, y, z)​:
 ​return​ x + y * z
f(*[​1​, ​3​, ​4​]) ​# 13
f(**{​'z'​ : ​4​, ​'x'​ : ​1​, ​'y'​ : ​3​}) ​# 13

Extended Unpacking
Use unpacking for multiple assignment feature in Python. Example:
a, *b = [​1​, ​2​, ​3​, ​4​, ​5​]
Result: a = 1, b = [2, 3, 4, 5]

Merge two dictionaries
Use unpacking to merge two dictionaries into a single one. Example:
x={​'Alice'​ : ​18​}
y={​'Bob'​ : ​27​, ​'Ann'​ : ​22​}
z = {**x,**y}

Result: z = {'Alice': 18, 'Bob': 27, 'Ann': 22}

5

Python Puzzles: From Basic Knowledge
to Scholar Level

Let’s dive into the beginner-level puzzles with Elo rat-
ing below 1300. The solution for each puzzle is on the
page after it, so you won’t be tempted to cheat and look
at the solution! Also, there’s some whitespace for notes
immediately after each one.

5.1 Printing values
Elo 987

a = 20
print(a)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

45

46 CHAPTER 5. PUZZLES: BASIC TO SCHOLAR

Variable a is initialized with the integer value 20. The
statement print(a) prints the value 20 to the screen.
Thus, the output is 20.

5.2 Basics of variables
Elo 1023

a = 20
b = 11
c = a - b

print(c)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

5.3. GETTING STARTED WITH STRINGS 47

There are three variables a, b, and c. The first two vari-
ables hold integer values 20 and 11. The variable c con-
tains the difference of a and b, i.e., 20 - 11 = 9. So, the
output of printing c to the screen is 9.

5.3 Getting started with strings
Elo 991

my_string = 'abc'
print(my_string)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

48 CHAPTER 5. PUZZLES: BASIC TO SCHOLAR

In this puzzle, we define a string 'abc' using single quote
notation ('...'). A string is a sequence of characters and
it represents text.

When we call print() on a string, the text itself appears
in the shell, i.e., abc.

5.4 Types of variables I
Elo 1189

a = 2
print(type(a))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

5.5. TYPES OF VARIABLES II 49

In this puzzle, we assign the value 2 to variable a and
print its data type.

Python automatically assigns a data type to every vari-
able. Because a is an integer, the type printed to the shell
is <class 'int'>.

5.5 Types of Variables II
Elo 1198

x = True
print(type(x))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

50 CHAPTER 5. PUZZLES: BASIC TO SCHOLAR

We set variable x to the Boolean value True. Hence, the
output is <class 'bool'>.

5.6 Minimum
Elo 1245

print(min([1, 2, 3, -4]))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

5.7. STRING CONCATENATION 51

We pass a list of integer values to the built-in min() func-
tion. This returns the smallest element of the list. Thus,
it’s the integer -4.

5.7 String Concatenation
Elo 1111

first_str = 'Hello'
second_str = " world!"

str_ = first_str + second_str

print(str_)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

52 CHAPTER 5. PUZZLES: BASIC TO SCHOLAR

This puzzle defines strings in two different ways: sin-
gle quotes and double quotes. The first string is set to
'Hello' and the second to '' world!''.

After defining the two strings, we join them together (con-
catenate them) and store the result in the variable str_.

Note that our variable has a trailing underscore. This
is often used if the variable name would shadow another
already defined name. The name str is already used for
Python’s built-in function str() and converts each ob-
ject to its textual representation. The trailing underscore
ensures we don’t overwrite this important built-in func-
tion.

Thus, the result is Hello world!.

5.8 Line Breaks I
Elo 1298

my_str = 'Hello\nworld\nhow\nare you?'
print(my_str)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

5.9. LINE BREAKS II 53

This puzzle defines a string with multiple '\n' charac-
ters. This is the so-called new line character which, not
surprisingly, adds a new line to the textual representation.
Hence, the result is:

Hello
world
how
are you?

5.9 Line Breaks II
Elo 1270

my_str = '''Hello
world
how are
you?'''

print(my_str)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

54 CHAPTER 5. PUZZLES: BASIC TO SCHOLAR

This puzzle does the same as the puzzle before but with
one difference: instead of encoding the new line using
'\n', we define a multi-line string using triple quote no-
tation.

The result is (again):

Hello
world
how
are you?

5.10 List Length
Elo 1281

my_list = [1, 2, 3, 4, 5]
print(len(my_list))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

5.11. COMPARISON OPERATORS I 55

This puzzle creates a list and calculates its length (len).
For a list, its length is the same as the number of elements
in it. There are five numbers, so the result is 5.

5.11 Comparison Operators I
Elo 1112

bool_var = 1 == 1
print(bool_var)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

56 CHAPTER 5. PUZZLES: BASIC TO SCHOLAR

We define the Boolean value bool_var as the result of
the expression 1==1. Since the values on either side of
the expression are the same, the result is the Boolean
value True. Hence, the result of the puzzle is: True.

5.12 Comparison Operators II
Elo 1194

bool_var = 1 > 2
print(bool_var)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

5.13. MULTIPLE INITIALIZATIONS 57

Similar to the previous puzzle, the variable bool_var
stores the result of a Boolean expression, this time 1 >
2. Obviously, the result is False because 1 is not larger
than 2.

5.13 Multiple Initializations
Elo 1297

a = b = c = 1
print(b)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

58 CHAPTER 5. PUZZLES: BASIC TO SCHOLAR

This puzzle uses a concise way of initializing multiple vari-
ables at the same time.

The concept of naming explains what is going on here: we
create a new integer object 1 in memory (on the far right
of the first line). Then, we create three names a, b and c
and point these names to the same integer object 1. Al-
though the name may be different, the value these names
refer to is the same. Roughly speaking, your colleagues,
friends and family may call you different names—but they
refer to you in all cases. This view on naming in Python
is very important to understand for many advanced lan-
guage features.

Thus, the result is 1.

6

Python Puzzles: From Scholar to
Intermediate Level

Next, you’ll have a harder time with puzzles ranging from
Elo 1300 to Elo 1600.

6.1 Maximum
Elo 1401

print(max([3+2, 5*2, 12/3]))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

59

60
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

In this puzzle, we pass a list of arithmetic expressions
to the max() function. After evaluating these expres-
sions, the max() function returns the greatest value from
the list. In our case, the list looks like: [5, 10, 4.0].
Hence, this code prints 10.

6.2 Memory addresses
Elo 1278

question = 'What is the answer?'
answer = 42

question = answer

print(id(question)==id(answer))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.3. SWAPPING VALUES 61

The variable question is a string with the value 'What
is the answer?'.

The variable answer is an integer with the value 42.

After setting question = answer, the variable question
now refers to variable answer which is the integer 42.

The id() function returns the memory address of a Python
object. No two objects in memory have the same id if they
refer to different things—that’s guaranteed.

In this case, both variables question and answer refer to
the same object in memory, so the result is True.

6.3 Swapping Values
Elo 1321

a = 5
b = 'my string'

tmp = a
a = b
b = tmp

print(a)
print(b)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

62
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

This puzzle defines an integer variable a and a string vari-
able b.

The goal of the puzzle is to swap the values of a and b.
To achieve this, we create a new variable tmp that takes
the same value as a. Next, we overwrite the value of a to
refer to b, i.e., the string value 'my string'.

Note that we have not lost the old reference of a because
we stored it in the temporary variable tmp.

Finally, we point b to the original value of a using the
temporarily saved value in the variable tmp.

Note that there’s a much shorter way of swapping two
variables in Python:

a, b = b, a

This achieves the same result but in a much more con-
cise way. Nevertheless, it does no harm to know this less
concise pattern because many coders from other program-
ming languages, such as Java, will use it.

As the two variables are swapped, the final value of a is
'my string' and b is 5.

6.4 The Boolean Operator AND
Elo 1432

t1 = True
t2 = True
f1 = False

6.4. THE BOOLEAN OPERATOR AND 63

f2 = False

and_result = t1 and t2
print(and_result)

and_result = t1 and f1
print(and_result)

and_result = f1 and f2
print(and_result)

and_result = f1 and t2
print(and_result)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

64
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

Here, we have four variables t1, t2, f1, f2. The vari-
ables t* are True and the variables f* are False.

The puzzle performs the Boolean and operation on all
combinations of these four variables.

The and operation is True if and only if both operands
are True. Hence, the result is:

True
False
False
False

6.5 The Boolean Operator OR

Elo 1417

t1 = True
t2 = True
f1 = False
f2 = False

or_result = t1 or t2
print(or_result)

or_result = t1 or f1
print(or_result)

or_result = f2 or t2
print(or_result)

6.5. THE BOOLEAN OPERATOR OR 65

or_result = f1 or f2
print(or_result)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

66
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

Like in the previous puzzle, the variables t1, t2, f1,
f2 are Boolean values True for t* and False for f*.

In contrast to the previous puzzle, this one performs log-
ical or operations on all combinations of these Boolean
values.

The logical or operation returns True if at least one of
the operands is True. This is the case for all but the last
instance. So the result is:

True
True
True
False

6.6 Boolean Operators
Elo 1476

t1 = 5 + 2 == 7
f1 = 2 - 1 > 3

r = t1 or False
r = r and True and f1

print(r)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.7. ARITHMETIC EXPRESSIONS 67

Variables t1 and f1 hold the results of two simple ex-
pressions. The first expression evaluates to True and the
second to False.

Be careful not to evaluate the Boolean statement first
(for example: 5 + (2 == 7)). Instead, the arithmetic
operation + takes precedence ((5 + 2) == 7). Thus, the
variable r is initialized with the value True.

Now, we reassign r. Let’s replace variable names with
their corresponding values so that the second to last line
becomes r = True and True and False.

A sequence of and statements is True if and only if every
element of the sequence is True. Since the last element
is False, the value of r, and the result of the puzzle, is
False.

6.7 Arithmetic Expressions

Elo 1500

r = 3 + 5 - 2
print(type(r))

this is a comment: / stands for division
/ returns a float value, e.g. 1.523, 5.0,...
r = 4 / 2
print(r)

* stands for multiplication

68
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

r = 3 * 7
print(type(r))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.8. INTEGER DIVISION AND MODULO 69

The puzzle has three major steps.

First, we print the type of the arithmetic expression 3 +
5 - 2 which is an integer i.e. int.

Second, we perform the operation “4 divided by 2”. The
result of any division is a float value because, even if you
divide two integers, the result cannot always be repre-
sented as an integer (for example 3 / 2 = 1.5). Consid-
ering the correct type here is the biggest challenge of the
code puzzle.

Third, we print the type of the resulting value after mul-
tiplying two integers 3 and 7. Multiplying two integers
always results in an integer. Hence, the return type of
integer multiplication is an int too.

6.8 Integer Division and Modulo
Elo 1519

days_count = 219
days_per_week = 7

weeks = days_count // days_per_week
print(weeks)

days = days_count % days_per_week
print(days)

What’s the output of this code snippet?

70
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

Correct: +10 Elo points / Wrong: -10 Elo points

6.9. BUILDING STRINGS 71

In the code puzzle, we convert a certain number of days
into weeks by performing integer division with the // op-
erator. The remainder is simply ignored. There are 31
such full weeks.

What is the remainder – how many days are left? The
expression 31 * 7 = 217 shows that there are two days
left in addition to the 31 full weeks. Hence, the second
output of the puzzle (resulting from modulo computation)
is 2. So, the overall output is:

31
2

6.9 Building Strings
Elo 1472

ha = 'ha'
ho = 'ho'

laughter = 3 * (ha + ho) + '!'

print(laughter)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

72
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

Here, we have two strings 'ha' and 'ho'.

An interesting Python feature is the ability to perform
arithmetic operations on strings. The meaning of the +
operator on strings is simply string concatenation. This
means that you glue together the two strings, resulting in
the temporary string haho.

Then, we multiply this string by 3. This repeatedly con-
catenates the temporary string three times. After con-
catenating ! to the end, the final result is hahohahohaho!

6.10 The len() Function
Elo 1332

my_str = 'cat'
length = len(my_str)

print(length)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.11. STRING INDICES 73

This puzzle returns the length of the string 'cat'. The
length is the number of characters in a string—which is
3 in this case.

6.11 String Indices
Elo 1571

my_str = 'superman'

print(my_str[0])
print(my_str[1])
print(my_str[len(my_str) - 1])

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

74
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

Here, we use indexing to access three characters at fixed
positions in the string 'superman'.

Note that the first position for any sequence data type
starts is 0, not 1:

s u p e r m a n
0 1 2 3 4 5 6 7

Thus, the final result is:

s
u
n

6.12 The upper() Function
Elo 1390

text = "Hi, how are you?"
shout = text.upper()

print(shout)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.13. THE LOWER() FUNCTION 75

This puzzle converts the string to an uppercase string
with each letter capitalized using the string method upper().
Hence, the output is: HI, HOW ARE YOU?

Note: Python objects have special functions you can just
call on them. We call these functions methods. The nota-
tion to call a method on an object is object.method().
In this puzzle, we called the upper()method on the string
text by writing text.upper(). As you become more fa-
miliar with Python, you will intuitively know which meth-
ods can be called on which objects.

6.13 The lower() Function
Elo 1367

text = 'I AM NOT SHOUTING!'
whisper = text.lower()

print(whisper)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

76
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

In this puzzle, the lower() method creates a new low-
ercase variant of a given string. So, the output is: i am
not shouting!

6.14 Somebody Is Shouting
Elo 1578

text = 'I AM NOT SHOUTING!'
text.lower()

print(text)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.15. COUNTING CHARACTERS 77

This puzzle seems to be similar to the previous puzzle.
But it has one important difference: the newly created
lowercase variant of the string is not stored anywhere.
This highlights the important fact that the upper() and
lower() methods (and other string methods) return a
new string rather than modifying an existing string. This
is because strings are immutable and so cannot be changed.

We will see other methods which modify the objects they
are called on later on in this book.

The output is: I AM NOT SHOUTING!

6.15 Counting Characters
Elo 1543

text = 'Have a nice day.'
space_count = text.count(' ')
total_count = len(text)

print(space_count == total_count)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

78
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

The puzzle uses the string class’s count method to count
the number of times the string 'Have a nice day.' con-
tains the empty space character ' ' (three times).

The length of the string is 16 and it is stored in the vari-
able total_count.

Hence, the variables space_count and total_count have
different values and the result of the puzzle is False

6.16 String Lengths
Elo 1542

text = 'Have a nice day.'
total_count = len(text)
spaces = total_count * ' '
space_count = len(spaces)

print(space_count == total_count)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.17. FINDING CHARACTERS IN STRINGS 79

Here, we have the same string in the variable text as in
the previous puzzle.

Both variables total_count and space_count have the
same integer values (16). The reason is that the latter is
built from the length of the former. It contains 16 times
' '.

Thus, the result is True.

6.17 Finding Characters in
Strings

Elo 1501

my_str = 'Donald Duck'
idx = my_str.find('a')

print(idx)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

80
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

This puzzle uses the string method find() to find the
index of the first occurrence of 'a'. In 'Donald Duck'
it is at index 3.

Hence, the result is 3.

6.18 Not Finding Characters in
Strings

Elo 1334

my_str = 'Donald Duck'
idx = my_str.find('y')

print(idx > 0)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.19. COUNTING LETTERS 81

In this puzzle, we try to find the character 'y' in the
string 'Donald Duck'.

The letter y does not appear in my_str, so find() returns
-1.

Hence, the expression idx > 0 returns False.

6.19 Counting Letters
Elo 1535

letters = 'cheap cars crash'
cs = letters.count('c')
rs = letters.count('r')
ys = letters.count('y')

print(cs - rs > ys)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

82
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

This puzzle is all about counting characters in the string
'cheap cars crash'.

The characters are defined as arguments of the count()
function.

There are three 'c' characters, two 'r' characters, and
zero 'y' characters in the string.

Thus, the result is 3 - 2 > 0 which is True.

6.20 Min() and Max() of a String
Elo 1470

my_str = 'python'
print(min(my_str) + max(my_str))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.21. REVERSED STRINGS 83

This puzzle delivers one important piece of information:
you can use the minimum and maximum function on
strings—even though they are not of a numerical type.

A string is a sequence of characters—and characters can
be sorted alphabetically (you may have heard the formal
name lexicographical sort). Naturally, the minimum of a
collection of characters is the character that comes first
in the alphabet. Similarly, the maximum is the character
that comes last in the alphabet.

So, the result is hy.

6.21 Reversed Strings
Elo 1398

my_str = 'python'
print(my_str[::-1])

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

84
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

This is the first puzzle that introduces slice notation on
a sequence type (in this case a string).

Generally, slicing selects a subsequence of elements from
a sequence.

The notation is [start:stop:step].

The subsequence starts at the element with index start
and goes until the element with index end.

Note that the start index is included and the end index
is excluded from the slice.

Finally, the step size defines the index difference be-
tween elements. For example, step = 2 selects every
other character. Setting step = -1 selects elements in
reverse order, i.e., from right to left.

The slice in this puzzle does not define the start or stop
indices. Thus it includes all characters (the default be-
haviour).

Thus, the result is the full original string in reverse: nohtyp.

6.22 String Equality

Elo 1410

my_str = 'python'
are_equal = my_str[:] == my_str

print(are_equal)

6.22. STRING EQUALITY 85

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

86
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

In this puzzle, we check whether two strings with the
same characters are equal using the equality operator ==.

We use slicing with default values to create a string with
the same characters as the original string 'my_str'.

Thus, both strings are equal and True is the output for
this puzzle.

6.23 Slicing I
Elo 1431

my_str = 'python'
my_substring = my_str[4:]

print(my_substring)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.24. SLICING II 87

In this puzzle, we use slicing with start index 4. So,
we start the subsequence at the fifth character because
indexing starts at 0.

Therefore, the result of this puzzle is on.

6.24 Slicing II
Elo 1598

my_str = 'python'
my_substr = my_str[::2]

print(my_substr)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

88
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

In this puzzle, we use slicing with default values to create
a string with the same characters as the original string.But
we access every second element by setting (step = 2).

Thus, the result is pto.

6.25 Slicing III
Elo 1591

my_str = 'AaBbCcDdEeFf'
big = my_str[::2]
small = my_str[1::2]

print(big + '-' + small)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.26. SLICING IV 89

In this puzzle, we first define a mini alphabet.

Then we slice every second character on the second and
third lines.

In the first case, (big), we start with the first sequence
element. In the second case ,(small), we start with the
second sequence element.

Thus, the first slice returns all capitalized letters and the
second slice returns all lowercase letters:

ABCDEF-abcdef

6.26 Slicing IV
Elo 1588

chars_1 = 'Rzotbo'
chars_2 = 'tigno'

mystery = chars_1[::2] + chars_2[1::2]

print(mystery)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

90
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

This puzzle concatenates the results of two slice opera-
tions on two strings and stores it in the variable mystery.

The first slice operation takes every second value and re-
turns 'Rob'.

The second takes every second value starting from the
second element and returns 'in'.

When concatenated together, the final result is Robin.

6.27 Slicing V
Elo 1395

my_str = 'Batman'
other_str = my_str[0:len(my_str)]

print(other_str)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.28. MEMORY ADDRESSES AND SLICING 91

The main challenge of this puzzle is determining the result
of the slicing operation in the second line.

We start at the first sequence element and slice until we
reach the index len(my_str) (= 6). Note that slicing
never includes the end index, so the last index included
is 5.

Thus, it consists of the original characters Batman.

6.28 Memory Addresses and
Slicing

Elo 1501

my_str = 'Aquaman'
id_1 = id(my_str)

my_str = my_str[4:]
id_2 = id(my_str)

print(id_1 == id_2)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

92
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

This puzzle takes the id of two strings and compares
them.

The function id() returns a unique identifier (integer
value) for all objects in memory.

The real question is whether my_str referred to two dif-
ferent memory locations?

Let me emphasize that the slice operation creates a new
string and does not modify an existing string. This is
because strings are immutable—they cannot be changed.
Each time you perform a slice operation or concatenate
two strings, you create a new object in memory.

Thus, this puzzle’s output is False.

6.29 Accessing List Items I
Elo 1567

my_list = [
'apple',
'banana',
'orange',

]

item = my_list[len(my_list)-2]
print(item)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.30. ACCESSING LIST ITEMS II 93

In this puzzle, we create a list of three strings.

Then, we use indexing to select elements in the list. The
index is len(my_list) - 2 = 3 - 2 = 1.

So, the item to be printed is banana.

6.30 Accessing List Items II
Elo 1340

my_list = [
'apple',
'orange',
'banana',

]

item = my_list[1]

print(item)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

94
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

With the help of Python’s simple indexing scheme, we
return the second element (index equal to one).

Thus, the result is orange.

6.31 List as Stack
Elo 1499

my_list = [
'apple',
'banana',
'orange',

]

item = my_list.pop()

print(item)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.32. MORE STRING OPERATIONS 95

Similar to the last puzzle, the list contains three string
elements.

We use the pop()method to remove the last element from
the list ('orange'). This is returned and assigned to the
variable item.

Note that the pop() method can be used to easily imple-
ment a stack data structure in Python.

This puzzle’s output is orange.

6.32 More String Operations
Elo 1461

phone = 'smartphone'
x = phone.startswith('smart')
y = phone.endswith('phone')

print(x and y)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

96
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

This puzzle checks two things: does the string 'smartphone'

1. start with the prefix 'smart', and

2. end with the suffix 'phone'?

This is the case, so the result is True.

6.33 Checking for Substrings
Elo 1133

phone = 'smartphone'
x = 'xyz' in phone

print(not x)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.34. STRIPPING STRING BOUNDARIES 97

Now, we use the same string as before to check whether
a certain substring exists in this string.

Note that a string is a sequence so you can check whether
a subsequence exists within it.

The string 'smartphone' does not contain the subse-
quence 'xyz'.

Hence, the result is True, i.e., not False.

6.34 Stripping String Boundaries
Elo 1455

sentence = ' Python is cool! '
sentence = sentence.strip()
x = sentence.endswith(' ')

print(x)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

98
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

Let’s consider the string sentence in the puzzle. It has
leading and trailing whitespaces.

The strip() method is a very useful tool for text pro-
cessing tasks: it removes any leading and trailing whites-
paces.

So, the result is False.

6.35 Strings: Stripping vs.
Replacement

Elo 1555

sentence = ' Python is cool! '
str_1 = sentence.strip()
str_2 = sentence.replace(' ', '')

print(str_1 == str_2)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.36. GLUING STRINGS TOGETHER 99

This puzzle is similar to the last one but with one differ-
ence: the second string does not strip leading and trailing
whitespaces. Instead, it replaces all occurrences of the
whitespace character ' ' with the empty string. This is
the same as removing all whitespace in the sentence.

While str_1 still has some whitespaces left (in between
each word), str_2 does not.

So, the result of the final print statement is False.

6.36 Gluing Strings Together
Elo 1419

shopping_list = [
'bread',
'milk',
'cheese',

]

string = ','.join(shopping_list)

print(string)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

100
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

The shopping list contains three items: bread, milk, and
cheese.

The join() method is a well-known string method. It
combines a collection elements using the separator string
on which the method was called. The separator is used
to glue together the individual list elements.

So, it returns the final string break,milk,cheese.

Note there is no space between each item because the
separator string did not contain a space.

6.37 The Copy Operation
Elo 1489

my_list = [
'Bob',
'Alice',
'Donald',
'Goofy',

]

your_list = my_list.copy()

print(id(your_list) == id(my_list))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.38. GROWING LIST CONTENTS I 101

This puzzle first copies the given list. Then it checks
whether the copy and the original list refer to the same
element in memory. This is not the case: the new list
represents a different object.

So, the result of comparing the two lists is False.

6.38 Growing List Contents I
Elo 1480

my_list = []

my_list.append('Tomato')
my_list = my_list + ['Pizza']

print(my_list)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

102
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

First, we create an empty list and append the string
'Tomato'.

Second, we concatenate two lists together with the + op-
erator.

Thus, the result is a new list ['Tomato', 'Pizza'].

6.39 Growing List Contents II
Elo 1427

odd = [1, 3, 5, 7]
even = [0, 2, 4, 6]

odd.extend(even)

print(len(odd))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.39. GROWING LIST CONTENTS II 103

Surprisingly, many students don’t know the extend()
method despite being perfectly aware of the append()
method.

If you want to add a single element to a list, the append()
method is all you need.

What if you want to add multiple elements? Beginner
coders often use one of the following options:

1. they create a for loop and append a single element
multiple times, or

2. they use the list concatenation operator '+' e.g.
[3, 2] + [1, 2] => [3, 2, 1, 2])

The problem with the former is that it’s inefficient to
modify a list n times to append n elements.

The problem with the latter is that it creates a com-
pletely new list which is both time and space inefficient—
especially for large lists.

The solution is simple: use the extend() method. It
appends multiple elements to a list in a single operation.

Although it is semantically doing the same thing as call-
ing append() multiple times, extend() is much more ef-
ficient. This is because it’s implemented in low-level C
code and is highly optimized towards this specific objec-
tive. Always use extend() if you want to append multiple
elements to a list!

104
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

The result of this puzzle is the list [1, 3, 5, 7, 0, 2,
4, 6] so the length is 8.

6.40 List Operations I
Elo 1381

my_list = []
my_list.append(1)
my_list.append(2)
my_list.pop()

print(len(my_list))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.41. LIST OPERATIONS II 105

First, we create an empty list and add some values (1 and
2) to it.

Second, we remove the last element (2) from the list. So,
the list has only one element left.

Thus, the result is 1.

6.41 List Operations II
Elo 1441

my_list = [4, 5, 6]
index = 0
my_list.insert(index, 3)

print(my_list[1])

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

106
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

This puzzle inserts the element 3 at position 0 in the list.

The resulting list looks like this: [3, 4, 5, 6].

The second element is printed to the shell which is 4.

6.42 List Operations III
Elo 1485

my_list = [1, 2, 3, 4]
value = 2
index = 2
my_list.remove(value)

print(my_list[index])

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.43. LIST OPERATIONS IV 107

In this puzzle, we remove the first occurrence of the ele-
ment '2' from my_list. The result is [1, 3, 4].

We now print the third element and the result is 4.

6.43 List Operations IV
Elo 1469

my_list = [1, 2, 3, 3, 2, 3]
index = my_list.index(3)

print(index)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

The index(x) method returns the index of the first oc-
currence of x in the sequence on which it is called.

In this case, we are looking for the value x = 3. There are
three such occurrences but only the first one is returned
to the function: index 2.

Therefore, the result is 2.

6.44 List Operations V
Elo 1399

my_list = [1, 2, 3, 0, 2, 3]

108
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

count = my_list.count(3)

print(count)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

After creating the list, we call the count(x) method to
count the number of occurrences of x = 3 in the list.

There are two such occurrences, so the result is 2.

6.45 List Operations VI
Elo 1311

my_list = ['car', 'bike', 'boat']
my_list.clear()

print(len(my_list))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.46. LIST OPERATIONS VII 109

Here, we create a new list with three elements and we
clear() the list immediately after. This removes all ele-
ments from the list so that the list is empty.

The resulting length is, therefore, 0.

6.46 List Operations VII
Elo 1501

my_list = [4, 7, 3, 9, 1]
my_list.sort()

print(my_list)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

110
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

The puzzle is simple but introduces a profound piece of
knowledge for your Python education: sorting lists. Just
call the sort() method on any list and it returns the list
in ascending order.

Some Finxters are trapped by this puzzle because they
think the sort() method returns a new list with sorted
values. This is not the case, the original list is modified.
This is because lists are mutable objects, i.e., they can be
modified.

Thus, the result is [1, 3, 4, 7, 9].

6.47 List Operations VIII
Elo 1333

my_list = [10, 9, 8, 7]
my_list.reverse()

print(my_list)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.48. LIST OPERATIONS IX 111

This puzzle reverses the order of the list elements.

As with sorting, the list itself is changed (Python does
not create a new list of reversed elements).

Thus, the output is [7, 8, 9, 10].

6.48 List Operations IX
Elo 1498

my_list = [False, False, True]
x = any(my_list)

print(x)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

112
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

This puzzle tests your intuitive understanding of the func-
tion any().

Maybe you’ve never used it in your code projects – but
you can figure out what it does when applied to a Boolean
collection, right?

It checks whether “any” of the elements are True.

In this case, the third list element is True, so the result
is True.

6.49 List Operations X
Elo 1532

bool_val = all([
1 == 1,
7 // 2 == 2 + 1,
2 == 6 % 4,

])

print(bool_val)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.50. LISTS AND THE RANGE FUNCTION I 113

This puzzle goes one step further. You need to figure out
multiple logical expressions before testing whether all()
of them are True.

The first expression 1==1 is obviously True. The sec-
ond expression is also True because 7 // 2 = 3 = 2 +
1. Finally, the third expression is True as six modulo four
is 2.

Thus, the all() function returns True.

6.50 Lists and the Range
Function I

Elo 1300

len_of_list = len(list(range(10)))
print(len_of_list)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

114
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

In this puzzle, we first create a new list with sequence
values from 0 to 9 (inclusive).

It is very common for beginners to miss this. For the vast
majority of Python functions, the stop value is excluded
– it’s not part of the returned sequence. This is also
True for advanced Python libraries for data science and
machine learning like NumPy and TensorFlow. So learn
it now and learn it well!

As there are ten elements in the list, the result is the
integer value 10.

6.51 Lists and the Range
Function II

Elo 1440

l = list(range(5, 15, 5))
print(l)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.52. LISTS AND THE RANGE FUNCTION III 115

Similar to the last puzzle, this one tests your understand-
ing of the range function.

The function range(start, stop, step) returns a se-
quence of values starting at index start (inclusive), end-
ing at index stop (exclusive), and including every step-th
value.

So, the final result is the list [5, 10].

6.52 Lists and the Range
Function III

Elo 1456

l = list(range(10, 1, -1))
print(l)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

116
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

This time, the range function has a negative step size.
This means that the resulting sequence has descending
values.

We start at position 10(inclusive) and end at position 1
(exclusive).

Thus, the result is [10, 9, 8, 7, 6, 5, 4, 3, 2].

6.53 Python’s Multiple
Assignment I

Elo 1302

a = 'world!'
b = 'hello '

b, a = a, b

print(a + b)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.54. SLICE ASSIGNMENTS 117

The puzzle creates two string variables and swaps them
using concise multiple assignment notation:

b, a = a, b

The Python interpreter performs two steps:

1. evaluate the right-hand side of the equation, then

2. assign the results to the variables on the left-hand
side.

In the example, we swap the values of a and b.

Thus, the result is the concatenated string hello world!

6.54 Slice Assignments
Elo 1507

my_list = [1, 1, 1, 1]
my_list[1::2] = [2, 3]

print(my_list)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

118
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

The puzzle trains your understanding of an interesting
Python feature: slice assignments to replace subsequences.

First, we create the list 'my_list' with four integer val-
ues.

Second, we select the elements to be replaced using slice
notation [start:stop:step] on the left-hand side of the
equation.

Starting with the second list element (index 1), we take
every other element (step size 2). This means we will
replace the second and fourth elements.

Third, we define the elements that to replace the selected
elements (2 and 3).

The result of the puzzle is, therefore, [1, 2, 1, 3].

6.55 Strings and Lists II
Elo 1467

my_list = ['1, 2, 3', '4, 5']
print(len(my_list))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.56. STRING COMPARISONS 119

The challenge in this puzzle is to read code thoroughly.

Although it may look like there are five elements in the
list, there are only two. The first element is the string
'1, 2, 3' and the second element is the string '4, 5'.

Therefore, the length of the list is 2.

6.56 String Comparisons
Elo 1419

word = 'radar'
p = word == word[::-1]

print(p)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

120
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

A palindrome is a word that reads the same forward and
backward. In this puzzle, we check to see if 'radar' is a
palindrome.

First, we create a string 'radar' and store the Boolean
result of (word == word[::-1]).

The right-hand side of the equation reverses the charac-
ters in the string.

As it turns out, 'radar' reads the same forward and
backwards and so it’s a palindrome.

Thus, the result is True.

6.57 From Booleans to Strings
Elo 1549

value_0 = int(True)
value_1 = int(False)
string = str(value_0) + str(value_1)

print(string)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.58. BOOLEAN TRICKERY I 121

This workout tests your understanding of three Python
data types: Boolean, integer and string.

Boolean values are internally represented as integers: 0
being False and 1 being True. When converting a Boolean
to an integer, use this mapping.

Before we add them together, we convert them to strings.

Thus, the + operator performs concatenation rather than
integer addition.

The result is 10.

Note that when an operator performs different actions for
different data types, we say this operator is overloaded.

6.58 Boolean Trickery I
Elo 1309

print(1000 * False)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

122
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

As you already know, the value False is represented as
an integer 0 in Python.

If you multiply 0 with anything, you get 0.

So, the result is 0.

6.59 Boolean Trickery II
Elo 1324

print((3 == 4) == 0)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.60. BOOLEAN TRICKERY III 123

When using operators, binary or otherwise, the order of
operation matters.

You can enforce a certain order of operations using bracket
notation.

In the puzzle, we first evaluate the expression (3 == 4)
which is False.

Next, we compare False with 0.

As Python represents Boolean values with integers (False
by 0) the puzzle’s result is True.

6.60 Boolean Trickery III
Elo 1388

print(bool([]))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

124
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

Python allows you to convert any object to a Boolean
value.

This is useful for concise if and while loop conditions –
you’ll see this a lot in practice.

You already know that an integer value 0 is converted to
the Boolean value of False. But which other objects are
converted to False?

By default, every object is converted to True with a few
exceptions:

• empty sequences,

• 0,

• 0.0,

• empty sets or dictionaries {},

• certain empty objects e.g. empty lists

Thus, the result is False.

6.61 Looping over Ranges

Elo 1422

n = 0
for i in range(0, 6, 3):

n += i

6.61. LOOPING OVER RANGES 125

print(n)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

126
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

The loop variable i takes on two values: i = 0 and i =
3.

It does not take on i = 6 because the stop value is always
excluded in range sequences range(0, 6, 3).

Therefore, the sum variable n stores the integer 0 + 3 =
3 which is the result of the puzzle.

6.62 Reversed Loops
Elo 1453

str_ = ''

for c in reversed('nohtyp'):
str_ += c

print(str_)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.63. BOOLEAN TRICKERY IV 127

The built-in function reversed(x) creates an iterator -
an object you can loop over. It visits the elements in the
sequence x in reverse order.

In our case, x = 'nohtyp'.

The result is this sequence of characters reversed i.e. python.

6.63 Boolean Trickery IV
Elo 1347

s = sum([
True,
False,
True,
True,

])

print(s)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

128
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

Have you studied the previous explanations thoroughly?
Then you should have had no problem with this puzzle!

The Boolean value True is represented by 1 and the Boolean
value False is represented by 0.

So, when summing over the list of Boolean values, the
result is 1 + 0 + 1 + 1 = 3

6.64 Lists and Memory Addresses
Elo 1391

my_list = []
id_1 = id(my_list)

my_list = my_list + [1]
id_2 = id(my_list)

print(id_1 == id_2)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.65. LIST OBJECTS 129

In the first line we create a new list object and assign it
to the variable my_list.

Then we use the built-in function id(x) to get the mem-
ory address of it.

When we concatenate my_list with [1] and assign it to
my_list, a new list object is created. So, the reference
stored in my_list changes.

This is why id_1 is different from id_2 and the compar-
ison returns False.

6.65 List Objects
Elo 1399

my_list = []
id_1 = id(my_list)

my_list.append(1)
id_2 = id(my_list)

print(id_1 == id_2)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

130
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

The code in this puzzle is similar to the code in the
previous one with an important difference: instead of
concatenating the lists, we append a new value using
list.append(x).

This does not create a new object because we modify the
old list rather than creating a new one from scratch.

Therefore, we have the same memory address both before
and after appending the value.

Thus, the result is True.

6.66 Boolean Tricks
Elo 1486

b = all([
bool('0'),
bool('?'),
bool('-'),
bool('e'),

])

print(b)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.67. COMPLEX NUMBERS 131

Python lets you convert a string to a Boolean.

The rule is simple: any string longer than zero characters
is True.

Only the empty string '' is False.

In fact, you can specify a Boolean value for any object
in Python by defining its __bool__(self) method in a
custom class definition.

Python’s built-in all(x) function checks if all Boolean
values in the container are True.

Since there is no empty string in the list, the result is
True.

6.67 Complex Numbers
Elo 1575

a = complex(2, 4)
b = complex(1, -3)

print(a + b)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

132
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

From time to time, you’ll need to use complex numbers
for graphical applications, data analysis or simulations.

Simply use the built-in Complex class to represent com-
plex numbers. The constructor Complex accepts two val-
ues. The first is the real part and the second is the (op-
tional) imaginary part. For example, complex(1) yields
(1 + 0j).

The sum of two complex numbers is the sum of their real
values plus the sum of their imaginary values.

In this puzzle, the real part is 2 + 1 = 3 and the imaginary-
part is 4 + (-3) = 1.

The result, therefore, is (3+1j).

6.68 Tuples
Elo 1462

x = 'a', 'b', 'c'
y = 3,

print(type(x) == type(y))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.69. MULTIPLE ASSIGNMENTS 133

The objects defined in this puzzle are tuples. It’s a bit
tricky because the puzzle uses tuple notation without
parentheses.

You can define a tuple in two ways:

1. t1 = (1, 2), or

2. t2 = 1, 2.

Both are equivalent.

In the puzzle, the values of x and y are tuples.

So the result of the type comparison is True.

6.69 Multiple Assignments
Elo 1478

x, y, z = 'cat'

print(y)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

134
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

The puzzle demonstrates a very important feature in Python
that you’ll see a lot in the real world.

We assign the string 'cat' to three different variables in
one line:

• the value of x is 'c',

• the value of y is 'a',

• the value of z is 't'.

So printing y returns a.

6.70 Boolean Integer Conversion
Elo 1543

my_bools = []

for n in range(-1, -10, -1):
my_bools.append(bool(n))

result = all(my_bools)

print(result)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.71. THE ANY() FUNCTION 135

Python automatically converts integers to Booleans if
Boolean values are expected.

The rule is simple: 0 is False and all other integers are
True.

Converting Boolean values back to integers is also simple:
True is the integer 1 and False is the integer value 0.

In the puzzle, we iterate over the values -1, -2, -3,
... -9—using the range() function with negative step
size—and convert them to Boolean values.

As none of the values are 0, Python converts them all to
True.

Using the built-in all(x) function, we check if all values
in the list are True. This is the case, so the result is True.

6.71 The any() Function

Elo 1593

b = any([
bool(None),
bool(0),
bool(dict()),

])

print(b)

What’s the output of this code snippet?

136
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

Correct: +10 Elo points / Wrong: -10 Elo points

6.72. THE SUM() FUNCTION 137

Python’s built-in function any(container) checks if container
contains any value that evaluates to True.

In the previous puzzle, you learned that the 0 is converted
to False. Similarly, None also evaluates to False.

To convert a container (list, dictionary, set,...) to a Boolean,
follow this rule:

A container c is True if and only if:

1. it exists, and

2. len(c) > 0

Thus, the Boolean value of an empty dictionary is False.

Therefore, the list contains three False values.

So, any(...) returns False.

6.72 The sum() Function

Elo 1482

my_list = [1, 1, 0]
s = 3

if my_list:
s = sum(my_list)

print(s)

138
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.73. ACCESSING COMPLEX NUMBERS 139

The puzzle tests your understanding of two concepts you’ve
already seen:

• Boolean values of containers and

• Summing over Boolean values.

In Python, it’s common to use Boolean auto conversion
statements such as if my_list:.

In plain English, read it as: “If my_list is not equal to
None and has at least one element, do the following.”

Since my_list contains three elements, the code inside
the branch is executed and s is set to the sum of all
elements in the list: 1 + 1 + 0 = 2.

6.73 Accessing Complex Numbers
Elo 1571

a = complex(2, 5)
b = complex(a.imag, a.real)

print(b)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

140
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

You can access the real-part of a complex number with its
.real attribute and the imaginary part with the .imag
attribute.

We use those two values to create a new complex number
that has swapped the real and imaginary parts of a.

So, b is (5+2j).

Note: attributes and methods look similar when applied
to objects. Remember that you do not place () after
attributes but you do for methods.

6.74 Tuple Confusion
Elo 1479

p1 = (1, -1)
p2 = (2, 5)
p3 = (p1[0] + p2[0], p1[1] + p2[1])

print(p3)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.75. UNDERSTANDING WHILE ... ELSE (1/3) 141

This puzzle is all about tuples.

The values of a tuple can be retrieved using brackets and
an index value.

Like all other Python indexing, we use index 0 to access
the first element, index 1 to access the second element
and so on.

In this puzzle, we create a new tuple by adding the values
of p1 and p2.

So, the value of p3 is: (1 + 2, -1 + 5) = (3, 4).

6.75 Understanding While ... Else
(1/3)

Elo 1561

index = 5
s = 'g'

while index > 3:
index -= 1
s += 'o'

else:
s += 'd'

print(s)

What’s the output of this code snippet?

142
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

Correct: +10 Elo points / Wrong: -10 Elo points

6.76. UNDERSTANDING WHILE ... ELSE (2/3) 143

Python has a special loop statement called the while-else
loop.

The body of the while part is repeated until the condition
is not met anymore.

The else statement only executes if the while loop fin-
ishes because its condition has become False.

If Python exits the while loop prematurely via a break
statement, the else part is not executed.

In this puzzle, the while loop is executed twice with index
= 5 and index = 4). This appends 'oo' to the initial
string 'g' in the variable s.

In the next step, the condition of the while loop becomes
False and the else part executes.

In the else branch, Python adds 'd' to the variable s.

So, the final result is good.

6.76 Understanding While ... Else
(2/3)

Elo 1578

index = 5
string = 'g'

while index > 3:
index -= 1

144
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

string += 'o'
break

else:
string += 'd'

print(string)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.77. UNDERSTANDING WHILE ... ELSE (3/3) 145

This puzzle is similar to the previous puzzle.

Initially, string only contains the character 'g'.

Then, the while loop is executed and adds the character
'o' to the variable string.

However, the loop ends prematurely because of the break
statement.

Thus, the else branch is not executed and the result is
go.

6.77 Understanding While ... Else
(3/3)

Elo 1571

index = 5
string = 'g'

while index > 3:
index -= 1
if index == 3:

continue
string += 'o'

else:
string += 'd'

print(string)

146
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.78. BASIC ARITHMETIC 147

Again, the puzzle shows a similar code snippet as in the
previous two puzzles. The only difference is that when
index == 3, the execution goes back to the beginning of
the while-loop because of the continue statement.

The loop body executes twice for index = 5 and index
= 4 but only the first round adds the character 'o' to
string.

In the second round, the index is set to 3. Thus, Python
enters the if branch that contains the continue state-
ment.

After this, the while condition is evaluated again. Since
the value of index is 3, the while condition evaluates to
False.

So, Python executes the else branch. The last step adds
the character 'd' to string and the final output is god.

6.78 Basic Arithmetic
Elo 1419

def magic(x, y):
return x ** y + 1

print(magic(2, 3))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

148
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

We define a function with two arguments: x and y.

The function computes x to the power of y - x ** y -
and adds one.

We call the function with x = 2 and y = 3 and get (2 *
2 * 2) + 1 = 9

6.79 Dictionary

Elo 1531

dict_ = {
1: 'one',
2: 'two',
3: 'three',

}

def to_str(number):
if number in dict_:

return dict_[number]
else:

return '?'

s1 = to_str(2)
s2 = to_str(7)

print(s1 + s2)

What’s the output of this code snippet?

6.79. DICTIONARY 149

Correct: +10 Elo points / Wrong: -10 Elo points

150
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

The puzzle shows how to create and access the dictionary
data structure in Python.

First, we create the dictionary dict_.

Then we create the function to_str. It takes a single
argument number and checks if it is present among the
keys of dict_. If it is present, it returns its corresponding
value. Otherwise, it returns the string '?'.

After defining the function, we use it to initialize two
variables s1 and s2.

For s1, the value returned by to_str(2) is 'two' because
2 is one of the keys of dict_.

For s2, the value returned by to_str(7) is '?' because
7 is not a key of dict_.

By printing the concatenation of the two strings, we get
'two?'.

6.80 Dictionary of Dictionaries

Elo 1501

sales = {
100: {'item': 'apple', 'price': .95},
101: {'item': 'banana', 'price': .55},
102: {'item': 'orange', 'price': .75},

}

value = sales[102].get('price')

6.80. DICTIONARY OF DICTIONARIES 151

print(value)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

152
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

The variable sales is initialized as a dictionary of dic-
tionaries. Each value of sales represents the sold item’s
name and price.

First, we access the full dictionary of item 102 using
bracket notation sales[102].

To get the price, we call the get() method and pass the
string 'price'.

Thus the value stored in value is 0.75.

Note that calling the get() method is an alternative way
to access a value. Writing sales[102].get('price') is
the same as writing sales[102]['price'].

An advantage of using get() is that it returns None if the
key is not present in the dictionary.

In contrast, if you use square brackets [] and try to ac-
cess key-value pairs that do not exist, Python raises a
KeyError which you must handle appropriately to avoid
a program crash.

6.81 Reverse Dictionary Index

Elo 1533

roman = {
1: 'I', 2: 'II', 3: 'III', 4: 'IV', 5: 'V',
6: 'VI', 7: 'VII', 8: 'VIII', 9: 'IX', 10: 'X'

}

6.81. REVERSE DICTIONARY INDEX 153

arab = {}

for key, value in roman.items():
arab[value] = key

print(arab['VII'])

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

154
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

The variable roman is initialized as a dictionary. Its keys
are the Arabic numerals from 1-10 and the values are their
corresponding roman numeral strings.

To store the reverse mapping from roman numeral strings
to Arabic numbers, we first initialize an empty dictionary
arab.

Then we iterate over the (arab, roman) pairs in roman
using the items() method.

For each pair, we set the roman string as the key arab[value]
and set the Arabic numeral as its value = key.

Hence, when printing arab['VII'], Python outputs the
Arabic numeral 7.

6.82 Default Arguments
Elo 1531

def func(a, b, c = 5):
return a + b + c

r1 = func(1, 0)
r2 = func(1, 1, 2)

print(r1 < r2)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.82. DEFAULT ARGUMENTS 155

This puzzle shows you how to overload your own func-
tions. Now you can write one function that takes a dif-
ferent number of arguments.

We define the function func with three arguments. The
first two arguments are required—you have to specify
them every time you call the function.

However, the third argument c is optional and has a de-
fault value of 5. This means that if you call func with
two arguments, c is assumed to be 5.

Hence, variable r1 holds the value 6 (1 + 0 + 5) while
variable r2 holds the value 4 (1 + 1 + 2).

In the latter case, the value of c is specified as 2—overwriting
the default value 5.

Therefore, the print statement at the end evaluates to 6
< 4 = False.

7

Python Puzzles: From Intermediate to
Professional Level

Have you tracked your Elo rating throughout the book?
You should already have seen a significant improvement
in your Elo rating by now. The puzzles that follow are
even harder and range from Elo 1600 to Elo 1900. If
you can solve these correctly, you can consider yourself
an above-average coder and will soon be at a professional
level.

7.1 Building Strings II

Elo 1600

chars = 'dog!'

char_1 = chars[-2]

156

7.1. BUILDING STRINGS II 157

char_2 = chars[chars.find('o')]
char_3 = chars[-1]

print(char_1 + char_2 + char_3)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

158
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

The puzzle uses negative indexing on the string 'dog!'.

Negative indexing is a way of accessing the string from
right-to-left instead of from left-to-right. For example,
the index -1 accesses the last character of the string. The
index -2 accesses the second last character and so on.
This way, you can decide on the more convenient way of
accessing the specific characters you want.

In the puzzle, we start with the second last character
'g'.Then, we access the character at the position chars.find('o')
= 1 which is 'o'. Finally, we access the last character
'!'.

The print statement prints the concatenated characters
to the shell which is the string go!.

7.2 String: Slicing and Indexing
Elo 1611

chars = 'bretsamaty'
word = chars[1:7][::-1]

print(word)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

7.3. BUILT-IN PYTHON OPERATIONS 159

In contrast to the previous slicing puzzles, this puzzle
performs two slicing operations on top of each other.

First, we take the substring from the second index (posi-
tion 1) to the sixth index (position 7 - 1) to get 'retsam'.

We then reverse this string and the result is master.

7.3 Built-in Python Operations
Elo 1609

odds = [1, 3, 5, 7]
s = sum(odds) + max(odds) + min(odds)

print(s)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

160
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

We add three elements together: (1) The sum of the el-
ements of the list, (2) the maximum element of the list,
and (3) the minimum of the list.

So, in total, we have: 16 + 7 + 1 = 24

7.4 Strings and Lists I
Elo 1602

numbers = '1-2-3-4-5-6-7-8-9'

my_list = numbers.split('-')
my_list[::2] = (len(numbers) // 4 + 1) * 'X'

out = ''.join(my_list)
out = out.replace('X', '')

print(out)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

7.5. FORMATTING PRINTOUTS 161

This puzzle first creates a string of the numbers 1-9 with a
'-' delimiter. Then, we split the numbers on the delimiter
to get a list just containing the numbers 1-9.

We change the result using advanced slice assignment no-
tation. Slice assignment is similar to slicing but on the
left-hand side of the equation. Using slicing, we select the
elements to be replaced with the elements on the right-
hand side of the equation. In this case, we replace every
other value with 'X'.

Note that the expression on the right-hand side of the
equation evaluates to 'XXXXX'. We used the multiplica-
tion operator on the string 'X' to create this sequence
based on the length of the collection.

If the right-hand side was just 'X', Python would raise
a ValueError because you cannot assign a sequence of
length 1 to a slice of length 5.

At this point, the variable my_list contains a list of
strings where every list element with an odd index is equal
to 'X'.

We join this sequence on the empty string, resulting in
2468.

7.5 Formatting Printouts

Elo 1887

print(format(0.1, '.5f'))

162
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

7.6. FLOATING POINT COMPARISONS 163

This one-liner puzzle dips into Python’s syntactic sugar
using the format function. Don’t worry if you haven’t
solved it – it’s only important that you try, realize your
knowledge gap, and fill it immediately.

The format() function takes two arguments: The first
argument is the value to be formatted, the second is the
formatting specifier and defines how the value should be
formatted.

The term '.5f' specifies that the number should contain
5 positions after the decimal point.

Thus, the output is 0.10000.

7.6 Floating Point Comparisons
Elo 1765

a = 0.1 + 0.1 + 0.1
b = 0.3

print(a == b)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

164
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

This puzzle performs a simple arithmetic computation
adding together the float value 0.1.

The question seems to be very simple—but as we’ll see in
a moment, it’s not simple at all.

Your inner voice is wrong. And while it is not so impor-
tant why it’s wrong, it is important that you learn to dis-
trust your intuition and your urge to be a lazy thinker. In
coding, assuming that things are super-simple is a deadly
sin.

In the puzzle, you have assumed that 0.1 represents the
decimal value 0.1 or 1/10. This is a natural but incor-
rect assumption. The value 0.1 doesn’t exist in your
computer. Instead, your computer stores every number
in a binary format consisting only of zeros and ones.

Use an online converter to convert the decimal value 0.1
to a binary value and you will get:
0.000110011001100110011...

The floating point representation of 0.1 in binary has
an infinite number of digits. So, your computer does the
only thing it can do: limit the number of digits.

This has the following effect. The decimal number 0.1 is
represented by the closest floating point number
0.100000000000000005551115... that can be repre-
sented in limited space.

Now, it’s easy to see why 0.1 + 0.1 + 0.1 != 0.3 and
that the answer is False.

As one of our readers, Albrecht, correctly pointed out,

7.7. PYTHON’S MULTIPLE ASSIGNMENT II 165

the problem can be fixed with Python’s Decimal module:

from decimal import Decimal

a = 0.1 + 0.1 + 0.1
b = 0.3
print(a == b)
False

c = Decimal('0.1') + Decimal('0.1') + Decimal('0.1')
d = Decimal('0.3')
print(c == d)
True

You can see that the equality of Decimal variables c and
d gives the expected result True.

7.7 Python’s Multiple Assignment
II

Elo 1678

odd = [1, 3, 5]
even = [2, 4, 6]

nums = 6 * [' ']
nums[::2], nums[1::2] = odd, even

print(nums)

166
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

7.8. THE NOT-SO-OBVIOUS CASE 167

Here, we have two sequences – one with odd and one with
even numbers.

Then, we create a list with six white-space characters
using simple list arithmetic. The white-space characters
serve as dummy values, intended only for initializing a list
of six elements.

Using a combination of slice assignments and multiple
assignments, we replace the elements with even indices
by the odd numbers and the elements with odd indices
by even numbers.

The result is the sequence [1, 2, 3, 4, 5, 6].

7.8 The Not-So-Obvious Case
Elo 1698

unknown = #input ??
str_ = unknown[0]

if str_ in 'a' and len(unknown) == 1:
print('X')

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

168
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

This puzzle is a trap.

Seeing all the stuff the puzzle is doing, your brain wants
to think about the if branch and what the output would
be.

In reality though, the puzzle throws an error. We cannot
assign a variable to comment. It’s as if there is nothing
on the right-hand side of the equation.

So, Python raises a SyntaxError: invalid syntax.

7.9 Rounding Values
Elo 1701

b = round(15, -1) == round(25, -1)
print(b)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

7.9. ROUNDING VALUES 169

If you have to think about the basics, you’ll struggle with
more advanced concepts that build upon those basics.

Rounding values is certainly one of those basic pieces of
wisdom you have to learn.

The round() function takes two arguments. The first is
the value to be rounded. The second argument is the
number of digits to round to. A positive number, say 5,
means it will round the number to 5 decimal places. A
negative number, say -2, means it will reduce the number
of significant digits by 2 e.g. 1234 becomes 1200.

Python then rounds to the next number with the specified
precision:

• Value 1.5 is rounded to 2 and value 2.5 is rounded
to 2 and so on.

• Value 1.55 is rounded to 1.6 and value 1.65 is rounded
to 1.6 and so on

• Value 15 is rounded to 20 and value 25 is rounded
to 20 and so on.

Rounding happens as you would expect, unless the last
number is 5. Then Python uses “banker’s rounding” which
means it rounds to the nearest even value as a tiebreaker.

If the second to last digit is odd, Python rounds up. Thus
round(15, -1) is 20. If the second to last digit is even,
Python rounds down and so round(25, -1) is 20.

Hence, the result is True.

170
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

7.10 Initializing Integers
Elo 1761

n = int('1101', 2)
print(n)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

7.11. BASIC TYPING 171

This puzzle gives you an interesting new way of initializ-
ing integers by using binary values. This is useful if you
load some binary values from a file on your computer and
you need to convert them.

Specify the string input as the first argument and the
base as the second argument. Then, Python does the
conversion for you: 1 * 2**3 + 1 * 2**2 + 0 * 2**1
+ 1 * 2**0 = 8+4+1 = 13.

7.11 Basic Typing
Elo 1619

type_1 = type(round(1.9, 0))
type_2 = type(round(1.9))

print(type_1 == type_2)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

172
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

The built-in round() function accepts two parameters:

1. the value you want to round, and

2. the number of digits (precision).

Python is a very intuitive programming language. Round-
ing is no exception: If you pass a value for the number of
digits, the result of round() is a float. If you don’t, the
result is an integer.

Python rounds to the closest multiple of 10 to the power
of -(number of digits). So for two digits, we round to the
closest multiple of 10−2 and for zero digits, we round to
the closest multiple of 10−0 = 1 (which are integers).

If two multiples are equally close, it rounds towards the
even choice. This is called banker’s rounding. For exam-
ple: round(1.5, 0) = 2.0 and round(2.5, 0) = 2.0.

In the puzzle type_1 is of type Float and type_2 is of
type Int, so the result is False.

7.12 Short Circuiting
Elo 1781

a = 1 > 0

if a or (1 / 0 == 0):
print('ok')

7.12. SHORT CIRCUITING 173

else:
print('nok')

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

174
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

This puzzle shows you how the optimization of short-
circuiting works in Python.

Short circuit evaluation in any programming language is
the act of not executing unnecessary parts of a Boolean
expression.

Say, you want to calculate the result of the expression A
and B but you already know that A = False. Because
of your knowledge of the first part of the expression, you
know it evaluates to False. So the programming lan-
guage skips computation of the remaining expressions and
just returns the result.

In the first line, the expression 1 > 0 gets evaluated and
True is stored in the variable a.

An expression containing or evaluates to True if one of
the operands is True. So Python’s compiler does not
check the second operand of the or operation after deter-
mining that the first part is True.

It’s only because of this feature, short-circuiting, that the
code actually compiles. Without it, the second part of
the or expression would raise an error because it is not
possible to divide by zero.

Therefore, the result is ok.

7.13 While Arithmetic

Elo 1619

7.13. WHILE ARITHMETIC 175

n = 16
x = 0

while x < 3:
n /= 2
x += 1

print(n)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

176
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

The core of this puzzle is the while loop which repeat-
edly executes the loop body (the indented code block) as
long as the loop condition evaluates to True. Once the
condition evaluates to False the loop stops executing.

Inside the while loop we divide n by 2 and reassign the
result to n.

Remember: the result of a division (/) is of type float.

In the next step, we increment the value of x by 1. Since
x is initialized with 0, the loop is executed three times
(x=0, x=1, x=2).

Thus, n is divided by 2 three times, and the final result
is 16 / 2 / 2 / 2 = 2.0.

7.14 The Lambda Function
Elo 1601

inc = lambda x : x + 1

print(inc(2))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

7.15. ZIP 177

With the keyword lambda, you define an anonymous func-
tion that is not defined in the namespace.

In contrast to explicitly defined functions, a lambda func-
tion does not have to have a specified name. In practice,
the lambda function is often used to define a simple func-
tion in a single line of code to make it more concise. The
syntax is:

lambda <argument name> : <return expression>.

In this puzzle, we define a function inc(x) which returns
the incremented value x + 1.

After calling inc(2), the function returns 2 + 1 = 3.

7.15 Zip
Elo 1721

l1 = ['a', 'b', 'c']
l2 = [1, 2, 3]
l3 = []

for tuple in zip(l1, l2):
l3.append(tuple)

print(len(l3))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

178
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

To understand how Python’s built-in zip(x, y) function
works, start with your intuition. Visualize a zipper which
takes two sides of a jacket and zips them together, one
tooth at a time. The zip function does the same thing.
It takes two lists and zips them together into one single
list of tuples which contain the paired elements.

For example, the first element of the first list is paired
with the first element of the second list. Similarly, the
second element of the first list is paired with the second
element of the second list, and so on. In a more code-like
way: [(l1[0], l2[0]), (l1[1], l2[1]), ...].

If the lists are not of equal length, the remaining values
of the longer list are omitted.

We zip together the two lists and loop over them. On
each loop, we append the element to a new, empty, list.
This results in another list which looks like this: [('a',
1),('b', 2),('c', 3)].

The length of this list is 3.

7.16 Basic Filtering
Elo 1601

list_ = list(range(5))
func = lambda x: x % 2 == 0
ns = []

for n in filter(func, list_):

7.16. BASIC FILTERING 179

ns.append(n)

print(ns)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

180
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

Using Python’s range(x) function, the puzzle first cre-
ates a list that contains the values 0, 1, 2, 3, 4.

The variable func points to a lambda expression.

If you wanted to write the lambda expression as a func-
tion, it would look like this:

def func(x):
return x % 2 == 0

The function returns True for even numbers and False
for odd numbers.

The built-in function filter takes two arguments: expression
and container. The expression is a function with 1 ar-
gument that returns either True or False. The container
is any container type e.g. list, set, dictionary etc.

Filter applies expression to every element in container
and only keeps the elements that return True. In other
words, the function “filters” out the False values.

As func returns True for even numbers, this filter object
contains the even numbers from our container.

In the for loop we iterate over the filter object and append
its values to the list ns.

Thus, ns contains all even values form 0 to 4 i.e. [0, 2,
4].

7.17. LIST COMPREHENSION 181

7.17 List Comprehension
Elo 1627

list_ = list(range(4))
incs = [x + 1 for x in list_]

print(incs)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

182
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

Much like in the previous puzzle, the variable list_ is
initialized in two steps: first, create a range object with
values from 0 to 3 and then convert it to a list using the
list() function. This gives [0, 1, 2, 3].

Next, we use a powerful Python feature: the list compre-
hension.

List comprehensions are a compact way to create lists.
The simple formula is [expression + context].

• Expression: What to do with each list element?

• Context: Which list elements to select? It consists
of an arbitrary number of for and if statements.

For example, the statement [x for x in range(3)] cre-
ates the list [0, 1, 2].

In the puzzle, we use a list comprehension to increment
each element in 'list_'. The resulting elements are
stored in the list incs.

Hence incs is [1, 2, 3, 4].

7.18 Encryption by Obfuscation
Elo 1821

encrypted = 'Dbftbs!fodszqujpo!jt!opu!tfdvsf"'
decrypted = ''

7.18. ENCRYPTION BY OBFUSCATION 183

for c in encrypted:
decrypted += chr(ord(c) - 1)

print(decrypted)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

184
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

To decrypt a given message, this puzzle uses two basic
Python functions: chr and ord.

Interestingly, these functions are provided in almost all
programming languages (thought sometimes with differ-
ent names).

The chr function returns a character corresponding to
the passed ASCII value (for example, the character 'a'
for the ASCII value of 97).

The ord function does the opposite; it returns the ASCII
value of a given character (e.g. the integer value 65 re-
turns 'A').

First, we convert c to its ASCII value using the ord func-
tion, then we decrement this value by 1. Finally, we con-
vert this back to the corresponding character with the
chr function.

The end result of our for loop is that each character in
the string 'encrypted' is shifted one letter back in the
alphabet i.e. D becomes C1.

The result is decrypted: 'Caesar encryption is not
secure!'.

7.19 String Dictionary
Elo 1611

1This encryption is called Caesar’s cipher because it was used
by Julius Caesar to encrypt his private conversations.

7.19. STRING DICTIONARY 185

dict_ = {
0: ' ', 3: 'eat', 2: 'apple',
4: 's', 1: 'Bob', 5: '.',

}

words = [1, 0, 3, 4, 0, 2, 4, 5]
sentence = ''''''

for w in words:
sentence += dict_[w]

print(sentence)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

186
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

The variable dict_ has integer keys in the range 0-5 and
strings as values.

The list words is initialized with keys from dict_.

The string 'sentence' is initialized as an empty string
using triple quotes ''' at both ends (the Pythonic way
to write multi-line strings).

After these initialization steps, we iterate over all num-
bers in words. For each number, we look up the corre-
sponding string in dict_ and concatenate it to sentence.

After the loop finishes, sentence contains the string '''Bob
eats apples.'''—which is output of the print state-
ment.

7.20 Functions are Objects
Elo 1641

def add(a, b):
return a + b

def mult(a, b):
return a * b

func_dict = {0: add, 1: mult, 2: lambda x: x + 1}

a = func_dict[0](3, -1)
b = func_dict[1](4.0, 0.5)

7.20. FUNCTIONS ARE OBJECTS 187

print(a + b)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

188
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

The puzzle defines two simple functions add and mult.
Each takes two arguments a and b.

We store the two functions, as well as an anonymous
lambda function, in the dictionary func_dict with keys
0, 1, and 2 respectively.

Using func_dict and bracket notation, we call the add
function like so func_dict[0]. We pass the arguments 3
and -1 which returns 3 + -1 = 2. This value is stored
in variable a.

Second, we call the mult function using func_dict[1]
with arguments 4.0 and 0.5. This returns 2.0 and it’s
stored in the variable b.

Third, we print the sum of a and b which is 2 + 2.0 =
4.0.

Note that to perform this summation, Python implicitly
converts the integer a = 2 to a float–that is 2.0. This is
because b is a float and int + float = float.

Hence, the result is the 4.0 and not 4.

7.21 Dictionary of Dictionaries

Elo 1639

customers = {
100: {'name': 'Alice', 'zip': 1234},
101: {'name': 'Bob', 'zip': 1212},
102: {'name': 'Clare', 'zip': 1001},

7.21. DICTIONARY OF DICTIONARIES 189

}

customers[101].clear()

print(len(customers))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

190
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

In this puzzle, we first define a dictionary customers.
Each value incustomers is also a dictionary containing
the name and zip-code information of a single customer.

We access the data of customer number 101 using bracket
notation customers[101] and call the clear() function.
This removes all key-value pairs in the dictionary customers[101].

So, the key 101 is now mapped to the empty dictionary
{}.

Finally, we print the length of the dictionary customers
which is 3. This is because the number of key-value pairs
in customers is still 3. Even though we have cleared the
contents of the dictionary, the key 101 still has a value,
namely the empty dictionary.

Note that if we had cleared the contents of customers in-
stead of customers[101], then the printed output would
have been zero.

7.22 Sorting Dictionary Keys
Elo 1667

zip_codes = {
3001: 'Dolomite',
3002: 'Goodwater',
3003: 'Montevallo',
3004: 'Shelby',
3000: 'Vance',

}

7.22. SORTING DICTIONARY KEYS 191

keys = list(zip_codes.keys())
keys.sort()

print(keys[0])

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

192
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

This puzzle defines a dictionary zip_codes with integer
keys.

First, we access all keys in the dictionary zip_codes us-
ing the keys() method. Then we cast them into a list
using the list() function and finally assign them to the
variable keys.

At this point, the variable keys is [3001, 3002, 3003,
3004, 3000].

Second, we rearrange the integers in the list keys in
ascending order by calling the built-in sort() method
which can be called on any list object.

Third, we display the smallest of the keys by printing
keys[0] which is 3000.

7.23 Pythonic Loop Iteration
Elo 1701

prices = [0.55, 0.45, 0.35, 1.45]
items = ['cucumber', 'paprika',

'tomato', 'broccoli']

item_prices = {}

for key, value in zip(items, prices):
item_prices[key] = value

print(item_prices['tomato'])

7.23. PYTHONIC LOOP ITERATION 193

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

194
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

This puzzle shows you how to build a dictionary from two
lists. Here, we use the zip() function to loop over the
lists items and the prices together in a single for loop.

On the i-th loop iteration, the variable key stores the i-
th element in the list items whereas the variable value
stores the i-th element in the list prices.

Using these key and value pairs, we gradually populate
the (initially empty) dictionary item_prices.

Finally, we print the price of 'tomato' from the dictio-
nary item_prices—which is 0.35.

7.24 Filtering with List
Comprehension

Elo 1731

item_prices = [
('car', 10000),
('boat', 7000),
('bike', 400),
('skateboard', 150),
('aircraft', 500000),

]

my_list = [x for x in item_prices if x[1] > 9000]

print(len(my_list))

7.24. FILTERING WITH LIST COMPREHENSION195

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

196
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

In this puzzle, we are given a list of tuples stored in the
variable item_prices. As the name suggests, each tuple
contains the item name and its price.

After we initialize the list of tuples, we use a list compre-
hension with an if statement to filter out all those tuples
where the item’s price is less than or equal to 9000.

The resulting filtered list is stored in the variable my_list.

Only two of the items in item_prices had a price of
greater than 9000 and so the length of my_list is 2/

7.25 Aggregating with List
Comprehension

Elo 1695

prices = [
('banana', 1.5),
('apple', 2.0),
('bread', 2.0),
('milk', 1.0),
('fish', 3.5)

]

a = sum([x[1] for x in prices]) / len(prices)

print(a)

7.25. AGGREGATING WITH LIST
COMPREHENSION 197

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

198
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

In this puzzle, we calculate the average of all prices.

The list prices is initialized with 5 tuples of the form
(item_name, price). W

e use a list comprehension to access the price of each item
(the second tuple element x[1]) and create a list of floats.

Then, we sum all the float values using Python’s built-in
function sum().

Finally, we divide the result by the length of the list
prices (which is 5). The resulting float value 2.0 is
assigned to variable a.

Therefore, the printed output of a is 2.0.

7.26 Maximum of Tuples

Elo 1741

speed = [
('car', 100),
('boat', 20),
('bike', 8),
('ski', 7),
('aircraft', 650),

]

print(max(speed)[1])

What’s the output of this code snippet?

7.26. MAXIMUM OF TUPLES 199

Correct: +10 Elo points / Wrong: -10 Elo points

200
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

This puzzle operates on a list of tuples stored in the vari-
able speed. Each tuple consists of a string as the first
element and an integer as the second.

By calling the max() function on this list of tuples, the
tuples are compared to find out which is the maximum.

How can we compare two tuples—and when is a tuple
larger than another tuple?

Python compares the tuples (a,b) and (c,d) by starting
with the first elements a and c. If those are equal (i.e.
a==c), Python compares the next pair of tuple elements
b and d.

In our case, the first tuple elements are strings. Python
compares strings by looking at the Unicode values of the
characters from left to right. The tuple with the maxi-
mum value is the one with the largest valued string.

The string 'ski' is the biggest because it starts with the
character 's' and this is further along in the alphabet
than the first letters of the other tuples.

Hence, the expression max(speed) returns ('ski', 7).

The print statement outputs the second element of this
tuple max(speed)[1] which is 7.

7.27 The Key Argument
Elo 1769

speed = [

7.27. THE KEY ARGUMENT 201

('car', 100),
('boat', 20),
('bike', 8),
('ski', 7),
('aircraft', 650),

]

print(max(speed, key=lambda x: x[1])[1])

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

202
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

The previous puzzle was tricky because you may have
expected that max() returns the vehicle with the highest
speed. This is what we accomplish in this puzzle. We
show you how to specify the element on which you want
to compare two tuples.

We want all comparisons to be based on the second tuple
element—that is the speed.

So, we call max() with the key argument. This specifies
a function to apply to each list and the result of this
function is used to compare elements.

In this case, we define a lambda function with one argu-
ment x (a tuple) and the return value of x[1] (the second
tuple element).

Thus, the second tuple element is the basis of comparison
and we compare based on speed and not the string values.

Therefore, max() returns ('aircraft', 650) as it has
the highest speed value 650.

We print this value 650 via indexing within the print
statement.

7.28 Puzzle 123

Elo 1799

my_list = ['Hamburger', 'Cheeseburger']

del my_list

7.28. PUZZLE 123 203

print(my_list)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

204
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

In this puzzle, we create a new list which we immediately
remove from memory using the del operation. After this,
the list does not exist in memory anymore.

You can use the del operation to free some space in mem-
ory if you create huge objects which you know you won’t
need anymore.

As the list does not exist in memory, the puzzle throws a
NameError.

7.29 Set Operations (1/2)
Elo 1733

set_ = set()

for number in range(100000):
set_.add(number % 4)

print(len(set_))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

7.30. SET OPERATIONS (2/2) 205

This puzzle gradually populates a set variable named
set_ using a for loop.

The loop repeats 100000 times and the variable number
takes values from 0 to 99999.

In each iteration, we apply the modulo operation to number
using the divisor 4.

Thus, the result of the modulo operation can only be one
of the following 4 values: 0, 1, 2, 3.

We add this result to the variable set_ by calling the
add() method.

A crucial property of the set data type is that it’s duplicate-
free. In other words, sets do not allow the occurrence of
multiple copies of the same value.

Hence, each of the four values returned by the modulo
operation can be added to the set only once: on their
first occurrence.

Because of this, the length of set_ is 4 at the end of the
for loop—the final result of the puzzle.

7.30 Set Operations (2/2)
Elo 1739

set_1 = {1, 2, 3, 4}
set_2 = {3, 4, 5, 6}

set_1 = set_1.intersection(set_2)

206
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

set_2 = set_2.difference(set_1)

print(len(set_1) + len(set_2))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

7.31. RECURSIVE ALGORITHM 207

This puzzle addresses two more set operations that occur
frequently in practice.

We define two sets, set_1 and set_2, each of which con-
tains four different values.

Using Python’s built-in functions for sets, we calculate
the intersection between set_1 and set_2 i.e. all ele-
ments that exist in both sets.

The result is the set {3,4} which we store in the variable
set_1.

Next, we determine the difference between the newly as-
signed set_1 and set_2.

The result of this operation is the set {5, 6} which we
store in the variable set_2.

The modified sets both contain two elements.

Therefore, printing the sum of their lengths is 4.

7.31 Recursive Algorithm
Elo 1899

numbers = [9, 2, 3, 3, 3, 7, 4, 5, 1, 6, 8]

def magic(l):
if len(l) <= 1:

return l
p = l[0]
return magic([x for x in l[1:] if x < p]) \

208
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

+ [p] \
+ magic([x for x in l[1:] if x >= p])

my_list = magic(numbers)
print(my_list)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

7.31. RECURSIVE ALGORITHM 209

This puzzle provides a recursive implementation of one of
the famous sorting algorithms: Quicksort.

Quicksort works by repeatedly breaking down the prob-
lem (a list of numbers) into smaller chunks (smaller lists
of numbers). It then applies Quicksort again on each of
those smaller chunks. These are broken down again, and
so on until we are left with the trivial case of one element.

We define the function magic() to implement the Quick-
sort algorithm.

The variable l represents a list of values.

In our case, l is replaced by numbers which contains 11
elements.

The first part of magic deals with the special case when
l is empty or contains a single element. IN this case, it
returns the list unchanged.

Next, it breaks down l into three parts by first determin-
ing the dividing position (also called the pivot position)
and storing it in the variable p.

In our first call, the pivot variable p takes the value 9.

The function then returns a list which is a concatenation
of three new lists:

1. All values in l that are smaller than the pivot value
p.

2. The pivot value p.

210
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

3. All values in l that are greater than (or equal to)
the pivot value p.

To obtain the lists of values that are smaller than and
greater than p, we use a list comprehension with an if
condition.

The result is that magic() sorts the list numbers in as-
cending order and stores it in the variable my_list.

Hence, the output of the print statement is [1, 2, 3,
3, 3, 4, 5, 6, 7, 8, 9].

7.32 Fibonacci

Elo 1809

cache = {}

def fib(n):
if n < 0:

raise ValueError

if n == 1:
return 0

elif n == 2:
return 1

if not n in cache:
cache[n] = fib(n-1) + fib(n-2)

7.32. FIBONACCI 211

return cache[n]

fib(10)

print(len(cache))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

212
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

In this puzzle, we compute the famous Fibonacci sequence.
We use a recursive algorithm with a small but effective
optimization (caching).

Each number in the Fibonacci sequence is the sum of the
two previous numbers, starting with 0 and 1.

To determine the n-th number in the sequence, the func-
tion fib() first performs some basic checks: it ensures
that n is non-negative and that it is not one of the first
two numbers.

Then, if n is not already determined by a previous fib()
call, it computes the n-th Fibonacci number.

We achieve this by storing any newly determined Fi-
bonacci numbers in the dictionary cache.

Note that cache is initialized as an empty dictionary out-
side of the function. If we initialized an empty dictionary
inside the function definition, that would defeat the whole
point of caching!

If n is not present in the keys of cache, it is determined by
recursively calling fib(). The arguments are (n-1) and
(n-2) and then the returned values are summed together.

The n-th Fibonacci number is stored in cache with key
n for possible future usage.

Note that cache is never assigned the Fibonacci values
for the values n = 1 or n = 2 because their values are
handled by the second and third if statements in fib().

Hence, the call to fib(10) will, at most, populate cache

7.32. FIBONACCI 213

with keys ranging from 3-10.

Therefore, the length of cache after the call fib(10) is
8.

8

Final Remarks

Congratulations, you made it through this whole Python
workbook!

By reading this book, you have now acquired a rare and
precious skill: speed reading Python code. You have
worked through 127 Python puzzles and enhanced your
ability to think clearly. Your brain is now wired to solve
problems efficiently—one of the most important skills you
can have as a software developer (and as a productive per-
son overall).

Your skill level

By now, you should have a fair estimate of your skill level
in comparison to others—be sure to check out Table 3.1
again to get the respective rank for your Elo rating. This
book is all about pushing you from beginner to intermedi-
ate Python coding level. In follow-up books, you’ll master

214

215

the advanced level with harder Python puzzles.

Consistent effort and persistence is the key to success.
If you feel that solving code puzzles has advanced your
skills, make it a daily habit to solve one Python puzzle
a day (and watch the related video on the Finxter.com
web app). This habit alone will push your coding skills
through the roof—and will ultimately provide you and
your family a comfortable living in a highly profitable
profession. Build this habit into your life—e.g., use your
morning coffee break routine—and you will soon become
one of the best programmers you know.

Where to go from here?

I publish a fresh code puzzle every couple of days on our
website https://finxter.com. All puzzles are available
for free. My goal with Finxter is to make learning to code
easy, individualized, and accessible.

• I worked hard to make this book as valuable for
you as possible. But no book can reach perfection
without feedback from early adopters and highly ac-
tive readers. For any feedback, questions or prob-
lems you may have, please send me an email at
admin@finxter.com.

• I highly appreciate your honest book review on your
preferred bookseller (e.g. Amazon or Leanpub). We
are not spending tons of money on advertising and
rely on loyal Finxters to spread the word. Would

https://finxter.com
admin@finxter.com

216 CHAPTER 8. FINAL REMARKS

you mind leaving a review to share your learning
experience with others?

• To grow your Python skills on autopilot, register for
the free Python email course here: https://blog.
finxter.com/subscribe.

• You have now stretched your Python skills beyond
intermediate level. There is no reason why you
should not start selling your skills in the market-
place right now. If you want to learn how to effec-
tively sell your skills as a Python freelancer, watch
the free “How to Build Your High-Income Skill Python”
webinar at
https://blog.finxter.com/webinar-freelancer/.

• This is the fourth book in the Coffee Break Python
series, which is all about pushing you—in your daily
coffee break—to an advanced level of Python. Please
find the other books below.

Finally, I would like to express my deep gratitude that
you have spent your time solving code puzzles and read-
ing this book. Above everything else, I value your time.
The ultimate goal of any good textbook should be to save
you time. By working through this book, you have gained
insights about your coding skill level. If you apply your
Python skills to the real world, you will experience a pos-
itive return on invested time and money. Keep investing
in yourself, work on practical projects, and stay active

https://blog.finxter.com/subscribe
https://blog.finxter.com/subscribe
https://blog.finxter.com/webinar-freelancer/

217

within the Finxter community. This is the best way to
continuously improve your Python skills.

More Python Textbooks

This Python workbook extends the "Coffee Break Python"
textbook series. It helps you master computer science
with a focus on Python coding. The other textbooks are:

218

219

Coffee Break Python: 50 Workouts to Kickstart
Your Rapid Code Understanding in Python.

The first bestselling book of the "Coffee Break Python"
series offers 50 educative code puzzles, 10 tips for efficient
learning, 5 Python cheat sheets, and 1 accurate way to
measure your coding skills.

Get the ebook:
https://blog.finxter.com/coffee-break-python/

Get the print book:
http://bit.ly/cbpython

https://blog.finxter.com/coffee-break-python/
http://bit.ly/cbpython

220 MORE PYTHON BOOKS

Coffee Break NumPy: A Simple Road to Data
Science Mastery That Fits Into Your Busy Life.

Coffee Break NumPy is a new step-by-step system to
teach you how to learn Python’s data science library faster,
smarter, and better. Simply solve practical Python NumPy
puzzles as you enjoy your morning coffee.

A Simple Road to Data Science Mastery
That Fits Into Your Busy Life

MAYER, RIAZ, RIEGER

Coffee Break

NumPy

Get the ebook:
https://blog.finxter.com/coffee-break-numpy/

Get the print book:
http://bit.ly/cbnumpy

https://blog.finxter.com/coffee-break-numpy/
http://bit.ly/cbnumpy

221

Coffee Break Python Slicing: 24Workouts to Mas-
ter Slicing in Python, Once and for All.

Coffee Break Python Slicing is all about growing your
Python expertise—one coffee at a time. The focus is on
the important technique: slicing. You use this to access
ranges of data from Python objects. Understanding slic-
ing thoroughly is crucial for your success as a Python
developer.

As a bonus, you track your Python coding skill level
throughout the book.

Coffee Break Python

Slicing

Workouts to Master Slicing in
Python, Once and for All24

Get the ebook:
https://blog.finxter.com/coffee-break-python/

Get the print book:
http://bit.ly/cbpslicing

https://blog.finxter.com/coffee-break-python/
http://bit.ly/cbpslicing

9

Bonus Chapter: 50 Workouts to Sharpen
Your Mind

Are you still hungry for more Python puzzles? Good. I
added 50 brand-new bonus puzzles to this second edition
of the book. You already know what to do, right? So
let’s get started!

9.1 Arithmetic
Puzzle 1
x = 5 // -3.0 * 4
print(x)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

222

9.2. WHITESPACE 223

The result of the previous puzzle is: -8.0.

9.2 Whitespace
Puzzle 2
x = len('py\tpy\n')
print(x)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

224 CHAPTER 9. 50 BONUS WORKOUTS

The result of the previous puzzle is: 6.

9.3 Modulo
Puzzle 3
x = 0
while x < 4:

x += 1
if x % 2:

continue
print('$', end='')

else:
print('$', end='')

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

9.4. TUPLE 225

The result of the previous puzzle is: $$$.

9.4 Tuple
Puzzle 4
x = tuple(list('hi'))
print(x)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

226 CHAPTER 9. 50 BONUS WORKOUTS

The result of the previous puzzle is: (’h’, ’i’).

9.5 Dictionary
Puzzle 5
d = dict([(i, i%3) for i in range(8)])
print(d[5])

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

9.6. ASTERISK 227

The result of the previous puzzle is: 2.

9.6 Asterisk
Puzzle 6
*x, y, z = 1, 2, 3, 4
*x, y = x, y, z
print(x[1])

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

228 CHAPTER 9. 50 BONUS WORKOUTS

The result of the previous puzzle is: 3.

9.7 Slicing 1
Puzzle 7
t = [10, 20, 30, 40]
t[100:103] = [10]
print(t)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

9.8. SLICING 2 229

The result of the previous puzzle is: [10, 20, 30, 40,
10].

9.8 Slicing 2
t = [10, 20, 30, 40]
t[2:0] = [10]
print(t)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

230 CHAPTER 9. 50 BONUS WORKOUTS

The result of the previous puzzle is: [10, 20, 10, 30,
40].

9.9 Nested Loop
Puzzle 9
t = [2, 1, 0]
while t:

k = t.pop(0)
while t:

print(k, end='')
break

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

9.10. LIST ARITHMETIC 231

The result of the previous puzzle is: 21.

9.10 List Arithmetic
Puzzle 10
t = [[]] * 2
t[0].append(0)
t[1].append(1)
print(t[0])

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

232 CHAPTER 9. 50 BONUS WORKOUTS

The result of the previous puzzle is: [0, 1].

9.11 Exception
Puzzle 11
try:

x = -9 ** 1/2
print(x)

except:
x = 8 * 2 // 5
print(x)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

9.12. INSERT 233

The result of the previous puzzle is: -4.5.

9.12 Insert
Puzzle 12
t = [3, 4, 5, 6]
t.insert(0, t.pop(t.index(5)))
print(t)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

234 CHAPTER 9. 50 BONUS WORKOUTS

The result of the previous puzzle is: [5, 3, 4, 6].

9.13 Sorted Dictionary
Puzzle 13
d = {'b':1, 'a':3, 'c':2}
print(sorted(d))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

9.14. DEFAULT 235

The result of the previous puzzle is: [’a’, ’b’, ’c’].

9.14 Default
Puzzle 14
c = 11
d = 12

def func(a, b, c=1, d=2):
print(a, b, c, d)

func(10, c, d)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

236 CHAPTER 9. 50 BONUS WORKOUTS

The result of the previous puzzle is: 10, 11, 12, 2.

9.15 Keyword Argument
Puzzle 15
def func(a, b, c=1, d=2):

print(a, b, c, d)

func(a=1, c=3, d=4, 2)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

9.16. GLOBAL 237

The result of the previous puzzle is: error.

9.16 Global
Puzzle 16
a = 10

def func(x=a):
global a
a += 1
print(x, a)

func(3)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

238 CHAPTER 9. 50 BONUS WORKOUTS

The result of the previous puzzle is: 3, 11.

9.17 Flow 1
Puzzle 17
a = [10]

def func(a):
a.append(20)
print(a)

a = [2]
func(a)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

9.18. FLOW 2 239

The result of the previous puzzle is: [2, 20].

9.18 Flow 2
Puzzle 18
a = 1
b = [10]

def func(a, b):
a += 1
b += [1]

func(a, b)
print(a in b)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

240 CHAPTER 9. 50 BONUS WORKOUTS

The result of the previous puzzle is: True.

9.19 Enumerate
Puzzle 19
t = {}, {1}, {1,2}, {1:2}
myList = [k for k, v in enumerate(t) \

if isinstance(v, set)]
print(myList[0])

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

9.20. REVERSE 241

The result of the previous puzzle is: 1.

9.20 Reverse
Puzzle 20
t = ['world', 'hello', 'python']
sorted_t = t.sort(reverse=True)
print(sorted_t)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

242 CHAPTER 9. 50 BONUS WORKOUTS

The result of the previous puzzle is: None.

9.21 Hierarchical Functions
Puzzle 21
f = lambda x, y: x < y
result = f(f('hi', 'bye'), f(2, 3))
print(result)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

9.22. SORTING++ 243

The result of the previous puzzle is: True.

9.22 Sorting++
Puzzle 22
d = {3:10, 4:8, 3:9}
print(sorted(d, key=lambda x: d[x], reverse=True))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

244 CHAPTER 9. 50 BONUS WORKOUTS

The result of the previous puzzle is: [3, 4].

9.23 Indexing
Puzzle 23
t = [[1, 2], [3, 4]]
t2 = t * 1
t[0][0] = 10
print(t2[0][0])

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

9.24. COUNT 245

The result of the previous puzzle is: 10.

9.24 Count
Puzzle 24
word = 'banana'
print(word.count('ana'))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

246 CHAPTER 9. 50 BONUS WORKOUTS

The result of the previous puzzle is: 1.

9.25 Power
Puzzle 25
x = 2 ** 1 ** 2 % -5
print(x)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

9.26. LAMBDA 247

The result of the previous puzzle is: -3.

9.26 Lambda
Puzzle 26
t = ['python', 'puzzle', 'fun', 'java']
f = lambda lst: lst.pop(0)
g = lambda lst: lst.pop(1)
h = lambda lst: lst.pop(2)
d = {0:f, 1: g, 2: h}
x = d[f(t) > g(t)](t)
print(x)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

248 CHAPTER 9. 50 BONUS WORKOUTS

The result of the previous puzzle is: java.

9.27 Recursion
Puzzle 27
def f(word):

if len(word) > 3:
return '*'

else:
word += '*'
return '*' + f(word)

print(f('*'))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

9.28. KWARGS 249

The result of the previous puzzle is: ****.

9.28 Kwargs
Puzzle 28
def f(a, b, c, d=4, e=5):

print(a + b + c + d + e)

args = [10, 20]
kwargs = {'c': 30, 'd': 40}
f(*args, **kwargs)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

250 CHAPTER 9. 50 BONUS WORKOUTS

The result of the previous puzzle is: 105.

9.29 Dictionary Magic
Puzzle 29
def word_dict(word):

d = {}
for char in word:

d[char] = d.get(char, 0) + 1
return d

x = word_dict('banana')['n']
print(x)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

9.30. SORT KEY 251

The result of the previous puzzle is: 2.

9.30 Sort Key
Puzzle 30
t = [1, 2, 3, 4, 5]
t.sort(key=lambda x: x % 2)
print(t)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

252 CHAPTER 9. 50 BONUS WORKOUTS

The result of the previous puzzle is: [2, 4, 1, 3, 5].

9.31 Print
Puzzle 31
s = [('hello', 'world'), ('I', 'love', 'python')]
for x in s:

print(*x, sep='-', end='-')

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

9.32. LOGIC 253

The result of the previous puzzle is:
hello-world-I-love-python-.

9.32 Logic
Puzzle 32
easy = True and False == True and False
print(easy)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

254 CHAPTER 9. 50 BONUS WORKOUTS

The result of the previous puzzle is: False.

9.33 Argument Confusion
Puzzle 33
b = 10

def f(a, b=b):
return a + b

b = 20
print(f(1))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

9.34. PASS 255

The result of the previous puzzle is: 11.

9.34 Pass
Puzzle 34
for i in range(5, -1, -1):

if i % 1 == 0:
pass

if i % 2 == 0:
continue

if i % 3 == 0:
break

print(i, end='-')

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

256 CHAPTER 9. 50 BONUS WORKOUTS

The result of the previous puzzle is: 5-.

9.35 List Magic
Puzzle 35
t = [1, 2, 3, 4, 5]
t2 = t[:]
count = 0
while True:

t.insert(0, t.pop())
count += 1
if t == t2:

break
print(count)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

9.36. ZIPZIP 257

The result of the previous puzzle is: 5.

9.36 Zipzip
Puzzle 36
a = [1, 3]
b = [2, 4, 6]
crazy = zip(*zip(a, b))
print(list(crazy))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

258 CHAPTER 9. 50 BONUS WORKOUTS

The result of the previous puzzle is: [(1, 3), (2, 4)].

9.37 Comprehension
Puzzle 37
t = [[i for i in range(j)] for j in range(4)]
print(t[2][1])

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

9.38. SLICE EXTEND 259

The result of the previous puzzle is: 1.

9.38 Slice Extend
Puzzle 38
t = [1, 2, 3]
t.append(t.extend([4, 5]))
print(t[-2:])

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

260 CHAPTER 9. 50 BONUS WORKOUTS

The result of the previous puzzle is: [5, None].

9.39 Max
Puzzle 39
t = 'iPhone', 'Italy', '10', '2'
print(max(t))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

9.40. ZIP 261

The result of the previous puzzle is: iPhone.

9.40 Zip
Puzzle 40
x = 1, 2
y = list(zip(x))
print(y[0])

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

262 CHAPTER 9. 50 BONUS WORKOUTS

The result of the previous puzzle is: (1,).

9.41 Unpack
Puzzle 41
a = [1]
b = [2, 4, 6]
crazy = zip(*zip(a, b))
y = list(crazy)
print(y[0])

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

9.42. MINIMAX 263

The result of the previous puzzle is: (1,).

9.42 Minimax
Puzzle 42
def f(x, y):

x, y = min(x, y), max(x, y)
if y % x == 0:

return x
else:

return f(x, y % x)

print(f(16, 72))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

264 CHAPTER 9. 50 BONUS WORKOUTS

The result of the previous puzzle is: 8.

9.43 Sort
Puzzle 43
scores = [100, 84, 63, 97]
scores_sorted = scores.sort()
print(scores[0])

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

9.44. TUPLE LIST 265

The result of the previous puzzle is: 63.

9.44 Tuple List
Puzzle 44
lst = [(k, k*2) for k in range(4)]
print(len(lst))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

266 CHAPTER 9. 50 BONUS WORKOUTS

The result of the previous puzzle is: 4.

9.45 While
Puzzle 45
i = 2
while i % 3:

i += 2
print('!', end='-')

print('!')

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

9.46. STRING LOGIC 267

The result of the previous puzzle is: !-!-!.

9.46 String Logic
Puzzle 46
print('a' and 'b')

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

268 CHAPTER 9. 50 BONUS WORKOUTS

The result of the previous puzzle is: b.

9.47 Unorthodox Dict
Puzzle 47
pairs = {[1,2]:[2,4,6],

[10,20]:[20,40,60]}

s = []
for x in pairs:

s += x

print(len(s))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

9.48. COUNT 269

The result of the previous puzzle is: error.

9.48 Count
Puzzle 48
ones = [(1),

(1,),
(1,1)]

print(ones.count(1))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

270 CHAPTER 9. 50 BONUS WORKOUTS

The result of the previous puzzle is: 1.

9.49 Cut
Puzzle 49
hair = 100

def cut(times, each=10, hair=hair):
return (hair - each * times)

hair = 50
hair = cut(2, 20)
print(hair)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

9.50. END 271

The result of the previous puzzle is: 60.

9.50 End
Puzzle 50
if 1 < 2 is True:

print('nice', end=' ')
if 'A' < 'a' is True:

print('bravo', end=' ')
else:

print('great')

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

272 CHAPTER 9. 50 BONUS WORKOUTS

The result of the previous puzzle is: great.

	Contents
	Introduction
	A Case for Puzzle-based Learning
	Overcome the Knowledge Gap
	Embrace the Eureka Moment
	Divide and Conquer
	Improve From Immediate Feedback
	Measure Your Skills
	Individualized Learning
	Small is Beautiful
	Active Beats Passive Learning
	Make Code a First-class Citizen
	What You See is All There is

	Elo
	How to Use This Book
	How to Test and Train Your Skills?
	What Can This Book Do For You?

	A Quick Overview of the Python Language
	Keywords
	Basic Data Types
	Complex Data Types
	Classes
	Functions and Tricks

	Puzzles: Basic to Scholar
	Printing values
	Basics of variables
	Getting started with strings
	Types of variables I
	Types of Variables II
	Minimum
	String Concatenation
	Line Breaks I
	Line Breaks II
	List Length
	Comparison Operators I
	Comparison Operators II
	Multiple Initializations

	Puzzles: Scholar to Intermediate
	Maximum
	Memory addresses
	Swapping Values
	The Boolean Operator AND
	The Boolean Operator OR
	Boolean Operators
	Arithmetic Expressions
	Integer Division and Modulo
	Building Strings
	The len() Function
	String Indices
	The upper() Function
	The lower() Function
	Somebody Is Shouting
	Counting Characters
	String Lengths
	Finding Characters in Strings
	Not Finding Characters in Strings
	Counting Letters
	Min() and Max() of a String
	Reversed Strings
	String Equality
	Slicing I
	Slicing II
	Slicing III
	Slicing IV
	Slicing V
	Memory Addresses and Slicing
	Accessing List Items I
	Accessing List Items II
	List as Stack
	More String Operations
	Checking for Substrings
	Stripping String Boundaries
	Strings: Stripping vs. Replacement
	Gluing Strings Together
	The Copy Operation
	Growing List Contents I
	Growing List Contents II
	List Operations I
	List Operations II
	List Operations III
	List Operations IV
	List Operations V
	List Operations VI
	List Operations VII
	List Operations VIII
	List Operations IX
	List Operations X
	Lists and the Range Function I
	Lists and the Range Function II
	Lists and the Range Function III
	Python's Multiple Assignment I
	Slice Assignments
	Strings and Lists II
	String Comparisons
	From Booleans to Strings
	Boolean Trickery I
	Boolean Trickery II
	Boolean Trickery III
	Looping over Ranges
	Reversed Loops
	Boolean Trickery IV
	Lists and Memory Addresses
	List Objects
	Boolean Tricks
	Complex Numbers
	Tuples
	Multiple Assignments
	Boolean Integer Conversion
	The any() Function
	The sum() Function
	Accessing Complex Numbers
	Tuple Confusion
	Understanding While ... Else (1/3)
	Understanding While ... Else (2/3)
	Understanding While ... Else (3/3)
	Basic Arithmetic
	Dictionary
	Dictionary of Dictionaries
	Reverse Dictionary Index
	Default Arguments

	Puzzles: Intermediate to Professional
	Building Strings II
	String: Slicing and Indexing
	Built-in Python Operations
	Strings and Lists I
	Formatting Printouts
	Floating Point Comparisons
	Python's Multiple Assignment II
	The Not-So-Obvious Case
	Rounding Values
	Initializing Integers
	Basic Typing
	Short Circuiting
	While Arithmetic
	The Lambda Function
	Zip
	Basic Filtering
	List Comprehension
	Encryption by Obfuscation
	String Dictionary
	Functions are Objects
	Dictionary of Dictionaries
	Sorting Dictionary Keys
	Pythonic Loop Iteration
	Filtering with List Comprehension
	Aggregating with List Comprehension
	Maximum of Tuples
	The Key Argument
	Puzzle 123
	Set Operations (1/2)
	Set Operations (2/2)
	Recursive Algorithm
	Fibonacci

	Final Remarks
	Your skill level
	Where to go from here?

	50 Bonus Workouts
	Arithmetic
	Whitespace
	Modulo
	Tuple
	Dictionary
	Asterisk
	Slicing 1
	Slicing 2
	Nested Loop
	List Arithmetic
	Exception
	Insert
	Sorted Dictionary
	Default
	Keyword Argument
	Global
	Flow 1
	Flow 2
	Enumerate
	Reverse
	Hierarchical Functions
	Sorting++
	Indexing
	Count
	Power
	Lambda
	Recursion
	Kwargs
	Dictionary Magic
	Sort Key
	Print
	Logic
	Argument Confusion
	Pass
	List Magic
	Zipzip
	Comprehension
	Slice Extend
	Max
	Zip
	Unpack
	Minimax
	Sort
	Tuple List
	While
	String Logic
	Unorthodox Dict
	Count
	Cut
	End

