
Clean
Python

Elegant Coding in Python
—
Sunil Kapil

Clean Python
Elegant Coding in Python

Sunil Kapil

Clean Python: Elegant Coding in Python

ISBN-13 (pbk): 978-1-4842-4877-5		 ISBN-13 (electronic): 978-1-4842-4878-2
https://doi.org/10.1007/978-1-4842-4878-2

Copyright © 2019 by Sunil Kapil

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Nikhil Karkal
Development Editor: Rita Fernando
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.
com/9781484248775. For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Sunil Kapil
Sunnyvale, CA, USA

https://doi.org/10.1007/978-1-4842-4878-2

iii

Table of Contents

Chapter 1: Pythonic Thinking��1

Write Pythonic Code���2

Naming���2

Expressions and Statements in Your Code���6

Embrace the Pythonic Way to Write Code���9

Using Docstrings��18

Module-Level Docstrings��21

Make the Class Docstring Descriptive��23

Function Docstrings��24

Some Useful Docstring Tools��25

Write Pythonic Control Structures��26

Use List Comprehensions���26

Don’t Make Complex List Comprehension��28

Should You Use a Lambda?��30

When to Use Generators vs. List Comprehension���31

Why Not to Use else with Loops���32

Why range Is Better in Python 3���35

About the Author��ix

About the Technical Reviewer��xi

Acknowledgments��xiii

Introduction���xv

iv

Raising Exceptions���37

Frequently Raised Exceptions��37

Leverage finally to Handle Exceptions��39

Create Your Own Exception Class���41

Handle Only Specific Exceptions��43

Watch Out for Third-Party Exceptions���45

Prefer to Have Minimum Code Under try��46

Summary���48

Chapter 2: Data Structures��49

Common Data Structures���49

Use Sets for Speed���50

Use namedtuple for Returning and Accessing Data���������������������������������������52

Understanding str, Unicode, and byte���55

Use Lists Carefully and Prefer Generators��57

Use zip to Process a List��60

Take Advantage of Python’s Built-in Functions��62

Take Advantage of Dictionary���65

When to Use a Dictionary vs. Other Data Structures��������������������������������������65

collections��66

Ordered Dictionary vs. Default Dictionary vs. Normal Dictionary�������������������70

switch Statement Using Dictionary��72

Ways to Merge Two Dictionaries��73

Pretty Printing a Dictionary��74

Summary���75

Chapter 3: Writing Better Functions and Classes��������������������������������77

Functions���77

Create Small Functions��78

Return Generators��80

Table of ContentsTable of Contents

v

Raise Exceptions Instead of Returning None��82

Add Behavior Using the default and keyword Arguments������������������������������85

Do Not Return None Explicitly��86

Be Defensive While Writing a Function���89

Use a Lambda as a Single Expression��92

Classes���94

Right Size of Class?��94

Class Structure���95

Right Ways to Use @property���99

When to Use Static Methods?��102

Use Abstract Class Inheritance the Pythonic Way��104

Use @classmethod to Access Class State��106

Use the public Attribute Instead of private���107

Summary���109

Chapter 4: Working with Modules and Metaclasses�������������������������111

Modules and Metaclasses���111

How Modules Can Help to Organize Code��113

Take Advantage of the __init__ File���116

Import Functions and Classes from Modules in the Right Way��������������������������119

Use __all__ to Prevent Imports��121

When to Use Metaclasses��123

Use __new__ for Validating Subclasses��124

Why __slots__ Are Useful��127

Change Class Behavior Using Metaclasses���130

Learn About Python Descriptors��134

Summary���136

Table of ContentsTable of Contents

vi

Chapter 5: Decorators and Context Managers�����������������������������������139

Decorators���140

What Are Decorators, and Why Are They Useful?���140

Understanding Decorators��141

Modify Behavior Using Decorators���144

Using Multiple Decorators��147

Decorators Accept Arguments��148

Consider Using a Library for Decorators���149

Class Decorators for Maintaining State and Validating Parameters�������������152

Context Manager��155

Context Managers and Their Usefulness��155

Understanding Context Managers��157

Using contextlib to Build a Context Manager��160

Some Practical Examples of Using a Context Manager��������������������������������161

Summary���165

Chapter 6: Generators and Iterators��167

Take Advantage of Iterators and Generators��167

Understanding Iterators��167

What Are Generators?���170

When to Use Iterators���171

Using itertools��174

Why Generators Are Useful���176

List Comprehension vs. Iterators��177

Take Advantage of the yield Keyword��177

yield from���179

yield Is Faster Compared to a Data Structure���180

Summary���180

Table of ContentsTable of Contents

vii

Chapter 7: Utilize New Python Features��181

Asynchronous Programming��182

Introducing async in Python���183

How It Works��187

Async Generators���200

Typing in Python���210

Types in Python��211

typing Module���212

Do Data Types Slow Code?���215

How Typing Helps to Write Better Code��215

Typing Pitfalls���216

super() Method���217

Type Hinting���217

Better Path Handling Using pathlib��218

print() Is a Function Now��218

f-string���218

Keyword Only Arguments���219

Preserving the Order of a Dictionary��220

Iterable Unpacking���220

Summary���220

Chapter 8: Debugging and Testing Python Code�������������������������������221

Debugging��222

Debugging Tools���222

breakpoint��227

Use the Logging Module Instead of print in Production Code����������������������227

Use the metrics Library for Identifying Bottlenecks�������������������������������������234

How IPython Is Helpful���235

Table of ContentsTable of Contents

viii

Testing���238

Why Testing Is Important��238

Pytest vs. UnitTest��239

Property Testing��244

How to Create a Report for Testing���245

Automate Unit Tests��246

Getting Your Code Ready for Production���247

Run Unit and Integration Tests in Python��247

Summary���251

Appendix: Some Awesome Python Tools���253

Sphinx��253

Coverage��255

pre-commit��256

Pyenv for virtualenv���257

Jupyter Lab��257

Pycharm/VSCode/Sublime���258

Flake8/Pylint��258

Index��261

Table of ContentsTable of Contents

ix

About the Author

Sunil Kapil has been in the software profession

for the past ten years, writing production code

in Python and several other languages. He has

worked as a software engineer primarily on the

backend for web and mobile services. He has

developed, deployed, and maintained small

to large projects in production that are being

loved and used by millions of users. He has

completed these projects with small to large

teams in different professional environments for well-known software

companies around the world. He is also a passionate advocate of open

source and continuously contributes to projects such as Zulip Chat and

Black. Additionally, he works with nonprofit organizations and contributes

to their software projects on a volunteer basis.

Sunil is a frequent speaker at various meetups and conferences and

has given frequent talks about Python.

You can visit his web site about software engineering, tools, and

techniques. On top of that, you can reach out to him by e-mail or follow

him on social media.

Web: https://softwareautotools.com/

E-mail: snlkapil@gmail.com

Twitter: @snlkapil (https://twitter.com/snlkapil)

LinkedIn: https://www.linkedin.com/in/snlkapil/

GitHub: https://github.com/skapil

https://softwareautotools.com/
https://twitter.com/snlkapil
https://www.linkedin.com/in/snlkapil/
https://github.com/skapil

xi

About the Technical Reviewer

Sonal Raj (@_sonalraj) has been an author,

engineer, mentor, and avid Pythonista for more

than 10 years. He is a Goldman Sachs alumnus

and a former research fellow at the Indian

Institute of Science. He is an integral part of the

financial technology industry with expertise

in building trading algorithms and low latency

systems. He is an open source developer and

community member.

Sonal has master’s degrees in information technology and business

administration. His domains of research include distributed systems,

graph databases, and education technology. He is an active member of the

Institution of Engineering and Technology (IET), London, and a lifetime

member of the Indian Society for Technical Education.

He is the author of the book Neo4j High Performance, about the

functioning and use of the graph database Neo4j. He is also the author of

the Interview Essentials series of books focusing on technical interview

methodologies. Sonal is also an editor at People Chronicles Media, a

reviewer for the Journal of Open Source Software (JOSS), and a founder of

the Yugen Foundation.

https://twitter.com/_sonalraj

xiii

Acknowledgments

First, I would like to thank Nikhil of Apress. Nikhil contacted me in October

2018 and persuaded me to write a book with Apress Media LLC. Next, I

would like to thank Divya Modi, coordinating editor at Apress, for her great

support while writing the chapters and her great patience during my busy

schedule. In addition, many thanks to Rita Fernando, development editor

at Apress, who provided valuable suggestions during the review process

that made the book more valuable for Python developers. Next, I would

like to thank Sonal Raj for critically examining every single chapter. You

found many issues that I would never have found.

Of course, I would like to say a big thank-you to the whole production

team at Apress for supporting me.

Last but not least, I would like to thank my beloved and unique family,

especially for their understanding that a book project takes a great deal of

time. Thanks to my mother, Leela Kapil, and father, Harish Chandra Kapil,

for all the encouragement and support.

My beloved wife Neetu: I deeply appreciate all your encouragement

and support while writing this book; it has made all the difference. You are

awesome!

xv

Introduction

Python is one of the most popular languages today. Relatively new

fields such as data science, AI, robotics, and data analytics, along with

traditional professions such as web development and scientific research,

are embracing Python. It’s increasingly important for programmers writing

code in a dynamic language like Python to make sure that the code is high-

quality and error-free. As a Python developer, you want to make sure that

the software you are building makes your users happy without going over

budget or never releasing.

Python is a simple language, yet it’s difficult to write great code because

there aren’t many resources that teach how to write better Python code.

Currently lacking in the Python world are code consistency, patterns,

and an understanding of good Pythonic code among developers. For every

Python programmer, great Pythonic code has a different meaning. The

reason for this could be that Python is being used in so many areas that it’s

difficult to reach consensus among developers about specific patterns. In

addition, Python doesn’t have any books about clean code like Java and

Ruby do. There have been attempts to write those kinds of books to bring

clarity to good Python practices, but those attempts have been few and far

between, and quickly frankly, they haven’t been high-quality.

The main goal of this book is to provide tips to Python developers of

various levels so they can write better Python software and programs. This

book gives you various techniques irrespective of the field you use Python

in. This book covers all levels of Python, from basic to advanced, and

shows you how to make your code more Pythonic.

Remember, writing software is not only science but art, and this book

will teach you how to become a better Python programmer.

1© Sunil Kapil 2019
S. Kapil, Clean Python, https://doi.org/10.1007/978-1-4842-4878-2_1

CHAPTER 1

Pythonic Thinking
The thing that sets Python apart from other languages is that it is a simple

language with a lot of depth. Because it’s simple, it’s much more important

to write code cautiously, especially in a big project, because it’s easy for the

code to become complex and bloated. Python has a philosophy called the

Zen of Python, which emphasizes simplicity over complexity.1

In this chapter, you will learn about some common practices that can

help you to make your Python code more readable and simpler. I will cover

some well-known practices, as well as some that might not be so well-

known. While writing your next project or working on your current project,

make sure that you are well aware of these Python practices so you can

improve your code.

Note  In the Python world, following the Zen of Python philosophy
makes your code “Pythonic.” There are lots of good practices that
have been recommended in the Python official documentation to
make your code cleaner and more readable. Reading the PEP8
guide will surely help you to understand why some practices are
recommended.

1�https://www.python.org/dev/peps/pep-0020/

https://www.python.org/dev/peps/pep-0020/

2

�Write Pythonic Code
Python has some official documentation called PEP8 that defines best

practices for writing Pythonic code. This style guide has evolved over time.

You can check it out at https://www.python.org/dev/peps/pep-0008/.

In this chapter, you will focus on some common practices defined in

PEP8 and see how following those rules can benefit you as a developer.

�Naming
As a developer, I have worked with different languages such as Java,

NodeJS, Perl, and Golang. All these languages have naming conventions

for variables, functions, classes, and so on. Python also recommends using

naming conventions. I will discuss some of the naming conventions in this

section that you should follow while writing Python code.

�Variables and Functions

You should name functions and variables in lowercase with the words

separated by underscores, as this will improve readability. See Listing 1-1.

Listing 1-1.  Variable Names

names = "Python" # variable name

job_title = "Software Engineer" �# variable name

with underscore

populated_countries_list = [] �# variable name

with underscore

You should also consider using nonmangling method names in your

code and using one underscore (_) or two underscores (__). See Listing 1-2.

Chapter 1 Pythonic Thinking

https://www.python.org/dev/peps/pep-0008/

3

Listing 1-2.  Nonmangling Names

_books = {} �# variable name to define

private

__dict = [] �# prevent name mangling with

python in-build lib

You should use one underscore (_) as a prefix for the internal variable

of a class, where you don’t want an outside class to access the variable.

This is just a convention; Python doesn’t make a variable with a single

underscore prefix private.

Python has a convention for functions as well, as shown in Listing 1-3.

Listing 1-3.  Normal Function Names

function name with single underscore

def get_data():

def calculate_tax_data():

The same rules apply to private methods and methods where you want

to prevent name mangling with built-in Python functions. See Listing 1-4.

Listing 1-4.  Function Names to Represent Private Methods and

Nonmangling

Private method with single underscore

def _get_data():

Chapter 1 Pythonic Thinking

4

double underscore to prevent name mangling with other

in-build functions

def __path():

In addition to following these naming rules, it’s important to use

specific names instead of having obscure names for your functions or

variables.

Let’s consider a function that returns a user object when provided with

a user ID. See Listing 1-5.

Listing 1-5.  Function Names

Wrong Way

def get_user_info(id):

 db = get_db_connection()

 user = execute_query_for_user(id)

 return user

Right way

def get_user_by(user_id):

 db = get_db_connection()

 user = execute_user_query(user_id)

 return user

Here, the second function, get_user_by, makes sure you are using

the same vocabulary for passing a variable, which gives the right context

for the function. The first function, get_user_info, is ambiguous because

the parameter id could mean anything. Is it a user table index ID or a user

payment ID or any other ID? This kind of code can create confusion for

other developers using your API. To fix this, I changed two things in the

second function; I changed the function name and passed an argument

name, which makes code much more readable. When reading the second

Chapter 1 Pythonic Thinking

5

function, you know right away the purpose of the function and expected

value from the function.

As a developer, it’s your responsibility to think carefully while naming

your variables and functions to make the code readable for other developers.

�Classes

The name of classes should be in camel case like in most other languages.

Listing 1-6 shows a simple example.

Listing 1-6.  Class Names

class UserInformation:

 def get_user(id):

 db = get_db_connection()

 user = execute_query_for_user(id)

 return user

�Constants

You should define constant names with capital letters. Listing 1-7 shows an

example.

Listing 1-7.  Constant Names

TOTAL = 56

TIMOUT = 6

MAX_OVERFLOW = 7

�Function and Method Arguments

Function and method arguments should follow the same rules as

variables and method names. A class method has self as the first keyword

argument compared to functions that don’t pass self as a keyword

parameter. See Listing 1-8.

Chapter 1 Pythonic Thinking

6

Listing 1-8.  Function and Method Arguments

def calculate_tax(amount, yearly_tax):

class Player:

 def get_total_score(self, player_name):

�Expressions and Statements in Your Code
At some point you might have tried to write code in a clever way to save

some lines or impress your colleagues. However, there are costs to writing

clever code: readability and simplicity. Let’s take a look at the piece of code

in Listing 1-9, which sorts a nested dictionary.

Listing 1-9.  Sort a Nested Dictionary

users = [{"first_name":"Helen", "age":39},

 {"first_name":"Buck", "age":10},

 {"first_name":"anni", "age":9}

]

users = sorted(users, key=lambda user: user["first_name"].

lower())

What’s the problem with this code?

Well, you are sorting this nested dictionary by first_name using a

lambda in one line, which makes it looks like a clever way to sort the

dictionary instead of using a loop.

However, it’s not easy to understand this code at first glance, especially

for new developers, because lambdas are not an easy concept to grasp

because of their quirky syntax. Of course, you are saving lines here by

using a lambda because it allows you to sort the dictionary in clever way;

Chapter 1 Pythonic Thinking

7

however, this doesn’t make this code correct or readable. This code fails to

address issues such as missing keys or if the dictionary is correct or not.

Let’s rewrite this code using a function and try to make the code more

readable and correct; the function will check for all unexpected values and

is much simpler to write. See Listing 1-10.

Listing 1-10.  Sorted Dictionary by Function

users = [{"first_name":"Helen", "age":39},

 {"first_name":"Buck", "age":10},

 {"name":"anni", "age":9}

]

def get_user_name(users):

"""Get name of the user in lower case"""

 return users["first_name"].lower()

def get_sorted_dictionary(users):

"""Sort the nested dictionary"""

if not isinstance(users, dict):

 raise ValueError("Not a correct dictionary")

if not len(users):

 raise ValueError("Empty dictionary")

users_by_name = sorted(users, key=get_user_name)

return users_by_name

As you can see, this code checks for all possible unexpected values,

and it’s much more readable than the previous one-line code. One-line

code saves you lines but injects a lot of complexity into your code. That

doesn’t necessarily mean that one-line code is bad; the point I am trying

to make here is that if your one-line code makes it harder to read the code,

please avoid it.

Chapter 1 Pythonic Thinking

8

You have to make those decisions consciously while writing code.

Sometimes writing one-line code makes your code readable, and

sometimes not.

Let’s consider one more example, where you are trying to read a CSV

file and count the number of lines processed by the CSV file. The code in

Listing 1-11 shows you why it’s important to make your code readable and

how naming plays a big role in making your code readable.

Breaking code into helper function helps to make complex code

readable and easy to debug when you hit a specific error in your

production code.

Listing 1-11.  Reading a CSV File

import csv

with open("employee.csv", mode="r") as csv_file:

 csv_reader = csv.DictReader(csv_file)

 line_count = 0

 for row in csv_reader:

 if line_count == 0:

 print(f'Column names are {", ".join(row)}')

 line_count += 1

 print(f'\t{row["name"]} salary: {row["salary"]}'

 f'and was born in {row["birthday month"]}.')

 line_count += 1

 print(f'Processed {line_count} lines.')

Here the code is doing multiple things in the with statement. To make

it more readable, you can pull out the code with process salary from the

CSV file into a different function to make it less error prone. It’s difficult to

debug this kind of code when lots of things are going on in a few lines, so

you’ll want to make sure that you have clear goals and boundaries when

defining your function. So, let’s break it down little further in Listing 1-12.

Chapter 1 Pythonic Thinking

9

Listing 1-12.  Reading a CSV File, with More Readable Code

import csv

with open('employee.txt', mode='r') as csv_file:

 csv_reader = csv.DictReader(csv_file)

 line_count = 0

 process_salary(csv_reader)

def process_salary(csv_reader):

"""Process salary of user from csv file."""

 for row in csv_reader:

 if line_count == 0:

 print(f'Column names are {", ".join(row)}')

 line_count += 1

 print(f'\t{row["name"]} salary: {row["salary"]}')

 line_count += 1

 print(f'Completed {line_count} lines.')

Here you created a helper function instead of writing everything in

the with statement. This makes it clear to the reader what actually the

process_salary function does. If you want to handle a specific exception

or want to read more data from a CSV file, you can further break down this

function to follow the single responsibility principle.

�Embrace the Pythonic Way to Write Code
PEP8 has some recommendations to follow when you write your code that

will make your Python code much cleaner and more readable. Let’s look

some of those practices.

Chapter 1 Pythonic Thinking

10

�Prefer join Instead of In-Place String Concatenation

Wherever you are concerned about performance in your code, use the "".

join() method instead of in-place string concatenation, as in a += b or

a = a + b. The "".join() method guarantees leaner time concatenation

across various Python implementations.

The reason for this is that when you use join, Python allocates

memory for the joined string only one time, but when you concatenate

strings, Python has to allocate new memory for each concatenation

because the Python string is immutable. See Listing 1-13.

Listing 1-13.  Using the join Method

first_name = "Json"

last_name = "smart"

Not a recommended way to concatenate string

full_name = first_name + " " + last_name

More performant and improve readability

" ".join([first_name, last_name])

�Consider Using is and is not Whenever You Need
to Compare with None

Always use is or is not for comparison with None. Keep this in mind while

writing code such as the following:

if val: # Will work when val is not None

Make sure to keep in mind that you are considering val to be None and

not some other container type such as dict or set. Let’s look further to

understand where this kind of code can surprise you.

Chapter 1 Pythonic Thinking

11

In the previous line of code, val is an empty dictionary; however, val

is considered false, which might not want in your code, so be careful while

writing this kind of code.

Don’t do this:

val = {}

if val: # This will be false in python context

Instead, write code as explicit as possible to make your code less error

prone.

Do this:

if val is not None: # Make sure only None value will be false

�Prefer Using is not Instead of not … is

There is no difference between using is not and using not ... is.

However, the is not syntax is more readable compared to not ... is.

Don’t do this:

if not val is None:

Do this:

if val is not None:

�Consider Using a Function Instead of a Lambda When
Binding to an Identifier

When you are assigning a lambda expression to a specific identifier,

consider using a function. lambda is a keyword in Python to perform one-

line operations; however, using lambda for writing a function might not be

as good a choice as writing a function using def.

Chapter 1 Pythonic Thinking

12

Don’t do this:

square = lambda x: x * x

Do this:

def square(val):

 return val * val

The def square(val) function object is more useful for string

representation and traceback than the generic <lambda>. This kind of use

eliminates the usefulness of lambdas. Consider using lambdas in larger

expressions so you don’t impact the readability of code.

�Be Consistent with the return Statement

If the function is expected to return a value, make sure all the execution

paths of that function return the value. It’s good practice to make sure

you have a return expression in all the places your function exits. But if a

function is expected to simply perform an action without returning a value,

Python implicitly returns None as the default from the function.

Don’t do this:

def calculate_interest(principle, time rate):

 if principle > 0:

 return (principle * time * rate) / 100

def calculate_interest(principle, time rate):

 if principle < 0:

 return

 return (principle * time * rate) / 100

Chapter 1 Pythonic Thinking

13

Do this:

def calculate_interest(principle, time rate):

 if principle > 0:

 return (principle * time * rate) / 100

 else:

 return None

def calculate_interest(principle, time rate):

 if principle < 0:

 return None

 return (principle * time * rate) / 100

�Prefer Using ““.startswith() and ””.endswith()

When you need to check prefixes or suffixes, consider using "".

startswith() and "".endswith() instead of slicing. slice is a really

useful method for slicing a string, but might get better performance when

you are slicing a big string or performing string operations. However, if

you are doing something as simple as checking for a prefix or suffix, go for

either startswith or endswith because it makes it obvious to the reader

that you are checking for a prefix or suffix in a string. In other words, it

makes your code more readable and cleaner.

Don’t do this:

Data = "Hello, how are you doing?"

if data.startswith("Hello")

Do this:

data = "Hello, how are you doing?"

if data[:5] == "Hello":

Chapter 1 Pythonic Thinking

14

�Use the isinstance() Method Instead of type()
for Comparison

When you are comparing two objects’ types, consider using isinstance()

instead of type because isinstance() is true for subclasses. Consider a

scenario where you are passing a data structure that is the subclass of a

dict like orderdict. type() will fail for that specific type of data structure;

however, isinstance() will recognize that it’s the subclass of dict.

Don’t do this:

user_ages = {"Larry": 35, "Jon": 89, "Imli": 12}

type(user_ages) == dict:

Do this:

user_ages = {"Larry": 35, "Jon": 89, "Imli": 12}

if isinstance(user_ages, dict):

�Pythonic Way to Compare Boolean Values

There are multiple ways to compare Boolean values in Python.

Don’t do this:

if is_empty = False

if is_empty == False:

if is_empty is False:

Do this:

is_empty = False

if is_empty:

�Write Explicit Code for Context Manager

When you are writing code in the with statement, consider using a

function to do any operation that’s different from acquire and release.

Chapter 1 Pythonic Thinking

15

Don’t do this:

class NewProtocol:

 def __init__(self, host, port, data):

 self.host = host

 self.port = port

 self.data = data

 def __enter__(self):

 self._client = Socket()

 self._client.connect((self.host,

 self.port))

 self._transfer_data(data)

 def __exit__(self, exception, value, traceback):

 self._receive_data()

 self._client.close()

 def _transfer_data(self):

 def _receive_data(self):

con = NewProtocol(host, port, data)

with con:

 transfer_data()

Do this:

#connection

class NewProtocol:

 def __init__(self, host, port):

 self.host = host

 self.port = port

Chapter 1 Pythonic Thinking

16

 def __enter__(self):

 self._client = socket()

 self._client.connect((self.host,

 self.port))

 def __exit__(self, exception, value, traceback):

 self._client.close()

 def transfer_data(self, payload):

 ...

 def receive_data(self):

 ...

with connection.NewProtocol(host, port):

 transfer_data()

In the second statement, the __enter__ and __exit__ methods of

Python are doing some stuff besides opening and closing the connection.

It’s better to be explicit and write different functions to do the other

operations that aren’t acquiring and closing the connection.

�Use Linting Tools to Improve Python Code

Code linters are important tools to format your code consistently. Having a

consistent code format across a project is valuable.

Linting tools basically solve these problems for you:

•	 Syntax errors

•	 Structure such as unused variables or passing correct

arguments to function

•	 Pointing out violations of the PEP8 guidelines

Linting tools make you much more productive as a developer because

they save you a lot of time by hunting down issues at runtime. There are

multiple linting tools available for Python. Some of the tools handle a

Chapter 1 Pythonic Thinking

17

specific part of linting like the docstring style of code quality, and popular

python liniting tools like flak8/pylint check for all PEP8 rules and tools like

mypy check specifically for python typing.

Either you can integrate all of them in your code or you can use one

that covers the standard checks to make sure you are following the PEP8

style guide. Most notable are among them are Flake8 and Pylint. Whatever

tool you go for, make sure it adheres to the rules of PEP8.

There are a few features to look for in linting tools:

•	 PEP8 rules adherence

•	 Imports ordering

•	 Naming (Python naming convention for variables,

functions, classed, modules, files, etc.)

•	 Circular imports

•	 Code complexity (check the complexity of function by

looking number of lines, loops and other parameters)

•	 Spell-checker

•	 Docstring-style checks

There are different ways you can run linters.

•	 At programming time using an IDE

•	 At commit time using pre-commit tools

•	 At CI time by integrating with Jenkins, CircleCI,

and so on

Note  These are some of the common practices that will definitely
improve your code. If you want to take maximum advantage of
Python good practices, please take a look at the PEP8 official
documentation. Also, reading good code in GitHub will help you to
understand how to write better Python code.

Chapter 1 Pythonic Thinking

18

�Using Docstrings
Docstrings are a powerful way to document your code in Python.

Docstrings are usually written at the start of methods, classes, and

modules. A docstring becomes the __doc__ special attribute of that object.

The Python official language recommends using """Triple double

quotes""" to write docstrings. You can find these practices in the PEP8

official documentation. Let’s briefly talk about some best practices for

writing docstrings in your Python code. See Listing 1-14.

Listing 1-14.  Function with a Docstring

def get_prime_number():

 """Get list of prime numbers between 1 to 100.""""

Python recommends a specific way to write docstrings. There are

different ways to write docstrings, which we will discuss later in this

chapter; however, all those different types follow some common rules.

Python has defined the rules as follows:

•	 Triple quotes are used even if the string fits in one line.

This practice is useful when you want to expand.

•	 There should not be any blank line before or after the

string in triple quotes.

•	 Use a period (.) to end the statement in the docstring.

Similarly, Python multiline docstring rules can be applied to write

multiline docstrings. Writing docstrings on multiple lines is one way to

document your code in a bit more descriptive way. Instead of writing

comments on every line, you can write descriptive docstrings in your Python

code by leveraging Python multiline docstrings. This also helps other

Chapter 1 Pythonic Thinking

19

developers to find the documentation in the code itself instead of referring

to documentation that is long and tiresome to read. See Listing 1-15.

Listing 1-15.  Multiline Docstring

def call_weather_api(url, location):

"""Get the weather of specific location.

Calling weather api to check for weather by using weather api

and location. Make sure you provide city name only, country and

county names won't be accepted and will throw exception if not

found the city name.

:param url: URL of the api to get weather.

:type url: str

:param location: Location of the city to get the weather.

:type location: str

:return: Give the weather information of given location.

:rtype: str

"""

There are a few things to notice here.

•	 The first line is a brief description of the function or

class.

•	 The end of the line has a period.

•	 There is a one-line gap between the brief description

and the summary in docstrings.

You can write the same function if you are using Python 3 with the

typing module, as shown in Listing 1-16.

Chapter 1 Pythonic Thinking

20

Listing 1-16.  Multiline Docstring with typing

def call_weather_api(url: str, location: str) -> str:

"""Get the weather of specific location.

Calling weather api to check for weather by using weather api

and location. Make sure you provide city name only, country and

county names won't be accepted and will throw exception if not

found the city name.

"""

You don’t need to write the parameter information if you are using the

type in Python code.

As I’ve mentioned about different docstring types, new styles of

docstrings have been introduced over the years by different sources. There

is no better or recommended way to write a docstring. However, make sure

you use the same style throughout the project for docstrings so they have

consistent formatting.

There are four different ways to write a docstring.

•	 Here’s a Google docstrings example:

"""Calling given url.

Parameters:

 url (str): url address to call.

Returns:

 dict: Response of the url api.

"""

•	 Here is a restructured text example (the official Python

documents recommend this):

""" Calling given url.

:param url: Url to call.

:type url: str

Chapter 1 Pythonic Thinking

21

:returns: Response of the url api.

:rtype: dict

"""

•	 Here is a NumPy/SciPy docstrings example:

""" Calling given url.

Parameters

url : str

 URL to call.

Returns

dict

 Response of url

"""

•	 Here’s an Epytext example:

"""Call specific api.

@type url: str

@param file_loc: Call given url.

@rtype: dict

@returns: Response of the called api.

"""

�Module-Level Docstrings
A module-level docstring should be put at the top of the file to describe the

use of the module briefly. These comments should be before the import as

well. A module docstring should focus on the goal of the module, including

Chapter 1 Pythonic Thinking

22

all the methods/classes in the module, instead of talking about a specific

method or class. You can still specify a specific method or class briefly, if

you think that the method or class has something that needs to be known

at a high level by the client before using the module. See Listing 1-17.

Listing 1-17.  Module Docstring

"""

This module contains all of the network related requests. This

module will check for all the exceptions while making the

network calls and raise exceptions for any unknown exception.

Make sure that when you use this module, you handle these

exceptions in client code as:

NetworkError exception for network calls.

NetworkNotFound exception if network not found.

"""

import urllib3

import json

....

You should consider doing the following when writing a docstring for a

module:

•	 Write a brief description of the purpose of module.

•	 If you want to specify anything that could be useful for

reader to know about module, like in Listing 1-15, you

can add exception information, but take care not to go

into too much detail.

•	 Consider the module docstring as a way to provide

descriptive information about the module, without

going into the detail of every function or class

operation.

Chapter 1 Pythonic Thinking

23

�Make the Class Docstring Descriptive
The class docstring is mainly used to briefly describe the use of the class

and its overall goal. Let’s look at some examples to see how you can write

class docstrings. See Listing 1-18.

Listing 1-18.  Single-Line Docstring

class Student:

"""This class handle actions performed by a student."""

 def __init__(self):

 pass

This class has a one-line docstring, which briefly talks about the

Student class. Make sure that you follow all the rules for one line, as

described previously.

Let’s consider the multiline docstring for a class that’s shown in

Listing 1-19.

Listing 1-19.  Multiline Class Docstring

class Student:

 """Student class information.

 This class handle actions performed by a student.

 �This class provides information about student full name,

age, roll-number and other information.

 Usage:

 import student

 student = student.Student()

 student.get_name()

Chapter 1 Pythonic Thinking

24

 >>> 678998

 """

 def __init__(self):

 pass

This class docstring is multiline; we wrote little more about the usage

of Student class and how to use it.

�Function Docstrings
Function docstrings can be written after a function or at the top of a

function. Function docstrings mostly focus on describing the function’s

operation, and if you are not using Python typing, consider including

parameters as well for See Listing 1-20 for example.

Listing 1-20.  Function Docstring

def is_prime_number(number):

 """Check for prime number.

 �Check the given number is prime number or not by checking

against all the numbers less the square root of given number.

 :param number: Given number to check for prime.

 :type number: int

 :return: True if number is prime otherwise False.

 :rtype: boolean

 """

 ...

Chapter 1 Pythonic Thinking

25

�Some Useful Docstring Tools
There are plenty of docstrings tools for Python. Docstring tools help to

document the Python code by converting docstrings into HTML-formatted

document files. These tools also help you update the document by running

simple commands instead of manually maintaining the document. Making

them part of your development flow makes them much more useful in the

long run.

There are a few useful documentation tools. Every documentation

tool has different goals, so which one you choose will depend upon your

specific use case.

•	 Sphinx: http://www.sphinx-doc.org/en/stable/

This is the most popular documentation tool for

Python. This tool will autogenerate Python documents.

It can generate multiple-format documentation files.

•	 Pycco: https://pycco-docs.github.io/pycco/

This is quick way to generate documentation for your

Python code. The main feature of this tool is to display

code and documentation side-by-side.

•	 Read the docs: https://readthedocs.org/

This is a popular tool in the open source community.

Its main feature is to build, version, and host your docs

for you.

•	 Epydocs: http://epydoc.sourceforge.net/

This tool generates API documentation for Python

modules based on their docstrings.

Chapter 1 Pythonic Thinking

http://www.sphinx-doc.org/en/stable/
https://pycco-docs.github.io/pycco/
https://readthedocs.org/
http://epydoc.sourceforge.net/

26

Using these tools will make it easier to maintain your code in the long

run and will help you keep a consistent format for your code documentation.

Note  Docstrings are a great feature of Python and can make it
really easy to document your code. Starting to use docstrings in your
code as early as possible will make sure that you don’t need to invest
much time later when your project becomes much more mature with
thousands of lines of code.

�Write Pythonic Control Structures
Control structures are fundamental parts of any programming language,

and it’s true for Python as well. Python has a number of ways to write

the control structure, but there are some best practices that will keep the

Python code cleaner. We will look at these Python best practices for control

structures in this section.

�Use List Comprehensions
List comprehension is a way of writing code to solve an existing problem

in a similar way as python for loop does however it allow to do that inside

the list with or without if condition. There are multiple ways in Python

to derive a list from another list. The main tools in Python for doing

this are the filter and map methods. However, list comprehension is

recommended way to do that as it makes your code much more readable

compare to other options like map and filter.

In this example, you are trying to find the square of numbers with a

map version:

numbers = [10, 45, 34, 89, 34, 23, 6]

square_numbers = map(lambda num: num**2, num)

Chapter 1 Pythonic Thinking

27

Here is a list comprehension version:

square_numbers = [num**2 for num in numbers]

Let’s look at another example where you use a filter for all true values.

Here’s the filter version:

data = [1, "A", 0, False, True]

filtered_data = filter(None, data)

Here is a list comprehension version:

filtered_data = [item for item in filter if item]

As you might have noticed, the list comprehension version is much

more readable compared to the filter and map versions. The official

Python documentation also recommends that you use list comprehension

instead of filter and map.

If you don’t have a complex condition or complex computation in the

for loop, you should consider using list comprehension. But if you are

doing many things in a loop, it’s better to stick with a loop for readability

purposes.

To further illustrate the point of using list comprehension over a for

loop, let’s look at an example where you need to identify a vowel from a list

of characters.

list_char = ["a", "p", "t", "i", "y", "l"]

vowel = ["a", "e", "i", "o", "u"]

only_vowel = []

for item in list_char:

 if item in vowel:

 only_vowel.append(item)

Here’s an example of using list comprehension:

[item for item in list_char if item in vowel]

Chapter 1 Pythonic Thinking

28

As you can see, this example is much more readable when using

list comprehension compared to using a loop but with fewer lines of

code. Also, a loop has an extra performance cost because you need to

append the item into the list each time, which you don’t need to do in list

comprehension.

Similarly, the filter and map functions have an extra cost to call the

functions compared to list comprehension.

�Don’t Make Complex List Comprehension
You also want to make sure that the list comprehension is not too complex,

which can hamper your code readability and make it prone to errors.

Let’s consider another example of using list comprehension. List

comprehension is good for at most two loops with one condition. Beyond

that, it might start hampering the readability of the code.

Here’s an example where you want to transpose this matrix:

matrix = [[1,2,3],

 [4,5,6],

 [7,8,9]]

and convert it to this one:

matrix = [[1,4,7],

 [2,5,8],

 [3,6,9]]

Using list comprehension, you might write it as follows:

return [[matrix[row][col] for row in range(0, height)] for

col in range(0,width)]

Chapter 1 Pythonic Thinking

29

Here the code is readable, and it makes sense to use list

comprehension. You might even want to write the code in a better format

such as the following:

return [[matrix[row][col]

 for row in range(0, height)]

 for col in range(0,width)]

You can consider using loops instead of list comprehension when you

have multiple if condition as follows:

ages = [1, 34, 5, 7, 3, 57, 356]

old = [age for age in ages if age > 10 and age < 100 and age is

not None]

Here, a lot of things are happening on one line, which is hard to read

and error prone. It might be a good idea to use a for loop here instead of

using list comprehension.

You can consider writing this code as follows:

ages = [1, 34, 5, 7, 3, 57, 356]

old = []

for age in ages:

 if age > 10 and age < 100:

 old.append(age)

print(old)

As you can see, this has more lines of code, but it’s readable and

cleaner.

So, a good rule of thumb is to start with list comprehension, and when

expressions start getting complex or readability starts getting hampered,

convert to using a loop.

Chapter 1 Pythonic Thinking

30

Note  Using list comprehension wisely can improve your code;
however, overuse of list comprehension can hamper the code’s
readability. So, refrain from using list comprehension when you are
going for complex statements, which may be more than one condition
or loop.

�Should You Use a Lambda?
You can consider using a lambda where it helps in the expression instead

of using it as a replacement of a function. Let’s consider the example in

Listing 1-21.

Listing 1-21.  Using a Lambda Without Assigning

data = [[7], [3], [0], [8], [1], [4]]

def min_val(data):

"""Find minimum value from the data list."""

 return min(data, key=lambda x:len(x))

Here the code is using a lambda as a throwaway function to find a

minimum value. However, I would advise you not to use a lambda as an

anonymous function like this:

min_val = min(data, key=lambda x: len(x))

Here, min_val is being calculated using a lambda expression. Writing a

lambda expression as a function duplicates the functionality of def, which

violates the Python philosophy of doing things in one and only one way.

The PEP8 document says this regarding lambdas:

Always use a def statement instead of an assignment statement that
binds a lambda expression directly to a name.

Yes:

Chapter 1 Pythonic Thinking

31

def f(x): return 2*x

No:

f = lambda x: 2*x

The first form means that the name of the resulting function object is
specifically ‘f ’ instead of the generic ‘<lambda>’. This is more useful
for tracebacks and string representations in general. The use of the
assignment statement eliminates the sole benefit a lambda expres-
sion can offer over an explicit def statement (i.e. that it can be
embedded inside a larger expression)

�When to Use Generators vs. List Comprehension
The main difference between generators and list comprehension is that list

comprehension keeps the data in memory while generators do not.

Use list comprehension in the following cases:

•	 When you need to iterate over the list multiple times.

•	 When you need to list methods to play with data that is

not available in the generator

•	 When you don’t have large data to iterate over and you

think keeping data in memory won’t be an issue

Let’s say you want to get the line of a file from a text file, as shown in

Listing 1-22.

Listing 1-22.  Read File from a Document

def read_file(file_name):

"""Read the file line by line."""

 fread = open(file_name, "r")

 data = [line for line in fread if line.startswith(">>")]

 return data

Chapter 1 Pythonic Thinking

32

Here, the file could be so big that having that many lines in a list could

impact the memory and make your code slow. So, you might want to

consider using an iterator over a list. See Listing 1-23 for an example.

Listing 1-23.  Read a File from a Document Using Iterators

def read_file(file_name):

"""Read the file line by line."""

 with open(file_name) as fread:

 for line in fread:

 yield line

for line in read_file("logfile.txt"):

 print(line.startswith(">>")

In Listing 1-23, instead of pushing data into memory using list

comprehension, you are reading each line at a time and taking action.

However, list comprehension can be passed around for further action to

see whether it has found all the lines that start with >>>, while a generator

needs to run each time to find the line that starts with >>>.

Both are great features of Python, and using them as described will

make your code performant.

�Why Not to Use else with Loops
Python loops have an else clause. Basically, you can have an else clause

after Python for or while loops in your code. The else clause in the code

runs only when control exits normally from the loop. If control exists in a

loop with a break keyword, then control won’t enter into the else section

of code.

Having an else clause with loops is kind of confusing, which makes

lots of developers avoid this feature. This is understandable considering

the nature of the if/else condition in normal flow.

Chapter 1 Pythonic Thinking

33

Let’s look at the simple example in Listing 1-24; the code is trying to

loop over a list and has an else clause outside and right after the loop.

Listing 1-24.  else Clause with for Loop

for item in [1, 2, 3]:

 print("Then")

else:

 print("Else")

Result:

 >>> Then

 >>> Then

 >>> Then

 >>> Else

At first glance, you might think that it should print only three Then

clauses and not Else as that would be skipped in a normal scenario of

an if/else block. This is a natural way to look at the logic of the code.

However, that assumption is not correct here. This gets more confusing if

you use the while loop, as shown in Listing 1-25.

Listing 1-25.  else Clause with the for Loop

x = [1, 2, 3]

while x:

 print("Then")

 x.pop()

else:

 print("Else")

Chapter 1 Pythonic Thinking

34

The result is as follows:

 >>> Then

 >>> Then

 >>> Then

 >>> Else

Here the while loop runs until the list is not empty and then runs the

else clause.

There is a reason to have this functionality in Python. One main use

case could be to have an else clause right after the for and while loops to

perform an additional action once the loop has ended.

Let’s consider the example in Listing 1-26.

Listing 1-26.  else Clause with break

for item in [1, 2, 3]:

 if item % 2 = 0:

 break

 print("Then")

else:

 print("Else")

The result is as follows:

>>> Then

However, there are better ways to write this code instead of using

the else clause outside of the loop. You can use the else clause with the

break in the loop or without the break condition. However, there are

multiple ways to achieve the same result without using the else clause.

You should use the condition instead of else in loops as there is a risk of

misunderstanding the code by other developers, and it also a little harder

to understand the code at a glance. See Listing 1-27.

Chapter 1 Pythonic Thinking

35

Listing 1-27.  else Clause with break

flag = True

for item in [1, 2, 3]:

 if item % 2 = 0:

 flag = False

 break

 print("Then")

if flag:

 print("Else")

Result is as follows:

>>> Then

This code makes it easier to read and understand, and there is no

possibility of confusion while reading the code. The else clause is an

interesting approach to writing code; however, it might impact the code’s

readability, so avoiding it might be a better way to solve the problem.

�Why range Is Better in Python 3
If you have worked with Python 2, you might have used xrange. In Python 3,

xrange has been renamed to range with some extra features. range is

similar to xrange and generate an iterable.

>>> range(4)

range(0, 5) # Iterable

>>> list(range(4))

[0, 1, 2, 3, 4] # List

There are some new features in the range function of Python 3. The

main advantage of having a range compared to a list is that it doesn’t

keep data in memory. Compared to lists, tuples, and other Python data

Chapter 1 Pythonic Thinking

36

structure, range represents an immutable iterable object that always takes

the small and same amount of memory irrespective of the size of range

because it only stores start, stop, and step values and calculates values as

needed.

There are a couple of things you can do with range that are not

possible in xrange.

•	 You can compare the range data.

>>> range(4) == range(4)

True

>>> range(4) == range(5)

False

•	 You can slice.

>>> range(10)[2:]

range(2, 10)

>>> range(10)[2:7, -1)

range(2, 7, -1)

range has lot of new features, which you can check out here for more

detail: https://docs.python.org/3.0/library/functions.html#range.

Also, you can consider using range when you need to work on

numbers instead of lists of numbers in your code because it will be much

faster compared to lists.

It's also recommended that you use iterables in your loop as much as

possible when you are dealing with numbers because Python gives you a

method like range to do it easily.

Don’t do this:

for item in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]:

 print(item)

Chapter 1 Pythonic Thinking

https://docs.python.org/3.0/library/functions.html#range

37

Do this:

for item in range(10):

 print(item)

The first loop would be much costlier in term of performance, and if

this list happens to be large enough, it would make your code much slower

because of the memory situation and popping out the number from the

list.

�Raising Exceptions
Exceptions help you report errors in your code. In Python, exceptions are

handled by a built-in module. It’s important to have a good understanding

of exceptions. Understanding when and where to use them will make your

code less prone to errors.

Exceptions can expose errors in your code without much effort, so

never forget to add exceptions in your code. Exceptions help consumers of

your API or library understand the limitations of your code so they can put

good error mechanisms to use while using your code. Raising an exception

in the right place in your code immensely helps other developers to

comprehend your code and makes third-party customers happy while

using your API.

�Frequently Raised Exceptions
You might wonder when and where to raise exceptions in your Python

code.

I usually prefer to throw an exception whenever a fundamental

assumption of the current code block is found to be false. Python prefers

to have exceptions when you have a failure in your code. Even if you have a

continuous failure, you want to raise an exception for it.

Chapter 1 Pythonic Thinking

38

Let’s consider that you need to divide two numbers in Listing 1-28.

Listing 1-28.  Division of Numbers with Exceptions

def division(dividend, divisor):

"""Perform arithmetic division."""

 try:

 return dividend/divisor

 except ZeroDivisionError as zero:

 �raise ZeroDivisionError("Please provide greater than 0

value")

As you can see in this code, you are raising an exception whenever you

assume there might be a possibility of having errors in code. This helps the

calling code to assure that the code will get an error whenever you have

ZeroDivisionError in your code and handles it in different ways. See

Listing 1-29.

Listing 1-29.  Division Without Exceptions

result = division(10, 2)

What happens if we return None here as:

def division(dividend, divisor):

"""Perform arithmetic division."""

 try:

 return dividend/divisor

 except ZeroDivisionError as zero:

 return None

If the caller doesn’t handle the case where calling on the

division(dividend, divisor) method never fails even if you have

ZeroDivisionError in your code, and if you are returning None from

division(dividend, divisor) method in case of any exception, which could

Chapter 1 Pythonic Thinking

39

make difficult to diagnose in future when code size grows or the requirements

changes. It’s better to avoid returning None by division(divident, divisor)

function in case of any failure or exception to make it easier for caller to

understand what failed during the function execution. When we raise

exception, we let caller know upfront that input values are not correct and

need to provide the correct ones and we avoid any hidden bugs.

From a caller perspective, it’s simply more convenient to get an

exception rather than a return value, which is the Python style to indicate

that there is a failure.

Python’s credo is “It’s easier to ask forgiveness than permission.” This

means that you don’t check beforehand to make sure you won’t get an

exception; instead, if you get exception, you handle it.

Basically, you want to make sure that you raise an exception whenever

you think there is a possibility of failure in your code so the calling class

can handle them gracefully and not be taken by surprise.

In other words, if you think your code can’t be run reasonably and

hasn’t figured out the answer yet, consider throwing an exception.

�Leverage finally to Handle Exceptions
The code in finally always runs in Python. The finally keyword is useful

while handling exceptions, especially when you are dealing with resources.

You can use finally to make sure files or resources are closed or released,

regardless of whether an exception has been raised. This is true even if you

don’t catch the exception or don’t have specific exception to catch. See

Listing 1-30.

Listing 1-30.  finally Keyword Use

def send_email(host, port, user, password, email, message):

"""send email to specific email address."""

try:

Chapter 1 Pythonic Thinking

40

 server = smtlib.SMTP(host=host, port=port)

 server.ehlo()

 server.login(user, password)

 server.send_email(message)

finally:

 server.quite()

Here you are handling the exception using finally, which helps to

clean up the resources in a server connection, in case you have some kind

of exception during login or in send_email.

You can use the finally keyword to write the block where you close

the file, as shown in Listing 1-31.

Listing 1-31.  finally Keyword Use to close the file

def write_file(file_name):

"""Read given file line by line""""

 myfile = open(file_name, "w")

 try:

 myfile.write("Python is awesome") �# Raise

TypeError

 finally:

 myfile.close() �# Executed before TypeError

propagated

Here you are handling closing the file inside the finally block.

Whether or not you have an exception, the code in finally will always run

and close the file.

So, when you want to execute a certain code block irrespective of an

exception being present, you should prefer to use finally to do that. Using

finally will make sure you are handling your resources wisely and in

addition will make your code cleaner.

Chapter 1 Pythonic Thinking

41

�Create Your Own Exception Class
When you are creating an API or library or are working on a project where you

want to define your own exception to be consistent with the project or API, it’s

advisable to create your own exception class. This will help you immensely

while you are diagnosing or debugging your code. It also helps to make your

code cleaner because the caller will know why the error has been thrown.

Let’s assume you have to raise exception when you can’t find a user in

a database. You want to make sure that the exception class name reflects

the intention of the error. Having the name UserNotFoundError itself

explains why you have an exception and the intention.

You can define your own exception class in Python 3+ as shown in

Listing 1-32.

Listing 1-32.  Creating a Specific Exception Class

class UserNotFoundError(Exception):

"""Raise the exception when user not found."""

 def __init__(self, message=None, errors=None):

 �# Calling the base class constructor with the parameter

it needs

 super().__init__(message)

 # New for your custom code

 self.errors = errors

def get_user_info(user_obj):

"""Get user information from DB."""

 user = get_user_from_db(user_obj)

 if not user:

 �raise UserNotFoundException(f"No user found of this id:

{user_obj.id}")

get_user_info(user_obj)

>>> UserNotFoundException: No user found of this id: 897867

Chapter 1 Pythonic Thinking

42

You also want to make sure that when you create your own exception

class, those exception are descriptive and have well-defined boundaries.

You’ll want to use UserNotFoundException only in places where the code

can’t find a user, and you’ll want to inform the calling code that the user

information has not been found in the database. Having a specific set of

boundaries for custom-defined exceptions makes it easier to diagnose the

code. When you are looking at your code, you know exactly why the code

has thrown that specific exception.

You can also define a broader scope for an exception class with

naming, but the name should signify that it handles specific kinds of

cases, as shown in Listing 1-33. The listing shows ValidationError, which

you can use for multiple validation cases, but its scope is defined by all

exceptions that are validation-related.

Listing 1-33.  Creating a Custom Exception Class with a Broader

Scope

class ValidationError(Exception):

"""Raise the exception whenever validation failed.."""

 def __init__(self, message=None, errors=None):

 �# Calling the base class constructor with the parameter

it needs

 super().__init__(message)

 # New for your custom code

 self.errors = errors

This exception has a much broader scope compared to

UserNotFoundException. ValidationError can be raised whenever you

think that validation has been failed or specific input does not have a valid

input; however, the boundary is still defined by the validation context.

So, make sure that you know the scope of your exception and raise an

exception when an error is found in the scope of that exception class.

Chapter 1 Pythonic Thinking

43

�Handle Only Specific Exceptions
While catching the exception, it's recommended that you catch only

specific exceptions instead of using the except: clause.

except: or except Exception will handle each and every

exception, which can cause your code to hide critical bugs or

exceptions which you don't intend to.

Let’s take a look at the following code snippet, which uses the except

clause in the try/catch block to call the function get_even_list.

Don’t do this:

def get_even_list(num_list):

"""Get list of odd numbers from given list."""

 # This can raise NoneType or TypeError exceptions

 return [item for item in num_list if item%2==0]

numbers = None

try:

 get_even_list(numbers)

except:

 print("Something is wrong")

>>> Something is wrong

This kind of code hides an exception like NoneType or TypeError,

which is obviously a bug in your code, and the client application or service

will have a hard time figuring it out why they are getting message like

“Something is wrong.” Instead, if you raise a specific kind of exception

with a proper message, the API client would be thankful to you for your

diligence.

When you use except in your code, Python internally considers it as

except BaseException. Having a specific exception helps immensely,

especially in a larger code base.

Chapter 1 Pythonic Thinking

44

Do this:

def get_even_list(num_list):

"""Get list of odd numbers from given list."""

 # This can raise NoneType or TypeError exceptions

 return [item for item in num_list if item%2==0]

numbers = None

try:

 get_even_list(numbers)

except NoneType:

 print("None Value has been provided.")

except TypeError:

 �print("Type error has been raised due to non sequential

data type.")

Handling a specific exception helps while debugging or diagnosing

your issue. The caller will immediately know why the code has failed and

will force you to add code to handle specific exceptions. This also makes

your code less error prone for calling and caller code.

As per the PEP8 documentation, while handling exceptions, you

should use the except keyword in these cases:

•	 When the exception handler will be printing out or

logging the traceback. At least the user will be aware

that an error has occurred in that case.

•	 When the code needs to do some cleanup work but

then lets the exception propagate upward with raise.

try...finally can be a better way to handle this case.

Chapter 1 Pythonic Thinking

45

Note H andling a specific exception is one of the best practices
while writing code, especially in Python because it will help you save
a lot of time while debugging the code. Also, it will make sure that
your code fails fast instead hiding bugs in code.

�Watch Out for Third-Party Exceptions
While calling a third-party API, it’s really important that you are aware of

all the kind of exceptions thrown by a third-party library. Getting to know

all types of exceptions can help you to debug the issue later.

If you think that an exception don’t quite suit your use case, consider

creating your own exception class. While working with a third-party

library, you can create your own exception class if you want to rename the

exception name according to your application errors or want to add a new

message in a third-party exception.

Let’s take a look at the botocore client library in Listing 1-34.

Listing 1-34.  Creating a Custom Exception Class with a Broader

Scope

from botocore.exceptions import ClientError

ec2 = session.get_client('ec2', 'us-east-2')

try:

 parsed = ec2.describe_instances(InstanceIds=['i-badid'])

except ClientError as e:

 logger.error("Received error: %s", e, exc_info=True)

 # Only worry about a specific service error code

 if e.response['Error']['Code'] == 'InvalidInstanceID.NotFound':

 raise WrongInstanceIDError(message=exc_info, errors=e)

class WrongInstanceIDError(Exception):

Chapter 1 Pythonic Thinking

46

"""Raise the exception whenever Invalid instance found."""

 def __init__(self, message=None, errors=None):

 �# Calling the base class constructor with the parameter

it needs

 super().__init__(message)

 # New for your custom code

 self.errors = errors

Consider two things here.

•	 Adding logs whenever you find a specific error in a

third-party library will make it easier to debug issues in

a third-party library.

•	 Here you defined a new error class to define your

own exception. You might not want to do it for every

exception; however, if you think that creating a new

exception class will make your code cleaner and more

readable, then consider creating a new class.

Sometimes it’s hard to find the correct way to handle an exception

thrown by a third-party library/API. Getting to know at least some of the

common exceptions that are thrown by a third-party library will make it

easier for you when battling production bugs.

�Prefer to Have Minimum Code Under try
Whenever you handle an exception in your code, try to keep the code in

a try block at a minimum. This makes it clear to other developers which

part of the code is supposed to have a risk of throwing an error. Having a

minimum of code or the code that has the potential to throw an exception

in a try block also helps you to debug the issue more easily. Not having a

try/catch block for exception handling might be slightly faster; however,

if the exception is not handled, it might cause the application to fail. So,

Chapter 1 Pythonic Thinking

47

having good exception handling makes your code error free and can save

you millions in production.

Let’s look at an example.

Don’t do this:

def write_to_file(file_name, message):

"""Write to file this specific message."""

 try:

 write_file = open(file_name, "w")

 write_file.write(message)

 write.close()

 except FileNotFoundError as exc:

 FileNotFoundException("Please provide correct file")

If you look closely at the previous code, you will see that there are

opportunities to have different kinds of exceptions. One is FileNotFound

or IOError.

You can use a different exception on one line or write a different

exception in a different try block.

Do this:

def write_to_file(file_name, message):

"""Write to given file this specific message."""

 try:

 write_file = open(file_name, "w")

 write_file.write(message)

 write.close()

 except (FileNotFoundError, IOError) as exc:

 �FileNotFoundException(f"Having issue while writing into

file {exc}")

Even if there is no risk of having exceptions on other lines, it’s

preferable to write the minimum code in a try block as follows.

Don’t do this:

Chapter 1 Pythonic Thinking

48

try:

 data = get_data_from_db(obj)

 return data

except DBConnectionError:

 raise

Do this:

try:

 data = get_data_from_db(obj)

except DBConnectionError:

 raise

return data

This makes cleaner code and makes it clear that you are expecting an

exception only while accessing the get_data_from_db method.

�Summary
In this chapter, you learned some common practices that can help you to

make your Python code more readable and simpler.

Additionally, exception handling is one of the most important parts of

writing code in Python. Having a good understanding of exceptions helps

you to maintain your application. This is especially true in big projects

where you have more chances of having various kinds of production issues

because of the different moving parts of an application being worked on

by different developers. Having exceptions in the right places in your code

can save you a lot of time and money, especially when you are debugging

issues in production. Logging and exceptions are two of the most

important parts of any mature software application, so planning ahead

for them and considering them as a core part of software application

development will help you write more maintainable and readable code.

Chapter 1 Pythonic Thinking

49© Sunil Kapil 2019
S. Kapil, Clean Python, https://doi.org/10.1007/978-1-4842-4878-2_2

CHAPTER 2

Data Structures
Data structures are the basic building blocks of any programming

language. Having a good grasp of data structures saves you a lot of

time, and using them can make your code maintainable. Python has

a number of ways to store data using data structures, and having a

good understanding of when to use which data structure makes a lot of

difference in terms of memory, ease of use, and the performance of the

code.

In this chapter, I will first go through some common data structures

and explain when to use them in your code. I will also cover the

advantages of using those data structures in specific situations. Then, you

will consider in detail the importance of the dictionary as a data structure

in Python.

�Common Data Structures
Python has a number of primary data structures. In this section, you will

look at the most common data structures. Having a good understanding of

data structure concepts is important for you to write efficient code. Using

them intelligently makes your code more performant and less buggy.

50

�Use Sets for Speed
Sets are fundamental data structures in Python. They’re also one of the

most neglected ones. The main benefit of using sets is speed. So, let’s look

at some of the other characteristics of sets:

•	 They don’t allow duplicates.

•	 You can’t access set elements using an index.

•	 Sets can access elements in O(1) time since they use

hashtables.

•	 Sets don’t allow some common operations that lists do

like slicing and lookups.

•	 Sets can sort the elements at insertion time.

Considering these constraints, whenever you don’t need these

common functionalities in your data structure, prefer to use a set, which

will make your code a lot faster while accessing the data. Listing 2-1 shows

an example of using a set.

Listing 2-1.  Set Usage for Accessing Data

data = {"first", "second", "third", "fourth", "fifth"}

if "fourth" in data:

 print("Found the Data")

Sets are implemented using hashtables, so whenever a new item is

added to a set, the positioning of the item in memory is determined by

the hash of the object. That’s the reason hashes are pretty performant

while accessing the data. If you have thousands of items and you need to

frequently access items from those elements, it’s way faster to use sets to

access items instead of using lists.

Let’s look at another example (Listing 2-2) where sets are useful and

can help make sure your data is not being duplicated.

Chapter 2 Data Structures

51

Listing 2-2.  Set Usage for Removing Duplicates

data = ["first", "second", "third", "fourth", "fourth",

"fifth"]

no_duplicate_data = set(data)

>>> {"first", "second", "third", "fourth", "fifth"}

Sets are also used as keys for dictionaries, and you can use sets as keys

for other data structures such as lists.

Let’s consider the example in Listing 2-3 where you have a dictionary

from a database with an ID value as the key and the first and last names of

users in values.

Listing 2-3.  Sets as First and Last Names

users = {'1267':{'first': 'Larry', 'last':'Page'},

 '2343': {'first': 'John', 'last': 'Freedom'}}

ids = set(users.keys())

full_names = []

for user in users.values():

 full_names.append(user["first"] + "" + user["last"])

This gives your set of IDs and a list of full names. As you can see, sets

can be derived from lists.

Note  Sets are useful data structures. Consider using them when
you need to frequently access items from a list of numbers and set
the access to the items in O(1) time. I recommend thinking about sets
before considering using lists or tuples the next time you need a data
structure.

Chapter 2 Data Structures

52

�Use namedtuple for Returning and Accessing
Data
namedtuple is basically a tuple with the name of the data. namedtuple can

do the same thing a tuple can but also has some extra features that a tuple

doesn’t have. With a namedtuple, it is easy to create a lightweight object type.

namedtuple makes your code more Pythonic.

�Access the Data

Accessing the data using namedtuple makes it much more readable. Say

you want to create a class whose values won’t be changed after initializing.

You might create a class like the one shown in Listing 2-4.

Listing 2-4.  Immutable Class

class Point:

 def __init__(self, x, y, z):

 self.x = x

 self.y = y

 self.z = z

point = Point(3, 4, 5)

point.x

point.y

point.z

If you are not going to change the values of class Point and prefer to

write them using namedtuple, it will make your code much more readable,

as shown in Listing 2-5.

Chapter 2 Data Structures

53

Listing 2-5.  namedtuple Implementation

Point = namedtuple("Point", ["x", "y", "z"])

point = Point(x=3, y=4, z=5)

point.x

point.y

point.z

As you can see here, this code is much more readable and has fewer

lines than using a normal class. Because a namedtuple uses the same

memory as a tuple, they are as performant as tuples.

You might be wondering why you don’t use a dict instead of

namedtuple because they are easy enough to write.

Tuples are immutable, whether named or not. namedtuple makes the

access more convenient by using names instead of indices. namedtuple has a

stringent restriction in that field names have to be strings. Also, namedtuple

doesn’t perform any hashing because it generates a type instead.

�Return the Data

Usually you would return data in a tuple. However, you should consider

using namedtuple for returning data because it makes code more readable

without much context. I would even suggest that whenever you are passing

data from one function to another function, you should see whether you

can use namedtuple because it makes your code much more Pythonic and

readable. Let’s consider the example in Listing 2-6.

Listing 2-6.  Return a Value from a Function as a Tuple

def get_user_info(user_obj):

 user = get_data_from_db(user_obj)

 first_name = user["first_name"]

 last_name = user["last_name"]

Chapter 2 Data Structures

54

 age = user["age"]

 return (first_name, last_name, age)

def get_full_name(first_name, last_name):

 return first_name + last_name

first_name, last_name, age = get_user_info(user_obj)

full_name = get_full_name(first_name, last_name)

So, what’s the problem with this function? The issue is with returning

the values. As you can notice, you are returning the values of first_name,

last_name, and age of the user after fetching them from the database.

Now, consider that you need to pass these values to some other function

as get_full_name. You are passing these values around, and it’s making

visual noise for the reader to read your code. If you have more values to

pass around like this, imagine how difficult it would be for a user to follow

your code. It might have been nicer if you could bind these values to a data

structure so that it provides the context without writing extra code.

Let’s rewrite this code using namedtuple, which will make much more

sense, as shown in Listing 2-7.

Listing 2-7.  Return a Value from a Function as a Tuple

def get_user_info(user_obj):

 user = get_data_from_db(user_obj)

 �UserInfo = namedtuple("UserInfo", ["first_name", "last_

name", "age"])

 user_info = UserInfo(first_name=user["first_name"],

 last_name=user["last_name"],

 age=user["age"])

 return user_info

def get_full_name(user_info):

 return user_info.first_name + user_info.last_name

Chapter 2 Data Structures

55

user_info = get_user_info(user_obj)

full_name = get_full_name(user_info)

Writing the code using namedtuple gives it context without you

providing extra information with the code. Here user_info as namedtuple

gives you that extra context without being explicitly set when returning

from a function called get_user_info. Therefore, using namedtuple makes

your code much more readable and maintainable in the long run.

If you have ten values to return, you might usually consider using

tuple or dict while moving data around. Both of these data structures

aren’t very readable when data is being moved around. A tuple doesn’t

give any context or names to the data that is in tuple, and dict doesn’t

have unmutability, which constrains you when you don’t want data to

change after the first assignment. namedtuple fills both those gaps here.

Finally, if you want to convert namedtuple to a dict or convert a list

to namedtuple, namedtuple gives you methods to do it easily. So, they are

flexible as well. The next time you are creating a class with immutable data

or returning multiple values, consider using namedtuple for the sake of

readability and maintainability.

Note  You should use namedtuple instead of a tuple wherever
you think object notation will make your code more Pythonic and
readable. I usually consider them when I have multiple values to pass
around with some kind of context; in these cases, namedtuple can
fit the bill because it makes code much more readable.

�Understanding str, Unicode, and byte
Understanding some of the fundamental concepts in the Python language

will help you as a developer and make you a better programmer while

handling data. Specifically, in Python, having a basic understanding of str,

Chapter 2 Data Structures

56

Unicode, and byte helps you when you are working with data. Python is

really easy to code for data processing or anything related to data because

of its built-in library and its simplicity.

As you might already know, str is a representation type of a string in

Python. See Listing 2-8.

Listing 2-8.  Type str for Different Values

p = "Hello"

type(p)

>>> str

t = "6"

type(t)

>>> str

Unicode gives a unique identification to each character in almost all

languages, such as the following:

0x59 : Y

0xE1 : á

0x7E : ~

The numbers assigned to characters by Unicode are called code points.

So, what’s the purpose of having Unicode?

The purpose of Unicode is to give a unique ID to each character

for almost all languages. You can use the Unicode code point for any

character, irrespective of the language. Unicode is usually formatted with

a leading U+ and a then hexadecimal numeric value padded to at least four

digits.

So, the thing you need to remember is that all Unicode does is to

assign a numerical ID called a code point to each character so you have an

unambiguous reference.

Chapter 2 Data Structures

57

When you map any character to a bit pattern, it is called encoding.

These bit patterns are used by the computer memory or on disk. There are

multiple ways you can encode the characters; the most common are ASCII,

ISO-8859-1, and UTF-8.

Python interpreters use UTF-8 for encoding.

So, let’s briefly talk about UTF-8. UTF-8 maps all Unicode characters to

bit patterns of length 8, 16, 24, or 32, which is 1, 2, 3, or 4 correspondingly.

As an example, a will be converted by the Python interpreter to

01100001, and å will be converted to 11000011 01011111 (0xC3 0xA1). So,

it’s easy to understand why Unicode is useful.

Note  In Python 3, all strings are a sequence of Unicode characters.
So, you should not be thinking about encoding strings to UTF-8 or
decoding from UTF-8 to strings. You can still convert a string to bytes
and bytes back to a string using string-encoding methods.

�Use Lists Carefully and Prefer Generators
Iterators are really useful, especially when you are handling a large amount

of data. I have seen code where people use a list to store sequence data but

then there is risk of memory leak affecting the performance of your system.

Let’s consider the example in Listing 2-9.

Listing 2-9.  Using a List of Return Prime Numbers

def get_prime_numbers(lower, higher):

 primes = []

 for num in range(lower, higher + 1):

 for prime in range(2, num + 1):

 is_prime = True

 for item in range(2, int(num ** 0.5) + 1):

Chapter 2 Data Structures

58

 if num % item == 0:

 is_prime = False

 break

 if is_prime:

 primes.append(num)

print(get_prime_numbers(30, 30000))

What’s the problem with code like this? First, it’s hard to read, and

second, it could be dangerous in terms of memory leak because you are

storing large numbers in memory. How can you make this code better in

terms of readability and performance?

This is where you can consider using generators, which use yield keys

to generate numbers, and you can use them as an iterator to pop out the

values. Let’s rewrite this example using iterators, as shown in Listing 2-10.

Listing 2-10.  Using Generators for Prime Numbers

def is_prime(num):

 for item in range(2, int(math.sqrt(num)) + 1):

 if num % item == 0:

 prime = False

 return prime

def get_prime_numbers(lower, higher):

 for possible_prime in range(lower, higher):

 if is_prime(possible_prime):

 yield possible_prime

 yield False

for prime in get_prime_numbers(lower, higher):

 if prime:

 print(prime)

Chapter 2 Data Structures

59

This code is much more readable and performant. Also, a generator

unintentionally forces you to think about refactoring your code. Here

returning values in a list makes the code much more bloated, which the

generator solves easily.

One of the common cases that I have observed is that iterators can

be really useful when you are getting data from a database and you

don’t know how many rows you will be fetching. This could be memory-

intensive work as you might try to save those values in memory. Instead,

try using an iterator, which would return a value right away and go to the

next row to give the next value.

Let’s say you have to access a database to get a user’s age and name by

ID. You know the IDs that are indexes in the database, and you know the

total number of users in the database, which is 1,000,000,000. Mostly I have

seen code where a developer tries to get data in a chunk using a list, which

is an OK approach to solve memory issues. Listing 2-11 shows an example

of this.

Listing 2-11.  Access a Database and Store the Result in a List as a

Chunk

def get_all_users_age(total_users=1000):

 age = []

 for id in total_users:

 user_obj = access_db_to_get_users_by_id(id)

 age.append([user.name, user.age])

 return age

total_users = 1000000000

for user_info in range(total_users):

 info = get_all_users_age()

 for user in info:

 print(user)

Chapter 2 Data Structures

60

Here you are trying to get the user’s age and name by accessing the

database. However, this approach might not be good when you don’t have

much memory in the system because you are randomly picking a number

that you consider memory-safe to store user information, but you can’t

guarantee that. Python provides a generator as a solution to avoid these

issues and tackle these situations in your code. You can consider rewriting

it as shown in Listing 2-12.

Listing 2-12.  Using an Iterator Approach

def get_all_users_age():

 all_users = 1000000000

 for id in all_users:

 user_obj = access_db_to_get_users_by_id(id)

 yield user.name, user.age

for user_name, user_age in get_all_users_age():

 print(user_name, user_age)

Note  Generators are a useful feature of Python because they make
your code performant for data-intensive work. A generator also forces
you to think about making the code readable.

�Use zip to Process a List
When you have two lists and you want to process them in parallel, consider

using zip. This is a built-in function of Python and very efficient.

Let’s assume you have a user’s name and salary in a user table in the

database, and you would like to combine them into another list and return

that as a list for all users. You have the functions get_users_name_from_db

and get_users_salary_from_db, which give you a list of users and the

Chapter 2 Data Structures

61

corresponding salary of users. How can you combine them? One of the

ways to do this is shown in Listing 2-13.

Listing 2-13.  Combine a List

def get_user_salary_info():

 users = get_users_name_from_db()

 # ["Abe", "Larry", "Adams", "John", "Sumit", "Adward"]

 users_salary = get_users_salary_from_db()

 # ["2M", "1M", "60K", "30K", "80K", "100K"]

 users_salary = []

 for index in len(users):

 users_salary.append([users[index], users_salary[index]])

 return users_salary

Is there a better way to solve this problem? Of course. Python has a

built-in function called zip that handles this part easily for you, as shown

in Listing 2-14.

Listing 2-14.  Using zip

def get_user_salary_info():

 users = get_users_name_from_db()

 # ["Abe", "Larry", "Adams", "John", "Sumit", "Adward"]

 users_salary = get_users_salary_from_db()

 # ["2M", "1M", "60K", "30K", "80K", "100K"]

 users_salary = []

 for usr, slr in zip(users, users_salary):

 users_salary.append(usr, slr)

 return users_salary

Chapter 2 Data Structures

62

If you have a lot of data, consider using an iterator here instead of

storing into a list. zip makes it easier to combine two lists and process

them in parallel, so using zip will allow you to do these jobs efficiently.

�Take Advantage of Python’s Built-in Functions
Python has lots of built-in libraries that are pretty awesome. I can’t go

into each library in this chapter as there are lots of them. I will cover some

basic data structure libraries that can make a big impact on your code and

improve your code quality.

�collections

This is one of the most widely used libraries and has useful data structures,

specifically namedtuple, defaultdict, and orderddict.

�csv

Use csv for reading and writing CSV files. It will save you lot of time instead

of writing your own methods while reading files.

�datetime and time

These are without a doubt two of the most used libraries. In fact, you

have probably already encountered them. If not, getting familiar with

the different methods available in these libraries is beneficial in different

scenarios, especially when you are working with timing issues.

�math

The math lib has lots of useful methods to perform basic to advanced

math computations. Before looking for a third-party library to solve math

problems, try to see whether this library already has them.

Chapter 2 Data Structures

63

�re

There is no substitute for this library that can solve problems using regular

expressions. In fact, re is one of the best libraries in the Python language.

If you know regular expressions well, you can create magic using the

re library. It gives you the power to perform some of the more difficult

operations easily using regular expressions.

�tempfile

Consider this a one-off library to create temporary files. It’s a good built-in

library.

�itertools

Some of the most useful tools in this library are permutations and

combinations. However, if you explore it more, you will find that you can

solve a lot of computation problems using itertools. It has some of the

useful functions such as dropwhile, product, chain, and islice.

�functools

If you are developer who loves functional programming, this library is for

you. It has lots of functions that will help you to think of your code in a

more functional way. One of the most used partials is in this library.

�sys and os

Use these libraries when you want to perform any specific system- or

OS-level operations. sys and os give you the power to do a lot of amazing

things with your system.

Chapter 2 Data Structures

64

�subprocess

This library helps you to create multiple processes on your system without

much effort. The library is easy to use, and it creates multiple processes

and handles them using multiple methods.

�logging

No big project could be successful without a good logging feature. The

logging library from Python helps you to easily add logging in your

system. It has different ways to spit out logs such as the console, files, and

the network.

�json

JSON is the de facto standard for passing information over a network

and for APIs. The json library from Python does a great job of handling

different scenarios. The json library interface is easy to use, and the

documentation is pretty good.

�pickle

You might not use it in daily coding, but whenever you need to serialize

and deserialize a Python object, there is no better library than pickle.

�__future__

This is a pseudomodule that enables new language features that are not

compatible with the current interpreter. So, you might want to consider

using them in your code where you want to use a future version. See

Listing 2-15.

Listing 2-15.  Using __future__

import __future__ import division

Chapter 2 Data Structures

65

Note P ython has rich libraries that solve a lot of problems for you.
Getting to know them is the first step to figuring out what they can
do for you. Familiarizing yourself with the built-in Python libraries will
help you in the long run.

Now that you’ve explored some of the most common data structures in

Python, let’s dig more into one of the most commonly used data structures

in Python: the dictionary. If you are writing professional Python code, you

will definitely use a dictionary, so let’s learn more about them!

�Take Advantage of Dictionary
A dictionary is one of the most used data structures in Python. Dictionaries

are a faster way to access the data. Python has elegant built-in libraries for

dictionaries, which also makes them easy to use. In this section, you will

look closely at some of the most useful features of dictionaries.

�When to Use a Dictionary vs. Other Data
Structures
When you are considering something that can map the data, it might be

time to consider a dictionary as the data structure in your code.

If you are storing data that needs some kind of mapping and you need

to access it fast, then using a dictionary would be wise; however, you don’t

want to consider using a dictionary for each data store.

So, as an example, consider the case when you need an extra

mechanism of a class or need an object, or consider using a tuple or

namedtuple when you need immutability in your data structure. Think

about which specific data structure you will need while you build your code.

Chapter 2 Data Structures

66

�collections
collections is one of the useful modules in Python. It’s a high-

performance data type. collections has a number of interfaces that are

really useful for performing different tasks with dictionary. So, let’s look

at some of the main tools in collections.

�Counter

Counter gives you a convenient way to tally up similar data. As an example,

see Listing 2-16.

Listing 2-16.  Counter

from collections import Counter

contries = ["Belarus", "Albania", "Malta", "Ukrain",

"Belarus", "Malta", "Kosove", "Belarus"]

Counter(contries)

>>> Counter({'Belarus': 2, 'Albania': 1, 'Malta': 2, 'Ukrain':

1, 'Kosove': 1})

Counter is a dict subclass. It’s an order collection where elements are

stored as dictionary keys and their tallies are stored as values. This is one

of the most efficient ways to count the numbers of values. Counter has

multiple useful methods. most_common(), as the name suggests, returns

the most common element and its count. See Listing 2-17 for an example.

Listing 2-17.  most_count() Method in Counter

from collections import Counter

contries = ["Belarus", "Albania", "Malta", "Ukrain",

"Belarus", "Malta", "Kosove", "Belarus"]

contries_count = Counter(contries)

Chapter 2 Data Structures

67

>>> Counter({'Belarus': 2, 'Albania': 1, 'Malta': 2, 'Ukrain':

1, 'Kosove': 1})

contries_count.most_common(1)

>>> [('Belarus', 3)]

Other methods such as elements() return an iterator with the element

repeating as many times as the count.

�deque

If you want to create a queue and stack, then consider using deque. It

allows you to append values from left to right. deque also supports thread-

safe, memory-efficient appends and pops from either side with the same

O(1) performance.

deque has methods such as append(x) to append to the right side,

appendleft(x) to append to the left side, clear() to remove all elements,

pop() to remove elements from the right side, popleft() to remove from

the left side, and reverse() to reverse the element. Let’s look at some of

the cases. See Listing 2-18.

Listing 2-18.  deque

from collections import deque

Make a deque

deq = deque("abcdefg")

Iterate over the deque's element

[item.upper() for item in deq]

>>> deque(["A", "B", "C", "D", "E", "F", "G"])

Add a new entry to right side

deq.append("h")

>>> deque(["A", "B", "C", "D", "E", "F", "G", "h"])

Chapter 2 Data Structures

68

Add an new entry to the left side

deq.appendleft("I")

>>> deque(["I", "A", "B", "C", "D", "E", "F", "G", "h"])

Remove right most element

deq.pop()

>>> "h"

Remove leftmost element

deq.popleft()

>>> "I"

empty deque

deq.clear()

�defaultdict

A defaultdict works like dict because it’s a subclass of dict. A

defaultdict is initialized with function("default factory"), which

takes no argument and provides the default value for a nonexistent key.

defaultdict doesn’t raise a KeyError like dict. Any key that doesn’t exist

gets the value returned by the default factory.

Let’s take a look at the simple example in Listing 2-19.

Listing 2-19.  defaultdict

from collections import defaultdict

Make a defaultdict

colors = defaultdict(int)

Try printing value of non-existing key would give us default

values

colors["orange"]

>>> 0

Chapter 2 Data Structures

69

print(colors)

>>> defaultdict(int, {"orange": 0})

�namedtuple

One of the most popular tools is namedtuple in a collection module. It’s a

subclass of tuple with a named field and fixed length. namedtuple can be

used wherever you used a tuple in your code. namedtuple is an immutable

list and makes it easier to read the code and access the data.

I’ve already discussed namedtuple, so refer to that discussion to learn

more about it.

�ordereddict

ordereddict can be used when you want to get the keys in a specific

order. dict doesn’t give you the order as the insertion order, which is

ordereddict’s main feature. In Python 3.6+, dict also has this feature

where dict is by default ordered by the insertion order.

So, as an example, see Listing 2-20.

Listing 2-20.  OrderedDict

from collections import ordereddict

Make a OrderedDict

colors = OrderedDict()

Assing values

colors["orange"] = "ORANGE"

colors["blue"] = "BLUE"

colors["green"] = "GREEN"

Get values

[k for k, v in colors.items()]

>>> ["orange", "blue", "green"]

Chapter 2 Data Structures

70

�Ordered Dictionary vs. Default Dictionary vs.
Normal Dictionary
I touched on some of these topics in earlier sections. Now let’s look closely

some different types of dictionaries.

The OrderedDict and DefaultDict dictionary types are subclasses of

the dict class (a normal dictionary) with some added features to make

them distinguishable from dict. However, they possess all the same

features as a normal dictionary. There is a reason for these dictionary types

in Python, and I will talk about where these different dictionaries can be

used to make best use of these libraries.

As of Python 3.6, dicts are now ordered by insertion order, which

actually reduces the usefulness of ordereddict.

Let’s now talk about OrderedDict for pre-3.6 Python versions.

OrderedDict gives you orderly values as you insert them into the

dictionary. Sometimes in your code you might want to access data in an

orderly fashion; this is where you can use OrderedDict. OrderedDict

doesn’t have any extra cost compared to a dictionary, so performance-wise

both are the same.

Say you want store when a programming language was first

introduced. You could use OrderedDict to fetch the information of the

language as you insert that language information by their founding year, as

shown in Listing 2-21.

Listing 2-21.  OrderedDict

from collections import OrderedDict

Make a OrderedDict

language_found = OrderedDict()

Insert values

language_found ["Python"] = 1990

Chapter 2 Data Structures

71

language_found ["Java"] = 1995

language_found ["Ruby"] = 1995

Get values

[k for k, v in langauge_found.items()]

>>> ["Python", "Java", "Ruby"]

Sometimes you want to have default values assigned to keys when you

access or insert keys in a dictionary. In a normal dictionary, you would get

KeyError if the key doesn’t exist. However, defaultdict will create the key

for you. See Listing 2-22.

Listing 2-22.  defaultdict

from collections import defaultdict

Make a defaultdict

language_found = defaultdict(int)

Try printing value of non-existing key

language_found["golang"]

>>> 0

Here when you call DefaultDict and try to access the golang key,

which doesn’t exist, internally defaultdict will call the function object

(which is int in the language_found case), which you have passed in the

constructor. It’s a callable object, which includes function and type objects.

So, int and list that you passed are functions into defaultdict. When

you try to access the key, which doesn’t exist, it calls the function that has

been passed and assigns its return value as the value of the new key.

As you already know, a dictionary is a key-value collection in Python.

Lots of advanced library like defaultdict and OrderedDict are being built

on top of the dictionary to add some new features that don’t have extra

cost in terms of performance. dict for sure will be slightly faster; however,

most of the cases will have a negligence difference. So, consider using

them when writing your own solution for these problems.

Chapter 2 Data Structures

72

�switch Statement Using Dictionary
Python doesn’t have a switch keyword. However, Python has lots of

features that can make this functionality possible in a cleaner way. You

can leverage dictionary to make a switch statement, and also you should

consider writing the code this way whenever you have multiple options to

choose from based on specific criteria.

Consider a system that calculates the taxes of each county by that

particular country’s tax rules. There are multiple ways to do this; however,

the most difficult part of having multiple options is not adding multiple

if else conditions in your code. Let’s see how can you solve this problem

using dictionary in a more elegant way. See Listing 2-23.

Listing 2-23.  switch Statement Using a Dictionary

def tanzania(amount):

 calculate_tax = <Tax Code>

 return calculate_tax

def zambia(amount):

 calculate_tax = <Tax Code>

 return calculate_tax

def eritrea(amount):

 calculate_tax = <Tax Code>

 return calculate_tax

contry_tax_calculate = {

 "tanzania": tanzania,

 "zambia": zambia,

 "eritrea": eritrea,

}

Chapter 2 Data Structures

73

def calculate_tax(country_name, amount):

 country_tax_calculate["contry_name"](amount)

calculate_tax("zambia", 8000000)

Here you simply use a dictionary to calculate the tax, which makes

your code more elegant and much more readable compared to using a

typical switch statement.

�Ways to Merge Two Dictionaries
Say you have two dictionaries that you want to merge. Doing this is much

simpler in Python 3.5+ compared to previous versions. Merging any two

data structures is tricky because you need to be careful about memory use

and loss of data while merging data structures. If you use extra memory

to save the merged data structure, you should be aware of the memory

limitations of your system considering the data size in your dictionary.

Losing data is also one concern. You might find that some of the

data has been lost because of a restriction on a specific data structure;

for example, in a dictionary, you can’t have duplicate keys. So, keep

these things in mind whenever you perform merge operations between

dictionaries.

In Python 3.5+, you can do this as shown in Listing 2-24.

Listing 2-24.  Merge Dictionaries in Python 3.5+

salary_first = {"Lisa": 238900, "Ganesh": 8765000, "John":

3450000}

salary_second = {"Albert": 3456000, "Arya": 987600}

{**salary_first, **salary_second}

>>> {"Lisa": 238900, "Ganesh": 8765000, "John": 345000,

"Albert": 3456000, "Ary": 987600}

Chapter 2 Data Structures

74

However, in pre-3.5 Python, you can do this with a little bit of extra

work. See Listing 2-25.

Listing 2-25.  Merge Dictionaries in Pre-3.5 Python

salary_first = {"Lisa": 238900, "Ganesh": 8765000, "John":

3450000}

salary_second = {"Albert": 3456000, "Arya": 987600}

salary = salary_first.copy()

salary.update(salary_second)

>>> {"Lisa": 238900, "Ganesh": 8765000, "John": 345000,

"Albert": 3456000, "Ary": 987600}

Python 3.5+ has PEP 448, which has proposed extended uses of the *

iterable unpacking operator and the ** dictionary unpacking operators.

This definitely makes the code more readable. This not only applies to

dictionaries but also to lists since Python 3.5.

�Pretty Printing a Dictionary
Python has a module called pprint so you can print nicely. You need to

import pprint to perform the operation.

pprint gives you the option to provide indentation while you print

any data structure. Indentation will be applied to your data structure. See

Listing 2-26.

Listing 2-26.  pprint for a Dictionary

import pprint

pp = pprint.PrettyPrinter(indent=4)

pp.pprint(colors)

Chapter 2 Data Structures

75

This might not work as expected for complicated dictionaries that are

more nested and have a lot of data. You can consider using JSON for this,

as shown in Listing 2-27.

Listing 2-27.  Using json to Print Dictionaries

import json

data = {'a':12, 'b':{'x':87, 'y':{'t1': 21, 't2':34}}

json.dumps(data, sort_keys=True, indent=4)

�Summary
Data structures are the core of every programming language. As you

learned while reading this chapter, Python offers a number of data

structures to store and manipulate the data. Python gives you all kinds of

tools in the form of data structures to perform all kinds of operations on

different kinds of objects or data sets. As a Python developer, it’s important

to be aware of different kinds of data structures so you can make the right

decision while writing your application, especially in an application that is

resource-intensive.

I hope this chapter has helped make you aware of some of the most

useful data structures in Python. Getting familiar with different kinds of

data structures with their different behavior makes you a better developer

because you can have different kinds of tools in your toolkit.

Chapter 2 Data Structures

77© Sunil Kapil 2019
S. Kapil, Clean Python, https://doi.org/10.1007/978-1-4842-4878-2_3

CHAPTER 3

Writing Better
Functions
and Classes
Functions and classes are core parts of the Python language. All the code

you write in the professional world consists of functions and classes. In

this chapter, you will learn about best practices that will help to make your

code more readable and cleaner.

While writing functions and classes, it’s important you think about

the boundaries and structures of your functions/classes. Having a clear

understanding of the use cases that your function or class is trying to solve

will help you to write better classes and functions. Always keep in mind the

philosophy of the single responsibility principle.

�Functions
As you know, everything in Python is an object, and functions are no

exception. Functions in Python are very flexible, so it is important to make

sure you write them carefully. I will discuss some best practices while

writing functions in Python.

78

In Python, typically when you write blocks of code in the def clause,

you will define them as functions or methods. I’m not talking about

lambda functions here as I already covered them in earlier chapters.

�Create Small Functions
Always prefer to write a function that does one and only one task. How do

you make sure that your function is doing only one operation, and how do

you measure the size of your function? Do you consider lines or characters

a measure of function size?

Well, it’s more about tasks. You want to make sure your function

is doing only one task, but that task could be built on top of multiple

subtasks. As a developer, you must decide when you want to break down

a subtask into separate functions. Nobody can answer those questions for

you. You must critically analyze your function and decide when to break

them down to multiple functions. This is a skill you have to acquire by

continuously analyzing your code and looking for places in your code that

“smell,” or in other words are hard to read and comprehend.

Consider the real-world example in Listing 3-1.

Listing 3-1.  Unique E-mail Example

def get_unique_emails(file_name):

 """

 Read the file data and get all unique emails.

 """

 emails = set()

 with open(file_name) as fread:

 for line in fread:

 match = re.findall(r'[\w\.-]+@[\w\.-]+', line)

 for email in match:

 emails.add(email)

 return emails

Chapter 3 Writing Better Functions and Classes

79

In Listing 3-1, get_unique_emails is performing two different tasks,

first looping over a given file to read each line and second performing a

regex to match e-mails on each line. You might have observed two things

here: first is of course the number of tasks that are performed by the

function and second that you can you break this down further and make a

general function that reads file or reads lines. You can break this function

into two distinct functions, where one can read a file and the second can

read lines. So, as a developer, it’s up to you to decide whether this function

needs to be broken down to write cleaner code. See Listing 3-2.

Listing 3-2.  Breaking Functions into Different Functions

def get_unique_emails(file_name):

 """

 Get all unique emails.

 """

 emails = set()

 for line in read_file(file_name):

 match = re.findall(r'[\w\.-]+@[\w\.-]+', line)

 for email in match:

 emails.add(email)

 return emails

def read_file(file_name):

 """

 Read file and yield each line.

 """

 with open(file_name) as fread:

 for line in fread:

 yield line

Chapter 3 Writing Better Functions and Classes

80

In Listing 3-2, function read_file is now a generic function that

can accept any file name and yield each line, and get_unique_emails

performs the action on each line to find unique e-mails.

Here, I have created read_file as a generator function. However, if you

want it to return a list, you can consider doing that. The main idea is that

you should break down a function after considering readability and the

single responsibility principle.

Note I recommend that you first write the code that implements
the functionality, and once you have implemented the feature and
it works, you can start thinking about breaking the function into
multiple functions for clearer code. Also, remember to follow good
naming conventions.

�Return Generators
As you might have noticed in the code example of Listing 3-2, I used yield

instead of using any specific data structure like list or tuple. The main

reason to not use any other data structure here is that you are not sure how

big the file could be and there is a possibility of running out of memory

when processing big files.

Generators are functions that use the yield keyword (as shown

in Listing 1-22 of Chapter 1), and read_file is a generator function.

Generators are useful for two main reasons.

•	 When generators call functions, they immediately

return the iterator instead of running the whole

function, on which you can perform different actions

like looping or converting to a list (in Chapter 1’s

Listing 1-22, you loop over iterator). Once you are done,

it automatically calls the built-in function next() and

Chapter 3 Writing Better Functions and Classes

81

goes back to the calling function read_file on the next

line after the yield keyword. It also makes your code

easier to read and understand.

•	 In a list or another data structure, Python needs to

save the data in memory before returning, which can

cause a memory crash if the data turns out to be large.

A generator does not have this issue. So, when you have

a large amount of data to process or you are not sure

about the data size beforehand, it is recommended to

use a generator instead of another data structure.

Now you can consider making some changes in Listing 3-2’s get_

unique_emails function code and use yield instead of a list, as shown in

Listing 3-3.

Listing 3-3.  Breaking a Function into Different Functions

def get_unique_emails(file_name):

 """

 Get all unique emails.

 """

 for line in read_file(file_name):

 match = re.findall(r'[\w\.-]+@[\w\.-]+', line)

 for email in match:

 yield email

def read_file(file_name):

 """

 Read file and yield each line.

 """

 with open(file_name) as fread:

 for line in fread:

 yield line

Chapter 3 Writing Better Functions and Classes

82

def print_email_list():

 """

 Print list of emails

 """

 for email in get_unique_emails('duplicate_emails'):

 print(email)

Here you omit the risk of sending all the e-mails in the list from the

get_unique_emails function.

I am not implying here that you should use generators in every return

function. If you know beforehand that you need to return only a specific

data size, it might be easier to use a list/tuple/set/dict instead. As an

example, in Chapter 1’s Listing 1-22, if you are returning 100 e-mails,

it is better to use a list or some other data structure instead of using a

generator. However, in cases where you are unsure about the data size,

consider using generators, which will save you lot of production memory

issues.

Note  Familiarize yourself with Python generators. I haven’t see a lot
of developers using generators in professional code, but you should
consider their advantages. It makes your code cleaner and saves you
from memory issues.

�Raise Exceptions Instead of Returning None
I talked about exceptions at length in Chapter 1, so I will not be talking

about all the exception cases here. This section deals only with raising

exceptions when you have errors instead of returning None from functions.

Exceptions are a core feature of Python. There are a couple of things

that need to be considered while using exceptions.

Chapter 3 Writing Better Functions and Classes

83

First, I have noticed that a lot of programmers either return None or log

something when anything unexpected happens in the code. Sometimes

this strategy can be dangerous because it can hide bugs.

Also, I have seen code where a function returns None or some random

values instead of raising an exception, which makes your code confusing

for the caller function as well as error prone. See Listing 3-4.

Listing 3-4.  Return None

def read_lines_for_python(file_name, file_type):

 if not file_name or file_type not in ("txt", "html"):

 return None

 lines = []

 with open(file_name, "r") as fileread:

 for line in fileread:

 if "python" in line:

 return "Found Python"

If not read_lines_for_python("file_without_python_name",

"pdf"):

 print("Not correct file format or file name doesn't exist")

In Listing 3-4, you cannot be sure if read_lines_for_python returns

None because the file does not have any Python word or file issue. This

kind of code can lead to unexpected bugs in your code, and it could be

headache to find bugs in a big codebase.

So, whenever you are writing code and have a situation where you

are returning None or some other values because something unexpected

happens, consider raising an exception. It will save you time chasing down

bugs as your code gets bigger.

Consider writing this code as shown in Listing 3-5.

Chapter 3 Writing Better Functions and Classes

84

Listing 3-5.  Raising an Exception Instead of None

def read_lines_for_python(file_name, file_type):

 if file_type not in ("txt", "html"):

 raise ValueError("Not correct file format")

 if not file_name:

 raise IOError("File Not Found")

 with open(file_name, "r") as fileread:

 for line in fileread:

 if "python" in line:

 return "Found Python"

If not read_lines_for_python("file_without_python_name",

"pdf"):

 print("Python keyword doesn't exists in file")

Result: >> ValueError("Not correct file format")

Whenever your code fails, you know by looking at the exception why

it’s failing. Raising an exception helps you to catch bugs early instead of

guessing.

Note P ython is a dynamic language, so you need to be careful
while writing the code, especially when you find an unexpected value
in your code. None is the default value returned from a function, but
don’t overuse it for every unexpected situation. Think about whether
you can raise an exception to make your code cleaner before using
None.

Chapter 3 Writing Better Functions and Classes

85

�Add Behavior Using the default and keyword
Arguments
Keyword arguments are useful for making your Python code more

readable and cleaner. Keyword arguments are used to supply a default

value to a function or can be used as a keyword. See Listing 3-6.

Listing 3-6.  Default Arguments

def calculate_sum(first_number=5, second_number=10):

 return first_number + second_number

calculate_sum()

calculate_sum(50)

calculate_sum(90, 10)

Here you have used a keyword argument to define default values,

but while calling a function, you can choose if you need default or user-

defined values.

The usefulness of a keyword argument is significant in a large

codebase or a function with multiple arguments. Keyword arguments help

to make the code easier to understand.

So, let’s look at an example where you need to find spam e-mails by

using a keyword in the e-mail content, as shown in Listing 3-7.

Listing 3-7.  Without Keyword Arguments

def spam_emails(from, to, subject, size, sender_name, receiver_

name):

 <rest of the code>

If you are calling spam_emails without any keyword arguments, it looks

like Listing 3-8.

Chapter 3 Writing Better Functions and Classes

86

Listing 3-8.  Without Keyword Arguments

spam_emails("ab_from@gmail.com",

 "nb_to@yahoo.com",

 "Is email spam",

 10000,"ab", "nb")

If you only investigate the line in Listing 3-8, it’s hard to guess what all

these parameters mean to a function. If you see that many parameters are

used to call a function, for readability it’s better to use keyword arguments

to call a function, as shown in Listing 3-9.

Listing 3-9.  With Keyword Arguments

spam_emails(from="ab_from@gmail.com",

 to="nb_to@yahoo.com",

 subject="Is email spam",

 size=10000,

 sender_name="ab",

 receiver_name="nb")

This is not an absolute rule, but consider using keyword arguments for

more than two function parameters. Using keyword arguments for a calling

function makes your code more understandable for new developers.

In Python 3+, you can force a keyword argument into a caller function

by defining a function as follows:

def spam_email(from, *, to, subject, size, sender_name,

receiver_name)

�Do Not Return None Explicitly
Python functions by default return None when you don’t return explicitly.

See Listing 3-10.

Chapter 3 Writing Better Functions and Classes

87

Listing 3-10.  Default None Return

def sum(first_number, second_number):

 sum = first_number + second_number

sum(80, 90)

Here function sum returns None by default. However, many times people

write code that explicitly returns None in the function, as shown in Listing 3-11.

Listing 3-11.  Return None Explicitly

def sum(first_number, second_number):

 �if isinstance(first_number, int) and isinstance(second_

number, int):

 return first_number + second_number

 else:

 return None

result = sum(10, "str") # Return None

result = sum(10, 5) # Return 15

Here you expect the result to be a value in the sum function, which is

misleading because it could return None or a sum of two numbers. So, you

always need to check the result for None, which is too much noise in the

code and makes the code more complex over time.

You might want to raise an exception in these cases. See Listing 3-12.

Listing 3-12.  Raise an Exception Instead of Returning None

def sum(first_number, second_number):

 �if isinstance(first_number, int) and isinstance(second_

number, int):

 return first_number + second_number

 else:

 raise ValueError("Provide only int values")

Chapter 3 Writing Better Functions and Classes

88

Let’s look at a second example, shown in Listing 3-13, where you are

returning None explicitly if a given input is not a list.

Listing 3-13.  Return None Explicitly

def find_odd_number(numbers):

 odd_numbers = []

 if isinstance(numbers, list):

 return None

 for item in numbers:

 if item % 2 != 0:

 odd_numbers.append(item)

 return odd_numbers

num = find_odd_numbers([2, 4, 6, 7, 8, 10]) # return 7

num = find_odd_numbers((2, 4, 6, 7, 8, 10)) # return None

num = find_odd_number([2, 4, 6, 8, 10]) # return []

This function by default returns None if it does not find an odd

number. The function also returns None if the type of numbers is not a list.

You can consider rewriting this code, as shown in Listing 3-14.

Listing 3-14.  Not Returning None Explicitly

def find_first_odd_number(numbers):

 odd_numbers = []

 if isinstance(numbers, list):

 raise ValueError("Only accept list, wrong data type")

 for item in numbers:

 if item % 2 != 0:

 odd_numbers.append(item)

 return odd_numbers

Chapter 3 Writing Better Functions and Classes

89

num = find_odd_numbers([2, 4, 6, 7, 8, 10]) # return 7

num = find_odd_numbers((2, 4, 6, 7, 8, 10)) �# Raise ValueError

exception

num = find_odd_number([2, 4, 6, 8, 10]) # return []

Now when you check the num value, you know the exact reason of

having [] in your function call. Explicitly adding this makes sure that the

reader knows what to expect when no odd number is found.

�Be Defensive While Writing a Function
We programmers are fallible, so there is no guarantee that you will not

make a mistake when you write code. Considering this fact, you can take

creative measures while writing a function that can prevent or expose bugs

in your code before going to production or help you find them even in

production.

There are two things that you as a programmer can do before shipping

code off to production to make sure that you are shipping quality code.

•	 Logging

•	 Unit test

�Logging

Let’s talk about logging first. Logging can help immensely when you

try to debug the code, especially in production when you do not know

beforehand where things might have gone wrong. In any mature project,

especially medium to large ones, it would be difficult to keep the project

maintainable for a long time without logging. Having logging in your code

makes code much easier to debug and diagnose when a production issue

arises.

Let’s look how logging code typically looks, as shown in Listing 3-15.

This is one of the many ways to write logging in Python.

Chapter 3 Writing Better Functions and Classes

90

Listing 3-15.  Logging in Python

Import logging module

Import logging

logger = logging.getLogger(__name__) �# Create a custom

logger

handler = logging.StreamHandler �# Using stream

handler

Set logging levels

handler.setLevel(logging.WARNING)

handler.setLevel(logging.ERROR)

format_c = logging.Formatter("%(name) - %(levelname) -

%(message)")

handler.setFromatter(format_c) �# Add formater to

handler

logger.addHandler(handler)

def division(divident, divisor):

 try:

 return divident/divisor

 catch ZeroDivisionError:

 logger.error("Zero Division Error")

num = divison(4, 0)

Python has a logging module that is comprehensive and

customizable. You can define a different level of logging in your code. If

your project has a different type of error, you can log that error as per the

severity of the situation. For example, the severity of an exception during

user account creation would be higher than a failure when sending a

marketing e-mail.

Chapter 3 Writing Better Functions and Classes

91

The Python logging module is a mature library that gives you plenty of

features to configure logging per your needs.

�Unit Test

Unit tests are one of the most important parts of your code. Professionally,

making unit tests mandatory in your code can prevent you from

introducing bugs and can give you a sense of confidence over your code

before you push to production. There are lots of great libraries in Python

that make it easier to write unit tests. Some of the popular ones are the py.

test and unittest libraries. We talked about them in detail in Chapter 8.

This is how it looks when writing unit tests in Python:

unittest

import unittest

def sum_numbers(x, y):

 return x + y

class SimpleTest(unittest.TestCase):

 def test(self):

 self.assertEqual(sum_numbers(3, 4), 7)

py.test

def sum_numbers(x, y):

 return x + y

def test_sum_numbers():

 assert func(3, 4) == 7

A unit test can play some key roles when you write it properly.

•	 You can use a unit test as documentation for the code,

which can be immensely helpful when you revisit your

code or new developers join the project.

Chapter 3 Writing Better Functions and Classes

92

•	 It can give you a sense of confidence in your code that

it does the expected behavior. When you have tests for

your functions, you can make sure that any changes in

the code do not break the function.

•	 It can prevent old bugs from creeping into your code

since you are running your unit test before pushing to

production.

Some developers go beyond unit test by writing the code in test-driven

development (TDD), but this does not mean only TDD should have a unit

test. Every project that needs to be used by users should have unit tests.

Note I n any mature project, logging and unit testing are must-
haves. They can help you immensely to prevent bugs in your code.
Python gives you a library called logging, which is pretty mature.
For unit testing, Python has plenty of options to choose from. pytest
and unittest are popular options.

�Use a Lambda as a Single Expression
Lambdas are interesting features in Python, but I advise you to avoid them.

I have seen plenty of code where lambdas are overused or misused.

PEP8 suggests not to write the code shown in Listing 3-16.

Listing 3-16.  Lambda

sorted_numbers = sorted(numbers, key=lambda num: abs(num))

Instead, write the code as shown in Listing 3-17.

Chapter 3 Writing Better Functions and Classes

93

Listing 3-17.  Using a Normal Function

def sorted_numbers(numbers):

 return sorted(numbers, reverse=True)

There are couple of reason to avoid lambdas.

•	 They make the code harder to read, which is more

important than having a one-line expression. For

example, the following code makes lots of developers

uneasy about lambdas:

sorted(numbers, key=lambda num: abs(num))

•	 Lambda expressions are easily misused. Often

developers try to make code clever by writing a one-

line expression, which makes it difficult to follow for

other developers. And in the real world, it can cause

more bugs in your code. See Listing 3-18.

Listing 3-18.  Misuse of Lambda Functions

import re

data = [abc0, abc9, abc5, cba 2]

convert = lambda text: float(text) if text.isdigit() else text

alphanum = lambda key: [convert(c) for c in re.spl

it('([-+]?[0-9]*\.?[0-9]*)', key)]

data.sort(key=alphanum)

In Listing 3-18, the code is misusing lambda functions, and it is harder

to understand then if a function were used.

Chapter 3 Writing Better Functions and Classes

94

I suggest using a lambda in the following cases:

•	 When everyone on your team understands the lambda

expression

•	 When it makes your code more understandable than

using functions

•	 When the operations you are doing are trivial and the

function does not need a name

�Classes
Next, I will discuss classes.

�Right Size of Class?
If you are doing object-oriented programming in any language, you might

wonder what the right size of a class is.

While writing a class, always remember the single responsibility

principle (SRP). If you are writing a class that has a clearly defined

responsibility with clearly defined boundaries, you should not worry

about a line of class code. Some people believe one class with one file is a

good measure of a class; however, I have seen code where the file itself is

noticeably big, and it could be confusing and misleading to see one class

per file. If you see that a class is doing more than one thing, that means it’s

the right time to create a new class. Sometimes it’s a fine line in terms of

responsibility; however, you have to be careful when you are adding a new

code in a class. You don’t want to cross the boundaries of responsibilities.

Looking at each method and line of code carefully and thinking

about whether that method or part of code fits into the class’s overall

responsibility is a good way to investigate the class structure.

Chapter 3 Writing Better Functions and Classes

95

Let’s say you have a class called UserInformation. You don’t want

to add the payment information and order information of each user to

this class. Even if the information related to the user is not necessary

user information, payment information and order information are

more of activities of users with payments. You want to make sure these

responsibilities are defined before writing a class. You can define that the

UserInformation class is responsible for keeping the state of the user

information, not user activities.

Duplicate code is another hint that a class might be doing more than

it is supposed to do. As an example, if you have a class called Payment and

you are writing ten lines of code to access a database that includes creating

a connection with a database, getting user information, and getting user

credit card information, you might want to consider creating another class

just to access a database. Then any other class can use this class to access a

database without duplicating the same code or method everywhere.

I suggest having a clear definition of class scope before writing

code and sticking with a class scope definition will solve most class size

problems.

�Class Structure
I prefer a class structure in this order:

	 1.	 Class variables

	 2.	 __init__

	 3.	 Built-in Python special methods (__call__,

__repr__, etc.)

	 4.	 Class methods

	 5.	 Static methods

	 6.	 Properties

Chapter 3 Writing Better Functions and Classes

96

	 7.	 Instance methods

	 8.	 Private methods

As example, you might want to have code that looks like Listing 3-19.

Listing 3-19.  Class Structure

class Employee(Person):

 POSITIONS = ("Superwiser", "Manager", "CEO", "Founder")

 def __init__(self, name, id, department):

 self.name = name

 self.id = id

 self.department = department

 self.age = None

 self._age_last_calculated = None

 self._recalculated_age()

 def __str__(self):

 return ("Name: " + self.name + "\nDepartment: "

 + self.department)

 @classmethod

 def no_position_allowed(cls, position):

 return [t for t in cls.POSITIONS if t != position]

 @staticmethod

 def c_positions(position):

 return [t for t in cls.TITLES if t in position]

 @property

 def id_with_name(self):

 return self.id, self.name

Chapter 3 Writing Better Functions and Classes

97

 def age(self):

 if (datetime.date.today() > self._age_last_recalculated):

 self.__recalculated_age()

 return self.age

 def _recalculated_age(self):

 today = datetime.date.today()

 age = today.year - self.birthday.year

 if today < datetime.date(

 today.year, self.birthday.month,

 self.birthday.year):

 age -= 1

 self.age = age

 self._age_last_recalculated = today

�Class Variables

Usually you want to see a class variable at the top because these variables

either are constants or are default instance variables. This shows a

developer that these constant variables are ready to use, so this is valuable

information to keep at the top of the class before any other instance

method or constructor.

�__init__

This is a class constructor, and the calling method/class needs to know

how to access the class. __init__ represents a door for any class that tells

how to call the class and which states are in the class. __init__ also gives

you information about the class’s main input to supply before starting to

use the class.

Chapter 3 Writing Better Functions and Classes

98

�Special Python Methods

Special methods change the default behavior of a class or give extra

functionality to class, so having them at the top of a class makes the reader

of the class aware of some customized features of the class. Also, these

metaclasses that are being overridden give you an idea that a class is trying

to do something different by changing the usual behavior of the Python

class. Having them at the top allows the user to keep the modified behavior

of the class in mind before reading the rest of the class code.

�Class Methods

A class method works as another constructor, so keeping it near __init__

makes sense. It tells the developer other ways the class can be used

without creating a constructor using __init__.

�Static Methods

A static method is bound to the class and not the object of the class like

class methods. They can’t modify the class state, so it makes sense to add

them at the top to make the reader aware of the methods that are used for

specific purposes.

�Instance Methods

Instance methods add behavior in a class, so it’s expected by a developer

that if a class has a certain behavior, then the instance method would be

part of the class. Therefore, keeping them after special methods makes it

easier for a reader to understand the code.

Chapter 3 Writing Better Functions and Classes

99

�Private Methods

As Python doesn’t have any private keyword concept, using _<name> in the

method name tells the reader that this is a private method so don’t use it.

You can keep it at the bottom with the instance methods.

I suggest keeping private methods around instance methods to make it

easier for the reader to understand the code. You can have private methods

before the instance method and vice versa; it’s all about calling the method

nearest to the called method.

Note P ython is an object-oriented language, and it should be
treated as such when you are writing classes in Python. Following
all the rules of OOP will not harm you. While writing classes, make
sure that it is easy for the reader to understand the class. Instance
methods should be next to each other if one of the methods is using
another method. The same goes for private methods.

�Right Ways to Use @property
The @property decorator (discussed in Chapter 5) is one of the useful

features of Python for getting and setting values. There are two places you

can consider using @property in a class: in complex code hidden behind

an attribute and in the validation of the set attribute. See Listing 3-20.

Listing 3-20.  Class Property Decorator

class Temperature:

 def __init__(self, temperature=0):

 self.temperature = temperature

 @property

 def fahrenheit(self):

 self.temperature = (self.temperature * 1.8) + 32

Chapter 3 Writing Better Functions and Classes

100

temp = Temperature(10)

temp.fahrenheit

print(temp.temperature)

What’s the problem with this code? You are using a property decorator

in the method fahrenheit, but the method updates the self.temperature

variable value instead of returning any value. When you use a property

decorator, make sure you return the value; this will make it easier for the

calling class/method to expect something returned from method when

you use a property decorator. So, make sure you return the value and use a

property decorator method as a getter in your code, as shown in Listing 3-21.

Listing 3-21.  Class Property Decorator

class Temperature:

 def __init__(self, temperature=0):

 self.temperature = temperature

 @property

 def fahrenheit(self):

 return (self.temperature * 1.8) + 32

A property decorator is also used for validating/filtering the values. It’s

the same as a setter in other programming languages like Java. In Python,

you can validate/filter specific pieces of information using a property

decorator. I have seen a lot of places where developers usually don’t realize

the power of the setter property decorator in Python. Using it in a proper

way makes your code readable and will save you from those corner bugs

that you sometimes forget.

In Listing 3-22 is an example of implementing validation using a

property decorator in Python. It makes the code readable for a developer

and easy to understand by showing what to validate when you set a

specific value.

Chapter 3 Writing Better Functions and Classes

101

In this example, you have a class called Temperature that sets the

temperature in Fahrenheit. Using a property decorator to get and set the

value of the temperature makes it easier for the Temperature class to

validate the caller input.

Listing 3-22.  Class Property Decorator

class Temperature:

 def __init__(self, temperature=0):

 self.temperature = temperature

 @property

 def fahrenheit(self):

 return self._temperature

 @fahrenheit.setter

 def fahrenheit(self, temp):

 if not isinstance(temp, int):

 raise("Wrong input type")

 self._temperature = (self.temp * 1.8) + 32

Here, the fahrenheit setter method does the validation part before

calculating the temperature in Fahrenheit, which makes the calling class

expect that an exception could be raised in the case of wrong input.

The calling class now gets the value of Fahrenheit by just calling the

fahrenheit method without any input.

Always make sure that you use property keywords in the right context

and consider them as the getter and setter of writing code in a Pythonic

way.

Chapter 3 Writing Better Functions and Classes

102

�When to Use Static Methods?
By definition, static methods are related to classes but don’t need to access

any class-specific data. You don’t use self or cls in a static method. These

methods can work on their own without having any dependency on the

class state. This is one of the main reasons for getting confused when using

static methods instead of stand-alone functions.

When you write a class in Python, you want to group similar kinds of

methods but also keep a specific state by using methods that use different

variables. Also, you want to perform different actions using objects of the

class; however, when you make a method static, this method doesn’t have

access to any of the class states and doesn’t need object or class variables

to access them. So, when should you use static methods?

When you are writing a class, there might a method that can live alone

as a function and doesn’t need class state to perform a specific action.

Sometimes it makes sense to make that as a static method as part of a class.

You can use this static method as a utility method for a class to use. But

why don’t you just make that a stand-alone function outside of the class?

You can obviously do that, but keeping it inside the class makes it easier for

the reader to relate that function with a class. Let’s understand this using a

simple example, as shown in Listing 3-23.

Listing 3-23.  Without a Static Method

def price_to_book_ratio(market_price_per_share, book_value_per_

share):

 return market_price_per_share/book_value_per_share

class BookPriceCalculator:

 PER_PAGE_PRICE = 8

 def __init__(self, pages, author):

 self.pages = pages

 self.author = author

Chapter 3 Writing Better Functions and Classes

103

 @property

 def standard_price(self):

 return self.pages * PER_PAGE_PRICE

Here the method price_to_book_ratio can work without using any

state of BookPriceCalculator, but it might make sense to keep it inside

class BookPriceCalculator as it’s related to the BookPricing class. So, you

can write this code as shown in Listing 3-24.

Listing 3-24.  With a Static Method

class BookPriceCalculator:

 PER_PAGE_PRICE = 8

 def __init__(self, pages, author):

 self.pages = pages

 self.author = author

 @property

 def standard_price(self):

 return self.pages * PER_PAGE_PRICE

 @staticmethod

 �def price_to_book_ratio(market_price_per_share, book_value_

per_share):

 return market_price_per_share/book_value_per_share

Here you make made it as a static method, and you do not need

to use any of the class methods or variables, but it’s related to the

BookPriceCalculator class, so make it a static method.

Chapter 3 Writing Better Functions and Classes

104

�Use Abstract Class Inheritance the Pythonic Way
Abstraction is one of the cool features of Python. It helps to make sure that

an inherited class is implemented in an expected way. So, what is the main

purpose of having an abstract class in your interface?

•	 You can make an interface class using abstraction.

•	 It can make it impossible to use an interface without

implementing abstract methods.

•	 It gives early errors if you do not adhere to abstract

class rules.

These benefits might violate the OOPS abstraction rules if you

implement abstraction in python wrong way. Listing 3-25 shows the code

that makes an abstract class without fully using the Python abstraction

feature.

Listing 3-25.  Abstract Class the Wrong Way

class Fruit:

 def taste(self):

 raise NotImplementedError()

 def originated(self):

 raise NotImplementedError()

class Apple:

 def originated(self):

 return "Central Asia"

fruit = Fruit("apple")

fruit.originated #Central Asia

fruit.taste

NotImplementedError

Chapter 3 Writing Better Functions and Classes

105

So, the issues are as follows:

•	 You can initialize the class Apple or Fruit without

getting any error; it should have thrown an exception as

soon as you created an object of the class.

•	 The code might have gone into production without you

even realizing that it’s an incomplete class, until you

use the taste method.

So, what is a better way to define an abstract class in Python so it fulfills

the requirement of an ideal abstract class? Python solves this problem

by giving you a module called abc, which does what you expect from an

abstract class. Let’s re-implement the abstract class using the abc module,

as shown in Listing 3-26.

Listing 3-26.  Abstract Class the Right Way

from abc import ABCMeta, abstractmethod

class Fruit(metaclass=ABCMeta):

 @abstractmethod

 def taste(self):

 pass

 @abstractmethod

 def originated(self):

 pass

class Apple:

 def originated(self):

 return "Central Asia"

Chapter 3 Writing Better Functions and Classes

106

fruite = Fruite("apple")

TypeError:

"Can't instantiate abstract class concrete with abstract method

taste"

Using the abc module makes sure that you implement all the expected

methods, gives you maintainable code, and makes sure there is no half-

baked code in production.

�Use @classmethod to Access Class State
A class method gives you the flexibility to create alternative constructors

besides using the __init__ method.

So, where you could utilize a class method in your code? As

mentioned, an obvious place would be to create multiple constructors

by passing a class object, so it’s one of the easiest ways to create a factory

pattern in Python.

Let’s consider a scenario where you expect multiple-format input from

calling methods and you need to return a standardize value. A serialization

class is a good example here. Consider you have a class where you need

to serialize a User object and return the user’s first and last names. The

challenge, however, is to make sure that the interface for the client is easier

to use and the interface could get one of the four different formats: string,

JSON, object, or file. Using the factory pattern might be effective way to

solve this problem, and this is where the class method could be useful.

Listing 3-27 shows an example.

Listing 3-27.  Serialization Class

class User:

 def __init__(self, first_name, last_name):

 self.first_name = first_name

 self.last_name = last_name

Chapter 3 Writing Better Functions and Classes

107

 @classmethod

 def using_string(cls, names_str):

 first, second = map(str, names_str.split(""))

 student = cls(first, second)

 return Student

 @classmethod

 def using_json(cls, obj_json):

 # parsing json object...

 return Student

 @classmethod

 def using_file_obj(cls, file_obj):

 # parsing file object...

 return Student

data = User.using_string("Larry Page")

data = User.using_json(json_obj)

data = User.using_file_obj(file_obj)

Here you create a User class and multiple class methods that behave

like an interface for the client class to access a specific class state based on

the client data.

A class method is a useful feature when you are building a big project

with multiple classes, and having clean interfaces helps to keep code

maintainable in the longer term.

�Use the public Attribute Instead of private
As you know, Python doesn't have any private attribute concept for

classes. However, you might have used or seen the code that uses the

dunder _<var_name> variable name to mark a method as private. You can

still access those variables, but doing that is considered prohibited, so it’s

been consensus among the Python community to consider the dunder

_<var_name> variable or method as private.

Chapter 3 Writing Better Functions and Classes

108

Considering this fact, I still suggest refraining from using it everywhere

you want to constrain your class variable as it could make your code

cumbersome and brittle.

Let’s says you have the class Person with _full_name as a private

instance variable. To access the _full_name instance variable, you have

created a method called get_name, which gives the caller class access to the

variable without directly accessing the private method. See Listing 3-28.

Listing 3-28.  Using _ in the Wrong Places

class Person:

 def __init__(self, first_name, last_name):

 self._full_name = f"${first_name} ${last_name}"

 def get_name(self):

 return self._full_name

per = Person("Larry", "Page")

assert per.get_name() == "Larry Page"

However, this is still a wrong way to make a variable private.

As you can see, the Person class is trying to hide an attribute by naming

it as _full_name; however, it makes the code much more cumbersome

and hard to read, even if the intention of the code is to restrain user to

accessing the _full_name variable only. This can make your code complex

if you are considering doing this for every other private variable. Imagine

what will happen if you have lots of private variables in your class and you

have to define as many methods as private variables.

Make class variables or methods private, whenever you don’t want to

expose them to the caller class or method, as python doesn’t enforce the

private access to variable and methods, so by making class variable and

methods private is a way to communicate caller class or method that these

method or variables shouldn’t be access or override.

Chapter 3 Writing Better Functions and Classes

109

I suggest using __<var_name> names in your code when you are trying

to inherit some public class and you don’t have control over that public

class and its variable. When you want to avoid the conflict in the code, it’s

still a good idea to use __<var_name> to avoid name-mangling issues. Let’s

consider the simple example in Listing 3-29.

Listing 3-29.  Using __ in Inheritance of a Public Class

class Person:

 def __init__(self, first_name, last_name):

 self.age = 50

 def get_name(self):

 return self.full_name

class Child(Person):

 def __init__(self):

 super().__init__()

 self.__age = 20

ch = Child()

print(ch.get()) # 50

print(ch.__age) # 30

�Summary
Python doesn’t have any access control over the variables/methods or

classes like some other programming languages such as Java. However,

the Python community has come to a consensus for some of the rules

including the private and public concept, even though Python considers

everything public. You should also know when to use those features and

when to avoid them so that your code is readable and looks eloquent to

other developers.

Chapter 3 Writing Better Functions and Classes

111© Sunil Kapil 2019
S. Kapil, Clean Python, https://doi.org/10.1007/978-1-4842-4878-2_4

CHAPTER 4

Working with Modules
and Metaclasses
Modules and metaclasses are important features of Python. When

working on large projects, having a good understanding of modules and

metaprogramming will help you write cleaner code. Metaclasses in Python

are a kind of hidden feature that you don’t need to care about until you

have a specific need to use them. Modules help you to organize your code/

project and help you to structure your code.

Modules and metaclasses are big concepts, so explaining them here

in detail would be difficult. In this chapter, you will explore some good

practices regarding modules and metaprogramming.

�Modules and Metaclasses
Before starting, I’ll briefly explain the module and metaclass concepts in

the Python world.

Modules are simply Python files with the .py extension. The name of

the module will be the name of the file. A module could have a number of

functions or classes. The idea of a module in Python is to logically separate

the functionality of your project, as shown here:

users/

users/payment.py

users/info.py

112

payment.py and info.py are modules that logically separate the user’s

payment and information functionality. Modules help to make your code

easier to structure.

Metaclasses are a big topic, but in short, they are a blueprint for

the creation of a class. In other words, classes create an instance, and

metaclasses help to change the class behavior automatically based on

what’s needed when it’s created.

Let’s assume that you need to create all the classes in your module

starting with awesome. You can use __metaclass__ at the module level to

do that. See Listing 4-1 for an example.

Listing 4-1.  Metaclass Example

def awesome_attr(future_class_name, future_class_parents,

future_class_attr):

 """

 �Return a class object, with the list of its attribute

prefix with awesome keyword.

 """

 �# pick any attribute that doesn't start with '__' and

prefix with awesome

 awesome_prefix = {}

 for name, val in future_class_attr.items():

 if not name.startswith('__'):

 uppercase_attr["_".join("awesome", name)] = val

 else:

 uppercase_attr[name] = val

 # let `type` do the class creation

 �return type(future_class_name, future_class_parents,

uppercase_attr)

__metaclass__ = awesome_attr # this will affect all classes in

the module

Chapter 4 Working with Modules and Metaclasses

113

class Example: # global __metaclass__ won't work with "object"

though

 �# but we can define __metaclass__ here instead to affect

only this class

 # and this will work with "object" children

 val = 'yes'

__metaclass__ is one of the features among a number of metaclass

concepts. There are multiple metaclasses provided by Python that you

can leverage per your needs. You can check them out at https://docs.

python.org/3/reference/datamodel.html

Let’s now look at some good practices to follow in Python while you are

writing your code and considering using metaclasses or building modules.

�How Modules Can Help to Organize Code
In this section, you will look at how modules can help you organize your

code. Modules help separate code by holding related functions, variables,

and classes. In other words, Python modules give you a tool to abstract

different layers of your project by placing them into different modules.

Let’s say you need to build an e-commerce web site where users

can buy products. To build this kind of project, you might want to create

different layers with specific purposes. At a high level, you might consider

having layers for user actions, such as selecting a product, adding products

to a cart, and making a payment. All these layers might have only one

function or a couple of functions, which you can keep in one file or

different files. When you want to use a lower level of a layer like a payment

module in another module like adding products to the cart, you can do this

by simply using the import statement as from ... import in the adding to

the cart module.

Chapter 4 Working with Modules and Metaclasses

https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html

114

Let’s look at some of the rules that can help to create better modules.

•	 Keep your module name short. You can also consider

not using an underscore or at least keep it minimal.

Don’t do this:

import user_card_payment

import add_product_cart

from user import cards_payment

Do this:

import payment

import cart

from user.cards import payment

•	 Avoid using names with a dot (.), uppercase, or some

other special character. So, a file name like credit.

card.py should be avoided. Having these kinds of

special characters in the names creates confusion

for other developers and can negatively affect the

readability of the code. PEP8 also recommends not

using these special characters for naming.

Don’t do this:

import user.card.payment

import USERS

Do this:

import user_payment

import users

•	 When considering the readability of the code, it’s

important to import the modules in a certain way.

Chapter 4 Working with Modules and Metaclasses

115

Don’t do this:

[...]

from user import *

[...]

cart = add_to_cart(4) # Is add_to_cart part of user? A

builtin? Defined above?

Do this:

from user import add_to_cart

[...]

x = add_to_cart(4) # add_to_cart may be part of user,

if not redefined in between

Even better, do this:

import user

[...]

x = user.add_to_cart(4) # add_to_cart is visibly

part of module's namespace

Being able to say where from a module comes from helps in

readability, as shown in the previous example, where user.add_to_cart

helps to identify where the add_to_cart function resides.

Making good use of modules can help your project achieve the

following goals:

•	 Scoping: It helps you to avoid collisions between

identifiers in different parts of the code.

•	 Maintainability: Modules help you to define logical

boundaries in your code. If you have too many

dependencies in your code, it would be hard for

developers to work in a big project without modules.

Modules help you to define those boundaries

Chapter 4 Working with Modules and Metaclasses

116

and minimize the dependency by segregating

interdependent code in one module. This helps in large

projects so many developers can contribute without

stepping on each other’s toes.

•	 Simplicity: Modules help you to break down big

problems into smaller pieces, which makes it much

easier to write code and makes it more readable for

other developers. It also helps to debug the code and

make it less error prone.

•	 Reusability: This is one of the main advantages

of having modules. Modules can be easily used in

different files such as libraries and APIs within the

project.

At the end of the day, modules help to organize your code. Especially

in big projects where multiple developers are working on different parts of

the codebase, it is immensely important to have modules defined carefully

and logically.

�Take Advantage of the __init__ File
Since Python 3.3, __init__.py is not required to indicate that a directory

is a Python package. Before Python 3.3, it was required to have an empty

__init__.py file to make a directory a package. However, the __init__.py

file can be useful in multiple scenarios to make your code easy to use and

to package it in a certain way.

One of the main uses of __init__.py is to help split modules into

multiple files. Let’s consider the scenario where you have a module called

purchase, which has two different classes named as Cart and Payment.

Cart adds the product into the cart, and the Payment class performs the

payment operation for the product. See Listing 4-2.

Chapter 4 Working with Modules and Metaclasses

117

Listing 4-2.  Module Example

purchase module

class Cart:

 def add_to_cart(self, cart, product):

 self.execute_query_to_add(cart, product)

class Payment:

 def do_payment(self, user, amount):

 self.execute_payment_query(user, amount)

Suppose you want to split these two different functionalities (adding

to the cart and the payment) into different modules to better structure the

code. You can do that by moving the Cart and Payment classes into two

different modules, as follows:

purchase/

 cart.py

 payment.py

You might consider coding the cart module as shown in Listing 4-3.

Listing 4-3.  Cart Class Example

cart module

class Cart:

 def add_to_cart(self, cart, product):

 self.execute_query_to_add(cart, product)

 print("Successfully added to cart")

Consider the payment module, as shown in Listing 4-4.

Chapter 4 Working with Modules and Metaclasses

118

Listing 4-4.  Payment Class Example

payment module

class Payment:

 def do_payment(self, user, amount):

 self.execute_payment_query(user, amount)

 print(f"Payment of ${amount} successfully done!")

Now you can keep these modules in the __init__.py file to glue it

together.

from .cart import Cart

from .payment import Payment

If you follow these steps, you have given a common interface to the

client to use different functionality in your package as follows:

import purchase

>>> cart = purchase.Cart()

>>> cart.add_to_cart(cart_name, prodct_name)

Successfully added to cart

>>> payment = purchase.Payment()

>>> payment.do_payment(user_obj, 100)

Payment of $100 successfully done!

The primary reason to have modules is to create better-designed

code for your client. Instead of the client dealing with multiple small

modules and figuring out what feature belongs to which module, you can

use a single module to deal with the different features of project. This is

especially helpful in large code and third-party libraries.

Consider a client using your module as follows:

from purchase.cart import Cart

from purchase.payment import Payment

Chapter 4 Working with Modules and Metaclasses

119

This works, but it places more burden on the client to figure out what

resides where in your project. Instead, unify things and allow single

imports to make it easier for a client to use the module.

from purchase import Cart, Payment

In the latter case, it’s most common to think of a large amount

of source code as a single module. For example, in the previous line,

purchase could be considered as a single piece of source code or a single

module by the client, without worrying about where the Cart and Payment

classes resides.

This also shows how to stitch together different submodules into a

single module. As shown in the previous example, you can break large

modules into different logical submodules, and the user can use only a

single module name.

�Import Functions and Classes from Modules
in the Right Way
There are different ways to import classes and functions from the same or

different modules in Python. You can import a package inside the same

package, or you can import a package from outside of a package. Let’s take

a look at both scenarios to see which is the best way to import classes and

functions from within a module.

•	 Inside packages, importing from the same package can

be done using the fully specified path or relative path.

Here’s an example.

Don’t do this:

from foo import bar # Don't Do This

Chapter 4 Working with Modules and Metaclasses

120

Do this:

from . import bar # Recommended way

The first import syntax is using the full path of the

package such as TestPackage.Foo, and the name

of the top-level package is hard-coded in the source

code. The problem is if you want to change the

name of the package or reorganize the directory

structure of your project.

For example, if you ever want to change the name

from TestPackage to MyPackage, you have to change

the name in every place it appears. This can be

brittle and hard to do if you have a lot of files in your

project. It also makes it difficult for anyone to move

the code. However, a relative import doesn’t have

this problem.

•	 Outside of a package, there are different ways to import

a package from outside of a module.

from mypackage import * # Bad

from mypackage.test import bar # OK

import mypackage # Recommended way

The first option to import everything is obviously

not the right way to import packages because you

don’t know what’s being imported from the package.

The second option is verbose and a good practice as

it’s explicit and much more readable compared to

the first option.

Chapter 4 Working with Modules and Metaclasses

121

The second option also helps the reader to understand what’s being

imported from which package. This helps to make the code more readable

for other developers and helps them understand all the dependencies.

However, an issue comes up when you have to import different packages

from different places. This becomes a kind of noise in your code. Imagine if

you have 10 to 15 lines of code for importing specific things from different

packages. The second problem that I have noticed when you have the

same name in different packages is that while writing code it creates a lot

of confusion about which class/function belongs to which package. Here’s

an example:

from mypackage import foo

from youpackage import foo

foo.get_result()

The reason behind recommending a third option is that it’s much more

readable and gives you an idea while reading the code which classes and

functions belong to which packages.

import mypackage

import yourpackage

mypackage.foo.get_result()

import yourpackage.foo.feed_data()

�Use __all__ to Prevent Imports
There is one mechanism to prevent the user of your module from

importing everything. Python has a special metaclass class called __all__,

which allows you to control the behavior of an import. By using __all__,

you can restrict consumer classes or methods to import only specific

classes or methods instead of everything from the module.

Chapter 4 Working with Modules and Metaclasses

122

As an example, consider that you have a module called user.py.

By defining __all__ here, you can restrict other modules to allow only

specific symbols.

Let’s say you have a module called payment, where you keep all the

payment classes, and you want to prevent some of the class from importing

from this module by mistake. You can do that by using __all__, as shown

in the following example.

payment.py

class MonthlyPayment:

class CalculatePayment:

class CreditCardPayment:

__all__ = ["CalculatePayment", "CreditCardPayment"]

user.py

from payment import *

calculate_payment = CalculatePayment() �# This throw

exception

monthly_payment = MonthlyPayment() # This will work

As you might have noticed, using from payment import * doesn’t

make all the classes of payment import automatically. However, you can

still import the CalculatePayment and CreditCardPayment classes by

specifically importing them as follows:

 from payment import CalculatePayment

Chapter 4 Working with Modules and Metaclasses

123

�When to Use Metaclasses
As you know, metaclasses create classes. Just like you can create classes in

order to create objects, in the same way Python metaclasses create these

objects. In other words, metaclasses are classes’ classes. As this section is

not about how metaclasses work, I will focus on when you should consider

using metaclasses.

Most of the time you won’t need metaclasses in your code. The main

use case of a metaclass is to create an API or library or add some complex

feature. Whenever you want to hide a lot of detail and make it easier for the

client to use your API/library, metaclasses can be really helpful to do that.

Take, for example, Django ORM, which heavily uses metaclasses to make

its ORM API easy to use and understand. Django makes this possible by

using metaclasses, and you write the Django ORM as shown in Listing 4-5.

Listing 4-5.  __init__.py

class User(models.Model):

 name = models.CharField(max_length=30)

 age = models.IntegerField()

user = User(name="Tracy", age=78)

print(user.age)

Here user.age won’t return IntegerField; it will return an int, which

it takes from a database.

Django ORM works because of the way the Model class leverages

metaclasses. The Model class defines __metaclass__, and it uses some

magic to turn the User class into a complex hook into the database field.

Django makes something complex look simple by exposing a simple API

and using metaclasses. Metaclasses make this possible behind the scenes.

There are different metaclasses like __call__, __new__, etc. All these

metaclasses can help you to build beautiful APIs. If you look at the source

Chapter 4 Working with Modules and Metaclasses

124

code of a good Python library such as flask, Django, requests, etc., you

will find that these libraries are using metaclasses to make their API look

easy to use and understand.

Consider using metaclasses whenever you find that using the normal

Python functionality won’t make your API readable. Sometimes you have

to write boilerplate code using metaclasses to make your API easy to use.

I will discuss in a later section how metaclasses can be helpful in writing

cleaner API/libraries.

�Use __new__ for Validating Subclasses
The magic method __new__ will be called when an instance is being

created. Using this method, you can easily customize the instance

creation. This method is called before calling __init__ while initializing

the instance of the class.

You can also create a new instance of a class by invoking the

superclass’s __new__ method using super. Listing 4-6 shows an example.

Listing 4-6.  __new__

class User:

 def __new__(cls, *args, **kwargs):

 print("Creating instances")

 obj = super(User, cls).__new__(cls, *args, **kwargs)

 return obj

 def __init__(self, first_name, last_name):

 self.first_name = first_name

 self.last_name = last_name

 def full_name(self):

 return f"{self.first_name} {self.last_name}"

Chapter 4 Working with Modules and Metaclasses

125

>> user = User("Larry", "Page")

Creating Instance

user.full_name()

Larry Page

Here, when you create an instance of the class, __new__ is called before

calling the __init__ magic method.

Imagine a scenario where you have to create a superclass or abstract

class. Whichever class inherits that superclass or abstract class should

do the specific check or work, which is easy to forget or can be done

incorrectly by the subclass. So, you might want to consider having that

functionality in a superclass or abstract class, which also makes sure that

every class has to adhere to those validation checks.

In Listing 4-7 you can use the __new__ metaclass to validate before any

subclass inherits the abstract or superclass.

Listing 4-7.  __new__ for Assigning a Value

from abc import abstractmethod, ABCMeta

class UserAbstract(metaclass=ABCMeta):

"""Abstract base class template, implementing factory pattern

using __new__() initializer."""

 def __new__(cls, *args, **kwargs):

 """Creates an object instance and sets a base property."""

 obj = object.__new__(cls)

 obj.base_property = "Adding Property for each subclass"

 return obj

class User(UserAbstract):

"""Implement UserAbstract class and add its own variable."""

 def __init__(self):

 self.name = "Larry"

Chapter 4 Working with Modules and Metaclasses

126

>> user = User()

>> user.name

Larry

>> user.base_property

Adding Property for each subclass

Here, base_property automatically gets assigned the value "Adding

Property for each subclass" whenever an instance is created for a

subclass.

Now, let’s modify this code to validate if provided value is string or not.

See Listing 4-8.

Listing 4-8.  __new__ for Validating the Provided Value

from abc import abstractmethod, ABCMeta

class UserAbstract(metaclass=ABCMeta):

"""Abstract base class template, implementing factory pattern

using __new__() initializer."""

 def __new__(cls, *args, **kwargs):

 """Creates an object instance and sets a base property."""

 obj = object.__new__(cls)

 given_data = args[0]

 # Validating the data here

 if not isinstance(given_data, str):

 �raise ValueError(f"Please provide string: {given_

data}")

 return obj

class User(UserAbstract):

"""Implement UserAbstract class and add its own variable."""

 def __init__(self, name):

 self.name = Name

Chapter 4 Working with Modules and Metaclasses

127

>> user = User(10)

ValueError: Please provide string: 10

Here you validate that provided data is string whenever a value is being

passed to create an instance for the User class. The real beauty of this is using

the __new__ magic method without each subclass to do the duplicate work.

�Why __slots__ Are Useful
__slots__ helps you save space in objects and get faster attribute access.

Let’s quickly test the performance of __slots__ with the simple example in

Listing 4-9.

Listing 4-9.  __slots__ Faster Attribute Access

class WithSlots:

"""Using __slots__ magic here."""

 __slots__ = "foo"

class WithoutSlots:

"""Not using __slots__ here."""

 pass

with_slots = WithSlots()

without_slots = WithoutSlots()

with_slots.foo = "Foo"

without_slots.foo = "Foo"

>> %timeit with_slots.foo

44.5 ns

>> %timeit without_slots.foo

54.5 ns

Chapter 4 Working with Modules and Metaclasses

128

Even when you are simply trying to access with_slots.foo, it’s much

faster than accessing the attribute of the WithoutSlots class. In Python 3,

__slots__ is 30 percent faster than without __slots__.

The second use case of __slots__ is for memory saving. __slots__

helps to reduce the space in memory that each object instance takes up.

The space that __slots__ saves is significant.

You can find more information about __slots__ at https://docs.

python.org/3/reference/datamodel.html#slots.

Another reason to use __slots__ is obviously to save space. If you

consider Listing 4-8 and find out the size of object, then you can see that

__slots__ saves space for objects compared to normal objects.

>> import sys

>> sys.getsizeof(with_slots)

48

>> sys.getsizeof(without_slots)

56

__slots__ helps you to save space for objects and gives you better

performance compared to without __slots__ use. The question is,

when should you consider using __slots__ in your code? To answer this

question, let’s briefly talk about instance creation.

When you create an instance of a class, extra space is automatically

added to the instance to accommodate __dict__ and __weakrefs__.

__dict__ is usually not initialized until you use it for attribute access, so

you shouldn’t worry about this much. However, when you create/access

the attribute, then __slots__ makes much more sense compared to dict

in cases where you need to save that extra space or make it performant.

However, whenever you don’t want that extra space occupied by

__dict__ in a class object, you can use __slots__ to save the space and for

extra performance when you need to access attributes.

Chapter 4 Working with Modules and Metaclasses

https://docs.python.org/3/reference/datamodel.html#slots
https://docs.python.org/3/reference/datamodel.html#slots

129

As an example, Listing 4-10 uses __slots__, and the child class

doesn’t create __dict__ for attribute a, which saves space and increases

performance while accessing the a attribute.

Listing 4-10.  __slots__ Faster Attribute Access

class Base:

 __slots__ = ()

class Child(Base):

 __slots__ = ('a',)

c = Child()

c.a = 'a'

The Python documentation recommends not using __slots__ for

the majority of cases. In rare cases where you feel that you need that extra

space and performance, give it a try.

I also recommend not using __slots__ until you really need that extra

space and performance because it restricts you to using the class in a

specific way, especially when dynamically assigning the variables. As an

example, see Listing 4-11.

Listing 4-11.  Attribute Error When Using __slots__

class User(object):

 __slots__ = ("first_name",)

>> user = User()

>> user.first_name = "Larry"

>> b.last_name = "Page"

AttributeError: "User" object has no attribute "last_name"

There are many ways to circumvent these issues, but those solutions

won’t help you much compared to using code without __slots__. As an

Chapter 4 Working with Modules and Metaclasses

130

example, if you want dynamic assignment, you can use the code shown in

Listing 4-12.

Listing 4-12.  Using __dict__ with __slots__ to Overcome the

Dynamic Assignment Issue

class User:

 __slots__ = first_name, "__dict__"

>> user = User()

>> user.first_name = "Larry"

>> user.last_name = "Page"

So, with __dict__ in __slots__, you lose some of the size benefits, but

the upside is that you get dynamic assignment.

The following are some other places where you should not use __

slots__:

•	 When you are subclassing a built-in like a tuple or str

and want to add attributes to it

•	 When you want to provide default values via class

attributes for instance variables

So, consider using __slots__ when you really need that extra space

and performance. It won’t restrict you by limiting the class features and

making debugging harder.

�Change Class Behavior Using Metaclasses
Metaclasses help to customize the class behavior per your needs. Instead

of creating some complex logic to add a specific behavior in a class, check

out the Python metaclasses. They give you a nice tool to handle complex

logic in your code. In this section, you will learn about using a magic

method called __call__ to implement multiple features.

Chapter 4 Working with Modules and Metaclasses

131

Let’s say you want to prevent a client from directly creating the object

of a class; you can easily achieve that using __call__. See Listing 4-13.

Listing 4-13.  Prevent Creating an Object Directly

class NoClassInstance:

"""Create the user object."""

 def __call__(self, *args, **kwargs):

 raise TypeError("Can't instantiate directly""")

class User(metaclass=NoClassInstance):

 @staticmethod

 def print_name(name):

 """print name of the provided value."""

 print(f"Name: {name}")

>> user = User()

TypeError: Can't instantiate directly

>>> User.print_name("Larry Page")

Name: Larry Page

Here __call__ makes sure that the class is not being initiated directly

from the client code; instead, it uses the static method.

Let’s say you need to create an API where you want to apply a strategy

design pattern or make it easier for client code to use your API.

Let’s consider the example in Listing 4-14.

Listing 4-14.  API Design Using __call__

class Calculation:

 """

 �A wrapper around the different calculation algorithms that

allows to perform different action on two numbers.

 """

Chapter 4 Working with Modules and Metaclasses

132

 def __init__(self, operation):

 self.operation = operation

 def __call__(self, first_number, second_number):

 �if isinstance(first_number, int) and isinstance(second_

number, int):

 return self.operation()

 raise ValueError("Provide numbers")

def add(self, first, second):

 return first + second

def multiply(self, first, second):

 return first * second

>> add = Calculation(add)

>> print(add(5, 4))

9

>> multiply = Calculation(multiply)

>> print(multiply(5, 4))

20

Here you can send different methods or algorithms to perform specific

actions without duplicating the common logic. Here you see code inside

__call__, which makes your API much easier to use.

Let’s look at one more scenario in Listing 4-15. Say you want to

somehow create cached instances. When an object is being created with

the same value, it caches the instance instead of creating a new instance

for the same value, which could be really helpful when you don’t want to

duplicate an instance with the same parameters.

Chapter 4 Working with Modules and Metaclasses

133

Listing 4-15.  Implement Instance Caching Using __call__

class Memo(type):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.__cache = {}

 def __call__(self, _id, *args, **kwargs):

 if _id not in self.__cache:

 self.cache[_id] = super().__call__(_id, *args, **kwargs)

 else:

 print("Existing Instance")

 return self.__cache[id]

class Foo(Memo):

 def __init__(self, _id, *args, **kwargs):

 self.id = _id

def test():

 first = Foo(id="first")

 second = Foo(id="first")

 print(id(first) == id(second))

>>> test()

True

I hope the __call__ use case helps you understand how metaclasses

help you do some complicated tasks easily. __call__ also has some other

nice use cases such as creating singletons, memorizing values, and using

decorators.

Note T here are lots of other times where metaclasses can be used
to achieve complicated tasks easily. I suggest digging into metaclasses
and trying to understand the use cases of some of the metaclasses.

Chapter 4 Working with Modules and Metaclasses

134

�Learn About Python Descriptors
Python descriptors help to get, set, and delete attributes from an object’s

dictionary. When you access the class attribute, this starts the lookup

chain. If the descriptor methods are defined in code, then the descriptor

method will be invoked to look up the attributes. These descriptor

methods are __get__, __set__, and __delete__ in Python.

In practical terms, when you assign or get a specific attribute value

from a class instance, you might want to do some extra processing before

setting the value of an attribute or while getting a value of the attributes.

Python descriptors help you do those validation or extra operations

without calling any specific method.

So, let’s see an example that will help you understand a real use case,

as shown in Listing 4-16.

Listing 4-16.  Python Descriptor __get__ Example

import random

class Dice:

"""Dice class to perform dice operations."""

 def __init__(self, sides=6):

 self.sides = sides

 def __get__(self, instance, owner):

 return int(random.random() * self.slides) + 1

 def __set__(self, instance, value):

 print(f"New assigned value: ${value})

 if not isinstance(instance.sides, int):

 raise ValueError("Provide integer")

 instance.sides = value

Chapter 4 Working with Modules and Metaclasses

135

class Play:

 d6 = Dice()

 d10 = Dice(10)

 d13 = Dice(13)

>> play = Play()

>> play.d6

3

>> play.d10

4

>> play.d6 = 11

New assigned value: 11

>> play.d6 = "11"

I am here with value: 11

ValueError Traceback (most

recent call last)

<ipython-input-66-47d52793a84d> in <module>()

----> 1 play.d6 = "11"

<ipython-input-59-97ab6dcfebae> in __set__(self, instance, value)

 9 print(f" New assigned value: {value}")

 10 if not isinstance(value, int):

---> 11 raise ValueError("Provide integer")

 12 self.sides = value

 13

ValueError: Provide integer

Here you are using the __get__ descriptor to provide extra functionality

to a class attribute without calling any specific method, and you are using __

set__ to make sure that you assign only int values to the Dice class attribute.

Chapter 4 Working with Modules and Metaclasses

136

Let’s briefly learn about these descriptors.

•	 __get__(self, instance, owner): When you access

the attribute, this method is automatically being called

when defined, as shown in Listing 4-16

•	 __set__(self, instance, owner): When you set the

attribute of instance, this method is called as obj.attr

= "value".

•	 __delete__(set, instance): When you want to delete

a specific attribute, this descriptor is being called.

Descriptors give you more control over your code and can be used in

different scenarios such as validating an attribute before assigning, making

your attribute read-only, and so on. It also helps to make your code much

cleaner because you don’t need to create a specific method to do all these

complicated validations or check operations.

Note D escriptors are pretty useful when you want to set or get your
class attributes in a cleaner way. If you understand how they work,
it could be much more useful to you in other places where you want
to perform specific attribute validation or checks. Ideally, this section
helped give you a basic understanding of descriptors.

�Summary
The metaclasses in Python are considered obscure because of their syntax

and somewhat magic functionality. However, if you get a hold of some of

the most used metaclasses discussed in this chapter, it will make your code

better for an end user to use, and you will feel that you have better control

over the way you shape your APIs or libraries for the user.

Chapter 4 Working with Modules and Metaclasses

137

However, consider using them cautiously as sometimes using them

to solve each problem in your code can impact the code’s readability.

Similarly, having a good understanding of modules in Python gives you

a better idea of why and how to keep your modules following the SRP. I

hope this chapter gave you enough insight into these two very important

concepts in Python.

Chapter 4 Working with Modules and Metaclasses

139© Sunil Kapil 2019
S. Kapil, Clean Python, https://doi.org/10.1007/978-1-4842-4878-2_5

CHAPTER 5

Decorators
and Context Managers
Decorators and context managers are an advanced topic in Python, but

they are useful in many real-world scenarios. Many popular libraries use

decorators and context managers extensively to make their APIs and code

cleaner. Initially, it might be a little tricky to understand decorators and

context managers, but once you master them, they can make your code

cleaner.

In this chapter, you will learn about decorators and context managers.

You will also explore when these features can be useful while writing your

next Python project.

Note  Decorators and context managers are advanced concepts
in Python. Under the hood they heavily use metaclasses. You don’t
need to learn about metaclasses to learn how to use decorators
and context managers because Python gives you enough tools and
libraries to create decorators and context managers without using
any of the metaclasses. If you don’t have much of an understanding
of metaclasses, don’t worry. You should be able to learn fully how
decorators and context managers work. You will also learn some
techniques to make it easier to write decorators and context

140

managers. I suggest getting a good grasp of both decorators and
context manager concepts so you can recognize the places where
you can use them in your code.

�Decorators
Let’s first talk about decorators. In this section, you will learn how

decorators work and where in your real-world project you can use

them. Decorators are an interesting and useful feature of Python. If you

understand decorators well, you can build a lot of magical features without

much effort.

Python decorators help you add behavior to functions or objects

dynamically without changing the function or object behavior.

�What Are Decorators, and Why Are They Useful?
Imagine you have several functions in your code and you need to add

logging in all of them so that when they get executed, the function name

gets logged in the log file or prints out on the console. One way to do that

is to use a logging library and add a log line in each of these functions. It

would take quite some time to do that, however, and it is also error prone

because you are making lots of changes in the code to just add a log.

Another way is to add the decorator on top of each function/class. This

is much more effective and doesn’t have the risk of adding new bugs to

existing code.

In the Python world, decorators can be applied to functions, and they

have the ability to run before and after the function they wrap. Decorators

help to run additional code in functions. This allows you to access and

modify input arguments and return values, which can be helpful in

multiple places. Here are some examples:

Chapter 5 Decorators and Context Managers

141

•	 Rate limiting

•	 Caching values

•	 Timing the runtime of a function

•	 Logging purposes

•	 Caching exceptions or raising them

•	 Authentication

These are some of the main use cases for decorators; however, there

are no limits to using them. In fact, you will find that API frameworks like

flask heavily rely on decorators to turn functions into APIs. Listing 5-1

shows a flask example.

Listing 5-1.  flask Example

from flask import Flask

app = Flask(__name__)

@app.route("/")

def hello():

 return "Hello World!"

This code turns the hello function into an API using the route

decorator. This is the beauty of decorators, and having a good

understanding of them will benefit you as developer because they can

make your code cleaner and less error prone.

�Understanding Decorators
In this section, you will see how to use decorators. Let’s say you have a

simple function that converts a passed-in string to uppercase and returns

the result. See Listing 5-2.

Chapter 5 Decorators and Context Managers

142

Listing 5-2.  Convert to Uppercase by Passing a String

def to_uppercase(text):

"""Convert text to uppercase and return to uppercase."""

 if not isinstance(text, str):

 raise TypeError("Not a string type")

 return text.upper()

>>> text = "Hello World"

>>> to_uppercase(text)

HELLO WORLD

This is a simple function that takes a string and converts it to uppercase.

Let’s make a small change in to_uppercase, as shown in Listing 5-3.

Listing 5-3.  Convert to Uppercase by Passing func

def to_uppercase(func):

"""Convert to uppercase and return to uppercase."""

 # Adding this line, will call passed function to get text

 text = func()

 if not isinstance(text, str):

 raise TypeError("Not a string type")

 return text.upper()

def say():

 return "welcome"

def hello():

 return "hello"

>>> to_uppercase(say)

WELCOME

>>> to_uppercase(hello)

HELLO

Chapter 5 Decorators and Context Managers

143

Two changes were made.

•	 I modified the function to_uppercase to accept func

instead of a string and call that function to get the

string.

•	 I created a new function call that returns “welcome”

and passed that function to the to_upper_case

method.

The to_uppercase function calls the say function and gets text to

convert to uppercase. So, to_uppercase gets the text by calling the function

say instead of getting it from the passed argument.

Now, for the same code, you can write something like Listing 5-4.

Listing 5-4.  Using Decorators

@to_uppercase

def say():

 return "welcome"

>>> say

WELCOME

Putting to_uppercase before a function as @to_uppercase makes the

function to_uppercase a decorator function. This is similar to executing

to_uppercase before the say function.

This is a simple example but is appropriate for showing how

decorators work in Python. Now, the advantage of having to_uppercase

as a decorator function is that you can apply it to any function to make the

string uppercase. For example, see Listing 5-5.

Chapter 5 Decorators and Context Managers

144

Listing 5-5.  Applying Decorators in Other Places

@to_uppercase

def say():

 return "welcome"

@to_uppercase

def hello():

 return "Hello"

@to_uppercase

def hi():

 return 'hi'

>>> say

WELCOME

>>> hello

HELLO

>>> hi

HI

This makes the code cleaner and easier to understand. Make sure that

you make your decorator name explicit so that it’s easy to understand what

the decorator is trying to do.

�Modify Behavior Using Decorators
Now that you know the fundamentals of decorators, let’s go a little deeper

to understand the main use case of decorators. In Listing 5-6, you will write

a complex little function that wraps another function. So, you will modify

the function to_uppercase to accept any function and then define another

function under to_uppercase to perform the upper() operation.

Chapter 5 Decorators and Context Managers

145

Listing 5-6.  Decorator for Uppercase

def to_uppercase(func):

 def wrapper():

 text = func()

 if not isinstance(text, str):

 raise TypeError("Not a string type")

 return text.upper()

 return wrapper

So, what’s going here? You have a function call called to_uppercase

where you pass func as a parameter like before, but here you move the rest

of the code into another function called wrapper. The wrapper function is

returned by to_uppercase.

The wrapper function allows you to execute the code here to change the

behavior of the function instead of just running it. You can now do multiple

things before the function executes and after the function completes the

execution. The wrapper closure has access to the input function and can add

new code before and after the function, which shows the actual power of the

decorator function to change the behavior of the function.

The main use of having another function is to not execute the function

until it’s explicitly called. Until it’s called, it will wrap the function and

write the object of the function. So, you can write the full code as shown in

Listing 5-7.

Listing 5-7.  Full Code for Decorator for Uppercase

 def to_uppercase(func):

 def wrapper():

 text = func()

 if not isinstance(text, str):

 raise TypeError("Not a string type")

 return text.upper()

 return wrapper

Chapter 5 Decorators and Context Managers

146

@to_uppercase

def say():

 return "welcome"

@to_uppercase

def hello():

 return "hello"

>>> say()

WELCOME

>>> hello()

HELLO

In above example, to_uppercase() is a define a decorator, which

basically take any function as parameter and convert string to upper

case. In above code say() function use to_uppercase as decorator, when

python execute the function say(), python pass say() as a function object

to to_uppercase() decorator at the execution time and return a function

object called wrapper, which get executed when called as say() or hello().

You can utilize decorator almost all those scenario where you have to

add functionality before running a specific function. Consider scenario,

when you want your website users to login before seeing any page on your

website, you can consider using login decorator on any function which

allow user to access your website page, which will force users to login before

see any page on your website. Similarity, consider a simple scenario where

you want to add words “Larry Page” after the text, you can do that by adding

the words as follows:

 def to_uppercase(func):

 def wrapper():

 text = func()

 if not isinstance(text, str):

 raise TypeError("Not a string type")

Chapter 5 Decorators and Context Managers

147

 result = " ".join([text.upper(), "Larry Page"])

 return result

 return wrapper

�Using Multiple Decorators
You can also apply multiple decorators to a function. Let’s say you have

to add a prefix before “Larry Page!” In that case, you can use a different

decorator to add the prefix, as shown in Listing 5-8.

Listing 5-8.  Multiple Decorators

def add_prefix(func):

 def wrapper():

 text = func()

 result " ".join([text, "Larry Page!"])

 return result

 return wrapper

 def to_uppercase(func):

 def wrapper():

 text = func()

 if not isinstance(text, str):

 raise TypeError("Not a string type")

 return text.upper()

 return wrapper

@to_uppercase

@add_prefix

def say():

 return "welcome"

>> say()

WELCOME LARRY PAGE!

Chapter 5 Decorators and Context Managers

148

As you might have already noticed, decorators get applied from bottom

to top, so add_prefix is called first and then the to_uppercase decorator

gets called. To prove this, if you change the order of decorators, you would

get different results, as follows:

@add_prefix

@to_uppercase

def say():

 return "welcome"

>> say()

WELCOME Larry Page!

As you can notice, “Larry Page” doesn’t get converted to uppercase

because it was called last.

�Decorators Accept Arguments
Let’s expand on the previous example by passing arguments to decorator

functions so you can dynamically change the passed arguments to

uppercase and greet different people by name. See Listing 5-9.

Listing 5-9.  Pass Arguments to Decorator Functions

 def to_uppercase(func):

 def wrapper(*args, **kwargs):

 text = func(*args, **kwargs)

 if not isinstance(text, str):

 raise TypeError("Not a string type")

 return text.upper()

 return wrapper

Chapter 5 Decorators and Context Managers

149

@to_uppercase

def say(greet):

 return greet

>> say("hello, how you doing")

'HELLO, HOW YOU DOING'

As you can see, you can pass arguments to a decorator function, and it

executes the code and uses those passed-in parameters in the decorator.

�Consider Using a Library for Decorators
When you create a decorator, it mostly replaces one function with another

function. Let’s consider the simple example in Listing 5-10.

Listing 5-10.  Decorator for Logging Function

def logging(func):

 def logs(*args, **kwargs):

 print(func.__name__ + " was called")

 return func(*args, **kwargs)

 return logs

@logging

def foo(x):

"""Calling function for logging"""

 return x * x

>>> fo = foo(10)

>>> print(foo.__name__)

logs

You might be expecting this to print foo as the function name. Instead,

it prints logs as the function name, which is a wrapper function inside the

decorator function logging. In fact, when you are using a decorator, you

will always lose information such as __name__, __doc__, and so on.

Chapter 5 Decorators and Context Managers

150

To overcome this issue, you can consider using functool.wrap, which

takes a function used in a decorator and adds the functionality of copying

over the function name, docstring, arguments list, and so on. So, you can

write the same code, as shown in Listing 5-11.

Listing 5-11.  functools to Create Decorators

from functools import wraps

def logging(func):

 @wraps(func)

 def logs(*args, **kwargs):

 print(func.__name__ + " was called")

 return func(*args, **kwargs)

 return logs

@logging

def foo(x):

 """does some math"""

 return x + x * x

print(foo.__name__) # prints 'f'

print(foo.__doc__) # prints 'does some math'

The Python standard library has a library called functools that has

funtools.wrap to create decorators that help to retain all the information,

which otherwise could be lost when you create your own decorators.

Other than functools, there are libraries such as decorator, which is

also really easy to use. Listing 5-12 shows an example.

Listing 5-12.  Use a Decorator to Create a Decorator Function

from decorator import decorator

@decorator

def trace(f, *args, **kw):

 kwstr = ', '.join('%r: %r' % (k, kw[k]) for k in sorted(kw))

Chapter 5 Decorators and Context Managers

151

 �print("calling %s with args %s, {%s}" % (f.__name__, args,

kwstr))

 return f(*args, **kw)

@trace

def func(): pass

>>> func()

calling func with args (), {}

Similarly, you can use decorators inside the class for class methods, as

shown in Listing 5-13.

Listing 5-13.  Class Using a Function Decorator

def retry_requests(tries=3, delay=10):

 def try_request(fun):

 @wraps(fun)

 def retry_decorators(*args, *kwargs):

 for retry in retries:

 fun(*args, **kwargs)

 time.sleep(delay)

 return retry_decorators

 return try_request

class ApiRequest:

 def __init__(self, url, headers):

 self.url = url

 self.headers = headers

 @try_request(retries=4, delay=5)

 def make_request(self):

 try:

 response = requests.get(url, headers)

Chapter 5 Decorators and Context Managers

152

 if reponse.status_code in (500, 502, 503, 429):

 continue

 except Exception as error:

 raise FailedRequest("Not able to connect with server")

 return response

�Class Decorators for Maintaining State
and Validating Parameters
Until now, you have seen how to use functions as decorators, but Python

doesn’t have any restrictions on creating just methods as decorators.

Classes can also be used as decorators. It all depends upon which specific

way you want to define your decorators.

One of the main use cases of using class decorators is to maintain the

state. However, let’s first understand how the __call_ method helps your

class to make it callable.

To make any class callable, Python provides special methods such as

the __call__() method. What that means is that __call_ allows the class

instance to be called as a function. Method like __call__ make it possible to

create classes as decorators and return the class object to use as the function.

Let’s look at the simple example in Listing 5-14 to further understand

the __call__ method.

Listing 5-14.  Use of the __call__ Method

class Count:

 def __init__(self, first=1):

 self.num = first

 def __call__(self):

 self.num += 1

 print(f"number of times called: {self.num}")

Chapter 5 Decorators and Context Managers

153

Now whenever you call the Count class using the instance to the class,

the __call__ method will be called.

>>> count = Count()

>>> count()

Number to times called: 2

>>> count()

Number of times called: 3

As you can see, calling count() automatically calls the __call__

method, which maintains the state of the variable num.

You can use this concept to implement a decorator class. See Listing 5-15.

Listing 5-15.  Maintain the State Using Decorators

class Count:

 def __init__(self, func):

 functools.update_wrapper(self, func)

 self.func = func

 self.num = 1

 def __call__(self, *args, *kwargs):

 self.num += 1

 print(f"Number of times called: {self.num}")

 return self.func(*args, *kwargs)

@Count

def counting_hello():

 print("Hello")

>>> counting_hello()

Number of times called: 2

>>> counting_hello()

Number of times called: 3

Chapter 5 Decorators and Context Managers

154

The __init__ method needs to store the reference of the function.

The __call__ method gets called whenever a function that decorates the

class gets called. The functools library is being used here to create the

decorator class. As you can see, you are storing the state of the variable

using class decorators.

Let’s take a look at one more interesting case, as shown in Listing 5-16,

which could be achieved using class decorators, that is, type checking. This

is a simple example to showcase the use case; however, you can use it in all

kinds of cases where you need to check for a type of parameter.

Listing 5-16.  Validate Parameters Using Class Decorators

class ValidateParameters:

 def __init__(self, func):

 functools.update(self, func)

 self.func = func

 def __call__(self, *parameters):

 if any([isinstance(item, int) for item in parameters]):

 raise TypeError("Parameter shouldn't be int!!")

 else:

 return self.func(*parameters)

@ValidateParameters

def add_numbers(*list_string):

 return "".join(list_string)

returns anb

print(concate("a", "n", "b"))

raises Error.

print(concate("a", 1, "c"))

As you will notice, you are using class decorators to do type checking.

Chapter 5 Decorators and Context Managers

155

As you can see, there are a lot of places you can use decorators

to make your code cleaner. Whenever you are considering using the

decorator pattern, you can implement it using a Python decorator

easily. Understanding decorators is a little tricky as it requires some

level of understanding of how a function works, but once you get a

basic understanding of decorators, consider using them in a real-world

application. You will find that they make your code much cleaner.

�Context Manager
Context managers, like decorators, are a useful feature of Python. You even

might use them in your day-to-day code without realizing it, especially

when you are using the Python built-in libraries. Common examples are

file operations or socket operations.

Also, context managers can be really useful while writing APIs or

third-party libraries because it makes your code much more readable

and prevents client code from writing unnecessary code to clean up the

resources.

�Context Managers and Their Usefulness
As I mentioned, you probably unknowingly use context managers while

doing different file or socket operations. See Listing 5-17.

Listing 5-17.  File Operations Using a Context Manager

with open("temp.txt") as fread:

 for line in fread:

 print(f"Line: {line}")

Chapter 5 Decorators and Context Managers

156

Here the code is using a context manager to handle the operations.

The with keyword is a way to use a context manager. To understand the

usefulness of a context manager, let’s write this code without a context

manager, as shown in Listing 5-18.

Listing 5-18.  File Operations Without a Context Manager

fread = open("temp.txt")

try:

 for line in fread:

 print(f"Line: {line}")

finally:

 fread.close()

The with statement was replaced by the try-finally block so that the

client does not have to worry about handling exceptions.

The main usefulness of the context manager, besides a cleaner API, is

resource management. Consider a scenario where you have a function that

can read user input files, as shown in Listing 5-19.

Listing 5-19.  Reading Files

def read_file(file_name):

"""Read given file and print lines."""

try:

 fread = open("temp.txt")

 for line in fread:

 print(f"Line: {line}")

catch IOError as error:

 print("Having issue while reading the file")

 raise

First, it’s easy to forget to add the file.close() statement in the

previous code. After reading the file, the file has not been closed by the

Chapter 5 Decorators and Context Managers

157

read_file function. Now consider that the function read_file is being

called thousands of times continuously; this would open thousands of file

handlers in memory and might risk a memory leak. To prevent these cases,

you can use a context manager, as shown in Listing 5-20.

Similarly, here you would have memory leak because the system has

a limit on the number resources that can be used at a specific time. In the

case of Listing 5-16, when you open a file, the OS assigns a resource called

a file descriptor, which is limited by the OS. So, when that limit is passed,

the program crashes with the message OSError.

Listing 5-20.  Leak File Descriptor

fread = []

for x in range(900000):

 fread.append(open('testing.txt', 'w'))

>>> OSError: [Errno 24] Too many open files: testing.txt

Clearly, a context manager helps you to better handle resources. In

this case, that includes closing the file and relinquishing the file descriptor

once the file operation is done.

�Understanding Context Managers
As you can see, context managers are useful for resource management.

Let’s see how you can build them.

To create a with statement, all you need to do is add the __enter__ and

__exit__ methods to an object. Python will call these two methods when it

needs to manage resources, so you don’t need to worry about them.

So, let’s look at the same example of opening a file and build a context

manager . See Listing 5-21.

Chapter 5 Decorators and Context Managers

158

Listing 5-21.  Managing Files

class ReadFile:

 def __init__ (self, name):

 self.name = name

 def __enter__ (self):

 self . file = open (self.name, 'w')

 return self

 def __exit__ (self,exc_type,exc_val,exc_tb):

 if self.file :

 self.file.close()

with ReadFile(file_name) as fread:

 f.write("Learning context manager")

 f.write("Writing into file")

Now when you run this code, as much as possible, you won’t have a file

descriptor leaking issue because ReadFile is managing that for you.

This works because when the with statement executes, Python calls

the __enter__ function and executes. When execution leaves the context

block (with), it executes __exit__ to free up the resources.

Let’s look some of the rules of context managers.

•	 __enter__ returns an object that is assigned to the

variable after as in a context manager block. This object

usually is self.

•	 __exit__ calls the original context manager, not the

one that is returned by __enter__.

•	 __exit__ won’t be called if there is an exception or

error in the __init__ or __enter__ method.

Chapter 5 Decorators and Context Managers

159

•	 Once the code block enters the context manager block,

__enter__ will be called no matter what exception or

error has been thrown.

•	 if __exit__ returns true, then any exception will be

suppressed, and execution will exit from the context

manager block without any error.

Let’s try to understand these rules by looking at the example shown in

Listing 5-22.

Listing 5-22.  Context Manager Class

class ContextManager():

 def __init__(self):

 print("Crating Object")

 self.var = 0

 def __enter__(self):

 print("Inside __enter__")

 return self

 def __exit__(self, val_type, val, val_traceback):

 print('Inside __exit__')

 if exc_type:

 print(f"val_type: {val_type}")

 print(f"val: {val }")

 print(f"val_traceback: {val_traceback}")

>> context = ContextManager()

Creating Object

>> context.var

0

>> with ContextManager as cm:

>> print("Inside the context manager")

Chapter 5 Decorators and Context Managers

160

Inside __enter__

Inside the context manager

Inside __exit__

�Using contextlib to Build a Context Manager
Instead of writing classes to create a context manager, Python provides

a library called a contextlib.contextmanager decorator. It is more

convenient to write the context manager instead of writing classes.

The Python built-in library makes it easier to write a context manager.

You don’t need to write the whole class with all those __enter__ and

__exit__ methods to create a context manager.

The contextlib.contextmanager decorator is a generator-based

factory function for a resource that will automatically support the with

statement, as shown in Listing 5-23.

Listing 5-23.  Creating a Context Manager Using contextlib

from contextlib import contextmanager

@contextmanager

def write_file(file_name):

 try:

 fread = open(file_name, "w")

 yield fread

 finally:

 fread.close()

>> with read_file("accounts.txt") as f:

 f.write("Hello, how you are doing")

 f.write("Writing into file")

First, write_file acquires the resource, and then the yield keyword,

which will be used by the caller, takes effect. When the caller exits from

Chapter 5 Decorators and Context Managers

161

the with block, the generator continues to execute so that any remaining

cleanup steps can occur such as cleaning up the resources.

When the @contextmanager decorator is used to create the context

manager, the value that the generator yields is the context resource.

Both the class-based implementation and the contextlib decorator

are similar implementations; it’s a personal choice which you want to

implement.

�Some Practical Examples of Using a Context
Manager
Let’s look at where the context manager can be useful in day-to-day

programming and in your projects.

There are many cases where you can use a context manager to make

your code better, meaning without bugs and cleaner.

You will explore a couple of different scenarios where you can start

using a context manager from day one. Besides these use cases, you can

use a context manager in a lot of different feature implementations. For

that, you need to find opportunities in your code that you think would be

better when written using a context manager.

�Accessing a Database

You can use a context manager while accessing database resources.

When a specific process is working on some specific data in a database

and modifying the value, you can lock the database while the process is

working on that data, and once the operation is done, you can relinquish

the lock.

As an example, Listing 5-24 shows some SQLite 3 code from

https://docs.python.org/2/library/sqlite3.html#using-the-

connection-as-a-context-manager

Chapter 5 Decorators and Context Managers

https://docs.python.org/2/library/sqlite3.html#using-the-connection-as-a-context-manager
https://docs.python.org/2/library/sqlite3.html#using-the-connection-as-a-context-manager

162

Listing 5-24.  sqlite3 Lock

import sqlite3

con = sqlite3.connect(":memory:")

con.execute("create table person (id integer primary key,

firstname varchar unique)")

Successful, con.commit() is called automatically afterwards

with con:

 �con.execute("insert into person(firstname) values (?)",

("Joe",))

con.rollback() is called after the with block finishes with

an exception, the

exception is still raised and must be caught

try:

 with con:

 �con.execute("insert into person(firstname) values (?)",

("Joe",))

except sqlite3.IntegrityError:

 print "couldn't add Joe twice"

Here you are using a context manager that automatically commits and

rolls back in case of failure.

�Writing Tests

While writing tests, a lot of time you want to mock specific services of

tests with different kinds of exceptions thrown by code. In these cases, a

context manager is really useful. Testing libraries like pytest have features

that allow you to use a context manager to write the code that tests those

exception or mock services. See Listing 5-25.

Chapter 5 Decorators and Context Managers

163

Listing 5-25.  Testing Exception

def divide_numbers(self, first, second):

 isinstance(first, int) and isintance(second, int):

 raise ValueError("Value should be int")

 try:

 return first/second

 except ZeroDevisionException:

 print("Value should not be zero")

 raise

with pytest.raises(ValueError):

 divide_numbers("1", 2)

You can also use it for mocking as:

with mock.patch("new_class.method_name"):

 call_function()

mock.patch is an example of a context manager that can be used as a

decorator.

�Shared Resource

Using the with statement, you can allow access to only one process at

a time. Assume you have to lock a file for writing in Python. It can be

accessed from multiple Python processes at once, but you want only one

process to be used at a time. You can do that using a context manager, as

shown in Listing 5-26.

Chapter 5 Decorators and Context Managers

164

Listing 5-26.  Lock File While Reading with Shared Resource

from filelock import FileLock

def write_file(file_name):

 with FileLock(file_name):

 # work with the file as it is now locked

 print("Lock acquired.")

This code is using the filelock library to lock the file so it’s read by

only one process.

A context manager block prevents you from entering another process

to use the file while the operation is going on.

�Remote Connection

In networking programming, you mostly interact with sockets and use a

network protocol to access different things over the network. When you

want to use a remote connection to access a resource or work on a remote

connection, consider using a context manager to manage the resource.

A remote connection is one of the best places to use a context manager.

See Listing 5-27.

Listing 5-27.  Lock File While Reading with Remote Connection

class Protocol:

 def __init__(self, host, port):

 self.host, self.port = host, port

 def __enter__(self):

 self._client = socket()

 self._client.connect((self.host, self.port))

 return self

 def __exit__(self, exception, value, traceback):

 self._client.close()

Chapter 5 Decorators and Context Managers

165

 def send(self, payload): <code for sending data>

 def receive(self): <code for receiving data>

with Protocol(host, port) as protocol:

 protocol.send(['get', signal])

 result = protocol.receive()

This code is using a context manager to access the remote connection

using a socket. It takes care of a lot of things for you.

Note A context manager can be used in a variety of cases. Start
using context managers whenever you see an opportunity to manage
resources or handle exceptions when writing tests. Context managers
also make your API much cleaner and hide a lot of bottleneck code,
which gives you a cleaner interface.

�Summary
Decorators and context managers are first-class citizens in Python and

should be your preference in your application design. Decorators are

design patterns that allow you to add new functionality to an existing

object without modifying the code. Similarly, a context manager allows

you to manage your resources effectively. You can use them to run a

specific piece of code before and after your function. They also help you to

make your APIs cleaner and more readable. In the next chapter, you will

explore some more tools such as generators and iterators to enhance the

quality of your applications.

Chapter 5 Decorators and Context Managers

167© Sunil Kapil 2019
S. Kapil, Clean Python, https://doi.org/10.1007/978-1-4842-4878-2_6

CHAPTER 6

Generators
and Iterators
Iterators and generators are useful tools in Python. They can make it easier

to handle different data problems, and they help you to write code that is

cleaner and performs better.

Python has a library to take advantage of these two features. You will

learn about them in this chapter, and you will explore different problems

that can be easily handled by generators and iterators without much effort.

�Take Advantage of Iterators and Generators
In this section, you will explore different features of iterators and

generators and will see where these two features can be used in your code

to make it better. Both these features are useful mainly to solve different

data problems.

�Understanding Iterators
An iterator is an object that works on a stream of data. An iterator

object has a method called __next__, and when you use a for loop, list

comprehension, or anything that goes through all data points to get data

168

from an object or other data structure, in the background the __next__

method is being called.

Listing 6-1 shows how to create a class and make it an iterator.

Listing 6-1.  Iterator Class

class MutiplyByTwo:

 def __init__(self, number):

 self.number = number

 self.count = 0

 def __next__(self):

 self.counter += 1

 return self.number * self.counter

mul = Mutiple(500)

print(next(mul))

print(next(mul))

print(next(mul))

>>> 500

>>> 1000

>>> 1500

Let’s see how iterators actually work in Python. In the previous code,

you have a class called MultiplyByTwo that has a method called __next__

that returns a new iterator whenever it’s called. The iterators need to keep

a record of where in is in the sequence by using a counter variable inside

__next__. However, if you try to use this class in a for loop, you will find

that it throws an error, as follows:

for num in MultiplyByTwo(500):

 print(num)

>>> MultiplyByTwo object is not iterable.

Chapter 6 Generators and Iterators

169

Interestingly, MultiplyByTwo is an iterator and not an iterable. So, the

for loop won’t work here. So, what’s an iterable? Let’s look at how iterables

are different than iterators.

An iterable object has a method called __iter__, which returns an

iterator. When __iter__ is called on any object, it returns the iterator,

which can be used to iterate over the object to get the data. In Python,

strings, lists, files, and dictionary are all examples of iterables.

When you try a for loop on them, it works nicely because the loop

returns an iterator.

Now that you understand iterables vs. iterators, let’s modify the class

MultiplyByTwo to be an iterable. See Listing 6-2.

Listing 6-2.  Iterator Class with the for Loop

class MultiplyByTwo:

 def __init__(self, num):

 self.num = num

 self.counter = 0

 def __iter__(self):

 return self

 def __next__(self):

 self.counter += 1

 return self.number * self.counter

for num in MutliplyByTwo(500):

 print(num)

This iterator runs forever, which might be useful in some cases, but

what if you want to have a finite number of iterators? Listing 6-3 shows

how you can implement this.

Chapter 6 Generators and Iterators

170

Listing 6-3.  Iterator Class with StopIteration

class MultiplyByTwo:

 def __init__(self, num, limit):

 self.num = num

 self.limit = limit

 self.counter = 0

 def __iter__(self):

 return self

 def __next__(self):

 self.counter += 1

 value = self.number * self.counter

 if value > self.limit:

 raise StopIteration

 else:

 return value

for num in MutliplyByTwo(500, 5000):

 print(num)

When you raise StopIteration;, your MultiplyByTwo object gets

the signal that it has exhausted the limit, raises an exception that is

automatically handled by Python, and exits from the loop.

�What Are Generators?
Generators are really useful for reading a large amount of data or a large

number of files. Generators can be paused and resumed. Generators

return objects that can iterate like lists. However, unlike lists, they are lazy

and produce items one at a time. Generators are much more memory

efficient when dealing with a large data set compared to any other data

structure.

Chapter 6 Generators and Iterators

171

Let’s try to create a similar multiply function as the iterator from the

previous example. See Listing 6-4.

Listing 6-4.  Generator Example

def multiple_generator(num, limit):

 counter = 1

 value = number * counter

 while value <= limit:

 yield value

 counter += 1

 value = number * counter

for num in multiple_generator(500, 5000):

 print(num)

You’ll notice that this is way shorter than the iterator example, as you

don’t need to define __next__ and __iter__. You also don’t need to keep

track of internal state or raise an exception.

The new thing that you might have noticed is the yield keyword. yield

is similar to return, but instead of terminating the function, it simply

pauses execution until asking for another value. Generators are much

more readable and performant compared to iterators.

�When to Use Iterators
Iterators are really useful when you are dealing with a large set of numbers

in the form of files or streams of data. Iterators give you the flexibility

to handle the data one piece at a time instead of loading all the data in

memory.

Let’s assume you have a CSV file with a sequence of numbers and you

need to calculate the sum of numbers from this CSV file. You can do this

either by storing the sequence of data from the CSV file in a list and then

Chapter 6 Generators and Iterators

172

calculating the sum or by using an iterator approach where you read the

CSV file row by row and calculate the sum of each row.

Let’s look at both ways so you can understand the difference, as shown

in Listing 6-5.

Listing 6-5.  Read a CSV File Using a List

import csv

data = []

sum_data = 0

with open("numbers.csv", "r") as f:

 data.extend(list(csv.reader(f)))

for row in data[1:]:

 sum_data += sum(map(int, row))

print(sum_data)

Notice that you are saving data in a list here and then calculating the

sum of numbers from the list. This can be more costly in terms of memory

and can lead to a memory leak because you are duplicating the data in

memory in the form of a CSV file and list, which could be dangerous if you

are reading a large file. Here, an iterator can save you by getting only one

row from the CSV file, so you are not dumping all the data in memory at

one time. See Listing 6-6.

Listing 6-6.  Read a CSV File Using an Iterator

import csv

sum_data = 0

with open('numbers.csv', 'r') as f:

 reader = csv.reader(f)

 for row in list(reader)[1:]:

 sum_data += sum(map(int, row))

print(sum_data)

Chapter 6 Generators and Iterators

173

This code is calculating the sum of one row and adding it to the next

row by asking the iterator to give you a new set of data from a CSV file.

Another use case for an iterator is when you are reading data from a

database. Let’s consider a scenario where an e-commerce company sells

products through an online store and users buy those products through

an online payment. The payments of users are stored in a table called

Payment, and after 24 hours, an automated system queries the Payment

table and calculates the total profit made in the last 24 hours.

There are two approaches to solving this problem. The first option is

to query the Payment table and get a list of amounts and then calculate the

sum of those amounts. On a normal day, this might work, but consider

a specific day such as Black Friday or a holiday when a company has

millions of transactions. It could crash the system to load millions of

records in memory at one time. The second option is to query the table

but get the data by row or by a number of rows like 100 or 1,000 and then

calculate the total transaction. In Django, you can do something like the

code shown in Listing 6-7.

Listing 6-7.  Read Payment Information from a Database Using an

Iterator

def get_total_payment():

 payments = Payment.objects.all()

 sum_amount = 0

 if payments.exists():

 for payment in payments.iterator():

 sum_amount += payment

 return sum_amount

This code is calculating the total amount by fetching the data from a

database one row at a time without loading all the data at once.

Chapter 6 Generators and Iterators

174

�Using itertools
Python has a module called itertools that has collections of useful

methods. I can’t cover all the methods here but will talk about some of them.

�combinations()

itertools.combinations(iterable, r)

This tool gives the combination tuples of iterable that are r length, which

is 2 in the previous line.

from itertools import combinations

print(list(combinations('12345',2)))

[('1', '2'), ('1', '3'), ('1', '4'), ('1', '5'),

 ('2', '3'), ('2', '4'), ('2', '5'),

 ('3', '4'), ('3', '5'),

 ('4', '5')

]

�permuations()

itertools.permutations(iterable, r)

This returns all the permutations of r length; if r is None, then the default

length of r is the length of an iterable.

from itertools import permutations

print(permutations(['1','2','3']))

print(list(permutations(['1','2','3'])))

[('1', '2', '3'), ('1', '3', '2'),

 ('2', '1', '3'), ('2', '3', '1'),

 ('3', '1', '2'), ('3', '2', '1')

]

Chapter 6 Generators and Iterators

175

�product()

itertools.product(iterable, r)

This tool computes the Cartesian product of the input iterable. It’s similar

to a nested loop.

As an example, product(x, y) would look as follows:

((x,y) for x in A for y in B)

from itertools import product

print(list(product([1,2,3],repeat = 2)))

[(1, 1), (1, 2), (1, 3),

 (2, 1), (2, 2), (2, 3),

 (3, 1), (3, 2), (3, 3)

]

count()

itertools.count(start=0, step=1)

count() is an iterator that returns with numbers evenly spaced beginning

with the number start.

As an example, you tell count() to return a number iterator with step 4.

import itertools

for num in itertools.count(1, 4):

 print(item)

 if item > 24:

 break

>>> 1, 5, 9, 13, 17, 21

Chapter 6 Generators and Iterators

176

groupby()

itertools.groupby(iterable, key=None)

itertools.groupby tool helps you to group items.

As a simple example, let’s say you need to group characters as follows:

numbers = 555441222

result = []

for num, length in groupby(numbers):

 result.append((len(list(length)), int(num)))

print(*result)

>>> (3, 5)(2,4)(1,1)(3,2)

There are other useful methods in itertools that are really useful.

I suggest you check out https://docs.python.org/3.7/library/

itertools.html for more information.

�Why Generators Are Useful
Like iterators, generators save memory. Because iterators are capable of

doing lazy evolution, you can save memory by getting only the data an

operation needs. Therefore, you can use generators when reading big files

from a database to save memory and CPU cycles.

So, let’s say you want to read the file the lazy way; you can use the

yield keyword, which creates a generator function for you. See Listing 6-8.

Listing 6-8.  Read in a Chunk Using a Generator

def read_in_chunks(file_handler, chunk_size=1024):

 """Lazy function (generator) to read a file piece by piece.

 Default chunk size: 1k."""

 while True:

Chapter 6 Generators and Iterators

https://docs.python.org/3.7/library/itertools.html
https://docs.python.org/3.7/library/itertools.html

177

 data = file_handler.read(chunk_size)

 if not data:

 break

 yield data

f = open('large_number_of_data.dat')

for piece in read_in_chunks(f):

 print(piece)

Here you are reading a big file in a chunk instead of loading the while

file in memory.

�List Comprehension vs. Iterators
List comprehension and iterators are two different ways to generate

numbers, and they have a significant difference in terms of how they save

the data in memory or perform operations while generating numbers.

This is iterators expression to generate numbers up to 200.

 (x*2 for x in xrange(200))

List comprehension expression to generate numbers up to 200

[x*2 for x in xrange(200)]

The main difference here is that list comprehension saves all 200

numbers in memory once it completes. However, iterators create an

iterable object that generates numbers on the fly, so speed is fast in the

iterator case. Also, an iterator gives you the flexibility to pass around

objects to generate a number on the fly.

�Take Advantage of the yield Keyword
Before digging into yield, I’ll talk about how to work with the yield

keyword in Python.

Chapter 6 Generators and Iterators

178

When you define yield inside one of your functions, calling the

function gives you a generator object; however, that doesn’t run your

function. Once you get a generator object and each time you extract an

object from the generator (either by using a for loop or by using next()),

Python will execute the function until it comes to the yield keyword. Once

Python reaches the yield keyword, it delivers the object and pauses until

you extract it. Once you extract the object, Python resumes and runs the

code after yield, continuing until it reaches another yield (which could

be the same yield keyword or a different yield). Once a generator is

exhausted, it will exit with a StopIteration exception, which the for loop

automatically handles.

In other words, yield is a keyword that is used like return, except the

function returns a generator. See Listing 6-9.

Listing 6-9.  Generate a Number Using a Generator

def generate_numbers(limit):

 for item in xrange(limit):

 yield item*item

 print(f"Inside the yield: {item}")

numbers = generate_numbers() # create a generator

print(numbers) # numbers is an object!

<generator object generate_numbers at 0xb7555c34>

for item in numbers:

 print(item)

0

1

4

Here you created a generator function using the yield keyword. Notice

that when you call the function generate_numbers(), you get the numbers

Chapter 6 Generators and Iterators

179

object, which is a generator object. You can then use this to generate

numbers on the fly.

When you first call the generator object in a for loop, it runs the

function from the start of generator_numbers until it encounters the yield

keyword, and then it stops and returns the first value of the loop. Once it

calls a second time, it starts on the next line, which is print(f"Inside the

yield: {item}"). It continues to do that until it reaches a limit.

�yield from
The yield from keyword has been used since Python 3. The main use case

of yield from is to get a value from other generators, as shown in Listing 6-10.

Listing 6-10.  Generate a Number Using the yield from Keyword

def flat_list(iter_values):

 """flatten a multi list or something."""

 for item in iter_values:

 if hasattr(item, '__iter__'):

 yield from flat_list(item)

 else:

 yield item

print(list(flat_list([1, [2], [3, [4]]])))

>>> [1, 2, 3, 4]

Instead of iterating over flat_list, you are using yield from, which

not only shorten the lines but also makes your code cleaner.

Chapter 6 Generators and Iterators

180

�yield Is Faster Compared to a Data Structure
If you are dealing with a lot of data and need speed, then obviously you

should use generators to generate the data instead of relying on a data

structure like a list or a tuple.

Here is a simple example:

data = range(1000)

def using_yield():

 def wrapper():

 for d in data:

 yield d

 return list(wrapper())

def using_list():

 result = []

 for d in data:

 result.append(d)

 return result

If you run both code examples, you will notice that using yield is

definitely faster than using a list.

�Summary
Generators and iterators are really useful, especially when you are dealing

with a lot of data or big files. You need to be extra cautious about memory

and CPU consumption as over consumption ould lead to issues such as

memory leaks. Python gives you tools like itertools and yield to help

you avoid all these issues. Be extra diligent when you are dealing with large

files, working with databases, or calling multiple APIs; you might be able to

use these tools to make your code cleaner and performant.

Chapter 6 Generators and Iterators

181© Sunil Kapil 2019
S. Kapil, Clean Python, https://doi.org/10.1007/978-1-4842-4878-2_7

CHAPTER 7

Utilize New Python
Features
The new features introduced in the latest Python 3 version have made

Python much more fun to write programs in. Python already had a lot

of great features, and Python 3 has made it a much more feature-rich

language. Python 3 comes with features such as native support for async

programming, typing, better performance, iterator improvements, and

so on.

In this chapter, you will learn about the new features that can make

your code better and more performant compared to previous versions

of Python. You will learn how using any or all of these features could be

useful and where should you consider using them in your code.

Note  You can explore the new features of Python in the
official documentation at https://docs.python.org/3/
whatsnew/3.7.html. Python 3 is still in development at the time
of writing this book, so there might be some improvements not
mentioned here. In other words, keep an eye on the Python official
documentation for the most up-to-date features.

https://docs.python.org/3/whatsnew/3.7.html
https://docs.python.org/3/whatsnew/3.7.html

182

�Asynchronous Programming
If you have ever done any asynchronous programming (or async

programming for short) in another language like JavaScript, you might

know that it’s not an easy topic. Before Python 3.4, there was a way to

do async programming using third-party libraries, but it always felt a bit

clumsy compared to a language like NodeJS, which is very friendly to async

programming.

Python is flexible on the matter because you can write both sync and

async code. Using async programming can make your code much more

efficient and performant compared to sync programming because it uses

the resources more effectively. However, it’s really important to know when

you should use async programming and when you shouldn’t.

Before going further, let’s discuss asynchronous versus synchronous

programming. In the synchronous world, things happen one at a time.

You call a function or operation, and your program control waits for it to

complete before it proceeds to do the next thing. When a function finishes

its operation, the function returns the result. While the operation is being

performed by the function, your system doesn’t do anything else besides

wait for it to finish.

In the asynchronous world, multiple things can happen at the same

time. When you start an action or call a function, your program continues

to run, and you can perform other actions or call other functions instead of

just waiting for that async function to finish. Once the async function has

completed the work, the program control can access the result.

As an example, let’s assume you have to get stock data for different

companies by calling different companies’ stock APIs. In synchronous

code, you would call the first stock API and wait to get the reply, and then

you would make another call and wait for it to complete. This is a simple

way to run a program; however, the program spends too much time

waiting for responses. In async code, you call the first stock API, then the

second, and the third, and you continue until you get results from one of

Chapter 7 Utilize New Python Features

183

those APIs. You collect the results and continue calling other stock APIs

instead of waiting for the results.

In this section, you will explore async programming in Python so you

can understand how to use it. These are the three main building blocks of

Python async programming:

•	 The main task of the event loop is to manage different

tasks and distribute them for execution. The event loop

registers each task and takes care of the flow control

between these tasks.

•	 Coroutines are functions that schedule an event loop to

run. An await releases the flow of control back to the

event loop.

•	 Futures represent the result of a task that may or

may not have been executed. This result may be an

exception.

�Introducing async in Python
To achieve async paradigm in Python programming, Python has

introduced two main components.

•	 asyncio: This is the Python package that allows an API

to run and manage coroutines.

•	 async/await: Python has introduced two new keywords

to work with async code. They help you to define

coroutines.

Basically, Python now has the capability to run in two different ways,

either asynchronously or synchronously. Depending on which way you

choose, you should think differently when you design your code because

the functionality and behavior of code is different. These styles also have

Chapter 7 Utilize New Python Features

184

different libraries from each other. In other words, both the style and the

syntax of asynchronous and synchronous coding are different from each

other.

To illustrate this point, if you are making HTTP calls, you can’t use the

blocking requests library; therefore, you might want to consider using

aiohttp to make HTTP calls. Similarly, if you are working with the Mongo

driver, you can’t rely on synchronous drivers like mongo-python. You have

to use an asynchronous driver like motor to access MongoDB.

In the synchronous world, there is no easy way to achieve concurrency

or parallelism in Python. However, there are options to run code in

parallel using the thread model of Python; however, in the asynchronous

world (don’t confuse this with parallelism), things have changed for the

better. Now everything runs in an event loop, which lets you run several

coroutines at once. These coroutines run synchronously until they hit

await and then they pause, giving control to the event loop. The other

coroutine will have a chance to perform an action, or some other thing will

happen.

It’s also important to note that you can’t mix async and sync code

in the same function. As an example, you can’t use await with a sync

function.

There are couple of things you should be aware of before diving into

asynchronous programming, especially in the Python world.

•	 In synchronous programming, when you want to halt

the execution or make a program not do anything,

you usually use the Python time.sleep(10) function.

However, in the asynchronous world, this won’t work

as you expect. You should be using await asyncio.

sleep(10); this doesn’t return control to the event loop,

and it can hold up the entire process. Nothing else will

happen, which might be a good thing considering this

Chapter 7 Utilize New Python Features

185

makes it harder for a race condition to happen when

code is moving from one await call to another.

•	 If you use blocking code in an asynchronous function,

Python won’t complain about you using it; however,

things will slow down painfully. Also, Python has

debug mode, which will warn you about things that are

blocking for too long with common errors.

•	 You might need to consider having duplicate code

when you are writing asynchronous and synchronous

code in the same codebase. It might not be possible

in most of the cases that you use the same library or

helper for both async and sync code.

•	 While writing asynchronous code, you should assume

that the control flow at the time of execution might be

lost as compared to the full control of synchronous

code. Especially when you have multiple coroutines

that are running in your code, multiple things are

happening.

•	 As you can imagine, debugging gets harder in the

asynchronous world. There are no good tools or

techniques as of now for debugging.

•	 Testing async code is not very convenient in Python.

There is a lack of good libraries to test async code. You

might see some libraries that are trying to achieve

this, but they are not that mature as in some other

programming languages like JavaScript.

•	 Using async keywords of Python in synchronous code

like await inside a synchronous function will give you a

syntax error.

Chapter 7 Utilize New Python Features

186

It’s also important to change your mind-set about designing your code

asynchronously. If you have both async and sync code in your codebase,

then you have to see them differently. Anything inside async def is async

code, and everything else is synchronous code.

There are two cases when you should consider using async code.

•	 Calling async code from async code, you can use all the

Python keywords like await and async to fully utilize

Python async coding.

•	 Calling async code from sync code is now possible

with Python 3.7 by just calling the run() function in

asyncio.

Overall, writing async code is not as easy as writing synchronous code

in Python. The Python async model is based on concepts such as events,

callbacks, transports, protocols, and futures. The good news is that the

asyncio library is evolving, and each release is being improved. Python

asyncio is here to stay!

Note  Before writing any async code, make sure you get in the right
mind-set about writing the code in an async way, especially when
you have a synchronous programming background. There will be lots
of times you feel like you can’t figure async programming out. Using
async code in small bits and introducing it into your codebase with
minimal impact is a good way to start using it. Having good tests for
async code will make sure that the changes in your codebase don’t
break existing functionality. Things are moving fast in the async world
of Python for the better. So, keep an eye on the new release of Python
for all the new features in async programming.

Chapter 7 Utilize New Python Features

187

�How It Works
I have talked about some of the background of asyncio features, so let’s

now see how asyncio works in the real world. Python introduced the

asyncio package to write async code. The package provides two keys,

async and await. Let’s dive into a simple async example to see how Python

async actually works. See Listing 7-1.

Listing 7-1.  Async, Simple Hello Example

import asyncio

async def hello(first_print, second_print):

 print(first_print)

 await asyncio.sleep(1)

 print(second_print)

asyncio.run(hello("Welcome", "Good-bye"))

Welcome

Good-bye

Listing 7-1 shows some simple asyncio code; it first prints Welcome

and then after one second prints Good-bye. Let’s see how this works.

First asyncio.run() calls the async function hello with two parameters

passed in: Welcome and Good-bye. When the hello function is called, it first

prints first_print and then waits for one second to print second_print.

This behavior might look like synchronous code; however, getting into

the details might surprise you and will help you to understand how the

asynchronous code actually works. Let’s first understand some of the

terms being used here.

Chapter 7 Utilize New Python Features

188

�Coroutine Function

Any function that is defined as async def can be called a coroutine in

Python. Here, async def hello(first_print, second_print) could be

called a coroutine function.

�Coroutine Object

The object returned by calling a coroutine function is called a coroutine

object. You will see examples later where it might be clearer what the

difference is between a coroutine function and a coroutine object in the

real world.

�asyncio.run()

This function is part of the asyncio module. This is the main entry point

for any async code and should be called only once. It does a couple of

things.

•	 It has responsibility to run the passed coroutine, which

is running the async def hello coroutine function in

the previous example.

•	 It also manages the asyncio event loop. This basically

creates a new event loop and closes it at the end.

�await

await is a keyword that passes function control back to the event loop and

suspends the execution of the coroutine. In the previous example, when

Python encounters the await keyword, it suspends the hello coroutine

execution for one second and passes control back to the event loop, which

resumes after one second.

Before going into detail, let’s look at one more simple example and see

what happens. await usually suspends execution of a coroutine function

Chapter 7 Utilize New Python Features

189

until whatever it’s waiting for. When the result of the coroutine is returned,

the execution resumes. There are some rules for await.

•	 It can be used only inside the async def function.

•	 If you define it in a normal function, it will raise an

exception.

•	 To call a coroutine function, you must wait for the

results to come back.

•	 When you use something like await func(), it’s

required that func() be an object that is awaitable,

which means it should be either another coroutine

function or an object that defined an __await__()

method that returns an iterator.

Let’s now see a more useful example, as shown in Listing 7-2, where

you will try to run things concurrently and utilize the async feature.

Listing 7-2.  asyncio Running Two Tasks

import asyncio

import time

async def say_something(delay, words):

 print(f"Before: {words}")

 await asyncio.sleep(delay)

 print(f"After: {words}")

async def main():

 print(f"start: {time.strftime('%X')}")

 await say_something(1, "First task started.")

 await say_something(1, "Second task started.")

 print(f"Finished: {time.strftime('%X')}")

asyncio.run(main())

Chapter 7 Utilize New Python Features

190

Here is the result:

start: 11:30:11

Before: First task started.

After: First task started.

Before: Second task started.

After: Second task started.

Finished: 11:30:13

Here, you are running the same coroutine two times by calling the

coroutine function say_something two times and waiting for both versions

to finish. As you will notice in the result, the say_something coroutine

runs first and waits for one second and then finishes the coroutine. Then

it is called again by the main() coroutine to perform another task, which

is to print a second task after one second. This is not what you want when

using async; it still looks like synchronous code is running. The main

idea behind async code is that you can run say_something two times

concurrently.

Let’s convert this code and run it concurrently, as shown in Listing 7-3.

You might notice some significant changes in the code compared to the

previous listing.

Listing 7-3.  asyncio Running Code Concurrently

import asyncio

import time

async def say_something(delay, words):

 print(f"Before: {words}")

 await asyncio.sleep(delay)

 print(f"After: {words}")

Chapter 7 Utilize New Python Features

191

async def main():

 print(f"Starting Tasks: {time.strftime('%X')}")

 �task1 = asyncio.create_task(say_something(1, "First task

started"))

 �task2 = asyncio.create_task(say_something(2, "Second task

started"))

 await task1

 await task2

 print(f"Finished Tasks: {time.strftime('%X')}")

asyncio.run(main())

Here is the result:

Starting Tasks: 11:43:56

Before: First task started

Before: Second task started

After: First task started

After: Second task started

Finished Tasks: 11:43:58

As you can see in the result, this function is running the same

coroutines with different parameters concurrently, which is what you

wanted to do to run things concurrently.

Let’s analyze what happened in this example:

•	 The say_something coroutine starts with the

parameter’s first task, called task1.

•	 It then suspends the execution for one second as it

encounters the await keyword.

•	 Once await is encountered by task1, it suspends the

running coroutine and returns the control to the event

loop.

Chapter 7 Utilize New Python Features

192

•	 Another task called task2 is created by wrapping the

coroutine’s function say_something inside create_

task with parameters.

•	 When the second task, task2, starts running, it

encounters the await keyword similar to task1 in the

async def say_something coroutine.

•	 Then it makes task2 suspend for two seconds and

returns control to the event loop.

•	 Now the event loop resumes the first task (task1)

because asyncio.sleep has finished (which is sleeping

for one second).

•	 When task task1 completes the work, the second task,

task2, resumes the task and finishes it.

The first thing you might have noticed here is asyncio.create_task(),

which makes the function run the coroutine concurrently as an asyncio

task.

�Tasks

Whenever any coroutine function is called using a method like asyncio.

create_task(), that coroutine is automatically scheduled to run soon.

Tasks help you to run your coroutine functions concurrently, and

Python calls those running coroutines tasks in the Python asyncio world.

Let’s look at a simple example of creating a task using the asyncio library;

see Listing 7-4.

Listing 7-4.  Simple Task Creation Example

import asyncio

async def value(val):

 return val

Chapter 7 Utilize New Python Features

193

async def main():

 # Creating a task to run concurrently

 # You can create as many task as possible here

 task = asyncio.create_task(value(89))

 # This will simply wait for task to finish

 await task

asyncio.run(main())

Another way to create tasks and wait for all of them to complete is to

use the asyncio.gather function. asyncio.gather has the capability to

run all the coroutine functions as tasks and wait for their results before

returning to the event loop.

Let’s look at a simple example; see Listing 7-5.

Listing 7-5.  Using asyncio.gather to Run Tasks Concurrently

import asyncio

import time

async def greetings():

 print("Welcome")

 await asyncio.sleep(1)

 print("Good By")

async def main():

 await asyncio.gather(greetings(), greetings())

def say_greet():

 start = time.perf_counter()

 asyncio.run(main())

 elapsed = time.perf_counter() - start

 print(f"Total time elapsed: {elapsed}")

asyncio.run(say_greet())

Chapter 7 Utilize New Python Features

194

When you run this code, you will see something like this:

Welcome

Welcome

Good By

Good By

Total time elapsed: 1.006283138

Let’s try to understand how the previous code is running using

asyncio.gather. When you run this code, you will notice that Welcome

appears on the console two times and then Good By runs two times. There

is slight delay between printing two Welcome and two Good By messages.

When you call the async main() function from say_greet(), then it’s

the event loop’s job to talk to the greetings() function, and executing

greetings() can be called a task.

In the previous code, you have two tasks running that can execute the

greetings() function.

One of the topics that I haven’t talked about is the await keyword. This

is one of the important keywords in asyncio programming in Python. Any

object that you can use with await can be called an awaitable object. It’s

also important to have an understanding of awaitable objects because it

will give you a better picture of how the asyncio library operates and how

to switch between different tasks in Python.

�Awaitable Objects

As already mentioned, any object that you use with await is called an

awaitable object. Most of the asyncio APIs accept awaitable objects.

Awaitable objects have the following types in asynchronous code.

Coroutines

I already touched on the concept of coroutines in the previous section. Here

you will further explore this and see how it’s one of the awaitable types.

Chapter 7 Utilize New Python Features

195

All coroutine functions are awaitable, so they can be awaited from

other coroutines. You can also define a coroutine as a subroutine, but it

can exit without destroying the state in the async world. See Listing 7-6.

Listing 7-6.  Coroutine Awaiting from Another Coroutine

import asyncio

async def mult(first, second):

 print(f"Calculating multiply of {first} and {second}")

 await asyncio.sleep(1)

 num_mul = first * second

 print(f"Multiply of {num_mul}")

 return num_mul

async def sum(first, second):

 print(f"Calculating sum of {first} and {second}")

 await asyncio.sleep(1)

 num_sum = first + second

 print(f"Sum is {num_sum}")

 return num_sum

async def main(first, second):

 await sum(first, second)

 await mult(first, second)

asyncio.run(main(7, 8))

Here is the result:

Calculating sum of 7 and 8

Sum is 15

Calculating multiply of 7 and 8

Multiply of 56

Chapter 7 Utilize New Python Features

196

As you will notice in the example, you are calling coroutines multiple

times and using a coroutine with the await keyword.

Tasks

The coroutine is scheduled to run when it is wrapped in a task using the

asyncio.create_task() method of asyncio. Most of the time, if you are

working with async code, you are dealing with the create_task method to

run your coroutine concurrently. See Listing 7-7.

Listing 7-7.  create_task Helping to Schedule a Coroutine to Run

import asyncio

async def mul(first, second):

 print(f"Calculating multiply of {first} and {second}")

 await asyncio.sleep(1)

 num_mul = first * second

 print(f"Multiply of {num_mul}")

 return num_mul

async def sum(first, second):

 print(f"Calculating sum of {first} and {second}")

 await asyncio.sleep(1)

 num_sum = first + second

 print(f"Sum is {num_sum}")

 return num_sum

async def main(first, second):

 sum_task = asyncio.create_task(sum(first, second))

 mul_task = asyncio.create_task(sum(first, second))

 await sum_task

 await mul_task

asyncio.run(main(7, 8))

Chapter 7 Utilize New Python Features

197

Here is the result:

Calculating sum of 7 and 8

Calculating sum of 7 and 8

Sum is 15

Sum is 15

As you can see in this example, you are running two different

coroutines concurrently by leveraging the asyncio method asyncio.

create_task for creating tasks.

Once a task has been created, you use the await keyword to run the

newly created task concurrently. Once both tasks are completed, you send

the result to an event loop.

Futures

Futures are awaitable objects that represent a future result of an

asynchronous operation. A coroutine needs to wait until the Future object

returns the response or completes the operation. Mostly, you won’t be

using a Future object explicitly in your code. However, the Future object

has been implicitly taken care of by asyncio.

When a future instance is being created, that means it’s not completed

yet but will be some time later in the future.

Future has methods like done() and cancel(). You mostly don’t need

to write code like this, though, but having an understanding of the Future

object is essential.

Future objects implement the __await__() method, and the job of the

Future object is to hold a certain state and result.

Future has the following statuses:

•	 PENDING: This specifies that a Future is waiting to

complete.

•	 CANCELLED: As mentioned, a Future object can be

canceled using the cancel method.

Chapter 7 Utilize New Python Features

198

•	 FINISHED: There are two ways a Future object can be

completed: as Future.set_result() or as an exception

with Future.set_exception().

Listing 7-8 shows an example of a Future object.

Listing 7-8.  Future Object

from asyncio import Future

future = Future()

future.done()

Here is the result:

False

It might be a good time to learn more about asyncio.gather, as you

might now have better understanding of how awaitable methods work in

the asyncio world.

Note H ere I cover only the gather method; however, I advise you
to look at other asyncio methods as well to see what their syntax
looks like. Mostly, you will get an idea of which kind of input these
functions require and why.

Its syntax looks like this:

asyncio.gather(*aws, loop=None, return_exceptions=False)

aws could be one coroutine or a list of coroutines that are scheduled

to a task. When all the tasks are completed, the asyncio.gather method

aggregates them and returns the result. It runs the task as per the order of

those awaitable objects.

Chapter 7 Utilize New Python Features

199

By default, the value of return_exceptions is False, which means if

any of the tasks return exceptions, other tasks that are running currently

won’t be halted and will continue to run.

If the value of return_exception is True, it will be considered a

successful result and will be aggregated in the result list.

�Timeouts

Beside of raising an exception, you can do some kind of timeout when you

are waiting for tasks to complete.

asyncio has a method called asyncio.wait_for(aws, timeout, *)

that you can use to set a timeout for the task to run. If a timeout occurs, it

cancels the task and raises the exception as asyncio.TimeoutError. The

timeout value can be None or float or int; if the timeout is None, it blocks

until the Future object is completed.

Listing 7-9 shows an example of an async timeout.

Listing 7-9.  Async Timeout

import asyncio

async def long_time_taking_method():

 await asyncio.sleep(4000)

 print("Completed the work")

async def main():

 try:

 �await asyncio.wait_for(long_time_taking_method(),

timeout=2)

 except asyncio.TimeoutError:

 print("Timeout occurred")

asyncio.run(main())

>> Timeout occurred

Chapter 7 Utilize New Python Features

200

In Listing 7-9, the method long_time_taking_method takes around

4,000 seconds; however, you have set the timeout for the Future object to

two seconds, so it goes to asyncio.TimeoutError after two seconds if the

results are not available.

Note T he methods discussed in this section are the most common
in asyncio code; however, there are couple other libraries and
methods that are present in the asyncio library that are less
common or for more advanced scenarios. You can take a look the
Python official documentation if you are interested in learning more
about asyncio.

�Async Generators
Async generators make it possible to use yield in the async function. So,

any async function that contains yield can be called an async generator.

The idea of having an async generator is to replicate what the synchronous

yield does. The only difference is that you can call that function as async.

Async generators certainly improve the performance of generators

compared to the synchronous yield. As per the Python documentation,

asynchronous generators are 2.3 times faster than synchronous generators.

See Listing 7-10.

Listing 7-10.  Async Generators

import asyncio

async def generator(limit):

 for item in range(limit):

 yield item

 await asyncio.sleep(1)

Chapter 7 Utilize New Python Features

201

async def main():

 async for item in generator(10):

 print(item)

asyncio.run(main())

This will print items 1 to 9 within a one-second difference . This

example shows how you can use async generators in your code within

async coroutines.

�Async Comprehensions

The Python async functionality provides a facility to implement async

comprehension similar to the way synchronous code has comprehension

for list, dict, tuple, and set. In other words, async comprehension is

similar to using comprehension in async code.

Let’s look at the example in Listing 7-11, which shows how you can

utilize async comprehension.

Listing 7-11.  Async Comprehension

import asyncio

async def gen_power_two(limit):

 item = 0

 while item < limit:

 yield 2 ** item

 item += 1

 await asyncio.sleep(1)

async def main(limit):

 gen = [item async for item in gen_power_two(limit)]

 return gen

print(asyncio.run(main(5)))

Chapter 7 Utilize New Python Features

202

This will print a list of numbers from 2 to 16; however, you have to wait

for five seconds to see the results as it will complete all the tasks and then

return the result.

�Async Iterators

You have already seen some examples of iterators such as asyncio.gather,

which is one form of iterator.

In Listing 7-12, you can take a look at an iterator using asyncio.as_

completed(), which gets tasks as they complete.

Listing 7-12.  async Iterator Using as_completed

import asyncio

async def is_odd(data):

 odd_even = []

 for item in data:

 �odd_even.append((item, "Even") if item % 2 == 0 else

(item, "Odd"))

 await asyncio.sleep(1)

 return odd_even

async def is_prime(data):

 primes = []

 for item in data:

 if item <= 1:

 primes.append((item, "Not Prime"))

 if item <= 3:

 primes.append((item, "Prime"))

 if item % 2 == 0 or item % 3 == 0:

 primes.append((item, "Not Prime"))

 factor = 5

 while factor * factor <= item:

Chapter 7 Utilize New Python Features

203

 if item % factor == 0 or item % (factor + 2) == 0:

 primes.append((item, "Not Prime"))

 factor += 6

 await asyncio.sleep(1)

 return primes

async def main(data):

 odd_task = asyncio.create_task(is_odd(data))

 prime_task = asyncio.create_task(is_prime(data))

 for res in asyncio.as_completed((odd_task, prime_task)):

 compl = await res

 print(f"completed with data: {res} => {compl}")

asyncio.run(main([3, 5, 10, 23, 90]))

Here is the result:

completed with data: <coroutine object as_completed.._wait_for_

one at 0x10373dcc8>

=> [(3, 'Odd'), (5, 'Odd'), (10, 'Even'), (23, 'Odd'), (90,

'Even')]

completed with data: <coroutine object as_completed.._wait_for_

one at 0x10373dd48>

=> [(3, 'Prime'), (3, 'Not Prime'), (10, 'Not Prime'), (90,

'Not Prime'), (90, 'Not Prime')]

As you can see in the result for Listing 7-12, both tasks are running

concurrently and getting the prime and odd/even numbers status based

on the list passed in to both coroutines.

You can create similar tasks when using the asyncio.gather function

by just using asyncio.gather instead of asyncio.as_completed, as shown

in Listing 7-13.

Chapter 7 Utilize New Python Features

204

Listing 7-13.  Using asyncio.gather for Iterating on a Task

import asyncio

async def is_odd(data):

 odd_even = []

 for item in data:

 �odd_even.append((item, "Even") if item % 2 == 0 else

(item, "Odd"))

 await asyncio.sleep(1)

 return odd_even

async def is_prime(data):

 primes = []

 for item in data:

 if item <= 1:

 primes.append((item, "Not Prime"))

 if item <= 3:

 primes.append((item, "Prime"))

 if item % 2 == 0 or item % 3 == 0:

 primes.append((item, "Not Prime"))

 factor = 5

 while factor * factor <= item:

 if item % factor == 0 or item % (factor + 2) == 0:

 primes.append((item, "Not Prime"))

 factor += 6

 await asyncio.sleep(1)

 return primes

async def main(data):

 odd_task = asyncio.create_task(is_odd(data))

 prime_task = asyncio.create_task(is_prime(data))

 compl = await asyncio.gather(odd_task, prime_task)

Chapter 7 Utilize New Python Features

205

 print(f"completed with data: {compl}")

 return compl

Here is the result:

asyncio.run(main([3, 5, 10, 23, 90]))

completed with data:

[[(3, 'Odd'), (5, 'Odd'), (10, 'Even'), (23, 'Odd'), (90,

'Even')], [(3, 'Prime'), (3, 'Not Prime'), (10, 'Not Prime'),

(90, 'Not Prime'), (90, 'Not Prime')]]

You might notice that you don’t need to write the loop because

asyncio.gather does that for you; it collects all the resulting data and

sends it back to the caller.

�Third-Party Libraries to Consider for Async Code

Besides asyncio, there are couple of third-party libraries that can achieve

the same goals. Most of these third-party libraries try to overcome some of

the issues that you saw in asyncio.

However, considering the continuous improvements in the Python

asyncio library, I suggest using asyncio for your project unless you need

something that asyncio totally lacks.

Let’s take a look at some of the third-party libraries available for

asynchronous code.

Curio

Curio is a third-party library that allows you to perform concurrent I/O

using Python coroutines. It’s based on a task model that provides advanced

handling of interaction between threads and processes. Listing 7-14 shows

a simple example of writing async code using the Curio library.

Chapter 7 Utilize New Python Features

206

Listing 7-14.  Curio Example

import curio

async def generate(limit):

 step = 0

 while step <= limit:

 await curio.sleep(1)

 step += 1

if __name__ == "__main__":

 curio.run(generate, 10)

This will generate 1 to 10 numbers in an async fashion. Curio starts the

kernel by calling run() and defines a task by using a method such as async

def.

A task should be run inside the Curio kernel, which has the

responsibility to run until there is no task to run.

Things to remember while using Curio is that it runs an async function

as a task, and every task needs to be run inside the Curio kernel.

Let’s look at one more example of the Curio library, which actually

runs multiple tasks. See Listing 7-15.

Listing 7-15.  Curio Multiple Tasks

import curio

async def generate(limit):

 step = 0

 while step <= limit:

 await curio.sleep(1)

 step += 1

async def say_hello():

 print("Hello")

 await curio.sleep(1000)

Chapter 7 Utilize New Python Features

207

async def main():

 hello_task = await curio.spawn(say_hello)

 await curio.sleep(3)

 gen_task = await curio.spawn(generate, 5)

 await gen_task.join()

 print("Welcome")

 await hello_task.join()

 print("Good by")

if __name__ == '__main__':

 curio.run(main)

As you might have already guessed, this shows the process of creating

and joining the tasks. There are two main concepts to grasp here.

The spawn method takes a coroutine as an argument and launches the

new hello_task task.

The join method waits for a task to finish before returning to the

kernel.

I hope this has helped give you some idea of how Curio can achieve

concurrency in Python. You can check the Curio official documentation

for more details.

Trio

Trio is a modern and open source library like Curio. It promises to make

it easier to write async code in Python. Some of the features that are

noteworthy in Trio are the following:

•	 It has a good scalability mechanism.

•	 It can run 10,000 tasks simultaneously.

Chapter 7 Utilize New Python Features

208

•	 Trio has been written in Python, which might be useful

to developers who want to take a look under the hood

to understand how things work.

•	 It is easier to get started quickly because the Trio

documentation is really great. If you want to look for a

specific feature, it’s all documented nicely.

Let’s take a quick look at a simple example of Trio to get a feel for the

Trio async code. See Listing 7-16.

Listing 7-16.  Trio, Simple Async Code

import trio

async def greeting():

 await trio.sleep(1)

 return "Welcome to Trio!"

trio.run(greeting)

>> Welcome to Trio!

As you can see, it’s really easy to understand what’s going on with the

code. Trio runs the async function using the run() method, which starts

the greeting async function execution, then suspends the execution for

one second, and finally returns the result.

Let’s look at a little more useful example where you can run multiple

tasks with Trio.

Let’s convert the Listing 7-13 asyncio version of the is_odd and is_

prime async functions to Trio so you can understand better the use of Trio.

See Listing 7-17.

Chapter 7 Utilize New Python Features

209

Listing 7-17.  Trio Running Multiple Tasks

import trio

async def is_odd(data):

 odd_even = []

 for item in data:

 �odd_even.append((item, "Even") if item % 2 == 0 else

(item, "Odd"))

 await trio.sleep(1)

 return odd_even

async def is_prime(data):

 primes = []

 for item in data:

 if item <= 1:

 primes.append((item, "Not Prime"))

 if item <= 3:

 primes.append((item, "Prime"))

 if item % 2 == 0 or item % 3 == 0:

 primes.append((item, "Not Prime"))

 factor = 5

 while factor * factor <= item:

 if item % factor == 0 or item % (factor + 2) == 0:

 primes.append((item, "Not Prime"))

 factor += 6

 await trio.sleep(1)

 return primes

async def main(data):

 print("Calculation has started!")

 async with trio.open_nursery() as nursery:

Chapter 7 Utilize New Python Features

210

 nursery.start_soon(is_odd, data)

 nursery.start_soon(is_prime, data)

trio.run(main, [3, 5, 10, 23, 90])

As you might have noticed, you haven’t changed much in the is_prime

and is_odd async functions because they work similarly here to asyncio.

The main difference here is the in main() function. Instead of calling

asyncio.as_completed, you are using the trio.open_nursery method,

which gets the nursery object. nursery starts running the async coroutines

using the function nursery.start_soon.

Once nursery.start_soon wraps the async functions is_prime and

is_odd, these two tasks start running in the background.

The async with statement’s last block forces the main() function to

stop and wait for all coroutines to finish; then it exits from nursery.

Once you run above example in Listing 7-17, you might notice that it

runs like the asyncio example, where the is_prime and is_odd functions

run concurrently.

Note  Curio and Trio are two notable libraries for writing async code
at the time of writing this book. Having a good understanding of
asyncio will help you to quickly jump on any third-party library.
I suggest having a good understanding of asyncio before you opt for
any third-party library because underneath most of the libraries are
using some of Python async features.

�Typing in Python
Python is a dynamic language, so you usually do not need worry about

defining types while writing code in Python. If you are using a language

like Java or .NET, you have to be aware of the types even before compiling

code; otherwise, these languages will throw error.

Chapter 7 Utilize New Python Features

211

Data types help while debugging and reading a large codebase.

However, there are languages like Python and Ruby that give you the

flexibility and freedom not to bother about data types and instead focus on

the business logic.

Typing is one of the topics in the dynamic language world where some

developers love types and some don’t like to use them.

Python has types available in the form of the typing module, so I

suggest giving them a try in your project to see whether they make sense

for you.

I find them useful while writing code, especially while debugging and

documenting the code.

�Types in Python
Since Python 3, you can use types in your code. However, types are

optional in Python. When you run your code, it doesn’t check for types.

Even if you define the wrong types, Python won’t complain about it. If

you want to make sure you are writing the correct types, though, you can

consider using a tool such as mypy, which complains if you don’t have the

right types.

Now Python allows you to add types in your code by simply adding :

<data_types>. See Listing 7-18.

Listing 7-18.  Adding Types in Python

def is_key_present(data: dict, key: str) -> bool:

 if key in data:

 return True

 else:

 return False

Here you are looking for a key in a dictionary by passing a dictionary

and a key. The function also defines the types of parameters passed as

Chapter 7 Utilize New Python Features

212

data: dict and key: str and returns types as -> bool. This is mostly

what you need to do to write types in Python.

Python understands this syntax and assumes you have written the right

types without verifying them. However, as a developer, it gives you an idea

about what types are being passed to a function.

You can use all data types natively available in Python without using

any other module or library. Python supports types like list, dict, int,

str, set, tuple, etc., without the need for any other module. However,

there might be cases where you need more advanced types, which you will

see in the next section.

�typing Module
For advanced use, Python has introduced a module called typing,

which gives you many more types to add to your codebase. It might take

some initial effort to get used to the syntax and types, but once you get

an understanding of the module, you might feel that it makes your code

cleaner and more readable.

There is a lot of ground to cover, so let’s jump straight into it. The

typing module gives you the fundamental types such as Any, Union, Tuple,

Callable, TypeVar, Generic, and much more. Let’s briefly talk about some

of these types to get idea about them.

�Union

If you don’t know beforehand what type will be passed to a function but

the function expects to get one of the types from a limited set of types, then

you can use Union. Here’s an example:

from typing import Union

def find_user(user_id: Union[str, int]) -> None:

 isinstance(user_id, int):

Chapter 7 Utilize New Python Features

213

 user_id = str(user_id)

 find_user_by_id(user_id)

 ...

Here, user_id can be str or int, so you can use Union to make sure

your function expects either user_id as str or int.

�Any

This is a special kind of type; every other type is consistent with Any. It has

all the values and all methods. You can consider using this type if you don’t

know which type this particular function accepts at runtime.

from typing import Any

def stream_data(sanitize: bool, data: Any) -> None:

 if sanitize:

 ...

 send_to_pipeline_for_processing(data)

�Tuple

As you might guess by its name, this is a type for tuples. The only difference

is that you can define the types contained by the tuple.

from typing import Tuple

def check_fraud_users(users_id: Tuple[int]) -> None:

 for user_id in users_id:

 try:

 check_fraud_by_id(user_id)

 exception FraudException as error:

 ...

Chapter 7 Utilize New Python Features

214

�TypeVar and Generics

If you want to define your own types or rename the specific types, you can

utilize TypeVar from typing to do that. This is useful to make your code

more readable and define types for your custom classes.

This is a more advanced concept of typing. Most of the time, you

might not need it because you will find that the typing module gives you

enough types to play with.

from typing import TypeVar, Generics

Employee = TypeVar("Employee")

Salary = TypeVar

def get_employee_payment(emp: Generics[Employee]) -> :

 ...

�Optional

Optional can be used when you suspect type None will also be passed as a

value instead of a defined type. So, instead of writing as Union[str, None],

you could simply write Optional[str].

from typing import Optional

def get_user_info_by_id(user_id: Optional[int]) ->

Optional[dict]:

 if user_id:

 get_data = query_to_db_with_user_id(user_id)

 return get_data

 else:

 return None

This was an introduction to the typing module in Python. There are

lots of other types available in the typing module that you might want

Chapter 7 Utilize New Python Features

215

to use in your existing codebase. You can refer to the Python official

documentation to learn more.

https://docs.python.org/3/library/typing.html

�Do Data Types Slow Code?
Using the typing module or types in general won’t affect your code’s

performance. However, the typing module provides a method called

typing.get_type_hints to return type hints for an object, which can be

used by third-party tools to check for the types of an object. Python doesn’t

type check these at runtime, so this doesn’t affect your code at all.

As per Python PEP 4841:

While the proposed typing module will contain some building
blocks for runtime type checking—in particular the get_type_hints()
function—third party packages would have to be developed to
implement specific runtime type checking functionality, for example
using decorators or metaclasses. Using type hints for performance
optimizations is left as an exercise for the reader.

�How Typing Helps to Write Better Code
Typing can help you do static code analysis to catch type errors before you

send your code to production and prevent you from some obvious bugs.

There are tools like mypy, which you can add to your toolbox as part of

your software life cycle. mypy can check for correct types by running against

your codebase partially or fully. mypy also helps you to detect bugs such as

checking for the None type when the value is returned from a function.

Typing helps to make your code cleaner. Instead of documenting your

code using comments, where you specify types in a docstring, you can use

types without any performance cost.

1�https://www.python.org/dev/peps/pep-0484/

Chapter 7 Utilize New Python Features

https://docs.python.org/3/library/typing.html
https://www.python.org/dev/peps/pep-0484/

216

If you are using an IDE like PyCharm or VSCode, the typing module

also helps you in code completion. As you all know, early error catching

and clean code are important for any large project to sustain in the long

term.

�Typing Pitfalls
There are some pitfalls you should be aware of while you are using the

typing module of Python.

•	 It is not well documented. Type annotations are not

well documented. It may be difficult to figure out how

to write the correct types when writing custom classes

or advanced data structures. This can be difficult when

you are starting out with the typing module.

•	 Types are not strict. Because type hints are not

strict, you can’t guarantee a variable is of the type

its annotation claims to be. In that case, you are not

improving the quality of code. So, it’s left up to the

individual developer to write the right types. mypy

might be a solution here to check for types.

•	 There is no support for third-party libraries. When

you are using a third-party library, you might find

yourself pulling your hair out as there might be lots

of cases where you don’t know the correct types of

specific third-party tools such as with a data structure

or class. You might end up using any in those cases.

mypy also doesn’t support all those third-party libraries

to check for you.

Chapter 7 Utilize New Python Features

217

Note T he typing module certainly is a good step in the right
direction, but there might be lot of improvement needed in the
typing module. However, using typing right way will certainly help
you find some subtle bugs and type errors. Using types with tools like
mypy will certainly help to make your code cleaner.

�super() Method
The super() method syntax now is easier to use and more readable. You

can use the super() method for inheritance by declaring it as follows:

class PaidStudent(Student):

 def __int__(self):

 super().__init__(self)

�Type Hinting
As I mentioned, Python has a new module called typing, which gives you

type hints in your code.

import typing

def subscribed_users(limit_of_users: int) -> Dict[str, int]:

 ...

Chapter 7 Utilize New Python Features

218

�Better Path Handling Using pathlib
pathlib is a new module in Python that helps you to read files, join paths,

display directory trees, and other features.

With pathlib, a file path can be represented by a proper Path object,

and then you can perform a different action on that Path object. It has

features to find the last modified file, create a unique file name, display a

directory tree, count files, move and delete files, get specific components of

a file, and create paths.

Let’s look at an example where the resolve() method finds the full

path of the file, as shown here:

import pathlib

path = pathlib.Path("error.txt")

path.resolve()

>>> PosixPath("/home/python/error.txt")

path.resolve().parent == pathlib.Path.cwd()

>>> False

�print() Is a Function Now
print() is a function now. In the previous version, it was a statement.

•	 Old: print "Sum of two numbers is", 2 + 2

•	 New: print("Sum of two number is", (2+2))

�f-string
Python has introduced a new and improved way to write strings, called an

f-string. This makes the code much more readable compared to previous

versions like the % format and format methods.

Chapter 7 Utilize New Python Features

219

user_id = "skpl"

amount = 50

f"{user_id} has paid amount: ${amount}"

>>> skpl has paid amount: $50

One more reason to use an f-string is that it’s faster than its previous

versions.

According to PEP 4982:

F-strings provide a way to embed expressions inside string literals,
using a minimal syntax. It should be noted that an f-string is really
an expression evaluated at run time, not a constant value. In Python
source code, an f-string is a literal string, prefixed with f, which con-
tains expressions inside braces. The expressions are replaced with
their values.

�Keyword Only Arguments
Python now allows you to define keyword-only arguments using * as a

function parameter.

def create_report(user, *, file_type, location):

 ...

create_report("skpl", file_type="txt", location="/user/skpl")

Now when you call create_report, you have to provide a keyword

argument after *. You can force other developers to use positional

arguments for calling the function.

2�https://www.python.org/dev/peps/pep-0498/

Chapter 7 Utilize New Python Features

https://www.python.org/dev/peps/pep-0498/

220

�Preserving the Order of a Dictionary
Now a dictionary preserves the order of insertion. Previously, you had to

use OrderDict to do that, but now the default dictionary can do it.

population_raking = {}

population_raking["China"] = 1

population_raking["India"] = 2

population_raking["USA"] = 3

print(f"{population_raking}")

{'China': 1, 'India': 2, 'USA': 3}

�Iterable Unpacking
Now Python gives you the flexibility to unpack iteratively. This is a cool

feature where you can unpack variables iteratively.

*a, = [1] # a = [1]

(a, b), *c = 'PC', 5, 6 # a = "P", b = "C", c = [5, 6]

*a, = range(10)

Check out the official Python documentation for even more new

features in Python.

�Summary
This chapter focused on new major features such as asyncio and typing

and minor features such as pathlib and order dictionary. However, there

are plenty of other new exciting features in Python version 3.

It’s always a good practice to check out the Python documentation

for all the improvements. Python has great documentation that is really

easy to navigate and that helps you understand any library, keyword, or

module. I hope this chapter has given you enough motivation to try these

features in your existing codebase or new project.

Chapter 7 Utilize New Python Features

221© Sunil Kapil 2019
S. Kapil, Clean Python, https://doi.org/10.1007/978-1-4842-4878-2_8

CHAPTER 8

Debugging and
Testing Python Code
If you are writing code, especially for production, it’s really important that

the code has good logging features and test cases. Both make sure that you

can track errors and fix any issues that arise. Python has a rich set of built-

in libraries for debugging and testing the Python code that I’ll cover in this

chapter.

Note  As with any programming language, Python has a lot of
tools to add logs and tests in code. Having a good understanding of
those tools is important in a professional environment where running
software in production makes money for you. Losing money because
of errors or bugs in your production code can be disastrous for a
company or product. Therefore, you need to have logging and testing
in place before you push your code to production. It also helps to
have some kind of metric and performance tracking tool so you can
get an idea of how things will be when your software is used in the
real world by hopefully millions of users.

222

�Debugging
Debugging is one of the most important skills to have as a developer. Most

developers don’t put in enough effort to learn debugging; they usually

just try different things when it’s needed. Debugging should not be an

afterthought process; it’s a technique to rule out different hypotheses

before coming to any conclusion about an actual issue in the code. In this

section, you will explore techniques and tools to debug your Python code.

�Debugging Tools
In this section, I will go over pdb, ipdb, and pudb.

�pdb

pdb is one of the most useful command-line tools for debugging Python

code. pdb provides stack information and parameter information and

jumps around the code commands inside the pdb debugger. To set up the

debugger in the Python code, you can write something like this:

import pdb

pdb.set_trace()

Once control hits the line where the pdb debugger is enabled, you can

debug your code using the pdb command-line options. pdb gives you the

following commands:

•	 h: Help command

•	 w: Prints the stack trace

•	 d: Moves the current frame count down

•	 u: Moves the current frame count up

•	 s: Executes the current line

Chapter 8 Debugging and Testing Python Code

223

•	 n: Continues execution until the next line

•	 unt [line number]: Continues execution until a line number

•	 r: Continues execution until the current function returns

There are other command-line options in pdb. You can check out all of

them at https://docs.python.org/3/library/pdb.html.

�ipdb

Similar to pdb, ipdb is a debugger command-line tool. It gives you the

same power as pdb with the added advantage that you can use ipdb on

IPython. You can add the ipdb debugger as follows:

import ipdb

ipdb.set_trace()

Once it’s installed, you can check all the available commands in ipdb.

Mostly, these are similar to pdb, as follows:

ipdb> ?

Documented commands (type help <topic>):

==

EOF bt cont enable jump pdef psource run unt

a c continue exit l pdoc q s until

alias cl d h list pfile quit step up

args clear debug help n pinfo r tbreak w

b commands disable ignore next pinfo2 restart u whatis

break condition down j p pp return unalias where

Chapter 8 Debugging and Testing Python Code

https://docs.python.org/3/library/pdb.html

224

Miscellaneous help topics:

==========================

exec pdb

Undocumented commands:

======================

retval rv

You can find more information about ipdb at https://pypi.org/

project/ipdb/.

ipdb has the same command-line options as pdb, as shown here:

•	 h: Help command

•	 w: Prints the stack trace

•	 d: Moves the current frame count down

•	 u: Moves the current frame count up

•	 s: Executes the current line

•	 n: Continues execution until the next line

•	 unt [line number]: Continues execution until a line

number

•	 r: Continues execution until the current function returns

�pudb

pudb is little feature-rich debugging tool that has more features than pdb

and ipdb. It’s a visual debugger based in the console. You can debug

the code when you are writing it instead of jumping to a command line

like with pdb or ipdb. It more looks like a GUI debugger but runs on the

console, which makes it lightweight compared to GUI debuggers.

Chapter 8 Debugging and Testing Python Code

https://pypi.org/project/ipdb/
https://pypi.org/project/ipdb/

225

You can add the debugger in code by adding the following line:

import pudb

pudb.set_trace()

It has good documentation. You can find out more information

about pudb and all of its features at https://documen.tician.de/pudb/

starting.html.

You can use the following keys when you are in the pudb debugging

interface:

•	 n: Executes the next command

•	 s: Steps into a function

•	 c: Continues execution

•	 b: Sets a breakpoint on the current line

•	 e: Shows the traceback from a thrown exception

•	 q: Opens a dialog to either quit or restart the running

program

•	 o: Shows the original console/standard output screen

•	 m: Opens a module in a different file

•	 L: Goes to a line

•	 !: Goes to the Python command-line subwindow at the

bottom of the screen

•	 ?: Displays the help dialog that includes a complete

listing of shortcut commands

•	 <SHIFT+V>: Switches the context to the variable

subwindow on the right of the screen

Chapter 8 Debugging and Testing Python Code

https://documen.tician.de/pudb/starting.html
https://documen.tician.de/pudb/starting.html

226

•	 <SHIFT+B>: Switches the context to the breakpoints

subwindow on the right of the screen

•	 <CTRL+X>: Toggles contexts between the lines of code

and the Python command line

As an example, once you are in the pudb display, pressing b will set a

breakpoint on that line where execution stops after continuing with the c

shortcut. One useful option is to set up a variable condition under which the

breakpoint applies. Once the condition is satisfied, control will stop at that point.

You can also configure pudb by creating a file like ~/.config/pudb/

pudb.cfg, as given here:

 [pudb]

 breakpoints_weight = 0.5

 current_stack_frame = top

 custom_stringifier =

 custom_theme =

 display = auto

 line_numbers = True

 prompt_on_quit = True

 seen_welcome = e027

 shell = internal

 sidebar_width = 0.75

 stack_weight = 0.5

 stringifier = str

 theme = classic

 variables_weight = 1.5

 wrap_variables = True

Chapter 8 Debugging and Testing Python Code

227

�breakpoint
breakpoint is a new keyword introduced in Python 3.7. It gives you the

capability to debug the code. breakpoint is similar to the other command-

line tools discussed. You can write the code as follows:

x = 10

breakpoint()

y = 20

breakpoint also can be configured using the PYTHONBREAKPOINT

environment variable to provide the debugger with a method to be called

by the breakpoint() function. This is helpful because you can change the

debugger module easily without making any code changes. As an example,

if you want to disable debugging, you can use PYTHONBREAKPOINT=0.

�Use the Logging Module Instead of print
in Production Code
As mentioned, logging is an important part of any software product, and

Python has a library called logging. Logging also helps you understand

the flow of the code. If you have logging available, it gives you an idea of

where things are failing by providing a stack trace. You can use the logging

library simply by importing the library as follows:

import logging

logging.getLogger(__name__).addHandler(logging.NullHandler())

The logging library has five standard levels that indicate the severity of

events. See Table 8-1.

Chapter 8 Debugging and Testing Python Code

228

So, you can write something like Listing 8-1.

Listing 8-1.  Logging Configuration

import logging

from logging.config import dictConfig

logging_config = dict(

 version=1,

 formatters={

 'f': {'format':

 '�%(asctime)s %(name)-12s %(levelname)-8s

%(message)s'}

 },

 handlers={

 'h': {'class': 'logging.StreamHandler',

 'formatter': 'f',

 'level': logging.DEBUG}

 },

Table 8-1.  Logging Standard Levels

Level Numeric Value

CRITICAL 50

ERROR 40

WARNING 30

INFO 20

DEBUG 10

NOTSET 0

Chapter 8 Debugging and Testing Python Code

229

 root={

 'handlers': ['h'],

 'level': logging.DEBUG,

 },

)

dictConfig(logging_config)

logger = logging.getLogger()

logger.debug("This is debug logging")

Let’s say you want to capture the whole stack trace of the log; you can

do something like Listing 8-2.

Listing 8-2.  Stack Trace Logging

import logging

a = 90

b = 0

try:

 c = a / b

except Exception as e:

 logging.error("Exception ", exc_info=True)

�Classes and Functions in Logging

The logging module has a number of classes and functions that can

be used to define your own logging class and configure logging for your

specific needs and project.

Chapter 8 Debugging and Testing Python Code

230

The most commonly used classes defined in the logging module are

the following:

•	 Logger: This is part of the logging module and is called

by the application directly to get the logger object. It

has a number of methods, listed here:

•	 setLevel: This sets the level of logging. When the

logger is created, it is set to NOSET.

•	 isEnableFor: This method checks the logging level

set by logging.disable(level).

•	 debug: This logs the message with level DEBUG on

this logger.

•	 info: This logs the message with INFO on this logger.

•	 warning: This logs the message with WARNING on

this logger.

•	 error: This logs the message with level ERROR on

this logger.

•	 critical: This logs a message with level CRITICAL

on this logger.

•	 log: This logs the message with an integer level on

this logger.

•	 exception: This logs a message with level ERROR on

this logger.

•	 addHandler: This adds the specified handler to this

logger.

•	 Handler: Handler is a base class of other useful

handler classes such as StreamHandler, FileHandler,

SMTPHandler, HTTPHandler, and more. These subclasses

Chapter 8 Debugging and Testing Python Code

231

send the logging outputs to the corresponding

destinations, like sys.stdout or a disk file.

•	 createLock: This initializes the thread lock that

can be used to serialize access to underlying I/O

functionality.

•	 setLevel: This sets the handler to a level.

•	 flush: This ensures that the logging output has

been flushed.

•	 close: Subclasses of Handler ensure that this gets

called from the overridden close() method.

•	 format: This does the formatting for the output

logging.

•	 emit: Actually, this logs the specified logging

message.

•	 Formatter: This is where you specify the format of

the output by specifying a string format that lists the

attributes that the output should contain.

•	 format: This formats the string.

•	 formatTime: This formats the time. It’s used with

time.strftime() to format the creation time of the

record. The default is '%Y-%m-%d %H:%M:%S, uuu',

where uuu is in milliseconds.

•	 formatException: This formats the specific

exception information.

•	 formatStack: This formats stack information on the

string.

Chapter 8 Debugging and Testing Python Code

232

You can also configure logging for a running application, as shown in

Listing 8-3.

Listing 8-3.  Logging Configuration File

[loggers]

keys=root,sampleLogger

[handlers]

keys=consoleHandler

[formatters]

keys=sampleFormatter

[logger_root]

level=DEBUG

handlers=consoleHandler

[logger_sampleLogger]

level=DEBUG

handlers=consoleHandler

qualname=sampleLogger

propagate=0

[handler_consoleHandler]

class=StreamHandler

level=DEBUG

formatter=sampleFormatter

args=(sys.stdout,)

[formatter_sampleFormatter]

format=%(asctime)s - %(name)s - %(levelname)s - %(message)s

Now you can use this config file, as shown in Listing 8-4.

Chapter 8 Debugging and Testing Python Code

233

Listing 8-4.  Use Logging Configuration

import logging

import logging.config

logging.config.fileConfig(fname='logging.conf', disable_

existing_loggers=False)

Get the logger specified in the file

logger = logging.getLogger(__name__)

logger.debug('Debug logging message')

This is the same configuration as the YAML file shown in Listing 8-5.

Listing 8-5.  Logging Configuration in YAML

version: 1

formatters:

 simple:

 format: '%(asctime)s - %(name)s - %(levelname)s - %(message)s'

handlers:

 console:

 class: logging.StreamHandler

 level: DEBUG

 formatter: simple

 stream: ext://sys.stdout

loggers:

 sampleLogger:

 level: DEBUG

 handlers: [console]

 propagate: no

root:

 level: DEBUG

 handlers: [console]

Chapter 8 Debugging and Testing Python Code

234

You can read this file as shown in Listing 8-6.

Listing 8-6.  Use Logging Configuration YAML File

import logging

import logging.config

import yaml

with open('logging.yaml', 'r') as f:

 config = yaml.safe_load(f.read())

 logging.config.dictConfig(config)

logger = logging.getLogger(__name__)

logger.debug('Debug logging message')

You can find more information about logging at https://docs.

python.org/3/library/logging.html.

�Use the metrics Library for Identifying
Bottlenecks
I have seen lot of developers who don’t understand the value of metrics

in production code. Metrics collect different data points from code, such

as the number of errors in a specific part of code or the response time of a

third-party API. Metrics also can be defined to capture specific data points

such as the number of users currently logged in to a web application.

Metrics are usually collected per request, per second, per minute, or on a

regular interval to monitor a system over time.

There are a lot of third-party applications for collection metrics

on production code such as New Relic, Datadog, and so on. There are

Chapter 8 Debugging and Testing Python Code

https://docs.python.org/3/library/logging.html
https://docs.python.org/3/library/logging.html

235

different kinds of metrics that you can collect. You can categorize them as

performance metrics or resource metrics. Performance metrics could be as

follows:

•	 Throughput: This is the amount of work the system is

doing per unit time.

•	 Error: This is the number of error results or rate of

errors per unit time.

•	 Performance: This represents the time required to

complete a unit of work.

Besides these points, there are several data points that you can use

to capture the performance of your application. Other than performance

metrics, there are metrics like resource metrics that you can use to get

resource metrics like this:

•	 Utilization: This is the percent of time a resource is

busy.

•	 Availability: This is the time that a resource responded

to a request.

Before using metrics, consider which kind of data point you want to

use to track your application. Using metrics will definitely make you more

confident about your application, and you can measure your application

performance.

�How IPython Is Helpful
IPython is a REPL tool for Python. IPython helps you to run your code

at the command line and test it without much configuration. IPython

is a really intelligent and mature REPL; it has a lot of features like tab

completion and magic functions like %timeit, %run, and so on. You can

Chapter 8 Debugging and Testing Python Code

236

also get the history and debug your code inside IPython. There are some

debugging tools that explicitly work on IPython like ipdb.

The main features of IPython are as follows:

•	 Comprehensive object introspection

•	 Input history, which is persistent across sessions

•	 Caching of output results during a session with

automatically generated references

•	 Extensible tab completion, with support by default

for completion of Python variables and keywords, file

names, and function keywords

•	 Extensible system of “magic” commands for controlling

the environment and performing many tasks related to

IPython or the operating system

•	 A rich configuration system with easy switching

between different setups (simpler than changing the

$PYTHONSTARTUP environment variable every time)

•	 Session logging and reloading

•	 Extensible syntax processing for special-purpose

situations

•	 Access to the system shell with a user-extensible alias

system

•	 Easily embeddable in other Python programs and GUIs

•	 Integrated access to the pdb debugger and the Python

profiler

Chapter 8 Debugging and Testing Python Code

237

The command-line interface inherits the previously listed functionality

and adds the following:

•	 Real multiline editing thanks to prompt_toolkit

•	 Syntax highlighting as you type

•	 Integration with a command-line editor for a better

workflow

When used with a compatible front end, the kernel allows the

following:

•	 Objects that can create a rich display of HTML, images,

LaTEX, sound, and video

•	 Interactive widgets with the use of the ipywidgets

package

You can install IPython as follows:

pip install ipython

Getting started with IPython is really easy; you can just type the

command ipython, and you will be in the ipython command shell, as

shown here:

`Python 3.7.0

Type ‘copyright’, ‘credits’ or ‘license’ for more information

IPython 6.4.0 -- An enhanced Interactive Python. Type ‘?’ for help.

In [1]:

Now you can start using the ipython command like this:

In [1]: print("hello ipython")

You can find more information about IPython at https://ipython.

readthedocs.io/en/stable/interactive/index.html.

Chapter 8 Debugging and Testing Python Code

https://ipython.readthedocs.io/en/stable/interactive/index.html
https://ipython.readthedocs.io/en/stable/interactive/index.html

238

�Testing
For any software application, having test code is as important as having

application code. Testing makes sure you are not deploying buggy code.

Python has a lot of useful libraries that make it easier to write different

kinds of tests.

�Why Testing Is Important
Testing is as important as your actual code. Testing makes sure that the

shipping code works as expected. You should start writing testing code

as soon as you start writing the first line of your application code. Testing

should not be an afterthought and should not be there just for the sake of

testing. Testing should make sure that every piece of code results in the

expected behavior.

There are a couple of reasons you should consider writing tests as early

as possible in your software development life cycle.

•	 To make sure that you are build the right thing, it’s

important to have tests in your software life cycle as

soon as you start writing code. It’s hard to make sure

that you are in the right path if you don’t have tests to

check expected behavior.

•	 You want early detection of any breaking changes.

When you are making changes in one part of the code,

there is a high probability that it will break some other

part of the code. You want to detect that breaking code

early instead of after going to production.

Chapter 8 Debugging and Testing Python Code

239

•	 Testing also plays a role in documenting your code.

Tests are a really useful way to document your code

without specifically writing documentation for every

part of the code.

•	 Another advantage of having tests is for onboarding

new developers. When a new developer joins the team,

they can start getting familiar with the code by running

and reading the tests, which can give you an idea of the

flow of the code.

If you want to make sure that your code works as you expect and your

users have a good time using the software, you should use tests in your

production code.

�Pytest vs. UnitTest
Python has lot of amazing testing libraries. Pytest and UnitTest are two

of the most famous libraries. In this section, you will look at the main

differences between these two libraries so you can decide which one you

want to use to test your code.

Both are popular libraries; however, there are multiple differences

between them that make people choose one over another. Let’s look some

of the main features you want to consider before deciding which one to

choose.

Pytest is a third-party library, and UnitTest is a built-in library in

Python. To use Pytest, you have to install it, but this is not a big deal.

pip install pytest

UnitTest needs to inherit TestCase and needs to have a class to write

and run tests. Pytest is more flexible in this regard, as you can write tests by

function or by class. Listing 8-7 shows UnitTest, while Listing 8-8 shows Pytest.

Chapter 8 Debugging and Testing Python Code

240

Listing 8-7.  UnitTest Example 1

from unittest import TestCase

class SimpleTest(TestCase):

 def test_simple(self):

 self.assertTrue(True)

 def test_tuple(self):

 self.assertEqual((1, 3, 4), (1, 3, 4))

 def test_str(self):

 self.assertEqual('This is unit test', 'this is')

Listing 8-8.  Pytest Example 1

import pytest

def test_simple():

 assert 2 == 2

def test_tuple():

 assert (1, 3, 4) == (1, 3, 4)

As you might have noticed, UnitTest uses the TestCase instance

method; however, Pytest has a built-in assert. Pytest asserts are easier to

read without knowing about different assert methods. However, UnitTest

assertions are more configurable and have more methods to assert.

You can see all the assert methods of UnitTest at https://docs.

python.org/3/library/unittest.html#assert-methods and of Pytest at

https://docs.pytest.org/en/latest/reference.html.

Listing 8-9 shows UnitTest, and Listing 8-10 shows Pytest.

Chapter 8 Debugging and Testing Python Code

https://docs.python.org/3/library/unittest.html#assert-methods
https://docs.python.org/3/library/unittest.html#assert-methods
https://docs.pytest.org/en/latest/reference.html

241

Listing 8-9.  UnitTest Example 2

from unittest import TestCase

class SimpleTest(TestCase):

 def not_equal(self):

 self.assertNotEqual(2, 3) # 2 != 3

 def assert_false(self):

 x = 0

 self.assertFalse(x) # bool(x) is false

 def assert_in(self):

 self.assertIn(5, [1, 3, 8, 5]) # 5 in [1, 3, 8, 5]

Listing 8-10.  Pytest Example 2

import pytest

def not_equal():

 assert 2 != 2

def assert_false():

 x = 0

 assert x is 0

def assert_in():

 assert 5 in [1, 3, 8, 5]

You might notice that Pytest is easier to assert compared to UnitTest.

Pytest is also more readable compared to UnitTest.

Pytest highlights errors with code snippets, while UnitTest doesn’t

have that feature; it shows a one-line error with no highlights. This might

change in future versions, but currently Pytest has better error reporting.

Listing 8-11 shows the Pytest console output, while Listing 8-12 shows the

UnitTest console output.

Chapter 8 Debugging and Testing Python Code

242

Listing 8-11.  Pytest Console Output

>>> py.test simple.py

============================= test session starts =============

platform darwin -- Python 3.7.0 -- py-1.4.20 -- pytest-2.5.2

plugins: cache, cov, pep8, xdist

collected 2 items

simple.py .F

=================================== FAILURES =================

___________________________________ test_simple_______________

 def test_simple():

 print("This test should fail")

> assert False

E assert False

simple.py:7: AssertionError

------------------------------- Captured stdout ---------------

This test should fail

====================== 1 failed, 1 passed in 0.04 seconds ====

Listing 8-12.  UnitTest Console Output

Traceback (most recent call last):

 File "~<stdin>~", line 11, in simple.py

ZeroDivisionError: integer division or modulo by zero

Pytest has setup methods like fixture that you can configure for

modules, sessions, and functions. UnitTest has the methods setUp and

tearDown. Listing 8-13 shows the Pytest fixture, while Listing 8-14 shows

the UnitTest fixture.

Chapter 8 Debugging and Testing Python Code

243

Listing 8-13.  Pytest Fixture

import pytest

@pytest.fixture

def get_instance():

 s = CallClassBeforeStartingTest()

 s.call_function()

 return s

@pytest.fixture(scope='session')

def test_data():

 �return {"test_data": "This is test data which will be use

in different test methods"}

def test_simple(test_data, get_instance):

 �assert test_instance.call_another_function(test_data) is

not None

Listing 8-14.  UnitTest Tests Using Setup and Teardown

from unittest import TestCase

class SetupBaseTestCase(TestCase):

 def setUp(self):

 self.sess = CallClassBeforeStartingTest()

 def test_simple():

 self.sess.call_function()

 def tearDown(self):

 self.sess.close()

As you will notice, Pytest and UnitTest have different ways of handling

the test setup. These are some of the main differences between Pytest and

UnitTest. However, both are feature-rich tools.

Chapter 8 Debugging and Testing Python Code

244

I usually prefer to use Pytest because it is easy to use and readable.

However, if you are comfortable using UnitTest, please don’t feel you have

to use Pytest. Use whatever you are comfortable with. Choosing a testing

tool is secondary; the primary goal should be having good tests for your

code!

�Property Testing
Property testing is way to test functions where you provide numbers

of input. You can read more about it at https://hypothesis.works/

articles/what-is-property-based-testing/.

Python has a library called hypothesis that is perfect for writing

property testing. hypothesis is easy to use, and if you are familiar with

Pytest, it is even easier.

You can install hypothesis as follows:

pip install hypothesis

You can see an example of property testing using hypothesis, as

shown in Listing 8-15.

Listing 8-15.  Property Testing

from hypothesis import given

from hypothesis.strategies import text

@given(text())

def test_decode_inverts_encode(s):

 assert decode(encode(s)) == s

Here, hypothesis provides all kinds of text to test the function test_

decode_inverts_encode instead of you providing that set of data to decode

the text.

Chapter 8 Debugging and Testing Python Code

https://hypothesis.works/articles/what-is-property-based-testing/
https://hypothesis.works/articles/what-is-property-based-testing/

245

�How to Create a Report for Testing
There are lots of tools that will generate a test report. In fact, Pytest and

UnitTest will do this. Test reports help to understand the test results and

are useful to track the progress of test coverage as well. However, here I am

strictly talking about the test report generation.

When you run a test, report generation can give you the full overview

of running a test with the pass/fail results. You can use one of the following

tools to do this:

pip install pytest-html

pytest -v tests.py --html=pytest_report.html --self-contained-

html

One tool called nose has built-in report generation tools. If you are

using nose, you can generate tests by running the command as follows:

nosetests -with-coverage --cover-html

With UnitTest, you can use TextTestRunner, as shown in Listing 8-16.

Listing 8-16.  UnitTest with TextTestRunner Part 1

class TestBasic(unittest.TestCase):

 def setUp(self):

 # set up in here

class TestA(TestBasic):

 def first_test(self):

 self.assertEqual(10,10)

 def second_test(self):

 self.assertEqual(10,5)

Chapter 8 Debugging and Testing Python Code

246

Let’s assume you have the previous test to run. UnitTest provides you

with a method called TextTestRunner to generate the report for the test, as

shown in Listing 8-17.

Listing 8-17.  UnitTest with TextTestRunner Part 2

import test

test_suite = unittest.TestLoader().loadTestFromModule(test)

test_results = unittest.TextTestRunner(verbosity=2).run(test_

suite)

If you run this code, it will generate the report for the TestBasic class.

Besides the tools discussed here, there are plenty of Python third-party

libraries that provide a lot of flexibility in terms of the way to generate

reports, and they are very powerful tools.

�Automate Unit Tests
Automating unit tests means that unit tests run without you having to

start them. Having the capability to run a unit test while merging with the

master or main code means you can make sure that new changes don’t

break any existing feature or functionality.

As I have already discussed, having unit tests for any codebase is really

important, and you’ll want to run them using some kind of CI/CD flow.

This also assumes that you are using some kind of version control like Git

or third-party tools like GitHub or GitLab to store your code.

The ideal flow to run tests is as follows:

	 1.	 Commit changes using version control.

	 2.	 Push the changes to some kind of version control.

Chapter 8 Debugging and Testing Python Code

247

	 3.	 Trigger the unit tests from version control using

some third-party tool like Travis, which runs the

tests automatically and posts the results to version

control.

	 4.	 Version control should not allow merging to the

master until a test passes.

�Getting Your Code Ready for Production
Before going to production, there are things that are important to make

sure that shipped code is high-quality and works as expected. Every team

or company has different steps they take before deploying changes or

new code to production. I won’t discuss any one ideal process to deploy

to production. However, you can introduce some things in your current

deployment pipeline to make your Python code better and less error prone

in production.

�Run Unit and Integration Tests in Python
As already mentioned, it’s important to have unit tests. Besides unit tests,

having integration tests helps immensely, especially if you have a lot of

moving part in the codebase.

As you know, unit tests help to check a specific unit of the code and

make sure that unit of code works. With integration tests, it’s important to

test if one part of the code works with another part of the code without any

error. Integration tests help you to check that the code works as a whole.

Chapter 8 Debugging and Testing Python Code

248

�Use Linting to Make Code Consistent

A code linter analyzes your source code for potential errors. Linters solve

the following issues in your code:

•	 Syntax errors

•	 Structural problems like the use of undefined variables

•	 Code style guideline violations

Code linting gives you information that can be easily skimmed. It’s

really useful for code especially for a big project when there is a lot of

moving code and all the developers who are working on code can agree on

a specific code style.

There is a lot of Python linting code. Which type you should use is up

to you or your team of developers.

There are a lot of advantages to using linting.

•	 It helps you write better code by checking it against

coding standards.

•	 It prevents you from making obvious bugs such as

syntax errors, typos, bad formatting, incorrect styling,

and so on.

•	 It saves your time as a developer.

•	 It helps all developers agree on specific code standards.

•	 It’s really easy to use and configure.

•	 It’s easy to set up.

Let’s look at some of the popular linting tools available in Python. If

you are using a modern IDE tool like VSCode, Sublime, or PyCharm, you

will find that these tools already have some kind of linting available.

Chapter 8 Debugging and Testing Python Code

249

flake8

flake8 is one of the most popular linting tools. It’s a wrapper of pep8,

pyflakes, and circular complexity. It has a low rate of false positives.

You can easily set it up by using this command:

pip install flake8

pylint

pylint is another great choice for linting. It needs a bit more setup and

gives more false positives compared to flake8, but if you need more

rigorous linting checks on your code, pylint might be right tool for you.

�Use Code Coverage to Check for Tests

Code coverage is a process where you check for a number of tests written

for code (or the code that is touched by different tests to be precise). Code

coverage makes sure you have enough tests to be sure about the quality of

the code. Code coverage should be one part of your software development

life cycle; it continuously raises the quality standard of your code.

Python has tool called Coverage.py, which is a third-party tool to check

for test coverage. You can install it as follows:

pip install coverage

On installation of Coverage.py, a Python script called coverage is

placed in your Python script directory. Coverage.py has a number of

commands that determine the action performed.

•	 run: Runs a Python program and collects execution data

•	 report: Reports coverage results

•	 html: Produces annotated HTML listings with coverage

results

Chapter 8 Debugging and Testing Python Code

250

•	 xml: Produces an XML report with coverage results

•	 annotate: Annotates source files with coverage results

•	 erase: Erases previously collected coverage data

•	 combine: Combines a number of data files

•	 debug: Gets diagnostic information

You can run a coverage report as follows:

coverage run -m packagename.modulename arg1 arg2

There are other tools that are directly integrated with version control

systems like GitHub. These tools can be more convenient for bigger teams

because the checks can be run as soon as new code is submitted for

review. Having code coverage as part of the software life cycle makes sure

you are not taking any chances with your production code.

�Use virtualenv for Your Project

virtualenv is one of the tools that should be part of every developer’s

toolchain. You use it to create isolated Python environments. When

you install virtualenv and create an environment for your project,

virtualenv creates a folder that contains all the executables that your

project needs to run.

You can install virtualenv as follows:

pip install virtualenv

I suggest looking here to get more information about virtualenv:

https://docs.python-guide.org/dev/virtualenvs/

Chapter 8 Debugging and Testing Python Code

251

�Summary
For any production code, it’s important to have tools that help you to

debug and better monitor your code. As you learned in this chapter,

Python has plenty of tools that give you the capability to better prepare

your code before you deploy it to production. These tools not only help you

stay sane when your application is used by millions of users but also help

you maintain your code for long-term use. Make sure you are leveraging

these tools for your application as investing in these tools will definitely

pay off in the long run. Having the right process when deploying your

application in production is as important as building new features because

it will make sure that your application is high-quality.

Chapter 8 Debugging and Testing Python Code

253© Sunil Kapil 2019
S. Kapil, Clean Python, https://doi.org/10.1007/978-1-4842-4878-2

�APPENDIX

Some Awesome
Python Tools
This appendix lists some recommended tools that will help speed up your

development and improve your code quality. You might be using them

already, but if not, I suggest making them part of your code base as these

tools can help developers spot bugs early on and improve code maintenance.

�Sphinx
Just like writing unit tests is important to maintaining code quality, having

well-documented code is important to making sure that new developers

who join the project can ramp up quickly without getting lost in the code.

Sphinx can help you document your code easily. You just need to make

sure to add a docstring in your code.

You can install Sphinx as follows:

pip install sphinx

Next, create a docs folder in your project as follows:

project

 project_name

 __init__.py

 source_1.py

 source_2.py

https://doi.org/10.1007/978-1-4842-4878-2

254

 docs

 setup.py

From within your docs folder, when you run the sphinx-quickstart

script, the script can perform the necessary setup. This is how you run the

command:

cd docs

sphinx-quickstart

This script creates a number of directories and files within the docs

folder, which will be used to autogenerate documentation from your

source code.

Now you can add a docstring in your code as follows:

"""

Module perform some basic claculation tasks.

"""

class Calculation:

 """This class performs different calculations.

 �You can use this class to do various calculations which

make sure that you get the right results.

 """

 def __init__(self):

 """Calculation initialization method."""

 self.current_number = 0

 def sum(self, list_of_numbers):

 """Add provide list of numbers and return sum.

 param list_of_numbers: list of numbers need to added.

 type list_of_numners: list

 return: return sum of numbers.

Appendix Some Awesome Python Tools

255

 type: int

 """

 return sum(list_of_numbers)

Now if you want to generate an HTML file, you can use the following

command:

make html

This will generate an HTML file as your documentation, based on

comments you added in the code.

�Coverage
Coverage helps you to measure the code coverage of your Python code. Its

main purpose is to gauge the effectiveness of tests. It shows you which part

of the code is being tested and generates a report based on your tests. It

supports most major Python versions.

Coverage looks for a .coverage file in your project to read and use

to generate a report for you. You can install Coverage by running the

following command:

pip install pytest-cov

If you are using pytest, then you can run it as follows:

py.test test.py --cov=sample.py

You will need the py.test plug-in for pytest to generate a report using

Coverage. It displays the report as follows:

Name | Stmts | Miss | Cover | Missing |

...

sample.py | 6 | 0 | 100% |

You can find more information about Coverage at https://coverage.

readthedocs.io/en/latest/index.html.

Appendix Some Awesome Python Tools

https://coverage.readthedocs.io/en/latest/index.html
https://coverage.readthedocs.io/en/latest/index.html

256

�pre-commit
If you are using the Git version control system to manage your project,

then a pre-commit hook is one of the tools that should be part of your

commit process. pre-commit hooks are Git hook scripts that run when you

try to commit the code; this helps you to identify various issues before your

submission for code review.

Issues that might be identified include missing semicolons, typos, code

structure issues, poor coding style, complexity, trailing whitespaces, debug

statements, and so on.

By pointing out these issues, you can fix them before submitting for

code review and save the reviewer and the rest of the team time and effort.

You can hook up your linter such as Flake8 or Pylint with pre-commit

to identify all these issues before you submit your code. You can install the

pre-commit package manager as follows:

pip install pre-commit

To add the pre-commit hook, you can create a file as follows:

pre-commit-config.yaml

In this file you can define all the hooks that you want to run before

submitting code.

When you try to commit any code with issues, it errors out all those

issues and won’t allow you to commit before fixing them. This also ensures

that all team members are following a similar style and checking their code

against tools like flak8 or pylint.

You can also create your own new hooks and add them as part of the

code submission process. You can learn more about pre-commit here:

https://pre-commit.com/.

Appendix Some Awesome Python Tools

https://pre-commit.com/

257

�Pyenv for virtualenv
Pyenv helps you manage different versions of Python with different virtual

environments. You can work with Python versions such as python2.7,

python3.7, python3.8, etc., at the same time on one machine and

switch between them easily. It also can switch your virtual env for you by

changing the directory.

You can install Pyenv by going to https://github.com/pyenv/pyenv-

installer.

Once, you install Pyenv, you can set these lines in your .bashrc file:

export PATH="~/.pyenv/bin:$PATH"

eval "$(pyenv init -)"

eval "$(pyenv virtualenv-init -)"

Now you can explore different Pyenv commands by reading the

documentation at https://github.com/pyenv/pyenv

�Jupyter Lab
If you work in the data science field, you might have heard about using

Jupyter or Notebook to run the code in a browser. There is a new tool

available that is an improved version of Notebook and Jupyter called

Jupyter Lab.

You can also consider it as an IDE for Python; it can run all kinds

of Python code. It’s recommended for data science people because

they don’t need to set up several Python virtual environments or debug

virtual environment issues. Using Jupyter Lab saves you from all those

environment issues, and you can focus on writing your code.

You can use pip to install Jupyter Lab for you, as shown here:

python3 -m pip install jupyterlab

Appendix Some Awesome Python Tools

https://github.com/pyenv/pyenv-installer
https://github.com/pyenv/pyenv-installer
https://github.com/pyenv/pyenv

258

Or you can use conda, as shown here:

conda install -c conda-forge jupyterlab

To run it, you can simply write jupyter lab.

This will open your default browser to http://localhost:8888/lab,

where you can start writing your Python code.

�Pycharm/VSCode/Sublime
There are some great IDEs that help you to write your Python code such as

Pycharm by JetBrains, VSCode by Microsoft, or Sublime. These are some of

the notable IDEs that are popular among the developers.

Pycharm comes in community and license versions. VSCode and

Sublime are open source code, and you can use them for free.

All of these are great tools for programming, so it’s a matter of

preference which one you choose. They give you out-of-the-box features

such as IntelliSense, remote debugging, and much more.

�Flake8/Pylint
Like every other language, Python has some guidelines to write the code

in a Pythonic way. Tools like Flake8 and Pylint make sure that you are

following all the Python guidelines. These tools are configurable, so you

can modify the checks per your project needs.

You can install Pylint in your virtual environment by pip as follows:

pip install pylint

As mentioned, Pylint is totally configurable. You can use a file like

pylintrc to customize which errors or conventions are important to you.

You can also write your own plug-in to customize it.

Appendix Some Awesome Python Tools

259

Similarly, Flake8 checks for all PEP8 rules in your code and tells you if

you are breaking any.

You can install Flake8 as follows:

pip install flake8

Flake8 also has a configuration file called .flake8 to customize checks

for you per your needs.

You don’t need to install both of them as they are tools to achieve the

same goal, which is to make your code follow the PEP8 rules.

Appendix Some Awesome Python Tools

261© Sunil Kapil 2019
S. Kapil, Clean Python, https://doi.org/10.1007/978-1-4842-4878-2

Index

A
Abstract class inheritance, 104–106
add_prefix function, 148
__all__ class, 122
Arguments

with keyword, 86
without keyword, 85

Async generators, 200, 201
comprehension, 201, 202
curio, 205–207
iterator, 202–205
third-party libraries, 205
trio, 207, 208, 210

Asynchronous/async
programming, 182, 183

asyncio module, 188
awaitable objects

coroutines, 194, 196
futures, 197–199
tasks, 196, 197

await keyword, 188–192
cases, 186
components, 183
coroutine function, 188
generators, 200 (see also Async

generators)

task
asyncio.gather, 193, 194
creation, 192

timeouts, 199, 200
working, 187

asyncio.create_task()
function, 192

asyncio.gather function, 203
Automating unit tests, 246, 247
Await keyword

parameters, 191, 192
rules, 189
running code, 190
running task, 189–191

B
Boolean values, 14
breakpoint() function, 227
Built-in libraries

CSV files, 62
datetime and time, 62
__future__, 64
re, 63
sys and os, 63
tempfile, 63

https://doi.org/10.1007/978-1-4842-4878-2

262

C
Class decorators

__call__ method, 152
count class, 153
maintain state, 153
validate parameters, 154, 155

Class docstring, 23, 24
Classes

__init__, 97
size, 94, 95
structure, 95, 96
variables, 97

Class method, 98, 106, 107
Code coverage, 249, 250, 255
Code point, 56
Collections module, 66

Counter, 66, 67
defaultDict, 68, 69
deque, 67, 68
namedtuple, 69
orderedDict, 69

Comprehension vs. iterators, 177
contextlib.contextmanager

decorator, 160, 161
Context manager

class, 159, 160
database resources, 161, 162
filelock library, 164
file/socket operations, 155–157
managing files, 158
remote connection, 164, 165
rules, 158
writing test, 162, 163

Control structures
def statement, 30
else clause, 32–35
for loop, 29
lambda, 30, 31
list comprehension, 26–29
range, 35, 36
while loop, 33, 34

D
Data structures

built-in functions, 62
(see also Built-in libraries)

sets, 50, 51
str, 56
Unicode, 56, 57
zip, 60, 61

Debugging
breakpoint, 227
ipdb, 223, 224
pdb, 222, 223
pudb, 224, 226

Decorator
additional code, functions, 140
arguments, 148, 149
class methods, 151, 152
converting to uppercase,

passing func, 142, 143
converting to uppercase,

passing string, 142
description, 140
function, creation, 150
functools, 150

INDEX

263

logging function, 149
to_upper_case function, 144
use cases, 141, 144

say() function, 146
wrapper, 145

DefaultDict, 62, 68, 70, 71
Default dictionary, 220
def square(val) function, 12
__delete__(set, instance), 136
Dictionary, 65

merge operations, 73, 74
ordered vs default, 70, 71
pprint, 74, 75
switch keyword, 72, 73

Docstrings, 18
class, 23, 24
function, 24
module-level, 21, 22
multiline docstring, 18, 19
tools, 25, 26
typing module, 19

E
else clause, 33–35
Encoding, 57
__enter__ function, 16, 158
Epydocs, 25
Epytext docstrings, 21
except keyword, 44
Exceptions, 82–84

division of numbers, 38
except clause, 43, 44

finally keyword, 39, 40
return, None, 39
own class, 41, 42
third-party API, 45, 46
try block, 46, 47
UserNotFoundError, 41, 42
ValidationError, 42
ZeroDivisionError, 38

__exit__ function, 16, 158

F
file.close() statement, 156
filter method, 26
Flake8, 258, 259
f-string, 218, 219
Function docstrings, 24
functool.wrap, 150

G, H
generate_numbers(), 178
Generators, 58, 60, 80–82

iterator, function, 171
vs. list comprehension, 31, 32
read chunk, 176

get_data_from_db method, 48
__get__(self, instance,

owner), 136
get_unique_emails, 79
get_user_by function, 4
get_user_info function, 4
Google docstrings, 20

Index

264

I
__init__ method, 106
Instance method, 98
IPython

command shell, 237
features, 236
functionality, 237
installation, 237

isinstance() method, 14
is_prime/is_odd functions, 210
Iterable unpacking, 220
Iterators, 57, 59

class creation, 168
for Loop, 169
MultiplyByTwo, 169
object, 167
StopIteration, 170
use, 171

read CSV file,
using iterator, 172

read CSV file, using list, 172
read payment information,

using iterator, 173
itertools, 63

combination (), 174
permutations (), 174
product()

count (), 175
groupby (), 176

J
join() method, 10
json library, 64
Jupyter lab, 257, 258

K
Keyword-only arguments, 219

L
Lambda, 11, 92, 93
Leak file descriptor, 157
Linting tools, 16, 17
List comprehension, 26
logging library, 64
Logging module, 89, 90

classes and functions, 229
configuration, 228, 232
formatter, 231
handler, 230
logger object, 230
stack trace, 229
standard levels, 227
using config file, 233
YAML, 233, 234

M
main() function, 210
Maintainability, 115
map method, 26
math lib, 62
Metaclasses, 112, 113

class behavior, 130
__call__ method, 130
usage, 123, 124

__metaclass__ model, 123
mock.patch function, 163
Module-level docstring, 21, 22

INDEX

265

Modules, 111, 112
import classes/functions,

119, 121
__init__.py file, 116

cart class, 117
different

functionality, 118
payment class, 117

rules, 114, 115
use, 115, 116

mongo-python, 184
most_common()

method, 66
Multiple decorators, 147, 148

N
namedtuple, 52, 62, 69

access data, 52, 53
returning data, 53, 55

Naming conventions
classes, 5
constant, 5
function and method

arguments, 5, 6
function names, 3
nonmangling method, 2
private methods, 3
user ID, 4

__new__ method, 124, 125
assign value, 125, 126
validating value, 126, 127

next() function, 80
NumPy/SciPy docstrings, 21

O
orderddict, 62
orderedDict, 69–71

P, Q
pathlib, 218
PEP8 style guide, 17
Performance/resource

metrics, 235
pickle library, 64
pprint module, 74, 75
pre-commit hook, 256
print() function, 218
Private method, 99
@property decorator, 99–101
Property testing, 244
Public attribute, 107–109
Pycco, 25
Pycharm, 258
Pyenv, 257
Pylint, 258, 259
PyTest

assert methods, 241
console output, 242
fixture, 243
third-party library, 239

Python
adding types, 211, 212
class attribute, 134
__get__ example, 134, 135
typing module, 211

any, 213
errors, 215

Index

266

optional, 214, 215
pitfalls, 216
tuples, 213
TypeVar, 214
union, 212, 213

Pythonic code
context manager, 14, 16
CSV file, 8, 9
is/is not, compare, 10, 11
join() method, 10
nested dictionary, 6, 7
return statement, 12
startswith or endswith, 13

R
range function, 35
read_file function, 80, 157
Return None, 86–88
Reusability, 116
route decorator, 141
run() function, 186, 208
Run unit/integration tests

code linter, 248
flake8, 249
pylint, 249

S
say_something coroutine, 191
Scoping, 115
__set__(self, instance, owner), 136
Simplicity, 116

Single responsibility
principle (SRP), 94

slice, 13
__slot__method

attribute access, 127–129
dynamic assignment

issue, 130
error, 129

source code/single module, 119
Sphinx, 25, 253–255
sqlite3 Lock, 162
Static method, 98, 102, 103
Sublime, 258
super() method, 217
switch keyword, 72, 73

T
Test-driven development (TDD), 92
Testing exception, 163
Test reports, 245, 246
trio.open_nursery method, 210
try/catch block, 46
Type hints, 217

U
UnitTest, 91

assert methods, 241
built-in library, 239
console output, 242
setup/teardown, 243

UserInformation class, 95

Python (cont.)

INDEX

267

V
virtualenv, 250
VSCode, 258

W
with statement, 8, 14, 156, 158, 163
Wrapper function, 145

X
xrange, 35

Y, Z
yield keyword, 160, 171, 178
yield from keyword, 179
yield vs. data structure, 180

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Pythonic Thinking
	Write Pythonic Code
	Naming
	Variables and Functions
	Classes
	Constants
	Function and Method Arguments

	Expressions and Statements in Your Code
	Embrace the Pythonic Way to Write Code
	Prefer join Instead of In-Place String Concatenation
	Consider Using is and is not Whenever You Need to Compare with None
	Prefer Using is not Instead of not … is
	Consider Using a Function Instead of a Lambda When Binding to an Identifier
	Be Consistent with the return Statement
	Prefer Using ““.startswith() and ””.endswith()
	Use the isinstance() Method Instead of type() for Comparison
	Pythonic Way to Compare Boolean Values
	Write Explicit Code for Context Manager
	Use Linting Tools to Improve Python Code

	Using Docstrings
	Module-Level Docstrings
	Make the Class Docstring Descriptive
	Function Docstrings
	Some Useful Docstring Tools

	Write Pythonic Control Structures
	Use List Comprehensions
	Don’t Make Complex List Comprehension
	Should You Use a Lambda?
	When to Use Generators vs. List Comprehension
	Why Not to Use else with Loops
	Why range Is Better in Python 3

	Raising Exceptions
	Frequently Raised Exceptions
	Leverage finally to Handle Exceptions
	Create Your Own Exception Class
	Handle Only Specific Exceptions
	Watch Out for Third-Party Exceptions
	Prefer to Have Minimum Code Under try

	Summary

	Chapter 2: Data Structures
	Common Data Structures
	Use Sets for Speed
	Use namedtuple for Returning and Accessing Data
	Access the Data
	Return the Data

	Understanding str, Unicode, and byte
	Use Lists Carefully and Prefer Generators
	Use zip to Process a List
	Take Advantage of Python’s Built-in Functions
	collections
	csv
	datetime and time
	math
	re
	tempfile
	itertools
	functools
	sys and os
	subprocess
	logging
	json
	pickle
	__future__

	Take Advantage of Dictionary
	When to Use a Dictionary vs. Other Data Structures
	collections
	Counter
	deque
	defaultdict
	namedtuple
	ordereddict

	Ordered Dictionary vs. Default Dictionary vs. Normal Dictionary
	switch Statement Using Dictionary
	Ways to Merge Two Dictionaries
	Pretty Printing a Dictionary

	Summary

	Chapter 3: Writing Better Functions and Classes
	Functions
	Create Small Functions
	Return Generators
	Raise Exceptions Instead of Returning None
	Add Behavior Using the default and keyword Arguments
	Do Not Return None Explicitly
	Be Defensive While Writing a Function
	Logging
	Unit Test

	Use a Lambda as a Single Expression

	Classes
	Right Size of Class?
	Class Structure
	Class Variables
	__init__
	Special Python Methods
	Class Methods
	Static Methods
	Instance Methods
	Private Methods

	Right Ways to Use @property
	When to Use Static Methods?
	Use Abstract Class Inheritance the Pythonic Way
	Use @classmethod to Access Class State
	Use the public Attribute Instead of private

	Summary

	Chapter 4: Working with Modules and Metaclasses
	Modules and Metaclasses
	How Modules Can Help to Organize Code
	Take Advantage of the __init__ File
	Import Functions and Classes from Modules in the Right Way
	Use __all__ to Prevent Imports

	When to Use Metaclasses
	Use __new__ for Validating Subclasses
	Why __slots__ Are Useful
	Change Class Behavior Using Metaclasses
	Learn About Python Descriptors
	Summary

	Chapter 5: Decorators and Context Managers
	Decorators
	What Are Decorators, and Why Are They Useful?
	Understanding Decorators
	Modify Behavior Using Decorators
	Using Multiple Decorators
	Decorators Accept Arguments
	Consider Using a Library for Decorators
	Class Decorators for Maintaining State and Validating Parameters

	Context Manager
	Context Managers and Their Usefulness
	Understanding Context Managers
	Using contextlib to Build a Context Manager
	Some Practical Examples of Using a Context Manager
	Accessing a Database
	Writing Tests
	Shared Resource
	Remote Connection

	Summary

	Chapter 6: Generators and Iterators
	Take Advantage of Iterators and Generators
	Understanding Iterators
	What Are Generators?
	When to Use Iterators
	Using itertools
	combinations()
	permuations()
	product()
	count()
	groupby()

	Why Generators Are Useful
	List Comprehension vs. Iterators

	Take Advantage of the yield Keyword
	yield from
	yield Is Faster Compared to a Data Structure

	Summary

	Chapter 7: Utilize New Python Features
	Asynchronous Programming
	Introducing async in Python
	How It Works
	Coroutine Function
	Coroutine Object
	asyncio.run()
	await
	Tasks
	Awaitable Objects
	Coroutines
	Tasks
	Futures

	Timeouts

	Async Generators
	Async Comprehensions
	Async Iterators
	Third-Party Libraries to Consider for Async Code
	Curio
	Trio

	Typing in Python
	Types in Python
	typing Module
	Union
	Any
	Tuple
	TypeVar and Generics
	Optional

	Do Data Types Slow Code?
	How Typing Helps to Write Better Code
	Typing Pitfalls

	super() Method
	Type Hinting
	Better Path Handling Using pathlib
	print() Is a Function Now
	f-string
	Keyword Only Arguments
	Preserving the Order of a Dictionary
	Iterable Unpacking
	Summary

	Chapter 8: Debugging and Testing Python Code
	Debugging
	Debugging Tools
	pdb
	ipdb
	pudb

	breakpoint
	Use the Logging Module Instead of print in Production Code
	Classes and Functions in Logging

	Use the metrics Library for Identifying Bottlenecks
	How IPython Is Helpful

	Testing
	Why Testing Is Important
	Pytest vs. UnitTest
	Property Testing
	How to Create a Report for Testing
	Automate Unit Tests
	Getting Your Code Ready for Production
	Run Unit and Integration Tests in Python
	Use Linting to Make Code Consistent
	flake8
	pylint

	Use Code Coverage to Check for Tests
	Use virtualenv for Your Project

	Summary

	Appendix: Some Awesome Python Tools
	Sphinx
	Coverage
	pre-commit
	Pyenv for virtualenv
	Jupyter Lab
	Pycharm/VSCode/Sublime
	Flake8/Pylint

	Index

