Clean
Python

Flegant Coding in Python
Sunil Kapil

ApPress’

Clean Python
Elegant Coding in Python

Sunil Kapil

Apress’

Clean Python: Elegant Coding in Python

Sunil Kapil
Sunnyvale, CA, USA

ISBN-13 (pbk): 978-1-4842-4877-5 ISBN-13 (electronic): 978-1-4842-4878-2
https://doi.org/10.1007/978-1-4842-4878-2

Copyright © 2019 by Sunil Kapil

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Nikhil Karkal

Development Editor: Rita Fernando

Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.
com/9781484248775. For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-4878-2

Table of Contents

About the AULNOFKc.coirreeeiirrensrrrsnssrrsenss s s snnss s s snnssssssnnnsssnnnns ix

About the Technical REVIEWETccousrrrrsrsmmmmsssssssssssssssnnssssssssssssssnnnnnss Xi

Acknowledgments.......cccermssssssssnnnnsmmsssssssssssnnsssssssssssssnssnnsssssssssnnnnnns Xiii
Introduction........cccccnnsmmmmsmmmmnn s ————————— Xv
Chapter 1: Pythonic Thinking ...c..uuseeessmmmmmmmsssssssssssmsmssssssssssssssssesssnns 1
Write PYthoniC COUE........ccuvvriernerrrcse e 2
2T 1] o SRS 2
Expressions and Statements in Your Codeccccvvvrnvennenenssennsesesesensenes 6
Embrace the Pythonic Way to Write Code..........ccorvnrnsnnenenssennsesensnennanes 9
USING DOCSEIINGS ...ceveerveerreerisesesese s 18
Module-Level DOCSEIINGS......cccerrenerrenerenesrssesesrssessssesssessssssessssesessessssssessanes 21
Make the Class Docstring DeSCriptive........c.cccrerernsesrnesenesesssesessesessesesennes 23
FUNCLION DOCSIMNGS.....ccivieriicsirese e 24
Some Useful DOCSLIiNG TOOIScccvvererenerrnserinesessse s srs e sessanes 25
Write Pythonic Control StrUCIUES........ccccvverevrrrrrie e 26
Use List ComMPrenensionsc.cceevvrrvniernsensensesessssessese s sessessessessssessessenes 26
Don’t Make Complex List Comprehension.........c.ccooevvvninevnsensensenesensensenes 28
Should You Use a Lambda? ... 30
When to Use Generators vs. List Comprehension...........ccccvvvvvvnienennsenienens 31

Why Not 10 Use else With LOOPScccverernsernesenesenssessssessssesessssesessessssenens 32

Why range Is Better in Python 3 ... 35

ii

TABLE OF CONTENTS

RaiSing EXCEPLIONS.......ccocvvrie et s 37
Frequently Raised EXCEPLIONSccccocvverveerieniensen s e s 37
Leverage finally to Handle EXCeptions..........ccccvvvnvenininsinnenensensessesenenns 39
Create Your Own EXCEPLiON ClaSS......cccvrerrererrersereressensessessssessessessessssessessenes 4
Handle Only Specific EXCEPLIONScccvvererrrerieriere s seseresee s e seesesessesees 43
Watch Out for Third-Party EXCEPLIONS.......cccevvcrverevererserere s seressesessesessens 45
Prefer to Have Minimum Code Under try........ccccvverevrrerierienensensessessesensesenes 46

1] 4= 7 48

Chapter 2: Data Structures........ccccusmmmssmsmssnsmsssnsesssnsssssssssssnsssssnnssssns 49

Common Data STrUCLUIES........ccceveerercereeree e 49
Use Sets for SPEed........corvrrinnsrrr e 50
Use namedtuple for Returning and Accessing Data...........ccccccvvrienninniennenn 52
Understanding str, Unicode, and byteccccvcriniincninnnnsensenesnsensennens 55
Use Lists Carefully and Prefer Generators..........cccoevvnvrierennsensesesssensensenns 57
Use zip 10 Process a List ..o e s 60
Take Advantage of Python’s Built-in FUnctionscccccvivvnininienniniennens 62

Take Advantage of DICHIONArY.........cccvverrerereser e 65
When to Use a Dictionary vs. Other Data Structures.........ccocvcveriernieniennens 65
(10| o (o R 66
Ordered Dictionary vs. Default Dictionary vs. Normal Dictionary.................. 70
switch Statement Using DiCtionaryccoooeereernnenenenesesereseseseeseeees 72
Ways to Merge TWO DiCtiONAries.........ccouoreeerrrererenereererese s sesesesnenens 73
Pretty Printing @ DiCtionary..........ccorvvmvnininnnsni s ssesnes 74

R0 T o 75

Chapter 3: Writing Better Functions and Classes........ccccuusmemnrssssnnnnas 77

LT (0] 77
Create Small FUNCLIONS ... s 78
Return GENEratorscov e 80

iv

TABLE OF CONTENTS

Raise Exceptions Instead of Returning None..........ccccccvvrvnvnncnsensennenenennes 82
Add Behavior Using the default and keyword Arguments...........ccecvvereriennen 85

Do Not Return None EXpliCitly........cccocvvrvnnerinininse s e s 86

Be Defensive While Writing a Function...........ccccecvverininsnnencnsnsennenenennns 89
Use a Lambda as a Single EXPression..........cucvverereerensesseresessessessessssessessenes 92
ClASSES....eveueeererrsseeese e se e 94
Right Size 0f ClaSS?......ccccerererrerrerersssenseressssessesessesssssssessessssessessessssesessesaes 94
Class STIUCTUNEcccovrerrieeerers e 95
Right Ways t0 USE @PIOPEITYcccevrererrerereerersersersesessessessessssessessesssssssessesaes 99
When to Use Static Methods?cocorrrenncnnneesescssss e 102
Use Abstract Class Inheritance the Pythonic Waycccoevvvvriernnenieniennes 104
Use @classmethod to Access Class State..........c.ouvnnrnnnnnnesesenennsenes 106
Use the public Attribute Instead of privatecccvervrininninincn e 107
3111111117 o OSSO 109
Chapter 4: Working with Modules and Metaclassesuuuuseeeennnnnas 111
Modules and MetaCIaSSEeSccvurererrererenerrnsesrsesese s s sessssessenes 111
How Modules Can Help to Organize Code.........c.cuourererernsenenesesnsesensesessesessnnes 113
Take Advantage of the __init__ File.......ccccvvvvvrnirienninrre e 116
Import Functions and Classes from Modules in the Right Way..........c.ccccvveruene. 119
Use __all__ to Prevent IMpPortS........cccvvevriniensn s 121
When 0 USe Metaclasses.........ccouvrenmrnnmrinnesesesesese s sessesesnenens 123
Use _ new__ for Validating Subclasses........cccccovrvriinsninininsnsnenscnsenens 124
Why _SIots__ Are USEfUl......c.ccoeiiriirircrcnisssne s sss s 127
Change Class Behavior Using Metaclasses ... 130
Learn About Python DeSCHiPLOrS.......c.ccvvirierennnensenese s sesese s ssssessessenes 134
SUMMAIY.c.veitetrierere s s e e s s a e s a e e s e s s sresa e e s aesaesee e e e eaesae s e e nannaees 136

TABLE OF CONTENTS

Chapter 5: Decorators and Context Managers........ccuseemsesssssnnssssssnns 139
DT oT0] £ L ST 140
What Are Decorators, and Why Are They Useful?ccccovvvncvneccrnccnnnn 140
Understanding DeCcorators.........ccocucvreriennsnsensesnssn s s ssessssessessesnes 141
Modify Behavior Using Decoratorsccocevvvverreenersenienseesessessesseessessenens 144
Using Multiple DeCOratorsccceverververrenneriersersee s see s s e s see e ssesns 147
Decorators AcCept ArQUMENTS........ccccvverveeverieriersee s rerres e se e sseeneas 148
Consider Using a Library for Decorators..........ccccveevrrerserereesensessersesessessenses 149
Class Decorators for Maintaining State and Validating Parameters............ 152
ConteXt MANAQEc.coceueerrerererir ettt se e s 155
Context Managers and Their USEfUINESSc.cccevcerniererencrnserenesesenerennes 155
Understanding Context Managerscocveererernserennenesnssesssesessesesesessnnes 157
Using contextlib to Build a Context Manager...........coueevrerrnnerenseneneserennes 160
Some Practical Examples of Using a Context Manager..........cccccvveerunerenn 161
SUMMAIY..c..citiiiere e s s p e s b e s b b s e e nne s 165
Chapter 6: Generators and Iterators.........ccccnnnnmnmmmnnnnnnnmnssssssssnnns 167
Take Advantage of Iterators and Generators.........c.ccoevvrvrierinvnsnsnienesensensenns 167
Understanding Rerators.........ccucevvevrnsnnnesnese s 167
What Are GENErators?........couevrenesesesnsesssesessse s ssssesenns 170
When to USe HErators.........ccvvevivcerenssinsrse s sese s sessessesnens 171
LT I T (00 SRS 174
Why Generators Are USETUL..........cvveernnenenenmnesesssesesese s sens 176
List Comprehension vs. RErators..........cccvvvnvnennnnsnseniennssnsesesss s sessennes 177
Take Advantage of the yield KeyWordccovverrenernnennessnesesssesessesssseens 177
VICI FIOM ... e 179
yield Is Faster Compared to a Data Structure..........ccccovevnvernesernsenensennne 180
SUMMAIY . .eitiirerere st s s e s s e e s e s sae e e e s e e aesae e s e e aesae e e e nannnees 180

TABLE OF CONTENTS

Chapter 7: Utilize New Python Featuresccuscmmmnsssnnnsssssssnsnssssnnns 181
Asynchronous Programming..........cccunnnennnsnsesessne s ssssessesnes 182
Introducing async in Python ... 183
HOW [EWOTKS ...t 187

F e 1= LT L (0 200
TyPINg iN PYENON ... s 210
TYPes iN PYLhoN ... 211
tyPING MOAUIE ... e 212

Do Data Types SIoW COAB?cccvvirvriererrcere s snens 215
How Typing Helps to Write Better Code...........cccvvvvnncniernnnsnsenesinsenennens 215
Typing PItfallScoeiicecrcre st 216
SUPEI() METNOU....... oo 217
TYPE HINEING . 217
Better Path Handling Using pathlib ... 218
print() IS @ FUNCLION NOW.......covirierererersere st sse e ses e ses e sne s 218
F-SIMNG e ———————— 218
Keyword Only ArgUMENTS.......cvvvreriererersereresssssssessessessssessessessssessessessssessensenes 219
Preserving the Order of @ Dictionary........c.ccccvivvnvnininnnnnn s 220
Iterable UNPacking.........ccoveeeerenerenesenesesene s snenes 220
SUMMANY....ceiviereresesese e e e s e nr e e 220
Chapter 8: Debugging and Testing Python Code..........ccccussneennrissnnns 221
D T2]][0] TS 222
Debugging TOOIScocviieverrrirsir e 222
Dreakpoint ... ————————— 227
Use the Logging Module Instead of print in Production Code...........c.ccvuen... 227
Use the metrics Library for Identifying Bottleneckscoceevverrervverseriennen 234
How IPYthon IS HEIPTUL.........ccvverererrsere s e s e se e ssesessessesnens 235

vii

TABLE OF CONTENTS

TESTING. e ————— 238
Why Testing Is Important ... 238
Pytest vS. UNItTESTcccce vt 239
Property TeStiNg.......cccvvvreririrsn e 244
How to Create a Report for TEStiNg......ccceevvvververiernsenserierenessesessesessesensens 245
Automate Unit TESTS.......ccucrererererneisire s 246
Getting Your Code Ready for Production..........cccvreverrerierenensensenesenessensenas 247
Run Unit and Integration Tests in Python..........ccccvvvnvniennnnnnienienensensennens 247

SUMMAIY e ueitetrerereseesere s e sese s sre s e e ssessesaesessesaesaess e e saesaesaesessesaesasssenensessens 251

Appendix: Some Awesome Python ToolS........cccusrrmssmmsnssnnssssssssssanss 253

SPNINX et ————————— 253

(11T VoSSR 255

0110 11 1 RS 256

Pyenv for VIrUAIENVccccvevrierrere et sa s ses s sne s 257

B 11 0]l I S 257

Pycharm/VSCode/SUDIIME ... e 258

FIAKEB/PYIINL ... es 258

1T - 261

viii

About the Author

Sunil Kapil has been in the software profession
for the past ten years, writing production code
in Python and several other languages. He has
worked as a software engineer primarily on the

backend for web and mobile services. He has
developed, deployed, and maintained small

to large projects in production that are being
loved and used by millions of users. He has
completed these projects with small to large
teams in different professional environments for well-known software
companies around the world. He is also a passionate advocate of open
source and continuously contributes to projects such as Zulip Chat and
Black. Additionally, he works with nonprofit organizations and contributes
to their software projects on a volunteer basis.

Sunil is a frequent speaker at various meetups and conferences and
has given frequent talks about Python.

You can visit his web site about software engineering, tools, and
techniques. On top of that, you can reach out to him by e-mail or follow
him on social media.

Web: https://softwareautotools.com/

E-mail: snlkapil@gmail.com

Twitter: @snlkapil (https://twitter.com/snlkapil)

LinkedIn: https://www.linkedin.com/in/snlkapil/

GitHub: https://github.com/skapil

ix

https://softwareautotools.com/
https://twitter.com/snlkapil
https://www.linkedin.com/in/snlkapil/
https://github.com/skapil

About the Technical Reviewer

Sonal Raj (@_sonalraj) has been an author,
engineer, mentor, and avid Pythonista for more
than 10 years. He is a Goldman Sachs alumnus
and a former research fellow at the Indian
Institute of Science. He is an integral part of the
financial technology industry with expertise

in building trading algorithms and low latency

systems. He is an open source developer and
community member.

Sonal has master’s degrees in information technology and business
administration. His domains of research include distributed systems,
graph databases, and education technology. He is an active member of the
Institution of Engineering and Technology (IET), London, and a lifetime
member of the Indian Society for Technical Education.

He is the author of the book Neo4j High Performance, about the
functioning and use of the graph database Neo4j. He is also the author of
the Interview Essentials series of books focusing on technical interview
methodologies. Sonal is also an editor at People Chronicles Media, a
reviewer for the Journal of Open Source Software (JOSS), and a founder of
the Yugen Foundation.

https://twitter.com/_sonalraj

Acknowledgments

First, would like to thank Nikhil of Apress. Nikhil contacted me in October
2018 and persuaded me to write a book with Apress Media LLC. Next, I
would like to thank Divya Modi, coordinating editor at Apress, for her great
support while writing the chapters and her great patience during my busy
schedule. In addition, many thanks to Rita Fernando, development editor
at Apress, who provided valuable suggestions during the review process
that made the book more valuable for Python developers. Next, I would
like to thank Sonal Raj for critically examining every single chapter. You
found many issues that I would never have found.

Of course, I would like to say a big thank-you to the whole production
team at Apress for supporting me.

Last but not least, I would like to thank my beloved and unique family,
especially for their understanding that a book project takes a great deal of
time. Thanks to my mother, Leela Kapil, and father, Harish Chandra Kapil,
for all the encouragement and support.

My beloved wife Neetu: I deeply appreciate all your encouragement
and support while writing this book; it has made all the difference. You are
awesome!

xiii

Introduction

Python is one of the most popular languages today. Relatively new

fields such as data science, Al, robotics, and data analytics, along with
traditional professions such as web development and scientific research,
are embracing Python. It’s increasingly important for programmers writing
code in a dynamic language like Python to make sure that the code is high-
quality and error-free. As a Python developer, you want to make sure that
the software you are building makes your users happy without going over
budget or never releasing.

Python is a simple language, yet it’s difficult to write great code because
there aren’t many resources that teach how to write better Python code.

Currently lacking in the Python world are code consistency, patterns,
and an understanding of good Pythonic code among developers. For every
Python programmer, great Pythonic code has a different meaning. The
reason for this could be that Python is being used in so many areas that it’s
difficult to reach consensus among developers about specific patterns. In
addition, Python doesn’t have any books about clean code like Java and
Ruby do. There have been attempts to write those kinds of books to bring
clarity to good Python practices, but those attempts have been few and far
between, and quickly frankly, they haven’t been high-quality.

The main goal of this book is to provide tips to Python developers of
various levels so they can write better Python software and programs. This
book gives you various techniques irrespective of the field you use Python
in. This book covers all levels of Python, from basic to advanced, and
shows you how to make your code more Pythonic.

Remember, writing software is not only science but art, and this book
will teach you how to become a better Python programmer.

CHAPTER 1

Pythonic Thinking

The thing that sets Python apart from other languages is that it is a simple
language with a lot of depth. Because it’s simple, it’s much more important
to write code cautiously, especially in a big project, because it’s easy for the
code to become complex and bloated. Python has a philosophy called the
Zen of Python, which emphasizes simplicity over complexity.!

In this chapter, you will learn about some common practices that can
help you to make your Python code more readable and simpler. I will cover
some well-known practices, as well as some that might not be so well-
known. While writing your next project or working on your current project,
make sure that you are well aware of these Python practices so you can

improve your code.

Note In the Python world, following the Zen of Python philosophy
makes your code “Pythonic.” There are lots of good practices that
have been recommended in the Python official documentation to
make your code cleaner and more readable. Reading the PEP8
guide will surely help you to understand why some practices are
recommended.

'https://www.python.org/dev/peps/pep-0020/

© Sunil Kapil 2019 1
S. Kapil, Clean Python, https://doi.org/10.1007/978-1-4842-4878-2_1

https://www.python.org/dev/peps/pep-0020/

CHAPTER 1 PYTHONIC THINKING

Write Pythonic Code

Python has some official documentation called PEP8 that defines best
practices for writing Pythonic code. This style guide has evolved over time.
You can check it out at https://www.python.org/dev/peps/pep-0008/.
In this chapter, you will focus on some common practices defined in
PEP8 and see how following those rules can benefit you as a developer.

Naming

As a developer, I have worked with different languages such as Java,
NodeJS, Perl, and Golang. All these languages have naming conventions
for variables, functions, classes, and so on. Python also recommends using
naming conventions. I will discuss some of the naming conventions in this
section that you should follow while writing Python code.

Variables and Functions

You should name functions and variables in lowercase with the words
separated by underscores, as this will improve readability. See Listing 1-1.

Listing 1-1. Variable Names

names = "Python" # variable name
job_title = "Software Engineer" # variable name
with underscore
populated countries list = [] # variable name
with underscore

You should also consider using nonmangling method names in your
code and using one underscore (_) or two underscores (__). See Listing 1-2.

https://www.python.org/dev/peps/pep-0008/

CHAPTER 1 PYTHONIC THINKING

Listing 1-2. Nonmangling Names

_books = {} # variable name to define
private
_dict =[] # prevent name mangling with

python in-build 1lib

You should use one underscore (_) as a prefix for the internal variable
of a class, where you don’t want an outside class to access the variable.
This is just a convention; Python doesn’t make a variable with a single
underscore prefix private.

Python has a convention for functions as well, as shown in Listing 1-3.

Listing 1-3. Normal Function Names

function name with single underscore
def get data():

def calculate tax data():

The same rules apply to private methods and methods where you want
to prevent name mangling with built-in Python functions. See Listing 1-4.

Listing 1-4. Function Names to Represent Private Methods and
Nonmangling

Private method with single underscore
def get data():

CHAPTER 1 PYTHONIC THINKING

double underscore to prevent name mangling with other
in-build functions
def _path():

In addition to following these naming rules, it’s important to use
specific names instead of having obscure names for your functions or
variables.

Let’s consider a function that returns a user object when provided with
a user ID. See Listing 1-5.

Listing 1-5. Function Names

Wrong Way

def get user info(id):
db = get db _connection()
user = execute query for user(id)
return user

Right way

def get user by(user id):
db = get db _connection()
user = execute user query(user id)
return user

Here, the second function, get_user_ by, makes sure you are using
the same vocabulary for passing a variable, which gives the right context
for the function. The first function, get_user_info, is ambiguous because
the parameter id could mean anything. Is it a user table index ID or a user
payment ID or any other ID? This kind of code can create confusion for
other developers using your API. To fix this, I changed two things in the
second function; I changed the function name and passed an argument
name, which makes code much more readable. When reading the second

CHAPTER 1 PYTHONIC THINKING

function, you know right away the purpose of the function and expected
value from the function.

As a developer, it’s your responsibility to think carefully while naming
your variables and functions to make the code readable for other developers.

Classes

The name of classes should be in camel case like in most other languages.
Listing 1-6 shows a simple example.

Listing 1-6. Class Names

class UserInformation:
def get user(id):
db = get db_connection()
user = execute query for user(id)
return user

Constants

You should define constant names with capital letters. Listing 1-7 shows an
example.

Listing 1-7. Constant Names

TOTAL = 56
TIMOUT = 6
MAX OVERFLOW = 7

Function and Method Arguments

Function and method arguments should follow the same rules as
variables and method names. A class method has self as the first keyword
argument compared to functions that don’t pass self as a keyword
parameter. See Listing 1-8.

CHAPTER 1 PYTHONIC THINKING

Listing 1-8. Function and Method Arguments

def calculate tax(amount, yearly tax):

class Player:
def get total score(self, player name):

Expressions and Statements in Your Code

At some point you might have tried to write code in a clever way to save
some lines or impress your colleagues. However, there are costs to writing
clever code: readability and simplicity. Let’s take a look at the piece of code
in Listing 1-9, which sorts a nested dictionary.

Listing 1-9. Sort a Nested Dictionary

[{"first _name":"Helen", "age":39},
{"first_name":"Buck", "age":10},

users

{"first_name":"anni", "age":9}

]
users = sorted(users, key=lambda user: user["first name"].
lower())

What's the problem with this code?

Well, you are sorting this nested dictionary by first name using a
lambda in one line, which makes it looks like a clever way to sort the
dictionary instead of using a loop.

However, it’s not easy to understand this code at first glance, especially
for new developers, because lambdas are not an easy concept to grasp
because of their quirky syntax. Of course, you are saving lines here by
using a lambda because it allows you to sort the dictionary in clever way;

CHAPTER 1 PYTHONIC THINKING

however, this doesn’t make this code correct or readable. This code fails to
address issues such as missing keys or if the dictionary is correct or not.

Let’s rewrite this code using a function and try to make the code more
readable and correct; the function will check for all unexpected values and
is much simpler to write. See Listing 1-10.

Listing 1-10. Sorted Dictionary by Function

users = [{"first name":"Helen", "age":39},
{"first_name":"Buck", "age":10},

"name":"anni", "age":9}

]

def get user name(users):
"""Get name of the user in lower case

return users["first name"].lower()

def get sorted dictionary(users):

Sort the nested dictionary
if not isinstance(users, dict):

raise ValueError("Not a correct dictionary")
if not len(users):
raise ValueError("Empty dictionary")

users by name = sorted(users, key=get user name)
return users_ by name

As you can see, this code checks for all possible unexpected values,
and it’s much more readable than the previous one-line code. One-line
code saves you lines but injects a lot of complexity into your code. That
doesn’t necessarily mean that one-line code is bad; the point I am trying
to make here is that if your one-line code makes it harder to read the code,
please avoid it.

CHAPTER 1 PYTHONIC THINKING

You have to make those decisions consciously while writing code.
Sometimes writing one-line code makes your code readable, and
sometimes not.

Let’s consider one more example, where you are trying to read a CSV
file and count the number of lines processed by the CSV file. The code in
Listing 1-11 shows you why it’s important to make your code readable and
how naming plays a big role in making your code readable.

Breaking code into helper function helps to make complex code
readable and easy to debug when you hit a specific error in your
production code.

Listing 1-11. Reading a CSV File
import csv

with open("employee.csv", mode="r") as csv_file:
csv_reader = csv.DictReader(csv _file)
line count = 0
for row in csv_reader:
if line count ==
print(f'Column names are {", ".join(row)}")
line_count += 1
print(f'\t{row["name"]} salary: {row["salary"]}'
f'and was born in {row["birthday month"]}.")
line count += 1
print(f'Processed {line count} lines.")

Here the code is doing multiple things in the with statement. To make
it more readable, you can pull out the code with process salary from the
CSV file into a different function to make it less error prone. It’s difficult to
debug this kind of code when lots of things are going on in a few lines, so
you’ll want to make sure that you have clear goals and boundaries when
defining your function. So, let’s break it down little further in Listing 1-12.

CHAPTER 1 PYTHONIC THINKING

Listing 1-12. Reading a CSV File, with More Readable Code
import csv

with open('employee.txt', mode="r') as csv_file:
csv_reader = csv.DictReader(csv file)
line count = 0
process salary(csv_reader)

def process salary(csv_reader):

Process salary of user from csv file.
for row in csv_reader:
if line count ==
print(f'Column names are {", ".join(row)}')
line count += 1
print(f'\t{row["name"]} salary: {row["salary"]}")
line _count += 1
print(f'Completed {line count} lines.")

Here you created a helper function instead of writing everything in
the with statement. This makes it clear to the reader what actually the
process_salary function does. If you want to handle a specific exception
or want to read more data from a CSV file, you can further break down this
function to follow the single responsibility principle.

Embrace the Pythonic Way to Write Code

PEP8 has some recommendations to follow when you write your code that
will make your Python code much cleaner and more readable. Let’s look
some of those practices.

CHAPTER 1 PYTHONIC THINKING

Prefer join Instead of In-Place String Concatenation

Wherever you are concerned about performance in your code, use the
join() method instead of in-place string concatenation, asina += bor

a = a + b.The "".join() method guarantees leaner time concatenation
across various Python implementations.

The reason for this is that when you use join, Python allocates
memory for the joined string only one time, but when you concatenate
strings, Python has to allocate new memory for each concatenation
because the Python string is immutable. See Listing 1-13.

Listing 1-13. Using the join Method

first _name = "Json"
last name = "smart"

Not a recommended way to concatenate string
+ last_name

full name = first_name +

More performant and improve readability
" ".join([first_name, last name])

Consider Using is and is not Whenever You Need
to Compare with None

Always use is or is not for comparison with None. Keep this in mind while
writing code such as the following:

if val: # Will work when val is not None

Make sure to keep in mind that you are considering val to be None and
not some other container type such as dict or set. Let’s look further to
understand where this kind of code can surprise you.

10

CHAPTER 1 PYTHONIC THINKING

In the previous line of code, val is an empty dictionary; however, val
is considered false, which might not want in your code, so be careful while
writing this kind of code.

Don’t do this:

val = {}
if val: # This will be false in python context

Instead, write code as explicit as possible to make your code less error
prone.
Do this:

if val is not None: # Make sure only None value will be false

Prefer Using is not Instead of not ... is

There is no difference between using is not and usingnot ... is.
However, the is not syntax is more readable compared to not ... is.
Don’t do this:

if not val is None:
Do this:
if val is not None:
Consider Using a Function Instead of a Lambda When
Binding to an Identifier

When you are assigning a lambda expression to a specific identifier,
consider using a function. lambda is a keyword in Python to perform one-
line operations; however, using lambda for writing a function might not be
as good a choice as writing a function using def.

11

CHAPTER 1 PYTHONIC THINKING
Don’t do this:

square = lambda x: x * x
Do this:

def square(val):
return val * val

The def square(val) function object is more useful for string
representation and traceback than the generic <lambda>. This kind of use
eliminates the usefulness of lambdas. Consider using lambdas in larger
expressions so you don’t impact the readability of code.

Be Consistent with the return Statement

If the function is expected to return a value, make sure all the execution
paths of that function return the value. It’s good practice to make sure
you have a return expression in all the places your function exits. But if a
function is expected to simply perform an action without returning a value,
Python implicitly returns None as the default from the function.

Don’t do this:

def calculate interest(principle, time rate):
if principle > O:
return (principle * time * rate) / 100

def calculate interest(principle, time rate):
if principle < O:
return
return (principle * time * rate) / 100

12

CHAPTER 1 PYTHONIC THINKING
Do this:

def calculate interest(principle, time rate):
if principle > O:
return (principle * time * rate) / 100
else:
return None

def calculate interest(principle, time rate):
if principle < O:
return None
return (principle * time * rate) / 100

Prefer Using ““.startswith() and ””.endswith()

When you need to check prefixes or suffixes, consider using
startswith() and "".endswith() instead of slicing. slice is a really
useful method for slicing a string, but might get better performance when
you are slicing a big string or performing string operations. However, if
you are doing something as simple as checking for a prefix or suffix, go for
either startswith or endswith because it makes it obvious to the reader
that you are checking for a prefix or suffix in a string. In other words, it
makes your code more readable and cleaner.

Don’t do this:

Data = "Hello, how are you doing?"
if data.startswith("Hello")

Do this:

data = "Hello, how are you doing?"
if data[:5] == "Hello":

13

CHAPTER 1 PYTHONIC THINKING

Use the isinstance() Method Instead of type()
for Comparison

When you are comparing two objects’ types, consider using isinstance()

instead of type because isinstance() is true for subclasses. Consider a

scenario where you are passing a data structure that is the subclass of a

dict like orderdict. type() will fail for that specific type of data structure;

however, isinstance() will recognize that it’s the subclass of dict.
Don’t do this:

user_ages = {"Larry": 35, "Jon": 89, "Imli": 12}
type(user_ages) == dict:

Do this:
user_ages = {"Larry": 35, "Jon": 89, "Imli": 12}
if isinstance(user ages, dict):
Pythonic Way to Compare Boolean Values

There are multiple ways to compare Boolean values in Python.
Don’t do this:

if is_empty = False
if is_empty == False:
if is_empty is False:

Do this:
is_empty = False
if is_empty:
Write Explicit Code for Context Manager
When you are writing code in the with statement, consider using a

function to do any operation that’s different from acquire and release.

14

CHAPTER 1 PYTHONIC THINKING
Don’t do this:

class NewProtocol:
def _init_(self, host, port, data):

self.host = host
self.port = port
self.data = data

def _enter (self):
self. client = Socket()
self. client.connect((self.host,
self.port))
self. transfer data(data)

def exit (self, exception, value, traceback):
self. receive data()
self. client.close()

def transfer data(self):

def receive data(self):

con = NewProtocol(host, port, data)
with con:
transfer data()

Do this:

#connection
class NewProtocol:
def init (self, host, port):
self.host = host
self.port = port

15

CHAPTER 1 PYTHONIC THINKING

def _enter (self):
self. client = socket()
self. client.connect((self.host,
self.port))

def _exit (self, exception, value, traceback):
self. client.close()

def transfer data(self, payload):

def receive data(self):

with connection.NewProtocol(host, port):
transfer data()

In the second statement, the _enter and exit methods of
Python are doing some stuff besides opening and closing the connection.
It’s better to be explicit and write different functions to do the other
operations that aren’t acquiring and closing the connection.

Use Linting Tools to Improve Python Code

Code linters are important tools to format your code consistently. Having a
consistent code format across a project is valuable.
Linting tools basically solve these problems for you:

o Syntax errors

e Structure such as unused variables or passing correct
arguments to function

o Pointing out violations of the PEP8 guidelines

Linting tools make you much more productive as a developer because
they save you a lot of time by hunting down issues at runtime. There are
multiple linting tools available for Python. Some of the tools handle a

16

CHAPTER 1 PYTHONIC THINKING

specific part of linting like the docstring style of code quality, and popular
python liniting tools like flak8/pylint check for all PEP8 rules and tools like
mypy check specifically for python typing.

Either you can integrate all of them in your code or you can use one
that covers the standard checks to make sure you are following the PEP8
style guide. Most notable are among them are Flake8 and Pylint. Whatever
tool you go for, make sure it adheres to the rules of PEP8.

There are a few features to look for in linting tools:

e« PEPS8rules adherence
o Imports ordering

e Naming (Python naming convention for variables,
functions, classed, modules, files, etc.)

e Circular imports

o Code complexity (check the complexity of function by
looking number of lines, loops and other parameters)

e Spell-checker
e Docstring-style checks
There are different ways you can run linters.
o Atprogramming time using an IDE
e At commit time using pre-commit tools

e At CItime by integrating with Jenkins, CircleCl,
and so on

Note These are some of the common practices that will definitely
improve your code. If you want to take maximum advantage of
Python good practices, please take a look at the PEP8 official
documentation. Also, reading good code in GitHub will help you to
understand how to write better Python code.

17

CHAPTER 1 PYTHONIC THINKING

Using Docstrings

Docstrings are a powerful way to document your code in Python.
Docstrings are usually written at the start of methods, classes, and
modules. A docstring becomes the _doc__ special attribute of that object.
Triple double

The Python official language recommends using
quotes
official documentation. Let’s briefly talk about some best practices for

to write docstrings. You can find these practices in the PEP8

writing docstrings in your Python code. See Listing 1-14.

Listing 1-14. Function with a Docstring

def get prime number():

Get list of prime numbers between 1 to 100.

Python recommends a specific way to write docstrings. There are
different ways to write docstrings, which we will discuss later in this
chapter; however, all those different types follow some common rules.
Python has defined the rules as follows:

o Triple quotes are used even if the string fits in one line.
This practice is useful when you want to expand.

e There should not be any blank line before or after the
string in triple quotes.

e Useaperiod (.) to end the statement in the docstring.

Similarly, Python multiline docstring rules can be applied to write
multiline docstrings. Writing docstrings on multiple lines is one way to
document your code in a bit more descriptive way. Instead of writing
comments on every line, you can write descriptive docstrings in your Python
code by leveraging Python multiline docstrings. This also helps other

18

CHAPTER 1 PYTHONIC THINKING

developers to find the documentation in the code itself instead of referring
to documentation that is long and tiresome to read. See Listing 1-15.

Listing 1-15. Multiline Docstring

def call weather api(url, location):
"""Get the weather of specific location.

Calling weather api to check for weather by using weather api
and location. Make sure you provide city name only, country and
county names won't be accepted and will throw exception if not
found the city name.

:param url: URL of the api to get weather.

:type url: str

:param location: Location of the city to get the weather.
:type location: str

:return: Give the weather information of given location.
:rtype: str

There are a few things to notice here.

e The first line is a brief description of the function or
class.

e Theend of the line has a period.

e There is a one-line gap between the brief description
and the summary in docstrings.

You can write the same function if you are using Python 3 with the
typing module, as shown in Listing 1-16.

19

CHAPTER 1 PYTHONIC THINKING
Listing 1-16. Multiline Docstring with typing

def call weather api(url: str, location: str) -> str:

Get the weather of specific location.

Calling weather api to check for weather by using weather api
and location. Make sure you provide city name only, country and
county names won't be accepted and will throw exception if not
found the city name.

You don’t need to write the parameter information if you are using the
type in Python code.

As I've mentioned about different docstring types, new styles of
docstrings have been introduced over the years by different sources. There
is no better or recommended way to write a docstring. However, make sure
you use the same style throughout the project for docstrings so they have
consistent formatting.

There are four different ways to write a docstring.

o Here’s a Google docstrings example:

Calling given url.

Parameters:
url (str): url address to call.

Returns:
dict: Response of the url api.

e Here is a restructured text example (the official Python
documents recommend this):

Calling given url.

:param url: Url to call.
:type url: str

20

CHAPTER 1

:returns: Response of the url api.
:rtype: dict

Here is a NumPy/SciPy docstrings example:

Calling given url.

Parameters
url : str
URL to call.

Returns

Response of url

Here’s an Epytext example:

Call specific api.

@type url: str

@param file loc: Call given url.
@rtype: dict

@returns: Response of the called api.

Module-Level Docstrings

PYTHONIC THINKING

A module-level docstring should be put at the top of the file to describe the
use of the module briefly. These comments should be before the import as
well. A module docstring should focus on the goal of the module, including

21

CHAPTER 1 PYTHONIC THINKING

all the methods/classes in the module, instead of talking about a specific

method or class. You can still specify a specific method or class briefly, if

you think that the method or class has something that needs to be known
at a high level by the client before using the module. See Listing 1-17.

Listing 1-17. Module Docstring

This module contains all of the network related requests. This
module will check for all the exceptions while making the
network calls and raise exceptions for any unknown exception.
Make sure that when you use this module, you handle these
exceptions in client code as:

NetworkError exception for network calls.

NetworkNotFound exception if network not found.

import urllib3
import json

You should consider doing the following when writing a docstring for a
module:

e Write a brief description of the purpose of module.

o Ifyou want to specify anything that could be useful for
reader to know about module, like in Listing 1-15, you
can add exception information, but take care not to go
into too much detail.

o Consider the module docstring as a way to provide
descriptive information about the module, without
going into the detail of every function or class
operation.

22

CHAPTER 1 PYTHONIC THINKING

Make the Class Docstring Descriptive

The class docstring is mainly used to briefly describe the use of the class
and its overall goal. Let’s look at some examples to see how you can write
class docstrings. See Listing 1-18.

Listing 1-18. Single-Line Docstring

class Student:

This class handle actions performed by a student.

def init (self):
pass

This class has a one-line docstring, which briefly talks about the
Student class. Make sure that you follow all the rules for one line, as
described previously.

Let’s consider the multiline docstring for a class that’s shown in
Listing 1-19.

Listing 1-19. Multiline Class Docstring

class Student:

Student class information.

This class handle actions performed by a student.
This class provides information about student full name,
age, roll-number and other information.

Usage:
import student

student = student.Student()
student.get_name()

23

CHAPTER 1 PYTHONIC THINKING

>>> 678998

def init (self):
pass

This class docstring is multiline; we wrote little more about the usage

of Student class and how to use it.

Function Docstrings

Function docstrings can be written after a function or at the top of a
function. Function docstrings mostly focus on describing the function’s
operation, and if you are not using Python typing, consider including
parameters as well for See Listing 1-20 for example.

Listing 1-20. Function Docstring

def is prime number(number):
"""Check for prime number.

Check the given number is prime number or not by checking
against all the numbers less the square root of given number.

:param number: Given number to check for prime.
:type number: int

:return: True if number is prime otherwise False.
:rtype: boolean

24

CHAPTER 1 PYTHONIC THINKING

Some Useful Docstring Tools

There are plenty of docstrings tools for Python. Docstring tools help to

document the Python code by converting docstrings into HTML-formatted

document files. These tools also help you update the document by running

simple commands instead of manually maintaining the document. Making

them part of your development flow makes them much more useful in the

long run.

There are a few useful documentation tools. Every documentation

tool has different goals, so which one you choose will depend upon your

specific use case.

Sphinx: http://www.sphinx-doc.org/en/stable/

This is the most popular documentation tool for
Python. This tool will autogenerate Python documents.
It can generate multiple-format documentation files.

Pycco: https://pycco-docs.github.io/pycco/

This is quick way to generate documentation for your
Python code. The main feature of this tool is to display
code and documentation side-by-side.

Read the docs: https://readthedocs.org/

This is a popular tool in the open source community.
Its main feature is to build, version, and host your docs
for you.

Epydocs: http://epydoc.sourceforge.net/

This tool generates API documentation for Python
modules based on their docstrings.

25

http://www.sphinx-doc.org/en/stable/
https://pycco-docs.github.io/pycco/
https://readthedocs.org/
http://epydoc.sourceforge.net/

CHAPTER 1 PYTHONIC THINKING

Using these tools will make it easier to maintain your code in the long
run and will help you keep a consistent format for your code documentation.

Note Docstrings are a great feature of Python and can make it
really easy to document your code. Starting to use docstrings in your
code as early as possible will make sure that you don’t need to invest
much time later when your project becomes much more mature with
thousands of lines of code.

Write Pythonic Control Structures

Control structures are fundamental parts of any programming language,
and it’s true for Python as well. Python has a number of ways to write

the control structure, but there are some best practices that will keep the
Python code cleaner. We will look at these Python best practices for control
structures in this section.

Use List Comprehensions

List comprehension is a way of writing code to solve an existing problem
in a similar way as python for loop does however it allow to do that inside
the list with or without if condition. There are multiple ways in Python
to derive a list from another list. The main tools in Python for doing
this are the filter and map methods. However, list comprehension is
recommended way to do that as it makes your code much more readable
compare to other options like map and filter.

In this example, you are trying to find the square of numbers with a
map version:

numbers = [10, 45, 34, 89, 34, 23, 6]
square numbers = map(lambda num: num**2, num)

26

CHAPTER 1 PYTHONIC THINKING
Here is a list comprehension version:
square_numbers = [num**2 for num in numbers]

Let’s look at another example where you use a filter for all true values.
Here's the filter version:

data = [1, "A", 0, False, True]
filtered data = filter(None, data)

Here is a list comprehension version:
filtered data = [item for item in filter if item]

As you might have noticed, the list comprehension version is much
more readable compared to the filter and map versions. The official
Python documentation also recommends that you use list comprehension
instead of filter and map.

If you don’t have a complex condition or complex computation in the
for loop, you should consider using list comprehension. But if you are
doing many things in a loop, it’s better to stick with a loop for readability
purposes.

To further illustrate the point of using list comprehension over a for
loop, let’s look at an example where you need to identify a vowel from a list
of characters.

list char = ["a", "p", "t", "i", "y", "1"]
vowel = ["a", "e", "i", "o", "u"]
only vowel = []
for item in list char:
if item in vowel:

only vowel.append(item)
Here’s an example of using list comprehension:

[item for item in list char if item in vowel]

27

CHAPTER 1 PYTHONIC THINKING

As you can see, this example is much more readable when using
list comprehension compared to using a loop but with fewer lines of
code. Also, aloop has an extra performance cost because you need to
append the item into the list each time, which you don’t need to do in list
comprehension.

Similarly, the filter and map functions have an extra cost to call the
functions compared to list comprehension.

Don’t Make Complex List Comprehension

You also want to make sure that the list comprehension is not too complex,
which can hamper your code readability and make it prone to errors.

Let’s consider another example of using list comprehension. List
comprehension is good for at most two loops with one condition. Beyond
that, it might start hampering the readability of the code.

Here’s an example where you want to transpose this matrix:

matrix = [[1,2,3],
[4,5,6],
[7,8,9]]

and convert it to this one:

matrix = [[1,4,7],
[2J5)8])
[3,6,9]]

Using list comprehension, you might write it as follows:

return [[matrix[row][col] for row in range(0, height)] for
col in range(0,width)]

28

CHAPTER 1 PYTHONIC THINKING

Here the code is readable, and it makes sense to use list
comprehension. You might even want to write the code in a better format
such as the following:

return [[matrix[row][col]
for row in range(0, height)]
for col in range(0,width)]

You can consider using loops instead of list comprehension when you
have multiple if condition as follows:

ages = [1, 34, 5, 7, 3, 57, 356]
old = [age for age in ages if age > 10 and age < 100 and age is
not None]

Here, a lot of things are happening on one line, which is hard to read
and error prone. It might be a good idea to use a for loop here instead of
using list comprehension.

You can consider writing this code as follows:

ages = [1, 34, 5, 7, 3, 57, 356]
old = []
for age in ages:
if age > 10 and age < 100:
old.append(age)
print(old)

As you can see, this has more lines of code, but it’s readable and
cleaner.

So, a good rule of thumb is to start with list comprehension, and when
expressions start getting complex or readability starts getting hampered,
convert to using a loop.

29

CHAPTER 1 PYTHONIC THINKING

Note Using list comprehension wisely can improve your code;
however, overuse of list comprehension can hamper the code’s
readability. So, refrain from using list comprehension when you are
going for complex statements, which may be more than one condition
or loop.

Should You Use a Lambda?

You can consider using a lambda where it helps in the expression instead
of using it as a replacement of a function. Let’s consider the example in
Listing 1-21.

Listing 1-21. Using a Lambda Without Assigning

data = [[7], [3], [o], [8], [1], [4]]
def min_val(data):
"""Find minimum value from the data list.

return min(data, key=lambda x:len(x))

Here the code is using a lambda as a throwaway function to find a
minimum value. However, [would advise you nof to use alambda as an
anonymous function like this:

min_val = min(data, key=lambda x: len(x))

Here, min_val is being calculated using a lambda expression. Writing a
lambda expression as a function duplicates the functionality of def, which
violates the Python philosophy of doing things in one and only one way.

The PEP8 document says this regarding lambdas:

Always use a def statement instead of an assignment statement that
binds a lambda expression directly to a name.

Yes:

30

CHAPTER 1 PYTHONIC THINKING

def f(x): return 2*x
No:
f=lambda x: 2*x

The first form means that the name of the resulting function object is
specifically f’ instead of the generic ‘<lambda>. This is more useful
for tracebacks and string representations in general. The use of the
assignment statement eliminates the sole benefit a lambda expres-
sion can offer over an explicit def statement (i.e. that it can be
embedded inside a larger expression)

When to Use Generators vs. List Comprehension

The main difference between generators and list comprehension is that list
comprehension keeps the data in memory while generators do not.
Use list comprehension in the following cases:

¢ When you need to iterate over the list multiple times.

e When you need to list methods to play with data that is
not available in the generator

o When you don’t have large data to iterate over and you
think keeping data in memory won’t be an issue

Let’s say you want to get the line of a file from a text file, as shown in
Listing 1-22.

Listing 1-22. Read File from a Document

def read file(file name):
"""Read the file line by line."""

fread = open(file name, "r")

data = [line for line in fread if line.startswith(">>")]

return data

31

CHAPTER 1 PYTHONIC THINKING

Here, the file could be so big that having that many lines in a list could
impact the memory and make your code slow. So, you might want to
consider using an iterator over a list. See Listing 1-23 for an example.

Listing 1-23. Read a File from a Document Using Iterators

def read file(file name):

"""Read the file line by line."""

with open(file name) as fread:
for line in fread:

yield line

for line in read file("logfile.txt"):
print(line.startswith(">>"

In Listing 1-23, instead of pushing data into memory using list
comprehension, you are reading each line at a time and taking action.
However, list comprehension can be passed around for further action to
see whether it has found all the lines that start with >>>, while a generator
needs to run each time to find the line that starts with >>>.

Both are great features of Python, and using them as described will
make your code performant.

Why Not to Use else with Loops

Python loops have an else clause. Basically, you can have an else clause
after Python for or while loops in your code. The else clause in the code
runs only when control exits normally from the loop. If control exists in a
loop with a break keyword, then control won’t enter into the else section
of code.

Having an else clause with loops is kind of confusing, which makes
lots of developers avoid this feature. This is understandable considering
the nature of the if/else condition in normal flow.

32

CHAPTER 1 PYTHONIC THINKING

Let’s look at the simple example in Listing 1-24; the code is trying to
loop over a list and has an else clause outside and right after the loop.

Listing 1-24. else Clause with for Loop

for item in [1, 2, 3]:
print("Then")
else:
print("Else")

Result:
>>> Then
>>> Then
>>> Then
>>> Else

At first glance, you might think that it should print only three Then
clauses and not Else as that would be skipped in a normal scenario of
an if/else block. This is a natural way to look at the logic of the code.
However, that assumption is not correct here. This gets more confusing if
you use the while loop, as shown in Listing 1-25.

Listing 1-25. else Clause with the for Loop

x = [1, 2, 3]

while x:
print("Then")
x.pop()

else:
print("Else")

33

CHAPTER 1 PYTHONIC THINKING
The result is as follows:

>>> Then
>>> Then
>>> Then
>>> Else

Here the while loop runs until the list is not empty and then runs the
else clause.

There is a reason to have this functionality in Python. One main use
case could be to have an else clause right after the for and while loops to
perform an additional action once the loop has ended.

Let’s consider the example in Listing 1-26.

Listing 1-26. else Clause with break

for item in [1, 2, 3]:
if item % 2 = 0:
break
print("Then")
else:
print("Else")

The result is as follows:
>>> Then

However, there are better ways to write this code instead of using
the else clause outside of the loop. You can use the else clause with the
break in the loop or without the break condition. However, there are
multiple ways to achieve the same result without using the else clause.
You should use the condition instead of else in loops as there is a risk of
misunderstanding the code by other developers, and it also a little harder
to understand the code at a glance. See Listing 1-27.

34

CHAPTER 1 PYTHONIC THINKING

Listing 1-27. else Clause with break

flag = True
for item in [1, 2, 3]:
if item % 2 = 0:

flag = False
break
print("Then")

if flag:
print("Else")

Result is as follows:
>>> Then

This code makes it easier to read and understand, and there is no
possibility of confusion while reading the code. The else clause is an
interesting approach to writing code; however, it might impact the code’s
readability, so avoiding it might be a better way to solve the problem.

Why range Is Better in Python 3

If you have worked with Python 2, you might have used xrange. In Python 3,
xrange has been renamed to range with some extra features. range is
similar to xrange and generate an iterable.

>>> range(4)

range(0, 5) # Iterable
>>> list(range(4))
[0, 1, 2, 3, 4] # List

There are some new features in the range function of Python 3. The
main advantage of having a range compared to a list is that it doesn’t
keep data in memory. Compared to lists, tuples, and other Python data

35

CHAPTER 1 PYTHONIC THINKING

structure, range represents an immutable iterable object that always takes
the small and same amount of memory irrespective of the size of range
because it only stores start, stop, and step values and calculates values as
needed.

There are a couple of things you can do with range that are not
possible in xrange.

e You can compare the range data.

>>> range(4) == range(4)
True
>>> range(4) == range(5)
False

¢ You can slice.

>>> range(10)[2:]
range(2, 10)

>>> range(10)[2:7, -1)
range(2, 7, -1)

range has lot of new features, which you can check out here for more
detail: https://docs.python.org/3.0/1library/functions.html#range.

Also, you can consider using range when you need to work on
numbers instead of lists of numbers in your code because it will be much
faster compared to lists.

It's also recommended that you use iterables in your loop as much as
possible when you are dealing with numbers because Python gives you a
method like range to do it easily.

Don’t do this:

for item in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]:
print(item)

36

https://docs.python.org/3.0/library/functions.html#range

CHAPTER 1 PYTHONIC THINKING
Do this:

for item in range(10):
print(item)

The first loop would be much costlier in term of performance, and if
this list happens to be large enough, it would make your code much slower
because of the memory situation and popping out the number from the
list.

Raising Exceptions

Exceptions help you report errors in your code. In Python, exceptions are
handled by a built-in module. It’s important to have a good understanding
of exceptions. Understanding when and where to use them will make your
code less prone to errors.

Exceptions can expose errors in your code without much effort, so
never forget to add exceptions in your code. Exceptions help consumers of
your API or library understand the limitations of your code so they can put
good error mechanisms to use while using your code. Raising an exception
in the right place in your code immensely helps other developers to
comprehend your code and makes third-party customers happy while
using your API.

Frequently Raised Exceptions

You might wonder when and where to raise exceptions in your Python
code.

I usually prefer to throw an exception whenever a fundamental
assumption of the current code block is found to be false. Python prefers
to have exceptions when you have a failure in your code. Even if you have a
continuous failure, you want to raise an exception for it.

37

CHAPTER 1 PYTHONIC THINKING

Let’s consider that you need to divide two numbers in Listing 1-28.

Listing 1-28. Division of Numbers with Exceptions

def division(dividend, divisor):

Perform arithmetic division.
try:

return dividend/divisor
except ZeroDivisionError as zero:

raise ZeroDivisionError("Please provide greater than 0

value")

As you can see in this code, you are raising an exception whenever you
assume there might be a possibility of having errors in code. This helps the
calling code to assure that the code will get an error whenever you have
ZeroDivisionError in your code and handles it in different ways. See
Listing 1-29.

Listing 1-29. Division Without Exceptions
result = division(10, 2)
What happens if we return None here as:

def division(dividend, divisor):
"""Perform arithmetic division."""
try:

return dividend/divisor
except ZeroDivisionError as zero:

return None

If the caller doesn’t handle the case where calling on the
division(dividend, divisor) method never fails even if you have
ZeroDivisionError in your code, and if you are returning None from
division(dividend, divisor) method in case of any exception, which could

38

CHAPTER 1 PYTHONIC THINKING

make difficult to diagnose in future when code size grows or the requirements
changes. It’s better to avoid returning None by division(divident, divisor)
function in case of any failure or exception to make it easier for caller to
understand what failed during the function execution. When we raise
exception, we let caller know upfront that input values are not correct and
need to provide the correct ones and we avoid any hidden bugs.

From a caller perspective, it’s simply more convenient to get an
exception rather than a return value, which is the Python style to indicate
that there is a failure.

Python'’s credo is “It’s easier to ask forgiveness than permission.” This
means that you don’t check beforehand to make sure you won’t get an
exception; instead, if you get exception, you handle it.

Basically, you want to make sure that you raise an exception whenever
you think there is a possibility of failure in your code so the calling class
can handle them gracefully and not be taken by surprise.

In other words, if you think your code can’t be run reasonably and
hasn’t figured out the answer yet, consider throwing an exception.

Leverage finally to Handle Exceptions

The code in finally always runs in Python. The finally keyword is useful
while handling exceptions, especially when you are dealing with resources.
You can use finally to make sure files or resources are closed or released,
regardless of whether an exception has been raised. This is true even if you
don’t catch the exception or don’t have specific exception to catch. See
Listing 1-30.

Listing 1-30. finally Keyword Use

def send_email(host, port, user, password, email, message):
"""send email to specific email address.
try:

39

CHAPTER 1 PYTHONIC THINKING

server = smtlib.SMTP(host=host, port=port)
server.ehlo()
server.login(user, password)
server.send email(message)
finally:
server.quite()

Here you are handling the exception using finally, which helps to
clean up the resources in a server connection, in case you have some kind
of exception during login or in send_email.

You can use the finally keyword to write the block where you close
the file, as shown in Listing 1-31.

Listing 1-31. finally Keyword Use to close the file

def write file(file name):
"""Read given file line by line
myfile = open(file_name, "w")

try:
myfile.write("Python is awesome") # Raise
TypeError
finally:
myfile.close() # Executed before TypeError

propagated

Here you are handling closing the file inside the finally block.
Whether or not you have an exception, the code in finally will always run
and close the file.

So, when you want to execute a certain code block irrespective of an
exception being present, you should prefer to use finally to do that. Using
finally will make sure you are handling your resources wisely and in
addition will make your code cleaner.

40

CHAPTER 1 PYTHONIC THINKING

Create Your Own Exception Class

When you are creating an API or library or are working on a project where you
want to define your own exception to be consistent with the project or APJ, it’s
advisable to create your own exception class. This will help you immensely
while you are diagnosing or debugging your code. It also helps to make your
code cleaner because the caller will know why the error has been thrown.

Let’s assume you have to raise exception when you can'’t find a user in
a database. You want to make sure that the exception class name reflects
the intention of the error. Having the name UserNotFoundError itself
explains why you have an exception and the intention.

You can define your own exception class in Python 3+ as shown in
Listing 1-32.

Listing 1-32. Creating a Specific Exception Class

class UserNotFoundError (Exception):
"""Raise the exception when user not found."""
def _init_ (self, message=None, errors=None):

Calling the base class constructor with the parameter
it needs
super(). init (message)
New for your custom code
self.errors = errors

def get user info(user obj):
"""Get user information from DB."""
user = get user from db(user obj)
if not user:
raise UserNotFoundException(f"No user found of this id:

{user obj.id}")

get user info(user obj)
>>> UserNotFoundException: No user found of this id: 897867

41

CHAPTER 1 PYTHONIC THINKING

You also want to make sure that when you create your own exception
class, those exception are descriptive and have well-defined boundaries.
You'll want to use UserNotFoundException only in places where the code
can’t find a user, and you'll want to inform the calling code that the user
information has not been found in the database. Having a specific set of
boundaries for custom-defined exceptions makes it easier to diagnose the
code. When you are looking at your code, you know exactly why the code
has thrown that specific exception.

You can also define a broader scope for an exception class with
naming, but the name should signify that it handles specific kinds of
cases, as shown in Listing 1-33. The listing shows ValidationError, which
you can use for multiple validation cases, but its scope is defined by all
exceptions that are validation-related.

Listing 1-33. Creating a Custom Exception Class with a Broader
Scope

class ValidationError(Exception):
"""Raise the exception whenever validation failed..
def init (self, message=None, errors=None):

Calling the base class constructor with the parameter
it needs

super(). init (message)

New for your custom code

self.errors = errors

This exception has a much broader scope compared to
UserNotFoundException. ValidationError can be raised whenever you
think that validation has been failed or specific input does not have a valid
input; however, the boundary is still defined by the validation context.

So, make sure that you know the scope of your exception and raise an
exception when an error is found in the scope of that exception class.

42

CHAPTER 1 PYTHONIC THINKING

Handle Only Specific Exceptions

While catching the exception, it's recommended that you catch only
specific exceptions instead of using the except: clause.

except: or except Exception will handle each and every
exception, which can cause your code to hide critical bugs or
exceptions which you don't intend to.

Let’s take a look at the following code snippet, which uses the except
clause in the try/catch block to call the function get_even_list.
Don’t do this:

def get even list(num list):
"""Get list of odd numbers from given list.
This can raise NoneType or TypeError exceptions

return [item for item in num_list if item%2==0]

numbers = None
try:

get _even_list(numbers)
except:

print("Something is wrong")

>>> Something is wrong

This kind of code hides an exception like NoneType or TypeError,
which is obviously a bug in your code, and the client application or service
will have a hard time figuring it out why they are getting message like
“Something is wrong.” Instead, if you raise a specific kind of exception
with a proper message, the API client would be thankful to you for your
diligence.

When you use except in your code, Python internally considers it as
except BaseException. Having a specific exception helps immensely,
especially in a larger code base.

43

CHAPTER 1

PYTHONIC THINKING

Do this:

def get even list(num list):

Get list of odd numbers from given list.

This can raise NoneType or TypeError exceptions
return [item for item in num_list if item%2==0]

numbers = None

try:

get _even_list(numbers)
except NoneType:
print("None Value has been provided.")
except TypeError:
print("Type error has been raised due to non sequential
data type.")

Handling a specific exception helps while debugging or diagnosing

your issue. The caller will immediately know why the code has failed and

will force you to add code to handle specific exceptions. This also makes

your code less error prone for calling and caller code.

As per the PEP8 documentation, while handling exceptions, you

should use the except keyword in these cases:

44

When the exception handler will be printing out or
logging the traceback. At least the user will be aware
that an error has occurred in that case.

When the code needs to do some cleanup work but
then lets the exception propagate upward with raise.
try...finally can be a better way to handle this case.

CHAPTER 1 PYTHONIC THINKING

Note Handling a specific exception is one of the best practices
while writing code, especially in Python because it will help you save
a lot of time while debugging the code. Also, it will make sure that
your code fails fast instead hiding bugs in code.

Watch Out for Third-Party Exceptions

While calling a third-party AP], it’s really important that you are aware of
all the kind of exceptions thrown by a third-party library. Getting to know
all types of exceptions can help you to debug the issue later.

If you think that an exception don’t quite suit your use case, consider
creating your own exception class. While working with a third-party
library, you can create your own exception class if you want to rename the
exception name according to your application errors or want to add a new
message in a third-party exception.

Let’s take a look at the botocore client library in Listing 1-34.

Listing 1-34. Creating a Custom Exception Class with a Broader
Scope

from botocore.exceptions import ClientError

ec2 = session.get client('ec2', 'us-east-2")
try:

parsed = ec2.describe instances(Instancelds=["i-badid'])
except ClientError as e:

logger.error("Received error: %s", e, exc_info=True)

Only worry about a specific service error code

if e.response['Error']['Code'] == 'InvalidInstanceID.NotFound':

raise WrongInstanceIDError(message=exc_info, errors=e)

class WrongInstanceIDError(Exception):

45

CHAPTER 1 PYTHONIC THINKING

Raise the exception whenever Invalid instance found."""
def _init_(self, message=None, errors=None):
Calling the base class constructor with the parameter
it needs
super(). init_ (message)
New for your custom code
self.errors = errors

Consider two things here.

e Addinglogs whenever you find a specific error in a
third-party library will make it easier to debug issues in
a third-party library.

o Here you defined a new error class to define your
own exception. You might not want to do it for every
exception; however, if you think that creating a new
exception class will make your code cleaner and more
readable, then consider creating a new class.

Sometimes it’s hard to find the correct way to handle an exception
thrown by a third-party library/API. Getting to know at least some of the
common exceptions that are thrown by a third-party library will make it
easier for you when battling production bugs.

Prefer to Have Minimum Code Under try

Whenever you handle an exception in your code, try to keep the code in

a try block at a minimum. This makes it clear to other developers which
part of the code is supposed to have a risk of throwing an error. Having a
minimum of code or the code that has the potential to throw an exception
in a try block also helps you to debug the issue more easily. Not having a
try/catch block for exception handling might be slightly faster; however,
if the exception is not handled, it might cause the application to fail. So,

46

CHAPTER 1 PYTHONIC THINKING

having good exception handling makes your code error free and can save
you millions in production.

Let’s look at an example.

Don’t do this:

def write to file(file name, message):

Write to file this specific message.
try:
write file = open(file name, "w")
write file.write(message)
write.close()
except FileNotFoundError as exc:
FileNotFoundException("Please provide correct file")

If you look closely at the previous code, you will see that there are
opportunities to have different kinds of exceptions. One is FileNotFound
or IOError.

You can use a different exception on one line or write a different
exception in a different try block.

Do this:

def write to file(file name, message):

Write to given file this specific message.

try:
write file = open(file name, "w")
write file.write(message)
write.close()

except (FileNotFoundError, IOError) as exc:

FileNotFoundException(f"Having issue while writing into
file {exc}")

Even if there is no risk of having exceptions on other lines, it’s
preferable to write the minimum code in a try block as follows.
Don’t do this:

47

CHAPTER 1 PYTHONIC THINKING

try:
data = get data_from db(obj)
return data

except DBConnectionError:
raise

Do this:

try:

data = get data from db(obj)
except DBConnectionError:

raise
return data

This makes cleaner code and makes it clear that you are expecting an
exception only while accessing the get_data_from_db method.

Summary

In this chapter, you learned some common practices that can help you to
make your Python code more readable and simpler.

Additionally, exception handling is one of the most important parts of
writing code in Python. Having a good understanding of exceptions helps
you to maintain your application. This is especially true in big projects
where you have more chances of having various kinds of production issues
because of the different moving parts of an application being worked on
by different developers. Having exceptions in the right places in your code
can save you a lot of time and money, especially when you are debugging
issues in production. Logging and exceptions are two of the most
important parts of any mature software application, so planning ahead
for them and considering them as a core part of software application
development will help you write more maintainable and readable code.

48

CHAPTER 2

Data Structures

Data structures are the basic building blocks of any programming
language. Having a good grasp of data structures saves you a lot of
time, and using them can make your code maintainable. Python has

a number of ways to store data using data structures, and having a
good understanding of when to use which data structure makes a lot of
difference in terms of memory, ease of use, and the performance of the
code.

In this chapter, I will first go through some common data structures
and explain when to use them in your code. I will also cover the
advantages of using those data structures in specific situations. Then, you
will consider in detail the importance of the dictionary as a data structure
in Python.

Common Data Structures

Python has a number of primary data structures. In this section, you will
look at the most common data structures. Having a good understanding of
data structure concepts is important for you to write efficient code. Using
them intelligently makes your code more performant and less buggy.

© Sunil Kapil 2019 49
S. Kapil, Clean Python, https://doi.org/10.1007/978-1-4842-4878-2_2

CHAPTER 2 DATA STRUCTURES

Use Sets for Speed

Sets are fundamental data structures in Python. They’re also one of the
most neglected ones. The main benefit of using sets is speed. So, let’s look
at some of the other characteristics of sets:

e Theydon't allow duplicates.
e You can’t access set elements using an index.

o Sets can access elements in O(1) time since they use
hashtables.

e Sets don’t allow some common operations that lists do
like slicing and lookups.

¢ Sets can sort the elements at insertion time.

Considering these constraints, whenever you don’t need these
common functionalities in your data structure, prefer to use a set, which
will make your code a lot faster while accessing the data. Listing 2-1 shows
an example of using a set.

Listing 2-1. Set Usage for Accessing Data

data = {"first", "second", "third", "fourth", "fifth"}
if "fourth" in data:
print("Found the Data")

Sets are implemented using hashtables, so whenever a new item is
added to a set, the positioning of the item in memory is determined by
the hash of the object. That’s the reason hashes are pretty performant
while accessing the data. If you have thousands of items and you need to
frequently access items from those elements, it’s way faster to use sets to
access items instead of using lists.

Let’s look at another example (Listing 2-2) where sets are useful and
can help make sure your data is not being duplicated.

50

CHAPTER 2 DATA STRUCTURES

Listing 2-2. Set Usage for Removing Duplicates

data = ["first", "second", "third", "fourth", "fourth",
"fifth"]

no_duplicate data = set(data)

>>> {"first", "second", "third", "fourth", "fifth"}

Sets are also used as keys for dictionaries, and you can use sets as keys
for other data structures such as lists.

Let’s consider the example in Listing 2-3 where you have a dictionary
from a database with an ID value as the key and the first and last names of

users in values.

Listing 2-3. Sets as First and Last Names

users = {'1267':{'first': 'Larry', 'last':'Page'},
'2343": {'first': 'John', 'last': 'Freedom'}}

ids = set(users.keys())
full names = []
for user in users.values():
full names.append(user["first"] + "" + user["last"])

This gives your set of IDs and a list of full names. As you can see, sets
can be derived from lists.

Note Sets are useful data structures. Consider using them when
you need to frequently access items from a list of numbers and set
the access to the items in O(1) time. | recommend thinking about sets
before considering using lists or tuples the next time you need a data
structure.

51

CHAPTER 2 DATA STRUCTURES

Use namedtuple for Returning and Accessing
Data

namedtuple is basically a tuple with the name of the data. namedtuple can

do the same thing a tuple can but also has some extra features that a tuple

doesn’t have. With a namedtuple, it is easy to create a lightweight object type.
namedtuple makes your code more Pythonic.

Access the Data

Accessing the data using namedtuple makes it much more readable. Say
you want to create a class whose values won'’t be changed after initializing.
You might create a class like the one shown in Listing 2-4.

Listing 2-4. Immutable Class

class Point:
def _init_ (self, x, y, z):

self.x = x
self.y =y
self.z = z

point = Point(3, 4, 5)
point.x

point.y
point.z

If you are not going to change the values of class Point and prefer to
write them using namedtuple, it will make your code much more readable,
as shown in Listing 2-5.

52

CHAPTER 2 DATA STRUCTURES

Listing 2-5. namedtuple Implementation

Point = namedtuple("Point", ["x", "y", "z"])
point = Point(x=3, y=4, z=5)

point.x

point.y

point.z

As you can see here, this code is much more readable and has fewer
lines than using a normal class. Because a namedtuple uses the same
memory as a tuple, they are as performant as tuples.

You might be wondering why you don’t use a dict instead of
namedtuple because they are easy enough to write.

Tuples are immutable, whether named or not. namedtuple makes the
access more convenient by using names instead of indices. namedtuple has a
stringent restriction in that field names have to be strings. Also, namedtuple
doesn’t perform any hashing because it generates a type instead.

Return the Data

Usually you would return data in a tuple. However, you should consider
using namedtuple for returning data because it makes code more readable
without much context. I would even suggest that whenever you are passing
data from one function to another function, you should see whether you
can use namedtuple because it makes your code much more Pythonic and
readable. Let’s consider the example in Listing 2-6.

Listing 2-6. Return a Value from a Function as a Tuple

def get user info(user obj):
user = get data from db(user obj)
first name = user["first name"]
last _name = user["last name"]

53

CHAPTER 2 DATA STRUCTURES

age = user["age"]
return (first name, last name, age)

def get full name(first name, last name):
return first name + last name

first name, last name, age = get user info(user obj)
full name = get full name(first name, last name)

So, what's the problem with this function? The issue is with returning
the values. As you can notice, you are returning the values of first _name,
last_name, and age of the user after fetching them from the database.
Now, consider that you need to pass these values to some other function
as get_full name.You are passing these values around, and it's making
visual noise for the reader to read your code. If you have more values to
pass around like this, imagine how difficult it would be for a user to follow
your code. It might have been nicer if you could bind these values to a data
structure so that it provides the context without writing extra code.

Let’s rewrite this code using namedtuple, which will make much more
sense, as shown in Listing 2-7.

Listing 2-7. Return a Value from a Function as a Tuple

def get user info(user obj):
user = get data from db(user obj)
UserInfo = namedtuple("UserInfo", ["first name", "last
name", "age"])

user_info = UserInfo(first name=user["first name"],
last _name=user["last name"],
age=user["age"])

return user info

def get full name(user info):
return user info.first name + user_ info.last name

54

CHAPTER 2 DATA STRUCTURES

user_info = get user info(user obj)

full name

get full name(user_info)

Writing the code using namedtuple gives it context without you
providing extra information with the code. Here user_info as namedtuple
gives you that extra context without being explicitly set when returning
from a function called get_user_info. Therefore, using namedtuple makes
your code much more readable and maintainable in the long run.

If you have ten values to return, you might usually consider using
tuple or dict while moving data around. Both of these data structures
aren’t very readable when data is being moved around. A tuple doesn’t
give any context or names to the data that is in tuple, and dict doesn’t
have unmutability, which constrains you when you don’t want data to
change after the first assignment. namedtuple fills both those gaps here.

Finally, if you want to convert namedtuple to a dict or convert a list
to namedtuple, namedtuple gives you methods to do it easily. So, they are
flexible as well. The next time you are creating a class with immutable data
or returning multiple values, consider using namedtuple for the sake of
readability and maintainability.

Note You should use namedtuple instead of a tuple wherever

you think object notation will make your code more Pythonic and
readable. | usually consider them when | have multiple values to pass
around with some kind of context; in these cases, namedtuple can
fit the bill because it makes code much more readable.

Understanding str, Unicode, and byte

Understanding some of the fundamental concepts in the Python language
will help you as a developer and make you a better programmer while
handling data. Specifically, in Python, having a basic understanding of str,

55

CHAPTER 2 DATA STRUCTURES

Unicode, and byte helps you when you are working with data. Python is
really easy to code for data processing or anything related to data because
of its built-in library and its simplicity.

As you might already know, str is a representation type of a string in
Python. See Listing 2-8.

Listing 2-8. Type str for Different Values

p = "Hello"
type(p)
>>> str
_t - II6II

type(t)
>>> str

Unicode gives a unique identification to each character in almost all
languages, such as the following:

0x59 : Y
OxE1 : a
OxX7E : ~

The numbers assigned to characters by Unicode are called code points.
So, what's the purpose of having Unicode?

The purpose of Unicode is to give a unique ID to each character
for almost all languages. You can use the Unicode code point for any
character, irrespective of the language. Unicode is usually formatted with
aleading U+ and a then hexadecimal numeric value padded to at least four
digits.

So, the thing you need to remember is that all Unicode does is to
assign a numerical ID called a code point to each character so you have an
unambiguous reference.

56

CHAPTER 2 DATA STRUCTURES

When you map any character to a bit pattern, it is called encoding.
These bit patterns are used by the computer memory or on disk. There are
multiple ways you can encode the characters; the most common are ASCI],
ISO-8859-1, and UTE-8.

Python interpreters use UTF-8 for encoding.

So, let’s briefly talk about UTE-8. UTF-8 maps all Unicode characters to
bit patterns of length 8, 16, 24, or 32, which is 1, 2, 3, or 4 correspondingly.

As an example, a will be converted by the Python interpreter to
01100001, and a will be converted to 11000011 01011111 (0xC3 0xA1). So,
it’s easy to understand why Unicode is useful.

Note In Python 3, all strings are a sequence of Unicode characters.
So, you should not be thinking about encoding strings to UTF-8 or
decoding from UTF-8 to strings. You can still convert a string to bytes
and bytes back to a string using string-encoding methods.

Use Lists Carefully and Prefer Generators

Iterators are really useful, especially when you are handling a large amount

of data. I have seen code where people use a list to store sequence data but

then there is risk of memory leak affecting the performance of your system.
Let’s consider the example in Listing 2-9.

Listing 2-9. Using a List of Return Prime Numbers

def get prime numbers(lower, higher):
primes = []
for num in range(lower, higher + 1):
for prime in range(2, num + 1):
is_prime = True
for item in range(2, int(num ** 0.5) + 1):

57

CHAPTER 2 DATA STRUCTURES

if num % item ==
is prime = False
break

if is_prime:
primes.append(num)
print(get prime_numbers(30, 30000))

What'’s the problem with code like this? First, it’s hard to read, and
second, it could be dangerous in terms of memory leak because you are
storing large numbers in memory. How can you make this code better in
terms of readability and performance?

This is where you can consider using generators, which use yield keys
to generate numbers, and you can use them as an iterator to pop out the
values. Let’s rewrite this example using iterators, as shown in Listing 2-10.

Listing 2-10. Using Generators for Prime Numbers

def is prime(num):
for item in range(2, int(math.sqrt(num)) + 1):
if num % item ==
prime = False
return prime

def get prime numbers(lower, higher):
for possible prime in range(lower, higher):
if is_prime(possible prime):
yield possible prime
yield False

for prime in get prime numbers(lower, higher):
if prime:
print(prime)

58

CHAPTER 2 DATA STRUCTURES

This code is much more readable and performant. Also, a generator
unintentionally forces you to think about refactoring your code. Here
returning values in a list makes the code much more bloated, which the
generator solves easily.

One of the common cases that I have observed is that iterators can
be really useful when you are getting data from a database and you
don’t know how many rows you will be fetching. This could be memory-
intensive work as you might try to save those values in memory. Instead,
try using an iterator, which would return a value right away and go to the
next row to give the next value.

Let’s say you have to access a database to get a user’s age and name by
ID. You know the IDs that are indexes in the database, and you know the
total number of users in the database, which is 1,000,000,000. Mostly I have
seen code where a developer tries to get data in a chunk using a list, which
is an OK approach to solve memory issues. Listing 2-11 shows an example
of this.

Listing 2-11. Access a Database and Store the Resultin a List as a
Chunk

def get all users age(total users=1000):
age = []
for id in total users:
user_obj = access_db _to get users by id(id)
age.append([user.name, user.age])
return age

total users = 1000000000
for user_info in range(total users):
info = get all users_age()
for user in info:
print(user)

59

CHAPTER 2 DATA STRUCTURES

Here you are trying to get the user’s age and name by accessing the
database. However, this approach might not be good when you don’t have
much memory in the system because you are randomly picking a number
that you consider memory-safe to store user information, but you can’t
guarantee that. Python provides a generator as a solution to avoid these
issues and tackle these situations in your code. You can consider rewriting

it as shown in Listing 2-12.

Listing 2-12. Using an Iterator Approach

def get all users age():
all users = 1000000000
for id in all users:
user_obj = access_db to get users by id(id)
yield user.name, user.age

for user name, user age in get all users age():
print(user name, user_ age)

Note Generators are a useful feature of Python because they make
your code performant for data-intensive work. A generator also forces
you to think about making the code readable.

Use zip to Process a List

When you have two lists and you want to process them in parallel, consider
using zip. This is a built-in function of Python and very efficient.

Let’s assume you have a user’s name and salary in a user table in the
database, and you would like to combine them into another list and return
that as a list for all users. You have the functions get _users_name_from db
and get_users_salary from_db, which give you a list of users and the

60

CHAPTER 2 DATA STRUCTURES

corresponding salary of users. How can you combine them? One of the
ways to do this is shown in Listing 2-13.

Listing 2-13. Combine a List

def get user salary info():
users = get users name_from db()
["Abe", "Larry", "Adams", "John", "Sumit", "Adward"]

users_salary = get users_salary from db()
[IIZM"’ II1MII) “60K"’ II30KII’ "80Kll, IllooK"]

users salary = []
for index in len(users):
users_salary.append([users[index], users salary[index]])

return users_salary

Is there a better way to solve this problem? Of course. Python has a
built-in function called zip that handles this part easily for you, as shown
in Listing 2-14.

Listing 2-14. Using zip

def get user salary info():
users = get users name_from db()
["Abe", "Larry", "Adams", "John", "Sumit", "Adward"]

users salary = get users salary from db()
["ZM", "1M") "60K", II3OKII’ "80K", IlloOKll]

users salary = []
for usr, slr in zip(users, users salary):
users_salary.append(usr, slr)

return users_salary

61

CHAPTER 2 DATA STRUCTURES

If you have a lot of data, consider using an iterator here instead of
storing into a list. zip makes it easier to combine two lists and process
them in parallel, so using zip will allow you to do these jobs efficiently.

Take Advantage of Python’s Built-in Functions

Python has lots of built-in libraries that are pretty awesome. I can’t go

into each library in this chapter as there are lots of them. I will cover some
basic data structure libraries that can make a big impact on your code and
improve your code quality.

collections

This is one of the most widely used libraries and has useful data structures,
specifically namedtuple, defaultdict, and orderddict.
CSV

Use csv for reading and writing CSV files. It will save you lot of time instead
of writing your own methods while reading files.

datetime and time

These are without a doubt two of the most used libraries. In fact, you
have probably already encountered them. If not, getting familiar with
the different methods available in these libraries is beneficial in different
scenarios, especially when you are working with timing issues.

math

The math lib has lots of useful methods to perform basic to advanced
math computations. Before looking for a third-party library to solve math
problems, try to see whether this library already has them.

62

CHAPTER 2 DATA STRUCTURES

re

There is no substitute for this library that can solve problems using regular
expressions. In fact, re is one of the best libraries in the Python language.
If you know regular expressions well, you can create magic using the

re library. It gives you the power to perform some of the more difficult
operations easily using regular expressions.

tempfile

Consider this a one-off library to create temporary files. It’s a good built-in
library.

itertools

Some of the most useful tools in this library are permutations and
combinations. However, if you explore it more, you will find that you can
solve a lot of computation problems using itertools. It has some of the
useful functions such as dropwhile, product, chain, and islice.

functools

If you are developer who loves functional programming, this library is for
you. It has lots of functions that will help you to think of your code in a
more functional way. One of the most used partials is in this library.

sys and os

Use these libraries when you want to perform any specific system- or
OS-level operations. sys and os give you the power to do a lot of amazing
things with your system.

63

CHAPTER 2 DATA STRUCTURES

subprocess

This library helps you to create multiple processes on your system without
much effort. The library is easy to use, and it creates multiple processes
and handles them using multiple methods.

logging

No big project could be successful without a good logging feature. The
logging library from Python helps you to easily add logging in your
system. It has different ways to spit out logs such as the console, files, and
the network.

json

JSON is the de facto standard for passing information over a network
and for APIs. The json library from Python does a great job of handling
different scenarios. The json library interface is easy to use, and the
documentation is pretty good.

pickle

You might not use it in daily coding, but whenever you need to serialize
and deserialize a Python object, there is no better library than pickle.

__future

This is a pseudomodule that enables new language features that are not
compatible with the current interpreter. So, you might want to consider
using them in your code where you want to use a future version. See
Listing 2-15.

Listing 2-15. Using __future__

import _ future import division

64

CHAPTER 2 DATA STRUCTURES

Note Python has rich libraries that solve a lot of problems for you.
Getting to know them is the first step to figuring out what they can
do for you. Familiarizing yourself with the built-in Python libraries will
help you in the long run.

Now that you've explored some of the most common data structures in
Python, let’s dig more into one of the most commonly used data structures
in Python: the dictionary. If you are writing professional Python code, you
will definitely use a dictionary, so let’s learn more about them!

Take Advantage of Dictionary

A dictionary is one of the most used data structures in Python. Dictionaries
are a faster way to access the data. Python has elegant built-in libraries for
dictionaries, which also makes them easy to use. In this section, you will
look closely at some of the most useful features of dictionaries.

When to Use a Dictionary vs. Other Data
Structures

When you are considering something that can map the data, it might be
time to consider a dictionary as the data structure in your code.

If you are storing data that needs some kind of mapping and you need
to access it fast, then using a dictionary would be wise; however, you don’t
want to consider using a dictionary for each data store.

So, as an example, consider the case when you need an extra
mechanism of a class or need an object, or consider using a tuple or
namedtuple when you need immutability in your data structure. Think
about which specific data structure you will need while you build your code.

65

CHAPTER 2 DATA STRUCTURES

collections

collections is one of the useful modules in Python. It’s a high-
performance data type. collections has a number of interfaces that are
really useful for performing different tasks with dictionary. So, let’s look
at some of the main tools in collections.

Counter

Counter gives you a convenient way to tally up similar data. As an example,
see Listing 2-16.

Listing 2-16. Counter
from collections import Counter

contries = ["Belarus", "Albania", "Malta", "Ukrain",
"Belarus", "Malta", "Kosove", "Belarus"]

Counter(contries)

>>> Counter({'Belarus': 2, 'Albania': 1, 'Malta': 2, 'Ukrain':
1, 'Kosove': 1})

Counter is a dict subclass. It’s an order collection where elements are
stored as dictionary keys and their tallies are stored as values. This is one
of the most efficient ways to count the numbers of values. Counter has
multiple useful methods. most_common(), as the name suggests, returns
the most common element and its count. See Listing 2-17 for an example.

Listing 2-17. most_count() Method in Counter
from collections import Counter

contries = ["Belarus", "Albania", "Malta", "Ukrain",
"Belarus", "Malta", "Kosove", "Belarus"]
contries count = Counter(contries)

66

CHAPTER 2 DATA STRUCTURES

>>> Counter({'Belarus': 2, 'Albania': 1, 'Malta': 2, 'Ukrain':
1, 'Kosove': 1})

contries count.most common(1)

>>> [('Belarus', 3)]

Other methods such as elements () return an iterator with the element
repeating as many times as the count.

deque

If you want to create a queue and stack, then consider using deque. It
allows you to append values from left to right. deque also supports thread-
safe, memory-efficient appends and pops from either side with the same
O(1) performance.

deque has methods such as append(x) to append to the right side,
appendleft(x) to append to the left side, clear() to remove all elements,
pop() to remove elements from the right side, popleft() to remove from
the left side, and reverse() to reverse the element. Let’s look at some of
the cases. See Listing 2-18.

Listing 2-18. deque
from collections import deque

Make a deque
deq = deque("abcdefg")

Iterate over the deque's element
[item.upper() for item in deq]
>>> deque([llAll, IIBII’ IICII, IIDII) IIEII, IIFII, IIGII])

Add a new entry to right side
deq.append("h")
>>> deque([llA", "B"’ "Cll, IIDII’ IIE"’ "F", IIGII’ llh"])

67

CHAPTER 2 DATA STRUCTURES

Add an new entry to the left side
deq.appendleft("I")
>>> deque(["I", IIAII’ "Bll, IICII, IID", "EII, IIFII’ "G", Ilhll])

Remove right most element

deq.pop()
>>> "h"

Remove leftmost element
deq.popleft()
>>> IIIII

empty deque
deq.clear()

defaultdict

A defaultdict works like dict because it’s a subclass of dict. A
defaultdict is initialized with function("default factory"), which
takes no argument and provides the default value for a nonexistent key.
defaultdict doesn’t raise a KeyError like dict. Any key that doesn’t exist
gets the value returned by the default factory.

Let’s take a look at the simple example in Listing 2-19.

Listing 2-19. defaultdict
from collections import defaultdict

Make a defaultdict
colors = defaultdict(int)

Try printing value of non-existing key would give us default
values

colors["orange"]

>>> 0

68

CHAPTER 2 DATA STRUCTURES

print(colors)
>>> defaultdict(int, {"orange": 0})

namedtuple

One of the most popular tools is namedtuple in a collection module. It’s a
subclass of tuple with a named field and fixed length. namedtuple can be
used wherever you used a tuple in your code. namedtuple is an immutable
list and makes it easier to read the code and access the data.

I've already discussed namedtuple, so refer to that discussion to learn
more about it.

ordereddict

ordereddict can be used when you want to get the keys in a specific
order. dict doesn’t give you the order as the insertion order, which is
ordereddict’s main feature. In Python 3.6+, dict also has this feature
where dict is by default ordered by the insertion order.

So, as an example, see Listing 2-20.

Listing 2-20. OrderedDict
from collections import ordereddict

Make a OrderedDict
colors = OrderedDict()

Assing values
colors["orange"] = "ORANGE"
colors["blue"] = "BLUE"
colors["green"] = "GREEN"

Get values
[k for k, v in colors.items()]
>>> ["orange", "blue", "green"]

69

CHAPTER 2 DATA STRUCTURES

Ordered Dictionary vs. Default Dictionary vs.
Normal Dictionary

I touched on some of these topics in earlier sections. Now let’s look closely
some different types of dictionaries.

The OrderedDict and DefaultDict dictionary types are subclasses of
the dict class (a normal dictionary) with some added features to make
them distinguishable from dict. However, they possess all the same
features as a normal dictionary. There is a reason for these dictionary types
in Python, and I will talk about where these different dictionaries can be
used to make best use of these libraries.

As of Python 3.6, dicts are now ordered by insertion order, which
actually reduces the usefulness of ordereddict.

Let’s now talk about OrderedDict for pre-3.6 Python versions.
OrderedDict gives you orderly values as you insert them into the
dictionary. Sometimes in your code you might want to access data in an
orderly fashion; this is where you can use OrderedDict. OrderedDict
doesn’t have any extra cost compared to a dictionary, so performance-wise
both are the same.

Say you want store when a programming language was first
introduced. You could use OrderedDict to fetch the information of the
language as you insert that language information by their founding year, as
shown in Listing 2-21.

Listing 2-21. OrderedDict
from collections import OrderedDict

Make a OrderedDict
language found = OrderedDict()

Insert values
language found ["Python"] = 1990

70

CHAPTER 2 DATA STRUCTURES

language found ["Java"] = 1995

1995

language found ["Ruby"]

Get values
[k for k, v in langauge found.items()]
>>> ["Python", "Java", "Ruby"]

Sometimes you want to have default values assigned to keys when you
access or insert keys in a dictionary. In a normal dictionary, you would get
KeyError if the key doesn’t exist. However, defaultdict will create the key
for you. See Listing 2-22.

Listing 2-22. defaultdict
from collections import defaultdict

Make a defaultdict
language found = defaultdict(int)

Try printing value of non-existing key
language found["golang"]
>> 0

Here when you call DefaultDict and try to access the golang key,
which doesn’t exist, internally defaultdict will call the function object
(which is int in the language found case), which you have passed in the
constructor. It’s a callable object, which includes function and type objects.
So, int and 1ist that you passed are functions into defaultdict. When
you try to access the key, which doesn'’t exist, it calls the function that has
been passed and assigns its return value as the value of the new key.

As you already know, a dictionary is a key-value collection in Python.
Lots of advanced library like defaultdict and OrderedDict are being built
on top of the dictionary to add some new features that don’t have extra
cost in terms of performance. dict for sure will be slightly faster; however,
most of the cases will have a negligence difference. So, consider using
them when writing your own solution for these problems.

71

CHAPTER 2 DATA STRUCTURES

switch Statement Using Dictionary

Python doesn’t have a switch keyword. However, Python has lots of
features that can make this functionality possible in a cleaner way. You
can leverage dictionary to make a switch statement, and also you should
consider writing the code this way whenever you have multiple options to
choose from based on specific criteria.

Consider a system that calculates the taxes of each county by that
particular country’s tax rules. There are multiple ways to do this; however,
the most difficult part of having multiple options is not adding multiple
if else conditions in your code. Let’s see how can you solve this problem
using dictionary in a more elegant way. See Listing 2-23.

Listing 2-23. switch Statement Using a Dictionary

def tanzania(amount):
calculate_tax = <Tax Code>
return calculate tax

def zambia(amount):
calculate_tax = <Tax Code>
return calculate tax

def eritrea(amount):
calculate_tax = <Tax Code>
return calculate tax

contry tax calculate = {
"tanzania": tanzania,
"zambia": zambia,
"eritrea": eritrea,

72

CHAPTER 2 DATA STRUCTURES

def calculate tax(country name, amount):
country tax calculate["contry name"](amount)

calculate tax("zambia", 8000000)

Here you simply use a dictionary to calculate the tax, which makes
your code more elegant and much more readable compared to using a
typical switch statement.

Ways to Merge Two Dictionaries

Say you have two dictionaries that you want to merge. Doing this is much
simpler in Python 3.5+ compared to previous versions. Merging any two
data structures is tricky because you need to be careful about memory use
and loss of data while merging data structures. If you use extra memory
to save the merged data structure, you should be aware of the memory
limitations of your system considering the data size in your dictionary.
Losing data is also one concern. You might find that some of the
data has been lost because of a restriction on a specific data structure;
for example, in a dictionary, you can’t have duplicate keys. So, keep
these things in mind whenever you perform merge operations between
dictionaries.
In Python 3.5+, you can do this as shown in Listing 2-24.

Listing 2-24. Merge Dictionaries in Python 3.5+

salary first = {"Lisa": 238900, "Ganesh": 8765000, "John":
3450000}

salary second = {"Albert": 3456000, "Arya": 987600}
{**salary first, **salary second}

>>> {"Lisa": 238900, "Ganesh": 8765000, "John": 345000,
"Albert": 3456000, "Ary": 987600}

73

CHAPTER 2 DATA STRUCTURES

However, in pre-3.5 Python, you can do this with a little bit of extra
work. See Listing 2-25.

Listing 2-25. Merge Dictionaries in Pre-3.5 Python

salary first = {"Lisa": 238900, "Ganesh": 8765000, "John":
3450000}

salary second = {"Albert": 3456000, "Arya": 987600}
salary = salary first.copy()

salary.update(salary second)

>>> {"Lisa": 238900, "Ganesh": 8765000, "John": 345000,
"Albert": 3456000, "Ary": 987600}

Python 3.5+ has PEP 448, which has proposed extended uses of the *
iterable unpacking operator and the ** dictionary unpacking operators.

This definitely makes the code more readable. This not only applies to
dictionaries but also to lists since Python 3.5.

Pretty Printing a Dictionary

Python has a module called pprint so you can print nicely. You need to
import pprint to perform the operation.

pprint gives you the option to provide indentation while you print
any data structure. Indentation will be applied to your data structure. See
Listing 2-26.

Listing 2-26. pprint for a Dictionary
import pprint

pp = pprint.PrettyPrinter(indent=4)
pp.pprint(colors)

74

CHAPTER 2 DATA STRUCTURES

This might not work as expected for complicated dictionaries that are
more nested and have a lot of data. You can consider using JSON for this,
as shown in Listing 2-27.

Listing 2-27. Using json to Print Dictionaries
import json

data = {'a':12, 'b':{'x":87, 'y':{"t1': 21, 't2':34}}
json.dumps(data, sort keys=True, indent=4)

Summary

Data structures are the core of every programming language. As you
learned while reading this chapter, Python offers a number of data
structures to store and manipulate the data. Python gives you all kinds of
tools in the form of data structures to perform all kinds of operations on
different kinds of objects or data sets. As a Python developer, it’s important
to be aware of different kinds of data structures so you can make the right
decision while writing your application, especially in an application that is
resource-intensive.

I hope this chapter has helped make you aware of some of the most
useful data structures in Python. Getting familiar with different kinds of
data structures with their different behavior makes you a better developer
because you can have different kinds of tools in your toolkit.

75

CHAPTER 3

Writing Better
Functions
and Classes

Functions and classes are core parts of the Python language. All the code
you write in the professional world consists of functions and classes. In
this chapter, you will learn about best practices that will help to make your
code more readable and cleaner.

While writing functions and classes, it’s important you think about
the boundaries and structures of your functions/classes. Having a clear
understanding of the use cases that your function or class is trying to solve
will help you to write better classes and functions. Always keep in mind the
philosophy of the single responsibility principle.

Functions

As you know, everything in Python is an object, and functions are no
exception. Functions in Python are very flexible, so it is important to make
sure you write them carefully. I will discuss some best practices while
writing functions in Python.

© Sunil Kapil 2019 77
S. Kapil, Clean Python, https://doi.org/10.1007/978-1-4842-4878-2_3

CHAPTER 3 WRITING BETTER FUNCTIONS AND CLASSES

In Python, typically when you write blocks of code in the def clause,
you will define them as functions or methods. I'm not talking about
lambda functions here as I already covered them in earlier chapters.

Create Small Functions

Always prefer to write a function that does one and only one task. How do
you make sure that your function is doing only one operation, and how do
you measure the size of your function? Do you consider lines or characters
a measure of function size?

Well, it's more about tasks. You want to make sure your function
is doing only one task, but that task could be built on top of multiple
subtasks. As a developer, you must decide when you want to break down
a subtask into separate functions. Nobody can answer those questions for
you. You must critically analyze your function and decide when to break
them down to multiple functions. This is a skill you have to acquire by
continuously analyzing your code and looking for places in your code that
“smell,” or in other words are hard to read and comprehend.

Consider the real-world example in Listing 3-1.

Listing 3-1. Unique E-mail Example

def get unique_emails(file name):

Read the file data and get all unique emails.
emails = set()
with open(file name) as fread:
for line in fread:
match = re.findall(r'[\w\.-]+@[\w\.-]+", line)
for email in match:
emails.add(email)

return emails

78

CHAPTER 3 WRITING BETTER FUNCTIONS AND CLASSES

In Listing 3-1, get_unique_emails is performing two different tasks,

first looping over a given file to read each line and second performing a

regex to match e-mails on each line. You might have observed two things

here: first is of course the number of tasks that are performed by the

function and second that you can you break this down further and make a

general function that reads file or reads lines. You can break this function

into two distinct functions, where one can read a file and the second can

read lines. So, as a developer, it’s up to you to decide whether this function

needs to be broken down to write cleaner code. See Listing 3-2.

Listing 3-2. Breaking Functions into Different Functions

def

def

get _unique emails(file name):

Get all unique emails.
emails = set()
for line in read file(file name):
match = re.findall(xr'[\w\.-]+@[\w\.-]+", line)
for email in match:
emails.add(email)
return emails
read_file(file_name):

Read file and yield each line.

with open(file name) as fread:
for line in fread:
yield line

79

CHAPTER 3 WRITING BETTER FUNCTIONS AND CLASSES

In Listing 3-2, function read_file is now a generic function that
can accept any file name and yield each line, and get_unique_emails
performs the action on each line to find unique e-mails.

Here, I have created read file as a generator function. However, if you
want it to return a list, you can consider doing that. The main idea is that
you should break down a function after considering readability and the
single responsibility principle.

Note |recommend that you first write the code that implements
the functionality, and once you have implemented the feature and
it works, you can start thinking about breaking the function into
multiple functions for clearer code. Also, remember to follow good
naming conventions.

Return Generators

As you might have noticed in the code example of Listing 3-2, I used yield
instead of using any specific data structure like 1ist or tuple. The main
reason to not use any other data structure here is that you are not sure how
big the file could be and there is a possibility of running out of memory
when processing big files.

Generators are functions that use the yield keyword (as shown
in Listing 1-22 of Chapter 1), and read_file is a generator function.
Generators are useful for two main reasons.

e When generators call functions, they immediately
return the iterator instead of running the whole
function, on which you can perform different actions
like looping or converting to a list (in Chapter 1’s
Listing 1-22, you loop over iterator). Once you are done,
it automatically calls the built-in function next () and

80

CHAPTER 3 WRITING BETTER FUNCTIONS AND CLASSES

goes back to the calling function read_file on the next
line after the yield keyword. It also makes your code
easier to read and understand.

e Inalist or another data structure, Python needs to
save the data in memory before returning, which can
cause a memory crash if the data turns out to be large.
A generator does not have this issue. So, when you have
a large amount of data to process or you are not sure
about the data size beforehand, it is recommended to
use a generator instead of another data structure.

Now you can consider making some changes in Listing 3-2’s get
unique_emails function code and use yield instead of a list, as shown in
Listing 3-3.

Listing 3-3. Breaking a Function into Different Functions

def get unique_emails(file name):

Get all unique emails.
for line in read file(file name):
match = re.findall(xr'[\w\.-]+@[\w\.-]+", line)
for email in match:
yield email

def read file(file name):

Read file and yield each line.

with open(file name) as fread:
for line in fread:
yield line

81

CHAPTER 3 WRITING BETTER FUNCTIONS AND CLASSES

def print email list():

Print list of emails
for email in get unique_emails('duplicate emails'):
print(email)

Here you omit the risk of sending all the e-mails in the list from the
get_unique_emails function.

I am not implying here that you should use generators in every return
function. If you know beforehand that you need to return only a specific
data size, it might be easier to use a list/tuple/set/dict instead. As an
example, in Chapter 1’s Listing 1-22, if you are returning 100 e-mails,
it is better to use a list or some other data structure instead of using a
generator. However, in cases where you are unsure about the data size,
consider using generators, which will save you lot of production memory

issues.

Note Familiarize yourself with Python generators. | haven’t see a lot
of developers using generators in professional code, but you should
consider their advantages. It makes your code cleaner and saves you
from memory issues.

Raise Exceptions Instead of Returning None

I talked about exceptions at length in Chapter 1, so I will not be talking
about all the exception cases here. This section deals only with raising
exceptions when you have errors instead of returning None from functions.

Exceptions are a core feature of Python. There are a couple of things
that need to be considered while using exceptions.

82

CHAPTER 3 WRITING BETTER FUNCTIONS AND CLASSES

First, I have noticed that a lot of programmers either return None or log
something when anything unexpected happens in the code. Sometimes
this strategy can be dangerous because it can hide bugs.

Also, I have seen code where a function returns None or some random
values instead of raising an exception, which makes your code confusing
for the caller function as well as error prone. See Listing 3-4.

Listing 3-4. Return None

def read lines for python(file name, file type):
if not file name or file_type not in ("txt", "html"):
return None

lines = []
with open(file name, "r") as fileread:
for line in fileread:
if "python" in line:
return "Found Python"

If not read lines for python("file without python name",
npd_Fll):
print("Not correct file format or file name doesn't exist")

In Listing 3-4, you cannot be sure if read_lines_for python returns
None because the file does not have any Python word or file issue. This
kind of code can lead to unexpected bugs in your code, and it could be
headache to find bugs in a big codebase.

So, whenever you are writing code and have a situation where you
are returning None or some other values because something unexpected
happens, consider raising an exception. It will save you time chasing down
bugs as your code gets bigger.

Consider writing this code as shown in Listing 3-5.

83

CHAPTER 3 WRITING BETTER FUNCTIONS AND CLASSES
Listing 3-5. Raising an Exception Instead of None

def read lines for python(file name, file type):
if file type not in ("txt", "html"):
raise ValueError("Not correct file format")
if not file_name:
raise IOError("File Not Found")

with open(file name, "r") as fileread:
for line in fileread:
if "python" in line:
return "Found Python"

If not read lines for python("file without python name",
"pd_FII):
print("Python keyword doesn't exists in file")

Result: >> ValueError("Not correct file format")

Whenever your code fails, you know by looking at the exception why
it’s failing. Raising an exception helps you to catch bugs early instead of

guessing.

Note Python is a dynamic language, so you need to be careful
while writing the code, especially when you find an unexpected value
in your code. None is the default value returned from a function, but
don’t overuse it for every unexpected situation. Think about whether
you can raise an exception to make your code cleaner before using
None.

84

CHAPTER 3 WRITING BETTER FUNCTIONS AND CLASSES

Add Behavior Using the default and keyword
Arguments

Keyword arguments are useful for making your Python code more
readable and cleaner. Keyword arguments are used to supply a default
value to a function or can be used as a keyword. See Listing 3-6.

Listing 3-6. Default Arguments

def calculate sum(first number=5, second number=10):
return first number + second number

calculate sum()
calculate sum(50)
calculate sum(90, 10)

Here you have used a keyword argument to define default values,
but while calling a function, you can choose if you need default or user-
defined values.

The usefulness of a keyword argument is significant in a large
codebase or a function with multiple arguments. Keyword arguments help
to make the code easier to understand.

So, let’s look at an example where you need to find spam e-mails by
using a keyword in the e-mail content, as shown in Listing 3-7.

Listing 3-7. Without Keyword Arguments

def spam_emails(from, to, subject, size, sender name, receiver
name) :
<rest of the code>

If you are calling spam_emails without any keyword arguments, it looks
like Listing 3-8.

85

CHAPTER 3 WRITING BETTER FUNCTIONS AND CLASSES

Listing 3-8. Without Keyword Arguments

spam_emails("ab_from@gmail.com",
"nb_to@yahoo.com",
"Is email spam",
10000, "ab", "nb")

If you only investigate the line in Listing 3-8, it’s hard to guess what all
these parameters mean to a function. If you see that many parameters are
used to call a function, for readability it’s better to use keyword arguments
to call a function, as shown in Listing 3-9.

Listing 3-9. With Keyword Arguments

spam_emails(from="ab_from@gmail.com",
to="nb_to@yahoo.com",
subject="Is email spam",
size=10000,
sender name="ab",
receiver name="nb")

This is not an absolute rule, but consider using keyword arguments for
more than two function parameters. Using keyword arguments for a calling
function makes your code more understandable for new developers.

In Python 3+, you can force a keyword argument into a caller function
by defining a function as follows:

def spam email(from, *, to, subject, size, sender name,
receiver name)

Do Not Return None Explicitly

Python functions by default return None when you don’t return explicitly.
See Listing 3-10.

86

CHAPTER 3 WRITING BETTER FUNCTIONS AND CLASSES
Listing 3-10. Default None Return

def sum(first_number, second number):
sum = first number + second number

sum(80, 90)

Here function sum returns None by default. However, many times people
write code that explicitly returns None in the function, as shown in Listing 3-11.

Listing 3-11. Return None Explicitly

def sum(first number, second number):
if isinstance(first number, int) and isinstance(second
number, int):
return first number + second number
else:
return None

result
result

sum(10, "str") # Return None
sum(10, 5) # Return 15

Here you expect the result to be a value in the sum function, which is
misleading because it could return None or a sum of two numbers. So, you
always need to check the result for None, which is too much noise in the
code and makes the code more complex over time.

You might want to raise an exception in these cases. See Listing 3-12.

Listing 3-12. Raise an Exception Instead of Returning None

def sum(first number, second number):
if isinstance(first number, int) and isinstance(second
number, int):
return first number + second number
else:
raise ValueError("Provide only int values")

87

CHAPTER 3 WRITING BETTER FUNCTIONS AND CLASSES

Let’s look at a second example, shown in Listing 3-13, where you are
returning None explicitly if a given input is not a list.

Listing 3-13. Return None Explicitly

def find odd number(numbers):
odd_numbers = []
if isinstance(numbers, list):
return None
for item in numbers:
if item % 2 != 0:
odd_numbers.append(item)
return odd numbers

num = find odd numbers([2, 4, 6, 7, 8, 10]) # return 7
num = find odd numbers((2, 4, 6, 7, 8, 10)) # return None
num = find odd number([2, 4, 6, 8, 10]) # return []

This function by default returns None if it does not find an odd
number. The function also returns None if the type of numbers is not a list.
You can consider rewriting this code, as shown in Listing 3-14.

Listing 3-14. Not Returning None Explicitly

def find first odd number(numbers):

odd_numbers = []
if isinstance(numbers, list):

raise ValueError("Only accept list, wrong data type")
for item in numbers:

if item % 2 != 0:

odd_numbers.append(item)

return odd _numbers

88

CHAPTER 3 WRITING BETTER FUNCTIONS AND CLASSES

num = find odd numbers([2, 4, 6, 7, 8, 10]) # return 7

num = find odd numbers((2, 4, 6, 7, 8, 10)) # Raise ValueError
exception

num = find odd number([2, 4, 6, 8, 10]) # return []

Now when you check the num value, you know the exact reason of
having [] in your function call. Explicitly adding this makes sure that the
reader knows what to expect when no odd number is found.

Be Defensive While Writing a Function

We programmers are fallible, so there is no guarantee that you will not
make a mistake when you write code. Considering this fact, you can take
creative measures while writing a function that can prevent or expose bugs
in your code before going to production or help you find them even in
production.

There are two things that you as a programmer can do before shipping
code off to production to make sure that you are shipping quality code.

o Logging

e Unit test

Logging

Let’s talk about logging first. Logging can help immensely when you
try to debug the code, especially in production when you do not know
beforehand where things might have gone wrong. In any mature project,
especially medium to large ones, it would be difficult to keep the project
maintainable for a long time without logging. Having logging in your code
makes code much easier to debug and diagnose when a production issue
arises.

Let’s look how logging code typically looks, as shown in Listing 3-15.
This is one of the many ways to write logging in Python.

89

CHAPTER 3 WRITING BETTER FUNCTIONS AND CLASSES
Listing 3-15. Logging in Python

Import logging module
Import logging

logger = logging.getlLogger(__name_) # Create a custom
logger

handler = logging.StreamHandler # Using stream
handler

Set logging levels
handler.setlLevel (logging.WARNING)
handler.setLevel(logging.ERROR)

1o,

format _c = logging.Formatter("%(name) - %(levelname) -

%(message)")

handler.setFromatter(format c) # Add formater to
handler

logger.addHandler (handler)

def division(divident, divisor):
try:
return divident/divisor
catch ZeroDivisionError:
logger.error("Zero Division Error")

num = divison(4, 0)

Python has a logging module that is comprehensive and
customizable. You can define a different level of logging in your code. If
your project has a different type of error, you can log that error as per the
severity of the situation. For example, the severity of an exception during
user account creation would be higher than a failure when sending a
marketing e-mail.

90

CHAPTER 3 WRITING BETTER FUNCTIONS AND CLASSES

The Python logging module is a mature library that gives you plenty of
features to configure logging per your needs.

Unit Test

Unit tests are one of the most important parts of your code. Professionally,
making unit tests mandatory in your code can prevent you from
introducing bugs and can give you a sense of confidence over your code
before you push to production. There are lots of great libraries in Python
that make it easier to write unit tests. Some of the popular ones are the py.
test and unittest libraries. We talked about them in detail in Chapter 8.
This is how it looks when writing unit tests in Python:

unittest

import unittest

def sum_numbers(x, y):
return x + vy

class SimpleTest(unittest.TestCase):
def test(self):
self.assertEqual(sum_numbers(3, 4), 7)

py.test

def sum_numbers(x, y):
return x +y

def test sum numbers():
assert func(3, 4) == 7

A unit test can play some key roles when you write it properly.

e You can use a unit test as documentation for the code,
which can be immensely helpful when you revisit your
code or new developers join the project.

91

CHAPTER 3 WRITING BETTER FUNCTIONS AND CLASSES

o Itcan give you a sense of confidence in your code that
it does the expected behavior. When you have tests for
your functions, you can make sure that any changes in
the code do not break the function.

e It can prevent old bugs from creeping into your code
since you are running your unit test before pushing to
production.

Some developers go beyond unit test by writing the code in test-driven
development (TDD), but this does not mean only TDD should have a unit
test. Every project that needs to be used by users should have unit tests.

Note In any mature project, logging and unit testing are must-
haves. They can help you immensely to prevent bugs in your code.
Python gives you a library called logging, which is pretty mature.
For unit testing, Python has plenty of options to choose from. pytest
and unittest are popular options.

Use a Lambda as a Single Expression

Lambdas are interesting features in Python, but I advise you to avoid them.
I have seen plenty of code where lambdas are overused or misused.
PEP8 suggests not to write the code shown in Listing 3-16.

Listing 3-16. Lambda
sorted numbers = sorted(numbers, key=lambda num: abs(num))

Instead, write the code as shown in Listing 3-17.

92

CHAPTER 3 WRITING BETTER FUNCTIONS AND CLASSES

Listing 3-17. Using a Normal Function

def sorted numbers(numbers):
return sorted(numbers, reverse=True)

There are couple of reason to avoid lambdas.

e They make the code harder to read, which is more
important than having a one-line expression. For
example, the following code makes lots of developers
uneasy about lambdas:

sorted(numbers, key=lambda num: abs(num))

e Lambda expressions are easily misused. Often
developers try to make code clever by writing a one-
line expression, which makes it difficult to follow for
other developers. And in the real world, it can cause
more bugs in your code. See Listing 3-18.

Listing 3-18. Misuse of Lambda Functions

import re

data = [abcO, abc9, abc5, cba 2]

convert = lambda text: float(text) if text.isdigit() else text
alphanum = lambda key: [convert(c) for c in re.spl
it("([-+]?[0-9]*\.?[0-9]*)", key)]

data.sort(key=alphanum)

In Listing 3-18, the code is misusing lambda functions, and it is harder
to understand then if a function were used.

93

CHAPTER 3 WRITING BETTER FUNCTIONS AND CLASSES

I suggest using a lambda in the following cases:

e When everyone on your team understands the lambda
expression

e When it makes your code more understandable than
using functions

¢ When the operations you are doing are trivial and the

function does not need a name

Classes

Next, I will discuss classes.

Right Size of Class?

If you are doing object-oriented programming in any language, you might
wonder what the right size of a class is.

While writing a class, always remember the single responsibility
principle (SRP). If you are writing a class that has a clearly defined
responsibility with clearly defined boundaries, you should not worry
about a line of class code. Some people believe one class with one file is a
good measure of a class; however, I have seen code where the file itself is
noticeably big, and it could be confusing and misleading to see one class
per file. If you see that a class is doing more than one thing, that means it’s
the right time to create a new class. Sometimes it’s a fine line in terms of
responsibility; however, you have to be careful when you are adding a new
code in a class. You don’t want to cross the boundaries of responsibilities.

Looking at each method and line of code carefully and thinking
about whether that method or part of code fits into the class’s overall
responsibility is a good way to investigate the class structure.

94

CHAPTER 3 WRITING BETTER FUNCTIONS AND CLASSES

Let’s say you have a class called UserInformation. You don’t want
to add the payment information and order information of each user to
this class. Even if the information related to the user is not necessary
user information, payment information and order information are
more of activities of users with payments. You want to make sure these
responsibilities are defined before writing a class. You can define that the
UserInformation class is responsible for keeping the state of the user
information, not user activities.

Duplicate code is another hint that a class might be doing more than
itis supposed to do. As an example, if you have a class called Payment and
you are writing ten lines of code to access a database that includes creating
a connection with a database, getting user information, and getting user
credit card information, you might want to consider creating another class
just to access a database. Then any other class can use this class to access a
database without duplicating the same code or method everywhere.

I suggest having a clear definition of class scope before writing
code and sticking with a class scope definition will solve most class size
problems.

Class Structure

I prefer a class structure in this order:
1. Class variables
2. init

3. Built-in Python special methods (__call
__repr_,etc.)

4. Class methods
5. Static methods

6. Properties

95

CHAPTER 3 WRITING BETTER FUNCTIONS AND CLASSES

7. Instance methods
8. Private methods

As example, you might want to have code that looks like Listing 3-19.

Listing 3-19. Class Structure

class Employee(Person):
POSITIONS = ("Superwiser", "Manager", "CEO", "Founder")

def _init_(self, name, id, department):
self.name = name
self.id = id
self.department = department
self.age = None
self. age last calculated = None
self. recalculated age()

def str (self):
return ("Name: " + self.name + "\nDepartment:
+ self.department)

@classmethod
def no_position allowed(cls, position):
return [t for t in cls.POSITIONS if t != position]

@staticmethod
def c_positions(position):
return [t for t in cls.TITLES if t in position]

@property
def id with name(self):
return self.id, self.name

96

CHAPTER 3 WRITING BETTER FUNCTIONS AND CLASSES

def age(self):
if (datetime.date.today() > self. age last recalculated):
self. recalculated age()
return self.age

def recalculated age(self):
today = datetime.date.today()
age = today.year - self.birthday.year
if today < datetime.date(
today.year, self.birthday.month,
self.birthday.year):
age -= 1
self.age = age
self. age last recalculated = today

Class Variables

Usually you want to see a class variable at the top because these variables
either are constants or are default instance variables. This shows a
developer that these constant variables are ready to use, so this is valuable
information to keep at the top of the class before any other instance
method or constructor.

_init__

This is a class constructor, and the calling method/class needs to know
how to access the class. _init represents a door for any class that tells
how to call the class and which states are in the class. __init__ also gives

you information about the class’s main input to supply before starting to
use the class.

97

CHAPTER 3 WRITING BETTER FUNCTIONS AND CLASSES

Special Python Methods

Special methods change the default behavior of a class or give extra
functionality to class, so having them at the top of a class makes the reader
of the class aware of some customized features of the class. Also, these
metaclasses that are being overridden give you an idea that a class is trying
to do something different by changing the usual behavior of the Python
class. Having them at the top allows the user to keep the modified behavior
of the class in mind before reading the rest of the class code.

Class Methods

A class method works as another constructor, so keepingitnear _init
makes sense. It tells the developer other ways the class can be used
without creating a constructor using __init .

Static Methods

A static method is bound to the class and not the object of the class like
class methods. They can’t modify the class state, so it makes sense to add
them at the top to make the reader aware of the methods that are used for
specific purposes.

Instance Methods

Instance methods add behavior in a class, so it’s expected by a developer
that if a class has a certain behavior, then the instance method would be
part of the class. Therefore, keeping them after special methods makes it
easier for a reader to understand the code.

98

CHAPTER 3 WRITING BETTER FUNCTIONS AND CLASSES

Private Methods

As Python doesn’t have any private keyword concept, using <name> in the
method name tells the reader that this is a private method so don’t use it.
You can keep it at the bottom with the instance methods.

I suggest keeping private methods around instance methods to make it
easier for the reader to understand the code. You can have private methods
before the instance method and vice versa; it’s all about calling the method
nearest to the called method.

Note Python is an object-oriented language, and it should be
treated as such when you are writing classes in Python. Following
all the rules of OOP will not harm you. While writing classes, make
sure that it is easy for the reader to understand the class. Instance
methods should be next to each other if one of the methods is using
another method. The same goes for private methods.

Right Ways to Use @property

The @property decorator (discussed in Chapter 5) is one of the useful
features of Python for getting and setting values. There are two places you
can consider using @property in a class: in complex code hidden behind
an attribute and in the validation of the set attribute. See Listing 3-20.

Listing 3-20. Class Property Decorator

class Temperature:
def init (self, temperature=0):
self.temperature = temperature

@property
def fahrenheit(self):
self.temperature = (self.temperature * 1.8) + 32

99

CHAPTER 3 WRITING BETTER FUNCTIONS AND CLASSES

temp = Temperature(10)
temp.fahrenheit
print(temp.temperature)

What'’s the problem with this code? You are using a property decorator
in the method fahrenheit, but the method updates the self.temperature
variable value instead of returning any value. When you use a property
decorator, make sure you return the value; this will make it easier for the
calling class/method to expect something returned from method when
you use a property decorator. So, make sure you return the value and use a
property decorator method as a getter in your code, as shown in Listing 3-21.

Listing 3-21. Class Property Decorator

class Temperature:
def init (self, temperature=0):
self.temperature = temperature

@property
def fahrenheit(self):
return (self.temperature * 1.8) + 32

A property decorator is also used for validating/filtering the values. It’s
the same as a setter in other programming languages like Java. In Python,
you can validate/filter specific pieces of information using a property
decorator. I have seen a lot of places where developers usually don’t realize
the power of the setter property decorator in Python. Using it in a proper
way makes your code readable and will save you from those corner bugs
that you sometimes forget.

In Listing 3-22 is an example of implementing validation using a
property decorator in Python. It makes the code readable for a developer
and easy to understand by showing what to validate when you set a
specific value.

100

CHAPTER 3 WRITING BETTER FUNCTIONS AND CLASSES

In this example, you have a class called Temperature that sets the
temperature in Fahrenheit. Using a property decorator to get and set the
value of the temperature makes it easier for the Temperature class to

validate the caller input.

Listing 3-22. Class Property Decorator

class Temperature:
def init (self, temperature=0):
self.temperature = temperature

@property
def fahrenheit(self):
return self. temperature

@fahrenheit.setter
def fahrenheit(self, temp):
if not isinstance(temp, int):
raise("Wrong input type")

self. temperature = (self.temp * 1.8) + 32

Here, the fahrenheit setter method does the validation part before
calculating the temperature in Fahrenheit, which makes the calling class
expect that an exception could be raised in the case of wrong input.

The calling class now gets the value of Fahrenheit by just calling the
fahrenheit method without any input.

Always make sure that you use property keywords in the right context
and consider them as the getter and setter of writing code in a Pythonic

way.

101

CHAPTER 3 WRITING BETTER FUNCTIONS AND CLASSES

When to Use Static Methods?

By definition, static methods are related to classes but don’t need to access
any class-specific data. You don’t use self or cls in a static method. These
methods can work on their own without having any dependency on the
class state. This is one of the main reasons for getting confused when using
static methods instead of stand-alone functions.

When you write a class in Python, you want to group similar kinds of
methods but also keep a specific state by using methods that use different
variables. Also, you want to perform different actions using objects of the
class; however, when you make a method static, this method doesn’t have
access to any of the class states and doesn’t need object or class variables
to access them. So, when should you use static methods?

When you are writing a class, there might a method that can live alone
as a function and doesn’t need class state to perform a specific action.
Sometimes it makes sense to make that as a static method as part of a class.
You can use this static method as a utility method for a class to use. But
why don’t you just make that a stand-alone function outside of the class?
You can obviously do that, but keeping it inside the class makes it easier for
the reader to relate that function with a class. Let’s understand this using a
simple example, as shown in Listing 3-23.

Listing 3-23. Without a Static Method

def price to book ratio(market price per share, book value per
share):
return market _price_per share/book value per share

class BookPriceCalculator:
PER_PAGE_PRICE = 8

def init (self, pages, author):
self.pages = pages
self.author = author

102

CHAPTER 3 WRITING BETTER FUNCTIONS AND CLASSES

@property
def standard price(self):
return self.pages * PER PAGE_PRICE

Here the method price to book ratio can work without using any
state of BookPriceCalculator, but it might make sense to keep it inside
class BookPriceCalculator as it’s related to the BookPricing class. So, you
can write this code as shown in Listing 3-24.

Listing 3-24. With a Static Method

class BookPriceCalculator:
PER_PAGE_PRICE = 8

def _init_(self, pages, author):
self.pages = pages
self.author = author

@property
def standard price(self):
return self.pages * PER PAGE_PRICE

@staticmethod
def price to book ratio(market price per share, book value
per_share):

return market_price_per share/book value_per share

Here you make made it as a static method, and you do not need
to use any of the class methods or variables, but it’s related to the
BookPriceCalculator class, so make it a static method.

103

CHAPTER 3 WRITING BETTER FUNCTIONS AND CLASSES

Use Abstract Class Inheritance the Pythonic Way

Abstraction is one of the cool features of Python. It helps to make sure that
an inherited class is implemented in an expected way. So, what is the main
purpose of having an abstract class in your interface?

e You can make an interface class using abstraction.

o It can make it impossible to use an interface without
implementing abstract methods.

o [Itgives early errors if you do not adhere to abstract
class rules.

These benefits might violate the OOPS abstraction rules if you
implement abstraction in python wrong way. Listing 3-25 shows the code
that makes an abstract class without fully using the Python abstraction
feature.

Listing 3-25. Abstract Class the Wrong Way

class Fruit:
def taste(self):
raise NotImplementedError()

def originated(self):
raise NotImplementedError()

class Apple:
def originated(self):
return "Central Asia"

fruit = Fruit("apple")

fruit.originated #Central Asia
fruit.taste

NotImplementedError

104

CHAPTER 3 WRITING BETTER FUNCTIONS AND CLASSES

So, the issues are as follows:

e You can initialize the class Apple or Fruit without
getting any error; it should have thrown an exception as
soon as you created an object of the class.

o The code might have gone into production without you
even realizing that it’s an incomplete class, until you
use the taste method.

So, what is a better way to define an abstract class in Python so it fulfills
the requirement of an ideal abstract class? Python solves this problem
by giving you a module called abc, which does what you expect from an
abstract class. Let’s re-implement the abstract class using the abc module,
as shown in Listing 3-26.

Listing 3-26. Abstract Class the Right Way
from abc import ABCMeta, abstractmethod
class Fruit(metaclass=ABCMeta):

@abstractmethod
def taste(self):
pass

@abstractmethod
def originated(self):
pass

class Apple:
def originated(self):
return "Central Asia"

105

CHAPTER 3 WRITING BETTER FUNCTIONS AND CLASSES

fruite = Fruite("apple")

TypeError:

"Can't instantiate abstract class concrete with abstract method
taste"

Using the abc module makes sure that you implement all the expected
methods, gives you maintainable code, and makes sure there is no half-
baked code in production.

Use @classmethod to Access Class State

A class method gives you the flexibility to create alternative constructors
besides usingthe init method.

So, where you could utilize a class method in your code? As
mentioned, an obvious place would be to create multiple constructors
by passing a class object, so it’s one of the easiest ways to create a factory
pattern in Python.

Let’s consider a scenario where you expect multiple-format input from
calling methods and you need to return a standardize value. A serialization
class is a good example here. Consider you have a class where you need
to serialize a User object and return the user’s first and last names. The
challenge, however, is to make sure that the interface for the client is easier
to use and the interface could get one of the four different formats: string,
JSON, object, or file. Using the factory pattern might be effective way to
solve this problem, and this is where the class method could be useful.
Listing 3-27 shows an example.

Listing 3-27. Serialization Class

class User:

def init (self, first name, last name):
self.first name = first name
self.last_name = last_name

106

CHAPTER 3 WRITING BETTER FUNCTIONS AND CLASSES

@classmethod

def using string(cls, names str):
first, second = map(str, names str.split(""))
student = cls(first, second)
return Student

@classmethod
def using json(cls, obj json):
parsing json object...
return Student

@classmethod

def using file obj(cls, file obj):
parsing file object...
return Student

data
data = User.using json(json obj)
data = User.using file obj(file obj)

User.using string("Larry Page")

Here you create a User class and multiple class methods that behave
like an interface for the client class to access a specific class state based on
the client data.

A class method is a useful feature when you are building a big project
with multiple classes, and having clean interfaces helps to keep code
maintainable in the longer term.

Use the public Attribute Instead of private

As you know, Python doesn't have any private attribute concept for
classes. However, you might have used or seen the code that uses the
dunder _<var_name> variable name to mark a method as private. You can
still access those variables, but doing that is considered prohibited, so it’s
been consensus among the Python community to consider the dunder
_<var_name> variable or method as private.

107

CHAPTER 3 WRITING BETTER FUNCTIONS AND CLASSES

Considering this fact, I still suggest refraining from using it everywhere
you want to constrain your class variable as it could make your code
cumbersome and brittle.

Let’s says you have the class Person with _full name as a private
instance variable. To access the full name instance variable, you have
created a method called get_name, which gives the caller class access to the
variable without directly accessing the private method. See Listing 3-28.

Listing 3-28. Using _in the Wrong Places
class Person:

def _init_ (self, first_name, last_name):
self. full name = f"${first name} ${last name}"

def get name(self):
return self. full name

per = Person("Larry", "Page")
assert per.get name() == "Larry Page"

However, this is still a wrong way to make a variable private.

As you can see, the Person class is trying to hide an attribute by naming
itas _full name; however, it makes the code much more cumbersome
and hard to read, even if the intention of the code is to restrain user to
accessing the full name variable only. This can make your code complex
if you are considering doing this for every other private variable. Imagine
what will happen if you have lots of private variables in your class and you
have to define as many methods as private variables.

Make class variables or methods private, whenever you don’t want to
expose them to the caller class or method, as python doesn’t enforce the
private access to variable and methods, so by making class variable and
methods private is a way to communicate caller class or method that these
method or variables shouldn’t be access or override.

108

CHAPTER 3 WRITING BETTER FUNCTIONS AND CLASSES

I'suggest using <var_name> names in your code when you are trying
to inherit some public class and you don’t have control over that public
class and its variable. When you want to avoid the conflict in the code, it’s
still a good idea to use __<var_name> to avoid name-mangling issues. Let’s
consider the simple example in Listing 3-29.

Listing 3-29. Using __in Inheritance of a Public Class
class Person:

def init (self, first name, last name):
self.age = 50

def get name(self):
return self.full name

class Child(Person):

def init (self):
super(). init ()
self. age = 20

ch = Child()

print(ch.get()) # 50
print(ch. age) # 30
Summary

Python doesn’t have any access control over the variables/methods or
classes like some other programming languages such as Java. However,
the Python community has come to a consensus for some of the rules
including the private and public concept, even though Python considers
everything public. You should also know when to use those features and
when to avoid them so that your code is readable and looks eloquent to
other developers.

109

CHAPTER 4

Working with Modules
and Metaclasses

Modules and metaclasses are important features of Python. When
working on large projects, having a good understanding of modules and
metaprogramming will help you write cleaner code. Metaclasses in Python
are a kind of hidden feature that you don’t need to care about until you
have a specific need to use them. Modules help you to organize your code/
project and help you to structure your code.

Modules and metaclasses are big concepts, so explaining them here
in detail would be difficult. In this chapter, you will explore some good
practices regarding modules and metaprogramming.

Modules and Metaclasses

Before starting, I'll briefly explain the module and metaclass concepts in
the Python world.

Modules are simply Python files with the . py extension. The name of
the module will be the name of the file. A module could have a number of
functions or classes. The idea of a module in Python is to logically separate
the functionality of your project, as shown here:

users/
users/payment.py
users/info.py

© Sunil Kapil 2019 111
S. Kapil, Clean Python, https://doi.org/10.1007/978-1-4842-4878-2_4

CHAPTER 4 WORKING WITH MODULES AND METACLASSES

payment.py and info.py are modules that logically separate the user’s
payment and information functionality. Modules help to make your code
easier to structure.

Metaclasses are a big topic, but in short, they are a blueprint for
the creation of a class. In other words, classes create an instance, and
metaclasses help to change the class behavior automatically based on
what’s needed when it’s created.

Let’s assume that you need to create all the classes in your module
starting with awesome. You can use __metaclass__ at the module level to
do that. See Listing 4-1 for an example.

Listing 4-1. Metaclass Example

def awesome attr(future class name, future class parents,
future class attr):
Return a class object, with the list of its attribute
prefix with awesome keyword.

pick any attribute that doesn't start with ' ' and
prefix with awesome
awesome_prefix = {}
for name, val in future class attr.items():
if not name.startswith(' '):
uppercase attr[" ".join("awesome", name)] = val
else:

uppercase_attr[name] = val

let “type” do the class creation
return type(future class name, future class parents,
uppercase_attr)

__metaclass = awesome attr # this will affect all classes in
the module

112

CHAPTER 4 WORKING WITH MODULES AND METACLASSES

class Example: # global _ metaclass__ won't work with "object"
though
but we can define _ metaclass here instead to affect
only this class
and this will work with "object" children
val = 'yes'

__metaclass__ is one of the features among a number of metaclass
concepts. There are multiple metaclasses provided by Python that you
can leverage per your needs. You can check them out at https://docs.
python.org/3/reference/datamodel.html

Let’s now look at some good practices to follow in Python while you are
writing your code and considering using metaclasses or building modules.

How Modules Can Help to Organize Code

In this section, you will look at how modules can help you organize your
code. Modules help separate code by holding related functions, variables,
and classes. In other words, Python modules give you a tool to abstract
different layers of your project by placing them into different modules.
Let’s say you need to build an e-commerce web site where users
can buy products. To build this kind of project, you might want to create
different layers with specific purposes. At a high level, you might consider
having layers for user actions, such as selecting a product, adding products
to a cart, and making a payment. All these layers might have only one
function or a couple of functions, which you can keep in one file or
different files. When you want to use a lower level of a layer like a payment
module in another module like adding products to the cart, you can do this
by simply using the import statement as from ... import in the adding to
the cart module.

113

https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html

CHAPTER 4 WORKING WITH MODULES AND METACLASSES

Let’s look at some of the rules that can help to create better modules.

o Keep your module name short. You can also consider
not using an underscore or at least keep it minimal.

Don’t do this:

import user card payment
import add product_cart
from user import cards payment

Do this:

import payment
import cart
from user.cards import payment

e Avoid using names with a dot (.), uppercase, or some
other special character. So, a file name like credit.
card.py should be avoided. Having these kinds of
special characters in the names creates confusion
for other developers and can negatively affect the
readability of the code. PEP8 also recommends not
using these special characters for naming.

Don’t do this:

import user.card.payment
import USERS

Do this:

import user payment
import users

o When considering the readability of the code, it’s
important to import the modules in a certain way.

114

CHAPTER 4 WORKING WITH MODULES AND METACLASSES

Don’t do this:

[...]

from user import *

[...]
cart = add _to cart(4) # Is add to cart part of user? A
builtin? Defined above?

Do this:

from user import add to cart

[...]
X = add_to cart(4) # add to cart may be part of user,
if not redefined in between

Even better, do this:

import user

[...]

X = user.add to cart(4) # add to cart is visibly
part of module's namespace

Being able to say where from a module comes from helps in

readability, as shown in the previous example, where user.add to cart

helps to identify where the add_to_cart function resides.

Making good use of modules can help your project achieve the

following goals:

Scoping: It helps you to avoid collisions between
identifiers in different parts of the code.

Maintainability: Modules help you to define logical
boundaries in your code. If you have too many
dependencies in your code, it would be hard for
developers to work in a big project without modules.
Modules help you to define those boundaries

115

CHAPTER 4 WORKING WITH MODULES AND METACLASSES

and minimize the dependency by segregating
interdependent code in one module. This helps in large
projects so many developers can contribute without
stepping on each other’s toes.

e Simplicity: Modules help you to break down big
problems into smaller pieces, which makes it much
easier to write code and makes it more readable for
other developers. It also helps to debug the code and
make it less error prone.

o Reusability: This is one of the main advantages
of having modules. Modules can be easily used in
different files such as libraries and APIs within the
project.

At the end of the day, modules help to organize your code. Especially
in big projects where multiple developers are working on different parts of
the codebase, it is immensely important to have modules defined carefully
and logically.

Take Advantage of the __init__ File

Since Python 3.3, _init__ .pyis notrequired to indicate that a directory
is a Python package. Before Python 3.3, it was required to have an empty
__init__.pyfile to make a directory a package. However, the __init__.py
file can be useful in multiple scenarios to make your code easy to use and
to package it in a certain way.

One of the main uses of __init_.pyis to help split modules into
multiple files. Let’s consider the scenario where you have a module called
purchase, which has two different classes named as Cart and Payment.
Cart adds the product into the cart, and the Payment class performs the
payment operation for the product. See Listing 4-2.

116

CHAPTER 4 WORKING WITH MODULES AND METACLASSES
Listing 4-2. Module Example
purchase module

class Cart:
def add to cart(self, cart, product):
self.execute query to add(cart, product)

class Payment:
def do_payment(self, user, amount):
self.execute_payment query(user, amount)

Suppose you want to split these two different functionalities (adding
to the cart and the payment) into different modules to better structure the
code. You can do that by moving the Cart and Payment classes into two
different modules, as follows:

purchase/
cart.py

payment.py

You might consider coding the cart module as shown in Listing 4-3.

Listing 4-3. Cart Class Example
cart module

class Cart:
def add to cart(self, cart, product):
self.execute _query to add(cart, product)
print("Successfully added to cart")

Consider the payment module, as shown in Listing 4-4.

117

CHAPTER 4 WORKING WITH MODULES AND METACLASSES

Listing 4-4. Payment Class Example
payment module

class Payment:
def do_payment(self, user, amount):
self.execute payment query(user, amount)
print(f"Payment of ${amount} successfully done!")

Now you can keep these modulesinthe _init .py file to glue it
together.

from .cart import Cart
from .payment import Payment

If you follow these steps, you have given a common interface to the
client to use different functionality in your package as follows:

import purchase

>>> cart = purchase.Cart()

>>> cart.add to_cart(cart_name, prodct name)
Successfully added to cart

>>> payment = purchase.Payment()

>>> payment.do_payment(user obj, 100)
Payment of $100 successfully done!

The primary reason to have modules is to create better-designed
code for your client. Instead of the client dealing with multiple small
modules and figuring out what feature belongs to which module, you can
use a single module to deal with the different features of project. This is
especially helpful in large code and third-party libraries.

Consider a client using your module as follows:

from purchase.cart import Cart
from purchase.payment import Payment

118

CHAPTER 4 WORKING WITH MODULES AND METACLASSES

This works, but it places more burden on the client to figure out what
resides where in your project. Instead, unify things and allow single
imports to make it easier for a client to use the module.

from purchase import Cart, Payment

In the latter case, it's most common to think of a large amount
of source code as a single module. For example, in the previous line,
purchase could be considered as a single piece of source code or a single
module by the client, without worrying about where the Cart and Payment
classes resides.

This also shows how to stitch together different submodules into a
single module. As shown in the previous example, you can break large
modules into different logical submodules, and the user can use only a

single module name.

Import Functions and Classes from Modules
in the Right Way

There are different ways to import classes and functions from the same or
different modules in Python. You can import a package inside the same
package, or you can import a package from outside of a package. Let’s take
alook at both scenarios to see which is the best way to import classes and
functions from within a module.

o Inside packages, importing from the same package can
be done using the fully specified path or relative path.
Here’s an example.

Don’t do this:

from foo import bar # Don't Do This

119

CHAPTER 4 WORKING WITH MODULES AND METACLASSES
Do this:

from . import bar # Recommended way

The first import syntax is using the full path of the
package such as TestPackage.Foo, and the name
of the top-level package is hard-coded in the source
code. The problem is if you want to change the
name of the package or reorganize the directory
structure of your project.

For example, if you ever want to change the name
from TestPackage to MyPackage, you have to change
the name in every place it appears. This can be
brittle and hard to do if you have a lot of files in your
project. It also makes it difficult for anyone to move
the code. However, a relative import doesn’t have
this problem.

e Outside of a package, there are different ways to import
a package from outside of a module.

from mypackage import * # Bad
from mypackage.test import bar # 0K
import mypackage # Recommended way

The first option to import everything is obviously
not the right way to import packages because you
don’t know what’s being imported from the package.
The second option is verbose and a good practice as
it's explicit and much more readable compared to
the first option.

120

CHAPTER 4 WORKING WITH MODULES AND METACLASSES

The second option also helps the reader to understand what’s being
imported from which package. This helps to make the code more readable
for other developers and helps them understand all the dependencies.
However, an issue comes up when you have to import different packages
from different places. This becomes a kind of noise in your code. Imagine if
you have 10 to 15 lines of code for importing specific things from different
packages. The second problem that I have noticed when you have the
same name in different packages is that while writing code it creates a lot
of confusion about which class/function belongs to which package. Here’s
an example:

from mypackage import foo
from youpackage import foo
foo.get result()

The reason behind recommending a third option is that it’s much more
readable and gives you an idea while reading the code which classes and
functions belong to which packages.

import mypackage

import yourpackage
mypackage.foo.get result()

import yourpackage.foo.feed data()

Use _ all__ to Prevent Imports

There is one mechanism to prevent the user of your module from
importing everything. Python has a special metaclass class called __all ,
which allows you to control the behavior of an import. By using __all
you can restrict consumer classes or methods to import only specific
classes or methods instead of everything from the module.

121

CHAPTER 4 WORKING WITH MODULES AND METACLASSES

As an example, consider that you have a module called user. py.

By defining all here, you can restrict other modules to allow only
specific symbols.

Let’s say you have a module called payment, where you keep all the
payment classes, and you want to prevent some of the class from importing
from this module by mistake. You can do that by using _all , as shown
in the following example.

payment.py
class MonthlyPayment:
class CalculatePayment:

class CreditCardPayment:

_all = ["CalculatePayment", "CreditCardPayment"]
user.py

from payment import *

calculate_payment = CalculatePayment() # This throw
exception
monthly payment = MonthlyPayment() # This will work

As you might have noticed, using from payment import * doesn’t
make all the classes of payment import automatically. However, you can
still import the CalculatePayment and CreditCardPayment classes by
specifically importing them as follows:

from payment import CalculatePayment

122

CHAPTER 4 WORKING WITH MODULES AND METACLASSES

When to Use Metaclasses

As you know, metaclasses create classes. Just like you can create classes in
order to create objects, in the same way Python metaclasses create these
objects. In other words, metaclasses are classes’ classes. As this section is
not about how metaclasses work, I will focus on when you should consider
using metaclasses.

Most of the time you won'’t need metaclasses in your code. The main
use case of a metaclass is to create an API or library or add some complex
feature. Whenever you want to hide a lot of detail and make it easier for the
client to use your API/library, metaclasses can be really helpful to do that.

Take, for example, Django ORM, which heavily uses metaclasses to make
its ORM API easy to use and understand. Django makes this possible by
using metaclasses, and you write the Django ORM as shown in Listing 4-5.

Listing 4-5. __init__.py

class User(models.Model):
name = models.CharField(max_length=30)
age = models.IntegerField()

user = User(name="Tracy", age=78)
print(user.age)

Here user.age won't return IntegerField; it will return an int, which
it takes from a database.

Django ORM works because of the way the Model class leverages
metaclasses. The Model class defines _metaclass_, and it uses some
magic to turn the User class into a complex hook into the database field.
Django makes something complex look simple by exposing a simple API
and using metaclasses. Metaclasses make this possible behind the scenes.

There are different metaclasses like _call , new_, etc. All these
metaclasses can help you to build beautiful APIs. If you look at the source

123

CHAPTER 4 WORKING WITH MODULES AND METACLASSES

code of a good Python library such as flask, Django, requests, etc., you
will find that these libraries are using metaclasses to make their APT look
easy to use and understand.

Consider using metaclasses whenever you find that using the normal
Python functionality won’t make your API readable. Sometimes you have
to write boilerplate code using metaclasses to make your API easy to use.
I'will discuss in a later section how metaclasses can be helpful in writing
cleaner API/libraries.

Use _ new__ for Validating Subclasses

The magic method __new _ will be called when an instance is being
created. Using this method, you can easily customize the instance
creation. This method is called before calling __init__ while initializing
the instance of the class.

You can also create a new instance of a class by invoking the
superclass’s __new__ method using super. Listing 4-6 shows an example.

Listing 4-6. __new__

class User:
def new (cls, *args, **kwargs):
print("Creating instances")
obj = super(User, cls). new_ (cls, *args, **kwargs)
return obj

def init (self, first name, last name):
self.first name = first name
self.last name = last name

def full name(self):
return f"{self.first name} {self.last name}"

124

CHAPTER 4 WORKING WITH MODULES AND METACLASSES

>> user = User("Larry", "Page")
Creating Instance

user.full name()

Larry Page

Here, when you create an instance of the class, _new__is called before
callingthe init magic method.

Imagine a scenario where you have to create a superclass or abstract
class. Whichever class inherits that superclass or abstract class should
do the specific check or work, which is easy to forget or can be done
incorrectly by the subclass. So, you might want to consider having that
functionality in a superclass or abstract class, which also makes sure that
every class has to adhere to those validation checks.

In Listing 4-7 you can use the __new__ metaclass to validate before any
subclass inherits the abstract or superclass.

Listing 4-7. __new__ for Assigning a Value
from abc import abstractmethod, ABCMeta

class UserAbstract(metaclass=ABCMeta):
"""Abstract base class template, implementing factory pattern

using _new_ () initializer.

def _new_ (cls, *args, **kwargs):

Creates an object instance and sets a base property.
obj = object. new (cls)

obj.base property = "Adding Property for each subclass"
return obj

class User(UserAbstract):
"""Implement UserAbstract class and add its own variable.

def init (self):
self.name = "Larry"

125

CHAPTER 4 WORKING WITH MODULES AND METACLASSES

>> user = User()

>> user.name

Larry

>> user.base_property

Adding Property for each subclass

Here, base_property automatically gets assigned the value "Adding
Property for each subclass" whenever an instance is created for a
subclass.

Now, let’s modify this code to validate if provided value is string or not.
See Listing 4-8.

Listing 4-8. __new__ for Validating the Provided Value
from abc import abstractmethod, ABCMeta

class UserAbstract(metaclass=ABCMeta):

Abstract base class template, implementing factory pattern

using _new_ () initializer.

def new (cls, *args, **kwargs):

"""Creates an object instance and sets a base property."""

obj = object. new_ (cls)

given data = args[0]

Validating the data here

if not isinstance(given data, str):
raise ValueError(f"Please provide string: {given_
data}")

return obj

class User(UserAbstract):

Implement UserAbstract class and add its own variable.

def init (self, name):
self.name = Name

126

CHAPTER 4 WORKING WITH MODULES AND METACLASSES

>> user = User(10)
ValueError: Please provide string: 10

Here you validate that provided data is string whenever a value is being
passed to create an instance for the User class. The real beauty of this is using
the new__ magic method without each subclass to do the duplicate work.

Why _ slots__ Are Useful

__slots__ helps you save space in objects and get faster attribute access.
Let’s quickly test the performance of __slots with the simple example in
Listing 4-9.

Listing 4-9. __slots__ Faster Attribute Access

class WithSlots:

Using _ slots__ magic here.
__slots = "foo"

class WithoutSlots:

Not using _ slots__ here.
pass

with slots = WithSlots()
without slots = WithoutSlots()

with _slots.foo = "Foo"
without slots.foo = "Foo"

>> %timeit with_slots.foo
44.5 ns

>> %timeit without_slots.foo
54.5 ns

127

CHAPTER 4 WORKING WITH MODULES AND METACLASSES

Even when you are simply trying to access with_slots.foo, it's much
faster than accessing the attribute of the WithoutSlots class. In Python 3,
__slots__ is 30 percent faster than without __ slots .

The second use case of _slots _isfor memory saving. slots
helps to reduce the space in memory that each object instance takes up.
The space that __slots _ saves is significant.

You can find more information about __slots athttps://docs.
python.org/3/reference/datamodel.html#slots.

Another reason to use __slots__is obviously to save space. If you
consider Listing 4-8 and find out the size of object, then you can see that
__slots__ saves space for objects compared to normal objects.

>> import sys

>> sys.getsizeof(with_slots)

48

>> sys.getsizeof(without slots)
56

__slots__ helpsyou to save space for objects and gives you better
performance compared to without __slots use. The question is,
when should you consider using _slots__ in your code? To answer this
question, let’s briefly talk about instance creation.

When you create an instance of a class, extra space is automatically
added to the instance to accommodate _dict and _weakrefs .
__dict__isusually notinitialized until you use it for attribute access, so
you shouldn’t worry about this much. However, when you create/access
the attribute, then __slots makes much more sense compared to dict
in cases where you need to save that extra space or make it performant.

However, whenever you don’t want that extra space occupied by
__dict__ inaclass object, youcanuse _slots to save the space and for
extra performance when you need to access attributes.

128

https://docs.python.org/3/reference/datamodel.html#slots
https://docs.python.org/3/reference/datamodel.html#slots

CHAPTER 4 WORKING WITH MODULES AND METACLASSES

As an example, Listing 4-10 uses __slots__, and the child class
doesn’t create _dict _ for attribute a, which saves space and increases
performance while accessing the a attribute.

Listing 4-10. __slots__ Faster Attribute Access

class Base:
_slots__ = ()

class Child(Base):
__slots__ = ('a",)

¢ = Child()

The Python documentation recommends not using _slots__ for
the majority of cases. In rare cases where you feel that you need that extra
space and performance, give it a try.

Ialso recommend not using _slots until you really need that extra
space and performance because it restricts you to using the class in a
specific way, especially when dynamically assigning the variables. As an
example, see Listing 4-11.

Listing 4-11. Attribute Error When Using __ slots__

class User(object):
__slots_ = ("first_name",)

>> user = User()

>> user.first name = "Larry"

>> b.last_name = "Page"

AttributeError: "User" object has no attribute "last name"

There are many ways to circumvent these issues, but those solutions
won’t help you much compared to using code without _ slots .Asan

129

CHAPTER 4 WORKING WITH MODULES AND METACLASSES

example, if you want dynamic assignment, you can use the code shown in
Listing 4-12.

Listing 4-12. Using __dict__with __slots__to Overcome the
Dynamic Assignment Issue

class User:
__slots_ = first name, " dict "

>> user = User()
>> user.first_name = "Larry"
>> user.last_name = "Page"

So,with dict in_slots ,youlose some of the size benefits, but
the upside is that you get dynamic assignment.

The following are some other places where you should notuse
slots_:

e When you are subclassing a built-in like a tuple or str
and want to add attributes to it

¢ When you want to provide default values via class
attributes for instance variables

So, consider using __slots__ when you really need that extra space
and performance. It won't restrict you by limiting the class features and
making debugging harder.

Change Class Behavior Using Metaclasses

Metaclasses help to customize the class behavior per your needs. Instead
of creating some complex logic to add a specific behavior in a class, check
out the Python metaclasses. They give you a nice tool to handle complex
logic in your code. In this section, you will learn about using a magic
method called __call__toimplement multiple features.

130

CHAPTER 4 WORKING WITH MODULES AND METACLASSES

Let’s say you want to prevent a client from directly creating the object
of a class; you can easily achieve thatusing __call . See Listing 4-13.

Listing 4-13. Prevent Creating an Object Directly

class NoClassInstance:
"""Create the user object.
def _call (self, *args, **kwargs):
raise TypeError("Can't instantiate directly""")

class User(metaclass=NoClassInstance):
@staticmethod
def print_name(name):

print name of the provided value.
print(f"Name: {name}")

>> user = User()

TypeError: Can't instantiate directly
>>> User.print_name("Larry Page")
Name: Larry Page

Here call makes sure that the class is not being initiated directly
from the client code; instead, it uses the static method.

Let’s say you need to create an API where you want to apply a strategy
design pattern or make it easier for client code to use your API.

Let’s consider the example in Listing 4-14.

Listing 4-14. API Design Using __call__

class Calculation:

A wrapper around the different calculation algorithms that
allows to perform different action on two numbers.

131

CHAPTER 4 WORKING WITH MODULES AND METACLASSES

def _init (self, operation):
self.operation = operation

def call (self, first number, second number):
if isinstance(first number, int) and isinstance(second
number, int):
return self.operation()
raise ValueError("Provide numbers")

def add(self, first, second):
return first + second

def multiply(self, first, second):
return first * second

>> add = Calculation(add)

>> print(add(5, 4))

9

>> multiply = Calculation(multiply)
>> print(multiply(s, 4))

20

Here you can send different methods or algorithms to perform specific
actions without duplicating the common logic. Here you see code inside
__call , which makes your API much easier to use.

Let’s look at one more scenario in Listing 4-15. Say you want to
somehow create cached instances. When an object is being created with
the same value, it caches the instance instead of creating a new instance
for the same value, which could be really helpful when you don’t want to
duplicate an instance with the same parameters.

132

CHAPTER 4 WORKING WITH MODULES AND METACLASSES

Listing 4-15. Implement Instance Caching Using _ call__

class Memo(type):
def _init (self, *args, **kwargs):
super(). init_ (*args, **kwargs)
self. cache = {}

def _call (self, _id, *args, **kwargs):
if id not in self. cache:
self.cache[id] = super(). call (_id, *args, **kwargs)
else:
print("Existing Instance")
return self. cache[id]

class Foo(Memo):
def _init (self, _id, *args, **kwargs):
self.id = id

def test():
first = Foo(id="first")
second = Foo(id="first")
print(id(first) == id(second))

>>> test()
True

IThopethe call use case helps you understand how metaclasses
help you do some complicated tasks easily. _call also has some other
nice use cases such as creating singletons, memorizing values, and using
decorators.

Note There are lots of other times where metaclasses can be used
to achieve complicated tasks easily. | suggest digging into metaclasses
and trying to understand the use cases of some of the metaclasses.

133

CHAPTER 4 WORKING WITH MODULES AND METACLASSES

Learn About Python Descriptors

Python descriptors help to get, set, and delete attributes from an object’s
dictionary. When you access the class attribute, this starts the lookup
chain. If the descriptor methods are defined in code, then the descriptor
method will be invoked to look up the attributes. These descriptor
methodsare _get , set ,and_ delete inPython.

In practical terms, when you assign or get a specific attribute value
from a class instance, you might want to do some extra processing before
setting the value of an attribute or while getting a value of the attributes.
Python descriptors help you do those validation or extra operations
without calling any specific method.

So, let’s see an example that will help you understand a real use case,
as shown in Listing 4-16.

Listing 4-16. Python Descriptor __get__ Example
import random

class Dice:

Dice class to perform dice operations.
def init (self, sides=6):
self.sides = sides

def get (self, instance, owner):
return int(random.random() * self.slides) + 1

def set (self, instance, value):
print(f"New assigned value: ${value})
if not isinstance(instance.sides, int):
raise ValueError("Provide integer")
instance.sides = value

134

CHAPTER 4

class Play:

dé = Dice()

d10 = Dice(10)

d13 = Dice(13)
>> play = Play()
>> play.dé6
3
>> play.d10
4

>> play.d6 = 11
New assigned value: 11

>> play.d6 = "11"
I am here with value: 11

ValueError
recent call last)

WORKING WITH MODULES AND METACLASSES

Traceback (most

<ipython-input-66-47d52793a84d> in <module>()

----> 1 play.d6 = "11"

<ipython-input-59-97ab6dcfebae> in _set (self, instance, value)

9 print(f" New assigned value: {value}")
10 if not isinstance(value, int):

---> 11 raise ValueError("Provide integer")
12 self.sides = value
13

ValueError: Provide integer

Here you are using the _get descriptor to provide extra functionality

to a class attribute without calling any specific method, and you are using

set_ to make sure that you assign only int values to the Dice class attribute.

135

CHAPTER 4 WORKING WITH MODULES AND METACLASSES

Let’s briefly learn about these descriptors.

o _ get (self, instance, owner): When you access
the attribute, this method is automatically being called
when defined, as shown in Listing 4-16

o _ set (self, instance, owner): When you setthe
attribute of instance, this method is called as obj.attr
= "value".

o _ delete (set, instance): When you want to delete

a specific attribute, this descriptor is being called.

Descriptors give you more control over your code and can be used in
different scenarios such as validating an attribute before assigning, making
your attribute read-only, and so on. It also helps to make your code much
cleaner because you don’t need to create a specific method to do all these
complicated validations or check operations.

Note Descriptors are pretty useful when you want to set or get your
class attributes in a cleaner way. If you understand how they work,

it could be much more useful to you in other places where you want
to perform specific attribute validation or checks. Ideally, this section
helped give you a basic understanding of descriptors.

Summary

The metaclasses in Python are considered obscure because of their syntax
and somewhat magic functionality. However, if you get a hold of some of
the most used metaclasses discussed in this chapter, it will make your code
better for an end user to use, and you will feel that you have better control
over the way you shape your APIs or libraries for the user.

136

CHAPTER 4 WORKING WITH MODULES AND METACLASSES

However, consider using them cautiously as sometimes using them
to solve each problem in your code can impact the code’s readability.
Similarly, having a good understanding of modules in Python gives you
a better idea of why and how to keep your modules following the SRP. I
hope this chapter gave you enough insight into these two very important
concepts in Python.

137

CHAPTER 5

Decorators
and Context Managers

Decorators and context managers are an advanced topic in Python, but
they are useful in many real-world scenarios. Many popular libraries use
decorators and context managers extensively to make their APIs and code
cleaner. Initially, it might be a little tricky to understand decorators and
context managers, but once you master them, they can make your code
cleaner.

In this chapter, you will learn about decorators and context managers.
You will also explore when these features can be useful while writing your
next Python project.

Note Decorators and context managers are advanced concepts
in Python. Under the hood they heavily use metaclasses. You don’t
need to learn about metaclasses to learn how to use decorators
and context managers because Python gives you enough tools and
libraries to create decorators and context managers without using
any of the metaclasses. If you don’t have much of an understanding
of metaclasses, don’t worry. You should be able to learn fully how
decorators and context managers work. You will also learn some
techniques to make it easier to write decorators and context

© Sunil Kapil 2019 139
S. Kapil, Clean Python, https://doi.org/10.1007/978-1-4842-4878-2_5

CHAPTER5 DECORATORS AND CONTEXT MANAGERS

managers. | suggest getting a good grasp of both decorators and
context manager concepts so you can recognize the places where
you can use them in your code.

Decorators

Let’s first talk about decorators. In this section, you will learn how
decorators work and where in your real-world project you can use
them. Decorators are an interesting and useful feature of Python. If you
understand decorators well, you can build a lot of magical features without
much effort.

Python decorators help you add behavior to functions or objects
dynamically without changing the function or object behavior.

What Are Decorators, and Why Are They Useful?

Imagine you have several functions in your code and you need to add
logging in all of them so that when they get executed, the function name
gets logged in the log file or prints out on the console. One way to do that
is to use a logging library and add a log line in each of these functions. It
would take quite some time to do that, however, and it is also error prone
because you are making lots of changes in the code to just add a log.
Another way is to add the decorator on top of each function/class. This
is much more effective and doesn’t have the risk of adding new bugs to
existing code.

In the Python world, decorators can be applied to functions, and they
have the ability to run before and after the function they wrap. Decorators
help to run additional code in functions. This allows you to access and
modify input arguments and return values, which can be helpful in
multiple places. Here are some examples:

140

CHAPTER5 DECORATORS AND CONTEXT MANAGERS

o Rate limiting

e Caching values

e Timing the runtime of a function

o Logging purposes

o Caching exceptions or raising them
e Authentication

These are some of the main use cases for decorators; however, there
are no limits to using them. In fact, you will find that API frameworks like
flask heavily rely on decorators to turn functions into APIs. Listing 5-1
shows a flask example.

Listing 5-1. flask Example

from flask import Flask
app = Flask(__name_)

@app.route("/")
def hello():
return "Hello World!"

This code turns the hello function into an API using the route
decorator. This is the beauty of decorators, and having a good
understanding of them will benefit you as developer because they can
make your code cleaner and less error prone.

Understanding Decorators

In this section, you will see how to use decorators. Let’s say you have a
simple function that converts a passed-in string to uppercase and returns
the result. See Listing 5-2.

141

CHAPTER5 DECORATORS AND CONTEXT MANAGERS
Listing 5-2. Convert to Uppercase by Passing a String

def to_uppercase(text):
"""Convert text to uppercase and return to uppercase."""
if not isinstance(text, str):

raise TypeError("Not a string type")

return text.upper()

>>> text = "Hello World"
>>> to_uppercase(text)
HELLO WORLD

This is a simple function that takes a string and converts it to uppercase.
Let’s make a small change in to_uppercase, as shown in Listing 5-3.

Listing 5-3. Convert to Uppercase by Passing func

def to_uppercase(func):
"""Convert to uppercase and return to uppercase.

Adding this line, will call passed function to get text
text = func()

if not isinstance(text, str):
raise TypeError("Not a string type")
return text.upper()

def say():
return "welcome"

def hello():
return "hello"

>>> to_uppercase(say)
WELCOME

>>> to_uppercase(hello)
HELLO

142

CHAPTER5 DECORATORS AND CONTEXT MANAGERS

Two changes were made.

o Imodified the function to_uppercase to accept func
instead of a string and call that function to get the

string.

o Icreated a new function call that returns “welcome”
and passed that function to the to_upper case
method.

The to_uppercase function calls the say function and gets text to
convert to uppercase. So, to_uppercase gets the text by calling the function
say instead of getting it from the passed argument.

Now, for the same code, you can write something like Listing 5-4.

Listing 5-4. Using Decorators

@to_uppercase
def say():
return "welcome"

>>> say
WELCOME

Putting to_uppercase before a function as @to_uppercase makes the
function to_uppercase a decorator function. This is similar to executing
to_uppercase before the say function.

This is a simple example but is appropriate for showing how
decorators work in Python. Now, the advantage of having to_uppercase
as a decorator function is that you can apply it to any function to make the
string uppercase. For example, see Listing 5-5.

143

CHAPTER5 DECORATORS AND CONTEXT MANAGERS
Listing 5-5. Applying Decorators in Other Places

@to_uppercase
def say():
return "welcome"

@to_uppercase
def hello():
return "Hello"

@to_uppercase
def hi():
return 'hi’

>>> say
WELCOME
>>> hello
HELLO

>>> hi

HI

This makes the code cleaner and easier to understand. Make sure that
you make your decorator name explicit so that it’s easy to understand what
the decorator is trying to do.

Modify Behavior Using Decorators

Now that you know the fundamentals of decorators, let’s go a little deeper
to understand the main use case of decorators. In Listing 5-6, you will write
a complex little function that wraps another function. So, you will modify
the function to_uppercase to accept any function and then define another
function under to_uppercase to perform the upper () operation.

144

CHAPTER5 DECORATORS AND CONTEXT MANAGERS

Listing 5-6. Decorator for Uppercase

def to_uppercase(func):
def wrapper():
text = func()
if not isinstance(text, str):
raise TypeError("Not a string type")
return text.upper()
return wrapper

So, what'’s going here? You have a function call called to_uppercase
where you pass func as a parameter like before, but here you move the rest
of the code into another function called wrapper. The wrapper function is
returned by to_uppercase.

The wrapper function allows you to execute the code here to change the
behavior of the function instead of just running it. You can now do multiple
things before the function executes and after the function completes the
execution. The wrapper closure has access to the input function and can add
new code before and after the function, which shows the actual power of the
decorator function to change the behavior of the function.

The main use of having another function is to not execute the function
until it’s explicitly called. Until it’s called, it will wrap the function and
write the object of the function. So, you can write the full code as shown in
Listing 5-7.

Listing 5-7. Full Code for Decorator for Uppercase

def to_uppercase(func):
def wrapper():
text = func()
if not isinstance(text, str):
raise TypeError("Not a string type")
return text.upper()
return wrapper

145

CHAPTER5 DECORATORS AND CONTEXT MANAGERS

@to_uppercase
def say():
return "welcome"

@to_uppercase
def hello():
return "hello"

>>> say()
WELCOME

>>> hello()
HELLO

In above example, to_uppercase() is a define a decorator, which
basically take any function as parameter and convert string to upper
case. In above code say() function use to_uppercase as decorator, when
python execute the function say (), python pass say() as a function object
to to_uppercase() decorator at the execution time and return a function
object called wrapper, which get executed when called as say() or hello().

You can utilize decorator almost all those scenario where you have to
add functionality before running a specific function. Consider scenario,
when you want your website users to login before seeing any page on your
website, you can consider using login decorator on any function which
allow user to access your website page, which will force users to login before
see any page on your website. Similarity, consider a simple scenario where
you want to add words “Larry Page” after the text, you can do that by adding
the words as follows:

def to_uppercase(func):
def wrapper():
text = func()
if not isinstance(text, str):
raise TypeError("Not a string type")

146

CHAPTER5 DECORATORS AND CONTEXT MANAGERS

result = .join([text.upper(), "Larry Page"])
return result
return wrapper

Using Multiple Decorators

You can also apply multiple decorators to a function. Let’s say you have

'"

to add a prefix before “Larry Page!” In that case, you can use a different

decorator to add the prefix, as shown in Listing 5-8.

Listing 5-8. Multiple Decorators

def add_prefix(func):
def wrapper():
text = func()
result " ".join([text, "Larry Page!"])
return result
return wrapper

def to_uppercase(func):
def wrapper():
text = func()
if not isinstance(text, str):
raise TypeError("Not a string type")
return text.upper()
return wrapper

@to_uppercase
@add_prefix
def say():

return "welcome"

>> say()
WELCOME LARRY PAGE!

147

CHAPTER5 DECORATORS AND CONTEXT MANAGERS

As you might have already noticed, decorators get applied from bottom
to top, so add_prefix is called first and then the to_uppercase decorator
gets called. To prove this, if you change the order of decorators, you would
get different results, as follows:

@add_prefix
@to_uppercase
def say():

return "welcome"

>> say()
WELCOME Larry Page!

As you can notice, “Larry Page” doesn’t get converted to uppercase
because it was called last.

Decorators Accept Arguments

Let’s expand on the previous example by passing arguments to decorator
functions so you can dynamically change the passed arguments to
uppercase and greet different people by name. See Listing 5-9.

Listing 5-9. Pass Arguments to Decorator Functions

def to_uppercase(func):
def wrapper(*args, **kwargs):
text = func(*args, **kwargs)
if not isinstance(text, str):
raise TypeError("Not a string type")
return text.upper()
return wrapper

148

CHAPTER5 DECORATORS AND CONTEXT MANAGERS

@to_uppercase
def say(greet):
return greet

>> say("hello, how you doing")
"HELLO, HOW YOU DOING'

As you can see, you can pass arguments to a decorator function, and it
executes the code and uses those passed-in parameters in the decorator.

Consider Using a Library for Decorators

When you create a decorator, it mostly replaces one function with another
function. Let’s consider the simple example in Listing 5-10.

Listing 5-10. Decorator for Logging Function

def logging(func):
def logs(*args, **kwargs):
print(func. _name__ + " was called")
return func(*args, **kwargs)
return logs

@logging
def foo(x):

Calling function for logging
return x * x

>>> fo = foo(10)
>>> print(foo. name)
logs

You might be expecting this to print foo as the function name. Instead,
it prints logs as the function name, which is a wrapper function inside the
decorator function logging. In fact, when you are using a decorator, you
will always lose information suchas __name_, doc__, and so on.

149

CHAPTER5 DECORATORS AND CONTEXT MANAGERS

To overcome this issue, you can consider using functool.wrap, which
takes a function used in a decorator and adds the functionality of copying
over the function name, docstring, arguments list, and so on. So, you can
write the same code, as shown in Listing 5-11.

Listing 5-11. functools to Create Decorators

from functools import wraps
def logging(func):
@wraps (func)
def logs(*args, **kwargs):
print(func. name + " was called")
return func(*args, **kwargs)

return logs

@logging

def foo(x):
"""does some math"""
return x + x * x

print(foo. name) # prints 'f'
print(foo. doc) # prints 'does some math’

The Python standard library has a library called functools that has
funtools.wrap to create decorators that help to retain all the information,
which otherwise could be lost when you create your own decorators.

Other than functools, there are libraries such as decorator, which is
also really easy to use. Listing 5-12 shows an example.

Listing 5-12. Use a Decorator to Create a Decorator Function
from decorator import decorator

@decorator
def trace(f, *args, **kw):
kwstr = ', '.join('%r: %r' % (k, kw[k]) for k in sorted(kw))

150

CHAPTER5 DECORATORS AND CONTEXT MANAGERS

print("calling %s with args %s, {%s}" % (f. name , args,
kwstr))
return f(*args, **kw)

@trace
def func(): pass

>>> func()
calling func with args (), {}

Similarly, you can use decorators inside the class for class methods, as
shown in Listing 5-13.

Listing 5-13. Class Using a Function Decorator

def retry requests(tries=3, delay=10):
def try request(fun):
@wraps(fun)
def retry decorators(*args, *kwargs):
for retry in retries:
fun(*args, **kwargs)
time.sleep(delay)
return retry decorators
return try request

class ApiRequest:
def init (self, url, headers):
self.url = url
self.headers = headers

@try request(retries=4, delay=5)
def make request(self):
try:
response = requests.get(url, headers)

151

CHAPTER5 DECORATORS AND CONTEXT MANAGERS

if reponse.status code in (500, 502, 503, 429):
continue
except Exception as error:
raise FailedRequest("Not able to connect with server")
return response

Class Decorators for Maintaining State
and Validating Parameters

Until now, you have seen how to use functions as decorators, but Python
doesn’t have any restrictions on creating just methods as decorators.
Classes can also be used as decorators. It all depends upon which specific
way you want to define your decorators.

One of the main use cases of using class decorators is to maintain the
state. However, let’s first understand how the __call_method helps your
class to make it callable.

To make any class callable, Python provides special methods such as
the call () method. What that meansisthat _call allows the class
instance to be called as a function. Method like _call make it possible to
create classes as decorators and return the class object to use as the function.

Let’s look at the simple example in Listing 5-14 to further understand
the call method.

Listing 5-14. Use of the __call__ Method

class Count:
def _init (self, first=1):
self.num = first

def call (self):
self.num += 1
print(f"number of times called: {self.num}")

152

CHAPTER5 DECORATORS AND CONTEXT MANAGERS

Now whenever you call the Count class using the instance to the class,
the call method will be called.

>>> count = Count()
>>> count()
Number to times called: 2

>>> count()
Number of times called: 3

As you can seg, calling count () automatically calls the _call
method, which maintains the state of the variable num.
You can use this concept to implement a decorator class. See Listing 5-15.

Listing 5-15. Maintain the State Using Decorators

class Count:
def init (self, func):
functools.update wrapper(self, func)
self.func = func
self.num = 1

def call (self, *args, *kwargs):
self.num += 1
print(f"Number of times called: {self.num}")
return self.func(*args, *kwargs)

@Count
def counting_hello():
print("Hello")

>>> counting hello()
Number of times called: 2

>>> counting_hello()
Number of times called: 3

153

CHAPTER5 DECORATORS AND CONTEXT MANAGERS

The init_ method needs to store the reference of the function.

The call method gets called whenever a function that decorates the
class gets called. The functools library is being used here to create the
decorator class. As you can see, you are storing the state of the variable
using class decorators.

Let’s take a look at one more interesting case, as shown in Listing 5-16,
which could be achieved using class decorators, that is, type checking. This
is a simple example to showcase the use case; however, you can use it in all
kinds of cases where you need to check for a type of parameter.

Listing 5-16. Validate Parameters Using Class Decorators
class ValidateParameters:

def _init (self, func):
functools.update(self, func)
self.func = func

def call (self, *parameters):
if any([isinstance(item, int) for item in parameters]):
raise TypeError("Parameter shouldn't be int!!")
else:
return self.func(*parameters)

@ValidateParameters
def add numbers(*list string):
return "".join(list string)

returns anb
print(concate("a", "n", "b"))

raises Error.
print(concate("a", 1, "c"))

As you will notice, you are using class decorators to do type checking.

154

CHAPTER5 DECORATORS AND CONTEXT MANAGERS

As you can see, there are a lot of places you can use decorators
to make your code cleaner. Whenever you are considering using the
decorator pattern, you can implement it using a Python decorator
easily. Understanding decorators is a little tricky as it requires some
level of understanding of how a function works, but once you get a
basic understanding of decorators, consider using them in a real-world
application. You will find that they make your code much cleaner.

Context Manager

Context managers, like decorators, are a useful feature of Python. You even
might use them in your day-to-day code without realizing it, especially
when you are using the Python built-in libraries. Common examples are
file operations or socket operations.

Also, context managers can be really useful while writing APIs or
third-party libraries because it makes your code much more readable
and prevents client code from writing unnecessary code to clean up the
resources.

Context Managers and Their Usefulness

As I mentioned, you probably unknowingly use context managers while
doing different file or socket operations. See Listing 5-17.

Listing 5-17. File Operations Using a Context Manager

with open("temp.txt") as fread:
for line in fread:
print(f"Line: {line}")

155

CHAPTER5 DECORATORS AND CONTEXT MANAGERS

Here the code is using a context manager to handle the operations.
The with keyword is a way to use a context manager. To understand the
usefulness of a context manager, let’s write this code without a context

manager, as shown in Listing 5-18.

Listing 5-18. File Operations Without a Context Manager

fread = open("temp.txt")
try:
for line in fread:
print(f"Line: {line}")
finally:
fread.close()

The with statement was replaced by the try-finally block so that the
client does not have to worry about handling exceptions.

The main usefulness of the context manager, besides a cleaner API, is
resource management. Consider a scenario where you have a function that
can read user input files, as shown in Listing 5-19.

Listing 5-19. Reading Files

def read file(file name):
"""Read given file and print lines.
try:
fread = open("temp.txt")
for line in fread:
print(f"Line: {line}")
catch IOError as error:
print("Having issue while reading the file")
raise

First, it’s easy to forget to add the file.close() statement in the
previous code. After reading the file, the file has not been closed by the

156

CHAPTER5 DECORATORS AND CONTEXT MANAGERS

read_file function. Now consider that the function read_file is being
called thousands of times continuously; this would open thousands of file
handlers in memory and might risk a memory leak. To prevent these cases,
you can use a context manager, as shown in Listing 5-20.

Similarly, here you would have memory leak because the system has
a limit on the number resources that can be used at a specific time. In the
case of Listing 5-16, when you open a file, the OS assigns a resource called
a file descriptor, which is limited by the OS. So, when that limit is passed,
the program crashes with the message OSError.

Listing 5-20. Leak File Descriptor

fread = []
for x in range(900000):
fread.append(open('testing.txt', 'w'))

>>> OSError: [Errno 24] Too many open files: testing.txt

Clearly, a context manager helps you to better handle resources. In
this case, that includes closing the file and relinquishing the file descriptor
once the file operation is done.

Understanding Context Managers

As you can see, context managers are useful for resource management.
Let’s see how you can build them.

To create a with statement, all you need to do is add the _enter and
__exit_ methods to an object. Python will call these two methods when it
needs to manage resources, so you don’t need to worry about them.

So, let’s look at the same example of opening a file and build a context
manager . See Listing 5-21.

157

CHAPTER 5 DECORATORS AND CONTEXT MANAGERS
Listing 5-21. Managing Files

class ReadFile:

def _init (self, name):
self.name = name

def enter (self):
self . file = open (self.name, 'w')
return self

def exit (self,exc_type,exc_val,exc_tb):
if self.file :

self.file.close()

with ReadFile(file name) as fread:
f.write("Learning context manager")
f.write("Writing into file")

Now when you run this code, as much as possible, you won’t have a file
descriptor leaking issue because ReadFile is managing that for you.

This works because when the with statement executes, Python calls
the _enter _ function and executes. When execution leaves the context
block (with), it executes _exit to free up the resources.

Let’s look some of the rules of context managers.

e _ enter_ returns an object that is assigned to the
variable after as in a context manager block. This object
usually is self.

e exit_calls the original context manager, not the
one thatisreturned by __enter .

e _ exit won'tbe called if there is an exception or
errorinthe init or enter method.

158

CHAPTER5 DECORATORS AND CONTEXT MANAGERS

e Once the code block enters the context manager block,
__enter__ will be called no matter what exception or
error has been thrown.

o if exit_ returnstrue, then any exception will be
suppressed, and execution will exit from the context
manager block without any error.

Let’s try to understand these rules by looking at the example shown in
Listing 5-22.

Listing 5-22. Context Manager Class

class ContextManager():
def init (self):
print("Crating Object")
self.var = 0

def enter (self):
print("Inside enter ")
return self

def _exit (self, val type, val, val traceback):
print('Inside exit ")
if exc_type:
print(f"val type: {val type}")
print(f"val: {val }")
print(f"val traceback: {val traceback}")

>> context = ContextManager()

Creating Object

>> context.var

0]

>> with ContextManager as cm:

>> print("Inside the context manager")

159

CHAPTER5 DECORATORS AND CONTEXT MANAGERS

Inside enter
Inside the context manager
Inside exit

Using contextlib to Build a Context Manager

Instead of writing classes to create a context manager, Python provides
alibrary called a contextlib.contextmanager decorator. It is more
convenient to write the context manager instead of writing classes.

The Python built-in library makes it easier to write a context manager.
You don’t need to write the whole class with all those _enter and
__exit_ methods to create a context manager.

The contextlib.contextmanager decorator is a generator-based
factory function for a resource that will automatically support the with
statement, as shown in Listing 5-23.

Listing 5-23. Creating a Context Manager Using contextlib
from contextlib import contextmanager

@contextmanager
def write file(file name):
try:
fread = open(file_name, "w")
yield fread
finally:
fread.close()

>> with read file("accounts.txt") as f:
f.write("Hello, how you are doing")
f.write("Writing into file")

First, write file acquires the resource, and then the yield keyword,
which will be used by the caller, takes effect. When the caller exits from

160

CHAPTER5 DECORATORS AND CONTEXT MANAGERS

the with block, the generator continues to execute so that any remaining
cleanup steps can occur such as cleaning up the resources.
When the @contextmanager decorator is used to create the context
manager, the value that the generator yields is the context resource.
Both the class-based implementation and the contextlib decorator
are similar implementations; it’s a personal choice which you want to

implement.

Some Practical Examples of Using a Context
Manager

Let’s look at where the context manager can be useful in day-to-day
programming and in your projects.

There are many cases where you can use a context manager to make
your code better, meaning without bugs and cleaner.

You will explore a couple of different scenarios where you can start
using a context manager from day one. Besides these use cases, you can
use a context manager in a lot of different feature implementations. For
that, you need to find opportunities in your code that you think would be
better when written using a context manager.

Accessing a Database

You can use a context manager while accessing database resources.
When a specific process is working on some specific data in a database
and modifying the value, you can lock the database while the process is
working on that data, and once the operation is done, you can relinquish
the lock.

As an example, Listing 5-24 shows some SQLite 3 code from
https://docs.python.org/2/1library/sqlite3.html#using-the-
connection-as-a-context-manager

161

https://docs.python.org/2/library/sqlite3.html#using-the-connection-as-a-context-manager
https://docs.python.org/2/library/sqlite3.html#using-the-connection-as-a-context-manager

CHAPTER5 DECORATORS AND CONTEXT MANAGERS

Listing 5-24. sqlite3 Lock
import sqlite3

con = sqlite3.connect(":memory:")
con.execute("create table person (id integer primary key,
firstname varchar unique)")

Successful, con.commit() is called automatically afterwards
with con:
con.execute("insert into person(firstname) values (?)",

("30e",))

con.rollback() is called after the with block finishes with
an exception, the
exception is still raised and must be caught
try:
with con:
con.execute("insert into person(firstname) values (?)",
("Joe",))
except sqlite3.IntegrityError:
print "couldn't add Joe twice"

Here you are using a context manager that automatically commits and
rolls back in case of failure.

Writing Tests

While writing tests, a lot of time you want to mock specific services of
tests with different kinds of exceptions thrown by code. In these cases, a
context manager is really useful. Testing libraries like pytest have features
that allow you to use a context manager to write the code that tests those
exception or mock services. See Listing 5-25.

162

CHAPTER5 DECORATORS AND CONTEXT MANAGERS
Listing 5-25. Testing Exception

def divide numbers(self, first, second):
isinstance(first, int) and isintance(second, int):
raise ValueError("Value should be int")

try:
return first/second
except ZeroDevisionException:
print("Value should not be zero")
raise
with pytest.raises(ValueError):
divide numbers("1", 2)

You can also use it for mocking as:

with mock.patch("new class.method name"):
call function()

mock.patch is an example of a context manager that can be used as a
decorator.

Shared Resource

Using the with statement, you can allow access to only one process at

a time. Assume you have to lock a file for writing in Python. It can be
accessed from multiple Python processes at once, but you want only one
process to be used at a time. You can do that using a context manager, as
shown in Listing 5-26.

163

CHAPTER5 DECORATORS AND CONTEXT MANAGERS
Listing 5-26. Lock File While Reading with Shared Resource
from filelock import Filelock

def write file(file name):
with FileLock(file name):
work with the file as it is now locked
print("Lock acquired.")

This code is using the filelock library to lock the file so it’s read by
only one process.

A context manager block prevents you from entering another process
to use the file while the operation is going on.

Remote Connection

In networking programming, you mostly interact with sockets and use a
network protocol to access different things over the network. When you
want to use a remote connection to access a resource or work on a remote
connection, consider using a context manager to manage the resource.

A remote connection is one of the best places to use a context manager.
See Listing 5-27.

Listing 5-27. Lock File While Reading with Remote Connection

class Protocol:

def init (self, host, port):
self.host, self.port = host, port

def enter (self):
self. client = socket()
self. client.connect((self.host, self.port))
return self

def exit (self, exception, value, traceback):
self. client.close()

164

CHAPTER5 DECORATORS AND CONTEXT MANAGERS

def send(self, payload): <code for sending data>
def receive(self): <code for receiving data>

with Protocol(host, port) as protocol:
protocol.send(['get', signal])
result = protocol.receive()

This code is using a context manager to access the remote connection
using a socket. It takes care of a lot of things for you.

Note A context manager can be used in a variety of cases. Start
using context managers whenever you see an opportunity to manage
resources or handle exceptions when writing tests. Context managers
also make your API much cleaner and hide a lot of bottleneck code,
which gives you a cleaner interface.

Summary

Decorators and context managers are first-class citizens in Python and
should be your preference in your application design. Decorators are
design patterns that allow you to add new functionality to an existing
object without modifying the code. Similarly, a context manager allows
you to manage your resources effectively. You can use them to run a
specific piece of code before and after your function. They also help you to
make your APIs cleaner and more readable. In the next chapter, you will
explore some more tools such as generators and iterators to enhance the
quality of your applications.

165

CHAPTER 6

Generators
and lterators

Iterators and generators are useful tools in Python. They can make it easier
to handle different data problems, and they help you to write code that is
cleaner and performs better.

Python has a library to take advantage of these two features. You will
learn about them in this chapter, and you will explore different problems
that can be easily handled by generators and iterators without much effort.

Take Advantage of Iterators and Generators

In this section, you will explore different features of iterators and
generators and will see where these two features can be used in your code
to make it better. Both these features are useful mainly to solve different
data problems.

Understanding Iterators

An iterator is an object that works on a stream of data. An iterator
object has a method called _next__, and when you use a for loop, list
comprehension, or anything that goes through all data points to get data

© Sunil Kapil 2019 167
S. Kapil, Clean Python, https://doi.org/10.1007/978-1-4842-4878-2_6

CHAPTER6 GENERATORS AND ITERATORS

from an object or other data structure, in the background the __next__
method is being called.
Listing 6-1 shows how to create a class and make it an iterator.

Listing 6-1. Iterator Class

class MutiplyByTwo:
def _init (self, number):
self.number = number
self.count = 0

def next (self):
self.counter += 1
return self.number * self.counter

mul = Mutiple(500)
print(next(mul))
print(next(mul))
print(next(mul))
>>> 500

>>> 1000

>>> 1500

Let’s see how iterators actually work in Python. In the previous code,
you have a class called MultiplyByTwo that has a method called next
that returns a new iterator whenever it’s called. The iterators need to keep
arecord of where in is in the sequence by using a counter variable inside
__next__.However, if you try to use this class in a for loop, you will find
that it throws an error, as follows:

for num in MultiplyByTwo(500):
print(num)
>>> MultiplyByTwo object is not iterable.

168

CHAPTER6 GENERATORS AND ITERATORS

Interestingly, MultiplyByTwo is an iterator and not an iterable. So, the
for loop won’t work here. So, what's an iterable? Let’s look at how iterables
are different than iterators.

An iterable object has a method called _iter , whichreturnsan
iterator. When __iter is called on any object, it returns the iterator,
which can be used to iterate over the object to get the data. In Python,
strings, lists, files, and dictionary are all examples of iterables.

When you try a for loop on them, it works nicely because the loop
returns an iterator.

Now that you understand iterables vs. iterators, let’s modify the class
MultiplyByTwo to be an iterable. See Listing 6-2.

Listing 6-2. Iterator Class with the for Loop

class MultiplyByTwo:
def init (self, num):
self.num = num
self.counter = 0

def iter (self):
return self

def next (self):
self.counter += 1
return self.number * self.counter

for num in MutliplyByTwo(500):
print(num)

This iterator runs forever, which might be useful in some cases, but
what if you want to have a finite number of iterators? Listing 6-3 shows

how you can implement this.

169

CHAPTER6 GENERATORS AND ITERATORS

Listing 6-3. Iterator Class with Stoplteration

class MultiplyByTwo:

def

def

def

for num

__init_ (self, num, limit):

self.num = num
self.limit = limit
self.counter = 0

__iter (self):

return self

__next_ (self):

self.counter += 1
value = self.number * self.counter

if value > self.limit:
raise StopIteration
else:
return value

in MutliplyByTwo(500, 5000):

print(num)

When you raise StopIteration;, your MultiplyByTwo object gets
the signal that it has exhausted the limit, raises an exception that is
automatically handled by Python, and exits from the loop.

What Are Generators?

Generators are really useful for reading a large amount of data or a large
number of files. Generators can be paused and resumed. Generators
return objects that can iterate like lists. However, unlike lists, they are lazy
and produce items one at a time. Generators are much more memory
efficient when dealing with a large data set compared to any other data

structure.

170

CHAPTER6 GENERATORS AND ITERATORS

Let’s try to create a similar multiply function as the iterator from the
previous example. See Listing 6-4.

Listing 6-4. Generator Example

def multiple generator(num, limit):
counter = 1
value = number * counter

while value <= limit:
yield value
counter += 1
value = number * counter

for num in multiple generator (500, 5000):
print(num)

You'll notice that this is way shorter than the iterator example, as you
don’tneed to define _next and iter .Youalsodon’tneed tokeep
track of internal state or raise an exception.

The new thing that you might have noticed is the yield keyword. yield
is similar to return, but instead of terminating the function, it simply
pauses execution until asking for another value. Generators are much
more readable and performant compared to iterators.

When to Use Iterators

Iterators are really useful when you are dealing with a large set of numbers
in the form of files or streams of data. Iterators give you the flexibility
to handle the data one piece at a time instead of loading all the data in
memory.

Let’s assume you have a CSV file with a sequence of numbers and you
need to calculate the sum of numbers from this CSV file. You can do this
either by storing the sequence of data from the CSV file in a list and then

171

CHAPTER6 GENERATORS AND ITERATORS

calculating the sum or by using an iterator approach where you read the
CSV file row by row and calculate the sum of each row.
Let’s look at both ways so you can understand the difference, as shown

in Listing 6-5.

Listing 6-5. Read a CSV File Using a List

import csv
data = []
sum_data = 0
with open("numbers.csv", "r") as f:
data.extend(list(csv.reader(f)))
for row in data[1:]:
sum_data += sum(map(int, row))
print(sum_data)

Notice that you are saving data in a list here and then calculating the
sum of numbers from the list. This can be more costly in terms of memory
and can lead to a memory leak because you are duplicating the data in
memory in the form of a CSV file and list, which could be dangerous if you
are reading a large file. Here, an iterator can save you by getting only one
row from the CSV file, so you are not dumping all the data in memory at
one time. See Listing 6-6.

Listing 6-6. Read a CSV File Using an Iterator

import csv
sum_data = 0
with open('numbers.csv', 'r') as f:
reader = csv.reader(f)
for row in list(reader)[1:]:
sum_data += sum(map(int, row))
print(sum_data)

172

CHAPTER6 GENERATORS AND ITERATORS

This code is calculating the sum of one row and adding it to the next
row by asking the iterator to give you a new set of data from a CSV file.

Another use case for an iterator is when you are reading data from a
database. Let’s consider a scenario where an e-commerce company sells
products through an online store and users buy those products through
an online payment. The payments of users are stored in a table called
Payment, and after 24 hours, an automated system queries the Payment
table and calculates the total profit made in the last 24 hours.

There are two approaches to solving this problem. The first option is
to query the Payment table and get a list of amounts and then calculate the
sum of those amounts. On a normal day, this might work, but consider
a specific day such as Black Friday or a holiday when a company has
millions of transactions. It could crash the system to load millions of
records in memory at one time. The second option is to query the table
but get the data by row or by a number of rows like 100 or 1,000 and then
calculate the total transaction. In Django, you can do something like the
code shown in Listing 6-7.

Listing 6-7. Read Payment Information from a Database Using an
Iterator

def get total payment():
payments = Payment.objects.all()
sum_amount = 0
if payments.exists():
for payment in payments.iterator():
sum_amount += payment
return sum_amount

This code is calculating the total amount by fetching the data from a
database one row at a time without loading all the data at once.

173

CHAPTER6 GENERATORS AND ITERATORS

Using itertools

Python has a module called itertools that has collections of useful
methods. I can’t cover all the methods here but will talk about some of them.

combinations()

itertools.combinations(iterable, r)

This tool gives the combination tuples of iterable that are r length, which
is 2 in the previous line.

from itertools import combinations
print(list(combinations('12345',2)))

[("2', "2%), ("17, '3"), ("1', '4"), (1", '5'),
('2", '3"), ("2%, '4'), ("2, '5"),

('3, "4, ('3, 5",

(e, ')

]

permuations()
itertools.permutations(iterable, r)

This returns all the permutations of r length; if r is None, then the default
length of 1 is the length of an iterable.

from itertools import permutations
print(permutations(['1','2","'3"]))

print(list(permutations(['1','2','3'])))
[(Ill) '2') I3I)) ('1') I3I) l2')’
(Izl) '1'J ISI)) ('ZIJ I3I) ll')’
('3', '1', "2"), ('3', 2", '1")

]

174

CHAPTER6 GENERATORS AND ITERATORS

product()
itertools.product(iterable, r)

This tool computes the Cartesian product of the input iterable. It’s similar
to a nested loop.
As an example, product(x, y) would look as follows:

((x,y) for x in A for y in B)
from itertools import product

print(list(product([1,2,3],repeat = 2)))
[(1, 1), (1, 2), (1, 3),

(2) 1)’ (21 2)) (2’ 3))

(3, 1), (3, 2), (3, 3)

]

count()

itertools.count(start=0, step=1)

count () is an iterator that returns with numbers evenly spaced beginning
with the number start.
As an example, you tell count () to return a number iterator with step 4.

import itertools

for num in itertools.count(1, 4):
print(item)
if item > 24:
break

>»> 1, 5, 9, 13, 17, 21

175

CHAPTER6 GENERATORS AND ITERATORS

groupby()
itertools.groupby(iterable, key=None)
itertools.groupby tool helps you to group items.
As a simple example, let’s say you need to group characters as follows:

numbers = 555441222

result = []

for num, length in groupby(numbers):
result.append((len(list(length)), int(num)))

print(*result)
>>> (3, 5)(2,4)(2,1)(3,2)

There are other useful methods in itertools that are really useful.
I suggest you check out https://docs.python.org/3.7/1ibrary/
itertools.html for more information.

Why Generators Are Useful

Like iterators, generators save memory. Because iterators are capable of
doing lazy evolution, you can save memory by getting only the data an
operation needs. Therefore, you can use generators when reading big files
from a database to save memory and CPU cycles.

So, let’s say you want to read the file the lazy way; you can use the
yield keyword, which creates a generator function for you. See Listing 6-8.

Listing 6-8. Read in a Chunk Using a Generator

def read in chunks(file handler, chunk size=1024):
"""Lazy function (generator) to read a file piece by piece.
Default chunk size: 1k."""
while True:

176

https://docs.python.org/3.7/library/itertools.html
https://docs.python.org/3.7/library/itertools.html

CHAPTER6 GENERATORS AND ITERATORS

data = file handler.read(chunk size)
if not data:

break
yield data

f = open('large number of data.dat')
for piece in read in chunks(f):
print(piece)

Here you are reading a big file in a chunk instead of loading the while

file in memory.

List Comprehension vs. lterators

List comprehension and iterators are two different ways to generate
numbers, and they have a significant difference in terms of how they save
the data in memory or perform operations while generating numbers.

This is iterators expression to generate numbers up to 200.
(x*2 for x in xrange(200))
List comprehension expression to generate numbers up to 200

[x*2 for x in xrange(200)]

The main difference here is that list comprehension saves all 200
numbers in memory once it completes. However, iterators create an
iterable object that generates numbers on the fly, so speed is fast in the
iterator case. Also, an iterator gives you the flexibility to pass around
objects to generate a number on the fly.

Take Advantage of the yield Keyword

Before digging into yield, I'll talk about how to work with the yield
keyword in Python.

177

CHAPTER6 GENERATORS AND ITERATORS

When you define yield inside one of your functions, calling the
function gives you a generator object; however, that doesn’t run your
function. Once you get a generator object and each time you extract an
object from the generator (either by using a for loop or by using next()),
Python will execute the function until it comes to the yield keyword. Once
Python reaches the yield keyword, it delivers the object and pauses until
you extract it. Once you extract the object, Python resumes and runs the
code after yield, continuing until it reaches another yield (which could
be the same yield keyword or a different yield). Once a generator is
exhausted, it will exit with a StopIteration exception, which the for loop
automatically handles.

In other words, yield is a keyword that is used like return, except the
function returns a generator. See Listing 6-9.

Listing 6-9. Generate a Number Using a Generator

def generate numbers(limit):
for item in xrange(limit):
yield item*item
print(f"Inside the yield: {item}")

numbers = generate numbers() # create a generator

print(numbers) # numbers is an object!
<generator object generate numbers at 0xb7555c34>

for item in numbers:
print(item)

Here you created a generator function using the yield keyword. Notice
that when you call the function generate_numbers(), you get the numbers

178

CHAPTER6 GENERATORS AND ITERATORS

object, which is a generator object. You can then use this to generate
numbers on the fly.

When you first call the generator object in a for loop, it runs the
function from the start of generator numbers until it encounters the yield
keyword, and then it stops and returns the first value of the loop. Once it
calls a second time, it starts on the next line, which is print (f"Inside the
yield: {item}").It continues to do that until it reaches a limit.

yield from

The yield fromkeyword has been used since Python 3. The main use case
ofyield fromis to get a value from other generators, as shown in Listing 6-10.

Listing 6-10. Generate a Number Using the yield from Keyword

def flat list(iter values):
"""flatten a multi list or something.
for item in iter values:
if hasattr(item, ' iter '):
yield from flat_list(item)
else:
yield item

print(list(flat list([1, [2], [3, [4]1]1])))
>>> [1, 2, 3, 4]

Instead of iterating over flat_list, you are using yield from, which
not only shorten the lines but also makes your code cleaner.

179

CHAPTER6 GENERATORS AND ITERATORS

yield Is Faster Compared to a Data Structure

If you are dealing with a lot of data and need speed, then obviously you
should use generators to generate the data instead of relying on a data
structure like a list or a tuple.

Here is a simple example:

data = range(1000)
def using yield():
def wrapper():
for d in data:
yield d
return list(wrapper())

def using list():
result = []
for d in data:
result.append(d)
return result

If you run both code examples, you will notice that using yield is
definitely faster than using a list.

Summary

Generators and iterators are really useful, especially when you are dealing
with a lot of data or big files. You need to be extra cautious about memory
and CPU consumption as over consumption ould lead to issues such as
memory leaks. Python gives you tools like itertools and yield to help
you avoid all these issues. Be extra diligent when you are dealing with large
files, working with databases, or calling multiple APIs; you might be able to
use these tools to make your code cleaner and performant.

180

CHAPTER 7

Utilize New Python
Features

The new features introduced in the latest Python 3 version have made
Python much more fun to write programs in. Python already had a lot
of great features, and Python 3 has made it a much more feature-rich
language. Python 3 comes with features such as native support for async
programming, typing, better performance, iterator improvements, and
so on.

In this chapter, you will learn about the new features that can make
your code better and more performant compared to previous versions
of Python. You will learn how using any or all of these features could be
useful and where should you consider using them in your code.

Note You can explore the new features of Python in the

official documentation at https://docs.python.org/3/
whatsnew/3.7.html. Python 3 is still in development at the time
of writing this book, so there might be some improvements not
mentioned here. In other words, keep an eye on the Python official
documentation for the most up-to-date features.

© Sunil Kapil 2019 181
S. Kapil, Clean Python, https://doi.org/10.1007/978-1-4842-4878-2_7

https://docs.python.org/3/whatsnew/3.7.html
https://docs.python.org/3/whatsnew/3.7.html

CHAPTER 7 UTILIZE NEW PYTHON FEATURES

Asynchronous Programming

If you have ever done any asynchronous programming (or async
programming for short) in another language like JavaScript, you might
know that it’s not an easy topic. Before Python 3.4, there was a way to

do async programming using third-party libraries, but it always felt a bit
clumsy compared to a language like Node]JS, which is very friendly to async
programming.

Python is flexible on the matter because you can write both sync and
async code. Using async programming can make your code much more
efficient and performant compared to sync programming because it uses
the resources more effectively. However, it’s really important to know when
you should use async programming and when you shouldn’t.

Before going further, let’s discuss asynchronous versus synchronous
programming. In the synchronous world, things happen one at a time.

You call a function or operation, and your program control waits for it to
complete before it proceeds to do the next thing. When a function finishes
its operation, the function returns the result. While the operation is being
performed by the function, your system doesn’t do anything else besides
wait for it to finish.

In the asynchronous world, multiple things can happen at the same
time. When you start an action or call a function, your program continues
to run, and you can perform other actions or call other functions instead of
just waiting for that async function to finish. Once the async function has
completed the work, the program control can access the result.

As an example, let’s assume you have to get stock data for different
companies by calling different companies’ stock APIs. In synchronous
code, you would call the first stock API and wait to get the reply, and then
you would make another call and wait for it to complete. This is a simple
way to run a program; however, the program spends too much time
waiting for responses. In async code, you call the first stock API, then the
second, and the third, and you continue until you get results from one of

182

CHAPTER 7 UTILIZE NEW PYTHON FEATURES

those APIs. You collect the results and continue calling other stock APIs
instead of waiting for the results.

In this section, you will explore async programming in Python so you
can understand how to use it. These are the three main building blocks of
Python async programming:

e The main task of the event loop is to manage different
tasks and distribute them for execution. The event loop
registers each task and takes care of the flow control
between these tasks.

e Coroutines are functions that schedule an event loop to
run. An await releases the flow of control back to the
event loop.

o Futures represent the result of a task that may or
may not have been executed. This result may be an
exception.

Introducing async in Python

To achieve async paradigm in Python programming, Python has
introduced two main components.

o asyncio: This is the Python package that allows an API

to run and manage coroutines.

e async/await: Python has introduced two new keywords
to work with async code. They help you to define
coroutines.

Basically, Python now has the capability to run in two different ways,
either asynchronously or synchronously. Depending on which way you
choose, you should think differently when you design your code because
the functionality and behavior of code is different. These styles also have

183

CHAPTER 7 UTILIZE NEW PYTHON FEATURES

different libraries from each other. In other words, both the style and the
syntax of asynchronous and synchronous coding are different from each
other.

To illustrate this point, if you are making HTTP calls, you can’t use the
blocking requests library; therefore, you might want to consider using
aiohttp to make HTTP calls. Similarly, if you are working with the Mongo
driver, you can’t rely on synchronous drivers like mongo-python. You have
to use an asynchronous driver like motor to access MongoDB.

In the synchronous world, there is no easy way to achieve concurrency
or parallelism in Python. However, there are options to run code in
parallel using the thread model of Python; however, in the asynchronous
world (don’t confuse this with parallelism), things have changed for the
better. Now everything runs in an event loop, which lets you run several
coroutines at once. These coroutines run synchronously until they hit
await and then they pause, giving control to the event loop. The other
coroutine will have a chance to perform an action, or some other thing will
happen.

It’s also important to note that you can’t mix async and sync code
in the same function. As an example, you can’t use await with a sync
function.

There are couple of things you should be aware of before diving into
asynchronous programming, especially in the Python world.

e Insynchronous programming, when you want to halt
the execution or make a program not do anything,
you usually use the Python time.sleep(10) function.
However, in the asynchronous world, this won’t work
as you expect. You should be using await asyncio.
sleep(10); this doesn’t return control to the event loop,
and it can hold up the entire process. Nothing else will
happen, which might be a good thing considering this

184

CHAPTER 7 UTILIZE NEW PYTHON FEATURES

makes it harder for a race condition to happen when
code is moving from one await call to another.

If you use blocking code in an asynchronous function,
Python won’t complain about you using it; however,
things will slow down painfully. Also, Python has
debug mode, which will warn you about things that are
blocking for too long with common errors.

You might need to consider having duplicate code
when you are writing asynchronous and synchronous
code in the same codebase. It might not be possible
in most of the cases that you use the same library or
helper for both async and sync code.

While writing asynchronous code, you should assume
that the control flow at the time of execution might be
lost as compared to the full control of synchronous
code. Especially when you have multiple coroutines
that are running in your code, multiple things are
happening.

As you can imagine, debugging gets harder in the
asynchronous world. There are no good tools or
techniques as of now for debugging.

Testing async code is not very convenient in Python.
There is a lack of good libraries to test async code. You
might see some libraries that are trying to achieve
this, but they are not that mature as in some other
programming languages like JavaScript.

Using async keywords of Python in synchronous code
like await inside a synchronous function will give you a
syntax error.

185

CHAPTER 7 UTILIZE NEW PYTHON FEATURES

It’s also important to change your mind-set about designing your code
asynchronously. If you have both async and sync code in your codebase,
then you have to see them differently. Anything inside async def is async
code, and everything else is synchronous code.

There are two cases when you should consider using async code.

o Calling async code from async code, you can use all the
Python keywords like await and async to fully utilize
Python async coding.

e Calling async code from sync code is now possible
with Python 3.7 by just calling the run() function in
asyncio.

Overall, writing async code is not as easy as writing synchronous code
in Python. The Python async model is based on concepts such as events,
callbacks, transports, protocols, and futures. The good news is that the
asyncio library is evolving, and each release is being improved. Python
asynciois here to stay!

Note Before writing any async code, make sure you get in the right
mind-set about writing the code in an async way, especially when
you have a synchronous programming background. There will be lots
of times you feel like you can’t figure async programming out. Using
async code in small bits and introducing it into your codebase with
minimal impact is a good way to start using it. Having good tests for
async code will make sure that the changes in your codebase don’t
break existing functionality. Things are moving fast in the async world
of Python for the better. So, keep an eye on the new release of Python
for all the new features in async programming.

186

CHAPTER 7 UTILIZE NEW PYTHON FEATURES

How It Works

I have talked about some of the background of asyncio features, so let’s
now see how asyncio works in the real world. Python introduced the
asyncio package to write async code. The package provides two keys,
async and await. Let’s dive into a simple async example to see how Python
async actually works. See Listing 7-1.

Listing 7-1. Async, Simple Hello Example
import asyncio

async def hello(first print, second print):
print(first print)
await asyncio.sleep(1)
print(second print)

asyncio.run(hello("Welcome", "Good-bye"))
Welcome
Good-bye

Listing 7-1 shows some simple asyncio code; it first prints Welcome
and then after one second prints Good-bye. Let’s see how this works.
First asyncio.run() calls the async function hello with two parameters
passed in: Welcome and Good-bye. When the hello function is called, it first
prints first_print and then waits for one second to print second_print.
This behavior might look like synchronous code; however, getting into
the details might surprise you and will help you to understand how the
asynchronous code actually works. Let’s first understand some of the
terms being used here.

187

CHAPTER 7 UTILIZE NEW PYTHON FEATURES

Coroutine Function

Any function that is defined as async def can be called a coroutine in
Python. Here, async def hello(first print, second print) could be
called a coroutine function.

Coroutine Object

The object returned by calling a coroutine function is called a coroutine
object. You will see examples later where it might be clearer what the
difference is between a coroutine function and a coroutine object in the
real world.

asyncio.run()

This function is part of the asyncio module. This is the main entry point
for any async code and should be called only once. It does a couple of
things.

o It hasresponsibility to run the passed coroutine, which
is running the async def hello coroutine function in
the previous example.

o Italso manages the asyncio event loop. This basically
creates a new event loop and closes it at the end.

await

await is a keyword that passes function control back to the event loop and
suspends the execution of the coroutine. In the previous example, when
Python encounters the await keyword, it suspends the hello coroutine
execution for one second and passes control back to the event loop, which
resumes after one second.

Before going into detail, let’s look at one more simple example and see
what happens. await usually suspends execution of a coroutine function

188

CHAPTER 7 UTILIZE NEW PYTHON FEATURES

until whatever it’s waiting for. When the result of the coroutine is returned,
the execution resumes. There are some rules for await.

o Itcanbe used only inside the async def function.

o Ifyoudefine it in a normal function, it will raise an
exception.

e To call a coroutine function, you must wait for the
results to come back.

e When you use something like await func(), it’s
required that func() be an object that is awaitable,
which means it should be either another coroutine
function or an object that defined an __await_ ()
method that returns an iterator.

Let’s now see a more useful example, as shown in Listing 7-2, where
you will try to run things concurrently and utilize the async feature.

Listing 7-2. asyncio Running Two Tasks

import asyncio
import time

async def say something(delay, words):
print(f"Before: {words}")
await asyncio.sleep(delay)
print(f"After: {words}")

async def main():
print(f"start: {time.strftime('%X')}")

await say something(1, "First task started.")
await say something(1, "Second task started.")

print(f"Finished: {time.strftime('%X')}")
asyncio.run(main())

189

CHAPTER 7 UTILIZE NEW PYTHON FEATURES
Here is the result:

start: 11:30:11

Before: First task started.
After: First task started.
Before: Second task started.
After: Second task started.
Finished: 11:30:13

Here, you are running the same coroutine two times by calling the
coroutine function say something two times and waiting for both versions
to finish. As you will notice in the result, the say_something coroutine
runs first and waits for one second and then finishes the coroutine. Then
itis called again by the main() coroutine to perform another task, which
is to print a second task after one second. This is not what you want when
using async; it still looks like synchronous code is running. The main
idea behind async code is that you can run say_something two times
concurrently.

Let’s convert this code and run it concurrently, as shown in Listing 7-3.
You might notice some significant changes in the code compared to the
previous listing.

Listing 7-3. asyncio Running Code Concurrently
import asyncio

import time

async def say something(delay, words):
print(f"Before: {words}")
await asyncio.sleep(delay)
print(f"After: {words}")

190

CHAPTER 7 UTILIZE NEW PYTHON FEATURES

async def main():
print(f"Starting Tasks: {time.strftime('%X')}")
taskl = asyncio.create task(say something(1, "First task
started"))
task2 = asyncio.create_task(say something(2, "Second task
started"))

await taski
await task2

print(f"Finished Tasks: {time.strftime('%X')}")
asyncio.run(main())
Here is the result:

Starting Tasks: 11:43:56
Before: First task started
Before: Second task started
After: First task started
After: Second task started
Finished Tasks: 11:43:58

As you can see in the result, this function is running the same
coroutines with different parameters concurrently, which is what you
wanted to do to run things concurrently.

Let’s analyze what happened in this example:

o Thesay_something coroutine starts with the
parameter’s first task, called taski.

o It then suspends the execution for one second as it
encounters the await keyword.

e Once await is encountered by taski, it suspends the
running coroutine and returns the control to the event
loop.

191

CHAPTER 7 UTILIZE NEW PYTHON FEATURES

e Another task called taskz2 is created by wrapping the
coroutine’s function say_something inside create_
task with parameters.

e When the second task, task2, starts running, it
encounters the await keyword similar to task1 in the
async def say something coroutine.

e Then it makes task2 suspend for two seconds and
returns control to the event loop.

e Now the event loop resumes the first task (task1)
because asyncio.sleep has finished (which is sleeping
for one second).

e When task taskl completes the work, the second task,
task2, resumes the task and finishes it.

The first thing you might have noticed here is asyncio.create_task(),
which makes the function run the coroutine concurrently as an asyncio
task.

Tasks

Whenever any coroutine function is called using a method like asyncio.
create_task(), that coroutine is automatically scheduled to run soon.

Tasks help you to run your coroutine functions concurrently, and
Python calls those running coroutines fasks in the Python asyncio world.
Let’s look at a simple example of creating a task using the asyncio library;
see Listing 7-4.

Listing 7-4. Simple Task Creation Example
import asyncio

async def value(val):
return val

192

CHAPTER 7 UTILIZE NEW PYTHON FEATURES

async def main():
Creating a task to run concurrently
You can create as many task as possible here
task = asyncio.create task(value(89))

This will simply wait for task to finish
await task

asyncio.run(main())

Another way to create tasks and wait for all of them to complete is to
use the asyncio.gather function. asyncio.gather has the capability to
run all the coroutine functions as tasks and wait for their results before
returning to the event loop.

Let’s look at a simple example; see Listing 7-5.

Listing 7-5. Using asyncio.gather to Run Tasks Concurrently

import asyncio
import time

async def greetings():
print("Welcome")
await asyncio.sleep(1)
print("Good By")

async def main():
await asyncio.gather(greetings(), greetings())

def say greet():
start = time.perf counter()
asyncio.run(main())
elapsed = time.perf counter() - start
print(f"Total time elapsed: {elapsed}")

asyncio.run(say greet())

193

CHAPTER 7 UTILIZE NEW PYTHON FEATURES
When you run this code, you will see something like this:

Welcome
Welcome
Good By
Good By
Total time elapsed: 1.006283138

Let’s try to understand how the previous code is running using
asyncio.gather. When you run this code, you will notice that Welcome
appears on the console two times and then Good By runs two times. There
is slight delay between printing two Welcome and two Good By messages.

When you call the async main() function from say greet(), thenit’s
the event loop’s job to talk to the greetings() function, and executing
greetings() can be called a task.

In the previous code, you have two tasks running that can execute the
greetings() function.

One of the topics that I haven't talked about is the await keyword. This
is one of the important keywords in asyncio programming in Python. Any
object that you can use with await can be called an awaitable object. It's
also important to have an understanding of awaitable objects because it
will give you a better picture of how the asyncio library operates and how
to switch between different tasks in Python.

Awaitable Objects

As already mentioned, any object that you use with await is called an
awaitable object. Most of the asyncio APIs accept awaitable objects.
Awaitable objects have the following types in asynchronous code.

Coroutines

I already touched on the concept of coroutines in the previous section. Here
you will further explore this and see how it’s one of the awaitable types.

194

CHAPTER 7 UTILIZE NEW PYTHON FEATURES

All coroutine functions are awaitable, so they can be awaited from
other coroutines. You can also define a coroutine as a subroutine, but it
can exit without destroying the state in the async world. See Listing 7-6.

Listing 7-6. Coroutine Awaiting from Another Coroutine
import asyncio

async def mult(first, second):
print(f"Calculating multiply of {first} and {second}")
await asyncio.sleep(1)
num mul = first * second
print(f"Multiply of {num_mul}")
return num_mul

async def sum(first, second):
print(f"Calculating sum of {first} and {second}")
await asyncio.sleep(1)
num _sum = first + second
print(f"Sum is {num_sum}")
return num_sum

async def main(first, second):
await sum(first, second)
await mult(first, second)

asyncio.run(main(7, 8))
Here is the result:

Calculating sum of 7 and 8

Sum is 15

Calculating multiply of 7 and 8
Multiply of 56

195

CHAPTER 7 UTILIZE NEW PYTHON FEATURES

As you will notice in the example, you are calling coroutines multiple
times and using a coroutine with the await keyword.

Tasks

The coroutine is scheduled to run when it is wrapped in a task using the
asyncio.create_task() method of asyncio. Most of the time, if you are
working with async code, you are dealing with the create task method to
run your coroutine concurrently. See Listing 7-7.

Listing 7-7. create_task Helping to Schedule a Coroutine to Run
import asyncio

async def mul(first, second):
print(f"Calculating multiply of {first} and {second}")
await asyncio.sleep(1)
num_mul = first * second
print(f"Multiply of {num mul}")
return num_mul

async def sum(first, second):
print(f"Calculating sum of {first} and {second}")
await asyncio.sleep(1)
num_sum = first + second
print(f"Sum is {num_sum}")
return num_sum

async def main(first, second):
sum_task = asyncio.create task(sum(first, second))
mul task = asyncio.create task(sum(first, second))

await sum_task
await mul task

asyncio.run(main(7, 8))

196

CHAPTER 7 UTILIZE NEW PYTHON FEATURES
Here is the result:

Calculating sum of 7 and 8
Calculating sum of 7 and 8
Sum is 15
Sum is 15

As you can see in this example, you are running two different
coroutines concurrently by leveraging the asyncio method asyncio.
create task for creating tasks.

Once a task has been created, you use the await keyword to run the
newly created task concurrently. Once both tasks are completed, you send
the result to an event loop.

Futures

Futures are awaitable objects that represent a future result of an
asynchronous operation. A coroutine needs to wait until the Future object
returns the response or completes the operation. Mostly, you won'’t be
using a Future object explicitly in your code. However, the Future object
has been implicitly taken care of by asyncio.

When a future instance is being created, that means it’s not completed
yet but will be some time later in the future.

Future has methods like done() and cancel(). You mostly don’t need
to write code like this, though, but having an understanding of the Future
object is essential.

Future objects implement the _await () method, and the job of the
Future object is to hold a certain state and result.

Future has the following statuses:

o PENDING: This specifies that a Future is waiting to
complete.

e CANCELLED: As mentioned, a Future object can be
canceled using the cancel method.

197

CHAPTER 7 UTILIZE NEW PYTHON FEATURES

e FINISHED: There are two ways a Future object can be
completed: as Future.set_result() or as an exception
with Future.set_exception().

Listing 7-8 shows an example of a Future object.

Listing 7-8. Future Object
from asyncio import Future

future = Future()
future.done()

Here is the result:
False

It might be a good time to learn more about asyncio.gather, as you
might now have better understanding of how awaitable methods work in
the asyncio world.

Note Here | cover only the gather method; however, | advise you
to look at other asyncio methods as well to see what their syntax
looks like. Mostly, you will get an idea of which kind of input these
functions require and why.

Its syntax looks like this:
asyncio.gather(*aws, loop=None, return_exceptions=False)

aws could be one coroutine or a list of coroutines that are scheduled
to a task. When all the tasks are completed, the asyncio.gather method
aggregates them and returns the result. It runs the task as per the order of
those awaitable objects.

198

CHAPTER 7 UTILIZE NEW PYTHON FEATURES

By default, the value of return_exceptions is False, which means if
any of the tasks return exceptions, other tasks that are running currently
won't be halted and will continue to run.

If the value of return_exception is True, it will be considered a
successful result and will be aggregated in the result list.

Timeouts

Beside of raising an exception, you can do some kind of timeout when you
are waiting for tasks to complete.

asyncio has a method called asyncio.wait for(aws, timeout, *)
that you can use to set a timeout for the task to run. If a timeout occurs, it
cancels the task and raises the exception as asyncio.TimeoutError. The
timeout value can be None or float or int; if the timeout is None, it blocks
until the Future object is completed.

Listing 7-9 shows an example of an async timeout.

Listing 7-9. Async Timeout
import asyncio

async def long time taking method():
await asyncio.sleep(4000)
print("Completed the work")

async def main():
try:
await asyncio.wait for(long time taking method(),
timeout=2)
except asyncio.TimeoutError:
print("Timeout occurred")

asyncio.run(main())

>> Timeout occurred

199

CHAPTER 7 UTILIZE NEW PYTHON FEATURES

In Listing 7-9, the method long_time taking method takes around
4,000 seconds; however, you have set the timeout for the Future object to
two seconds, so it goes to asyncio.TimeoutError after two seconds if the
results are not available.

Note The methods discussed in this section are the most common
in asyncio code; however, there are couple other libraries and
methods that are present in the asyncio library that are less
common or for more advanced scenarios. You can take a look the
Python official documentation if you are interested in learning more
about asyncio.

Async Generators

Async generators make it possible to use yield in the async function. So,
any async function that contains yield can be called an async generator.
The idea of having an async generator is to replicate what the synchronous
yield does. The only difference is that you can call that function as async.

Async generators certainly improve the performance of generators
compared to the synchronous yield. As per the Python documentation,
asynchronous generators are 2.3 times faster than synchronous generators.
See Listing 7-10.

Listing 7-10. Async Generators
import asyncio

async def generator(limit):
for item in range(limit):
yield item
await asyncio.sleep(1)

200

CHAPTER 7 UTILIZE NEW PYTHON FEATURES

async def main():
async for item in generator(10):
print(item)

asyncio.run(main())

This will print items 1 to 9 within a one-second difference . This
example shows how you can use async generators in your code within
async coroutines.

Async Comprehensions

The Python async functionality provides a facility to implement async
comprehension similar to the way synchronous code has comprehension
for list, dict, tuple, and set. In other words, async comprehension is
similar to using comprehension in async code.

Let’s look at the example in Listing 7-11, which shows how you can
utilize async comprehension.

Listing 7-11. Async Comprehension
import asyncio

async def gen power two(limit):
item = 0
while item < limit:
yield 2 ** item
item += 1
await asyncio.sleep(1)

async def main(limit):
gen = [item async for item in gen_power two(limit)]
return gen

print(asyncio.run(main(5)))

201

CHAPTER 7 UTILIZE NEW PYTHON FEATURES

This will print a list of numbers from 2 to 16; however, you have to wait
for five seconds to see the results as it will complete all the tasks and then
return the result.

Async lterators

You have already seen some examples of iterators such as asyncio.gather,
which is one form of iterator.

In Listing 7-12, you can take a look at an iterator using asyncio.as_
completed(), which gets tasks as they complete.

Listing 7-12. async Iterator Using as_completed
import asyncio

async def is odd(data):
odd even = []
for item in data:
odd_even.append((item, "Even") if item % 2 == 0 else
(item, "0dd"))
await asyncio.sleep(1)
return odd even

async def is prime(data):
primes = []
for item in data:
if item <= 1:
primes.append((item, "Not Prime"))
if item <= 3:
primes.append((item, "Prime"))
if item % 2 == 0 or item % 3 == O:
primes.append((item, "Not Prime"))
factor = 5
while factor * factor <= item:

202

CHAPTER 7 UTILIZE NEW PYTHON FEATURES

if item % factor == 0 or item % (factor + 2) ==
primes.append((item, "Not Prime"))
factor += 6
await asyncio.sleep(1)
return primes

async def main(data):
odd task = asyncio.create task(is odd(data))
prime task = asyncio.create task(is prime(data))
for res in asyncio.as _completed((odd task, prime task)):
compl = await res
print(f"completed with data: {res} => {compl}")

asyncio.run(main([3, 5, 10, 23, 90]))
Here is the result:

completed with data: <coroutine object as_completed.. wait for_
one at 0x10373dcc8>

=> [(3, '0dd"), (5, '0dd"), (10, 'Even'), (23, '0dd'), (90,
"Even’)]

completed with data: <coroutine object as_completed.. wait for_
one at 0x10373dd48>

=> [(3, 'Prime'), (3, 'Not Prime'), (10, 'Not Prime'), (90,
"Not Prime'), (90, 'Not Prime')]

As you can see in the result for Listing 7-12, both tasks are running
concurrently and getting the prime and odd/even numbers status based
on the list passed in to both coroutines.

You can create similar tasks when using the asyncio.gather function
by just using asyncio.gather instead of asyncio.as_completed, as shown
in Listing 7-13.

203

CHAPTER 7 UTILIZE NEW PYTHON FEATURES

Listing 7-13. Using asyncio.gather for Iterating on a Task
import asyncio

async def is odd(data):
odd _even = []
for item in data:
odd_even.append((item, "Even") if item % 2 == 0 else
(item, "0dd"))
await asyncio.sleep(1)
return odd even

async def is prime(data):

primes = []
for item in data:
if item <= 1:

primes.append((item, "Not Prime"))
if item <= 3:
primes.append((item, "Prime"))
if item % 2 == 0 or item % 3 == O:
primes.append((item, "Not Prime"))
factor = 5
while factor * factor <= item:
if item % factor == 0 or item % (factor + 2) ==
primes.append((item, "Not Prime"))
factor += 6
await asyncio.sleep(1)
return primes

async def main(data):
odd task = asyncio.create task(is odd(data))
prime task = asyncio.create task(is prime(data))
compl = await asyncio.gather(odd task, prime task)

204

CHAPTER 7 UTILIZE NEW PYTHON FEATURES

print(f"completed with data: {compl}")
return compl

Here is the result:

asyncio.run(main([3, 5, 10, 23, 90]))

completed with data:

[[(3, '0dd'), (5, '0Odd'), (10, 'Even'), (23, '0Odd'), (90,
"Even')], [(3, 'Prime'), (3, 'Not Prime'), (120, 'Not Prime'),
(90, 'Not Prime'), (90, 'Not Prime')]]

You might notice that you don’t need to write the loop because
asyncio.gather does that for you; it collects all the resulting data and
sends it back to the caller.

Third-Party Libraries to Consider for Async Code

Besides asyncio, there are couple of third-party libraries that can achieve
the same goals. Most of these third-party libraries try to overcome some of
the issues that you saw in asyncio.

However, considering the continuous improvements in the Python
asyncio library, I suggest using asyncio for your project unless you need
something that asyncio totally lacks.

Let’s take a look at some of the third-party libraries available for
asynchronous code.

Curio

Curio is a third-party library that allows you to perform concurrent I/O
using Python coroutines. It’s based on a task model that provides advanced
handling of interaction between threads and processes. Listing 7-14 shows
a simple example of writing async code using the Curio library.

205

CHAPTER 7 UTILIZE NEW PYTHON FEATURES

Listing 7-14. Curio Example
import curio

async def generate(limit):
step = 0
while step <= limit:
await curio.sleep(1)
step += 1

if _name__ == " main_":
curio.run(generate, 10)

This will generate 1 to 10 numbers in an async fashion. Curio starts the

kernel by calling run() and defines a task by using a method such as async

def.

A task should be run inside the Curio kernel, which has the

responsibility to run until there is no task to run.

Things to remember while using Curio is that it runs an async function

as a task, and every task needs to be run inside the Curio kernel.

Let’s look at one more example of the Curio library, which actually

runs multiple tasks. See Listing 7-15.

Listing 7-15. Curio Multiple Tasks
import curio

async def generate(limit):
step = 0
while step <= limit:
await curio.sleep(1)
step += 1

async def say hello():
print("Hello")
await curio.sleep(1000)

206

CHAPTER 7 UTILIZE NEW PYTHON FEATURES

async def main():
hello task = await curio.spawn(say hello)
await curio.sleep(3)

gen_task = await curio.spawn(generate, 5)
await gen_task.join()

print("Welcome")
await hello task.join()
print("Good by")

if name_ ==" main_"':
curio.run(main)

As you might have already guessed, this shows the process of creating
and joining the tasks. There are two main concepts to grasp here.

The spawn method takes a coroutine as an argument and launches the
new hello task task.

The join method waits for a task to finish before returning to the
kernel.

I'hope this has helped give you some idea of how Curio can achieve
concurrency in Python. You can check the Curio official documentation
for more details.

Trio

Trio is a modern and open source library like Curio. It promises to make
it easier to write async code in Python. Some of the features that are
noteworthy in Trio are the following:

o Ithasagood scalability mechanism.

e It canrun 10,000 tasks simultaneously.

207

CHAPTER 7 UTILIZE NEW PYTHON FEATURES

e Trio has been written in Python, which might be useful
to developers who want to take a look under the hood
to understand how things work.

o [Itis easier to get started quickly because the Trio
documentation is really great. If you want to look for a
specific feature, it’s all documented nicely.

Let’s take a quick look at a simple example of Trio to get a feel for the
Trio async code. See Listing 7-16.

Listing 7-16. Trio, Simple Async Code
import trio

async def greeting():
await trio.sleep(1)
return "Welcome to Trio!"

trio.run(greeting)
>> Welcome to Trio!

Asyou can seg, it’s really easy to understand what’s going on with the
code. Trio runs the async function using the run() method, which starts
the greeting async function execution, then suspends the execution for
one second, and finally returns the result.

Let’s look at a little more useful example where you can run multiple
tasks with Trio.

Let’s convert the Listing 7-13 asyncio version of the is_odd and is_
prime async functions to Trio so you can understand better the use of Trio.
See Listing 7-17.

208

CHAPTER 7 UTILIZE NEW PYTHON FEATURES
Listing 7-17. Trio Running Multiple Tasks
import trio

async def is odd(data):
odd _even = []
for item in data:
odd_even.append((item, "Even") if item % 2 == 0 else
(item, "0dd"))
await trio.sleep(1)
return odd even

async def is prime(data):

primes = []
for item in data:
if item <= 1:

primes.append((item, "Not Prime"))
if item <= 3:
primes.append((item, "Prime"))
if item % 2 == 0 or item % 3 == O:
primes.append((item, "Not Prime"))
factor = 5
while factor * factor <= item:
if item % factor == 0 or item % (factor + 2) ==
primes.append((item, "Not Prime"))
factor += 6
await trio.sleep(1)
return primes

async def main(data):
print("Calculation has started!")
async with trio.open_nursery() as nursery:

209

CHAPTER 7 UTILIZE NEW PYTHON FEATURES

nursery.start soon(is_odd, data)
nursery.start soon(is prime, data)

trio.run(main, [3, 5, 10, 23, 90])

As you might have noticed, you haven’t changed much in the is_prime
and is_odd async functions because they work similarly here to asyncio.

The main difference here is the in main() function. Instead of calling
asyncio.as_completed, you are using the trio.open nursery method,
which gets the nursery object. nursery starts running the async coroutines
using the function nursery.start_soon.

Once nursery.start_soon wraps the async functions is_prime and
is_odd, these two tasks start running in the background.

The async with statement’s last block forces the main() function to
stop and wait for all coroutines to finish; then it exits from nursery.

Once you run above example in Listing 7-17, you might notice that it
runs like the asyncio example, where the is_prime and is_odd functions
run concurrently.

Note Curio and Trio are two notable libraries for writing async code
at the time of writing this book. Having a good understanding of
asyncio will help you to quickly jump on any third-party library.

| suggest having a good understanding of asyncio before you opt for
any third-party library because underneath most of the libraries are
using some of Python async features.

Typing in Python

Python is a dynamic language, so you usually do not need worry about
defining types while writing code in Python. If you are using a language
like Java or .NET, you have to be aware of the types even before compiling
code; otherwise, these languages will throw error.

210

CHAPTER 7 UTILIZE NEW PYTHON FEATURES

Data types help while debugging and reading a large codebase.
However, there are languages like Python and Ruby that give you the
flexibility and freedom not to bother about data types and instead focus on
the business logic.

Typing is one of the topics in the dynamic language world where some
developers love types and some don’t like to use them.

Python has types available in the form of the typing module, so I
suggest giving them a try in your project to see whether they make sense
for you.

I find them useful while writing code, especially while debugging and
documenting the code.

Types in Python

Since Python 3, you can use types in your code. However, types are
optional in Python. When you run your code, it doesn’t check for types.

Even if you define the wrong types, Python won’t complain about it. If
you want to make sure you are writing the correct types, though, you can
consider using a tool such as mypy, which complains if you don’t have the
right types.

Now Python allows you to add types in your code by simply adding :
<data_types>. See Listing 7-18.

Listing 7-18. Adding Types in Python

def is_key present(data: dict, key: str) -> bool:
if key in data:
return True
else:
return False

Here you are looking for a key in a dictionary by passing a dictionary
and a key. The function also defines the types of parameters passed as

211

CHAPTER 7 UTILIZE NEW PYTHON FEATURES

data: dictandkey: strandreturnstypesas-> bool. This is mostly
what you need to do to write types in Python.

Python understands this syntax and assumes you have written the right
types without verifying them. However, as a developer, it gives you an idea
about what types are being passed to a function.

You can use all data types natively available in Python without using
any other module or library. Python supports types like 1list, dict, int,
str, set, tuple, etc., without the need for any other module. However,
there might be cases where you need more advanced types, which you will

see in the next section.

typing Module

For advanced use, Python has introduced a module called typing,
which gives you many more types to add to your codebase. It might take
some initial effort to get used to the syntax and types, but once you get
an understanding of the module, you might feel that it makes your code
cleaner and more readable.

There is a lot of ground to cover, so let’s jump straight into it. The
typing module gives you the fundamental types such as Any, Union, Tuple,
Callable, TypeVar, Generic, and much more. Let’s briefly talk about some
of these types to get idea about them.

Union

If you don’t know beforehand what type will be passed to a function but
the function expects to get one of the types from a limited set of types, then
you can use Union. Here’s an example:

from typing import Union

def find user(user_id: Union[str, int]) -> None:
isinstance(user_id, int):

212

CHAPTER 7 UTILIZE NEW PYTHON FEATURES

user id = str(user id)
find user by id(user id)

Here, user_id can be str or int, so you can use Union to make sure
your function expects either user_id as str or int.

Any

This is a special kind of type; every other type is consistent with Any. It has
all the values and all methods. You can consider using this type if you don’t
know which type this particular function accepts at runtime.

from typing import Any
def stream data(sanitize: bool, data: Any) -> None:
if sanitize:

send_to pipeline for processing(data)

Tuple

As you might guess by its name, this is a type for tuples. The only difference
is that you can define the types contained by the tuple.

from typing import Tuple

def check fraud users(users id: Tuple[int]) -> None:
for user id in users id:
try:
check fraud by id(user id)
exception FraudException as error:

213

CHAPTER 7 UTILIZE NEW PYTHON FEATURES

TypeVar and Generics

If you want to define your own types or rename the specific types, you can
utilize TypeVar from typing to do that. This is useful to make your code
more readable and define types for your custom classes.

This is a more advanced concept of typing. Most of the time, you
might not need it because you will find that the typing module gives you
enough types to play with.

from typing import TypeVar, Generics

Employee = TypeVar("Employee")
Salary = TypeVar

def get _employee payment(emp: Generics[Employee]) -> :

Optional

Optional can be used when you suspect type None will also be passed as a
value instead of a defined type. So, instead of writing as Union[str, None],
you could simply write Optional[str].

from typing import Optional

def get user info by id(user_id: Optional[int]) -»
Optional[dict]:
if user_id:
get data = query to db with user id(user_id)
return get data
else:
return None

This was an introduction to the typing module in Python. There are
lots of other types available in the typing module that you might want

214

CHAPTER 7 UTILIZE NEW PYTHON FEATURES

to use in your existing codebase. You can refer to the Python official
documentation to learn more.
https://docs.python.org/3/library/typing.html

Do Data Types Slow Code?

Using the typing module or types in general won't affect your code’s
performance. However, the typing module provides a method called
typing.get _type_hints to return type hints for an object, which can be
used by third-party tools to check for the types of an object. Python doesn’t
type check these at runtime, so this doesn’t affect your code at all.
As per Python PEP 484"
While the proposed typing module will contain some building
blocks for runtime type checking—in particular the get_type_hints()
Junction—third party packages would have to be developed to
implement specific runtime type checking functionality, for example

using decorators or metaclasses. Using type hints for performance
optimizations is left as an exercise for the reader.

How Typing Helps to Write Better Code

Typing can help you do static code analysis to catch type errors before you
send your code to production and prevent you from some obvious bugs.

There are tools like mypy, which you can add to your toolbox as part of
your software life cycle. mypy can check for correct types by running against
your codebase partially or fully. mypy also helps you to detect bugs such as
checking for the None type when the value is returned from a function.

Typing helps to make your code cleaner. Instead of documenting your
code using comments, where you specify types in a docstring, you can use
types without any performance cost.

'https://www.python.org/dev/peps/pep-0484/

215

https://docs.python.org/3/library/typing.html
https://www.python.org/dev/peps/pep-0484/

CHAPTER 7 UTILIZE NEW PYTHON FEATURES

If you are using an IDE like PyCharm or VSCode, the typing module
also helps you in code completion. As you all know, early error catching
and clean code are important for any large project to sustain in the long

term.

Typing Pitfalls

There are some pitfalls you should be aware of while you are using the
typing module of Python.

o Itis not well documented. Type annotations are not
well documented. It may be difficult to figure out how
to write the correct types when writing custom classes
or advanced data structures. This can be difficult when
you are starting out with the typing module.

o Types are not strict. Because type hints are not
strict, you can’t guarantee a variable is of the type
its annotation claims to be. In that case, you are not
improving the quality of code. So, it’s left up to the
individual developer to write the right types. mypy
might be a solution here to check for types.

o There is no support for third-party libraries. When
you are using a third-party library, you might find
yourself pulling your hair out as there might be lots
of cases where you don’t know the correct types of
specific third-party tools such as with a data structure
or class. You might end up using any in those cases.
mypy also doesn’t support all those third-party libraries
to check for you.

216

CHAPTER 7 UTILIZE NEW PYTHON FEATURES

Note The typing module certainly is a good step in the right
direction, but there might be lot of improvement needed in the
typing module. However, using typing right way will certainly help
you find some subtle bugs and type errors. Using types with tools like
mypy will certainly help to make your code cleaner.

super() Method

The super () method syntax now is easier to use and more readable. You
can use the super () method for inheritance by declaring it as follows:

class PaidStudent(Student):
def int (self):
super(). init (self)

Type Hinting

As I mentioned, Python has a new module called typing, which gives you
type hints in your code.

import typing

def subscribed users(limit of users: int) -> Dict[str, int]:

217

CHAPTER 7 UTILIZE NEW PYTHON FEATURES

Better Path Handling Using pathlib

pathlib is a new module in Python that helps you to read files, join paths,
display directory trees, and other features.

With pathlib, a file path can be represented by a proper Path object,
and then you can perform a different action on that Path object. It has
features to find the last modified file, create a unique file name, display a
directory tree, count files, move and delete files, get specific components of
afile, and create paths.

Let’s look at an example where the resolve() method finds the full
path of the file, as shown here:

import pathlib

path = pathlib.Path("error.txt")
path.resolve()
>>> PosixPath("/home/python/error.txt")

path.resolve().parent == pathlib.Path.cwd()
>>> False

print() Is a Function Now

print() is a function now. In the previous version, it was a statement.
e Old:print "Sum of two numbers is", 2 + 2

o New: print("Sum of two number is", (2+2))

f-string

Python has introduced a new and improved way to write strings, called an
[f-string. This makes the code much more readable compared to previous
versions like the % format and format methods.

218

CHAPTER 7 UTILIZE NEW PYTHON FEATURES

user_id = "skpl"

amount = 50

f"{user_id} has paid amount: ${amount}"
>>> skpl has paid amount: $50

One more reason to use an f-string is that it’s faster than its previous
versions.
According to PEP 498%
F-strings provide a way to embed expressions inside string literals,
using a minimal syntax. It should be noted that an f-string is really
an expression evaluated at run time, not a constant value. In Python
source code, an f-string is a literal string, prefixed with f, which con-

tains expressions inside braces. The expressions are replaced with
their values.

Keyword Only Arguments

Python now allows you to define keyword-only arguments using * as a

function parameter.

def create report(user, *, file type, location):

create report("skpl", file type="txt", location="/user/skpl")

Now when you call create_report, you have to provide a keyword
argument after *. You can force other developers to use positional
arguments for calling the function.

*https://www.python.org/dev/peps/pep-0498/

219

https://www.python.org/dev/peps/pep-0498/

CHAPTER 7 UTILIZE NEW PYTHON FEATURES

Preserving the Order of a Dictionary

Now a dictionary preserves the order of insertion. Previously, you had to
use OrderDict to do that, but now the default dictionary can do it.

population raking = {}
population raking["China"] =
population_raking["India"]

|
N -

population raking["USA"] = 3
print(f"{population raking}")
{'China': 1, 'India': 2, "USA': 3}

Iterable Unpacking

Now Python gives you the flexibility to unpack iteratively. This is a cool
feature where you can unpack variables iteratively.

[1]
"P" b ="C", ¢ =[5, 6]

*a, = [1] # a
(a, b), *c = 'PC', 5, 6 # a
*a, = range(10)

Check out the official Python documentation for even more new
features in Python.

Summary

This chapter focused on new major features such as asyncio and typing
and minor features such as pathlib and order dictionary. However, there
are plenty of other new exciting features in Python version 3.

It’s always a good practice to check out the Python documentation
for all the improvements. Python has great documentation that is really
easy to navigate and that helps you understand any library, keyword, or
module. I hope this chapter has given you enough motivation to try these
features in your existing codebase or new project.

220

CHAPTER 8

Debugging and
Testing Python Code

If you are writing code, especially for production, it’s really important that
the code has good logging features and test cases. Both make sure that you
can track errors and fix any issues that arise. Python has a rich set of built-
in libraries for debugging and testing the Python code that I'll cover in this
chapter.

Note As with any programming language, Python has a lot of

tools to add logs and tests in code. Having a good understanding of
those tools is important in a professional environment where running
software in production makes money for you. Losing money because
of errors or bugs in your production code can be disastrous for a
company or product. Therefore, you need to have logging and testing
in place before you push your code to production. It also helps to
have some kind of metric and performance tracking tool so you can
get an idea of how things will be when your software is used in the
real world by hopefully millions of users.

© Sunil Kapil 2019 221
S. Kapil, Clean Python, https://doi.org/10.1007/978-1-4842-4878-2_8

CHAPTER 8 DEBUGGING AND TESTING PYTHON CODE

Debugging

Debugging is one of the most important skills to have as a developer. Most
developers don’t put in enough effort to learn debugging; they usually
just try different things when it’s needed. Debugging should not be an
afterthought process; it’s a technique to rule out different hypotheses
before coming to any conclusion about an actual issue in the code. In this
section, you will explore techniques and tools to debug your Python code.

Debugging Tools

In this section, I will go over pdb, ipdb, and pudb.

pdb

pdb is one of the most useful command-line tools for debugging Python
code. pdb provides stack information and parameter information and
jumps around the code commands inside the pdb debugger. To set up the
debugger in the Python code, you can write something like this:

import pdb
pdb.set trace()

Once control hits the line where the pdb debugger is enabled, you can
debug your code using the pdb command-line options. pdb gives you the
following commands:

e h:Help command

e w: Prints the stack trace

e d: Moves the current frame count down
e u: Moves the current frame count up

¢ s:Executes the current line

222

CHAPTER 8 DEBUGGING AND TESTING PYTHON CODE

¢ n: Continues execution until the next line
e unt [line number]: Continues execution until a line number
o 1:Continues execution until the current function returns

There are other command-line options in pdb. You can check out all of
them at https://docs.python.org/3/1ibrary/pdb.html.

ipdb

Similar to pdb, ipdb is a debugger command-line tool. It gives you the
same power as pdb with the added advantage that you can use ipdb on
IPython. You can add the ipdb debugger as follows:

import ipdb
ipdb.set trace()

Once it’s installed, you can check all the available commands in ipdb.
Mostly, these are similar to pdb, as follows:

ipdb> ?

Documented commands (type help <topic>):

EOF bt cont enable jump pdef psource run unt
a c continue exit 1 pdoc q S until
alias cl d h list pfile quit step up
args clear debug help n pinfo r tbreak W
b commands disable ignore next pinfo2 restart u whatis
break condition down j p pp return unalias where

223

https://docs.python.org/3/library/pdb.html

CHAPTER 8 DEBUGGING AND TESTING PYTHON CODE

Miscellaneous help topics:

exec pdb

Undocumented commands:

retval 1rv

You can find more information about ipdb at https://pypi.org/
project/ipdb/
ipdb has the same command-line options as pdb, as shown here:

e h:Help command

w: Prints the stack trace

¢ d: Moves the current frame count down

e U: Moves the current frame count up

o s: Executes the current line

¢ n: Continues execution until the next line

e unt [line number]: Continues execution until a line
number

e T:Continues execution until the current function returns

pudb

pudb is little feature-rich debugging tool that has more features than pdb
and ipdb. It’s a visual debugger based in the console. You can debug
the code when you are writing it instead of jumping to a command line
like with pdb or ipdb. It more looks like a GUI debugger but runs on the
console, which makes it lightweight compared to GUI debuggers.

224

https://pypi.org/project/ipdb/
https://pypi.org/project/ipdb/

CHAPTER 8 DEBUGGING AND TESTING PYTHON CODE
You can add the debugger in code by adding the following line:

import pudb
pudb.set trace()

It has good documentation. You can find out more information
about pudb and all of its features at https://documen.tician.de/pudb/
starting.html.

You can use the following keys when you are in the pudb debugging
interface:

e n: Executes the next command

e s:Stepsinto a function

e c: Continues execution

e b:Sets a breakpoint on the current line

o e:Shows the traceback from a thrown exception

e @:Opens a dialog to either quit or restart the running
program

o 0: Shows the original console/standard output screen
o m:Opens a module in a different file
e L:Goestoaline

e l:Goes to the Python command-line subwindow at the
bottom of the screen

o ?:Displays the help dialog that includes a complete
listing of shortcut commands

o <SHIFT+V>: Switches the context to the variable
subwindow on the right of the screen

225

https://documen.tician.de/pudb/starting.html
https://documen.tician.de/pudb/starting.html

CHAPTER 8 DEBUGGING AND TESTING PYTHON CODE

e <SHIFT+B>: Switches the context to the breakpoints
subwindow on the right of the screen

e <CTRL+X>: Toggles contexts between the lines of code
and the Python command line

As an example, once you are in the pudb display, pressing b will set a
breakpoint on that line where execution stops after continuing with the c
shortcut. One useful option is to set up a variable condition under which the
breakpoint applies. Once the condition is satisfied, control will stop at that point.

You can also configure pudb by creating a file like ~/.config/pudb/
pudb.cfg, as given here:

[pudb]

breakpoints weight = 0.5
current stack frame = top
custom_stringifier =
custom_theme =

display = auto
line_numbers = True
prompt_on_quit = True
seen_welcome = e027
shell = internal

sidebar width = 0.75
stack weight = 0.5
stringifier = str

theme = classic
variables weight = 1.5
wrap_variables = True

226

CHAPTER 8 DEBUGGING AND TESTING PYTHON CODE

breakpoint

breakpoint is a new keyword introduced in Python 3.7. It gives you the
capability to debug the code. breakpoint is similar to the other command-
line tools discussed. You can write the code as follows:

X = 10
breakpoint()
y = 20

breakpoint also can be configured using the PYTHONBREAKPOINT
environment variable to provide the debugger with a method to be called
by the breakpoint () function. This is helpful because you can change the
debugger module easily without making any code changes. As an example,
if you want to disable debugging, you can use PYTHONBREAKPOINT=0.

Use the Logging Module Instead of print
in Production Code

As mentioned, logging is an important part of any software product, and
Python has a library called logging. Logging also helps you understand
the flow of the code. If you have logging available, it gives you an idea of
where things are failing by providing a stack trace. You can use the logging
library simply by importing the library as follows:

import logging
logging.getLogger(__name_).addHandler(logging.NullHandler())

The logging library has five standard levels that indicate the severity of
events. See Table 8-1.

227

CHAPTER 8 DEBUGGING AND TESTING PYTHON CODE

Table 8-1. Logging Standard Levels

Level Numeric Value
CRITICAL 50
ERROR 40
WARNING 30
INFO 20
DEBUG 10
NOTSET 0

So, you can write something like Listing 8-1.

Listing 8-1. Logging Configuration

import logging
from logging.config import dictConfig

logging config = dict(

version=1,
formatters={
"f': {'format':
"%(asctime)s %(name)-12s %(levelname)-8s
%(message)s'}
})
handlers={

'h': {'class': 'logging.StreamHandler',
"formatter': 'f',
'level': logging.DEBUG}
b

228

CHAPTER 8 DEBUGGING AND TESTING PYTHON CODE
root={
"handlers': ['h'],
"level’: logging.DEBUG,
1
)

dictConfig(logging config)
logger = logging.getLogger()
logger.debug("This is debug logging")

Let’s say you want to capture the whole stack trace of the log; you can
do something like Listing 8-2.

Listing 8-2. Stack Trace Logging
import logging

a =90
b=0

try:
c=al/b

except Exception as e:
logging.error("Exception ", exc_info=True)

Classes and Functions in Logging

The logging module has a number of classes and functions that can
be used to define your own logging class and configure logging for your
specific needs and project.

229

CHAPTER 8 DEBUGGING AND TESTING PYTHON CODE
The most commonly used classes defined in the logging module are
the following:

o Logger: This is part of the logging module and is called
by the application directly to get the logger object. It
has a number of methods, listed here:

o setlLevel: This sets the level of logging. When the
logger is created, it is set to NOSET.

e 1isEnableFor: This method checks the logging level
set by logging.disable(level).

o debug: This logs the message with level DEBUG on
this logger.

e info: This logs the message with INFO on this logger.

e warning: This logs the message with WARNING on
this logger.

o error: This logs the message with level ERROR on
this logger.

o critical: Thislogs a message with level CRITICAL
on this logger.

e log: This logs the message with an integer level on
this logger.

o exception: This logs a message with level ERROR on
this logger.

e addHandler: This adds the specified handler to this
logger.

e Handler:Handler is a base class of other useful
handler classes such as StreamHandler, FileHandler,
SMTPHandler, HTTPHandler, and more. These subclasses

230

CHAPTER 8 DEBUGGING AND TESTING PYTHON CODE

send the logging outputs to the corresponding
destinations, like sys.stdout or a disk file.

createlock: This initializes the thread lock that
can be used to serialize access to underlying I/O
functionality.

setLevel: This sets the handler to a level.

flush: This ensures that the logging output has
been flushed.

close: Subclasses of Handler ensure that this gets
called from the overridden close() method.

format: This does the formatting for the output
logging.

emit: Actually, this logs the specified logging
message.

Formatter: This is where you specify the format of

the output by specifying a string format that lists the

attributes that the output should contain.

format: This formats the string.

formatTime: This formats the time. It's used with
time.strftime() to format the creation time of the
record. The defaultis '%Y-%m-%d %H:%M:%S, uuu',
where uuu is in milliseconds.

formatException: This formats the specific
exception information.

formatStack: This formats stack information on the

string.

231

CHAPTER 8 DEBUGGING AND TESTING PYTHON CODE

You can also configure logging for a running application, as shown in
Listing 8-3.

Listing 8-3. Logging Configuration File

[loggers]
keys=root,samplelLogger

[handlers]
keys=consoleHandler

[formatters]
keys=sampleFormatter

[logger root]
level=DEBUG
handlers=consoleHandler

[logger samplelogger]
level=DEBUG
handlers=consoleHandler
qualname=samplelLogger
propagate=0

[handler consoleHandler]
class=StreamHandler
level=DEBUG
formatter=sampleFormatter
args=(sys.stdout,)

[formatter sampleFormatter]
format=%(asctime)s - %(name)s - %(levelname)s - %(message)s

Now you can use this config file, as shown in Listing 8-4.

232

CHAPTER 8 DEBUGGING AND TESTING PYTHON CODE
Listing 8-4. Use Logging Configuration

import logging
import logging.config

logging.config.fileConfig(fname="1logging.conf', disable
existing loggers=False)

Get the logger specified in the file
logger = logging.getlLogger(__name_)

logger.debug('Debug logging message')

This is the same configuration as the YAML file shown in Listing 8-5.

Listing 8-5. Logging Configuration in YAML

version: 1
formatters:
simple:
format: '%(asctime)s - %(name)s - %(levelname)s - %(message)s’
handlers:
console:
class: logging.StreamHandler
level: DEBUG
formatter: simple
stream: ext://sys.stdout
loggers:
samplelogger:
level: DEBUG
handlers: [console]
propagate: no
root:
level: DEBUG
handlers: [console]

233

CHAPTER 8 DEBUGGING AND TESTING PYTHON CODE

You can read this file as shown in Listing 8-6.

Listing 8-6. Use Logging Configuration YAML File

import logging
import logging.config
import yaml

with open('logging.yaml', 'r') as f:
config = yaml.safe load(f.read())
logging.config.dictConfig(config)

logger = logging.getlLogger(name)
logger.debug('Debug logging message')

You can find more information about logging at https://docs.
python.org/3/1library/logging.html.

Use the metrics Library for Identifying
Bottlenecks

I have seen lot of developers who don’t understand the value of metrics
in production code. Metrics collect different data points from code, such
as the number of errors in a specific part of code or the response time of a
third-party API. Metrics also can be defined to capture specific data points
such as the number of users currently logged in to a web application.
Metrics are usually collected per request, per second, per minute, or on a
regular interval to monitor a system over time.

There are a lot of third-party applications for collection metrics
on production code such as New Relic, Datadog, and so on. There are

234

https://docs.python.org/3/library/logging.html
https://docs.python.org/3/library/logging.html

CHAPTER 8 DEBUGGING AND TESTING PYTHON CODE

different kinds of metrics that you can collect. You can categorize them as
performance metrics or resource metrics. Performance metrics could be as
follows:

o Throughput: This is the amount of work the system is
doing per unit time.

o Error: This is the number of error results or rate of

eITors per unit time.

e Performance: This represents the time required to
complete a unit of work.

Besides these points, there are several data points that you can use
to capture the performance of your application. Other than performance
metrics, there are metrics like resource metrics that you can use to get
resource metrics like this:

o Utilization: This is the percent of time a resource is
busy.

o Availability: This is the time that a resource responded
to a request.

Before using metrics, consider which kind of data point you want to
use to track your application. Using metrics will definitely make you more
confident about your application, and you can measure your application
performance.

How IPython Is Helpful

IPython is a REPL tool for Python. IPython helps you to run your code
at the command line and test it without much configuration. IPython
is a really intelligent and mature REPL; it has a lot of features like tab
completion and magic functions like %timeit, %run, and so on. You can

235

CHAPTER 8 DEBUGGING AND TESTING PYTHON CODE

also get the history and debug your code inside IPython. There are some
debugging tools that explicitly work on IPython like ipdb.
The main features of IPython are as follows:

o Comprehensive object introspection
o Input history, which is persistent across sessions

o Caching of output results during a session with
automatically generated references

o Extensible tab completion, with support by default
for completion of Python variables and keywords, file
names, and function keywords

o Extensible system of “magic” commands for controlling
the environment and performing many tasks related to
IPython or the operating system

e Arich configuration system with easy switching
between different setups (simpler than changing the
$PYTHONSTARTUP environment variable every time)

o Session logging and reloading

o Extensible syntax processing for special-purpose
situations

o Access to the system shell with a user-extensible alias
system

o Easily embeddable in other Python programs and GUIs

o Integrated access to the pdb debugger and the Python
profiler

236

CHAPTER 8 DEBUGGING AND TESTING PYTHON CODE
The command-line interface inherits the previously listed functionality
and adds the following:
o Real multiline editing thanks to prompt_toolkit
» Syntax highlighting as you type

o Integration with a command-line editor for a better
workflow

When used with a compatible front end, the kernel allows the

following:

o Obijects that can create a rich display of HTML, images,
LaTEX, sound, and video

o Interactive widgets with the use of the ipywidgets
package

You can install IPython as follows:
pip install ipython

Getting started with IPython is really easy; you can just type the
command ipython, and you will be in the ipython command shell, as
shown here:

‘Python 3.7.0
Type ‘copyright, ‘credits’ or ‘license’ for more information
IPython 6.4.0 -- An enhanced Interactive Python. Type ‘?’ for help.
In[l1]:

Now you can start using the ipython command like this:

In [1]: print("hello ipython")

You can find more information about IPython at https://ipython.
readthedocs.io/en/stable/interactive/index.html.

237

https://ipython.readthedocs.io/en/stable/interactive/index.html
https://ipython.readthedocs.io/en/stable/interactive/index.html

CHAPTER 8 DEBUGGING AND TESTING PYTHON CODE

Testing

For any software application, having test code is as important as having
application code. Testing makes sure you are not deploying buggy code.
Python has a lot of useful libraries that make it easier to write different
kinds of tests.

Why Testing Is Important

Testing is as important as your actual code. Testing makes sure that the
shipping code works as expected. You should start writing testing code
as soon as you start writing the first line of your application code. Testing
should not be an afterthought and should not be there just for the sake of
testing. Testing should make sure that every piece of code results in the
expected behavior.

There are a couple of reasons you should consider writing tests as early
as possible in your software development life cycle.

o To make sure that you are build the right thing, it’s
important to have tests in your software life cycle as
soon as you start writing code. It’s hard to make sure
that you are in the right path if you don’t have tests to
check expected behavior.

e You want early detection of any breaking changes.
When you are making changes in one part of the code,
there is a high probability that it will break some other
part of the code. You want to detect that breaking code
early instead of after going to production.

238

CHAPTER 8 DEBUGGING AND TESTING PYTHON CODE

o Testing also plays a role in documenting your code.
Tests are a really useful way to document your code
without specifically writing documentation for every
part of the code.

e Another advantage of having tests is for onboarding
new developers. When a new developer joins the team,
they can start getting familiar with the code by running
and reading the tests, which can give you an idea of the
flow of the code.

If you want to make sure that your code works as you expect and your
users have a good time using the software, you should use tests in your
production code.

Pytest vs. UnitTest

Python has lot of amazing testing libraries. Pytest and UnitTest are two
of the most famous libraries. In this section, you will look at the main
differences between these two libraries so you can decide which one you
want to use to test your code.

Both are popular libraries; however, there are multiple differences
between them that make people choose one over another. Let’s look some
of the main features you want to consider before deciding which one to
choose.

Pytest is a third-party library, and UnitTest is a built-in library in
Python. To use Pytest, you have to install it, but this is not a big deal.

pip install pytest

UnitTest needs to inherit TestCase and needs to have a class to write
and run tests. Pytest is more flexible in this regard, as you can write tests by
function or by class. Listing 8-7 shows UnitTest, while Listing 8-8 shows Pytest.

239

CHAPTER 8 DEBUGGING AND TESTING PYTHON CODE
Listing 8-7. UnitTest Example 1
from unittest import TestCase

class SimpleTest(TestCase):
def test simple(self):
self.assertTrue(True)

def test tuple(self):
self.assertEqual((1, 3, 4), (1, 3, 4))

def test str(self):
self.assertEqual('This is unit test', 'this is")

Listing 8-8. Pytest Example 1
import pytest

def test simple():
assert 2 == 2

def test tuple():
assert (1, 3, 4) == (1, 3, 4)

As you might have noticed, UnitTest uses the TestCase instance
method; however, Pytest has a built-in assert. Pytest asserts are easier to
read without knowing about different assert methods. However, UnitTest
assertions are more configurable and have more methods to assert.

You can see all the assert methods of UnitTest at https://docs.
python.org/3/1library/unittest.html#assert-methods and of Pytest at
https://docs.pytest.org/en/latest/reference.html

Listing 8-9 shows UnitTest, and Listing 8-10 shows Pytest.

240

https://docs.python.org/3/library/unittest.html#assert-methods
https://docs.python.org/3/library/unittest.html#assert-methods
https://docs.pytest.org/en/latest/reference.html

CHAPTER 8 DEBUGGING AND TESTING PYTHON CODE

Listing 8-9. UnitTest Example 2
from unittest import TestCase

class SimpleTest(TestCase):
def not_equal(self):
self.assertNotEqual(2, 3) # 2 !=3

def assert false(self):
X =0
self.assertFalse(x) # bool(x) is false

def assert in(self):
self.assertIn(5, [1, 3, 8, 5]) #5 in [1, 3, 8, 5]

Listing 8-10. Pytest Example 2
import pytest

def not_equal():
assert 2 1= 2

def assert false():
X =20
assert x is 0

def assert in():
assert 5 in [1, 3, 8, 5]

You might notice that Pytest is easier to assert compared to UnitTest.
Pytest is also more readable compared to UnitTest.

Pytest highlights errors with code snippets, while UnitTest doesn'’t
have that feature; it shows a one-line error with no highlights. This might
change in future versions, but currently Pytest has better error reporting.
Listing 8-11 shows the Pytest console output, while Listing 8-12 shows the
UnitTest console output.

241

CHAPTER 8 DEBUGGING AND TESTING PYTHON CODE

Listing 8-11. Pytest Console Output

>>> py.test simple.py

============================= test session starts =============
platform darwin -- Python 3.7.0 -- py-1.4.20 -- pytest-2.5.2
plugins: cache, cov, pep8, xdist

collected 2 items

simple.py .F

test simple

def test simple():
print("This test should fail")
assert False
assert False

simple.py:7: AssertionError

Listing 8-12. UnitTest Console Output

Traceback (most recent call last):
File "~<stdin>~", line 11, in simple.py
ZeroDivisionError: integer division or modulo by zero

Pytest has setup methods like fixture that you can configure for
modules, sessions, and functions. UnitTest has the methods setUp and
tearDown. Listing 8-13 shows the Pytest fixture, while Listing 8-14 shows
the UnitTest fixture.

242

CHAPTER 8 DEBUGGING AND TESTING PYTHON CODE
Listing 8-13. Pytest Fixture
import pytest

@pytest.fixture

def get _instance():
s = CallClassBeforeStartingTest()
s.call function()
return s

@pytest.fixture(scope="session")

def test data():
return {"test data": "This is test data which will be use
in different test methods"}

def test simple(test data, get instance):
assert test instance.call another function(test data) is
not None

Listing 8-14. UnitTest Tests Using Setup and Teardown
from unittest import TestCase

class SetupBaseTestCase(TestCase):
def setUp(self):
self.sess = CallClassBeforeStartingTest()

def test simple():
self.sess.call function()

def tearDown(self):
self.sess.close()

As you will notice, Pytest and UnitTest have different ways of handling
the test setup. These are some of the main differences between Pytest and
UnitTest. However, both are feature-rich tools.

243

CHAPTER 8 DEBUGGING AND TESTING PYTHON CODE

I usually prefer to use Pytest because it is easy to use and readable.
However, if you are comfortable using UnitTest, please don’t feel you have
to use Pytest. Use whatever you are comfortable with. Choosing a testing
tool is secondary; the primary goal should be having good tests for your
code!

Property Testing

Property testing is way to test functions where you provide numbers
of input. You can read more about it at https://hypothesis.works/
articles/what-is-property-based-testing/.

Python has a library called hypothesis that is perfect for writing
property testing. hypothesis is easy to use, and if you are familiar with
Pytest, it is even easier.

You can install hypothesis as follows:

pip install hypothesis

You can see an example of property testing using hypothesis, as
shown in Listing 8-15.

Listing 8-15. Property Testing

from hypothesis import given
from hypothesis.strategies import text

@given(text())
def test decode inverts encode(s):
assert decode(encode(s)) == s

Here, hypothesis provides all kinds of text to test the function test_
decode_inverts encode instead of you providing that set of data to decode
the text.

244

https://hypothesis.works/articles/what-is-property-based-testing/
https://hypothesis.works/articles/what-is-property-based-testing/

CHAPTER 8 DEBUGGING AND TESTING PYTHON CODE

How to Create a Report for Testing

There are lots of tools that will generate a test report. In fact, Pytest and
UnitTest will do this. Test reports help to understand the test results and
are useful to track the progress of test coverage as well. However, here I am
strictly talking about the test report generation.

When you run a test, report generation can give you the full overview
of running a test with the pass/fail results. You can use one of the following
tools to do this:

pip install pytest-html
pytest -v tests.py --html=pytest report.html --self-contained-
html

One tool called nose has built-in report generation tools. If you are
using nose, you can generate tests by running the command as follows:

nosetests -with-coverage --cover-html

With UnitTest, you can use TextTestRunner, as shown in Listing 8-16.

Listing 8-16. UnitTest with TextTestRunner Part 1

class TestBasic(unittest.TestCase):
def setUp(self):
set up in here

class TestA(TestBasic):
def first test(self):
self.assertEqual(10,10)

def second test(self):
self.assertEqual(10,5)

245

CHAPTER 8 DEBUGGING AND TESTING PYTHON CODE

Let’s assume you have the previous test to run. UnitTest provides you
with a method called TextTestRunner to generate the report for the test, as
shown in Listing 8-17.

Listing 8-17. UnitTest with TextTestRunner Part 2
import test

test suite = unittest.TestlLoader().loadTestFromModule(test)
test results = unittest.TextTestRunner(verbosity=2).run(test
suite)

If you run this code, it will generate the report for the TestBasic class.

Besides the tools discussed here, there are plenty of Python third-party
libraries that provide a lot of flexibility in terms of the way to generate
reports, and they are very powerful tools.

Automate Unit Tests

Automating unit tests means that unit tests run without you having to
start them. Having the capability to run a unit test while merging with the
master or main code means you can make sure that new changes don’t
break any existing feature or functionality.

As I have already discussed, having unit tests for any codebase is really
important, and you'll want to run them using some kind of CI/CD flow.
This also assumes that you are using some kind of version control like Git
or third-party tools like GitHub or GitLab to store your code.

The ideal flow to run tests is as follows:

1. Commit changes using version control.

2. Push the changes to some kind of version control.

246

CHAPTER 8 DEBUGGING AND TESTING PYTHON CODE

3. Trigger the unit tests from version control using
some third-party tool like Travis, which runs the
tests automatically and posts the results to version

control.

4. Version control should not allow merging to the
master until a test passes.

Getting Your Code Ready for Production

Before going to production, there are things that are important to make
sure that shipped code is high-quality and works as expected. Every team
or company has different steps they take before deploying changes or

new code to production. I won’t discuss any one ideal process to deploy

to production. However, you can introduce some things in your current
deployment pipeline to make your Python code better and less error prone
in production.

Run Unit and Integration Tests in Python

As already mentioned, it’s important to have unit tests. Besides unit tests,
having integration tests helps immensely, especially if you have a lot of
moving part in the codebase.

As you know, unit tests help to check a specific unit of the code and
make sure that unit of code works. With integration tests, it’s important to
test if one part of the code works with another part of the code without any
error. Integration tests help you to check that the code works as a whole.

247

CHAPTER 8 DEBUGGING AND TESTING PYTHON CODE

Use Linting to Make Code Consistent

A code linter analyzes your source code for potential errors. Linters solve
the following issues in your code:

o Syntax errors
e Structural problems like the use of undefined variables
e Code style guideline violations

Code linting gives you information that can be easily skimmed. It’s
really useful for code especially for a big project when there is a lot of
moving code and all the developers who are working on code can agree on
a specific code style.

There is a lot of Python linting code. Which type you should use is up
to you or your team of developers.

There are a lot of advantages to using linting.

o It helps you write better code by checking it against
coding standards.

o It prevents you from making obvious bugs such as
syntax errors, typos, bad formatting, incorrect styling,
and so on.

o Itsaves your time as a developer.

o Ithelps all developers agree on specific code standards.
o It'sreally easy to use and configure.

e It's easyto setup.

Let’s look at some of the popular linting tools available in Python. If
you are using a modern IDE tool like VSCode, Sublime, or PyCharm, you
will find that these tools already have some kind of linting available.

248

CHAPTER 8 DEBUGGING AND TESTING PYTHON CODE

flake8

flake8 is one of the most popular linting tools. It’s a wrapper of pep8,
pyflakes, and circular complexity. It has a low rate of false positives.
You can easily set it up by using this command:

pip install flake8

pylint

pylint is another great choice for linting. It needs a bit more setup and
gives more false positives compared to flake8, but if you need more
rigorous linting checks on your code, pylint might be right tool for you.

Use Code Coverage to Check for Tests

Code coverage is a process where you check for a number of tests written
for code (or the code that is touched by different tests to be precise). Code
coverage makes sure you have enough tests to be sure about the quality of
the code. Code coverage should be one part of your software development
life cycle; it continuously raises the quality standard of your code.

Python has tool called Coverage.py, which is a third-party tool to check
for test coverage. You can install it as follows:

pip install coverage

On installation of Coverage.py, a Python script called coverage is
placed in your Python script directory. Coverage.py has a number of
commands that determine the action performed.

e run: Runs a Python program and collects execution data
o report: Reports coverage results

e html: Produces annotated HTML listings with coverage
results

249

CHAPTER 8 DEBUGGING AND TESTING PYTHON CODE

e xml: Produces an XML report with coverage results

e annotate: Annotates source files with coverage results
e erase: Erases previously collected coverage data

o combine: Combines a number of data files

o debug: Gets diagnostic information

You can run a coverage report as follows:
coverage run -m packagename.modulename argl arg2

There are other tools that are directly integrated with version control
systems like GitHub. These tools can be more convenient for bigger teams
because the checks can be run as soon as new code is submitted for
review. Having code coverage as part of the software life cycle makes sure
you are not taking any chances with your production code.

Use virtualenv for Your Project

virtualenv is one of the tools that should be part of every developer’s
toolchain. You use it to create isolated Python environments. When
you install virtualenv and create an environment for your project,
virtualenv creates a folder that contains all the executables that your
project needs to run.

You can install virtualenv as follows:

pip install virtualenv
I suggest looking here to get more information about virtualenv:

https://docs.python-guide.org/dev/virtualenvs/

250

CHAPTER 8 DEBUGGING AND TESTING PYTHON CODE

Summary

For any production code, it’s important to have tools that help you to
debug and better monitor your code. As you learned in this chapter,
Python has plenty of tools that give you the capability to better prepare
your code before you deploy it to production. These tools not only help you
stay sane when your application is used by millions of users but also help
you maintain your code for long-term use. Make sure you are leveraging
these tools for your application as investing in these tools will definitely
pay off in the long run. Having the right process when deploying your
application in production is as important as building new features because
it will make sure that your application is high-quality.

251

APPENDIX

Some Awesome
Python Tools

This appendix lists some recommended tools that will help speed up your
development and improve your code quality. You might be using them
already, but if not, I suggest making them part of your code base as these
tools can help developers spot bugs early on and improve code maintenance.

Sphinx

Just like writing unit tests is important to maintaining code quality, having
well-documented code is important to making sure that new developers
who join the project can ramp up quickly without getting lost in the code.
Sphinx can help you document your code easily. You just need to make
sure to add a docstring in your code.

You can install Sphinx as follows:

pip install sphinx
Next, create a docs folder in your project as follows:
project
project name
__init__.py
source_1.py
source_2.py

© Sunil Kapil 2019 253
S. Kapil, Clean Python, https://doi.org/10.1007/978-1-4842-4878-2

https://doi.org/10.1007/978-1-4842-4878-2

APPENDIX ~ SOME AWESOME PYTHON TOOLS

docs
setup.py

From within your docs folder, when you run the sphinx-quickstart
script, the script can perform the necessary setup. This is how you run the
command:

cd docs
sphinx-quickstart

This script creates a number of directories and files within the docs
folder, which will be used to autogenerate documentation from your
source code.

Now you can add a docstring in your code as follows:

Module perform some basic claculation tasks.

class Calculation:

This class performs different calculations.

You can use this class to do various calculations which
make sure that you get the right results.

def init (self):

Calculation initialization method."""
self.current_number = 0

def sum(self, list of numbers):
"""Add provide list of numbers and return sum.

param list of numbers: list of numbers need to added.
type list of numners: list
return: return sum of numbers.

254

APPENDIX ~ SOME AWESOME PYTHON TOOLS

type: int

return sum(list of numbers)

Now if you want to generate an HTML file, you can use the following
command:

make html

This will generate an HTML file as your documentation, based on
comments you added in the code.

Coverage

Coverage helps you to measure the code coverage of your Python code. Its
main purpose is to gauge the effectiveness of tests. It shows you which part
of the code is being tested and generates a report based on your tests. It
supports most major Python versions.

Coverage looks for a . coverage file in your project to read and use
to generate a report for you. You can install Coverage by running the
following command:

pip install pytest-cov

If you are using pytest, then you can run it as follows:
py.test test.py --cov=sample.py

You will need the py.test plug-in for pytest to generate a report using
Coverage. It displays the report as follows:

Name | Stmts | Miss | Cover | Missing |

sample.py | 6 | 0 | 100% |

You can find more information about Coverage at https://coverage.
readthedocs.io/en/latest/index.html.

255

https://coverage.readthedocs.io/en/latest/index.html
https://coverage.readthedocs.io/en/latest/index.html

APPENDIX ~ SOME AWESOME PYTHON TOOLS

pre-commit

If you are using the Git version control system to manage your project,
then a pre-commit hook is one of the tools that should be part of your
commit process. pre-commit hooks are Git hook scripts that run when you
try to commit the code; this helps you to identify various issues before your
submission for code review.

Issues that might be identified include missing semicolons, typos, code
structure issues, poor coding style, complexity, trailing whitespaces, debug
statements, and so on.

By pointing out these issues, you can fix them before submitting for
code review and save the reviewer and the rest of the team time and effort.

You can hook up your linter such as Flake8 or Pylint with pre-commit
to identify all these issues before you submit your code. You can install the
pre-commit package manager as follows:

pip install pre-commit
To add the pre-commit hook, you can create a file as follows:
pre-commit-config.yaml

In this file you can define all the hooks that you want to run before
submitting code.

When you try to commit any code with issues, it errors out all those
issues and won’t allow you to commit before fixing them. This also ensures
that all team members are following a similar style and checking their code
against tools like f1ak8 or pylint.

You can also create your own new hooks and add them as part of the
code submission process. You can learn more about pre-commit here:
https://pre-commit.com/.

256

https://pre-commit.com/

APPENDIX ~ SOME AWESOME PYTHON TOOLS

Pyenv for virtualenv

Pyenv helps you manage different versions of Python with different virtual
environments. You can work with Python versions such as python2.7,
python3.7, python3.38, etc., at the same time on one machine and
switch between them easily. It also can switch your virtual env for you by
changing the directory.

You can install Pyenv by going to https://github.com/pyenv/pyenv-
installer.

Once, you install Pyenv, you can set these lines in your .bashrc file:

export PATH="~/.pyenv/bin:$PATH"
eval "$(pyenv init -)"
eval "$(pyenv virtualenv-init -)"

Now you can explore different Pyenv commands by reading the
documentation at https://github.com/pyenv/pyenv

Jupyter Lab

If you work in the data science field, you might have heard about using
Jupyter or Notebook to run the code in a browser. There is a new tool
available that is an improved version of Notebook and Jupyter called
Jupyter Lab.

You can also consider it as an IDE for Python; it can run all kinds
of Python code. It’s recommended for data science people because
they don’t need to set up several Python virtual environments or debug
virtual environment issues. Using Jupyter Lab saves you from all those
environment issues, and you can focus on writing your code.

You can use pip to install Jupyter Lab for you, as shown here:

python3 -m pip install jupyterlab

257

https://github.com/pyenv/pyenv-installer
https://github.com/pyenv/pyenv-installer
https://github.com/pyenv/pyenv

APPENDIX ~ SOME AWESOME PYTHON TOOLS
Or you can use conda, as shown here:
conda install -c conda-forge jupyterlab

To run it, you can simply write jupyter lab.
This will open your default browser to http://localhost:8888/1ab,
where you can start writing your Python code.

Pycharm/VSCode/Sublime

There are some great IDEs that help you to write your Python code such as
Pycharm by JetBrains, VSCode by Microsoft, or Sublime. These are some of
the notable IDEs that are popular among the developers.

Pycharm comes in community and license versions. VSCode and
Sublime are open source code, and you can use them for free.

All of these are great tools for programming, so it’s a matter of
preference which one you choose. They give you out-of-the-box features
such as IntelliSense, remote debugging, and much more.

Flake8/Pylint

Like every other language, Python has some guidelines to write the code
in a Pythonic way. Tools like Flake8 and Pylint make sure that you are
following all the Python guidelines. These tools are configurable, so you
can modify the checks per your project needs.

You can install Pylint in your virtual environment by pip as follows:

pip install pylint

As mentioned, Pylint is totally configurable. You can use a file like
pylintrc to customize which errors or conventions are important to you.

You can also write your own plug-in to customize it.

258

APPENDIX ~ SOME AWESOME PYTHON TOOLS

Similarly, Flake8 checks for all PEP8 rules in your code and tells you if
you are breaking any.
You can install Flake8 as follows:

pip install flake8

Flake8 also has a configuration file called . flake8 to customize checks
for you per your needs.

You don’t need to install both of them as they are tools to achieve the
same goal, which is to make your code follow the PEP8 rules.

259

Index

A

Abstract class inheritance, 104-106
add_prefix function, 148
all class, 122
Arguments
with keyword, 86
without keyword, 85
Async generators, 200, 201
comprehension, 201, 202
curio, 205-207
iterator, 202-205
third-party libraries, 205
trio, 207, 208, 210
Asynchronous/async
programming, 182, 183
asyncio module, 188
awaitable objects
coroutines, 194, 196
futures, 197-199
tasks, 196, 197
await keyword, 188-192
cases, 186
components, 183
coroutine function, 188
generators, 200 (see also Async
generators)

© Sunil Kapil 2019

task
asyncio.gather, 193, 194
creation, 192
timeouts, 199, 200
working, 187
asyncio.create_task()
function, 192
asyncio.gather function, 203
Automating unit tests, 246, 247
Await keyword
parameters, 191, 192
rules, 189
running code, 190
running task, 189-191

B

Boolean values, 14
breakpoint() function, 227
Built-in libraries

CSV files, 62

datetime and time, 62

_ future_, 64

re, 63

sys and os, 63

tempfile, 63

261

S. Kapil, Clean Python, https://doi.org/10.1007/978-1-4842-4878-2

https://doi.org/10.1007/978-1-4842-4878-2

INDEX

C

Class decorators
__call__method, 152
count class, 153
maintain state, 153
validate parameters, 154, 155
Class docstring, 23, 24

Classes
__init , 97
size, 94, 95

structure, 95, 96

variables, 97
Class method, 98, 106, 107
Code coverage, 249, 250, 255
Code point, 56
Collections module, 66

Counter, 66, 67

defaultDict, 68, 69

deque, 67, 68

namedtuple, 69

orderedDict, 69
Comprehension vs. iterators, 177
contextlib.contextmanager

decorator, 160, 161

Context manager

class, 159, 160

database resources, 161, 162

filelock library, 164

file/socket operations, 155-157

managing files, 158

remote connection, 164, 165

rules, 158

writing test, 162, 163

262

Control structures
def statement, 30
else clause, 32-35
for loop, 29
lambda, 30, 31
list comprehension, 26-29
range, 35, 36
while loop, 33, 34

D

Data structures
built-in functions, 62
(see also Built-in libraries)
sets, 50, 51
str, 56
Unicode, 56, 57
zip, 60, 61
Debugging
breakpoint, 227
ipdb, 223, 224
pdb, 222, 223
pudb, 224, 226
Decorator
additional code, functions, 140
arguments, 148, 149
class methods, 151, 152
converting to uppercase,
passing func, 142, 143
converting to uppercase,
passing string, 142
description, 140
function, creation, 150
functools, 150

INDEX

logging function, 149 finally keyword, 39, 40
to_upper_case function, 144 return, None, 39
use cases, 141, 144 own class, 41, 42
say() function, 146 third-party API, 45, 46
wrapper, 145 try block, 46, 47
DefaultDict, 62, 68, 70, 71 UserNotFoundError, 41, 42
Default dictionary, 220 ValidationError, 42
def square(val) function, 12 ZeroDivisionError, 38
__delete__(set, instance), 136 __exit__ function, 16, 158
Dictionary, 65
merge operations, 73, 74
ordered vs default, 70, 71 F
pprint, 74, 75 file.close() statement, 156
switch keyword, 72, 73 filter method, 26
Docstrings, 18 Flake8, 258, 259
class, 23, 24 f-string, 218, 219
function, 24 Function docstrings, 24
module-level, 21, 22 functool.wrap, 150

multiline docstring, 18, 19

tools, 25, 26 G H
typing module, 19 !
generate_numbers(), 178

Generators, 58, 60, 80-82

E iterator, function, 171
else clause, 33-35 vs. list comprehension, 31, 32
Encoding, 57 read chunk, 176
__enter__function, 16, 158 get_data_from_db method, 48
Epydocs, 25 __get__(self, instance,
Epytext docstrings, 21 owner), 136
except keyword, 44 get_unique_emails, 79
Exceptions, 82-84 get_user_by function, 4

division of numbers, 38 get_user_info function, 4

except clause, 43, 44 Google docstrings, 20

263

INDEX

__init_ method, 106
Instance method, 98
IPython

command shell, 237

features, 236

functionality, 237

installation, 237
isinstance() method, 14
is_prime/is_odd functions, 210
Iterable unpacking, 220
Iterators, 57, 59

class creation, 168

for Loop, 169

MultiplyByTwo, 169

object, 167

Stoplteration, 170

use, 171

read CSV file,
using iterator, 172

read CSV file, using list, 172
read payment information,

using iterator, 173
itertools, 63
combination (), 174
permutations (), 174
product()
count (), 175
groupby (), 176

J

join() method, 10
json library, 64
Jupyter lab, 257, 258

264

K

Keyword-only arguments, 219

L

Lambda, 11, 92, 93
Leak file descriptor, 157
Linting tools, 16, 17
List comprehension, 26
logging library, 64
Logging module, 89, 90
classes and functions, 229
configuration, 228, 232
formatter, 231
handler, 230
logger object, 230
stack trace, 229
standard levels, 227
using config file, 233
YAML, 233, 234

main() function, 210

Maintainability, 115

map method, 26

math lib, 62

Metaclasses, 112, 113
class behavior, 130
__call__ method, 130
usage, 123, 124

__metaclass model, 123

mock.patch function, 163

Module-level docstring, 21, 22

Modules, 111, 112
import classes/functions,
119, 121
__init .pyfile, 116
cart class, 117
different
functionality, 118
payment class, 117
rules, 114, 115
use, 115,116
mongo-python, 184
most_common()
method, 66
Multiple decorators, 147, 148

N

namedtuple, 52, 62, 69
access data, 52, 53
returning data, 53, 55

Naming conventions
classes, 5
constant, 5
function and method

arguments, 5, 6
function names, 3
nonmangling method, 2
private methods, 3
user 1D, 4

__new__method, 124, 125
assign value, 125, 126
validating value, 126, 127

next() function, 80

NumPy/SciPy docstrings, 21

INDEX

O

orderddict, 62
orderedDict, 69-71

P, Q

pathlib, 218
PEPS style guide, 17
Performance/resource
metrics, 235
pickle library, 64
pprint module, 74, 75
pre-commit hook, 256
print() function, 218
Private method, 99
@property decorator, 99-101
Property testing, 244
Public attribute, 107-109
Pycco, 25
Pycharm, 258
Pyenv, 257
Pylint, 258, 259
PyTest
assert methods, 241
console output, 242
fixture, 243
third-party library, 239
Python
adding types, 211, 212
class attribute, 134
__get__example, 134, 135
typing module, 211
any, 213
errors, 215

265

INDEX

Python (cont.)
optional, 214, 215
pitfalls, 216
tuples, 213
TypeVar, 214
union, 212, 213
Pythonic code
context manager, 14, 16
CSViile, 8,9
is/is not, compare, 10, 11
join() method, 10
nested dictionary, 6, 7
return statement, 12
startswith or endswith, 13

R

range function, 35
read_file function, 80, 157
Return None, 86-88
Reusability, 116
route decorator, 141
run() function, 186, 208
Run unit/integration tests
code linter, 248
flake8, 249
pylint, 249

S

say_something coroutine, 191
Scoping, 115

__set__(self, instance, owner), 136
Simplicity, 116

266

Single responsibility
principle (SRP), 94
slice, 13
__slot__method
attribute access, 127-129
dynamic assignment
issue, 130
error, 129
source code/single module, 119
Sphinx, 25, 253-255
sqlite3 Lock, 162
Static method, 98, 102, 103
Sublime, 258
super() method, 217
switch keyword, 72, 73

-

Test-driven development (TDD), 92

Testing exception, 163

Test reports, 245, 246
trio.open_nursery method, 210
try/catch block, 46

Type hints, 217

U

UnitTest, 91
assert methods, 241
built-in library, 239
console output, 242
setup/teardown, 243
UserInformation class, 95

Vv

virtualenv, 250
VSCode, 258

w

with statement, 8, 14, 156, 158, 163
Wrapper function, 145

INDEX

X

xrange, 35

Y,Z

yield keyword, 160, 171, 178
yield from keyword, 179
yield vs. data structure, 180

267

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Pythonic Thinking
	Write Pythonic Code
	Naming
	Variables and Functions
	Classes
	Constants
	Function and Method Arguments

	Expressions and Statements in Your Code
	Embrace the Pythonic Way to Write Code
	Prefer join Instead of In-Place String Concatenation
	Consider Using is and is not Whenever You Need to Compare with None
	Prefer Using is not Instead of not … is
	Consider Using a Function Instead of a Lambda When Binding to an Identifier
	Be Consistent with the return Statement
	Prefer Using ““.startswith() and ””.endswith()
	Use the isinstance() Method Instead of type() for Comparison
	Pythonic Way to Compare Boolean Values
	Write Explicit Code for Context Manager
	Use Linting Tools to Improve Python Code

	Using Docstrings
	Module-Level Docstrings
	Make the Class Docstring Descriptive
	Function Docstrings
	Some Useful Docstring Tools

	Write Pythonic Control Structures
	Use List Comprehensions
	Don’t Make Complex List Comprehension
	Should You Use a Lambda?
	When to Use Generators vs. List Comprehension
	Why Not to Use else with Loops
	Why range Is Better in Python 3

	Raising Exceptions
	Frequently Raised Exceptions
	Leverage finally to Handle Exceptions
	Create Your Own Exception Class
	Handle Only Specific Exceptions
	Watch Out for Third-Party Exceptions
	Prefer to Have Minimum Code Under try

	Summary

	Chapter 2: Data Structures
	Common Data Structures
	Use Sets for Speed
	Use namedtuple for Returning and Accessing Data
	Access the Data
	Return the Data

	Understanding str, Unicode, and byte
	Use Lists Carefully and Prefer Generators
	Use zip to Process a List
	Take Advantage of Python’s Built-in Functions
	collections
	csv
	datetime and time
	math
	re
	tempfile
	itertools
	functools
	sys and os
	subprocess
	logging
	json
	pickle
	__future__

	Take Advantage of Dictionary
	When to Use a Dictionary vs. Other Data Structures
	collections
	Counter
	deque
	defaultdict
	namedtuple
	ordereddict

	Ordered Dictionary vs. Default Dictionary vs. Normal Dictionary
	switch Statement Using Dictionary
	Ways to Merge Two Dictionaries
	Pretty Printing a Dictionary

	Summary

	Chapter 3: Writing Better Functions and Classes
	Functions
	Create Small Functions
	Return Generators
	Raise Exceptions Instead of Returning None
	Add Behavior Using the default and keyword Arguments
	Do Not Return None Explicitly
	Be Defensive While Writing a Function
	Logging
	Unit Test

	Use a Lambda as a Single Expression

	Classes
	Right Size of Class?
	Class Structure
	Class Variables
	__init__
	Special Python Methods
	Class Methods
	Static Methods
	Instance Methods
	Private Methods

	Right Ways to Use @property
	When to Use Static Methods?
	Use Abstract Class Inheritance the Pythonic Way
	Use @classmethod to Access Class State
	Use the public Attribute Instead of private

	Summary

	Chapter 4: Working with Modules and Metaclasses
	Modules and Metaclasses
	How Modules Can Help to Organize Code
	Take Advantage of the __init__ File
	Import Functions and Classes from Modules in the Right Way
	Use __all__ to Prevent Imports

	When to Use Metaclasses
	Use __new__ for Validating Subclasses
	Why __slots__ Are Useful
	Change Class Behavior Using Metaclasses
	Learn About Python Descriptors
	Summary

	Chapter 5: Decorators and Context Managers
	Decorators
	What Are Decorators, and Why Are They Useful?
	Understanding Decorators
	Modify Behavior Using Decorators
	Using Multiple Decorators
	Decorators Accept Arguments
	Consider Using a Library for Decorators
	Class Decorators for Maintaining State and Validating Parameters

	Context Manager
	Context Managers and Their Usefulness
	Understanding Context Managers
	Using contextlib to Build a Context Manager
	Some Practical Examples of Using a Context Manager
	Accessing a Database
	Writing Tests
	Shared Resource
	Remote Connection

	Summary

	Chapter 6: Generators and Iterators
	Take Advantage of Iterators and Generators
	Understanding Iterators
	What Are Generators?
	When to Use Iterators
	Using itertools
	combinations()
	permuations()
	product()
	count()
	groupby()

	Why Generators Are Useful
	List Comprehension vs. Iterators

	Take Advantage of the yield Keyword
	yield from
	yield Is Faster Compared to a Data Structure

	Summary

	Chapter 7: Utilize New Python Features
	Asynchronous Programming
	Introducing async in Python
	How It Works
	Coroutine Function
	Coroutine Object
	asyncio.run()
	await
	Tasks
	Awaitable Objects
	Coroutines
	Tasks
	Futures

	Timeouts

	Async Generators
	Async Comprehensions
	Async Iterators
	Third-Party Libraries to Consider for Async Code
	Curio
	Trio

	Typing in Python
	Types in Python
	typing Module
	Union
	Any
	Tuple
	TypeVar and Generics
	Optional

	Do Data Types Slow Code?
	How Typing Helps to Write Better Code
	Typing Pitfalls

	super() Method
	Type Hinting
	Better Path Handling Using pathlib
	print() Is a Function Now
	f-string
	Keyword Only Arguments
	Preserving the Order of a Dictionary
	Iterable Unpacking
	Summary

	Chapter 8: Debugging and Testing Python Code
	Debugging
	Debugging Tools
	pdb
	ipdb
	pudb

	breakpoint
	Use the Logging Module Instead of print in Production Code
	Classes and Functions in Logging

	Use the metrics Library for Identifying Bottlenecks
	How IPython Is Helpful

	Testing
	Why Testing Is Important
	Pytest vs. UnitTest
	Property Testing
	How to Create a Report for Testing
	Automate Unit Tests
	Getting Your Code Ready for Production
	Run Unit and Integration Tests in Python
	Use Linting to Make Code Consistent
	flake8
	pylint

	Use Code Coverage to Check for Tests
	Use virtualenv for Your Project

	Summary

	Appendix: Some Awesome Python Tools
	Sphinx
	Coverage
	pre-commit
	Pyenv for virtualenv
	Jupyter Lab
	Pycharm/VSCode/Sublime
	Flake8/Pylint

	Index

