

CPython Internals: Your Guide to thePython 3 Interpreter
Anthony Shaw

CPython Internals: Your Guide to the Python 3 Interpreter
Anthony Shaw
Copyright © Real Python (realpython.com), 2012–2021
For online information and ordering of this and other books by RealPython, please visit realpython.com. For more information, pleasecontact us at info@realpython.com.
ISBN: 9781775093343 (paperback)
ISBN: 9781775093350 (electronic)
Cover design by Aldren Santos
Additional editing and proofreading by Jacob Schmitt
“Python” and the Python logos are trademarks or registered trade-marks of the Python Software Foundation, used by Real Python withpermission from the Foundation.
Thank you for downloading this ebook. This ebook is licensed foryour personal enjoyment only. This ebook may not be re-sold orgiven away to other people. If you would like to share this bookwith another person, please purchase an additional copy for eachrecipient. If you’re reading this book and did not purchase it,or it was not purchased for your use only, then please return torealpython.com/cpython-internals and purchase your own copy.Thank you for respecting the hard work behind this book.
Updated 2021-01-25

https://realpython.com/
https://realpython.com/
https://realpython.com/cpython-internals

What Readers Say About CPython Internals: Your Guide tothe Python 3 Interpreter

“It’s the book that I wish existed years ago when I started my Pythonjourney. After reading this book your skills will grow and you will beable solve even more complex problems that can improve our world.”
— Carol Willing, CPython core developer and member of theCPython Steering Council

“The ‘Parallelism and Concurrency’ chapter is one of my favorites. Ihad been looking to get an in depth understanding around this topicand I found your book extremely helpful.
Of course, after going over that chapter I couldn’t resist the rest. I ameagerly looking forward to have my own printed copy once it’s out!
I had gone through your ‘Guide to the CPython Source Code’ articlepreviously, which got me interested in finding out more about the in-ternals.
There are a ton of books on Python which teach the language, but Ihaven’t really come across anything that would go about explainingthe internals to those curious minded.
And while I teach Python to my daughter currently, I have this bookadded in her must-read list. She’s currently studying information sys-tems at Georgia State University.”
—Milan Patel, vice president at (a major investment bank)

“What impresses me the most about Anthony’s book is how it puts allthe steps for making changes to the CPython code base in an easy-to-follow sequence. It really feels like a ‘missing manual’ of sorts.
Diving into the C underpinnings of Python was a lot of fun and itcleared up some longstanding questions marks for me. I found thechapter about CPython’s memory allocator especially enlightening.
CPython Internals is a great (and unique) resource for anybody look-ing to take their knowledge of Python to a deeper level.”
— Dan Bader, author of Python Tricks and editor in chief atReal Python

“This book helped me to better understand how lexing and parsingworks in Python. It’s my recommended source if you want to under-stand it.”
— Florian Dahlitz, Pythonista

“A comprehensive walkthrough of the Python internals, a topic whichsurprisingly has almost no good resource, in an easy-to-understandmanner for both beginners as well as advanced Python users.”
— Abhishek Sharma, data scientist

About the Author
Anthony Shaw is an avid Pythonista and Fellow of the Python Soft-ware Foundation.
Anthony has been programming since the age of 12 and found a lovefor Python while trapped inside a hotel in Seattle, Washington, 15years later. After ditching the other languages he’d learned, Anthonyhas been researching, writing about, and creating courses for Pythonever since.
Anthony also contributes to small and large Open Source projects, in-cluding CPython, as well as being a member of the Apache SoftwareFoundation.
Anthony’s passion lies in understanding complex systems, then sim-plifying them, and teaching them to people.
About the Review Team
Jim Anderson has been programming for a long time in a varietyof languages. He has worked on embedded systems, built distributedbuild systems, done off-shore vendor management, and sat in many,many meetings.
Joanna Jablonski is the executive editor of Real Python. She likesnatural languages just as much as she likes programming languages.Her love for puzzles, patterns, and pesky little details led her to followa career in translation. It was only a matter of time before she wouldfall in love with a new language: Python! She joined Real Python in2018 and has been helping Pythonistas level up ever since.

Contents
Contents 6
Foreword 11
Introduction 13How to Use This Book . 14Bonus Material and Learning Resources 16
Getting the CPython Source Code 20What’s in the Source Code? 21
Setting Up Your Development Environment 23IDE or Editor? . 23Setting Up Visual Studio 25Setting Up Visual Studio Code 27Setting Up JetBrains CLion 32Setting up Vim . 36Conclusion . 40

6

Contents
Compiling CPython 42Compiling CPython on macOS 43Compiling CPython on Linux 45Installing a Custom Version 47A Quick Primer on Make 47CPython’s Make Targets 49Compiling CPython on Windows 52Profile-Guided Optimization 58Conclusion . 60
The Python Language and Grammar 61Why CPython Is Written in C and Not Python 62The Python Language Specification 64The Parser Generator . 69Regenerating Grammar 69Conclusion . 74
Conрguration and Input 76Configuration State . 79Build Configuration . 83Building a Module From Input 84Conclusion . 89
Lexing and ParsingWith Syntax Trees 91Concrete Syntax Tree Generation 92The CPython Parser-Tokenizer 96Abstract Syntax Trees . 101Important Terms to Remember 111Example: Adding an Almost-Equal Comparison Operator . 111Conclusion . 117

7

Contents
The Compiler 118Related Source Files . 119Important Terms . 120Instantiating a Compiler 121Future Flags and Compiler Flags 122Symbol Tables . 123Core Compilation Process 130Assembly . 137Creating a Code Object 141Using Instaviz to Show a Code Object 142Example: Implementing the Almost-Equal Operator 144Conclusion . 150
The Evaluation Loop 151Related Source Files . 152Important Terms . 152Constructing Thread State 153Constructing Frame Objects 154Frame Execution . 162The Value Stack . 165Example: Adding an Item to a List 171Conclusion . 175
Memory Management 177Memory Allocation in C 178Design of the Python Memory Management System 181The CPython Memory Allocator 183The Object and PyMem Memory Allocation Domains . . . 193The Raw Memory Allocation Domain 196Custom Domain Allocators 197Custom Memory Allocation Sanitizers 198The PyArena Memory Arena 201Reference Counting . 202Garbage Collection . 209Conclusion . 219

8

Contents
Parallelism and Concurrency 221Models of Parallelism and Concurrency 223The Structure of a Process 223Multiprocess Parallelism 226Multithreading . 250Asynchronous Programming 265Generators . 265Coroutines . 272Asynchronous Generators 278Subinterpreters . 279Conclusion . 283
Objects and Types 285Examples in This Chapter 286Built-in Types . 287Object and Variable Object Types 288The type Type . 289The bool and long Types 293The Unicode String Type 298The Dictionary Type . 309Conclusion . 315
The Standard Library 316Python Modules . 316Python and C Modules 318
The Test Suite 322Running the Test Suite on Windows 322Running the Test Suite on Linux or macOS 323Test Flags . 324Running Specific Tests 324Testing Modules . 326Test Utilities . 327Conclusion . 328

9

Contents
Debugging 329Using the Crash Handler 330Compiling Debug Support 330Using LLDB for macOS 331Using GDB . 335Using Visual Studio Debugger 338Using CLion Debugger 340Conclusion . 345
Benchmarking, Proрling, and Tracing 346Using timeit for Microbenchmarks 347Using the Python Benchmark Suite for Runtime Benchmarks 349Profiling Python Code with cProfile 355Profiling C Code with DTrace 358Conclusion . 363
Next Steps 364Writing C Extensions for CPython 364Improving Your Python Applications 365Contributing to the CPython Project 366Keep Learning . 369
Appendix: Introduction to C for Python Programmers 371The C Preprocessor . 371Basic C Syntax . 375Conclusion . 382

10

Foreword
A programming language created by a community fos-ters happiness in its users around the world.
— Guido van Rossum, “King’s Day Speech”

I love building tools that help us learn, empower us to create, andmove us to share knowledge and ideas with others. I feel humbled,thankful, and proud when I hear how these tools and Python arehelping you to solve real-world problems, like climate change orAlzheimer’s.
Throughmy four-decade love of programming and problem solving, Ihave spent time learning, writing a lot of code, and sharing my ideaswith others. I’ve seen profound changes in technology as the worldhas progressed from mainframes to cell phone service to the wide-ranging wonders of theWeb and cloud computing. All these technolo-gies, including Python, have one thing in common.
At onemoment, these successful innovations were nothingmore thanan idea. The creators, like Guido, had to take risks and leaps of faithto move forward. Dedication, learning through trial and error, andworking together through many failures built a solid foundation forsuccess and growth.
CPython Internalswill take you on a journey to explore the wildly suc-cessful programming language Python. The book serves as a guideto how CPython works under the hood. It will give you a glimpse ofhow the core developers crafted the language.

11

http://neopythonic.blogspot.com/2016/04/

Contents
Python’s strengths include its readability and the welcoming commu-nity dedicated to education. Anthony embraces these strengths whenexplaining CPython, encouraging you to read the source and sharingthe building blocks of the language with you.
Whydo Iwant to shareAnthony’sCPython Internalswith you? It’s thebook that I wish existed years ago when I started my Python journey.More importantly, I believewe, asmembers of the Python community,have a unique opportunity to put our expertise to work to help solvethe complex real-world problems facing us.
I’m confident that after reading this book, your skills will grow, andyou will be able solve even more complex problems and improve ourworld.
It’s my hope that Anthony motivates you to learn more about Python,inspires you to build innovative things, and gives you confidence toshare your creations with the world.

Now is better than never.
— Tim Peters, The Zen of Python

Let’s follow Tim’s wisdom and get started now.
Warmly,
— Carol Willing, CPython core developer and member of theCPython Steering Council

12

Introduction
Are there certain parts of Python that just seem like magic, like howfinding an item is somuch faster with dictionaries than looping over alist? How does a generator remember the state of variables each timeit yields a value? Why don’t you ever have to allocatememory like youdo with other languages?
The answer is that CPython, themost popular Python runtime, is writ-ten in human-readable C and Python code.
CPython abstracts the complexities of the underlying C platform andyour operating system. It makes threading straightforward and cross-platform. It takes the pain of memory management in C and makes itsimple.
CPython gives the developerwriting Python code the platform towritescalable and performant applications. At some stage in your progres-sion as a Python developer, you’ll need to understand how CPythonworks. These abstractions aren’t perfect, and they’re leaky.
Once you understand how CPython works, you can fully leverage itspower and optimize your applications. This book will explain the con-cepts, ideas, and technicalities of CPython.
In this book, you’ll cover the major concepts behind the internals ofCPython and learn how to:
• Read and navigate the source code
• Compile CPython from source code

13

How to Use This Book
• Make changes to the Python syntax and compile them into yourversion of CPython
• Navigate and comprehend the inner workings of features like lists,dictionaries, and generators
• Master CPython’s memory management capabilities
• Scale your Python code with parallelism and concurrency
• Modify the core types with new functionality
• Run the test suite
• Profile and benchmark the performance of your Python code andruntime
• Debug C and Python code like a professional
• Modify or upgrade components of the CPython library to con-tribute them to future versions

Take your time with each chapter and try out the demos and interac-tive elements. You’ll feel a sense of achievement as you grasp the coreconcepts that will make you a better Python programmer.

How to Use This Book
This book is all about learning by doing, so be sure to set up your IDEearly on by reading the instructions, downloading the code, and writ-ing the examples.
For the best results, we recommend that you avoid copying and past-ing the code examples. The examples in this book took many itera-tions to get right, and they may also contain bugs.
Making mistakes and learning how to fix them is part of the learningprocess. You might discover better ways to implement the examples,try changing them, and see what effect it has.
With enough practice, you’ll master thismaterial—and have fun alongthe way!

14

How to Use This Book
How skilled in Python do I need to be to use thisbook?
This book is aimed at intermediate to advanced Python developers.Every effort has been taken to show code examples, but some inter-mediate Python techniques will be used throughout.
Do I need to know C to use this book?
You don’t need to be proficient in C to use this book. If you’re newto C, then check out the appendix, “Introduction to C for Python Pro-grammers,” for a quick introduction.
How long will it take to рnish this book?
We don’t recommend rushing through this book. Try reading onechapter at a time, trying the examples after each chapter and explor-ing the code simultaneously. Once you’ve finished the book, it willmake a great reference guide for you to come back to in time.
Won’t the content in this book be out of datereally quickly?
Python has been around for more than thirty years. Some parts of theCPython code haven’t been touched since they were originally written.Many of the principles in this book have been the same for ten ormoreyears.
In fact, while writing this book, we discoveredmany lines of code thatwere written by Guido van Rossum (the author of Python) and leftuntouched since version 1.
Some of the concepts in this book are brand-new. Some are even ex-perimental. While writing this book, we came across issues in thesource code and bugs in CPython that were later fixed or improved.That’s part of the wonder of CPython as a flourishing open sourceproject.

15

https://github.com/python/cpython/pulls?q=is%3Apr+author%3Atonybaloney+is%3Amerged+

Bonus Material and Learning Resources
The skills you’ll learn in this book will help you read and understandcurrent and future versions of CPython. Change is constant, and ex-pertise is something you can develop along the way.

Bonus Material and Learning Resources
This book comes with a number of free bonus resources that you canaccess at realpython.com/cpython-internals/resources/. On this webpage you can also find an errata list with corrections maintained bythe Real Python team.
Code Samples
The examples and sample configurations throughout this book willbe marked with a header denoting them as part of the cpython-book-

samples folder:
cpython-book-samples 01 example.py

import this

You can download the code samples at realpython.com/cpython-internals/resources/.
Code Licenses
The example Python scripts associated with this book are licensed un-der a Creative Commons Public Domain (CC0) License. This meansyou’re welcome to use any portion of the code for any purpose in yourown programs.
CPython is licensed under the Python Software Foundation 2.0license. Snippets and samples of CPython source code used in thisbook are done so under the terms of the PSF 2.0 license.

16

https://realpython.com/cpython-internals/resources/
https://realpython.com/cpython-internals/resources/
https://realpython.com/cpython-internals/resources/
https://creativecommons.org/publicdomain/zero/1.0/
https://github.com/python/cpython/blob/master/LICENSE
https://github.com/python/cpython/blob/master/LICENSE

Bonus Material and Learning Resources
Note
The code in this book has been tested with Python 3.9 on Win-dows 10, macOS 10.15, and Linux.

Formatting Conventions
Code blocks are used to present example code:
This is Python code:

print("Hello, World!")

Operating system–agnostic commands follow the Unix-style format:
$ # This is a terminal command:

$ python hello-world.py

(The $ is not part of the command.)
Windows-specific commands have the Windows command-line for-mat:
> python hello-world.py

(The > is not part of the command.)
Command-line syntax follows this format:
• Unbracketed text must be typed as it is shown.
• <Text inside angle brackets> indicates a variable forwhich youmustsupply a value. For example, youwould replace <filename>with thename of a specific file.
• [Text inside square brackets] indicates an optional argument thatyou may supply.

Bold text denotes a new or important term.

17

Bonus Material and Learning Resources
Notes and alert boxes appear as follows:

Note
This is a note filled in with placeholder text. The quick brownfox jumps over the lazy dog. The quick brown Python slithersover the lazy hog.
Important
This is an alert also filled in with placeholder text. The quickbrown fox jumps over the lazy dog. The quick brown Pythonslithers over the lazy hog.

Any references to a file within the CPython source code will be shownlike this:
path to file.py

Shortcuts or menu commands will be given in sequence, like this:
File Other Option

Keyboard commands and shortcuts will be given for both macOS andWindows:
Ctrl + Space

Feedback and Errata
We welcome ideas, suggestions, feedback, and the occasional rant.Did you find a topic confusing? Did you find an error in the text orcode? Did we leave out a topic you would love to know more about?
We’re always looking to improve our teaching materials. Whateverthe reason, please send in your feedback at the link below:
realpython.com/cpython-internals/feedback

18

https://realpython.com/cpython-internals/feedback

Bonus Material and Learning Resources
About Real Python
At Real Python, you’ll learn real-world programming skills from acommunity of professional Pythonistas from all around the world.
The realpython.com website launched in 2012 and currently helpsmore than three million Python developers each month with books,programming tutorials, and other in-depth learning resources.
Here’s where you can find Real Python on the Web:
• realpython.com
• @realpython on Twitter
• The Real Python Newsletter
• The Real Python Podcast

19

https://realpython.com
https://realpython.com
https://realpython.com
https://twitter.com/realpython
https://realpython.com/newsletter
https://realpython.com/podcast

Getting the CPython SourceCode
When you type python at the console or install a Python distributionfrom Python.org, you’re running CPython. CPython is one of manyPython implementations maintained and written by different teamsof developers. Some alternatives you may have heard of are PyPy,Cython, and Jython.
The unique thing about CPython is that it contains both a runtimeand the shared language specification that all other Python implemen-tations use. CPython is the official, or reference, implementation ofPython.
ThePython language speciрcation is the document that describesthe Python language. For example, it says that assert is a reservedkeyword and that [] is used for indexing, slicing, and creating emptylists.
Think about the features you expect from the Python distribution:
• When you type python without a file or module, it gives an interac-tive prompt (REPL).
• You can import built-in modules like json, csv, and collectionsfrom the standard library.
• You can install packages from the Internet using pip.
• You can test your applications using the built-in unittest library.

20

https://www.python.org
https://www.python.org/download/alternatives/
https://pypy.org/
https://cython.org/
https://www.jython.org/

What’s in the Source Code?
These are all part of the CPython distribution. It includes a lot morethan just a compiler.
In this book, you’ll explore the different parts of the CPython distribu-tion:
• The language specification
• The compiler
• The standard library modules
• The core types
• The test suite

What’s in the Source Code?
The CPython source distribution comes with a whole range of tools,libraries, and components that you’ll explore in this book.

Note
This book targets version 3.9 of the CPython source code.

To download a copy of the CPython source code, you can use git topull the latest version:
$ git clone --branch 3.9 https://github.com/python/cpython

$ cd cpython

The examples in this book are based on Python version 3.9.
Important
Switching to the 3.9 branch is an important step. The masterbranch changes on an hourly basis. Many of the examples andexercises in this book are unlikely to work on master.

21

https://github.com/python/cpython/tree/3.9
https://git-scm.com/

What’s in the Source Code?
Note
If you don’t have Git available, then you can install it fromgit-scm.com. Alternatively, you can download a ZIP file of theCPython source directly from the GitHub website.
If you download the source as a ZIP file, then it won’t containany history, tags, or branches.

Inside the newly downloaded cpython directory, you’ll find the follow-ing subdirectories:

cpython/

Doc

Grammar

Include

Lib

Mac

Misc

Modules

Objects

Parser

PC

PCBuild

Programs

Python

Tools

Source for the documentation

The computer-readable language definition

The C header files

Standard library modules written in Python

macOS support files

Miscellaneous files

Standard library modules written in C

Core types and the object model

The Python parser source code

Windows build support files for older versions of Windows

Windows build support files

Source code for the python executable and other binaries

The CPython interpreter source code

Standalone tools useful for building or extending CPython

m4 Custom scripts to automate configuration of the makefile

Next, you’ll set up your development environment.

22

https://git-scm.com/
https://github.com/python/cpython/archive/3.9.zip

Setting Up YourDevelopment Environment
Throughout this book, you’ll be working with both C and Python code.It’s essential that you have your development environment configuredto support both languages.
The CPython source code is about 65 percent Python (of which thetests are a significant part) and 24 percent C. The remainder is a mixof other languages.

IDE or Editor?
If you haven’t yet decided which development environment to use,then there’s one decision to make first: whether to use an integrateddevelopment environment (IDE) or a code editor.
• An IDE targets a specific language and toolchain. Most IDEs haveintegrated testing, syntax checking, version control, and compila-tion.
• A code editor enables you to edit code files, regardless of lan-guage. Most code editors are simple text editors with syntax high-lighting.

Because of their full-featured nature, IDEs often consumemore hard-ware resources. So if you have limited RAM (less than 8 GB), then acode editor is recommended.

23

IDE or Editor?
IDEs also take longer to start up. If youwant to edit a file quickly, thena code editor is a better choice.
There are hundreds of editors and IDEs available for free or at a cost.Here are some commonly used IDEs and editors suitable for CPythondevelopment:
Application Style Supports
Microsoft Visual Studio Code Editor Windows, macOS,and LinuxAtom Editor Windows, macOS,and LinuxSublime Text Editor Windows, macOS,and LinuxVim Editor Windows, macOS,and LinuxEmacs Editor Windows, macOS,and LinuxMicrosoft Visual Studio IDE (C, Python,and others) Windows
PyCharm by JetBrains IDE (Python andothers) Windows, macOS,and LinuxCLion by JetBrains IDE (C andothers) Windows, macOS,and Linux

A version of Microsoft Visual Studio is also available for Mac, but itdoesn’t support Python Tools for Visual Studio or C compilation.
In the sections below, you’ll explore the setup steps for the followingeditors and IDEs:
• Microsoft Visual Studio
• Microsoft Visual Studio Code
• JetBrains CLion
• Vim

Skip ahead to the section for your chosen application, or read all ofthem if you want to compare.
24

https://code.visualstudio.com/
https://atom.io/
https://www.sublimetext.com/
https://www.vim.org/
https://www.gnu.org/s/emacs/
https://visualstudio.microsoft.com/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/clion/
https://visualstudio.microsoft.com/vs/mac/

Setting Up Visual Studio
Setting Up Visual Studio
The newest version of Visual Studio, Visual Studio 2019, has built-insupport for Python and the C source code onWindows. I recommendusing it for the examples and exercises in this book. If you alreadyhave Visual Studio 2017 installed, then that would also work.

Note
None of the paid features of Visual Studio are required for com-piling CPython or completing this book. You can use the freeCommunity edition.
However, the profile-guided optimization build profile requiresthe Professional edition or higher.

Visual Studio is available for free fromMicrosoft’s Visual Studio web-site.
Once you’ve downloaded the Visual Studio installer, you’ll be asked toselect which components youwant to install. You’ll need the followingcomponents for this book:
• The Python development workload
• The optional Python native development tools
• Python 3 64-bit (3.7.2)

You can deselect Python 3 64-bit (3.7.2) if you already have Python3.7 installed. You can also deselect any other optional features if youwant to conserve disk space.
The installer will then download and install all the required compo-nents. The installation can take up to an hour, so you may want toread on and come back to this section when it finishes.
Once the installation is complete, click Launch to start Visual Studio.You’ll be prompted to sign in. If you have a Microsoft account, youcan either log in or skip that step.

25

https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/

Setting Up Visual Studio
Next, you’ll be prompted to open a project. You can cloneCPython’s Git repository directly from Visual Studio by choosing the
Clone or check out code option.
For the repository location, enter https://github.com/python/cpython,choose your local path, and select Clone .
Visual Studio will then download a copy of CPython from GitHub us-ing the version of Git bundled with Visual Studio. This step also savesyou the hassle of having to install Git onWindows. The downloadmaytake up to ten minutes.

Important
Visual Studio will automatically checkout the master branch.Before compiling, make sure you change to the 3.9 branch fromwithin the Team Explorer window. Switching to the 3.9 branchis an important step. The master branch changes on an hourlybasis. Many of the examples and exercises in this book are un-likely to work on master.

Once the project has downloaded, you need to point Visual Studio tothe PCBuild pcbuild.sln solution file by clicking Solutions and Projects
pcbuild.sln :

26

Setting Up Visual Studio Code

Now that you have Visual Studio configured and the source codedownloaded, you can compile CPython on Windows by following thesteps in the next chapter.

Setting Up Visual Studio Code
Microsoft Visual Studio Code is an extensible code editor with an on-line marketplace of plugins.
It makes an excellent choice for working with CPython as it supportsboth C and Python with an integrated Git interface.
Installing
Visual Studio Code, sometimes known as VS Code, is available with asimple installer at code.visualstudio.com.
Out of the box, VS Code has the necessary code editing capabilities,but it becomes more powerful once you install extensions.

27

https://code.visualstudio.com/

Setting Up Visual Studio Code
You can access the Extensions panel by selecting View Extensions
from the top menu:

Inside the Extensions panel, you can search for extensions by nameor by their unique identifier, such as ms-vscode.cpptools. In some casesthere are many plugins with similar names, so use the unique identi-fier to be sure you’re installing the right one.
Recommended Extensions for This Book
There are several useful extensions for working with CPython:
• C/C++ (ms-vscode.cpptools) provides support for C/C++, includ-ing IntelliSense, debugging, and code highlighting.
• Python (ms-python.python) provides rich Python support for edit-ing, debugging, and reading Python code.
• reStructuredText (lextudio.restructuredtext) provides rich sup-port for reStructuredText, the format used in the CPython docu-mentation.

28

https://github.com/Microsoft/vscode-cpptools
https://github.com/Microsoft/vscode-python
https://github.com/vscode-restructuredtext/vscode-restructuredtext

Setting Up Visual Studio Code
• Task Explorer (spmeesseman.vscode-taskexplorer) adds a Task Ex-plorer panel inside the Explorer tab, making it easier to launch

make tasks.
After you install these extensions, you’ll need to reload the editor.
Many of the tasks in this book require a command line. You can add anintegrated terminal into VS Code by selecting Terminal New Terminal .A terminal will appear below the code editor:

Using Advanced Code Navigation and Expansion
With the plugins installed, you can perform some advanced code nav-igation.
For example, if you right-click a function call in a C file and select
Go to References , then VS Code will find other references to that func-tion in the codebase:

29

https://github.com/spmeesseman/vscode-taskexplorer

Setting Up Visual Studio Code
Go to References is very useful for discovering the proper calling formfor a function.
If you click on or hover over a C macro, then the editor will expandthat macro to the compiled code:

To jump to the definition of a function, hover over any call to it andpress Cmd + Click on macOS or Ctrl + Click on Linux and Windows.
Conрguring the Task and Launch Files
VS Code uses a .vscode folder in the workspace directory. If this folderdoesn’t exist, create it now. Inside this folder, you can create the fol-lowing files:
• tasks.json for shortcuts to commands that execute your project
• launch.json to configure the debugger (see the chapter “Debug-ging”)
• Other plugin-specific files

Create a tasks.json file inside the .vscode directory if one doesn’t al-ready exist. This tasks.json file will get you started:
cpython-book-samples 11 tasks.json

30

Setting Up Visual Studio Code
{

"version": "2.0.0",

"tasks": [

{

"label": "build",

"type": "shell",

"group": {

"kind": "build",

"isDefault": true

},

"windows": {

"command": "PCBuild/build.bat",

"args": ["-p", "x64", "-c", "Debug"]

},

"linux": {

"command": "make -j2 -s"

},

"osx": {

"command": "make -j2 -s"

}

}

]

}

Using the Task Explorer plugin, you’ll see a list of your configuredtasks inside the vscode group:

31

Setting Up JetBrains CLion
In the next chapter, you’ll learnmore about the build process for com-piling CPython.

Setting Up JetBrains CLion
JetBrains makes an IDE for Python called PyCharm as well as an IDEfor C/C++ development called CLion.
CPython has both C andPython code. You can’t install C/C++ supportinto PyCharm, but CLion comes bundled with Python support.

Important
Makefile support is available only in CLion versions 2020.2 andabove.
Important
This step requires that you have both generated a makefile byrunning configure and compiled CPython.
Please read the chapter “Compiling CPython” for your operat-ing system and then return to this chapter.

After compiling CPython for the first time, you’ll have a makefile inthe root of the source directory.
Open CLion and choose Open or Import from the welcome screen.Navigate to the source directory, select the makefile, and press Open :

32

Setting Up JetBrains CLion

CLion will ask whether you want to open the directory or importthe makefile as a new project. Select Open as Project to import as aproject.
CLion will ask which make target to run before importing. Leave thedefault option, clean, and continue:

Next, check that you can build the CPython executable from CLion.From the top menu, select Build Build Project .
In the status bar, you should see a progress indicator for the projectbuild:

33

Setting Up JetBrains CLion
Once this task is complete, you can target the compiled binary as arun/debug configuration.
Select Run Edit Configurations to open the Run/Debug Configura-tions window. Inside this window, select + Makefile Application andcomplete the following steps:
1. Set the Name to cpython.
2. Leave the build target as all.
3. For the executable, select the dropdown and choose Select Other ,then find the compiled CPython binary in the source directory. Itwill be called python or python.exe.
4. Enter any program arguments you wish to always have, such as -X

dev to enable development mode. These flags are covered later in“Setting Runtime Configuration With the Command Line.”
5. Set the working directory to the CLion macro $ProjectFileDir$:

Click OK to add this configuration. You can repeat this step as manytimes as you like for any of the CPython make targets. See the section
34

Setting Up JetBrains CLion
“CPython’s Make Targets” in the chapter “Compiling CPython” for afull reference.
The cpython build configuration will now be available in the top rightof the CLion window:

To test it out, click the arrow icon or select Run Run ’cpython’ fromthe top menu. You should now see the REPL at the bottom of theCLion window:

Great! Now you can make changes and quickly try them out by click-ing Build and Run . If you put any breakpoints in the C code, thenmake sure you choose Debug instead of Run .

35

Setting up Vim
Within the code editor, the shortcuts Cmd + Click onmacOS and Ctrl
+ Click on Windows and Linux will bring up in-editor navigation fea-tures:

Setting up Vim
Vim is a powerful console-based text editor. For fast development,use Vim with your hands resting on the keyboard home keys. Theshortcuts and commands are within reach.

Note
On most Linux distributions and within the macOS Terminal,
vi is an alias for vim. We’ll use the vim command in this book,but if you have the alias, then vi will also work.

Out of the box, Vim has only basic functionality, littlemore than a texteditor like Notepad. With some configuration and extensions, how-ever, Vim can become a powerful tool for both Python and C editing.
Vim’s extensions are in various locations, including GitHub. To easethe configuration and installation of plugins from GitHub, you caninstall a plugin manager like Vundle.
To install Vundle, run this command at the terminal:

36

https://github.com/VundleVim/Vundle.vim

Setting up Vim
$ git clone https://github.com/VundleVim/Vundle.vim.git \

~/.vim/bundle/Vundle.vim

Once Vundle is downloaded, you need to configure Vim to load theVundle engine.
You’ll install two plugins:
1. Fugitive: A status bar for Git with shortcuts for many Git tasks
2. Tagbar: A pane for making it easier to jump to functions, meth-ods, and classes
To install these plugins, first change the contents of your Vim config-uration file (normally HOME .vimrc) to include the following lines:
cpython-book-samples 11 .vimrc

syntax on

set nocompatible " be iMproved, required

filetype off " required

" set the runtime path to include Vundle and initialize

set rtp+=~/.vim/bundle/Vundle.vim

call vundle#begin()

" let Vundle manage Vundle, required

Plugin 'VundleVim/Vundle.vim'

" The following are examples of different formats supported.

" Keep Plugin commands between vundle#begin/end.

" plugin on GitHub repo

Plugin 'tpope/vim-fugitive'

Plugin 'majutsushi/tagbar'

" All of your Plugins must be added before this line

call vundle#end() " required

filetype plugin indent on " required

" Open tagbar automatically in C files, optional

autocmd FileType c call tagbar#autoopen(0)

37

https://github.com/tpope/vim-fugitive
http://vimcasts.org/episodes/fugitive-vim---a-complement-to-command-line-git/
https://github.com/majutsushi/tagbar

Setting up Vim
" Open tagbar automatically in Python files, optional

autocmd FileType python call tagbar#autoopen(0)

" Show status bar, optional

set laststatus=2

" Set status as git status (branch), optional

set statusline=%{FugitiveStatusline()}

To download and install these plugins, run the following command:
$ vim +PluginInstall +qall

You should see output for the download and installation of the pluginsspecified in the configuration file.
When editing or exploring the CPython source code, you will want tojump quickly between methods, functions, and macros. A basic textsearch won’t distinguish a call to a function or its definition from theimplementation. But you can use an application called ctags to indexsource files across a multitude of languages into a plain text database.
To index CPython’s headers for all the C files and Python files in thestandard library, run the following code:
$./configure

$ make tags

Now open the Python ceval.c file in Vim:
$ vim Python/ceval.c

38

http://ctags.sourceforge.net/

Setting up Vim
You’ll see the Git status at the bottom and the functions, macros, andvariables in the right-hand pane:

Next, open a Python file, such as Lib subprocess.py:
$ vim Lib/subprocess.py

Tagbar will show your imports, classes, methods, and functions:

39

Conclusion

Within Vim, you can switch between windows with Ctrl + W , moveto the right-hand pane with L , and use the arrow keys to move upand down between the tagged functions.
Press Enter to skip to any function implementation. To move back tothe editor pane, press Ctrl + W , then press H .

See Also
Check out VIMAdventures for a funway to learn andmemorizethe Vim commands.

Conclusion
If you’re still undecided about which environment to use, then youdon’t need to make a decision right away. We used multiple environ-ments while writing this book and working on changes to CPython.

40

https://vim-adventures.com/

Conclusion
Debugging is a critical feature for productivity, so having a reliable de-bugger that you can use to explore the runtime and understand bugswill save you a lot of time. If you’re used to debugging in Python with
print(), then it’s important to note that this approach doesn’t work inC. You’ll cover debugging in full later in this book.

41

Compiling CPython
Now that you’ve downloaded a development environment and config-ured it, you can compile the CPython source code into an executableinterpreter.
Unlike Python files, C source code must be recompiled each time itchanges. You’ll probably want to bookmark this chapter and memo-rize some of the steps, because you’ll be repeating them a lot.
In the previous chapter, you saw how to set up your development en-vironment with an option to run the build stage, which recompilesCPython. Before the build steps will work, you need a C compiler andsome build tools.
The tools used depend on the operating system you’re using, so skipahead to the section for your operating system.

Note
If you’re concerned that any of these steps will interfere withyour existing CPython installations, don’t worry. The CPythonsource directory behaves like a virtual environment.
When compiling CPython or modifying the source or the stan-dard library, this all stays within the sandbox of the source di-rectory.
If you want to install a custom version, this step is covered inthis chapter.

42

Compiling CPython on macOS
Compiling CPython on macOS
Compiling CPython on macOS requires some additional applicationsand libraries. First, you’ll need the essential C compiler tool kit. Com-mand Line Tools is an app that you can update in macOS throughthe App Store. You need to perform the initial installation on the ter-minal.

Note
To open up a terminal in macOS, go to Applications Other

Terminal . You’ll want to save this app to your Dock, so Ctrl
+ Click the icon and select Keep in Dock .

Within the terminal, install the C compiler and tool kit by running thefollowing:
$ xcode-select --install

After running this command, you’ll be prompted to download and in-stall a set of tools, including Git, Make, and the GNU C compiler.
You’ll also need a working copy of OpenSSL to use for fetching pack-ages from the PyPI website. If you plan on using this build to installadditional packages, then SSL validation is required.
The most straightforward way to install OpenSSL on macOS is to useHomebrew.

Note
If you don’t haveHomebrew, then you can download and installit directly from GitHub with the following command:
$ /usr/bin/ruby -e "$(curl -fsSL \

https://raw.githubusercontent.com/Homebrew/install/master/install)"

43

https://www.openssl.org/
https://brew.sh

Compiling CPython on macOS
Once you have Homebrew installed, you can install the dependenciesfor CPython with the brew install command:
$ brew install openssl xz zlib gdbm sqlite

Now that you have the dependencies, you can run the configure script.
The Homebrew command brew --prefix <package> will give the direc-tory where <package> is installed. You will enable support for SSL bycompiling the location that Homebrew uses.
The flag --with-pydebug enables debug hooks. Add this flag if you in-tend on debugging for development or testing purposes. DebuggingCPython is covered extensively in the “Debugging” chapter.
The configuration stage needs to be run only once, with the locationof the zlib package specified:
$ CPPFLAGS="-I$(brew --prefix zlib)/include" \

LDFLAGS="-L$(brew --prefix zlib)/lib" \

./configure --with-openssl=$(brew --prefix openssl) \

--with-pydebug

Running ./configure will generate a makefile in the root of the reposi-tory. You can use it to automate the build process.
You can now build the CPython binary by running the following com-mand:
$ make -j2 -s

See Also
Formore information on the options for make, see the section “AQuick Primer on Make.”

During the build, youmay receive some errors. In the build summary,
make will notify you that not all packages were built. For example, the
ossaudiodev, spwd, and _tkinter packageswill fail to buildwith this set of

44

Compiling CPython on Linux
instructions. That’s okay if you aren’t planning on developing againstthese packages. If you are, then check out the Python Developer’sGuide for more information.
The build will take a few minutes and generate a binary called
python.exe. Every time you make changes to the source code, you’llneed to rerun make with the same flags.
The python.exe binary is the debug binary of CPython. Execute
python.exe to see a working REPL:
$./python.exe

Python 3.9 (tags/v3.9:9cf67522, Oct 5 2020, 10:00:00)

[Clang 10.0.1 (clang-1001.0.46.4)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>>

Important
Yes, that’s right, the macOS build has a .exe file extension. Thisextension is not because it’s a Windows binary!
Because macOS has a case-insensitive file system, the devel-opers didn’t want people to accidentally refer to the directory
Python/when working with the binary, so they appended .exe toavoid ambiguity.
If you later run make install or make altinstall, then the file willbe renamed python before it’s installed onto your system.

Compiling CPython on Linux
To compile CPython on Linux, you first need to download and install
make, gcc, configure, and pkgconfig.
Use this command for Fedora Core, RHEL, CentOS, or other YUM-based systems:

45

https://devguide.python.org/
https://devguide.python.org/

Compiling CPython on Linux
$ sudo yum install yum-utils

Use this command for Debian, Ubuntu, or other APT-based systems:
$ sudo apt install build-essential

Then install some additional required packages.
Use this command for Fedora Core, RHEL, CentOS or other YUM-based systems:
$ sudo yum-builddep python3

Use this command for Debian, Ubuntu, or other APT-based systems:
$ sudo apt install libssl-dev zlib1g-dev libncurses5-dev \

libncursesw5-dev libreadline-dev libsqlite3-dev libgdbm-dev \

libdb5.3-dev libbz2-dev libexpat1-dev liblzma-dev libffi-dev

Now that you have the dependencies, you can run the configure script,optionally enabling the debug hooks using --with-pydebug:
$./configure --with-pydebug

Next, you can build the CPython binary by running the generatedmakefile:
$ make -j2 -s

See Also
For more help on the options for make, see the section “A QuickPrimer on Make.”

Review the output to ensure that there were no issues compiling the
_ssl module. If there were, then check with your distribution for in-structions on installing the headers for OpenSSL.
During the build, youmay receive some errors. In the build summary,
makewill notify you that not all packages were built. That’s okay if you

46

Installing a Custom Version
aren’t planning on developing against those packages. If you are, thencheck out the package details for required libraries.
The build will take a few minutes and generate a binary called python.This is the debug binary of CPython. Execute ./python to see a workingREPL:
$./python

Python 3.9 (tags/v3.9:9cf67522, Oct 5 2020, 10:00:00)

[Clang 10.0.1 (clang-1001.0.46.4)] on Linux

Type "help", "copyright", "credits" or "license" for more information.

>>>

Installing a Custom Version
If you’re happy with your changes and want to use them inside yoursystem, then you can install the Python binary fromyour source repos-itory as a custom version.
For macOS and Linux, use the altinstall command, which doesn’tcreate symbolic links for python3 and installs a standalone version:
$ make altinstall

For Windows, you have to change the build configuration from De-bug to Release, then copy the packaged binaries to a directory on yourcomputer that is part of the system path.

A Quick Primer on Make
As a Python developer, you might not have come across make before.Or perhaps you have, but you haven’t spent much time with it.
For C, C++, and other compiled languages, the list of commands youneed to execute to load, link, and compile your code in the right ordercan be very long. When compiling applications from source, you needto link any external libraries in the system.

47

A Quick Primer on Make
It would be unrealistic to expect the developer to know the locationsof all of these libraries and to copy and paste them into the commandline, so make and configure are commonly used in C/C++ projects toautomate the creation of a build script.
When you executed ./configure, autoconf searched your system for thelibraries that CPython requires and copied their paths into a makefile.
The generated makefile is similar to a shell script and is broken intosections called targets.
Take the docclean target as an example. This target deletes some gen-erated documentation files using the rm command:
docclean:

-rm -rf Doc/build

-rm -rf Doc/tools/sphinx Doc/tools/pygments Doc/tools/docutils

To execute this target, run make docclean. docclean is a simple target asit runs only two commands.
This is the convention for executing a make target:
$ make [options] [target]

If you call make without specifying a target, then make will run the de-fault target, which is the first target specified in the makefile. ForCPython, this is the all target, which compiles all parts of CPython.
make has many options. Here are some you’ll find useful throughoutthis book:
Option Use
-d, --debug[=FLAGS] Print various types of debugging information
-e, --environment-overrides Environment variables override makefiles
-i, --ignore-errors Ignore errors from commands
-j [N], --jobs[=N] Allow N jobs at once or infinite jobs otherwise
-k, --keep-going Keep going when some targets can’t be made
-l [N], --load-average[=N],
--max-load[=N]

Start multiple jobs only if load < N

48

CPython’s Make Targets
Option Use
-n, --dry-run Print commands instead of running them
-s, --silent Don’t echo commands
-S, --stop Stop when targets can’t be made

In the next section and throughout the book, you’ll run makewith theseoptions:
$ make -j2 -s [target]

The -j2 flag allows make to run two jobs simultaneously. If you havefour or more cores, then you can change this to four or higher and thecompilation will complete faster.
The -s flag stops the makefile from printing every command it runs tothe console. If you want to see what’s happening, then remove the -sflag.

CPython’s Make Targets
For both Linux and macOS, you’ll find yourself needing to clean upfiles, build, or refresh the configuration. The sections below containtables outlining a number of useful make targets built into CPython’smakefile.
Build Targets
The following targets are used for building the CPython binary:
Target Purpose
all (default) Build the compiler, libraries, and modules
clinic Run Argument Clinic on all source files
profile-opt Compile the Python binary with profile-guidedoptimization
regen-all Regenerate all generated files
sharedmods Build the shared modules

49

CPython’s Make Targets
Test Targets
The following targets are used for testing your compiled binary:
Target Purpose
coverage Compile and run tests with gcov

coverage-lcov Create coverage HTML reports
quicktest Run a faster set of regression tests by excluding the teststhat take a long time
test Run a basic set of regression tests
testall Run the full test suite twice, once without .pyc files andonce with them
testuniversal Run the test suite for both architectures in a universalbuild on OS X

Cleaning Targets
The primary cleaning targets are clean, clobber, and distclean. The
clean target is for generally removing compiled and cached librariesand .pyc files.
If you find that clean doesn’t do the job, then try clobber. The clob-

ber target will remove your makefile, so you’ll have to run ./configureagain.
To completely clean out an environment before distribution, run the
distclean target.
The following list includes the three primary targets listed above, aswell as some additional cleaning targets:
Target Purpose
check-clean-src Check that the source is clean when building out ofsource
clean Remove .pyc files, compiled libraries, and profiles
cleantest Remove test_python_* directories of previous failed testjobs
clobber Same as clean but also remove libraries, tags,configurations, and builds

50

CPython’s Make Targets
Target Purpose
distclean Same as clobber but also remove anything generatedfrom source, such as makefiles
docclean Remove built documentation in Doc/

profile-removal Remove any optimization profiles
pycremoval Remove .pyc files

Installation Targets
There are two flavors of installation targets: the default version, suchas install, and the alt version, such as altinstall. If you want to in-stall the compiled version onto your computer but don’t want it tobecome the default Python 3 installation, then use the alt version ofthe commands:
Target Purpose
altbininstall Install the python interpreter with the version affixed,such as python3.9

altinstall Install shared libraries, binaries, and documentationwith the version suffix
altmaninstall Install the versioned manuals
bininstall Install all the binaries, such as python, idle, and 2to3

commoninstall Install shared libraries and modules
install Install shared libraries, binaries, and documentation(will run commoninstall, bininstall, and maninstall)
libinstall Install shared libraries
maninstall Install the manuals
sharedinstall Load modules dynamically

After you install with make install, the command python3 will linkto your compiled binary. If you use make altinstall, however, only
python$(VERSION) will be installed, and the existing link for python3 willremain intact.
Miscellaneous Targets
Below are some additional make targets that you may find useful:

51

Compiling CPython on Windows
Target Purpose
autoconf Regenerate configure and pyconfig.h.in

python-config Generate the python-config script
recheck Rerun configure with the same options as last time
smelly Check that exported symbols start with Py or _Py (seePEP 7)
tags Create a tags file for vi
TAGS Create a tags file for Emacs

Compiling CPython onWindows
There are twoways to compile theCPython binaries and libraries fromWindows:
1. Compile from the command prompt. This still requires the Mi-crosoft Visual C++ compiler, which comes with Visual Studio.
2. Open PCbuild pcbuild.sln from Visual Studio and build directly.
In the sections below, you’ll explore both of these options.
Installing the Dependencies
For both the command prompt compile script and the Visual Studiosolution, you need to install several external tools, libraries, and Cheaders.
Inside the PCbuild folder is a .bat file that automates this process foryou. Open a command prompt window inside PCbuild and execute
PCbuild get_externals.bat:
> get_externals.bat

Using py -3.7 (found 3.7 with py.exe)

Fetching external libraries...

Fetching bzip2-1.0.6...

Fetching sqlite-3.28.0.0...

Fetching xz-5.2.2...

Fetching zlib-1.2.11...

52

https://www.python.org/dev/peps/pep-0007/#naming-conventions

Compiling CPython on Windows
Fetching external binaries...

Fetching openssl-bin-1.1.1d...

Fetching tcltk-8.6.9.0...

Finished.

Now you can compile from either the command prompt or Visual Stu-dio.
Compiling From the Command Prompt
To compile from the command prompt, you need to select the CPUarchitecture you want to compile against. The default is win32, butchances are that you want a 64-bit (amd64) binary.
If you do any debugging, then the debug build comes with the abilityto attach breakpoints in the source code. To enable the debug build,you add -c Debug to specify the debug configuration.
By default, build.bat will fetch external dependencies, but becausewe’ve already done that step, it will print a message skipping down-loads:
> build.bat -p x64 -c Debug

This command will produce the Python binary PCbuild amd64

python_d.exe. Start that binary directly from the command prompt:
> amd64\python_d.exe

Python 3.9 (tags/v3.9:9cf67522, Oct 5 2020, 10:00:00)

[MSC v.1922 64 bit (AMD64)] on win32

Type "help", "copyright", "credits" or "license" for more information.

>>>

You’re now inside the REPL of your compiled CPython binary.
To compile a release binary, use this command:
> build.bat -p x64 -c Release

53

Compiling CPython on Windows
This command will produce the binary PCbuild amd64 python.exe.

Note
The suffix _d specifies that CPython was built in the debug con-figuration.
The released binaries on Python.org are compiled in theprofile-guided optimization (PGO) configuration. See the“Profile-Guided Optimization (PGO)” section at the end of thischapter for more details on PGO.

Arguments
The following arguments are available in build.bat:
Flag Purpose Expected Value
-p Build platform CPUarchitecture x64, Win32 (default), ARM, ARM64
-c Build configuration Release (default), Debug, PGInstrumentor PGUpdate
-t Build target Build (default), Rebuild, Clean,

CleanAll

Flags
Here are some optional flags you can use for build.bat:
Flag Purpose
-v Verbose mode: show informational messages during build
-vv Very verbose mode: show detailed messages during build
-q Quiet mode: show only warnings and errors during build
-e Download and install external dependencies (default)
-E Don’t download or install external dependencies
--pgo Build with profile-guided optimization
--regen Regenerate all grammar and tokens (used when you updatethe language)

54

Compiling CPython on Windows
For a full list, run build.bat -h.
Compiling From Visual Studio
Inside the PCbuild folder is a Visual Studio solution file, PCbuild

pcbuild.sln, for building and exploring CPython source code.
When the solution file is loaded, it will prompt you to retarget theprojects inside the solution to the version of the C/C++ compiler thatyou have installed. Visual Studio will also target the release of theWindows SDK that you have installed.
Be sure to change the Windows SDK version to the newest installedversion and the platform toolset to the latest version. If you missedthis window, then you can right-click the solution file in the Solutionsand Projects window and select Retarget Solution .
Navigate to Build Configuration Manager and ensure the Active Solu-tion Configuration drop-down list is set to Debug and the Active So-lution Platform list is set to either x64 for 64-bit CPU architecture or
win32 for 32-bit.
Next, build CPython by pressing Ctrl + Shift + B or choosing Build

Build Solution . If you receive any errors about the Windows SDK be-ing missing, make sure you set the right targeting settings in the Re-target Solution window. You should also see aWindows Kits folder inyour Start menu with Windows Software Development Kit inside it.
The build stage could take ten minutes or more the first time. Oncethe build completes, you may see a few warnings that you can ignore.
To start the debug version of CPython, press F5 , and CPython willlaunch the REPL in debug mode:

55

Compiling CPython on Windows

You can run the release build by changing the build configurationfrom Debug to Release on the top menu bar and rerunning Build
Build Solution . You now have both debug and release versions of theCPython binary within PCbuild amd64.

You can set up Visual Studio to be able to open a REPL witheither the release or debug build by choosing Tools Python
Python Environments from the top menu. In the Python Envi-ronments panel, click Add Environment and then target the debugor release binary. The debug binary will end in _d.exe, such as

python_d.exe or pythonw_d.exe.
You’ll most likely want to use the debug binary as it comes with debug-ging support in Visual Studio and will be useful as you read throughthis book.
In the Add Environment window, target the python_d.exe file as the in-terpreter inside PCbuild amd64 and the pythonw_d.exe as the windowedinterpreter:

56

Compiling CPython on Windows

Start a REPL session by clicking Open Interactive Window in the PythonEnvironments window and you’ll see the REPL for the compiled ver-sion of Python:

Throughout this book, there will be REPL sessions with example com-mands. I encourage you to use the debug binary to run these REPLsessions in case you want to put in any breakpoints within the code.

57

Profile-Guided Optimization
To make it easier to navigate the code, in the Solution view, click thetoggle button next to the Home icon to switch to Folder view:

Proрle-Guided Optimization
The macOS, Linux, and Windows build processes have flags forproрle-guided optimization (PGO). PGO isn’t something cre-ated by the Python team, but a feature of many compilers, includingthose used by CPython.
PGOworks by doing an initial compilation, then profiling the applica-tion by running a series of tests. The profile is then analyzed, and thecompiler makes changes to the binary that improve performance.
For CPython, the profiling stage runs python -m test --pgo, which ex-ecutes the regression tests specified in Lib test libregrtest pgo.py.These tests have been specifically selected because they use a com-monly used C extension module or type.

58

Profile-Guided Optimization
Note
The PGO process is time-consuming, so to keep your compila-tion time short, I’ve excluded it from the lists of recommendedsteps offered throughout this book.
If you want to distribute a custom-compiled version of CPythoninto a production environment, then you should run ./configurewith the --with-pgo flag in Linux and macOS and use the --pgoflag in build.bat on Windows.

Because the optimizations are specific to the platform and architec-ture that the profile was executed on, PGO profiles can’t be sharedbetween operating systems or CPU architectures. The distributionsof CPython on Python.org have already been through PGO, so if yourun a benchmark on a vanilla-compiled binary, then it will be slowerthan one downloaded from Python.org.
The Windows, macOS, and Linux profile-guided optimizationsinclude these checks and improvements:
• Function inlining: If a function is regularly called from anotherfunction, then it will be inlined, or copied into the calling func-tion, to reduce the stack size.
• Virtual call speculation and inlining: If a virtual function callfrequently targets a certain function, then PGO can insert a condi-tionally executed direct call to that function. The direct call canthen be inlined.
• Register allocation optimization: Based on profile data re-sults, the PGO will optimize register allocation.
• Basic block optimization: Basic block optimization allowscommonly executed basic blocks that temporally execute within agiven frame to be placed in the same locality, or set of pages. Itminimizes the number of pages used, which minimizes memoryoverhead.

59

Conclusion
• Hot spot optimization: Functions that the program spends themost execution time on can be optimized for speed.
• Function layout optimization: After PGO analyzes the callgraph, functions that tend to be along the same execution pathare moved to the same section of the compiled application.
• Conditional branch optimization: PGO can look at a decisionbranch, like an if… else if or switch statement, and spot the mostcommonly used path. For example, if there are ten cases in a switchstatement, and one is used 95 percent of the time, then that casewill be moved to the top so that it will be executed immediately inthe code path.
• Dead spot separation: Code that isn’t called during PGO ismoved to a separate section of the application.

Conclusion
In this chapter, you’ve seen how to compile CPython source code intoa working interpreter. You’ll use this knowledge throughout the bookas you explore and adapt the source code.
You might need to repeat the compilation steps dozens or even hun-dreds of times when working with CPython. If you can adapt yourdevelopment environment to create shortcuts for recompilation, thenit’s better to do that now and save yourself a lot of time.

60

The Python Language andGrammar
The purpose of a compiler is to convert one language into another.Think of a compiler like a translator. You would hire a translator tolisten to you speaking in English and then repeat your words in a dif-ferent language, like Japanese.
To accomplish this, the translator must understand the grammaticalstructures of both the source and target languages.
Some compilers will compile into a low-level machine code that canbe executed directly on a system. Other compilers will compile intoan intermediary language to be executed by a virtual machine.
One consideration when choosing a compiler is the system portabilityrequirements. Java and .NET CLR will compile into an intermediarylanguage so that the compiled code is portable across multiple systemarchitectures. C, Go, C++, and Pascal will compile into an executablebinary. This binary is built for the platform on which it was compiled.
Python applications are typically distributed as source code. The roleof the Python interpreter is to convert the Python source code andexecute it in one step. The CPython runtime compiles your code whenit runs for the first time. This step is invisible to the regular user.
Python code isn’t compiled into machine code. It’s compiled into alow-level intermediary language called bytecode. This bytecode isstored in .pyc files and cached for execution. If you run the same

61

https://en.wikipedia.org/wiki/Java_bytecode
https://en.wikipedia.org/wiki/Common_Language_Runtime

Why CPython Is Written in C and Not Python
Python application twice without changing the source code, then itwill be faster on the second execution. This is because it loads thecompiled bytecode instead of recompiling each time.

Why CPython Is Written in C and NotPython
The C in CPython is a reference to the C programming language, indi-cating that this Python distribution is written in the C language.
This statement is mostly true. The compiler in CPython is written inpure C. However, many of the standard library modules are writtenin pure Python or a combination of C and Python.
So Why Is the CPython Compiler Written in C and Not Python?
The answer is based on how compilers work. There are two types ofcompilers:
1. Self-hosted compilers are compilers written in the languagethey compile, such as the Go compiler. This is done by a processknown as bootstrapping.
2. Source-to-source compilers are compilers written in anotherlanguage that already has a compiler.
If you’re writing a new programming language from scratch, then youneed an executable application to compile your compiler! You need acompiler to execute anything, so when new languages are developed,they’re often written first in an older, more established language.
There are also tools available that can take a language specificationand create a parser, which you’ll learn about later in this chapter. Pop-ular compiler-compilers include GNU Bison, Yacc, and ANTLR.

62

https://en.wikipedia.org/wiki/Self-hosting_(compilers)
https://en.wikipedia.org/wiki/Source-to-source_compiler

Why CPython Is Written in C and Not Python
See Also
If youwant to learnmore about parsers, then check out the Larkproject. Lark is a parser for context-free grammar written inPython.

An excellent example of compiler bootstrapping is the Go program-ming language. The first Go compiler was written in C, then once Gocould be compiled, the compiler was rewritten in Go.
CPython, on the other hand, kept its C heritage. Many of the standardlibrarymodules, like the sslmodule or the socketsmodule, arewrittenin C to access low-level operating system APIs.
TheAPIs in theWindows and Linux kernels for creating network sock-ets, working with the file system, or interacting with the display wereall written in C, so it made sense for Python’s extensibility layer to befocused on the C language. Later in this book, you’ll cover the Pythonstandard library and the C modules.
There is a Python compiler written in Python called PyPy. PyPy’s logois an Ouroboros to represent the self-hosting nature of the compiler.
Another example of a cross-compiler for Python is Jython. Jythonis written in Java and compiles from Python source code into Javabytecode. In the same way that CPython makes it easy to import Clibraries and use them from Python, Jython makes it easy to importand reference Java modules and classes.
The first step to creating a compiler is to define the language. Forexample, this is not valid Python:
def my_example() <str> :

{

void* result = ;

}

The compiler needs strict rules for the grammatical structure for thelanguage before it tries to execute it.
63

https://github.com/lark-parser/lark
https://realpython.com/python-sockets/
https://realpython.com/python-sockets/
https://realpython.com/working-with-files-in-python/
https://realpython.com/python-gui-with-wxpython/
https://pypy.org/
https://en.wikipedia.org/wiki/Ouroboros
https://www.jython.org/

The Python Language Specification
Note
For the rest of this book, ./python will refer to the compiled ver-sion of CPython. However, the actual command will depend onyour operating system.
For Windows:
> python.exe

For Linux:
$./python

For macOS:
$./python.exe

The Python Language Speciрcation
Contained within the CPython source code is the definition of thePython language. This document is the reference specification usedby all the Python interpreters.
The specification is in both ahuman-readable and amachine-readableformat. Inside the documentation is a detailed explanation of thePython language outlining what is allowed and how each statementshould behave.
Language Documentation
The Doc reference directory contains reStructuredText explanationsof the features in the Python language. These files form the officialPython reference guide at docs.python.org/3/reference.
Inside the directory are the files you need to understand the wholelanguage, structure, and keywords:

64

http://docutils.sourceforge.net/rst.html
https://docs.python.org/3/reference/

The Python Language Specification

cpython/Doc/reference

compound_stmts.rst

datamodel.rst

executionmodel.rst

expressions.rst

grammar.rst

import.rst

index.rst

introduction.rst

lexical_analysis.rst

simple_stmts.rst

toplevel_components.rst

Compound statements like if, while, for, and function definitions

Objects, values, and types

The structure of Python programs

The elements of Python expressions

Python’s core grammar (referencing Grammar/Grammar)

The import system

Index for the language reference

Introduction to the reference documentation

Lexical structure like lines, indentation, tokens, and keywords

Simple statements like assert, import, return, and yield

Description of the ways to execute Python, like scripts and modules

An Example
Inside Doc reference compound_stmts.rst, you can see a simple exampledefining the with statement.
The with statement has many forms, the simplest being the instantia-tion of a context manager and a nested block of code:
with x():

...

You can assign the result to a variable using the as keyword:
with x() as y:

...

You can also chain context managers together with a comma:
with x() as y, z() as jk:

...

The documentation contains the human-readable specification of thelanguage. The machine-readable specification is housed in a singlefile, Grammar python.gram.

65

https://dbader.org/blog/python-context-managers-and-with-statement
https://dbader.org/blog/python-context-managers-and-with-statement

The Python Language Specification
The Grammar File
Python’s grammar file uses a parsing expression grammar (PEG) spec-ification. In the grammar file you can use the following notation:
• * for repetition
• + for at-least-once repetition
• [] for optional parts
• | for alternatives
• () for grouping

As an example, think about how you would define a cup of coffee:
• It must have a cup.
• It must include at least one shot of espresso and can contain mul-tiple shots.
• It can have milk, but this is optional.
• It can have water, but this is optional.
• If it contains milk, then the milk can be of various types, like full-fat, skimmed, or soy.

Defined in PEG, a coffee order could look like this:
coffee: 'cup' ('espresso')+ ['water'] [milk]

milk: 'full-fat' | 'skimmed' | 'soy'

See Also
In CPython 3.9, the CPython source code has two grammar files.One legacy grammar is written in a context-free notation calledBackus-Naur Form (BNF). In CPython 3.10, the BNF grammarfile (Grammar Grammar) has been removed.
BNF isn’t specific to Python and is often used as the notationfor grammar in many other languages.

66

https://en.m.wikipedia.org/wiki/Backus%E2%80%93Naur_form

The Python Language Specification
In this chapter, you’ll visualize grammar with railroad diagrams.Here’s a railroad diagram for the coffee statement:

cup espresso

<

water full-fat

skimmed

soy

In a railroad diagram, each possible combination must go in a linefrom left to right. Optional statements can be bypassed, and somestatements can be formed as loops.
Example: while Statement
There are a few forms of the while statement. The simplest containsan expression, then the : terminal followed by a block of code:
while finished == True:

do_things()

Alternatively, you can use an assignment expression, which is referredto in the grammar as a named_expression. This is a new feature as ofPython 3.8:
while letters := read(document, 10):

print(letters)

Optionally, while statements can be followed by an else statement andblock:
while item := next(iterable):

print(item)

else:

print("Iterable is empty")

67

The Python Language Specification
If you search for while_stmt in the grammar file, then you can see thedefinition:
while_stmt[stmt_ty]:

| 'while' a=named_expression ':' b=block c=[else_block] ...

Anything in quotes is a string literal, known as a terminal. Terminalsare how keywords are recognized.
There are references to two other definitions in these two lines:
1. block refers to a block of code with one or multiple statements.
2. named_expression refers to a simple expression or assignment ex-pression.
Visualized in a railroad diagram, the while statement looks like this:

named_expression : block else : blockwhile

As a more complex example, the try statement is defined in the gram-mar like this:
try_stmt[stmt_ty]:

| 'try' ':' b=block f=finally_block { _Py_Try(b, NULL, NULL, f, EXTRA) }

| 'try' ':' b=block ex=except_block+ el=[else_block] f=[finally_block]..

except_block[excepthandler_ty]:

| 'except' e=expression t=['as' z=target { z }] ':' b=block {

_Py_ExceptHandler(e, (t) ? ((expr_ty) t)->v.Name.id : NULL, b, ...

| 'except' ':' b=block { _Py_ExceptHandler(NULL, NULL, b, EXTRA) }

finally_block[asdl_seq*]: 'finally' ':' a=block { a }

There are two uses of the try statement:
1. try with only a finally statement
2. try with one or many except clauses, followed by an optional else,then an optional finally

68

The Parser Generator
Here are those same options visualized in a railroad diagram:

: block except expression as target : block

<

else : block

finally : block

finally : block

try

The try statement is a good example of a more complex structure.
If you want to understand the Python language in detail, then readthrough the grammar defined in Grammar python.gram.

The Parser Generator
The grammar file itself is never used by the Python compiler. Instead,a parser generator reads the file and generates a parser. If you makechanges to the grammar file, then youmust regenerate the parser andrecompile CPython.
The CPython parser was rewritten in Python 3.9 from a parser tableautomaton (the pgen module) into a contextual grammar parser.
In Python 3.9, the old parser is available at the command line by usingthe -X oldparser flag, and in Python 3.10 it’s removed completely. Thisbook refers to the new parser implemented in 3.9.

Regenerating Grammar
To see pegen, the new PEG generator introduced in CPython 3.9, inaction, you can change part of the Python grammar. Search Grammar

python.gram for small_stmt to see the definition of small statements:
69

Regenerating Grammar
small_stmt[stmt_ty] (memo):

| assignment

| e=star_expressions { _Py_Expr(e, EXTRA) }

| &'return' return_stmt

| &('import' | 'from') import_stmt

| &'raise' raise_stmt

| 'pass' { _Py_Pass(EXTRA) }

| &'del' del_stmt

| &'yield' yield_stmt

| &'assert' assert_stmt

| 'break' { _Py_Break(EXTRA) }

| 'continue' { _Py_Continue(EXTRA) }

| &'global' global_stmt

| &'nonlocal' nonlocal_stmt

In particular, the line 'pass' { _Py_Pass(EXTRA) } is for the pass state-ment:

pass

Change that line to accept the terminal (keyword) 'pass' or 'proceed'as keywords by adding a choice, |, and the 'proceed' literal:
| ('pass'|'proceed') { _Py_Pass(EXTRA) }

pass

proceed

Next, rebuild the grammar files. CPython comes with scripts to auto-mate grammar regeneration.
70

Regenerating Grammar
On macOS and Linux, run the make regen-pegen target:
$ make regen-pegen

ForWindows, bring up a command prompt from the PCBuild directoryand run build.bat with the --regen flag:
> build.bat --regen

You should see an output showing that the new Parser pegen parse.cfile has been regenerated.
With the regenerated parser table, when you recompile CPython, itwill use the new syntax. Use the same compilation steps you used foryour operating system in the last chapter.
If the code compiled successfully, then you can execute your newCPython binary and start a REPL.
In the REPL, you can now try defining a function. Instead of using the
pass statement, use the proceed keyword alternative that you compiledinto the Python grammar:
$./python

Python 3.9 (tags/v3.9:9cf67522, Oct 5 2020, 10:00:00)

[Clang 10.0.1 (clang-1001.0.46.4)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> def example():

... proceed

...

>>> example()

Congratulations, you’ve changed the CPython syntax and compiledyour own version of CPython!
Next, you’ll explore tokens and their relationship to grammar.

71

Regenerating Grammar
Tokens
Alongside the grammar file in the Grammar folder is the Grammar Tokensfile, which contains each of the unique types found as leaf nodes in aparse tree. Each token also has a name and a generated unique ID.The names make it simpler to refer to tokens in the tokenizer.

Note
The Grammar Tokens file is a new feature in Python 3.8.

For example, the left parenthesis is called LPAR, and semicolons arecalled SEMI. You’ll see these tokens later in the book:
LPAR '('

RPAR ')'

LSQB '['

RSQB ']'

COLON ':'

COMMA ','

SEMI ';'

As with the Grammar file, if you change the Grammar Tokens file, you needto rerun pegen.
To see tokens in action, you can use the tokenize module in CPython.

Note
The tokenizer written in Python is a utility module. The actualPython parser uses a different process for identifying tokens.

Create a simple Python script called test_tokens.py:
cpython-book-samples 13 test_tokens.py

Demo application

def my_function():

proceed

72

Regenerating Grammar
Input the test_tokens.py file to amodule built into the standard librarycalled tokenize. You’ll see the list of tokens by line and character. Usethe -e flag to output the exact token names:
$./python -m tokenize -e test_tokens.py

0,0-0,0: ENCODING 'utf-8'

1,0-1,14: COMMENT '# Demo application'

1,14-1,15: NL '\n'

2,0-2,3: NAME 'def'

2,4-2,15: NAME 'my_function'

2,15-2,16: LPAR '('

2,16-2,17: RPAR ')'

2,17-2,18: COLON ':'

2,18-2,19: NEWLINE '\n'

3,0-3,3: INDENT ' '

3,3-3,7: NAME 'proceed'

3,7-3,8: NEWLINE '\n'

4,0-4,0: DEDENT ''

4,0-4,0: ENDMARKER ''

In the output, the first column is the range of the line and columncoordinates, the second column is the name of the token, and the finalcolumn is the value of the token.
In the output, the tokenize module has implied some tokens:
• The ENCODING token for utf-8
• A DEDENT to close the function declaration
• An ENDMARKER to end the file
• A blank line at the end

It’s best practice to have a blank line at the end of your Python sourcefiles. If you omit it, then CPython adds one for you.
The tokenize module is written in pure Python and is located in Lib

tokenize.py.

73

Conclusion
To see a verbose readout of the C parser, you can run a debug buildof Python with the -d flag. Using the test_tokens.py script you createdearlier, run it with the following:
$./python -d test_tokens.py

> file[0-0]: statements? $

> statements[0-0]: statement+

> _loop1_11[0-0]: statement

> statement[0-0]: compound_stmt

...

+ statements[0-10]: statement+ succeeded!

+ file[0-11]: statements? $ succeeded!

In the output, you can see that it highlighted proceed as a keyword. Inthe next chapter, you’ll see how executing the Python binary gets tothe tokenizer and what happens from there to execute your code.
To clean up your code, revert the change in Grammar python.gram, re-generate the grammar again, then clean the build and recompile.
Use the following for macOS or Linux:
$ git checkout -- Grammar/python.gram

$ make regen-pegen

$ make -j2 -s

Or use the following for Windows:
> git checkout -- Grammar/python.gram

> build.bat --regen

> build.bat -t CleanAll

> build.bat -t Build

Conclusion
In this chapter, you’ve been introduced to the Python grammar defini-tions and parser generator. In the next chapter, you’ll expand on thatknowledge to build a more complex syntax feature, an “almost-equal”

74

Conclusion
operator.
In practice, changes to the Python grammar have to be carefully con-sidered and discussed. There are two reasons for this level of scrutiny:
1. Having too many language features or a complex grammar wouldrun counter to Python’s ethos of being a simple and readable lan-guage.
2. Changes to grammar introduce backward incompatibilities, whichcreate work for all developers.
If a Python core developer proposes a change to the grammar, then itmust be proposed as aPythonEnhancementProposal (PEP). AllPEPs are numbered and indexed on the PEP index. PEP 5 documentsthe guidelines for evolving the language and specifies that changesmust be proposed in PEPs.
You can see the drafted, rejected, and accepted PEPs for futureversions of CPython in the PEP index. Members can also suggestchanges to the language outside the core development group throughthe python-ideas mailing list.
Once a PEP has consensus and the draft has been finalized, thesteering council must accept or reject it. The mandate of the steeringcouncil, defined in PEP 13, states that council members shall workto “maintain the quality and stability of the Python language andCPython interpreter.”

75

https://www.python.org/dev/peps/pep-0005/
https://www.python.org/dev/peps/
https://www.python.org/community/lists/
https://www.python.org/dev/peps/pep-0013/

Conрguration and Input
Now that you’ve seen the Python grammar, it’s time to explore howcode gets into an executable state.
There are many ways Python code can be run in CPython. Here aresome of the most commonly used approaches:
1. Running python -c and a Python string
2. Running python -m and the name of a module
3. Running python <file> with the path to a file that contains Pythoncode
4. Piping Python code into the python executable over stdin, such as

cat <file> | python

5. Starting a REPL and executing commands one at a time
6. Using the C API and using Python as an embedded environment

See Also
Python has somany ways to execute scripts that it can be a littleoverwhelming. For more on running Python scripts, check outReal Python’s “How to Run Your Python Scripts.”

76

https://realpython.com/run-python-scripts/

To execute any Python code, the interpreter needs three elements inplace:
1. A module to execute
2. A state to hold information such as variables
3. A configuration, such as which options are enabled
With these three components, the interpreter can execute code andprovide an output:

Configuration State Modules

Runtime

Input

Output

77

Note
Similar to the PEP 8 style guide for Python code, there’s a PEP7 style guide for the CPython C code. It includes the followingnaming standards for C source code:
• The Py prefix is for public functions, not static functions.
• The Py_ prefix is for global service routines, such as

Py_FatalError. Specific groups of routines (like specific ob-ject type APIs) should use a longer prefix, such as PyString_for string functions.
• Public functions and variables should be written in Mixed-Case, with words separated by underscores, such as PyOb-

ject_GetAttr(), Py_BuildValue(), and PyExc_TypeError().
• The _Py prefix should be reserved for internal functions thatneed to be visible to the loader, such as _PyObject_Dump().
• Macros should have a MixedCase prefix and then use uppercase, with all words separated by underscores, such as PyS-

tring_AS_STRING and Py_PRINT_RAW.
Unlike PEP 8, there are few tools for checking compliance withPEP 7. This task is instead done by the core developers as partof code reviews. As with any human-operated process, this typeof review isn’t error-proof, so you’ll likely find code that doesn’tadhere to PEP 7.
The only bundled tool for automating this process is a scriptcalled smelly.py, which you can execute using the make smellytarget on Linux or macOS, or via the command line:
$./python Tools/scripts/smelly.py

This will raise an error for any symbols that are in libpython (theshared CPython library) that do not start with Py or _Py.

78

https://realpython.com/python-pep8/
https://www.python.org/dev/peps/pep-0007/
https://www.python.org/dev/peps/pep-0007/

Configuration State
Conрguration State
Before any Python code is executed, the CPython runtime first estab-lishes the configuration of the runtime and any user-provided options.
The configuration of the runtime is in three locations, as defined inPEP 587:
1. PyPreConfig, used for preinitialization configuration
2. PyConfig, used for the runtime configuration
3. The compiled configuration of the CPython interpreter
Both data structures, PyPreConfig and PyConfig, are defined in Include

cpython initconfig.h.
Preinitialization Conрguration
The preinitialization configuration is separate from the runtime con-figuration as its properties relate to the operating system or user envi-ronment.
PyPreConfig has three primary functions:
1. Setting the Python memory allocator
2. Configuring the LC_CTYPE locale to the system- or user-preferredlocale
3. Setting the UTF-8 mode (PEP 540)
The PyPreConfig type contains the following fields, all of type int:
• allocator: Select amemory allocator, such as PYMEM_ALLOCATOR_MALLOC.Run ./configure --help for more information on the memory allo-cator.
• configure_locale: Set the LC_CTYPE locale to the user preferred lo-cale. If equal to 0, then set coerce_c_locale and coerce_c_locale_warnto 0.

79

https://www.python.org/dev/peps/pep-0587/
https://github.com/python/cpython/blob/v3.9.0/Include/cpython/initconfig.h#L125
https://github.com/python/cpython/blob/v3.9.0/Include/cpython/initconfig.h#L425
https://www.python.org/dev/peps/pep-0540/

Configuration State
• coerce_c_locale: If equal to 2, then coerce the C locale. If equal to 1,then read the LC_CTYPE locale to decide if it should be coerced.
• coerce_c_locale_warn: If nonzero, then emit a warning if the C lo-cale is coerced.
• dev_mode: Turn on development mode.
• isolated: Enable isolated mode. sys.path contains neither thescript’s directory nor the user’s site-packages directory.
• legacy_windows_fs_encoding: (Windows only) If nonzero, then dis-able UTF-8 mode and set the Python file system encoding to mbcs.
• parse_argv: If nonzero, then use command-line arguments.
• use_environment: If greater than zero, then use environment vari-ables.
• utf8_mode: If nonzero, then enable UTF-8 mode.
Related Source Files
Below are the source files relating to PyPreConfig:
File Purpose
Python initconfig.c Loads the configuration from the systemenvironment and merges it with any command-lineflags
Include cpython

initconfig.h

Defines the initialization configuration datastructure

Runtime Conрguration Data Structure
The second-stage configuration is the runtime configuration. The run-time configuration data structure in PyConfig includes several values,including the following:
• Runtime flags for modes like debug and optimized
• The mode of execution, such as a script file, stdin, or module
• Extended options, specified by -X <option>

80

https://github.com/python/cpython/blob/v3.9.0/Include/cpython/initconfig.h#L425

Configuration State
• Environment variables for runtime settings

The configuration data is used by the CPython runtime to enable anddisable features.
Setting Runtime Conрguration with theCommand Line
Python also comes with several command-line interface options. Forexample, CPython has a mode called verbosemode. This is primar-ily aimed at developers for debugging CPython.
You can enable verbose mode with the -v flag, and Python will printmessages to the screen when modules are loaded:
$./python -v -c "print('hello world')"

installing zipimport hook

import zipimport # builtin

installed zipimport hook

...

You’ll see a hundred lines or more with all the imports of your usersite packages and anything else in the system environment.
Because runtime configuration can be set in several ways, configura-tion settings have levels of precedence. Here’s the order of precedencefor verbose mode:
1. The default value for config->verbose is hardcoded to -1 in thesource code.
2. The environment variable PYTHONVERBOSE is used to set the value of

config->verbose.
3. If the environment variable does not exist, then the default valueof -1 will remain.
4. In config_parse_cmdline() within Python initconfig.c, thecommand-line flag is used to set the value, if provided.

81

https://docs.python.org/3/using/cmdline.html
https://github.com/python/cpython/blob/v3.9.0/Python/initconfig.c#L1908

Configuration State
5. This value is copied to a global variable, Py_VerboseFlag by

_Py_GetGlobalVariablesAsDict().
All PyConfig values follow the same sequence and order of precedence:

Environment
Variables

Command Line
Arguments

System
Configuration

PyConfig

PyPreConfig

Runtime

Viewing Runtime Flags
CPython interpreters have a set of runtime сags. These flags are ad-vanced features used for toggling CPython-specific behaviors. Withina Python session, you can access the runtime flags, like verbose modeand quiet mode, by using the sys.flags named tuple.
All -X flags are available inside the sys._xoptions dictionary:

82

https://github.com/python/cpython/blob/v3.9.0/Python/initconfig.c#L172

Build Configuration
$./python -X dev -q

>>> import sys

>>> sys.flags

sys.flags(debug=0, inspect=0, interactive=0, optimize=0,

dont_write_bytecode=0, no_user_site=0, no_site=0,

ignore_environment=0, verbose=0, bytes_warning=0,

quiet=1, hash_randomization=1, isolated=0,

dev_mode=True, utf8_mode=0)

>>> sys._xoptions

{'dev': True}

Build Conрguration
Along with the runtime configuration in Include cpython initconfig.h,there’s also a build configuration located inside pyconfig.h in the rootfolder. This file is created dynamically in the ./configure step in thebuild process for macOS and Linux, or by build.bat in Windows.
You can see the build configuration by running the following:
$./python -m sysconfig

Platform: "macosx-10.15-x86_64"

Python version: "3.9"

Current installation scheme: "posix_prefix"

Paths:

data = "/usr/local"

include = "/Users/anthonyshaw/CLionProjects/cpython/Include"

platinclude = "/Users/anthonyshaw/CLionProjects/cpython"

...

Build configuration properties are compile-time values used to selectadditional modules to be linked into the binary. For example, debug-gers, instrumentation libraries, and memory allocators are all set atcompile time.
83

Building a Module From Input
With the three configuration stages, the CPython interpreter can nowtake input and process text into executable code.

Building a Module From Input
Before any code can be executed, it must be compiled into a modulefrom an input. As discussed before, inputs can vary in type:
• Local files and packages
• I/O streams, such as stdin or a memory pipe
• Strings

Inputs are read, passed to the parser, and then passed to the compiler:

File Input

IO Stream
Input

String Input

CompilerReader Parser

Due to this flexibility, a large portion of the CPython source code isdedicated to processing inputs to the CPython parser.

84

Building a Module From Input
Related Source Files
There are four main files that deal with the command-line interface:
File Purpose
Lib runpy.py Standard library module for importing Pythonmodules and executing them
Modules main.c Functions wrapping the execution of external code,such as from a file, module, or input stream
Programs python.c The entry point for the python executable forWindows, Linux, and macOS Serves only as awrapper for Modules/main.c
Python pythonrun.c Functions wrapping the internal C APIs forprocessing inputs from the command line

Reading Files/Input
Once CPython has the runtime configuration and the command-linearguments, it can load the code it needs to execute. This task is han-dled by pymain_main() inside Modules main.c.
CPython will now execute the provided code with any options speci-fied in the newly created PyConfig instance.
Input String From the Command Line
CPython can execute a small Python application at the command linewith the -c option. For example, consider what happens when youexecute print(2 ** 2):
$./python -c "print(2 ** 2)"

4

First, pymain_run_command() is executed inside Modules main.c, takingthe command passed in -c as an argument in the C type wchar_t*.

85

https://github.com/python/cpython/blob/v3.9.0/Modules/main.c#L696
https://github.com/python/cpython/blob/v3.9.0/Modules/main.c#L226

Building a Module From Input
Note
The wchar_t* type is often used as a low-level storage type forUnicode data across CPython since the size of the type can storeUTF-8 characters.
When converting the wchar_t* to a Python string, the Ob-

jects unicodeobject.c file has a helper function, PyUni-

code_FromWideChar(), that returns a Unicode string. Theencoding to UTF-8 is then done by PyUnicode_AsUTF8String().
Python Unicode strings are covered in depth in the “UnicodeString Type” section of the “Objects and Types” chapter.

Once this is complete, pymain_run_command() passes the Python bytesobject to PyRun_SimpleStringFlags() for execution.
PyRun_SimpleStringFlags() is part of Python pythonrun.c. Its purpose isto turn a string into a Python module and then send it on to be exe-cuted.
A Python module needs to have an entry point, __main__, to be exe-cuted as a standalone module, and PyRun_SimpleStringFlags() createsthis entry point implicitly.
Once PyRun_SimpleStringFlags() has created a module and a dictionary,it calls PyRun_StringFlags(). PyRun_SimpleStringFlags() creates a fakefilename and then calls the Python parser to create an abstract syntaxtree (AST) from the string and return a module. You’ll learn moreabout ASTs in the next chapter.

Note
Python modules are the data structure used to hand parsedcode on to the compiler. The C structure for a Python moduleis mod_ty and is defined in Include Python-ast.h.

86

https://github.com/python/cpython/blob/v3.9.0/Objects/unicodeobject.c#L2187
https://github.com/python/cpython/blob/v3.9.0/Objects/unicodeobject.c#L2187
https://github.com/python/cpython/blob/v3.9.0/Objects/unicodeobject.c#L5539
https://github.com/python/cpython/blob/v3.9.0/Modules/main.c#L226
https://github.com/python/cpython/blob/v3.9.0/Python/pythonrun.c#L463
https://github.com/python/cpython/blob/v3.9.0/Python/pythonrun.c#L463
https://github.com/python/cpython/blob/v3.9.0/Python/pythonrun.c#L463
https://github.com/python/cpython/blob/v3.9.0/Python/pythonrun.c#L1054
https://github.com/python/cpython/blob/v3.9.0/Python/pythonrun.c#L463

Building a Module From Input
Input With a Local Module
Another way to execute Python commands is to use the -m option withthe name of a module. A typical example is python -m unittest, whichruns the unittest module in the standard library.
The ability to execute modules as scripts was initially proposed inPEP 338. The standard for explicit relative imports was defined inPEP366.
The -m flag implies that, within the module package, you want to exe-cute whatever is inside the entry point (__main__). It also implies thatyou want to search sys.path for the named module.
This search mechanism in the import library (importlib) is why youdon’t need to remember where the unittest module is stored on yourfile system.
CPython imports a standard library module, runpy, and executes it us-ing PyObject_Call(). The import is done using the C API function Py-

Import_ImportModule(), found within the Python import.c file.
Note
In Python, if you have an object and want to get an attribute,then you can call getattr(). In the C API, this call is PyOb-

ject_GetAttrString(), which is found in Objects object.c.
If you want to run a callable, then you can give it parentheses,or you can run the __call__() property on any Python object.
__call__() is implemented inside Objects object.c:
>>> my_str = "hello, world"

>>> my_str.upper()

'HELLO, WORLD'

>>> my_str.upper.__call__()

'HELLO, WORLD'

The runpy module is written in pure Python and is located in Lib

87

https://www.python.org/dev/peps/pep-0338
https://www.python.org/dev/peps/pep-0366
https://realpython.com/python-main-function/
https://github.com/python/cpython/blob/v3.9.0/Objects/call.c#L289
https://github.com/python/cpython/blob/v3.9.0/Python/import.c#L1477
https://github.com/python/cpython/blob/v3.9.0/Python/import.c#L1477
https://github.com/python/cpython/blob/v3.9.0/Objects/object.c#L786
https://github.com/python/cpython/blob/v3.9.0/Objects/object.c#L786

Building a Module From Input
runpy.py.
Executing python -m <module> is equivalent to running python -m runpy

<module>. The runpy module was created to abstract the process of lo-cating and executing modules on an operating system.
runpy does three things to run the target module:
1. Calls __import__() for the module name you provided
2. Sets __name__ (the module name) to a namespace called __main__

3. Executes the module within the __main__ namespace
The runpy module also supports executing directories and ZIP files.
Input From a Script File or Standard Input
If the first argument to python is a filename, such as python test.py,then CPython will open a file handle and pass the handle to
PyRun_SimpleFileExFlags() inside Python pythonrun.c.
There are three paths this function can take:
1. If the file path is a .pyc file, then it will call run_pyc_file().
2. If the file path is a script file (.py), then itwill run PyRun_FileExFlags().
3. If the file path is stdin because the user ran <command> | python, thentreat stdin as a file handle and run PyRun_FileExFlags().
For stdin and basic script files, CPython will pass the file handle to
PyRun_FileExFlags() located in the Python pythonrun.c file.
Thepurpose of PyRun_FileExFlags() is similar to PyRun_SimpleStringFlags().CPython will load the file handle into PyParser_ASTFromFileObject().
Identical to PyRun_SimpleStringFlags(), once PyRun_FileExFlags() hascreated a Python module from the file, it sends the module to
run_mod() to be executed.

88

https://github.com/python/cpython/blob/v3.9.0/Python/pythonrun.c#L382
https://github.com/python/cpython/blob/v3.9.0/Python/pythonrun.c#L1205
https://github.com/python/cpython/blob/v3.9.0/Python/pythonrun.c#L1085
https://github.com/python/cpython/blob/v3.9.0/Python/pythonrun.c#L1085
https://github.com/python/cpython/blob/v3.9.0/Python/pythonrun.c#L1085
https://github.com/python/cpython/blob/v3.9.0/Python/pythonrun.c#L1085
https://github.com/python/cpython/blob/v3.9.0/Python/pythonrun.c#L463
https://github.com/python/cpython/blob/v3.9.0/Python/pythonrun.c#L1442
https://github.com/python/cpython/blob/v3.9.0/Python/pythonrun.c#L463
https://github.com/python/cpython/blob/v3.9.0/Python/pythonrun.c#L1085
https://github.com/python/cpython/blob/v3.9.0/Python/pythonrun.c#L1186

Conclusion
Input From Compiled Bytecode
If the user runs pythonwith a path to a .pyc file, then instead of loadingthe file as a plain text file and parsing it, CPython will assume that the
.pyc file contains a code object written to disk.
In PyRun_SimpleFileExFlags(), there’s a clause for the user providing afile path to a .pyc file.
run_pyc_file() inside Python pythonrun.c marshals the code objectfrom the .pyc file using a file handle.
The code object data structure on the disk is the CPython compiler’sway to cache compiled code so that it doesn’t need to parse it everytime the script is called.

Note
Marshaling is a term for copying the contents of a file intomemory and converting them to a specific data structure.

Once the code object has been marshaled to memory, it’s sent to
run_eval_code_obj(), which calls Python ceval.c to execute the code.

Conclusion
In this chapter, you’ve uncovered how Python’s many configurationoptions are loaded and how code is inputted into the interpreter.
Python’s flexibility with input makes it a great tool for a range of ap-plications, such as:
• Command-line utilities
• Long-running network applications, like web servers
• Short, composable scripts

Python’s ability to set configuration properties in many ways intro-duces complexity. For example, if you tested a Python application on
89

https://github.com/python/cpython/blob/v3.9.0/Python/pythonrun.c#L382
https://github.com/python/cpython/blob/v3.9.0/Python/pythonrun.c#L1205
https://github.com/python/cpython/blob/v3.9.0/Python/pythonrun.c#L1155

Conclusion
Python 3.8 and it executed correctly, but then it failed in a differentenvironment, then youwould need to understandwhich settings weredifferent in that environment.
This means you’d need to inspect environment variables, runtimeflags, and even the sys config properties.
The compile-time properties found in sys config can differ betweenPython distributions. For example, Python 3.8 downloaded fromPython.org for macOS has different default values than the Python3.8 distribution found on Homebrew or the one found on theAnaconda distribution.
All these input methods output a Python module. In the next chapter,you’ll look at how modules are created from input.

90

Lexing and ParsingWithSyntax Trees
In the previous chapter, you explored how Python text is read fromvarious sources. Next, it needs to be converted into a structure thatthe compiler can use.
This stage is called parsing:

File Input

IO Stream
Input

String Input

CompilerReader Parser

In this chapter, you’ll explore how the text is parsed into logical struc-tures that can be compiled.

91

Concrete Syntax Tree Generation
There are two structures used to parse code in CPython, the concretesyntax tree (CST) and the abstract syntax tree (AST):

CompilerReader
Text AST

Lexer Parser
CST

The parsing process has two parts:
1. Creating a concrete syntax tree using a parser-tokenizer, orlexer
2. Creating an abstract syntax tree from a concrete syntax tree usinga parser
These two steps are common paradigms used in many programminglanguages.

Concrete Syntax Tree Generation
The concrete syntax tree, sometimes known as a parse tree, is anordered, rooted tree structure that represents code in a context-freegrammar.
The CST is created from a tokenizer and a parser. You exploredthe parser generator in the chapter “The Python Language andGrammar.” The output from the parser generator is a deterministicfinite automaton (DFA) parsing table describing the possible statesof a context-free grammar.

92

Concrete Syntax Tree Generation
See Also
The original author of Python, Guido van Rossum, developed acontextual grammar for use in CPython 3.9 as an alternative toLL(1), the grammar used in previous versions of CPython. Thenew grammar is calledparser expression grammar (PEG).
The PEG parser was made available in Python 3.9. In Python3.10, the old LL(1) grammar will be removed completely.

In the “Python Language and Grammar” chapter, you explored someexpression types, such as if_stmt and with_stmt. The CST representsgrammar symbols like if_stmt as branches, with tokens and terminalsas leaf nodes.
For example, the arithmetic expression a + 1 becomes the followingCST:

arith_expr

term

factor

power

atom_expr

atom

NAME ‘a’

PLUS

‘+’

term

factor

power

atom_expr

atom

NUMBER 1

An arithmetic expression is represented here with three majorbranches: the left branch, the operator branch, and the right branch.
The parser iterates through tokens from an input stream andmatchesthem against the possible states and tokens in the grammar to builda CST.

93

Concrete Syntax Tree Generation
All the symbols shown in the CST above are defined in Grammar Grammar:
arith_expr: term (('+'|'-') term)*

term: factor (('*'|'@'|'/'|'%'|'//') factor)*

factor: ('+'|'-'|'~') factor | power

power: atom_expr ['**' factor]

atom_expr: [AWAIT] atom trailer*

atom: ('(' [yield_expr|testlist_comp] ')' |

'[' [testlist_comp] ']' |

'{' [dictorsetmaker] '}' |

NAME | NUMBER | STRING+ | '...' | 'None' | 'True' | 'False')

The tokens are defined in Grammar Tokens:
ENDMARKER

NAME

NUMBER

STRING

NEWLINE

INDENT

DEDENT

LPAR '('

RPAR ')'

LSQB '['

RSQB ']'

COLON ':'

COMMA ','

SEMI ';'

PLUS '+'

MINUS '-'

STAR '*'

...

A NAME token represents the name of a variable, function, class, ormod-ule. Python’s syntax doesn’t allow a NAME to be one of the reservedkeywords, like await and async, or a numeric or other literal type.
For example, if you tried to define a function named 1, then Pythonwould raise a SyntaxError:

94

Concrete Syntax Tree Generation
>>> def 1():

File "<stdin>", line 1

def 1():

^

SyntaxError: invalid syntax

A NUMBER is a particular token type to represent one of Python’s manynumeric values. Python has a special grammar for numbers, includ-ing the following:
• Octal values, such as 0o20

• Hexadecimal values, such as 0x10

• Binary values, such as 0b10000

• Complex numbers, such as 10j

• Floating-point numbers, such as 1.01

• Underscores as commas, such as 1_000_000

You can see compiled symbols and tokens using the symbol and tokenmodules in Python:
$./python

>>> import symbol

>>> dir(symbol)

['__builtins__', '__cached__', '__doc__', '__file__', '__loader__',

'__name__', '__package__', '__spec__', '_main', '_name', '_value',

'and_expr', 'and_test', 'annassign', 'arglist', 'argument',

'arith_expr', 'assert_stmt', 'async_funcdef', 'async_stmt',

'atom', 'atom_expr',

...

>>> import token

>>> dir(token)

['AMPER', 'AMPEREQUAL', 'AT', 'ATEQUAL', 'CIRCUMFLEX',

'CIRCUMFLEXEQUAL', 'COLON', 'COMMA', 'COMMENT', 'DEDENT', 'DOT',

'DOUBLESLASH', 'DOUBLESLASHEQUAL', 'DOUBLESTAR', 'DOUBLESTAREQUAL',

...

95

The CPython Parser-Tokenizer
The CPython Parser-Tokenizer
Programming languages have different implementations of the lexer.Some use a lexer generator as a complement to the parser generator.
CPython has a parser-tokenizer module, written in C.
Related Source Files
Here are the source files relating to the parser-tokenizer:
File Purpose
Python pythonrun.c Executes the parser and the compiler from an input
Parser parsetok.c The parser and tokenizer implementation
Parser tokenizer.c Tokenizer implementation
Parser tokenizer.h Header file for the tokenizer implementation thatdescribes data models like token state
Include token.h Declaration of token types, generated by Tools

scripts generate_token.py

Include node.h Parse tree node interface and macros for thetokenizer

Inputting Data Into the Parser From a File
The entry point for the parser-tokenizer, PyParser_ASTFromFileObject(),takes a file handle, compiler flags, and a PyArena instance and convertsthe file object into a module.
There are two steps:
1. Convert to a CST using PyParser_ParseFileObject().
2. Convert to an AST or module using the AST function

PyAST_FromNodeObject().
The PyParser_ParseFileObject() function has two important tasks:
1. Instantiating a tokenizer state, tok_state, using PyTokenizer_FromFile()

2. Converting the tokens into a CST (a list of nodes) using parsetok()

96

https://github.com/python/cpython/blob/v3.9.0/Python/pythonrun.c#L1442
https://github.com/python/cpython/blob/v3.9.0/Parser/parsetok.c#L165
https://github.com/python/cpython/blob/v3.9.0/Python/ast.c#L763
https://github.com/python/cpython/blob/v3.9.0/Parser/parsetok.c#L165
https://github.com/python/cpython/blob/v3.9.0/Parser/tokenizer.c#L775
https://github.com/python/cpython/blob/v3.9.0/Parser/parsetok.c#L216

The CPython Parser-Tokenizer
Parser-Tokenizer Flow
The parser-tokenizer takes text input and executes the tokenizer andparser in a loop until the cursor is at the end of the text (or a syntaxerror occurs).
Before execution, the parser-tokenizer establishes tok_state, a tempo-rary data structure to store all states used by the tokenizer. The tok-enizer state contains information such as the current cursor positionand line.
The parser-tokenizer calls tok_get() to get the next token. The parser-tokenizer passes the resulting token ID to the parser, which uses theparser generator DFA to create a node on the concrete syntax tree.
tok_get() is one of the most complex functions in the whole CPythoncodebase. It has over 640 lines and includes decades of heritage withedge cases, new language features, and syntax.
The process of calling the tokenizer and parser in a loop can be illus-trated like this:

97

https://github.com/python/cpython/blob/v3.9.0/Parser/tokenizer.c#L1174

The CPython Parser-Tokenizer

Init Tokenizer

State

Get next token

P
a
r
s
e
r
-
T
o
k
e
n
i
z
e
r

T
o
k
e
n
i
z
e
r

Parse Token

Add node

to CST

P
a
r
s
e
r

Text

CST

ID

Node

The CST root node returned by PyParser_ParseFileObject() is essentialfor the next stage, converting a CST into an abstract syntax tree (AST).
The node type is defined in Include node.h:
typedef struct _node {

short n_type;

char *n_str;

int n_lineno;

int n_col_offset;

98

https://github.com/python/cpython/blob/v3.9.0/Parser/parsetok.c#L165

The CPython Parser-Tokenizer
int n_nchildren;

struct _node *n_child;

int n_end_lineno;

int n_end_col_offset;

} node;

Since the CST is a tree of syntax, token IDs, and symbols, it would bedifficult for the compiler to make quick, Python-based decisions.
Before you jump into the AST, there’s a way to access the outputfrom the parser stage. CPython has a standard library module, parser,which exposes the C functions with a Python API.
The output will be numeric, using the token and symbol numbers gen-erated by the make regen-grammar stage and stored in Include token.h:
>>> from pprint import pprint

>>> import parser

>>> st = parser.expr('a + 1')

>>> pprint(parser.st2list(st))

[258,

[332,

[306,

[310,

[311,

[312,

[313,

[316,

[317,

[318,

[319,

[320,

[321, [322, [323, [324, [325, [1, 'a']]]]]],

[14, '+'],

[321, [322, [323, [324, [325, [2, '1']]]]]]]]]]]]]]]]],

[4, ''],

[0, '']]

99

The CPython Parser-Tokenizer
To make it easier to understand, you can take all the numbers in the
symbol and token modules, put them into a dictionary, and recursivelyreplace the values in the output of parser.st2list() with the names ofthe tokens:
cpython-book-samples 21 lex.py

import symbol

import token

import parser

def lex(expression):

symbols = {v: k for k, v in symbol.__dict__.items()

if isinstance(v, int)}

tokens = {v: k for k, v in token.__dict__.items()

if isinstance(v, int)}

lexicon = {**symbols, **tokens}

st = parser.expr(expression)

st_list = parser.st2list(st)

def replace(l: list):

r = []

for i in l:

if isinstance(i, list):

r.append(replace(i))

else:

if i in lexicon:

r.append(lexicon[i])

else:

r.append(i)

return r

return replace(st_list)

You can run lex() with a simple expression like a + 1 to see how thisis represented as a parser tree:

100

Abstract Syntax Trees
>>> from pprint import pprint

>>> pprint(lex('a + 1'))

['eval_input',

['testlist',

['test',

['or_test',

['and_test',

['not_test',

['comparison',

['expr',

['xor_expr',

['and_expr',

['shift_expr',

['arith_expr',

['term',

['factor', ['power', ['atom_expr', ['atom',

['NAME', 'a']]]]]],

['PLUS', '+'],

['term',

['factor',

['power', ['atom_expr', ['atom', ['NUMBER',

'1']]]]]]]]]]]]]]]]],

['NEWLINE', ''],

['ENDMARKER', '']]

In the output, you can see the symbols in lowercase, such as
'arith_expr', and the tokens in uppercase, such as 'NUMBER'.

Abstract Syntax Trees
The next stage in the CPython interpreter is to convert the CST gener-ated by the parser into something more logical that can be executed.

101

Abstract Syntax Trees
Concrete syntax trees are a very literal representation of the text in thecode file. At this stage, it could be a number of languages. Python’sbasic grammatical structure has been interpreted, but you couldn’tuse the CST to establish functions, scopes, loops or any of the corePython language features.
Before code is compiled, the CST needs to be converted into a higher-level structure that represents actual Python constructs. The struc-ture is a representation of the CST called an abstract syntax tree (AST).
As an example, a binary operation in the AST is called a BinOp and isdefined as a type of expression. It has three components:
1. left: The left-hand part of the operation
2. op: The operator, such as +, -, or *
3. right: The right-hand part of the expression
The AST for a + 1 can be represented like this:

Expr

BinOp

Name Add Num

Left Op Right

ASTs are produced by the CPython parser process, but you can alsogenerate them fromPython code using the astmodule in the standardlibrary.
102

Abstract Syntax Trees
Before diving into the implementation of the AST, it would be usefulto understand what an AST looks like for a basic piece of Python code.
Related Source Files
Below are the source files relating to abstract syntax trees:
File Purpose
Include Python-ast.h Declaration of AST node types, generated by Parser

asdl_c.py

Parser Python.asdl A list of AST node types and properties in adomain-specific-language, ASDL 5
Python ast.c The AST implementation

Using Instaviz to View Abstract Syntax Trees
Instaviz is a Python package written for use with this book. It displaysASTs and compiled code in a web interface.
To install Instaviz, install the instaviz package from pip:
$ pip install instaviz

Then open up a REPL by running python at the command line with noarguments.
The function instaviz.show() takes a single argument of type code ob-

ject. You’ll cover code objects in the next chapter. For this example,define a function and use the name of the function as the argumentvalue:

103

Abstract Syntax Trees
$ python

>>> import instaviz

>>> def example():

a = 1

b = a + 1

return b

>>> instaviz.show(example)

You’ll see a notification on the command line that a web server hasstarted on port 8080. If you were using that port for something else,then you could change it by calling instaviz.show(example, port=9090)or another port number.
In the web browser, you can see a detailed breakdown of your func-tion:

104

Abstract Syntax Trees
The bottom-left graph is the function you declared in the REPL, rep-resented as an abstract syntax tree. Each node in the tree is an ASTtype. They’re found in the ast module and all inherit from _ast.AST.
Some of the nodes have properties that link them to child nodes, un-like the CST, which has a generic child node property.
For example, if you click on the Assign node in the center, then it linksto the line b = a + 1:

The Assign node has two properties:
1. targets is a list of names to assign. It’s a list because you can assignto multiple variables with a single expression using unpacking.
2. value is the value to assign, which in this case is a BinOp statement,

a + 1.

105

Abstract Syntax Trees
If you click on the BinOp statement, then it shows the relevant proper-ties:
• left: The node to the left of the operator
• op: The operator, in this case an Add node (+) for addition
• right: The node to the right of the operator

AST Compilation
Compiling an AST in C is not a straightforward task. The Python ast.cmodule has over 5,000 lines of code.
There are a few entry points, forming part of the AST’s public API. TheAST API takes a node tree (CST), a filename, the compiler flags, anda memory storage area.
The result type is mod_ty, representing a Python module defined in In-

clude Python-ast.h.

106

https://github.com/python/cpython/blob/v3.9.0/Include/Python#L14

Abstract Syntax Trees
mod_ty is a container structure for one of the four module types inPython:
1. Module

2. Interactive

3. Expression

4. FunctionType

The module types are all listed in Parser Python.asdl. You’ll see themodule types, statement types, expression types, operators, and com-prehensions all defined in this file.
The names of the types in Parser Python.asdl relate to the classes gen-erated by the AST and the same classes named in the ast standardmodule library:
-- ASDL's 4 builtin types are:

-- identifier, int, string, constant

module Python

{

mod = Module(stmt* body, type_ignore *type_ignores)

| Interactive(stmt* body)

| Expression(expr body)

| FunctionType(expr* argtypes, expr returns)

The ast module imports Include Python-ast.h, a file created automat-ically from Parser Python.asdl when regenerating grammar. The pa-rameters and names in Include Python-ast.h correlate directly to thosespecified in Parser Python.asdl.

107

Abstract Syntax Trees
The mod_ty type is generated into Include Python-ast.h from the Moduledefinition in Parser Python.asdl:
enum _mod_kind {Module_kind=1, Interactive_kind=2, Expression_kind=3,

FunctionType_kind=4};

struct _mod {

enum _mod_kind kind;

union {

struct {

asdl_seq *body;

asdl_seq *type_ignores;

} Module;

struct {

asdl_seq *body;

} Interactive;

struct {

expr_ty body;

} Expression;

struct {

asdl_seq *argtypes;

expr_ty returns;

} FunctionType;

} v;

};

The C header file and structures are there so that the Python ast.c pro-gram can quickly generate the structures with pointers to the relevantdata.
The AST entry point, PyAST_FromNodeObject(), is essentially a switchstatement around the result from TYPE(n). TYPE() is a macro used bythe AST to determine the type of nodes in the concrete syntax tree.The result of TYPE() will be either a symbol or a token type.

108

https://github.com/python/cpython/blob/v3.9.0/Python/ast.c#L763

Abstract Syntax Trees
By starting at the root node, it can be only one of the module typesdefined as Module, Interactive, Expression, or FunctionType:
• For file_input, the type should be Module.
• For eval_input, such as from a REPL, the type should be Expression.

For each type of statement, there’s a corresponding ast_for_xxxC func-tion in Python ast.c, which will look at the CST nodes to complete theproperties for that statement.
One of the simpler examples is the power expression, such as 2 **

4, or 2 to the power of 4. ast_for_power() will return a BinOp with theoperator as Pow (power), the left hand as e (2), and the right hand as f(4):
Python ast.c line 2717
static expr_ty

ast_for_power(struct compiling *c, const node *n)

{

/* power: atom trailer* ('**' factor)*

*/

expr_ty e;

REQ(n, power);

e = ast_for_atom_expr(c, CHILD(n, 0));

if (!e)

return NULL;

if (NCH(n) == 1)

return e;

if (TYPE(CHILD(n, NCH(n) - 1)) == factor) {

expr_ty f = ast_for_expr(c, CHILD(n, NCH(n) - 1));

if (!f)

return NULL;

e = BinOp(e, Pow, f, LINENO(n), n->n_col_offset,

n->n_end_lineno, n->n_end_col_offset, c->c_arena);

}

return e;

}

109

https://github.com/python/cpython/blob/v3.9.0/Python/ast.c#L2717

Abstract Syntax Trees
You can see the result of this if you send a short function to the instavizmodule:
>>> def foo():

2**4

>>> import instaviz

>>> instaviz.show(foo)

You can also see the corresponding properties in the UI:

110

Important Terms to Remember
In summary, each statement type and expression has a corresponding
ast_for_*() function to create it. The arguments are defined in Parser

Python.asdl and exposed via the ast module in the standard library.
If an expression or statement has children, then it will call the corre-sponding ast_for_*() child function in a depth-first traversal.

Important Terms to Remember
Below are some key terms from this chapter:
• Abstract syntax tree (AST): A contextual tree representationof Python’s grammar and statements
• Concrete syntax tree (CST): A non-contextual tree representa-tion of tokens and symbols
• Parse tree: Another term for concrete syntax tree
• Token: A type of symbol, such as +

• Tokenization: The process of converting text into tokens
• Parsing: The process of converting text into a CST or AST

Example: Adding an Almost-EqualComparison Operator
To bring all this together, you can add a new piece of syntax to thePython language and recompile CPython to understand it.
A comparison expression compares two or more values:
>>> a = 1

>>> b = 2

>>> a == b

False

111

Example: Adding an Almost-Equal Comparison Operator
Operators used in comparison expressions are called comparisonoperators. Here are some you may recognize:
• Less than: <

• Greater than: >

• Equal to: ==

• Not equal to: !=

See Also
Rich comparisons in the data model were proposed for Python2.1 in PEP 207. The PEP contains context, history, and justifica-tion for custom Python types to implement comparison meth-ods.

Now let’s add another comparison operator called almost equal thatwill be represented by ~=. It will have the following behaviors:
• If you compare a float and an integer, then it will cast the float intoan integer and compare the result.
• If you compare two integers, then it will use the normal equalityoperators.

This new operator should return the following in a REPL:
>>> 1 ~= 1

True

>>> 1 ~= 1.0

True

>>> 1 ~= 1.01

True

>>> 1 ~= 1.9

False

To add the new operator, you first need to update the CPython gram-mar. In Grammar python.gram, the comparison operators are defined asa symbol, comp_op:

112

https://www.python.org/dev/peps/pep-0207/

Example: Adding an Almost-Equal Comparison Operator
comparison[expr_ty]:

| a=bitwise_or b=compare_op_bitwise_or_pair+ ...

| bitwise_or

compare_op_bitwise_or_pair[CmpopExprPair*]:

| eq_bitwise_or

| noteq_bitwise_or

| lte_bitwise_or

| lt_bitwise_or

| gte_bitwise_or

| gt_bitwise_or

| notin_bitwise_or

| in_bitwise_or

| isnot_bitwise_or

| is_bitwise_or

eq_bitwise_or[CmpopExprPair*]: '==' a=bitwise_or ...

noteq_bitwise_or[CmpopExprPair*]:

| (tok='!=' {_PyPegen_check_barry_as_flufl(p) ? NULL : tok}) ...

lte_bitwise_or[CmpopExprPair*]: '<=' a=bitwise_or ...

lt_bitwise_or[CmpopExprPair*]: '<' a=bitwise_or ...

gte_bitwise_or[CmpopExprPair*]: '>=' a=bitwise_or ...

gt_bitwise_or[CmpopExprPair*]: '>' a=bitwise_or ...

notin_bitwise_or[CmpopExprPair*]: 'not' 'in' a=bitwise_or ...

in_bitwise_or[CmpopExprPair*]: 'in' a=bitwise_or ...

isnot_bitwise_or[CmpopExprPair*]: 'is' 'not' a=bitwise_or ...

is_bitwise_or[CmpopExprPair*]: 'is' a=bitwise_or ...

Change the compare_op_bitwise_or_pair expression to also allow a new
ale_bitwise_or pair:
compare_op_bitwise_or_pair[CmpopExprPair*]:

| eq_bitwise_or

...

| ale_bitwise_or

113

Example: Adding an Almost-Equal Comparison Operator
Define the new ale_bitwise_or expression beneath the existing
is_bitwise_or expression:
...

is_bitwise_or[CmpopExprPair*]: 'is' a=bitwise_or ...

ale_bitwise_or[CmpopExprPair*]: '~=' a=bitwise_or

{ _PyPegen_cmpop_expr_pair(p, AlE, a) }

This new type defines a named expression, ale_bitwise_or, that con-tains the '~=' terminal.
The function call _PyPegen_cmpop_expr_pair(p, AlE, a) is an expressionto get a cmpop node from the AST. The type is AlE, for Almost Equal.
Next, add a token to Grammar Tokens:
ATEQUAL '@='

RARROW '->'

ELLIPSIS '...'

COLONEQUAL ':='

Add this line

ALMOSTEQUAL '~='

To update the grammar and tokens in C, you need to regenerate theheaders.
Use the following command on macOS or Linux:
$ make regen-token regen-pegen

Use the following command onWindows, within the PCBuild directory:
> build.bat --regen

114

Example: Adding an Almost-Equal Comparison Operator
These steps will automatically update the tokenizer. For exam-ple, open the Parser/token.c source and see how a case in the
PyToken_TwoChars() function has changed:

case '~':

switch (c2) {

case '=': return ALMOSTEQUAL;

}

break;

}

If you recompile CPython at this stage and open a REPL, then you’llsee that the tokenizer can successfully recognize the token, but theAST doesn’t know how to handle it:
$./python

>>> 1 ~= 2

SystemError: invalid comp_op: ~=

This exception is raised by ast_for_comp_op() inside Python ast.c be-cause it doesn’t recognize ALMOSTEQUAL as a valid operator for a compar-ison statement.
Compare is an expression type defined in Parser Python.asdl. It hasproperties for the left expression; a list of operators called ops, anda list of expressions to compare to called comparators:
| Compare(expr left, cmpop* ops, expr* comparators)

Inside the Compare definition is a reference to the cmpop enumeration:
cmpop = Eq | NotEq | Lt | LtE | Gt | GtE | Is | IsNot | In | NotIn

This is a list of possible AST leaf nodes that can act as comparisonoperators. Ours is missing and needs to be added. Update the list ofoptions to include a new type, AlE:
cmpop = Eq | NotEq | Lt | LtE | Gt | GtE | Is | IsNot | In | NotIn | AlE

115

https://github.com/python/cpython/blob/v3.9.0/Parser/token.c#L109
https://github.com/python/cpython/blob/v3.9.0/Python/ast.c#L1222

Example: Adding an Almost-Equal Comparison Operator
Next, regenerate the AST again to update the AST C header files:
$ make regen-ast

This will update the comparison operator (_cmpop) enumeration inside
Include/Python-ast.h to include the AlE option:
typedef enum _cmpop { Eq=1, NotEq=2, Lt=3, LtE=4, Gt=5, GtE=6, Is=7,

IsNot=8, In=9, NotIn=10, AlE=11 } cmpop_ty;

The AST has no knowledge that the ALMOSTEQUAL token is equivalent tothe AlE comparison operator. So you need to update the C code for theAST.
Navigate to ast_for_comp_op() in Python ast.c. Find the switch state-ment for the operator tokens. This returns one of the _cmpop enumer-ation values.
Add two lines to catch the ALMOSTEQUAL token and return the AlE com-parison operator:
Python ast.c line 1222
static cmpop_ty

ast_for_comp_op(struct compiling *c, const node *n)

{

/* comp_op: '<'|'>'|'=='|'>='|'<='|'!='|'in'|'not' 'in'|'is'

|'is' 'not'

*/

REQ(n, comp_op);

if (NCH(n) == 1) {

n = CHILD(n, 0);

switch (TYPE(n)) {

case LESS:

return Lt;

case GREATER:

return Gt;

case ALMOSTEQUAL: // Add this line to catch the token

return AlE; // And this one to return the AST node

116

https://github.com/python/cpython/blob/v3.9.0/Python/ast.c#L1222

Conclusion
At this stage, the tokenizer and the AST can parse this code, but thecompiler won’t know how to handle the operator. To test the ASTrepresentation, use ast.parse() and explore the first operator in theexpression:
>>> import ast

>>> m = ast.parse('1 ~= 2')

>>> m.body[0].value.ops[0]

<_ast.AlE object at 0x10a8d7ee0>

This is an instance of our AlE comparison operator type, so the ASThas correctly parsed the code.
In the next chapter, you’ll learn how the CPython compiler works andrevisit the almost-equal operator to build out its behavior.

Conclusion
CPython’s versatility and low-level execution API make it the idealcandidate for an embedded scripting engine. You’ll see CPython usedin many UI applications, such as game design, 3D graphics, and sys-tem automation.
The interpreter process is flexible and efficient. Now that you have anunderstanding of how it works, you’re ready to understand the com-piler.

117

The Compiler
After completing the task of parsing, the interpreter has an AST withthe operations, functions, classes, and namespaces of the Pythoncode.
The job of the compiler is to turn the AST into instructions the CPUcan understand:

File Input

IO Stream
Input

String Input

CompilerReader Parser

This compilation task is split into two components:
1. Compiler: Traverse the AST and create a control сow graph(CFG), which represents the logical sequence for execution.
2. Assembler: Convert the nodes in the CFG to sequential, exe-cutable statements known as bytecode.
Here’s a visual representation of the compilation process:

118

Related Source Files

ExecutionParser
AST Bytecode

Compiler Assembler
CFG

Important
Throughout this chapter, it’s important to remember that theunit of compilation for CPython is amodule. The compilationsteps and process indicated in this chapter will happen once foreach module in your project.

In this chapter, you’ll focus on the compilation of an ASTmodule intoa code object.
PyAST_CompileObject() is the main entry point to the CPython compiler.It takes a Python ASTmodule as its primary argument, along with thename of the file and the globals, locals, and PyArena all created earlierin the interpreter process.

Note
You’re starting to get into the guts of the CPython compiler now,with decades of development and computer science theory be-hind it. Don’t be put off by the size and complexity. Once youbreak down the compiler into logical steps, it’s less difficult tounderstand.

Related Source Files
Here are the source files related to the compiler:
File Purpose
Python compile.c Compiler implementation
Include compile.h Compiler API and type definitions

119

https://github.com/python/cpython/blob/v3.9.0/Python/compile.c#L318

Important Terms
Important Terms
This chapter refers to many terms that may be new to you:
• The compiler state is implemented as a container type, whichcontains one symbol table.
• The symbol table containsmany variable names and can option-ally contain child symbol tables.
• The compiler type contains many compiler units.
• Each compiler unit can contain many names, variable names, con-stants, and cell variables.
• A compiler unit contains many basic frame blocks.
• Basic frame blocks contain many bytecode instructions.

The compiler state container and its components can be illustratedlike this:

Symbol Table

Compiler State

Compiler Unit

Constant

Name

Variable Name

CellVar

Symtable Entry

Symtable Entry

Name

Variable Name

Basic Frame Block

Instruction

120

Instantiating a Compiler
Instantiating a Compiler
Before the compiler starts, a global compiler state is created. Thecompiler state (compiler type) structure contains properties used bythe compiler, such as compiler flags, the stack, and the PyArena. It alsocontains links to other data structures, like the symbol table.
Here are the fields in the compiler state:
Field Type Purpose
c_arena PyArena * Pointer to the memory allocationarena
c_const_cache PyObject * (dict) Python dict holding all constants,including names tuple
c_do_not_emit_bytecode int Flag for disabling bytecodecompilation
c_filename PyObject * (str) Filename being compiled
c_flags PyCompilerFlags * Inherited compiler flags (see the“Compiler Flags” section)
c_future PyFutureFeatures * Pointer to module’s __future__

c_interactive int Flag for interactive mode
c_nestlevel int Current nesting level
c_optimize int Optimization level
c_st symtable * Compiler’s symbol table
c_stack PyObject * (list) Python list holding compiler_unitpointers
u compiler_unit* Compiler state for the current block

The compiler state is instantiated inside PyAST_CompileObject():
• If the module doesn’t have a docstring (__doc__) property, then anempty one is created here, as with the __annotations__ property.
• PyAST_CompileObject() sets the passed value as the compiler statefilename, which is used for stack traces and exception handling.
• Thememory allocation arena for the compiler is set to the one usedby the interpreter. See “CustomMemory Allocators” in the “Mem-ory Management” chapter for more on memory allocators.
• Any future flags are configured before the code is compiled.

121

https://github.com/python/cpython/blob/v3.9.0/Python/compile.c#L318
https://github.com/python/cpython/blob/v3.9.0/Python/compile.c#L318

Future Flags and Compiler Flags
Future Flags and Compiler Flags
There are two types of flags to toggle the features inside the compiler,future сags and compiler сags. These flags can be set in twoplaces:
1. The configuration state, which contains environment variablesand command-line flags
2. Inside the source code of the module through the use of __future__statements
For more information on the configuration state, see the “Configura-tion State” section in the “Configuration and Input” chapter.
Future Flags
Future flags are required because of the syntax or features in that spe-cific module. For example, Python 3.7 introduced delayed evaluationof type hints through the annotations future flag:
from __future__ import annotations

The code after this statement might use unresolved type hints, so the
__future__ statement is required. Otherwise, the module wouldn’t im-port.
Reference of Future Flags in 3.9
As of 3.9, all but two of the future flags (annotations and barry_as_FLUFL)are mandatory and are automatically enabled:

122

Symbol Tables
Import Purpose
absolute_import Enable absolute imports (PEP 328)
annotations Postpone evaluation of type annotations (PEP 563)
barry_as_FLUFL Include Easter egg (PEP 401)
division Use the true division operator (PEP 238)
generator_stop Enable StopIteration inside generators (PEP 479)
generators Introduce simple generators (PEP 255)
nested_scopes Add statically nested scoping (PEP 227)
print_function Make print a function (PEP 3105)
unicode_literalsMake str literals Unicode instead of bytes (PEP 3112)
with_statement Enable the with statement (PEP 343)

Note
The majority of the __future__ flags were used to aid portabilitybetween Python 2 and 3. As Python 4.0 approaches, you maysee more future flags added.

Compiler Flags
Compiler flags are specific to the environment, so they might changethe way the code executes or the way the compiler runs, but theyshouldn’t link to the source like __future__ statements do.
One example of a compiler flag would be the -O flag for optimizing theuse of assert statements. This flag disables any assert statements thatmay have been put in the code for debugging purposes. It can also beenabled with the PYTHONOPTIMIZE=1 environment variable setting.

Symbol Tables
Before the code is compiled, a symbol table is created by the
PySymtable_BuildObject() API.
The purpose of the symbol table is to provide a list of namespaces,globals, and locals for the compiler to use for referencing and resolv-ing scopes.

123

https://www.python.org/dev/peps/pep-0328
https://www.python.org/dev/peps/pep-0563
https://www.python.org/dev/peps/pep-0401
https://www.python.org/dev/peps/pep-0238
https://www.python.org/dev/peps/pep-0479
https://www.python.org/dev/peps/pep-0255
https://www.python.org/dev/peps/pep-0227
https://www.python.org/dev/peps/pep-3105
https://www.python.org/dev/peps/pep-3112
https://www.python.org/dev/peps/pep-0343
https://docs.python.org/3/using/cmdline.html#cmdoption-o
https://realpython.com/python-debugging-pdb/
https://github.com/python/cpython/blob/v3.9.0/Python/symtable.c#L261

Symbol Tables
Related Source Files
Here are the source files related to the symbol table:
File Purpose
Python symtable.c Symbol table implementation
Include symtable.h Symbol table API definition and type definitions
Lib symtable.py symtable standard library module

Symbol Table Data Structure
The symtable structure should be one symtable instance for the com-piler, so namespacing becomes essential.
For example, if you create amethod called resolve_names() in one classand declare another method with the same name in another class,then you would want to be sure which one is called inside the mod-ule.
The symtable serves this purpose, as well as ensuring that variablesdeclared within a narrow scope don’t automatically become globals.
The symbol table structure, symtable, has the following fields:
Field Type Purpose
recursion_depth int Current recursion depth
recursion_limit int Recursion limit before RecursionError is raised
st_blocks PyObject * (dict) Map of AST node addresses to symbol tableentries
st_cur _symtable_entry Current symbol table entry
st_filename PyObject * (str) Name of the file being compiled
st_future PyFutureFeatures Module’s future features that affect thesymbol table
st_global PyObject * (dict) Reference to the symbols in st_top

st_nblocks int Number of blocks used
st_private PyObject * (str) Name of current class (optional)
st_stack PyObject * (list) Stack of namespace info
st_top _symtable_entry Symbol table entry for the module

124

Symbol Tables
Using the symtable Standard Library Module
Some of the symbol table C API is exposed in Python through the
symtable module in the standard library.
Using anothermodule called tabulate (available on PyPI), you can cre-ate a script to print a symbol table.
Symbol tables can be nested, so if a module contains a function orclass, then that will have a symbol table.
Create a script called symviz.py with a recursive show() function:
cpython-book-samples 30 symviz.py

import tabulate

import symtable

code = """

def calc_pow(a, b):

return a ** b

a = 1

b = 2

c = calc_pow(a,b)

"""

_st = symtable.symtable(code, "example.py", "exec")

def show(table):

print("Symtable {0} ({1})".format(table.get_name(),

table.get_type()))

print(

tabulate.tabulate(

[

(

symbol.get_name(),

symbol.is_global(),

symbol.is_local(),

125

https://docs.python.org/3/library/symtable.html
https://pypi.org/project/tabulate/

Symbol Tables
symbol.get_namespaces(),

)

for symbol in table.get_symbols()

],

headers=["name", "global", "local", "namespaces"],

tablefmt="grid",

)

)

if table.has_children():

[show(child) for child in table.get_children()]

show(_st)

Run symviz.py at the command line to see the symbol tables for theexample code:

Symbol Table Implementation
The implementation of symbol tables is in Python symtable.c and theprimary interface is PySymtable_BuildObject().
Similarly to the AST compilation covered in the last chapter,
PySymtable_BuildObject() switches between the mod_ty possible types

126

https://github.com/python/cpython/blob/v3.9.0/Python/symtable.c#L261
https://github.com/python/cpython/blob/v3.9.0/Python/symtable.c#L261

Symbol Tables
(Module, Interactive, Expression, and FunctionType) and visits each ofthe statements inside them.
The symbol table recursively explores the nodes and branches of theAST (of type mod_ty) and adds entries to the symtable:
Python symtable.c line 261
struct symtable *

PySymtable_BuildObject(mod_ty mod, PyObject *filename,

PyFutureFeatures *future)

{

struct symtable *st = symtable_new();

asdl_seq *seq;

int i;

PyThreadState *tstate;

int recursion_limit = Py_GetRecursionLimit();

...

st->st_top = st->st_cur;

switch (mod->kind) {

case Module_kind:

seq = mod->v.Module.body;

for (i = 0; i < asdl_seq_LEN(seq); i++)

if (!symtable_visit_stmt(st,

(stmt_ty)asdl_seq_GET(seq, i)))

goto error;

break;

case Expression_kind:

...

case Interactive_kind:

...

case FunctionType_kind:

...

}

...

}

For a module, PySymtable_BuildObject() loops through each statementin the module and calls symtable_visit_stmt(), which is a huge switch

127

https://github.com/python/cpython/blob/v3.9.0/Python/symtable.c#L261
https://github.com/python/cpython/blob/v3.9.0/Python/symtable.c#L1171

Symbol Tables
statement with a case for each statement type (defined in Parser

Python.asdl).
Each statement type has a corresponding function to resolve symbols.For example, a function definition (FunctionDef_kind) statement typehas particular logic for the following actions:
• Checking the current recursion depth against the recursion limit
• Adding the name of the function to the symbol table so that it canbe called or passed as a function object
• Resolving non-literal default arguments from the symbol table
• Resolving type annotations
• Resolving function decorators

Finally, symtable_enter_block() visits the block with the contents of thefunction. Then the arguments are visited and resolved, and the bodyof the function is visited and resolved.
Important
If you’ve ever wondered why Python’s default arguments aremutable, the reason is in symtable_visit_stmt(). Argument de-faults are a reference to the variable in the symtable.
No extra work is done to copy any values to an immutable type.

As a preview, here’s the C code for those steps in building a symtablefor a function in symtable_visit_stmt():
Python symtable.c line 1171
static int

symtable_visit_stmt(struct symtable *st, stmt_ty s)

{

if (++st->recursion_depth > st->recursion_limit) {

PyErr_SetString(PyExc_RecursionError,

"maximum recursion depth exceeded during compilation");

128

https://github.com/python/cpython/blob/v3.9.0/Python/symtable.c#L968
https://github.com/python/cpython/blob/v3.9.0/Python/symtable.c#L1171

Symbol Tables
VISIT_QUIT(st, 0);

}

switch (s->kind) {

case FunctionDef_kind:

if (!symtable_add_def(st, s->v.FunctionDef.name, DEF_LOCAL))

VISIT_QUIT(st, 0);

if (s->v.FunctionDef.args->defaults)

VISIT_SEQ(st, expr, s->v.FunctionDef.args->defaults);

if (s->v.FunctionDef.args->kw_defaults)

VISIT_SEQ_WITH_NULL(st, expr,

s->v.FunctionDef.args->kw_defaults);

if (!symtable_visit_annotations(st, s, s->v.FunctionDef.args,

s->v.FunctionDef.returns))

VISIT_QUIT(st, 0);

if (s->v.FunctionDef.decorator_list)

VISIT_SEQ(st, expr, s->v.FunctionDef.decorator_list);

if (!symtable_enter_block(st, s->v.FunctionDef.name,

FunctionBlock, (void *)s, s->lineno,

s->col_offset))

VISIT_QUIT(st, 0);

VISIT(st, arguments, s->v.FunctionDef.args);

VISIT_SEQ(st, stmt, s->v.FunctionDef.body);

if (!symtable_exit_block(st, s))

VISIT_QUIT(st, 0);

break;

case ClassDef_kind: {

...

}

case Return_kind:

...

case Delete_kind:

...

case Assign_kind:

...

case AnnAssign_kind:

...

Once the resulting symbol table has been created, it’s passed on to thecompiler.

129

Core Compilation Process
Core Compilation Process
Now that the PyAST_CompileObject() has a compiler state, a symtable,and amodule in the form of the AST, the actual compilation can begin.
The core compiler has two purposes:
1. To convert the state, symtable, and AST into a control flow graph(CFG)
2. To protect the execution stage from runtime exceptions by catch-ing any logic or code errors
Accessing the Compiler From Python
You can call the compiler in Python by calling the built-in function
compile(). It returns a code object:
>>> co = compile("b+1", "test.py", mode="eval")

>>> co

<code object <module> at 0x10f222780, file "test.py", line 1>

As with the symtable() API, a simple expression should have amode of
"eval", and a module, function, or class should have a mode of "exec".
The compiled code can be found in the co_code property of the codeobject:
>>> co.co_code

b'e\x00d\x00\x17\x00S\x00'

The standard library also includes a dis module, which disassemblesthe bytecode instructions. You can print them on the screen or get alist of Instruction instances.
Note
The Instruction type in the dismodule is a reflection of the instrtype in the C API.

130

https://github.com/python/cpython/blob/v3.9.0/Python/compile.c#L318
https://en.wikipedia.org/wiki/Control-flow_graph
https://en.wikipedia.org/wiki/Control-flow_graph

Core Compilation Process
If you import dis and give dis() the code object’s co_codeproperty, thenthe function disassembles it and prints the instructions on the REPL:
>>> import dis

>>> dis.dis(co.co_code)

0 LOAD_NAME 0 (0)

2 LOAD_CONST 0 (0)

4 BINARY_ADD

6 RETURN_VALUE

LOAD_NAME, LOAD_CONST, BINARY_ADD, and RETURN_VALUE are all bytecode in-structions. They’re called bytecode because, in binary form, they’reone byte long. However, since Python 3.6, the storage format hasbeen changed to a word, so now they’re technically “wordcode,” notbytecode.
The full list of bytecode instructions is available for each version ofPython, and it does change between versions. For example, some newbytecode instructions were introduced in Python 3.7 to speed up theexecution of specific method calls.
In earlier chapters, you explored the instaviz package. This included avisualization of the code object type by running the compiler. instavizalso displays the bytecode operations inside the code objects.
Execute instaviz again to see the code object and bytecode for a func-tion defined on the REPL:
>>> import instaviz

>>> def example():

a = 1

b = a + 1

return b

>>> instaviz.show(example)

131

https://docs.python.org/3/library/dis.html#python-bytecode-instructions

Core Compilation Process
Compiler C API
The entry point for AST module compilation, compiler_mod(), switchesto different compiler functions depending on the module type. Ifyou assume that mod is a Module, then the module is compiled into the
c_stack property as compiler units. Then assemble() is run to create a
PyCodeObject from the compiler unit stack.
The new code object is returned and sent on for execution by the in-terpreter or cached and stored on disk as a .pyc file:
Python compile.c line 1820
static PyCodeObject *

compiler_mod(struct compiler *c, mod_ty mod)

{

PyCodeObject *co;

int addNone = 1;

static PyObject *module;

...

switch (mod->kind) {

case Module_kind:

if (!compiler_body(c, mod->v.Module.body)) {

compiler_exit_scope(c);

return 0;

}

break;

case Interactive_kind:

...

case Expression_kind:

...

...

co = assemble(c, addNone);

compiler_exit_scope(c);

return co;

}

compiler_body() loops over each statement in the module and visits it:
Python compile.c line 1782

132

https://github.com/python/cpython/blob/v3.9.0/Python/compile.c#L1820
https://github.com/python/cpython/blob/v3.9.0/Python/compile.c#L6010
https://github.com/python/cpython/blob/v3.9.0/Include/code.h#L9
https://github.com/python/cpython/blob/v3.9.0/Python/compile.c#L1782

Core Compilation Process
static int

compiler_body(struct compiler *c, asdl_seq *stmts)

{

int i = 0;

stmt_ty st;

PyObject *docstring;

...

for (; i < asdl_seq_LEN(stmts); i++)

VISIT(c, stmt, (stmt_ty)asdl_seq_GET(stmts, i));

return 1;

}

The statement type is determined through a call to asdl_seq_GET(),which looks at the AST node type.
Through a macro, VISIT calls a function in Python compile.c for eachstatement type:
#define VISIT(C, TYPE, V) {\

if (!compiler_visit_ ## TYPE((C), (V))) \

return 0; \

}

For a stmt (the generic type for a statement), the compilerwill then call
compiler_visit_stmt() and switch through all the potential statementtypes found in Parser Python.asdl:
Python compile.c line 3375
static int

compiler_visit_stmt(struct compiler *c, stmt_ty s)

{

Py_ssize_t i, n;

/* Always assign a lineno to the next instruction for a stmt. */

SET_LOC(c, s);

switch (s->kind) {

case FunctionDef_kind:

133

https://github.com/python/cpython/blob/v3.9.0/Include/asdl.h#L31
https://github.com/python/cpython/blob/v3.9.0/Python/compile.c#L3375

Core Compilation Process
return compiler_function(c, s, 0);

case ClassDef_kind:

return compiler_class(c, s);

...

case For_kind:

return compiler_for(c, s);

...

}

return 1;

}

As an example, here’s the for statement in Python:
for i in iterable:

block

else: # optional if iterable is False

block

You can visualize the for statement in a railroad diagram:

for exprlist in testlist :

TYPE_COMMENT suite else : suite

If the statement is a for type, then compiler_visit_stmt() calls com-

piler_for(). There’s an equivalent compiler_*() function for all thestatement and expression types. The more straightforward typescreate the bytecode instructions inline, while some of the morecomplex statement types call other functions.

134

https://github.com/python/cpython/blob/v3.9.0/Python/compile.c#L3375
https://github.com/python/cpython/blob/v3.9.0/Python/compile.c#L2750
https://github.com/python/cpython/blob/v3.9.0/Python/compile.c#L2750

Core Compilation Process
Instructions
Manyof the statements canhave substatements. A for loophas a body,but you can also have complex expressions in the assignment and theiterator.
The compiler emits blocks to the compiler state. These blockscontain sequences of instructions. The instruction data structure hasan opcode, arguments, the target block (if this is a jump instruction,which you’ll learn about below), and the line number of the statement.
Instruction Type
The instruction type, instr, has the following fields:
Field Type Purpose
i_jabs unsigned Flag to specify this is a absolute jumpinstruction
i_jrel unsigned Flag to specify this is a relative jump instruction
i_lineno int Line number for which this instruction wascreated
i_opcode unsigned char Opcode number this instruction represents (see

Include Opcode.h)
i_oparg int Opcode argument
i_target basicblock* Pointer to the basicblock target when i_jrel istrue

Jump Instructions
Jump instructions are used to jump from one instruction to another.They can be either absolute or relative.

135

Core Compilation Process
Absolute jump instructions specify the exact instruction numberin the compiled code object, whereas relative jump instructionsspecify the jump target relative to another instruction.
Basic Frame Blocks
A basic frame block (of type basicblock) contains the following fields:
Field Type Purpose
b_ialloc int Length of instruction array (b_instr)
b_instr instr * Pointer to an array of instructions
b_iused int Number of instructions used (b_instr)
b_list basicblock * List of blocks in this compilation unit (inreverse order)
b_next basicblock* Pointer to the next block reached by normalcontrol flow
b_offset int Instruction offset for the block, computed by

assemble_jump_offsets()

b_return unsigned Is true if a RETURN_VALUE opcode is inserted
b_seen unsigned Used to perform a DFS of basicblocks (see“Assembly”)
b_startdepth int Depth of the stack upon entry of the block,computed by stackdepth()

Operations and Arguments
Different types of operations require different arguments. For exam-ple, ADDOP_JREL and ADDOP_JABS refer to “add operation with jump to arelative position” and “add operation with jump to an absolute po-sition,” respectively.
There are other macros: ADDOP_I calls compiler_addop_i(), whichadds an operation with an integer argument. ADDOP_O calls com-

piler_addop_o(), which adds an operation with a PyObject argument.

136

https://github.com/python/cpython/blob/v3.9.0/Python/compile.c#L1370
https://github.com/python/cpython/blob/v3.9.0/Python/compile.c#L1332
https://github.com/python/cpython/blob/v3.9.0/Python/compile.c#L1332

Assembly
Assembly
Once these compilation stages have completed, the compiler has a listof frame blocks, each containing a list of instructions and a pointer tothe next block. The assembler performs a depth-first search (DFS)of the basic frame blocks and merges the instructions into a singlebytecode sequence.
Assembler Data Structure
The assembler state structure, assembler, is declared in Python com-

pile.c and has the following fields:
Field Type Purpose
a_bytecode PyObject * (str) String containing bytecode
a_lineno int Last lineno of emitted instruction
a_lineno_off int Bytecode offset of last lineno
a_lnotab PyObject * (str) String containing lnotab

a_lnotab_off int Offset into lnotab

a_nblocks int Number of reachable blocks
a_offset int Offset into bytecode
a_postorder basicblock ** List of blocks in DFS postorder

Assembler Depth-First Search Algorithm
The assembler uses a depth-first search (DFS) to traverse the nodesin the basic frame block graph. The DFS algorithm isn’t specific toCPython, but it’s commonly used in graph traversal.
Whereas the CST and AST are both tree structures, the compiler stateis a graph structure in which the nodes are basic frame blocks contain-ing instructions.
The basic frame blocks are linked by two graphs. One is in reverseorder of creation based on the b_list property of each block. A seriesof basic frame blocks named alphabetically from A to O would looklike this:

137

Assembly

A B C D E

F G H I J

K L M N O

The graph created from the b_list is used to sequentially visit everyblock in a compiler unit
The second graph uses the b_next property of each block. This list rep-resents the control flow. Vertices in this graph are created by calls to
compiler_use_next_block(c, next), where next is the next block to drawa vertex to from the current block (c->u->u_curblock).
The for loop node graph might look something like this:

A B C D E

F G H I J

K L M N O

FOR_LOOP

End

Start

CleanupBody
OrElse

138

Assembly
Both the sequential and control flow graphs are used, but the controlflow graph is the one used by the DFS implementation.
Assembler C API
The assembler API has an entry point, assemble(), which has the fol-lowing responsibilities:
• Calculate the number of blocks for memory allocation.
• Ensure that every block that falls off the end returns None.
• Resolve any jump statements offsets that were marked as relative.
• Call dfs() to perform a depth-first-search of the blocks.
• Emit all the instructions to the compiler.
• Call makecode()with the compiler state to generate the PyCodeObject.

Python compile.c line 6010
static PyCodeObject *

assemble(struct compiler *c, int addNone)

{

...

if (!c->u->u_curblock->b_return) {

NEXT_BLOCK(c);

if (addNone)

ADDOP_LOAD_CONST(c, Py_None);

ADDOP(c, RETURN_VALUE);

}

...

dfs(c, entryblock, &a, nblocks);

/* Can't modify the bytecode after computing jump offsets. */

assemble_jump_offsets(&a, c);

/* Emit code in reverse postorder from dfs. */

for (i = a.a_nblocks - 1; i >= 0; i--) {

b = a.a_postorder[i];

139

https://github.com/python/cpython/blob/v3.9.0/Python/compile.c#L6010
https://github.com/python/cpython/blob/v3.9.0/Python/compile.c#L5893

Assembly
for (j = 0; j < b->b_iused; j++)

if (!assemble_emit(&a, &b->b_instr[j]))

goto error;

}

...

co = makecode(c, &a);

error:

assemble_free(&a);

return co;

}

Depth-First Search
The depth-first search is performed by dfs() in Python compile.c,which follows the b_next pointers in each of the blocks, marks themas seen by toggling b_seen and then adds them to the assemblers’
a_postorder list in reverse order.
The function loops back over the assembler’s post-order list and foreach block, if it has a jump operation, recursively call dfs() for thatjump:
Python compile.c line 5441
static void

dfs(struct compiler *c, basicblock *b, struct assembler *a, int end)

{

int i, j;

/* Get rid of recursion for normal control flow.

Since the number of blocks is limited, unused space in a_postorder

(from a_nblocks to end) can be used as a stack for still not ordered

blocks. */

for (j = end; b && !b->b_seen; b = b->b_next) {

b->b_seen = 1;

assert(a->a_nblocks < j);

a->a_postorder[--j] = b;

140

https://github.com/python/cpython/blob/v3.9.0/Python/compile.c#L5441
https://github.com/python/cpython/blob/v3.9.0/Python/compile.c#L5441

Creating a Code Object
}

while (j < end) {

b = a->a_postorder[j++];

for (i = 0; i < b->b_iused; i++) {

struct instr *instr = &b->b_instr[i];

if (instr->i_jrel || instr->i_jabs)

dfs(c, instr->i_target, a, j);

}

assert(a->a_nblocks < j);

a->a_postorder[a->a_nblocks++] = b;

}

}

Once the assembler has assembled the graph into a CFG using DFS,the code object can be created.

Creating a Code Object
The task of makecode() is to go through the compiler state and someof the assembler’s properties and to put these into a PyCodeObject bycalling PyCode_New().
The variable names and constants are put as properties to the codeobject:
Python compile.c line 5893
static PyCodeObject *

makecode(struct compiler *c, struct assembler *a)

{

...

consts = consts_dict_keys_inorder(c->u->u_consts);

names = dict_keys_inorder(c->u->u_names, 0);

varnames = dict_keys_inorder(c->u->u_varnames, 0);

...

cellvars = dict_keys_inorder(c->u->u_cellvars, 0);

...

141

https://github.com/python/cpython/blob/v3.9.0/Python/compile.c#L5893
https://github.com/python/cpython/blob/v3.9.0/Objects/codeobject.c#L267

Using Instaviz to Show a Code Object
freevars = dict_keys_inorder(c->u->u_freevars,

PyTuple_GET_SIZE(cellvars));

...

flags = compute_code_flags(c);

if (flags < 0)

goto error;

bytecode = PyCode_Optimize(a->a_bytecode, consts,

names, a->a_lnotab);

...

co = PyCode_NewWithPosOnlyArgs(

posonlyargcount+posorkeywordargcount,

posonlyargcount, kwonlyargcount, nlocals_int,

maxdepth, flags, bytecode, consts, names,

varnames, freevars, cellvars, c->c_filename,

c->u->u_name, c->u->u_firstlineno, a->a_lnotab);

...

return co;

}

You may also notice that the bytecode is sent to PyCode_Optimize() be-fore it’s sent to PyCode_NewWithPosOnlyArgs(). This function is part of thebytecode optimization process in Python peephole.c.
The peephole optimizer goes through the bytecode instructions and,in certain scenarios, replaces themwith other instructions. For exam-ple, there’s an optimizer that removes any unreachable instructionsthat follow a return statement.

Using Instaviz to Show a Code Object
You can pull together all the compiler stages with the instavizmodule:

142

https://github.com/python/cpython/blob/v3.9.0/Python/peephole.c#L230
https://github.com/python/cpython/blob/v3.9.0/Objects/codeobject.c#L117

Using Instaviz to Show a Code Object
import instaviz

def foo():

a = 2**4

b = 1 + 5

c = [1, 4, 6]

for i in c:

print(i)

else:

print(a)

return c

instaviz.show(foo)

This will produce a large and complex AST graph tree. You can seethe bytecode instructions in sequence:

Here’s the code object with the variable names, constants, and binary
co_code:

143

Example: Implementing the Almost-Equal Operator

Try it out with some other, more complex code to learn more aboutCPython’s compiler and code objects.

Example: Implementing theAlmost-Equal Operator
After covering the compiler, the bytecode instructions, and the assem-bler, you can now modify CPython to support the almost-equal oper-ator that you compiled into the grammar in the last chapter.
First, you have to add an internal #define for the Py_AlE operator so itcan be referenced inside the rich comparison functions for PyObject.
Open Include object.h and locate the following #define statements:
/* Rich comparison opcodes */

#define Py_LT 0

#define Py_LE 1

#define Py_EQ 2

#define Py_NE 3

#define Py_GT 4

#define Py_GE 5

Add an additional value, PyAlE, with a value of 6:
144

Example: Implementing the Almost-Equal Operator
/* New almost-equal comparator */

#define Py_AlE 6

Just underneath this expression is a macro, Py_RETURN_RICHCOMPARE. Up-date this macro with a case statement for Py_AlE:
/*

* Macro for implementing rich comparisons

*

* Needs to be a macro because any C-comparable type can be used

*/

#define Py_RETURN_RICHCOMPARE(val1, val2, op) \

do { \

switch (op) { \

case Py_EQ: if ((val1) == (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE; \

case Py_NE: if ((val1) != (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE; \

case Py_LT: if ((val1) < (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE; \

case Py_GT: if ((val1) > (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE; \

case Py_LE: if ((val1) <= (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE; \

case Py_GE: if ((val1) >= (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE; \

/* + */ case Py_AlE: if ((val1) == (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE;\

default: \

Py_UNREACHABLE(); \

} \

} while (0)

Inside Objects object.c, there’s a guard to check that the operator isbetween 0 and 5. Because you added the value 6, you have to updatethat assertion:
Objects object.c line 709
PyObject *

PyObject_RichCompare(PyObject *v, PyObject *w, int op)

{

PyThreadState *tstate = _PyThreadState_GET();

assert(Py_LT <= op && op <= Py_GE);

145

Example: Implementing the Almost-Equal Operator
Change that last line to the following:
assert(Py_LT <= op && op <= Py_AlE);

Next, you need to update the COMPARE_OP opcode to support Py_AlE as avalue for the operator type.
First, edit Objects object.c and add Py_AlE into the _Py_SwappedOp list.This list is used for matching whether a custom class has one operatordunder method but not the other.
For example, if you defined a class, Coordinate, you could define anequality operator by implementing the __eq__ magic method:
class Coordinate:

def __init__(self, x, y):

self.x = x

self.y = y

def __eq__(self, other):

if isinstance(other, Coordinate):

return (self.x == other.x and self.y == other.y)

return super(self, other).__eq__(other)

Even though you haven’t implemented __ne__ (not equal) for Coordi-

nate, CPython assumes that the opposite of __eq__ can be used.
>>> Coordinate(1, 100) != Coordinate(2, 400)

True

Inside Objects object.c, locate the _Py_SwappedOp list and add Py_AlE tothe end. Then add "~=" to the end of the opstrings list:
int _Py_SwappedOp[] = {Py_GT, Py_GE, Py_EQ, Py_NE, Py_LT, Py_LE, Py_AlE};

static const char * const opstrings[]

= {"<", "<=", "==", "!=", ">", ">=", "~="};

146

Example: Implementing the Almost-Equal Operator
Open Lib/opcode.py and edit the list of rich comparison operators:
cmp_op = ('<', '<=', '==', '!=', '>', '>=')

Include the new operator at the end of the tuple:
cmp_op = ('<', '<=', '==', '!=', '>', '>=', '~=')

The opstrings list is used for error messages if rich comparison opera-tors aren’t implemented on a class.
Next, you can update the compiler to handle the case of a Py-

Cmp_AlE property in a BinOp node. Open Python compile.c and find
compiler_addcompare():
Python compile.c line 2479
static int compiler_addcompare(struct compiler *c, cmpop_ty op)

{

int cmp;

switch (op) {

case Eq:

cmp = Py_EQ;

break;

case NotEq:

cmp = Py_NE;

break;

case Lt:

cmp = Py_LT;

break;

case LtE:

cmp = Py_LE;

break;

case Gt:

cmp = Py_GT;

break;

case GtE:

cmp = Py_GE;

break;

147

https://github.com/python/cpython/blob/v3.9.0/Python/compile.c#L2479

Example: Implementing the Almost-Equal Operator
Next, add another case to this switch statement to pair the AlE AST
comp_op enumeration with the PyCmp_AlE opcode comparison enumera-tion:
...

case AlE:

cmp = Py_AlE;

break;

You can now program the behavior of the almost-equal operator tomatch the following scenario:
• 1 ~= 2 is False.
• 1 ~= 1.01 is True using floor rounding.

You can achieve this with some additional code. For now, you’ll castboth floats into integers and compare them.
CPython’s API has many functions for dealing with PyLong (int) and
PyFloat (float) types. This will be covered in the chapter “Objects andTypes.”
Locate float_richcompare() in Objects floatobject.c and, under the
Compare: goto definition, add the following case:
Objects floatobject.c line 358
static PyObject*

float_richcompare(PyObject *v, PyObject *w, int op)

{

...

case Py_GT:

r = i > j;

break;

/* New Code START */

case Py_AlE: {

double diff = fabs(i - j);

double rel_tol = 1e-9; // relative tolerance

double abs_tol = 0.1; // absolute tolerance

148

https://github.com/python/cpython/blob/v3.9.0/Objects/floatobject.c#L358

Example: Implementing the Almost-Equal Operator
r = (((diff <= fabs(rel_tol * j)) ||

(diff <= fabs(rel_tol * i))) ||

(diff <= abs_tol));

}

break;

}

/* New Code END */

return PyBool_FromLong(r);

This code will handle the comparison of floating point numbers whenthe almost-equal operator has been used. It uses logic similar to
math.isclose(), defined in PEP 485, but with a hardcoded absolutetolerance of 0.1.
Another safeguard that you need to change is in the evaluation loop,
Python ceval.c. You’ll cover the evaluation loop in the next chapter.
Search for this code snippet:
...

case TARGET(COMPARE_OP): {

assert(oparg <= Py_GE);

Change the assertion to the following:
assert(oparg <= Py_AlE);

After recompiling CPython, open a REPL and test it out:
$./python

>>> 1.0 ~= 1.01

True

>>> 1.02 ~= 1.01

True

>>> 1.02 ~= 2.01

False

>>> 1 ~= 1.01

True

>>> 1 ~= 1

149

https://www.python.org/dev/peps/pep-0485/

Conclusion
True

>>> 1 ~= 2

False

>>> 1 ~= 1.9

False

>>> 1 ~= 2.0

False

>>> 1.1 ~= 1.101

True

In later chapters, you’ll extend this implementation across othertypes.

Conclusion
In this chapter, you’ve explored how a parsed Python module is con-verted into a symbol table, a compilation state, and then a series ofbytecode operations:

ExecutionParser
AST Bytecode

Compiler Assembler
CFG

It’s now the job of the CPython interpreter’s core evaluation loop toexecute those modules. In the next chapter, you’ll explore how codeobjects are executed.

150

The Evaluation Loop
So far, you’ve seen how Python code is parsed into an abstract syntaxtree and compiled into code objects. These code objects contain listsof discrete operations in the form of bytecode.
There’s one major thing missing for these code objects to be executedand come to life: They need input. In Python, these inputs take theform of local and global variables.
In this chapter, you’ll be introduced to a concept called a value stack,which is where variables are created, modified, and used by the byte-code operations in your compiled code objects.
Execution of code in CPython happens within a central loop called theevaluation loop. The CPython interpreter will evaluate and executea code object fetched from either the marshaled .pyc file or the com-piler:

ExecutionParser
AST Bytecode

Compiler Assembler
CFG

In the evaluation loop, each of the bytecode instructions is taken andexecuted using a stack frame–based system.

151

http://www.cs.uwm.edu/classes/cs315/Bacon/Lecture/HTML/ch10s07.html

Important Terms
Note
Stack frames are a data type used by many runtimes, not justPython. Stack frames allow functions to be called and variablesto be returned between functions. Stack frames also containarguments, local variables, and other stateful information.
A stack frame exists for every function call, and they’re stackedin sequence. You can see CPython’s frame stack anytime an ex-ception is unhandled:
Traceback (most recent call last):

File "example_stack.py", line 8, in <module> <--- Frame

function1()

File "example_stack.py", line 5, in function1 <--- Frame

function2()

File "example_stack.py", line 2, in function2 <--- Frame

raise RuntimeError

RuntimeError

Related Source Files
Here are the source files related to the evaluation loop:
File Purpose
Python ceval.c The core evaluation loop implementation
Python ceval-gil.h The GIL definition and control algorithm

Important Terms
Here are a few important terms that you’ll use in this chapter:
• The evaluation loop will take a code object and convert it into aseries of frame objects.
• The interpreter has at least one thread.

152

Constructing Thread State
• Each thread has a thread state.
• Frame objects are executed in a stack, called the frame stack.
• Variables are referenced in a value stack.

Constructing Thread State
Before a frame can be executed, it needs to be linked to a thread.CPython can have many threads running at any one time within asingle interpreter. The interpreter state includes a linked list ofthose threads.
CPython always has at least one thread, and each thread has its ownstate.

See Also
Threading is covered inmore detail in the “Parallelism andCon-currency” chapter.

Thread State Type
The thread state type, PyThreadState, has over thirty properties, includ-ing the following:
• A unique identifier
• A linked list to the other thread states
• The interpreter state it was spawned by
• The currently executing frame
• The current recursion depth
• Optional tracing functions
• The exception currently being handled
• Any async exception currently being handled

153

Constructing Frame Objects
• A stack of exceptions raised when multiple exceptions have beenraised (within an except block, for example)
• A GIL counter
• Async generator counters
Related Source Files
The source files related to the thread state are spread across manyfiles:
File Purpose
Python thread.c The thread API implementation
Include threadstate.h Some of the thread state API and typesdefinition
Include pystate.h The interpreter state API and typesdefinition
Include pythread.h The threading API
Include cpython pystate.h Some of the thread and interpreter stateAPI

Constructing Frame Objects
Compiled code objects are inserted into frame objects. Frame objectsare a Python type, so they can be referenced from both C and Python.
Frame objects also contain other runtime data required for executingthe instructions in the code objects. This data includes the local vari-ables, global variables, and built-in modules.
Frame Object Type
The frame object type is a PyObject with the following additional prop-erties:

154

Constructing Frame Objects
Field Type Purpose
f_back PyFrameObject * Pointer to the previous in the stack, or NULL iffirst frame
f_blockstack PyTryBlock[] Sequence of for, try, and loop blocks
f_builtins PyObject * (dict) Symbol table for the builtin module
f_code PyCodeObject * Code object to be executed
f_executing char Flag whether the frame is still executing
f_gen PyObject * Borrowed reference to a generator, or NULL
f_globals PyObject * (dict) Global symbol table (PyDictObject)
f_iblock int Index of this frame in f_blockstack

f_lasti int Last instruction, if called
f_lineno int Current line number
f_locals PyObject * Local symbol table (any mapping)
f_localsplus PyObject *[] Union of locals plus stack

f_stacktop PyObject ** Next free slot in f_valuestack

f_trace PyObject * Pointer to a custom tracing function (see“Frame Execution Tracing”)
f_trace_lines char Toggle for the custom tracing function to traceat line level
f_trace_opcodes char Toggle for the custom tracing function to traceat an opcode level
f_valuestack PyObject ** Pointer to the last local

Related Source Files
Here are the source files related to frame objects:
File Purpose
Objects frameobject.c The frame object implementation andPython API
Include frameobject.h The frame object API and type definition

Frame Object Initialization API
The API for frame object initialization, PyEval_EvalCode(), is the en-try point for evaluating a code object. PyEval_EvalCode() is a wrapperaround the internal function _PyEval_EvalCode().

155

https://github.com/python/cpython/blob/v3.9.0/Python/ceval.c#L807
https://github.com/python/cpython/blob/v3.9.0/Python/ceval.c#L807

Constructing Frame Objects
Note
_PyEval_EvalCode() is a complex function that defines many be-haviors of both frame objects and the interpreter loop. It’s animportant function to understand as it can also teach you someprinciples of the CPython interpreter design.

In this section, you’ll step through the logic in _PyEval_EvalCode().
_PyEval_EvalCode() specifies many arguments:
• tstate: A PyThreadState * pointing to the thread state of the threadthis code will be evaluated on
• _co: A PyCodeObject* containing the code to be put into the frameobject
• globals: A PyObject* (dict) with variable names as keys and theirvalues
• locals: A PyObject* (dict) with variable names as keys and theirvalues
Note
In Python, local and global variables are stored as a dictionary.You can access this dictionary with the built-in functions lo-

cals() and globals():
>>> a = 1

>>> print(locals()["a"])

1

The other arguments are optional and aren’t used for the basic API:
• argcount: The number of positional arguments
• args: A PyObject* (tuple) with positional argument values in order
• closure: A tuple with strings to merge into the code object’s

co_freevars field

156

https://github.com/python/cpython/blob/v3.9.0/Python/ceval.c#L4046
https://github.com/python/cpython/blob/v3.9.0/Python/ceval.c#L4046

Constructing Frame Objects
• defcount: The length of default values for positional arguments
• defs: A list of default values for positional arguments
• kwargs: A list of keyword argument values
• kwcount: The number of keyword arguments
• kwdefs: Adictionarywith the default values for keyword arguments
• kwnames: A list of keyword argument names
• name: The name for this evaluation statement as a string
• qualname: The qualified name for this evaluation statement as astring

The call to _PyFrame_New_NoTrack() creates a new frame. This API is alsoavailable from the C API using PyFrame_New(). _PyFrame_New_NoTrack()will create a new PyFrameObject by following these steps:
1. Set the frame f_back property to the thread state’s last frame.
2. Load the current built-in functions by setting the f_builtins prop-erty and loading the builtins module using PyModule_GetDict().
3. Set the f_code property to the code object being evaluated.
4. Set the f_valuestack property to an empty value stack.
5. Set the f_stacktop pointer to f_valuestack.
6. Set the global property, f_globals, to the globals argument.
7. Set the locals property, f_locals, to a new dictionary.
8. Set the f_lineno to the code object’s co_firstlineno property so thattracebacks contain line numbers.
9. Set all the remaining properties to their default values.
With the new PyFrameObject instance, the arguments to the frame ob-ject can be constructed:

157

https://github.com/python/cpython/blob/v3.9.0/Objects/frameobject.c#L866
https://github.com/python/cpython/blob/v3.9.0/Objects/frameobject.c#L929
https://github.com/python/cpython/blob/v3.9.0/Objects/frameobject.c#L866
https://github.com/python/cpython/blob/v3.9.0/Objects/moduleobject.c#L457

Constructing Frame Objects

Previous

Frame Object

Instructions

Names

ConstantsValues

Locals

Globals

Builtins Code Object

Converting Keyword Parameters to a Dictionary
Function definitions can contain a **kwargs catch-all for keyword-arguments:
def example(arg, arg2=None, **kwargs):

print(kwargs["x"], kwargs["y"]) # resolves to a dictionary key

example(1, x=2, y=3) # 2 3

In this scenario, a new dictionary is created, and the unresolved argu-ments are copied across. The kwargs name is then set as a variable inthe local scope of the frame.
Converting Positional Arguments into Variables
Each of the positional arguments (if provided) are set as local vari-ables. In Python, function arguments are already local variableswithin the function body. When a positional argument is definedwith a value, it’s available within the function scope:
def example(arg1, arg2):

print(arg1, arg2)

example(1, 2) # 1 2

158

Constructing Frame Objects
The reference counter for those variables is incremented, so thegarbage collector won’t remove them until the frame has evaluated,such as when the function has finished and returned.
Packing Positional Arguments into *args

As with **kwargs, a function argument prepended with * can be set tocatch all remaining positional arguments. This argument is a tuple,and the *args name is set as a local variable:
def example(arg, *args):

print(arg, args[0], args[1])

example(1, 2, 3) # 1 2 3

Loading Keyword Arguments
If the function is called with keyword arguments and values, then adictionary is filled with any remaining keyword arguments passed bythe caller that don’t resolve to named arguments or positional argu-ments.
For example, the e argument is neither positional nor named, so it’sadded to **remaining:
>>> def my_function(a, b, c=None, d=None, **remaining):

print(a, b, c, d, remaining)

>>> my_function(a=1, b=2, c=3, d=4, e=5)

(1, 2, 3, 4, {"e": 5})

159

Constructing Frame Objects
Note
Positional-only arguments are a new feature in Python 3.8.Introduced in PEP 570, positional-only arguments are a wayof stopping users of your API from using positional argumentswith a keyword syntax.
For example, this simple function converts Fahrenheit to Cel-sius. Note the use of the forward slash (/) as a special argumentthat separates positional-only arguments from the other argu-ments:
def to_celsius(fahrenheit, /, options=None):

return (fahrenheit-32)*5/9

All arguments to the left of / must be called only as positionalarguments. Arguments to the right can be called as either posi-tional or keyword arguments:
>>> to_celsius(110)

Calling the function using a keyword argument to a positional-only argument will raise a TypeError:
>>> to_celsius(fahrenheit=110)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: to_celsius() got some positional-only arguments

passed as keyword arguments: 'fahrenheit'

The resolution of the keyword argument dictionary values comesafter all other arguments are unpacked. The PEP 570 positional-onlyarguments are shown by starting the keyword argument loop at
co_posonlyargcount. If the / symbol was used on the third argument,then the value of co_posonlyargcount would be 2.
PyDict_SetItem() is called for each remaining argument for adding itto the locals dictionary. When executing, each of the keyword argu-ments become scoped local variables.

160

https://www.python.org/dev/peps/pep-0570/
https://github.com/python/cpython/blob/v3.9.0/Objects/dictobject.c#L1550

Constructing Frame Objects
If a keyword argument is defined with a value, then it’s availablewithin this scope:
def example(arg1, arg2, example_kwarg=None):

print(example_kwarg) # example_kwarg is already a local variable.

Adding Missing Positional Arguments
Any positional arguments provided to a function call that aren’t in thelist of positional arguments are added to an *args tuple. If this tupledoesn’t exist, then an exception is raised.
Adding Missing Keyword Arguments
Any keyword arguments provided to a function call that aren’t in thelist of named keyword arguments are added to a **kwargs dictionary.If this dictionary doesn’t exist, then an exception is raised.
Collapsing Closures
Any closure names are added to the code object’s list of free variablenames.
Creating Generators, Coroutines, and AsynchronousGenerators
If the evaluated code object has a flag that it’s a generator, corou-tine, or async generator, then a new frame is created using one of theunique methods in the generator, coroutine, or async libraries, andthe current frame is added as a property.

See Also
The APIs and implementations of generators, coroutines, andasync frames are covered in the chapter “Parallelism and Con-currency.”

161

Frame Execution
The new frame is then returned, and the original frame isn’t evaluated.The frame is evaluated only when the generator, coroutine, or asyncmethod is called to execute its target.
Lastly, _PyEval_EvalFrame() is called with the new frame.

Frame Execution
As covered earlier in the chapters “Lexing and Parsing With SyntaxTrees” and “TheCompiler,” the code object contains a binary encodingof the bytecode to be executed. It also contains a list of variables anda symbol table.
The local and global variables are determined at runtime based onhow the function, module, or block was called. This information isadded to the frame by _PyEval_EvalCode().
There are other uses of frames, like the coroutine decorator, whichdynamically generates a frame with the target as a variable.
The public API, PyEval_EvalFrameEx(), calls the interpreter’s configuredframe evaluation function in the eval_frame property. Frame evalua-tion was made pluggable in Python 3.7 with PEP 523.
_PyEval_EvalFrameDefault() is the default frame evaluation functionand the only option bundled with CPython.
This central function brings everything together and brings your codeto life. It contains decades of optimization since even a single line ofcode can have a significant impact on performance for the whole ofCPython.
Everything that gets executed in CPython goes through the frame eval-uation function.

162

https://github.com/python/cpython/blob/v3.9.0/Include/internal/pycore_ceval.h#L38
https://github.com/python/cpython/blob/v3.9.0/Python/ceval.c#L4046
https://github.com/python/cpython/blob/v3.9.0/Python/ceval.c#L829
https://www.python.org/dev/peps/pep-0523/
https://github.com/python/cpython/blob/v3.9.0/Python/ceval.c#L890

Frame Execution
Note
Something you might notice when reading Python ceval.c ishow many times C macros have been used.
C macros are a way of having reusable code without theoverhead of making function calls. The compiler converts themacros into C code and then compiles the generated code.
In Visual Studio Code, inline macro expansion shows onceyou’ve installed the official C/C++ extension:

In CLion, select a macro and press Alt + Space to peek into it’sdefinition.

Frame Execution Tracing
You can step through frame execution in Python 3.7 and beyond byenabling the tracing attribute on the current thread. The PyFrameOb-

ject type contains an f_trace property of type PyObject *. The value isexpected to point to a Python function.
This code example sets the global tracing function to a function called
my_trace() that gets the stack from the current frame, prints the disas-sembled opcodes to the screen, and adds some extra information fordebugging:

163

https://realpython.com/python-development-visual-studio-code/
https://www.jetbrains.com/help/clion/viewing-definition.html
https://www.jetbrains.com/help/clion/viewing-definition.html

Frame Execution
cpython-book-samples 31 my_trace.py

import sys

import dis

import traceback

import io

def my_trace(frame, event, args):

frame.f_trace_opcodes = True

stack = traceback.extract_stack(frame)

pad = " "*len(stack) + "|"

if event == "opcode":

with io.StringIO() as out:

dis.disco(frame.f_code, frame.f_lasti, file=out)

lines = out.getvalue().split("\n")

[print(f"{pad}{l}") for l in lines]

elif event == "call":

print(f"{pad}Calling {frame.f_code}")

elif event == "return":

print(f"{pad}Returning {args}")

elif event == "line":

print(f"{pad}Changing line to {frame.f_lineno}")

else:

print(f"{pad}{frame} ({event} - {args})")

print(f"{pad}----------------------------------")

return my_trace

sys.settrace(my_trace)

Run some code for a demo

eval('"-".join([letter for letter in "hello"])')

sys.settrace()will set the current thread state default tracing functionto the one provided. Any new frames created after this call will have
f_trace set to this function.
This code snippet prints the code within each stack and points to thenext operation before it’s executed. When a frame returns a value, thereturn statement is printed:

164

The Value Stack

The full list of possible bytecode instructions is available on the dismodule documentation.

The Value Stack
Inside the core evaluation loop, a value stack is created. This stackis a list of pointers to PyObject instances. These could be values likevariables, references to functions (which are objects in Python), orany other Python object.
Bytecode instructions in the evaluation loop will take input from thevalue stack.
Example Bytecode Operation: BINARY_OR
The binary operations that you’ve been exploring in previous chapterscompile into a single instruction.
For example, let’s say you inserted an or statement in Python:
if left or right:

pass

The compiler would compile this or operation into a BINARY_OR instruc-tion:

165

https://docs.python.org/3/library/dis.html#python-bytecode-instructions
https://docs.python.org/3/library/dis.html#python-bytecode-instructions

The Value Stack
static int

binop(struct compiler *c, operator_ty op)

{

switch (op) {

case Add:

return BINARY_ADD;

...

case BitOr:

return BINARY_OR;

In the evaluation loop, the case for a BINARY_OR will take two valuesfrom the value stack, the left and right operations, then call PyNum-
ber_Or against those two objects:

...

case TARGET(BINARY_OR): {

PyObject *right = POP();

PyObject *left = TOP();

PyObject *res = PyNumber_Or(left, right);

Py_DECREF(left);

Py_DECREF(right);

SET_TOP(res);

if (res == NULL)

goto error;

DISPATCH();

}

The result, res, is then set as the top of the stack, overriding the currenttop value.
Value Stack Simulations
To understand the evaluation loop, you have to understand the valuestack.
One way to think of the value stack is as a wooden peg on which youcan stack cylinders. In this scenario, you would add or remove onlyone cylinder at a time, and always to or from the top of the stack.

166

The Value Stack
In CPython, you add objects to the value stack with the PUSH(a)macro,where a is a pointer to a PyObject.
For example, assumeyou created a PyLongwith the value 10 andpushedit onto the value stack:
PyObject *a = PyLong_FromLong(10);

PUSH(a);

This action would have the following effect:

a

a

Before After

In the next operation, to fetch that value, you would use the POP()macro to take the top value from the stack:
PyObject *a = POP(); // a is PyLongObject with a value of 10

This actionwould return the top value and end upwith an empty valuestack:

167

The Value Stack

a

Before After

a

Result

Now let’s say you added two values to the stack:
PyObject *a = PyLong_FromLong(10);

PyObject *b = PyLong_FromLong(20);

PUSH(a);

PUSH(b);

These would end up in the order in which they were added, so awouldbe pushed to the second position in the stack:

a

a

Before After

b

b

If you were to fetch the top value in the stack, then you would get apointer to b because it’s at the top:
PyObject *val = POP(); // returns ptr to b

168

The Value Stack

a

Before After

Result

a

b b

If you need to fetch the pointer to the top value in the stack withoutpopping it, then you can use the PEEK(v) operation, where v is the stackposition:
PyObject *first = PEEK(0);

0 represents the top of the stack, and 1 would represent the secondposition:

a

Before After

a

Result

a

You can use the DUP_TOP() macro to clone the value at the top of thestack:
DUP_TOP();

This action would copy the value at the top to form two pointers to thesame object:
169

The Value Stack

Before After

a a

a

The rotation macro ROT_TWO swaps the first and second values:
ROT_TWO();

This action would switch the order of the first and second values:

a

Before After

b

b

a

Stack Eпects
Each of the opcodes has a predefined stack eпect calculated by
stack_effect() inside Python compile.c. This function returns the deltain the number of values inside the stack for each opcode.
Stack effects can have a positive, negative, or zero value. Once theoperation has been executed, if the stack effect (such as +1) doesn’tmatch the delta in the value stack, then an exception is raised.

170

Example: Adding an Item to a List
Example: Adding an Item to a List
In Python, when you create a list, the append() method is available onthe list object:
my_list = []

my_list.append(obj)

In this example, obj is an object that you want to append to the end ofthe list.
There are two operations involved in this operation:
1. LOAD_FAST to load obj to the top of the value stack from the list of

locals in the frame
2. LIST_APPEND to add the object
LOAD_FAST involves five steps:
1. The pointer to obj is loaded from GETLOCAL(), where the variableto load is the operation argument. The list of variable pointersis stored in fastlocals, which is a copy of the PyFrame attribute

f_localsplus. The operation argument is a number pointing tothe index in the fastlocals array pointer. This means that Pythonloads a local as a copy of the pointer rather than having to look upthe variable name.
2. If the variable no longer exists, then an unbound local variable er-ror is raised.
3. The reference counter for value (in our case, obj) is increased byone.
4. The pointer to obj is pushed to the top of the value stack.
5. The FAST_DISPATCH macro is called. If tracing is enabled, then theloop runs again with all the tracing. If tracing isn’t enabled, thena goto is called to fast_next_opcode. The goto jumps back to the topof the loop for the next instruction.

171

Example: Adding an Item to a List
Here are are the five steps in LOAD_FAST:
...

case TARGET(LOAD_FAST): {

PyObject *value = GETLOCAL(oparg); // 1.

if (value == NULL) {

format_exc_check_arg(

PyExc_UnboundLocalError,

UNBOUNDLOCAL_ERROR_MSG,

PyTuple_GetItem(co->co_varnames, oparg));

goto error; // 2.

}

Py_INCREF(value); // 3.

PUSH(value); // 4.

FAST_DISPATCH(); // 5.

}

...

The pointer to obj is now at the top of the value stack, and the nextinstruction, LIST_APPEND, is executed.
Many of the bytecode operations reference base types, like PyUnicodeor PyNumber. For example, LIST_APPEND appends an object to the end ofa list. To achieve this, it pops the pointer from the value stack andreturns the pointer to the last object in the stack.
The macro is a shortcut for the following:
PyObject *v = (*--stack_pointer);

Now the pointer to obj is stored as v. The list pointer is loaded from
PEEK(oparg).
Then the C API for Python lists is called for list and v. The code forthis is inside Objects listobject.c, which you’ll explore in the chapter“Objects and Types.”
Next, a call to PREDICT is made, which guesses that the next operationwill be JUMP_ABSOLUTE. The PREDICT macro has compiler-generated gotostatements for each of the potential operations’ case statements.

172

Example: Adding an Item to a List
This means the CPU can jump to that instruction and not have to gothrough the loop again:
...

case TARGET(LIST_APPEND): {

PyObject *v = POP();

PyObject *list = PEEK(oparg);

int err;

err = PyList_Append(list, v);

Py_DECREF(v);

if (err != 0)

goto error;

PREDICT(JUMP_ABSOLUTE);

DISPATCH();

}

...

Note
Some opcodes come in pairs, making it possible to predict thesecond code when the first is run. For example, COMPARE_OP isoften followed by POP_JUMP_IF_FALSE or POP_JUMP_IF_TRUE.
If you’re collecting opcode statistics, then you have two choices:
1. Keep the predictions turned on and interpret the results asif some opcodes had been combined.
2. Turn off predictions so that the opcode frequency counterupdates for both opcodes.
Opcode prediction is disabled with threaded code since the lat-ter allows the CPU to record separate branch prediction infor-mation for each opcode.

Some of the operations, such as CALL_FUNCTION and CALL_METHOD, have anoperation argument referencing another compiled function. In thiscase, another frame is pushed to the frame stack in the thread, and theevaluation loop runs for that function until the function completes.

173

Example: Adding an Item to a List
Each time a new frame is created and pushed onto the stack, the valueof the frame’s f_back is set to the current frame before the new one iscreated. This nesting of frames is clear when you see a stack trace:
cpython-book-samples 31 example_stack.py

def function2():

raise RuntimeError

def function1():

function2()

if __name__ == "__main__":

function1()

Calling this on the command line will give you the following:
$./python example_stack.py

Traceback (most recent call last):

File "example_stack.py", line 8, in <module>

function1()

File "example_stack.py", line 5, in function1

function2()

File "example_stack.py", line 2, in function2

raise RuntimeError

RuntimeError

In Lib traceback.py, you can use walk_stack() to get tracebacks:
def walk_stack(f):

"""Walk a stack yielding the frame and line number for each frame.

This will follow f.f_back from the given frame. If no frame is given,

the current stack is used. Usually used with StackSummary.extract.

"""

if f is None:

f = sys._getframe().f_back.f_back

while f is not None:

174

Conclusion
yield f, f.f_lineno

f = f.f_back

The parent’s parent (sys._getframe().f_back.f_back) is set as the framebecause you don’t want to see the call to walk_stack() or print_trace()in the traceback. The f_back pointer is followed to the top of the callstack.
sys._getframe() is the Python API to get the frame attribute of the cur-rent thread.
Here’s how that frame stack would look with three frames, each withits code object, and a thread state pointing to the current frame:

FRAME 0

FRAME 1

FRAME 2

Code Object

Code Object

Code Object

f_back

f_back

Thread State
frame

Conclusion
In this chapter, you’ve been introduced to the brain of CPython. Thecore evaluation loop is the interface between compiled Python codeand the underlying C extension modules, libraries, and system calls.
Some topics in this chapter have been glossed over since you’ll go intothem in upcoming chapters. For example, the CPython interpreterhas a core evaluation loop, but you can have multiple loops runningat the same time, whether that be in parallel or concurrently.

175

Conclusion
CPython can have multiple evaluation loops running multiple frameson a system. In the upcoming chapter “Parallelism andConcurrency,”you’ll see how the frame stack system is used for CPython to run onmultiple cores or CPUs. Also, CPython’s frame object API enablesframes to be paused and resumed in the form of asynchronous pro-gramming.
Loading variables using a value stack requires memory allocation andmanagement. For CPython to run effectively, it has to have a solidmemory management process. In the next chapter, you’ll explorethat memory management process and how it relates to the PyObjectpointers used by the evaluation loop.

176

Memory Management
The two most important parts of your computer are the memory andthe CPU.One can’t workwithout the other. Theymust be utilizedwell,and they must be efficient.
When designing a programming language, the authors need to decidehow the user should manage computer memory. There are many op-tions depending on how simple the authors want the interface to be,whether they want the language to be cross-platform, and whetherthey value performance over stability.
The authors of Python have made these decisions for you and havealso left you with some additional decisions to make yourself.
In this chapter, you’ll explore how Cmanages memory since CPythonis written in C. You’ll look at two critical aspects to managingmemoryin Python:
1. Reference counting
2. Garbage collection
By the end of this chapter, you’ll understand how CPython allocatesmemory on the operating system, how objectmemory is allocated andfreed, and how CPython manages memory leaks.

177

Memory Allocation in C
Memory Allocation in C
In C, variables must have their memory allocated from the operatingsystem before they can be used. There are three memory allocationmechanisms in C:
1. Static memory allocation: Memory requirements are calcu-lated at compile time and allocated by the executable when itstarts.
2. Automatic memory allocation: Memory requirements for ascope are allocated within the call stack when a frame is enteredand are freed once the frame is terminated.
3. Dynamic memory allocation: Memory can be requested andallocated dynamically at runtime by calls to thememory allocationAPI.
Static Memory Allocation in C
Types in C have a fixed size. The compiler calculates the memory re-quirements for all static and global variables and then compiles thatrequirement into the application:
static int number = 0;

You can see the size of a type in C by using sizeof(). On my system,a 64-bit macOS running GCC, an int is 4 bytes. Basic types in C canhave different sizes depending on the architecture and compiler.
Arrays are statically defined. Consider this array of 10 integers:
static int numbers[10] = {0,1,2,3,4,5,6,7,8,9};

The C compiler converts this statement into an allocation of
sizeof(int) * 10 bytes of memory.
The C compiler uses system calls to allocate memory. These systemcalls depend on the operating system and are low-level functions tothe kernel to allocate memory from the system memory pages.

178

Memory Allocation in C
Automatic Memory Allocation in C
Similarly to static memory allocation, automatic memory allocationcalculates memory allocation requirements at compile time.
This example application converts 100 degrees Fahrenheit to Celsius:
cpython-book-samples 32 automatic.c

#include <stdio.h>

static const double five_ninths = 5.0/9.0;

double celsius(double fahrenheit) {

double c = (fahrenheit - 32) * five_ninths;

return c;

}

int main() {

double f = 100;

printf("%f F is %f C\n", f, celsius(f));

return 0;

}

This example uses both static and automatic memory allocation:
• The const value five_ninths is allocated statically because it has the

static keyword.
• The variable cwithin celsius() is allocated automaticallywhen cel-

sius() is called and freed when celsius() is completed.
• The variable fwithin main() is allocated automatically when main()is called and freed when main() is completed.
• The result of celsius(f) is implicitly allocated automatically.
• The automatic memory requirements of main() are freed when thefunction completes.

179

Memory Allocation in C
Dynamic Memory Allocation in C
Inmany cases, neither static nor automaticmemory allocation is suffi-cient. For example, a programmight not be able to calculate memoryrequirements at compile time because they’re determined by user in-put.
In such cases, memory is allocated dynamically. Dynamic memoryallocation works by calls to the C memory allocation APIs. Operatingsystems reserve a section of the system memory for dynamic alloca-tion to processes. This section of memory is called a heap.
In the following example, you’ll allocate memory dynamically to anarray of Fahrenheit and Celsius values. The application calculates theCelsius values corresponding to a user-specified number of Fahren-heit values:
cpython-book-samples 32 dynamic.c

#include <stdio.h>

#include <stdlib.h>

static const double five_ninths = 5.0/9.0;

double celsius(double fahrenheit) {

double c = (fahrenheit - 32) * five_ninths;

return c;

}

int main(int argc, char** argv) {

if (argc != 2)

return -1;

int number = atoi(argv[1]);

double* c_values = (double*)calloc(number, sizeof(double));

double* f_values = (double*)calloc(number, sizeof(double));

for (int i = 0 ; i < number ; i++){

f_values[i] = (i + 10) * 10.0 ;

c_values[i] = celsius((double)f_values[i]);

}

180

Design of the Python Memory Management System
for (int i = 0 ; i < number ; i++){

printf("%f F is %f C\n", f_values[i], c_values[i]);

}

free(c_values);

free(f_values);

return 0;

}

If you execute this program with the argument 4, then it will print theresulting values:
100.000000 F is 37.777778 C

110.000000 F is 43.333334 C

120.000000 F is 48.888888 C

130.000000 F is 54.444444 C

This example uses dynamic memory allocation to allocate a blockof memory from the heap that is then returned when it’s no longerneeded. If any dynamically allocated memory isn’t freed, then it willcause amemory leak.

Design of the Python MemoryManagement System
Being built on top of C, CPython has to use the constraints of static,dynamic, and automatic memory allocation. Some design aspects ofthe Python language make those constraints even more challenging:
1. Python is a dynamically typed language. The size of variables can’tbe calculated at compile time.
2. Most of Python’s core types are dynamically sized. The list typecan be of any size, dict can have any number of keys, and even intis dynamic. The user never has to specify the size of these types.
3. Names in Python can be reused for values of different types:

181

Design of the Python Memory Management System
>>> a_value = 1

>>> a_value = "Now I'm a string"

>>> a_value = ["Now" , "I'm", "a", "list"]

To overcome these constraints, CPython relies heavily on dynamicmemory allocation but adds safety rails to automate the freeingof memory using the garbage collection and reference countingalgorithms.
Instead of the Python developer having to allocate memory, Pythonobject memory is allocated automatically by a single, unified API.This design requires that the entire CPython standard library andcore modules (written in C) use this API.
Allocation Domains
CPython comes with three dynamic memory allocation domains:
1. The raw domain is used for allocation from the system heap andlarge, or non-object related memory.
2. The object domain is used for allocation of all Python object-related memory.
3. The PyMem domain is the same as PYMEM_DOMAIN_OBJ. It exists forlegacy API purposes.
Each domain implements the same interface of functions:
• _Alloc(size_t size) allocates memory of size bytes and returns apointer.
• _Calloc(size_t nelem, size_t elsize) allocates nelem elements, eachof size elsize, and returns a pointer.
• _Realloc(void *ptr, size_t new_size) reallocates memory of size

new_size.
• _Free(void *ptr) frees memory at ptr back to the heap.

The PyMemAllocatorDomain enumeration represents the three domains

182

The CPython Memory Allocator
in CPython as PYMEM_DOMAIN_RAW, PYMEM_DOMAIN_OBJ, and PYMEM_DOMAIN_MEM.
Memory Allocators
CPython uses two memory allocators:
1. malloc: The operating system allocator for the raw memory do-main
2. pymalloc: The CPython allocator for the PyMem and objectmemory domains

Note
The CPython allocator, pymalloc, is compiled into CPython bydefault. You can remove it by recompiling CPython after set-ting WITH_PYMALLOC = 0 in pyconfig.h. If you remove it, then thePyMem and object memory domain APIs will use the systemallocator.

If you compiled CPython with debugging (using --with-pydebug onma-cOS or Linux or the Debug target on Windows), then each of the mem-ory allocation functions will go to a Debug implementation. For ex-ample, with debugging enabled, your memory allocation calls wouldexecute _PyMem_DebugAlloc() instead of _PyMem_Alloc().

The CPython Memory Allocator
The CPython memory allocator sits on top of the system memory al-locator and has its algorithm for allocation. This algorithm is similarto the system allocator except that it’s customized to CPython:
• Most of the memory allocation requests are small and of afixed size because PyObject is 16 bytes, PyASCIIObject is 42 bytes,

PyCompactUnicodeObject is 72 bytes, and PyLongObject is 32 bytes.
• The pymalloc allocator allocates memory blocks only up to 256 KB.Anything larger is sent to the system allocator.

183

The CPython Memory Allocator
• The pymalloc allocator uses the GIL instead of the system thread-safety check.

To help clarify this situation, you can imagine a sports stadium, homeof CPython FC, as an analogy. To help manage crowds, CPython FChas implemented a system breaking the stadium up into sections A toE, each with seating in rows 1 to 40:

Section A

Section BSection E

Section D Section C

rows 1-10

rows 11-20

rows 21-30

rows 31-40

At the front of the stadium, rows 1 to 10 are the roomier premiumseats, with 80 seats in each row. At the back, rows 31 to 40 are theeconomy seats, with 150 seats per row.
The Python memory allocation algorithm has similar characteristics:
• Just like the stadium has seats, the pymalloc algorithm has mem-ory blocks.
• Just like seats can either be premium, regular, or economy, mem-ory blocks are all of a range of fixed sizes. You can’t bring yourdeck chair!
• Just like seats of the same size are put into rows, blocks of the samesize are put into pools.

184

The CPython Memory Allocator
A central register keeps a record of where blocks are and the num-ber of blocks available in a pool, just as the stadium allocates seating.When a row in the stadium is full, the next row is used. When a poolof blocks is full, the next pool is used. Pools are grouped into arenas,just like the stadium groups the rows into sections.
There are several advantages to this strategy:
1. The algorithm is more performant for CPython’s main use case:small, short-lived objects.
2. The algorithm uses the GIL instead of system thread-lock detec-tion.
3. The algorithm uses memory mapping (mmap()) instead of heap al-location.
Related Source Files
Here are the source files related to the memory allocator:
File Purpose
Include pymem.h PyMem allocator API
Include cpython pymem.h PyMem memory allocator configuration API
Include internal pycore_mem.h Garbage collector data structure andinternal APIs
Objects obmalloc.c Domain allocator implementations and the

pymalloc implementation

Important Terms
Below are some important terms that you’ll encounter in this chapter:
• Requested memory is matched to a block size.
• Blocks of the same size are all put into the same pool of memory.
• Pools are grouped into arenas.

185

The CPython Memory Allocator
Blocks, Pools, and Arenas
The largest group of memory is an arena. CPython creates arenas of256 KB to align with the system page size. A system page boundary isa fixed-length contiguous chunk of memory.
Even with modern high-speed memory, contiguous memory will loadfaster than fragmented memory. It’s beneficial to have contiguousmemory.
Arenas
Arenas are allocated against the system heap and with mmap() on sys-tems supporting anonymous memory mappings. Memory mappinghelps reduce heap fragmentation of the arenas.
Here’s a visual representation of four arenas within the system heap:

System Heap

Arena Arena Arena Arena

256KB 256KB 256KB 256KB

Arenas have the data struct arenaobject:
Field Type Purpose
address uintptr_t Memory address of the arena
pool_address block * Pointer to the next pool to be carved off forallocation
nfreepools uint The number of available pools in the arena (freepools plus never-allocated pools)
ntotalpools uint The total number of pools in the arena, whetheror not available
freepools pool_header* Singly linked list of available pools
nextarena arena_object* Next arena (see note)
prevarena arena_object* Previous arena (see note)

186

http://man7.org/linux/man-pages/man2/mmap.2.html

The CPython Memory Allocator
Note
Arenas are linked together in a doubly linked list inside thearena data structure using the nextarena and prevarena pointers.
If this arena isunallocated, then the nextarenamember is used.The nextarenamember links all unassociated arenas in the singlylinked unused_arena_objects global variable.
When this arena is associated with an allocated arena with atleast one available pool, both nextarena and prevarena are usedin the doubly linked usable_arenas list. This list is maintained inincreasing order of nfreepools values.

Pools
Within an arena, pools are created for block sizes up to 512 bytes. For32-bit systems, the step is 8 bytes, so there are 64 classes:

Request in bytes Size of allocated block Size class index
1–8 8 09-16 16 117–24 24 225-32 32 3… … …497–504 504 62505–512 512 63

For 64-bit systems, the step is 16 bytes, so there are 32 classes:
Request in bytes Size of allocated block Size class index

1–16 16 017–32 32 133–48 48 249–64 64 3… … …480–496 496 30496–512 512 31

187

The CPython Memory Allocator
Pools are all 4096 bytes (4 KB), so there are always 64 pools in anarena:

System Heap
Arena Arena Arena Arena

256KB 256KB

... ...

P
o
o
l
s

P
o
o
l
s

Pools are allocated on demand. When no available pools are availablefor the requested size class index, a new one is provisioned. Arenashave a high-water mark to index how many pools have been provi-sioned.
Pools have three possible states:
1. Full: All available blocks in that pool are allocated.
2. Used: The pool is allocated, and some blocks have been set, but itstill has space.
3. Empty: The pool is allocated, but no blocks have been set.
Within an arena, the high-water mark sits at the last allocated pool:

Arena
Highwater mark

Full Used Empty

Pools have the data structure poolp, which is a static allocation of thestruct pool_header. The pool_header type has the following properties:
188

The CPython Memory Allocator
Field Type Purpose
ref uint Number of currently allocated blocks in this pool
freeblock block * Pointer to this pool’s free list head
nextpool pool_header* Pointer to the next pool of this size class
prevpool pool_header* Pointer to the previous pool of this size class
arenaindex uint Singly-linked list of available pools
szidx uint Size class index of this pool
nextoffset uint Number of bytes to unused block
maxnextoffset uint Maximum number that nextoffset can be untilpool is full

Each pool of a certain size class will keep a doubly linked list to thenext and previous pools of that class. When the allocation task hap-pens, it’s easy to jump between pools of the same size class within anarena by following this list.
Pool Tables
A register of the pools within an arena is called a pool table. A pooltable is a headed, circular, doubly linked list of partially used pools.
The pool table is segmented by size class index, i. For an index of i,
usedpools[i + i] points to the header of a list of all partially used poolsthat have the size index for that size class.
Pool tables have some essential characteristics:
• When a pool becomes full, it’s unlinked from its usedpools[] list.
• If a full pool has a block freed, then the pool back is put back inthe used state. The newly freed pool is linked in at the front of theappropriate usedpools[] list so that the next allocation for its sizeclass will use the freed block.
• On transition to empty, a pool is unlinked from its usedpools[] listand linked to the front of its arena’s singly linked freepools list.

189

The CPython Memory Allocator
Blocks
Within a pool, memory is allocated into blocks. Blocks have the fol-lowing characteristics:
• Within a pool, blocks of fixed size class can be allocated and freed.
• Available blocks within a pool are listed in the singly linked list

freeblock.
• When a block is freed, it’s inserted at the front of the freeblock list.
• When a pool is initialized, only the first two blocks are linkedwithin the freeblock list.
• As long a pool is in the used state, there will be a block availablefor allocating.

Here’s what a partially allocated pool looks like with a combination ofused, freed, and available blocks:

Poolfreeblock Clean Blocks

Block Allocation API
When a block of memory is requested by a memory domain that uses
pymalloc, pymalloc_alloc() is called. This function is a good place toinsert a breakpoint and step through the code to test your knowledgeof blocks, pools, and arenas:

190

https://github.com/python/cpython/blob/v3.9.0/Objects/obmalloc.c#L1590

The CPython Memory Allocator
Objects obmalloc.c line 1590
static inline void*

pymalloc_alloc(void *ctx, size_t nbytes)

{

...

A request of nbytes = 30 is neither zero nor above the
SMALL_REQUEST_THRESHOLD of 512:

if (UNLIKELY(nbytes == 0)) {

return NULL;

}

if (UNLIKELY(nbytes > SMALL_REQUEST_THRESHOLD)) {

return NULL;

}

For a 64-bit system, the size class index is calculated as 1. This corre-lates to the second size class index (17–32 bytes).
The target pool is then usedpools[1 + 1] (usedpools[2]):

uint size = (uint)(nbytes - 1) >> ALIGNMENT_SHIFT;

poolp pool = usedpools[size + size];

block *bp;

Next, a check is done to see if there’s an available ('used') pool for thesize class index. If the freeblock list is at the end of the pool, then thereare still clean blocks available in that pool.
pymalloc_pool_extend() is called to extend the freeblock list:

191

The CPython Memory Allocator
if (LIKELY(pool != pool->nextpool)) {

/*

* There is a used pool for this size class.

* Pick up the head block of its free list.

*/

++pool->ref.count;

bp = pool->freeblock;

assert(bp != NULL);

if (UNLIKELY((pool->freeblock = *(block **)bp) == NULL)) {

// Reached the end of the free list. Try to extend it.

pymalloc_pool_extend(pool, size);

}

}

If there are no available pools, then a new pool is created and the firstblock is returned. allocate_from_new_pool() automatically adds the newpool to the usedpools list:
else {

/* There isn't a pool of the right size class immediately

* available. Use a free pool.

*/

bp = allocate_from_new_pool(size);

}

return (void *)bp;

}

Finally, the new block address is returned.
Using the Python Debug API
The sys module contains an internal function, _debugmallocstats(), toget the number of blocks in use for each of the size class pools. It willalso print the number of arenas allocated and reclaimed along withthe total number of blocks used.

192

The Object and PyMem Memory Allocation Domains
You can use this function to see the running memory usage:
$./python -c "import sys; sys._debugmallocstats()"

Small block threshold = 512, in 32 size classes.

class size num pools blocks in use avail blocks

----- ---- --------- ------------- ------------

0 16 1 181 72

1 32 6 675 81

2 48 18 1441 71

...

2 free 18-sized PyTupleObjects * 168 bytes each = 336

3 free 19-sized PyTupleObjects * 176 bytes each = 528

The output shows the size class index table, the allocations, and someadditional statistics.

The Object and PyMemMemoryAllocation Domains
CPython’s object memory allocator is the first of the three domainsthat you’ll explore. The purpose of the object memory allocator is toallocatememory related to Python objects, such as newobject headersand object data, like dictionary keys and values or list items.
The allocator is also used for the compiler, AST, parser, and evaluationloop. An excellent example of the objectmemory allocator in use is the
PyLongObject (int) type constructor, PyLong_New():
• When a new int is constructed, memory is allocated from the ob-ject allocator.
• The size of the request is the size of the PyLongObject struct plus theamount of memory required to store the digits.

Python longs aren’t equivalent to C’s long type. They’re a list of digits.The number 12378562834 in Python would be represented as the list of
193

The Object and PyMem Memory Allocation Domains
digits [1,2,3,7,8,5,6,2,8,3,4]. This memory structure is how Pythoncan deal with huge numbers without having to worry about 32- or 64-bit integer constraints.
Take a look at the PyLong constructor to see an example of object mem-ory allocation:
PyLongObject *

_PyLong_New(Py_ssize_t size)

{

PyLongObject *result;

...

if (size > (Py_ssize_t)MAX_LONG_DIGITS) {

PyErr_SetString(PyExc_OverflowError,

"too many digits in integer");

return NULL;

}

result = PyObject_MALLOC(offsetof(PyLongObject, ob_digit) +

size*sizeof(digit));

if (!result) {

PyErr_NoMemory();

return NULL;

}

return (PyLongObject*)PyObject_INIT_VAR(result, &PyLong_Type, size);

}

If you were to call _PyLong_New(2), it would calculate the size_t valuelike this:
Value Bytes
sizeof(digit) 4size 2header offset 26Total 32

A call to PyObject_MALLOC() would be made with a size_t value of 32.
Onmy system, themaximumnumber of digits in a long, MAX_LONG_DIGITS,

194

The Object and PyMem Memory Allocation Domains
is 2305843009213693945 (a very, very big number). If you ran _Py-

Long_New(2305843009213693945), then it would call PyObject_MALLOC()with a size_t of 9223372036854775804 bytes, or 8,589,934,592 gigabytes(more RAM than I have available).
Using the tracemalloc Module
The tracemalloc module in the standard library can be used to debugmemory allocation through the object allocator. It provides informa-tion on where an object was allocated and the number of memoryblocks allocated. As a debug tool, tracemalloc can help you calculatethe amount of memory consumed by running your code and detectmemory leaks.
To enable memory tracing, you can start Python with -X tracemalloc=1,where 1 is the number of frames deep you want to trace. Alternatively,you can enable memory tracing using the PYTHONTRACEMALLOC=1 environ-ment variable. You can specify how many frames deep to trace byreplacing the 1 with any integer.
You can use take_snapshot() to create a snapshot instance, thencompare multiple snapshots using compare_to(). Create an example
tracedemo.py file to see this in action:
cpython-book-samples 32 tracedemo.py

import tracemalloc

tracemalloc.start()

def to_celsius(fahrenheit, /, options=None):

return (fahrenheit-32)*5/9

values = range(0, 100, 10) # values 0, 10, 20, ... 90

for v in values:

c = to_celsius(v)

195

The Raw Memory Allocation Domain
after = tracemalloc.take_snapshot()

tracemalloc.stop()

after = after.filter_traces([tracemalloc.Filter(True, '**/tracedemo.py')])

stats = after.statistics('lineno')

for stat in stats:

print(stat)

Executing thiswill print a list of thememory usedby line, fromhighestto lowest:
$./python -X tracemalloc=2 tracedemo.py

/Users/.../tracedemo.py:5: size=712 B, count=2, average=356 B

/Users/.../tracedemo.py:13: size=512 B, count=1, average=512 B

/Users/.../tracedemo.py:11: size=480 B, count=1, average=480 B

/Users/.../tracedemo.py:8: size=112 B, count=2, average=56 B

/Users/.../tracedemo.py:6: size=24 B, count=1, average=24 B

The line with the highest memory consumption was return

(fahrenheit-32)*5/9, which performs the actual calculation.

The RawMemory Allocation Domain
The rawmemory allocation domain is used either directly or when theother two domains are called with a request size over 512 KB. It takesthe request size, in bytes, and calls malloc(size). If the size argumentis 0, then some systems will return NULL for malloc(0), which wouldbe treated as an error. Some platforms would return a pointer withno memory behind it, which would break pymalloc.
To solve these problems, _PyMem_RawMalloc() adds an extra byte beforecalling malloc().

196

Custom Domain Allocators
Important
By default, the PyMem domain allocators use the object alloca-tors. PyMem_Malloc() and PyObject_Malloc() have the same execu-tion path.

Custom Domain Allocators
CPython also allows you to override the allocation implementationfor any of the three domains. If your system environment requiresbespoke memory checks or algorithms for memory allocation, thenyou can plug a new set of allocation functions into the runtime.
PyMemAllocatorEx is a typedef struct with members for all the methodsyou would need to implement to override the allocator:
typedef struct {

/* User context passed as the first argument to the four functions */

void *ctx;

/* Allocate a memory block */

void* (*malloc) (void *ctx, size_t size);

/* Allocate a memory block initialized by zeros */

void* (*calloc) (void *ctx, size_t nelem, size_t elsize);

/* Allocate or resize a memory block */

void* (*realloc) (void *ctx, void *ptr, size_t new_size);

/* Release a memory block */

void (*free) (void *ctx, void *ptr);

} PyMemAllocatorEx;

The API method PyMem_GetAllocator() is available to get the existingimplementation:

197

https://github.com/python/cpython/blob/v3.9.0/Objects/obmalloc.c#L520

Custom Memory Allocation Sanitizers
PyMemAllocatorEx * existing_obj;

PyMem_GetAllocator(PYMEM_DOMAIN_OBJ, existing_obj);

Important
There are some important design tests for custom allocators:
• The new allocator must return a distinct non-NULL pointerwhen requesting zero bytes.
• For the PYMEM_DOMAIN_RAW domain, the allocator must bethread safe.

If you implemented the functions My_Malloc(), My_Calloc(), My_Realloc(),and My_Free() using the signatures in PyMemAllocatorEx, then you couldoverride the allocator for any domain, such as the PYMEM_DOMAIN_OBJdomain:
PyMemAllocatorEx my_allocators =

{NULL, My_Malloc, My_Calloc, My_Realloc, My_Free};

PyMem_SetAllocator(PYMEM_DOMAIN_OBJ, &my_allocators);

CustomMemory Allocation Sanitizers
Memory allocation sanitizers are additional algorithms placedbetween the system call to allocate memory and the kernel functionto allocate the memory on the system. They’re used for environmentsthat require specific stability constraints or very high security or fordebugging memory allocation bugs.
CPython can be compiled using several memory sanitizers. These arepart of the compiler libraries, not something developed for CPython.They typically slowdownCPython significantly and can’t be combined.They’re generally for use in debugging scenarios or systems in whichpreventing corrupt memory access is critical.

198

Custom Memory Allocation Sanitizers
AddressSanitizer
AddressSanitizer is a fast memory error detector. It can detect manyruntime memory–related bugs:
• Out-of-bounds accesses to heap, stack, and globals
• Memory being used after it has been freed
• Double free and invalid free

You can enable AddressSanitizer by running the following:
$./configure --with-address-sanitizer ...

Important
AddressSanitizer can slowdown applications by up to two timesand consume up to three times more memory.

AddressSanitizer is supported on the following operating systems:
• Linux
• macOS
• NetBSD
• FreeBSD

See the official documentation for more information.
MemorySanitizer
MemorySanitizer is a detector of uninitialized reads. If an addressspace is addressed before it’s been initialized (allocated), then the pro-cess is stopped before the memory can be read.
You can enable the memory sanitizer by running the following:
$./configure --with-memory-sanitizer ...

199

https://clang.llvm.org/docs/AddressSanitizer.html

Custom Memory Allocation Sanitizers
Important
MemorySanitizer can slow down applications by up to twotimes and consume up to two times more memory.

MemorySanitizer is supported on the following operating systems:
• Linux
• NetBSD
• FreeBSD

See the official documentation for more information.
UndeрnedBehaviorSanitizer
UndefinedBehaviorSanitizer (UBSan) is a fast undefined behavior de-tector. It can catch various kinds of undefined behavior during execu-tion:
• A misaligned or null pointer
• A signed integer overflow
• Conversion to, from, or between floating-point types

You can enable UBSan by running the following:
$./configure --with-undefined-behavior-sanitizer ...

UBSan is supported on the following operating systems:
• Linux
• macOS
• NetBSD
• FreeBSD

See the official documentation for more information.

200

https://clang.llvm.org/docs/MemorySanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

The PyArena Memory Arena
UBSan has many configurations. Using
--with-undefined-behavior-sanitizer will set the undefined profile. Touse another profile like nullability, run ./configure with the customCFLAGS:
$./configure CFLAGS="-fsanitize=nullability" \

LDFLAGS="-fsanitize=nullability"

After you recompile CPython, this configuration will produce aCPython binary using the UndefinedBehaviorSanitizer.

The PyArena Memory Arena
Throughout this book, you’ll see references to a PyArena object. The
PyArena is a separate arena allocation API used for the compiler, frameevaluation, and other parts of the systemnot run fromPython’s objectallocation API.
The PyArena also has its own list of allocated objects within the arenastructure. Memory allocated by the PyArena is not a target of thegarbage collector.
When memory is allocated in a PyArena instance, it will capture arunning total of the number of blocks allocated, then call PyMem_Alloc.Allocation requests to the PyArena use the object allocator for blockssmaller than or equal to 512 KB and the raw allocator for largerblocks.
Related Files
Here are the files related to the PyArena:

File Purpose
Include pyarena.h The PyArena API and type definitions
Python pyarena.c The PyArena implementation

201

https://github.com/python/cpython/blob/v3.9.0/Include/pyarena.h#L12

Reference Counting
Reference Counting
As you’ve seen so far in this chapter, CPython is built on C’s dynamicmemory allocation system. Memory requirements are determined atruntime, and memory is allocated on the system using the PyMem APIs.
For the Python developer, this system has been abstracted and sim-plified. Developers don’t have to worry much about allocating andfreeing memory.
To simplify memory management, Python adopts two strategies formanaging the memory allocated by objects:
1. Reference counting
2. Garbage collection
You’ll look at each in more detail below.
Creating Variables in Python
To create a variable in Python, you have to assign a value to a uniquelynamed variable:
my_variable = ["a", "b", "c"]

When a value is assigned to a variable in Python, the name of the vari-able is checked within the locals and globals scope to see if it alreadyexists.
In the above example, my_variable isn’t already within any locals() or
globals() dictionary. A new list object is created, and a pointer isstored in the locals() dictionary.
Now there’s one reference to my_variable. A list object’s memoryshouldn’t be freed while there are valid references to it. If its memorywere freed, then the my_variable pointer would point to invalid mem-ory space, and CPython would crash.

202

Reference Counting
Throughout the C source code for CPython, you’ll see calls to
Py_INCREF() and Py_DECREF(). These macros are the primary APIfor incrementing and decrementing references to Python objects.Whenever something depends on a value, the reference count isincremented. When that dependency is no longer valid, the referencecount is decremented.
If a reference count reaches zero, then it’s assumed that the memoryis no longer needed, and it’s automatically freed.
Incrementing References
Every instance of PyObject has an ob_refcnt property. This property isa counter of the number of references to that object.
References to an object are incremented under many scenarios. Inthe CPython code base, there are over 3,000 calls to Py_INCREF(). Themost frequent calls are when an object is:
• Assigned to a variable name
• Referenced as a function or method argument
• Returned, or yielded, from a function

The logic behind the Py_INCREFmacro has only one step. It incrementsthe ob_refcnt value by one:
static inline void _Py_INCREF(PyObject *op)

{

_Py_INC_REFTOTAL;

op->ob_refcnt++;

}

If CPython is compiled in debug mode, then _Py_INC_REFTOTAL will in-crement a global reference counter, _Py_RefTotal.

203

https://github.com/python/cpython/blob/v3.9.0/Include/object.h#L411
https://github.com/python/cpython/blob/v3.9.0/Include/object.h#L437

Reference Counting
Note
You can see the global reference counter by adding the -X

showrefcount flag when running a debug build of CPython:
$./python -X showrefcount -c "x=1; x+=1; print(f'x is {x}')"

x is 2

[18497 refs, 6470 blocks]

The first number in brackets is the number of references madeduring the process, and the second is the number of allocatedblocks.

Decrementing References
References to an object are decremented when a variable falls outsidethe scope in which it was declared. Scope in Python can refer to afunction or method, a comprehension, or a lambda. These are someof the more literal scopes, but there are many other implicit scopes,like passing variables to a function call.
Py_DECREF() is more complex than Py_INCREF() because it also handlesthe logic of a reference count reaching 0, requiring the object memoryto be freed:
static inline void _Py_DECREF(

#ifdef Py_REF_DEBUG

const char *filename, int lineno,

#endif

PyObject *op)

{

_Py_DEC_REFTOTAL;

if (--op->ob_refcnt != 0) {

#ifdef Py_REF_DEBUG

if (op->ob_refcnt < 0) {

_Py_NegativeRefcount(filename, lineno, op);

}

#endif

204

Reference Counting
}

else {

_Py_Dealloc(op);

}

}

Inside Py_DECREF(), when the reference counter (ob_refcnt) value be-comes 0, the object destructor is called through _Py_Dealloc(op), andany allocated memory is freed.
As with Py_INCREF(), there are some additional functions whenCPython has been compiled in debug mode.
For an increment, there should be an equivalent decrement operation.If a reference count becomes a negative number, then this indicatesan imbalance in the C code. An attempt to decrement references to anobject that has no references will give this error message:
<file>:<line>: _Py_NegativeRefcount: Assertion failed:

object has negative ref count

Enable tracemalloc to get the memory block allocation traceback

object address : 0x109eaac50

object refcount : -1

object type : 0x109cadf60

object type name: <type>

object repr : <refcnt -1 at 0x109eaac50>

When making changes to the behavior of an operation, the Pythonlanguage, or the compiler, you must carefully consider the impact onobject references.
Reference Counting in Bytecode Operations
A large portion of the reference counting in Python happens withinthe bytecode operations in Python ceval.c.
Count the references to the y variable in this example:

205

Reference Counting
y = "hello"

def greet(message=y):

print(message.capitalize() + " " + y)

messages = [y]

greet(*messages)

At first glance, there are four references to y:
1. As a variable in the top-level scope
2. As a default value for the keyword argument message
3. Inside greet()

4. As an item in the messages list
Run this code with the following additional snippet:
import sys

print(sys.getrefcount(y))

There are in fact six total references to y.
Instead of sitting within a central function that has to cater to all thesecases and more, the logic for incrementing and decrementing refer-ences is split into small parts.
A bytecode operation should have a determining impact on the refer-ence counter for the objects that it takes as arguments.
For example, in the frame evaluation loop, the LOAD_FAST operationloads the object with a given name and pushes it to the top of the valuestack. Once the variable name, which is provided in the oparg, hasbeen resolved using GETLOCAL(), the reference counter is incremented:

206

Reference Counting
...

case TARGET(LOAD_FAST): {

PyObject *value = GETLOCAL(oparg);

if (value == NULL) {

format_exc_check_arg(tstate, PyExc_UnboundLocalError,

UNBOUNDLOCAL_ERROR_MSG,

PyTuple_GetItem(co->co_varnames, oparg));

goto error;

}

Py_INCREF(value);

PUSH(value);

FAST_DISPATCH();

}

A LOAD_FAST operation is compiled by many AST nodes that have oper-ations.
For example, let’s say you assign two variables, a and b, then createthird, c, based on the product of a and b:
a = 10

b = 20

c = a * b

In the third operation, c = a * b, the right-hand side expression, a *

b, would be assembled into three operations:
1. LOAD_FAST, resolving the variable a and pushing it to the value stack,then incrementing the references to a by one
2. LOAD_FAST, resolving the variable b and pushing it to the value stack,then incrementing the references to b by one
3. BINARY_MULTIPLY, multiplying the variables to the left and right andpushing the result to the value stack
The binary multiply operator, BINARY_MULTIPLY, knows that referencesto the left and right variables in the operation have been loaded to thefirst and second positions in the value stack. It’s also implied that the
LOAD_FAST operation increments its reference counters.

207

Reference Counting
In the implementation of the BINARY_MULTIPLY operation, the referencesto both a (left) and b (right) are decremented once the result has beencalculated:

case TARGET(BINARY_MULTIPLY): {

PyObject *right = POP();

PyObject *left = TOP();

PyObject *res = PyNumber_Multiply(left, right);

Py_DECREF(left);

Py_DECREF(right);

SET_TOP(res);

if (res == NULL)

goto error;

DISPATCH();

}

The resulting number, res, will have a reference count of 1 before it’sset as the top of the value stack.
The Beneрts of the CPython Reference Counter
CPython’s reference counter has the benefits of being simple, fast,and efficient. The biggest drawback of the reference counter is thatit needs to account for, and carefully balance, the effect of everyoperation.
As you just saw, a bytecode operation increments the counter, andit’s assumed that an equivalent operation will decrement it properly.What happens if there’s an unexpected error? Have all possible sce-narios been tested?
Everything discussed so far is within the realm of the CPython run-time. The Python developer has little to no control over this behavior.
There’s also a significant flaw in the reference counting approach:cyclical references.
Take this Python example:

208

Garbage Collection
x = []

x.append(x)

del x

The reference count for x is still 1 because it referred to itself.
To cater to this complexity and resolve these types of memory leaks,CPython has a second memory management mechanism calledgarbage collection.

Garbage Collection
How often does your garbage get collected? Weekly or fortnightly?
When you’re finished with something, you discard it and throw it inthe trash. But that trash doesn’t get collected right away. You need towait for the garbage trucks to come and pick it up.
CPython uses the same principle for the garbage collection algorithm.CPython’s garbage collector works to deallocate memory that’s beenused for objects that no longer exist. It’s enabled by default and oper-ates in the background.
Because the garbage collection algorithm is a lot more complicatedthan the reference counter, it doesn’t happen all the time. If it did,then it would consume a vast amount of CPU resources. The garbagecollection runs periodically after a set number of operations.
Related Source Files
Here are the source files related to the garbage collector:
File Purpose
Modules gcmodule.c The garbage collection module andalgorithm implementation
Include internal pycore_mem.h The garbage collection data structure andinternal APIs

209

Garbage Collection
The Garbage Collector Design
As you discovered in the previous section, every Python object retainsa counter of the number of references to it. Once that counter reacheszero, the object is finalized, and the memory is freed.
Many of the Python container types, like lists, tuples, dictionaries,and sets, could result in cyclical references. The reference counter isan insufficient mechanism to ensure that objects that are no longerrequired are freed.
While creating cyclical references in containers should be avoided,there are many examples within the standard library and the coreinterpreter. Here’s another common example in which a containertype (class) can refer to itself:
cpython-book-samples 32 user.py

__all__ = ["User"]

class User(BaseUser):

name: 'str' = ""

login: 'str' = ""

def __init__(self, name, login):

self.name = name

self.login = login

super(User).__init__()

def __repr__(self):

return ""

class BaseUser:

def __repr__(self):

This creates a cyclical reference

return User.__repr__(self)

In this example, the instance of User links to the BaseUser type, whichreferences back to the instance of User. The goal of the garbage collec-

210

Garbage Collection
tor is to find unreachable objects and mark them as garbage.
Some garbage collector algorithms, like mark and sweep or stopand copy, start at the root of the system and explore all reachableobjects. This is hard to do in CPython because C extension modulescan define and store their own objects. You couldn’t easily determineall objects by simply looking at locals() and globals().
For long-running processes or large data processing tasks, runningout of memory would cause a significant issue.
Instead, the CPython garbage collector leverages the existing refer-ence counter and a custom garbage collector algorithm to find all un-reachable objects. Because the reference counter is already in place,the role of the CPython garbage collector is to look for cyclical refer-ences in certain container types.
Container Types Included in the GarbageCollector
The garbage collector will look for types that have the flag
Py_TPFLAGS_HAVE_GC set in their type definition. You’ll cover typedefinitions in the chapter “Objects and Types.”
Here are the types that are marked for garbage collection:
• Class, method, and function objects
• Cell objects
• Byte arrays, byte, and Unicode strings
• Dictionaries
• Descriptor objects, used in attributes
• Enumeration objects
• Exceptions
• Frame objects
• Lists, tuples, named tuples, and sets

211

Garbage Collection
• Memory objects
• Modules and namespaces
• Type and weak reference objects
• Iterators and generators
• Pickle buffers

Wondering what’s missing? Floats, integers, Booleans, and NoneTypearen’t marked for garbage collection.
Custom types written with C extension models can be marked as re-quiring garbage collection using the garbage collector C API.
Untrackable Objects and Mutability
The garbage collector will track certain types for changes in their prop-erties to determine which are unreachable.
Some container instances aren’t subject to change because they’reimmutable, so the API provides a mechanism for untracking. Thefewer objects there are to be tracked by the garbage collector, thefaster and more efficient the garbage collection is.
An excellent example of untrackable objects is tuples. Tuples are im-mutable. Once you create them, they can’t be changed. However, tu-ples can contain mutable types, like lists and dictionaries.
This design in Python creates many side effects, one of which is thegarbage collection algorithm. When a tuple is created, unless it’sempty, it’s marked for tracking.
When the garbage collector runs, every tuple looks at its contents tosee if it contains only immutable (untracked) instances. This step iscompleted in _PyTuple_MaybeUntrack(). If the tuple determines that itcontains only immutable types, like Booleans and integers, then itwill remove itself from the garbage collection tracking by calling _Py-

Object_GC_UNTRACK().

212

https://docs.python.org/3.8/c-api/gcsupport.html
https://github.com/python/cpython/blob/v3.9.0/Objects/tupleobject.c#L174
https://github.com/python/cpython/blob/v3.9.0/Include/internal/pycore_object.h#L79
https://github.com/python/cpython/blob/v3.9.0/Include/internal/pycore_object.h#L79

Garbage Collection
Dictionaries are empty and untracked when they’re created. When anitem is added to a dictionary, if it’s a tracked object, then the dictio-nary requests to be tracked by the garbage collector.
You can see if any object is being tracked by calling gc.is_tracked(obj).
Garbage Collection Algorithm
Next, you’ll explore the garbage collection algorithm. The CPythoncore development team has written a detailed guide that you can referto for more information.
Initialization
The PyGC_Collect() entry point follows a five-step process to start andstop the garbage collector:
1. Get the garbage collection state, GCState, from the interpreter.
2. Check to see if the garbage collector is enabled.
3. Check to see if the garbage collector is already running.
4. Run the collection function, collect(), with progress callbacks.
5. Mark the garbage collection as completed.
When the collection stage is run and completed, you can specify call-back methods using the gc.callbacks list. Callbacks should have themethod signature f(stage: str, info: dict):
Python 3.9 (tags/v3.9:9cf67522, Oct 5 2020, 10:00:00)

[Clang 6.0 (clang-600.0.57)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> import gc

>>> def gc_callback(phase, info):

... print(f"GC phase:{phase} with info:{info}")

...

>>> gc.callbacks.append(gc_callback)

>>> x = []

213

https://devguide.python.org/garbage_collector/
https://github.com/python/cpython/blob/v3.9.0/Modules/gcmodule.c#L2045
https://github.com/python/cpython/blob/v3.9.0/Modules/gcmodule.c#L1170

Garbage Collection
>>> x.append(x)

>>> del x

>>> gc.collect()

GC phase:start with info:{'generation': 2,'collected': 0,'uncollectable': 0}

GC phase:stop with info:{'generation': 2,'collected': 1,'uncollectable': 0}

1

The Collection Stage
In the main garbage collection function, collect() targets one of threegenerations in CPython. Before you learn about the generations, it’simportant to first understand the collection algorithm.
For each collection, the garbage collector uses a doubly linked list oftype PyGC_HEAD. So that the garbage collector doesn’t have to find allcontainer types, those that are targets for the garbage collector havean additional header that links them all in a doubly linked list.
When one of these container types is created, it adds itself to the list,and when it’s destroyed, it removes itself. You can see an example inthe cellobject.c type:
Objects cellobject.c line 7
PyObject *

PyCell_New(PyObject *obj)

{

PyCellObject *op;

op = (PyCellObject *)PyObject_GC_New(PyCellObject, &PyCell_Type);

if (op == NULL)

return NULL;

op->ob_ref = obj;

Py_XINCREF(obj);

>> _PyObject_GC_TRACK(op);

return (PyObject *)op;

}

214

https://github.com/python/cpython/blob/v3.9.0/Modules/gcmodule.c#L1170

Garbage Collection
Because cells are mutable, the object is marked to be tracked by a callto _PyObject_GC_TRACK().
When cell objects are deleted, cell_dealloc() is called. This functiontakes three steps:
1. The destructor tells the garbage collector to stop tracking thisinstance by calling _PyObject_GC_UNTRACK(). Because it’s beendestroyed, its contents don’t need to be checked for changes insubsequent collections.
2. Py_XDECREF is a standard call in any destructor to decrement the ref-erence counter. The reference counter for an object is initializedto 1, so this counters that operation.
3. PyObject_GC_Del() removes the object from the garbage collectionlinked list by calling gc_list_remove() and then frees the memorywith PyObject_FREE().
Here’s the source of cell_dealloc():
Objects cellobject.c line 79
static void

cell_dealloc(PyCellObject *op)

{

_PyObject_GC_UNTRACK(op);

Py_XDECREF(op->ob_ref);

PyObject_GC_Del(op);

}

When a collection starts, it merges younger generations into thecurrent generation. For example, if you’re collecting the secondgeneration, then when it starts collecting, it will merge the first gen-eration’s objects into the garbage collection list using gc_list_merge().The garbage collector will then determine unreachable objects in the
young (currently targeted) generation.
The logic for determining unreachable objects is located in de-

duce_unreachable(). It follows these stages:
215

https://github.com/python/cpython/blob/v3.9.0/Include/internal/pycore_object.h#L51
https://github.com/python/cpython/blob/v3.9.0/Objects/cellobject.c#L79
https://github.com/python/cpython/blob/v3.9.0/Include/internal/pycore_object.h#L79
https://github.com/python/cpython/blob/v3.9.0/Modules/gcmodule.c#L2306
https://github.com/python/cpython/blob/v3.9.0/Modules/gcmodule.c#L254
https://github.com/python/cpython/blob/v3.9.0/Include/objimpl.h#L108
https://github.com/python/cpython/blob/v3.9.0/Objects/cellobject.c#L79
https://github.com/python/cpython/blob/v3.9.0/Modules/gcmodule.c#L289

Garbage Collection
1. For every object in the generation, copy the reference count value

ob->ob_refcnt to ob->gc_ref.
2. For every object, subtract internal (cyclical) references from

gc_refs to determine how many objects can be collected by thegarbage collector. If gc_refs ends up equal to 0, then the object isunreachable.
3. Create a list of unreachable objects and add every object thatmeetsthe criteria in step 2 to it.
4. Remove every object that meets the criteria in step 2 from the gen-eration list.
There’s no single method for determining cyclical references. Eachtype must define a custom function with signature traverseproc in the
tp_traverse slot. To complete step 2 above, deduce_unreachable() callsthe traversal function for every object within subtract_refs(). Thetraversal function should run the callback visit_decref() for everyitem it contains:
Modules gcmodule.c line 462
static void

subtract_refs(PyGC_Head *containers)

{

traverseproc traverse;

PyGC_Head *gc = GC_NEXT(containers);

for (; gc != containers; gc = GC_NEXT(gc)) {

PyObject *op = FROM_GC(gc);

traverse = Py_TYPE(op)->tp_traverse;

(void) traverse(FROM_GC(gc),

(visitproc)visit_decref,

op);

}

}

216

https://github.com/python/cpython/blob/v3.9.0/Modules/gcmodule.c#L1084
https://github.com/python/cpython/blob/v3.9.0/Modules/gcmodule.c#L462
https://github.com/python/cpython/blob/v3.9.0/Modules/gcmodule.c#L439

Garbage Collection
The traversal functions are kept within each object’s source codein Objects. For example, the tuple type’s traversal, tupletraverse(),calls visit_decref() on all of its items. The dictionary type will call
visit_decref() on all keys and values.
Any object that doesn’t end up beingmoved to the unreachable list grad-uates to the next generation.
Freeing Objects
Once unreachable objects have been determined, they can be (care-fully) freed following the steps below. The approach depends onwhether the type implements the old or the new finalizer slot:
1. If an object has defined a finalizer in the legacy tp_del slot, then itcan’t safely be deleted and is marked as uncollectable. These areadded to the gc.garbage list for the developer to destroy manually.
2. If an object has defined a finalizer in the tp_finalize slot, then it’smarked as finalized to avoid calling it twice.
3. If an object in step 2 has been resurrected by being initializedagain, then the garbage collector reruns the collection cycle.
4. For all objects, the tp_clear slot is called. This slot changes thereference count, ob_refcnt, to 0, triggering the freeing of memory.
Generational Garbage Collection
Generational garbage collection is a technique based on the observa-tion thatmost objects (80 percent ormore) are destroyed shortly afterbeing created.
CPython’s garbage collector uses three generations that have thresh-olds to trigger their collections. The youngest generation (0) has ahigh threshold to avoid the collection loop being run too frequently.If an object survives garbage collection, then it’ll move to the secondgeneration and then to the third.

217

https://github.com/python/cpython/blob/v3.9.0/Objects/tupleobject.c#L619
https://github.com/python/cpython/blob/v3.9.0/Modules/gcmodule.c#L439
https://github.com/python/cpython/blob/v3.9.0/Modules/gcmodule.c#L439

Garbage Collection
In the collection function, a single generation is targeted, and itmerges younger generations into it before execution. For this reason,if you run collect() on generation 1, then it will collect generation 0.Likewise, running collect() on generation 2 will collect generations 0and 1.
When objects are instantiated, the generational counters are incre-mented. When the counter reaches a user-defined threshold, col-

lect() runs automatically.
Using the Garbage Collection API From Python
CPython’s standard library comes with a gc Python module to inter-face with the arena and the garbage collector. Here’s how to use the
gc module in debug mode:
>>> import gc

>>> gc.set_debug(gc.DEBUG_STATS)

This will print the statistics whenever the garbage collector is run:
gc: collecting generation 2...

gc: objects in each generation: 3 0 4477

gc: objects in permanent generation: 0

gc: done, 0 unreachable, 0 uncollectable, 0.0008s elapsed

You use gc.DEBUG_COLLECTABLE to discover when items are collected forgarbage. When you combine this with the gc.DEBUG_SAVEALL debug flag,it will move items to a gc.garbage list once they’ve been collected:
>>> import gc

>>> gc.set_debug(gc.DEBUG_COLLECTABLE | gc.DEBUG_SAVEALL)

>>> z = [0, 1, 2, 3]

>>> z.append(z)

>>> del z

>>> gc.collect()

gc: collectable <list 0x10d594a00>

>>> gc.garbage

218

https://github.com/python/cpython/blob/v3.9.0/Modules/gcmodule.c#L1170
https://github.com/python/cpython/blob/v3.9.0/Modules/gcmodule.c#L1170
https://github.com/python/cpython/blob/v3.9.0/Modules/gcmodule.c#L1170
https://github.com/python/cpython/blob/v3.9.0/Modules/gcmodule.c#L1170

Conclusion
[[0, 1, 2, 3, [...]]]

You can get the threshold after which the garbage collector is run bycalling get_threshold():
>>> gc.get_threshold()

(700, 10, 10)

You can also get the current threshold counts:
>>> gc.get_count()

(688, 1, 1)

Lastly, you can run the collection algorithmmanually for a generation,and it will return the collected total:
>>> gc.collect(0)

24

If you don’t specify a generation, then it will default to 2, whichmergesgenerations 0 and 1:
>>> gc.collect()

20

Conclusion
In this chapter, you’ve seen how CPython allocates, manages, andfrees memory. These operations happen thousands of times duringthe life cycle of even the simplest Python script. The reliability andscalability of CPython’smemorymanagement system are what enableit to scale from a two-line script all the way to running some of theworld’s most popular websites.
The object and raw memory allocation systems you’ve been shown inthis chapter will come in useful if you develop C extensionmodules. Cextensionmodules require an intimate knowledge of CPython’s mem-ory management system. Even a single missing Py_INCREF() can causea memory leak or system crash.

219

Conclusion
When you’re working with pure Python code, knowledge of thegarbage collector is useful for designing long-running Python code.For example, if you designed a single function that executes overhours, days, or even longer, then this function would need to carefullymanage its memory within the constraints of the system on which itwas executing.
You can now use some of the techniques you learned in this chapterto control and tweak the garbage collection generations to better op-timize your code and its memory footprint.

220

Parallelism andConcurrency
The first computers were designed to do one thing at a time. A lot oftheir work was in the field of computational mathematics. As timewent on, computers were needed to process inputs from a variety ofsources, some as far away as distant galaxies.
The consequence of this is that computer applications now spend a lotof time idly waiting for responses, whether they be from a bus, an in-put, a memory location, a computation, an API, or a remote resource.
Another progression in computing was the move away from asingle-user terminal to a multitasking operating system. Applica-tions needed to run in the background to listen and respond on thenetwork and process inputs such as the mouse cursor.
Multitasking was required well before the advent of modern multi-core CPUs, so operating systems have long been able to share systemresources between multiple processes.
At the core of any operating system is a registry of running processes.Each process has an owner, and it can request resources, likememoryor CPU. In the last chapter, you explored memory allocation.
For a CPU, the process will request CPU time in the form of oper-ations to be executed. The operating system controls which processuses the CPU. It does this by allocating CPU time and scheduling pro-cesses by priority:

221

Concurrent Model

Time

Task A

Task B

Executing Waiting

A single process may need to do multiple things at once. For exam-ple, if you use a word processor, it needs to check your spelling whileyou’re typing. Modern applications accomplish this by running mul-tiple threads concurrently and handling their own resources.
Concurrency is an excellent solution to dealing withmultitasking, butCPUs have their limits. Some high-performance computers deployeither multiple CPUs ormultiple cores to spread tasks. Operating sys-tems provide a way of scheduling processes across multiple CPUs:

Parallel Model

Task A

Task B

Executing Waiting

CPU 0

CPU 1

222

The Structure of a Process
In summary, computers use parallelism and concurrency to handlethe problem of multitasking:
• To have parallelism, you need multiple computational units.Computational units can be CPUs or cores.
• To have concurrency, you need a way of scheduling tasks so thatidle ones don’t lock the resources.

Many parts of CPython’s design abstract the complexity of operatingsystems to provide a simple API for developers. CPython’s approachto parallelism and concurrency is no exception.

Models of Parallelism and Concurrency
CPython offers many approaches to parallelism and concurrency.Your choice depends on several factors. There are also overlappinguse cases across models as CPython has evolved.
You may find that for a particular problem, there are multiple concur-rency implementations to choose from, each with their own pros andcons.
There are four models bundled with CPython:

Approach Module Concurrent Parallel
Threading threading Yes NoMultiprocessing multiprocessing Yes YesAsync asyncio Yes NoSubinterpreters subinterpreters Yes Yes

The Structure of a Process
One of the tasks for an operating system like Windows, macOS, orLinux is to control running processes. These processes could be UIapplications like a browser or an IDE. They could also be backgroundprocesses like network services or operating system services.

223

The Structure of a Process
To control these processes, the operating system provides an API forstarting a new process. When a process is created, it’s registered bythe operating system so that it knows which processes are running.Processes are given a unique ID (PID). Depending on the operatingsystem, they can have several other properties.
POSIX processes have aminimum set of properties that are registeredin the operating system:
• Controlling terminal
• Current working directory
• Effective group ID and effective user ID
• File descriptors and file mode creation mask
• Process group ID and process ID
• Real group ID and real user ID
• Root directory

You can see these attributes for running processes in macOS or Linuxby running the ps command.
See Also
The IEEE POSIX Standard (1003.1-2017) defines the interfaceand standard behaviors for processes and threads.

Windows has a similar list of properties but sets its own standard. TheWindows file permissions, directory structures, and process registryare very different from POSIX.
Windows processes, represented by Win32_Process, can be queried inWMI, the Windows Management Instrumentation runtime, or by us-ing the Task Manager.

224

https://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap01.html
https://docs.microsoft.com/en-us/windows/win32/cimwin32prov/win32-process

The Structure of a Process
Once a process is started on an operating system, it is given:
• A stack of memory for calling subroutines
• A heap (see “Dynamic Memory Allocation in C”)
• Access to рles, locks, and sockets on the operating system

The CPU on your computer also keeps additional data when the pro-cess is executing, such as:
• A register holding the current instruction being executed or anyother data needed by the process for that instruction
• An instruction pointer, or program counter, indicatingwhich instruction in the program sequence is being executed

The CPython process comprises the compiled CPython interpreterand the compiled modules. These modules are loaded at runtime andconverted into instructions by the CPython evaluation loop:

Heap

Python Objects

Process Memory

Process

CPython Runtime

Files

Locks

Sockets

Compiled Modules

Instructions

Stack

The program register and program counter point to a single instruc-tion in the process. This means that only one instruction can be exe-cuting at any one time. For CPython, this means that only one Pythonbytecode instruction can be executing at a given time.

225

Multiprocess Parallelism
There are two main approaches to allowing parallel execution of in-structions in a process:
1. Fork another process.
2. Spawn a thread.
Now that you’ve reviewed what makes up a process, you can exploreforking and spawning child processes.

Multiprocess Parallelism
POSIX systems provide an API for any process to fork a child process.Forking processes is a low-level API call to the operating system thatcan be made by any running process.
When this call is made, the operating system will clone all theattributes of the currently running process and create a new process.This clone operation includes the heap, register, and counter positionof the parent process. The child process can read any variables fromthe parent process at the time of forking.
Forking a Process in POSIX
As an example, take the Fahrenheit-to-Celsius example applicationused at the beginning of “Dynamic Memory Allocation in C.” You canadapt it to spawn a child process for each Fahrenheit value instead ofcalculating them in sequence by using fork(). Each child process willcontinue operating from that point:
cpython-book-samples 33 thread_celsius.c

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

static const double five_ninths = 5.0/9.0;

226

Multiprocess Parallelism
double celsius(double fahrenheit){

return (fahrenheit - 32) * five_ninths;

}

int main(int argc, char** argv) {

if (argc != 2)

return -1;

int number = atoi(argv[1]);

for (int i = 1 ; i <= number ; i++) {

double f_value = 100 + (i*10);

pid_t child = fork();

if (child == 0) { // Is child process

double c_value = celsius(f_value);

printf("%f F is %f C (pid %d)\n", f_value, c_value, getpid());

exit(0);

}

}

printf("Spawned %d processes from %d\n", number, getpid());

return 0;

}

Running the above program on the command line would give an out-put similar to this:
$./thread_celsius 4

110.000000 F is 43.333333 C (pid 57179)

120.000000 F is 48.888889 C (pid 57180)

Spawned 4 processes from 57178

130.000000 F is 54.444444 C (pid 57181)

140.000000 F is 60.000000 C (pid 57182)

The parent process (57178) spawned four processes. For each childprocess, the program continues at the line child = fork(), where theresulting value of child is 0. It then completes the calculation, printsthe value, and exits the process. Finally, the parent process outputshow many processes it spawned and its own PID.
The time it took for the third and fourth child processes to completewas longer than it took for the parent process to complete. This is why

227

Multiprocess Parallelism
the parent process prints the final output before the third and fourthprint their own.
A parent process can exit with its own exit code before a child process.Child processes are added to a process group by the operating system,making it easier to control all related processes:

Process Group

Parent Process

Heap

Python Objects

Process Memory

Process

CPython Runtime

Files

Locks

Sockets

Compiled Modules

Instructions

Stack

Heap

Python Objects

Process Memory

Process

CPython Runtime

Files

Locks

Sockets

Compiled Modules

Instructions

Stack

The biggest downside to this approach to parallelism is that the childprocess is a complete copy of the parent process.
In the case of CPython, this means you would have two CPython inter-preters running, and both would have to load the modules and all the

228

Multiprocess Parallelism
libraries. This creates significant overhead. Using multiple processesmakes sense when the overhead of forking a process is outweighed bythe size of the task being completed.
Another major downside of forked processes is that they have a sepa-rate, isolated heap from the parent process. This means that the childprocess cannot write to the memory space of the parent process.
When the child process is created, the parent’s heapbecomes availableto the child process. To send information back to the parent, someform of interprocess communication (IPC) must be used.

Note
The os module offers a wrapper around fork().

Multiprocessing inWindows
So far, you’ve been learning about the POSIX model. Windowsdoesn’t provide an equivalent to fork(), and Python should (as bestas possible) have the same API across Linux, macOS, and Windows.
To overcome this, the CreateProcessW() API is used to spawn another
python.exe process with a -c command-line argument. This step isknown as spawning a process and is also available on POSIX. You’llsee references to it throughout this chapter.
The multiprocessing Package
CPython provides an API on top of the operating system process-forking API that makes it straightforward to create multiprocessparallelism in Python.
This API is available from the multiprocessing package, which providesexpansive capabilities for pooling processes, queues, forking, creatingshared memory heaps, connecting processes together, and more.

229

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessw

Multiprocess Parallelism
Related Source Files
Here are the source files related to multiprocessing:
File Purpose
Lib multiprocessing Python source for the multiprocessingpackage
Modules _posixsubprocess.c C extension module wrapping the POSIX

fork() syscall
Modules _winapi.c C extension module wrapping the Windowskernel APIs
Modules _multiprocessing C extension module used by the

multiprocessing package
PC msvcrtmodule.c A Python interface to the Microsoft Visual Cruntime library

Spawning and Forking Processes
The multiprocessing package offers three methods to start a new paral-lel process:
1. Forking an interpreter (POSIX only)
2. Spawning a new interpreter process (POSIX and Windows)
3. Running a fork server in which a new process is created that thenforks any number of processes (POSIX only)

Note
ForWindows andmacOS, the default start method is spawning.For Linux, the default is forking. You can override the defaultmethod using multiprocessing.set_start_method().

The Python API for starting a new process takes a callable, target, anda tuple of arguments, args.
Take this example of spawning a new process to convert Fahrenheitto Celsius:

230

Multiprocess Parallelism
cpython-book-samples 33 spawn_process_celsius.py

import multiprocessing as mp

import os

def to_celsius(f):

c = (f - 32) * (5/9)

pid = os.getpid()

print(f"{f}F is {c}C (pid {pid})")

if __name__ == '__main__':

mp.set_start_method('spawn')

p = mp.Process(target=to_celsius, args=(110,))

p.start()

While you can start a single process, the multiprocessing API assumesyouwant to startmultiple. There are conveniencemethods for spawn-ing multiple processes and feeding them sets of data. One of thosemethods is the Pool class.
The previous example can be expanded to calculate a range of valuesin separate Python interpreters:
cpython-book-samples 33 pool_process_celsius.py

import multiprocessing as mp

import os

def to_celsius(f):

c = (f - 32) * (5/9)

pid = os.getpid()

print(f"{f}F is {c}C (pid {pid})")

if __name__ == '__main__':

mp.set_start_method('spawn')

with mp.Pool(4) as pool:

pool.map(to_celsius, range(110, 150, 10))

231

Multiprocess Parallelism
Note that the output shows the same PID. Because the CPython inter-preter process has a significant overhead, the Pool will consider eachprocess in the pool a worker. If a worker has completed, it will bereused.
You can change that setting by replacing this line:

with mp.Pool(4) as pool:

Replace it with the following code:
with mp.Pool(4, maxtasksperchild=1) as pool:

Now the previous multiprocessing example will print something sim-ilar to this:
$ python pool_process_celsius.py

110F is 43.333333333333336C (pid 5654)

120F is 48.88888888888889C (pid 5653)

130F is 54.44444444444445C (pid 5652)

140F is 60.0C (pid 5655)

The output shows the process IDs of the newly spawned processes andthe calculated values.
Creation of Child Processes
Both of these scripts will create a new Python interpreter process andpass data to it using pickle.

See Also
The picklemodule is a serialization package used for serializingPython objects. For more info, check out Real Python’s “ThePython pickle Module: How to Persist Objects in Python.”

For POSIX systems, the creation of the subprocess by the multipro-

cessing module is equivalent to this command, where <i> is the filehandle descriptor, and <j> is the pipe handle descriptor:

232

https://realpython.com/python-pickle-module/
https://realpython.com/python-pickle-module/

Multiprocess Parallelism
$ python -c 'from multiprocessing.spawn import spawn_main; \

spawn_main(tracker_fd=<i>, pipe_handle=<j>)' --multiprocessing-fork

For Windows systems, the parent PID is used instead of a tracker filedescriptor as in this command, where<k> is the parent PID and <j> isthe pipe handle descriptor:
> python.exe -c 'from multiprocessing.spawn import spawn_main; \

spawn_main(parent_pid=<k>, pipe_handle=<j>)' --multiprocessing-fork

Piping Data to the Child Process
When the new child process has been instantiated on the operatingsystem, it will wait for initialization data from the parent process.
The parent process writes two objects to a pipe file stream. The pipefile stream is a special I/O streamused to send data between processeson the command line.
The first object written by the parent process is the preparationdata object. This object is a dictionary containing some informationabout the parent, such as the executing directory, the start method,any special command-line arguments, and the sys.path.
You can see an example of what is generated by running
multiprocessing.spawn.get_preparation_data(name):
>>> import multiprocessing.spawn

>>> import pprint

>>> pprint.pprint(multiprocessing.spawn.get_preparation_data("example"))

{'authkey': b'\x90\xaa_\x22[\x18\ri\xbcag]\x93\xfe\xf5\xe5@[wJ\x99p#\x00'

b'\xce\xd4)1j.\xc3c',

'dir': '/Users/anthonyshaw',

'log_to_stderr': False,

'name': 'example',

'orig_dir': '/Users/anthonyshaw',

'start_method': 'spawn',

'sys_argv': [''],

233

Multiprocess Parallelism
'sys_path': [

'/Users/anthonyshaw',

]}

The second object written is the BaseProcess child class instance. De-pending on how multiprocessing was called and which operating sys-tem is being used, one of the child classes of BaseProcess will be theinstance serialized.
Both the preparation data and process object are serialized using the
pickle module and written to the parent process’s pipe stream:

Parent Process

Worker Pool

Worker 0

Worker 1

Pipe

010101010100011100

(Waiting)

(Not Created)

pickle

write()

Preparation Data

Process Object

Note
The POSIX implementation of the child process spawningand serialization process is located in Lib multiprocessing

popen_spawn_posix.py.
The Windows implementation is located in Lib multiprocessing

popen_spawn_win32.py.

234

Multiprocess Parallelism
Executing the Child Process
The entry point of the child process, multiprocessing.spawn.spawn_main(),takes the argument pipe_handle and either parent_pid for Windows or
tracked_fd for POSIX:
def spawn_main(pipe_handle, parent_pid=None, tracker_fd=None):

'''

Run code specified by data received over pipe

'''

assert is_forking(sys.argv), "Not forking"

For Windows, the function will call the parent PID’s OpenProcess API.This is used to create a file handle, fd, of the parent process pipe:
if sys.platform == 'win32':

import msvcrt

import _winapi

if parent_pid is not None:

source_process = _winapi.OpenProcess(

_winapi.SYNCHRONIZE | _winapi.PROCESS_DUP_HANDLE,

False, parent_pid)

else:

source_process = None

new_handle = reduction.duplicate(pipe_handle,

source_process=source_process)

fd = msvcrt.open_osfhandle(new_handle, os.O_RDONLY)

parent_sentinel = source_process

For POSIX, the pipe_handle becomes the file descriptor, fd, and is du-plicated to become the parent_sentinel value:
else:

from . import resource_tracker

resource_tracker._resource_tracker._fd = tracker_fd

fd = pipe_handle

parent_sentinel = os.dup(pipe_handle)

Next, _main() is called with the parent pipe file handle, fd, and the par-
235

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocess

Multiprocess Parallelism
ent process sentinel, parent_sentinel. The return value of _main() be-comes the exit code for the process and the interpreter is terminated:

exitcode = _main(fd, parent_sentinel)

sys.exit(exitcode)

_main() is called with fd and parent_sentinel to check if the parent pro-cess has exited while executing the child process.
_main() deserializes the binary data on the fd byte stream. Remember,this is the pipe file handle. The deserialization uses the same picklelibrary that the parent process used:

Parent Process

Worker Pool

Worker 0

Worker 1

(Initializing)

(Not Created)

(Waiting)

Pipe 010101010100011100

read()

pickle Preparation Data

Process Object

The first value is a dict containing the preparation data. The secondvalue is an instance of SpawnProcess, which is then used as the instanceto call _bootstrap() upon:
def _main(fd, parent_sentinel):

with os.fdopen(fd, 'rb', closefd=True) as from_parent:

process.current_process()._inheriting = True

try:

236

Multiprocess Parallelism
preparation_data = reduction.pickle.load(from_parent)

prepare(preparation_data)

self = reduction.pickle.load(from_parent)

finally:

del process.current_process()._inheriting

return self._bootstrap(parent_sentinel)

_bootstrap() handles the instantiation of a BaseProcess instance fromthe deserialized data, and then the target function is called with thearguments and keyword arguments. This final task is completed by
BaseProcess.run():

def run(self):

'''

Method to be run in subprocess; can be overridden in subclass

'''

if self._target:

self._target(*self._args, **self._kwargs)

The exit code of self._bootstrap() is set as the exit code, and the childprocess is terminated.
This process allows the parent process to serialize the module and theexecutable function. It also allows the child process to deserialize thatinstance, execute the function with arguments, and return.
It does not allow data to be exchanged once the child process hasstarted. This task is done using the extension of the Queue and Pipeobjects.
If processes are being created in a pool, then the first process will beready and in a waiting state. The parent process repeats the processand sends the data to the next worker:

237

Multiprocess Parallelism

Parent Process

Worker Pool

Worker 0

Worker 1

Pipe

010101010100011100

(Ready)

(Waiting)

write()

pickle

Preparation Data

Process Object

The next worker receives the data and initializes its state and runs thetarget function:

Parent Process

Worker Pool

Worker 0

Worker 1

Pipe 010101010100011100

(Ready)

(Initializing)

(Waiting)

read()

pickle Preparation Data

Process Object

To share any data beyond initialization, queues and pipes must beused.
238

Multiprocess Parallelism
Exchanging Data with Queues and Pipes
In the previous section you saw how child processes are spawned andthen the pipe is used as a serialization stream to tell the child processwhat function to call with arguments.
There are two types of communication between processes, dependingon the nature of the task: queues and pipes. Before learning abouteach, you’ll take a quick look at how operating systems protect accessto resources using variables called semaphores.
Semaphores
Many of themechanisms inmultiprocessing use semaphores as a wayof signaling that resources are locked, are being waited on, or are notused. Operating systems use binary semaphores as a simple variabletype for locking resources like files, sockets, and others.
If one process is writing to a file or to a network socket, then you don’twant another process to suddenly start writing to the same file. Thedata would instantly become corrupt.
Instead, operating systems put a lock on resources by using asemaphore. Processes can also signal that they’re waiting for thatlock to be released so that when it is, they get a message to say it’sready and that they can start using it.
In the real world, semaphores are a signaling method that uses flagsto transmitmessages. So, you can imagine that the semaphore signalsfor a resource’s waiting, locked, and not-used states look like this:

239

Multiprocess Parallelism

-1 10

waiting locked

The semaphore API differs between operating systems, so there’s anabstraction class, multiprocessing.synchronize.Semaphore.
Semaphores are used by CPython for multiprocessing because they’reboth thread-safe and process-safe. The operating system handles anypotential deadlocks of reading or writing to the same semaphore.
The implementation of these semaphore API functions is located in aC extensionmodule Modules _multiprocessing semaphore.c. This exten-sionmodule offers a singlemethod for creating, locking, and releasingsemaphores along with other operations.
The call to the operating system is made through a series of macros,which are compiled into different implementations depending on theoperating system platform.
For Windows, the macros use the <winbase.h> API functions forsemaphores:
#define SEM_CREATE(name, val, max) CreateSemaphore(NULL, val, max, NULL)

#define SEM_CLOSE(sem) (CloseHandle(sem) ? 0 : -1)

#define SEM_GETVALUE(sem, pval) _GetSemaphoreValue(sem, pval)

#define SEM_UNLINK(name) 0

240

https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createsemaphorea
https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createsemaphorea

Multiprocess Parallelism
For POSIX, the macros use the <semaphore.h> API:
#define SEM_CREATE(name, val, max) sem_open(name, O_CREAT | O_EXCL, 0600,...

#define SEM_CLOSE(sem) sem_close(sem)

#define SEM_GETVALUE(sem, pval) sem_getvalue(sem, pval)

#define SEM_UNLINK(name) sem_unlink(name)

Queues
Queues are a great way of sending small data to and from multipleprocesses.
You can adapt the multiprocessing example from earlier to use a mul-

tiprocessing Manager() instance and create two queues:
1. inputs to hold the Fahrenheit input values
2. outputs to hold the resulting Celsius values
Change the pool size to 2 so that there are two workers:
cpython-book-samples 33 pool_queue_celsius.py

import multiprocessing as mp

def to_celsius(input: mp.Queue, output: mp.Queue):

f = input.get()

Time-consuming task ...

c = (f - 32) * (5/9)

output.put(c)

if __name__ == '__main__':

mp.set_start_method('spawn')

pool_manager = mp.Manager()

with mp.Pool(2) as pool:

inputs = pool_manager.Queue()

outputs = pool_manager.Queue()

input_values = list(range(110, 150, 10))

for i in input_values:

inputs.put(i)

241

http://man7.org/linux/man-pages/man3/sem_open.3.html

Multiprocess Parallelism
pool.apply(to_celsius, (inputs, outputs))

for f in input_values:

print(outputs.get(block=False))

This prints the returned list of tuples to the outputs queue:
$ python pool_queue_celsius.py

43.333333333333336

48.88888888888889

54.44444444444445

60.0

The parent process first puts the input values onto the inputs queue.The first worker then takes an item from the queue. Each time anitem is taken from the queue using .get(), a semaphore lock is usedon the queue object:

Parent Process

Worker Pool

Worker 0

Worker 1

[110, 120, 130, 140]

Input Queue

Output Queue

1
2
0

1
3
0

1
4
0

1
1
0

get()

While this worker is busy, the second worker then takes another valuefrom the queue:

Parent Process

Worker Pool

Worker 0

Worker 1

[110, 120, 130, 140]

Input Queue

Output Queue

1
3
0

1
4
0

1
2
0

(Busy)

1
1
0

get()

242

Multiprocess Parallelism
The first worker has completed its calculation and puts the resultingvalue onto the outputs queue:

Parent Process

Worker Pool

Worker 0

Worker 1

[110, 120, 130, 140]

Input Queue

Output Queue

1
3
0

1
4
0

(Busy)

4
3
.
3
3

1
2
0

put()

Two queues are in use to separate the input and output values. Even-tually, all input values have been processed, and the outputs queue isfull. The values are then printed by the parent process:

Parent Process

Worker Pool

Worker 0

Worker 1

[110, 120, 130, 140]

Input Queue

Output Queue

4
3
.
3
3

4
8
.
8
8

5
4
.
4
4

6
0
.
0
0

This example shows how a pool of workers could receive a queue ofsmall, discrete values and process them in parallel to send the result-ing data back to the host process.
In practice, converting Celsius to Fahrenheit is a small, trivial calcula-tion unsuited for parallel execution. If the worker process were doinga different, CPU-intensive calculation, then this would provide signif-icant performance improvement on a multi-CPU or multicore com-puter.
For streaming data instead of discrete queues, you can use pipes in-stead.

243

Multiprocess Parallelism
Pipes
Within the multiprocessing package, there is a type Pipe. Instantiatinga pipe returns two connections, a parent and a child. Both can sendand receive data:

Parent Process

Worker Pool

Worker 0

Worker 1

[110, 120, 130, 140]

Parent Pipe

Child Pipe

send()
010101010100011100

100101111001110011
recv()

(Busy)

(Busy)send()

recv()

In the queue example, a lock is implicitly placed on the queue whendata is sent and received. Pipes don’t have that behavior, so you haveto be careful that two processes don’t try to write to the same pipe atthe same time.
To adapt the last example to work with a pipe, it will require changing
pool.apply() to pool.apply_async(). This changes the execution of thenext process to a non-blocking operation:
cpython-book-samples 33 pool_pipe_celsius.py

import multiprocessing as mp

def to_celsius(child_pipe: mp.Pipe):

f = child_pipe.recv()

time-consuming task ...

c = (f - 32) * (5/9)

child_pipe.send(c)

if __name__ == '__main__':

mp.set_start_method('spawn')

pool_manager = mp.Manager()

244

Multiprocess Parallelism
with mp.Pool(2) as pool:

parent_pipe, child_pipe = mp.Pipe()

results = []

for input in range(110, 150, 10):

parent_pipe.send(input)

results.append(pool.apply_async(to_celsius, args=(child_pipe,)))

print("Got {0:}".format(parent_pipe.recv()))

parent_pipe.close()

child_pipe.close()

There’s a risk of two or more processes trying to read from the parentpipe at the same time in this line:
f = child_pipe.recv()

There’s also a risk of two or more processes trying to write to the childpipe at the same time:
child_pipe.send(c)

If this situation occurred, then data would be corrupted in either thereceive or send operations:

Parent Process

Worker Pool

Worker 0

Worker 1

[110, 120, 130, 140]

Parent Pipe

Child Pipe

010101010100011100

100101111011

(Busy)

(Busy)

send()send()

send()

recv()

To avoid this, you can implement a semaphore lock on the operatingsystem. Then all child processes will check with the lock before read-ing or writing to the same pipe.
There are two locks required, one on the receiving end of the parentpipe and another on the sending end of the child pipe:

245

Multiprocess Parallelism
cpython-book-samples 33 pool_pipe_locks_celsius.py

import multiprocessing as mp

def to_celsius(child_pipe: mp.Pipe, child_lock: mp.Lock):

child_lock.acquire(blocking=False)

try:

f = child_pipe.recv()

finally:

child_lock.release()

time-consuming task ... release lock before processing

c = (f - 32) * (5/9)

reacquire lock when done

child_lock.acquire(blocking=False)

try:

child_pipe.send(c)

finally:

child_lock.release()

if __name__ == '__main__':

mp.set_start_method('spawn')

pool_manager = mp.Manager()

with mp.Pool(2) as pool:

parent_pipe, child_pipe = mp.Pipe()

child_lock = pool_manager.Lock()

results = []

for i in range(110, 150, 10):

parent_pipe.send(i)

results.append(pool.apply_async(

to_celsius, args=(child_pipe, child_lock)))

print(parent_pipe.recv())

parent_pipe.close()

child_pipe.close()

Now the worker processes will wait to acquire a lock before receivingdata and wait again to acquire another lock to send data:

246

Multiprocess Parallelism

Parent Process

Worker Pool

Worker 0

Worker 1

[110, 120, 130, 140]

Parent Pipe

Child Pipe

010101010100011100

100101111001110011

(Waiting)

(Busy)

send()

send()
recv()

This example would suit situations where the data going over the pipeis large because the chance of a collision is higher.
Shared State Between Processes
So far, you’ve seen how data can be shared between child and parentprocesses.
Theremay be scenarios in which youwant to share data between childprocesses. In this situation, the multiprocessing package provides twosolutions:
1. A performant sharedmemoryAPI using sharedmemorymaps andshared C types
2. A flexible server process API supporting complex types via the Man-

ager class
Example Application
As a demonstration application, throughout the rest of this chapter,you’ll be refactoring a TCP port scanner for different concurrency andparallelism techniques.
Over a network, a host can be contacted on ports, which are numberedfrom 1 through 65535. Common services have standard ports. Forexample, HTTPoperates on port 80 andHTTPS operates on 443. TCPport scanners are a common network testing tool for checking thatpackets can be sent over a network.

247

https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing.sharedctypes
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.managers.SyncManager

Multiprocess Parallelism
This code example uses the Queue interface, a thread-safe queue im-plementation similar to the one you used in the multiprocessing ex-amples. The code also uses the socket package to try connecting to aremote port with a short one-second timeout.
check_port() will see if the host responds on the given port. If it does,then check_port() will add the port number to the results queue.
When the script is executed, check_port() is called in sequence for portnumbers 80 to 100. After this has completed, the results queue isemptied out, and the results are printed on the command line. So youcan compare the difference, it will print the execution time at the end:
cpython-book-samples 33 portscanner.py

from queue import Queue

import socket

import time

timeout = 1.0

def check_port(host: str, port: int, results: Queue):

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

sock.settimeout(timeout)

result = sock.connect_ex((host, port))

if result == 0:

results.put(port)

sock.close()

if __name__ == '__main__':

start = time.time()

host = "localhost" # Replace with a host you own

results = Queue()

for port in range(80, 100):

check_port(host, port, results)

while not results.empty():

print("Port {0} is open".format(results.get()))

print("Completed scan in {0} seconds".format(time.time() - start))

248

Multiprocess Parallelism
The execution will print out the open ports and the time taken:
$ python portscanner.py

Port 80 is open

Completed scan in 19.623435020446777 seconds

You can refactor this example to use multiprocessing. Swap the Queueinterface for multiprocessing.Queue and scan the ports together using apool executor:
cpython-book-samples 33 portscanner_mp_queue.py

import multiprocessing as mp

import time

import socket

timeout = 1

def check_port(host: str, port: int, results: mp.Queue):

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

sock.settimeout(timeout)

result = sock.connect_ex((host, port))

if result == 0:

results.put(port)

sock.close()

if __name__ == '__main__':

start = time.time()

processes = []

scan_range = range(80, 100)

host = "localhost" # Replace with a host you own

mp.set_start_method('spawn')

pool_manager = mp.Manager()

with mp.Pool(len(scan_range)) as pool:

outputs = pool_manager.Queue()

for port in scan_range:

processes.append(pool.apply_async(check_port,

(host, port, outputs)))

for process in processes:

249

Multithreading
process.get()

while not outputs.empty():

print("Port {0} is open".format(outputs.get()))

print("Completed scan in {0} seconds".format(time.time() - start))

As you might expect, this application is much faster because it testseach port in parallel:
$ python portscanner_mp_queue.py

Port 80 is open

Completed scan in 1.556523084640503 seconds

Multiprocessing Summary
Multiprocessing offers a scalable parallel execution API for Python.Data can be shared between processes, and CPU-intensive work canbe broken into parallel tasks to take advantage of multicore or multi-CPU computers.
Multiprocessing isn’t a suitable solution when the task to be com-pleted is I/O bound rather than CPU intensive. For example, if youspawned four worker processes to read and write to the same files,then one would do all the work, and the other three would wait forthe lock to be released.
Multiprocessing also isn’t suitable for short-lived tasks because of thetime and processing overhead required to start a new Python inter-preter.
In both of those scenarios, you main find one of the next approachesmore suitable.

Multithreading
CPython provides both a high-level and a low-level API for creating,spawning, and controlling threads from Python.
To understand Python threads, you should first understand how oper-

250

Multithreading
ating system threads work. There are two implementations of thread-ing in CPython:
1. pthreads: POSIX threads for Linux and macOS
2. nt threads: NT threads for Windows
In the section “The Structure of a Process,” you saw that a process hasthe following features:
• A stack of subroutines
• A heap of memory
• Access to рles, locks, and sockets on the operating system

The biggest limitation to scaling a single process is that the operatingsystem will have a single program counter for that executable.
To get around this, modern operating systems allow processes tosignal the operating system to branch their execution into multiplethreads.
Each thread will have its own program counter but use the same re-sources as the host process. Each thread also has its own call stack, soit can be executing a different function.
Because multiple threads can read and write to the same memoryspace, collisions can occur. The solution to this is thread safety,which involves making sure that memory space is locked by a singlethread before it’s accessed.
A single process with three threads would have this structure:

251

Multithreading

Heap

Python Objects

Process Memory

Process

CPython Runtime

Files

Locks

Sockets

Compiled Modules

Instructions

Stack

Program Counter

Thread 0

Stack

Program Counter

Thread 1

Stack

Program Counter

Thread 2

Stack

See Also
For an introductory tutorial on the Python threading API, checkout Real Python’s “Intro to Python Threading.”

The GIL
If you’re familiar with NT threads or POSIX threads from C, or ifyou’ve used another high-level language, then you may expect mul-tithreading to be parallel.
In CPython, the threads are based on the C APIs but are Pythonthreads. This means that every Python thread needs to executePython bytecode through the evaluation loop.
The Python evaluation loop is not thread-safe. There are many partsof the interpreter state, such as the garbage collector, that are sharedand global. To get around this, the CPython developers implemented

252

https://realpython.com/intro-to-python-threading/

Multithreading
a mega-lock called the global interpreter lock (GIL). Before anyopcode is executed in the frame-evaluation loop, the GIL is acquiredby the thread. Once the opcode has been executed, the GIL is released.
Although it provides global thread safety to every operation in Python,this approach has a major drawback. Any operations that take a longtime to execute will leave other threads waiting for the GIL to be re-leased before they can execute. This means that only one thread canexecute a Python bytecode operation at any given time.
To acquire the GIL, a call is made to take_gil(). To release it, a call ismade to drop_gil(). TheGIL acquisition ismadewithin the core frameevaluation loop, _PyEval_EvalFrameDefault().
To stop a single frame execution from permanently holding the GIL,the evaluation loop state stores a flag, gil_drop_request. After everybytecode operation has completed in a frame, this flag is checked, andthe GIL is temporarily released before being reacquired:

if (_Py_atomic_load_relaxed(&ceval->gil_drop_request)) {

/* Give another thread a chance */

if (_PyThreadState_Swap(&runtime->gilstate, NULL) != tstate) {

Py_FatalError("ceval: tstate mix-up");

}

drop_gil(ceval, tstate);

/* Other threads may run now */

take_gil(ceval, tstate);

/* Check if we should make a quick exit. */

exit_thread_if_finalizing(tstate);

if (_PyThreadState_Swap(&runtime->gilstate, tstate) != NULL) {

Py_FatalError("ceval: orphan tstate");

}

}

...

253

https://github.com/python/cpython/blob/v3.9.0/Python/ceval_gil.h#L211
https://github.com/python/cpython/blob/v3.9.0/Python/ceval_gil.h#L144

Multithreading
Despite the limitations that the GIL enforces on parallel execution, itmakes multithreading in Python very safe and ideal for running I/O-bound tasks concurrently.
Related Source Files
Here are the source files related to threading:
File Purpose
Include pythread.h PyThread API and definition
Lib threading.py High-level threading API and standardlibrary module
Modules _threadmodule.c Low-level threading API and standardlibrary module
Python thread.c C extension for the thread module
Python thread_nt.h Windows threading API
Python thread_pthread.h POSIX threading API
Python ceval_gil.h GIL lock implementation

Starting Threads in Python
To demonstrate the performance gains of having multithreaded code(in spite of the GIL), you can implement a simple network port scan-ner in Python.
You’ll start by cloning the previous script but changing the logic tospawn a thread for each port using threading.Thread(). This is similarto the multiprocessingAPI, where it takes a callable, target, and a tuple,
args.
Start the threads inside the loop, but don’t wait for them to complete.Instead, append the thread instance to a list, threads:

for port in range(80, 100):

t = Thread(target=check_port, args=(host, port, results))

t.start()

threads.append(t)

254

Multithreading
Once all threads have been created, iterate through the threads list andcall .join() to wait for them to complete:

for t in threads:

t.join()

Next, exhaust all the items in the results queue and print them to thescreen:
while not results.empty():

print("Port {0} is open".format(results.get()))

Here’s the entire script:
cpython-book-samples 33 portscanner_threads.py

from threading import Thread

from queue import Queue

import socket

import time

timeout = 1.0

def check_port(host: str, port: int, results: Queue):

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

sock.settimeout(timeout)

result = sock.connect_ex((host, port))

if result == 0:

results.put(port)

sock.close()

def main():

start = time.time()

host = "localhost" # Replace with a host you own

threads = []

results = Queue()

for port in range(80, 100):

t = Thread(target=check_port, args=(host, port, results))

t.start()

255

Multithreading
threads.append(t)

for t in threads:

t.join()

while not results.empty():

print("Port {0} is open".format(results.get()))

print("Completed scan in {0} seconds".format(time.time() - start))

if __name__ == '__main__':

main()

When you call this threaded script at the command line, it will executemore than ten times as fast as the single-threaded example:
$ python portscanner_threads.py

Port 80 is open

Completed scan in 1.0101029872894287 seconds

This also runs 50 to 60 percent faster than the multiprocessing ex-ample. Remember that multiprocessing has an overhead for startingthe new processes. Threading does have an overhead, but it’s muchsmaller.
You may be wondering, If the GIL means that only a single operationcan execute at once, then why is this faster?
Here’s the statement that takes 1–1000 ms:

result = sock.connect_ex((host, port))

In the C extension module, Modules socketmodule.c, this function im-plements the connection:
Modules socketmodule.c line 3245
static int

internal_connect(PySocketSockObject *s, struct sockaddr *addr, int addrlen,

int raise)

{

int res, err, wait_connect;

256

Multithreading

Py_BEGIN_ALLOW_THREADS

res = connect(s->sock_fd, addr, addrlen);

Py_END_ALLOW_THREADS

Surrounding the system connect() call are the Py_BEGIN_ALLOW_THREADSand Py_END_ALLOW_THREADSmacros. These macros are defined as followsin Include ceval.h:
#define Py_BEGIN_ALLOW_THREADS { \

PyThreadState *_save; \

_save = PyEval_SaveThread();

#define Py_BLOCK_THREADS PyEval_RestoreThread(_save);

#define Py_UNBLOCK_THREADS _save = PyEval_SaveThread();

#define Py_END_ALLOW_THREADS PyEval_RestoreThread(_save); \

}

So, when Py_BEGIN_ALLOW_THREADS is called, it calls PyEval_SaveThread().This function changes the thread state to NULL and drops the GIL:
Python ceval.c line 444
PyThreadState *

PyEval_SaveThread(void)

{

PyThreadState *tstate = PyThreadState_Swap(NULL);

if (tstate == NULL)

Py_FatalError("PyEval_SaveThread: NULL tstate");

assert(gil_created());

drop_gil(tstate);

return tstate;

}

Because the GIL is dropped, any other executing thread can continue.This thread will sit and wait for the system call without blocking theevaluation loop.
Once connect() has succeeded or timed out, the Py_END_ALLOW_THREADSmacro runs PyEval_RestoreThread() with the original thread state. Thethread state is recovered and the GIL is retaken. The call to take_gil()

257

https://github.com/python/cpython/blob/v3.9.0/Python/ceval.c#L444
https://github.com/python/cpython/blob/v3.9.0/Python/ceval.c#L458

Multithreading
is a blocking call, waiting on a semaphore:
Python ceval.c line 458
void

PyEval_RestoreThread(PyThreadState *tstate)

{

if (tstate == NULL)

Py_FatalError("PyEval_RestoreThread: NULL tstate");

assert(gil_created());

int err = errno;

take_gil(tstate);

/* _Py_Finalizing is protected by the GIL */

if (_Py_IsFinalizing() && !_Py_CURRENTLY_FINALIZING(tstate)) {

drop_gil(tstate);

PyThread_exit_thread();

Py_UNREACHABLE();

}

errno = err;

PyThreadState_Swap(tstate);

}

This isn’t the only system call wrapped by the non-GIL-blocking pair
Py_BEGIN_ALLOW_THREADS and Py_END_ALLOW_THREADS. There are over threehundred uses of it in the standard library, including:
• Making HTTP requests
• Interacting with local hardware
• Encrypting data
• Reading and writing files

258

Multithreading
Thread State
CPython provides its own implementation of threadmanagement. Be-cause threads need to execute Python bytecode in the evaluation loop,running a thread in CPython isn’t as simple as spawning an operatingsystem thread.
Python threads are called PyThread. You covered them briefly in the“CPython Evaluation Loop” chapter.
Python threads execute code objects and are spawned by the inter-preter.
To recap:
• CPython has a single runtime, which has its own runtime state.
• CPython can have one or many interpreters.
• An interpreter has a state called the interpreter state.
• An interpreter will take a code object and convert it into a seriesof frame objects.
• An interpreter has at least one thread, and each thread has athread state.
• Frame objects are executed in a stack called the frame stack.
• CPython references variables in a value stack.
• The interpreter state includes a linked list of its threads.

A single-threaded, single-interpreter runtime would have the follow-ing states:

259

Multithreading

Interpreter State

Runtime

Interpreter

Runtime State

GIL

Boot
State

Heap

Files

Locks

SocketsModules

Core
Instructions

Stack

Program Counter

Thread 0 (Primary)

PyThread State

ID

Frame

Exceptions

Current

Next Thread

Previous

...

The thread state type, PyThreadState, has over thirty properties, includ-ing:
• A unique identifier
• A linked list to the other thread states
• The interpreter state it was spawned by
• The currently executing frame
• The current recursion depth
• Optional tracing functions
• The exception currently being handled
• Any async exception currently being handled
• A stack of exceptions raised

260

Multithreading
• A GIL counter
• Async generator counters

Like the multiprocessing preparation data, threads have a bootstate. However, threads share the same memory space, so there’s noneed to serialize data and send it over a file stream.
Threads are instantiated with the threading.Thread type. This is a high-level module that abstracts the PyThread type. PyThread instances aremanaged by the C extension module _thread.
The _thread module has the entry point for executing a new thread,
thread_PyThread_start_new_thread(). start_new_thread() is a method onan instance of the type Thread.
New threads are instantiated in this sequence:
1. The bootstate is created, linking to the target, with arguments argsand kwargs.
2. The bootstate is linked to the interpreter state.
3. A new PyThreadState is created, linking to the current interpreter.
4. TheGIL is enabled, if not already, with a call to PyEval_InitThreads().
5. The new thread is started on the operating system–specific imple-mentation of PyThread_start_new_thread

261

https://github.com/python/cpython/blob/v3.9.0/Modules/_threadmodule.c#L1063
https://github.com/python/cpython/blob/v3.9.0/Python/ceval.c#L310

Multithreading

Interpreter State

Runtime

Interpreter

Runtime State

GIL

Stack

Program Counter

Thread 1 (Init)

PyThread State

ID

Frame

Exceptions

Current

Next Thread

Previous

...

Boot
State

Heap

Files

Locks

SocketsModules

Core
Instructions

Stack

Program Counter

Thread 0 (Primary)

PyThread State

ID

Frame

Exceptions

Current

Next Thread

Previous

...

The thread bootstate has the following properties:
Field Type Purpose
interp PyInterpreterState* Link to the interpreter managing this thread
func PyObject *(callable) Link to the callable to execute upon runningthe thread
args PyObject * (tuple) Arguments to call func with
keyw PyObject * (dict) Keyword arguments to call func with
tstate PyThreadState * Thread state for the new thread

With the thread bootstate, there are two implementations of PyThread:
1. POSIX threads for Linux and macOS
2. NT threads for Windows

262

Multithreading
Both of these implementations create the operating system thread, setits attribute, and then execute the callback t_bootstrap() from withinthe new thread.
This function is called with the single argument boot_raw, assigned tothe bootstate constructed in thread_PyThread_start_new_thread().
The t_bootstrap() function is the interface between a low-level threadand the Python runtime. The bootstrap will initialize the thread, thenexecute the target callable using PyObject_Call().
Once the callable target has been executed, the thread will exit:

PyThread
OS Specific
Thread Start

Inside Thread

t_bootstrap PyObject_Call target

POSIX Threads
POSIX threads, named pthreads, have an implementation in Python

thread_pthread.h. This implementation abstracts the <pthread.h> C APIwith some additional safeguards and optimizations.
Threads can have a configured stack size. Python has its own stackframe construct, as you explored in the chapter on the evaluation loop.If there’s an issue causing a recursive loop, and the frame executionhits the depth limit, then Python will raise a RecursionError, which youcan handle with a try...except block in Python code.
Because pthreads have their own stack size, the max depth of Pythonand the stack size of the pthreadmight conflict. If the thread stack sizeis smaller than themax frame depth in Python, then the entire Pythonprocess will crash before a RecursionError is raised.
The max depth in Python can be configured at runtime using
sys.setrecursionlimit(). To avoid crashes, the CPython pthread imple-

263

https://github.com/python/cpython/blob/v3.9.0/Modules/_threadmodule.c#L1029
https://github.com/python/cpython/blob/v3.9.0/Modules/_threadmodule.c#L1063
https://github.com/python/cpython/blob/v3.9.0/Modules/_threadmodule.c#L1029
https://github.com/python/cpython/blob/v3.9.0/Objects/call.c#L289
https://docs.python.org/3/library/sys.html#sys.setrecursionlimit

Multithreading
mentation sets the stack size to the pythread_stacksize value of theinterpreter state.
Most modern POSIX-compliant operating systems support systemscheduling of pthreads. If PTHREAD_SYSTEM_SCHED_SUPPORTED is definedin pyconfig.h, then the pthread is set to PTHREAD_SCOPE_SYSTEM, meaningthat the priority of the thread on the operating system scheduler isdecided against the other threads on the system, not just the oneswithin the Python process.
Once the thread properties have been configured, the thread is createdusing the pthread_create() API. This runs the bootstrap function frominside the new thread.
Lastly, the thread handle, pthread_t, is cast into an unsigned long andreturned to become the thread ID.
Windows Threads
Windows threads implemented in Python thread_nt.h follow a similarbut simpler pattern.
The stack size of the new thread is configured to the interpreter
pythread_stacksize value (if set). The thread is then created using the
_beginthreadex() Windows API using the bootstrap function as thecallback. Finally, the thread ID is returned.
Multithreading Summary
This was not an exhaustive tutorial on Python threads. Python’sthread implementation is extensive and offers many mechanisms forsharing data between threads, locking objects, and resources.
Threads are a great, efficient way of improving the runtime of yourPython applications when they’re I/O bound. In this section, you’veseen what the GIL is, why it exists, and which parts of the standardlibrary may be exempt from its constraints.

264

https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/beginthread-beginthreadex?view=vs-2019

Asynchronous Programming
Asynchronous Programming
Python offers many ways of accomplishing concurrent programmingwithout using threads or multiprocessing. These features have beenadded, expanded, and often replaced with better alternatives.
For the target version of this book, 3.9, the @coroutine decorator is dep-recated.
The following systems are still available:
• Creating futures from async keywords
• Running coroutines using the yield from keywords

Generators
Python generators are functions that return a yield statement and canbe called continually to generate further values.
Generators are often used as a more memory-efficient way of loopingthrough values in a large block of data, like a file, a database, or overa network. Generator objects are returned in place of a value when
yield is used instead of return. The generator object is created fromthe yield statement and returned to the caller.
This simple generator function will yield the letters a through z:
cpython-book-samples 33 letter_generator.py

def letters():

i = 97 # Letter 'a' in ASCII

end = 97 + 26 # Letter 'z' in ASCII

while i < end:

yield chr(i)

i += 1

If you call letters(), then it won’t return a value. Instead, it will returna generator object:

265

Generators
>>> from letter_generator import letters

>>> letters()

<generator object letters at 0x1004d39b0>

Built into the syntax of the for statement is the ability to iteratethrough a generator object until it stops yielding values:
>>> for letter in letters():

... print(letter)

a

b

c

d

...

This implementation uses the iterator protocol. Objects that have a
__next__() method can be looped over by for and while loops or usingthe built-in next().
All container types (like lists, sets, and tuples) in Python implementthe iterator protocol. Generators are unique because the implemen-tation of the __next__()method recalls the generator function from itslast state.
Generators aren’t executed in the background—they’re paused. Whenyou request another value, they resume execution. Within the gen-erator object structure is the frame object as it was at the last yieldstatement.
Generator Structure
Generator objects are created by a template macro, _PyGenOb-

ject_HEAD(prefix).
This macro is used by the following types and prefixes:
• Generator objects: PyGenObject (gi_)
• Coroutine objects: PyCoroObject (cr_)

266

Generators
• Async generator objects: PyAsyncGenObject (ag_)

You’ll cover coroutine and async generator objects later in this chap-ter.
The PyGenObject type has these base properties:
Field Type Purpose
[x]_code PyObject *(PyCodeObject*) Compiled function that yields thegenerator
[x]_exc_state _PyErr_StackItem Exception data if the generator call raisesan exception
[x]_frame PyFrameObject* Current frame object for the generator
[x]_name PyObject * (str) Name of the generator
[x]_qualname PyObject * (str) Qualified name of the generator
[x]_running char Set to 0 or 1 if the generator is currentlyrunning
[x]_weakreflist PyObject * (list) List of weak references to objects insidethe generator function

On top of the base properties, the PyCoroObject type has this property:
Field Type Purpose
cr_origin PyObject * (tuple) Tuple containing the originating frame andcaller

On top of the base properties, the PyAsyncGenObject type has these prop-erties:
Field Type Purpose
ag_closed int Flag to mark that the generator is closed
ag_finalizer PyObject * Link to the finalizer method
ag_hooks_inited int Flag to mark that the hooks have beeninitialized
ag_running_async int Flag to mark that the generator is running

267

Generators
Related Source Files
Here are the source files related to generators:
File Purpose
Include genobject.h Generator API and PyGenObject definition
Objects genobject.c Generator Object implementation

Creating Generators
When a function containing a yield statement is compiled, the result-ing code object has an additional flag, CO_GENERATOR.
In the “Constructing FrameObjects” section of the chapter on the eval-uation loop, you explored how a compiled code object is convertedinto a frame object when it’s executed. In this process, there’s a spe-cial case for generators, coroutines, and async generators.
_PyEval_EvalCode() checks the code object for the CO_GENERATOR,
CO_COROUTINE, and CO_ASYNC_GENERATOR flags. If it finds any of these flags,then instead of evaluating the code object inline, the function createsa frame and turns it into a generator, coroutine, or async generatorobject using PyGen_NewWithQualName(), PyCoro_New(), or PyAsyncGen_New(),respectively:
PyObject *

_PyEval_EvalCode(PyObject *_co, PyObject *globals, PyObject *locals, ...

...

/* Handle generator/coroutine/asynchronous generator */

if (co->co_flags & (CO_GENERATOR | CO_COROUTINE | CO_ASYNC_GENERATOR)) {

PyObject *gen;

PyObject *coro_wrapper = tstate->coroutine_wrapper;

int is_coro = co->co_flags & CO_COROUTINE;

...

/* Create a new generator that owns the ready-to-run frame

* and return that as the value. */

if (is_coro) {

268

https://github.com/python/cpython/blob/v3.9.0/Python/ceval.c#L4046
https://github.com/python/cpython/blob/v3.9.0/Objects/genobject.c#L814
https://github.com/python/cpython/blob/v3.9.0/Objects/genobject.c#L1139
https://github.com/python/cpython/blob/v3.9.0/Objects/genobject.c#L1418

Generators
>>> gen = PyCoro_New(f, name, qualname);

} else if (co->co_flags & CO_ASYNC_GENERATOR) {

>>> gen = PyAsyncGen_New(f, name, qualname);

} else {

>>> gen = PyGen_NewWithQualName(f, name, qualname);

}

...

return gen;

}

...

The generator factory, PyGen_NewWithQualName(), takes the frame andcompletes some steps to populate the generator object fields:
1. Sets the gi_code property to the compiled code object
2. Sets the generator to not running (gi_running = 0)
3. Sets the exception and weakref lists to NULL

You can also see that gi_code is the compiled code object for the gen-erator function by importing the dis module and disassembling thebytecode inside:
>>> from letter_generator import letters

>>> gen = letters()

>>> import dis

>>> dis.disco(gen.gi_code)

2 0 LOAD_CONST 1 (97)

2 STORE_FAST 0 (i)

...

In the chapter on the evaluation loop, you explored the frame objecttype. Frame objects contain locals and globals, the last executed in-structions, and the code to be executed.
The built-in behavior and state of frame objects allow generators topause and resume on demand.

269

https://github.com/python/cpython/blob/v3.9.0/Objects/genobject.c#L814

Generators
Executing Generators
Whenever __next__() is called on a generator object, gen_iternext()is called with the generator instance, which immediately calls
gen_send_ex() inside Objects genobject.c.
gen_send_ex() is the function that converts a generator object into thenext yielded result. You’ll see many similarities to the way frames areconstructed from a code object as these functions have similar tasks.
gen_send_ex() is shared with generators, coroutines, and async gener-ators and has the following steps:
1. The current thread state is fetched.
2. The frame object from the generator object is fetched.
3. If the generator is running when __next__() is called, then raise a

ValueError.
4. If the frame inside the generator is at the top of the stack:• If this is a coroutine, and the coroutine is not already markedas closing, then a RuntimeError is raised.

• If this is an async generator, then a StopAsyncIteration is raised.
• If this is a standard generator, then a StopIteration is raised.

5. If the last instruction in the frame (f->f_lasti) is still -1 because it’sjust been started, and if this is a coroutine or an async generator,then any value other than None can’t be passed as an argument, andan exception is raised.
6. Else, this is the first time it’s being called, and arguments are al-lowed. The value of the argument is pushed to the frame’s valuestack.
7. The f_back field of the frame is the caller to which return values aresent, so this is set to the current frame in the thread. This meansthat the return value is sent to the caller, not to the creator of thegenerator.
8. The generator is marked as running.

270

https://github.com/python/cpython/blob/v3.9.0/Objects/genobject.c#L544
https://github.com/python/cpython/blob/v3.9.0/Objects/genobject.c#L140
https://github.com/python/cpython/blob/v3.9.0/Objects/genobject.c#L140
https://github.com/python/cpython/blob/v3.9.0/Objects/genobject.c#L140

Generators
9. The last exception in the generator’s exception info is copied fromthe last exception in the thread state.
10. The thread state exception info is set to the address of the gener-ator’s exception info. This means that if the caller enters a break-point around the execution of a generator, then the stack trace goesthrough the generator and the offending code is clear.
11. The frame inside the generator is executed within the Python ce-

val.c main execution loop, and the value is returned.
12. The thread state last exception info is reset to the value before theframe was called.
13. The generator is marked as not running.
14. The following cases then match the return value and any excep-tions thrown by the call to the generator. Remember that gener-ators should raise a StopIteration when they’re exhausted, eithermanually or by not yielding a value:• If no result was returned from the frame, then a StopIterationis raised for generators and a StopAsyncIteration is raised forasync generators.

• If a StopIterationwas explicitly raised, but this is a coroutine oran async generator, then a RuntimeError is raised as this is notallowed.
• If a StopAsyncIterationwas explicitly raised and this is an asyncgenerator, then a RuntimeError is raised as this is not allowed.

15. Lastly, the result is returned back to the caller of __next__().
Bringing this all together, you can see how the generator expressionis a powerful syntax in which a single keyword, yield, triggers a wholeflow to create a unique object, copy a compiled code object as a prop-erty, set a frame, and store a list of variables in the local scope.

271

Coroutines
Coroutines
Generators have amajor limitation: they can yield values only to theirimmediate caller.
An additional syntax, the yield from statement, was added to Pythonto overcome this limitation. Using this syntax, you can refactor gen-erators into utility functions and then yield from them.
For example, the letter generator can be refactored into a utility func-tion in which the starting letter is an argument. Using yield from, youcan choose which generator object to return:
cpython-book-samples 33 letter_coroutines.py

def gen_letters(start, x):

i = start

end = start + x

while i < end:

yield chr(i)

i += 1

def letters(upper):

if upper:

yield from gen_letters(65, 26) # A--Z

else:

yield from gen_letters(97, 26) # a--z

for letter in letters(False):

Lowercase a--z

print(letter)

for letter in letters(True):

Uppercase A--Z

print(letter)

Generators are also great for lazy sequences, in which they can becalled multiple times.

272

Coroutines
Building on the behaviors of generators, such as being able to pauseand resume execution, the concept of a coroutine was iterated inPython over multiple APIs.
Generators are a limited form of coroutine because you can send datato them using the .send()method. It’s possible to send messages bidi-rectionally between the caller and the target. Coroutines also storethe caller in the cr_origin attribute.
Coroutines were initially available via a decorator, but this has sincebeen deprecated in favor of “native” coroutines using the keywords
async and await.
To mark that a function returns a coroutine, you must precede thefunction with the async keyword. The async keyword makes it explicitthat, unlike generators, this function returns a coroutine and not avalue.
To create a coroutine, you define a functionwith the keyword async def.In this example, you add a timer using the asyncio.sleep() functionand return a wake-up string:
>>> import asyncio

>>> async def sleepy_alarm(time):

... await asyncio.sleep(time)

... return "wake up!"

>>> alarm = sleepy_alarm(10)

>>> alarm

<coroutine object sleepy_alarm at 0x1041de340>

When you call the function, it returns a coroutine object.
There aremany ways to execute a coroutine. The easiest is using asyn-

cio.run(coro). Run asyncio.run()with your coroutine object, then after
10 seconds it will sound the alarm:

273

Coroutines
>>> asyncio.run(alarm)

'wake up'

The benefit of coroutines is that you can run them concurrently. Be-cause the coroutine object is a variable that you can pass to a function,these objects can be linked together and chained, or created in a se-quence.
For example, if you wanted to have ten alarms with different inter-vals and start them all at the same time, then you could convert thesecoroutine objects into tasks.
The task API is used to schedule and execute multiple coroutines con-currently. Before tasks are scheduled, an event loop must be run-ning. The job of the event loop is to schedule concurrent tasks andconnect events such as completion, cancellation, and exceptions withcallbacks.
When you called asyncio.run() (in Lib asyncio runners.py), the func-tion performed these tasks for you:
1. Start a new event loop.
2. Wrap the coroutine object in a task.
3. Set a callback on the completion of the task.
4. Loop over the task until it completes.
5. Return the result.
Related Source Files
Here’s the source file related to coroutines:
File Purpose
Lib asyncio Python standard library implementation forasyncio

274

Coroutines
Event Loops
Event loops are the glue that holds async code together. Written inpure Python, event loops are objects containing tasks.
Any of the tasks in the loop can have callbacks. The loop will run thecallbacks if a task completes or fails:
loop = asyncio.new_event_loop()

Inside a loop is a sequence of tasks, represented by the type asyn-

cio.Task. Tasks are scheduled onto a loop, and then once the loop isrunning, it loops over all the tasks until they’re complete.
You can convert the single timer into a task loop:
cpython-book-samples 33 sleepy_alarm.py

import asyncio

async def sleepy_alarm(person, time):

await asyncio.sleep(time)

print(f"{person} -- wake up!")

async def wake_up_gang():

tasks = [

asyncio.create_task(sleepy_alarm("Bob", 3), name="wake up Bob"),

asyncio.create_task(sleepy_alarm("Yudi", 4), name="wake up Yudi"),

asyncio.create_task(sleepy_alarm("Doris", 2), name="wake up Doris"),

asyncio.create_task(sleepy_alarm("Kim", 5), name="wake up Kim")

]

await asyncio.gather(*tasks)

asyncio.run(wake_up_gang())

275

Coroutines
This will print the following output:
Doris -- wake up!

Bob -- wake up!

Yudi -- wake up!

Kim -- wake up!

The event loop will run over each of the coroutines to see if they’recompleted. Similarly to how the yield keyword can return multiplevalues from the same frame, the await keyword can return multiplestates.
The event loop will execute the sleepy_alarm() coroutine objects againand again until the await asyncio.sleep() yields a completed result and
print() is able to execute.
For this to work, you need to use asyncio.sleep() instead of the block-ing (and not async-aware) time.sleep().
Example
You can convert the multithreaded port scanner example to asynciowith these steps:
• Change check_port() to use a socket connection from

asyncio.open_connection(), which creates a future instead of an im-mediate connection.
• Use the socket connection future in a timer event with asyn-

cio.wait_for().
• Append the port to the results list if successful.
• Add a new function, scan(), to create the check_port() coroutinesfor each port and add them to a tasks list.
• Merge all the tasks into a new coroutine using asyncio.gather().
• Run the scan using asyncio.run().

Here’s the code:

276

Coroutines
cpython-book-samples 33 portscanner_async.py

import time

import asyncio

timeout = 1.0

async def check_port(host: str, port: int, results: list):

try:

future = asyncio.open_connection(host=host, port=port)

r, w = await asyncio.wait_for(future, timeout=timeout)

results.append(port)

w.close()

except OSError: # pass on port closure

pass

except asyncio.TimeoutError:

pass # Port is closed, skip and continue

async def scan(start, end, host):

tasks = []

results = []

for port in range(start, end):

tasks.append(check_port(host, port, results))

await asyncio.gather(*tasks)

return results

if __name__ == '__main__':

start = time.time()

host = "localhost" # Pick a host you own

results = asyncio.run(scan(80, 100, host))

for result in results:

print("Port {0} is open".format(result))

print("Completed scan in {0} seconds".format(time.time() - start))

This scan completes in just over one second:
$ python portscanner_async.py

Port 80 is open

Completed scan in 1.0058400630950928 seconds

277

Asynchronous Generators
Asynchronous Generators
The concepts you’ve learned so far, generators and coroutines, can becombined into asynchronous generators.
If a function is declared with the async keyword and contains a yieldstatement, then it’s converted into an async generator object whencalled.
Like generators, async generatorsmust be executed by something thatunderstands the protocol. In place of __next__(), async generatorshave an __anext__() method.
A regular for loop wouldn’t understand an async generator, so insteadyou use the async for statement.
You can refactor check_port() into an async generator that yields thenext open port until it hits the last port or finds a specified number ofopen ports:
async def check_ports(host: str, start: int, end: int, max=10):

found = 0

for port in range(start, end):

try:

future = asyncio.open_connection(host=host, port=port)

r, w = await asyncio.wait_for(future, timeout=timeout)

yield port

found += 1

w.close()

if found >= max:

return

except asyncio.TimeoutError:

pass # Closed

278

Subinterpreters
To execute this, use the async for statement:
async def scan(start, end, host):

results = []

async for port in check_ports(host, start, end, max=1):

results.append(port)

return results

See cpython-book-samples 33 portscanner_async_generators.py for thefull example.

Subinterpreters
So far, you’ve covered:
• Parallel execution with multiprocessing
• Concurrent execution with threads and async

The downsides of multiprocessing are that interprocess communica-tion using pipes and queues is slower than with shared memory, andthe overhead to start a new process is significant.
Threading and async have a small overhead but don’t offer truly par-allel execution because of the thread-safety guarantees in the GIL.
A fourth option is subinterpreters, which have a smaller overhead than
multiprocessing and allow a GIL for each subinterpreter. After all, it’sthe global interpreter lock.
Within the CPython runtime, there’s always one interpreter. The in-terpreter holds the interpreter state, andwithin an interpreter you canhave one or many Python threads. The interpreter is the containerfor the evaluation loop. It also manages its own memory, referencecounter, and garbage collection.
CPython has low-level C APIs for creating interpreters, like
Py_NewInterpreter():

279

https://github.com/python/cpython/blob/v3.9.0/Python/pylifecycle.c#L1633

Subinterpreters

RuntimeRuntime State

Interpreter State

Interpreter 0
(primary)

GIL

Thread 0
(Primary)

Threads 1-n

Heap

Files

Locks

SocketsModules

Core
Instructions

Interpreter State

Interpreter 1

GIL

Thread 0
(Primary)

Threads 1-n

Heap

Files

Locks

SocketsModules

Core
Instructions

280

Subinterpreters
Note
The subinterpreters module is still experimental in 3.9, so theAPI is subject to change and the implementation is still buggy.

Because the interpreter state contains the memory allocationarena—a collection of all pointers to Python objects (local andglobal)—subinterpreters can’t access the global variables of otherinterpreters.
Similarly to multiprocessing, to share objects between interpreters,you must serialize them or use ctypes and use a form of IPC (network,disk, or shared memory).
Related Source Files
Here are the source files related to subinterpreters:
File Purpose
Lib _xxsubinterpreters.c C implementation of the subinterpretersmodule
Python pylifecycle.c C implementation of the interpretermanagement API

Example
In the final example application, the actual connection code has to becaptured in a string. In 3.9, subinterpreters can be executed only witha string of code.
To start each of the subinterpreters, a list of threads is started with acallback to a function, run().
This function will:
• Create a communication channel
• Start a new subinterpreter

281

Subinterpreters
• Send the subinterpreter the code to execute
• Receive data over the communication channel
• If the port connection succeeds, add it to the thread-safe queue

cpython-book-samples 33 portscanner_subinterpreters.py

import time

import _xxsubinterpreters as subinterpreters

from threading import Thread

import textwrap as tw

from queue import Queue

timeout = 1 # In seconds

def run(host: str, port: int, results: Queue):

Create a communication channel

channel_id = subinterpreters.channel_create()

interpid = subinterpreters.create()

subinterpreters.run_string(

interpid,

tw.dedent(

"""

import socket; import _xxsubinterpreters as subinterpreters

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

sock.settimeout(timeout)

result = sock.connect_ex((host, port))

subinterpreters.channel_send(channel_id, result)

sock.close()

"""),

shared=dict(

channel_id=channel_id,

host=host,

port=port,

timeout=timeout

))

output = subinterpreters.channel_recv(channel_id)

subinterpreters.channel_release(channel_id)

if output == 0:

282

Conclusion
results.put(port)

if __name__ == '__main__':

start = time.time()

host = "127.0.0.1" # Pick a host you own

threads = []

results = Queue()

for port in range(80, 100):

t = Thread(target=run, args=(host, port, results))

t.start()

threads.append(t)

for t in threads:

t.join()

while not results.empty():

print("Port {0} is open".format(results.get()))

print("Completed scan in {0} seconds".format(time.time() - start))

Because of the reduced overheads compared with multiprocessing,this example should execute 30 to 40 percent faster and with fewermemory resources:
$ python portscanner_subinterpreters.py

Port 80 is open

Completed scan in 1.3474230766296387 seconds

Conclusion
Congratulations on getting through the biggest chapter in the book!You’ve covered a lot of ground. Let’s recap some of the concepts andtheir applications.
For truly parallel execution, you needmultiple CPUs or cores. Youalso need to use either the multiprocessing or the subinterpreters pack-age so that the Python interpreter can be executed in parallel.

283

Conclusion
Remember that startup time is significant, and each interpreter has abig memory overhead. If the tasks that you want to execute are short-lived, then use a pool of workers and a queue of tasks.
If you have multiple I/O-bound tasks and want them to run concur-rently, then you should use multithreading or coroutines with the
asyncio package.
All four of these approaches require an understanding of how to safelyand efficiently transfer data between processes or threads. The bestway to reinforcewhat you’ve learned is to look at an application you’vewritten and see how it can be refactored to leverage these techniques.

284

Objects and Types
CPython comes with a collection of basic types like strings, lists, tu-ples, dictionaries, and objects. All these types are built in. You don’tneed to import any libraries, not even from the standard library.
For example, to create a new list, you can call list():
lst = list()

Or you can use square brackets:
lst = []

Strings can be instantiated from a string literal by using either doubleor single quotes. In the chapter “The Python Language and Gram-mar,” you explored the grammar definitions that cause the compilerto interpret double quotes as a string literal.
All types in Python inherit from object, a built-in base type. Evenstrings, tuples, and lists inherit from object.
In Objects object.c, the base implementation of the object type is writ-ten in pure C code. There are some concrete implementations of basiclogic, like shallow comparisons.
You can think of a Python object as consisting of two things:
1. The core data model, with pointers to compiled functions
2. A dictionary with any custom attributes and methods

285

Examples in This Chapter
Much of the base object API is declared in Objects object.c, like theimplementation of the built-in repr() function, PyObject_Repr. You’llalso find PyObject_Hash() and other APIs.
All these functions canbe overridden in a customobject by implement-ing dunder methods on a Python object:
class MyObject(object):

def __init__(self, id, name):

self.id = id

self.name = name

def __repr__(self):

return "<{0} id={1}>".format(self.name, self.id)

Together, these built-in functions are called the Python data model.Not all methods in a Python object are part of the data model, whichallows Python objects to contain class or instance attributes as well asmethods.
See Also
One of the great resources for the Python data model is FluentPython, 2nd Edition, by Luciano Ramalho.

Examples in This Chapter
Throughout this chapter, each type explanation will include an exam-ple. In the example, you’ll implement the almost-equal operator thatyou built in earlier chapters.
If you haven’t yet implemented the changes detailed in the chapterson the CPython grammar and compiler, then be sure to go back anddo that before proceeding. They’re required for implementing the ex-amples below.

286

https://github.com/python/cpython/blob/v3.9.0/Objects/object.c#L389
https://github.com/python/cpython/blob/v3.9.0/Objects/object.c#L765
https://docs.python.org/3/reference/datamodel.html
https://www.oreilly.com/library/view/fluent-python-2nd/9781492056348/
https://www.oreilly.com/library/view/fluent-python-2nd/9781492056348/

Built-in Types
Built-in Types
The core data model is defined in the PyTypeObject, and the functionsare defined in Objects typeobject.c.
Each of the source files has a corresponding header in Include. Forexample, Objects/rangeobject.c has a header file Include rangeobject.h.
Here’s a list of the source files and their corresponding types:
Source File Type
Objects object.c Built-in methods and base object
Objects boolobject.c bool type
Objects bytearrayobject.c byte[] type
Objects bytesobject.c bytes type
Objects cellobject.c cell type
Objects classobject.c Abstract class type used inmeta-programming
Objects codeobject.c Built-in code object type
Objects complexobject.c Complex numeric type
Objects iterobject.c Iterator type
Objects listobject.c list type
Objects longobject.c long numeric type
Objects memoryobject.c Base memory type
Objects methodobject.c Class method type
Objects moduleobject.c Module type
Objects namespaceobject.c Namespace type
Objects odictobject.c Ordered dictionary type
Objects rangeobject.c Range generator type
Objects setobject.c set type
Objects sliceobject.c Slice reference type
Objects structseq.c struct.Struct type
Objects tupleobject.c tuple type
Objects typeobject.c type type
Objects unicodeobject.c str type
Objects weakrefobject.c weakref type

You’ll explore some of these types in this chapter.

287

Object and Variable Object Types
Object and Variable Object Types
Because C isn’t an object-oriented language like Python, objects in Cdon’t inherit from one another. PyObject is the initial data segment forevery Python object and PyObject * represents a pointer to it.
When defining Python types, the typedef uses one of two macros:
1. PyObject_HEAD (PyObject) for a simple type
2. PyObject_VAR_HEAD (PyVarObject) for a container type
The simple type PyObject has the following fields:
Field Type Purpose
ob_refcnt Py_ssize_t Instance reference counter
ob_type _typeobject* Object type

For example, the cellobject declares one additional field, ob_ref, andthe base fields:
typedef struct {

PyObject_HEAD

PyObject *ob_ref; /* Content of the cell or NULL when empty */

} PyCellObject;

The variable type, PyVarObject, extends the PyObject type and also hasthe following fields:
Field Type Purpose
ob_base PyObject Base type
ob_size Py_ssize_t Number of items it contains

288

https://realpython.com/python3-object-oriented-programming/

The type Type
For example, the int type, PyLongObject, has the following declaration:
struct _longobject {

PyObject_VAR_HEAD

digit ob_digit[1];

}; /* PyLongObject */

The type Type
In Python, objects have an ob_type property. You can get the value ofthis property using the built-in function type():
>>> t = type("hello")

>>> t

<class 'str'>

The result from type() is an instance of a PyTypeObject:
>>> type(t)

<class 'type'>

Type objects are used to define the implementation of abstract baseclasses.
For example, objects always implement the __repr__() method:
>>> class example:

... x = 1

>>> i = example()

>>> repr(i)

'<__main__.example object at 0x10b418100>'

The implementation of __repr__() is always at the same address in thetype definition of any object. This position is known as a type slot.

289

The type Type
Type Slots
All the type slots are defined in Include cpython object.h.
Each type slot has a property name and a function signature. The
__repr__() function for example is called tp_repr and has a signature
reprfunc:
struct PyTypeObject

typedef struct _typeobject {

...

reprfunc tp_repr;

...

} PyTypeObject;

The signature reprfunc is defined in Include cpython object.h as havinga single argument of PyObject* (self):
typedef PyObject *(*reprfunc)(PyObject *);

As an example, the cellobject implements the tp_repr slot with thefunction cell_repr:
PyTypeObject PyCell_Type = {

PyVarObject_HEAD_INIT(&PyType_Type, 0)

"cell",

sizeof(PyCellObject),

0,

(destructor)cell_dealloc, /* tp_dealloc */

0, /* tp_vectorcall_offset */

0, /* tp_getattr */

0, /* tp_setattr */

0, /* tp_as_async */

(reprfunc)cell_repr, /* tp_repr */

...

};

290

The type Type
Beyond the basic PyTypeObject type slots, denoted with the tp_ prefix,there are other type slot definitions:

Type Slot Prefix
PyNumberMethods nb_

PySequenceMethods sq_

PyMappingMethods mp_

PyAsyncMethods am_

PyBufferProcs bf_

All type slots are given a unique number, defined in Include types-

lots.h. When referring to, or fetching, a type slot on an object, youshould use these constants.
For example, tp_repr has a constant position of 66, and the constant
Py_tp_repr always matches the type slot position. These constants areuseful when checking if an object implements a particular type slotfunction.
Working with Types in C
Within C extension modules and the core CPython code, you’ll fre-quently be working with the PyObject* type.
For example, if you run x[n] on a subscriptable object like a list or astring, then it will call PyObject_GetItem(), which looks at the object xto determine how to subscript it:
Objects abstract.c line 146
PyObject *

PyObject_GetItem(PyObject *o, PyObject *key)

{

PyMappingMethods *m;

PySequenceMethods *ms;

...

291

https://github.com/python/cpython/blob/v3.9.0/Objects/abstract.c#L146

The type Type
PyObject_GetItem() serves both mapping types, like dictionaries, andsequence types, like lists and tuples.
If the instance, o, has sequence methods, then o->ob_type-

>tp_as_sequence will evaluate to true. Also, if the instance has a
sq_item slot function defined, then it’s assumed that it has correctlyimplemented the sequence protocol.
The value of key is evaluated to check that it’s an integer, and the itemis requested from the sequence object using PySequence_GetItem():

ms = o->ob_type->tp_as_sequence;

if (ms && ms->sq_item) {

if (PyIndex_Check(key)) {

Py_ssize_t key_value;

key_value = PyNumber_AsSsize_t(key, PyExc_IndexError);

if (key_value == -1 && PyErr_Occurred())

return NULL;

return PySequence_GetItem(o, key_value);

}

else {

return type_error("sequence index must "

"be integer, not '%.200s'", key);

}

}

Type Property Dictionaries
Python supports defining new types with the class keyword. User-defined types are created by type_new() in the type object module.
User-defined types will have a property dictionary, accessed by
__dict__(). Whenever a property is accessed on a custom class,the default __getattr__() implementation looks in this propertydictionary. Class methods, instance methods, class properties, andinstance properties are all located in this dictionary.
PyObject_GenericGetDict() implements the logic to fetch the dictionaryinstance for a given object. PyObject_GetAttr() implements the default

292

https://github.com/python/cpython/blob/v3.9.0/Objects/abstract.c#L146
https://github.com/python/cpython/blob/v3.9.0/Objects/abstract.c#L1740
https://github.com/python/cpython/blob/v3.9.0/Objects/typeobject.c#L2376
https://github.com/python/cpython/blob/v3.9.0/Objects/dictobject.c#L4767
https://github.com/python/cpython/blob/v3.9.0/Objects/object.c#L879

The bool and long Types
__getattr__() implementation, and PyObject_SetAttr() implements
__setattr__().

See Also
There are many layers to custom types, and they’ve been exten-sively documented. One could write an entire book on meta-classes, but in this book you’ll stick to the implementation.
If you want to learn more about metaprogramming, check outReal Python’s “Python Metaclasses.”

The bool and long Types
The bool type is the most straightforward implementation of the built-in types. It inherits from long and has the predefined constants Py_Trueand Py_False. These constants are immutable instances, created onthe instantiation of the Python interpreter.
Inside Objects boolobject.c, you can see the helper function to createa bool instance from a number:
Objects boolobject.c line 28
PyObject *PyBool_FromLong(long ok)

{

PyObject *result;

if (ok)

result = Py_True;

else

result = Py_False;

Py_INCREF(result);

return result;

}

This function uses the C evaluation of a numeric type to assign Py_Trueor Py_False to a result and increment the reference counters.
293

https://github.com/python/cpython/blob/v3.9.0/Objects/object.c#L979
https://realpython.com/python-metaclasses/
https://github.com/python/cpython/blob/v3.9.0/Include/boolobject.h#L22
https://github.com/python/cpython/blob/v3.9.0/Include/boolobject.h#L21

The bool and long Types
The numeric functions for and, xor, and or are implemented, but ad-dition, subtraction, and division are dereferenced from the base longtype since it would make no sense to divide two Boolean values.
The implementation of and for a bool value first checks if a and b areBooleans. If they aren’t, then they’re cast as numbers, and the andoperation is run on the two numbers:
Objects boolobject.c line 61
static PyObject *

bool_and(PyObject *a, PyObject *b)

{

if (!PyBool_Check(a) || !PyBool_Check(b))

return PyLong_Type.tp_as_number->nb_and(a, b);

return PyBool_FromLong((a == Py_True) & (b == Py_True));

}

The long Type
The long type is a bit more complex than bool. In the transition fromPython 2 to Python 3, CPython dropped support for the int type andinstead used the long type as the primary integer type.
Python’s long type is quite special in that it can store a variable-lengthnumber. The maximum length is set in the compiled binary.
The data structure of a Python long consists of the PyObject variableheader and a list of digits. The list of digits, ob_digit, is initially set tohave one digit, but it later expands to a longer length when initialized:
Include longintrepr.h line 85
struct _longobject {

PyObject_VAR_HEAD

digit ob_digit[1];

};

294

The bool and long Types
For example, the number 1 would have ob_digit [1], and the number24601 would have ob_digit [2, 4, 6, 0, 1].
Memory is allocated to anew long through _PyLong_New(). This functiontakes a fixed length and makes sure it’s smaller than MAX_LONG_DIGITS.Then it reallocates the memory for ob_digit to match the length.
To convert a C long type to a Python long type, the C long is convertedto a list of digits, thememory for the Python long is assigned, and theneach of the digits is set.
For single-digit numbers, the long object is initialized with ob_digitalready at a length of 1. Then the value is set without the memorybeing allocated:
Objects longobject.c line 297
PyObject *

PyLong_FromLong(long ival)

{

PyLongObject *v;

unsigned long abs_ival;

unsigned long t; /* unsigned so >> doesn't propagate sign bit */

int ndigits = 0;

int sign;

CHECK_SMALL_INT(ival);

...

/* Fast path for single-digit ints */

if (!(abs_ival >> PyLong_SHIFT)) {

v = _PyLong_New(1);

if (v) {

Py_SIZE(v) = sign;

v->ob_digit[0] = Py_SAFE_DOWNCAST(

abs_ival, unsigned long, digit);

}

return (PyObject*)v;

}

295

The bool and long Types
...

/* Larger numbers: loop to determine number of digits */

t = abs_ival;

while (t) {

++ndigits;

t >>= PyLong_SHIFT;

}

v = _PyLong_New(ndigits);

if (v != NULL) {

digit *p = v->ob_digit;

Py_SIZE(v) = ndigits*sign;

t = abs_ival;

while (t) {

*p++ = Py_SAFE_DOWNCAST(

t & PyLong_MASK, unsigned long, digit);

t >>= PyLong_SHIFT;

}

}

return (PyObject *)v;

}

To convert a double-point floating-point to a Python long,
PyLong_FromDouble() does the math for you.
The remainder of the implementation functions in Objects longob-

ject.c have utilities, such as converting a Unicode string into a num-ber with PyLong_FromUnicodeObject().
Example
The rich-comparison type slot for long is set to long_richcompare(). Thisfunction wraps long_compare():
Objects longobject.c line 3031
static PyObject *

long_richcompare(PyObject *self, PyObject *other, int op)

{

296

https://github.com/python/cpython/blob/v3.9.0/Objects/longobject.c#L417
https://github.com/python/cpython/blob/v3.9.0/Objects/longobject.c#L2625
https://github.com/python/cpython/blob/v3.9.0/Objects/longobject.c#L3031
https://github.com/python/cpython/blob/v3.9.0/Objects/longobject.c#L3013

The bool and long Types
Py_ssize_t result;

CHECK_BINOP(self, other);

if (self == other)

result = 0;

else

result = long_compare((PyLongObject*)self, (PyLongObject*)other);

Py_RETURN_RICHCOMPARE(result, 0, op);

}

long_compare() will first check the length (number of digits) of the twovariables a and b. If the lengths are the same, then it will loop througheach digit to see if they’re equal to each other.
long_compare() returns one of three types of values:
1. If a < b, then it returns a negative number.
2. If a == b, then it returns 0.
3. If a > b, the it returns a positive number.
For example, when you execute 1 == 5, the result is -4. For 5 == 1, theresult is 4.
You can implement the following code block before the
Py_RETURN_RICHCOMPARE macro to return True when the absolute value ofresult is <=1. It uses the macro Py_ABS(), which returns the absolutevalue of a signed integer:

if (op == Py_AlE) {

if (Py_ABS(result) <= 1)

Py_RETURN_TRUE;

else

Py_RETURN_FALSE;

}

Py_RETURN_RICHCOMPARE(result, 0, op);

}

297

The Unicode String Type
After recompiling Python, you should see the effect of the change:
>>> 2 == 1

False

>>> 2 ~= 1

True

>>> 2 ~= 10

False

The Unicode String Type
Python Unicode strings are complicated. Cross-platform Unicodetypes in any platform are complicated.
The cause of this complexity is the number of encodings that are onoffer and the different default configurations on the platforms thatPython supports.
The Python 2 string type was stored in C using the char type. Thesingle-byte char type sufficiently stores any of the ASCII (AmericanStandard Code for Information Interchange) characters and has beenused in computer programming since the 1970s.
ASCII doesn’t support the thousands of languages and character setsthat are in use across the world. Also, there are extended glyph char-acter sets like emojis that it can’t support.
To address these issues, a standard system of coding and a databaseof characters known as the Unicode Standard was introduced by theUnicode Consortium in 1991. ThemodernUnicode Standard includescharacters for all written languages as well as extended glyphs andcharacters.
TheUnicode CharacterDatabase (UCD) contains 143,859 namedcharacters as of version 13.0, compared with just 128 in ASCII. TheUnicode Standard defines these characters in a character table calledthe Universal Character Set (UCS). Each character has a uniqueidentifier known as a code point.

298

The Unicode String Type
There are many different encodings that use the Unicode Standardand convert the code point into a binary value.
Python Unicode strings support three lengths of encodings:
1. 1-byte (8-bit)
2. 2-byte (16-bit)
3. 4-byte (32-bit)
These variable-length encodings are referred to within the implemen-tation as the following:
1. 1-byte Py_UCS1, stored as 8-bit unsigned int type uint8_t

2. 2-byte Py_UCS2, stored as 16-bit unsigned int type uint16_t

3. 4-byte Py_UCS4, stored as 32-bit unsigned int type uint32_t

Related Source Files
Here are the source files related to strings:
File Purpose
Include unicodeobject.h Unicode string object definition
Include cpython unicodeobject.h Unicode string object definition
Objects unicodeobject.c Unicode string object implementation
Lib encodings encodings package containing all thepossible encodings
Lib codecs.py Codecs module
Modules _codecsmodule.c Codecs module C extensions, implementsOS-specific encodings
Modules _codecs Codec implementations for a range ofalternative encodings

Processing Unicode Code Points
CPython doesn’t contain a copy of the UCD, nor does it have to updatewhenever scripts and characters are added to the Unicode standard.

299

The Unicode String Type
Unicode strings in CPython only have to care about the encodings.The operating system handles the task of representing the code pointsin the correct scripts.
TheUnicode Standard includes theUCDand is updated regularlywithnew scripts, emojis, and characters. Operating systems take these up-dates to Unicode and update their software via a patch. These patchesinclude the newUCD code points and support the various Unicode en-codings. The UCD is split into sections called code blocks.
The Unicode code charts are published on the Unicode website.
Another point of support for Unicode is the web browser. Webbrowsers decode HTML binary data in the encoding-marked HTTPencoding headers. If you’re working with CPython as a web server,then your Unicode encodings must match the HTTP headers beingsent to your users.
UTF-8 vs UTF-16
There are two common encodings:
1. UTF-8 is an 8-bit character encoding that supports all possiblecharacters in the UCD with a 1- to 4-byte code point
2. UTF-16 is a 16-bit character encoding, similar to UTF-8, but isnot compatible with 7- or 8-bit encodings like ASCII.
UTF-8 is the most commonly used Unicode encoding.
In all Unicode encodings, the code points can be represented using ahexadecimal shorthand. Here are a few examples:
• U+00F7 for the division character ('÷')
• U+0107 for the Latin small letter c with acute ('ć')

In Python, Unicode code points can be encoded directly into the codeusing the \u escape symbol and the hexadecimal value of the codepoint:
300

https://unicode.org/charts/

The Unicode String Type
>>> print("\u0107")

ć

CPython doesn’t attempt to pad this data, so if you tried \u107, then itwould give the following exception:
print("\u107")

File "<stdin>", line 1

SyntaxError: (unicode error) 'unicodeescape' codec can't decode

bytes in position 0-4: truncated \uXXXX escape

Both XML and HTML support Unicode code points with a specialescape character &#val;, where val is the decimal value of the codepoint. If you need to encode Unicode code points into XML or HTML,then you can use the xmlcharrefreplace error handler in the .encode()method:
>>> "\u0107".encode('ascii', 'xmlcharrefreplace')

b'ć'

The outputwill containHTML- orXML-escaped code points. Allmod-ern browsers will decode this escape sequence into the correct charac-ter.
ASCII Compatibility
If you’re working with ASCII-encoded text, then it’s important to un-derstand the difference between UTF-8 and UTF-16. UTF-8 has themajor benefit of being compatible with ASCII-encoded text. ASCIIencoding is a 7-bit encoding.
The first 128 code points on the Unicode Standard represent the ex-isting 128 characters of the ASCII standard. For example, the Latinletter "a" is the 97th character in ASCII and the 97th character in Uni-code. Decimal 97 is equivalent to 61 in hexadecimal, so the Unicodecode point for "a" is U+0061.

301

The Unicode String Type
In the REPL, you can create the binary code for the letter "a":
>>> letter_a = b'a'

>>> letter_a.decode('utf8')

'a'

This can correctly be decoded into UTF-8.
UTF-16 works with 2- to 4-byte code points. The 1-byte representa-tion of the letter "a" will not decode:
>>> letter_a.decode('utf16')

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

UnicodeDecodeError: 'utf-16-le' codec can't decode

byte 0x61 in position 0: truncated data

This is important to note when selecting an encoding mechanism.UTF-8 is a safer option if you need to import ASCII-encoded data.
Wide Character Type
If you’re handling Unicode string input in an unknown encodingwithin the CPython source code, then the wchar_t C type will be used.
wchar_t is the C standard for a wide-character string and is sufficientto store Unicode strings in memory. After PEP 393, the wchar_t typewas selected as theUnicode storage format. TheUnicode string objectprovides PyUnicode_FromWideChar(), a utility function that will convert a
wchar_t constant to a string object.
For example, the pymain_run_command() used by python -c converts the
-c argument into a Unicode string:

302

https://www.python.org/dev/peps/pep-0393/
https://github.com/python/cpython/blob/v3.9.0/Modules/main.c#L226

The Unicode String Type
Modules main.c line 226
static int

pymain_run_command(wchar_t *command, PyCompilerFlags *cf)

{

PyObject *unicode, *bytes;

int ret;

unicode = PyUnicode_FromWideChar(command, -1);

Byte Order Markers
When decoding an input, such as a file, CPython can detect the byteorder from a byte order mark (BOM). BOMs are special charactersthat appear at the beginning of a Unicode byte stream. They tell thereceiver which byte order the data is stored in.
Different computer systems can encode with different byte orders. Ifyou use the wrong byte order, even with the right encoding, then thedata will be garbled. A big-endian ordering places the most signifi-cant byte first. A little-endian ordering places the least significantbyte first.
The UTF-8 specification does support a BOM, but it has no effect. TheUTF-8 BOM can appear at the beginning of a encoded data sequence,represented as b'\xef\xbb\xbf', and will indicate to CPython that thedata stream is most likely UTF-8. UTF-16 and UTF-32 support little-and big-endian BOMs.
The default byte order in CPython is set by the sys.byteorder globalvalue:
>>> import sys; print(sys.byteorder)

little

303

The Unicode String Type
The encodings Package
The encodings package in Lib encodings comeswithmore than one hun-dred built-in supported encodings for CPython. Whenever the .en-

code() or .decode() method is called on a string or byte string, the en-coding is looked up from this package.
Each encoding is defined as a separate module. For example,
ISO2022_JP is a widely used encoding for Japanese email systems andis declared in Lib encodings iso2022_jp.py.
Every encoding module will define a function getregentry() and regis-ter the following characteristics:
• Its unique name
• Its encode and decode functions from a codec module
• Its incremental encoder and decoder classes
• Its stream reader and stream writer classes

Many of the encoding modules share the same codecs from either the
codecsmodule or the _mulitbytecodecmodule. Some encodingmodulesuse a separate codec module in C, from Modules cjkcodecs.
For example, the ISO2022_JP encoding module imports a C extensionmodule, _codecs_iso2022, from Modules cjkcodecs _codecs_iso2022.c:
import _codecs_iso2022, codecs

import _multibytecodec as mbc

codec = _codecs_iso2022.getcodec('iso2022_jp')

class Codec(codecs.Codec):

encode = codec.encode

decode = codec.decode

class IncrementalEncoder(mbc.MultibyteIncrementalEncoder,

codecs.IncrementalEncoder):

304

The Unicode String Type
codec = codec

class IncrementalDecoder(mbc.MultibyteIncrementalDecoder,

codecs.IncrementalDecoder):

codec = codec

The encodings package also has a module, Lib encodings aliases.py,that contains an aliases dictionary. This dictionary is used to mapencodings in the registry by alternative names. For example, utf8, utf-
8 and u8 are all aliases of the utf_8 encoding.
The Codecs Module
The codecs module handles the translation of data with a specific en-coding. The encode or decode function of a particular encoding canbe fetched using getencoder() and getdecoder(), respectively:
>>> iso2022_jp_encoder = codecs.getencoder('iso2022_jp')

>>> iso2022_jp_encoder('\u3072\u3068') # hi-to

(b'\x1bBR$H\x1b(B', 2)

The encode function will return the binary result and the number ofbytes in the output as a tuple. codecs also implements the built-in func-tion open() for opening file handles from the operating system.
Codec Implementations
The Unicode object (Objects unicodeobject.c) implementationcontains the following encoding methods:

Codec Encoder
ascii PyUnicode_EncodeASCII()

latin1 PyUnicode_EncodeLatin1()

UTF7 PyUnicode_EncodeUTF7()

UTF8 PyUnicode_EncodeUTF8()

UTF16 PyUnicode_EncodeUTF16()

UTF32 PyUnicode_EncodeUTF32()

unicode_escape PyUnicode_EncodeUnicodeEscape()

raw_unicode_escape PyUnicode_EncodeRawUnicodeEscape()

305

The Unicode String Type
All decodemethodswould have similar names, butwith Decode in placeof Encode.
The implementation of the other encodings is within Modules _codecsto avoid cluttering the main Unicode string object implementation.The unicode_escape and raw_unicode_escape codecs are internal toCPython.
Internal Codecs
CPython comes with a number of internal encodings. These areunique to CPython and are useful for some of the standard libraryfunctions as well as when working with producing source code.
These text encodings can be used with any text input or output:
Codec Purpose
idna Implements RFC 3490
mbcs Encode according to the ANSI codepage (Windows only)
raw_unicode_escape Convert to a string for raw literal in Python source code
string_escape Convert to a string literal for Python source code
undefined Try default system encoding
unicode_escape Convert to Unicode literal for Python source code
unicode_internal Return the internal CPython representation

There are also several binary-only encodings that need to be usedwith
codecs.encode() or codecs.decode() with byte string inputs, such as thefollowing:
>>> codecs.encode(b'hello world', 'base64')

b'aGVsbG8gd29ybGQ=\n'

306

The Unicode String Type
Here’s a list of the binary-only encodings:
Codec Aliases Purpose
base64_codec base64, base-64 Convert to MIME base64
bz2_codec bz2 Compress the string using bz2
hex_codec hex Convert to hexadecimal representation,with two digits per byte
quopri_codec quoted-printable Convert operand to MIMEquoted-printable
rot_13 rot13 Return the Caesar-cypher encryption(position 13)
uu_codec uu Convert using uuencode
zlib_codec zip, zlib Compress using gzip

Example
The tp_richcompare type slot is allocated to PyUnicode_RichCompare() inthe PyUnicode_Type. This function does the comparison of strings andcan be adapted to use the ~= operator. The behavior you’ll implementis a case-insensitive comparison of the two strings.
First, add an additional case statement to check when the left andright strings have binary equivalence:
Objects unicodeobject.c line 11361
PyObject *

PyUnicode_RichCompare(PyObject *left, PyObject *right, int op)

{

...

if (left == right) {

switch (op) {

case Py_EQ:

case Py_LE:

>>> case Py_AlE:

case Py_GE:

/* a string is equal to itself */

Py_RETURN_TRUE;

307

The Unicode String Type
Then add a new else if block to handle the Py_AlE operator. This willperform the following actions:
1. Convert the left string to a new uppercase string.
2. Convert the right string to a new uppercase string.
3. Compare the two.
4. Dereference both of the temporary strings so they get deallocated.
5. Return the result.
Your code should look like this:

else if (op == Py_EQ || op == Py_NE) {

...

}

/* Add these lines */

else if (op == Py_AlE){

PyObject* upper_left = case_operation(left, do_upper);

PyObject* upper_right = case_operation(right, do_upper);

result = unicode_compare_eq(upper_left, upper_right);

Py_DECREF(upper_left);

Py_DECREF(upper_right);

return PyBool_FromLong(result);

}

After you recompile, your case-insensitive string matching shouldgive the following results on the REPL:
>>> "hello" ~= "HEllO"

True

>>> "hello?" ~= "hello"

False

308

The Dictionary Type
The Dictionary Type
Dictionaries are a fast and flexible mapping type. They’re used by de-velopers to store and map data as well as by Python objects to storeproperties and methods.
Python dictionaries are also used for local and global variables, forkeyword arguments, and for many other use cases. Python dictionar-ies are compact, meaning the hash table stores only mapped values.
The hashing algorithm that is part of all immutable built-in types isfast. It’s what gives Python dictionaries their speed.
Hashing
All immutable built-in types provide a hashing function. This is de-fined in the tp_hash type slot or, for custom types, using the __hash__()magic method. Hash values are the same size as a pointer (64-bit for64-bit systems, 32-bit for 32-bit systems), but they don’t representthe memory address of their values.
The resulting hash for any Python Object shouldn’t change during it’slifecycle. Hashes for two immutable instances with identical valuesshould be equal:
>>> "hello".__hash__() == ("hel" + "lo").__hash__()

True

There should be no hash collisions. Two objects with different valuesshould not produce the same hash.
Some hashes are simple, like Python longs:
>>> (401).__hash__()

401

309

The Dictionary Type
Long hashes get more complex for longer values:
>>> (401123124389798989898).__hash__()

2212283795829936375

Many of the built-in types use the Python pyhash.cmodule, which pro-vides the following hashing helper functions:
• Bytes: _Py_HashBytes(const void*, Py_ssize_t)

• Doubles: _Py_HashDouble(double)

• Pointers: _Py_HashPointer(void*)

Unicode strings, for example, use _Py_HashBytes() to hash the byte dataof the string:
>>> ("hello").__hash__()

4894421526362833592

Custom classes can define a hashing function by implementing
__hash__(). Instead of implementing a custom hash, custom classesshould use a unique property. Make sure it’s immutable by makingit a read-only property, then hash it using the built-in hash():
class User:

def __init__(self, id: int, name: str, address: str):

self._id = id

def __hash__(self):

return hash(self._id)

@property

def id(self):

return self._id

Instances of this class can now be hashed:
>>> bob = User(123884, "Bob Smith", "Townsville, QLD")

>>> hash(bob)

123884

310

The Dictionary Type
This instance can now be used as a dictionary key:
>>> sally = User(123823, "Sally Smith", "Cairns, QLD")

>>> near_reef = {bob: False, sally: True}

>>> near_reef[bob]

False

Sets will reduce duplicate hashes of this instance:
>>> {bob, bob}

{<__main__.User object at 0x10df244b0>}

Related Source Files
Here are the source files related to dictionaries:
File Purpose
Include dictobject.h Dictionary object API definition
Include cpython dictobject.h Dictionary object types definition
Objects dictobject.c Dictionary object implementation
Objects dict-common.h Definition of key entry and key objects
Python pyhash.c Internal hashing algorithm

Dictionary Structure
A dictionary object, PyDictObject, comprises the following elements:
1. The dictionary object properties, containing the size, a version tag,and the keys and values
2. A dictionary key table object, PyDictKeysObject, containing the keysand hash values of all entries

311

The Dictionary Type

PyDictObject

PyDictKeysObject Value Table
(split)

Indices

Lookup Function

Key Entries

Key (PyObject*)

Value (PyObject*)

Hash Value

Value (PyObject*)

Value (PyObject*)

Value (PyObject*)

Properties

The PyDictObject has the following properties:
Field Type Purpose
ma_keys PyDictKeysObject*Dictionary key table object
ma_used Py_ssize_t Number of items in the dictionary
ma_values PyObject** Optional value array (see note)
ma_version_tag uint64_t Version number of the dictionary

Note
Dictionaries can have one of two states: split or combined.When dictionaries are combined, the pointers to the dictionaryvalues are stored in the keys object.
When the dictionary is split, the values are stored in an extraproperty, ma_values, as a value table of PyObject*.

312

The Dictionary Type
The dictionary key table, PyDictKeysObject, has the following proper-ties:
Field Type Purpose
dk_entries PyDictKeyEntry[] Allocated array of dictionary key entries
dk_indices char[] Hash table and mapping to dk_entries

dk_lookup dict_lookup_func The lookup function (see next section)
dk_nentries Py_ssize_t The number of used entries in the entry table
dk_refcnt Py_ssize_t Reference counter
dk_size Py_ssize_t The size of the hash table
dk_usable Py_ssize_t The number of usable entries in the entrytable—when 0, dictionary is resized

A dictionary key entry, PyDictKeyEntry, contains the following proper-ties:
Field Type Purpose
me_hash Py_ssize_t Cached hash code of me_key
me_key PyObject* Pointer to the key object
me_value PyObject* Pointer to the value object (if combined)

Lookups
For a given key object, there is a generic lookup function: lookdict().
Dictionary lookups need to cater to three scenarios:
1. The memory address of the key exists in the key table.
2. The hash value of the object exists in the key table.
3. The key does not exist in the dictionary.

See Also
The lookup function is based on Donald Knuth’s famous bookThe Art of Computer Programming. See chapter 6, section 4,on hashing.

313

https://github.com/python/cpython/blob/v3.9.0/Objects/dictobject.c#L773
https://www.amazon.com/Art-Computer-Programming-Sorting-Searching/dp/0201896850

The Dictionary Type
Here’s the sequence of the lookup function:
1. Get the hash value of ob.
2. Look up the hash value of ob in the dictionary keys and get theindex, ix.
3. If ix is empty, then return DKIX_EMPTY (not found).
4. Get the key entry, ep, for the given index.
5. If the key values match because the object, then ob is the samepointer at the key value. Return the result.
6. If the key hashesmatch because the object, ob, resolves to the samehash value as ep->me_mash, then return the result.

Note
lookupdict() is one of few hot functions in the CPython sourcecode:

The hot attribute is used to inform the compilerthat a function is a hot spot of the compiled pro-gram. The function is optimizedmore aggressivelyand onmany targets it is placed into special subsec-tion of the text section so all hot functions appearclose together, improving locality.
— GCC documentation, “Common FunctionAttributes”

This is specific to GNU C compilers, but when compiled withPGO, this function is likely to be optimized by the compiler au-tomatically.

314

https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html
https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html

Conclusion
Conclusion
Now that you’ve seen the implementation of some built-in types,you’re ready to explore others.
When exploring Python classes, it’s important to remember that thereare built-in types written in C and classes inheriting from those typeswritten in Python or C.
Some libraries have types written in C instead of inheriting from thebuilt-in types. One example is NumPy, a library for numeric arrays.The nparray type is written in C and is highly efficient and performant.
In the next chapter, you’ll explore the classes and functions defined inthe standard library.

315

https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html

The Standard Library
Python has always come batteries included. This means that a stan-dard CPython distribution includes libraries for working with files,threads, networks, websites, music, keyboards, screens, text, and awhole range of utilities.
Some of the batteries that come with CPython are like AA batteries,useful for almost any occasion. Examples include the collectionsmod-ule and the sysmodule. But some of themare a bitmore obscure, mak-ing them more like small watch batteries: you never know when youmight need them.
There are two types of modules in the CPython standard library:
1. Those written in pure Python that provide a utility
2. Those written in C with Python wrappers
You’ll explore both types in this chapter.

Python Modules
Themodules written in pure Python are all located in the Lib directoryin the source code. Some of the larger modules have submodules insubfolders, like the email module.
A straightforward module that you may not have come across beforeis the colorsys module. It’s only a hundred lines of Python code andcontains some utility functions for converting color scales.

316

Python Modules
When you install a Python distribution from source, standard librarymodules are copied from the Lib folder into the distribution folder.This folder is always part of your path when you start Python, so youcan import the modules without having to worry about where they’relocated.
For example, here’s how you import and use colorsys:
>>> import colorsys

>>> colorsys

<module 'colorsys' from '/usr/shared/lib/python3.7/colorsys.py'>

>>> colorsys.rgb_to_hls(255,0,0)

(0.0, 127.5, -1.007905138339921)

You can see the source code of rgb_to_hls() inside Lib colorsys.py:
HLS: Hue, Luminance, Saturation

H: position in the spectrum

L: color lightness

S: color saturation

def rgb_to_hls(r, g, b):

maxc = max(r, g, b)

minc = min(r, g, b)

XXX Can optimize (maxc+minc) and (maxc-minc)

l = (minc+maxc)/2.0

if minc == maxc:

return 0.0, l, 0.0

if l <= 0.5:

s = (maxc-minc) / (maxc+minc)

else:

s = (maxc-minc) / (2.0-maxc-minc)

rc = (maxc-r) / (maxc-minc)

gc = (maxc-g) / (maxc-minc)

bc = (maxc-b) / (maxc-minc)

if r == maxc:

h = bc-gc

317

Python and C Modules
elif g == maxc:

h = 2.0+rc-bc

else:

h = 4.0+gc-rc

h = (h/6.0) % 1.0

return h, l, s

There’s nothing special about this function—it’s just standard Python.You’ll find a similar situation for all the pure Python standard librarymodules. They’re just written in plain Python, well laid out and un-complicated to understand.
You may even spot improvements or bugs in standard library mod-ules. If so, you can make changes and contribute them to the Pythondistribution. You’ll cover that toward the end of this book.

Python and CModules
The remainder ofmodules arewritten in C or a combination of Pythonand C. The source code is in Lib for the Python component and in Mod-

ules for the C component. There are two exceptions:
1. The sys module, found in Python sysmodule.c

2. The __builtins__ module, found in Python bltinmodule.c

Because the sys module is so specific to the interpreter and the inter-nals of CPython, it’s found inside the Python directory. It’s alsomarkedas an “implementation detail” of CPython and not found in other dis-tributions.
Python will import * from __builtins__ when an interpreter is instan-tiated, so all the built-in functions like print(), chr(), format(), and soforth are found within Python bltinmodule.c.
The built-in function print()was probably the first feature you learnedto use inPython. Sowhat exactly happenswhen you type print("Hello,
World")?

318

Python and C Modules
Here’s a breakdown:
1. The compiler converts the argument "Hello, World" from a stringconstant to a PyUnicodeObject.
2. builtin_print() is executed with one argument and NULL kwnames

3. The file variable is set to PyId_stdout, the system’s stdout handle.
4. Each argument is sent to file.
5. A line break (\n) is sent to file.
Here’s how it works:
Python bltinmodule.c line 1828
static PyObject *

builtin_print(PyObject *self, PyObject *const *args,

Py_ssize_t nargs, PyObject *kwnames)

{

...

if (file == NULL || file == Py_None) {

file = _PySys_GetObjectId(&PyId_stdout);

...

}

...

for (i = 0; i < nargs; i++) {

if (i > 0) {

if (sep == NULL)

err = PyFile_WriteString(" ", file);

else

err = PyFile_WriteObject(sep, file,

Py_PRINT_RAW);

if (err)

return NULL;

}

err = PyFile_WriteObject(args[i], file, Py_PRINT_RAW);

if (err)

return NULL;

}

319

https://github.com/python/cpython/blob/v3.9.0/Python/bltinmodule.c#L1828

Python and C Modules

if (end == NULL)

err = PyFile_WriteString("\n", file);

else

err = PyFile_WriteObject(end, file, Py_PRINT_RAW);

...

Py_RETURN_NONE;

}

The contents of some modules written in C expose operating systemfunctions. Because the CPython source code needs to compile to ma-cOS, Windows, Linux, and other *nix-based operating systems, thereare some special cases.
The timemodule is a good example. The way that Windows keeps andstores time in the operating system is fundamentally different fromLinux and macOS. This is one of the reasons the accuracy of the clockfunctions differs between operating systems.
In Modules timemodule.c, the operating system time functions for Unix-based systems are imported from <sys/times.h>:
#ifdef HAVE_SYS_TIMES_H

#include <sys/times.h>

#endif

...

#ifdef MS_WINDOWS

#define WIN32_LEAN_AND_MEAN

#include <windows.h>

#include "pythread.h"

#endif /* MS_WINDOWS */

...

320

https://docs.python.org/3/library/time.html#time.clock_gettime_ns

Python and C Modules
Later in the file, time_process_time_ns() is defined as a wrapper for _Py-
Time_GetProcessTimeWithInfo():
static PyObject *

time_process_time_ns(PyObject *self, PyObject *unused)

{

_PyTime_t t;

if (_PyTime_GetProcessTimeWithInfo(&t, NULL) < 0) {

return NULL;

}

return _PyTime_AsNanosecondsObject(t);

}

_PyTime_GetProcessTimeWithInfo() is implemented multiple differentways in the source code, but only certain parts are compiled intothe binary for the module depending on the operating system. Win-dows systems will call GetProcessTimes(), and Unix systems will call
clock_gettime().
Other modules that have multiple implementations for the same APIare the threading module, the file system module, and the network-ing modules. Because the operating systems behave differently, theCPython source code implements the same behavior as best as it canand exposes it using a consistent, abstracted API.

321

https://realpython.com/intro-to-python-threading/

The Test Suite
CPython has a robust test suite covering the core interpreter, the stan-dard library, the tooling, and the distribution for Windows, Linux,and macOS. It’s located in Lib test and is written mostly in Python.The full test suite is a Python package, so you can run it using thePython interpreter that you’ve compiled.

Running the Test Suite onWindows
OnWindows, use the rt.bat script inside the PCBuild folder. For exam-ple, here’s how to run the quickmode against theDebug configurationon an x64 architecture:
> cd PCbuild

> rt.bat -q -d -x64

== CPython 3.9

== Windows-10-10.0.17134-SP0 little-endian

== cwd: C:\repos\cpython\build\test_python_2784

== CPU count: 2

== encodings: locale=cp1252, FS=utf-8

Run tests sequentially

0:00:00 [1/420] test_grammar

0:00:00 [2/420] test_opcodes

0:00:00 [3/420] test_dict

0:00:00 [4/420] test_builtin

...

322

Running the Test Suite on Linux or macOS
To run the regression test suite against the Release configuration, re-move the -d flag from the command line.

Running the Test Suite on Linux ormacOS
On Linux and macOS, run the test make target to compile and run thetests:
$ make test

== CPython 3.9

== macOS-10.14.3-x86_64-i386-64bit little-endian

== cwd: /Users/anthonyshaw/cpython/build/test_python_23399

== CPU count: 4

== encodings: locale=UTF-8, FS=utf-8

0:00:00 load avg: 2.14 [1/420] test_opcodes passed

0:00:00 load avg: 2.14 [2/420] test_grammar passed

...

Alternatively, use the python or python.exe compiled binary path withthe test package:
$./python -m test

== CPython 3.9

== macOS-10.14.3-x86_64-i386-64bit little-endian

== cwd: /Users/anthonyshaw/cpython/build/test_python_23399

== CPU count: 4

== encodings: locale=UTF-8, FS=utf-8

0:00:00 load avg: 2.14 [1/420] test_opcodes passed

0:00:00 load avg: 2.14 [2/420] test_grammar passed

...

323

Test Flags
There are additional make targets for testing:
Target Purpose
test Run a basic set of regression tests
testall Run the full test suite twice—once without .pyc files andonce with
quicktest Run a faster set of regression tests, excluding the teststhat take a long time
testuniversal Run the test suite for both architectures in a universalbuild on OSX
coverage Compile and run tests with gcov

coverage-lcov Create coverage HTML reports

Test Flags
Some tests require certain flags or else they’re skipped. For example,many of the IDLE tests require a GUI.
To see a list of test suites in the configuration, use the --list-tests flag:
$./python -m test --list-tests

test_grammar

test_opcodes

test_dict

test_builtin

test_exceptions

...

Running Speciрc Tests
You can run specific tests by providing the test suite as the first argu-ment.
Here’s an example on Linux or macOS:

324

Running Specific Tests
$./python -m test test_webbrowser

Run tests sequentially

0:00:00 load avg: 2.74 [1/1] test_webbrowser

== Tests result: SUCCESS ==

1 test OK.

Total duration: 117 ms

Tests result: SUCCESS

Here’s an example on Windows:
> rt.bat -q -d -x64 test_webbrowser

You can also see a detailed list of tests that were executed, along withthe result, using the -v argument:
$./python -m test test_webbrowser -v

== CPython 3.9

== macOS-10.14.3-x86_64-i386-64bit little-endian

== cwd: /Users/anthonyshaw/cpython/build/test_python_24562

== CPU count: 4

== encodings: locale=UTF-8, FS=utf-8

Run tests sequentially

0:00:00 load avg: 2.36 [1/1] test_webbrowser

test_open (test.test_webbrowser.BackgroundBrowserCommandTest) ...ok

test_register (test.test_webbrowser.BrowserRegistrationTest) ...ok

test_register_default (test.test_webbrowser.BrowserRegistrationTest) ...ok

test_register_preferred (test.test_webbrowser.BrowserRegistrationTest) ...ok

test_open (test.test_webbrowser.ChromeCommandTest) ...ok

test_open_new (test.test_webbrowser.ChromeCommandTest) ...ok

...

test_open_with_autoraise_false (test.test_webbrowser.OperaCommandTest) ...ok

--

325

Testing Modules
Ran 34 tests in 0.056s

OK (skipped=2)

== Tests result: SUCCESS ==

1 test OK.

Total duration: 134 ms

Tests result: SUCCESS

Understanding how to use the test suite and check the state of the ver-sion you’ve compiled is very important if you wish tomake changes toCPython. Before you start making changes, you should run the wholetest suite and make sure everything passes.

Testing Modules
For C extension or Python modules, you can import and test themusing the unittestmodule. Tests are assembled bymodule or package.
For example, the Python Unicode string type has tests in Lib test

test_unicode.py. The asyncio package has a test package in Lib test

test_asyncio.
See Also
If you’re new to the unittest module or testing in Python,then check out Real Python’s “Getting Started With Testing inPython.”

326

https://realpython.com/python-testing/
https://realpython.com/python-testing/

Test Utilities
Here’s an excerpt from the UnicodeTest class:
class UnicodeTest(string_tests.CommonTest,

string_tests.MixinStrUnicodeUserStringTest,

string_tests.MixinStrUnicodeTest,

unittest.TestCase):

...

def test_casefold(self):

self.assertEqual('hello'.casefold(), 'hello')

self.assertEqual('hELlo'.casefold(), 'hello')

self.assertEqual('ß'.casefold(), 'ss')

self.assertEqual('fi'.casefold(), 'fi')

You can extend the almost-equal operator that you implementedfor Python Unicode strings in earlier chapters by adding a new testmethod inside the UnicodeTest class:
def test_almost_equals(self):

self.assertTrue('hello' ~= 'hello')

self.assertTrue('hELlo' ~= 'hello')

self.assertFalse('hELlo!' ~= 'hello')

You can run this particular test module on Windows:
> rt.bat -q -d -x64 test_unicode

Or you can run it on macOS or Linux:
$./python -m test test_unicode -v

Test Utilities
By importing the test.support.script_helper module, you can accesssome helper functions for testing the Python runtime:
• assert_python_ok(*args, **env_vars) executes a Python process withthe specified arguments and returns a (return code, stdout, stderr)tuple.

327

Conclusion
• assert_python_failure(*args, **env_vars) is similar to

assert_python_ok() but asserts that it fails to execute.
• make_script(script_dir, script_basename, source) makes a script in

script_dirwith the script_basename and the source, then returns thescript path. It’s useful to combine with assert_python_ok() or as-

sert_python_failure().
If you want to create a test that will be skipped if the module wasn’tbuilt, then you can use the test.support.import_module() utility func-tion. It will raise a SkipTest and signal the test runner to skip this testpackage. Here’s an example:
import test.support

_multiprocessing = test.support.import_module('_multiprocessing')

Your tests...

Conclusion
The Python regression test suite is full of two decades’ worth of testsfor strange edge cases, bug fixes, and new features. Outside of this,there’s still a large part of the CPython standard library that has littleor no testing. If you want to get involved in the CPython project, thenwriting or extending unit tests is a great place to start.
If you’re going to modify any part of CPython or add additional func-tionality, then you’ll need to have written or extended tests as part ofyour patch.

328

Debugging
CPython comes with a built-in debugger, pdb, for debugging Pythonapplications. The pdb debugger is excellent for debugging crashes in-side a Python application, as well as for writing tests and inspectinglocal variables.
When it comes to CPython, though, you need a second debugger—onethat understands C.
In this chapter, you’ll learn how to:
• Attach a debugger to the CPython interpreter
• Use the debugger to see inside a running CPython process

There are two types of debugger: console and visual. Consoledebuggers (like pdb) give you a command prompt and customcommands to explore variables and the stack. Visual debuggersare GUI applications that present the data in grids.
The following debuggers are covered in this chapter:

Debugger Type Platform
LLDB Console macOSGDB Console LinuxVisual Studio debugger Visual WindowsCLion debugger Visual Windows, macOS, LinuxVS Code debugger Visual Windows, macOS, Linux

329

Using the Crash Handler
Using the Crash Handler
In C, if an application tries to read or write to an area of memory thatit shouldn’t, then a segmentation fault is raised. This fault haltsthe running process immediately to stop it from doing any damage toother applications. Segmentation faults can also happenwhen you tryto read from memory that contains no data or an invalid pointer.
If CPython causes a segmentation fault, then you get very little infor-mation about what happened:
[1] 63476 segmentation fault ./python portscanner.py

CPython comeswith a built-in fault handler. If you start CPythonwith
-X faulthandler or -X dev, then instead of printing the system segmen-tation fault message, the fault handler will print the running threadsand the Python stack trace to where the fault occurred:
Fatal Python error: Segmentation fault

Thread 0x0000000119021dc0 (most recent call first):

File "/cpython/Lib/threading.py", line 1039 in _wait_for_tstate_lock

File "/cpython/Lib/threading.py", line 1023 in join

File "/cpython/portscanner.py", line 26 in main

File "/cpython/portscanner.py", line 32 in <module>

[1] 63540 segmentation fault ./python -X dev portscanner.py

This feature is also helpful when developing and testing C extensionsfor CPython.

Compiling Debug Support
To get meaningful information from the debugger, you must compilethe debug symbols into CPython. Without these symbols, the stacktraces within a debug session won’t contain the correct functionnames, variable names, or filenames.

330

Using LLDB for macOS
Windows
Following the same steps as you did in the Windows section of thechapter on Compiling CPython, ensure that you’ve compiled in theDebug configuration to get the debug symbols:
> build.bat -p x64 -c Debug

Remember, the Debug configuration produces the executable
python_d.exe, so make sure you use this executable for debugging.
macOS or Linux
The steps in the chapter on Compiling CPython specify to run the
./configure script with the --with-pydebug flag. If you didn’t includethis flag, then go back and run ./configure again with your originaloptions and the --with-pydebug flag. This will produce the correct exe-cutable and symbols for debugging.

Using LLDB for macOS
The LLDB debugger comes with the Xcode developer tools, so youshould already have it installed.
Start LLDB and load the CPython compiled binary as the target:
$ lldb ./python.exe

(lldb) target create "./python.exe"

Current executable set to './python.exe' (x86_64).

You’ll now have a prompt where you can enter some commands fordebugging.
Creating Breakpoints
To create a breakpoint, use the break set command with the file (rela-tive to the root) and the line number:

331

Using LLDB for macOS
(lldb) break set --file Objects/floatobject.c --line 532

Breakpoint 1: where = python.exe`float_richcompare + 2276 at

floatobject.c:532:26, address = 0x000000010006a974

Note
There’s also a shorthand for setting breakpoints: (lldb) b Ob-

jects/floatobject.c:532

You can add multiple breakpoints using the break set command. Tolist the current breakpoints, use the break list command:
(lldb) break list

Current breakpoints:

1: file = 'Objects/floatobject.c', line = 532, exact_match = 0, locations = 1

1.1: where = python.exe`float_richcompare + 2276 at floatobject.c:532:26,

address = python.exe[...], unresolved, hit count = 0

Starting CPython
To start CPython, use the process launch -- command with thecommand-line options you would normally use for Python.
To start Python with a string, such as python -c "print(1)", use thefollowing command:
(lldb) process launch -- -c "print(1)"

To start python with a script, use the following command:
(lldb) process launch -- my_script.py

Attaching to a Running CPython Interpreter
If you already have a CPython interpreter running, then you can at-tach to it.
From inside the LLDB session, run process attach --pid with the pro-cess ID:

332

Using LLDB for macOS
(lldb) process attach --pid 123

You can get the process ID from the Activity Monitor or by using
os.getpid() in Python.
Any breakpoints set up before or after this point will halt the process.
Handling a Breakpoint
To see how breakpoints are handled, set a breakpoint on the Objects

floatobject.c float_richcompare() function.
Next, run the process and compare two float values using the almost-equal operator that you developed in previous chapters:
(lldb) process launch -- -c "1.0~=1.1"

Process 64421 launched: '/cpython/python.exe' (x86_64)

Process 64421 stopped

* thread #1, queue = '...', stop reason = breakpoint 1.1

frame #0: 0x000000010006a974 python.exe`float_richcompare(v=1.0,

w=1.1, op=6) at floatobject.c:532:26

529 break;

530 case Py_AlE: {

531 double diff = fabs(i - j);

-> 532 const double rel_tol = 1e-9;

533 const double abs_tol = 0.1;

534 r = (((diff <= fabs(rel_tol * j)) ||

Target 0: (python.exe) stopped.

LLDB will give you a prompt again. You can see the local variables byusing the v command:
(lldb) v

(PyObject *) v = 0x000000010111b370 1.0

(PyObject *) w = 0x000000010111b340 1.1

(int) op = 6

(double) i = 1

(double) j = 1.1000000000000001

333

https://github.com/python/cpython/blob/v3.9.0/Objects/floatobject.c#L358

Using LLDB for macOS
(int) r = 0

(double) diff = 0.10000000000000009

(const double) rel_tol = 2.1256294105914498E-314

(const double) abs_tol = 0

You can evaluate a C expression using the expr command with anyvalid C command. The variables in scope can be used. For example,to call fabs(rel_tol) and cast to a double, run the following command:
(lldb) expr (double)fabs(rel_tol)

(double) $1 = 2.1256294105914498E-314

This prints the resulting variable and assigns it an identifier ($1). Youcan reuse this identifier as a temporary variable.
You may also want to explore PyObject instances:
(lldb) expr v->ob_type->tp_name

(const char *) $6 = 0x000000010034fc26 "float"

To get a traceback from the breakpoint, use the bt command:
(lldb) bt

* thread #1, queue = '...', stop reason = breakpoint 1.1

* frame #0: ...

python.exe`float_richcompare(...) at floatobject.c:532:26

frame #1: ...

python.exe`do_richcompare(...) at object.c:796:15

frame #2: ...

python.exe`PyObject_RichCompare(...) at object.c:846:21

frame #3: ...

python.exe`cmp_outcome(...) at ceval.c:4998:16

To step in, use the step command or s.
To step over or continue to the next statement, use the next commandor n.
To continue execution, use the continue command or c.

334

Using GDB
To exit the session, use the quit command or q.

See Also
The LLDB Documentation Tutorial contains a more exhaustivelist of commands.

Using the cpython_lldb Extension
LLDB supports extensions written in Python. There’s an open sourceextension, cpython_lldb, that prints additional information in theLLDB session for native CPython objects.
To install it, run these commands:
$ mkdir -p ~/.lldb

$ cd ~/.lldb && git clone https://github.com/malor/cpython-lldb

$ echo "command script import ~/.lldb/cpython-lldb/cpython_lldb.py" \

>> ~/.lldbinit

$ chmod +x ~/.lldbinit

Now, whenever you see variables in LLDB, you’ll also see some addi-tional information to the right, such as the numeric value for integersand floating-point numbers or the text for Unicode strings. Withina LLDB console, you also have an additional command, py-bt, thatprints the stack trace for Python frames.

Using GDB
GDB is a commonly used debugger for C/C++ applications written onLinux platforms. It’s also very popular with the CPython core devel-opment team.
When CPython is compiled, it generates a script, python-gdb.py. Don’texecute this script directly. Instead, GDB will discover it and run itautomatically once configured.
To configure this stage, edit the .gdbinit file inside your home path

335

https://lldb.llvm.org/use/tutorial.html

Using GDB
(~/.gdbinit) and add the following line, where /path/to/checkout is thepath to the cpython git checkout:
add-auto-load-safe-path /path/to/checkout

To start GDB, run it with the argument pointing to your compiledCPython binary:
$ gdb ./python

GDBwill load the symbols for the compiled binary and give you a com-mand prompt. GDB has a set of built-in commands, and the CPythonextensions bundle some additional commands.
Creating Breakpoints
To set a breakpoint, use the b <file>:<line> command relative to thepath of the executable:
(gdb) b Objects/floatobject.c:532

Breakpoint 1 at 0x10006a974: file Objects/floatobject.c, line 532.

You can set as many breakpoints as you wish.
Starting CPython
To start the process, use the run command followed by arguments tostart the Python interpreter.
For example, use the following command to start with a string:
(gdb) run -c "print(1)"

To start python with a script, use the following command:
(gdb) run my_script.py

336

Using GDB
Attaching to a Running CPython Interpreter
If you already have a CPython interpreter running, then you can at-tach to it.
From inside the GDB session, run attach with the process ID:
(gdb) attach 123

You can get the process ID from the Activity Monitor or by using
os.getpid() in Python.
Any breakpoints set up before or after this point will halt the process.
Handling a Breakpoint
When GDB hits a breakpoint, you can use the print command or p toprint a variable:
(gdb) p *(PyLongObject*)v

$1 = {ob_base = {ob_base = {ob_refcnt = 8, ob_type = ...}, ob_size = 1},

ob_digit = {42}}

To step into the next statement, use the step command or s.
To step over the next statement, use the next command or n.
Using the python-gdb Extension
The python-gdb extension will load an additional command set into theGDB console:

Command Purpose
py-print Look up a Python variable and print it
py-bt Print a Python stack trace
py-locals Print the result of locals()
py-up Go down one Python frame
py-down Go up one Python frame
py-list Print the Python source code for the current frame

337

Using Visual Studio Debugger
Using Visual Studio Debugger
Microsoft Visual Studio comes bundled with a visual debugger. Thisdebugger is powerful and supports a frame stack visualizer, a watchlist, and the ability to evaluate expressions.
To use it, open Visual Studio and the PCBuild pcbuild.sln solution file.
Adding Breakpoints
To add a new breakpoint, navigate to the file you want in the solutionwindow, then click in the gutter to the left of the line number.
This adds a red circle to indicate you’ve set a breakpoint on the line:

When you hover over the red circle, a cog appears. Click this cog toconfigure conditional breakpoints. Add one or more conditional ex-pressions that must evaluate before this breakpoint hits:

338

Using Visual Studio Debugger

Starting the Debugger
From the top menu, select Debug Start Debugger or press F5 .
Visual Studio will start a new Python runtime and REPL.
Handling a Breakpoint
When you hit a breakpoint, you can step forward and into statementsusing the navigation buttons or the following shortcuts:
• Step into: F11

• Step over: F10

• Step out: Shift + F11

You’ll see a call stack at the bottom. You can select frames in the stackto change the navigation and inspect variables in other frames:

339

Using CLion Debugger

In the code editor, you can highlight any variable or expression to seeits value. You can also right-click and select Add Watch . This adds thevariable to the Watch window, where you can quickly see the valuesof variables you need to help you debug:

Using CLion Debugger
The CLion IDE comes bundled with a powerful visual debugger. Itworks with LLDB on macOS and GDB on macOS, Windows, andLinux.
To configure the debugger, go to Preferences and select
Build, Execution, Deployment Toolchains :

340

Using CLion Debugger

There is a selection box for the target debugger. Select the appropriateoption for your operating system:
• macOS: Bundled LLDB
• Windows or Linux: Bundled GDB
Important
Both the LLDB and GDB options benefit from the cpython_lldband python-gdb extensions, respectively. Read the LLDB andGDB sections in this chapter for information on how to installand enable these extensions.

Debugging a Make Application
From CLion 2020.2, you can compile and debug any makefile-basedproject, including CPython.
To start debugging, complete the steps in the “Setting Up JetBrains

341

Using CLion Debugger
CLion” section in the chapter “Setting Up Your Development Environ-ment.”
After completing these steps, you’ll have a Make Application target. Se-lect Run Debug from the top menu to start the process and start de-bugging.
Alternatively, you can attach the debugger to a running CPython pro-cess.
Attaching the Debugger
To attach the CLion debugger to a running CPython process, select
Run Attach to Process .
A list of running processes will pop up. Find the Python process youwant to attach to and select Attach . The debugging session will begin.

Important
If you have the Python plugin installed, it will show the Pythonprocess at the top. Don’t select this one!
This uses the Python debugger, not the C debugger:

Instead, scroll further down into the Native list and find the cor-rect Python process.

342

Using CLion Debugger
Creating Breakpoints
To create a breakpoint, navigate to the file and line you want, thenclick in the gutter between the line number and the code. A red circlewill appear to indicate the breakpoint is set:

Right-click the breakpoint to attach a condition:

To see and manage all current breakpoints, navigate from the topmenu to Run View Breakpoints :

343

Using CLion Debugger

You can enable and disable breakpoints as well as disable them onceanother breakpoint has been hit.
Handling Breakpoints
Once a breakpoint has been hit, CLion will set up the Debug panel.Inside the Debug panel is a call stack showing where the breakpointhit. You can select other frames in the call stack to switch betweenthem.
Next to the call stack are the local variables. You can expand the prop-erties of pointers and type structures, and the value of simple typeswill be shown:

344

Conclusion
Within a break, you can evaluate expressions to get more informationabout the local variables. You can find the Evaluate window in Run

Debugging Actions Evaluate Expression or in a shortcut icon in the De-bug window.
Inside the Evaluate window, you can type expressions, and CLion willtype-ahead with the property names and types:

You can also cast expressions, which is useful for casting PyObject* intothe actual type, such as into a PyFloatObject*:

Conclusion
In this chapter, you’ve seen how to set up a debugger on all the majoroperating systems. While the initial setup is time-consuming, the re-ward is great. Being able to set breakpoints and explore variables andmemory for a running CPython process will give you superpowers.
You can use this skill to extend CPython, optimize existing parts of thecodebase, or track down nasty bugs.

345

Benchmarking, Proрling,and Tracing
When making changes to CPython, you need to verify that yourchanges don’t have a significant detrimental impact on performance.You may even want to make changes to CPython that improveperformance.
There are solutions for profiling that you’ll cover in this chapter:
1. Using the timeitmodule to check a simple Python statement thou-sands of times for the median execution speed
2. Running pyperformance, the Python Benchmark Suite, to comparemultiple versions of Python
3. Using cProfile to analyze execution times of frames
4. Profiling the CPython execution with probes
The choice of solution depends on the type of task:
• A benchmark will produce an average or median runtime of afixed code snippet so that you can compare multiple Python run-times.
• A proрler will produce a call graph with execution times so thatyou can understand which function is the slowest.

Profilers are available at a C level or a Python level. If you’re profilinga function, module, or script written in Python, then you want to use

346

Using timeit for Microbenchmarks
a Python profiler. If you’re profiling a C extension module or a modi-fication to the C code in CPython, then you need to use a C profiler ora combination of C and Python profilers.
Here is a summary of some of the tools available:
Tool Category Level OSSupport
timeit Benchmarking Python All
pyperformance Benchmarking Python All
cProfile Profiling Python AllDTrace Tracing/Profiling C Linux,macOS

Important
Before you run any benchmarks, it’s best to close down all appli-cations on your computer so the CPU is dedicated to the bench-mark.

Using timeit for Microbenchmarks
The Python Benchmark Suite is a thorough test of CPython’s runtimewith multiple iterations. If you want to run a quick, simple compari-son of a specific snippet, then use the timeit module instead.
To run timeit for a short script, run the compiled CPython with the -m

timeit module and a script in quotes:
$./python -m timeit -c "x=1; x+=1; x**x"

1000000 loops, best of 5: 258 nsec per loop

To run a smaller number of loops, use the -n flag:
$./python -m timeit -n 1000 "x=1; x+=1; x**x"

1000 loops, best of 5: 227 nsec per loop

347

Using timeit for Microbenchmarks
timeit Example
In this book, you’ve introduced changes to the float type by support-ing the almost-equal operator.
Try this test to see the current performance of comparing two floatvalues:
$./python -m timeit -n 1000 "x=1.0001; y=1.0000; x~=y"

1000 loops, best of 5: 177 nsec per loop

The implementation of this comparison is in float_richcompare(), in-side Objects floatobject.c:
Objects floatobject.c line 358
static PyObject*

float_richcompare(PyObject *v, PyObject *w, int op)

{

...

case Py_AlE: {

double diff = fabs(i - j);

double rel_tol = 1e-9;

double abs_tol = 0.1;

r = (((diff <= fabs(rel_tol * j)) ||

(diff <= fabs(rel_tol * i))) ||

(diff <= abs_tol));

}

break;

}

Notice that the rel_tol and abs_tol values are constant but haven’tbeen marked as such. Change them to the following:
const double rel_tol = 1e-9;

const double abs_tol = 0.1;

348

https://github.com/python/cpython/blob/v3.9.0/Objects/floatobject.c#L358

Using the Python Benchmark Suite for Runtime Benchmarks
Now compile CPython again and rerun the test:
$./python -m timeit -n 1000 "x=1.0001; y=1.0000; x~=y"

1000 loops, best of 5: 172 nsec per loop

You might notice a minor (1 to 5 percent) improvement in perfor-mance. Experiment with different implementations of the compari-son to see if you can improve it further.

Using the Python Benchmark Suite forRuntime Benchmarks
The Python Benchmark Suite is the tool to use when you want to com-pare the complete performance of Python. The Python Benchmarksuite is a collection of Python applications designed to test multipleaspects of the Python runtime under load.
The Benchmark Suite tests are pure Python, so they can be used to testmultiple runtimes, such as PyPy and Jython. They’re also compatiblewith Python 2.7 up to the latest version.
Any commits to the master branch on github.com/python/cpythonwill be tested using the benchmark tool, and the results will be up-loaded to the Python Speed Center:

349

https://github.com/python/cpython
https://speed.python.org

Using the Python Benchmark Suite for Runtime Benchmarks

You can compare commits, branches, and tags side by side using theSpeed Center. The benchmarks use both the profile-guided optimiza-tion and regular buildswith a fixedhardware configuration to producestable comparisons.
You can install the Python Benchmark Suite fromPyPI using a Pythonruntime (other than the one you’re testing) in a virtual environment:
(venv) $ pip install pyperformance

Next, you need to create a configuration file and an output directoryfor the test profile. It’s recommended that you create this directoryoutside of yourGit working directory. This will also allow you to checkout multiple versions.
In the configuration file, for example ~/benchmarks/benchmark.cfg, addthe following lines:

350

Using the Python Benchmark Suite for Runtime Benchmarks
cpython-book-samples 62 benchmark.cfg

[config]

Path to output json files

json_dir = ~/benchmarks/json

If True, then compile CPython in Debug mode (LTO and PGO disabled),

run benchmarks with --debug-single-sample, and disable upload.

#

Use this option to quickly test a configuration.

debug = False

[scm]

Directory of CPython source code (Git repository)

repo_dir = ~/cpython

Update the Git repository (git fetch)?

update = False

Name of the Git remote, used to create revision of

the Git branch.

git_remote = remotes/origin

[compile]

Create files in bench_dir:

bench_dir = ~/benchmarks/tmp

Link-time optimization (LTO)?

lto = True

Profile-guided optimization (PGO)?

pgo = True

The space-separated list of libraries that are package only

pkg_only =

Install Python? If False, then run Python from the build directory

install = True

351

Using the Python Benchmark Suite for Runtime Benchmarks

[run_benchmark]

Run "sudo python3 -m pyperf system tune" before running benchmarks?

system_tune = True

--benchmarks option for 'pyperformance run'

benchmarks =

--affinity option for 'pyperf system tune' and 'pyperformance run'

affinity =

Upload generated JSON file?

upload = False

Configuration to upload results to a Codespeed website

[upload]

url =

environment =

executable =

project =

[compile_all]

List of CPython Git branches

branches = default 3.6 3.5 2.7

List of revisions to benchmark by compile_all

[compile_all_revisions]

List of 'sha1=' (default branch: 'master') or 'sha1=branch'

used by the "pyperformance compile_all" command

Executing the Benchmark
Once you’ve set up your configuration file, you can run the benchmarkwith the following command:
$ pyperformance compile -U ~/benchmarks/benchmark.cfg HEAD

352

Using the Python Benchmark Suite for Runtime Benchmarks
This will compile CPython in the repo_dir directory you specified andcreate the JSONoutputwith the benchmark data in the directory spec-ified in the config file.
Comparing Benchmarks
If you want to compare JSON results, the Python Benchmark Suitedoesn’t come with a graphing solution. Instead, you can use the fol-lowing script from within a virtual environment.
First, install the dependencies:
$ pip install seaborn pandas pyperformance

Then create a profile.py script:
cpython-book-samples 62 profile.py

import argparse

from pathlib import Path

from perf._bench import BenchmarkSuite

import seaborn as sns

import pandas as pd

sns.set(style="whitegrid")

parser = argparse.ArgumentParser()

parser.add_argument("files", metavar="N", type=str, nargs="+",

help="files to compare")

args = parser.parse_args()

benchmark_names = []

records = []

first = True

for f in args.files:

benchmark_suite = BenchmarkSuite.load(f)

if first:

353

Using the Python Benchmark Suite for Runtime Benchmarks
Initialize the dictionary keys to the benchmark names

benchmark_names = benchmark_suite.get_benchmark_names()

first = False

bench_name = Path(benchmark_suite.filename).name

for name in benchmark_names:

try:

benchmark = benchmark_suite.get_benchmark(name)

if benchmark is not None:

records.append({

"test": name,

"runtime": bench_name.replace(".json", ""),

"stdev": benchmark.stdev(),

"mean": benchmark.mean(),

"median": benchmark.median()

})

except KeyError:

Bonus benchmark! Ignore.

pass

df = pd.DataFrame(records)

for test in benchmark_names:

g = sns.factorplot(

x="runtime",

y="mean",

data=df[df["test"] == test],

palette="YlGnBu_d",

size=12,

aspect=1,

kind="bar")

g.despine(left=True)

g.savefig("png/{}-result.png".format(test))

354

Profiling Python Code with cProfile

Then, to create a graph, run the script from the interpreter with theJSON files you’ve created:
$ python profile.py ~/benchmarks/json/HEAD.json ...

This will produce a series of graphs in the subdirectory png/ for eachexecuted benchmark.

Proрling Python Code with cProfile

The standard library comes with two profilers for Python code:
1. profile: A pure Python profiler
2. cProfile: A faster profiler written in C
In most cases, cProfile is the best module to use.
You canuse cProfile to analyze a running application and collect deter-ministic profiles on the evaluated frames. You can display a summaryof the output from cProfile on the command line or save it to a .pstatfile for analysis in an external tool.
In the chapter “Parallelism and Concurrency,” you wrote a port scan-ner application in Python. Try profiling that application in cProfile.
To run the cProfile module, run python at the command line with the
-m cProfile argument. The second argument is the script to execute:
$ python -m cProfile portscanner_threads.py

Port 80 is open

Completed scan in 19.8901150226593 seconds

6833 function calls (6787 primitive calls) in 19.971 seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)

2 0.000 0.000 0.000 0.000 ...

355

Profiling Python Code with cProfile

The output will print a table with the following columns:
Column Purpose
ncalls Number of calls
tottime Total time spent in the function (minus subfunctions)
percall Quotient of tottime divided by ncalls

cumtime Total time spent in the function (including subfunctions)
percall Quotient of cumtime divided by primitive calls
filename:lineno(function) Data of each function

You can add the -s argument and the column name to sort the output:
$ python -m cProfile -s tottime portscanner_threads.py

This commandwill sort the output by the total time spent in each func-tion.
Exporting Proрles
You can run the cProfilemodule again with the -o argument to specifyan output file path:
$ python -m cProfile -o out.pstat portscanner_threads.py

This will create a file, out.pstat, that you can load and analyze with the
Stats class or with an external tool.
Visualizing with SnakeViz
SnakeViz is a free Python package for visualizing profile data inside aweb browser.
To install SnakeViz, use pip:
$ python -m pip install snakeviz

356

https://docs.python.org/3.9/library/profile.html#the-stats-class

Profiling Python Code with cProfile

Then execute snakeviz on the command line with the path to the statsfile you created:
$ python -m snakeviz out.pstat

This will open your browser and allow you to explore and analyze thedata:

VisualizingWith PyCharm
PyCharm has a built-in tool for running cProfile and visualizing theresults. To execute it, you need to have a Python target configured.
To run the profiler, select your run target, then select Run

Profile (target) from the top menu. This will execute the runtarget with cProfile and open a visualization window with the tabulardata and a call graph:

357

Profiling C Code with DTrace

Proрling C Code with DTrace
The CPython source code has several markers for the DTrace tracingtool. DTrace executes a compiledC/C++binary, then catches andhan-dles events within it using probes.
For DTrace to provide meaningful data, the compiled applicationmust have custommarkers compiled into the application. These areevents raised during the runtime. The markers can attach arbitrarydata to help with tracing.
For example, the frame evaluation function in Python ceval.c includesa call to dtrace_function_entry():

if (PyDTrace_FUNCTION_ENTRY_ENABLED())

dtrace_function_entry(f);

This raises amarker called function__entry inDTrace every time a func-tion is entered.
CPython has built-in markers for:
• Line execution
• Function entry and return (frame execution)

358

https://github.com/python/cpython/blob/v3.9.0/Python/ceval.c#L5587

Profiling C Code with DTrace
• Garbage collection start and completion
• Module import start and completion
• Audit hook events from sys.audit()

Each of these markers has arguments with more information. For ex-ample, the function__entry marker has arguments for:
• Filename
• Function name
• Line number

The static marker arguments are defined in the official documenta-tion.
DTrace can execute a script file written in D to execute custom codewhen probes are triggered. You can also filter out probes based ontheir attributes.
Related Source Files
Here are the source files related to DTrace:
File Purpose
Include pydtrace.h API definition for DTrace markers
Include pydtrace.d Metadata for the Python provider thatDTrace uses
Include pydtrace_probes.h Auto-generated headers for handlingprobes

Installing DTrace
DTrace comes preinstalled on macOS and can be installed on Linuxusing one of the packaging tools.

359

https://docs.python.org/3/howto/instrumentation.html#available-static-markers
https://docs.python.org/3/howto/instrumentation.html#available-static-markers

Profiling C Code with DTrace
Here’s the command for YUM-based systems:
$ yum install systemtap-sdt-devel

Here’s the command for APT-based systems:
$ apt-get install systemtap-sdt-dev

Compiling DTrace Support
DTrace support must be compiled into CPython. You can do this withthe ./configuration script.
Run ./configure again with the same arguments you used in the chap-ter “Compiling CPython,” and add the flag --with-dtrace. Once this iscomplete, run make clean && make to rebuild the binary.
Check that the configuration tool created the probe header:
$ ls Include/pydtrace_probes.h

Include/pydtrace_probes.h

Important
Newer versions of macOS have kernel-level protection, calledSystem Integrity Protection (SIP), that interferes with DTrace.
The examples in this chapter use the CPython probes. If youwant to include libc or syscall probes to get extra information,then you’ll need to disable SIP.

Using DTrace From CLion
The CLion IDE comes bundled with DTrace support. To start tracing,select Run Attach Profiler to Process and select the running Pythonprocess.
The profiler window will prompt you to start and then stop the

360

Profiling C Code with DTrace
tracing session. Once tracing is complete, it will provide you with aflame graph showing execution stacks and call times, a call tree, anda method list:

DTrace Example
In this example, you’ll test themultithreaded port scanner you createdin the chapter “Parallelism and Concurrency.”
Create a profile script in D, profile_compare.d. To reduce the noisefrom the interpreter startup, this profiler will start when portscan-

ner_threads.py:main() is entered:
cpython-book-samples 62 profile_compare.d

#pragma D option quiet

self int indent;

python$target:::function-entry

/basename(copyinstr(arg0)) == "portscanner_threads.py"

&& copyinstr(arg1) == "main"/

{

self->trace = 1;

361

Profiling C Code with DTrace
self->last = timestamp;

}

python$target:::function-entry

/self->trace/

{

this->delta = (timestamp - self->last) / 1000;

printf("%d\t%*s:", this->delta, 15, probename);

printf("%*s", self->indent, "");

printf("%s:%s:%d\n", basename(copyinstr(arg0)), copyinstr(arg1), arg2);

self->indent++;

self->last = timestamp;

}

python$target:::function-return

/self->trace/

{

this->delta = (timestamp - self->last) / 1000;

self->indent--;

printf("%d\t%*s:", this->delta, 15, probename);

printf("%*s", self->indent, "");

printf("%s:%s:%d\n", basename(copyinstr(arg0)), copyinstr(arg1), arg2);

self->last = timestamp;

}

python$target:::function-return

/basename(copyinstr(arg0)) == "portscanner_threads.py"

&& copyinstr(arg1) == "main"/

{

self->trace = 0;

}

This script will print a line every time a function is executed and timethe delta between when the function starts and exits.
You need to execute with the script argument -s profile_compare andthe command argument -c './python portscanner_threads.py:

362

Conclusion
$ sudo dtrace -s profile_compare.d -c './python portscanner_threads.py'

0 function-entry:portscanner_threads.py:main:16

28 function-entry: queue.py:__init__:33

18 function-entry: queue.py:_init:205

29 function-return: queue.py:_init:206

46 function-entry: threading.py:__init__:223

33 function-return: threading.py:__init__:245

27 function-entry: threading.py:__init__:223

26 function-return: threading.py:__init__:245

26 function-entry: threading.py:__init__:223

25 function-return: threading.py:__init__:245

Important
Older versions of dtrace may not have a -c option. In this case,you will have to run DTrace and the Python command in sepa-rate shells.

In the output, the first column is the time delta in microseconds sincethe last event, followed by the event name, filename, and line num-ber. When function calls are nested, the filename will be increasinglyindented to the right.

Conclusion
In this chapter, you’ve explored benchmarking, profiling, and tracingusing a number of tools designed for CPython. With the right tooling,you can find bottlenecks, compare performance of multiple builds,and identify improvement opportunities.

363

Next Steps
In this chapter, you’ll look at three possible uses for the informationin this book:
1. Writing C or C++ extension modules
2. Improving your Python applications
3. Contributing to the CPython project
The first practical use of this knowledge is to write extension modulesin C or C++.

Writing C Extensions for CPython
There are several ways in which you can extend the functionality ofPython. One of these is to write your Python module in C or C++.This process can lead to improved performance and better access toC library functions and system calls.
If you want to write a C extension module, then these are some essen-tials bits of knowledge covered in this book that you can refer backto:
• How to set up a C compiler and compile C modules fromthe chapter “Compiling CPython”
• How to set up your development environment for C fromthe chapter “Setting Up Your Development Environment”

364

Improving Your Python Applications
• How to increment and decrement references to gener-ated objects from the “Reference Counting” section in the chap-ter “Memory Management”
• What PyObject* is and what its interfaces are from the “Ob-ject andVariableObject Types” section in the chapter “Objects andTypes” chapter
• What type slots are and how to access Python type APIsfrom C from the “Type Slots” section in the “Objects and Types”chapter
• How to add breakpoints to C source рles for your exten-sion module and debug them from the “Debugging” chapter
See Also
If you haven’t written a C extension module before, then checkout Real Python’s “Building a C Extension Module.” The tu-torial includes a concrete example of building, compiling, andtesting an extension module.

Improving Your Python Applications
There are several important topics covered in this book that can helpyou improve your applications. Here are some examples:
• Using parallelism and concurrency techniques to re-duce the execution time of your applications from the“Parallelism and Concurrency” chapter
• Customizing the garbage collector algorithm to betterhandle memory in your application by collecting at theend of a task from the “Garbage Collection” section in the“Memory Management” chapter
• Using the debuggers to debug C extensions and triage is-sues from the “Debugging” chapter

365

https://realpython.com/build-python-c-extension-module

Contributing to the CPython Project
• Using proрlers to proрle the execution time of your codefrom the “Profiling Python Code with cProfile” section of the“Benchmarking, Profiling, and Tracing” chapter
• Analyzing frame execution to inspect and debug complexissues from the “Frame Execution Tracing” section in the “Evalu-ation Loop” chapter

Contributing to the CPython Project
In twelve months, CPython had twelve newminor releases, hundredsof changes and bug reports, and thousands of commits to the sourcecode.
CPython is one of the biggest, most vibrant, and most open softwareprojects out there. The knowledge you’ve gained in this book will giveyou a massive head start to navigating, understanding, and helpingimprove the CPython project.
The CPython community is eager for more contributors. But beforesubmitting a change, improvement, or fix to CPython, you need toknow where to start. Here are a few ideas:
1. Triaging issues raised by developers on bugs.python.org
2. Fixing small, well-described issues
Let’s explore each of those in a bit more detail.
Triaging Issues
All bug reports and change requests are first submitted tobugs.python.org, also known as BPO. This website is the bugtracker for the CPython Project. If you want to submit a pull requeston GitHub, then you first need a BPO number, which is the issuenumber created by BPO (bugs.python.org).
To get started, register yourself as a user by going to User Register onthe left menu.

366

https://bugs.python.org
https://bugs.python.org

Contributing to the CPython Project
The default view isn’t particularly productive and shows both issuesraised by users and those raised by core developers, which likely al-ready have a fix.
Instead, after logging in, go to Your Queries Edit on the left menu.This page will give you a list of queries for the bug index that you canbookmark:

Change the value to leave in to include these queries in the
Your Queries menu.
Here are some of the queries I find useful:
• Easy Documentation Issues: Documentation improvementsthat haven’t been made
• Easy Tasks: Tasks that have been identified as good for begin-ners
• Recently Created: Recently created issues
• Reports Without Replies: Bug reports that never got a reply
• Unread: Bug reports that never got read
• 50 Latest Issues: The fifty most recently updated issues

With these views, you can follow the “Triaging an Issue” guide for thelatest process on commenting on issues.

367

https://devguide.python.org/triaging/

Contributing to the CPython Project
Raising a Pull Request to Fix an Issue
When you’ve settled on an issue, you can get started on creating a fixand submitting it to the CPython project. Here’s the process:
1. Make sure you have a BPO number.
2. Create a branch on your fork of CPython. See the “Getting theSource Code” chapter for steps on downloading the source code.
3. Create a test to reproduce the issue. See the “Testing Modules”section of the “Test Suite” chapter for steps.
4. Make your change following the PEP 7 and PEP 8 style guides.
5. Run the regression test suite to confirm all the tests are passing.The regression test suite will automatically run on GitHub whenyou submit the pull request, but it’s better to check it locally first.See the “Test Suite” chapter for steps.
6. Commit and push your changes to GitHub.
7. Go to github.com/python/cpython and create a pull request foryour branch.
After you submit your pull request, it will be triaged by one of thetriage teams and assigned to a core developer or team for review.
As mentioned earlier, the CPython project needs more contributors.The time between when you submit your change and when it’s re-viewed could be an hour, a week, ormanymonths. Don’t be dismayedif you don’t get an immediate response. Most of the core developersare volunteers and tend to review or merge pull requests in batches.

Important
It’s important to fix only one issue per pull request. If you see aseparate, unrelated issue in some codewhile writing your patch,make a note and submit it as a second pull request.

To help get your change merged quickly, a good explanation of theproblem, the solution, and the fix goes a long way.
368

https://www.python.org/dev/peps/pep-0007/
https://www.python.org/dev/peps/pep-0008/
https://github.com/python/cpython

Keep Learning
Other Contributions
Other than bug fixes, there are some different types of improvementsyou can make to the CPython project:
• Many of the standard library functions and modules are missingunit tests. You can write some tests and submit them to theproject.
• Many of the standard library functions don’t have up-to-datedocumentation. You can update the documentation and submit achange.

Keep Learning
Part of whatmakes Python so great is the community. Know someonelearning Python? Help them out! The only way to know you’ve reallymastered a concept is to explain it to someone else.
Come visit us on the Web and continue your Python journey on therealpython.com website and the @realpython Twitter account.
Weekly Tips for Python Developers
Are you looking for a weekly dose of Python development tips to im-prove your productivity and streamline your workflows? Good news:we’re running a free email newsletter for Python developers just likeyou.
The newsletter emails we send out are not just your typical list of pop-ular articles. Instead, we aim to share at least one original thoughtper week in a (short) essay-style format.
If you’d like to see what all the fuss is about, then head on over to re-alpython.com/newsletter and enter your email address in the signupform. We’re looking forward to meeting you!

369

https://realpython.com/
https://twitter.com/realpython
https://realpython.com/newsletter?utm_source=cpython-book&utm_medium=pdf
https://realpython.com/newsletter?utm_source=cpython-book&utm_medium=pdf

Keep Learning
The Real Python Video Course Library
Become a well-rounded Pythonista with the large (and growing) col-lection of Python tutorials and in-depth training materials at RealPython. With new content published weekly, you’ll always find some-thing to boost your skills:
• Master practical, real-worldPython skills: Our tutorials arecreated, curated, and vetted by a community of expert Pythonistas.At Real Python, you’ll get the trusted resources you need on yourpath to Python mastery.
• Meet other Pythonistas: Join the Real Python Slack chat andmeet the Real Python team and other subscribers. Discuss yourcoding and career questions, vote on upcoming tutorial topics, orjust hang out with us at this virtual water cooler.
• Interactive quizzes & Learning Paths: See where you standand practice what you learn with interactive quizzes, hands-oncoding challenges, and skill-focused learning paths.
• Track your learning progress: Mark lessons as completed orin-progress and learn at your own pace. Bookmark interestinglessons and review them later to boost long-term retention.
• Completion certiрcates: For each course you complete, you re-ceive a shareable (and printable) certificate of completion, hostedprivately on the Real Python website. Embed your certificates inyour portfolio, LinkedIn resume, and other websites to show theworld that you’re a dedicated Pythonista.
• Regularly updated: Keep your skills fresh and keep up withtechnology. We’re constantly releasing new members-only tuto-rials and update our content regularly.

See what’s available at realpython.com/courses

370

https://realpython.com/courses/

Appendix: Introduction to Cfor Python Programmers
This introduction is intended to get an experienced Python program-mer up to speed with the basics of the C language and how it’s used inthe CPython source code. It assumes you already have an intermedi-ate understanding of Python syntax.
That said, C is a fairly limited language, and most of its usage inCPython falls under a small set of syntax rules. Getting to the pointwhere you understand the code is a much smaller step than beingable to write C effectively. This tutorial is aimed at the first goal butnot the second.
One of the first things that stands out as a big difference betweenPython and C is the C preprocessor. Let’s look at that first.

The C Preprocessor
The preprocessor, as the name suggests, is run on your source filesbefore the compiler runs. It has very limited abilities, but you can usethem to great advantage in building C programs.
The preprocessor produces a new file, which is what the compiler willactually process. All the commands to the preprocessor start at thebeginning of a line, with a # symbol as the first non-whitespace char-acter.

371

The C Preprocessor
The main purpose of the preprocessor is to do text substitution in thesource file, but it will also do some basic conditional code with #if orsimilar statements.
Let’s start with the most frequent preprocessor directive: #include.
#include

#include is used to pull the contents of one file into the current sourcefile. There’s nothing sophisticated about #include. It reads a file fromthe file system, runs the preprocessor on that file, and puts the resultsinto the output file. This is done recursively for each #include directive.
For example, if you look at the Modules/_multiprocessing/semaphore.cfile, then near the top you’ll see the following line:
#include "multiprocessing.h"

This tells the preprocessor to pull in the entire contents of multipro-

cessing.h and put them into the output file at this position.
You’ll notice two different forms for the #include statement. One ofthem uses quotes ("") to specify the name of the include file, and theother uses angle brackets (<>). The difference comes fromwhich pathsare searched when looking for the file on the file system.
If you use <> for the filename, then the preprocessor will look only atsystem include files. Using quotes around the filename instead willforce the preprocessor to look in the local directory first and then fallback to the system directories.
#define

#define allows you to do simple text substitution and also plays intothe #if directives you’ll see below.
At its most basic, #define lets you define a new symbol that gets re-placed with a text string in the preprocessor output.

372

The C Preprocessor
Continuing in semphore.c, you’ll find this line:
#define SEM_FAILED NULL

This tells the preprocessor to replace every instance of SEM_FAILED be-low this point with the literal string NULL before the code is sent to thecompiler.
#define items can also take parameters as in thisWindows-specific ver-sion of SEM_CREATE:
#define SEM_CREATE(name, val, max) CreateSemaphore(NULL, val, max, NULL)

In this case, the preprocessor will expect SEM_CREATE() to look like afunction call and have three parameters. This is generally referred toas a macro. It will directly replace the text of the three parametersinto the output code.
For example, on line 460 of semphore.c, the SEM_CREATE macro is usedlike this:

handle = SEM_CREATE(name, value, max);

When you’re compiling for Windows, this macro will be expanded sothat line looks like this:
handle = CreateSemaphore(NULL, value, max, NULL);

In a later section, you’ll see how this macro is defined differently onWindows and other operating systems.
#undef

This directive erases any previous preprocessor definition from #de-

fine. This makes it possible to have a #define in effect for only part ofa file.

373

The C Preprocessor
#if

The preprocessor also allows conditional statements, allowing you toeither include or exclude sections of text based on certain conditions.Conditional statements are closed with the #endif directive and canalso make use of #elif and #else for fine-tuned adjustments.
There are three basic forms of #if that you’ll see in the CPythonsource:
1. #ifdef <macro> includes the subsequent block of text if thespecified macro is defined. You may also see it written as #if

defined(<macro>).
2. #ifndef <macro> includes the subsequent block of text if the speci-fied macro is not defined.
3. #if <macro> includes the subsequent block of text if the macro isdefined and it evaluates to True.
Note the use of “text” instead of “code” to describe what’s included orexcluded from the file. The preprocessor knows nothing of C syntaxand doesn’t care what the specified text is.
#pragma

Pragmas are instructions or hints to the compiler. In general, you canignore these while reading the code as they usually deal with how thecode is compiled, not how the code runs.
#error

Finally, #error displays amessage and causes the preprocessor to stopexecuting. Again, you can safely ignore these for reading the CPythonsource code.

374

Basic C Syntax
Basic C Syntax
This section won’t cover all aspects of C, nor is it intended to teachyou how to write C. It will focus on aspects of C that are different orconfusing for Python developers the first time they see them.
General
Unlike in Python, whitespace isn’t important to the C compiler. Thecompiler doesn’t care if you split statements across lines or jam yourentire program into a single, very long line. This is because it usesdelimiters for all statements and blocks.
There are, of course, very specific rules for the parser, but in generalyou’ll be able to understand the CPython source just knowing thateach statement ends with a semicolon (;), and all blocks of code aresurrounded by curly braces ({}).
The exception to this rule is that if a block has only a single statement,then the curly braces can be omitted.
All variables in C must be declared, meaning there needs to be a sin-gle statement indicating the type of that variable. Note that, unlikePython, the data type that a single variable can hold can’t change.
Let’s look at some examples:
/* Comments are included between slash-asterisk and asterisk-slash */

/* This style of comment can span several lines -

so this part is still a comment. */

// Comments can also come after two slashes

// This type of comment only goes until the end of the line, so new

// lines must start with double slashes (//).

int x = 0; // declares x to be of type 'int' and initializes it to 0

if (x == 0) {

375

Basic C Syntax
// This is a block of code

int y = 1; // y is only a valid variable name until the closing }

// More statements here

printf("x is %d y is %d\n", x, y);

}

// Single-line blocks do not require curly brackets

if (x == 13)

printf("x is 13!\n");

printf("past the if block\n");

In general, you’ll see that the CPython code is very cleanly formattedand typically sticks to a single style within a given module.
if Statements
In C, if works generally like it does in Python. If the condition istrue, then the following block is executed. The else and elseif syn-tax should be familiar enough to Python programmers. Note that C
if statements don’t need an endif because blocks are delimited by {}.
There’s a shorthand in C for short if … else statements called theternary operator:
condition ? true_result : false_result

You can find it in semaphore.c where, for Windows, it defines a macrofor SEM_CLOSE():
#define SEM_CLOSE(sem) (CloseHandle(sem) ? 0 : -1)

The return value of this macro will be 0 if the function CloseHandle()returns true and -1 otherwise.

376

Basic C Syntax
Note
Boolean variable types are supported and used in parts of theCPython source, but they aren’t part of the original language.C interprets binary conditions using a simple rule: 0 or NULL isfalse, and everything else is true.

switch Statements
Unlike Python, C also supports switch. Using switch can be viewedas a shortcut for extended if … elseif chains. This example is from
semaphore.c:
switch (WaitForSingleObjectEx(handle, 0, FALSE)) {

case WAIT_OBJECT_0:

if (!ReleaseSemaphore(handle, 1, &previous))

return MP_STANDARD_ERROR;

*value = previous + 1;

return 0;

case WAIT_TIMEOUT:

*value = 0;

return 0;

default:

return MP_STANDARD_ERROR;

}

This performs a switch on the return value from WaitForSingleOb-

jectEx(). If the value is WAIT_OBJECT_0, then the first block is executed.The WAIT_TIMEOUT value results in the second block, and anything elsematches the default block.
Note that the value being tested, in this case the return value from
WaitForSingleObjectEx(), must be an integral value or an enumeratedtype, and each case must be a constant value.

377

Basic C Syntax
Loops
There are three looping structures in C:
1. for loops
2. while loops
3. do … while loops
Let’s look at each of these in turn.
for loops have syntax that’s quite different from Python:
for (<initialization>; <condition>; <increment>) {

<code to be looped over>

}

In addition to the code to be executed in the loop, there are threeblocks of code that control the for loop:
1. The <initialization> section runs exactly once when the loop isstarted. It’s typically used to set a loop counter to an initial value(and possibly to declare the loop counter).
2. The <increment> code runs immediately after each pass through themain block of the loop. Traditionally, this will increment the loopcounter.
3. Finally, the <condition> runs after the <increment>. The return valueof this code will be evaluated and the loop breaks when this condi-tion returns false.
Here’s an example from Modules/sha512module.c:
for (i = 0; i < 8; ++i) {

S[i] = sha_info->digest[i];

}

This loop will run 8 times, with i incrementing from 0 to 7, and willterminate when the condition is checked and i is 8.

378

Basic C Syntax
while loops are virtually identical to their Python counterparts. The do… while syntax is a little different, however. The condition on a do …
while loop isn’t checked until after the body of the loop is executed forthe first time.
There are many instances of for loops and while loops in the CPythoncode base, but do … while is unused.
Functions
The syntax for functions in C is similar to that in Python, with theaddition that the return type and parameter types must be specified.The C syntax looks like this:
<return_type> function_name(<parameters>) {

<function_body>

}

The return type can be any valid type in C, including built-in types like
int and double as well as custom types like PyObject, as in this examplefrom semaphore.c:
static PyObject *

semlock_release(SemLockObject *self, PyObject *args)

{

<statements of function body here>

}

Here you see a couple of C-specific features in play. First, remem-ber that whitespace doesn’t matter. Much of the CPython source codeputs the return type of a function on the line above the rest of the func-tion declaration. That’s the PyObject * part. You’ll take a closer look atthe use of * a little later, but for now it’s important to know that thereare several modifiers that you can place on functions and variables.
static is one of these modifiers. There are some complex rules gov-erning how modifiers operate. For instance, the static modifier heremeans something very different than if you placed it in front of a vari-able declaration.

379

Basic C Syntax
Fortunately, you can generally ignore these modifiers while trying toread and understand the CPython source code.
The parameter list for functions is a comma-separated list of variables,similar to what you use in Python. Again, C requires specific types foreach parameter, so SemLockObject *self says that the first parameter isa pointer to a SemLockObject and is called self. Note that all parametersin C are positional.
Let’s look at what the “pointer” part of that statement means.
To give some context, the parameters that are passed to C functionsare all passed by value, meaning the function operates on a copy ofthe value and not on the original value in the calling function. Toworkaround this, functions will frequently pass in the address of some datathat the function can modify.
These addresses are called pointers and have types, so int * is apointer to an integer value and is of a different type than double *,which is a pointer to a double-precision floating-point number.
Pointers
As mentioned above, pointers are variables that hold the address of avalue. These are used frequently in C, as seen in this example:
static PyObject *

semlock_release(SemLockObject *self, PyObject *args)

{

<statements of function body here>

}

Here, the self parameter will hold the address of, or a pointer to, a
SemLockObject value. Also note that the function will return a pointerto a PyObject value.
There’s a special value in C called NULL that indicates a pointer doesn’tpoint to anything. You’ll see pointers assigned to NULL and checkedagainst NULL throughout the CPython source. This is important since

380

Basic C Syntax
there are very few limitations as to what values a pointer can have,and accessing a memory location that isn’t part of your program cancause very strange behavior.
On the other hand, if you try to access the memory at NULL, then yourprogramwill exit immediately. This may not seem better, but it’s gen-erally easier to figure out a memory bug if NULL is accessed than if arandom memory address is modified.
Strings
C doesn’t have a string type. There’s a convention around whichmany standard library functions are written, but there’s no actualtype. Rather, strings in C are stored as arrays of char (for ASCII) or
wchar (for Unicode) values, each of which holds a single character.Strings are marked with a null terminator, which has a value 0 andis usually shown in code as \0.
Basic string operations like strlen() rely on this null terminator tomark the end of the string.
Because strings are just arrays of values, they cannot be directlycopied or compared. The standard library has the strcpy() and str-

cmp() functions (and their wchar cousins) for doing these operationsand more.
Structs
Your final stop on this mini-tour of C is how you can create new typesin C: structs. The struct keyword allows you to group a set of differ-ent data types together into a new, custom data type:
struct <struct_name> {

<type> <member_name>;

<type> <member_name>;

...

};

381

Conclusion
This partial example from Modules/arraymodule.c shows a struct decla-ration:
struct arraydescr {

char typecode;

int itemsize;

...

};

This creates a new data type called arraydescr which has many mem-bers, the first two of which are a char typecode and an int itemsize.
Frequently structs will be used as part of a typedef, which provides asimple alias for the name. In the example above, all variables of thenew type must be declared with the full name struct arraydescr x;.
You’ll frequently see syntax like this:
typedef struct {

PyObject_HEAD

SEM_HANDLE handle;

unsigned long last_tid;

int count;

int maxvalue;

int kind;

char *name;

} SemLockObject;

This creates a new, custom struct type and gives it the name SemLock-

Object. To declare a variable of this type, you can simply use the alias
SemLockObject x;.

Conclusion
This wraps up your quick walk through C syntax. Although thisdescription barely scratches the surface of the C language, you nowhave sufficient knowledge to read and understand the CPythonsource code.

382

Conclusion
Python Mastery: We’re With You All the Way

When you subscribe to Real Python, you’ll master real-worldPython skills with a community of experts. Become a well-rounded Pythonista with hands-on resources at your fingertips:
• Thousands of tutorial, video lessons, and more: With newcontent published weekly, you’ll always find something to boostyour skills.
• Acommunity of expertPythonistas: Discuss your coding andcareer questions, vote onupcoming tutorial topics, or just hang outwith us at the virtual water cooler.
• Interactive quizzes & learning paths: See where you standand practice what you learn with interactive quizzes, hands-oncoding challenges, and skill-focused learning paths.

We look forward to meeting you in our private Slack communityand hearing all about your Python journey! Subscribe today atrealpython.com/join

383

https://realpython.com/join/?utm_source=cpython-internals-book

Acknowledgements
Thank you to my wife, Verity, for her support and patience. Withouther this wouldn’t be possible.
Thank you to everyone who has supported me on this journey.
– Anthony Shaw
We’d like to thank our early access readers for their excellent feed-back:
Jürgen Gmach, Jim Anderson, ES Alexander, Patton Bradford,Michal Porteš, Sam Roberts, Vishnu Sreekumar, Mathias Hjärtström,Sören Weber, Jürgen Gmach, Art, Mary Chester-Kadwell, JonathanReichelt Gjertsen, Andrey Ferriyan, Guillaume, Micah Lyle, RobertWillhoft, Juan Manuel Gimeno, Błażej Michalik, RWA, Dave, Lionel,Pasi, Thad, Dan Bader, Steve Hill, Mauricio, R. Wayne, Carlos, Mary,Anton Zayniev, aleks, Lindsay John Arendse, Vincent Poulailleau,Christian Hettlage, Felipe “Bidu” Rodrigues, Francois, EugeneLatham, Jordan Rowland, Jenn D, Angel, Mauro Fiacco, Rolandas,Radek, Peter, milos, Hans Davidsson, Bernat Gabor, Florian Dahlitz,Anders Bogsnes, Shmuel Kamensky, Matt Clarke, Josh Deiner, OrenWolfe, R. Wayne Arenz, emily spahn, Eric Ranger, Dave Grunwald,bob desinger, Robert, Peter McDonald, Park Seyoung, Allen Huang,Seyoung Park, Eugene, Kartik, Vegard Stikbakke, Matt Young, Mar-tin Berg Petersen, Jack Camier, Keiichi Kobayashi, Julius Schwartz,Luk, Christian, Axel Voitier, Aleksandr, Javier Novoa Cataño, travis,Najam Syed, Sebastian Nehls, Yi Wei, Branden, paolo, Jim Wood-ward, Huub van Thienen, Edward Duarte, Ray, Ivan, Chris Gerrish,Spencer, Volodymyr, Rob Pinkerton, Ben Campbell, Francesc, ChrisSmith, John Wiederhirn, Jon Peck, Beau Senyard, Rémi MEVAERE,Carlos S Ande, Abhinav Upadhyay, Charles Wegrzyn, Yaroslav Nez-val, Ben Hockley, Marin Muso, Karthik, John Bussoletti, Jonathon,Kerby Geffrard, Andrew Montalenti, Mateusz Stawiarski, EvanceSoumaoro, Fletcher Graham, André Roberge, Daniel Hao, Kimia. Ifwe’ve forgotten to mention your name here, then please know we’reextremely grateful for your help. Thank you all!

	Contents
	Foreword
	Introduction
	How to Use This Book
	Bonus Material and Learning Resources

	Getting the CPython Source Code
	What's in the Source Code?

	Setting Up Your Development Environment
	IDE or Editor?
	Setting Up Visual Studio
	Setting Up Visual Studio Code
	Setting Up JetBrains CLion
	Setting up Vim
	Conclusion

	Compiling CPython
	Compiling CPython on macOS
	Compiling CPython on Linux
	Installing a Custom Version
	A Quick Primer on Make
	CPython's Make Targets
	Compiling CPython on Windows
	Profile-Guided Optimization
	Conclusion

	The Python Language and Grammar
	Why CPython Is Written in C and Not Python
	The Python Language Specification
	The Parser Generator
	Regenerating Grammar
	Conclusion

	Configuration and Input
	Configuration State
	Build Configuration
	Building a Module From Input
	Conclusion

	Lexing and Parsing With Syntax Trees
	Concrete Syntax Tree Generation
	The CPython Parser-Tokenizer
	Abstract Syntax Trees
	Important Terms to Remember
	Example: Adding an Almost-Equal Comparison Operator
	Conclusion

	The Compiler
	Related Source Files
	Important Terms
	Instantiating a Compiler
	Future Flags and Compiler Flags
	Symbol Tables
	Core Compilation Process
	Assembly
	Creating a Code Object
	Using Instaviz to Show a Code Object
	Example: Implementing the Almost-Equal Operator
	Conclusion

	The Evaluation Loop
	Related Source Files
	Important Terms
	Constructing Thread State
	Constructing Frame Objects
	Frame Execution
	The Value Stack
	Example: Adding an Item to a List
	Conclusion

	Memory Management
	Memory Allocation in C
	Design of the Python Memory Management System
	The CPython Memory Allocator
	The Object and PyMem Memory Allocation Domains
	The Raw Memory Allocation Domain
	Custom Domain Allocators
	Custom Memory Allocation Sanitizers
	The PyArena Memory Arena
	Reference Counting
	Garbage Collection
	Conclusion

	Parallelism and Concurrency
	Models of Parallelism and Concurrency
	The Structure of a Process
	Multiprocess Parallelism
	Multithreading
	Asynchronous Programming
	Generators
	Coroutines
	Asynchronous Generators
	Subinterpreters
	Conclusion

	Objects and Types
	Examples in This Chapter
	Built-in Types
	Object and Variable Object Types
	The type Type
	The bool and long Types
	The Unicode String Type
	The Dictionary Type
	Conclusion

	The Standard Library
	Python Modules
	Python and C Modules

	The Test Suite
	Running the Test Suite on Windows
	Running the Test Suite on Linux or macOS
	Test Flags
	Running Specific Tests
	Testing Modules
	Test Utilities
	Conclusion

	Debugging
	Using the Crash Handler
	Compiling Debug Support
	Using LLDB for macOS
	Using GDB
	Using Visual Studio Debugger
	Using CLion Debugger
	Conclusion

	Benchmarking, Profiling, and Tracing
	Using timeit for Microbenchmarks
	Using the Python Benchmark Suite for Runtime Benchmarks
	Profiling Python Code with cProfile
	Profiling C Code with DTrace
	Conclusion

	Next Steps
	Writing C Extensions for CPython
	Improving Your Python Applications
	Contributing to the CPython Project
	Keep Learning

	Appendix: Introduction to C for Python Programmers
	The C Preprocessor
	Basic C Syntax
	Conclusion

