CPYTHON
INTERNALS

NARRRRRRNRRNNRN
OO TR

YOUR GUIDE TO THE
PYTHON 3 INTERPRETER

FIRST EDITION

BY ANTHONY SHAW AND THE REALPYTHON.COM TUTORIAL TEAM

CPython Internals: Your Guide to the
Python 3 Interpreter

Anthony Shaw

CPython Internals: Your Guide to the Python 3 Interpreter
Anthony Shaw
Copyright © Real Python (realpython.com), 2012—2021

For online information and ordering of this and other books by Real
Python, please visit realpython.com. For more information, please
contact us at info@realpython.com.

ISBN: 9781775093343 (paperback)

ISBN: 9781775093350 (electronic)

Cover design by Aldren Santos

Additional editing and proofreading by Jacob Schmitt

“Python” and the Python logos are trademarks or registered trade-
marks of the Python Software Foundation, used by Real Python with
permission from the Foundation.

Thank you for downloading this ebook. This ebook is licensed for
your personal enjoyment only. This ebook may not be re-sold or
given away to other people. If you would like to share this book
with another person, please purchase an additional copy for each
recipient. If you’re reading this book and did not purchase it,
or it was not purchased for your use only, then please return to
realpython.com/cpython-internals and purchase your own copy.
Thank you for respecting the hard work behind this book.

Updated 2021-01-25

https://realpython.com/
https://realpython.com/
https://realpython.com/cpython-internals

What Readers Say About CPython Internals: Your Guide to
the Python 3 Interpreter

“It’s the book that I wish existed years ago when I started my Python
journey. After reading this book your skills will grow and you will be
able solve even more complex problems that can improve our world.”

— Carol Willing, CPython core developer and member of the
CPython Steering Council

“The ‘Parallelism and Concurrency’ chapter is one of my favorites. I
had been looking to get an in depth understanding around this topic
and I found your book extremely helpful.

Of course, after going over that chapter I couldn’t resist the rest. I am
eagerly looking forward to have my own printed copy once it’s out!

I had gone through your ‘Guide to the CPython Source Code’ article
previously, which got me interested in finding out more about the in-
ternals.

There are a ton of books on Python which teach the language, but I
haven't really come across anything that would go about explaining
the internals to those curious minded.

And while I teach Python to my daughter currently, I have this book
added in her must-read list. She’s currently studying information sys-
tems at Georgia State University.”

— Milan Patel, vice president at (a major investment bank)

“What impresses me the most about Anthony’s book is how it puts all
the steps for making changes to the CPython code base in an easy-to-
follow sequence. It really feels like a ‘missing manual’ of sorts.

Diving into the C underpinnings of Python was a lot of fun and it
cleared up some longstanding questions marks for me. I found the
chapter about CPython’s memory allocator especially enlightening.

CPython Internals is a great (and unique) resource for anybody look-
ing to take their knowledge of Python to a deeper level.”

— Dan Bader, author of Python Tricks and editor in chief at
Real Python

“This book helped me to better understand how lexing and parsing
works in Python. It’s my recommended source if you want to under-
stand it.”

— Florian Dahlitz, Pythonista

“A comprehensive walkthrough of the Python internals, a topic which
surprisingly has almost no good resource, in an easy-to-understand
manner for both beginners as well as advanced Python users.”

— Abhishek Sharma, data scientist

About the Author

Anthony Shaw is an avid Pythonista and Fellow of the Python Soft-
ware Foundation.

Anthony has been programming since the age of 12 and found a love
for Python while trapped inside a hotel in Seattle, Washington, 15
years later. After ditching the other languages he’d learned, Anthony
has been researching, writing about, and creating courses for Python
ever since.

Anthony also contributes to small and large Open Source projects, in-
cluding CPython, as well as being a member of the Apache Software
Foundation.

Anthony’s passion lies in understanding complex systems, then sim-
plifying them, and teaching them to people.

About the Review Team

Jim Anderson has been programming for a long time in a variety
of languages. He has worked on embedded systems, built distributed
build systems, done off-shore vendor management, and sat in many,
many meetings.

Joanna Jablonski is the executive editor of Real Python. She likes
natural languages just as much as she likes programming languages.
Her love for puzzles, patterns, and pesky little details led her to follow
a career in translation. It was only a matter of time before she would
fall in love with a new language: Python! She joined Real Python in
2018 and has been helping Pythonistas level up ever since.

Contents

Contents
Foreword

Introduction
HowtoUseThisBook
Bonus Material and Learning Resources

Getting the CPython Source Code
What’sin the Source Code?

Setting Up Your Development Environment

Setting Up Visual Studio
Setting Up Visual StudioCode
Setting Up JetBrainsCLion
SettingupVim.
Conclusion.,

11

13
14
16

20
21

Contents

Compiling CPython 42
Compiling CPythononmacOS 43
Compiling CPythonon Linux 45
Installing a Custom Version 47
A Quick PrimeronMake 47
CPython’s Make Targets 49
Compiling CPython on Windows 52
Profile-Guided Optimization 58
Conclusion., 60

The Python Language and Grammar 61
Why CPython Is Written in C and Not Python 62
The Python Language Specification 64
The Parser Generator 69
Regenerating Grammar 69
Conclusion. 74

Configuration and Input 76
Configuration State 79
Build Configuration 83
Building a Module From Input 84
Conclusion. 89

Lexing and Parsing With Syntax Trees 91
Concrete Syntax Tree Generation 92
The CPython Parser-Tokenizer 96
Abstract Syntax Trees v it 101
Important Terms to Remember 111
Example: Adding an Almost-Equal Comparison Operator . 111
Conclusion. 117

Contents

The Compiler 118
Related Source Files 119
ImportantTerms 120
Instantiating a Compiler 121
Future Flags and Compiler Flags 122
SymbolTables 123
Core Compilation Process 130
Assembly 137
Creatinga Code Object 141
Using Instaviz to Show a Code Object 142
Example: Implementing the Almost-Equal Operator 144
Conclusion. 150

The Evaluation Loop 151
Related Source Files 152
ImportantTerms 152
Constructing Thread State 153
Constructing Frame Objects 154
Frame Execution 162
TheValueStack 165
Example: Adding an ItemtoalList 171
Conclusion., 175

Memory Management 177
Memory AllocationinC 178
Design of the Python Memory Management System 181
The CPython Memory Allocator 183
The Object and PyMem Memory Allocation Domains . . . 193
The Raw Memory Allocation Domain 196
Custom Domain Allocators 197
Custom Memory Allocation Sanitizers 198
The PyArena MemoryArena 201
Reference Counting 202
Garbage Collection 209
Conclusion., 219

Contents

Parallelism and Concurrency
Models of Parallelism and Concurrency
The StructureofaProcess
Multiprocess Parallelism
Multithreading
Asynchronous Programming

Generators
Coroutines

Asynchronous Generators
Subinterpreters 0.,

Conclusion

Objects and Types
Examples in This Chapter
Built-inTypes
Object and Variable Object Types
Thetype TYPE . . . v v v v v i e e e e e e e e e
Thebool and long Types v v v v v v v v v
The Unicode String Type
The Dictionary Type

Conclusion

The Standard Library
PythonModules
Pythonand CModules

The Test Suite
Running the Test Suite on Windows
Running the Test Suite on Linux ormacOS

Test Flags

Running SpecificTests
TestingModules
Test Utilities

Conclusion

221
223
223
226
250
265
265
272
278
279
283

285
286
287
288
289
293
298
309
315

316
316
318

322
322
323
324
324
326
327
328

Contents

Debugging 329
Usingthe CrashHandler 330
Compiling Debug Support 330
Using LLDBformacOS 331
UsingGDB 335
Using Visual Studio Debugger 338
Using CLion Debugger 340
Conclusion. 345

Benchmarking, Profiling, and Tracing 346
Using timeit for Microbenchmarks 347
Using the Python Benchmark Suite for Runtime Benchmarks 349
Profiling Python Code with cProfile 355
Profiling C Code with DTrace 358
Conclusion. 363

Next Steps 364
Writing C Extensions for CPython 364
Improving Your Python Applications 365
Contributing to the CPython Project 366
KeepLearning 369

Appendix: Introduction to C for Python Programmers 371

The C Preprocessor v v v v v v ... 371
BasicCSyntax 375
Conclusion., 382

10

Foreword

A programming language created by a community fos-
ters happiness in its users around the world.

— Guido van Rossum, “King’s Day Speech”

I love building tools that help us learn, empower us to create, and
move us to share knowledge and ideas with others. I feel humbled,
thankful, and proud when I hear how these tools and Python are
helping you to solve real-world problems, like climate change or
Alzheimer’s.

Through my four-decade love of programming and problem solving, I
have spent time learning, writing a lot of code, and sharing my ideas
with others. I've seen profound changes in technology as the world
has progressed from mainframes to cell phone service to the wide-
ranging wonders of the Web and cloud computing. All these technolo-
gies, including Python, have one thing in common.

At one moment, these successful innovations were nothing more than
an idea. The creators, like Guido, had to take risks and leaps of faith
to move forward. Dedication, learning through trial and error, and
working together through many failures built a solid foundation for
success and growth.

CPython Internals will take you on a journey to explore the wildly suc-
cessful programming language Python. The book serves as a guide
to how CPython works under the hood. It will give you a glimpse of
how the core developers crafted the language.

11

http://neopythonic.blogspot.com/2016/04/

Contents

Python’s strengths include its readability and the welcoming commu-
nity dedicated to education. Anthony embraces these strengths when
explaining CPython, encouraging you to read the source and sharing
the building blocks of the language with you.

Why do I want to share Anthony’s CPython Internals with you? It’s the
book that I wish existed years ago when I started my Python journey.
More importantly, I believe we, as members of the Python community,
have a unique opportunity to put our expertise to work to help solve
the complex real-world problems facing us.

I'm confident that after reading this book, your skills will grow, and
you will be able solve even more complex problems and improve our
world.

It’s my hope that Anthony motivates you to learn more about Python,
inspires you to build innovative things, and gives you confidence to
share your creations with the world.

Now is better than never.

— Tim Peters, The Zen of Python

Let’s follow Tim’s wisdom and get started now.
Warmly,

— Carol Willing, CPython core developer and member of the
CPython Steering Council

12

Introduction

Are there certain parts of Python that just seem like magic, like how
finding an item is so much faster with dictionaries than looping over a
list? How does a generator remember the state of variables each time
it yields a value? Why don’t you ever have to allocate memory like you
do with other languages?

The answer is that CPython, the most popular Python runtime, is writ-
ten in human-readable C and Python code.

CPython abstracts the complexities of the underlying C platform and
your operating system. It makes threading straightforward and cross-
platform. It takes the pain of memory management in C and makes it
simple.

CPython gives the developer writing Python code the platform to write
scalable and performant applications. At some stage in your progres-
sion as a Python developer, you’ll need to understand how CPython
works. These abstractions aren’t perfect, and they’re leaky.

Once you understand how CPython works, you can fully leverage its
power and optimize your applications. This book will explain the con-
cepts, ideas, and technicalities of CPython.

In this book, you’ll cover the major concepts behind the internals of
CPython and learn how to:

« Read and navigate the source code

+ Compile CPython from source code

13

How to Use This Book

« Make changes to the Python syntax and compile them into your
version of CPython

« Navigate and comprehend the inner workings of features like lists,
dictionaries, and generators

» Master CPython’s memory management capabilities

+ Scale your Python code with parallelism and concurrency
« Modify the core types with new functionality

+ Run the test suite

« Profile and benchmark the performance of your Python code and
runtime

« Debug C and Python code like a professional

« Modify or upgrade components of the CPython library to con-
tribute them to future versions

Take your time with each chapter and try out the demos and interac-
tive elements. You'll feel a sense of achievement as you grasp the core
concepts that will make you a better Python programmer.

How to Use This Book

This book is all about learning by doing, so be sure to set up your IDE
early on by reading the instructions, downloading the code, and writ-
ing the examples.

For the best results, we recommend that you avoid copying and past-
ing the code examples. The examples in this book took many itera-
tions to get right, and they may also contain bugs.

Making mistakes and learning how to fix them is part of the learning
process. You might discover better ways to implement the examples,
try changing them, and see what effect it has.

With enough practice, you’ll master this material—and have fun along
the way!

14

How to Use This Book

How skilled in Python do I need to be to use this
book?

This book is aimed at intermediate to advanced Python developers.
Every effort has been taken to show code examples, but some inter-
mediate Python techniques will be used throughout.

Do I need to know C to use this book?

You don’t need to be proficient in C to use this book. If you're new
to C, then check out the appendix, “Introduction to C for Python Pro-
grammers,” for a quick introduction.

How long will it take to finish this book?

We don’t recommend rushing through this book. Try reading one
chapter at a time, trying the examples after each chapter and explor-
ing the code simultaneously. Once you’ve finished the book, it will
make a great reference guide for you to come back to in time.

Won'’t the content in this book be out of date
really quickly?

Python has been around for more than thirty years. Some parts of the
CPython code haven’t been touched since they were originally written.
Many of the principles in this book have been the same for ten or more
years.

In fact, while writing this book, we discovered many lines of code that
were written by Guido van Rossum (the author of Python) and left
untouched since version 1.

Some of the concepts in this book are brand-new. Some are even ex-
perimental. While writing this book, we came across issues in the
source code and bugs in CPython that were later fixed or improved.
That’s part of the wonder of CPython as a flourishing open source
project.

15

https://github.com/python/cpython/pulls?q=is%3Apr+author%3Atonybaloney+is%3Amerged+

Bonus Material and Learning Resources

The skills you'll learn in this book will help you read and understand
current and future versions of CPython. Change is constant, and ex-
pertise is something you can develop along the way.

Bonus Material and Learning Resources

This book comes with a number of free bonus resources that you can
access at realpython.com/cpython-internals/resources/. On this web
page you can also find an errata list with corrections maintained by
the Real Python team.

Code Samples

The examples and sample configurations throughout this book will
be marked with a header denoting them as part of the cpython-book-
samples folder:

cpython-book-samples?» 01 » example.py

import this

You can download the code samples at realpython.com/cpython-
internals/resources/.

Code Licenses

The example Python scripts associated with this book are licensed un-
der a Creative Commons Public Domain (CCo) License. This means
you're welcome to use any portion of the code for any purpose in your
own programs.

CPython is licensed under the Python Software Foundation 2.0
license. Snippets and samples of CPython source code used in this
book are done so under the terms of the PSF 2.0 license.

16

https://realpython.com/cpython-internals/resources/
https://realpython.com/cpython-internals/resources/
https://realpython.com/cpython-internals/resources/
https://creativecommons.org/publicdomain/zero/1.0/
https://github.com/python/cpython/blob/master/LICENSE
https://github.com/python/cpython/blob/master/LICENSE

Bonus Material and Learning Resources

The code in this book has been tested with Python 3.9 on Win-
dows 10, macOS 10.15, and Linux.

Formatting Conventions

Code blocks are used to present example code:

This is Python code:
print("Hello, World!™)

Operating system—agnostic commands follow the Unix-style format:

$ # This is a terminal command:

$ python hello-world.py
(The $ is not part of the command.)

Windows-specific commands have the Windows command-line for-
mat:

> python hello-world.py
(The > is not part of the command.)
Command-line syntax follows this format:

* Unbracketed text must be typed as it is shown.

* <Text inside angle brackets>indicates a variable for which you must
supply a value. For example, you would replace <filename> with the
name of a specific file.

+ [Text inside square brackets] indicates an optional argument that
you may supply.

Bold text denotes a new or important term.

17

Bonus Material and Learning Resources

Notes and alert boxes appear as follows:

This is a note filled in with placeholder text. The quick brown
fox jumps over the lazy dog. The quick brown Python slithers
over the lazy hog.

Important

This is an alert also filled in with placeholder text. The quick
brown fox jumps over the lazy dog. The quick brown Python
slithers over the lazy hog.

Any references to a file within the CPython source code will be shown
like this:

path» to» file.py

Shortcuts or menu commands will be given in sequence, like this:

[File) Other) Option)

Keyboard commands and shortcuts will be given for both macOS and
Windows:

(Ce+[Space

Feedback and Errata

We welcome ideas, suggestions, feedback, and the occasional rant.
Did you find a topic confusing? Did you find an error in the text or
code? Did we leave out a topic you would love to know more about?

We’re always looking to improve our teaching materials. Whatever
the reason, please send in your feedback at the link below:

realpython.com/cpython-internals/feedback

https://realpython.com/cpython-internals/feedback

Bonus Material and Learning Resources

About Real Python

At Real Python, youll learn real-world programming skills from a
community of professional Pythonistas from all around the world.

The realpython.com website launched in 2012 and currently helps
more than three million Python developers each month with books,
programming tutorials, and other in-depth learning resources.

Here’s where you can find Real Python on the Web:

« realpython.com

e @realpython on Twitter

» The Real Python Newsletter
« The Real Python Podcast

19

https://realpython.com
https://realpython.com
https://realpython.com
https://twitter.com/realpython
https://realpython.com/newsletter
https://realpython.com/podcast

Getting the CPython Source
Code

When you type python at the console or install a Python distribution
from Python.org, you're running CPython. CPython is one of many
Python implementations maintained and written by different teams
of developers. Some alternatives you may have heard of are PyPy,
Cython, and Jython.

The unique thing about CPython is that it contains both a runtime
and the shared language specification that all other Python implemen-
tations use. CPython is the official, or reference, implementation of
Python.

The Python language specification is the document that describes
the Python language. For example, it says that assert is a reserved
keyword and that [] is used for indexing, slicing, and creating empty
lists.

Think about the features you expect from the Python distribution:
» When you type python without a file or module, it gives an interac-
tive prompt (REPL).

« You can import built-in modules like json, csv, and collections
from the standard library.

+ You can install packages from the Internet using pip.

+ You can test your applications using the built-in unittest library.

20

https://www.python.org
https://www.python.org/download/alternatives/
https://pypy.org/
https://cython.org/
https://www.jython.org/

What’s in the Source Code?

These are all part of the CPython distribution. It includes a lot more
than just a compiler.

In this book, you’ll explore the different parts of the CPython distribu-
tion:

+ The language specification

 The compiler

+ The standard library modules

« The core types

« The test suite

What’s in the Source Code?

The CPython source distribution comes with a whole range of tools,
libraries, and components that you’ll explore in this book.

This book targets version 3.9 of the CPython source code.

To download a copy of the CPython source code, you can use git to
pull the latest version:

$ git clone --branch 3.9 https://github.com/python/cpython
$ cd cpython

The examples in this book are based on Python version 3.9.

Switching to the 3.9 branch is an important step. The master
branch changes on an hourly basis. Many of the examples and
exercises in this book are unlikely to work on master.

21

https://github.com/python/cpython/tree/3.9
https://git-scm.com/

What'’s in the Source Code?

If you don’t have Git available, then you can install it from
git-scm.com. Alternatively, you can download a ZIP file of the
CPython source directly from the GitHub website.

If you download the source as a ZIP file, then it won’t contain
any history, tags, or branches.

Inside the newly downloaded cpython directory, youll find the follow-
ing subdirectories:

E‘] cpython/
——Doc Source for the documentation
Grammar The computer-readable language definition
Include The C header files
Lib Standard library modules written in Python
Mac macOS support files
Misc Miscellaneous files
——Modules Standard library modules written in C
——Objects Core types and the object model
——~Parser The Python parser source code
——PC Windows build support files for older versions of Windows
——PCBuild Windows build support files
Programs Source code for the python executable and other binaries
——Python The CPython interpreter source code
Tools Standalone tools useful for building or extending CPython
——my Custom scripts to automate configuration of the makefile

Next, you’ll set up your development environment.

22

https://git-scm.com/
https://github.com/python/cpython/archive/3.9.zip

Setting Up Your
Development Environment

Throughout this book, you’ll be working with both C and Python code.
It’s essential that you have your development environment configured
to support both languages.

The CPython source code is about 65 percent Python (of which the
tests are a significant part) and 24 percent C. The remainder is a mix
of other languages.

IDE or Editor?

If you haven’t yet decided which development environment to use,
then there’s one decision to make first: whether to use an integrated
development environment (IDE) or a code editor.

« An IDE targets a specific language and toolchain. Most IDEs have
integrated testing, syntax checking, version control, and compila-
tion.

» A code editor enables you to edit code files, regardless of lan-
guage. Most code editors are simple text editors with syntax high-
lighting.

Because of their full-featured nature, IDEs often consume more hard-
ware resources. So if you have limited RAM (less than 8 GB), then a
code editor is recommended.

23

IDE or Editor?

IDEs also take longer to start up. If you want to edit a file quickly, then
a code editor is a better choice.

There are hundreds of editors and IDEs available for free or at a cost.
Here are some commonly used IDEs and editors suitable for CPython
development:

Application Style Supports
Microsoft Visual Studio Code Editor Windows, macOS,
and Linux
Atom Editor Windows, macOS,
and Linux
Sublime Text Editor Windows, macOS,
and Linux
Vim Editor Windows, macOS,
and Linux
Emacs Editor Windows, macOS,
and Linux
Microsoft Visual Studio IDE (C, Python, Windows
and others)
PyCharm by JetBrains IDE (Pythonand Windows, macOS,
others) and Linux
CLion by JetBrains IDE (C and Windows, macOS,
others) and Linux

A version of Microsoft Visual Studio is also available for Mac, but it
doesn’t support Python Tools for Visual Studio or C compilation.

In the sections below, you’ll explore the setup steps for the following
editors and IDEs:

Microsoft Visual Studio
Microsoft Visual Studio Code

« JetBrains CLion

* Vim

Skip ahead to the section for your chosen application, or read all of
them if you want to compare.

24

https://code.visualstudio.com/
https://atom.io/
https://www.sublimetext.com/
https://www.vim.org/
https://www.gnu.org/s/emacs/
https://visualstudio.microsoft.com/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/clion/
https://visualstudio.microsoft.com/vs/mac/

Setting Up Visual Studio

Setting Up Visual Studio

The newest version of Visual Studio, Visual Studio 2019, has built-in
support for Python and the C source code on Windows. I recommend
using it for the examples and exercises in this book. If you already
have Visual Studio 2017 installed, then that would also work.

None of the paid features of Visual Studio are required for com-
piling CPython or completing this book. You can use the free
Community edition.

However, the profile-guided optimization build profile requires
the Professional edition or higher.

Visual Studio is available for free from Microsoft’s Visual Studio web-
site.

Once you've downloaded the Visual Studio installer, you’ll be asked to
select which components you want to install. You’ll need the following
components for this book:

+ The Python development workload
« The optional Python native development tools
+ Python 3 64-bit (3.7.2)
You can deselect Python 3 64-bit (3.7.2) if you already have Python

3.7 installed. You can also deselect any other optional features if you
want to conserve disk space.

The installer will then download and install all the required compo-
nents. The installation can take up to an hour, so you may want to
read on and come back to this section when it finishes.

Once the installation is complete, click to start Visual Studio.
You'll be prompted to sign in. If you have a Microsoft account, you
can either log in or skip that step.

25

https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/

Setting Up Visual Studio

Next, you’ll be prompted to open a project. You can clone
CPython’s Git repository directly from Visual Studio by choosing the
[Clone or check out code] option.

For the repository location, enter https://github.com/python/cpython,
choose your local path, and select [Clone|.

Visual Studio will then download a copy of CPython from GitHub us-
ing the version of Git bundled with Visual Studio. This step also saves
you the hassle of having to install Git on Windows. The download may
take up to ten minutes.

Important

Visual Studio will automatically checkout the master branch.
Before compiling, make sure you change to the 3.9 branch from
within the Team Explorer window. Switching to the 3.9 branch
is an important step. The master branch changes on an hourly
basis. Many of the examples and exercises in this book are un-
likely to work on master.

Once the project has downloaded, you need to point Visual Studio to
the PCBuild» pebuild. sin solution file by clicking Solutions and Projects)

) pebuid. s}

26

Setting Up Visual Studio Code

Solution Explorer - Folder View
QE- e -
Search Solut% v cpython (C\..\Repos\cpython)

B, Click ong pcbuild.sln
]
S°|“t'°r% pythonba.sln
cpython (C:\Users\anthonyshaw\Source\Repos\cpython

.azure-pipelines
.github

Doc

Grammar
Include

Lib

Now that you have Visual Studio configured and the source code
downloaded, you can compile CPython on Windows by following the
steps in the next chapter.

Setting Up Visual Studio Code

Microsoft Visual Studio Code is an extensible code editor with an on-
line marketplace of plugins.

It makes an excellent choice for working with CPython as it supports

both C and Python with an integrated Git interface.

Installing

Visual Studio Code, sometimes known as VS Code, is available with a
simple installer at code.visualstudio.com.

Out of the box, VS Code has the necessary code editing capabilities,
but it becomes more powerful once you install extensions.

27

https://code.visualstudio.com/

Setting Up Visual Studio Code

You can access the Extensions panel by selecting |View)) Extensions|
from the top menu:

(XX Extension: C/C++ — cpython

EXTENSIONS «+ etokh C object.c C listobject.c Extension: C/C++ X cDO -

Search Extensions in Marketplace

C/C++
Y g i e vieizy - Microsoft | @ 8688841 | * % * * Repos
% :;j:::s: Al rea\p{;;_} C/C++ IntelliSense, debugging, and code browsing.
5 C/C++ 0263-insiders2 DBEM * 35 MEEER piease reload Visual Studio
C/C++ IntelliSense, debugging, and code b...

Microsoft Reload Required §5% Please reload Visual Studio Code to enable the updated extension.

GitHub Pull Requests 0130 D 279K % 45
Pull Request Provider for GitHub
GitHub &

W Live Share 107104 SN S C/C++ for Visual Studio Code

Details Contributions Changelog

Real-time collaborative development from t...

o Microsoft

Live Shiars Aixo 0180 @204k %5 Repository | Issues | Documentation | Code Samples | Offline Installers
Adds audio calling capabilities to Visual Stu...
Pyright 1114 DK k45

na VS Code static type checking for Python This preview release of the C/C+-+ extension adds language support for C/C++ to Visual
ms-pyright & Studio Code, including features such as InteliSense and debugging.
Python 20101150704 @1a6M * 45 .)

P Linting, Debugging (multi-threaded, remote.. OVerview and getting started

Microsoft &

C/C++ extension overview
> RECOMMENDED 1 * Get Started with C++ and Windows Subsystem for Linux (WSL) °
> DISABLED o * Get Started with C++ and Mingw-w64
§° d93605de* & ®O0AO0 [JLiveShare @ tonybaloney s iR &

Inside the Extensions panel, you can search for extensions by name
or by their unique identifier, such as ms-vscode. cpptools. In some cases
there are many plugins with similar names, so use the unique identi-
fier to be sure you're installing the right one.

Recommended Extensions for This Book

There are several useful extensions for working with CPython:
e C/C++ (ms-vscode.cpptools) provides support for C/C++, includ-
ing IntelliSense, debugging, and code highlighting.

» Python (ms-python.python) pI‘OVideS rich Python support for edit-
ing, debugging, and reading Python code.

 reStructuredText (lextudio.restructuredtext) provides rich sup-
port for reStructuredText, the format used in the CPython docu-
mentation.

28

https://github.com/Microsoft/vscode-cpptools
https://github.com/Microsoft/vscode-python
https://github.com/vscode-restructuredtext/vscode-restructuredtext

Setting Up Visual Studio Code

« Task Explorer (spmeesseman.vscode-taskexplorer) adds a Task Ex-
plorer panel inside the Explorer tab, making it easier to launch
make tasks.

After you install these extensions, you’ll need to reload the editor.

Many of the tasks in this book require a command line. You can add an
integrated terminal into VS Code by selecting | Terminal)) New Terminall,
A terminal will appear below the code editor:

78 ‘ return 0;

79 N

80

81 static int

82 lict nreallacate exact(Pul ictNhiect xcelf. Pv ccize t cize)

PROBLEMS (250 OUTPUT DEBUG CONSOLE TERMINAL 1:zsh v

+ cpython git:(d93605de72) x []

Using Advanced Code Navigation and Expansion

With the plugins installed, you can perform some advanced code nav-
igation.

For example, if you right-click a function call in a C file and select
[Go to ReferenceSL then VS Code will find other references to that func-
tion in the codebase:

Include > C listobject.h > & PyList_CheckExact(op)

50 #define Py[ist_CheckExact(op) (Py_TYPE(;p) == &;yLis;_Type)
o

_bisectmodule.c ~/cpython/Modules - References (30)

10T INMUEX = LMCETMa_DISECI_TIgNT(IST, Llem, 0, ML/; N

102 i R @ O) \ _bisectmodule.c Modules (2
103 return NULL; if (PyList_CheckExact(list)) {
104 if (PyList_CheckExact(list)) { if (PyList_CheckExact(list)) {
105 if (PyList_Insert(list, index, item) < @) N 5 ClnsiiEes eis B o
106 return NULL;)

107 } > textio.c Modules/_io i
108 else { > _pickle.c Modules 4
109 result = _PyObject_CallMethodId(list, &PyId_insert, > statement.c Modules/_sqlite 3
110 87 {rears == ML) > _testcapimodule.c Modules 1
atial return NULL; -

110 Dy _NEFDEE(racu T4) . >_acmodule.c Modules i
51

52 PyAPI_FUNC(PyObject x) PyList_New(Py_ssize_t size);

29

https://github.com/spmeesseman/vscode-taskexplorer

Setting Up Visual Studio Code

Go to References|is very useful for discovering the proper calling form
for a function.

If you click on or hover over a C macro, then the editor will expand
that macro to the compiled code:

Objects > C listobject.c > @ list_resize(PyListObject * Py_ssize_t)
50
51

52 /* This over-allocates proportional to the list size, making room
53 * for additional growth. The over-allocation is mild, but is
54 * enough to give linear-time amortized behavior over a long
55 * sequence of appends() in the presence of a poorly-performing
56 * system realloc(). #define PY_SSIZE_T_MAX ((Py_ssize_t)(((size_t)-1)>>1))
57 x The growth pattern is: @
58 * Note: new_allocated won't Largest positive value of type Py _ssize_t.
59 * is PY_SSIZE_T_MAX %
Expands to:
60 */
61 new_allocated = (size_t)news ((Py_ssize_ t)(((size_t)-1)>>1))
62 if (new_allocated > (size_t)PY_SSIZE_T_MAX / sizeof(PyObject %)) {
63 PyErr_NoMemory();
64 return -1;
65 }

To jump to the definition of a function, hover over any call to it and

press [Cmd)+[Click| on macOS or [Ctrl|+[Click] on Linux and Windows.

Configuring the Task and Launch Files

VS Code uses a .vscode folder in the workspace directory. If this folder
doesn’t exist, create it now. Inside this folder, you can create the fol-
lowing files:
+ tasks.json for shortcuts to commands that execute your project
¢ launch.json to configure the debugger (see the chapter “Debug-
ging”)
« Other plugin-specific files

Create a tasks.json file inside the .vscode directory if one doesn’t al-
ready exist. This tasks.json file will get you started:

cpython-book-samples?» 11» tasks. json

30

Setting Up Visual Studio Code

{
"version": "2.0.0",
"tasks": [
{
"label": "build",
"type": "shell",
"group": {
"kind": "build",
"isDefault": true
},
"windows": {
"command": "PCBuild/build.bat",
"args": ["-p", "x64", "-c", "Debug"]
1
"linux": {
"command": "make -j2 -s"
1,
"osx": {
"command": "make -j2 -s"
}
}
]
}

Using the Task Explorer plugin, you'll see a list of your configured
tasks inside the vscode group:

v TASK EXPLORER

Vv Last Tasks
A build (cpython - Workspace)
A tags (cpython - make) PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL
A clean (cpython - make)
v cpython

B3 bash

batch

03 make

BY powershell

@ python

>J vscode

A build

M clean

No problems have been detected in the workspace so far.

>
>
>
>
>
v

31

Setting Up JetBrains CLion

In the next chapter, you’ll learn more about the build process for com-
piling CPython.

Setting Up JetBrains CLion

JetBrains makes an IDE for Python called PyCharm as well as an IDE
for C/C++ development called CLion.

CPython has both C and Python code. You can’t install C/C++ support
into PyCharm, but CLion comes bundled with Python support.

Important

Makefile support is available only in CLion versions 2020.2 and
above.

Important

This step requires that you have both generated a makefile by
running configure and compiled CPython.

Please read the chapter “Compiling CPython” for your operat-
ing system and then return to this chapter.

After compiling CPython for the first time, you’ll have a makefile in
the root of the source directory.

Open CLion and choose |Open or Import| from the welcome screen.

Navigate to the source directory, select the makefile, and press [Open|:

32

Setting Up JetBrains CLion

Open Project

Makefile is a project file.
Would you like to open this project?

Open as File ‘ Cancel Open as Project

CLion will ask whether you want to open the directory or import

the makefile as a new project. Select to import as a

project.

CLion will ask which make target to run before importing. Leave the
default option, clean, and continue:

SEarci EVETywnere pounie o

Gn tn Eila ¥ N
[JOX J Loading Project

Clean project
Make target to run: clean

Import works best on a clean project. When run on an uncleaned project, reload will miss all the
unchanged files.

? Cancel m
>

Next, check that you can build the CPython executable from CLion.
From the top menu, select Build)) Build Project|.

In the status bar, you should see a progress indicator for the project
build:

() Event Log
Building... P v3.9.0b5

33

Setting Up JetBrains CLion

Once this task is complete, you can target the compiled binary as a
run/debug configuration.

Select |Run)) Edit Configurations| to open the Run/Debug Configura-
tions window. Inside this window, select [+) Makefile Application|and
complete the following steps:

1. Set the Name to cpython.

2. Leave the build target as al1.

3. For the executable, select the dropdown and choose [Select Other),
then find the compiled CPython binary in the source directory. It

will be called python OT python.exe.

4. Enter any program arguments you wish to always have, such as -x
dev to enable development mode. These flags are covered later in
“Setting Runtime Configuration With the Command Line.”

5. Set the working directory to the CLion macro $ProjectFileDir$:

Run/Debug Configurations
+ - B S » Name: cpython Allow parallel run Store as project file
Makefile Application
cpython Target: all -l

> J Templates
Executable: python.exe v

Program arguments: -X dev
Working directory: $ProjectFileDir$

Environment variables:

~ Before launch
“\ Build

o

Show this page [Activate tool window

? Cancel P [ok |

Click to add this configuration. You can repeat this step as many
times as you like for any of the CPython make targets. See the section

34

Setting Up JetBrains CLion

“CPython’s Make Targets” in the chapter “Compiling CPython” for a
full reference.

The cpython build configuration will now be available in the top right
of the CLion window:

14N cpython v | p H G Git v v A B Q
g

[

8

®

To test it out, click the arrow icon or select |Run)) Run 'cpython’| from
the top menu. You should now see the REPL at the bottom of the

CLion window:

Run: cpython

> /Users/anthonyshaw/PycharmProjects/cpython-clion-testing/python.exe -X dev
Python 3.9.0b5 (tags/v3.9.@b5:8ad7d506ca, Aug 6 2020, 10:40:10)

[Clang 11.0.3 (clang-1103.0.32.62)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>>

- g Yl

Process finished with exit code 15

[2: Favorites

Great! Now you can make changes and quickly try them out by click-

ing and [Run|. If you put any breakpoints in the C code, then
make sure you choose instead of [Run|.

35

Setting up Vim

Within the code editor, the shortcuts [Cmd|+[Click| on macOS and

+ on Windows and Linux will bring up in-editor navigation fea-
tures:

T
708
709
710
711

static int do_raise(PyThreadState xtstate, PyObject *exc, PyObject *cause);
static int unpack_iterable(PyThreadState %, PyObject *, int, int, PyObject *x);

it

712 #define _Py_TracingPossible(ceval) ((ceval)->tracing_possible)

713 F D H W Usages of _Py_TracingPossible in All Places (4 usages found) 'y
;ii PyObject ceval.c 847 if (llitrace && !_Py_TracingPossible(ceval) && !PyDTrace_LINE_ENABLED() { \
716 % PyEval_EvalCode(PyObj ¢ ceval.c 1274 if (Py_TracingPossible(ceval) &&

717 { - = tags 8231 _Py_TracingPossible ./Python/ceval.c /A#define _Py_TracingPossible(/;" d file:
718 return PyEval_Eva Press \3F7 again to search in Project Files

719 globals, locals,

720 (PyObject sx)NULL, O,

721 (PyObject sx)NULL, O,

722 (PyObject sx)NULL, 0,

723 NULL, NULL);

724 P

725

726

727 /% Interpreter main loop */

728

Setting up Vim

Vim is a powerful console-based text editor. For fast development,
use Vim with your hands resting on the keyboard home keys. The
shortcuts and commands are within reach.

On most Linux distributions and within the macOS Terminal,
vi is an alias for vim. We’'ll use the vim command in this book,
but if you have the alias, then vi will also work.

Out of the box, Vim has only basic functionality, little more than a text
editor like Notepad. With some configuration and extensions, how-
ever, Vim can become a powerful tool for both Python and C editing.

Vim’s extensions are in various locations, including GitHub. To ease
the configuration and installation of plugins from GitHub, you can
install a plugin manager like Vundle.

To install Vundle, run this command at the terminal:

36

https://github.com/VundleVim/Vundle.vim

Setting up Vim

$ git clone https://github.com/VundleVim/Vundle.vim.git \
~/.vim/bundle/Vundle.vim

Once Vundle is downloaded, you need to configure Vim to load the
Vundle engine.

You'll install two plugins:

1. Fugitive: A status bar for Git with shortcuts for many Git tasks

2. Tagbar: A pane for making it easier to jump to functions, meth-
ods, and classes

To install these plugins, first change the contents of your Vim config-
uration file (normally HOME» .vimrc) to include the following lines:

cpython-book-samples?» 11» .vimrc

syntax on
set nocompatible " be iMproved, required
filetype off " required

set the runtime path to include Vundle and initialize
set rtp+=~/.vim/bundle/Vundle.vim
call vundle#begin()

" let Vundle manage Vundle, required

Plugin 'VundleVim/Vundle.vim'

" The following are examples of different formats supported.
" Keep Plugin commands between vundle#begin/end.
" plugin on GitHub repo

Plugin 'tpope/vim-fugitive'

Plugin 'majutsushi/tagbar’

" All of your Plugins must be added before this line
call vundle#end() " required

filetype plugin indent on required
" Open tagbar automatically in C files, optional

autocmd FileType c call tagbar#autoopen(0)

37

https://github.com/tpope/vim-fugitive
http://vimcasts.org/episodes/fugitive-vim---a-complement-to-command-line-git/
https://github.com/majutsushi/tagbar

Setting up Vim

" Open tagbar automatically in Python files, optional
autocmd FileType python call tagbar#autoopen(0)

" Show status bar, optional

set laststatus=2

" Set status as git status (branch), optional

set statusline=%{FugitiveStatusline()}

To download and install these plugins, run the following command:

$ vim +PluginInstall +qall

You should see output for the download and installation of the plugins
specified in the configuration file.

When editing or exploring the CPython source code, you will want to
jump quickly between methods, functions, and macros. A basic text
search won’t distinguish a call to a function or its definition from the
implementation. But you can use an application called ctags to index
source files across a multitude of languages into a plain text database.

To index CPython’s headers for all the C files and Python files in the
standard library, run the following code:

$./configure

$ make tags

Now open the Python» ceval.c file in Vim:

$ vim Python/ceval.c

38

http://ctags.sourceforge.net/

Setting up Vim

You'll see the Git status at the bottom and the functions, macros, and
variables in the right-hand pane:

ece
#include "setobject.h"
#include "structmember.h"

#include <ctype.h>

#ifdef Py_DEBUG

/* For debugging the interpreter: */

#define LLTRACE 1 /* Low-level trace feature %/
#define CHECKEXC 1 /% Double—-check exception checking s/
#endif

#if !defined(Py_BUILD_CORE)

error "ceval.c must be build with Py_BUILD_CORE define for best per]
formance"

#endif

/% Private API for the LOAD_METHOD opcode. x/
extern int _PyObject_GetMethod(PyObject *, PyObject *, PyObject #x);

type PyObject *(xcallproc)(PyObject %, PyObject *, PyObject *);
/* Forward declarations */
Py_LOCAL_INLINE(PyObject *) call_function(
PyThreadState xtstate, PyObject #¥xpp_stack,
Py_ssize_t oparg, PyObject xkwnames);
static PyObject * do_call_core(
PyThreadState xtstate, PyObject func,
PyObject *callargs, PyObject xkwdict);

#ifdef LLTRACE
static int lltrace;

cpython — vi Python/ceval.c — vi — vi Python/ceval.c — 111x34

" Press <F1>, ? for help
b

b prototypes

l,
—callproc
I
_Py_CheckRecursionLimit
—dxp
—dxpairs
-1ltrace
v

PyEval_AcquireLock(void)
PyEval_AcquireThread(PyThreadState *
PyEval_EvalCode(PyObject %co, PyObje
PyEval_EvalCodeEx(PyObject *_co, Py0O
PyEval_EvalFrame(PyFrameObject *f)
PyEval_EvalFrameEx (PyFrameObject *f,
PyEval_GetBuiltins(void)
PyEval_GetFrame(void)
PyEval_GetFuncDesc(PyObject *func)
PyEval_GetFuncName (PyObject *func)
PyEval_GetGlobals(void)
PyEval_GetLocals(void)
PyEval_InitThreads(void)
PyEval_MergeCompilerFlags(PyCompiler
PyEval_ReleaseLock(void)

| 1 int prtrace(PyObject %, c
[Git(master)]

PyEval ReleaseThread(PyThreadState *
[Name] ceval.c

Next, open a Python file, such as Lib» subprocess.py:

$ vim Lib/subprocess.py

Tagbar will show your imports, classes, methods, and functions:

39

Conclusion

[XoN) cpython — vi Lil pi .py — Vi — vi Lil pi .py — 111x34.
self.returncode = returncode " Press <F1>, ? for help
self.cmd = cmd
self.output = output p imports

self.stderr = stderr
[v CalledProcessError : class

def Pstr__(self): +__init__ : function
if self.returncode and self.returncode < 0: —__str__ : function
try: +stdout : function
return "Command '%s' died with %r." % (stdout : function
self.cmd, signal.Signals(-self.returncode))
except ValueError: v CompletedProcess : class
return "Command '%s' died with unknown signal %d." % (| +__init__ : function
self.cmd, -self.returncode) —__repr__ : function
else: +check_returncode : function
return "Command '%s' returned non-zero exit status %d." %
(v Handle : class
self.cmd, self.returncode) Close : function
+Detach : function
@property —__repr__ : function
def stdout(self): [variables]
wnupAlias for output attribute, to match stderr""" _PopenSelector
return self.output _PopenSelector
__del__
@stdout.setter closed

def stdout(self, value):
There's no obvious reason to set this, but allow it anyway sflv Popen : class
o -__del__ : function

.stdout is a transparent alias for .output -__enter__ : function
self.output = value —__exit__ : function
__init__ : function
+_check_timeout : function
class TimeoutExpired(SubprocessError): v+_close_pipe_fds : function
[Git(master)] [Name] subprocess.py

Within Vim, you can switch between windows with +(W), move
to the right-hand pane with , and use the arrow keys to move up
and down between the tagged functions.

Press to skip to any function implementation. To move back to

the editor pane, press [Ctrl]+[W, then press [H |.

Check out VIM Adventures for a fun way to learn and memorize
the Vim commands.

Conclusion
If you're still undecided about which environment to use, then you

don’t need to make a decision right away. We used multiple environ-
ments while writing this book and working on changes to CPython.

40

https://vim-adventures.com/

Conclusion

Debugging is a critical feature for productivity, so having a reliable de-
bugger that you can use to explore the runtime and understand bugs
will save you a lot of time. If you're used to debugging in Python with
print(), then it’s important to note that this approach doesn’t work in
C. You'll cover debugging in full later in this book.

41

Compiling CPython

Now that you’ve downloaded a development environment and config-
ured it, you can compile the CPython source code into an executable
interpreter.

Unlike Python files, C source code must be recompiled each time it
changes. You’'ll probably want to bookmark this chapter and memo-
rize some of the steps, because you’ll be repeating them a lot.

In the previous chapter, you saw how to set up your development en-
vironment with an option to run the build stage, which recompiles
CPython. Before the build steps will work, you need a C compiler and
some build tools.

The tools used depend on the operating system you're using, so skip
ahead to the section for your operating system.

If you're concerned that any of these steps will interfere with
your existing CPython installations, don’t worry. The CPython
source directory behaves like a virtual environment.

When compiling CPython or modifying the source or the stan-
dard library, this all stays within the sandbox of the source di-
rectory.

If you want to install a custom version, this step is covered in
this chapter.

42

Compiling CPython on macOS

Compiling CPython on macOS

Compiling CPython on macOS requires some additional applications
and libraries. First, you'll need the essential C compiler tool kit. Com-
mand Line Tools is an app that you can update in macOS through
the App Store. You need to perform the initial installation on the ter-
minal.

To open up a terminal in macOS, go to |Applications)) Other)

) Terminal|. You’ll want to save this app to your Dock, so
+|Click| the icon and select |Keep in Dock|.

Within the terminal, install the C compiler and tool kit by running the
following:

$ xcode-select --install

After running this command, you’ll be prompted to download and in-
stall a set of tools, including Git, Make, and the GNU C compiler.

You'll also need a working copy of OpenSSL to use for fetching pack-
ages from the PyPI website. If you plan on using this build to install
additional packages, then SSL validation is required.

The most straightforward way to install OpenSSL on macOS is to use
Homebrew.

If you don’t have Homebrew, then you can download and install
it directly from GitHub with the following command:

$ /usr/bin/ruby -e "$(curl -fsSL \

https://raw.githubusercontent.com/Homebrew/install/master/install)"

43

https://www.openssl.org/
https://brew.sh

Compiling CPython on macOS

Once you have Homebrew installed, you can install the dependencies
for CPython with the brew install command:

$ brew install openssl xz zlib gdbm sqlite

Now that you have the dependencies, you can run the configure script.

The Homebrew command brew --prefix <package> will give the direc-
tory where <package> is installed. You will enable support for SSL by
compiling the location that Homebrew uses.

The flag --with-pydebug enables debug hooks. Add this flag if you in-
tend on debugging for development or testing purposes. Debugging
CPython is covered extensively in the “Debugging” chapter.

The configuration stage needs to be run only once, with the location
of the zlib package specified:

$ CPPFLAGS="-I$(brew --prefix zlib)/include" \
LDFLAGS="-L$ (brew --prefix zlib)/1lib" \
./configure --with-openssl=$(brew --prefix openssl) \

--with-pydebug

Running ./configure will generate a makefile in the root of the reposi-
tory. You can use it to automate the build process.

You can now build the CPython binary by running the following com-
mand:

$ make -j2 -s

See Also

For more information on the options for make, see the section “A
Quick Primer on Make.”

During the build, you may receive some errors. In the build summary,
make will notify you that not all packages were built. For example, the
ossaudiodev, spwd, and _tkinter packages will fail to build with this set of

44

Compiling CPython on Linux

instructions. That’s okay if you aren’t planning on developing against
these packages. If you are, then check out the Python Developer’s
Guide for more information.

The build will take a few minutes and generate a binary called
python.exe. Every time you make changes to the source code, you'll
need to rerun make with the same flags.

The python.exe binary is the debug binary of CPython. Execute
python.exe to see a working REPL:

$./python.exe

Python 3.9 (tags/v3.9:9cf67522, Oct 5 2020, 10:00:00)

[Clang 10.0.1 (clang-1001.0.46.4)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>>

Important

Yes, that’s right, the macOS build has a . exe file extension. This
extension is not because it’s a Windows binary!

Because macOS has a case-insensitive file system, the devel-
opers didn’t want people to accidentally refer to the directory
Python/ when working with the binary, so they appended .exe to
avoid ambiguity.

If you later run make install or make altinstall, then the file will
be renamed python before it’s installed onto your system.

Compiling CPython on Linux

To compile CPython on Linux, you first need to download and install
make, gcc, configure, and pkgconfig.

Use this command for Fedora Core, RHEL, CentOS, or other YUM-
based systems:

45

https://devguide.python.org/
https://devguide.python.org/

Compiling CPython on Linux

$ sudo yum install yum-utils

Use this command for Debian, Ubuntu, or other APT-based systems:

$ sudo apt install build-essential

Then install some additional required packages.

Use this command for Fedora Core, RHEL, CentOS or other YUM-
based systems:

$ sudo yum-builddep python3
Use this command for Debian, Ubuntu, or other APT-based systems:

$ sudo apt install libssl-dev zliblg-dev libncurses5-dev \
libncursesw5-dev libreadline-dev libsqlite3-dev libgdbm-dev \
libdb5.3-dev libbz2-dev libexpatl-dev liblzma-dev libffi-dev

Now that you have the dependencies, you can run the configure script,
optionally enabling the debug hooks using --with-pydebug:

$./configure --with-pydebug

Next, you can build the CPython binary by running the generated
makefile:

$ make -j2 -s

See Also

For more help on the options for make, see the section “A Quick
Primer on Make.”

Review the output to ensure that there were no issues compiling the
_ss1 module. If there were, then check with your distribution for in-
structions on installing the headers for OpenSSL.

During the build, you may receive some errors. In the build summary,
make will notify you that not all packages were built. That’s okay if you

46

Installing a Custom Version

aren’t planning on developing against those packages. If you are, then
check out the package details for required libraries.

The build will take a few minutes and generate a binary called python.
This is the debug binary of CPython. Execute . /python to see a working
REPL:

$./python

Python 3.9 (tags/v3.9:9c¢f67522, Oct 5 2020, 10:00:00)

[Clang 10.0.1 (clang-1001.0.46.4)] on Linux

Type "help", "copyright", "credits" or "license" for more information.

>>>

Installing a Custom Version

If you're happy with your changes and want to use them inside your
system, then you can install the Python binary from your source repos-
itory as a custom version.

For macOS and Linux, use the altinstall command, which doesn’t
create symbolic links for python3 and installs a standalone version:

$ make altinstall

For Windows, you have to change the build configuration from De-
bug to Release, then copy the packaged binaries to a directory on your
computer that is part of the system path.

A Quick Primer on Make

As a Python developer, you might not have come across make before.
Or perhaps you have, but you haven’t spent much time with it.

For C, C++, and other compiled languages, the list of commands you
need to execute to load, link, and compile your code in the right order
can be very long. When compiling applications from source, you need
to link any external libraries in the system.

47

A Quick Primer on Make

It would be unrealistic to expect the developer to know the locations
of all of these libraries and to copy and paste them into the command
line, so make and configure are commonly used in C/C++ projects to
automate the creation of a build script.

When you executed . /configure, autoconf searched your system for the
libraries that CPython requires and copied their paths into a maketfile.

The generated makefile is similar to a shell script and is broken into
sections called targets.

Take the docclean target as an example. This target deletes some gen-
erated documentation files using the rm command:

docclean:
-rm -rf Doc/build
-rm -rf Doc/tools/sphinx Doc/tools/pygments Doc/tools/docutils

To execute this target, run make docclean. docclean is a simple target as
it runs only two commands.

This is the convention for executing a make target:
$ make [options] [target]

If you call make without specifying a target, then make will run the de-
fault target, which is the first target specified in the makefile. For
CPython, this is the a11 target, which compiles all parts of CPython.

make has many options. Here are some you’ll find useful throughout
this book:

Option Use

-d, --debug [=FLAGS] Print various types of debugging information
-e, ——environment-overrides Environment variables override makefiles

-i, —-ignore-errors Ignore errors from commands

-j [NI, --jobs[=N] Allow N jobs at once or infinite jobs otherwise
-k, --keep-going Keep going when some targets can’t be made
-1 [N], --load-average[=N], Start multiple jobs only if 1oad < N

—-max-load[=N]

48

CPython’s Make Targets

Option Use

-n, --dry-run Print commands instead of running them
-s, ——silent Don’t echo commands

-S, --stop Stop when targets can’t be made

In the next section and throughout the book, you’ll run make with these
options:

$ make -j2 -s [target]

The -j2 flag allows make to run two jobs simultaneously. If you have
four or more cores, then you can change this to four or higher and the
compilation will complete faster.

The -s flag stops the makefile from printing every command it runs to
the console. If you want to see what’s happening, then remove the -s
flag.

CPython’s Make Targets

For both Linux and macOS, you'll find yourself needing to clean up
files, build, or refresh the configuration. The sections below contain
tables outlining a number of useful make targets built into CPython’s
makefile.

Build Targets
The following targets are used for building the CPython binary:

Target Purpose

all (default) Build the compiler, libraries, and modules

clinic Run Argument Clinic on all source files

profile-opt Compile the Python binary with profile-guided
optimization

regen-all Regenerate all generated files

sharedmods Build the shared modules

49

CPython’s Make Targets

Test Targets

The following targets are used for testing your compiled binary:

Target Purpose
coverage Compile and run tests with gcov
coverage-lcov Create coverage HTML reports
quicktest Run a faster set of regression tests by excluding the tests
that take a long time
test Run a basic set of regression tests
testall Run the full test suite twice, once without .pyc files and
once with them
testuniversal Run the test suite for both architectures in a universal
build on OS X
Cleaning Targets

The primary cleaning targets are clean, clobber, and distclean. The
clean target is for generally removing compiled and cached libraries
and .pyc files.

If you find that clean doesn’t do the job, then try clobber. The clob-
ber target will remove your makefile, so you'll have to run ./configure
again.

To completely clean out an environment before distribution, run the
distclean target.

The following list includes the three primary targets listed above, as
well as some additional cleaning targets:

Target Purpose

check-clean-src Check that the source is clean when building out of
source

clean Remove .pyc files, compiled libraries, and profiles

cleantest Remove test_python_* directories of previous failed test
jobs

clobber Same as clean but also remove libraries, tags,

configurations, and builds

50

CPython’s Make Targets

Target Purpose

distclean Same as clobber but also remove anything generated
from source, such as makefiles

docclean Remove built documentation in doc/

profile-removal Remove any optimization profiles

pycremoval Remove .pyc files

Installation Targets

There are two flavors of installation targets: the default version, such
as install, and the alt version, such as altinstall. If you want to in-
stall the compiled version onto your computer but don’t want it to
become the default Python 3 installation, then use the alt version of
the commands:

Target Purpose

altbininstall Install the python interpreter with the version affixed,
such as python3.9

altinstall Install shared libraries, binaries, and documentation
with the version suffix

altmaninstall Install the versioned manuals

bininstall Install all the binaries, such as python, idle, and 2to3

commoninstall Install shared libraries and modules

install Install shared libraries, binaries, and documentation
(Wﬂl run commoninstall, bininstall, and maninstall)

libinstall Install shared libraries

maninstall Install the manuals

sharedinstall Load modules dynamically

After you install with make install, the command python3 will link
to your compiled binary. If you use make altinstall, however, only
python$ (VERSION) will be installed, and the existing link for python3 will
remain intact.

Miscellaneous Targets

Below are some additional make targets that you may find useful:

51

Compiling CPython on Windows

Target Purpose

autoconf Regenerate configure and pyconfig.h.in

python-config Generate the python-config SCI‘ipt

recheck Rerun configure with the same options as last time

smelly Check that exported symbols start with py or _py (see
PEP 7)

tags Create a tags file for vi

TAGS Create a tags file for Emacs

Compiling CPython on Windows

There are two ways to compile the CPython binaries and libraries from
Windows:

1. Compile from the command prompt. This still requires the Mi-
crosoft Visual C++ compiler, which comes with Visual Studio.

2. Open PCbuild» pcbuild.sln from Visual Studio and build directly.

In the sections below, you’ll explore both of these options.

Installing the Dependencies

For both the command prompt compile script and the Visual Studio
solution, you need to install several external tools, libraries, and C
headers.

Inside the pcbuild folder is a .bat file that automates this process for
you. Open a command prompt window inside Pcbuild and execute
PCbuild» get_externals.bat:

> get_externals.bat

Using py -3.7 (found 3.7 with py.exe)
Fetching external libraries...
Fetching bzip2-1.0.6...

Fetching sqlite-3.28.0.0...

Fetching xz-5.2.2...

Fetching zlib-1.2.11...

52

https://www.python.org/dev/peps/pep-0007/#naming-conventions

Compiling CPython on Windows

Fetching external binaries...
Fetching openssl-bin-1.1.1d...
Fetching tcltk-8.6.9.0...

Finished.

Now you can compile from either the command prompt or Visual Stu-
dio.

Compiling From the Command Prompt

To compile from the command prompt, you need to select the CPU
architecture you want to compile against. The default is win32, but
chances are that you want a 64-bit (amd64) binary.

If you do any debugging, then the debug build comes with the ability
to attach breakpoints in the source code. To enable the debug build,
you add -c Debug to specify the debug configuration.

By default, build.bat will fetch external dependencies, but because
we’ve already done that step, it will print a message skipping down-
loads:

> build.bat -p x64 -c Debug

This command will produce the Python binary Pcbuild » amdé4 »
python_d.exe. Start that binary directly from the command prompt:

> amd64\python_d.exe

Python 3.9 (tags/v3.9:9c¢f67522, Oct 5 2020, 10:00:00)
[MSC v.1922 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.

>>>
You're now inside the REPL of your compiled CPython binary.
To compile a release binary, use this command:

> build.bat -p x64 -c Release

53

Compiling CPython on Windows

This command will produce the binary pcbuild» amd64» python. exe.

The suffix _d specifies that CPython was built in the debug con-
figuration.

The released binaries on Python.org are compiled in the
profile-guided optimization (PGO) configuration. See the
“Profile-Guided Optimization (PGO)” section at the end of this
chapter for more details on PGO.

Arguments

The following arguments are available in build.bat:

Flag Purpose Expected Value
-p Build platform CPU x64, Win32 (default), ARM, ARM64
architecture

-c Build configuration Release (default), Debug, PGInstrument
Or PGUpdate

-t Build target Build (default), Rebuild, Clean,
CleanAll

Flags

Here are some optional flags you can use for build.bat:

Flag

Purpose

-V

Verbose mode: show informational messages during build
Very verbose mode: show detailed messages during build
Quiet mode: show only warnings and errors during build
Download and install external dependencies (default)
Don’t download or install external dependencies

Build with profile-guided optimization

Regenerate all grammar and tokens (used when you update
the language)

54

Compiling CPython on Windows

For a full list, run build.bat -h.

Compiling From Visual Studio

Inside the pcbuild folder is a Visual Studio solution file, Pcbuild »
pcbuild.sln, for building and exploring CPython source code.

When the solution file is loaded, it will prompt you to retarget the
projects inside the solution to the version of the C/C++ compiler that
you have installed. Visual Studio will also target the release of the
Windows SDK that you have installed.

Be sure to change the Windows SDK version to the newest installed
version and the platform toolset to the latest version. If you missed
this window, then you can right-click the solution file in the Solutions
and Projects window and select |Retarget Solution|,

Navigate to |Build)) Configuration Manager| and ensure the Active Solu-
tion Configuration drop-down list is set to Debug and the Active So-
lution Platform list is set to either x64 for 64-bit CPU architecture or
win32 for 32-bit.

Next, build CPython by pressing Ctrl|+[Shift]+| B | or choosing
) Build Solution|. If you receive any errors about the Windows SDK be-

ing missing, make sure you set the right targeting settings in the Re-
target Solution window. You should also see a Windows Kits folder in
your Start menu with Windows Software Development Kit inside it.

The build stage could take ten minutes or more the first time. Once
the build completes, you may see a few warnings that you can ignore.

To start the debug version of CPython, press , and CPython will
launch the REPL in debug mode:

55

Compiling CPython on Windows

) File Edit View Project Buid Debug Test Analyze Tools Extensions Window Help Search Visual Studio (Ctrl+Q
el I SIS Continue ~ | 34 i m m O # .

Process: (“ o —

PS— I
C:\Users\anthonyshaw\source\repos\cpython\PCbuild\win32\python_d.exe - =] X

(default, Mar 29 2019, 1920 32 bit (Intel)] on win32
pyright”, “"credits" or " or e information.

You can run the release build by changing the build configuration
from Debug to Release on the top menu bar and rerunning

Build Solution|. You now have both debug and release versions of the

CPython binary within PCbuild» amd64.

You can set up Visual Studio to be able to open a REPL with
either the release or debug build by choosing

Python Environments| from the top menu. In the Python Envi-
ronments panel, click [Add Environment| and then target the debug
or release binary. The debug binary will end in _d.exe, such as
python_d.exe OT pythonw_d. exe.

You’'ll most likely want to use the debug binary as it comes with debug-
ging support in Visual Studio and will be useful as you read through
this book.

In the Add Environment window, target the python_d. exe file as the in-

terpreter inside PCbuild» amd64 and the pythonw_d.exe as the windowed
interpreter:

56

Compiling CPython on Windows

Add environment

Virtual environment Project

Conda environment

Existing environment

Environment
Python installation

<Custom>

Prefix path

c

Make this environment available globally

Description Language version
win32 37 -

interpreter path Architecture

L repos\cpython\PCbuild\win32\python_d.exe

64-bit ~
Windowed interpreter (optional) Path environment variable
L

repos\cpython\PCbuild\win32\pythonw_d.exe e.g. PYTHONPATH

How do | manage Python environments?

Cancel

Start a REPL session by clicking

Open Interactive Window}in the Python

Environments window and you’ll see the REPL for the compiled ver-
sion of Python:

win32 Interactive

a

O E 4 ¥ | Environment: win32 -~ Module:
>>> import sys

v & x
main
>>> sys.version_info

sys.version_info(major=3, minor=8, micro=e, releaselevel='alpha’, serial=3)
> |

100% -

Throughout this book, there will be REPL sessions with example com-

mands. I encourage you to use the debug binary to run these REPL
sessions in case you want to put in any breakpoints within the code.

57

Profile-Guided Optimization

To make it easier to navigate the code, in the Solution view, click the
toggle button next to the Home icon to switch to Folder view:

Solution Explorer - Folder View v ox
2
= RE-S¢GTR| -

4 cpython (C:\Users\anthonyshaw\source\repos\cpython)
.azure-pipelines
.github

Doc

Grammar
Include

Lib

mé

Mac

Misc

Modules
Objects

Parser

PC

TV YVYVYVYVVYYY YV Y

Profile-Guided Optimization

The macOS, Linux, and Windows build processes have flags for
profile-guided optimization (PGO). PGO isn’t something cre-
ated by the Python team, but a feature of many compilers, including
those used by CPython.

PGO works by doing an initial compilation, then profiling the applica-
tion by running a series of tests. The profile is then analyzed, and the
compiler makes changes to the binary that improve performance.

For CPython, the profiling stage runs python -m test --pgo, which ex-
ecutes the regression tests specified in Lib » test » libregrtest » pgo.py.
These tests have been specifically selected because they use a com-
monly used C extension module or type.

58

Profile-Guided Optimization

The PGO process is time-consuming, so to keep your compila-
tion time short, I've excluded it from the lists of recommended
steps offered throughout this book.

If you want to distribute a custom-compiled version of CPython
into a production environment, then you should run . /configure
with the --with-pgo flag in Linux and macOS and use the --pgo
flag in build.bat on Windows.

Because the optimizations are specific to the platform and architec-
ture that the profile was executed on, PGO profiles can’t be shared
between operating systems or CPU architectures. The distributions
of CPython on Python.org have already been through PGO, so if you
run a benchmark on a vanilla-compiled binary, then it will be slower
than one downloaded from Python.org.

The Windows, macOS, and Linux profile-guided optimizations
include these checks and improvements:

Function inlining: If a function is regularly called from another
function, then it will be inlined, or copied into the calling func-
tion, to reduce the stack size.

Virtual call speculation and inlining: If a virtual function call
frequently targets a certain function, then PGO can insert a condi-
tionally executed direct call to that function. The direct call can
then be inlined.

Register allocation optimization: Based on profile data re-
sults, the PGO will optimize register allocation.

Basic block optimization: Basic block optimization allows
commonly executed basic blocks that temporally execute within a
given frame to be placed in the same locality, or set of pages. It
minimizes the number of pages used, which minimizes memory
overhead.

59

Conclusion

+ Hot spot optimization: Functions that the program spends the
most execution time on can be optimized for speed.

+ Function layout optimization: After PGO analyzes the call
graph, functions that tend to be along the same execution path
are moved to the same section of the compiled application.

+ Conditional branch optimization: PGO can look at a decision
branch, like an if ... else if or switch statement, and spot the most
commonly used path. For example, if there are ten cases in a switch
statement, and one is used 95 percent of the time, then that case
will be moved to the top so that it will be executed immediately in
the code path.

« Dead spot separation: Code that isn’t called during PGO is
moved to a separate section of the application.

Conclusion

In this chapter, you've seen how to compile CPython source code into
a working interpreter. You'll use this knowledge throughout the book
as you explore and adapt the source code.

You might need to repeat the compilation steps dozens or even hun-
dreds of times when working with CPython. If you can adapt your
development environment to create shortcuts for recompilation, then
it’s better to do that now and save yourself a lot of time.

60

The Python Language and
Grammar

The purpose of a compiler is to convert one language into another.
Think of a compiler like a translator. You would hire a translator to
listen to you speaking in English and then repeat your words in a dif-
ferent language, like Japanese.

To accomplish this, the translator must understand the grammatical
structures of both the source and target languages.

Some compilers will compile into a low-level machine code that can
be executed directly on a system. Other compilers will compile into
an intermediary language to be executed by a virtual machine.

One consideration when choosing a compiler is the system portability
requirements. Java and .NET CLR will compile into an intermediary
language so that the compiled code is portable across multiple system
architectures. C, Go, C++, and Pascal will compile into an executable
binary. This binary is built for the platform on which it was compiled.

Python applications are typically distributed as source code. The role
of the Python interpreter is to convert the Python source code and
execute it in one step. The CPython runtime compiles your code when
it runs for the first time. This step is invisible to the regular user.

Python code isn’t compiled into machine code. It’s compiled into a
low-level intermediary language called bytecode. This bytecode is
stored in .pyc files and cached for execution. If you run the same

61

https://en.wikipedia.org/wiki/Java_bytecode
https://en.wikipedia.org/wiki/Common_Language_Runtime

Why CPython Is Written in C and Not Python

Python application twice without changing the source code, then it
will be faster on the second execution. This is because it loads the
compiled bytecode instead of recompiling each time.

Why CPython Is Written in C and Not
Python

The C in CPython is a reference to the C programming language, indi-
cating that this Python distribution is written in the C language.

This statement is mostly true. The compiler in CPython is written in
pure C. However, many of the standard library modules are written
in pure Python or a combination of C and Python.

So Why Is the CPython Compiler Written in C and Not Python?

The answer is based on how compilers work. There are two types of
compilers:

1. Self-hosted compilers are compilers written in the language
they compile, such as the Go compiler. This is done by a process
known as bootstrapping.

2. Source-to-source compilers are compilers written in another
language that already has a compiler.

If you're writing a new programming language from scratch, then you
need an executable application to compile your compiler! You need a
compiler to execute anything, so when new languages are developed,
they’re often written first in an older, more established language.

There are also tools available that can take a language specification
and create a parser, which you’ll learn about later in this chapter. Pop-
ular compiler-compilers include GNU Bison, Yacc, and ANTLR.

62

https://en.wikipedia.org/wiki/Self-hosting_(compilers)
https://en.wikipedia.org/wiki/Source-to-source_compiler

Why CPython Is Written in C and Not Python

See Also

If you want to learn more about parsers, then check out the Lark
project. Lark is a parser for context-free grammar written in
Python.

An excellent example of compiler bootstrapping is the Go program-
ming language. The first Go compiler was written in C, then once Go
could be compiled, the compiler was rewritten in Go.

CPython, on the other hand, kept its C heritage. Many of the standard
library modules, like the ss1 module or the sockets module, are written
in C to access low-level operating system APIs.

The APIs in the Windows and Linux kernels for creating network sock-
ets, working with the file system, or interacting with the display were
all written in C, so it made sense for Python’s extensibility layer to be
focused on the C language. Later in this book, you’ll cover the Python
standard library and the C modules.

There is a Python compiler written in Python called PyPy. PyPy’s logo
is an Ouroboros to represent the self-hosting nature of the compiler.

Another example of a cross-compiler for Python is Jython. Jython
is written in Java and compiles from Python source code into Java
bytecode. In the same way that CPython makes it easy to import C
libraries and use them from Python, Jython makes it easy to import
and reference Java modules and classes.

The first step to creating a compiler is to define the language. For
example, this is not valid Python:

def my_example() <str> :

{
void* result = ;

}

The compiler needs strict rules for the grammatical structure for the
language before it tries to execute it.

63

https://github.com/lark-parser/lark
https://realpython.com/python-sockets/
https://realpython.com/python-sockets/
https://realpython.com/working-with-files-in-python/
https://realpython.com/python-gui-with-wxpython/
https://pypy.org/
https://en.wikipedia.org/wiki/Ouroboros
https://www.jython.org/

The Python Language Specification

For the rest of this book, ./python will refer to the compiled ver-
sion of CPython. However, the actual command will depend on
your operating system.

For Windows:

> python.exe

For Linux:

$./python

For macOS:

$./python.exe

The Python Language Specification

Contained within the CPython source code is the definition of the
Python language. This document is the reference specification used
by all the Python interpreters.

The specification is in both a human-readable and a machine-readable
format. Inside the documentation is a detailed explanation of the

Python language outlining what is allowed and how each statement
should behave.

Language Documentation

The Doc » reference directory contains reStructuredText explanations
of the features in the Python language. These files form the official
Python reference guide at docs.python.org/3/reference.

Inside the directory are the files you need to understand the whole
language, structure, and keywords:

64

http://docutils.sourceforge.net/rst.html
https://docs.python.org/3/reference/

The Python Language Specification

Ej cpython/Doc/reference

——compound_stmts.rst Compound statements like 1 f, while, for, and function definitions
F——datamodel.rst Objects, values, and types
——executionmodel.rst The structure of Python programs
expressions.rst The elements of Python expressions
grammar.rst Python’s core grammar (referencing Grammar/Grammar)
——1import.rst The import system
——index.rst Index for the language reference
——introduction.rst Introduction to the reference documentation
——/lexical_analysis.rst Lexical structure like lines, indentation, tokens, and keywords
simple_stmts.rst Simple statements like assert, import, return, and yield

toplevel _components.rst Description of the ways to execute Python, like scripts and modules

An Example

Inside Doc » reference » compound_stmts. rst,youcanseea simple example
defining the with statement.

The with statement has many forms, the simplest being the instantia-
tion of a context manager and a nested block of code:

with x():

You can assign the result to a variable using the as keyword:

with x() as vy:

You can also chain context managers together with a comma:

with x() as vy, z() as jk:

The documentation contains the human-readable specification of the
language. The machine-readable specification is housed in a single
ﬁle, Grammar » python.gram.

65

https://dbader.org/blog/python-context-managers-and-with-statement
https://dbader.org/blog/python-context-managers-and-with-statement

The Python Language Specification

The Grammar File

Python’s grammar file uses a parsing expression grammar (PEG) spec-
ification. In the grammar file you can use the following notation:

« = for repetition

« + for at-least-once repetition

« [1 for optional parts

« | for alternatives

« (O for grouping
As an example, think about how you would define a cup of coffee:

+ It must have a cup.

« It must include at least one shot of espresso and can contain mul-
tiple shots.

« It can have milk, but this is optional.

« It can have water, but this is optional.

« If it contains milk, then the milk can be of various types, like full-
fat, skimmed, or soy.

Defined in PEG, a coffee order could look like this:

coffee: 'cup' ('espresso')+ ['water'] [milk]

milk: 'full-fat' | 'skimmed' | 'soy'

In CPython 3.9, the CPython source code has two grammar files.
One legacy grammar is written in a context-free notation called
Backus-Naur Form (BNF). In CPython 3.10, the BNF grammar
file (Grammar » Grammar) has been removed.

BNF isn’t specific to Python and is often used as the notation
for grammar in many other languages.

66

https://en.m.wikipedia.org/wiki/Backus%E2%80%93Naur_form

The Python Language Specification

In this chapter, you’ll visualize grammar with railroad diagrams.
Here’s a railroad diagram for the coffee statement:

In a railroad diagram, each possible combination must go in a line
from left to right. Optional statements can be bypassed, and some
statements can be formed as loops.

Example: while Statement

There are a few forms of the while statement. The simplest contains
an expression, then the : terminal followed by a block of code:

while finished == True:

do_things()

Alternatively, you can use an assignment expression, which is referred
to in the grammar as a named_expression. This is a new feature as of
Python 3.8:

while letters := read(document, 10):

print(letters)

Optionally, while statements can be followed by an else statement and
block:

while item := next(iterable):
print(item)
else:

print("Iterable is empty")

67

The Python Language Specification

If you search for while_stmt in the grammar file, then you can see the
definition:

while_stmt[stmt_ty]:

| 'while' a=named_expression ':' b=block c=[else_block]

Anything in quotes is a string literal, known as a terminal. Terminals
are how keywords are recognized.

There are references to two other definitions in these two lines:

1. block refers to a block of code with one or multiple statements.

2. named_expression refers to a simple expression or assignment ex-
pression.

Visualized in a railroad diagram, the while statement looks like this:

H—(whileH named_expression|—®—| block I—L(else

As a more complex example, the try statement is defined in the gram-
mar like this:

try_stmt[stmt_ty]:

| 'try' ':' b=block f=finally_block { _Py_Try(b, NULL, NULL, f, EXTRA) }

| 'try' ':' b=block ex=except_block+ el=[else_block] f=[finally_block]..
except_block[excepthandler_ty]:

| 'except' e=expression t=['as' z=target { z }] ':' b=block {

_Py_ExceptHandler(e, (t) ? ((expr_ty) t)->v.Name.id : NULL, b,

| 'except' ':' b=block { _Py_ExceptHandler(NULL, NULL, b, EXTRA) }

finally_block[asdl_seq*]: 'finally' ':' a=block { a }

There are two uses of the try statement:

1. try with only a finally statement

2. try with one or many except clauses, followed by an optional else,
then an optional finally

68

The Parser Generator

Here are those same options visualized in a railroad diagram:

except)ﬁexpression @ target] °

©
[—L(finally)-®—|blockl \ J H

finally)(C {block}

The try statement is a good example of a more complex structure.

If you want to understand the Python language in detail, then read
through the grammar defined in Grammar » python.gram.

The Parser Generator

The grammar file itself is never used by the Python compiler. Instead,
a parser generator reads the file and generates a parser. If you make
changes to the grammar file, then you must regenerate the parser and
recompile CPython.

The CPython parser was rewritten in Python 3.9 from a parser table
automaton (the pgen module) into a contextual grammar parser.

In Python 3.9, the old parser is available at the command line by using
the -x oldparser flag, and in Python 3.10 it’s removed completely. This
book refers to the new parser implemented in 3.9.

Regenerating Grammar
To see pegen, the new PEG generator introduced in CPython 3.9, in

action, you can change part of the Python grammar. Search Grammar »
python.gram for small_stmt to see the definition of small statements:

69

Regenerating Grammar

small_stmt[stmt_ty] (memo):

assignment

e=star_expressions { _Py_Expr(e, EXTRA) }
&'return' return_stmt

&("import' | 'from') import_stmt

&'raise' raise_stmt

'pass' { _Py_Pass(EXTRA) }

&'del' del_stmt

&'yield' yield_stmt

&'assert' assert_stmt

'break' { _Py_Break(EXTRA) }
'continue' { _Py_Continue(EXTRA) }
&'global' global_stmt

&'nonlocal' nonlocal_stmt

In particular, the line 'pass' { _Py_Pass(EXTRA) } is for the pass state-
ment:

Change that line to accept the terminal (keyword) 'pass' or 'proceed’
as keywords by adding a choice, |, and the 'proceed" literal:

| ('pass'|'proceed') { _Py_Pass(EXTRA) }

proceed

G

Next, rebuild the grammar files. CPython comes with scripts to auto-
mate grammar regeneration.

70

Regenerating Grammar

On macOS and Linux, run the make regen-pegen target:
$ make regen-pegen

For Windows, bring up a command prompt from the pcBuild directory
and run build.bat with the --regen flag:

> build.bat --regen

You should see an output showing that the new Parser» pegen» parse.c
file has been regenerated.

With the regenerated parser table, when you recompile CPython, it
will use the new syntax. Use the same compilation steps you used for
your operating system in the last chapter.

If the code compiled successfully, then you can execute your new
CPython binary and start a REPL.

In the REPL, you can now try defining a function. Instead of using the
pass statement, use the proceed keyword alternative that you compiled
into the Python grammar:

$./python

Python 3.9 (tags/v3.9:9cf67522, Oct 5 2020, 10:00:00)

[Clang 10.0.1 (clang-1001.0.46.4)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>> def example():

proceed
>>> example()

Congratulations, you've changed the CPython syntax and compiled
your own version of CPython!

Next, you’ll explore tokens and their relationship to grammar.

71

Regenerating Grammar

Tokens

Alongside the grammar file in the Grammar folder is the Grammar » Tokens
file, which contains each of the unique types found as leaf nodes in a
parse tree. Each token also has a name and a generated unique ID.
The names make it simpler to refer to tokens in the tokenizer.

The Grammar » Tokens file is a new feature in Python 3.8.

For example, the left parenthesis is called LpAR, and semicolons are
called sem1. You'll see these tokens later in the book:

LPAR age
RPAR 730
LSQB i
RSQB Tk
COLON 70
COMMA 7,0
SEMI 70

As with the Grammar file, if you change the Grammar » Tokens file, you need
to rerun pegen.

To see tokens in action, you can use the tokenize module in CPython.

The tokenizer written in Python is a utility module. The actual
Python parser uses a different process for identifying tokens.

Create a simple Python script called test_tokens.py:
cpython-book-samples?» 13 » test_tokens.py

Demo application
def my_function():

proceed

72

Regenerating Grammar

Input the test_tokens.py file to a module built into the standard library
called tokenize. You’ll see the list of tokens by line and character. Use
the -e flag to output the exact token names:

$./python -m tokenize -e test_tokens.py

0,0-0,0: ENCODING 'utf-8'
1,0-1,14: COMMENT '# Demo application'
1,14-1,15: NL "\n'

2,0-2,3: NAME 'def'
2,4-2,15: NAME 'my_function'
2,15-2,16: LPAR NG
2,16-2,17: RPAR DN
2,17-2,18: COLON gt
2,18-2,19: NEWLINE "\n'

B0=8,83 INDENT ! !
3,3-3,7: NAME 'proceed’
3,7-3,8: NEWLINE "\n'

4,0-4,0: DEDENT og

4,0-4,0: ENDMARKER v

In the output, the first column is the range of the line and column
coordinates, the second column is the name of the token, and the final
column is the value of the token.

In the output, the tokenize module has implied some tokens:

« The ENCODING token for utf-8

« A DEDENT to close the function declaration
+ An ENDMARKER to end the file

+ Ablank line at the end

It’s best practice to have a blank line at the end of your Python source
files. If you omit it, then CPython adds one for you.

The tokenize module is written in pure Python and is located in Lib»

tokenize.py.

73

Conclusion

To see a verbose readout of the C parser, you can run a debug build
of Python with the -d flag. Using the test_tokens.py script you created
earlier, run it with the following:

$./python -d test_tokens.py

> file[0-0]: statements? $
> statements[0-0]: statement+
> _loopl_11[0-0]: statement

> statement[0-0]: compound_stmt

+ statements[0-10]: statement+ succeeded!

+ file[0-11]: statements? $ succeeded!

In the output, you can see that it highlighted proceed as a keyword. In
the next chapter, you’ll see how executing the Python binary gets to
the tokenizer and what happens from there to execute your code.

To clean up your code, revert the change in Grammar » python.gram, re-
generate the grammar again, then clean the build and recompile.

Use the following for macOS or Linux:

$ git checkout -- Grammar/python.gram
$ make regen-pegen

$ make -j2 -s
Or use the following for Windows:

> git checkout -- Grammar/python.gram
> build.bat --regen

> build.bat -t CleanAll

> build.bat -t Build

Conclusion
In this chapter, you've been introduced to the Python grammar defini-

tions and parser generator. In the next chapter, you’ll expand on that
knowledge to build a more complex syntax feature, an “almost-equal”

74

Conclusion

operator.

In practice, changes to the Python grammar have to be carefully con-
sidered and discussed. There are two reasons for this level of scrutiny:

1. Having too many language features or a complex grammar would
run counter to Python’s ethos of being a simple and readable lan-
guage.

2. Changes to grammar introduce backward incompatibilities, which
create work for all developers.

If a Python core developer proposes a change to the grammar, then it
must be proposed as a Python Enhancement Proposal (PEP). All
PEPs are numbered and indexed on the PEP index. PEP 5 documents
the guidelines for evolving the language and specifies that changes
must be proposed in PEPs.

You can see the drafted, rejected, and accepted PEPs for future
versions of CPython in the PEP index. Members can also suggest
changes to the language outside the core development group through
the python-ideas mailing list.

Once a PEP has consensus and the draft has been finalized, the
steering council must accept or reject it. The mandate of the steering
council, defined in PEP 13, states that council members shall work
to “maintain the quality and stability of the Python language and
CPython interpreter.”

75

https://www.python.org/dev/peps/pep-0005/
https://www.python.org/dev/peps/
https://www.python.org/community/lists/
https://www.python.org/dev/peps/pep-0013/

Configuration and Input

Now that you've seen the Python grammar, it’s time to explore how
code gets into an executable state.

There are many ways Python code can be run in CPython. Here are
some of the most commonly used approaches:

1. Running python -c and a Python string

2. Running python -m and the name of a module

3. Running python <file> with the path to a file that contains Python
code

4. Piping Python code into the python executable over stdin, such as
cat <file> | python

5. Starting a REPL and executing commands one at a time

6. Using the C API and using Python as an embedded environment

See Also

Python has so many ways to execute scripts that it can be a little
overwhelming. For more on running Python scripts, check out
Real Python’s “How to Run Your Python Scripts.”

76

https://realpython.com/run-python-scripts/

To execute any Python code, the interpreter needs three elements in

place:

1. A module to execute

2. A state to hold information such as variables

3. A configuration, such as which options are enabled

With these three components, the interpreter can execute code and

provide an output:

Input
T I I
+ + +
Configuration State Modules
T I I
¥ ¥ -
Runtime
I
¥
Output

77

Similar to the PEP 8 style guide for Python code, there’s a PEP
7 style guide for the CPython C code. It includes the following
naming standards for C source code:

+ The py prefix is for public functions, not static functions.

« The py_ prefix is for global service routines, such as
Py_FatalError. Specific groups of routines (like specific ob-
ject type APIs) should use a longer prefix, such as PyString_
for string functions.

o Public functions and variables should be written in Mixed-
Case, with words separated by underscores, such as pyob-
ject_GetAttr(),Py_BuildValue(),an(leExc_TypeError()

» The _py prefix should be reserved for internal functions that
need to be visible to the loader, such as _Pyobject_Dump().

« Macros should have a MixedCase prefix and then use upper
case, with all words separated by underscores, such as pys-
tring_AS_STRING and Py_PRINT_RAW.

Unlike PEP 8, there are few tools for checking compliance with
PEP 7. This task is instead done by the core developers as part
of code reviews. As with any human-operated process, this type
of review isn’t error-proof, so you'll likely find code that doesn’t
adhere to PEP 7.

The only bundled tool for automating this process is a script
called smelly.py, which you can execute using the make smelly
target on Linux or macOS, or via the command line:

$./python Tools/scripts/smelly.py

This will raise an error for any symbols that are in 1ibpython (the
shared CPython library) that do not start with py or _py.

78

https://realpython.com/python-pep8/
https://www.python.org/dev/peps/pep-0007/
https://www.python.org/dev/peps/pep-0007/

Configuration State

Configuration State

Before any Python code is executed, the CPython runtime first estab-
lishes the configuration of the runtime and any user-provided options.

The configuration of the runtime is in three locations, as defined in
PEP 587:
1. PyPreConfig, used for preinitialization configuration
2. PyConfig, used for the runtime configuration
3. The compiled configuration of the CPython interpreter

Both data structures, PyPreConfig and PyConfig, are defined in Include»
cpython? initconfig.h.

Preinitialization Configuration

The preinitialization configuration is separate from the runtime con-
figuration as its properties relate to the operating system or user envi-
ronment.

PyPreConfig has three primary functions:

1. Setting the Python memory allocator

2. Configuring the LC_CTYPE locale to the system- or user-preferred
locale

3. Setting the UTF-8 mode (PEP 540)
The pyPreConfig type contains the following fields, all of type int:

* allocator: Select a memory allocator, such as PYMEM_ALLOCATOR_MALLOC.
Run . /configure --help for more information on the memory allo-
cator.

* configure_locale: Set the LC_CTYPE locale to the user preferred lo-
cale. If equal to 0, then set coerce_c_locale and coerce_c_locale_warn
too.

79

https://www.python.org/dev/peps/pep-0587/
https://github.com/python/cpython/blob/v3.9.0/Include/cpython/initconfig.h#L125
https://github.com/python/cpython/blob/v3.9.0/Include/cpython/initconfig.h#L425
https://www.python.org/dev/peps/pep-0540/

Configuration State

* coerce_c_locale: If equal to 2, then coerce the Clocale. If equal to 1,
then read the LC__CTYPE locale to decide if it should be coerced.

* coerce_c_locale_warn: If nonzero, then emit a warning if the C lo-
cale is coerced.

* dev_mode: Turn on development mode.

+ isolated: Enable isolated mode. sys.path contains neither the
script’s directory nor the user’s site-packages directory.

* legacy_windows_fs_encoding: (Windows only) If nonzero, then dis-
able UTF-8 mode and set the Python file system encoding to mbcs.

* parse_argv: If nonzero, then use command-line arguments.

* use_enviromment: If greater than zero, then use environment vari-
ables.

+ utf8_mode: If nonzero, then enable UTF-8 mode.

Related Source Files

Below are the source files relating to pyPreConfig:

File Purpose

Python» initconfig.c Loads the configuration from the system
environment and merges it with any command-line
flags

Include» cpython» Defines the initialization configuration data

initconfig.h structure

Runtime Configuration Data Structure

The second-stage configuration is the runtime configuration. The run-
time configuration data structure in pyconfig includes several values,
including the following:

» Runtime flags for modes like debug and optimized

« The mode of execution, such as a script file, stdin, or module

« Extended options, specified by -x <option>

8o

https://github.com/python/cpython/blob/v3.9.0/Include/cpython/initconfig.h#L425

Configuration State

« Environment variables for runtime settings

The configuration data is used by the CPython runtime to enable and
disable features.

Setting Runtime Configuration with the
Command Line

Python also comes with several command-line interface options. For
example, CPython has a mode called verbose mode. This is primar-
ily aimed at developers for debugging CPython.

You can enable verbose mode with the -v flag, and Python will print
messages to the screen when modules are loaded:

$./python -v -c "print('hello world')"

installing zipimport hook
import zipimport # builtin

installed zipimport hook

You’ll see a hundred lines or more with all the imports of your user
site packages and anything else in the system environment.

Because runtime configuration can be set in several ways, configura-
tion settings have levels of precedence. Here’s the order of precedence
for verbose mode:

1. The default value for config->verbose is hardcoded to -1 in the
source code.

2. The environment variable PYTHONVERBOSE is used to set the value of

config->verbose.

3. If the environment variable does not exist, then the default value
of -1 will remain.

4. In config_parse_cmdline() within Python » initconfig.c, the
command-line flag is used to set the value, if provided.

81

https://docs.python.org/3/using/cmdline.html
https://github.com/python/cpython/blob/v3.9.0/Python/initconfig.c#L1908

Configuration State

5. This value is copied to a global variable, Py_verboseFlag by
_Py_GetGlobalVariablesAsDict().

All pyconfig values follow the same sequence and order of precedence:

System
Configuration

Command Line
Arguments

Environment
Variables

¥

-
PyPreConfig

v

R 2
PyConfig

3 2

Runtime

Viewing Runtime Flags

CPython interpreters have a set of runtime flags. These flags are ad-
vanced features used for toggling CPython-specific behaviors. Within
a Python session, you can access the runtime flags, like verbose mode
and quiet mode, by using the sys.flags named tuple.

All x flags are available inside the sys._xoptions dictionary:

82

https://github.com/python/cpython/blob/v3.9.0/Python/initconfig.c#L172

Build Configuration

$./python -X dev -q

>>> import sys

>>> sys.flags

sys.flags(debug=0, inspect=0, interactive=0, optimize=0,
dont_write_bytecode=0, no_user_site=0, no_site=0,
ignore_environment=0, verbose=0, bytes_warning=0,
quiet=1, hash_randomization=1, isolated=0,

dev_mode=True, utf8_mode=0)

>>> sys._xoptions

{'dev': True}

Build Configuration

Along with the runtime configuration in Include» cpython» initconfig.h,
there’s also a build configuration located inside pyconfig.h in the root
folder. This file is created dynamically in the ./configure step in the
build process for macOS and Linux, or by build.bat in Windows.

You can see the build configuration by running the following;:

$./python -m sysconfig

Platform: "macosx-10.15-x86_64"
Python version: "3.9"

Current installation scheme: "posix_prefix"

Paths:
data = "/usr/local”
include = "/Users/anthonyshaw/CLionProjects/cpython/Include”
platinclude = "/Users/anthonyshaw/CLionProjects/cpython"

Build configuration properties are compile-time values used to select
additional modules to be linked into the binary. For example, debug-
gers, instrumentation libraries, and memory allocators are all set at
compile time.

83

Building a Module From Input

With the three configuration stages, the CPython interpreter can now
take input and process text into executable code.

Building a Module From Input

Before any code can be executed, it must be compiled into a module
from an input. As discussed before, inputs can vary in type:

 Local files and packages

+ 1/0 streams, such as stdin or a memory pipe

« Strings

Inputs are read, passed to the parser, and then passed to the compiler:

File Input

I0 Stream
Input

Reader

—>

Parser

>

Compiler

String Input

Due to this flexibility, a large portion of the CPython source code is

dedicated to processing inputs to the CPython parser.

84

Building a Module From Input

Related Source Files

There are four main files that deal with the command-line interface:

File Purpose

Lib» runpy.py Standard library module for importing Python
modules and executing them

Modules » main.c Functions wrapping the execution of external code,
such as from a file, module, or input stream

Programs » python.c The entry point for the python executable for

Windows, Linux, and macOS Serves only as a
wrapper for Modules/main.c

Python» pythonrun. c Functions wrapping the internal C APIs for
processing inputs from the command line

Reading Files/Input

Once CPython has the runtime configuration and the command-line
arguments, it can load the code it needs to execute. This task is han-
dled by pymain_main() inside Modules» main.c.

CPython will now execute the provided code with any options speci-

fied in the newly created pyconfig instance.

Input String From the Command Line

CPython can execute a small Python application at the command line
with the -c option. For example, consider what happens when you
execute print(2 ** 2):

$./python -c "print(2 ** 2)"

First, pymain_run_command() is executed inside Modules » main.c, taking
the command passed in -c as an argument in the C type wchar_t*.

85

https://github.com/python/cpython/blob/v3.9.0/Modules/main.c#L696
https://github.com/python/cpython/blob/v3.9.0/Modules/main.c#L226

Building a Module From Input

The wchar_t* type is often used as a low-level storage type for
Unicode data across CPython since the size of the type can store
UTF-8 characters.

When converting the wchar_t* to a Python string, the ob-
jects » unicodeobject.c file has a helper function, PyuUni-
code_FromWideChar(), that returns a Unicode string. The
encoding to UTF-8 is then done by PyUnicode_AsUTF8String().

Python Unicode strings are covered in depth in the “Unicode
String Type” section of the “Objects and Types” chapter.

Once this is complete, pymain_run_command() passes the Python bytes
object to PyRun_SimpleStringFlags() for execution.

PyRun_SimpleStringFlags() is part of Python» pythonrun.c. Its purpose is
to turn a string into a Python module and then send it on to be exe-
cuted.

A Python module needs to have an entry point, __main__, to be exe-
cuted as a standalone module, and PyRun_SimpleStringFlags() creates
this entry point implicitly.

Once PyRun_SimpleStringFlags() has created a module and a dictionary,
it calls PyRun_StringFlags(). PyRun_SimpleStringFlags() creates a fake
filename and then calls the Python parser to create an abstract syntax
tree (AST) from the string and return a module. You'll learn more
about ASTs in the next chapter.

Python modules are the data structure used to hand parsed
code on to the compiler. The C structure for a Python module
1s mod_ty and is defined in Include» Python-ast.h.

86

https://github.com/python/cpython/blob/v3.9.0/Objects/unicodeobject.c#L2187
https://github.com/python/cpython/blob/v3.9.0/Objects/unicodeobject.c#L2187
https://github.com/python/cpython/blob/v3.9.0/Objects/unicodeobject.c#L5539
https://github.com/python/cpython/blob/v3.9.0/Modules/main.c#L226
https://github.com/python/cpython/blob/v3.9.0/Python/pythonrun.c#L463
https://github.com/python/cpython/blob/v3.9.0/Python/pythonrun.c#L463
https://github.com/python/cpython/blob/v3.9.0/Python/pythonrun.c#L463
https://github.com/python/cpython/blob/v3.9.0/Python/pythonrun.c#L1054
https://github.com/python/cpython/blob/v3.9.0/Python/pythonrun.c#L463

Building a Module From Input

Input With a Local Module

Another way to execute Python commands is to use the -m option with
the name of a module. A typical example is python -m unittest, which
runs the unittest module in the standard library.

The ability to execute modules as scripts was initially proposed in
PEP 338. The standard for explicit relative imports was defined in
PEP366.

The -m flag implies that, within the module package, you want to exe-
cute whatever is inside the entry point (__main__). It also implies that
you want to search sys.path for the named module.

This search mechanism in the import library (import1lib) is why you
don’t need to remember where the unittest module is stored on your
file system.

CPython imports a standard library module, runpy, and executes it us-
ing Pyobject_call(). The import is done using the C API function py-
Import_ImportModule(), found within the Python» import.c file.

In Python, if you have an object and want to get an attribute,
then you can call getattr(). In the C API, this call is pyob-
ject_GetAttrString(), which is found in Objects?»object.c.

If you want to run a callable, then you can give it parentheses,
or you can run the __call__() property on any Python object.
__call__() is implemented inside Objects» object.c:

>>> my_str = "hello, world"
>>> my_str.upper ()

'"HELLO, WORLD'

>>> my_str.upper.__call__ ()
'"HELLO, WORLD'

The runpy module is written in pure Python and is located in Lib »

87

https://www.python.org/dev/peps/pep-0338
https://www.python.org/dev/peps/pep-0366
https://realpython.com/python-main-function/
https://github.com/python/cpython/blob/v3.9.0/Objects/call.c#L289
https://github.com/python/cpython/blob/v3.9.0/Python/import.c#L1477
https://github.com/python/cpython/blob/v3.9.0/Python/import.c#L1477
https://github.com/python/cpython/blob/v3.9.0/Objects/object.c#L786
https://github.com/python/cpython/blob/v3.9.0/Objects/object.c#L786

Building a Module From Input

runpy.py.

Executing python -m <module> is equivalent to running python -m runpy
<module>. The runpy module was created to abstract the process of lo-
cating and executing modules on an operating system.

runpy does three things to run the target module:

1. Calls __import__() for the module name you provided
2. Sets __name__ (the module name) to a namespace called __main__

3. Executes the module within the __main__ namespace

The runpy module also supports executing directories and ZIP files.

Input From a Script File or Standard Input

If the first argument to python is a filename, such as python test.py,
then CPython will open a file handle and pass the handle to
PyRun_SimpleFileExFlags() inside Python » pythonrun.c.

There are three paths this function can take:

1. If the file path is a .pyc file, then it will call run_pyc_file().
2. Ifthefile pathisascriptfile (.py), then it will run PyRun_FileExFlags().
3. Ifthefile path is stdin because the user ran <command> | python, then

treat stdin as a file handle and run PyRun_FileExFlags().

For stdin and basic script files, CPython will pass the file handle to
PyRun_FileExFlags() located in the Python» pythonrun. c file.

The purpose OnyRun_FileExFlags O is similar to PyRun_SimpleStringFlags().
CPython will load the file handle into PyParser_ASTFromFileObject ().

Identical to PyRun_SimpleStringFlags(), once PyRun_FileExFlags() has
created a Python module from the file, it sends the module to
run_mod() to be executed.

88

https://github.com/python/cpython/blob/v3.9.0/Python/pythonrun.c#L382
https://github.com/python/cpython/blob/v3.9.0/Python/pythonrun.c#L1205
https://github.com/python/cpython/blob/v3.9.0/Python/pythonrun.c#L1085
https://github.com/python/cpython/blob/v3.9.0/Python/pythonrun.c#L1085
https://github.com/python/cpython/blob/v3.9.0/Python/pythonrun.c#L1085
https://github.com/python/cpython/blob/v3.9.0/Python/pythonrun.c#L1085
https://github.com/python/cpython/blob/v3.9.0/Python/pythonrun.c#L463
https://github.com/python/cpython/blob/v3.9.0/Python/pythonrun.c#L1442
https://github.com/python/cpython/blob/v3.9.0/Python/pythonrun.c#L463
https://github.com/python/cpython/blob/v3.9.0/Python/pythonrun.c#L1085
https://github.com/python/cpython/blob/v3.9.0/Python/pythonrun.c#L1186

Conclusion

Input From Compiled Bytecode

If the user runs python with a path to a .pyc file, then instead of loading
the file as a plain text file and parsing it, CPython will assume that the
.pyc file contains a code object written to disk.

In PyRun_SimpleFileExFlags(), there’s a clause for the user providing a
file path to a .pyc file.

run_pyc_file() inside Python » pythonrun.c marshals the code object
from the .pyc file using a file handle.

The code object data structure on the disk is the CPython compiler’s
way to cache compiled code so that it doesn’t need to parse it every
time the script is called.

Marshaling is a term for copying the contents of a file into
memory and converting them to a specific data structure.

Once the code object has been marshaled to memory, it’s sent to
run_eval_code_obj (), which calls Python» ceval.c to execute the code.

Conclusion

In this chapter, you've uncovered how Python’s many configuration
options are loaded and how code is inputted into the interpreter.

Python’s flexibility with input makes it a great tool for a range of ap-
plications, such as:

« Command-line utilities
 Long-running network applications, like web servers

 Short, composable scripts

Python’s ability to set configuration properties in many ways intro-
duces complexity. For example, if you tested a Python application on

89

https://github.com/python/cpython/blob/v3.9.0/Python/pythonrun.c#L382
https://github.com/python/cpython/blob/v3.9.0/Python/pythonrun.c#L1205
https://github.com/python/cpython/blob/v3.9.0/Python/pythonrun.c#L1155

Conclusion

Python 3.8 and it executed correctly, but then it failed in a different
environment, then you would need to understand which settings were
different in that environment.

This means you’d need to inspect environment variables, runtime
flags, and even the sys config properties.

The compile-time properties found in sys config can differ between
Python distributions. For example, Python 3.8 downloaded from
Python.org for macOS has different default values than the Python
3.8 distribution found on Homebrew or the one found on the
Anaconda distribution.

All these input methods output a Python module. In the next chapter,
you’ll look at how modules are created from input.

90

Lexing and Parsing With
Syntax Trees

In the previous chapter, you explored how Python text is read from
various sources. Next, it needs to be converted into a structure that
the compiler can use.

This stage is called parsing:

File Input

I0 Stream

Tnput Reader > Parser > Compiler

String Input

In this chapter, you’ll explore how the text is parsed into logical struc-
tures that can be compiled.

g1

Concrete Syntax Tree Generation

There are two structures used to parse code in CPython, the concrete
syntax tree (CST) and the abstract syntax tree (AST):

Text CST AST
Reader |——> Lexer —_— Parser —> | Compiler

The parsing process has two parts:

1. Creating a concrete syntax tree using a parser-tokenizer, or
lexer

2. Creating an abstract syntax tree from a concrete syntax tree using
a parser

These two steps are common paradigms used in many programming
languages.

Concrete Syntax Tree Generation

The concrete syntax tree, sometimes known as a parse tree, is an
ordered, rooted tree structure that represents code in a context-free
grammar.

The CST is created from a tokenizer and a parser. You explored
the parser generator in the chapter “The Python Language and
Grammar.” The output from the parser generator is a deterministic
finite automaton (DFA) parsing table describing the possible states
of a context-free grammar.

02

Concrete Syntax Tree Generation

The original author of Python, Guido van Rossum, developed a
contextual grammar for use in CPython 3.9 as an alternative to
LL(1), the grammar used in previous versions of CPython. The
new grammar is called parser expression grammar (PEG).

The PEG parser was made available in Python 3.9. In Python
3.10, the old LL(1) grammar will be removed completely.

In the “Python Language and Grammar” chapter, you explored some
expression types, such as if_stmt and with_stmt. The CST represents
grammar symbols like if_stmt as branches, with tokens and terminals
as leaf nodes.

For example, the arithmetic expression a + 1 becomes the following
CST:

arith_expr

NAME | ‘a’ | NUMBER | | 1

An arithmetic expression is represented here with three major
branches: the left branch, the operator branch, and the right branch.

The parser iterates through tokens from an input stream and matches
them against the possible states and tokens in the grammar to build
a CST.

93

Concrete Syntax Tree Generation

All the symbols shown in the CST above are defined in Grammar » Grammar:

arith_expr: term (('+'|'-') term)*
term: factor ((C'*'|'@'|'/"|'%"'"|'//') factor)*
factor: ('+'|'-"|'~") factor | power

power: atom_expr ['**' factor]

atom_expr: [AWAIT] atom trailer*

atom: ('(' [yield_expr|testlist_comp] ')' |
'[" [testlist_comp] ']' |
'{" [dictorsetmaker] '}' |

NAME | NUMBER | STRING+ | '..." | 'None'

The tokens are defined in Grammar » Tokens:

ENDMARKER
NAME
NUMBER
STRING
NEWLINE
INDENT
DEDENT

LPAR NG
RPAR !
LSQB [
RSQB 1
COLON gt
COMMA gt
SEMI gt
PLUS 't
MINUS ek
STAR He3d

| "True' | 'False')

A NAME token represents the name of a variable, function, class, or mod-
ule. Python’s syntax doesn’t allow a NAME to be one of the reserved
keywords, like await and async, or a numeric or other literal type.

For example, if you tried to define a function named 1, then Python

would raise a SyntaxError:

94

Concrete Syntax Tree Generation

>>> def 1():
File "<stdin>", line 1

def 10):

A

SyntaxError: invalid syntax

A NUMBER is a particular token type to represent one of Python’s many
numeric values. Python has a special grammar for numbers, includ-
ing the following:

+ Octal values, such as 0020

+ Hexadecimal values, such as ox10

+ Binary values, such as 0b10000

« Complex numbers, such as 10j

Floating-point numbers, such as 1.01
« Underscores as commas, such as 1_000_000

You can see compiled symbols and tokens using the symbol and token
modules in Python:

$./python
>>> import symbol

>>> dir(symbol)

['"_builtins__"', '__cached__', '__doc__', '__file_', '__loader__',
'_name__', '__package__', '_spec__', '_main', '_name', '_value',
'and_expr', 'and_test', 'annassign', 'arglist', 'argument',
'arith_expr', 'assert_stmt', 'async_funcdef', 'async_stmt',
'atom', 'atom_expr',

>>> import token

>>> dir(token)

['AMPER', 'AMPEREQUAL', 'AT', 'ATEQUAL', 'CIRCUMFLEX',
'CIRCUMFLEXEQUAL', 'COLON', 'COMMA', 'COMMENT', 'DEDENT', 'DOT',
'DOUBLESLASH', 'DOUBLESLASHEQUAL', 'DOUBLESTAR', 'DOUBLESTAREQUAL',

95

The CPython Parser-Tokenizer

The CPython Parser-Tokenizer

Programming languages have different implementations of the lexer.
Some use a lexer generator as a complement to the parser generator.

CPython has a parser-tokenizer module, written in C.

Related Source Files

Here are the source files relating to the parser-tokenizer:

File Purpose

Python» pythonrun.c Executes the parser and the compiler from an input

Parser » parsetok.c The parser and tokenizer implementation

Parser) tokenizer.c Tokenizer implementation

Parser » tokenizer.h Header file for the tokenizer implementation that
describes data models like token state

Include» token.h Declaration of token types, generated by Tools»
scripts? generate_token.py

Include» node.h Parse tree node interface and macros for the
tokenizer

Inputting Data Into the Parser From a File

The entry point for the parser-tokenizer, PyParser_ASTFromFileObject (),
takes a file handle, compiler flags, and a pyArena instance and converts
the file object into a module.

There are two steps:

1. Convert to a CST using PyParser_ParseFileObject().

2. Convert to an AST or module using the AST function
PyAST_FromNodeObject().

The PyParser_ParseFileObject () function has two important tasks:

1. Instantiating a tokenizer state, tok_state, using PyTokenizer_FromFile()

2. Converting the tokens into a CST (a list of nodes) using parsetok()

96

https://github.com/python/cpython/blob/v3.9.0/Python/pythonrun.c#L1442
https://github.com/python/cpython/blob/v3.9.0/Parser/parsetok.c#L165
https://github.com/python/cpython/blob/v3.9.0/Python/ast.c#L763
https://github.com/python/cpython/blob/v3.9.0/Parser/parsetok.c#L165
https://github.com/python/cpython/blob/v3.9.0/Parser/tokenizer.c#L775
https://github.com/python/cpython/blob/v3.9.0/Parser/parsetok.c#L216

The CPython Parser-Tokenizer

Parser-Tokenizer Flow

The parser-tokenizer takes text input and executes the tokenizer and
parser in a loop until the cursor is at the end of the text (or a syntax
error occurs).

Before execution, the parser-tokenizer establishes tok_state, a tempo-
rary data structure to store all states used by the tokenizer. The tok-
enizer state contains information such as the current cursor position
and line.

The parser-tokenizer calls tok_get () to get the next token. The parser-
tokenizer passes the resulting token ID to the parser, which uses the
parser generator DFA to create a node on the concrete syntax tree.

tok_get () is one of the most complex functions in the whole CPython
codebase. It has over 640 lines and includes decades of heritage with
edge cases, new language features, and syntax.

The process of calling the tokenizer and parser in a loop can be illus-
trated like this:

97

https://github.com/python/cpython/blob/v3.9.0/Parser/tokenizer.c#L1174

The CPython Parser-Tokenizer

[

Init Tokenizer '
State :
[

v
Q
= I ¢ ____________ |
o o |
1| §|
! : Get next token 3,
— N
o ! ; o |
~ ___ .1 ____>,
o | v [
s | |
o
N Parse Token
o | A
S I S |
| Node o !
| L’ s
[
! Add node |
| to CST |
[
[
[
: |
b ST |———— - - |
v

The CST root node returned by PyParser_ParseFileObject() iS essential
for the next stage, converting a CST into an abstract syntax tree (AST).

The node type is defined in Include» node.h:

typedef struct _node {

short n_type;

char *n_str;

int n_lineno;

int n_col_offset;

98

https://github.com/python/cpython/blob/v3.9.0/Parser/parsetok.c#L165

The CPython Parser-Tokenizer

int n_nchildren;

struct _node *n_child;

int n_end_lineno;

int n_end_col_offset;
} node;

Since the CST is a tree of syntax, token IDs, and symbols, it would be
difficult for the compiler to make quick, Python-based decisions.

Before you jump into the AST, there’s a way to access the output
from the parser stage. CPython has a standard library module, parser,
which exposes the C functions with a Python API.

The output will be numeric, using the token and symbol numbers gen-
erated by the make regen-grammar stage and stored in Include» token.h:

>>> from pprint import pprint
>>> import parser
>>> st = parser.expr('a + 1')

>>> pprint(parser.st2list(st))

[258,
13325
[306,
[310,
[311,
[312,
[313,
[316,
[317,
[318,
[319,
[320,
[321, [322, [323, [324, [325, [1, 'a']l]ll],
[14, "+'],

[321, [322, [323, [324, [325, [2, '1']1111111111111111,
[4, "1,
[o, "'11

99

The CPython Parser-Tokenizer

To make it easier to understand, you can take all the numbers in the
symbol and token modules, put them into a dictionary, and recursively
replace the values in the output of parser.st21ist() with the names of
the tokens:

cpython-book-samples» 21 » lex.py

import symbol
import token

import parser

def lex(expression):
symbols = {v: k for k, v in symbol.__dict__.items()
if isinstance(v, int)}
tokens = {v: k for k, v in token.__dict__.items()
if isinstance(v, int)}
lexicon = {**symbols, **tokens}
st = parser.expr(expression)

st_list = parser.st2list(st)

def replace(l: list):
r =[]
for i in 1:
if isinstance(i, list):
r.append(replace(i))
else:
if i in lexicon:
r.append(lexicon[i])
else:
r.append(i)

return r
return replace(st_list)

You can run lex() with a simple expression like a + 1 to see how this
is represented as a parser tree:

100

Abstract Syntax Trees

>>> from pprint import pprint

>>> pprint(lex('a + 1"))

['eval_input',
["testlist',
['"test',
['or_test',
['and_test"',
['not_test',
['comparison',
['expr',
['xor_expr',
["and_expr',
['shift_expr',
["arith_expr',
['"term',
['factor', ['power', ['atom_expr', ['atom',
['NAME', 'a']111111,
['PLUS', '+'],
['"term',
['factor',
['power', ['atom_expr', ['atom', ['NUMBER',
‘1'11111111111111111,
['NEWLINE', ''],
['ENDMARKER', '']]

In the output, you can see the symbols in lowercase, such as
'arith_expr', and the tokens in uppercase, such as 'NUMBER'.
Abstract Syntax Trees

The next stage in the CPython interpreter is to convert the CST gener-
ated by the parser into something more logical that can be executed.

101

Abstract Syntax Trees

Concrete syntax trees are a very literal representation of the text in the
code file. At this stage, it could be a number of languages. Python’s
basic grammatical structure has been interpreted, but you couldn’t
use the CST to establish functions, scopes, loops or any of the core
Python language features.

Before code is compiled, the CST needs to be converted into a higher-
level structure that represents actual Python constructs. The struc-
ture is a representation of the CST called an abstract syntax tree (AST).

As an example, a binary operation in the AST is called a Binop and is
defined as a type of expression. It has three components:

1. left: The left-hand part of the operation
2. op: The operator, such as +, -, or *

3. right: The right-hand part of the expression

The AST for a + 1 can be represented like this:

Expr

BinOp

Left Op \ Right

Name Add Num

ASTs are produced by the CPython parser process, but you can also
generate them from Python code using the ast module in the standard
library.

102

Abstract Syntax Trees

Before diving into the implementation of the AST, it would be useful
to understand what an AST looks like for a basic piece of Python code.

Related Source Files

Below are the source files relating to abstract syntax trees:

File Purpose

Include) Python-ast.h Declaration of AST node types, generated by Parser»
asdl_c.py

Parser » Python.asdl Alist of AST node types and properties in a
domain-specific-language, ASDL 5

Python) ast.c The AST implementation

Using Instaviz to View Abstract Syntax Trees

Instaviz is a Python package written for use with this book. It displays
ASTs and compiled code in a web interface.

To install Instaviz, install the instaviz package from pip:
$ pip install instaviz

Then open up a REPL by running python at the command line with no
arguments.

The function instaviz.show() takes a single argument of type code ob-
ject. You'll cover code objects in the next chapter. For this example,
define a function and use the name of the function as the argument
value:

103

Abstract Syntax Trees

$ python

>>> import instaviz

>>> def example():

a=1
b=a+1
return b

>>> instaviz.show(example)

You’ll see a notification on the command line that a web server has
started on port 8080. If you were using that port for something else,
then you could change it by calling instaviz.show(example, port=9090)

or another port number.

In the web browser, you can see a detailed breakdown of your func-

tion:
Code Object Properties
Field Value
co_argcount 0
co_cellvars 0
co_code 64017d007c00640117007d017c015300
co_consts (None, 1)
co_filename test.py
co_firstlineno 4
co_freevars 0
co_kwonlyargcount 0
co_Inotab b"\x00\x01\x04\x01\x08\x01'
co_name foo
co_names 0
co_nlocals 2
co_stacksize 2
co_varnames (a','b")
4def foo():
5 a=1
6 b=a+1
7 return b
Graph direction: | Up-Down || Down-Up | Left-Right | = Right-Left

104

Abstract Syntax Trees

The bottom-left graph is the function you declared in the REPL, rep-
resented as an abstract syntax tree. Each node in the tree is an AST
type. They’re found in the ast module and all inherit from _ast.AST.

Some of the nodes have properties that link them to child nodes, un-
like the CST, which has a generic child node property.

For example, if you click on the Assign node in the center, then it links
tothelineb = a + 1:

s (\> ot

e N ems w0 e

=

The Assign node has two properties:

1. targets is a list of names to assign. It’s a list because you can assign
to multiple variables with a single expression using unpacking.

2. value is the value to assign, which in this case is a Binop statement,

a + 1.

105

Abstract Syntax Trees

If you click on the Binop statement, then it shows the relevant proper-
ties:

« left: The node to the left of the operator

+ op: The operator, in this case an Add node (+) for addition

+ right: The node to the right of the operator

Node Properties
Select a node on the AST graph to see properties.
json
targets
[o
id:'b'

ctx

value
left

id:'a' string

ctx

Lo
right

n:1

lineno : 3

AST Compilation

Compiling an AST in Cis not a straightforward task. The Python» ast.c
module has over 5,000 lines of code.

There are a few entry points, forming part of the AST’s public API. The
AST API takes a node tree (CST), a filename, the compiler flags, and
a memory storage area.

The result type is mod_ty, representing a Python module defined in 1n-
clude» Python-ast.h.

106

https://github.com/python/cpython/blob/v3.9.0/Include/Python#L14

Abstract Syntax Trees

mod_ty iS a container structure for one of the four module types in
Python:

1. Module
2. Interactive
3. Expression

4. FunctionType

The module types are all listed in Parser » Python.asdl. You’'ll see the
module types, statement types, expression types, operators, and com-
prehensions all defined in this file.

The names of the types in Parser» Python.asdl relate to the classes gen-
erated by the AST and the same classes named in the ast standard
module library:

-- ASDL's 4 builtin types are:

-- identifier, int, string, constant

module Python
{
mod = Module(stmt* body, type_ignore *type_ignores)
| Interactive(stmt* body)
| Expression(expr body)

| FunctionType(expr* argtypes, expr returns)

The ast module imports Include » Python-ast.h, a file created automat-
ically from Parser » Python.asdl when regenerating grammar. The pa-
rameters and names in Include» Python-ast.h correlate directly to those
speciﬁed in Parser» Python.asdl.

107

Abstract Syntax Trees

The mod_ty type is generated into Include» Python-ast.h from the Module
definition in Parser» Python.asdl:

enum _mod_kind {Module_kind=1, Interactive_kind=2, Expression_kind=3,
FunctionType_kind=4};
struct _mod {
enum _mod_kind kind;
union {
struct {
asdl_seq *body;
asdl_seq *type_ignores;

} Module;

struct {
asdl_seq *body;

} Interactive;

struct {
expr_ty body;

} Expression;

struct {
asdl_seq *argtypes;
expr_ty returns;

} FunctionType;

} v
1

The C header file and structures are there so that the python» ast.c pro-
gram can quickly generate the structures with pointers to the relevant
data.

The AST entry point, PyAST_FromNodeObject(), is essentially a switch
statement around the result from TYPE(n). TYPE() is a macro used by
the AST to determine the type of nodes in the concrete syntax tree.
The result of TYPE() will be either a symbol or a token type.

108

https://github.com/python/cpython/blob/v3.9.0/Python/ast.c#L763

Abstract Syntax Trees

By starting at the root node, it can be only one of the module types
defined as Module, Interactive, Expression, OT FunctionType:

 For file_input, the type should be Module.
 For eval_input, such as from a REPL, the type should be Expression.
For each type of statement, there’s a corresponding ast_for_xxx C func-

tion in Python» ast.c, which will look at the CST nodes to complete the
properties for that statement.

One of the simpler examples is the power expression, such as 2 ==
4, or 2 to the power of 4. ast_for_power() will return a Binop with the
operator as pow (power), the left hand as e (2), and the right hand as f

(4):
Python» ast.c line 2717

static expr_ty

ast_for_power(struct compiling *c, const node *n)

{
/* power: atom trailer* ('**' factor)*
*/
expr_ty e;
REQ(n, power);
e = ast_for_atom_expr(c, CHILD(n, 0));
if (le)
return NULL;
if (NCH(n) == 1)
return e;
if (TYPE(CHILD(n, NCH(n) - 1)) == factor) {
expr_ty f = ast_for_expr(c, CHILD(n, NCH(n) - 1));
if (1f)
return NULL;
e = BinOp(e, Pow, f, LINENO(n), n->n_col_offset,
n->n_end_lineno, n->n_end_col_offset, c->c_arena);
}
return e;
}

109

https://github.com/python/cpython/blob/v3.9.0/Python/ast.c#L2717

Abstract Syntax Trees

You can see the result of this if you send a short function to the instaviz
module:

>>> def foo():
ikl
>>> import instaviz

>>> instaviz.show(foo)

BinOp

You can also see the corresponding properties in the Ul:

Node Properties

Select a node on the AST graph to see properties.

json object

value
left
n2

object

object

‘number

| op

object

right
n:4

object

number

lineno : 2

number

110

Important Terms to Remember

In summary, each statement type and expression has a corresponding
ast_for_*() function to create it. The arguments are defined in Parser
» Python.asdl and exposed via the ast module in the standard library.

If an expression or statement has children, then it will call the corre-
sponding ast_for_#() child function in a depth-first traversal.

Important Terms to Remember

Below are some key terms from this chapter:
« Abstract syntax tree (AST): A contextual tree representation
of Python’s grammar and statements

+ Concrete syntax tree (CST): A non-contextual tree representa-
tion of tokens and symbols

+ Parse tree: Another term for concrete syntax tree
« Token: A type of symbol, such as +
» Tokenization: The process of converting text into tokens

« Parsing: The process of converting text into a CST or AST

Example: Adding an Almost-Equal
Comparison Operator

To bring all this together, you can add a new piece of syntax to the
Python language and recompile CPython to understand it.

A comparison expression compares two or more values:

>>>a=1
>>> b =2
>>> a ==
False

111

Example: Adding an Almost-Equal Comparison Operator

Operators used in comparison expressions are called comparison
operators. Here are some you may recognize:

» Less than: <

+ Greater than: >

+ Equal to: ==

+ Not equal to: !=

See Also

Rich comparisons in the data model were proposed for Python
2.1in PEP 207. The PEP contains context, history, and justifica-
tion for custom Python types to implement comparison meth-
ods.

Now let’s add another comparison operator called almost equal that
will be represented by ~=. It will have the following behaviors:

« Ifyou compare a float and an integer, then it will cast the float into
an integer and compare the result.

« If you compare two integers, then it will use the normal equality
operators.

This new operator should return the following in a REPL:

>>> 1 ~=1
True

>>> 1 ~= 1.0
True

>>> 1 ~=1.01
True
>>> 1 ~=1.9

False

To add the new operator, you first need to update the CPython gram-
mar. In Grammar» python.gram, the comparison operators are defined as
a symbol, comp_op:

112

https://www.python.org/dev/peps/pep-0207/

Example: Adding an Almost-Equal Comparison Operator

comparison[expr_tvy]:
| a=bitwise_or b=compare_op_bitwise_or_pair+ ...
| bitwise_or

compare_op_bitwise_or_pair[CmpopExprPair*]:

eqg_bitwise_or

noteq_bitwise_or

1te_bitwise_or

1t_bitwise_or

gte_bitwise_or

gt_bitwise_or

notin_bitwise_or

in_bitwise_or

isnot_bitwise_or

is_bitwise_or

eg_bitwise_or[CmpopExprPair*]: '==' a=bitwise_or ...
noteq_bitwise_or[CmpopExprPair*]:

| (tok="!="' {_PyPegen_check_barry_as_flufl(p) ? NULL : tok})

1te_bitwise_or[CmpopExprPair*]: '<=' a=bitwise_or ...

1t_bitwise_or[CmpopExprPair*]: '<' a=bitwise_or ...

gte_bitwise_or[CmpopExprPair*]: '>=' a=bitwise_or ...

gt_bitwise_or[CmpopExprPair*]: '>' a=bitwise_or ...
notin_bitwise_or[CmpopExprPair*]: 'not' 'in' a=bitwise_or ...
in_bitwise_or[CmpopExprPair*]: 'in' a=bitwise_or ...

v

isnot_bitwise_or[CmpopExprPair*]: 'is' 'not' a=bitwise_or ...

v

is_bitwise_or[CmpopExprPair*]: 'is' a=bitwise_or ...

Change the compare_op_bitwise_or_pair expression to also allow a new
ale_bitwise_or pair:

compare_op_bitwise_or_pair[CmpopExprPair*]:

| eq_bitwise_or

| ale_bitwise_or

113

Example: Adding an Almost-Equal Comparison Operator

Define the new ale_bitwise_or expression beneath the existing
is_bitwise_or expression:

v

is_bitwise_or[CmpopExprPair*]: 'is' a=bitwise_or ...

ale_bitwise_or[CmpopExprPair*]: '~=' a=bitwise_or

{ _PyPegen_cmpop_expr_pair(p, AlE, a) }

This new type defines a named expression, ale_bitwise_or, that con-
tains the '~=' terminal.

The function call _PyPegen_cmpop_expr_pair(p, AlE, a) is an expression
to get a cmpop node from the AST. The type is A1k, for Almost Equal.

Next, add a token to Grammar » Tokens:
ATEQUAL 'e="
RARROW >t
ELLIPSIS !
COLONEQUAL =t

Add this line
ALMOSTEQUAL tost

To update the grammar and tokens in C, you need to regenerate the
headers.

Use the following command on macOS or Linux:
$ make regen-token regen-pegen
Use the following command on Windows, within the pcBuild directory:

> build.bat --regen

114

Example: Adding an Almost-Equal Comparison Operator

These steps will automatically update the tokenizer. For exam-
ple, open the Parser/token.c source and see how a case in the
PyToken_TwoChars() function has changed:

v

case '~':
switch (c2) {
case '='": return ALMOSTEQUAL;
}

break;

If you recompile CPython at this stage and open a REPL, then you’ll
see that the tokenizer can successfully recognize the token, but the
AST doesn’t know how to handle it:

$./python
>>> 1 ~= 2

SystemError: invalid comp_op: ~=

This exception is raised by ast_for_comp_op() inside Python » ast.c be-
cause it doesn’t recognize ALMOSTEQUAL as a valid operator for a compar-
ison statement.

Compare is an expression type defined in Parser » Python.asdl. It has
properties for the left expression; a list of operators called ops, and
a list of expressions to compare to called comparators:

| Compare(expr left, cmpop* ops, expr* comparators)
Inside the compare definition is a reference to the cmpop enumeration:
cmpop = Eq | NotEq | Lt | LtE | Gt | GtE | Is | IsNot | In | NotlIn

This is a list of possible AST leaf nodes that can act as comparison
operators. Ours is missing and needs to be added. Update the list of
options to include a new type, AlE:

cmpop = Eq | NotEq | Lt | LtE | Gt | GtE | Is | IsNot | In | NotIn | AlE

115

https://github.com/python/cpython/blob/v3.9.0/Parser/token.c#L109
https://github.com/python/cpython/blob/v3.9.0/Python/ast.c#L1222

Example: Adding an Almost-Equal Comparison Operator

Next, regenerate the AST again to update the AST C header files:

$ make regen-ast

This will update the comparison operator (_cmpop) enumeration inside
Include/Python-ast.h to include the AlE option:

typedef enum _cmpop { Eq=1, NotEgq=2, Lt=3, LtE=4, Gt=5, GtE=6, Is=7,
IsNot=8, In=9, NotIn=10, AlE=11 } cmpop_ty;

The AST has no knowledge that the ALMOSTEQUAL token is equivalent to

the A1E comparison operator. So you need to update the C code for the
AST.

Navigate to ast_for_comp_op() in Python» ast.c. Find the switch state-
ment for the operator tokens. This returns one of the _cmpop enumer-
ation values.

Add two lines to catch the AtMoSTEQUAL token and return the A1E com-
parison operator:

Python? ast.c line 1222

static cmpop_ty
ast_for_comp_op(struct compiling *c, const node *n)
{
/* comp_op: '<'['>"['=="['>="["'<="["I="["in"['not"' 'in'|'is'

"o r

|'is' 'not
%
REQ(n, comp_op);
if (NCH(n) == 1) {
n = CHILD(n, 0);
switch (TYPE(n)) {
case LESS:
return Lt;

case GREATER:

return Gt;
case AIMOSTEQUAL: // Add this line to catch the token
return AlE; // And this one to return the AST node

116

https://github.com/python/cpython/blob/v3.9.0/Python/ast.c#L1222

Conclusion

At this stage, the tokenizer and the AST can parse this code, but the
compiler won’t know how to handle the operator. To test the AST
representation, use ast.parse() and explore the first operator in the
expression:

>>> import ast

>>> m = ast.parse('l ~= 2")

>>> m.body[0].value.ops[0]
<_ast.AlE object at 0x10a8d7ee0>

This is an instance of our A1E comparison operator type, so the AST
has correctly parsed the code.

In the next chapter, you’ll learn how the CPython compiler works and
revisit the almost-equal operator to build out its behavior.

Conclusion

CPython’s versatility and low-level execution API make it the ideal
candidate for an embedded scripting engine. You’'ll see CPython used
in many UI applications, such as game design, 3D graphics, and sys-
tem automation.

The interpreter process is flexible and efficient. Now that you have an
understanding of how it works, you’re ready to understand the com-
piler.

117

The Compiler

After completing the task of parsing, the interpreter has an AST with
the operations, functions, classes, and namespaces of the Python
code.

The job of the compiler is to turn the AST into instructions the CPU
can understand:

File Input

IO Stream

Tnput — Reader > Parser > Compiler

String Input

This compilation task is split into two components:

1. Compiler: Traverse the AST and create a control flow graph
(CFG), which represents the logical sequence for execution.

2. Assembler: Convert the nodes in the CFG to sequential, exe-
cutable statements known as bytecode.

Here’s a visual representation of the compilation process:

118

Related Source Files

AST CFG Bytecode
Parser |——>| Compiler | ——> | Assembler | — > | Execution

Throughout this chapter, it’s important to remember that the
unit of compilation for CPython is a module. The compilation
steps and process indicated in this chapter will happen once for
each module in your project.

In this chapter, you’ll focus on the compilation of an AST module into
a code object.

PyAST_CompileObject() is the main entry point to the CPython compiler.
It takes a Python AST module as its primary argument, along with the
name of the file and the globals, locals, and pyarena all created earlier
in the interpreter process.

You're starting to get into the guts of the CPython compiler now,
with decades of development and computer science theory be-
hind it. Don’t be put off by the size and complexity. Once you
break down the compiler into logical steps, it’s less difficult to
understand.

Related Source Files

Here are the source files related to the compiler:

File Purpose
Python» compile.c Compiler implementation
Include» compile.h Compiler API and type definitions

119

https://github.com/python/cpython/blob/v3.9.0/Python/compile.c#L318

Important Terms

Important Terms
This chapter refers to many terms that may be new to you:

« The compiler state is implemented as a container type, which
contains one symbol table.

« The symbol table contains many variable names and can option-
ally contain child symbol tables.

+ The compiler type contains many compiler units.

« Each compiler unit can contain many names, variable names, con-
stants, and cell variables.

+ A compiler unit contains many basic frame blocks.

+ Basic frame blocks contain many bytecode instructions.

The compiler state container and its components can be illustrated
like this:

Compiler State

Compiler Unit

Basic Frame Block

Symbol Table Constant

1l

Symtable Entry

Variable Name Variable Name“ Instruction “

!
smeane grery || || [_cowr_|
| ‘f

Cellvar

L

120

Instantiating a Compiler

Instantiating a Compiler

Before the compiler starts, a global compiler state is created. The
compiler state (compiler type) structure contains properties used by
the compiler, such as compiler flags, the stack, and the pyarena. It also
contains links to other data structures, like the symbol table.

Here are the fields in the compiler state:

Field

Type

Purpose

c_arena

c_const_cache

c_do_not_emit_bytecode

c_filename

PyArena *
PyObject * (dict)
int

PyObject * (str)

Pointer to the memory allocation
arena

Python dict holding all constants,
including names tuple

Flag for disabling bytecode
compilation

Filename being compiled

c_flags PyCompilerFlags * Inherited compiler flags (see the
“Compiler Flags” section)

c_future PyFutureFeatures * Pointer to module’s __future__

c_interactive int Flag for interactive mode

c_nestlevel int Current nesting level

c_optimize int Optimization level

c_st symtable * Compiler’s symbol table

c_stack PyObject * (list) Python list holding compiler_unit
pointers

u compiler_unit* Compiler state for the current block

The compiler state is instantiated inside PyAST_CompileObject():
« If the module doesn’t have a docstring (__doc__) property, then an
empty one is created here, as with the __annotations__ property.

* PyAST_CompileObject() sets the passed value as the compiler state
filename, which is used for stack traces and exception handling.

« The memory allocation arena for the compiler is set to the one used
by the interpreter. See “Custom Memory Allocators” in the “Mem-
ory Management” chapter for more on memory allocators.

« Any future flags are configured before the code is compiled.

121

https://github.com/python/cpython/blob/v3.9.0/Python/compile.c#L318
https://github.com/python/cpython/blob/v3.9.0/Python/compile.c#L318

Future Flags and Compiler Flags

Future Flags and Compiler Flags

There are two types of flags to toggle the features inside the compiler,
future flags and compiler flags. These flags can be set in two
places:

1. The configuration state, which contains environment variables
and command-line flags

2. Inside the source code of the module through the use of __future__
statements

For more information on the configuration state, see the “Configura-
tion State” section in the “Configuration and Input” chapter.

Future Flags

Future flags are required because of the syntax or features in that spe-
cific module. For example, Python 3.7 introduced delayed evaluation
of type hints through the annotations future flag:

from __future__ import annotations

The code after this statement might use unresolved type hints, so the
__future__ statement is required. Otherwise, the module wouldn’t im-
port.

Reference of Future Flags in 3.9

As of 3.9, all but two of the future flags (annotations and barry_as_FLUFL)
are mandatory and are automatically enabled:

122

Symbol Tables

Import Purpose

absolute_import Enable absolute imports (PEP 328)

annotations Postpone evaluation of type annotations (PEP 563)
barry_as_FLUFL Include Easter egg (PEP 401)

division Use the true division operator (PEP 238)
generator_stop Enable StopIteration inside generators (PEP 479)
generators Introduce simple generators (PEP 255)

nested_scopes Add statically nested scoping (PEP 227)
print_function Make print a function (PEP 3105)

unicode_literals Make str literals Unicode instead of bytes (PEP 3112)
with_statement Enable the with statement (PEP 343)

The majority of the __future__ flags were used to aid portability
between Python 2 and 3. As Python 4.0 approaches, you may
see more future flags added.

Compiler Flags

Compiler flags are specific to the environment, so they might change
the way the code executes or the way the compiler runs, but they
shouldn’t link to the source like __future__ statements do.

One example of a compiler flag would be the -0 flag for optimizing the
use of assert statements. This flag disables any assert statements that
may have been put in the code for debugging purposes. It can also be
enabled with the pyTHONOPTIMIZE=1 environment variable setting.

Symbol Tables

Before the code is compiled, a symbol table is created by the
PySymtable_BuildObject() API.

The purpose of the symbol table is to provide a list of namespaces,
globals, and locals for the compiler to use for referencing and resolv-
ing scopes.

123

https://www.python.org/dev/peps/pep-0328
https://www.python.org/dev/peps/pep-0563
https://www.python.org/dev/peps/pep-0401
https://www.python.org/dev/peps/pep-0238
https://www.python.org/dev/peps/pep-0479
https://www.python.org/dev/peps/pep-0255
https://www.python.org/dev/peps/pep-0227
https://www.python.org/dev/peps/pep-3105
https://www.python.org/dev/peps/pep-3112
https://www.python.org/dev/peps/pep-0343
https://docs.python.org/3/using/cmdline.html#cmdoption-o
https://realpython.com/python-debugging-pdb/
https://github.com/python/cpython/blob/v3.9.0/Python/symtable.c#L261

Symbol Tables

Related Source Files

Here are the source files related to the symbol table:

File Purpose

Python» symtable.c Symbol table implementation

Include» symtable.h Symbol table API definition and type definitions
Lib» symtable.py symtable standard library module

Symbol Table Data Structure

The symtable structure should be one symtable instance for the com-
piler, so namespacing becomes essential.

For example, if you create a method called resolve_names() in one class
and declare another method with the same name in another class,
then you would want to be sure which one is called inside the mod-
ule.

The symtable serves this purpose, as well as ensuring that variables
declared within a narrow scope don’t automatically become globals.

The symbol table structure, symtable, has the following fields:

Field Type Purpose

recursion_depth int Current recursion depth

recursion_limit int Recursion limit before RecursionError is raised

st_blocks Pyobject * (dict) Map of AST node addresses to symbol table
entries

st_cur _symtable_entry Current symbol table entry

st_filename PyObject * (str) Name of the file being compiled

st_future PyFutureFeatures ~ Module’s future features that affect the
symbol table

st_global PyObject * (dict) Reference to the symbols in st_top

st_nblocks int Number of blocks used

st_private PyObject * (str) Name of current class (optional)

st_stack Pyobject * (list) Stack of namespace info

st_top _symtable_entry Symbol table entry for the module

124

Symbol Tables

Using the symtable Standard Library Module

Some of the symbol table C API is exposed in Python through the
symtable module in the standard library.

Using another module called tabulate (available on PyPI), you can cre-
ate a script to print a symbol table.

Symbol tables can be nested, so if a module contains a function or
class, then that will have a symbol table.

Create a script called symviz.py with a recursive show() function:
cpython-book-samples? 30 » symviz.py

import tabulate

import symtable

code = """

def calc_pow(a, b):

return a ** b
a=1
b= 2

¢ = calc_pow(a,b)

_st = symtable.symtable(code, "example.py", "exec")

def show(table):
print("Symtable {0} ({1})".format(table.get_name(),
table.get_type()))
print(
tabulate.tabulate(
[

symbol.get_name(),
symbol.is_global(),
symbol.is_local(),

125

https://docs.python.org/3/library/symtable.html
https://pypi.org/project/tabulate/

Symbol Tables

symbol.get_namespaces(),

)
for symbol in table.get_symbols()
1,
headers=["name", "global", "local", "namespaces"],

tablefmt="grid",

)
if table.has_children():
[show(child) for child in table.get_children()]

show(_st)

Run symviz.py at the command line to see the symbol tables for the
example code:

(venv) » instaviz git:(master) python symviz.py
Symtable top (module)

global | local | namespaces |

| name

calc_pow	False	True	[<Function SymbolTable for calc_pow in example.py>]
a	False	True	O
b	False	True	O
¢	False	True	O

Symtable calc_pow (function)

| name | global | local | namespaces
| a | False | True | O |

| b | False | True | O |

Symbol Table Implementation

The implementation of symbol tables is in Python» symtable.c and the
primary interface is PySymtable_BuildObject().

Similarly to the AST compilation covered in the last chapter,
PySymtable_BuildObject() switches between the mod_ty possible types

126

https://github.com/python/cpython/blob/v3.9.0/Python/symtable.c#L261
https://github.com/python/cpython/blob/v3.9.0/Python/symtable.c#L261

Symbol Tables

(Module, Interactive, Expression, and FunctionType) and visits each of
the statements inside them.

The symbol table recursively explores the nodes and branches of the
AST (of type mod_ty) and adds entries to the symtable:

Python» symtable.c line 261

struct symtable *
PySymtable_BuildObject(mod_ty mod, PyObject *filename,

PyFutureFeatures *future)

{
struct symtable *st = symtable_new();
asdl_seq *seq;
int i;
PyThreadState *tstate;
int recursion_limit = Py_GetRecursionLimit();
st->st_top = st->st_cur;
switch (mod->kind) {
case Module_kind:
seq = mod->v.Module.body;
for (i = 0; i < asdl_seqg_LEN(seq); i++)
if (!symtable_visit_stmt(st,
(stmt_ty)asdl_seq_GET(seq, i)))
goto error;
break;
case Expression_kind:
case Interactive_kind:
case FunctionType_kind:
}
}

For a module, pySymtable_Buildobject() loops through each statement
in the module and calls symtable_visit_stmt(), which is a huge switch

127

https://github.com/python/cpython/blob/v3.9.0/Python/symtable.c#L261
https://github.com/python/cpython/blob/v3.9.0/Python/symtable.c#L1171

Symbol Tables

statement with a case for each statement type (defined in Parser »
Python.asdl).

Each statement type has a corresponding function to resolve symbols.
For example, a function definition (FunctionDef_kind) statement type
has particular logic for the following actions:

Checking the current recursion depth against the recursion limit

Adding the name of the function to the symbol table so that it can
be called or passed as a function object

+ Resolving non-literal default arguments from the symbol table

Resolving type annotations

Resolving function decorators

Finally, symtable_enter_block() visits the block with the contents of the
function. Then the arguments are visited and resolved, and the body
of the function is visited and resolved.

Important

If you've ever wondered why Python’s default arguments are
mutable, the reason is in symtable_visit_stmt(). Argument de-
faults are a reference to the variable in the symtable.

No extra work is done to copy any values to an immutable type.

As a preview, here’s the C code for those steps in building a symtable
for a function in symtable_visit_stmt():

Python» symtable.c line 1171

static int
symtable_visit_stmt(struct symtable *st, stmt_ty s)
{
if (++st->recursion_depth > st->recursion_limit) {
PyErr_SetString (PyExc_RecursionError,

"maximum recursion depth exceeded during compilation");

128

https://github.com/python/cpython/blob/v3.9.0/Python/symtable.c#L968
https://github.com/python/cpython/blob/v3.9.0/Python/symtable.c#L1171

Symbol Tables

VISIT_QUIT(st, 0);
3
switch (s->kind) {
case FunctionDef_kind:
if (!symtable_add_def(st, s->v.FunctionDef.name, DEF_LOCAL))
VISIT_QUIT(st, 0);
if (s->v.FunctionDef.args->defaults)
VISIT_SEQ(st, expr, s->v.FunctionDef.args->defaults);
if (s->v.FunctionDef.args->kw_defaults)
VISIT_SEQ_WITH_NULL(st, expr,
s->v.FunctionDef.args->kw_defaults);
if (!symtable_visit_annotations(st, s, s->v.FunctionDef.args,
s->v.FunctionDef.returns))
VISIT_QUIT(st, 0);
if (s->v.FunctionDef.decorator_list)
VISIT_SEQ(st, expr, s->v.FunctionDef.decorator_list);
if (!symtable_enter_block(st, s->v.FunctionDef.name,
FunctionBlock, (void *)s, s->lineno,
s->col_offset))
VISIT_QUIT(st, 0);
VISIT(st, arguments, s->v.FunctionDef.args);
VISIT_SEQ(st, stmt, s->v.FunctionDef.body);
if (!symtable_exit_block(st, s))
VISIT_QUIT(st, 0);
break;

case ClassDef_kind: {

}

case Return_kind:
case Delete_kind:
case Assign_kind:

case AnnAssign_kind:

Once the resulting symbol table has been created, it’s passed on to the
compiler.

129

Core Compilation Process

Core Compilation Process

Now that the pyAST_CompileObject() has a compiler state, a symtable,
and a module in the form of the AST, the actual compilation can begin.

The core compiler has two purposes:

1. To convert the state, symtable, and AST into a control flow graph
(CFG)

2. To protect the execution stage from runtime exceptions by catch-
ing any logic or code errors

Accessing the Compiler From Python

You can call the compiler in Python by calling the built-in function
compile(). It returns a code object:

>>> co = compile("b+1", "test.py", mode="eval'")
>>> Co

<code object <module> at 0x10f222780, file "test.py'", line 1>

As with the symtable() API, a simple expression should have a mode of
"eval"”, and a module, function, or class should have a mode of "exec".

The compiled code can be found in the co_code property of the code
object:

>>> co.co_code
b'e\x00d\x00\x17\x00S\x00"'

The standard library also includes a dis module, which disassembles
the bytecode instructions. You can print them on the screen or get a
list of Instruction instances.

The Instruction type in the dis module is a reflection of the instr
type in the C API.

130

https://github.com/python/cpython/blob/v3.9.0/Python/compile.c#L318
https://en.wikipedia.org/wiki/Control-flow_graph
https://en.wikipedia.org/wiki/Control-flow_graph

Core Compilation Process

If youimport dis and give dis() the code object’s co_code property, then
the function disassembles it and prints the instructions on the REPL:

>>> import dis

>>> dis.dis(co.co_code)
0 LOAD_NAME 0 (0)
2 LOAD_CONST 0 (0)
4 BINARY_ADD
6 RETURN_VALUE

LOAD_NAME, LOAD_CONST, BINARY_ADD, and RETURN_VALUE are all bytecode in-
structions. They're called bytecode because, in binary form, they’re
one byte long. However, since Python 3.6, the storage format has
been changed to a word, so now they’re technically “wordcode,” not
bytecode.

The full list of bytecode instructions is available for each version of
Python, and it does change between versions. For example, some new
bytecode instructions were introduced in Python 3.7 to speed up the
execution of specific method calls.

In earlier chapters, you explored the instaviz package. This included a
visualization of the code object type by running the compiler. instaviz
also displays the bytecode operations inside the code objects.

Execute instaviz again to see the code object and bytecode for a func-
tion defined on the REPL:

>>> import instaviz

>>> def example():

a=1
b=a+1
return b

>>> instaviz.show(example)

131

https://docs.python.org/3/library/dis.html#python-bytecode-instructions

Core Compilation Process

Compiler C API

The entry point for AST module compilation, compiler_mod(), switches
to different compiler functions depending on the module type. If
you assume that mod is a Module, then the module is compiled into the
c_stack property as compiler units. Then assemble() is run to create a
PyCodeObject from the compiler unit stack.

The new code object is returned and sent on for execution by the in-
terpreter or cached and stored on disk as a .pyc file:

Python» compile.c line 1820

static PyCodeObject *

compiler_mod(struct compiler *c, mod_ty mod)
{

PyCodeObject *co;

int addNone = 1;

static PyObject *module;

switch (mod->kind) {
case Module_kind:
if (!compiler_body(c, mod->v.Module.body)) {
compiler_exit_scope(c);
return O;

}
break;

case Interactive_kind:

case Expression_kind:

co = assemble(c, addNone);
compiler_exit_scope(c);

return co;

compiler_body() loops over each statement in the module and visits it:

Python» compile.c line 1782

132

https://github.com/python/cpython/blob/v3.9.0/Python/compile.c#L1820
https://github.com/python/cpython/blob/v3.9.0/Python/compile.c#L6010
https://github.com/python/cpython/blob/v3.9.0/Include/code.h#L9
https://github.com/python/cpython/blob/v3.9.0/Python/compile.c#L1782

Core Compilation Process

static int

compiler_body(struct compiler *c, asdl_seq *stmts)

{
int i = 0;
stmt_ty st;
PyObject *docstring;
for (; i < asdl_seq_LEN(stmts); i++)
VISIT(c, stmt, (stmt_ty)asdl_seq GET(stmts, i));
return 1;
3

The statement type is determined through a call to asdl_seq GET(),
which looks at the AST node type.

Through a macro, visiT calls a function in Python » compile.c for each
statement type:

#define VISIT(C, TYPE, V) {\
if (!compiler_visit_ ## TYPE((C), (V))) \

return 0; \

For a stmt (the generic type for a statement), the compiler will then call
compiler_visit_stmt() and switch through all the potential statement
types found in parser» Python.asdl:

Python» compile.c line 3375

static int
compiler_visit_stmt(struct compiler *c, stmt_ty s)
{

Py_ssize_t i, n;

/* Always assign a lineno to the next instruction for a stmt. */

SET_LOC(c, s);

switch (s->kind) {

case FunctionDef_kind:

133

https://github.com/python/cpython/blob/v3.9.0/Include/asdl.h#L31
https://github.com/python/cpython/blob/v3.9.0/Python/compile.c#L3375

Core Compilation Process

return compiler_function(c, s, 0);
case ClassDef kind:

return compiler_class(c, s);

case For_kind:

return compiler_for(c, s);

return 1;

As an example, here’s the for statement in Python:

for i in iterable:
block
else: # optional if iterable is False

block

You can visualize the for statement in a railroad diagram:

H—-Co)—{oeriiee ©

TYPE_COMMENT |l—| suite I—L(else

If the statement is a for type, then compiler_visit_stmt() calls com-
piler_for(). There’s an equivalent compiler_*() function for all the
statement and expression types. The more straightforward types
create the bytecode instructions inline, while some of the more
complex statement types call other functions.

134

https://github.com/python/cpython/blob/v3.9.0/Python/compile.c#L3375
https://github.com/python/cpython/blob/v3.9.0/Python/compile.c#L2750
https://github.com/python/cpython/blob/v3.9.0/Python/compile.c#L2750

Core Compilation Process

Instructions

Many of the statements can have substatements. A for loop has a body,
but you can also have complex expressions in the assignment and the
iterator.

The compiler emits blocks to the compiler state. These blocks
contain sequences of instructions. The instruction data structure has
an opcode, arguments, the target block (if this is a jump instruction,
which you’ll learn about below), and the line number of the statement.

Instruction Type

The instruction type, instr, has the following fields:

Field Type Purpose

i_jabs unsigned Flag to specify this is a absolute jump
instruction

i_jrel unsigned Flag to specify this is a relative jump instruction

i_lineno int Line number for which this instruction was
created

i_opcode unsigned char Opcode number this instruction represents (see
Include® Opcode. h)

i_oparg int Opcode argument

i_target basicblock* Pointer to the basicblock target when i_jrelis
true

Jump Instructions

Jump instructions are used to jump from one instruction to another.
They can be either absolute or relative.

135

Core Compilation Process

Absolute jump instructions specify the exact instruction number
in the compiled code object, whereas relative jump instructions
specify the jump target relative to another instruction.

Basic Frame Blocks

A basic frame block (of type basicblock) contains the following fields:

Field Type Purpose

b_ialloc int Length of instruction array (b_instr)

b_instr instr * Pointer to an array of instructions

b_iused int Number of instructions used (b_instr)

b_list basicblock * List of blocks in this compilation unit (in
reverse order)

b_next basicblock* Pointer to the next block reached by normal
control flow

b_offset int Instruction offset for the block, computed by
assemble_jump_offsets()

b_return unsigned Is true if a RETURN_VALUE opcode is inserted

b_seen unsigned Used to perform a DFS of basicblocks (see
“Assembly”)

b_startdepth int Depth of the stack upon entry of the block,

computed by stackdepth()

Operations and Arguments

Different types of operations require different arguments. For exam-
ple, Abpop_JREL and ADDOP_JABS refer to “add operation with jump to a
relative position” and “add operation with jump to an absolute po-
sition,” respectively.

There are other macros: Appor_I calls compiler_addop_i(), which
adds an operation with an integer argument. appoP_o calls com-
piler_addop_o(), which adds an operation with a Pyobject argument.

136

https://github.com/python/cpython/blob/v3.9.0/Python/compile.c#L1370
https://github.com/python/cpython/blob/v3.9.0/Python/compile.c#L1332
https://github.com/python/cpython/blob/v3.9.0/Python/compile.c#L1332

Assembly

Assembly

Once these compilation stages have completed, the compiler has a list
of frame blocks, each containing a list of instructions and a pointer to
the next block. The assembler performs a depth-first search (DFS)
of the basic frame blocks and merges the instructions into a single
bytecode sequence.

Assembler Data Structure

The assembler state structure, assembler, is declared in Python » com-
pile.c and has the following fields:

Field Type Purpose

a_bytecode PyObject * (str) String containing bytecode
a_lineno int Last 1ineno of emitted instruction
a_lineno_off int Bytecode offset of last 1ineno
a_lnotab PyObject * (str) String containing 1notab
a_lnotab_off int Offset into 1notab

a_nblocks int Number of reachable blocks
a_offset int Offset into bytecode

a_postorder basicblock ** List of blocks in DFS postorder

Assembler Depth-First Search Algorithm

The assembler uses a depth-first search (DFS) to traverse the nodes
in the basic frame block graph. The DFS algorithm isn’t specific to
CPython, but it’s commonly used in graph traversal.

Whereas the CST and AST are both tree structures, the compiler state
is a graph structure in which the nodes are basic frame blocks contain-
ing instructions.

The basic frame blocks are linked by two graphs. One is in reverse
order of creation based on the b_1ist property of each block. A series
of basic frame blocks named alphabetically from A to O would look
like this:

137

Assembly

O SO0

=/

O

W
W)

(Um0

The graph created from the b_1ist is used to sequentially visit every
block in a compiler unit

The second graph uses the b_next property of each block. This list rep-
resents the control flow. Vertices in this graph are created by calls to
compiler_use_next_block(c, next), where next is the next block to draw
a vertex to from the current block (c->u->u_curblock).

The for loop node graph might look something like this:

End
FOR_LOOP
@ @ /C\ Start "y
Body OrElse Cleanup
))
K L M N O

138

Assembly

Both the sequential and control flow graphs are used, but the control
flow graph is the one used by the DFS implementation.

Assembler C API

The assembler API has an entry point, assemble(), which has the fol-
lowing responsibilities:

« Calculate the number of blocks for memory allocation.

Ensure that every block that falls off the end returns None.

Resolve any jump statements offsets that were marked as relative.

Call dafs() to perform a depth-first-search of the blocks.

Emit all the instructions to the compiler.

Call makecode () with the compiler state to generate the PyCode0Object.

Python» compile.c line 6010

static PyCodeObject *

assemble(struct compiler *c, int addNone)

{

if (!c->u->u_curblock->b_return) {
NEXT_BLOCK(c);
if (addNone)
ADDOP_LOAD_CONST(c, Py_None);
ADDOP(c, RETURN_VALUE);

dfs(c, entryblock, &a, nblocks);

/* Can't modify the bytecode after computing jump offsets.

assemble_jump_offsets(&a, c);

/* Emit code in reverse postorder from dfs. */
for (i = a.a_nblocks - 1; i >= 0; i--) {

b = a.a_postorder[i];

%/

139

https://github.com/python/cpython/blob/v3.9.0/Python/compile.c#L6010
https://github.com/python/cpython/blob/v3.9.0/Python/compile.c#L5893

Assembly

for (j = 0; j < b—>b_iused; j++)
if (!assemble_emit(&a, &b->b_instr[j]l))

goto error;

co = makecode(c, &a);
error:
assemble_free(&a);

return co;

Depth-First Search

The depth-first search is performed by dfs() in Python » compile.c,
which follows the b_next pointers in each of the blocks, marks them
as seen by toggling b_seen and then adds them to the assemblers’
a_postorder list in reverse order.

The function loops back over the assembler’s post-order list and for
each block, if it has a jump operation, recursively call dfs() for that
jump:

Python» compile.c line 5441

static void

dfs(struct compiler *c, basicblock *b, struct assembler *a, int end)

{

int i, j;

/* Get rid of recursion for normal control flow.
Since the number of blocks is limited, unused space in a_postorder
(from a_nblocks to end) can be used as a stack for still not ordered
blocks. */

for (j = end; b & !b->b_seen; b = b->b_next) {
b->b_seen = 1;
assert(a->a_nblocks < j);

a->a_postorder[--j] = b;

140

https://github.com/python/cpython/blob/v3.9.0/Python/compile.c#L5441
https://github.com/python/cpython/blob/v3.9.0/Python/compile.c#L5441

Creating a Code Object

}
while (j < end) {
b = a->a_postorder[j++];
for (i = 0; 1 < b->b_ijused; i++) {
struct instr *instr = &b->b_instr[i];
if (instr->i_jrel || instr->i_jabs)
dfs(c, instr->i_target, a, j);
3
assert(a->a_nblocks < j);

a->a_postorder[a->a_nblocks++] = b;

Once the assembler has assembled the graph into a CFG using DFS,
the code object can be created.

Creating a Code Object

The task of makecode() is to go through the compiler state and some
of the assembler’s properties and to put these into a pyCodeobject by
calling PyCode_New().

The variable names and constants are put as properties to the code
object:

Python» compile.c line 5893

static PyCodeObject *
makecode(struct compiler *c, struct assembler *a)

{

consts = consts_dict_keys_inorder(c->u->u_consts);
names = dict_keys_inorder(c->u->u_names, 0);

varnames = dict_keys_inorder(c->u->u_varnames, 0);

cellvars = dict_keys_inorder(c->u->u_cellvars, 0);

141

https://github.com/python/cpython/blob/v3.9.0/Python/compile.c#L5893
https://github.com/python/cpython/blob/v3.9.0/Objects/codeobject.c#L267

Using Instaviz to Show a Code Object

freevars = dict_keys_inorder(c->u->u_freevars,

PyTuple_GET_SIZE(cellvars));

flags = compute_code_flags(c);
if (flags < 0)

goto error;

bytecode = PyCode_Optimize(a->a_bytecode, consts,

names, a->a_lnotab);

co = PyCode_NewWithPosOnlyArgs(
posonlyargcount+posorkeywordargcount,
posonlyargcount, kwonlyargcount, nlocals_int,
maxdepth, flags, bytecode, consts, names,
varnames, freevars, cellvars, c->c_filename,

c->u->u_name, c->u->u_firstlineno, a->a_lnotab);

return co;

You may also notice that the bytecode is sent to PyCode_optimize() be-
fore it’s sent to PyCode_NewWithPosOnlyArgs (). This function is part of the
bytecode optimization process in Python» peephole.c.

The peephole optimizer goes through the bytecode instructions and,
in certain scenarios, replaces them with other instructions. For exam-
ple, there’s an optimizer that removes any unreachable instructions
that follow a return statement.

Using Instaviz to Show a Code Object

You can pull together all the compiler stages with the instaviz module:

142

https://github.com/python/cpython/blob/v3.9.0/Python/peephole.c#L230
https://github.com/python/cpython/blob/v3.9.0/Objects/codeobject.c#L117

Using Instaviz to Show a Code Object

import instaviz

def foo():
a = 2%%4
b=1+5

[¢ [1, 4, 6]

for i in c:
print(i)

else:
print(a)

return c

instaviz.show(foo)

This will produce a large and complex AST graph tree. You can see
the bytecode instructions in sequence:

Disassembled Code

OpCode Operation Name Numeric Arg Resolved Arg Value Argument description
100 LOAD_CONST 1 16 16

125 STORE_FAST 0 a a

100 LOAD_CONST 2 6 6

125 STORE_FAST 1 b b

100 LOAD_CONST 3 1 1

100 LOAD_CONST 4 4 4

100 LOAD_CONST 2 6 6

103 BUILD_LIST B 3

Here’s the code object with the variable names, constants, and binary

co_code:

143

Example: Implementing the Almost-Equal Operator

Code Object Properties

Field Value

co_argcount 0

co_cellvars 0O

co_code 64017d0064027d0164036404640267037d02781c7¢0244005d0c7d
co_consts (None, 16,6, 1,4)

co_filename test.py

co_firstlineno 4

co_freevars 0

co_kwonlyargcount 0

co_lnotab b"\x00\x01\x04\x01\x04\x0 1\n\x0 1\n\x0 1\x0c\x02\x08\x01'

Try it out with some other, more complex code to learn more about
CPython’s compiler and code objects.

Example: Implementing the
Almost-Equal Operator

After covering the compiler, the bytecode instructions, and the assem-
bler, you can now modify CPython to support the almost-equal oper-
ator that you compiled into the grammar in the last chapter.

First, you have to add an internal #define for the Py_alE operator so it
can be referenced inside the rich comparison functions for pyobject.

Open Include» object.h and locate the following #define statements:

/* Rich comparison opcodes */
#define Py_LT 0
#define Py_LE 1
#define Py_EQ 2
#define Py_NE 3
#define Py_GT 4
#define Py_GE 5

Add an additional value, pyalE, with a value of 6:

144

Example: Implementing the Almost-Equal Operator

/* New almost-equal comparator */

#define Py_AlE 6

Just underneath this expression is a macro, py_RETURN_RICHCOMPARE. Up-
date this macro with a case statement for py_A1E:

J*
* Macro for implementing rich comparisons
* Needs to be a macro because any (-comparable type can be used
Y
#define Py_RETURN_RICHCOMPARE(vall, val2, op)
do {
switch (op) {
case Py_EQ: if ((vall) == (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE;
case Py_NE: if ((vall) != (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE;
case Py_LT: if ((vall) < (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE;
case Py_GT: if ((vall) > (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE;
case Py_LE: if ((vall) <= (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE;
case Py _GE: if ((vall) >= (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE;
/* + */ case Py_AlE: if ((vall) == (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE;
default:
Py_UNREACHABLE() ;

e e e e e e

}
} while (0)

Inside objects» object.c, there’s a guard to check that the operator is
between 0 and 5. Because you added the value 6, you have to update
that assertion:

Objects»object.c line 709
PyObject *
PyObject_RichCompare(PyObject *v, PyObject *w, int op)

{
PyThreadState *tstate = _PyThreadState_GET();

assert(Py_LT <= op && op <= Py_GE);

145

Example: Implementing the Almost-Equal Operator

Change that last line to the following:
assert(Py_LT <= op && op <= Py_AlE);

Next, you need to update the coMPARE_OP opcode to support Py_AlE as a
value for the operator type.

First, edit objects» object.c and add Py_AlE into the _Py_Swappedop list.
This list is used for matching whether a custom class has one operator
dunder method but not the other.

For example, if you defined a class, Coordinate, you could define an
equality operator by implementing the __eq__ magic method:

class Coordinate:
def __init_ (self, x, vy):
self.x = x

self.y = vy

def __eq__(self, other):
if isinstance(other, Coordinate):
return (self.x == other.x and self.y == other.y)

return super(self, other).__eq__(other)

Even though you haven’t implemented _ne__ (not equal) for coordi-
nate, CPython assumes that the opposite of __eq__ can be used.

>>> Coordinate(l, 100) != Coordinate(2, 400)

True

Inside objects»object.c, locate the _Py_Swappedop list and add py_A1E to
the end. Then add "~=" to the end of the opstrings list:

int _Py_SwappedOp[] = {Py_GT, Py_GE, Py_EQ, Py_NE, Py_LT, Py_LE, Py_AlE};

static const char const opstringsl[]

e S T TR

146

Example: Implementing the Almost-Equal Operator

Open Lib/opcode.py and edit the list of rich comparison operators:
cmp_op = ('<',
Include the new operator at the end of the tuple:
cmp_op = ('<',

The opstrings list is used for error messages if rich comparison opera-
tors aren’t implemented on a class.

Next, you can update the compiler to handle the case of a py-
Cmp_AlE property in a BinOp node. Open Python » compile.c and find

compiler_addcompare():
Python» compile.c line 2479

static int compiler_addcompare(struct compiler *c, cmpop_ty op)
{

int cmp;

switch (op) {

case Eq:
cmp = Py_EQ;
break;

case NotEq:
cmp = Py_NE;
break;

case Lt:
cmp = Py_LT;
break;

case LtE:
cmp = Py_LE;
break;

case Gt:
cmp = Py_GT;
break;

case GtE:
cmp = Py_GE;

break;

147

https://github.com/python/cpython/blob/v3.9.0/Python/compile.c#L2479

Example: Implementing the Almost-Equal Operator

Next, add another case to this switch statement to pair the a1 AST
comp_op enumeration with the pycmp_a1E opcode comparison enumera-
tion:

case AlE:
cmp = Py_AlE;

break;

You can now program the behavior of the almost-equal operator to
match the following scenario:

e 1 ~= 21S False.

¢ 1 ~= 1.01is True using floor rounding.

You can achieve this with some additional code. For now, you’ll cast
both floats into integers and compare them.

CPython’s API has many functions for dealing with pyLong (int) and
PyFloat (float) types. This will be covered in the chapter “Objects and
Types.”

Locate float_richcompare() in Objects » floatobject.c and, under the
Compare: goto definition, add the following case:

Objects» floatobject.c line 358

static PyObject*
float_richcompare(PyObject *v, PyObject *w, int op)
{

case Py_GT:
r=1>7j;
break;
/* New Code START */
case Py_AlE: {
double diff = fabs(i - j);
double rel_tol = 1le-9; // relative tolerance

double abs_tol = 0.1; // absolute tolerance

148

https://github.com/python/cpython/blob/v3.9.0/Objects/floatobject.c#L358

Example: Implementing the Almost-Equal Operator

r = (((diff <= fabs(rel_tol * j)) ||
(diff <= fabs(rel_tol * i))) ||
(diff <= abs_tol));

}

break;

}
/* New Code END */

return PyBool_FromLong(r);

This code will handle the comparison of floating point numbers when
the almost-equal operator has been used. It uses logic similar to
math.isclose(), defined in PEP 485, but with a hardcoded absolute
tolerance of 0.1.

Another safeguard that you need to change is in the evaluation loop,
Python» ceval.c. You'll cover the evaluation loop in the next chapter.

Search for this code snippet:

case TARGET(COMPARE_OP): {
assert(oparg <= Py_GE);

Change the assertion to the following:
assert(oparg <= Py_AlE);
After recompiling CPython, open a REPL and test it out:

$./python

>>> 1.0 ~= 1.01
True

>>> 1.02 ~= 1.01
True

>>> 1.02 ~= 2.01
False

>>> 1 ~= 1.01
True

>>> 1 ~=1

149

https://www.python.org/dev/peps/pep-0485/

Conclusion

True

>>> 1 ~= 2

False

>>> 1 ~= 1.9
False

>>> 1 ~= 2.0
False

>>> 1.1 ~= 1.101

True

In later chapters, you’ll extend this implementation across other

types.

Conclusion

In this chapter, you've explored how a parsed Python module is con-
verted into a symbol table, a compilation state, and then a series of
bytecode operations:

AST CFG Bytecode
Parser |——>| Compiler | ——> | Assembler | ——> | Execution

It’s now the job of the CPython interpreter’s core evaluation loop to
execute those modules. In the next chapter, you’ll explore how code
objects are executed.

150

The Evaluation Loop

So far, you've seen how Python code is parsed into an abstract syntax
tree and compiled into code objects. These code objects contain lists
of discrete operations in the form of bytecode.

There’s one major thing missing for these code objects to be executed
and come to life: They need input. In Python, these inputs take the
form of local and global variables.

In this chapter, you’ll be introduced to a concept called a value stack,
which is where variables are created, modified, and used by the byte-
code operations in your compiled code objects.

Execution of code in CPython happens within a central loop called the
evaluation loop. The CPython interpreter will evaluate and execute
a code object fetched from either the marshaled .pyc file or the com-
piler:

AST CFG Bytecode
Parser |——>| Compiler | —>» | Assembler | — > | Execution

In the evaluation loop, each of the bytecode instructions is taken and
executed using a stack frame—based system.

151

http://www.cs.uwm.edu/classes/cs315/Bacon/Lecture/HTML/ch10s07.html

Important Terms

Stack frames are a data type used by many runtimes, not just
Python. Stack frames allow functions to be called and variables
to be returned between functions. Stack frames also contain
arguments, local variables, and other stateful information.

A stack frame exists for every function call, and they’re stacked
in sequence. You can see CPython’s frame stack anytime an ex-
ception is unhandled:

Traceback (most recent call last):

File "example_stack.py", line 8, in <module> <--- Frame
functionl()

File "example_stack.py", line 5, in functionl <--- Frame
function2()

File "example_stack.py", line 2, in function2 <--- Frame

raise RuntimeError

RuntimeError

Related Source Files

Here are the source files related to the evaluation loop:

File Purpose
Python» ceval.c The core evaluation loop implementation
Python» ceval-gil.h The GIL definition and control algorithm

Important Terms
Here are a few important terms that you’ll use in this chapter:

» The evaluation loop will take a code object and convert it into a
series of frame objects.

+ The interpreter has at least one thread.

152

Constructing Thread State

+ Each thread has a thread state.
« Frame objects are executed in a stack, called the frame stack.

o Variables are referenced in a value stack.

Constructing Thread State

Before a frame can be executed, it needs to be linked to a thread.
CPython can have many threads running at any one time within a
single interpreter. The interpreter state includes a linked list of
those threads.

CPython always has at least one thread, and each thread has its own
state.

Threading is covered in more detail in the “Parallelism and Con-
currency” chapter.

Thread State Type

The thread state type, PyThreadstate, has over thirty properties, includ-
ing the following:

« A unique identifier

+ Alinked list to the other thread states

» The interpreter state it was spawned by

+ The currently executing frame

+ The current recursion depth

+ Optional tracing functions

» The exception currently being handled

 Any async exception currently being handled

153

Constructing Frame Objects

A stack of exceptions raised when multiple exceptions have been
raised (within an except block, for example)

« A GIL counter

« Async generator counters

Related Source Files

The source files related to the thread state are spread across many
files:

File Purpose

Python)» thread.c The thread API implementation

Include) threadstate.h Some of the thread state API and types
definition

Includeb pystate.h The interpreter state API and types
definition

Include» pythread.h The threading API

Include» cpython® pystate.h Some of the thread and interpreter state
API

Constructing Frame Objects

Compiled code objects are inserted into frame objects. Frame objects
are a Python type, so they can be referenced from both C and Python.

Frame objects also contain other runtime data required for executing
the instructions in the code objects. This data includes the local vari-
ables, global variables, and built-in modules.

Frame Object Type

The frame object type is a pyobject with the following additional prop-
erties:

154

Constructing Frame Objects

Field Type

Purpose

f_back PyFrameObject *

f_blockstack PyTryBlock[]

f_builtins PyObject * (dict)
f_code PyCodeObject *
f_executing char

f_gen PyObject *

f globals PyObject * (dict)
f_iblock int

f_lasti int

f_lineno int

f_locals PyObject *

f localsplus PyObject *[]
f_stacktop PyObject **
f_trace PyObject *

f_trace_lines char

f_trace_opcodes char

f_valuestack PyObject **

Pointer to the previous in the stack, or NuLL if
first frame

Sequence of for, try, and loop blocks

Symbol table for the builtin module

Code object to be executed

Flag whether the frame is still executing
Borrowed reference to a generator, or NULL
Global symbol table (PyDictObject)

Index of this frame in f_blockstack

Last instruction, if called

Current line number

Local symbol table (any mapping)

Union of locals plus stack

Next free slot in f_valuestack

Pointer to a custom tracing function (see
“Frame Execution Tracing”)

Toggle for the custom tracing function to trace
at line level

Toggle for the custom tracing function to trace
at an opcode level

Pointer to the last local

Related Source Files

Here are the source files related to frame objects:

File

Purpose

Objects» frameobject.c

Include» frameobject.h

The frame object implementation and
Python API
The frame object API and type definition

Frame Object Initialization API

The API for frame object initialization, PyEval_EvalCode(), is the en-
try point for evaluating a code object. PyEval_EvalCode() is a wrapper
around the internal function _PyEval_EvalCode().

155

https://github.com/python/cpython/blob/v3.9.0/Python/ceval.c#L807
https://github.com/python/cpython/blob/v3.9.0/Python/ceval.c#L807

Constructing Frame Objects

_PyEval_EvalCode() is a complex function that defines many be-
haviors of both frame objects and the interpreter loop. It’s an
important function to understand as it can also teach you some
principles of the CPython interpreter design.

In this section, you’ll step through the logic in _PyEval_EvalCode().
_PyEval_EvalCode() specifies many arguments:

* tstate: A PyThreadState * pointing to the thread state of the thread
this code will be evaluated on

» _co: A PyCodeObject* containing the code to be put into the frame
object

* globals: A PyObject* (dict) with variable names as keys and their
values

* locals: A PyObject* (dict) with variable names as keys and their
values

In Python, local and global variables are stored as a dictionary.
You can access this dictionary with the built-in functions 1o-
cals() and globals():

>>>a =1
>>> print(locals()["a"])
1

The other arguments are optional and aren’t used for the basic API:

» argcount: The number of positional arguments
+ args: A PyObject* (tuple) with positional argument values in order

 closure: A tuple with strings to merge into the code object’s
co_freevars field

156

https://github.com/python/cpython/blob/v3.9.0/Python/ceval.c#L4046
https://github.com/python/cpython/blob/v3.9.0/Python/ceval.c#L4046

Constructing Frame Objects

defcount: The length of default values for positional arguments
defs: A list of default values for positional arguments

kwargs: A list of keyword argument values

kwcount: The number of keyword arguments

kwdefs: A dictionary with the default values for keyword arguments
kwnames: A list of keyword argument names

name: The name for this evaluation statement as a string

qualname: The qualified name for this evaluation statement as a
string

The call to _PyFrame_New_NoTrack() creates a new frame. This API is also
available from the C API using PyFrame_New(). _PyFrame_New_NoTrack()
will create a new pyFrameObject by following these steps:

1.

2.

® N g p R

9.

Set the frame f_back property to the thread state’s last frame.

Load the current built-in functions by setting the f_builtins prop-
erty and loading the builtins module using PyModule_GetDict ().

Set the f_code property to the code object being evaluated.
Set the f_valuestack property to an empty value stack.

Set the f_stacktop pointer to f_valuestack.

Set the global property, f_globals, to the globals argument.
Set the locals property, f_locals, to a new dictionary.

Set the f_lineno to the code object’s co_firstlineno property so that
tracebacks contain line numbers.

Set all the remaining properties to their default values.

With the new PyFrameObject instance, the arguments to the frame ob-
ject can be constructed:

157

https://github.com/python/cpython/blob/v3.9.0/Objects/frameobject.c#L866
https://github.com/python/cpython/blob/v3.9.0/Objects/frameobject.c#L929
https://github.com/python/cpython/blob/v3.9.0/Objects/frameobject.c#L866
https://github.com/python/cpython/blob/v3.9.0/Objects/moduleobject.c#L457

Constructing Frame Objects

Previous

Frame Object
‘ Builtins ‘ Code Object
‘ Globals ‘ ‘ Instructions m
‘ Locals ‘ ‘ Names m
Values M Constants m

Converting Keyword Parameters to a Dictionary

Function definitions can contain a **kwargs catch-all for keyword-
arguments:

def example(arg, arg2=None, **kwargs):
print (kwargs["x"], kwargs["v"]) # resolves to a dictionary key
example(1l, x=2, y=3) # 2 3

In this scenario, a new dictionary is created, and the unresolved argu-
ments are copied across. The kwargs name is then set as a variable in
the local scope of the frame.

Converting Positional Arguments into Variables

Each of the positional arguments (if provided) are set as local vari-
ables. In Python, function arguments are already local variables
within the function body. When a positional argument is defined
with a value, it’s available within the function scope:

def example(argl, arg2):

print(argl, arg2)
example(1l, 2) # 1 2

158

Constructing Frame Objects

The reference counter for those variables is incremented, so the
garbage collector won’t remove them until the frame has evaluated,
such as when the function has finished and returned.

Packing Positional Arguments into *args

As with #*kwargs, a function argument prepended with * can be set to
catch all remaining positional arguments. This argument is a tuple,
and the *args name is set as a local variable:

def example(arg, *args):

print(arg, args[0], args[1])

example(1, 2, 3) # 1 2 3

Loading Keyword Arguments

If the function is called with keyword arguments and values, then a
dictionary is filled with any remaining keyword arguments passed by
the caller that don’t resolve to named arguments or positional argu-
ments.

For example, the e argument is neither positional nor named, so it’s
added to **remaining:

>>> def my_function(a, b, c=None, d=None, **remaining):

print(a, b, c, d, remaining)

>>> my_function(a=1l, b=2, c=3, d=4, e=5)
a, 2, 3, 4, {"e": 5})

159

Constructing Frame Objects

Positional-only arguments are a new feature in Python 3.8.
Introduced in PEP 570, positional-only arguments are a way
of stopping users of your API from using positional arguments
with a keyword syntax.

For example, this simple function converts Fahrenheit to Cel-
sius. Note the use of the forward slash (/) as a special argument
that separates positional-only arguments from the other argu-
ments:

def to_celsius(fahrenheit, /, options=None):

return (fahrenheit-32)%*5/9

All arguments to the left of / must be called only as positional
arguments. Arguments to the right can be called as either posi-
tional or keyword arguments:

>>> to_celsius(110)

Calling the function using a keyword argument to a positional-
only argument will raise a TypeError:

>>> to_celsius(fahrenheit=110)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: to_celsius() got some positional-only arguments

passed as keyword arguments: 'fahrenheit'

The resolution of the keyword argument dictionary values comes
after all other arguments are unpacked. The PEP 570 positional-only
arguments are shown by starting the keyword argument loop at
co_posonlyargcount. If the / symbol was used on the third argument,
then the value of co_posonlyargcount would be 2.

PyDict_SetTtem() is called for each remaining argument for adding it
to the locals dictionary. When executing, each of the keyword argu-
ments become scoped local variables.

160

https://www.python.org/dev/peps/pep-0570/
https://github.com/python/cpython/blob/v3.9.0/Objects/dictobject.c#L1550

Constructing Frame Objects

If a keyword argument is defined with a value, then it’s available
within this scope:

def example(argl, arg2, example_kwarg=None):

print(example_kwarg) # example_kwarg is already a local variable.

Adding Missing Positional Arguments

Any positional arguments provided to a function call that aren’t in the
list of positional arguments are added to an *args tuple. If this tuple
doesn’t exist, then an exception is raised.

Adding Missing Keyword Arguments

Any keyword arguments provided to a function call that aren’t in the
list of named keyword arguments are added to a **kwargs dictionary.
If this dictionary doesn’t exist, then an exception is raised.

Collapsing Closures

Any closure names are added to the code object’s list of free variable
names.

Creating Generators, Coroutines, and Asynchronous
Generators

If the evaluated code object has a flag that it’s a generator, corou-
tine, or async generator, then a new frame is created using one of the
unique methods in the generator, coroutine, or async libraries, and
the current frame is added as a property.

The APIs and implementations of generators, coroutines, and
async frames are covered in the chapter “Parallelism and Con-
currency.”

161

Frame Execution

The new frame is then returned, and the original frame isn’t evaluated.
The frame is evaluated only when the generator, coroutine, or async
method is called to execute its target.

Lastly, _PyEval_EvalFrame() is called with the new frame.

Frame Execution

As covered earlier in the chapters “Lexing and Parsing With Syntax
Trees” and “The Compiler,” the code object contains a binary encoding
of the bytecode to be executed. It also contains a list of variables and
a symbol table.

The local and global variables are determined at runtime based on
how the function, module, or block was called. This information is
added to the frame by _pyEval_EvalCode().

There are other uses of frames, like the coroutine decorator, which
dynamically generates a frame with the target as a variable.

The public API, pyEval_EvalFrameEx(), calls the interpreter’s configured
frame evaluation function in the eval_frame property. Frame evalua-
tion was made pluggable in Python 3.7 with PEP 523.

_PyEval_EvalFrameDefault() is the default frame evaluation function
and the only option bundled with CPython.

This central function brings everything together and brings your code
to life. It contains decades of optimization since even a single line of
code can have a significant impact on performance for the whole of
CPython.

Everything that gets executed in CPython goes through the frame eval-
uation function.

162

https://github.com/python/cpython/blob/v3.9.0/Include/internal/pycore_ceval.h#L38
https://github.com/python/cpython/blob/v3.9.0/Python/ceval.c#L4046
https://github.com/python/cpython/blob/v3.9.0/Python/ceval.c#L829
https://www.python.org/dev/peps/pep-0523/
https://github.com/python/cpython/blob/v3.9.0/Python/ceval.c#L890

Frame Execution

Something you might notice when reading Python » ceval.c is
how many times C macros have been used.

C macros are a way of having reusable code without the
overhead of making function calls. The compiler converts the
macros into C code and then compiles the generated code.

In Visual Studio Code, inline macro expansion shows once
you’ve installed the official C/C++ extension:

1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141

- — = =
dtrace_function_entry(f);

co = f->f_code;
names = co->co_names;
consts = co->co_consts;
fastlocals = f->f_localsplus;
freevars = f->f_localsplus + co->co_nlocals;
assert(
assert(
assert(Checkif pointer “p" is aligned to "a"-bytes boundary.
assert (_Py_IS_ALIGNED(PyBytes_AS_STRING(co->co_code), sizeof(_Py_CODEUNIT)));
first_instr = (_Py_CODEUNIT %) PyBytes_AS_STRING(co->co_code);
/*

f->f_lasti refers to the index of the last instruction,

#define _Py_IS_ALIGNED(p,a) (!((uintptr_t)(p) & (uintptr_t)((a) - 1)))

unless it's -1 in which case next_instr should be first_instr.

YIELD_FROM sets f_lasti to itself, in order to repeatedly yield
multiple values.

When the PREDICT() macros are enabled. some oocode pairs follow in

In CLion, select a macro and press [Alt]+[Space| to peek into it’s
definition.

Frame Execution Tracing

You can step through frame execution in Python 3.7 and beyond by
enabling the tracing attribute on the current thread. The pyFrameob-
ject type contains an f_trace property of type Pyobject *. The value is
expected to point to a Python function.

This code example sets the global tracing function to a function called
my_trace() that gets the stack from the current frame, prints the disas-
sembled opcodes to the screen, and adds some extra information for
debugging:

163

https://realpython.com/python-development-visual-studio-code/
https://www.jetbrains.com/help/clion/viewing-definition.html
https://www.jetbrains.com/help/clion/viewing-definition.html

Frame Execution

cpython-book-samples? 31 » my_trace.py

import sys
import dis
import traceback

import io

def my_trace(frame, event, args):
frame.f_trace_opcodes = True
stack = traceback.extract_stack(frame)
pad = " "#*]en(stack) + "|"
if event == "opcode":
with io.StringIO() as out:
dis.disco(frame.f_code, frame.f_lasti, file=out)
lines = out.getvalue().split("\n")
[print(f"{pad}{1}") for 1 in lines]
elif event == "call":
print(f"{pad}Calling {frame.f_code}")
elif event == "return":
print(f"{pad}Returning {args}")
elif event == "line":
print(f"{pad}Changing line to {frame.f lineno}")
else:
print(f"{pad}{frame} ({event} - {args})")
P R D A (e e ")
return my_trace

sys.settrace(my_trace)

Run some code for a demo

eval('"-".join([letter for letter in "hello"])')

sys.settrace() will set the current thread state default tracing function
to the one provided. Any new frames created after this call will have
f_trace set to this function.

This code snippet prints the code within each stack and points to the
next operation before it’s executed. When a frame returns a value, the
return statement is printed:

164

The Value Stack

.

cpython git:(master) x ./python.exe my_trace.py
|Calling <code object <module> at @x104cdc110, file "<string>", line 1>
1
|
|Changing line to 1
|

| 1-— © LOAD_CONST o ('-')
2 LOAD_METHOD @ (join)
4 LOAD_CONST 1 (<code object <listcomp> at @x104cdceed, file "<string>", line 1>)
6 LOAD_CONST 2 ('<listcomp>')
8 MAKE_FUNCTION]
10 LOAD_CONST 3 ('hello')
12 GET_ITER
14 CALL_FUNCTION 1
16 CALL_METHOD 1

18 RETURN_VALUE

| 1 © LOAD_CONST 0 ('-')

-— 2 LOAD_METHOD 0 (join)
4 LOAD_CONST 1 (<code object <listcomp> at @x1@4cdceed, file "<string>", line 1>)
6 LOAD_CONST 2 ('<listcomp>')
8 MAKE_FUNCTION)
10 LOAD_CONST 3 (‘hello’)
12 GET_ITER
14 CALL_FUNCTION 1
16 CALL_METHOD 1

18 RETURN_VALUE

The full list of possible bytecode instructions is available on the dis
module documentation.

The Value Stack

Inside the core evaluation loop, a value stack is created. This stack
is a list of pointers to pyobject instances. These could be values like
variables, references to functions (which are objects in Python), or
any other Python object.

Bytecode instructions in the evaluation loop will take input from the
value stack.

Example Bytecode Operation: BINARY_OR

The binary operations that you've been exploring in previous chapters
compile into a single instruction.

For example, let’s say you inserted an or statement in Python:

if left or right:

pass

The compiler would compile this or operation into a BINARY_OR instruc-
tion:

165

https://docs.python.org/3/library/dis.html#python-bytecode-instructions
https://docs.python.org/3/library/dis.html#python-bytecode-instructions

The Value Stack

static int
binop(struct compiler *c, operator_ty op)
{
switch (op) {
case Add:
return BINARY_ADD;

case BitOr:

return BINARY_OR;

In the evaluation loop, the case for a BINARY_OR will take two values
from the value stack, the 1eft and right operations, then call pyNum-
ber_or against those two objects:

case TARGET(BINARY_OR): {
PyObject *right = POP();
PyObject *left = TOP();
PyObject *res = PyNumber_Or(left, right);
Py_DECREF(left);
Py_DECREF(right);
SET_TOP(res);
if (res == NULL)
goto error;
DISPATCHQ) ;

Theresult, res, is then set as the top of the stack, overriding the current
top value.

Value Stack Simulations

To understand the evaluation loop, you have to understand the value
stack.

One way to think of the value stack is as a wooden peg on which you
can stack cylinders. In this scenario, you would add or remove only
one cylinder at a time, and always to or from the top of the stack.

166

The Value Stack

In CPython, you add objects to the value stack with the pusH(a) macro,
where a is a pointer to a Pyobject.

For example, assume you created a pyLong with the value 10 and pushed
it onto the value stack:

PyObject *a = PyLong_FromLong(10);
PUSH(a);

This action would have the following effect:

1L

Before After

In the next operation, to fetch that value, you would use the por()
macro to take the top value from the stack:

PyObject *a = POP(); // a is PyLongObject with a value of 10

This action would return the top value and end up with an empty value
stack:

167

The Value Stack

Result

T

Before After

Now let’s say you added two values to the stack:
PyObject *a = PyLong_FromLong(10);
PyObject *b = PyLong_FromLong(20);

PUSH(a);
PUSH(b);

These would end up in the order in which they were added, so a would
be pushed to the second position in the stack:

R Y

Before After

If you were to fetch the top value in the stack, then you would get a
pointer to b because it’s at the top:

PyObject *val = POP(); // returns ptr to b

168

The Value Stack

Result

-

Before After

If you need to fetch the pointer to the top value in the stack without
popping it, then you can use the PEEK(v) operation, where v is the stack
position:

PyObject *first = PEEK(0);

o0 represents the top of the stack, and 1 would represent the second

position:
Result
e] e

Before After

You can use the bup_Tor() macro to clone the value at the top of the
stack:

DUP_TOP();

This action would copy the value at the top to form two pointers to the
same object:

169

The Value Stack

|
:

Before After

The rotation macro roT_Two swaps the first and second values:
ROT_TWO() ;

This action would switch the order of the first and second values:

Stack Effects

Each of the opcodes has a predefined stack effect calculated by
stack_effect() inside Python» compile.c. This function returns the delta
in the number of values inside the stack for each opcode.

Stack effects can have a positive, negative, or zero value. Once the
operation has been executed, if the stack effect (such as +1) doesn’t
match the delta in the value stack, then an exception is raised.

170

Example: Adding an Item to a List

Example: Adding an Item to a List

In Python, when you create a list, the append() method is available on
the list object:

my_list = []
my_list.append(obj)

In this example, obj is an object that you want to append to the end of
the list.

There are two operations involved in this operation:

1. LOAD_FAST to load obj to the top of the value stack from the list of
locals in the frame

2. LIST_APPEND to add the object
LOAD_FAST involves five steps:

1. The pointer to obj is loaded from GETLOCAL(), where the variable
to load is the operation argument. The list of variable pointers
is stored in fastlocals, which is a copy of the pyFrame attribute
f_localsplus. The operation argument is a number pointing to
the index in the fastlocals array pointer. This means that Python
loads a local as a copy of the pointer rather than having to look up
the variable name.

2. If the variable no longer exists, then an unbound local variable er-
ror is raised.

3. The reference counter for value (in our case, obj) is increased by
one.

4. The pointer to obj is pushed to the top of the value stack.

5. The rasT_DISPATCH macro is called. If tracing is enabled, then the
loop runs again with all the tracing. If tracing isn’t enabled, then
a goto is called to fast_next_opcode. The goto jumps back to the top
of the loop for the next instruction.

171

Example: Adding an Item to a List

Here are are the five steps in LOAD_FAST:

case TARGET(LOAD_FAST): {
PyObject *value = GETLOCAL(oparg); // 1.
if (value == NULL) {
format_exc_check_arg(
PyExc_UnboundLocalError,
UNBOUNDLOCAL_ERROR_MSG,

PyTuple_GetItem(co->co_varnames, oparg));

goto error; // 2.
3
Py_INCREF(value); // 3.
PUSH(value); // 4.
FAST_DISPATCH(); // 5.

The pointer to obj is now at the top of the value stack, and the next
instruction, LIST_APPEND, is executed.

Many of the bytecode operations reference base types, like PyuUnicode
or PyNumber. For example, LIST_APPEND appends an object to the end of
a list. To achieve this, it pops the pointer from the value stack and
returns the pointer to the last object in the stack.

The macro is a shortcut for the following:
PyObject *v = (*--stack_pointer);

Now the pointer to obj is stored as v. The list pointer is loaded from
PEEK (oparg).

Then the C API for Python lists is called for 1ist and v. The code for
this is inside objects» listobject.c, which you’ll explore in the chapter
“Objects and Types.”

Next, a call to PrRepICT is made, which guesses that the next operation
will be JumMp_aBsoLuTE. The PREDICT macro has compiler-generated goto
statements for each of the potential operations’ case statements.

172

Example: Adding an Item to a List

This means the CPU can jump to that instruction and not have to go
through the loop again:

case TARGET(LIST_APPEND): {
PyObject *v = POP();
PyObject *list = PEEK(oparg);
int err;
err = PyList_Append(list, v);
Py_DECREF(Vv);
if (err !'= 0)

goto error;

PREDICT(JUMP_ABSOLUTE) ;
DISPATCH(Q);

Some opcodes come in pairs, making it possible to predict the
second code when the first is run. For example, COMPARE_OP is
often followed by PoP_JUMP_IF_FALSE Or POP_JUMP_IF_TRUE.

If you're collecting opcode statistics, then you have two choices:

1. Keep the predictions turned on and interpret the results as
if some opcodes had been combined.

2. Turn off predictions so that the opcode frequency counter

updates for both opcodes.

Opcode prediction is disabled with threaded code since the lat-
ter allows the CPU to record separate branch prediction infor-
mation for each opcode.

Some of the operations, such as CALL_FUNCTTION and CALL_METHOD, have an
operation argument referencing another compiled function. In this
case, another frame is pushed to the frame stack in the thread, and the
evaluation loop runs for that function until the function completes.

173

Example: Adding an Item to a List

Each time a new frame is created and pushed onto the stack, the value
of the frame’s f_back is set to the current frame before the new one is
created. This nesting of frames is clear when you see a stack trace:

cpython-book-samples» 31» example_stack.py

def function2():

raise RuntimeError

def functionl():
function2()

if __name__ == "_main__":

functionl()

Calling this on the command line will give you the following:

$./python example_stack.py

Traceback (most recent call last):
File "example_stack.py", line 8, in <module>
functionl()
File "example_stack.py", line 5, in functionl
function2()
File "example_stack.py", line 2, in function2
raise RuntimeError

RuntimeError
In Lib» traceback.py, you can use walk_stack() to get tracebacks:

def walk_stack(f):

o

Walk a stack yielding the frame and line number for each frame.

This will follow f.f_back from the given frame. If no frame is given,

the current stack is used. Usually used with StackSummary.extract.

won

if f is None:
f = sys._getframe().f_back.f_back

while f is not None:

174

Conclusion

yield £, f.f_lineno
f = f.f _back

The parent’s parent (sys._getframe().f_back.f_back) is set as the frame
because you don’t want to see the call to walk_stack() Or print_trace()
in the traceback. The f_back pointer is followed to the top of the call
stack.

sys._getframe() is the Python API to get the frame attribute of the cur-
rent thread.

Here’s how that frame stack would look with three frames, each with
its code object, and a thread state pointing to the current frame:

FRAME 0 — Code Object

f_back

FRAME 1 # Code Object‘

f_back

Thread State WLI

FRAME 2 — Code Object

Conclusion

In this chapter, you've been introduced to the brain of CPython. The
core evaluation loop is the interface between compiled Python code
and the underlying C extension modules, libraries, and system calls.

Some topics in this chapter have been glossed over since you’ll go into
them in upcoming chapters. For example, the CPython interpreter
has a core evaluation loop, but you can have multiple loops running
at the same time, whether that be in parallel or concurrently.

175

Conclusion

CPython can have multiple evaluation loops running multiple frames
on a system. In the upcoming chapter “Parallelism and Concurrency,”
you’ll see how the frame stack system is used for CPython to run on
multiple cores or CPUs. Also, CPython’s frame object API enables
frames to be paused and resumed in the form of asynchronous pro-
gramming.

Loading variables using a value stack requires memory allocation and
management. For CPython to run effectively, it has to have a solid
memory management process. In the next chapter, you'll explore
that memory management process and how it relates to the PyObject
pointers used by the evaluation loop.

176

Memory Management

The two most important parts of your computer are the memory and
the CPU. One can’t work without the other. They must be utilized well,
and they must be efficient.

When designing a programming language, the authors need to decide
how the user should manage computer memory. There are many op-
tions depending on how simple the authors want the interface to be,
whether they want the language to be cross-platform, and whether
they value performance over stability.

The authors of Python have made these decisions for you and have
also left you with some additional decisions to make yourself.

In this chapter, you'll explore how C manages memory since CPython
is written in C. You’ll look at two critical aspects to managing memory
in Python:

1. Reference counting

2. Garbage collection

By the end of this chapter, you’ll understand how CPython allocates

memory on the operating system, how object memory is allocated and
freed, and how CPython manages memory leaks.

177

Memory Allocation in C

Memory Allocation in C

In C, variables must have their memory allocated from the operating
system before they can be used. There are three memory allocation
mechanisms in C:

1. Static memory allocation: Memory requirements are calcu-
lated at compile time and allocated by the executable when it
starts.

2. Automatic memory allocation: Memory requirements for a
scope are allocated within the call stack when a frame is entered
and are freed once the frame is terminated.

3. Dynamic memory allocation: Memory can be requested and
allocated dynamically at runtime by calls to the memory allocation
API.

Static Memory Allocation in C

Types in C have a fixed size. The compiler calculates the memory re-
quirements for all static and global variables and then compiles that
requirement into the application:

static int number = 0;

You can see the size of a type in C by using sizeof(). On my system,
a 64-bit macOS running GCC, an int is 4 bytes. Basic types in C can
have different sizes depending on the architecture and compiler.

Arrays are statically defined. Consider this array of 10 integers:
static int numbers[10] = {0,1,2,3,4,5,6,7,8,9};

The C compiler converts this statement into an allocation of
sizeof(int) * 10 bytes of memory.

The C compiler uses system calls to allocate memory. These system
calls depend on the operating system and are low-level functions to
the kernel to allocate memory from the system memory pages.

178

Memory Allocation in C

Automatic Memory Allocation in C

Similarly to static memory allocation, automatic memory allocation
calculates memory allocation requirements at compile time.

This example application converts 100 degrees Fahrenheit to Celsius:

cpython-book-samples? 32» automatic.c

#include <stdio.h>
static const double five_ninths = 5.0/9.0;

double celsius(double fahrenheit) {
double ¢ = (fahrenheit - 32) * five_ninths;

return c;

int main() {
double f = 100;
printf("%f F is %f C\n", f, celsius(f));

return 0;

This example uses both static and automatic memory allocation:
+ The const value five_ninths is allocated statically because it has the
static keyword.

» Thevariable c within celsius() is allocated automatically when cel-
sius() is called and freed when celsius() is completed.

« The variable f within main() is allocated automatically when main()
is called and freed when main() is completed.

» The result of celsius(f) is implicitly allocated automatically.

+ The automatic memory requirements of main() are freed when the
function completes.

179

Memory Allocation in C

Dynamic Memory Allocation in C

In many cases, neither static nor automatic memory allocation is suffi-
cient. For example, a program might not be able to calculate memory
requirements at compile time because they're determined by user in-
put.

In such cases, memory is allocated dynamically. Dynamic memory
allocation works by calls to the C memory allocation APIs. Operating
systems reserve a section of the system memory for dynamic alloca-
tion to processes. This section of memory is called a heap.

In the following example, you’ll allocate memory dynamically to an
array of Fahrenheit and Celsius values. The application calculates the
Celsius values corresponding to a user-specified number of Fahren-
heit values:

cpython-book-samples» 32 » dynamic.c

#include <stdio.h>
#include <stdlib.h>

static const double five_ninths = 5.0/9.0;

double celsius(double fahrenheit) {
double ¢ = (fahrenheit - 32) * five_ninths;

return c;

int main(int argc, char** argv) {
if (argc != 2)
return -1;
int number = atoi(argv([1]);
double* c_values = (double*)calloc(number, sizeof(double));
double* f_values = (double*)calloc(number, sizeof(double));
for (int 1 = 0 ; i < number ; i++){
f _values[i] = (i + 10) * 10.0 ;

c_values[i] = celsius((double)f_values[i]);

180

Design of the Python Memory Management System

for (int i = 0 ; i < number ; i++){

printf("%f F is %f C\n", f_values[i], c_values[i]);
}
free(c_values);

free(f_values);

return O;

}

If you execute this program with the argument 4, then it will print the
resulting values:

100.000000 F is 37.777778 C
110.000000 F is 43.333334 C
120.000000 F is 48.888888 C
130.000000 F is 54.444444 C

This example uses dynamic memory allocation to allocate a block
of memory from the heap that is then returned when it’s no longer
needed. If any dynamically allocated memory isn’t freed, then it will
cause a memory leak.

Design of the Python Memory
Management System

Being built on top of C, CPython has to use the constraints of static,
dynamic, and automatic memory allocation. Some design aspects of
the Python language make those constraints even more challenging:

1. Pythonis a dynamically typed language. The size of variables can’t
be calculated at compile time.

2. Most of Python’s core types are dynamically sized. The 1ist type
can be of any size, dict can have any number of keys, and even int
is dynamic. The user never has to specify the size of these types.

3. Names in Python can be reused for values of different types:

181

Design of the Python Memory Management System

>>> a_value = 1
>>> a_value = "Now I'm a string"

>>> a_value = ["Now" , "I'm", "a", "list"]

To overcome these constraints, CPython relies heavily on dynamic
memory allocation but adds safety rails to automate the freeing
of memory using the garbage collection and reference counting
algorithms.

Instead of the Python developer having to allocate memory, Python
object memory is allocated automatically by a single, unified API.
This design requires that the entire CPython standard library and
core modules (written in C) use this API.

Allocation Domains

CPython comes with three dynamic memory allocation domains:
1. The raw domain is used for allocation from the system heap and
large, or non-object related memory.

2. The object domain is used for allocation of all Python object-
related memory.

3. The PyMem domain is the same as PYMEM_DOMAIN_0BJ. It exists for
legacy API purposes.
Each domain implements the same interface of functions:
» _Alloc(size_t size) allocates memory of size bytes and returns a
pointer.

o _Calloc(size_t nelem, size_t elsize) allocates nelem elements, each
of size elsize, and returns a pointer.

* _Realloc(void *ptr, size_t new_size) reallocates memory of size

new_size.

+ _Free(void *ptr) frees memory at ptr back to the heap.

The PyMemAllocatorDomain enumeration represents the three domains

182

The CPython Memory Allocator

in CPython as PYMEM_DOMAIN_RAW, PYMEM_DOMAIN_OBJ, and PYMEM_DOMAIN_MEM.

Memory Allocators

CPython uses two memory allocators:

1. malloc: The operating system allocator for the raw memory do-
main

2. pymalloc: The CPython allocator for the PyMem and object
memory domains

The CPython allocator, pymalloc, is compiled into CPython by
default. You can remove it by recompiling CPython after set-
ting WITH_PYMALLOC = 0 in pyconfig.h. If you remove it, then the
PyMem and object memory domain APIs will use the system
allocator.

If you compiled CPython with debugging (using --with-pydebug on ma-
cOS or Linux or the pebug target on Windows), then each of the mem-
ory allocation functions will go to a Debug implementation. For ex-
ample, with debugging enabled, your memory allocation calls would
execute _PyMem_DebugAlloc() instead of _PyMem_Alloc().

The CPython Memory Allocator

The CPython memory allocator sits on top of the system memory al-
locator and has its algorithm for allocation. This algorithm is similar
to the system allocator except that it’s customized to CPython:

+ Most of the memory allocation requests are small and of a
fixed size because PyObject is 16 bytes, PyASCITObject is 42 bytes,
PyCompactUnicodeObject is 72 bytes, and PyLongObject is 32 bytes.

+ The pymalloc allocator allocates memory blocks only up to 256 KB.
Anything larger is sent to the system allocator.

183

The CPython Memory Allocator

» The pymalloc allocator uses the GIL instead of the system thread-
safety check.

To help clarify this situation, you can imagine a sports stadium, home
of CPython FC, as an analogy. To help manage crowds, CPython FC
has implemented a system breaking the stadium up into sections A to
E, each with seating in rows 1 to 40:

Sect

Section D

Section A

rows 31 40

Section C

At the front of the stadium, rows 1 to 10 are the roomier premium
seats, with 80 seats in each row. At the back, rows 31 to 40 are the
economy seats, with 150 seats per row.

The Python memory allocation algorithm has similar characteristics:

« Just like the stadium has seats, the pymalloc algorithm has mem-
ory blocks.

« Just like seats can either be premium, regular, or economy, mem-

ory blocks are all of a range of fixed sizes. You can’t bring your
deck chair!

« Justlike seats of the same size are put into rows, blocks of the same
size are put into pools.

184

The CPython Memory Allocator

A central register keeps a record of where blocks are and the num-
ber of blocks available in a pool, just as the stadium allocates seating.
When a row in the stadium is full, the next row is used. When a pool
of blocks is full, the next pool is used. Pools are grouped into arenas,
just like the stadium groups the rows into sections.

There are several advantages to this strategy:

1. The algorithm is more performant for CPython’s main use case:
small, short-lived objects.

2. The algorithm uses the GIL instead of system thread-lock detec-
tion.

3. The algorithm uses memory mapping (mmap()) instead of heap al-
location.

Related Source Files

Here are the source files related to the memory allocator:

File Purpose

Include» pymem.h PyMem allocator API

Include» cpython » pymem.h PyMem memory allocator configuration API

Include® internal » pycore_mem.h Garbage collector data structure and
internal APIs

Objects» obmalloc.c Domain allocator implementations and the

pymalloc implementation

Important Terms

Below are some important terms that you’ll encounter in this chapter:

« Requested memory is matched to a block size.
+ Blocks of the same size are all put into the same pool of memory.

« Pools are grouped into arenas.

185

The CPython Memory Allocator

Blocks, Pools, and Arenas

The largest group of memory is an arena. CPython creates arenas of
256 KB to align with the system page size. A system page boundary is
a fixed-length contiguous chunk of memory.

Even with modern high-speed memory, contiguous memory will load
faster than fragmented memory. It’s beneficial to have contiguous
memory.

Arenas

Arenas are allocated against the system heap and with mmap() on sys-
tems supporting anonymous memory mappings. Memory mapping
helps reduce heap fragmentation of the arenas.

Here’s a visual representation of four arenas within the system heap:

System Heap
Arena Arena Arena Arena

256KB 256KB 256KB 256KB

Arenas have the data struct arenaobject:

Field Type Purpose

address uintptr_t Memory address of the arena

pool_address block * Pointer to the next pool to be carved off for
allocation

nfreepools uint The number of available pools in the arena (free
pools plus never-allocated pools)

ntotalpools uint The total number of pools in the arena, whether
or not available

freepools pool_header* Singly linked list of available pools

nextarena arena_object* Next arena (see note)

prevarena arena_object* Previous arena (see note)

186

http://man7.org/linux/man-pages/man2/mmap.2.html

The CPython Memory Allocator

Arenas are linked together in a doubly linked list inside the
arena data structure using the nextarena and prevarena pointers.

If this arena is unallocated, then the nextarena member is used.
The nextarena member links all unassociated arenas in the singly
linked unused_arena_objects global variable.

When this arena is associated with an allocated arena with at
least one available pool, both nextarena and prevarena are used
in the doubly linked usable_arenas list. This list is maintained in
increasing order of nfreepools values.

Pools

Within an arena, pools are created for block sizes up to 512 bytes. For
32-bit systems, the step is 8 bytes, so there are 64 classes:

Request in bytes Size of allocated block Size class index

1-8 8 0]
9-16 16 1
17-24 24 2
25-32 32 3
497-504 504 62
505—512 512 63

For 64-bit systems, the step is 16 bytes, so there are 32 classes:

Request in bytes Size of allocated block Size class index

1-16 16 0]
17—-32 32 1
33—48 48 2
49—64 64 3

480-496 496 30
496—512 512 31

187

The CPython Memory Allocator

Pools are all 4096 bytes (4 KB), so there are always 64 pools in an
arena:

System Heap
Arena Arena Arena Arena

I N

256KB 256KB

sjood

A
il
11
i
[
11l

Pools are allocated on demand. When no available pools are available
for the requested size class index, a new one is provisioned. Arenas
have a high-water mark to index how many pools have been provi-
sioned.

Pools have three possible states:

1. Full: All available blocks in that pool are allocated.

2. Used: The pool is allocated, and some blocks have been set, but it
still has space.

3. Empty: The pool is allocated, but no blocks have been set.

Within an arena, the high-water mark sits at the last allocated pool:

Full Used Empty

Pools have the data structure poolp, which is a static allocation of the
struct pool_header. The pool_header type has the following properties:

188

The CPython Memory Allocator

Field Type Purpose

ref uint Number of currently allocated blocks in this pool

freeblock block * Pointer to this pool’s free list head

nextpool pool_header* Pointer to the next pool of this size class

prevpool pool_header* Pointer to the previous pool of this size class

arenaindex uint Singly-linked list of available pools

szidx uint Size class index of this pool

nextoffset uint Number of bytes to unused block

maxnextoffset uint Maximum number that nextoffset can be until
pool is full

Each pool of a certain size class will keep a doubly linked list to the
next and previous pools of that class. When the allocation task hap-
pens, it’s easy to jump between pools of the same size class within an
arena by following this list.

Pool Tables

A register of the pools within an arena is called a pool table. A pool
table is a headed, circular, doubly linked list of partially used pools.

The pool table is segmented by size class index, i. For an index of i,
usedpools[i + i] points to the header of a list of all partially used pools
that have the size index for that size class.

Pool tables have some essential characteristics:

« When a pool becomes full, it’s unlinked from its usedpools[] list.

« If a full pool has a block freed, then the pool back is put back in
the used state. The newly freed pool is linked in at the front of the
appropriate usedpools[] list so that the next allocation for its size
class will use the freed block.

+ On transition to empty, a pool is unlinked from its usedpools[] list
and linked to the front of its arena’s singly linked freepoo1s list.

189

The CPython Memory Allocator

Blocks

Within a pool, memory is allocated into blocks. Blocks have the fol-
lowing characteristics:

Within a pool, blocks of fixed size class can be allocated and freed.

Available blocks within a pool are listed in the singly linked list
freeblock.

When a block is freed, it’s inserted at the front of the freeblock list.

When a pool is initialized, only the first two blocks are linked
within the freeblock list.

As long a pool is in the used state, there will be a block available
for allocating.

Here’s what a partially allocated pool looks like with a combination of
used, freed, and available blocks:

freeblock Pool < Clean Blocks ~ —
L””JL’/Z”J‘ H H ‘ R R —
1‘ H H H ‘ B B T

| | | | | | : : 1
L

Block Allocation API

When a block of memory is requested by a memory domain that uses
pymalloc, pymalloc_alloc() is called. This function is a good place to
insert a breakpoint and step through the code to test your knowledge
of blocks, pools, and arenas:

190

https://github.com/python/cpython/blob/v3.9.0/Objects/obmalloc.c#L1590

The CPython Memory Allocator

Objects» obmalloc.c line 1590

static inline void*
pymalloc_alloc(void *ctx, size_t nbytes)

{

A request of nbytes = 30 is neither zero nor above the
SMALL_REQUEST_THRESHOLD of 512:

if (UNLIKELY(nbytes == 0)) {
return NULL;

}
if (UNLIKELY(nbytes > SMALL_REQUEST_THRESHOLD)) {
return NULL;

For a 64-bit system, the size class index is calculated as 1. This corre-
lates to the second size class index (17-32 bytes).

The target pool is then usedpools[1 + 1] (usedpools[2]):
uint size = (uint)(nbytes - 1) >> ALIGNMENT_SHIFT;

poolp pool = usedpools[size + size];
block *bp;

Next, a check is done to see if there’s an available ('used') pool for the
size class index. If the freeblock list is at the end of the pool, then there
are still clean blocks available in that pool.

pymalloc_pool_extend() is called to extend the freeblock list:

191

The CPython Memory Allocator

if (LIKELY(pool != pool->nextpool)) {

i
* There is a used pool for this size class.
* Pick up the head block of its free 1list.
*/

++pool->ref.count;

bp = pool->freeblock;

assert(bp != NULL);

if (UNLIKELY((pool->freeblock = *(block **)bp) == NULL)) {
// Reached the end of the free list. Try to extend it.

pymalloc_pool_extend(pool, size);

If there are no available pools, then a new pool is created and the first
blockis returned. allocate_from_new_pool() automatically adds the new
pool to the usedpools list:

else {
/* There isn't a pool of the right size class immediately
* available. Use a free pool.
*/

bp = allocate_from_new_pool(size);

return (void *)bp;

Finally, the new block address is returned.

Using the Python Debug API

The sys module contains an internal function, _debugmallocstats(), to
get the number of blocks in use for each of the size class pools. It will
also print the number of arenas allocated and reclaimed along with
the total number of blocks used.

192

The Object and PyMem Memory Allocation Domains

You can use this function to see the running memory usage:

$./python -c "import sys; sys._debugmallocstats()"
Small block threshold = 512, in 32 size classes.

class size num pools blocks in use avail blocks

16 1 181 72
1 32 6 675 81
48 18 1441 71
2 free 18-sized PyTupleObjects * 168 bytes each = 336
3 free 19-sized PyTupleObjects * 176 bytes each = 528

The output shows the size class index table, the allocations, and some
additional statistics.

The Object and PyMem Memory
Allocation Domains

CPython’s object memory allocator is the first of the three domains
that you'll explore. The purpose of the object memory allocator is to
allocate memory related to Python objects, such as new object headers
and object data, like dictionary keys and values or list items.

The allocator is also used for the compiler, AST, parser, and evaluation
loop. An excellent example of the object memory allocator in use is the
PyLongObject (int) type constructor, PyLong New():

« When a new int is constructed, memory is allocated from the ob-
ject allocator.

+ The size of the request is the size of the PyLongobject struct plus the
amount of memory required to store the digits.

Python longs aren’t equivalent to C’s 1ong type. They're a list of digits.
The number 12378562834 in Python would be represented as the list of

193

The Object and PyMem Memory Allocation Domains

digits [1,2,3,7,8,5,6,2,8,3,4]. This memory structure is how Python
can deal with huge numbers without having to worry about 32- or 64-
bit integer constraints.

Take a look at the pPyLong constructor to see an example of object mem-
ory allocation:

PyLongObject *
_PyLong_New(Py_ssize_t size)
{

PyLongObject *result;

if (size > (Py_ssize_t)MAX_LONG_DIGITS) {
PyErr_SetString (PyExc_OverflowError,
"too many digits in integer");
return NULL;
3
result = PyObject_MALLOC(offsetof(PyLongObject, ob_digit) +
size*sizeof(digit));
if (!result) {
PyErr_NoMemory();
return NULL;
3
return (PyLongObject*)PyObject_INIT_VAR(result, &PyLong_Type, size);

If you were to call _PyLong_New(2), it would calculate the size_t value
like this:

Value Bytes
sizeof(digit) 4
size 2
header offset 26
Total 32

A call to pyobject_MaLLOC() would be made with a size_t value of 32.

On my system, the maximum number of digits in a long, MAX_LONG_DIGITS,

194

The Object and PyMem Memory Allocation Domains

1S 2305843009213693945 (a very, very big number). If you ran _py-
Long_New(2305843009213693945), then it would call Pyobject_MALLOC()
with a size_t of 9223372036854775804 bytes, or 8,589,934,592 gigabytes
(more RAM than I have available).

Using the tracemalloc Module

The tracemalloc module in the standard library can be used to debug
memory allocation through the object allocator. It provides informa-
tion on where an object was allocated and the number of memory
blocks allocated. As a debug tool, tracemalloc can help you calculate
the amount of memory consumed by running your code and detect
memory leaks.

To enable memory tracing, you can start Python with -x tracemalloc=1,
where 1 is the number of frames deep you want to trace. Alternatively,
you can enable memory tracing using the PYTHONTRACEMALLOC=1 environ-
ment variable. You can specify how many frames deep to trace by
replacing the 1 with any integer.

You can use take_snapshot() to create a snapshot instance, then
compare multiple snapshots using compare_to(). Create an example
tracedemo.py file to see this in action:

cpython-book-samples? 32» tracedemo.py

import tracemalloc
tracemalloc.start()

def to_celsius(fahrenheit, /, options=None):

return (fahrenheit-32)+%5/9
values = range(0, 100, 10) # values 0, 10, 20, ... 90

for v in values:

c = to_celsius(v)

195

The Raw Memory Allocation Domain

after = tracemalloc.take_snapshot()

tracemalloc.stop()
after = after.filter_traces([tracemalloc.Filter(True, '**/tracedemo.py')])

stats = after.statistics('lineno')

for stat in stats:

print(stat)

Executing this will print a list of the memory used by line, from highest
to lowest:

$./python -X tracemalloc=2 tracedemo.py

/Users/.../tracedemo.py:5: size=712 B, count=2, average=356 B
/Users/.../tracedemo.py:13: size=512 B, count=1, average=512 B
/Users/.../tracedemo.py:11: size=480 B, count=1, average=480 B
/Users/.../tracedemo.py:8: size=112 B, count=2, average=56 B

/Users/.../tracedemo.py:6: size=24 B, count=1, average=24 B

The line with the highest memory consumption was return
(fahrenheit-32)*5/9, which performs the actual calculation.

The Raw Memory Allocation Domain

The raw memory allocation domain is used either directly or when the
other two domains are called with a request size over 512 KB. It takes
the request size, in bytes, and calls malloc(size). If the size argument
is 0, then some systems will return NULL for malloc(0), which would
be treated as an error. Some platforms would return a pointer with
no memory behind it, which would break pymalioc.

To solve these problems, _PyMem_RawMalloc() adds an extra byte before
calling malloc().

196

Custom Domain Allocators

By default, the PyMem domain allocators use the object alloca-
tors. PyMem_Malloc() and PyObject_Malloc() have the same execu-
tion path.

Custom Domain Allocators

CPython also allows you to override the allocation implementation
for any of the three domains. If your system environment requires
bespoke memory checks or algorithms for memory allocation, then
you can plug a new set of allocation functions into the runtime.

PyMemAllocatorEx 1S a typedef struct with members for all the methods
you would need to implement to override the allocator:

typedef struct {
/* User context passed as the first argument to the four functions */

void *ctx;

/* Allocate a memory block */

void* (*malloc) (void *ctx, size_t size);

/* Allocate a memory block initialized by zeros */

void* (*calloc) (void *ctx, size_t nelem, size_t elsize);

/* Allocate or resize a memory block */

void* (*realloc) (void *ctx, void *ptr, size_t new_size);
/* Release a memory block */
void (*free) (void *ctx, void *ptr);

} PyMemAllocatorEx;

The API method PyMem_GetAllocator() is available to get the existing
implementation:

197

https://github.com/python/cpython/blob/v3.9.0/Objects/obmalloc.c#L520

Custom Memory Allocation Sanitizers

PyMemAllocatorEx * existing_obj;
PyMem_GetAllocator (PYMEM_DOMAIN_OBJ, existing_obj);

Important

There are some important design tests for custom allocators:
+ The new allocator must return a distinct non-NULL pointer
when requesting zero bytes.

» For the pyMEM_DOMAIN_RAW domain, the allocator must be
thread safe.

If youimplemented the functions My_malloc(), My_Calloc(),My_Realloc(),
and My_Free() using the signatures in PyMemallocatorEx, then you could
override the allocator for any domain, such as the pPYMEM_DOMAIN_OBJ
domain:

PyMemAllocatorEx my_allocators =
{NULL, My_Malloc, My_Calloc, My_Realloc, My_Free};
PyMem_SetAllocator (PYMEM_DOMAIN_OBJ, &my_allocators);

Custom Memory Allocation Sanitizers

Memory allocation sanitizers are additional algorithms placed
between the system call to allocate memory and the kernel function
to allocate the memory on the system. They're used for environments
that require specific stability constraints or very high security or for
debugging memory allocation bugs.

CPython can be compiled using several memory sanitizers. These are
part of the compiler libraries, not something developed for CPython.
They typically slow down CPython significantly and can’t be combined.
They’re generally for use in debugging scenarios or systems in which
preventing corrupt memory access is critical.

198

Custom Memory Allocation Sanitizers

AddressSanitizer

AddressSanitizer is a fast memory error detector. It can detect many
runtime memory-related bugs:

 Out-of-bounds accesses to heap, stack, and globals
« Memory being used after it has been freed

» Double free and invalid free
You can enable AddressSanitizer by running the following;:

$./configure --with-address-sanitizer ...

AddressSanitizer can slow down applications by up to two times
and consume up to three times more memory.

AddressSanitizer is supported on the following operating systems:

» Linux

e macOS
» NetBSD
e FreeBSD

See the official documentation for more information.

MemorySanitizer

MemorySanitizer is a detector of uninitialized reads. If an address
space is addressed before it’s been initialized (allocated), then the pro-
cess is stopped before the memory can be read.

You can enable the memory sanitizer by running the following:

$./configure --with-memory-sanitizer ...

199

https://clang.llvm.org/docs/AddressSanitizer.html

Custom Memory Allocation Sanitizers

MemorySanitizer can slow down applications by up to two
times and consume up to two times more memory.

MemorySanitizer is supported on the following operating systems:

e Linux
» NetBSD
e FreeBSD

See the official documentation for more information.

UndefinedBehaviorSanitizer

UndefinedBehaviorSanitizer (UBSan) is a fast undefined behavior de-
tector. It can catch various kinds of undefined behavior during execu-
tion:

« A misaligned or null pointer
« A signed integer overflow

« Conversion to, from, or between floating-point types
You can enable UBSan by running the following:
$./configure --with-undefined-behavior-sanitizer ...
UBSan is supported on the following operating systems:

+ Linux

» macOS
¢ NetBSD
» FreeBSD

See the official documentation for more information.

200

https://clang.llvm.org/docs/MemorySanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

The PyArena Memory Arena

UBSan has many configurations. Using
—-with-undefined-behavior-sanitizer will set the undefined profile. To
use another profile like nullability, run ./configure with the custom
CFLAGS:

$./configure CFLAGS="-fsanitize=nullability" \
LDFLAGS="-fsanitize=nullability"

After you recompile CPython, this configuration will produce a
CPython binary using the UndefinedBehaviorSanitizer.

The PyArena Memory Arena

Throughout this book, youll see references to a pyArena object. The
PyArena is a separate arena allocation API used for the compiler, frame
evaluation, and other parts of the system not run from Python’s object
allocation API.

The Pyarena also has its own list of allocated objects within the arena
structure. Memory allocated by the pyarena is not a target of the
garbage collector.

When memory is allocated in a Pyarena instance, it will capture a
running total of the number of blocks allocated, then call PyMem_al11oc.
Allocation requests to the pyarena use the object allocator for blocks
smaller than or equal to 512 KB and the raw allocator for larger
blocks.

Related Files

Here are the files related to the Pyarena:

File Purpose

Include? pyarena.h The PyArena API and type definitions
Python» pyarena.c The PyArena implementation

201

https://github.com/python/cpython/blob/v3.9.0/Include/pyarena.h#L12

Reference Counting

Reference Counting

As you've seen so far in this chapter, CPython is built on C’s dynamic
memory allocation system. Memory requirements are determined at
runtime, and memory is allocated on the system using the pymem APIs.

For the Python developer, this system has been abstracted and sim-
plified. Developers don’t have to worry much about allocating and
freeing memory.

To simplify memory management, Python adopts two strategies for
managing the memory allocated by objects:

1. Reference counting

2. Garbage collection

You'll look at each in more detail below.

Creating Variables in Python

To create a variable in Python, you have to assign a value to a uniquely
named variable:

my_variable = ["a", "b", "c"]

When a value is assigned to a variable in Python, the name of the vari-
able is checked within the locals and globals scope to see if it already
exists.

In the above example, my_variable isn’t already within any locals() or
globals() dictionary. A new list object is created, and a pointer is
stored in the locals() dictionary.

Now there’s one reference to my_variable. A list object’s memory
shouldn’t be freed while there are valid references to it. If its memory
were freed, then the my_variable pointer would point to invalid mem-
ory space, and CPython would crash.

202

Reference Counting

Throughout the C source code for CPython, you’ll see calls to
Py_INCREF() and Py _DECREF(). These macros are the primary API
for incrementing and decrementing references to Python objects.
Whenever something depends on a value, the reference count is
incremented. When that dependency is no longer valid, the reference
count is decremented.

If a reference count reaches zero, then it’s assumed that the memory
is no longer needed, and it’s automatically freed.

Incrementing References

Every instance of Pyobject has an ob_refcent property. This property is
a counter of the number of references to that object.

References to an object are incremented under many scenarios. In
the CPython code base, there are over 3,000 calls to py_INCREF(). The
most frequent calls are when an object is:

« Assigned to a variable name
« Referenced as a function or method argument
» Returned, or yielded, from a function

The logic behind the py_INCREF macro has only one step. It increments
the ob_refent value by one:

static inline void _Py_INCREF(PyObject *op)
{

_Py_INC_REFTOTAL;

op->ob_refcnt++;

}

If CPython is compiled in debug mode, then _py_iNc_REFTOTAL Will in-
crement a global reference counter, _Py_RefTotal.

203

https://github.com/python/cpython/blob/v3.9.0/Include/object.h#L411
https://github.com/python/cpython/blob/v3.9.0/Include/object.h#L437

Reference Counting

You can see the global reference counter by adding the -x
showrefcount flag when running a debug build of CPython:

$./python -X showrefcount -c "x=1; x+=1; print(f'x is {x}')"
X is 2

[18497 refs, 6470 blocks]

The first number in brackets is the number of references made
during the process, and the second is the number of allocated
blocks.

Decrementing References

References to an object are decremented when a variable falls outside
the scope in which it was declared. Scope in Python can refer to a
function or method, a comprehension, or a lambda. These are some
of the more literal scopes, but there are many other implicit scopes,
like passing variables to a function call.

Py_DECREF() is more complex than py_INCREF() because it also handles
the logic of a reference count reaching o, requiring the object memory
to be freed:

static inline void _Py_DECREF(
#ifdef Py_REF_DEBUG

const char *filename, int lineno,
#endif

PyObject *op)

_Py_DEC_REFTOTAL;
if (--op->ob_refcnt != 0) {
#ifdef Py_REF_DEBUG
if (op->ob_refcnt < 0) {

_Py_NegativeRefcount(filename, lineno, op);

#endif

204

Reference Counting

}

else {
_Py_Dealloc(op);

}

Inside py_DECREF(), when the reference counter (ob_refent) value be-
comes 0, the object destructor is called through _py_Dealloc(op), and
any allocated memory is freed.

As with py_INCREF(), there are some additional functions when
CPython has been compiled in debug mode.

For an increment, there should be an equivalent decrement operation.
If a reference count becomes a negative number, then this indicates
an imbalance in the C code. An attempt to decrement references to an
object that has no references will give this error message:

<file>:<line>: _Py_NegativeRefcount: Assertion failed:
object has negative ref count

Enable tracemalloc to get the memory block allocation traceback

object address : 0x109eaac50

object refcount : -1

object type : 0x109cadf60

object type name: <type>

object repr : <refcnt -1 at 0x109eaac50>

When making changes to the behavior of an operation, the Python
language, or the compiler, you must carefully consider the impact on
object references.

Reference Counting in Bytecode Operations

A large portion of the reference counting in Python happens within
the bytecode operations in Python» ceval.c.

Count the references to the y variable in this example:

205

Reference Counting

y = "hello"

def greet(message=y):

print(message.capitalize() + " " + vy)
messages = [y]
greet(*“messages)
At first glance, there are four references to y:

1. As avariable in the top-level scope
2. As a default value for the keyword argument message
3. Inside greet()

4. As an item in the messages list
Run this code with the following additional snippet:

import sys

print(sys.getrefcount(y))
There are in fact six total references to v.

Instead of sitting within a central function that has to cater to all these
cases and more, the logic for incrementing and decrementing refer-
ences is split into small parts.

A bytecode operation should have a determining impact on the refer-
ence counter for the objects that it takes as arguments.

For example, in the frame evaluation loop, the LoAD_FAST operation
loads the object with a given name and pushes it to the top of the value
stack. Once the variable name, which is provided in the oparg, has
been resolved using GETLOCAL(), the reference counter is incremented:

206

Reference Counting

case TARGET(LOAD_FAST): {
PyObject *value = GETLOCAL(oparg);
if (value == NULL) {
format_exc_check_arg(tstate, PyExc_UnboundLocalError,
UNBOUNDLOCAL_ERROR_MSG,
PyTuple_GetItem(co->co_varnames, oparg));
goto error;
}
Py_INCREF(value);
PUSH(value);
FAST_DISPATCH();

A 10AD_FAST operation is compiled by many AST nodes that have oper-
ations.

For example, let’s say you assign two variables, a and b, then create
third, c, based on the product of a and b:

a = 10
b = 20
c=a%*hb

In the third operation, ¢ = a * b, the right-hand side expression, a *
b, would be assembled into three operations:

1. LOAD_FAST, resolving the variable a and pushing it to the value stack,
then incrementing the references to a by one

2. LOAD_FAST, resolving the variable b and pushing it to the value stack,
then incrementing the references to b by one

3. BINARY_MULTIPLY, multiplying the variables to the left and right and
pushing the result to the value stack

The binary multiply operator, BINARY_MULTIPLY, knows that references
to the left and right variables in the operation have been loaded to the
first and second positions in the value stack. It’s also implied that the
LOAD_FAST operation increments its reference counters.

207

Reference Counting

In the implementation of the BINARY_MULTIPLY operation, the references
to both a (1eft) and b (right) are decremented once the result has been
calculated:

case TARGET(BINARY_MULTIPLY): {
PyObject *right = POP();
PyObject *left = TOP();
PyObject *res = PyNumber_Multiply(left, right);
Py_DECREF(left);
Py_DECREF(right);
SET_TOP(res);
if (res == NULL)
goto error;

DISPATCHQ);

The resulting number, res, will have a reference count of 1 before it’s
set as the top of the value stack.

The Benefits of the CPython Reference Counter

CPython’s reference counter has the benefits of being simple, fast,
and efficient. The biggest drawback of the reference counter is that
it needs to account for, and carefully balance, the effect of every
operation.

As you just saw, a bytecode operation increments the counter, and
it’s assumed that an equivalent operation will decrement it properly.
What happens if there’s an unexpected error? Have all possible sce-
narios been tested?

Everything discussed so far is within the realm of the CPython run-
time. The Python developer has little to no control over this behavior.

There’s also a significant flaw in the reference counting approach:
cyclical references.

Take this Python example:

208

Garbage Collection

x =[]
X .append(x)
del x

The reference count for x is still 1 because it referred to itself.

To cater to this complexity and resolve these types of memory leaks,
CPython has a second memory management mechanism called
garbage collection.

Garbage Collection
How often does your garbage get collected? Weekly or fortnightly?

When you’re finished with something, you discard it and throw it in
the trash. But that trash doesn’t get collected right away. You need to
wait for the garbage trucks to come and pick it up.

CPython uses the same principle for the garbage collection algorithm.
CPython’s garbage collector works to deallocate memory that’s been
used for objects that no longer exist. It’s enabled by default and oper-
ates in the background.

Because the garbage collection algorithm is a lot more complicated
than the reference counter, it doesn’t happen all the time. If it did,
then it would consume a vast amount of CPU resources. The garbage
collection runs periodically after a set number of operations.

Related Source Files

Here are the source files related to the garbage collector:

File Purpose

Modules » gcmodule. The garbage collection module and
algorithm implementation

Include» internal » pycore_mem.h The garbage collection data structure and
internal APIs

209

Garbage Collection

The Garbage Collector Design

As you discovered in the previous section, every Python object retains
a counter of the number of references to it. Once that counter reaches
zero, the object is finalized, and the memory is freed.

Many of the Python container types, like lists, tuples, dictionaries,
and sets, could result in cyclical references. The reference counter is
an insufficient mechanism to ensure that objects that are no longer
required are freed.

While creating cyclical references in containers should be avoided,
there are many examples within the standard library and the core
interpreter. Here’s another common example in which a container
type (class) can refer to itself:

cpython-book-samples» 32 » user.py

_all__ = ["User"]

class User(BaseUser):

[[

name: 'str' = ""

1 T onn

login: 'str
def __init__(self, name, login):
self.name = name
self.login = login

super(User).__init__ ()

def __repr_ (self):

return ""

class BaseUser:
def __repr_ (self):
This creates a cyclical reference

return User.__repr__(self)

In this example, the instance of user links to the BaseUser type, which
references back to the instance of user. The goal of the garbage collec-

210

Garbage Collection

tor is to find unreachable objects and mark them as garbage.

Some garbage collector algorithms, like mark and sweep or stop
and copy, start at the root of the system and explore all reachable
objects. This is hard to do in CPython because C extension modules
can define and store their own objects. You couldn’t easily determine
all objects by simply looking at 1ocals() and globals().

For long-running processes or large data processing tasks, running
out of memory would cause a significant issue.

Instead, the CPython garbage collector leverages the existing refer-
ence counter and a custom garbage collector algorithm to find all un-
reachable objects. Because the reference counter is already in place,
the role of the CPython garbage collector is to look for cyclical refer-
ences in certain container types.

Container Types Included in the Garbage
Collector

The garbage collector will look for types that have the flag
Py_TPFLAGS_HAVE_GC set in their type definition. You'll cover type
definitions in the chapter “Objects and Types.”

Here are the types that are marked for garbage collection:

+ Class, method, and function objects

« Cell objects

« Byte arrays, byte, and Unicode strings
« Dictionaries

« Descriptor objects, used in attributes
« Enumeration objects

 Exceptions

« Frame objects

« Lists, tuples, named tuples, and sets

211

Garbage Collection

« Memory objects

Modules and namespaces

 Type and weak reference objects

Iterators and generators

Pickle buffers

Wondering what’s missing? Floats, integers, Booleans, and NoneType
aren’t marked for garbage collection.

Custom types written with C extension models can be marked as re-
quiring garbage collection using the garbage collector C API.

Untrackable Objects and Mutability

The garbage collector will track certain types for changes in their prop-
erties to determine which are unreachable.

Some container instances aren’t subject to change because they’re
immutable, so the API provides a mechanism for untracking. The
fewer objects there are to be tracked by the garbage collector, the
faster and more efficient the garbage collection is.

An excellent example of untrackable objects is tuples. Tuples are im-
mutable. Once you create them, they can’t be changed. However, tu-
ples can contain mutable types, like lists and dictionaries.

This design in Python creates many side effects, one of which is the
garbage collection algorithm. When a tuple is created, unless it’s
empty, it’s marked for tracking.

When the garbage collector runs, every tuple looks at its contents to
see if it contains only immutable (untracked) instances. This step is
completed in _PyTuple_MaybeUntrack(). If the tuple determines that it
contains only immutable types, like Booleans and integers, then it
will remove itself from the garbage collection tracking by calling _py-
Object_GC_UNTRACK().

212

https://docs.python.org/3.8/c-api/gcsupport.html
https://github.com/python/cpython/blob/v3.9.0/Objects/tupleobject.c#L174
https://github.com/python/cpython/blob/v3.9.0/Include/internal/pycore_object.h#L79
https://github.com/python/cpython/blob/v3.9.0/Include/internal/pycore_object.h#L79

Garbage Collection

Dictionaries are empty and untracked when they’re created. When an
item is added to a dictionary, if it’s a tracked object, then the dictio-
nary requests to be tracked by the garbage collector.

You can see if any object is being tracked by calling gc.is_tracked(obj).

Garbage Collection Algorithm

Next, you’ll explore the garbage collection algorithm. The CPython
core development team has written a detailed guide that you can refer
to for more information.

Initialization

The pyGCc_collect() entry point follows a five-step process to start and
stop the garbage collector:

1. Get the garbage collection state, GcState, from the interpreter.

2. Check to see if the garbage collector is enabled.

3. Check to see if the garbage collector is already running.

4. Run the collection function, collect(), with progress callbacks.

5. Mark the garbage collection as completed.
When the collection stage is run and completed, you can specify call-

back methods using the gc.callbacks list. Callbacks should have the
method signature f(stage: str, info: dict):

Python 3.9 (tags/v3.9:9cf67522, Oct 5 2020, 10:00:00)
[Clang 6.0 (clang-600.0.57)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import gc
>>> def gc_callback(phase, info):
print(f"GC phase:{phase} with info:{info}")

>>> gc.callbacks.append(gc_callback)

>>> x = []

213

https://devguide.python.org/garbage_collector/
https://github.com/python/cpython/blob/v3.9.0/Modules/gcmodule.c#L2045
https://github.com/python/cpython/blob/v3.9.0/Modules/gcmodule.c#L1170

Garbage Collection

>>> x.append(x)

>>> del x

>>> gc.collect()

GC phase:start with info:{'generation': 2,'collected': 0, 'uncollectable': 0}
GC phase:stop with info:{'generation': 2,'collected': 1,'uncollectable': 0}
1

The Collection Stage

In the main garbage collection function, collect() targets one of three
generations in CPython. Before you learn about the generations, it’s
important to first understand the collection algorithm.

For each collection, the garbage collector uses a doubly linked list of
type PyGC_HEAD. So that the garbage collector doesn’t have to find all
container types, those that are targets for the garbage collector have
an additional header that links them all in a doubly linked list.

When one of these container types is created, it adds itself to the list,
and when it’s destroyed, it removes itself. You can see an example in
the cellobject.c type:

Objects? cellobject.c line 7

PyObject *
PyCell_New(PyObject *obj)
{

PyCellObject *op;

op = (PyCellObject *)PyObject_GC_New(PyCellObject, &PyCell_Type);
if (op == NULL)
return NULL;
op->ob_ref = obj;
Py_XINCREF(obj);

>> _PyObject_GC_TRACK(op);
return (PyObject *)op;

214

https://github.com/python/cpython/blob/v3.9.0/Modules/gcmodule.c#L1170

Garbage Collection

Because cells are mutable, the object is marked to be tracked by a call
to _PyObject_GC_TRACK().

When cell objects are deleted, cell_dealloc() is called. This function
takes three steps:

1. The destructor tells the garbage collector to stop tracking this
instance by calling _Pyobject_GC_UNTRACK(). Because it’s been
destroyed, its contents don’t need to be checked for changes in
subsequent collections.

2. Py_XDECREF is a standard call in any destructor to decrement the ref-
erence counter. The reference counter for an object is initialized
to 1, so this counters that operation.

3. PyObject_GC_Del() removes the object from the garbage collection
linked list by calling gc_1list_remove() and then frees the memory
with PyObject_FREE().

Here’s the source of cell_dealloc():
Objects» cellobject.c line 79

static void
cell_dealloc(PyCellObject *op)

{
_PyObject_GC_UNTRACK(op);
Py_XDECREF (op->ob_ref);
PyObject_GC_Del(op);

}

When a collection starts, it merges younger generations into the
current generation. For example, if you're collecting the second
generation, then when it starts collecting, it will merge the first gen-
eration’s objects into the garbage collection list using gc_list_merge().
The garbage collector will then determine unreachable objects in the
young (currently targeted) generation.

The logic for determining unreachable objects is located in de-
duce_unreachable(). It follows these stages:

215

https://github.com/python/cpython/blob/v3.9.0/Include/internal/pycore_object.h#L51
https://github.com/python/cpython/blob/v3.9.0/Objects/cellobject.c#L79
https://github.com/python/cpython/blob/v3.9.0/Include/internal/pycore_object.h#L79
https://github.com/python/cpython/blob/v3.9.0/Modules/gcmodule.c#L2306
https://github.com/python/cpython/blob/v3.9.0/Modules/gcmodule.c#L254
https://github.com/python/cpython/blob/v3.9.0/Include/objimpl.h#L108
https://github.com/python/cpython/blob/v3.9.0/Objects/cellobject.c#L79
https://github.com/python/cpython/blob/v3.9.0/Modules/gcmodule.c#L289

Garbage Collection

1. For every object in the generation, copy the reference count value
ob->ob_refcnt tO ob->gc_ref.

2. For every object, subtract internal (cyclical) references from
gc_refs to determine how many objects can be collected by the
garbage collector. If gc_refs ends up equal to o, then the object is
unreachable.

3. Create alist of unreachable objects and add every object that meets
the criteria in step 2 to it.

4. Remove every object that meets the criteria in step 2 from the gen-
eration list.

There’s no single method for determining cyclical references. Each
type must define a custom function with signature traverseproc in the
tp_traverse slot. To complete step 2 above, deduce_unreachable() calls
the traversal function for every object within subtract_refs(). The
traversal function should run the callback visit_decref() for every
item it contains:

Modules » gcmodule. ¢ line 462

static void
subtract_refs(PyGC_Head *containers)
{
traverseproc traverse;
PyGC_Head *gc = GC_NEXT(containers);
for (; gc != containers; gc = GC_NEXT(gc)) {
PyObject *op = FROM_GC(gc);
traverse = Py_TYPE(op)->tp_traverse;
(void) traverse(FROM_GC(gc),
(visitproc)visit_decref,

op);

216

https://github.com/python/cpython/blob/v3.9.0/Modules/gcmodule.c#L1084
https://github.com/python/cpython/blob/v3.9.0/Modules/gcmodule.c#L462
https://github.com/python/cpython/blob/v3.9.0/Modules/gcmodule.c#L439

Garbage Collection

The traversal functions are kept within each object’s source code
in Objects. For example, the tuple type’s traversal, tupletraverse(),
calls visit_decref() on all of its items. The dictionary type will call
visit_decref() on all keys and values.

Any object that doesn’t end up being moved to the unreachable list grad-
uates to the next generation.

Freeing Objects

Once unreachable objects have been determined, they can be (care-
fully) freed following the steps below. The approach depends on
whether the type implements the old or the new finalizer slot:

1. If an object has defined a finalizer in the legacy tp_de1l slot, then it
can’t safely be deleted and is marked as uncollectable. These are
added to the gc.garbage list for the developer to destroy manually.

2. If an object has defined a finalizer in the tp_finalize slot, then it’s
marked as finalized to avoid calling it twice.

3. If an object in step 2 has been resurrected by being initialized
again, then the garbage collector reruns the collection cycle.

4. For all objects, the tp_clear slot is called. This slot changes the
reference count, ob_refent, to 0, triggering the freeing of memory.

Generational Garbage Collection

Generational garbage collection is a technique based on the observa-
tion that most objects (80 percent or more) are destroyed shortly after
being created.

CPython’s garbage collector uses three generations that have thresh-
olds to trigger their collections. The youngest generation (0) has a
high threshold to avoid the collection loop being run too frequently.
If an object survives garbage collection, then it’ll move to the second
generation and then to the third.

217

https://github.com/python/cpython/blob/v3.9.0/Objects/tupleobject.c#L619
https://github.com/python/cpython/blob/v3.9.0/Modules/gcmodule.c#L439
https://github.com/python/cpython/blob/v3.9.0/Modules/gcmodule.c#L439

Garbage Collection

In the collection function, a single generation is targeted, and it
merges younger generations into it before execution. For this reason,
if you run collect() on generation 1, then it will collect generation o.
Likewise, running collect() on generation 2 will collect generations 0
and 1.

When objects are instantiated, the generational counters are incre-
mented. When the counter reaches a user-defined threshold, col-
lect() runs automatically.

Using the Garbage Collection API From Python

CPython’s standard library comes with a gc Python module to inter-
face with the arena and the garbage collector. Here’s how to use the
gc module in debug mode:

>>> import gc

>>> gc.set_debug(gc.DEBUG_STATS)

This will print the statistics whenever the garbage collector is run:

gc: collecting generation 2...
gc: objects in each generation: 3 0 4477
gc: objects in permanent generation: 0

gc: done, O unreachable, 0 uncollectable, 0.0008s elapsed

You use gc.DEBUG_COLLECTABLE to discover when items are collected for
garbage. When you combine this with the gc.DEBUG_SAVEALL debug flag,
it will move items to a gc.garbage list once they’ve been collected:

>>> import gc

>>> gc.set_debug(ge.DEBUG_COLLECTABLE | gc.DEBUG_SAVEALL)
>>> z = [0, 1, 2, 3]

>>> z.append(z)

>>> del z

>>> gc.collect()

gc: collectable <list 0x10d594a00>

>>> gc.garbage

218

https://github.com/python/cpython/blob/v3.9.0/Modules/gcmodule.c#L1170
https://github.com/python/cpython/blob/v3.9.0/Modules/gcmodule.c#L1170
https://github.com/python/cpython/blob/v3.9.0/Modules/gcmodule.c#L1170
https://github.com/python/cpython/blob/v3.9.0/Modules/gcmodule.c#L1170

Conclusion

tro, 1, 2, 3, [...11]

You can get the threshold after which the garbage collector is run by
calling get_threshold():

>>> gc.get_threshold()
(700, 10, 10)

You can also get the current threshold counts:

>>> gc.get_count()
(688, 1, 1)

Lastly, you can run the collection algorithm manually for a generation,
and it will return the collected total:

>>> gc.collect(0)
24

Ifyou don’t specify a generation, then it will default to 2, which merges
generations 0 and 1:

>>> gc.collect()
20

Conclusion

In this chapter, you've seen how CPython allocates, manages, and
frees memory. These operations happen thousands of times during
the life cycle of even the simplest Python script. The reliability and
scalability of CPython’s memory management system are what enable
it to scale from a two-line script all the way to running some of the
world’s most popular websites.

The object and raw memory allocation systems you've been shown in
this chapter will come in useful if you develop C extension modules. C
extension modules require an intimate knowledge of CPython’s mem-
ory management system. Even a single missing py_INCREF() can cause
a memory leak or system crash.

219

Conclusion

When you’re working with pure Python code, knowledge of the
garbage collector is useful for designing long-running Python code.
For example, if you designed a single function that executes over
hours, days, or even longer, then this function would need to carefully
manage its memory within the constraints of the system on which it
was executing.

You can now use some of the techniques you learned in this chapter
to control and tweak the garbage collection generations to better op-
timize your code and its memory footprint.

220

Parallelism and
Concurrency

The first computers were designed to do one thing at a time. A lot of
their work was in the field of computational mathematics. As time
went on, computers were needed to process inputs from a variety of
sources, some as far away as distant galaxies.

The consequence of this is that computer applications now spend a lot
of time idly waiting for responses, whether they be from a bus, an in-
put, a memory location, a computation, an API, or a remote resource.

Another progression in computing was the move away from a
single-user terminal to a multitasking operating system. Applica-
tions needed to run in the background to listen and respond on the
network and process inputs such as the mouse cursor.

Multitasking was required well before the advent of modern multi-
core CPUs, so operating systems have long been able to share system
resources between multiple processes.

At the core of any operating system is a registry of running processes.
Each process has an owner, and it can request resources, like memory
or CPU. In the last chapter, you explored memory allocation.

For a CPU, the process will request CPU time in the form of oper-
ations to be executed. The operating system controls which process
uses the CPU. It does this by allocating CPU time and scheduling pro-
cesses by priority:

221

Concurrent Model

Task A

E

Time

Task B -

|

A single process may need to do multiple things at once. For exam-
ple, if you use a word processor, it needs to check your spelling while
you're typing. Modern applications accomplish this by running mul-
tiple threads concurrently and handling their own resources.

Concurrency is an excellent solution to dealing with multitasking, but
CPUs have their limits. Some high-performance computers deploy
either multiple CPUs or multiple cores to spread tasks. Operating sys-
tems provide a way of scheduling processes across multiple CPUs:

Parallel Model

Task A CPU @

Task B CPU 1

222

The Structure of a Process

In summary, computers use parallelism and concurrency to handle
the problem of multitasking;:

e To have parallelism, you need multiple computational units.
Computational units can be CPUs or cores.

« To have concurrency, you need a way of scheduling tasks so that
idle ones don’t lock the resources.

Many parts of CPython’s design abstract the complexity of operating
systems to provide a simple API for developers. CPython’s approach
to parallelism and concurrency is no exception.

Models of Parallelism and Concurrency

CPython offers many approaches to parallelism and concurrency.
Your choice depends on several factors. There are also overlapping
use cases across models as CPython has evolved.

You may find that for a particular problem, there are multiple concur-
rency implementations to choose from, each with their own pros and
cons.

There are four models bundled with CPython:

Approach Module Concurrent Parallel
Threading threading Yes No
Multiprocessing multiprocessing Yes Yes
Async asyncio Yes No
Subinterpreters subinterpreters Yes Yes

The Structure of a Process

One of the tasks for an operating system like Windows, macOS, or
Linux is to control running processes. These processes could be UT
applications like a browser or an IDE. They could also be background
processes like network services or operating system services.

223

The Structure of a Process

To control these processes, the operating system provides an API for
starting a new process. When a process is created, it’s registered by
the operating system so that it knows which processes are running.
Processes are given a unique ID (PID). Depending on the operating
system, they can have several other properties.

POSIX processes have a minimum set of properties that are registered
in the operating system:

« Controlling terminal

« Current working directory

« Effective group ID and effective user ID

» File descriptors and file mode creation mask

« Process group ID and process ID

» Real group ID and real user ID

« Root directory

You can see these attributes for running processes in macOS or Linux
by running the ps command.

The IEEE POSIX Standard (1003.1-2017) defines the interface
and standard behaviors for processes and threads.

Windows has a similar list of properties but sets its own standard. The
Windows file permissions, directory structures, and process registry
are very different from POSIX.

Windows processes, represented by win32_process, can be queried in
WMI, the Windows Management Instrumentation runtime, or by us-
ing the Task Manager.

224

https://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap01.html
https://docs.microsoft.com/en-us/windows/win32/cimwin32prov/win32-process

The Structure of a Process

Once a process is started on an operating system, it is given:

+ A stack of memory for calling subroutines
+ A heap (see “Dynamic Memory Allocation in C”)
« Access to files, locks, and sockets on the operating system

The CPU on your computer also keeps additional data when the pro-
cess is executing, such as:

+ A register holding the current instruction being executed or any
other data needed by the process for that instruction

+ An instruction pointer, or program counter, indicating
which instruction in the program sequence is being executed

The CPython process comprises the compiled CPython interpreter
and the compiled modules. These modules are loaded at runtime and
converted into instructions by the CPython evaluation loop:

Process

Stack

Heap Instructions ‘ Files

Process Memory ’ CPython Runtime ‘
,
m Python Objects ‘ m Compiled Modules ‘
Sockets

The program register and program counter point to a single instruc-
tion in the process. This means that only one instruction can be exe-
cuting at any one time. For CPython, this means that only one Python
bytecode instruction can be executing at a given time.

225

Multiprocess Parallelism

There are two main approaches to allowing parallel execution of in-
structions in a process:

1. Fork another process.

2. Spawn a thread.

Now that you’ve reviewed what makes up a process, you can explore
forking and spawning child processes.

Multiprocess Parallelism

POSIX systems provide an API for any process to fork a child process.
Forking processes is a low-level API call to the operating system that
can be made by any running process.

When this call is made, the operating system will clone all the
attributes of the currently running process and create a new process.
This clone operation includes the heap, register, and counter position
of the parent process. The child process can read any variables from
the parent process at the time of forking.

Forking a Process in POSIX

As an example, take the Fahrenheit-to-Celsius example application
used at the beginning of “Dynamic Memory Allocation in C.” You can
adapt it to spawn a child process for each Fahrenheit value instead of
calculating them in sequence by using fork(). Each child process will
continue operating from that point:

cpython-book-samples? 33» thread_celsius.c

#include <stdio.h>
#include <stdlib.h>

#include <unistd.h>

static const double five_ninths = 5.0/9.0;

226

Multiprocess Parallelism

double celsius(double fahrenheit){

return (fahrenheit - 32) * five_ninths;

int main(int argc, char** argv) {
if (argc != 2)
return -1;
int number = atoi(argv[1]);
for (int 1 = 1 ; i <= number ; i++) {
double f_value = 100 + (i*10);
pid_t child = fork();
if (child == 0) { // Is child process
double c_value = celsius(f_value);
printf("%f F is %f C (pid %d)\n", f_value, c_value, getpid());
exit(0);

}
printf("Spawned %d processes from %d\n", number, getpid());

return 0;

Running the above program on the command line would give an out-
put similar to this:

$./thread_celsius 4

110.000000 F is 43.333333 C (pid 57179)
120.000000 F is 48.888889 C (pid 57180)
Spawned 4 processes from 57178
130.000000 F is 54.444444 C (pid 57181)
140.000000 F is 60.000000 C (pid 57182)

The parent process (57178) spawned four processes. For each child
process, the program continues at the line child = fork(), where the
resulting value of child is 0. It then completes the calculation, prints
the value, and exits the process. Finally, the parent process outputs
how many processes it spawned and its own PID.

The time it took for the third and fourth child processes to complete
was longer than it took for the parent process to complete. This is why

227

Multiprocess Parallelism

the parent process prints the final output before the third and fourth
print their own.

A parent process can exit with its own exit code before a child process.
Child processes are added to a process group by the operating system,
making it easier to control all related processes:

Process Group

Process

Stack

Heap Instructions I Files

Process Memory I CPython Runtime I
, ,
m Python ObjectsI m Compiled Modules I
Sockets

I I
| |
| |
| |
| |
I I
| |
| |
I I
| |
| |
| A |
| |
I I
| |
| |
I I
| |
| |
| |
| |
I I

Process
Stack | Parent Process
Heap Instructions I Files

Process Memory I CPython Runtime I
,

m Python Objects I m Compiled Modules I

Sockets

The biggest downside to this approach to parallelism is that the child
process is a complete copy of the parent process.

In the case of CPython, this means you would have two CPython inter-
preters running, and both would have to load the modules and all the

228

Multiprocess Parallelism

libraries. This creates significant overhead. Using multiple processes
makes sense when the overhead of forking a process is outweighed by
the size of the task being completed.

Another major downside of forked processes is that they have a sepa-
rate, isolated heap from the parent process. This means that the child
process cannot write to the memory space of the parent process.

When the child process is created, the parent’s heap becomes available
to the child process. To send information back to the parent, some
form of interprocess communication (IPC) must be used.

The os module offers a wrapper around fork().

Multiprocessing in Windows

So far, you've been learning about the POSIX model. Windows
doesn’t provide an equivalent to fork(), and Python should (as best
as possible) have the same API across Linux, macOS, and Windows.

To overcome this, the CreateProcessw() API is used to spawn another
python.exe process with a -c command-line argument. This step is
known as spawning a process and is also available on POSIX. You’ll
see references to it throughout this chapter.

The multiprocessing Package

CPython provides an API on top of the operating system process-
forking API that makes it straightforward to create multiprocess
parallelism in Python.

This API is available from the multiprocessing package, which provides
expansive capabilities for pooling processes, queues, forking, creating
shared memory heaps, connecting processes together, and more.

229

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessw

Multiprocess Parallelism

Related Source Files

Here are the source files related to multiprocessing:

File Purpose

Lib» multiprocessing Python source for the multiprocessing
package

Modules» _posixsubprocess.c C extension module wrapping the POSIX
fork () syscall

Modules » _winapi.c C extension module wrapping the Windows
kernel APIs

Modules» _multiprocessing C extension module used by the
multiprocessing package

PC» msvertmodule. ¢ A Python interface to the Microsoft Visual C

runtime library

Spawning and Forking Processes

The multiprocessing package offers three methods to start a new paral-
lel process:

1. Forking an interpreter (POSIX only)

2. Spawning a new interpreter process (POSIX and Windows)

3. Running a fork server in which a new process is created that then
forks any number of processes (POSIX only)

For Windows and macOS, the default start method is spawning.
For Linux, the default is forking. You can override the default
method using multiprocessing.set_start_method().

The Python API for starting a new process takes a callable, target, and
a tuple of arguments, args.

Take this example of spawning a new process to convert Fahrenheit
to Celsius:

230

Multiprocess Parallelism

cpython-book-samples? 33 » spawn_process_celsius.py

import multiprocessing as mp

import os

def to_celsius(f):
c=(f -32) * (5/9)
pid = os.getpid()
print(£f"{f}F is {c}C (pid {pid})")

if __name__ == '__main__':

mp.set_start_method('spawn')

p = mp.Process(target=to_celsius, args=(110,))

p.start()

While you can start a single process, the multiprocessing API assumes
you want to start multiple. There are convenience methods for spawn-
ing multiple processes and feeding them sets of data. One of those

methods is the Pool class.

The previous example can be expanded to calculate a range of values

in separate Python interpreters:

cpython-book-samples» 33 » pool_process_celsius.py

import multiprocessing as mp

import os

def to_celsius(f):
c = (f-32) % (5/9)
pid = os.getpid()
print(£f"{f}F is {c}C (pid {pid})")
if __name__ == '__main__':
mp.set_start_method('spawn')

with mp.Pool(4) as pool:

pool.map(to_celsius, range(110, 150, 10))

231

Multiprocess Parallelism

Note that the output shows the same PID. Because the CPython inter-
preter process has a significant overhead, the Poo1 will consider each
process in the pool a worker. If a worker has completed, it will be
reused.

You can change that setting by replacing this line:
with mp.Pool(4) as pool:
Replace it with the following code:

with mp.Pool(4, maxtasksperchild=1) as pool:

Now the previous multiprocessing example will print something sim-
ilar to this:

$ python pool_process_celsius.py

110F is 43.333333333333336C (pid 5654)
120F is 48.88888888888889C (pid 5653)
130F is 54.44444444444445C (pid 5652)
140F is 60.0C (pid 5655)

The output shows the process IDs of the newly spawned processes and
the calculated values.
Creation of Child Processes

Both of these scripts will create a new Python interpreter process and
pass data to it using pickle.

See Also

The pickle module is a serialization package used for serializing
Python objects. For more info, check out Real Python’s “The
Python pickle Module: How to Persist Objects in Python.”

For POSIX systems, the creation of the subprocess by the multipro-
cessing module is equivalent to this command, where <i> is the file
handle descriptor, and <j> is the pipe handle descriptor:

232

https://realpython.com/python-pickle-module/
https://realpython.com/python-pickle-module/

Multiprocess Parallelism

$ python -c 'from multiprocessing.spawn import spawn_main; \

spawn_main(tracker_fd=<i>, pipe_handle=<j>)' --multiprocessing-fork

For Windows systems, the parent PID is used instead of a tracker file
descriptor as in this command, where<k> is the parent PID and <j> is
the pipe handle descriptor:

> python.exe -c 'from multiprocessing.spawn import spawn_main; \

spawn_main(parent_pid=<k>, pipe_handle=<j>)' --multiprocessing-fork

Piping Data to the Child Process

When the new child process has been instantiated on the operating
system, it will wait for initialization data from the parent process.

The parent process writes two objects to a pipe file stream. The pipe
file stream is a special I/O stream used to send data between processes
on the command line.

The first object written by the parent process is the preparation
data object. This object is a dictionary containing some information
about the parent, such as the executing directory, the start method,
any special command-line arguments, and the sys.path.

You can see an example of what is generated by running

multiprocessing.spawn.get_preparation_data(name):

>>> import multiprocessing.spawn
>>> import pprint
>>> pprint.pprint(multiprocessing.spawn.get_preparation_data("example™))
{'authkey': b'\x90\xaa_\x22[\x18\ri\xbcag]\x93\xfe\xf5\xe5@[wI\x99p#\x00"
b'\xce\xd4)1j.\xc3c"',
'dir': '/Users/anthonyshaw',
'log_to_stderr': False,
'name': 'example',
'orig_dir': '/Users/anthonyshaw',
'start_method': 'spawn',

'sys_argv': [''],

233

Multiprocess Parallelism

'sys_path': [
' /Users/anthonyshaw',

13

The second object written is the BaseProcess child class instance. De-
pending on how multiprocessing was called and which operating sys-
tem is being used, one of the child classes of BaseProcess will be the
instance serialized.

Both the preparation data and process object are serialized using the
pickle module and written to the parent process’s pipe stream:

Parent Process

Preparation Data

Process Object

Worker Pool

LE

write() e ;

} Worker 0 1

010101010100011100 | o |

! (Waiting) !

Pipe ! :
Worker 1

(Not Created)

,,,,,,,,,,,,,,,,,,,,,,,,

The POSIX implementation of the child process spawning
and serialization process is located in Lib » multiprocessing »

popen_spawn_posix.py.

The Windows implementation is located in Lib» multiprocessing

» popen_spawn_win32.py.

234

Multiprocess Parallelism

Executing the Child Process

The entry point of the child process, multiprocessing.spawn.spawn_main(),
takes the argument pipe_handle and either parent_pid for Windows or
tracked_fd for POSIX:

def spawn_main(pipe_handle, parent_pid=None, tracker_fd=None):

rrr

Run code specified by data received over pipe

rrr

assert is_forking(sys.argv), "Not forking"

For Windows, the function will call the parent PID’s openProcess API.
This is used to create a file handle, fd, of the parent process pipe:

if sys.platform == 'win32':
import msvcrt

import _winapi

if parent_pid is not None:
source_process = _winapi.OpenProcess(
_winapi.SYNCHRONIZE | _winapi.PROCESS_DUP_HANDLE,
False, parent_pid)
else:
source_process = None
new_handle = reduction.duplicate(pipe_handle,
source_process=source_process)
fd = msvcrt.open_osfhandle(new_handle, os.0O_RDONLY)

parent_sentinel = source_process

For POSIX, the pipe_handle becomes the file descriptor, fd, and is du-
plicated to become the parent_sentinel value:

else:
from . import resource_tracker
resource_tracker._resource_tracker._fd = tracker_fd
fd = pipe_handle

parent_sentinel = os.dup(pipe_handle)

Next, _main() is called with the parent pipe file handle, fd, and the par-

235

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocess

Multiprocess Parallelism

ent process sentinel, parent_sentinel. The return value of _main() be-
comes the exit code for the process and the interpreter is terminated:

exitcode = _main(fd, parent_sentinel)

sys.exit(exitcode)

_main() is called with fd and parent_sentinel to check if the parent pro-
cess has exited while executing the child process.

_main() deserializes the binary data on the fd byte stream. Remember,
this is the pipe file handle. The deserialization uses the same pickle
library that the parent process used:

Parent Process
(Waiting)

Pipe | 010101010100011100

;

Worker Pool

pickle Preparation Data Worker @ i
Process Object (Initializing) 3
[i

Worker 1

(Not Created)

The first value is a dict containing the preparation data. The second
value is an instance of SpawnProcess, which is then used as the instance
to call _bootstrap() upon:

def _main(fd, parent_sentinel):
with os.fdopen(fd, 'rb', closefd=True) as from_parent:
process.current_process()._inheriting = True

try:

236

Multiprocess Parallelism

preparation_data = reduction.pickle.load(from_parent)
prepare(preparation_data)
self = reduction.pickle.load(from_parent)
finally:
del process.current_process()._inheriting

return self._bootstrap(parent_sentinel)

_bootstrap() handles the instantiation of a BaseProcess instance from
the deserialized data, and then the target function is called with the
arguments and keyword arguments. This final task is completed by

BaseProcess.run():

def run(self):

rrr

Method to be run in subprocess; can be overridden in subclass

rrr

if self._target:

self._target(*self._args, **self._kwargs)

The exit code of self._bootstrap() is set as the exit code, and the child
process is terminated.

This process allows the parent process to serialize the module and the
executable function. It also allows the child process to deserialize that
instance, execute the function with arguments, and return.

It does not allow data to be exchanged once the child process has
started. This task is done using the extension of the Queue and pipe
objects.

If processes are being created in a pool, then the first process will be
ready and in a waiting state. The parent process repeats the process
and sends the data to the next worker:

237

Multiprocess Parallelism

Parent Process

Preparation Data

Process Object

Worker Pool

B

T |
} Worker O |
010101010100011100 | |
! (Ready) !
Pipe ! !

| Worker 1
! (Waiting) |

The next worker receives the data and initializes its state and runs the
target function:

Parent Process
(Waiting)

Worker Pool

Worker 0

(Ready)

Pipe | 010101010100011100 |
|

pickle Preparation Data Worker 1
Process Object (Initializing)

To share any data beyond initialization, queues and pipes must be
used.

238

Multiprocess Parallelism

Exchanging Data with Queues and Pipes

In the previous section you saw how child processes are spawned and
then the pipe is used as a serialization stream to tell the child process
what function to call with arguments.

There are two types of communication between processes, depending
on the nature of the task: queues and pipes. Before learning about
each, you’ll take a quick look at how operating systems protect access
to resources using variables called semaphores.

Semaphores

Many of the mechanisms in multiprocessing use semaphores as a way
of signaling that resources are locked, are being waited on, or are not
used. Operating systems use binary semaphores as a simple variable
type for locking resources like files, sockets, and others.

If one process is writing to a file or to a network socket, then you don’t
want another process to suddenly start writing to the same file. The
data would instantly become corrupt.

Instead, operating systems put a lock on resources by using a
semaphore. Processes can also signal that they’re waiting for that
lock to be released so that when it is, they get a message to say it’s
ready and that they can start using it.

In the real world, semaphores are a signaling method that uses flags
to transmit messages. So, you can imagine that the semaphore signals
for a resource’s waiting, locked, and not-used states look like this:

239

Multiprocess Parallelism

O @

waiting locked

The semaphore API differs between operating systems, so there’s an
abstraction class, multiprocessing.synchronize.Semaphore.

Semaphores are used by CPython for multiprocessing because they’re
both thread-safe and process-safe. The operating system handles any
potential deadlocks of reading or writing to the same semaphore.

The implementation of these semaphore API functions is located in a
C extension module Modules» _multiprocessing» semaphore.c. This exten-
sion module offers a single method for creating, locking, and releasing
semaphores along with other operations.

The call to the operating system is made through a series of macros,
which are compiled into different implementations depending on the
operating system platform.

For Windows, the macros use the <winbase.h> API functions for
semaphores:

#define SEM_CREATE(name, val, max) CreateSemaphore(NULL, val, max, NULL)
#define SEM_CLOSE(sem) (CloseHandle(sem) ? 0 : -1)

#define SEM_GETVALUE(sem, pval) _GetSemaphoreValue(sem, pval)

#define SEM_UNLINK(name) 0

240

https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createsemaphorea
https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createsemaphorea

Multiprocess Parallelism

For POSIX, the macros use the <semaphore.h> API:

#define SEM_CREATE(name, val, max) sem_open(name, O_CREAT | O_EXCL, 0600,...
#define SEM_CLOSE(sem) sem_close(sem)

#define SEM_GETVALUE(sem, pval) sem_getvalue(sem, pval)

#define SEM_UNLINK(name) sem_unlink(name)

Queues

Queues are a great way of sending small data to and from multiple
processes.

You can adapt the multiprocessing example from earlier to use a mul-
tiprocessing Manager() instance and create two queues:

1. inputs to hold the Fahrenheit input values

2. outputs to hold the resulting Celsius values
Change the pool size to 2 so that there are two workers:
cpython-book-samples? 33» pool_queue_celsius.py

import multiprocessing as mp

def to_celsius(input: mp.Queue, output: mp.Queue):
f = input.get()
Time-consuming task ...
c = (f -32) % (5/9)
output.put(c)
if __name__ == '__main__':
mp.set_start_method('spawn')
pool_manager = mp.Manager()
with mp.Pool(2) as pool:
inputs = pool_manager.Queue()
outputs = pool_manager.Queue()
input_values = list(range(110, 150, 10))
for i in input_values:

inputs.put(i)

241

http://man7.org/linux/man-pages/man3/sem_open.3.html

Multiprocess Parallelism

pool.apply(to_celsius, (inputs, outputs))

for f in input_values:

print(outputs.get(block=False))

This prints the returned list of tuples to the outputs queue:

$ python pool_queue_celsius.py
43.333333333333336
48.88883888888889
54.44444444444445

60.0

The parent process first puts the input values onto the inputs queue.
The first worker then takes an item from the queue. Each time an
item is taken from the queue using .get(), a semaphore lock is used
on the queue object:

Worker Pool

Input Queue getQ !

Parent Process Slolle Worker @ !
110, 120, 130, 140 cllelle]] =, 1
(ue, ’ ’ 1 Output Queue ‘ 3
Worker 1 3

While this worker is busy, the second worker then takes another value
from the queue:

Worker Pool

Input Queue

Parent Process ol getO Worker @
110, 120, 130, 140 = . (Busy)
(1o, ’ ’ 1 Output Queue

S

Worker 1

242

Multiprocess Parallelism

The first worker has completed its calculation and puts the resulting
value onto the outputs queue:

Worker Pool

Input Queue 1
Parent Process pth Worker @ !
S S

[110, 120, 130, 140]

Output Queue

€ETEY

Worker 1
N (Busy)

Two queues are in use to separate the input and output values. Even-
tually, all input values have been processed, and the outputs queue is
full. The values are then printed by the parent process:

Worker Pool

Input Queue
Parent Process | Worker @ }

[110, 120, 130, 140]

Output Queue 3
HERRE 1
RIS | Worker 1

This example shows how a pool of workers could receive a queue of
small, discrete values and process them in parallel to send the result-
ing data back to the host process.

In practice, converting Celsius to Fahrenheit is a small, trivial calcula-
tion unsuited for parallel execution. If the worker process were doing
a different, CPU-intensive calculation, then this would provide signif-
icant performance improvement on a multi-CPU or multicore com-
puter.

For streaming data instead of discrete queues, you can use pipes in-
stead.

243

Multiprocess Parallelism

Pipes

Within the multiprocessing package, there is a type pipe. Instantiating
a pipe returns two connections, a parent and a child. Both can send
and receive data:

Worker Pool

Parent Pi pe

Parent Process §§23£2J0w1m9m1w0n1w — wggts;)o
[110, 120, 130, 140]

Child Pipe

I%%"E—)‘ 100101111001116011 ‘ Worker 1
(Busy)

In the queue example, a lock is implicitly placed on the queue when
data is sent and received. Pipes don’t have that behavior, so you have
to be careful that two processes don’t try to write to the same pipe at
the same time.

To adapt the last example to work with a pipe, it will require changing
pool.apply() to pool.apply_async(). This changes the execution of the
next process to a non-blocking operation:

cpython-book-samples» 33» pool_pipe_celsius.py

import multiprocessing as mp

def to_celsius(child_pipe: mp.Pipe):
f = child_pipe.recv()
time-consuming task ...
c=(f-32) * (5/9
child_pipe.send(c)

1 U g

if __name__ == '__main__
mp.set_start_method('spawn')

pool_manager = mp.Manager()

244

Multiprocess Parallelism

with mp.Pool(2) as pool:

parent_pipe, child_pipe = mp.Pipe()

results = []

for input in range(110, 150, 10):
parent_pipe.send(input)
results.append(pool.apply_async(to_celsius, args=(child_pipe,)))
print("Got {0:}".format(parent_pipe.recv()))

parent_pipe.close()

child_pipe.close()

There’s a risk of two or more processes trying to read from the parent
pipe at the same time in this line:

f = child_pipe.recv()

There’s also a risk of two or more processes trying to write to the child
pipe at the same time:

child_pipe.send(c)

If this situation occurred, then data would be corrupted in either the
receive or send operations:

Worker Pool

Parent Pipe |

Efﬂﬂﬂ;ﬂ Worker @

(Busy)

Parent Process [sendQ
[110, 120, 130, 140]

010101010100011100

Child Pipe

IE:“_‘%/'E—)‘ 10@1@1111@11& Worker 1
(Busy)

To avoid this, you can implement a semaphore lock on the operating
system. Then all child processes will check with the lock before read-
ing or writing to the same pipe.

There are two locks required, one on the receiving end of the parent
pipe and another on the sending end of the child pipe:

245

Multiprocess Parallelism

cpython-book-samples? 33» pool_pipe_locks_celsius.py

import multiprocessing as mp

def to_celsius(child_pipe: mp.Pipe, child_lock: mp.Lock):
child_lock.acquire(blocking=False)
try:
f = child_pipe.recv()
finally:
child_lock.release()
time-consuming task ... release lock before processing
c=(f-32) * (5/9
reacquire lock when done
child_lock.acquire(blocking=False)
try:
child_pipe.send(c)
finally:
child_lock.release()
if __name__ == '__main__':
mp.set_start_method('spawn')
pool_manager = mp.Manager()
with mp.Pool(2) as pool:
parent_pipe, child_pipe = mp.Pipe()
child_lock = pool_manager.Lock()
results = []
for i in range(110, 150, 10):
parent_pipe.send(i)
results.append(pool.apply_async(
to_celsius, args=(child_pipe, child_lock)))
print(parent_pipe.recv())
parent_pipe.close()

child_pipe.close()

Now the worker processes will wait to acquire a lock before receiving
data and wait again to acquire another lock to send data:

246

Multiprocess Parallelism

Worker Pool

Worker @

(Waiting)

Parent Pipe

Parent Process

[110, 120, 130, 140]

010101010100011100

Child Pipe

IEi‘C:v'E—)‘ 100101111001110011) WOI"ker‘ l
a8 Gusy)

This example would suit situations where the data going over the pipe
is large because the chance of a collision is higher.

Shared State Between Processes

So far, you've seen how data can be shared between child and parent
processes.

There may be scenarios in which you want to share data between child
processes. In this situation, the multiprocessing package provides two
solutions:

1. Aperformant shared memory API using shared memory maps and
shared C types

2. Aflexible server process API supporting complex types via the Man-
ager class

Example Application

As a demonstration application, throughout the rest of this chapter,
you’ll be refactoring a TCP port scanner for different concurrency and
parallelism techniques.

Over a network, a host can be contacted on ports, which are numbered
from 1 through 65535. Common services have standard ports. For
example, HTTP operates on port 80 and HTTPS operates on 443. TCP
port scanners are a common network testing tool for checking that
packets can be sent over a network.

247

https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing.sharedctypes
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.managers.SyncManager

Multiprocess Parallelism

This code example uses the queue interface, a thread-safe queue im-
plementation similar to the one you used in the multiprocessing ex-
amples. The code also uses the socket package to try connecting to a
remote port with a short one-second timeout.

check_port () will see if the host responds on the given port. If it does,
then check_port () will add the port number to the results queue.

When the script is executed, check_port () is called in sequence for port
numbers 80 to 100. After this has completed, the results queue is
emptied out, and the results are printed on the command line. So you
can compare the difference, it will print the execution time at the end:

cpython-book-samples» 33 » portscanner.py

from queue import Queue
import socket
import time

timeout = 1.0

def check_port(host: str, port: int, results: Queue):
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.settimeout (timeout)
result = sock.connect_ex((host, port))
if result ==
results.put(port)
sock.close()
if __name__ == '__main__':
start = time.time()
host = "localhost" # Replace with a host you own
results = Queue()
for port in range(80, 100):
check_port(host, port, results)
while not results.empty():
print("Port {0} is open".format(results.get()))

print("Completed scan in {0} seconds".format(time.time() - start))

248

Multiprocess Parallelism

The execution will print out the open ports and the time taken:

$ python portscanner.py
Port 80 is open

Completed scan in 19.623435020446777 seconds

You can refactor this example to use multiprocessing. Swap the Queue
interface for multiprocessing.qQueue and scan the ports together using a
pool executor:

cpython-book-samples» 33 » portscanner_mp_queue.py

import multiprocessing as mp
import time

import socket
timeout = 1

def check_port(host: str, port: int, results: mp.Queue):
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.settimeout (timeout)
result = sock.connect_ex((host, port))
if result ==
results.put(port)

sock.close()

U '

if __name__ == '_main__':
start = time.time()
processes = []
scan_range = range(80, 100)
host = "localhost" # Replace with a host you own
mp.set_start_method('spawn')
pool_manager = mp.Manager ()
with mp.Pool(len(scan_range)) as pool:

outputs = pool_manager.Queue()

for port in scan_range:

processes.append(pool.apply_async(check_port,
(host, port, outputs)))

for process in processes:

249

Multithreading

process.get()
while not outputs.empty():
print("Port {0} is open".format(outputs.get()))

print("Completed scan in {0} seconds".format(time.time() - start))

As you might expect, this application is much faster because it tests
each port in parallel:

$ python portscanner_mp_queue.py
Port 80 is open

Completed scan in 1.556523084640503 seconds

Multiprocessing Summary

Multiprocessing offers a scalable parallel execution API for Python.
Data can be shared between processes, and CPU-intensive work can
be broken into parallel tasks to take advantage of multicore or multi-
CPU computers.

Multiprocessing isn’t a suitable solution when the task to be com-
pleted is I/O bound rather than CPU intensive. For example, if you
spawned four worker processes to read and write to the same files,
then one would do all the work, and the other three would wait for
the lock to be released.

Multiprocessing also isn’t suitable for short-lived tasks because of the
time and processing overhead required to start a new Python inter-
preter.

In both of those scenarios, you main find one of the next approaches
more suitable.

Multithreading

CPython provides both a high-level and a low-level API for creating,
spawning, and controlling threads from Python.

To understand Python threads, you should first understand how oper-

250

Multithreading

ating system threads work. There are two implementations of thread-
ing in CPython:

1. pthreads: POSIX threads for Linux and macOS
2. nt threads: NT threads for Windows
In the section “The Structure of a Process,” you saw that a process has
the following features:

+ A stack of subroutines

+ A heap of memory

« Access to files, locks, and sockets on the operating system

The biggest limitation to scaling a single process is that the operating
system will have a single program counter for that executable.

To get around this, modern operating systems allow processes to
signal the operating system to branch their execution into multiple
threads.

Each thread will have its own program counter but use the same re-
sources as the host process. Each thread also has its own call stack, so
it can be executing a different function.

Because multiple threads can read and write to the same memory
space, collisions can occur. The solution to this is thread safety,
which involves making sure that memory space is locked by a single
thread before it’s accessed.

A single process with three threads would have this structure:

251

Multithreading

Process

Stack

Heap

Process Memory

Instructions

|

Files ‘

| CPython Runtime |

Python Objects

m Compiled Modules |

Sockets

r—— - - - - = Qarr - - - - = - = ar - - - - - - = i
| Thread @ I Thread 1 1 Thread 2 |
| [11 |
|| Stack |||| Stack |||| Stack h
| [[|
I| Program Counter |I I| Program Counter |I I| Program Counter |I
| [11 |
L - - - — — = = 4 L e e e e - = = 4 L - - - - = = = -

See Also

For an introductory tutorial on the Python threading API, check
out Real Python’s “Intro to Python Threading.”

The GIL

If you're familiar with NT threads or POSIX threads from C, or if
you've used another high-level language, then you may expect mul-
tithreading to be parallel.

In CPython, the threads are based on the C APIs but are Python
threads. This means that every Python thread needs to execute
Python bytecode through the evaluation loop.

The Python evaluation loop is not thread-safe. There are many parts
of the interpreter state, such as the garbage collector, that are shared
and global. To get around this, the CPython developers implemented

252

https://realpython.com/intro-to-python-threading/

Multithreading

a mega-lock called the global interpreter lock (GIL). Before any
opcode is executed in the frame-evaluation loop, the GIL is acquired
by the thread. Once the opcode has been executed, the GIL is released.

Although it provides global thread safety to every operation in Python,
this approach has a major drawback. Any operations that take a long
time to execute will leave other threads waiting for the GIL to be re-
leased before they can execute. This means that only one thread can
execute a Python bytecode operation at any given time.

To acquire the GIL, a call is made to take_gi1(). To release it, a call is
made to drop_gil(). The GIL acquisition is made within the core frame
evaluation loop, _PyEval_EvalFrameDefault().

To stop a single frame execution from permanently holding the GIL,
the evaluation loop state stores a flag, gil_drop_request. After every
bytecode operation has completed in a frame, this flag is checked, and
the GIL is temporarily released before being reacquired:

if (_Py_atomic_load_relaxed(&ceval->gil_drop_request)) {
/* Give another thread a chance */
if (_PyThreadState_Swap(&runtime->gilstate, NULL) != tstate) {
Py_FatalError("ceval: tstate mix-up");

}
drop_gil(ceval, tstate);
/* Other threads may run now */

take_gil(ceval, tstate);

/* Check if we should make a quick exit. */

exit_thread_if_finalizing(tstate);

if (_PyThreadState_Swap(&runtime->gilstate, tstate) != NULL) {

Py_FatalError('ceval: orphan tstate");

253

https://github.com/python/cpython/blob/v3.9.0/Python/ceval_gil.h#L211
https://github.com/python/cpython/blob/v3.9.0/Python/ceval_gil.h#L144

Multithreading

Despite the limitations that the GIL enforces on parallel execution, it
makes multithreading in Python very safe and ideal for running I/0-
bound tasks concurrently.

Related Source Files

Here are the source files related to threading:

File Purpose

Include pythread.h PyThread API and definition

Lib» threading.py High-level threading API and standard
library module

Modules » _threadmodule. c Low-level threading API and standard
library module

Python)» thread.c C extension for the thread module

Python» thread_nt.h Windows threading API

Python» thread_pthread.h POSIX threading API

Python? ceval_gil.h GIL lock implementation

Starting Threads in Python

To demonstrate the performance gains of having multithreaded code
(in spite of the GIL), you can implement a simple network port scan-
ner in Python.

You'll start by cloning the previous script but changing the logic to
spawn a thread for each port using threading.Thread(). This is similar
to the multiprocessing API, where it takes a callable, target, and a tuple,

args.

Start the threads inside the loop, but don’t wait for them to complete.
Instead, append the thread instance to a list, threads:

for port in range(80, 100):
t = Thread(target=check_port, args=(host, port, results))
t.start()
threads.append(t)

254

Multithreading

Once all threads have been created, iterate through the threads list and
call .join() to wait for them to complete:

for t in threads:

t.join()

Next, exhaust all the items in the results queue and print them to the
screen:

while not results.empty():
print("Port {0} is open".format(results.get()))

Here’s the entire script:

cpython-book-samples» 33 » portscanner_threads.py

from threading import Thread
from queue import Queue
import socket

import time
timeout = 1.0

def check_port(host: str, port: int, results: Queue):
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.settimeout (timeout)
result = sock.connect_ex((host, port))
if result ==
results.put(port)

sock.close()

def main():

start = time.time()

host = "localhost" # Replace with a host you own

threads = []

results = Queue()

for port in range(80, 100):
t = Thread(target=check_port, args=(host, port, results))
t.start()

255

Multithreading

threads.append(t)
for t in threads:
t.join()
while not results.empty():
print("Port {0} is open".format(results.get()))

print("Completed scan in {0} seconds".format(time.time() - start))

if __name__ == '__main_

main()

When you call this threaded script at the command line, it will execute
more than ten times as fast as the single-threaded example:

$ python portscanner_threads.py
Port 80 is open

Completed scan in 1.0101029872894287 seconds

This also runs 50 to 60 percent faster than the multiprocessing ex-
ample. Remember that multiprocessing has an overhead for starting
the new processes. Threading does have an overhead, but it’s much
smaller.

You may be wondering, If the GIL means that only a single operation
can execute at once, then why is this faster?

Here’s the statement that takes 1—1000 ms:

result = sock.connect_ex((host, port))

In the C extension module, Modules » socketmodule.c, this function im-
plements the connection:

Modules » socketmodule.c line 3245

static int
internal_connect(PySocketSockObject *s, struct sockaddr *addr, int addrlen,

int raise)

int res, err, wait_connect;

256

Multithreading

Py_BEGIN_ALLOW_THREADS
res = connect(s->sock_fd, addr, addrlen);

Py_END_ALLOW_THREADS

Surrounding the system connect() call are the Py_BEGIN_ALLOW_THREADS
and Py_END_ALLOW_THREADS macros. These macros are defined as follows
1n Include» ceval.h:

#define Py_BEGIN_ALLOW_THREADS { \
PyThreadState *_save; \
_save = PyEval_SaveThread();

#define Py_BLOCK_THREADS PyEval_RestoreThread(_save);

#define Py_UNBLOCK_THREADS _save = PyEval_SaveThread();

#define Py_END_ALLOW_THREADS PyEval_RestoreThread(_save); \
}

So, when Py_BEGIN_ALLOW_THREADS is called, it calls PyEval_SaveThread().
This function changes the thread state to NnuLL and drops the GIL:

Python» ceval.c line 444

PyThreadState *
PyEval_SaveThread(void)
{
PyThreadState *tstate = PyThreadState_Swap(NULL);
if (tstate == NULL)
Py_FatalError("PyEval_SaveThread: NULL tstate");
assert(gil_created());
drop_gil(tstate);

return tstate;

Because the GIL is dropped, any other executing thread can continue.
This thread will sit and wait for the system call without blocking the
evaluation loop.

Once connect() has succeeded or timed out, the Py_END_ALLOW_THREADS
macro runs PyEval_RestoreThread() with the original thread state. The
thread state is recovered and the GIL is retaken. The call to take_gil()

257

https://github.com/python/cpython/blob/v3.9.0/Python/ceval.c#L444
https://github.com/python/cpython/blob/v3.9.0/Python/ceval.c#L458

Multithreading

is a blocking call, waiting on a semaphore:

Python» ceval.c line 458

void

PyEval_RestoreThread(PyThreadState *tstate)

{

if (tstate == NULL)
Py_FatalError("PyEval_RestoreThread: NULL tstate");

assert(gil_created());

int err = errno;

take_gil(tstate);

/* _Py_Finalizing is protected by the GIL */

if (_Py_IsFinalizing() && !_Py_CURRENTLY_FINALIZING(tstate)) {
drop_gil(tstate);
PyThread_exit_thread();
Py_UNREACHABLE() ;

3

errno = err;

PyThreadState_Swap(tstate);

This isn’t the only system call wrapped by the non-GIL-blocking pair
Py_BEGIN_ALLOW_THREADS and Py_END_ALLOW_THREADS. There are over three
hundred uses of it in the standard library, including:

Making HTTP requests
Interacting with local hardware
Encrypting data

Reading and writing files

258

Multithreading

Thread State

CPython provides its own implementation of thread management. Be-
cause threads need to execute Python bytecode in the evaluation loop,
running a thread in CPython isn’t as simple as spawning an operating
system thread.

Python threads are called pyThread. You covered them briefly in the
“CPython Evaluation Loop” chapter.

Python threads execute code objects and are spawned by the inter-
preter.

To recap:

+ CPython has a single runtime, which has its own runtime state.
« CPython can have one or many interpreters.
 An interpreter has a state called the interpreter state.

 An interpreter will take a code object and convert it into a series
of frame objects.

« An interpreter has at least one thread, and each thread has a
thread state.

« Frame objects are executed in a stack called the frame stack.
+ CPython references variables in a value stack.

« The interpreter state includes a linked list of its threads.

A single-threaded, single-interpreter runtime would have the follow-
ing states:

259

Multithreading

Runtime Runtime State
H Core H - —
Interpreter |Instructions|
‘ Interpreter State ‘ Heap

‘ GIL ‘ Modules Sockets

r%h?éaa_Q_ZPFde?yjj

Stack

Program Counte

S

Boot
State

o

Frame
Exceptions
Current
Next Thread
Previous

o
<
=
>
3
o
H| Q
Q.
wv
t
Q
t
[¢]

The thread state type, PyThreadstate, has over thirty properties, includ-
ing:

A unique identifier

A linked list to the other thread states

The interpreter state it was spawned by

The currently executing frame

The current recursion depth

Optional tracing functions

The exception currently being handled

Any async exception currently being handled

A stack of exceptions raised

260

Multithreading

o A GIL counter

« Async generator counters

Like the multiprocessing preparation data, threads have a boot
state. However, threads share the same memory space, so there’s no
need to serialize data and send it over a file stream.

Threads are instantiated with the threading.Thread type. This is a high-
level module that abstracts the PyThread type. PyThread instances are
managed by the C extension module _thread.

The _thread module has the entry point for executing a new thread,
thread_PyThread_start_new_thread(). start_new_thread() is a method on
an instance of the type Thread.

New threads are instantiated in this sequence:

1. The bootstate is created, linking to the target, with arguments args
and kwargs.

L

The bootstate is linked to the interpreter state.
A new PyThreadState is created, linking to the current interpreter.

The GILis enabled, if not already, with a call to PyEval_InitThreads().

AR Sl

The new thread is started on the operating system—specific imple-
mentation of PyThread_start_new_thread

261

https://github.com/python/cpython/blob/v3.9.0/Modules/_threadmodule.c#L1063
https://github.com/python/cpython/blob/v3.9.0/Python/ceval.c#L310

Multithreading

Runtime Runtime State ‘
Core H . [

Interpreter Instructions,

‘ Interpreter State ‘ Heap

| GIL | Modules ||| Sockets
rThread_0_(Pr;ma_r'y)—I ™ Thread 1 (Tnit_) 1
! Stack ' Staek]!
[Program Counter]		[Program Counter]				
	PyThread State		Boot		PyThread State	
— state						
Next Thread	F>»[Next Thread					
Previous } } Previous						
1 1
L — — — — — g L — — — — — a

The thread bootstate has the following properties:

Field Type Purpose

interp PyInterpreterState* Link to the interpreter managing this thread

func PyObject * Link to the callable to execute upon running
(callable) the thread

args PyObject * (tuple) Arguments to call func with

keyw PyObject * (dict) Keyword arguments to call func with

tstate PyThreadState * Thread state for the new thread

With the thread bootstate, there are two implementations of pyThread:

1. POSIX threads for Linux and macOS
2. NT threads for Windows

262

Multithreading

Both of these implementations create the operating system thread, set
its attribute, and then execute the callback t_bootstrap() from within
the new thread.

This function is called with the single argument boot_raw, assigned to
the bootstate constructed in thread_PyThread_start_new_thread().

The t_bootstrap() function is the interface between a low-level thread
and the Python runtime. The bootstrap will initialize the thread, then
execute the target callable using pyobject_call1().

Once the callable target has been executed, the thread will exit:

Inside Thread

|
0S Specific .
‘ PyThread HThreapd Star‘tH t_bootstrap HPyObJect_CallH target |

POSIX Threads

POSIX threads, named pthreads, have an implementation in Python »
thread_pthread.h. This implementation abstracts the <pthread.h> C API
with some additional safeguards and optimizations.

Threads can have a configured stack size. Python has its own stack
frame construct, as you explored in the chapter on the evaluation loop.
If there’s an issue causing a recursive loop, and the frame execution
hits the depth limit, then Python will raise a RecursionError, which you
can handle with a try. . .except block in Python code.

Because pthreads have their own stack size, the max depth of Python
and the stack size of the pthread might conflict. If the thread stack size
is smaller than the max frame depth in Python, then the entire Python
process will crash before a RecursionError is raised.

The max depth in Python can be configured at runtime using
sys.setrecursionlimit(). To avoid crashes, the CPythOl’l pthread imple—

263

https://github.com/python/cpython/blob/v3.9.0/Modules/_threadmodule.c#L1029
https://github.com/python/cpython/blob/v3.9.0/Modules/_threadmodule.c#L1063
https://github.com/python/cpython/blob/v3.9.0/Modules/_threadmodule.c#L1029
https://github.com/python/cpython/blob/v3.9.0/Objects/call.c#L289
https://docs.python.org/3/library/sys.html#sys.setrecursionlimit

Multithreading

mentation sets the stack size to the pythread_stacksize value of the
interpreter state.

Most modern POSIX-compliant operating systems support system
scheduling of pthreads. If PTHREAD_SYSTEM_SCHED_SUPPORTED is defined
in pyconfig.h, then the pthread is set to PTHREAD_SCOPE_SYSTEM, meaning
that the priority of the thread on the operating system scheduler is
decided against the other threads on the system, not just the ones
within the Python process.

Once the thread properties have been configured, the thread is created
using the pthread_create() API. This runs the bootstrap function from
inside the new thread.

Lastly, the thread handle, pthread_t, is cast into an unsigned long and
returned to become the thread ID.

Windows Threads

Windows threads implemented in Python» thread_nt.h follow a similar
but simpler pattern.

The stack size of the new thread is configured to the interpreter
pythread_stacksize value (if set). The thread is then created using the
_beginthreadex() Windows API using the bootstrap function as the
callback. Finally, the thread ID is returned.

Multithreading Summary

This was not an exhaustive tutorial on Python threads. Python’s
thread implementation is extensive and offers many mechanisms for
sharing data between threads, locking objects, and resources.

Threads are a great, efficient way of improving the runtime of your
Python applications when they're I/O bound. In this section, you've
seen what the GIL is, why it exists, and which parts of the standard
library may be exempt from its constraints.

264

https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/beginthread-beginthreadex?view=vs-2019

Asynchronous Programming

Asynchronous Programming

Python offers many ways of accomplishing concurrent programming
without using threads or multiprocessing. These features have been
added, expanded, and often replaced with better alternatives.

For the target version of this book, 3.9, the @coroutine decorator is dep-
recated.

The following systems are still available:

+ Creating futures from async keywords

« Running coroutines using the yield from keywords

Generators

Python generators are functions that return a yield statement and can
be called continually to generate further values.

Generators are often used as a more memory-efficient way of looping
through values in a large block of data, like a file, a database, or over
a network. Generator objects are returned in place of a value when
yield is used instead of return. The generator object is created from
the yield statement and returned to the caller.

This simple generator function will yield the letters a through z:
cpython-book-samples?» 33 » letter_generator.py

def letters():
i =97 # Letter 'a' in ASCII
end = 97 + 26 # Letter 'z' in ASCII
while i < end:
yield chr(i)

i+=1

If you call 1etters(), then it won’t return a value. Instead, it will return
a generator object:

265

Generators

>>> from letter_generator import letters
>>> letters()

<generator object letters at 0x1004d39b0>

Built into the syntax of the for statement is the ability to iterate
through a generator object until it stops yielding values:

>>> for letter in letters():

print(letter)

[= 2]

[e]

This implementation uses the iterator protocol. Objects that have a
_next__() method can be looped over by for and while loops or using
the built-in next ().

All container types (like lists, sets, and tuples) in Python implement
the iterator protocol. Generators are unique because the implemen-
tation of the __next__() method recalls the generator function from its
last state.

Generators aren’t executed in the background—they’re paused. When
you request another value, they resume execution. Within the gen-
erator object structure is the frame object as it was at the last yield
statement.

Generator Structure

Generator objects are created by a template macro, _PyGenOb-
ject_HEAD(prefix).

This macro is used by the following types and prefixes:

+ Generator objects: pyGenObject (gi_)

« Coroutine objects: pPyCoroObject (cr_)

266

Generators

« Async generator objects: PyAsyncGenObject (ag_)

You'll cover coroutine and async generator objects later in this chap-

ter.

The PyGenobject type has these base properties:

Field Type Purpose
[x]_code PyObject * Compiled function that yields the
(PyCodeObject*) generator

[x]_exc_state _PyErr_StackItem

[x]_frame PyFrameObject*

[x]_name PyObject * (str)
[x]_qualname PyObject * (str)

[x]_running char

[x]_weakreflist PyObject * (1ist)

Exception data if the generator call raises
an exception

Current frame object for the generator
Name of the generator

Qualified name of the generator

Set to 0 or 1 if the generator is currently
running

List of weak references to objects inside
the generator function

On top of the base properties, the PyCoroobject type has this property:

Field Type

Purpose

cr_origin PyObject * (tuple)

Tuple containing the originating frame and
caller

On top of the base properties, the PyAsyncGenObject type has these prop-

erties:
Field Type Purpose
ag_closed int Flag to mark that the generator is closed
ag_finalizer PyObject * Link to the finalizer method
ag_hooks_inited int Flag to mark that the hooks have been
initialized
ag_running_async int Flag to mark that the generator is running

267

Generators

Related Source Files

Here are the source files related to generators:

File Purpose
Include» genobject.h Generator API and PyGenObject definition
Objects» genobject.c Generator Object implementation

Creating Generators

When a function containing a yield statement is compiled, the result-
ing code object has an additional flag, C0_GENERATOR.

In the “Constructing Frame Objects” section of the chapter on the eval-
uation loop, you explored how a compiled code object is converted
into a frame object when it’s executed. In this process, there’s a spe-
cial case for generators, coroutines, and async generators.

_PyEval_EvalCode() checks the code object for the CO_GENERATOR,
CO_COROUTINE, and Co_ASYNC_GENERATOR flags. If it finds any of these flags,
then instead of evaluating the code object inline, the function creates
a frame and turns it into a generator, coroutine, or async generator
okjectllshlg PyGen_NewWithQualName(), PyCoro_New(), Or PyAsyncGen_New(),
respectively:

PyObject *
_PyEval_EvalCode(PyObject *_co, PyObject *globals, PyObject *locals,

/* Handle generator/coroutine/asynchronous generator */

if (co->co_flags & (CO_GENERATOR | CO_COROUTINE | CO_ASYNC_GENERATOR)) {
PyObject *gen;
PyObject *coro_wrapper = tstate->coroutine_wrapper;

int is_coro = co->co_flags & CO_COROUTINE;
/* Create a new generator that owns the ready-to-run frame

* and return that as the value. */

if (is_coro) {

268

https://github.com/python/cpython/blob/v3.9.0/Python/ceval.c#L4046
https://github.com/python/cpython/blob/v3.9.0/Objects/genobject.c#L814
https://github.com/python/cpython/blob/v3.9.0/Objects/genobject.c#L1139
https://github.com/python/cpython/blob/v3.9.0/Objects/genobject.c#L1418

Generators

>>> gen = PyCoro_New(f, name, qualname);

} else if (co->co_flags & CO_ASYNC_GENERATOR) {

>>> gen = PyAsyncGen_New(f, name, qualname);
} else {

>>> gen = PyGen_NewWithQualName(f, name, qualname);
}

return gen;

The generator factory, PyGen_NewwithQualName(), takes the frame and
completes some steps to populate the generator object fields:

1. Sets the gi_code property to the compiled code object
2. Sets the generator to not running (gi_running = 0)

3. Sets the exception and weakref lists to NULL

You can also see that gi_code is the compiled code object for the gen-
erator function by importing the dis module and disassembling the
bytecode inside:

>>> from letter_generator import letters
>>> gen = letters()
>>> import dis
>>> dis.disco(gen.gi_code)
2 0 LOAD_CONST 1 (97)
2 STORE_FAST 0 (1)

In the chapter on the evaluation loop, you explored the frame object
type. Frame objects contain locals and globals, the last executed in-
structions, and the code to be executed.

The built-in behavior and state of frame objects allow generators to
pause and resume on demand.

269

https://github.com/python/cpython/blob/v3.9.0/Objects/genobject.c#L814

Generators

Executing Generators

Whenever __next__() is called on a generator object, gen_iternext()
is called with the generator instance, which immediately calls
gen_send_ex()inSide(Hdectsbgenobject.c.

gen_send_ex() is the function that converts a generator object into the
next yielded result. You’'ll see many similarities to the way frames are
constructed from a code object as these functions have similar tasks.

gen_send_ex() is shared with generators, coroutines, and async gener-
ators and has the following steps:

1. The current thread state is fetched.

2. The frame object from the generator object is fetched.

3. If the generator is running when __next__() is called, then raise a

ValueError.

4. If the frame inside the generator is at the top of the stack:
« If this is a coroutine, and the coroutine is not already marked
as closing, then a RuntimeError is raised.

« Ifthis is an async generator, then a StopAsyncIteration is raised.
« If thisis a standard generator, then a StopIteration is raised.

5. Ifthelastinstruction in the frame (f->f_lasti) is still -1 because it’s
just been started, and if this is a coroutine or an async generator,
then any value other than None can’t be passed as an argument, and
an exception is raised.

6. Else, this is the first time it’s being called, and arguments are al-
lowed. The value of the argument is pushed to the frame’s value
stack.

7. The f_back field of the frame is the caller to which return values are
sent, so this is set to the current frame in the thread. This means
that the return value is sent to the caller, not to the creator of the
generator.

8. The generator is marked as running.

270

https://github.com/python/cpython/blob/v3.9.0/Objects/genobject.c#L544
https://github.com/python/cpython/blob/v3.9.0/Objects/genobject.c#L140
https://github.com/python/cpython/blob/v3.9.0/Objects/genobject.c#L140
https://github.com/python/cpython/blob/v3.9.0/Objects/genobject.c#L140

Generators

10.

11.

12.

13.
14.

15.

. The last exception in the generator’s exception info is copied from

the last exception in the thread state.

The thread state exception info is set to the address of the gener-
ator’s exception info. This means that if the caller enters a break-
point around the execution of a generator, then the stack trace goes
through the generator and the offending code is clear.

The frame inside the generator is executed within the python» ce-
val.c main execution loop, and the value is returned.

The thread state last exception info is reset to the value before the
frame was called.

The generator is marked as not running.

The following cases then match the return value and any excep-
tions thrown by the call to the generator. Remember that gener-
ators should raise a StopIteration when they’re exhausted, either
manually or by not yielding a value:
« If no result was returned from the frame, then a StopIteration
is raised for generators and a StopAsyncIteration is raised for
async generators.

 IfaStopIteration was explicitly raised, but this is a coroutine or
an async generator, then a RuntimeError is raised as this is not
allowed.

« If a StopAsyncIteration was explicitly raised and this is an async
generator, then a RuntimeError is raised as this is not allowed.

Lastly, the result is returned back to the caller of __next__().

Bringing this all together, you can see how the generator expression
is a powerful syntax in which a single keyword, yield, triggers a whole
flow to create a unique object, copy a compiled code object as a prop-
erty, set a frame, and store a list of variables in the local scope.

271

Coroutines

Coroutines

Generators have a major limitation: they can yield values only to their
immediate caller.

An additional syntax, the yield from statement, was added to Python
to overcome this limitation. Using this syntax, you can refactor gen-
erators into utility functions and then yield from them.

For example, the letter generator can be refactored into a utility func-
tion in which the starting letter is an argument. Using yield from, you
can choose which generator object to return:

cpython-book-samples? 33» letter_coroutines.py

def gen_letters(start, x):
i = start
end = start + x
while i < end:
yield chr(i)

i+=1

def letters(upper):
if upper:
yield from gen_letters(65, 26) # A--Z
else:

yield from gen_letters(97, 26) # a--z

for letter in letters(False):
Lowercase a--z

print(letter)
for letter in letters(True):
Uppercase A--Z

print(letter)

Generators are also great for lazy sequences, in which they can be
called multiple times.

272

Coroutines

Building on the behaviors of generators, such as being able to pause
and resume execution, the concept of a coroutine was iterated in
Python over multiple APIs.

Generators are a limited form of coroutine because you can send data
to them using the .send() method. It’s possible to send messages bidi-
rectionally between the caller and the target. Coroutines also store
the caller in the cr_origin attribute.

Coroutines were initially available via a decorator, but this has since
been deprecated in favor of “native” coroutines using the keywords
async and await.

To mark that a function returns a coroutine, you must precede the
function with the async keyword. The async keyword makes it explicit
that, unlike generators, this function returns a coroutine and not a
value.

To create a coroutine, you define a function with the keyword async def.
In this example, you add a timer using the asyncio.sleep() function
and return a wake-up string:

>>> import asyncio

>>> async def sleepy_alarm(time):
await asyncio.sleep(time)
return "wake up!"

>>> alarm = sleepy_alarm(10)

>>> alarm

<coroutine object sleepy_alarm at 0x1041de340>

When you call the function, it returns a coroutine object.

There are many ways to execute a coroutine. The easiest is using asyn-
cio.run(coro). Run asyncio.run() with your coroutine object, then after
10 seconds it will sound the alarm:

273

Coroutines

>>> asyncio.run(alarm)

'wake up'

The benefit of coroutines is that you can run them concurrently. Be-
cause the coroutine object is a variable that you can pass to a function,
these objects can be linked together and chained, or created in a se-
quence.

For example, if you wanted to have ten alarms with different inter-
vals and start them all at the same time, then you could convert these
coroutine objects into tasks.

The task API is used to schedule and execute multiple coroutines con-
currently. Before tasks are scheduled, an event loop must be run-
ning. The job of the event loop is to schedule concurrent tasks and

connect events such as completion, cancellation, and exceptions with
callbacks.

When you called asyncio.run() (in Lib » asyncio » runners.py), the func-
tion performed these tasks for you:

1. Start a new event loop.

2. Wrap the coroutine object in a task.

3. Set a callback on the completion of the task.
4. Loop over the task until it completes.
5

. Return the result.

Related Source Files

Here’s the source file related to coroutines:

File Purpose
Lib» asyncio Python standard library implementation for
asyncio

274

Coroutines

Event Loops

Event loops are the glue that holds async code together. Written in
pure Python, event loops are objects containing tasks.

Any of the tasks in the loop can have callbacks. The loop will run the
callbacks if a task completes or fails:

loop = asyncio.new_event_loop()

Inside a loop is a sequence of tasks, represented by the type asyn-
cio.Task. Tasks are scheduled onto a loop, and then once the loop is
running, it loops over all the tasks until they’re complete.

You can convert the single timer into a task loop:

cpython-book-samples? 33 » sleepy_alarm.py

import asyncio

async def sleepy_alarm(person, time):
await asyncio.sleep(time)

print(f"{person} -- wake up!")

async def wake_up_gang():
tasks = [
asyncio.create_task(sleepy_alarm("Bob", 3), name="wake up Bob"),
asyncio.create_task(sleepy_alarm("Yudi", 4), name="wake up Yudi"),
asyncio.create_task(sleepy_alarm("Doris", 2), name="wake up Doris"),
asyncio.create_task(sleepy_alarm("Kim", 5), name="wake up Kim")
1

await asyncio.gather(*tasks)

asyncio.run(wake_up_gang())

275

Coroutines

This will print the following output:

Doris -- wake up!
Bob -- wake up!
Yudi -- wake up!

Kim -- wake up!

The event loop will run over each of the coroutines to see if they’re
completed. Similarly to how the yield keyword can return multiple
values from the same frame, the await keyword can return multiple
states.

The event loop will execute the sleepy_alarm() coroutine objects again
and again until the await asyncio.sleep() yields a completed result and
print() is able to execute.

For this to work, you need to use asyncio.sleep() instead of the block-
ing (and not async-aware) time.sleep().

Example

You can convert the multithreaded port scanner example to asyncio
with these steps:

« Change check_port () to use a socket connection from
asyncio.open_connection(), which creates a future instead of an im-
mediate connection.

» Use the socket connection future in a timer event with asyn-

cio.wait_for().
« Append the port to the results list if successful.

+ Add a new function, scan(), to create the check_port() coroutines
for each port and add them to a tasks list.

» Merge all the tasks into a new coroutine using asyncio.gather().

« Run the scan using asyncio.run().

Here’s the code:

276

Coroutines

cpython-book-samples» 33 » portscanner_async.py

import time

import asyncio
timeout = 1.0

async def check_port(host: str, port: int, results: list):

try:
future = asyncio.open_connection(host=host, port=port)
r, w = await asyncio.wait_for(future, timeout=timeout)
results.append(port)
w.close()

except OSError: # pass on port closure
pass

except asyncio.TimeoutError:

pass # Port is closed, skip and continue

async def scan(start, end, host):
tasks = []
results = []
for port in range(start, end):
tasks.append(check_port(host, port, results))
await asyncio.gather(*tasks)
return results
if __name__ == '_main__':
start = time.time()
host = "localhost" # Pick a host you own
results = asyncio.run(scan(80, 100, host))
for result in results:
print("Port {0} is open".format(result))

print("Completed scan in {0} seconds".format(time.time() - start))
This scan completes in just over one second:
$ python portscanner_async.py

Port 80 is open
Completed scan in 1.0058400630950928 seconds

277

Asynchronous Generators

Asynchronous Generators

The concepts you've learned so far, generators and coroutines, can be
combined into asynchronous generators.

If a function is declared with the async keyword and contains a yield

statement, then it’s converted into an async generator object when
called.

Like generators, async generators must be executed by something that
understands the protocol. In place of __next_ (), async generators
have an __anext__() method.

Aregular for loop wouldn’t understand an async generator, so instead
you use the async for statement.

You can refactor check_port() into an async generator that yields the
next open port until it hits the last port or finds a specified number of
open ports:

async def check_ports(host: str, start: int, end: int, max=10):
found = 0
for port in range(start, end):
try:
future = asyncio.open_connection(host=host, port=port)
r, w = await asyncio.wait_for(future, timeout=timeout)
yield port
found += 1
w.close()
if found >= max:
return
except asyncio.TimeoutError:

pass # Closed

278

Subinterpreters

To execute this, use the async for statement:

async def scan(start, end, host):
results = []
async for port in check_ports(host, start, end, max=1):
results.append(port)

return results

See cpython-book-samples » 33 » portscanner_async_generators.py for the
full example.

Subinterpreters
So far, you've covered:

« Parallel execution with multiprocessing

+ Concurrent execution with threads and async

The downsides of multiprocessing are that interprocess communica-
tion using pipes and queues is slower than with shared memory, and
the overhead to start a new process is significant.

Threading and async have a small overhead but don’t offer truly par-
allel execution because of the thread-safety guarantees in the GIL.

A fourth option is subinterpreters, which have a smaller overhead than
multiprocessing and allow a GIL for each subinterpreter. After all, it’s
the global interpreter lock.

Within the CPython runtime, there’s always one interpreter. The in-
terpreter holds the interpreter state, and within an interpreter you can
have one or many Python threads. The interpreter is the container
for the evaluation loop. It also manages its own memory, reference
counter, and garbage collection.

CPython has low-level C APIs for creating interpreters, like
Py_NewInterpreter():

279

https://github.com/python/cpython/blob/v3.9.0/Python/pylifecycle.c#L1633

Subinterpreters

‘ Runtime State ‘ Runtime
Core -
Instructions||| Files ||
Interpreter 0 Heap
(prlmary) Modules Sockets
‘Interpreter State‘
| GIL |
Thread @ || Threads 1-n
(Primary) | |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
Core -
tnstructions|[_Files |
Interpreter 1 Heap

Modules Sockets

‘ Interpreter State ‘

| GIL |

Thread 0
(Primary)

280

Subinterpreters

The subinterpreters module is still experimental in 3.9, so the
API is subject to change and the implementation is still buggy.

Because the interpreter state contains the memory allocation
arena—a collection of all pointers to Python objects (local and
global)—subinterpreters can’t access the global variables of other
interpreters.

Similarly to multiprocessing, to share objects between interpreters,
you must serialize them or use ctypes and use a form of IPC (network,
disk, or shared memory).

Related Source Files

Here are the source files related to subinterpreters:

File Purpose
Lib» _xxsubinterpreters.c C implementation of the subinterpreters
module
Python» pylifecycle.c C implementation of the interpreter
management API
Example

In the final example application, the actual connection code has to be
captured in a string. In 3.9, subinterpreters can be executed only with
a string of code.

To start each of the subinterpreters, a list of threads is started with a
callback to a function, run().

This function will:

o Create a communication channel

« Start a new subinterpreter

281

Subinterpreters

+ Send the subinterpreter the code to execute
» Receive data over the communication channel

« If the port connection succeeds, add it to the thread-safe queue
cpython-book-samples? 33» portscanner_subinterpreters.py

import time

import _xxsubinterpreters as subinterpreters
from threading import Thread

import textwrap as tw

from queue import Queue
timeout = 1 # In seconds

def run(host: str, port: int, results: Queue):
Create a communication channel
channel_id = subinterpreters.channel_create()
interpid = subinterpreters.create()
subinterpreters.run_string(
interpid,
tw.dedent (
import socket; import _xxsubinterpreters as subinterpreters
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.settimeout (timeout)
result = sock.connect_ex((host, port))
subinterpreters.channel_send(channel_id, result)
sock.close()
shared=dict(
channel_id=channel_id,
host=host,
port=port,
timeout=timeout
))
output = subinterpreters.channel_recv(channel_id)
subinterpreters.channel_release(channel_id)

if output ==

282

Conclusion

results.put(port)

if _ name_ == '__main__ ':

start = time.time()

host = "127.0.0.1" # Pick a host you own

threads = []

results = Queue()

for port in range(80, 100):
t = Thread(target=run, args=(host, port, results))
t.start()
threads.append(t)

for t in threads:
t.join()

while not results.empty():
print("Port {0} is open".format(results.get()))

print("Completed scan in {0} seconds".format(time.time() - start))

Because of the reduced overheads compared with multiprocessing,
this example should execute 30 to 40 percent faster and with fewer
memory resources:

$ python portscanner_subinterpreters.py
Port 80 is open
Completed scan in 1.3474230766296387 seconds

Conclusion

Congratulations on getting through the biggest chapter in the book!
You've covered a lot of ground. Let’s recap some of the concepts and
their applications.

For truly parallel execution, you need multiple CPUs or cores. You
also need to use either the multiprocessing or the subinterpreters pack—
age so that the Python interpreter can be executed in parallel.

283

Conclusion

Remember that startup time is significant, and each interpreter has a
big memory overhead. If the tasks that you want to execute are short-
lived, then use a pool of workers and a queue of tasks.

If you have multiple I/O-bound tasks and want them to run concur-
rently, then you should use multithreading or coroutines with the
asyncio package.

All four of these approaches require an understanding of how to safely
and efficiently transfer data between processes or threads. The best
way to reinforce what you’ve learned is to look at an application you’ve
written and see how it can be refactored to leverage these techniques.

284

Objects and Types

CPython comes with a collection of basic types like strings, lists, tu-
ples, dictionaries, and objects. All these types are built in. You don’t
need to import any libraries, not even from the standard library.

For example, to create a new list, you can call 1ist():
Ist = list()

Or you can use square brackets:

1st = []

Strings can be instantiated from a string literal by using either double
or single quotes. In the chapter “The Python Language and Gram-
mar,” you explored the grammar definitions that cause the compiler
to interpret double quotes as a string literal.

All types in Python inherit from object, a built-in base type. Even
strings, tuples, and lists inherit from object.

In Objects»object.c, the base implementation of the object type is writ-
ten in pure C code. There are some concrete implementations of basic
logic, like shallow comparisons.

You can think of a Python object as consisting of two things:

1. The core data model, with pointers to compiled functions

2. A dictionary with any custom attributes and methods

285

Examples in This Chapter

Much of the base object API is declared in oObjects » object.c, like the
implementation of the built-in repr() function, Pyobject_Repr. You'll
also find pPyobject_Hash() and other APIs.

All these functions can be overridden in a custom object by implement-
ing dunder methods on a Python object:

class MyObject(object):
def __init__(self, id, name):
self.id = id

self.name = name

def __repr_ (self):

return "<{0} id={1}>".format(self.name, self.id)

Together, these built-in functions are called the Python data model.
Not all methods in a Python object are part of the data model, which
allows Python objects to contain class or instance attributes as well as
methods.

See Also

One of the great resources for the Python data model is Fluent
Python, 2nd Edition, by Luciano Ramalho.

Examples in This Chapter

Throughout this chapter, each type explanation will include an exam-
ple. In the example, you’ll implement the almost-equal operator that
you built in earlier chapters.

If you haven’t yet implemented the changes detailed in the chapters
on the CPython grammar and compiler, then be sure to go back and
do that before proceeding. They're required for implementing the ex-
amples below.

286

https://github.com/python/cpython/blob/v3.9.0/Objects/object.c#L389
https://github.com/python/cpython/blob/v3.9.0/Objects/object.c#L765
https://docs.python.org/3/reference/datamodel.html
https://www.oreilly.com/library/view/fluent-python-2nd/9781492056348/
https://www.oreilly.com/library/view/fluent-python-2nd/9781492056348/

Built-in Types

Built-in Types

The core data model is defined in the PyTypeobject, and the functions
are defined in objects» typeobject.c.

Each of the source files has a corresponding header in Include. For
example, Objects/rangeobject.c has a header file Include» rangeobject.h.

Here’s a list of the source files and their corresponding types:

Source File Type

Objects» object.c Built-in methods and base object

Objects»boolobject.c bool type

Objects» bytearrayobject.c byte[] type

Objects» bytesobject.c bytes type

Objects» cellobject.c cell type

Objects? classobject.c Abstract class type used in
meta-programming

Objects? codeobject.c Built-in code object type

Objects» complexobject.c Complex numeric type

Objects»iterobject.c Iterator type

Objects» listobject.c list type

Objects» longobject.c long numeric type

Objects» memoryobject.c Base memory type

Objects»methodobject.c Class method type

Objects»moduleobject.c Module type

Objects» namespaceobject.c Namespace type

Objects» odictobject.c Ordered dictionary type

Objects» rangeobject.c Range generator type

Objects» setobject.c set type

Objects» sliceobject.c Slice reference type

Objects? structseq.c struct.Struct type

Objects» tupleobject.c tuple type

Objects» typeobject.c type type

Objects?»unicodeobject.c str type

Objects»weakrefobject.c weakref type

You’ll explore some of these types in this chapter.

287

Object and Variable Object Types

Object and Variable Object Types

Because C isn’t an object-oriented language like Python, objects in C
don’t inherit from one another. pyobject is the initial data segment for
every Python object and pyobject * represents a pointer to it.

When defining Python types, the typedef uses one of two macros:

1. PyObject_HEAD (PyObject) for a simple type

2. PyObject_VAR_HEAD (PyvarObject) for a container type

The simple type pyobject has the following fields:

Field Type Purpose
ob_refcnt Py_ssize_t Instance reference counter
ob_type _typeobject* Object type

For example, the cellobject declares one additional field, ob_ref, and
the base fields:

typedef struct {
PyObject_HEAD
PyObject *ob_ref; /* Content of the cell or NULL when empty */

} PyCellObject;

The variable type, pyvarobject, extends the pyobject type and also has
the following fields:

Field Type Purpose
ob_base PyObject Base type
ob_size Py_ssize_t Number of items it contains

288

https://realpython.com/python3-object-oriented-programming/

The type Type

For example, the int type, PyLongObject, has the following declaration:

struct _longobject {
PyObject_VAR_HEAD
digit ob_digit[1];

}; /* PyLongObject */

The type Type

In Python, objects have an ob_type property. You can get the value of
this property using the built-in function type():

>>> t = type("hello™)
>>> t

<class 'str'>

The result from type() is an instance of a PyTypeObject:

>>> type(t)

<class 'type'>

Type objects are used to define the implementation of abstract base
classes.

For example, objects always implement the __repr__() method:

>>> class example:
x =1

>>> i = example()

>>> repr(i)

'<__main__.example object at 0x10b418100>'

The implementation of __repr__() is always at the same address in the
type definition of any object. This position is known as a type slot.

289

The type Type

Type Slots

All the type slots are defined in Include» cpython» object.h.

Each type slot has a property name and a function signature. The
__repr__() function for example is called tp_repr and has a signature

reprfunc:

struct PyTypeObject

typedef struct _typeobject {
reprfunc tp_repr;
} PyTypeObject;

The signature reprfunc is defined in Include » cpython» object.h as having
a single argument of pyobject* (self):

typedef PyObject *(*reprfunc)(PyObject *);

As an example, the cellobject implements the tp_repr slot with the
function cell_repr:

PyTypeObject PyCell_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)

"cell",

sizeof (PyCellObject),

0,

(destructor)cell_dealloc, /* tp_dealloc */

0, /* tp_vectorcall_offset */
0, /* tp_getattr */

0, /* tp_setattr */

0, /* tp_as_async */
(reprfunc)cell_repr, /* tp_repr */

200

The type Type

Beyond the basic pyTypeobject type slots, denoted with the tp_ prefix,
there are other type slot definitions:

Type Slot Prefix

PyNumberMethods nb_
PySequenceMethods sq_
PyMappingMethods mp_
PyAsyncMethods am_
PyBufferProcs bf_

All type slots are given a unique number, defined in Include » types-
lots.h. When referring to, or fetching, a type slot on an object, you
should use these constants.

For example, tp_repr has a constant position of 66, and the constant
Py_tp_repr always matches the type slot position. These constants are
useful when checking if an object implements a particular type slot
function.

Working with Types in C

Within C extension modules and the core CPython code, you’ll fre-
quently be working with the pyobject* type.

For example, if you run x[n] on a subscriptable object like a list or a
string, then it will call pyobject_GetTtem(), which looks at the object x
to determine how to subscript it:

Objects» abstract.c line 146

PyObject *
PyObject_GetItem(PyObject *o, PyObject *key)
{

PyMappingMethods *m;
PySequenceMethods *ms;

201

https://github.com/python/cpython/blob/v3.9.0/Objects/abstract.c#L146

The type Type

PyObject_GetTtem() serves both mapping types, like dictionaries, and
sequence types, like lists and tuples.

If the instance, o, has sequence methods, then o->ob_type-
>tp_as_sequence will evaluate to true. Also, if the instance has a
sq_item slot function defined, then it’s assumed that it has correctly
implemented the sequence protocol.

The value of key is evaluated to check that it’s an integer, and the item
is requested from the sequence object using pPySequence_GetItem():

ms = o->ob_type->tp_as_sequence;
if (ms && ms->sq_item) {
if (PyIndex_Check(key)) {
Py_ssize_t key_value;
key_value = PyNumber_AsSsize_t(key, PyExc_IndexError);
if (key_value == -1 && PyErr_Occurred())
return NULL;

return PySequence_GetItem(o, key_value);

}
else {
return type_error('sequence index must "
"be integer, not '%.200s'", key);
}

Type Property Dictionaries

Python supports defining new types with the class keyword. User-
defined types are created by type_new() in the type object module.

User-defined types will have a property dictionary, accessed by
_dict__(). Whenever a property is accessed on a custom class,
the default __getattr__() implementation looks in this property
dictionary. Class methods, instance methods, class properties, and
instance properties are all located in this dictionary.

PyObject_GenericGetDict() implements the logic to fetch the dictionary
instance for a given object. Pyobject_Getattr() implements the default

202

https://github.com/python/cpython/blob/v3.9.0/Objects/abstract.c#L146
https://github.com/python/cpython/blob/v3.9.0/Objects/abstract.c#L1740
https://github.com/python/cpython/blob/v3.9.0/Objects/typeobject.c#L2376
https://github.com/python/cpython/blob/v3.9.0/Objects/dictobject.c#L4767
https://github.com/python/cpython/blob/v3.9.0/Objects/object.c#L879

The bool and 1ong Types

__getattr__() implementation, and PyObject_SetAttr() implements
__setattr__(Q).

There are many layers to custom types, and they’ve been exten-
sively documented. One could write an entire book on meta-
classes, but in this book you’ll stick to the implementation.

If you want to learn more about metaprogramming, check out
Real Python’s “Python Metaclasses.”

The bool and 1ong Types

The bool type is the most straightforward implementation of the built-
in types. Itinherits from long and has the predefined constants py_True
and py_ralse. These constants are immutable instances, created on
the instantiation of the Python interpreter.

Inside objects»boolobject.c, you can see the helper function to create
a bool instance from a number:

Objects» boolobject.c line 28

PyObject *PyBool_FromLong(long ok)
{
PyObject *result;

if (ok)

result = Py_True;
else

result = Py_False;
Py_INCREF(result);

return result;

This function uses the C evaluation of a numeric type to assign py_True
or Py_False to a result and increment the reference counters.

293

https://github.com/python/cpython/blob/v3.9.0/Objects/object.c#L979
https://realpython.com/python-metaclasses/
https://github.com/python/cpython/blob/v3.9.0/Include/boolobject.h#L22
https://github.com/python/cpython/blob/v3.9.0/Include/boolobject.h#L21

The bool and 1ong Types

The numeric functions for and, xor, and or are implemented, but ad-
dition, subtraction, and division are dereferenced from the base long
type since it would make no sense to divide two Boolean values.

The implementation of and for a bool value first checks if a and b are
Booleans. If they aren’t, then they’re cast as numbers, and the and
operation is run on the two numbers:

Objects»boolobject.c line 61

static PyObject *
bool_and(PyObject *a, PyObject *b)
{
if (!PyBool_Check(a) || !PyBool_Check(b))
return PyLong_Type.tp_as_number->nb_and(a, b);

return PyBool_FromLong((a == Py_True) & (b == Py_True));

The 1ong Type

The 1ong type is a bit more complex than bool. In the transition from
Python 2 to Python 3, CPython dropped support for the int type and
instead used the 1ong type as the primary integer type.

Python’s 1ong type is quite special in that it can store a variable-length
number. The maximum length is set in the compiled binary.

The data structure of a Python 1ong consists of the pyobject variable
header and a list of digits. The list of digits, ob_digit, is initially set to
have one digit, but it later expands to a longer length when initialized:

Include» longintrepr.h line 85

struct _longobject {
PyObject_VAR_HEAD
digit ob_digit[1];

204

The bool and 1ong Types

For example, the number 1 would have ob_digit [1], and the number
24601 would have ob_digit [2, 4, 6, 0, 1].

Memory is allocated to a new long through _PyLong_New(). This function
takes a fixed length and makes sure it’s smaller than mMAX_LONG_DIGITS.
Then it reallocates the memory for ob_digit to match the length.

To convert a C long type to a Python 1ong type, the C 1ong is converted
to a list of digits, the memory for the Python 1ong is assigned, and then
each of the digits is set.

For single-digit numbers, the long object is initialized with ob_digit
already at a length of 1. Then the value is set without the memory
being allocated:

Objects» longobject.c line 297

PyObject *
PyLong_FromLong(long ival)
{
PyLongObject *v;
unsigned long abs_ival;
unsigned long t; /* unsigned so >> doesn't propagate sign bit */
int ndigits = 0;

int sign;
CHECK_SMALL_INT(ival);

/* Fast path for single-digit ints */
if (!(abs_ival >> PyLong_SHIFT)) {
v = _PyLong_New(1);
if (v) {
Py_SIZE(v) = sign;
v->0b_digit[0] = Py_SAFE_DOWNCAST(
abs_ival, unsigned long, digit);
}
return (PyObject*)v;

295

The bool and 1ong Types

/* Larger numbers: loop to determine number of digits */
t = abs_ival;
while (t) {
++ndigits;
t >>= PyLong_SHIFT;
3
v = _PyLong_New(ndigits);
if (v != NULL) {
digit *p = v->ob_digit;
Py_SIZE(v) = ndigits*sign;
t = abs_ival;
while (t) {
*p++ = Py_SAFE_DOWNCAST(
t & PyLong_MASK, unsigned long, digit);
t >>= PyLong_SHIFT;

}
return (PyObject *)v;

To convert a double-point floating-point to a Python long,
PyLong_FromDouble() does the math for you.

The remainder of the implementation functions in Objects » longob-
ject.c have utilities, such as converting a Unicode string into a num-
ber with PyLong_FromUnicodeObject().

Example

The rich-comparison type slot for 1ong is set to long_richcompare(). This
function wraps long_compare():

Objects» longobject.c line 3031

static PyObject *
long_richcompare(PyObject *self, PyObject *other, int op)
{

206

https://github.com/python/cpython/blob/v3.9.0/Objects/longobject.c#L417
https://github.com/python/cpython/blob/v3.9.0/Objects/longobject.c#L2625
https://github.com/python/cpython/blob/v3.9.0/Objects/longobject.c#L3031
https://github.com/python/cpython/blob/v3.9.0/Objects/longobject.c#L3013

The bool and 1ong Types

Py_ssize_t result;
CHECK_BINOP(self, other);
if (self == other)
result = 0;
else
result = long_compare((PyLongObject*)self, (PyLongObject*)other);
Py_RETURN_RICHCOMPARE (result, 0, op);

long_compare () will first check the length (number of digits) of the two
variables a and b. If the lengths are the same, then it will loop through
each digit to see if they’re equal to each other.

long_compare() returns one of three types of values:

1. If a < b, then it returns a negative number.
2. If a == b, then it returns o.

3. If a > b, the it returns a positive number.

For example, when you execute 1 == 5, the result is -4. For 5 == 1, the
result is 4.

You can implement the following code block before the
Py_RETURN_RICHCOMPARE macro to return True when the absolute value of
result is <=1. It uses the macro Py_aBs(), which returns the absolute
value of a signed integer:

if (op == Py_AlE) {
if (Py_ABS(result) <= 1)
Py_RETURN_TRUE;
else
Py_RETURN_FALSE;

}
Py_RETURN_RICHCOMPARE(result, 0, op);

297

The Unicode String Type

After recompiling Python, you should see the effect of the change:

>>> 2 =1

False

>>> 2 ~=1

True

>>> 2 ~= 10

False

The Unicode String Type

Python Unicode strings are complicated. Cross-platform Unicode
types in any platform are complicated.

The cause of this complexity is the number of encodings that are on
offer and the different default configurations on the platforms that
Python supports.

The Python 2 string type was stored in C using the char type. The
single-byte char type sufficiently stores any of the ASCII (American
Standard Code for Information Interchange) characters and has been
used in computer programming since the 1970s.

ASCII doesn’t support the thousands of languages and character sets
that are in use across the world. Also, there are extended glyph char-
acter sets like emojis that it can’t support.

To address these issues, a standard system of coding and a database
of characters known as the Unicode Standard was introduced by the
Unicode Consortium in 1991. The modern Unicode Standard includes
characters for all written languages as well as extended glyphs and
characters.

The Unicode Character Database (UCD) contains 143,859 named
characters as of version 13.0, compared with just 128 in ASCII. The
Unicode Standard defines these characters in a character table called
the Universal Character Set (UCS). Each character has a unique
identifier known as a code point.

208

The Unicode String Type

There are many different encodings that use the Unicode Standard
and convert the code point into a binary value.

Python Unicode strings support three lengths of encodings:
1. 1-byte (8-bit)

2. 2-byte (16-bit)

3. 4-byte (32-bit)

These variable-length encodings are referred to within the implemen-
tation as the following;:

1. 1-byte py_ucsi, stored as 8-bit unsigned int type uint8_t
2. 2-byte py_ucs2, stored as 16-bit unsigned int type uint16_t

3. 4-byte Py_ucss, stored as 32-bit unsigned int type uint32_t

Related Source Files

Here are the source files related to strings:

File Purpose

Include» unicodeobject.h Unicode string object definition

Include cpython? unicodeobject.h Unicode string object definition

Objects» unicodeobject.c Unicode string object implementation

Lib» encodings encodings package containing all the
possible encodings

Lib» codecs.py Codecs module

Modules » _codecsmodule. c Codecs module C extensions, implements
OS-specific encodings

Modules » _codecs Codec implementations for a range of

alternative encodings

Processing Unicode Code Points

CPython doesn’t contain a copy of the UCD, nor does it have to update
whenever scripts and characters are added to the Unicode standard.

299

The Unicode String Type

Unicode strings in CPython only have to care about the encodings.
The operating system handles the task of representing the code points
in the correct scripts.

The Unicode Standard includes the UCD and is updated regularly with
new scripts, emojis, and characters. Operating systems take these up-
dates to Unicode and update their software via a patch. These patches
include the new UCD code points and support the various Unicode en-
codings. The UCD is split into sections called code blocks.

The Unicode code charts are published on the Unicode website.

Another point of support for Unicode is the web browser. Web
browsers decode HTML binary data in the encoding-marked HTTP
encoding headers. If you're working with CPython as a web server,
then your Unicode encodings must match the HTTP headers being
sent to your users.

UTF-8 vs UTF-16

There are two common encodings:

1. UTF-8 is an 8-bit character encoding that supports all possible
characters in the UCD with a 1- to 4-byte code point

2. UTF-16 is a 16-bit character encoding, similar to UTF-8, but is
not compatible with 7- or 8-bit encodings like ASCII.

UTF-8 is the most commonly used Unicode encoding.

In all Unicode encodings, the code points can be represented using a
hexadecimal shorthand. Here are a few examples:

« U+00F7 for the division character ('+'

« U+0107 for the Latin small letter ¢ with acute (*¢')

In Python, Unicode code points can be encoded directly into the code
using the \u escape symbol and the hexadecimal value of the code
point:

300

https://unicode.org/charts/

The Unicode String Type

>>> print("\u0107")

¢

CPython doesn’t attempt to pad this data, so if you tried \u107, then it
would give the following exception:

print("\ul07")
File "<stdin>", line 1
SyntaxError: (unicode error) 'unicodeescape' codec can't decode

bytes in position 0-4: truncated \uXXXX escape

Both XML and HTML support Unicode code points with a special
escape character &#val;, where val is the decimal value of the code
point. If you need to encode Unicode code points into XML or HTML,
then you can use the xmlcharrefreplace error handler in the .encode()
method:

>>> "\u0107".encode('ascii', 'xmlcharrefreplace')

b'ć "

The output will contain HTML- or XML-escaped code points. All mod-
ern browsers will decode this escape sequence into the correct charac-
ter.

ASCII Compatibility

If you're working with ASCII-encoded text, then it’s important to un-
derstand the difference between UTF-8 and UTF-16. UTF-8 has the
major benefit of being compatible with ASCII-encoded text. ASCII
encoding is a 7-bit encoding.

The first 128 code points on the Unicode Standard represent the ex-
isting 128 characters of the ASCII standard. For example, the Latin
letter "a" is the 97th character in ASCII and the 97th character in Uni-
code. Decimal 97 is equivalent to 61 in hexadecimal, so the Unicode
code point for "a" is U+0061.

301

The Unicode String Type

In the REPL, you can create the binary code for the letter "a":

>>> letter_a = b'a’'

>>> letter_a.decode('utf8")

[

a
This can correctly be decoded into UTF-8.

UTF-16 works with 2- to 4-byte code points. The 1-byte representa-
tion of the letter "a" will not decode:

>>> letter_a.decode('utfl6")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
UnicodeDecodeError: 'utf-16-le' codec can't decode

byte 0x61 in position 0: truncated data

This is important to note when selecting an encoding mechanism.
UTF-8 is a safer option if you need to import ASCII-encoded data.

Wide Character Type

If you're handling Unicode string input in an unknown encoding
within the CPython source code, then the wchar_t C type will be used.

wchar_t is the C standard for a wide-character string and is sufficient
to store Unicode strings in memory. After PEP 393, the wchar_t type
was selected as the Unicode storage format. The Unicode string object
provides PyUnicode_FromwideChar(), a utility function that will convert a
wchar_t constant to a string object.

For example, the pymain_run_command() used by python -c converts the
-c argument into a Unicode string:

302

https://www.python.org/dev/peps/pep-0393/
https://github.com/python/cpython/blob/v3.9.0/Modules/main.c#L226

The Unicode String Type

Modules»main.c line 226

static int
pymain_run_command (wchar_t *command, PyCompilerFlags *cf)

{
PyObject *unicode, *bytes;

int ret;

unicode = PyUnicode_FromWideChar(command, -1);

Byte Order Markers

When decoding an input, such as a file, CPython can detect the byte
order from a byte order mark (BOM). BOMs are special characters
that appear at the beginning of a Unicode byte stream. They tell the
receiver which byte order the data is stored in.

Different computer systems can encode with different byte orders. If
you use the wrong byte order, even with the right encoding, then the
data will be garbled. A big-endian ordering places the most signifi-
cant byte first. A little-endian ordering places the least significant
byte first.

The UTF-8 specification does support a BOM, but it has no effect. The
UTF-8 BOM can appear at the beginning of a encoded data sequence,
represented as b'\xef\xbb\xbf', and will indicate to CPython that the
data stream is most likely UTF-8. UTF-16 and UTF-32 support little-
and big-endian BOMs.

The default byte order in CPython is set by the sys.byteorder global
value:

>>> import sys; print(sys.byteorder)

little

303

The Unicode String Type

The encodings Package

The encodings package in Lib» encodings comes with more than one hun-
dred built-in supported encodings for CPython. Whenever the .en-
code() or .decode() method is called on a string or byte string, the en-
coding is looked up from this package.

Each encoding is defined as a separate module. For example,
1502022_JP is a widely used encoding for Japanese email systems and
is declared in Lib» encodings» is02022_jp.py.

Every encoding module will define a function getregentry() and regis-
ter the following characteristics:

e Its unique name

Its encode and decode functions from a codec module

« Its incremental encoder and decoder classes

Its stream reader and stream writer classes

Many of the encoding modules share the same codecs from either the
codecs module or the _mulitbytecodec module. Some encoding modules
use a separate codec module in C, from Modules» cjkcodecs.

For example, the 1502022_7p encoding module imports a C extension
nlodlﬂe,_codecs_isoZOZZ,fronlModules>cjkcodecs>_codecs_1502022.c

import _codecs_is02022, codecs

import _multibytecodec as mbc
codec = _codecs_1s02022.getcodec('is02022_jp")
class Codec(codecs.Codec):

encode = codec.encode

decode = codec.decode

class IncrementalEncoder(mbc.MultibyteIncrementalEncoder,

codecs.IncrementalEncoder) :

304

The Unicode String Type

codec = codec

class IncrementalDecoder(mbc.MultibyteIncrementalDecoder,
codecs.IncrementalDecoder):

codec = codec

The encodings package also has a module, Lib » encodings » aliases.py,
that contains an aliases dictionary. This dictionary is used to map
encodings in the registry by alternative names. For example, utf8, utf-
8 and ug are all aliases of the utf_8 encoding.

The Codecs Module

The codecs module handles the translation of data with a specific en-
coding. The encode or decode function of a particular encoding can
be fetched using getencoder() and getdecoder (), respectively:

>>> 1502022_jp_encoder = codecs.getencoder('iso2022_jp')
>>> 1802022_jp_encoder('\u3072\u3068"') # hi-to
(b'\x1bBR$H\x1b(B", 2)

The encode function will return the binary result and the number of
bytes in the output as a tuple. codecs also implements the built-in func-
tion open() for opening file handles from the operating system.

Codec Implementations

The Unicode object (Objects » unicodeobject.c) implementation
contains the following encoding methods:

Codec Encoder

ascii PyUnicode_EncodeASCII()

latinl PyUnicode_Encodelatinl()

UTF7 PyUnicode_EncodeUTF7()

UTF8 PyUnicode_EncodeUTF8()

UTF16 PyUnicode_EncodeUTF16()

UTF32 PyUnicode_EncodeUTF32()
unicode_escape PyUnicode_EncodeUnicodeEscape()
raw_unicode_escape PyUnicode_EncodeRawUnicodeEscape()

305

The Unicode String Type

All decode methods would have similar names, but with Decode in place
of Encode.

The implementation of the other encodings is within Modules» _codecs
to avoid cluttering the main Unicode string object implementation.
The unicode_escape and raw_unicode_escape codecs are internal to

CPython.

Internal Codecs

CPython comes with a number of internal encodings. These are
unique to CPython and are useful for some of the standard library
functions as well as when working with producing source code.

These text encodings can be used with any text input or output:

Codec Purpose

idna Implements RFC 3490

mbcs Encode according to the ANSI codepage (Windows only)
raw_unicode_escape Convert to a string for raw literal in Python source code
string_escape Convert to a string literal for Python source code
undefined Try default system encoding

unicode_escape Convert to Unicode literal for Python source code
unicode_internal Return the internal CPython representation

There are also several binary-only encodings that need to be used with
codecs.encode() OT codecs.decode() with byte string inputs, such as the
following:

>>> codecs.encode(b'hello world', 'base64')
b'aGVsbG8gd29ybGQ=\n"

306

The Unicode String Type

Here’s a list of the binary-only encodings:

Codec Aliases Purpose

base64_codec base64, base-64 Convert to MIME base64

bz2_codec bz2 Compress the string using bz2

hex_codec hex Convert to hexadecimal representation,
with two digits per byte

quopri_codec quoted-printable Convert operand to MIME
quoted-printable

rot_13 rot13 Return the Caesar-cypher encryption
(position 13)

uu_codec uu Convert using uuencode

z1ib_codec zip, z1ib Compress using gzip

Example

The tp_richcompare type slot is allocated to PyUnicode_RichCompare() in
the PyUnicode_Type. This function does the comparison of strings and
can be adapted to use the ~= operator. The behavior you'll implement
is a case-insensitive comparison of the two strings.

First, add an additional case statement to check when the left and
right strings have binary equivalence:

Objects»unicodeobject.c line 11361

PyObject *
PyUnicode_RichCompare(PyObject *left, PyObject *right, int op)
{

if (left == right) {

switch (op) {

case Py_EQ:

case Py_LE:

>>> case Py_AlE:

case Py_GE:
/* a string is equal to itself */
Py_RETURN_TRUE;

307

The Unicode String Type

Then add a new else if block to handle the py_a1k operator. This will
perform the following actions:

1. Convert the left string to a new uppercase string.

2. Convert the right string to a new uppercase string.

Compare the two.

3.
4. Dereference both of the temporary strings so they get deallocated.
5.

Return the result.

Your code should look like this:

else if (op == Py_EQ || op == Py_NE) {

}

/* Add these lines */

else if (op == Py_AlE){
PyObject* upper_left = case_operation(left, do_upper);
PyObject* upper_right = case_operation(right, do_upper);
result = unicode_compare_eq(upper_left, upper_right);
Py_DECREF (upper_left);
Py_DECREF (upper_right);

return PyBool_ FromLong(result);

After you recompile, your case-insensitive string matching should
give the following results on the REPL:

>>> "hello" ~= "HE11l0"
True
>>> "hello?" ~= "hello"
False

308

The Dictionary Type

The Dictionary Type

Dictionaries are a fast and flexible mapping type. They’re used by de-
velopers to store and map data as well as by Python objects to store
properties and methods.

Python dictionaries are also used for local and global variables, for
keyword arguments, and for many other use cases. Python dictionar-
ies are compact, meaning the hash table stores only mapped values.

The hashing algorithm that is part of all immutable built-in types is
fast. It’s what gives Python dictionaries their speed.

Hashing

All immutable built-in types provide a hashing function. This is de-
fined in the tp_hash type slot or, for custom types, using the __hash__()
magic method. Hash values are the same size as a pointer (64-bit for
64-bit systems, 32-bit for 32-bit systems), but they don’t represent
the memory address of their values.

The resulting hash for any Python Object shouldn’t change during it’s
lifecycle. Hashes for two immutable instances with identical values
should be equal:

>>> "hello".__hash__() == ("hel" + "lo").__hash__()

True

There should be no hash collisions. Two objects with different values
should not produce the same hash.

Some hashes are simple, like Python longs:

>>> (401).__hash__()
401

309

The Dictionary Type

Long hashes get more complex for longer values:

>>> (401123124389798989898).__hash__()
2212283795829936375

Many of the built-in types use the Python» pyhash.c module, which pro-
vides the following hashing helper functions:

+ Bytes: _Py_HashBytes(const void*, Py_ssize_t)

« Doubles: _Py_HashDouble(double)

« Pointers: _Py_HashPointer(void*)

Unicode strings, for example, use _Py_HashBytes () to hash the byte data
of the string:

>>> ("hello").__hash__()
4894421526362833592

Custom classes can define a hashing function by implementing
__hash__(). Instead of implementing a custom hash, custom classes
should use a unique property. Make sure it’s immutable by making
it a read-only property, then hash it using the built-in hash():

class User:
def __init__(self, id: int, name: str, address: str):
self._id = id

def __hash__(self):
return hash(self._id)

def id(self):

return self._id

Instances of this class can now be hashed:

>>> bob = User(123884, "Bob Smith", "Townsville, QLD")
>>> hash(bob)
123884

310

The Dictionary Type

This instance can now be used as a dictionary key:

>>> sally = User(123823, "Sally Smith", "Cairns, QLD")
>>> near_reef = {bob: False, sally: True}
>>> near_reef[bob]

False
Sets will reduce duplicate hashes of this instance:
>>> {bob, bob}

{<__main__.User object at 0x10df244b0>}

Related Source Files

Here are the source files related to dictionaries:

File Purpose

Include» dictobject.h Dictionary object API definition
Include cpython» dictobject.h Dictionary object types definition
Objects»dictobject.c Dictionary object implementation
Objects» dict-common.h Definition of key entry and key objects
Python » pyhash.c Internal hashing algorithm

Dictionary Structure

A dictionary object, pyDictobject, comprises the following elements:

1. The dictionary object properties, containing the size, a version tag,
and the keys and values

2. Adictionary key table object, PyDictKeysObject, containing the keys
and hash values of all entries

311

The Dictionary Type

PyDictObject

Value Table
(split)

‘ Value (PyObject*)

Properties ‘ PyDictKeysObject

Lookup Function

MJ Indices

Key Entries
‘ Key (PyObject*) ‘

Value (PyObject*)

‘ Value (PyObject*)

‘ Value (PyObject*)

‘ Hash Value ‘

The pyDictobject has the following properties:

Field Type Purpose

ma_keys PyDictKeysObject* Dictionary key table object
ma_used Py_ssize_t Number of items in the dictionary
ma_values PyObject** Optional value array (see note)
ma_version_tag uint64_t Version number of the dictionary

Dictionaries can have one of two states: split or combined.
When dictionaries are combined, the pointers to the dictionary
values are stored in the keys object.

When the dictionary is split, the values are stored in an extra
property, ma_values, as a value table of pyobject*.

312

The Dictionary Type

The dictionary key table, pyDictkeysobject, has the following proper-

ties:

Field Type

Purpose

dk_entries PyDictkKeyEntry[] Allocated array of dictionary key entries

dk_indices char[]

Hash table and mapping to dk_entries

dk_lookup dict_lookup_func The lookup function (see next section)

dk_nentries Py_ssize_t
dk_refcnt Py_ssize_t
dk_size Py_ssize_t
dk_usable Py_ssize_t

The number of used entries in the entry table
Reference counter

The size of the hash table

The number of usable entries in the entry
table—when o, dictionary is resized

A dictionary key entry, PyDictKeyEntry, contains the following proper-

ties:

Field Type Purpose

me_hash Py_ssize_t Cached hash code of me_key

me_key PyObject* Pointer to the key object

me_value PyObject* Pointer to the value object (if combined)
Lookups

For a given key object, there is a generic lookup function: lookdict().

Dictionary lookups need to cater to three scenarios:

1. The memory address of the key exists in the key table.

2. The hash value of the object exists in the key table.

3. The key does not exist in the dictionary.

See Also

The lookup function is based on Donald Knuth’s famous book
The Art of Computer Programming. See chapter 6, section 4,

on hashing.

313

https://github.com/python/cpython/blob/v3.9.0/Objects/dictobject.c#L773
https://www.amazon.com/Art-Computer-Programming-Sorting-Searching/dp/0201896850

The Dictionary Type

Here’s the sequence of the lookup function:

1. Get the hash value of ob.

2. Look up the hash value of ob in the dictionary keys and get the
index, ix.

3. If ix is empty, then return pkIx_gmpTY (not found).
4. Get the key entry, ep, for the given index.

5. If the key values match because the object, then ob is the same
pointer at the key value. Return the result.

6. Ifthe key hashes match because the object, ob, resolves to the same
hash value as ep->me_mash, then return the result.

lookupdict() is one of few hot functions in the CPython source
code:

The hot attribute is used to inform the compiler
that a function is a hot spot of the compiled pro-
gram. The function is optimized more aggressively
and on many targets it is placed into special subsec-
tion of the text section so all hot functions appear
close together, improving locality.

— GCC documentation, “Common Function
Attributes”

This is specific to GNU C compilers, but when compiled with
PGO, this function is likely to be optimized by the compiler au-
tomatically.

314

https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html
https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html

Conclusion

Conclusion

Now that you've seen the implementation of some built-in types,
you’re ready to explore others.

When exploring Python classes, it’s important to remember that there
are built-in types written in C and classes inheriting from those types
written in Python or C.

Some libraries have types written in C instead of inheriting from the
built-in types. One example is NumPy, a library for numeric arrays.
The nparray type is written in C and is highly efficient and performant.

In the next chapter, you'll explore the classes and functions defined in
the standard library.

315

https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html

The Standard Library

Python has always come batteries included. This means that a stan-
dard CPython distribution includes libraries for working with files,
threads, networks, websites, music, keyboards, screens, text, and a
whole range of utilities.

Some of the batteries that come with CPython are like AA batteries,
useful for almost any occasion. Examples include the collections mod-
ule and the sys module. But some of them are a bit more obscure, mak-
ing them more like small watch batteries: you never know when you
might need them.

There are two types of modules in the CPython standard library:

1. Those written in pure Python that provide a utility

2. Those written in C with Python wrappers

You'll explore both types in this chapter.

Python Modules

The modules written in pure Python are all located in the Lib directory
in the source code. Some of the larger modules have submodules in
subfolders, like the email module.

A straightforward module that you may not have come across before
is the colorsys module. It’s only a hundred lines of Python code and
contains some utility functions for converting color scales.

316

Python Modules

When you install a Python distribution from source, standard library
modules are copied from the Lib folder into the distribution folder.
This folder is always part of your path when you start Python, so you
can import the modules without having to worry about where they're
located.

For example, here’s how you import and use colorsys:

>>> import colorsys
>>> colorsys

<module 'colorsys' from '/usr/shared/lib/python3.7/colorsys.py'>
>>> colorsys.rgb_to_hls(255,0,0)
(0.0, 127.5, -1.007905138339921)

You can see the source code of rgb_to_hls() inside Lib» colorsys.py:

HLS: Hue, Luminance, Saturation
H: position in the spectrum
L: color lightness

S: color saturation

def rgb_to_hls(r, g, b):
maxc = max(r, g, b)
minc = min(r, g, b)
XXX Can optimize (maxc+minc) and (maxc-minc)
1 = (minc+maxc)/2.0
if minc == maxc:
return 0.0, 1, 0.0
if 1 <= 0.5:

s (maxc-minc) / (maxc+minc)

else:
s = (maxc-minc) / (2.0-maxc-minc)
rc = (maxc-r) / (maxc-minc)
gc = (maxc-g) / (maxc-minc)
bc = (maxc-b) / (maxc-minc)
if r == maxc:

h = bc-gc

317

Python and C Modules

elif g == maxc:

h = 2.0+rc-bc
else:

h = 4.0+gc-rc
h = (h/6.0) % 1.0

return h, 1, s

There’s nothing special about this function—it’s just standard Python.
You'll find a similar situation for all the pure Python standard library
modules. They’re just written in plain Python, well laid out and un-
complicated to understand.

You may even spot improvements or bugs in standard library mod-
ules. If so, you can make changes and contribute them to the Python
distribution. You’ll cover that toward the end of this book.

Python and C Modules

The remainder of modules are written in C or a combination of Python
and C. The source code is in Lib for the Python component and in Mod-
ules for the C component. There are two exceptions:

1. The sys module, found in Python» sysmodule.c

2. The __builtins__ module, found in Python» bltinmodule.c

Because the sys module is so specific to the interpreter and the inter-
nals of CPython, it’s found inside the python directory. It’s also marked
as an “implementation detail” of CPython and not found in other dis-
tributions.

Python will import * from __builtins__ when an interpreter is instan-
tiated, so all the built-in functions like print (), chr(), format(), and so
forth are found within Python» bltinmodule.c.

The built-in function print () was probably the first feature you learned
touse in Python. So what exactly happens when you type print ("Hello,
World")?

318

Python and C Modules

Here’s a breakdown:

N

3
4.
5. Aline break (\n) is sent to file.

The compiler converts the argument "Hello, World" from a string
constant to a PyUnicodeObject.

builtin_print() is executed with one argument and NULL kwnames

. The file variable is set to PyId_stdout, the system’s stdout handle.

Each argument is sent to file.

Here’s how it works:

Python» bltinmodule.c line 1828

static PyObject *

builtin_print(PyObject *self, PyObject *const *args,

Py_ssize_t nargs, PyObject *kwnames)

if (file == NULL || file == Py_None) {
file = _PySys_GetObjectId(&PyId_stdout);

for (i = 0; i < nargs; i++) {

if (1 > 0) {
if (sep == NULL)
err = PyFile_WriteString(" ", file);
else

err = PyFile_WriteObject(sep, file,
Py_PRINT_RAW);
if (err)
return NULL;
3
err = PyFile_WriteObject(args[i], file, Py_PRINT_RAW);
if (err)

return NULL;

319

https://github.com/python/cpython/blob/v3.9.0/Python/bltinmodule.c#L1828

Python and C Modules

if (end == NULL)
err = PyFile_WriteString("\n", file);
else

err

PyFile_WriteObject(end, file, Py_PRINT_RAW);

Py_RETURN_NONE;

The contents of some modules written in C expose operating system
functions. Because the CPython source code needs to compile to ma-
cOS, Windows, Linux, and other *nix-based operating systems, there
are some special cases.

The time module is a good example. The way that Windows keeps and
stores time in the operating system is fundamentally different from
Linux and macOS. This is one of the reasons the accuracy of the clock
functions differs between operating systems.

In Modules» timemodule.c, the operating system time functions for Unix-
based systems are imported from <sys/times.h>:

#ifdef HAVE_SYS_TIMES_H
#include <sys/times.h>
#endif

#ifdef MS_WINDOWS

#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#include "pythread.h"
#endif /* MS_WINDOWS */

320

https://docs.python.org/3/library/time.html#time.clock_gettime_ns

Python and C Modules

Later in the file, time_process_time_ns() is defined as a wrapper for _py-

Time_GetProcessTimeWithInfo():

static PyObject *
time_process_time_ns(PyObject *self, PyObject *unused)
{
_PyTime_t t;
if (_PyTime_GetProcessTimeWithInfo(&t, NULL) < 0) {
return NULL;
}

return _PyTime_AsNanosecondsObject(t);

_PyTime_GetProcessTimeWithInfo() is implemented multiple different
ways in the source code, but only certain parts are compiled into
the binary for the module depending on the operating system. Win-
dows systems will call GetProcessTimes(), and Unix systems will call
clock_gettime().

Other modules that have multiple implementations for the same API
are the threading module, the file system module, and the network-
ing modules. Because the operating systems behave differently, the
CPython source code implements the same behavior as best as it can
and exposes it using a consistent, abstracted API.

321

https://realpython.com/intro-to-python-threading/

The Test Suite

CPython has a robust test suite covering the core interpreter, the stan-
dard library, the tooling, and the distribution for Windows, Linux,
and macOS. It’s located in Lib» test and is written mostly in Python.
The full test suite is a Python package, so you can run it using the
Python interpreter that you've compiled.

Running the Test Suite on Windows

On Windows, use the rt.bat script inside the pcBuild folder. For exam-
ple, here’s how to run the quick mode against the Debug configuration
on an x64 architecture:

> cd PCbuild
> rt.bat -q -d -x64

== CPython 3.9

== Windows-10-10.0.17134-SP0 little-endian

== cwd: C:\repos\cpython\build\test_python_2784
== CPU count: 2

== encodings: locale=cp1252, FS=utf-8

Run tests sequentially

0:00:00 [1/420] test_grammar

0:00:00 [2/420] test_opcodes

0:00:00 [3/420] test_dict

0:00:00 [4/420] test_builtin

322

Running the Test Suite on Linux or macOS

To run the regression test suite against the Release configuration, re-
move the -d flag from the command line.

Running the Test Suite on Linux or
macOS

On Linux and macOS, run the test make target to compile and run the
tests:

$ make test

== (CPython 3.9

== mac0S-10.14.3-x86_64-1386-64bit little-endian

== cwd: /Users/anthonyshaw/cpython/build/test_python_23399
== CPU count: 4

== encodings: locale=UTF-8, FS=utf-8

0:00:00 load avg: 2.14 [1/420] test_opcodes passed
0:00:00 load avg: 2.14 [2/420] test_grammar passed

Alternatively, use the python or python.exe compiled binary path with
the test package:

$./python -m test

== CPython 3.9

== mac0S-10.14.3-x86_64-1386-64bit little-endian

== cwd: /Users/anthonyshaw/cpython/build/test_python_23399
== CPU count: 4

== encodings: locale=UTF-8, FS=utf-8

0:00:00 load avg: 2.14 [1/420] test_opcodes passed
0:00:00 load avg: 2.14 [2/420] test_grammar passed

323

Test Flags

There are additional make targets for testing:

Target Purpose

test Run a basic set of regression tests

testall Run the full test suite twice—once without .pyec files and
once with

quicktest Run a faster set of regression tests, excluding the tests
that take a long time

testuniversal Run the test suite for both architectures in a universal
build on OSX

coverage Compile and run tests with gcov

coverage-lcov Create coverage HTML reports

Test Flags

Some tests require certain flags or else they're skipped. For example,
many of the IDLE tests require a GUI.

To see a list of test suites in the configuration, use the --1ist-tests flag:

$./python -m test --list-tests

test_grammar
test_opcodes
test_dict

test_builtin

test_exceptions

Running Specific Tests

You can run specific tests by providing the test suite as the first argu-
ment.

Here’s an example on Linux or macOS:

324

Running Specific Tests

$./python -m test test_webbrowser

Run tests sequentially
0:00:00 load avg: 2.74 [1/1] test_webbrowser

== Tests result: SUCCESS ==
1 test OK.

Total duration: 117 ms
Tests result: SUCCESS

Here’s an example on Windows:

> rt.bat -q -d -x64 test_webbrowser

You can also see a detailed list of tests that were executed, along with
the result, using the -v argument:

$./python -m test test_webbrowser -v

== CPython 3.9

== mac0S-10.14.3-x86_64-1386-64bit little-endian

== cwd: /Users/anthonyshaw/cpython/build/test_python_24562
== CPU count: 4

== encodings: locale=UTF-8, FS=utf-8

Run tests sequentially

0:00:00 load avg: 2.36 [1/1] test_webbrowser

test_open (test.test_webbrowser.BackgroundBrowserCommandTest) ...ok
test_register (test.test_webbrowser.BrowserRegistrationTest) ...ok
test_register_default (test.test_webbrowser.BrowserRegistrationTest) ...ok
test_register_preferred (test.test_webbrowser.BrowserRegistrationTest) ...ok
test_open (test.test_webbrowser.ChromeCommandTest) ...ok

test_open_new (test.test_webbrowser.ChromeCommandTest) ...ok
test_open_with_autoraise_false (test.test_webbrowser.OperaCommandTest) ...ok

325

Testing Modules

Ran 34 tests in 0.056s

OK (skipped=2)

== Tests result: SUCCESS ==
1 test OK.

Total duration: 134 ms

Tests result: SUCCESS

Understanding how to use the test suite and check the state of the ver-
sion you've compiled is very important if you wish to make changes to
CPython. Before you start making changes, you should run the whole
test suite and make sure everything passes.

Testing Modules

For C extension or Python modules, you can import and test them
using the unittest module. Tests are assembled by module or package.

For example, the Python Unicode string type has tests in Lib» test »
test_unicode.py. The asyncio package has a test package in Lib» test »

test_asyncio.

See Also

If you're new to the unittest module or testing in Python,
then check out Real Python’s “Getting Started With Testing in
Python.”

326

https://realpython.com/python-testing/
https://realpython.com/python-testing/

Test Utilities

Here’s an excerpt from the UnicodeTest class:

class UnicodeTest(string_tests.CommonTest,
string_tests.MixinStrUnicodeUserStringTest,
string_tests.MixinStrUnicodeTest,

unittest.TestCase):

def test_casefold(self):
self.assertEqual('hello’.casefold(), 'hello')
self.assertEqual('hELlo'.casefold(), 'hello')
self.assertEqual('R'.casefold(), 'ss')
self.assertEqual('fi'.casefold(), 'fi')

You can extend the almost-equal operator that you implemented
for Python Unicode strings in earlier chapters by adding a new test
method inside the UnicodeTest class:

def test_almost_equals(self):

self.assertTrue('hello' ~= 'hello')
self.assertTrue('hELlo"' ~= 'hello')
self.assertFalse('hELlo!" ~= 'hello")

You can run this particular test module on Windows:

> rt.bat -q -d -x64 test_unicode

Or you can run it on macOS or Linux:

$./python -m test test_unicode -v

Test Utilities

By importing the test.support.script_helper module, you can access
some helper functions for testing the Python runtime:

e assert_python_ok(*args, **env_vars) executes a Python process with
the specified arguments and returns a (return code, stdout, stderr)
tuple.

327

Conclusion

o assert_python_failure(*args, **env_vars) is similar to
assert_python_ok() but asserts that it fails to execute.

* make_script(script_dir, script_basename, source) makes a script in
script_dir with the script_basename and the source, then returns the
script path. It’s useful to combine with assert_python_ok() or as-
sert_python_failure().

If you want to create a test that will be skipped if the module wasn’t
built, then you can use the test.support.import_module() utility func-
tion. It will raise a skipTest and signal the test runner to skip this test
package. Here’s an example:

import test.support
_multiprocessing = test.support.import_module('_multiprocessing')

Your tests...

Conclusion

The Python regression test suite is full of two decades’ worth of tests
for strange edge cases, bug fixes, and new features. Outside of this,
there’s still a large part of the CPython standard library that has little
or no testing. If you want to get involved in the CPython project, then
writing or extending unit tests is a great place to start.

If you're going to modify any part of CPython or add additional func-
tionality, then you’ll need to have written or extended tests as part of
your patch.

328

Debugging

CPython comes with a built-in debugger, pdb, for debugging Python
applications. The pdb debugger is excellent for debugging crashes in-
side a Python application, as well as for writing tests and inspecting
local variables.

When it comes to CPython, though, you need a second debugger—one
that understands C.

In this chapter, you’ll learn how to:

 Attach a debugger to the CPython interpreter

 Use the debugger to see inside a running CPython process
There are two types of debugger: console and visual. Console
debuggers (like pdb) give you a command prompt and custom

commands to explore variables and the stack. Visual debuggers
are GUI applications that present the data in grids.

The following debuggers are covered in this chapter:

Debugger Type Platform

LLDB Console macOS

GDB Console Linux

Visual Studio debugger Visual Windows

CLion debugger Visual Windows, macOS, Linux
VS Code debugger Visual Windows, macOS, Linux

329

Using the Crash Handler

Using the Crash Handler

In C, if an application tries to read or write to an area of memory that
it shouldn’t, then a segmentation fault is raised. This fault halts
the running process immediately to stop it from doing any damage to
other applications. Segmentation faults can also happen when you try
to read from memory that contains no data or an invalid pointer.

If CPython causes a segmentation fault, then you get very little infor-
mation about what happened:

[1] 63476 segmentation fault ./python portscanner.py

CPython comes with a built-in fault handler. If you start CPython with
-X faulthandler Or -X dev, then instead of printing the system segmen-
tation fault message, the fault handler will print the running threads
and the Python stack trace to where the fault occurred:

Fatal Python error: Segmentation fault
Thread 0x0000000119021dcO (most recent call first):
File "/cpython/Lib/threading.py", line 1039 in _wait_for_tstate_lock
File "/cpython/Lib/threading.py”, line 1023 in join
File "/cpython/portscanner.py", line 26 in main
File "/cpython/portscanner.py", line 32 in <module>

[1] 63540 segmentation fault ./python -X dev portscanner.py

This feature is also helpful when developing and testing C extensions
for CPython.

Compiling Debug Support
To get meaningful information from the debugger, you must compile
the debug symbols into CPython. Without these symbols, the stack

traces within a debug session won’t contain the correct function
names, variable names, or filenames.

330

Using LLDB for macOS

Windows

Following the same steps as you did in the Windows section of the
chapter on Compiling CPython, ensure that you've compiled in the
Debug configuration to get the debug symbols:

> build.bat -p x64 -c Debug

Remember, the Debug configuration produces the executable
python_d.exe, SO make sure you use this executable for debugging.

macOS or Linux

The steps in the chapter on Compiling CPython specify to run the
./configure script with the --with-pydebug flag. If you didn’t include
this flag, then go back and run ./configure again with your original
options and the --with-pydebug flag. This will produce the correct exe-
cutable and symbols for debugging.

Using LLDB for macOS

The LLDB debugger comes with the Xcode developer tools, so you
should already have it installed.

Start LLDB and load the CPython compiled binary as the target:

$ 11db ./python.exe
(11db) target create "./python.exe"
Current executable set to './python.exe' (x86_64).

You'll now have a prompt where you can enter some commands for

debugging.

Creating Breakpoints

To create a breakpoint, use the break set command with the file (rela-
tive to the root) and the line number:

331

Using LLDB for macOS

(11db) break set --file Objects/floatobject.c --line 532
Breakpoint 1: where = python.exe float_richcompare + 2276 at
floatobject.c:532:26, address = 0x000000010006a974

There’s also a shorthand for setting breakpoints: (11db) b 0b-
jects/floatobject.c:532

You can add multiple breakpoints using the break set command. To
list the current breakpoints, use the break 1ist command:

(11db) break list

Current breakpoints:

1: file = 'Objects/floatobject.c', line = 532, exact_match = 0, locations = 1
1.1: where = python.exe float_richcompare + 2276 at floatobject.c:532:26,

address = python.exe[...], unresolved, hit count = 0

Starting CPython

To start CPython, use the process 1launch -- command with the
command-line options you would normally use for Python.

To start Python with a string, such as python -c "print(1)", use the
following command:

(11db) process launch -- -c "print(1)"
To start python with a script, use the following command:

(11db) process launch -- my_script.py

Attaching to a Running CPython Interpreter

If you already have a CPython interpreter running, then you can at-
tach to it.

From inside the LLDB session, run process attach --pid with the pro-
cess ID:

332

Using LLDB for macOS

(11db) process attach --pid 123

You can get the process ID from the Activity Monitor or by using
os.getpid() in Python.

Any breakpoints set up before or after this point will halt the process.

Handling a Breakpoint

To see how breakpoints are handled, set a breakpoint on the objects»
floatobject.c float_richcompare() function.

Next, run the process and compare two float values using the almost-
equal operator that you developed in previous chapters:

(11db) process launch -- -c¢ "1.0~=1.1"
Process 64421 launched: '/cpython/python.exe' (x86_64)
Process 64421 stopped

* '

thread #1, queue = '...', stop reason = breakpoint 1.1
frame #0: 0x000000010006a974 python.exe float_richcompare(v=1.0,
w=1.1, op=6) at floatobject.c:532:26

529 break;
530 case Py_AlE: {
531 double diff = fabs(i - j);
-> 532 const double rel_tol = le-9;
533 const double abs_tol = 0.1;
534 r = (((diff <= fabs(rel_tol * j)) ||

Target 0: (python.exe) stopped.

LLDB will give you a prompt again. You can see the local variables by
using the v command:

(11db) v
(PyObject *) v
(PyObject *)
(int) op = 6
(double) i
(double) j

0x000000010111b370 1.0
0x000000010111b340 1.1

=
]

1.1000000000000001

333

https://github.com/python/cpython/blob/v3.9.0/Objects/floatobject.c#L358

Using LLDB for macOS

(int) r =0

(double) diff = 0.10000000000000009

(const double) rel_tol = 2.1256294105914498E-314
(const double) abs_tol = 0

You can evaluate a C expression using the expr command with any
valid C command. The variables in scope can be used. For example,
to call fabs(rel_tol) and cast to a double, run the following command:

(11db) expr (double)fabs(rel_tol)
(double) $1 = 2.1256294105914498E-314

This prints the resulting variable and assigns it an identifier ($1). You
can reuse this identifier as a temporary variable.

You may also want to explore PyObject instances:

(11db) expr v->ob_type->tp_name
(const char *) $6 = 0x000000010034fc26 "float"

To get a traceback from the breakpoint, use the bt command:

(11db) bt

thread #1, queue = '...', stop reason = breakpoint 1.1
* frame #0:
python.exe float_richcompare(...) at floatobject.c:532:26
frame #1:
python.exe do_richcompare(...) at object.c:796:15
frame #2:
python.exe PyObject_RichCompare(...) at object.c:846:21
frame #3:

python.exe cmp_outcome(...) at ceval.c:4998:16

To step in, use the step command or s.

To step over or continue to the next statement, use the next command
Or n.

To continue execution, use the continue command or c.

334

Using GDB

To exit the session, use the quit command or q.

The LLDB Documentation Tutorial contains a more exhaustive
list of commands.

Using the cpython_11db Extension

LLDB supports extensions written in Python. There’s an open source
extension, cpython_11db, that prints additional information in the
LLDB session for native CPython objects.

To install it, run these commands:

$ mkdir -p ~/.11db

$ cd ~/.11db && git clone https://github.com/malor/cpython-11db

$ echo "command script import ~/.1ldb/cpython-11db/cpython_11db.py" \
>> ~/.11dbinit

$ chmod +x ~/.11dbinit

Now, whenever you see variables in LLDB, you'll also see some addi-
tional information to the right, such as the numeric value for integers
and floating-point numbers or the text for Unicode strings. Within
a LLDB console, you also have an additional command, py-bt, that
prints the stack trace for Python frames.

Using GDB

GDB is a commonly used debugger for C/C++ applications written on
Linux platforms. It’s also very popular with the CPython core devel-
opment team.

When CPython is compiled, it generates a script, python-gdb.py. Don’t
execute this script directly. Instead, GDB will discover it and run it
automatically once configured.

To configure this stage, edit the .gdbinit file inside your home path

335

https://lldb.llvm.org/use/tutorial.html

Using GDB

(~/.gdbinit) and add the following line, where /path/to/checkout is the
path to the cpython git checkout:

add-auto-load-safe-path /path/to/checkout

To start GDB, run it with the argument pointing to your compiled
CPython binary:

$ gdb ./python

GDB will load the symbols for the compiled binary and give you a com-
mand prompt. GDB has a set of built-in commands, and the CPython
extensions bundle some additional commands.

Creating Breakpoints

To set a breakpoint, use the b <file>:<line> command relative to the
path of the executable:

(gdb) b Objects/floatobject.c:532
Breakpoint 1 at 0x10006a974: file Objects/floatobject.c, line 532.

You can set as many breakpoints as you wish.

Starting CPython

To start the process, use the run command followed by arguments to
start the Python interpreter.

For example, use the following command to start with a string:
(gdb) run -c "print(1)"
To start python with a script, use the following command:

(gdb) run my_script.py

336

Using GDB

Attaching to a Running CPython Interpreter

If you already have a CPython interpreter running, then you can at-
tach to it.

From inside the GDB session, run attach with the process ID:
(gdb) attach 123

You can get the process ID from the Activity Monitor or by using
os.getpid() in Python.

Any breakpoints set up before or after this point will halt the process.

Handling a Breakpoint

When GDB hits a breakpoint, you can use the print command or p to
print a variable:

(gdb) p *(PyLongObject*)v
$1 = {ob_base = {ob_base = {ob_refcnt = 8, ob_type = ...}, ob_size = 1},
ob_digit = {42}}

To step into the next statement, use the step command or s.

To step over the next statement, use the next command or n.

Using the python-gdb Extension

The python-gdb extension will load an additional command set into the
GDB console:

Command Purpose

py-print Look up a Python variable and print it

py-bt Print a Python stack trace

py-locals Print the result of locals()

py-up Go down one Python frame

py-down Go up one Python frame

py-list Print the Python source code for the current frame

337

Using Visual Studio Debugger

Using Visual Studio Debugger

Microsoft Visual Studio comes bundled with a visual debugger. This
debugger is powerful and supports a frame stack visualizer, a watch
list, and the ability to evaluate expressions.

To use it, open Visual Studio and the PcBuild» pcbuild.sln solution file.

Adding Breakpoints

To add a new breakpoint, navigate to the file you want in the solution
window, then click in the gutter to the left of the line number.

This adds a red circle to indicate you’ve set a breakpoint on the line:

354 */
355
356 static PyObject*
357 =Ifloat_richcompare(PyObject *v, PyObject *w, int op)
358 {
359 double i, j;
360 int r = @;
361
® 362 assert(PyFloat_Check(v));
363 i = PyFloat_AS_DOUBLE(v);
364
365 = /* Switch on the type of w. Set i and j to doubles to be compared,
366 * and op to the richcomp to use.
367 */
368 if (PyFloat_Check(w))
369 j = PyFloat_AS_DOUBLE(w);
370
371 = else if (IPy_IS_FINITE(i)) {

When you hover over the red circle, a cog appears. Click this cog to
configure conditional breakpoints. Add one or more conditional ex-
pressions that must evaluate before this breakpoint hits:

338

Using Visual Studio Debugger

365 = /* Switch on the type of w. Set i and j to doubles to be compared,
366 * and op to the richcomp to use.
367 X/
© 368 if (PyFloat_Check(w))
Location: floatobject.c, Line: 368, Must match source
Conditions
Conditional Expression v s true v i>=100 X Saved
Add condition
D Actions
Close
369 j = PyFloat_AS_DOUBLE(w);
370
371 E else if (!Py_IS_FINITE(i)) {
220 sL /0 bl
Starting the Debugger

From the top menu, select [Debug)) Start Debugger| or press [F5).

Visual Studio will start a new Python runtime and REPL.

Handling a Breakpoint

When you hit a breakpoint, you can step forward and into statements
using the navigation buttons or the following shortcuts:

+ Step into:
» Step over:
- Step out: [Shift]+[F11]

You'll see a call stack at the bottom. You can select frames in the stack
to change the navigation and inspect variables in other frames:

339

Using CLion Debugger

Call Stack v I x

Name Langl «
© python39_d.dllifloat_richcompare(_object * v, _object * w, int op) Line 368

python39_d.dll!do_richcompare(_ts * tstate, _object * v, _object * w, int op) Line 796

python39_d.dll!PyObject_RichCompare(_object * v, _object * w, int op) Line 846

python39_d.dlllcmp_outcome(_ts * tstate, int op, _object * v, _object * w) Line 4998

python39_d.dll!_PyEval_EvalFrameDefault(_frame * f, int throwflag) Line 2902

[Inline Frame] python39_d.dll!_PyEval_EvalFrame(_ts *) Line 43

python39_d.dll!_PyEval_EvalCode(_ts * tstate, _object * _co, _object * globals, _object * locals, _object * const * args, __int64 argcou...

python39_d.dll!_PyFunction_Vectorcall(_object * func, _object * const * stack, unsigned __int64 nargsf, _object * kwnames) Line 401

python39_d.dll!_PyObject_VectorcallTstate(_ts * tstate, _object * callable, _object * const * args, unsigned __int64 nargsf, _object * k...

[Inline Frame] python39_d.dll!_PyObject_Vectorcall(_object *) Line 120

python39_d.dll!call_function(_ts * tstate, _object * * * pp_stack, __int64 oparg, _object * kwnames) Line 4853

python39_d.dll!_PyEval_EvalFrameDefault(_frame * f, int throwflag) Line 3324

[Inline Frame] python39_d.dIl!_PyEval_EvalFrame(_ts *) Line 43

python39_d.dll!_PyEval_EvalCode(_ts * tstate, _object * _co, _object * globals, _object * locals, _object * const * args,

nvthon i iect 2] X it i iect *
Call Stack [REIEEIGRINS

nlnnonajajajan[oa[no]g)

nction a n ack un
Exception Settings Command Immediate Window = Outpu

In the code editor, you can highlight any variable or expression to see
its value. You can also right-click and selectAdd Watch|. This adds the
variable to the Watch window, where you can quickly see the values
of variables you need to help you debug;:

Watch 1 v I x
Search (Ctrl+E) P~ Search Depth: 3~
Name Value Type -~
@ tp_free 0x00007ffdf70d33a5 {python39_d.dll!PyObject_Free} void(*)(void *)
@ tp_is_gc 0x0000000000000000 int(*)(_object *)
b @ tp_bases 0x00000224abfe6050 {ob_refcnt=1 ob_type=0x00007fdf7882430 {... _object *
b @ tp_mro 0x00000224abfe60a0 {ob_refcnt=1 ob_type=0x00007ffdf7882430 {... _object *
> @ tp_cache 0x0000000000000000 <NULL> _object *
b @ tp_subclasses 0x0000000000000000 <NULL> _object *
> @ tp_weaklist 0x00000224abfe79b0 {ob_refcnt=1 ob_type=0x00007ffdf7887440 {... _object *
@ tp_del 0x0000000000000000 void(*)(_object *)
@ tp_version_tag 0 unsigned int
@ tp_finalize 0x0000000000000000 void(*)(_object *)
@ tp_vectorcall 0x0000000000000000 _object *(*)(_object *...
b @ v->ob_type->tp_name 0x00007ffdf778335¢ “float" Q ~ const char *
Add item to watch =

LNCLRRRIEIY Watch 1

Using CLion Debugger

The CLion IDE comes bundled with a powerful visual debugger. It
works with LLDB on macOS and GDB on macOS, Windows, and
Linux.

To configure the debugger, go to Preferences and select
[Build, Execution, Deployment>> Toolchains]:

340

Using CLion Debugger

e e Preferences
& Build, i >
Appearance & Behavior N Name: Default
R
Editor CMake: Bundled v |
Plugins + Version: 3.16.0

Version Control Make: Detected: /usr/bin/make vl

Build, Execution, Deployment

C Comopiler: Detected: /Library/Developer/CommandLineTools/usr/bin | ¥ | | ...

CMake C++ Compiler: | Detected: /Library/Developer/CommandLineTools/usr/bin | ¥ | | ...
Compilation Database

Custom Build Targets

Build Tools Debugger: Bundled LLDB v .
Gradle V Version: 9.0.1
Make

Debugger

Python Debugger
Python Interpreter
Deployment
Console
Coverage
Dynamic Analysis Tools
Sanitizers
Valgrind
Profiler
Embedded Development

Required Plugins

2 cancet | nopy | (ECE

There is a selection box for the target debugger. Select the appropriate
option for your operating system:

« macOS: Bundled LLDB
« Windows or Linux: Bundled GDB

Both the LLDB and GDB options benefit from the cpython_11db
and python-gdb extensions, respectively. Read the LLDB and
GDB sections in this chapter for information on how to install
and enable these extensions.

Debugging a Make Application

From CLion 2020.2, you can compile and debug any makefile-based
project, including CPython.

To start debugging, complete the steps in the “Setting Up JetBrains

341

Using CLion Debugger

CLion” section in the chapter “Setting Up Your Development Environ-
ment.”

After completing these steps, you’ll have a Make Application target. Se-

lect from the top menu to start the process and start de-

bugging.

Alternatively, you can attach the debugger to a running CPython pro-
cess.

Attaching the Debugger

To attach the CLion debugger to a running CPython process, select
[Run>> Attach to Process],

A list of running processes will pop up. Find the Python process you
want to attach to and select [Attach|. The debugging session will begin.

Important

If you have the Python plugin installed, it will show the Python
process at the top. Don’t select this one!

This uses the Python debugger, not the C debugger:

Attach with Python 3.9.0a2+ (/Users/anthonyshaw/CLionPr...
Python
Native
1launchd

port, args=(host, port, results)) 101 syslogd

102 UserEventAgent

105 uninstalld

106 kextd

107 fseventsd

108 mediaremoted

111 systemstats

112 configd

-format(results.get(3)) 113 endpointsecurityd

n_g 4(+ima +imal) +

Instead, scroll further down into the Native list and find the cor-
rect Python process.

342

Using CLion Debugger

Creating Breakpoints

To create a breakpoint, navigate to the file and line you want, then
click in the gutter between the line number and the code. A red circle
will appear to indicate the breakpoint is set:

break;
case Py_ALlE: {
double diff = fabs(i - j);
const double rel_tol = le-9;
[] const double abs_tol = 0.1;
r = (((diff <= fabs(rel_tol * j)) ||
(diff <= fabs(rel_tol * i))) ||
(diff <= abs_tol));
i
break;
¥
return PyBool_FromLong(r);

Unimplemented:
Py_RETURN_NOTIMPLEMENTED;
+

Right-click the breakpoint to attach a condition:

[rm.o

he 4 break;

n.o case Py_ALlE: {
double diff = fabs(i - j);
const double rel_tol = le-9;

(] const double abs_tol = 0.1;

ntabieet cin83 (diff <= fabs(rel_tol * 3)) ||
o [Enabled (diff <= fabs(rel_tol x i))) ||
obiect @ Suspena (diff <= abs_tol));

pi(Py Condition:
t* Py | diff > 0.1

Object

TZ”: More (03F8) pone FromLong(r);
ot *,

t *, PyObject *) : PyObject * -

Obiject *) : PyObject * Unimplemented:

(PyObject *, PyObject *, int) :
t %, PyObject *) : PyObject * }
(PyTypeObiect *, PyObiect *)

Py_RETURN_NOTIMPLEMENTED;

To see and manage all current breakpoints, navigate from the top
menu to [Run>> View Breakpoints]:

343

Using CLion Debugger

[JON Breakpoints

+ - W boolobject.c:48
® Line Breakpoints Enabled
@ floatobject.c:533
® boolobject.c:48
4 Exception Breakpoints Condition:
% When any is thrown
JavaScript Exception Breakpoints
& Any exception Log: | | "Breakpoint hit" message | | Stack trace

Suspend

Python Exception Breakpoint Evaluate and log:
Any exception
Remove once hit
Disable until hitting the following breakpoint:
<None> -
After hit Disable again () Leave enabled

PyObject *x = Py_False;
long ok;

® if (!_PyArg_NoKeywords(funcname: "bool", kwds))
return NULL;
if (!PyArg_UnpackTuple(args, "bool", 0, 1, &x))
return NULL;
ok = PyObject_IsTrue(x);
if (ok < 0)

You can enable and disable breakpoints as well as disable them once
another breakpoint has been hit.

Handling Breakpoints

Once a breakpoint has been hit, CLion will set up the Debug panel.
Inside the Debug panel is a call stack showing where the breakpoint
hit. You can select other frames in the call stack to switch between
them.

Next to the call stack are the local variables. You can expand the prop-
erties of pointers and type structures, and the value of simple types
will be shown:

Debug: # python

I> Debugger HEiConsole = 2 ¥ ¥ 2t % [

Frames Variables EN LLDB Memory View
L Thread-1-<com.apple.main-thread> v 3 v = {PyObject * | 0x107f957c0} 1.0

L)

P Floatobject.c:533 i ob_refcnt = {Py_ssize_t} 3
HELCISHATIIT AELIHJEE & ob_type = {_typeobject * | 0x107da3920} 0x000000010|

IE1 do_richcompare object.c:796

% I PyObiect RichG s s ob_base = {PyVarObject}

'E' yobjectRichtompare ob/ect.c: tp_name = {const char * | 0x107cfac26} "float"
¢' O] cmp_outcome ceval.c.4998 8 tp_basicsize = {Py_ssize_t} 24

IC1 _PyEval_EvalFrameDefault ceval.c:2907 . g)
» o1 tp_itemsize = {Py_ssize_t} 0

I51 _PyEval_EvalFrame pycore cevalh:43

I _PyEval_EvalCode ceval.c:4742

[0 _PyEval_EvalCodeWithName ceval.c:4774
IC1 PyEval_EvalCodeEx ceval.c:4790
[C1DyEval EvalCade :

tp_dealloc = {destructor | 0x107a14f50} (python.exe
o1 tp_vectorcall_offset = {Py_ssize_t} 0
o1 tp_getattr = {getattrfunc | 0x0} NULL
o1 tp_setattr = {setattrfunc | 0x0} NULL

344

Conclusion

Within a break, you can evaluate expressions to get more information
about the local variables. You can find the Evaluate window in
> Debugging Actions >> Evaluate Expression] or in a shortcut icon in the De-
bug window.

Inside the Evaluate window, you can type expressions, and CLion will
type-ahead with the property names and types:

e o Evaluate
Expression:
Set i and j to doubles to bg |V->Ob_type-> =)
¢ ob_base PyVarObject
Result: £ tp_alloc allocfunc
tp_as_async PyAsyncMethods *
F tp_as_buffer PyBufferProcs
¢ tp_as_mapping PyMappingMethods
tp_as_number PyNumberMethods

 tp_as_sequence PySequenceMethods
+n b touct 4 hiact

use.

o+ % % *

You can also cast expressions, which is useful for casting Pyobject* into
the actual type, such as into a PyFloatObject:

STreT-ToT* 177717
toL); e o Evaluate
Expression:
((PyFloatObject*)v)->ob_fvall -
Use 0% to add to Watches

Result:
8 result = {double} 1

Conclusion

In this chapter, you've seen how to set up a debugger on all the major
operating systems. While the initial setup is time-consuming, the re-
ward is great. Being able to set breakpoints and explore variables and
memory for a running CPython process will give you superpowers.

You can use this skill to extend CPython, optimize existing parts of the
codebase, or track down nasty bugs.

345

Benchmarking, Profiling,
and Tracing

When making changes to CPython, you need to verify that your
changes don’t have a significant detrimental impact on performance.
You may even want to make changes to CPython that improve
performance.

There are solutions for profiling that you’ll cover in this chapter:
1. Using the timeit module to check a simple Python statement thou-

sands of times for the median execution speed

2. Running pyperformance, the Python Benchmark Suite, to compare
multiple versions of Python

3. Using cProfile to analyze execution times of frames

4. Profiling the CPython execution with probes
The choice of solution depends on the type of task:

« A benchmark will produce an average or median runtime of a
fixed code snippet so that you can compare multiple Python run-
times.

+ A profiler will produce a call graph with execution times so that
you can understand which function is the slowest.

Profilers are available at a C level or a Python level. If you're profiling
a function, module, or script written in Python, then you want to use

346

Using timeit for Microbenchmarks

a Python profiler. If you're profiling a C extension module or a modi-
fication to the C code in CPython, then you need to use a C profiler or
a combination of C and Python profilers.

Here is a summary of some of the tools available:

0os
Tool Category Level Support
timeit Benchmarking Python All
pyperformance Benchmarking Python All
cProfile Profiling Python All
DTrace Tracing/Profiling C Linux,
macOS

Before you run any benchmarks, it’s best to close down all appli-
cations on your computer so the CPU is dedicated to the bench-
mark.

Using timeit for Microbenchmarks

The Python Benchmark Suite is a thorough test of CPython’s runtime
with multiple iterations. If you want to run a quick, simple compari-
son of a specific snippet, then use the timeit module instead.

To run timeit for a short script, run the compiled CPython with the -m
timeit module and a script in quotes:

$./python -m timeit -c "x=1; x+=1; x**x"
1000000 loops, best of 5: 258 nsec per loop

To run a smaller number of loops, use the -n flag:

$./python -m timeit -n 1000 "x=1; x+=1; x**x"
1000 loops, best of 5: 227 nsec per loop

347

Using timeit for Microbenchmarks

timeit Example

In this book, you’ve introduced changes to the float type by support-
ing the almost-equal operator.

Try this test to see the current performance of comparing two float
values:

$./python -m timeit -n 1000 "x=1.0001; y=1.0000; x~=y"
1000 loops, best of 5: 177 nsec per loop

The implementation of this comparison is in float_richcompare(), in-
side Objects» floatobject.c:

Objects» floatobject.c line 358

static PyObject*
float_richcompare(PyObject *v, PyObject *w, int op)
{

case Py_AlE: {
double diff = fabs(i - j);
double rel_tol = le-9;
double abs_tol = 0.1;
r = (((diff <= fabs(rel_tol * j)) ||
(diff <= fabs(rel_tol * i))) ||
(diff <= abs_tol));

break;

Notice that the rel_tol and abs_tol values are constant but haven’t
been marked as such. Change them to the following:

const double rel_tol = le-9;
0.1;

const double abs_tol

348

https://github.com/python/cpython/blob/v3.9.0/Objects/floatobject.c#L358

Using the Python Benchmark Suite for Runtime Benchmarks

Now compile CPython again and rerun the test:

$./python -m timeit -n 1000 "x=1.0001; y=1.0000; x~=y"
1000 loops, best of 5: 172 nsec per loop

You might notice a minor (1 to 5 percent) improvement in perfor-
mance. Experiment with different implementations of the compari-
son to see if you can improve it further.

Using the Python Benchmark Suite for
Runtime Benchmarks

The Python Benchmark Suite is the tool to use when you want to com-
pare the complete performance of Python. The Python Benchmark
suite is a collection of Python applications designed to test multiple
aspects of the Python runtime under load.

The Benchmark Suite tests are pure Python, so they can be used to test
multiple runtimes, such as PyPy and Jython. They’re also compatible
with Python 2.7 up to the latest version.

Any commits to the master branch on github.com/python/cpython
will be tested using the benchmark tool, and the results will be up-
loaded to the Python Speed Center:

349

https://github.com/python/cpython
https://speed.python.org

Using the Python Benchmark Suite for Runtime Benchmarks

@ puthon SPEED CENTER

Changes Timeline Comparison
Chart type: normalbars [Normalization: None B horizontal
speed-python
Broadwell-EP .
Time
20

M lto-pgo latest in branch ‘master’ @ speed-python

1.8
CPyth M (to-pgo latest in branch ‘master’ @ Broadwell-EP
);tto?pngo |atestinibranch: 16 tto-pgo latest in branch 3.5’ @ speed-python
'master’ M lto-pgo latest in branch '3.5" @ Broadwell-EP

14 M lto-pgo latest in branch 3.6’ ® speed-python
Il lto-pgo latest in branch ‘3.6’ @ Broadwell-EP
12 M lto-pgo latest in branch 2.7 @ speed-python
M lto-pgo latest in branch 2.7' @ Broadwell-EP

Ito-pgo latest in branch '3.5'
Ito-pgo latest in branch
'3.6'

Ito-pgo latest in branch 2.7'

seconds (less is better)
5

- NIINIAUMI.IIH. Bl H\l”. I L l il

chameleon
chaos 2
crypto_pyaes ¥

deltablue e

2 dianan

You can compare commits, branches, and tags side by side using the
Speed Center. The benchmarks use both the profile-guided optimiza-
tion and regular builds with a fixed hardware configuration to produce
stable comparisons.

You can install the Python Benchmark Suite from PyPI using a Python
runtime (other than the one you’re testing) in a virtual environment:

(venv) $ pip install pyperformance

Next, you need to create a configuration file and an output directory
for the test profile. It’s recommended that you create this directory
outside of your Git working directory. This will also allow you to check
out multiple versions.

In the configuration file, for example ~/benchmarks/benchmark.cfg, add
the following lines:

350

Using the Python Benchmark Suite for Runtime Benchmarks

cpython-book-samples» 62 » benchmark.cfg

[config]
Path to output json files

json_dir = ~/benchmarks/json

If True, then compile CPython in Debug mode (LTO and PGO disabled),
run benchmarks with --debug-single-sample, and disable upload.

#

Use this option to quickly test a configuration.

debug = False

[scm]
Directory of CPython source code (Git repository)

repo_dir = ~/cpython

Update the Git repository (git fetch)?
update = False

Name of the Git remote, used to create revision of
the Git branch.

git_remote = remotes/origin

[compile]
Create files in bench_dir:

bench_dir = ~/benchmarks/tmp

Link-time optimization (LTO)?

1to = True

Profile-guided optimization (PGO)?

pgo = True

The space-separated list of libraries that are package only

pkg_only =

Install Python? If False, then run Python from the build directory

install = True

351

Using the Python Benchmark Suite for Runtime Benchmarks

[run_benchmark]
Run "sudo python3 -m pyperf system tune" before running benchmarks?

system_tune = True

—--benchmarks option for 'pyperformance run'

benchmarks =

—--affinity option for 'pyperf system tune' and 'pyperformance run'

affinity =

Upload generated JSON file?
upload = False

Configuration to upload results to a Codespeed website
[upload]

url =

environment =

executable =

project =

[compile_all]
List of CPython Git branches
branches = default 3.6 3.5 2.7

List of revisions to benchmark by compile_all
[compile_all revisions]
List of 'shal=' (default branch: 'master') or 'shal=branch'

used by the "pyperformance compile_all" command

Executing the Benchmark

Once you've set up your configuration file, you can run the benchmark
with the following command:

$ pyperformance compile -U ~/benchmarks/benchmark.cfg HEAD

352

Using the Python Benchmark Suite for Runtime Benchmarks

This will compile CPython in the repo_dir directory you specified and
create the JSON output with the benchmark data in the directory spec-
ified in the config file.

Comparing Benchmarks

If you want to compare JSON results, the Python Benchmark Suite
doesn’t come with a graphing solution. Instead, you can use the fol-
lowing script from within a virtual environment.

First, install the dependencies:
$ pip install seaborn pandas pyperformance
Then create a profile.py script:

cpython-book-samples? 62» profile.py

import argparse
from pathlib import Path

from perf._bench import BenchmarkSuite

import seaborn as sns

import pandas as pd
sns.set(style="whitegrid")

parser = argparse.ArgumentParser()
parser.add_argument("files", metavar="N", type=str, nargs="+",
help="files to compare™)

args = parser.parse_args()

benchmark_names = []
records = []
first = True
for f in args.files:
benchmark_suite = BenchmarkSuite.load(f)

if first:

353

Using the Python Benchmark Suite for Runtime Benchmarks

Initialize the dictionary keys to the benchmark names
benchmark_names = benchmark_suite.get_benchmark_names()
first = False
bench_name = Path(benchmark_suite.filename).name
for name in benchmark_names:
try:
benchmark = benchmark_suite.get_benchmark(name)
if benchmark is not None:
records.append({
"test": name,
"runtime": bench_name.replace(".json", ""),
"stdev": benchmark.stdev(),
"mean": benchmark.mean(),
"median": benchmark.median()
D
except KeyError:
Bonus benchmark! Ignore.

pass

df = pd.DataFrame(records)

for test in benchmark_names:
g = sns.factorplot(
x="runtime",
y="mean",
data=df[df["test"] == test],
palette="Y1GnBu_d",
size=12,
aspect=1,
kind="bar")
g.despine(left=True)
g.savefig("png/{}-result.png".format(test))

354

Profiling Python Code with cProfile

Then, to create a graph, run the script from the interpreter with the
JSON files you've created:

$ python profile.py ~/benchmarks/json/HEAD.json ...

This will produce a series of graphs in the subdirectory png/ for each
executed benchmark.

Profiling Python Code with cpProfile

The standard library comes with two profilers for Python code:

1. profile: A pure Python profiler

2. cProfile: A faster profiler written in C
In most cases, cProfile is the best module to use.

You can use cProfile to analyze a running application and collect deter-
ministic profiles on the evaluated frames. You can display a summary
of the output from cProfile on the command line or save it to a .pstat
file for analysis in an external tool.

In the chapter “Parallelism and Concurrency,” you wrote a port scan-
ner application in Python. Try profiling that application in cProfile.

To run the cProfile module, run python at the command line with the
-m cProfile argument. The second argument is the script to execute:

$ python -m cProfile portscanner_threads.py
Port 80 is open
Completed scan in 19.8901150226593 seconds
6833 function calls (6787 primitive calls) in 19.971 seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)
2 0.000 0.000 0.000 0.000 ...

355

Profiling Python Code with cProfile

The output will print a table with the following columns:

Column Purpose

ncalls Number of calls

tottime Total time spent in the function (minus subfunctions)
percall Quotient of tottime divided by ncalls

cumtime Total time spent in the function (including subfunctions)
percall Quotient of cumtime divided by primitive calls

filename:lineno(function) Data of each function

You can add the -s argument and the column name to sort the output:

$ python -m cProfile -s tottime portscanner_threads.py

This command will sort the output by the total time spent in each func-
tion.

Exporting Profiles

You can run the cprofile module again with the -o argument to specify
an output file path:

$ python -m cProfile -o out.pstat portscanner_threads.py

This will create a file, out.pstat, that you can load and analyze with the
Stats class or with an external tool.

Visualizing with SnakeViz

SnakeViz is a free Python package for visualizing profile data inside a
web browser.

To install SnakeViz, use pip:

$ python -m pip install snakeviz

356

https://docs.python.org/3.9/library/profile.html#the-stats-class

Profiling Python Code with cProfile

Then execute snakeviz on the command line with the path to the stats
file you created:

$ python -m snakeviz out.pstat

This will open your browser and allow you to explore and analyze the
data:

o
\\\‘
style: | Sunburst § ~\~ ‘

peptn: | 10 §

\l
catote: |1 ~ 10004 —— -!\ ,\\
L'\)
\/

/Q-

ncalls tottime percall cumtime percall filename:lineno(function)

103 1.024 0.009942 1.024 0.009942 ~:0(<method 'acquire' of '_thread.lock' objects>)

Visualizing With PyCharm

PyCharm has a built-in tool for running cprofile and visualizing the
results. To execute it, you need to have a Python target configured.

To run the profiler, select your run target, then select

Profile (target)| from the top menu. This will execute the run

target with cProfile and open a visualization window with the tabular
data and a call graph:

357

Profiling C Code with DTrace

fetch_url times;20 _init_ times;1720 draw times;1720 write_to_png times;10
Total: 36ms 3.5% > Total: 88ms 8.6% > Total: 514ms 50.0% Total: S1ms 5.0%
Own: oms 0.0% Own: 24ms 2.3% Own: S9ms 57% Own: 61ms 5.0%
A A A A
init times;20 _init_ times;20 finish times;10
Total: 188ms 18.3% Total: 519ms 50.5% Total: §1ms 5.0%
Own: Oms 00% Own: Oms 0.0% Own: Oms 0.0%
A A A
convert times;20
Tota: 77ams 75.3%
Own: oms 0.0%
A
Svg2pdf times;10 svg2png times;10
Total: 342ms 33.3% Total: 432ms 42.0%
oms 00% Own: Oms 0.0%
A
main times;1
Total: 791ms 76.9%
Own: Ims 0%
s
main.py times1 surface.py times;1 defs.py times;1 Image.py times;1
Total: 1028ms 100.0% Total: 223ms 217% Total: 68ms 6.6% Total: 41ms 4.0%
Own: Oms 00% Own: Oms 0.0% Own: OmsO00% Own: Oms00%

Profiling C Code with DTrace

The CPython source code has several markers for the DTrace tracing
tool. DTrace executes a compiled C/C++ binary, then catches and han-
dles events within it using probes.

For DTrace to provide meaningful data, the compiled application
must have custom markers compiled into the application. These are
events raised during the runtime. The markers can attach arbitrary
data to help with tracing.

For example, the frame evaluation function in Python» ceval.c includes
a call to dtrace_function_entry():

if (PyDTrace_FUNCTION_ENTRY_ENABLED())

dtrace_function_entry(f);

This raises a marker called function__entryin DTrace every time a func-
tion is entered.

CPython has built-in markers for:

« Line execution

+ Function entry and return (frame execution)

358

https://github.com/python/cpython/blob/v3.9.0/Python/ceval.c#L5587

Profiling C Code with DTrace

 Garbage collection start and completion

» Module import start and completion

« Audit hook events from sys.audit()
Each of these markers has arguments with more information. For ex-
ample, the function__entry marker has arguments for:

« Filename

» Function name

+ Line number

The static marker arguments are defined in the official documenta-
tion.

DTrace can execute a script file written in D to execute custom code
when probes are triggered. You can also filter out probes based on
their attributes.

Related Source Files

Here are the source files related to DTrace:

File Purpose

Include» pydtrace.h API definition for DTrace markers

Include» pydtrace.d Metadata for the Python provider that
DTrace uses

Include» pydtrace_probes.h Auto-generated headers for handling
probes

Installing DTrace

DTrace comes preinstalled on macOS and can be installed on Linux
using one of the packaging tools.

359

https://docs.python.org/3/howto/instrumentation.html#available-static-markers
https://docs.python.org/3/howto/instrumentation.html#available-static-markers

Profiling C Code with DTrace

Here’s the command for YUM-based systems:
$ yum install systemtap-sdt-devel
Here’s the command for APT-based systems:

$ apt-get install systemtap-sdt-dev

Compiling DTrace Support

DTrace support must be compiled into CPython. You can do this with
the ./configuration script.

Run . /configure again with the same arguments you used in the chap-
ter “Compiling CPython,” and add the flag --with-dtrace. Once this is
complete, run make clean & make to rebuild the binary.

Check that the configuration tool created the probe header:

$ 1s Include/pydtrace_probes.h
Include/pydtrace_probes.h

Important

Newer versions of macOS have kernel-level protection, called
System Integrity Protection (SIP), that interferes with DTrace.

The examples in this chapter use the CPython probes. If you
want to include 1ibc or syscall probes to get extra information,
then you’ll need to disable SIP.

Using DTrace From CLion

The CLion IDE comes bundled with DTrace support. To start tracing,
select [Run)) Attach Profiler to Process| and select the running Python
process.

The profiler window will prompt you to start and then stop the

360

Profiling C Code with DTrace

tracing session. Once tracing is complete, it will provide you with a
flame graph showing execution stacks and call times, a call tree, and
a method list:

Profiler: python python

|2 Flame Graph Call Tree Method List

All threads merged @®
d=3805513 o

tem_kernel.dylib*fstat$INODE64
n.exe'_io_FilelO_readall_imp!
n.exe'_io_FilelO_readall

n.exe ' cfunction_vectorcall_NOARGS
n.exe’_PyObject_VectorcallTstate
n.exe'_PyObject_CallNoArg

n.exe_bufferedreader_read_all python.exe'_PyEval_EvalFrameDefault
n.exe'_io_Buffered_read_impl python.exe’_PyEval_EvalFrame
n.exe'_io_Buffered_read python.exe ' function_code_fastcall

n.exe ' method_vectorcall FASTCALL python.exe’_PyFunction_Vectorcall
n.exe'_PyObject VectorcallTstate
n.exe’_PyObject Vectorcall

Structure

n.exe call_function python.exe’_PyMem_DebugRawFree
: n.exe'_PyEval_EvalFrameDefault python.exe'_PyMem_DebugFree
n.exe'_PyEval_EvalFrame python.exe' PyObject Free
2 n.exe function_code_fastcall python.exe unicode_dealloc

DTrace Example

In this example, you’ll test the multithreaded port scanner you created
in the chapter “Parallelism and Concurrency.”

Create a profile script in D, profile_compare.d. To reduce the noise
from the interpreter startup, this profiler will start when portscan-
ner_threads.py:main()is entered:

cpython-book-samples» 62» profile_compare.d

#pragma D option quiet

self int indent;

pyvthon$target:::function-entry
/basename(copyinstr(arg0)) == "portscanner_threads.py"
&& copyinstr(argl) == "main"/

{

self->trace = 1;

361

Profiling C Code with DTrace

self->last = timestamp;

python$target:::function-entry
/self->trace/
{
this->delta = (timestamp - self->last) / 1000;
printf("%d\t%*s:", this->delta, 15, probename);
printf("%*s", self->indent, "");
printf("%s:%s:%d\n", basename(copyinstr(arg0)), copyinstr(argl), arg2);
self->indent++;

self->last = timestamp;

python$target:::function-return
/self->trace/

{
this->delta = (timestamp - self->last) / 1000;

self->indent--;

printf("%d\t%*s:", this->delta, 15, probename);

printf("%*s", self->indent, "");

printf("%s:%s:%d\n", basename(copyinstr(arg0)), copyinstr(argl), arg2);

self->last = timestamp;

python$target: : : function-return
/basename(copyinstr(arg0)) == "portscanner_threads.py"
&& copyinstr(argl) == "main"

{

self->trace = 0;

This script will print a line every time a function is executed and time
the delta between when the function starts and exits.

You need to execute with the script argument -s profile_compare and
the command argument -c './python portscanner_threads.py:

362

Conclusion

$ sudo dtrace -s profile_compare.d -c './python portscanner_threads.py'
0 function-entry:portscanner_threads.py:main:16

28 function-entry: queue.py:__init_ :33

18 function-entry: queue.py:_init:205

29 function-return: queue.py:_init:206

46 function-entry: threading.py:__init__ :223

33 function-return: threading.py:__init__:245

27 function-entry: threading.py:__init_ :223

26 function-return: threading.py:__init__ :245

26 function-entry: threading.py:__init__:223

25 function-return: threading.py:__init__:245

Older versions of dtrace may not have a -c option. In this case,
you will have to run DTrace and the Python command in sepa-
rate shells.

In the output, the first column is the time delta in microseconds since
the last event, followed by the event name, filename, and line num-
ber. When function calls are nested, the filename will be increasingly
indented to the right.

Conclusion

In this chapter, you’ve explored benchmarking, profiling, and tracing
using a number of tools designed for CPython. With the right tooling,
you can find bottlenecks, compare performance of multiple builds,
and identify improvement opportunities.

363

Next Steps

In this chapter, you’ll look at three possible uses for the information
in this book:

1. Writing C or C++ extension modules

2. Improving your Python applications

3. Contributing to the CPython project

The first practical use of this knowledge is to write extension modules
in C or C++.

Writing C Extensions for CPython

There are several ways in which you can extend the functionality of
Python. One of these is to write your Python module in C or C++.
This process can lead to improved performance and better access to
C library functions and system calls.

If you want to write a C extension module, then these are some essen-
tials bits of knowledge covered in this book that you can refer back
to:

+ How to set up a C compiler and compile C modules from
the chapter “Compiling CPython”

« How to set up your development environment for C from
the chapter “Setting Up Your Development Environment”

364

Improving Your Python Applications

« How to increment and decrement references to gener-
ated objects from the “Reference Counting” section in the chap-
ter “Memory Management”

+ What pyobject* is and what its interfaces are from the “Ob-
ject and Variable Object Types” section in the chapter “Objects and
Types” chapter

« What type slots are and how to access Python type APIs
from C from the “Type Slots” section in the “Objects and Types”
chapter

+ How to add breakpoints to C source files for your exten-
sion module and debug them from the “Debugging” chapter

See Also

If you haven’t written a C extension module before, then check
out Real Python’s “Building a C Extension Module.” The tu-
torial includes a concrete example of building, compiling, and
testing an extension module.

Improving Your Python Applications

There are several important topics covered in this book that can help
you improve your applications. Here are some examples:

« Using parallelism and concurrency techniques to re-
duce the execution time of your applications from the
“Parallelism and Concurrency” chapter

« Customizing the garbage collector algorithm to better
handle memory in your application by collecting at the
end of a task from the “Garbage Collection” section in the
“Memory Management” chapter

« Using the debuggers to debug C extensions and triage is-
sues from the “Debugging” chapter

365

https://realpython.com/build-python-c-extension-module

Contributing to the CPython Project

« Using profilers to profile the execution time of your code
from the “Profiling Python Code with cProfile” section of the
“Benchmarking, Profiling, and Tracing” chapter

« Analyzing frame execution to inspect and debug complex
issues from the “Frame Execution Tracing” section in the “Evalu-
ation Loop” chapter

Contributing to the CPython Project

In twelve months, CPython had twelve new minor releases, hundreds
of changes and bug reports, and thousands of commits to the source
code.

CPython is one of the biggest, most vibrant, and most open software
projects out there. The knowledge you've gained in this book will give
you a massive head start to navigating, understanding, and helping
improve the CPython project.

The CPython community is eager for more contributors. But before
submitting a change, improvement, or fix to CPython, you need to
know where to start. Here are a few ideas:

1. Triaging issues raised by developers on bugs.python.org

2. Fixing small, well-described issues

Let’s explore each of those in a bit more detail.

Triaging Issues

All bug reports and change requests are first submitted to
bugs.python.org, also known as BPO. This website is the bug
tracker for the CPython Project. If you want to submit a pull request
on GitHub, then you first need a BPO number, which is the issue
number created by BPO (bugs.python.org).

To get started, register yourself as a user by going to on

the left menu.

366

https://bugs.python.org
https://bugs.python.org

Contributing to the CPython Project

The default view isn’t particularly productive and shows both issues
raised by users and those raised by core developers, which likely al-
ready have a fix.

Instead, after logging in, go to |Your Queries)) Edit| on the left menu.
This page will give you a list of queries for the bug index that you can
bookmark:

Query

Patches leave out [
pending issues leave out [}
serverhorror's Reports leave out [
Easy Tasks leave out [
Showstoppers leave out [
Latest issues include [
Release Blockers leave out [
Critical leave out |
py3k-open leave out [
Needs review leave out [
Crashers leave in [

Open Doc Bugs 2.6 leave out)
Opened patches leave out

2 e

Change the value to leave in to include these queries in the

Nour Queris| menu.

Here are some of the queries I find useful:
« Easy Documentation Issues: Documentation improvements
that haven’t been made

« Easy Tasks: Tasks that have been identified as good for begin-
ners

+ Recently Created: Recently created issues

+ Reports Without Replies: Bug reports that never got a reply
» Unread: Bug reports that never got read

+ 50 Latest Issues: The fifty most recently updated issues

With these views, you can follow the “Triaging an Issue” guide for the
latest process on commenting on issues.

367

https://devguide.python.org/triaging/

Contributing to the CPython Project

Raising a Pull Request to Fix an Issue

When you’ve settled on an issue, you can get started on creating a fix
and submitting it to the CPython project. Here’s the process:

1. Make sure you have a BPO number.

2. Create a branch on your fork of CPython. See the “Getting the
Source Code” chapter for steps on downloading the source code.

3. Create a test to reproduce the issue. See the “Testing Modules”
section of the “Test Suite” chapter for steps.

4. Make your change following the PEP 7 and PEP 8 style guides.

5. Run the regression test suite to confirm all the tests are passing.
The regression test suite will automatically run on GitHub when
you submit the pull request, but it’s better to check it locally first.
See the “Test Suite” chapter for steps.

6. Commit and push your changes to GitHub.

7. Go to github.com/python/cpython and create a pull request for
your branch.

After you submit your pull request, it will be triaged by one of the
triage teams and assigned to a core developer or team for review.

As mentioned earlier, the CPython project needs more contributors.
The time between when you submit your change and when it’s re-
viewed could be an hour, a week, or many months. Don’t be dismayed
if you don’t get an immediate response. Most of the core developers
are volunteers and tend to review or merge pull requests in batches.

It’s important to fix only one issue per pull request. If you see a
separate, unrelated issue in some code while writing your patch,
make a note and submit it as a second pull request.

To help get your change merged quickly, a good explanation of the
problem, the solution, and the fix goes a long way.

368

https://www.python.org/dev/peps/pep-0007/
https://www.python.org/dev/peps/pep-0008/
https://github.com/python/cpython

Keep Learning

Other Contributions

Other than bug fixes, there are some different types of improvements
you can make to the CPython project:

« Many of the standard library functions and modules are missing
unit tests. You can write some tests and submit them to the
project.

+ Many of the standard library functions don’t have up-to-date
documentation. You can update the documentation and submit a
change.

Keep Learning

Part of what makes Python so great is the community. Know someone
learning Python? Help them out! The only way to know you’ve really
mastered a concept is to explain it to someone else.

Come visit us on the Web and continue your Python journey on the
realpython.com website and the @realpython Twitter account.

Weekly Tips for Python Developers

Are you looking for a weekly dose of Python development tips to im-
prove your productivity and streamline your workflows? Good news:
we’re running a free email newsletter for Python developers just like
you.

The newsletter emails we send out are not just your typical list of pop-
ular articles. Instead, we aim to share at least one original thought
per week in a (short) essay-style format.

If you’d like to see what all the fuss is about, then head on over to re-
alpython.com/newsletter and enter your email address in the signup
form. We're looking forward to meeting you!

369

https://realpython.com/
https://twitter.com/realpython
https://realpython.com/newsletter?utm_source=cpython-book&utm_medium=pdf
https://realpython.com/newsletter?utm_source=cpython-book&utm_medium=pdf

Keep Learning

The Real Python Video Course Library

Become a well-rounded Pythonista with the large (and growing) col-
lection of Python tutorials and in-depth training materials at Real
Python. With new content published weekly, you’ll always find some-
thing to boost your skills:

Master practical, real-world Python skills: Our tutorials are
created, curated, and vetted by a community of expert Pythonistas.
At Real Python, you’ll get the trusted resources you need on your
path to Python mastery.

Meet other Pythonistas: Join the Real Python Slack chat and
meet the Real Python team and other subscribers. Discuss your
coding and career questions, vote on upcoming tutorial topics, or
just hang out with us at this virtual water cooler.

Interactive quizzes & Learning Paths: See where you stand
and practice what you learn with interactive quizzes, hands-on
coding challenges, and skill-focused learning paths.

Track your learning progress: Mark lessons as completed or
in-progress and learn at your own pace. Bookmark interesting
lessons and review them later to boost long-term retention.

Completion certificates: For each course you complete, you re-
ceive a shareable (and printable) certificate of completion, hosted
privately on the Real Python website. Embed your certificates in
your portfolio, LinkedIn resume, and other websites to show the
world that you’re a dedicated Pythonista.

Regularly updated: Keep your skills fresh and keep up with
technology. We’re constantly releasing new members-only tuto-
rials and update our content regularly.

See what’s available at realpython.com/courses

370

https://realpython.com/courses/

Appendix: Introduction to C
for Python Programmers

This introduction is intended to get an experienced Python program-
mer up to speed with the basics of the C language and how it’s used in
the CPython source code. It assumes you already have an intermedi-
ate understanding of Python syntax.

That said, C is a fairly limited language, and most of its usage in
CPython falls under a small set of syntax rules. Getting to the point
where you understand the code is a much smaller step than being
able to write C effectively. This tutorial is aimed at the first goal but
not the second.

One of the first things that stands out as a big difference between
Python and C is the C preprocessor. Let’s look at that first.

The C Preprocessor

The preprocessor, as the name suggests, is run on your source files
before the compiler runs. It has very limited abilities, but you can use
them to great advantage in building C programs.

The preprocessor produces a new file, which is what the compiler will
actually process. All the commands to the preprocessor start at the
beginning of a line, with a # symbol as the first non-whitespace char-
acter.

371

The C Preprocessor

The main purpose of the preprocessor is to do text substitution in the
source file, but it will also do some basic conditional code with #if or
similar statements.

Let’s start with the most frequent preprocessor directive: #include.

#include

#include is used to pull the contents of one file into the current source
file. There’s nothing sophisticated about #include. It reads a file from
the file system, runs the preprocessor on that file, and puts the results
into the output file. This is done recursively for each #include directive.

For example, if you look at the Modules/_multiprocessing/semaphore.c
file, then near the top you'll see the following line:

#include "multiprocessing.h"

This tells the preprocessor to pull in the entire contents of multipro-
cessing.h and put them into the output file at this position.

You'll notice two different forms for the #include statement. One of
them uses quotes (") to specify the name of the include file, and the
other uses angle brackets (<>). The difference comes from which paths
are searched when looking for the file on the file system.

If you use <> for the filename, then the preprocessor will look only at
system include files. Using quotes around the filename instead will
force the preprocessor to look in the local directory first and then fall
back to the system directories.

#define

#define allows you to do simple text substitution and also plays into
the #if directives you'll see below.

At its most basic, #define lets you define a new symbol that gets re-
placed with a text string in the preprocessor output.

372

The C Preprocessor

Continuing in semphore.c, you'll find this line:
#define SEM_FAILED NULL

This tells the preprocessor to replace every instance of SEM_FAILED be-
low this point with the literal string NuLL before the code is sent to the
compiler.

#define items can also take parameters as in this Windows-specific ver-
sion of SEM_CREATE:

#define SEM_CREATE(name, val, max) CreateSemaphore(NULL, val, max, NULL)

In this case, the preprocessor will expect SEM_CREATE() to look like a
function call and have three parameters. This is generally referred to
as a macro. It will directly replace the text of the three parameters
into the output code.

For example, on line 460 of semphore.c, the SEM_CREATE macro is used
like this:

handle = SEM_CREATE(name, value, max);

When you’re compiling for Windows, this macro will be expanded so
that line looks like this:

handle = CreateSemaphore(NULL, value, max, NULL);

In a later section, you’ll see how this macro is defined differently on
Windows and other operating systems.

#undef

This directive erases any previous preprocessor definition from #de-
fine. This makes it possible to have a #define in effect for only part of
a file.

373

The C Preprocessor

#if

The preprocessor also allows conditional statements, allowing you to
either include or exclude sections of text based on certain conditions.
Conditional statements are closed with the #endif directive and can
also make use of #elif and #else for fine-tuned adjustments.

There are three basic forms of #if that you'll see in the CPython
source:

1. #ifdef <macro> includes the subsequent block of text if the
specified macro is defined. You may also see it written as #if

defined(<macro>).

2. #ifndef <macro> includes the subsequent block of text if the speci-
fied macro is not defined.

3. #if <macro> includes the subsequent block of text if the macro is

defined and it evaluates to True.

Note the use of “text” instead of “code” to describe what’s included or
excluded from the file. The preprocessor knows nothing of C syntax
and doesn’t care what the specified text is.

#pragma

Pragmas are instructions or hints to the compiler. In general, you can
ignore these while reading the code as they usually deal with how the
code is compiled, not how the code runs.

#error

Finally, #error displays a message and causes the preprocessor to stop
executing. Again, you can safely ignore these for reading the CPython
source code.

374

Basic C Syntax

Basic C Syntax

This section won’t cover all aspects of C, nor is it intended to teach
you how to write C. It will focus on aspects of C that are different or
confusing for Python developers the first time they see them.

General

Unlike in Python, whitespace isn’t important to the C compiler. The
compiler doesn’t care if you split statements across lines or jam your
entire program into a single, very long line. This is because it uses
delimiters for all statements and blocks.

There are, of course, very specific rules for the parser, but in general
you’ll be able to understand the CPython source just knowing that
each statement ends with a semicolon (;), and all blocks of code are
surrounded by curly braces ({}).

The exception to this rule is that if a block has only a single statement,
then the curly braces can be omitted.

All variables in C must be declared, meaning there needs to be a sin-
gle statement indicating the type of that variable. Note that, unlike
Python, the data type that a single variable can hold can’t change.

Let’s look at some examples:
/* Comments are included between slash-asterisk and asterisk-slash */
/* This style of comment can span several lines -

so this part is still a comment. */
// Comments can also come after two slashes
// This type of comment only goes until the end of the line, so new
// lines must start with double slashes (//).

int x = 0; // declares x to be of type 'int' and initializes it to 0O

if (x == 0) {

375

Basic C Syntax

// This is a block of code
int v =1; // vy is only a valid variable name until the closing }
// More statements here

printf("x is %d vy is %d\n", x, V);

// Single-line blocks do not require curly brackets
if (x == 13)

printf("x is 13!\n");
printf("past the if block\n");

In general, you'll see that the CPython code is very cleanly formatted
and typically sticks to a single style within a given module.

if Statements

In C, if works generally like it does in Python. If the condition is
true, then the following block is executed. The else and elseif syn-
tax should be familiar enough to Python programmers. Note that C
if statements don’t need an endif because blocks are delimited by {3.

There’s a shorthand in C for short if ... else statements called the
ternary operator:

condition ? true_result : false_result

You can find it in semaphore.c where, for Windows, it defines a macro
for SEM_CLOSE():

#define SEM_CLOSE(sem) (CloseHandle(sem) ? 0 : -1)

The return value of this macro will be o if the function CloseHandle()
returns true and -1 otherwise.

376

Basic C Syntax

Boolean variable types are supported and used in parts of the
CPython source, but they aren’t part of the original language.
C interprets binary conditions using a simple rule: 0 or NULL is
false, and everything else is true.

switch Statements

Unlike Python, C also supports switch. Using switch can be viewed
as a shortcut for extended if ... elseif chains. This example is from

semaphore.c:

switch (WaitForSingleObjectEx(handle, 0, FALSE)) {
case WAIT_OBJECT_O:
if (!ReleaseSemaphore(handle, 1, &previous))
return MP_STANDARD_ERROR;
*value = previous + 1;
return O;
case WAIT_TIMEOUT:
*value = 0;
return O;
default:
return MP_STANDARD_ERROR;

This performs a switch on the return value from waitForSingleOb-
jectEx(). If the value is WAIT_OBJECT_0, then the first block is executed.
The warT_TIMEOUT Value results in the second block, and anything else
matches the default block.

Note that the value being tested, in this case the return value from
WaitForSingleObjectEx(), must be an integral value or an enumerated
type, and each case must be a constant value.

377

Basic C Syntax

Loops

There are three looping structures in C:

1. for loops
2. while loops

3. do...while loops
Let’s look at each of these in turn.
for loops have syntax that’s quite different from Python:

for (<initialization>; <condition>; <increment>) {
<code to be looped over>

3

In addition to the code to be executed in the loop, there are three
blocks of code that control the for loop:

1. The <initialization> section runs exactly once when the loop is
started. It’s typically used to set a loop counter to an initial value
(and possibly to declare the loop counter).

2. The <increment> code runs immediately after each pass through the
main block of the loop. Traditionally, this will increment the loop
counter.

3. Finally, the <condition> runs after the <increment>. The return value
of this code will be evaluated and the loop breaks when this condi-
tion returns false.

Here’s an example from Modules/sha512module.c:
for (i = 0; i < 8; ++1) {
S[i] = sha_info->digest[i];

3

This loop will run 8 times, with i incrementing from o to 7, and will
terminate when the condition is checked and i is 8.

378

Basic C Syntax

while loops are virtually identical to their Python counterparts. The do
... while syntax is a little different, however. The condition on a do ...
while loop isn’t checked until after the body of the loop is executed for
the first time.

There are many instances of for loops and while loops in the CPython
code base, but do ... while is unused.

Functions

The syntax for functions in C is similar to that in Python, with the
addition that the return type and parameter types must be specified.
The C syntax looks like this:

<return_type> function_name(<parameters>) {

<function_body>

The return type can be any valid type in C, including built-in types like
int and double as well as custom types like Pyobject, as in this example
frorn.semaphore.c:

static PyObject *
semlock_release(SemLockObject *self, PyObject *args)
{

<statements of function body here>

3

Here you see a couple of C-specific features in play. First, remem-
ber that whitespace doesn’t matter. Much of the CPython source code
puts the return type of a function on the line above the rest of the func-
tion declaration. That’s the pyobject * part. You'll take a closer look at
the use of = a little later, but for now it’s important to know that there
are several modifiers that you can place on functions and variables.

static is one of these modifiers. There are some complex rules gov-
erning how modifiers operate. For instance, the static modifier here
means something very different than if you placed it in front of a vari-
able declaration.

379

Basic C Syntax

Fortunately, you can generally ignore these modifiers while trying to
read and understand the CPython source code.

The parameter list for functions is a comma-separated list of variables,
similar to what you use in Python. Again, C requires specific types for
each parameter, SO SemLockObject *self says that the first parameter is
a pointer to a SemLockObject and is called se1f. Note that all parameters
in C are positional.

Let’s look at what the “pointer” part of that statement means.

To give some context, the parameters that are passed to C functions
are all passed by value, meaning the function operates on a copy of
the value and not on the original value in the calling function. To work
around this, functions will frequently pass in the address of some data
that the function can modify.

These addresses are called pointers and have types, so int * is a
pointer to an integer value and is of a different type than double =,
which is a pointer to a double-precision floating-point number.

Pointers

As mentioned above, pointers are variables that hold the address of a
value. These are used frequently in C, as seen in this example:

static PyObject *
semlock_release(SemLockObject *self, PyObject *args)
{

<statements of function body here>

}

Here, the self parameter will hold the address of, or a pointer to, a
SemLockObject value. Also note that the function will return a pointer
to a Pyobject value.

There’s a special value in C called NuLL that indicates a pointer doesn’t
point to anything. You'll see pointers assigned to NULL and checked
against NULL throughout the CPython source. This is important since

380

Basic C Syntax

there are very few limitations as to what values a pointer can have,
and accessing a memory location that isn’t part of your program can
cause very strange behavior.

On the other hand, if you try to access the memory at NULL, then your
program will exit immediately. This may not seem better, but it’s gen-
erally easier to figure out a memory bug if NULL is accessed than if a
random memory address is modified.

Strings

C doesn’t have a string type. There’s a convention around which
many standard library functions are written, but there’s no actual
type. Rather, strings in C are stored as arrays of char (for ASCII) or
wchar (for Unicode) values, each of which holds a single character.
Strings are marked with a null terminator, which has a value 0 and
is usually shown in code as \o.

Basic string operations like strlen() rely on this null terminator to
mark the end of the string.

Because strings are just arrays of values, they cannot be directly
copied or compared. The standard library has the strcpy() and str-
emp() functions (and their wchar cousins) for doing these operations
and more.

Structs

Your final stop on this mini-tour of C is how you can create new types
in C: structs. The struct keyword allows you to group a set of differ-
ent data types together into a new, custom data type:

struct <struct_name> {
<type> <member_name>;

<type> <member_name>;

381

Conclusion

This partial example from Modules/arraymodule.c shows a struct decla-
ration:

struct arraydescr {
char typecode;

int itemsize;
18

This creates a new data type called arraydescr which has many mem-
bers, the first two of which are a char typecode and an int itemsize.

Frequently structs will be used as part of a typedef, which provides a
simple alias for the name. In the example above, all variables of the
new type must be declared with the full name struct arraydescr x;.

You'll frequently see syntax like this:

typedef struct {
PyObject_HEAD
SEM_HANDLE handle;
unsigned long last_tid;
int count;
int maxvalue;
int kind;
char *name;

} SemLockObject;

This creates a new, custom struct type and gives it the name SemLock-
object. To declare a variable of this type, you can simply use the alias
SemLockObject x;.

Conclusion

This wraps up your quick walk through C syntax. Although this
description barely scratches the surface of the C language, you now
have sufficient knowledge to read and understand the CPython
source code.

382

Conclusion

Python Mastery: We’re With You All the Way

Real Bython

When you subscribe to Real Python, you’ll master real-world
Python skills with a community of experts. Become a well-
rounded Pythonista with hands-on resources at your fingertips:

« Thousands of tutorial, video lessons, and more: With new
content published weekly, you’ll always find something to boost
your sKkills.

+ A community of expert Pythonistas: Discuss your coding and
career questions, vote on upcoming tutorial topics, or just hang out
with us at the virtual water cooler.

- Interactive quizzes & learning paths: See where you stand
and practice what you learn with interactive quizzes, hands-on
coding challenges, and skill-focused learning paths.

We look forward to meeting you in our private Slack community
and hearing all about your Python journey! Subscribe today at
realpython.com/join

383

https://realpython.com/join/?utm_source=cpython-internals-book

Acknowledgements

Thank you to my wife, Verity, for her support and patience. Without
her this wouldn’t be possible.

Thank you to everyone who has supported me on this journey.
— Anthony Shaw

We’d like to thank our early access readers for their excellent feed-
back:

Jiirgen Gmach, Jim Anderson, ES Alexander, Patton Bradford,
Michal Portes, Sam Roberts, Vishnu Sreekumar, Mathias Hjartstrom,
Soren Weber, Jiirgen Gmach, Art, Mary Chester-Kadwell, Jonathan
Reichelt Gjertsen, Andrey Ferriyan, Guillaume, Micah Lyle, Robert
Willhoft, Juan Manuel Gimeno, Blazej Michalik, RWA, Dave, Lionel,
Pasi, Thad, Dan Bader, Steve Hill, Mauricio, R. Wayne, Carlos, Mary,
Anton Zayniev, aleks, Lindsay John Arendse, Vincent Poulailleau,
Christian Hettlage, Felipe “Bidu” Rodrigues, Francois, Eugene
Latham, Jordan Rowland, Jenn D, Angel, Mauro Fiacco, Rolandas,
Radek, Peter, milos, Hans Davidsson, Bernat Gabor, Florian Dahlitz,
Anders Bogsnes, Shmuel Kamensky, Matt Clarke, Josh Deiner, Oren
Wolfe, R. Wayne Arenz, emily spahn, Eric Ranger, Dave Grunwald,
bob desinger, Robert, Peter McDonald, Park Seyoung, Allen Huang,
Seyoung Park, Eugene, Kartik, Vegard Stikbakke, Matt Young, Mar-
tin Berg Petersen, Jack Camier, Keiichi Kobayashi, Julius Schwartz,
Luk, Christian, Axel Voitier, Aleksandr, Javier Novoa Catafo, travis,
Najam Syed, Sebastian Nehls, Yi Wei, Branden, paolo, Jim Wood-
ward, Huub van Thienen, Edward Duarte, Ray, Ivan, Chris Gerrish,
Spencer, Volodymyr, Rob Pinkerton, Ben Campbell, Francesc, Chris
Smith, John Wiederhirn, Jon Peck, Beau Senyard, Rémi MEVAERE,
Carlos S Ande, Abhinav Upadhyay, Charles Wegrzyn, Yaroslav Nez-
val, Ben Hockley, Marin Muso, Karthik, John Bussoletti, Jonathon,
Kerby Geffrard, Andrew Montalenti, Mateusz Stawiarski, Evance
Soumaoro, Fletcher Graham, André Roberge, Daniel Hao, Kimia. If
we’ve forgotten to mention your name here, then please know we're
extremely grateful for your help. Thank you all!

	Contents
	Foreword
	Introduction
	How to Use This Book
	Bonus Material and Learning Resources

	Getting the CPython Source Code
	What's in the Source Code?

	Setting Up Your Development Environment
	IDE or Editor?
	Setting Up Visual Studio
	Setting Up Visual Studio Code
	Setting Up JetBrains CLion
	Setting up Vim
	Conclusion

	Compiling CPython
	Compiling CPython on macOS
	Compiling CPython on Linux
	Installing a Custom Version
	A Quick Primer on Make
	CPython's Make Targets
	Compiling CPython on Windows
	Profile-Guided Optimization
	Conclusion

	The Python Language and Grammar
	Why CPython Is Written in C and Not Python
	The Python Language Specification
	The Parser Generator
	Regenerating Grammar
	Conclusion

	Configuration and Input
	Configuration State
	Build Configuration
	Building a Module From Input
	Conclusion

	Lexing and Parsing With Syntax Trees
	Concrete Syntax Tree Generation
	The CPython Parser-Tokenizer
	Abstract Syntax Trees
	Important Terms to Remember
	Example: Adding an Almost-Equal Comparison Operator
	Conclusion

	The Compiler
	Related Source Files
	Important Terms
	Instantiating a Compiler
	Future Flags and Compiler Flags
	Symbol Tables
	Core Compilation Process
	Assembly
	Creating a Code Object
	Using Instaviz to Show a Code Object
	Example: Implementing the Almost-Equal Operator
	Conclusion

	The Evaluation Loop
	Related Source Files
	Important Terms
	Constructing Thread State
	Constructing Frame Objects
	Frame Execution
	The Value Stack
	Example: Adding an Item to a List
	Conclusion

	Memory Management
	Memory Allocation in C
	Design of the Python Memory Management System
	The CPython Memory Allocator
	The Object and PyMem Memory Allocation Domains
	The Raw Memory Allocation Domain
	Custom Domain Allocators
	Custom Memory Allocation Sanitizers
	The PyArena Memory Arena
	Reference Counting
	Garbage Collection
	Conclusion

	Parallelism and Concurrency
	Models of Parallelism and Concurrency
	The Structure of a Process
	Multiprocess Parallelism
	Multithreading
	Asynchronous Programming
	Generators
	Coroutines
	Asynchronous Generators
	Subinterpreters
	Conclusion

	Objects and Types
	Examples in This Chapter
	Built-in Types
	Object and Variable Object Types
	The type Type
	The bool and long Types
	The Unicode String Type
	The Dictionary Type
	Conclusion

	The Standard Library
	Python Modules
	Python and C Modules

	The Test Suite
	Running the Test Suite on Windows
	Running the Test Suite on Linux or macOS
	Test Flags
	Running Specific Tests
	Testing Modules
	Test Utilities
	Conclusion

	Debugging
	Using the Crash Handler
	Compiling Debug Support
	Using LLDB for macOS
	Using GDB
	Using Visual Studio Debugger
	Using CLion Debugger
	Conclusion

	Benchmarking, Profiling, and Tracing
	Using timeit for Microbenchmarks
	Using the Python Benchmark Suite for Runtime Benchmarks
	Profiling Python Code with cProfile
	Profiling C Code with DTrace
	Conclusion

	Next Steps
	Writing C Extensions for CPython
	Improving Your Python Applications
	Contributing to the CPython Project
	Keep Learning

	Appendix: Introduction to C for Python Programmers
	The C Preprocessor
	Basic C Syntax
	Conclusion

