Beginning Game
Programming
with Pygame Zero

Coding Interactive Games on
Raspberry Pi Using Python

Stewart Watkiss

Beginning Game
Programming with
Pygame Zero

Coding Interactive Games on
Raspberry Pi Using Python

Stewart Watkiss

Apress’

Beginning Game Programming with Pygame Zero: Coding Interactive
Games on Raspberry Pi Using Python

Stewart Watkiss
Redditch, UK

ISBN-13 (pbk): 978-1-4842-5649-7 ISBN-13 (electronic): 978-1-4842-5650-3
https://doi.org/10.1007/978-1-4842-5650-3

Copyright © 2020 by Stewart Watkiss

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology now known or hereafter
developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use the
names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black

Development Editor: James Markham

Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress
Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business
Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book's product page, located at www.apress.com/
978-1-4842-5649-7. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-5650-3

For my children Oliver and Amelia.
You are the inspiration in my life.

Table of Contents

About the AUthOrccccmmnnmmmnsssmnssss s xiii
About the Technical ReVIEWETccsssesssssssassssnsssnsssassssassssnsssansssnsssas Xv
Acknowledgments.......cccursssssssmsmnmnmesssssssssssssnssssssssssssssssnnssssssssssnnnnns Xvii
Introduction........ccccmnimmmmsmnmnsesnnnns s ———— Xix
Chapter 1: Creating Computer GAMEScccevvssssennrmssssnnnssssssnsssssssssnssnss 1
Inspiration Rather Than Imitation...........cccccvvvvrnnininnnn e 2
Playing GAMEScceeerrrierireririeseris e sese s ses e se s ses e e ssesesse e st s e e sas e sessessnns 3
Create the RESOUICES........ccoveeereereeerer e se s e s 3
Development CYCIE ... e 4
Making Programming Enjoyable..........ccccvvrrninncsmnnsc s 6
Python and PYgame ZErococcuvvvevneniniensinnessessessss e sessessss e ssessssssessensenns 6
Compiled VS. INTEIPreted........ocvvvvererererreriere s sersere e ses s sae e s ssessesessessesneees 7
Choosing a Programming ENVIironMeNtcocvvvvvvevenessnsenenssessesesesessesessens 8
SUMMAIY..c et e s s b e e e e b e e e aenrs 10
Chapter 2: Getting Started with Python............ccccmmmmmnininnnnsssseenennnnn 11
UsSing the MU Editor..........cccevenerenernse s sessesenns 11
Python Programmingccoueeseienennesnesssesesssse s ssssesssssssssssessssesenns 15
VariabIEs ... ———————————— 19
Strings and FOrMatccocvvvrinienerr s s ss s e s ssesessesaesnes 24
I £ 27

TABLE OF CONTENTS

DICONANEScvccerceree e 30
TUPIES et e 31
Conditional Statements (if, elif, €1SE).......c.cceerrerrerrrrerrere e 31
Simple QUIZ GAME........ccvvrerer e 35
LOOPS — WRIIE, FOT......coiircere et sne 37
LT TN 0o OSSN 38
0] g 00 SRS 39
Forever Loop — WHile TFUEcocevererrcirere st 41
Changing Loop Flow — break and continuec.ccoveveevnieneresesensesesesenennes 41
FUNCLIONS ...ttt 42
Variable SCOPE......ccvverrrerirese st nne e 44
Refactoring the COEccceveverreriere e e sa e s snens 47
Further IMProvements ..o s s s 48
11T 111 T o OO 49
Chapter 3: PYygame Zeroccccsrussssnnnssssssnsnssssssssnsssssssnssssssssnnsssssnnnnss 51
Pygame Zero DevelopmMENt...........ccoreerenesesenmsesesessesessssessssesessesessssessesesessesenns 51
COMPASS GAIMEcveerreerrsesesesesre s r e sr s ne e sra e ans 52
ReqUITE FilES.....coueiriirereriesirsere e s sre s 53
Running Mu in Pygame Zero MOGEcccvverenerrerierenessensessessesessesessessssessessens 54
Adding a Background IMage........cccvvererininnieniensinsin e s sse s ses s see s saessens 55
X0 o T o 12 (] 57
Moving the Sprite Around the SCreen ... 60
Making the Movements More RealistiC..........ccccvvrernrerenenenenessseseseses e 63
Keeping GAme StAtec.ccccvvrerrrenmrnsernesese s s senns 67
Detecting ColliSIONSccvcevererirsinieness s saesessessesnens 73
Change in DIrECLION........cccvveverrr e eaeenes 77
G 01T TS0 (R 78

TABLE OF CONTENTS

Adding @ CountdoWn TIMEEcovierrerierererserseresse s s s ssessesessessesssssssessees 81
Final Code for Compass Game Version 0.1cccovvvmienrnncrnsenensenesnesesessenenns 83
SUMMAIY.c..eiviir i s e e s b e e s b e e aeers 89
Chapter 4: Game DeSigncccrrmsssnnnnmsssssnnnmsssssssnssssssssssssssnnnnsssssnnnnss 91
What Makes a Game Enjoyable?...........ccovverrenmrnsmsenessssnesessesessssesssessssssssssnens 91
Challenging but AChIieVabIE............ccoverirenernsernesere e 92
Choices and CONSEOUENCESccvverrererrersersersesessessessessssessessessessssessessessessssessesses 93
Rewards and Progress.......ccueirinnennesiensensse s ssesssssssssessessssssessesssssssassaessesnes 9
Likeable CharaClerscocvrienesesesesmsssssese s ses s sesssssssssas 94
Storyline/Historical REIEVANCE...........ccccrvrierinnsncrere s 95
L 10 Tu U0 T LS 95
Takes an Appropriate Level of Time to Playccccovvvrvnvniennnninncnenssensenaens 95
T [T 17 OSSN 96
L0 LAY o] 01 (0] 0T LR 96
IMProving COMPAsS GAMEccveververrereerersererssssssersersessssessessesssssssessessessssessessens 97
Updated TIMET ..o s e ene 97
AddiNg ODSTACIESc.veeeereeerirereree e 100
Adding @ High SCOTEcoeeerrrerrreere s se e 104
Try @nd EXCEPL.....cccveeeereersse s ses s s s sesss s 107
SUMMANY....eivierrnerrnese e e e p e e e npn e e 110

Chapter 5: Graphic Design.......ccccusemmmnsssssnnmmsssssssssssssnsssssssssnnsssssnnnne 1 11

Creating @ TREME ..o v sr e n e enen 112
File FOrMALS ..o s 113
Bitmap IMAgESccccviererrrirrre e 113
VECTOr IMAJES......c i 115

vii

TABLE OF CONTENTS

USEIUL TOOIS ... s 116
LIibreOffiCe DIraW......cccovrrienmseseresssssssse s ss s sesesssssssas 116
11116 o 1o < S 118
GIMP ... 120
BIBNAET ... 127
Create USiNG COUEoueerermrermreeise s e sssas 129

OTNEE SOUICESceeeerrcecccreri e 130

SUMMANY..c..citiiiire e e s e e e s b e s ae e e e nne s 130

Chapter 6: COlOrscourmrmsmsmsssssssssssssssssssssss s sssssnaes 131

COIOr MIXING vvvenerersererreesreesessesessese s ses e sse e s sesss e s sessssessssessesesensssenns 131

BOUNCING Ball......ccoouiceriierinesiree e s 135

Background Color SEIECLONcccvvereverreriererir s ees 139
Handling Mouse EVENLS..........ccovrinmnnn e 140
Creating the Color SEIECTONccvvvrverierrrrrere e 141

SUMMAIY.c.ueiteirerere e s e s s e e e s s s s s e se s e s aesaese e e saesaesee e e e saesaesseennesaens 143

Chapter 7: Tank GAME Zero0........uscssssussssnsssassssassssnsssansssassssnsssassssanssns 145

Vector Image of TANK.........ccccoevvininnnsnne s 145

Creating @ Dynamic LANASCAPEcccrvreererermrrenereeerenese s s sesse e sessenenns 152

Calculating the TraJECLOrYcovverererernserrnesere s 157

Detecting @ ColliSIONc.vceeererernserrneserese s 161

Complete GAME COUE......cccevrererrerererierere s e s s e s e sse e sae e s e ssesaessssessesnens 163

IMProving the GAME........cccccvereirrrere s e 179

LT 1§11 7 180

Chapter 8: Sound..........ccousmmsmmmssssmssmssmssss s 181

Recording Sound EffECtS........couoerereererererenernsesesese e 181

Creating Artificial Sound EffeCtSccvvvvnrenerisnnnssnesess s 182

viii

TABLE OF CONTENTS

Recording Audio on the Raspberry Pi.........cccccvvninnnininne e 183
Connecting a USB MIiCrOPRONEccccveererernensenesesessesessessssessessesssssssessesses 185

L T TR =T 0] (o S 186

L E o P T 187
Recording Sounds With AUAACITYccvvereverrerierieresessere s sersesseseesessensens 188
Creating Music with SONIC Pi ... 190
Downloading Free Sounds and MUSIC..........ccccerrneneresernsesensenesesesessesesseseseenes 193
Adding Sound Effects in Pygame Zero...........ccoovernererenernsesensesesesesenseseneens 193
Playing MusSiC in PYGame ZEr0.........ccueueerererrnsesssesssessssssessssessssessssssessssessssenes 194
Piano Game Created With TONES.........ccccveeernsernnenesesersse e e 195
L1414 O S 205
Chapter 9: Object-Oriented Programmingccccsmsssssnnsssssssssnsssssnns 207
What Is Object-Oriented Programming?ccccvivninvnieninsnsensessessesessessenns 207
00P Classes and ODJECES.......cccuererererinserenerire s 209
Creating a Class, Attributes, and Methods..........ccvvrrreriernsensenserenessensenes 209
Creating an Instance of a Class (ODJECL)........ccccrvvernierrinnerinsernesereserenaes 211
Accessing Attributes of an Object.........ccccovevricrininnn 213

B LT 0T1 070 (0 SR 213
Encapsulation and Data Abstractionccccoovcnvnirinnnnini e 215
INNEHTANCE ..o e 216
Design for Object-Oriented Programming.........ccocceveeernsenensesesesesssesessesensenes 218
Matching Pairs Memory Game.........c.cueeevenerrnsesnsesssesesssessseses e sesesessesessenes 219
Creating the ClasSes.........cuerrireresernsesenessse s s snenes 223
Program File ... ss s s snssenens 233
SUMMAIY.c.veiteirierere e e e s s sa e e s e s s sae s e e e s aeeaesee e s e eaesae e e e naennens 241

ix

TABLE OF CONTENTS

Chapter 10: Artificial Intelligence........cccusseerrrsssssnnsrsssssnnsesssssnnssssssnns 243
Memory Game With Al.........covierrrrrererrcrr et 244
A GOOU MEMOIY ...ttt e st e e e 263
BattleShipscovvciererirrr e ——————— 271
10T 111 1T o SR 291
Chapter 11: Improvements and Debuggingcccccusssennnrssssannnssssanes 293
Additional TECANIQUEScccvverririrrirerere s snes 293
More ADOUL PYJaME ZEI0ceereerersereresissese s sesse s s sse e ssssessennens 294
More ADOUL PYGAMEcoerreirerereses e s snens 295
AddiNg FONTS.......cceirierireserrse s s 296
SCrOlliNG SCIEENc.ceveerreerieerer e 296
Reading from a CSV config file.......c.cccorenernnsnnenensnesssesesesese s 298
JoystiCks and GAMEPAUS........cccvvrerrrererenernseresse s senns 301
Creating Arcade Games for PiCade..........c.cuoeerenernserennesessssessssesessesessesesenns 302

22 (0] T TSRS 304
DEDUGUING... et —————— 306
Error MESSAQESvevveererrerrenessesesresessesessesss e sse s sse e s e s ssesessesnssssssssensesnens 307
Check for Variable NAmesccccueeernnnrnenmnesesssesessessss s sessessssssessnnes 308
Print Statements..........cccvvivnisnns e ——— 308
IDE Debugging TOOIScccvueererenerrenerrnsesssesessssessssesssesessssessssesessessssassssnnes 309
Rubber Duck DeDUGQING.......coueerrerererenerreserinsesesesesssesessesessesessssesessessssenens 309
PEIrfOIMANCE......cceeveerrecr e 310
Space SNOOLEr GAMEcccevrvririeriere i sere s sr e sae e s nnens 312
L1114 O 328
WHEIE NEXL?......cccerererre s 328

TABLE OF CONTENTS

Appendix A: Quick Referencecccuussessrssssssnsssssssssssssssssnsssssssnsssssss 331
PYQAME ZEI0 ...t s e 331
USEful KEYWOIUS......cceceeeresirere s 331
Loy (o] g (370) OSSR 331
Background Image or COIOr.........ccvrerrerierererneneressssessessessessssessessessssessessens 332
SOUNT EffECEScovrvierecccririris e 332
MOUSE EVENLS ... 332
Keyboard EVENTS........ccccevererverrie e r e se s e s s e e s se e s nneas 333
DisSplaying TeXL.......ccveriererrier s sa e s 333
PYENON 3. s 334
I £ 334
DICLIONANIESeceeereeereecreree e 334
Conditional Statements (if, elif, €1S€)c.cocerrerrnrrnierrr s 335
0T 0L OSSPSR 335
Python 3 MOQUIES ..o e s 336
(22T Lo o 1 TS 336

MALH ..o ——————— 336
LR 337
DAETIME ... 338
Appendix B: More Information.........cccunssmmmmmmmmnnmmsmssssssssnnssssssssssssnns 339
PYENON ... s 339
PYJAME ZEI0.......ecieeecte ettt s s 339
PYJAME ...t s e e e 340
1T = 341

About the Author

Stewart Watkiss is a keen maker and
programmer. He has a master’s degree in
electronic engineering from the University
of Hull and a master’s degree in computer
science from Georgia Institute of Technology.
He has over 20 years of experience in the
IT industry, working in computer networking,
Linux system administration, technical

support, and cyber security. While working
toward Linux certification, he created the web
site www. penguintutor.com. The web site originally provided information
for those studying toward certification but has since added information on
electronics, projects, and learning computer programming.

Stewart often gives talks and runs workshops at local Raspberry Pi events.
He is also a STEM Ambassador and Code Club volunteer, helping to support
teachers and children learning programming.

xiii

http://www.penguintutor.com/

About the Technical Reviewer

Sai Yamanoor is an embedded systems engineer working for an industrial
gases company in Buffalo, NY. His interests, deeply rooted in DIY and
open source hardware, include developing gadgets that aid behavior
modification. He has published two books with his brother, and in his
spare time, he likes to contribute to build things that improve quality of
life. You can find his project portfolio at http://saiyamanoor.com.

https://urldefense.proofpoint.com/v2/url?u=http-3A__saiyamanoor.com_&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=E3AfiyxVwcAufBzWHjWU0E9DTfK7pUxOd3Vq_E0yK-A&m=XnS36DAEF2AJNAgdQVt3Udw3zJxHjAlGZxueTpbVaE4&s=bNX8CY93lJm-jjfZ643KcRLONwzXHQQrMMP4GS_i2ho&e=#_blank

Acknowledgments

My family has been very supportive in my maker activities and while
writing this book. Thank you to my wife Sarah for her support and to my
children Oliver and Amelia who have been a source of inspiration and help
while writing the book. Oliver has been particularly helpful in testing the
games and giving me feedback, and my daughter’s knowledge of music
was a great help while writing about making sounds.

I'd also like to thank the team behind the Raspberry Pi including the
Raspberry Pi Foundation and the community that has grown around it.
I've also been inspired by the work of Nicholas Tollervey who created the
Mu editor that is used throughout the book and Daniel Pope who created
Pygame Zero, without which the book wouldn’t have been possible.

I'm also grateful to all the support from the team at Apress, to Jessica
Vakili for her support in putting the book together, and to Sai Yamanoor
for the technical review. There are also many other people who helped to
contribute through reviews and getting the book production ready.

xvii

Introduction

This book is designed for anyone wanting to learn programming through
making fun games. It will also be useful for someone who has already
learned the basics of programming and wants to learn how to add fun
graphics and create their own games.

It is focused on making the games rather than teaching programming
theory. In this book, you're more likely to see code on how gravity affects
a missile’s trajectory rather than the most efficient way to search through
data. Even then the code is kept simple as games should be more about
playability rather than complex physics.

The book starts with a simple text-based game to cover the basics
of programming in Python. It then quickly moves on to creating simple
graphical games in Pygame Zero. The book introduces object-oriented
programming to make it easier to make more complex games. It also
explains how you can create your own graphics and sounds.

Throughout the book, you will get to apply the new techniques in a
variety of 2D games. As well as some new games, there are some variations
on class games including a space shooter game and battleships.

The games are designed to run on the Raspberry Pi, although they can
be used on other platforms that support Python 3 with Pygame Zero.

The games you make will be playable and hopefully fun to play. They are
only the beginning. If all you ever do is copy the code from this book, then you
are only going to learn so much, but by adapting and improving these games,
they can become more enjoyable as well as helping you learn more than you

Xix

INTRODUCTION

ever will from just typing out code that's written down for you. For each of the
games, there is a list of suggestions for you to develop the games further.

All the code and resource files used in the book are available from
the page to accompany the book at https://www.apress.com/gb/
book/9781484256497.

https://www.apress.com/gb/book/9781484256497
https://www.apress.com/gb/book/9781484256497

CHAPTER 1

Creating Computer
Games

Writing computer games is a great way to make programming enjoyable,
but it does have its disadvantages. The main disadvantage is that to make

a working game you need to write a lot of code which takes a lot of time.

A full working game is usually too much for a beginner programming book.
Fear not, as this book uses worked examples and takes advantage of the
simplicity of Python and Pygame Zero to make it as painless as possible.

In this book you will create a few different games to illustrate different
programming techniques.

Creating a game is more than just writing code. This book covers
some of the other aspects of creating a computer game as well as the
programming.

First you need an idea. That idea then needs to be developed to come
up with a set of rules and controls. It will likely need additional resources
such as images and sounds. You will then need to write the code to make it
happen. Next (and now comes the fun part) you need to test it to find out
what works and how it can be improved. You then go back to the start to
redefine the idea and repeat the programming cycle.

In this chapter you'll also find out about Python and Pygame Zero and
some of the reasons that make it suitable for game programming.

© Stewart Watkiss 2020 1
S. Watkiss, Beginning Game Programming with Pygame Zero,
https://doi.org/10.1007/978-1-4842-5650-3_1

CHAPTER 1 CREATING COMPUTER GAMES

Inspiration Rather Than Imitation

The first step is about coming up with an idea. For this you may take
inspiration from games you have played, which can be existing computer
games, card games, board games, or playground games. Or you could
come up with a completely new game, perhaps taking inspiration from
activities in the real world. If you are looking to create a game based on
something that has already been done before, then you do need to be
careful about infringing on other people’s intellectual property, including
copyright, patents, and trademarks.

Like many laws, the rules protecting games and computer programs
are complex and vary among different countries. It would not be possible
to provide real guidance on the complex legal intricacies, but there are
some general rules that you should follow.

Copyright can protect various aspects of work such as words, graphics,
code, and music. Copyright does not however cover the idea of the game
or how it’s played. The work is automatically copyrighted when it is created
and doesn’t normally need a specific copyright notice or registration,
although that can provide additional protection.

Patents are far more complex and can cover ideas and concepts.
Patents are intended for inventions, and in the case of game programming,
they can be granted for specific technical aspect of a game. For example,
there are patents covering the way that directions are shown in a car racing
game and how players are identified in a soccer game. It’s incredibly
difficult to know about what patents may relate to a game you are
developing. If you are creating a commercial game, then you may want to
look at getting professional advice on patents.

Trademarks are a way to protect names and logos, and in the case of
computer games, they can include the appearance of the characters. This
may prevent you from using a recognizable character if that character

CHAPTER 1 CREATING COMPUTER GAMES

is protected under a trademark. If you want to use any character that is
protected under a trademark, then you will need to get a license granting
you permission from the trademark owner.

Playing Games

The best way to learn about what makes a good game is to play them.
Rather than just playing one game, play lots of different ones. Play good
games and bad games and think about what makes the game good and bad.

Are you getting bored playing the game or does it have you hooked
so you can’t drag yourself away from the screen? Which games make you
want to keep playing and why?

As mentioned previously you don’t just need to take inspiration from
computer games. Play some board games as well. Think about what works
well and what doesn’t. Think about the differences between playing a
game using physical objects and when it is on a computer screen; there are
likely to be both advantages and disadvantages to both.

Create the Resources

When looking at additional resources, you will likely be thinking about
graphics and sound effects. There are other resources that you may need
including introductory videos, tutorials, and background music.

For most games you are going to want to include graphics. The look
and size of these graphics can determine the programming. For example,
if you have a character that needs to move around the screen, then you
will need to know how the character moves (whether its feet move) and
the amount of space that is needed for that character to move around. It
therefore makes sense to at least create an outline of any graphics prior to
starting programming.

CHAPTER 1 CREATING COMPUTER GAMES

Sound effects can sometimes be left until later in the project, although
they are often still an important part of creating an overall game. If leaving
them to be added later, then it is still a good idea to think about when they
will be used and what impact they will have when designing the game.

Development Cycle

The main buzzword relating to programming is agile. Agile programming
is a way of developing software creating code in small increments
implementing a feature at a time and then going back to add more code.
The term agile programming is normally used to refer to a programming
technique used for developing software across a team with regular reviews
and team meetings (called scrums), but a similar technique can be used
when programming on your own.

Some key points about developing code using an agile style
methodology:

1. Gather requirements. Meet with end users or review
your ideas with yourself as though you are the customer.

2. Plan the development. Split the work into small
chunks that can be implemented a bit at a time.

3. Design the code to complete the current feature.
4. Write the code.

5. Test the code. As well as testing the standalone code,
test how it interacts with other parts.

6. Assess whether the code is still in line with the
requirements.

7. Returnto 1. Consider the code that has been created.
Is that compatible with what it is trying to achieve?

CHAPTER 1 CREATING COMPUTER GAMES

Keep repeating this cycle for each part of the code you develop.

You then reach a release version once all the required parts have been

implemented. Follow the same cycle when adding more features or

improving the code.

Some things that are useful when using agile programming:

Design interfaces between how the different parts of
the code interact.

Work in short code sprints with incremental releases.

Perform regular short reviews of what has been
completed during the last step and what you will be
creating next. Reviews are normally performed daily
in a work environment but differ if you are working in
your spare time.

Perform test-driven development by having specific
tests that the code needs to pass. Automated tests are
popular in agile programming, but you can also test
manually.

Refactor code regularly; review code for improvements
for clarity/performance.

Regularly check with the users (or yourself if it’s a
personal project) to see that the design is in line with
the expectations.

Use rubber duck debugging (see Chapter 11).

The games in this book are created based around agile programming.

There will not be any of the code reviews specifically listed in the book, but

you will see how the code is built up starting a feature at a time.

CHAPTER 1 CREATING COMPUTER GAMES

Making Programming Enjoyable

Whether you have a full-time job writing computer games, or it’s
something you do in your spare time, programming should be something
you enjoy. I find a great deal of satisfaction from creating something that I
would like to play myself.

While you can try and think of the concepts in advance, you may not
know whether you enjoy the game until you get to play it. It’s then when
you get to tune the game to make sure it is the right difficulty or if there are
features that you will want to add. This is discussed more in Chapter 4
when you will see some of the techniques used to improve on an initial
game design.

Python and Pygame Zero

Python is a popular programming language used throughout education
and in industry. It is available across a number of different computer
operating systems including Apple Mac OS X, Microsoft Windows, and
Linux. Some of the benefits of learning Python are it is easy to learn, uses
less code (compared with some other languages), and can help teach good
programming techniques.

Pygame is a library that can be used within Python to make graphical
game programming easier. Pygame Zero is a library that uses Pygame but
makes graphical game programming even easier than Pygame by reducing
the amount of code needed. Using these, it is possible to create characters
on the screen and move them around very easily.

This book uses version 3.7 of Python running on Linux which is the
current version on the Raspberry Pi. The games should work across
different computer systems and more recent versions of Python with
Pygame Zero installed.

CHAPTER 1 CREATING COMPUTER GAMES

There are different styles for programming in Python. In this book the
first few programs are written using primarily functional programming
techniques, but then the later programs will be based around object-
oriented programming. The functional programming style is generally
considered easier to learn when starting programming, but once you start
creating longer programs, then it is often easier to write and understand
the code when written using object-oriented programming.

Compiled vs. Interpreted

Different computers and operating systems work in different ways. If you
are creating a game designed for a phone or tablet (using a touch screen),
then you may need to design the interface differently than if you are
designing a game for a game console with a game controller. Also, different
processors inside the computer and different ways that the operating
system works mean that it can be difficult to write games that will work
across multiple computers.

When writing computer code, you will normally use a programming
language which uses a text-based language. Computers can’t run that
directly, and the code needs to be converted into the machine code that
the computer can understand. When using a computer language such
as C, the code must be converted to machine code before you can run the
program. This is known as a compiled language and the program needs to
be compiled into machine code that matches the computer architecture it
will run on.

Python does this differently by converting the code to the machine
language using an interpreter. This is done while the program is running.
The benefit of this is that as long as there is an interpreter for the computer
you want to run the code, you don’t normally need to do anything extra
to run it on that computer. The disadvantage is that interpreted languages
can run slower because it needs to convert this code while it is running.

CHAPTER 1 CREATING COMPUTER GAMES

This performance won’t be an issue with any of the games in this book, but
you should be aware of it if programming a graphics-intensive game.
There is also a hybrid where the code is compiled to an intermediate
form, but then still needs an interpreter (or something similar) for it to run
on each particular computer architecture. This is how Java works using
the Java Virtual Machine to convert from the Java Bytecode to machine
language the computer can understand.
As Python is interpreted, it should be able to run on a variety of
different computers without needing any changes. Unfortunately, it
can sometimes be a little tricky to install the Python interpreter and the
Pygame Zero libraries on some platforms. Fortunately, there is a simpler
solution using the Mu editor which is the preferred editor for those starting
with Pygame Zero programming.

Choosing a Programming Environment

In this book the games have been designed for a Raspberry Pi, which is

a small, inexpensive computer designed specifically for those learning
computing and computer programming. There are different variants of the
Raspberry Pi including the tiny Raspberry Pi Zero and the fully featured
Raspberry Pi 4. You can use any model of Raspberry Pi for the games in
this book, although I would suggest using a Raspberry Pi 2 or better for
performance reasons. If you are also using the Raspberry Pi for designing
images for the games (as explained in Chapter 5), then a Raspberry Pi 4
may be advantageous, but it is not a requirement.

The Raspberry Pi is ideal for learning Python as most of the software
you need is already pre-installed. The programs will still run on other
computers and you are free to develop the code on another platform if you
prefer, but there are a few extra steps involved on other systems.

Python programs are text files, and as such, you can create them in any
text editor. If you've not programmed with Python before, then I suggest

CHAPTER 1 CREATING COMPUTER GAMES

you start with the Mu editor. The Mu editor is not the most powerful editor
available, but its simplicity makes it ideal for getting started. It also handles
most of the setup including Pygame Zero.

If using a Raspberry Pj, then latest versions of Raspbian include Mu,
but if it’s not already installed, then you can install Mu from a command
shell. Start the command shell by clicking the black terminal icon at the
top of the screen.

Then enter the following commands:

sudo apt update
sudo apt install mu-editor

You can then run Mu from the Raspbian menu system. From the start
menu, select the programming menu, then click Mu, which should look
like Figure 1-1.

+) (& leeheninsrebesQeniret ? B

Mode New Load Chec

¥
=

Please select the desired mode then chick "OK™. Otherwise, chck "Cancel

Change mode at any time by clicking the "Mode® button containing Mu's logo.

Cancel 0K

Python a

Figure 1-1. A screenshot of the Mu editor

CHAPTER 1 CREATING COMPUTER GAMES

If you would like to install Mu on other operating systems, then you
can download the Mu editor from https://codewith.mu/. When installing
under Windows, the recommendation on the Mu web site is to install for
“this user only” That will make it easier to add any modules that may be
required later.

The Mu editor has different modes which are useful for different
programming environments. This book uses the Python 3 and Pygame
Zero modes.

When you have more experience, you may want to change to a more
powerful editor. If using a Raspberry Pi, then you have a number to choose
from and you can run the programs directly from the command line. If you
are using a different environment, then you may need to set up a native
Python environment with Pygame Zero.

Summary

This chapter has looked at some of the things you should think of before
you start programming. It has given suggestions on where you can get
inspiration from and a warning about some of the pitfalls that you should
avoid around other people’s intellectual property.

It has explained what Python is and why Pygame Zero is a good choice
for those starting out in game programming.

In the next chapter, you will get started with creating code and create a
command-line game using Python.

10

https://codewith.mu/

CHAPTER 2

Getting Started
with Python

To get started with programming Python, this chapter begins with some
basic command-line programming. This will create a simple text-based
game that can be played using the keyboard. This is only the beginning;
from the next chapter onward, you will be able to create graphical games
that are fun to play.

Using the Mu Editor

When you first start the editor, it will ask you which mode to start in. The
modes that you will use for the projects in this book are Python 3 and
Pygame Zero. If you have already run the editor before, then it will start
in the mode last used, in which case you can change the mode using the
mode button on the top left of the editor.
For this chapter you will create basic text-based program, so you
should select Python 3. In future chapters, you should use Pygame Zero.
When you first start Mu, there should be an empty screen with a
comment# Write your code here :-).

The # at the beginning of the line means that this is a comment
and would be ignored. Comments are really useful for programmers to
explain how the program works, but Python just ignores them. You can

© Stewart Watkiss 2020
S. Watkiss, Beginning Game Programming with Pygame Zero,
https://doi.org/10.1007/978-1-4842-5650-3_2

11

CHAPTER 2 GETTING STARTED WITH PYTHON

delete that line for now, but when you write your own code, I suggest you
add comments to explain how the code works as that can be useful in
understanding the code in future.

To get started, you can create a basic program called “Hello World”. It is
one of the smallest programs that you can create. This is literally one line of
code as shown here:

print ("Hello World")

Replace the comment in the Mu editor with this print statement. You
will then need to save the program before running it; I'd suggest saving it in
the default folder (/home/pi/mu_code) and calling it helloworld.py. If you
try to run the code before saving, then you will be prompted to save it first.

After saving the file, click Run and you will see the program running in
the bottom part of the screen. In this case it prints Hello World to the text-
based screen area. This is shown in Figure 2-1.

Mu 1.0.2 - hefloworld py e

P (+)(&)(&)(x)05) (@) (MW (@) Q) 6)(d)?)(0
Mode New Load Save Stop Debug REPL Plotter Zoomdn Zoomout Theme Check Help Ouit
helloworldpy X

1 print ("Hello World")

Running: helloworld py

Hello World
>33

Python ¥

Figure 2-1. The Hello World program running in the Mu editor

12

CHAPTER 2 GETTING STARTED WITH PYTHON

Once you have finished, click the Stop icon to stop the program from
running.

This is the most common way of running a Python program from
Mu. Another alternative is to run the program from a Raspbian Linux
command shell. Save the current program using the Save button. You will
see where the file is saved by looking at the status message at the bottom of
the editor, in this case

/home/pi/mu_code/helloworld.py

To run this program from the command line, launch the terminal
program from the Raspbian menu launcher. The terminal is a text-based
interface used to communicate with the operating system including
starting other programs. You can change to the folder that the program is
stored in by using the cd command. The filename consists of the directory
which consists of all the characters up to the last “/” character (note that
the directory separator on Linux faces the opposite way to the folder
separator used on the Windows operating system).

In this case the directory path is /home/pi/mu_code/ and the filename
is helloworld.py. To change to the directory and run the program, enter the
following commands:

cd /home/pi/mu_code/
python3 helloworld.py

Your program will now run and display the same “Hello World” text as
you saw previously in the Mu output screen. This is shown in Figure 2-2.

13

CHAPTER 2 GETTING STARTED WITH PYTHON

& @ ” :.-":] ELXTerminaI

| File Edit Tabs Help

cd /home/pi/mu_code/
python3 helloworld.py

Hello World

Figure 2-2. Running the Hello World code from the command line

Another way to run Python code is using the REPL. It stands for read-
eval-print loop (but the name is not important). What the REPL does is it
provides a way of running Python code in an interactive mode. This can be
useful to test running small amounts of code prior to including it in your
programs.

To run the same code in the REPL, click REPL in the Mu editor menu
bar. You must be in the Python 3 mode to see that menu option. If the
REPL icon is not shown, then use the mode icon on the Mu menu bar to
change mode. After clicking the REPL icon, there will be an interactive
shell at the bottom of the screen. Note that if your previous programming
is still running, then it will show the program output and the REPL side by
side, and if so, then click the Stop button which will give the REPL the full
width of the editor.

You will see a prompt in the REPL screen which will normally show
“IN [1]:” Enter the previous program code at the prompt

print ("Hello World")

14

CHAPTER 2 GETTING STARTED WITH PYTHON

P+ 2% P @M QI QG)20

Mode New Load Save Run Debug REPL Piotter | Zoom-n Zoom-out Theme Check Help Qutt

Python3 (Jupyter) REPL

IPython 5.8.8 -- An enhanced Interactive Python.

? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.

help -> Python's own help system.

object? -> Details about 'object', use 'object??’' for extra details

In [1): print ("Hello World")
Hello world

In [2]: | -4
Python £33

Figure 2-3. The REPL in the Mu editor running the Hello World code

Then press Enter to see the effect of running that instruction. This is
shown in Figure 2-3.

You can also access the REPL by running python3 from the command
line. In that case the REPL prompt is shown by three greater than
characters “>>>" If running from the command line, then you need to
press Ctrl-D to exit.

Python Programming

When creating a Python program, you need to follow a certain structure so
that the program can run correctly. This first game will cover some of the
rules that need to be followed for a Python program to work.

The game is a simple joke quiz. The program will ask the player a
question with a joke answer. If the player answers the question correctly,
then they will be congratulated; otherwise, they will be given the
punchline.

15

CHAPTER 2 GETTING STARTED WITH PYTHON

Click the New button in Mu to create a new file and enter the code in
Listing 2-1.

Listing 2-1. Joke quiz program

1 print ("Welcome to the Python joke program")

2 player guess = input ("Why couldn't the engineer fix the
computer?\n")

3 if (player guess == "too many bits"):

4 print ("Well done!")

5 else:

6 print ("too many bits")

The code must be entered exactly as shown, except for the numbers
on the left which should not be typed in (and are shown by default in the
margin of the Mu editor). The numbers are included to make it easier to
explain the code or to help fix problems if the code doesn’t work correctly.
They should not be included as they don’t form part of the code.

Python code is case sensitive, so print, Print, and PRiNT are completely
different as far as Python is concerned. The spacing is also important.
Lines 1, 2, 3, and 5 should start in the first character position on the left-
hand side of the editor. Lines 4 and 6 should be indented by four spaces;
the editor will help by auto-indenting after it sees a colon “:” character. Mu
also inserts four spaces whenever you press the Tab button.

Save and then run the program. When you first click Save, you will
need to give it a filename. Name the file joke.py or another appropriate
name. You can then click the Play button to run the program.

The program will print “Welcome to the Python joke” followed by
“Why couldn’t the engineer fix the computer?”. At this point the player
needs to have a guess. Enter I don't know. The computer will then
respond with “too many bits”.

16

CHAPTER 2 GETTING STARTED WITH PYTHON

At this point I'd like to apologize for such an awful joke. I'm sure that
you can do much better, so feel free to change the text between the quotes
to your favorite joke.

If you run the program a second time, then you already know the
answer, so you can type in the answer when prompted as shown in

Figure 2-4.
©)(+)(&)(X)(%)K)(E3) (M) () Q)C)(s)?) b
Mode New Load Save Swop Debug REPL Potter | Zoom-n Zoom-out Theme Check Help Quit
jokepy X

print ("Welcome to the Python joke program™)

1
2 player_guess = input ("Why couldn't the engineer fix the computer?\n")
3 if (player_guess == "too many bits"):
4 print ("Well done!”)
5 else:
6 print (“"too many bits")
7
8
Running: joke.py
Welcome to the Python joke program
Why couldn’t the engineer fix the computer?
too many bits
Well done!

22>

Python b

Figure 2-4. The output of the joke.py game

To explain how the code works, it is useful to look at it one line at a time.

The firstline is print ("Welcome to the Python joke program").

This code runs a function called print. A function is a block of code that
performs a certain function. In this case the print function is included with
Python and contains code that can print text to the screen. You can identify
print as a function because of the brackets. Some functions need one or
more values inside the brackets which are known as arguments, but not
all functions use arguments. In the case of print, it takes a single argument
which is a text string. The quotes around the text indicate that the text is to

be used as a text string rather than a variable.

17

CHAPTER 2 GETTING STARTED WITH PYTHON

Note Functions and methods. You may see references to both
functions and methods in this book. In Python a method is like a
function but is contained within a class and operates on an object.
Python uses both depending upon the context. These are object-
oriented programming terms and are explained in Chapter 9.

Line 2 uses the input function, which displays a message to the user
and then waits for the user to respond with an input. The argument is
a text string, like that used in line 1. The function returns a string value
containing what the player entered as their guess. The returned value is
stored in a variable called player guess.

The argument text string includes a special sequence \n at the end.
This is an escape sequence that moves the cursor onto the next line. This is
required, as unlike the print function, the output function does not add the
new line automatically. Both variables and the escape sequences will be
explained later in this chapter when looking at variables.

Line 3 compares the variable that is stored in player guess and sees
if it matches the text string "too many bits".Ifit does match, then it runs
the block of code that is indented, which in this case is line 4. Line 4 is the
print function again which gives the player the message "Well done!".

Line 5 is an else which is the opposite of the if on line 3. If the
condition in line 3 is not met, then it runs the indented block of text after
the else clause which is line 6. Line 6 uses the print function to print
"too many bits".

The if and else clauses are conditional statements, which are
explained in more details later.

There are some more things that can be added to improve the
program, but first it will be useful to understand how data can be stored
inside a computer program.

18

CHAPTER 2 GETTING STARTED WITH PYTHON

Variables

A common way of storing information in a computer program is using
variables. You can imagine a variable as a box that you can store something
in, but rather than storing physical objects, the variables store information.

The following example will create a new variable called my variable
and store the value 7 inside the variable.

my_variable = 7

The variable name must start with a letter or an underscore character.
The rest of the variable name can then include letters, numbers, and
underscores. Variable names are always case sensitive, so a variable called
My Variable would be different tomy_variable.

In some programming languages, you need to specify what you will
be storing in the variable, such as whether it will be a number or a string.
In Python this is dynamic so a variable can change type as required. It is
important to know about the different variable types as it is often necessary
to convert between the different variable types.

The main variable types used in Python are

Integers (int) which store whole numbers without
any fractions.

Examples of integers are 3, 3948392, and -237 (they
don’t need to be positive numbers).

Floating-point numbers (float) which store
numbers that include fractions or a decimal point.
Examples of floating-point numbers include 2.99,
3.14159, -345.2, and 1.0.

19

CHAPTER 2

20

GETTING STARTED WITH PYTHON

Character (chr) which refers to a single character
of text. In Python characters are stored in unicode,
so as well as being able to store standard text like

‘a’ and digits such as ‘3, there are many different
characters such as Greek letters or letters with an
accent symbol. Note that the ‘3’ character is not the
same as the number 3; when stored as a character, it
normally needs to be converted to a number before
any arithmetic operations can be performed on it.

Strings (str) are used to hold text. They are stored as
a collection of characters which are strung together.
You can imagine this as a string of letter beads
where each bead has a letter to make up a word

(see Figure 2-5). A string can be any length from an
empty string (zero characters) to an entire book (if
you wanted to).

Booleans (bool) can represent either true of false.
The fact that they can only hold those two values
means that they are useful for making simple yes

and no decisions.

CHAPTER 2 GETTING STARTED WITH PYTHON

i,ui"'.iiiﬁ“:’ "‘r" TI' "'; ‘C’ I\,

Figure 2-5. A string of characters making up the word PYTHON

The text in brackets for each of the variable types (such as int) is the
name of the built-in function that is used to convert a different variable
into that variable type. For instance, if you have an integer, but want it to
be a string, then you can use the str function. You can then use the type
function to see what type of variable is being stored.

To see this in action, you can enter some commands into the
REPL. Within Mu, click the REPL button and then enter the text that
follows the >>> characters shown here. The response is shown in bold.

>>> variablel = 10
>>> print (variable1)
10

>>> type(variable1)
int

21

CHAPTER 2 GETTING STARTED WITH PYTHON

>>> variable2 = str(variablel)
>>> print(variable2)

10

>>> type(variable2)

str

As you can see, variablel and variable2 appear to show the same value
when printed using the print function, but they are stored as different
variable types.

Ifyou tried to join the two variables using the + operator, then you will
get an error as shown here:

>>> variable3 = variablel + variable2
Traceback (most recent call last):
File "¢stdin»", line 1, in <module»
TypeError: unsupported operand type(s) for +: 'int' and 'str’

A common reason for needing to convert between variable types is if
you wanted to print the value stored in an integer or float variable. This can
be achieved by printing the output of the str function.

>>> print ("The value of variable1l is " + str(variable1))
The value of variable1i is 10

It’s also important to understand when numbers are stored as strings
and integers/floats when you need to perform arithmetic operations on
them. You can see this yourself by testing some operations in the REPL.

1

>>> integer2 = 2

>>> integer3 = integerl + integer2
>>> print (integer3)

3

>>> integer1

22

CHAPTER 2 GETTING STARTED WITH PYTHON

>>>
>>> stringl = "1"
>>> string2 = "2"

>>> string3 = stringl + string2
>>> print (string3)
12

As you can see, when adding the integer numbers together, you get the
arithmetic sum which is in this case 1 + 2 = 3. If they are stored as strings,
then the second string is appended to the first one giving the string “12”.

That example shows why it is important to differentiate between
numbers and numbers within a string, but what about floating-point
numbers instead of integers? In fact, why do we even need integers as a
floating-point number can hold any integer value, just with zero after the
decimal point? There are two main reasons. The first is for efficiency; it
takes less space to store integer numbers and they are much easier for the
computer to manipulate. The other is about inaccuracies due to rounding
up values. To store floating-point numbers, particularly those created
as the result of a division, the computer may need to round the value. If
you then create a different variable with the same amount but using a
different technique, then it may be rounded off differently giving a value
that is almost the same number, but not quite. As a result, it is not normally
considered safe to check for a floating-point value being equal to another.
If you want to check a floating-point value for a certain value, you should
always compare to see if is within a certain range rather than assuming it
is an exact value. If you only need whole numbers, then it is better to store
them as integers.

It’s quite common to want to increase or decrease numbers by a
set amount. For example, when a player scores, then you may need to
increment the score variable. You can achieve this with the following code:

score = score + 1

23

CHAPTER 2 GETTING STARTED WITH PYTHON

This will work, but there is a shortcut that allows you to increase an
existing variable. In Python you can use += to increase and -= to decrease a
variable. You can see this by testing this in the REPL.

>>> score = 0
>>> score += 1
>>> score

1

>>> score += 2
>>> score

>>> score -=1
>>> score

The += and -= shortcut is used a lot by programmers, and you will
rarely see the longer format in programs.

The += also works with strings, which will append the new string to the
end of the first. This is demonstrated as follows:

>>> varl = "string 1"
>>> varl += " string 2"
>>> varl

'string 1 string 2'

Strings and Format

As mentioned previously strings are a group of characters. The strings
don’t need to be limited to normal text characters as they can also make
use of special character sequences. You have already seen the escape
sequence \n which inserts a newline character; there are also others such

24

CHAPTER 2 GETTING STARTED WITH PYTHON

as \' and \" which are used when you want to include a quotation mark
within the string and \\ which is used when you want to include the \
character within the string.

To create a string is as simple as putting some text in quotes (either
single or double quotes). “This is a string’, ‘This is also a string’ The only
difference between using single and double quotation marks in Python is
that if you want to use the same quotation mark within the string, then you
will need to use the escape character first.

As shown previously you can also add strings together using the plus
sign +. This combines the two strings into a new single string (referred to
by some other programming languages as concatenation). If you want to
include a non-string variable, then convert it into a string first as shown here:

>>> stringl = "Your score is
>>> score = 10

>>> string2 = stringl + str(score) + "points"
>>> print (string2)

Your score is 10 points

There are some alternative techniques which can be used for
formatting strings. The first is known as the printf-style formatting. The
Python documents now discourage using printf-style formatting as
it is easy to make a mistake when using it. It’s useful to recognize this
formatting if you come across it in someone else’s code. If you come across
a string with a % after the closing quotes, then they are using printf-style
formatting:

>>> score = 20
>>> "Your score is %d points" % (score)
'Your score is 20 points'

25

CHAPTER 2 GETTING STARTED WITH PYTHON

An improved way of formatting string is to use str.format(). This uses
braces {} to show where a variable should be inserted. To create the same
as the preceding example, you would enter

>>> score = 30
>>> "Your score is {} points".format(score)
'Your score is 30 points'

An even better way is using the new f-strings. These include the name
of the variable within the main part of the string rather than having to add
it to the end.

>>> score = 40
>>> f"Your score is {score} points"
'Your score is 40 points'

Unfortunately, the f-strings are only available in recent versions of
Python (version 3.6 or later) and will fail on older versions. Raspbian did
not include a compatible version prior to the Buster image (2019). It is now
possible to use f-strings on a Raspberry Pi, but the usage will restrict is to
those running recent versions of Raspbian. It will also take some time for
other computers to upgrade to the latest version of Python, so you may
be better using str.format or concatenating the strings together using a +
character. The code in this book uses mainly the concatenation or the str.
format method depending upon which is most readable.

There are also lots of built-in string methods which help when
manipulating text. For example, if you want to compare text ignoring the
difference between upper- and lowercase letters, then you can convert the
string to lowercase by using the strlower method. This is included in the
improved code for the joke program shown in Listing 2-2.

26

CHAPTER 2 GETTING STARTED WITH PYTHON
Listing 2-2. Updated joke quiz program

print ("Welcome to the Python joke program")
player guess = input ("Why couldn't the engineer fix the
computer?\n")
if (player guess.lower() == "too many bits"):
print ("Well done!")
else:
print ("too many bits")

The updated version of the joke quiz program will now accept the
answer regardless of whether the player uses any capital letters or not.

Lists

The variables mentioned previously are great for storing a single piece
of information, but are a bit limiting when you need to store more
information. For that Python provides lists.

For example, if you want to have a number of different questions for
a quiz game, then instead of creating different variables called questionl,
question2, and so on, you can create a single list called questions. The
following two lists show five questions and answers for quiz. This will be
used to create the first game.

answers = ["Tetris", "Picade", "Python", "Sega", "luigi"]

questions = [
"What Russian tile matching game was popular in the 1980s?",
"What is the name of the Raspberry Pi arcade machine from
Pimoroni?",
"What programming language has a logo featuring two snakes?",
"Which company created Sonic The Hedgehog?",
"What is the name of Mario's twin brother?"

]

27

CHAPTER 2 GETTING STARTED WITH PYTHON

I've put the answers first as they are shorter so easier to follow. The
answers list contains five strings. The square brackets denote this as a list,
and the individual entries are separated by commas.

If the entries are more than a few words long, then it’s often easier to
read the code by placing each entry on a separate line. As you can see from
the questions list, this follows the same format as the answers with the
square brackets and the separating commas, but each entry is placed on a
new line and there are four space characters at the beginning of each line
to indicate that this is part of the same block.

The individual entries can be accessed by using the name of the list
followed by the index position in square brackets. As is common with most
programming languages, the index starts at position 0. The following example
shows how the first question and answer can be printed to the screen:

>>> answers = ["Tetris", "Picade", "Python", "Sega", "luigi"]
>>>
>>> questions = [
"What Russian tile matching game was popular in the
1980s?",
"What is the name of the Raspberry Pi arcade machine
from Pimoroni?",
"What programming language has a logo featuring two
snakes?"
"Which company created Sonic The Hedgehog?",
"What is the name of Mario's twin brother?"
]
>>> print (questions[0])
What Russian tile matching game was popular in the 1980s?
>>> print (answers[0])
Tetris

28

CHAPTER 2 GETTING STARTED WITH PYTHON

You can also update one of the questions by referring to it by its index.
To correct the intentional mistake of not starting Luigi with a capital letter,
we can update it as follows:

answers[4] = "Luigi"
To add a question to the list, use the append method.

>>> questions.append("What is the name of the giant barrel
throwing ape in Nintendo's classic game?")
>>> questions.append("Donkey Kong")

You can also create an empty list just by using []. To store the players
guesses, you could use

>>> guesses = []

If you decide you want to delete an entry, then the del statement can
be used to delete an entry as the specified index. For example, to remove
the second question, use

>>> del questions[1]

This will move the rest of the entries in the list to fill the gap, so if you
wanted to keep the two arrays in sequence, then you would need to do the
same to the answers list.

There is much more that you can do with lists, including inserting
entries at a specified position, removing entries based on their value,
or even re-ordering the entire list. For more details see the Python
documentation, a link is included in Appendix B.

29

CHAPTER 2 GETTING STARTED WITH PYTHON

Note Python also has a different data storage object type known
as an array. It works in a similar way to lists, but first needs to be
imported. Arrays do have some advantages such as if you need to
perform mathematical operations over an entire array. Arrays are
beyond the scope of this book. If you want to find out more, see the
links in Appendix B.

Dictionaries

Lists can be a useful way to organize data when you want to access it based
on its index position, but sometimes you want to associate the information
with a word instead. In this case you can use a dictionary where each entry
is associated to a key instead of a numerical position.
You can think of this just like a traditional dictionary book, where it
is indexed by a word and then provides a description. The dictionary in
Python can use any string for the index, which is known as the key. The
description can be any kind of variable or object and is known as the value.
A dictionary is created in a similar way to a list but uses braces {}
around the dictionary and uses key value pairs.

>>> dictionary1l = {'key1':'value1l', 'key2':'value2'}

The individual entries are then referenced using the key instead of the
numerical index that we used in a list

>>> print (dictionaryi['key2'])
value2

An example would be if you have a game with a different welcome
message depending upon a user selected language. You could use the
user’s language as the key.

30

CHAPTER 2 GETTING STARTED WITH PYTHON

>>> welcome_message = {'english':'Welcome’,
"french':'Bienvenue', 'german':'Herzlich willkommen'}

>>> language = 'french'

>>> print (welcome message[language])

Bienvenue

Tuples

Another type of data structure commonly used in Python is the tuple. The
best way to think of a tuple is as a list that cannot be changed once created
(in programming “jargon” this is known as being immutable). These are
commonly used in Python as return values, where more than one value
needs to be returned, or to represent an object that has multiple values
such as x,y coordinates.

To create a tuple, you just create a list of values surrounded by
brackets. For example, the following could represent the position of a
spaceship where x =10 and y = 15.

positionl = (10,15)

You will see examples of where tuples are used in Chapter 3 when
creating an actor on the screen.

Conditional Statements (if, elif, else)

Conditional statements provide a way to change the execution of code.
They work by testing for a certain condition and only running parts of the
code if that condition is met.

31

CHAPTER 2 GETTING STARTED WITH PYTHON

You have already seen an if statement in the earlier code in Listing 2-1.
The section of the code dealing with the if statement is repeated here:

3 if (player_guess.lower() == "too many bits"):
4 print ("Well done!")

5 else:

6 print ("too many bits")

In this case the code on line 4 is only run “if” the condition is met. The
code on line 6 is only run if the condition is not met as defined by the “else”.
The if statement evaluates any tests or instructions up to the colon.
This is known as the conditional expression. It determines whether the
output of the conditional statement is true or false. If it is true, then it runs
the block of text indented after the if. If it is not true, then it will skip that
block of text.

The “else” clause and associated block of code is optional. When that is
included, then that code will only run when the “if” condition is not met.

The indentation of the block of text is important. I recommend each
block is moved in by four spaces for each indent. In Mu this is usually done
automatically, and pressing the Tab button will automatically replace it
with the correct number of spaces. In other editors pressing the Tab key
may generate a tab character instead of four spaces; this will prevent the
code from running.

When adding an if statement, the value you need to evaluate may
not necessarily be a true or false answer, in which case you can use a
comparison operator to change it to a true or false answer. Consider a
game where you add different amounts of points as the player progresses
through the game. A silver coin adds 1 point, a gold coin adds 5 points, and
a bag of coins adds 10 points. If the player reaches 100 points, then they get
a level up. This is easy to achieve within the add score code using

if (score == 100):
level += 1
print ("Level up to "+str(level))

32

CHAPTER 2 GETTING STARTED WITH PYTHON

There is however a problem with this code. If the player has reached 98
points and then collects a bag of coins which earns them 10 points, then
their score will increase to 108 points. The comparison will never be true
as the score will have increased too quickly, and they will not have met the
condition where score was equal to 100.

Instead you need to check to see if the score is either equal to or
greater than 100. The angle brackets “<>" can be used to check whether
something is less than or greater than a value. So

if (score > 99):

will check for 100 or higher. Alternatively, you could combine that with an
equals to compare to it being greater than or equal to. So

if (score »= 100):

will work if the score is equal to 100 or if the score is greater than 100.
A summary of the different comparisons is shown in Figure 2-6.

Operator Symbol |Operation Comments

== Equals Tests to see if the values are
identical.

I= Not equals Tests to see if the values are not
not identical.

> Greater than Tests that the value on the left is
greater than the value on the right.

< Less than Tests that the value on the left is
less than the value on the right.

>= Grealer than or equal lo Tests thal the value on the left is
greater than or equal to the value
on the right.

<= Less than or equal fo Tests that the value on the left is
less than or equal 1o the value on
the right.

Figure 2-6. Common comparison operators

33

CHAPTER 2 GETTING STARTED WITH PYTHON

If you change the code using greater than in place of equality test, then
you may also need to update related parts of the code. If greater than or
equals was substituted in the earlier code, it would increase the level every
time that the player scored a point after 100. So instead of just increasing
the level, the code needs to check within certain bounds such as

if (score »= 100 and score < 200):
level = 1
print ("Level up to "+str(level))

This adds another test which is the logical and operator. Using the and
statement, the condition is only met when both the left-hand and right-
hand side are true.

This is used in the form of

if (condition1l and condition2):

Another logical operator is the or operator which will evaluate to true if
either condition is true. This is summarized in Figure 2-7.

Logical Operator Comments

and True if both conditions are true.

or True if any of the conditions are Irue.

nol Invert. If true then relurn false, if false thenreturn true.
True Always evaluale 1o lrue.

False Always evaluate fo false.

Figure 2-7. Logical operators

At first glance, including True and False may feel superfluous, but
sometimes they can be useful. Typically, these can be used as a condition
in aloop (a True operator in a loop creates a forever loop), or it can be
useful to use either of these temporarily when debugging code.

There are other ways of evaluating a true or false condition. This may
be through a function that returns a value or by entering a variable directly.

34

CHAPTER 2 GETTING STARTED WITH PYTHON

In these cases, if a value is equal to false or zero, then it is evaluated as
false. For any other return value, the value evaluates as true. This may be
that the return value is positive or negative, or a string is non-empty. This
can cause a little bit of confusion when trying to understand how a value
is going to be interpreted. If there is some ambiguity, then I recommend
comparing it against a known value to make it clear.

Simple Quiz Game

After covering some of the basics, you should now be ready to create a
simple quiz using the list of questions and answers created earlier.

Enter the code in Listing 2-3 into a new file. Ignore the line numbers
which are included to make the code easier to explain.

Listing 2-3. Simple quiz game - quiz0.1.py

1 # Simple quiz game

2

3 # Score starts at 0 - add one for each correct answer
4 score = 0

5

6 # List of questions

7 questions = [

8 "What Russian tile matching game was popular in the 1980s? ",

9 "What is the name of the Raspberry Pi arcade machine from
Pimoroni? ",

10 "What programming language has a logo featuring two snakes? ",

11 "Which company created Sonic The Hedgehog? ",

12 “What is the name of Mario's twin brother? "

13]

14

15 # Answers - correspond to each question

35

CHAPTER 2 GETTING STARTED WITH PYTHON

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

36

answers = ["Tetris", "Picade", "Python", "Sega", "Luigi"]
print ("Welcome to the computer game quiz")

Ask the first questions, store response in player guess
player guess = input (questions[0])
if (player guess.lower() == answers[0].lower()):
If correct say so and add 1 point
print ("Correct")
score += 1
else:
print ("Incorrect")

Ask the second question
player guess = input (questions[1])
if (player guess.lower() == answers[1].lower()):
If correct say so and add 1 point
print ("Correct")
score += 1
else:
print ("Incorrect")

Ask the third questions
player guess = input (questions[2])
if (player guess.lower() == answers[2].lower()):
If correct say so and add 1 point
print ("Correct")
score += 1
else:
print ("Incorrect")

print ("You scored {} points".format(score))

CHAPTER 2 GETTING STARTED WITH PYTHON

This program is included in the accompanying source code named
quiz0.1.py.

The code starts with some comments prefixed with the # character.

Line 4 creates the score variable and sets its initial value to 0.

Lines 6 to 16 add the questions and answers, as explained previously.

After giving a welcome message to the player (18), lines 21 to 27 ask the
first question and check if it is correct using an if statement. You will see on
line 22 that both the player’s answer and the correct answer are converted
to lowercase (.lower function) so that it doesn’t matter if the player inputs
the answer using capital letters or not.

Lines 29 to 36 ask the second question and then lines 38 to 45 ask the
third question.

Finally line 47 tells the player how well they did.

If you look at lines 21 to 27, 30 to 36, and 39 to 45, you will notice that
some of the code is repeated between the blocks. Except for the question
number, the block of text for the first question is the same as that for the
second and third. This is quite a lot of wasted code for just three questions,
but imagine if there were more questions. If you have to add eight additional
lines of code (including a comment) for every new question, then that is
going to add up to a lot of code. This is where loops come in useful.

Loops — While, For

After conditional statements, one of the most important things that code
needs to do is to repeat actions. This is usually done in the form of a loop.
The quiz code in Listing 2-3 showed how repeating code can increase
the amount of code that needs to be written. It also means that if you want
to make a change to the code, then changes will need to be made across
multiple lines which is a waste of time and increases the risk of mistakes.
Loops are even more important when it comes to code that needs to
keep running. If you have an arcade machine, then it would not be much

37

CHAPTER 2 GETTING STARTED WITH PYTHON

good if the whole machine needed to be rebooted after each person has
finished playing. For most computer games after the “game over’, you
expect to have the option to play again without needing to restart.

When creating loops in Python, there are essentially two different
types of loop. The while loop is the easiest to construct and so will be
covered first.

While Loop

The while loop can be shown through a demonstration

num_times = 0

while (num times < 10):
print ("This is line number "+str(num times))
num_times += 1

Ifyou enter the code in the Mu REPL and hit Enter, then you should see
the following:

This is line number
This is line number
This is line number
This is line number
This is line number
This is line number
This is line number
This is line number
This is line number

O 60N O U1 » W N = O

This is line number

This repeats the command ten times.

The main thing to consider is the while loop which will run “while”
the variable num_times is less than 10. To run this as a loop, num_times
variable must be updated during each loop.

38

CHAPTER 2 GETTING STARTED WITH PYTHON

In this case the variable is incremented once during each loop, but
sometimes the variable may change differently. It may be that the loop
needs to run while the player’s score is less than a certain value or until a
certain trigger is reached. There will be further examples of loops in the
code used in later games.

For Loop

An alternative is the for loop. Typically, a for loop is often used to iterate
over a list. This makes it useful when you want to give it a list and run some
code for each of the items in the list.

Again, this is easiest demonstrated through an example

questions = [
"What Russian tile matching game was popular in the 1980s?",
"What is the name of the Raspberry Pi arcade machine from
Pimoroni?",
"What programming language has a logo featuring two snakes?"
"Which company created Sonic The Hedgehog?",
"What is the name of Mario's twin brother?"
]
for this _question in questions:
print (this question)

which will print out each of the questions in turn showing the following
output:

What Russian tile matching game was popular in the 1980s?
What is the name of the Raspberry Pi arcade machine from
Pimoroni?

What programming language has a logo featuring two snakes?
Which company created Sonic The Hedgehog?

What is the name of Mario's twin brother?

39

CHAPTER 2 GETTING STARTED WITH PYTHON

Looking at the code in the for loop, what it is doing is iterating over the
list questions and storing the current value in a temporary variable called
this _question. It then prints the content of this question.

Another example is where you want to run a loop a fixed number of
times. This is an alternative to the while loop used previously:

for x in range(0,10):
print ("This is line number "+str(x))

This time the for loop uses the range function which allows it to iterate
over a range of numbers. Effectively it is like having a list of numbers
from the first argument to the second argument (not including second
argument). This will give a list going 0,1,2,3,4,5,6,7,8,9. There is a third
parameter which can be used to change the size of the step between the
numbers.

So range(0,10,2) will only show the even numbers between 0 and 9.

The format for the function is

range(start, stop, step)

start (optional if only one parameter is used) - the first
number included

stop (required) - the maximimum value is one less than the stop
value

step (optional) - the difference between each value

The values can be negative. If you wanted to count down, then the step
could be -1 to count down one per iteration.

Some other programming languages have different for and foreach
loops. The Python for loop is like the foreach loop in other programming
languages, but with the range function, it can act like a for loop from other
programming languages.

40

CHAPTER 2 GETTING STARTED WITH PYTHON

Forever Loop — while True

A special case with the while loop is that it can be run with the condition
set as True. This means that the loop will run forever.

while True:
print ("Program is still running")

I don’t recommend you run the preceding code as it will just keep
running forever. Actually, forever is perhaps an exaggeration (but is a term
used in some other programming languages); the loop actually runs until
you stop the program externally, the computer stops, or the end of the
world, whichever comes first!

If you do run the program, then you can cancel using the Stop button
in Mu or Ctrl-C if running Python from the command line. The Ctrl-C will
send a signal telling Python to stop running and give a KeyboardInterrupt
error message. It is quite common to include a forever loop in command-
line programs, although less so in Pygame Zero where the forever loop is
handled in the background.

You may also see other programs usingwhile 1. As 1 evaluates as
True, then that is the same.

Changing Loop Flow - break and continue

What happens if you want an “almost forever” loop? Perhaps you want the
program to continue running forever, except if the player requests to quit.
There are two statements that can be used to change the flow within a loop
(which applies to the for loop as well) which are break and continue.

A break statement will cause the program to exit the loop at that point
and then run the code outside of the loop. A continue statement causes
the code to jump back to the start of the loop, re-evaluate the expression,
and then run the loop again (if the condition is met) or exit the loop (if the
condition is not met).

41

CHAPTER 2 GETTING STARTED WITH PYTHON

Functions

A function is a way of defining a block of code so that it can be used
elsewhere within the program. These can be built in and included in
libraries or you can create your own.

One of the most popular Python functions is the print function, which
has already been used in many of the examples in this chapter. At its
most basic use, the print function takes a single string which the function
displays in the console.

print ("string")

Essentially what happens when you call a function is that the current
program flow pauses. Any arguments provided are passed to the function,
the code in the function runs, and then when the function is complete, the
flow returns to the previous point in the code.

You can create your own functions as shown in Listing 2-4.

Listing 2-4. Example of a Python function

1 def ask_question (question, answer):

2 player guess = input(question)
3 if (player guess.lower() == answer.lower()):
4 print ("Correct")
5 return 1
6 else:

7 print ("Incorrect")
8 return 0

Again, note that the line numbers would not be in the code.

This code won’t do anything if you try to run it but should instead be
included as part of a bigger program. In that case the line numbers would
not normally start from 0 as a function would not normally be the first
entry in an executable the file.

42

CHAPTER 2 GETTING STARTED WITH PYTHON

This is the same code that was used earlier in Listing 2-3 (lines 20 to
27) but using a function called ask_question and passing the question and
answer as an argument instead of accessing the list directly.

The first line uses the “def” statement which identifies this as a
function. The next item on line 1 is ask_question which is the name of the
function. The function name follows a similar convention as variables, for
example, it cannot start with a number and the convention recommends
using underscore characters instead of a space. The brackets are used to
include any arguments that need to be passed to the function. In this case
there are two arguments: question and answer. The final character on
line 1 is the “:” character which denotes the start of the function and the
content of the function needs to be indented below.

Arguments do not need to be used in functions, but the brackets are
still required if there are no arguments. An important thing to know when
passing arguments to functions is that the function makes a local copy of
the data passed as an argument, so any changes made to those variables
are lost when the function returns.

The body of the function is then the same as the previous code except
for the return statements (which will be explained shortly), and that
instead of using the entries from the list code in the function uses the
values provided in the argument. This means that instead of having to
duplicate code, different arguments can be passed to the function.

The return statements on lines 5 and 8 used to end the function and
return to the main code. Return statements are not always necessary as if
you reach the end of the function there is an implied return, but a return can
be added if you would like the code to return before reaching the end of the
function or if the function needs to pass a value back. A return statement is
often followed by a value or variable to be returned, but if not (or if there is
no return statement), then a special value is returned which is “None”.

43

CHAPTER 2 GETTING STARTED WITH PYTHON

Variable Scope

Variables can be created in the main part of the code or inside a function; the
scope defines where the variable can be updated which can be either local
or global. If the variable is created inside a function, then it will be a local
variable which is only available inside that function. This is also the case
for arguments which are copied into a local function. This allows multiple
variables with the same name, which is an important feature for code reuse.
It also prevents accidentally changing a variable in another function.

Sometimes you will need to access variables that are created
elsewhere. For example, if there is a variable that holds the score, then that
may need to be updated by any functions that need to update that score.
To achieve this, the global keyword should be used within the function so
that it can access the variable as a global variable.

This is easiest to understand through an example. Listing 2-5 shows
example code to demonstrate the use of local and global variables.

Listing 2-5. Code demonstrating variable scope

variable1

variable2

def local function (variable1):
variablel += 1
variable2 = 5
print ("variable1l in local function {}".format(variable1))
print ("variable2 in local function {}\n".format(variable2))

def global function (argumenti):
global variablel, variable2
variablel = argumentl + 10
variable2 = 15
print ("variable1l in global function {}".format(variable1))

print ("variable2 in global function {}\n".format(variable2))

44

CHAPTER 2 GETTING STARTED WITH PYTHON

print ("variable1l in top level-code {}".format(variable1))
print ("variable2 in top level-code {}\n".format(variable2))

local function (variablel)

print ("variable1l in top level-code {}".format(variable1))
print ("variable2 in top level-code {}\n".format(variable2))

global function (variable1)

print ("variable1l in top level-code {}".format(variable1))
print ("variable2 in top level-code {}".format(variable2))

When this is run, it will produce the output shown in Listing 2-6.

Listing 2-6. Output of code demonstrating variable scope

variable1l in top-level code 1
variable2 in top-level code 1

variable1l in local function 2
variable2 in local function 5

variable1l in top-level code 1
variable2 in top-level code 1

variable1l in global function 11
variable2 in global function 15

variablel in top-level code 11
variable2 in top-level code 15

There are two variables which are created at the top level of the code
(outside of any functions). There are two functions; the local function
demonstrates local variables and the global_function shows how the
global variables can be altered instead. There is no significance in the
naming other than to make it clear which is being referred to. Any function
can have any combination of local or global variables.

45

CHAPTER 2 GETTING STARTED WITH PYTHON

The variables are both set to 1 and that is confirmed by the first print
statements. The first variable is passed as an argument to local function
which is defined as a local variable only visible inside that function. That
value is increased to 2 which is displayed inside the function, but after
the function finishes the original variable is unchanged. Another variable
called variable2 is created and set to 5. When used within the local
function, it shows the value of 5, but this variable only exists within the
function, and outside of that function, the value of variable2 remains as 1.

Inglobal function, variable1l is passed as an argument but is stored
as a local variable named argument1. Both variablel and variable2 are set
as global through the global statement, and when they are updated inside
that function, it also updates the value in the global top-level variable.

There is one more thing. If a variable is created at the top level and
then read within a function without using the global statement, then
the value of the top-level variable will be read. That same variable name
cannot then be used as the name of a local variable.

Global variables are something that should, where possible, be
avoided. The reason for this is that having multiple places update
variables can result in code that is difficult to understand and debug.

This is sometimes referred to as a “bad smell” if you see too many global
variables in code. When using Pygame Zero (starting from the next
chapter), you will see that there are quite a few global variables used. This
is a nature of Pygame Zero in that the code runs within different functions
which are part of Pygame Zero, and it is very difficult to pass variables

into those functions without using global variables. Fortunately, object-
oriented programming makes this easier, but that won’t be discussed until
Chapter 9. For the next few chapters, please accept that there will be a
number of global variables but that the situation will change later in

the book.

46

CHAPTER 2 GETTING STARTED WITH PYTHON

Refactoring the Code

Now that you've learned the theory of some additional programming
techniques, you can put this into action with a new improved quiz. The
player of the game won’t notice any difference in this version, but I like to
think of it as being “better code”.

This is known as refactoring the code. Refactoring is where changes
are made to the structure of the code that does not normally add any
additional functionality but makes the code cleaner and easier to
understand. It can also be used to make it easier to add new features.

The new code is shown in Listing 2-7, which I've called quiz0.2.py.

Listing 2-7. Refactored version of simple quiz game - quiz0.2.py

Simple quiz game
def ask question (question, answer):
player guess = input(question)
if (player guess.lower() == answer.lower()):
print ("Correct")
return 1
else:
print ("Incorrect")
return 0

List of questions

questions = [
"What Russian tile matching game was popular in the 1980s? ",
"What is the name of the Raspberry Pi arcade machine from
Pimoroni? ",
"What programming language has a logo featuring two snakes? ",
"Which company created Sonic The Hedgehog? ",
"What is the name of Mario's twin brother? "

]

47

CHAPTER 2 GETTING STARTED WITH PYTHON

Answers - correspond to each question
answers = ["Tetris", "Picade", "Python", "Sega", "Luigi"]

while True:
print ("Welcome to the computer game quiz")

Score starts at 0 - add one for each correct answer
score = 0

for i in range (0,len(questions)):
if (ask_question (questions[i], answers[i]) == True):
score += 1

print ("You scored {} points\n".format(score))

This improved quiz starts with a function called ask_question. This
function asks the player the question, checks for a correct response, and
returns a 1 or 0 depending upon whether the provided answer is correct or
not. The function is at the beginning of the code as it needs to be defined
before it is called.

The questions and answers are then stored as lists. The order of the
lists is such so that the question and answer have the same index. The rest
of the code is wrapped in a while True loop, so that after the questions
have been answered, the quiz goes back to the start.

Further Improvements

As with all the games in this book, this is a working game, but with scope
for improvement. Some ideas for improvement are adding more questions
(or changing them for a topic you are interested in), choosing questions

to appear at random, and changing the output to give a different phrase
depending upon the number of questions answered correctly.

48

CHAPTER 2 GETTING STARTED WITH PYTHON

Have a go at adding these and see if you can make the game more
entertaining. You will need to use the random module to select the
questions at random; you can find details on the Internet or you could
return here after the next chapter where it is explained. In the supplied
source code, I have included an example incorporating all of these as
quiz0.3.py, although I suggest you have a go at making your own changes
before you look at the code.

Summary

This chapter has been a very brief run through of the Python programming
language. There is not enough space in this book to explain Python in
detail. From now on the book will assume some familiarity of the Python
programming language. If you need more information about getting
started in Python, then I suggest the book Beginning Python by M. L.
Hetland, published by Apress.

I have also included links to the official Python documentation in
Appendix B.

The next chapter will move on to creating graphical games using
Pygame Zero.

49

CHAPTER 3

Pygame Zero

So far, the programs have been text-based, but if we just stuck with text-
based games, they would not have the same appeal as graphical ones.
The rest of this book is about graphical games, which will be created using
Pygame Zero.

To understand what Pygame Zero is, you first need to understand what
pygame is. Pygame is a programming library for Python. It is designed
for creating multimedia applications (such as games) easier. It also works
across multiple platforms making it easier to share the games you make
with other computers.

While pygame made it much easier to create games in Python, it still
needs a reasonable amount of standard code, known as boilerplate code,
before you can get started.

Pygame Zero is a more recent programming library which uses
pygame but removes the need for much of the boilerplate code making it
even easier to create games. Designed for use in education to help teach
programming, it is a great way to get started creating computer games.

Pygame Zero Development

At the time of writing, Pygame Zero is an active project with improvements
on a regular basis. Fortunately, most changes have maintained backward
compatibility, but some new features will not work on all installations of
Pygame Zero. If you are confident that the games you write will only be run

© Stewart Watkiss 2020 51
S. Watkiss, Beginning Game Programming with Pygame Zero,
https://doi.org/10.1007/978-1-4842-5650-3_3

CHAPTER 3 PYGAME ZERO

on current or later versions, then you can include these into your game
design, but if it is more important that your game will run on a wider range
of computers, then you may want to restrict yourself to features compatible
with older versions of the Pygame Zero libraries.

One example is that you can now include file path and filename
extensions on resources (such as image files), but that does not work on
older versions of Pygame Zero (prior to summer 2018). The code in this
book has been tested with a recent version of Pygame Zero, but where I
am aware of an issue with backward compatibility, I have tried to write the
code so as to work with older versions as well.

Compass Game

The first graphical game will be known as Compass Game. The compass
game is inspired by a game that is played by the Cub Scouts who I
volunteer with; this in turn is a variation of a game known as Captain’s
Coming. The game is used to help teach the four cardinal directions
(points of a compass). In the real (non-computer) game, a label is placed
on each of the walls of the scout hall. The Cubs are given a direction, and
they must run to the appropriate wall. Additional instructions can also
be given, such as Captain’s Coming, where the Cubs must stand still and
make a salute.

In this chapter you will create a computer version of this game where
the player is given an instruction that they must follow. The player must
move their character in the direction stated. The game is shown in
Figure 3-1.

52

CHAPTER 3 PYGAME ZERO

Pygame Tero Game - x

Seora 29

ik
i
L
=

Time: 24

-

L _Ia)

Figure 3-1. Screenshot of Compass Game

This will provide an opportunity to learn about Pygame Zero and how
to make a character appear to walk around the screen. This will be created
using an agile methodology, adding a feature at a time to create the game.

Required Files

There are several image files that are needed for this project. These need to
be in an image directory directly below your source code for the game.

You will need the files from the source code in the directory chapter3
and then the sub-directory images. If you are using the Mu editor, then
they should be copied to the directory /home/pi/mu_code/images.

Ifyou look in the chapter3 directory in the supplied source code, you
will see a number of Python files prefixed with compassgame. The game
is going to go through multiple iterations, and these files are used in the
different stages in the development of the game. If you are following the
instructions on your computer, then you create the game using just a

53

CHAPTER 3 PYGAME ZERO

single file called compassgame.py which will then evolve throughout this
chapter. The files provided in the source code can be used if you want to
jump straight to the code for each stage rather than typing it yourself.

Running Mu in Pygame Zero Mode

The game should be created as a new file in Mu. You will need to change
the mode to Pygame Zero. This is achieved by clicking the Mode icon on
the top left of the editor. This is shown in Figure 3-2.

r) (+) &

Mode New Load
Please select the desired mode then click "OK”. Otherwise, click "Cancel®
untitled X

RS Write vour cod Adafrut
1 rite your cod Use

@ BB: crotbit
Write MicroPython for the BBC microcbit.

Pygame Zero
“ Make games with Pygame Zero.

P Python 3
Create code using standard Python 3

Select Mode

routPython
*ython on Adafruit’s ine of boards.

Change mode at any tme by clicking the "Mode® button containing Mu's logo.
Cancel OK

Python 3

Figure 3-2. Changing to Pygame Zero mode in the Mu editor

Start by adding the following two lines to the file and then save it as
compassgame.py.

WIDTH = 800
HEIGHT = 600

54

CHAPTER 3 PYGAME ZERO

Then click the Play button in Mu and you should see a black screen,
800 pixels wide and 600 pixels high. This first example acts as a good
demonstration of why Pygame Zero is so easy to use. Just defining the
dimensions of the screen is enough to create a game window. In fact, this
could have just been launched using an empty file, as those are the default
values. This is less than the equivalent code using Pygame and it’s easier to
understand.

You can close the program by clicking the x in the top right or by
pressing Stop from the Mu menu bar.

If you are not using Mu, then the file can be created in any other editor,
but should be run from the command line using the following command:

pgzrun compassgame.py

This code is available in the source code in the file compassgame-
layoutl.py.

Tip Remember, if the menu has a run menu item instead of play,
then you need to switch to Pygame Zero mode. Click the Mode button
at the top left to select your mode.

Adding a Background Image

Now that you know how to create a basic Pygame Zero application, it’s

time to add something a bit more interesting. You can start by replacing

the plain black background with something a bit more interesting.
Replace the current code with the code in Listing 3-1.

55

CHAPTER 3 PYGAME ZERO

Listing 3-1. Simple Pygame Zero program with image background

WIDTH = 800
HEIGHT = 600

BACKGROUND IMG = "compassgame background 01"

def draw():
screen.blit(BACKGROUND IMG, (0,0))

The code is available in the supplied source code as compassgame-
layout2.py.

Click the Play button and you should now see the same screen
as before, but it will now have a green background image. If it doesn’t
work, make sure you have copied the images into the correct directory.
There should be a file compassgame_background_01.png in the
mu_code/images directory.

The code works by creating a variable BACKGROUND_IMG which
has the name of the file to display. The image is entered as the filename
without any path information or the .png suffix. On recent versions of
Pygame Zero, you can use the full filename if you prefer, but to maintain
compatibility with older versions of Pygame Zero, the files must be in the
image folder and not include the suffix. This is the same for any image files
used as Actors and backgrounds.

The line def draw(): is defining the draw function. This is a Python
function that Pygame Zero calls approximately 60 times per second. It
should be used to tell Pygame Zero what should be displayed on the screen.

The function calls screen.blit which displays a bitmap image at the
appropriate position (in this case 0,0 starting at the top left of the screen).

56

CHAPTER 3 PYGAME ZERO

Note The reason for using such long filenames is because by default
Mu puts all the code into the same directory. If you create multiple
Python programs, they all share the same image directory. Naming
them like this makes it obvious which files are for which program.

If you are using a different editor or have organized your game
into a dedicated directory, then you may want to remove the
compassgame_ prefix from the start of the filenames.

The image filenames also include a number which will allow us to
change the look of the background or person.

Adding an Actor

In computer graphics, characters and other objects are known as sprites.
In the case of Pygame Zero, it uses a more “friendly” name calling sprites
Actors. Iwill often refer to these as sprites as that is the correct computing
term, but remember when defining these in Pygame Zero to add them as
an Actor object.

A sprite is an image used in a computer game that is often created from
a bitmap image. These often take the forms of characters (people, animals,
aliens, etc.), but they could also be used for objects that the players need to
interact with such as obstacles, balls, or bullets fired from a weapon.

In this case you can start with a single sprite representing the player
character. Later you can add more sprites to act as obstacles to add a
challenge.

You will need several images for the sprites for the player character,
so that you can show it facing different directions and to make it appear
to move. The minimum needed would be an image with the character
facing each of the following directions: front, right, left, and rear. To make

57

CHAPTER 3 PYGAME ZERO

the movement a little more realistic, additional images can be used with
the legs moving between the images. In Chapter 5, you will get to see how
to design your own sprite characters, but for now you can use the sprites
included in the source code. This is easiest by copying the files from the
image directory in the source code in the image sub-directory within mu_
code. The sprite for this game is a person, but it could be replaced with an
animal or with a different character completely such as a car.

To create a sprite, use the Actor object, with an image file.

player = Actor('imagefile')

The same rules apply about the image as previously mentioned for
background images. If you want maximum compatibility, use the name of
the image located in the image directory and without an extension. If using
arecent version of Pygame Zero, you can include the extension and a path
to the file location.

To position the sprite in a specific position of the screen, you can add
the location as a tuple afterward. The following will create a sprite in the
center of the screen:

player = Actor('compassgame person down 1', (WIDTH/2,HEIGHT/2))

The coordinate system starts in the top left-hand corner of the screen.
The x-coordinate increases to the right and the y-coordinate increases
downward. This is different to how graphs and maps work. The image in
Figure 3-3 shows the game screen with some key coordinates marked.

58

CHAPTER 3 PYGAME ZERO

Figure 3-3. The Pygame Zero screen coordinates

As well as creating the actor, you need to include code to draw it onto
the screen. This is achieved by putting the following entry inside the draw
function:

player.draw()

The code to demonstrate this is shown in Listing 3-2, which is included
in the source code as compassgame-player.py.

59

CHAPTER 3 PYGAME ZERO

Listing 3-2. Simple Pygame Zero program with player actor

WIDTH = 800
HEIGHT = 600

BACKGROUND IMG = "compassgame background 01"

#Player character
player = Actor('compassgame person down 1', (WIDTH/2,HEIGHT/2))

def draw():
screen.blit(BACKGROUND IMG, (0,0))
player.draw()

Moving the Sprite Around the Screen

Now that you have created a sprite (Actor), you can read the keys from the
keyboard and make the player move in the direction of the key press.

To make it easier to test whether a key is pressed, Pygame Zero
provides an attribute for each key. To test if the up arrow key is pressed,
you should check the value of “keyboard.up”. If the value is true, then the
up key is pressed, if it is false, then it is not pressed.

You wouldn’t use this method for getting text input from a player,
because it doesn'’t tell you the order that the keys being pressed. It is
however useful for game programming where there is just a small number
of keys that can be pressed and where multiple keys can be pressed at the
same time (such as up and right to move diagonally).

When you know which direction to move the player, then you can just
change the x and y attributes to move the character a certain number of
pixels in that direction.

The code to move the character is shown in Listing 3-3. Replace the
current code with this updated code.

60

CHAPTER 3 PYGAME ZERO

Listing 3-3. Code to allow the character to move around the screen

WIDTH = 800
HEIGHT = 600

BACKGROUND IMG = "compassgame background 01"

#Player character

player = Actor('compassgame person down 1', (WIDTH/2,HEIGHT/2))
Direction that player is facing

direction = 'down'

def draw():
screen.blit(BACKGROUND IMG, (0,0))
player.draw()

def update():
Need to be able to update global variable direction
global direction

Check for direction keys pressed
Can have multiple pressed in which case we move in all
the directions
The last one in the order below is set as the direction
to determine the
image to use
new direction = "
if (keyboard.up):
new_direction = 'up'
move_actor(new_direction)
if (keyboard.down):
new_direction = 'down'
move_actor(new_direction)

61

CHAPTER 3 PYGAME ZERO

def

62

if (keyboard.left) :
new_direction = 'left’
move_actor(new_direction)

if (keyboard.right) :
new_direction = 'right’
move_actor(new_direction)

If new direction is not "" then we have a move button

pressed

so set appropriate image

if (new_direction != ") :
Set image based on new_direction
player.image = "compassgame person "+new direction+" 1"
direction = new_direction

move_actor(direction, distance = 5):
if (direction == 'up'):
player.y -= distance
if (direction == 'right'):
player.x += distance
if (direction == 'down'):
player.y += distance
if (direction == 'left'):
player.x -= distance

Check not moved past the edge of the screen

if (player.y <= 30):
player.y = 30
if (player.x <= 12):
player.x = 12
if (player.y >= HEIGHT - 30):
player.y = HEIGHT - 30
if (player.x >= WIDTH - 12):
player.x = WIDTH - 12

CHAPTER 3 PYGAME ZERO

This is included in the source code named compassgame-movement1.py.

You should be able to follow most of the code by now, but there are a
few new things which may need explaining.

The new_direction variable is a local variable inside the update
function. It is used to hold the direction of the last key that it detected was
pressed (so if you pressed up and right, it would hold right). This is used
so that the character doesn’t change between up and right when both
keys are pressed, but also will be useful later when making the character’s
legs move. As new_direction is stored as a string, it can be included in the
player image using the following line:

player.image = "compassgame person "+new direction+" 1"

If the player is facing right, this will show the image compassgame
person_right 1.png.

A new function has been added called move_actor. As its name suggests,
this moves the position of the actor on the screen. The first argument is
the direction to move. The second argument for the function is defined as
“distance = 5" This means that if a value is provided to the function, then
that value will be stored in the distance variable, but if nothing is passed in
the argument, then the distance variable will be set to 5. This can be useful
when you want to include a default value for an argument.

When moving the actor, the code checks the position to make sure that
the character does not go beyond the edge of the screen. It uses a 'y offset
value of 30 pixels and an x offset value of 12 pixels so that the whole of the
actor remains on the screen.

Making the Movements More Realistic

If you run the code in Listing 3-3, you will see the character move around
and face the direction they are walking, but it does not look particularly
realistic. As the legs are not moving, it appears as though the player is

63

CHAPTER 3 PYGAME ZERO

sliding rather than walking. To make the movement look a little more
realistic, we can change the image to show the person’s legs moving.

The technique used is similar to the way that cartoons are made, where
each frame is individually drawn with a slight movement. The frames are
then shown one after another to make a moving image. In a typical cartoon,
they may create around 20 images for each second of movement. In theory
it would be possible to have the image change on every run of the update
function, which is around 60 times per second; however, to keep this
simple, the code will only update on every 5th time that the update function
is called. This will give a frame rate of 12 frames per second. To achieve
this requires four images for each direction that the player is moving in.
Figure 3-4 shows the four images used for the right direction.

Figure 3-4. The four sprite images for walking to the right

In this example only the legs are moving, but you could have the arms
moving as well to make it a little more realistic.

Using 4 images per direction needs 16 unique images. If you wanted
to increase the frame rate, then you can increase the number of images. If
you wanted to move the character twice as often, you would half the delay
between each image and double the number of images to 32.

64

CHAPTER 3 PYGAME ZERO

Previously the image was changed by updating the actor attribute.
To allow for different images to be displayed, this can be changed to
a function call to a new function called set_actor_image which will
determine the correct image based on the direction of travel and the
appropriate image in the sequence.

To update your previous code to show the character working, perform
the following steps.

Add a new global variable near the top of the code called player_step_
count. It can be placed after the definition of the direction variable.

player step count = 1
Replace the line
player.image = "compassgame person "+new_direction+" 1"
with
set_actor _image (new_direction)
Then add the following code to the bottom of the file:

Show image matching new_direction and current step count
def set actor image (new direction):
global player, player step count

player step count += 1
if player step count >= 4:
player step count = 1

player.image = "compassgame person "+new direction+" "+
str(player step count)

The updated code is included in the source code as compassgame-
movement2.py. If you run the code now, then you will see the legs move,
but it will be far too fast. It still needs the code to slow the movement down
by only replacing the image on every 5th frame.

65

CHAPTER 3 PYGAME ZERO

This is achieved by allowing the player_step_count to count up until
five times the number of images and then dividing the image number by
5. The code will then discard any remainder and then add 1 (to start the
image numbering from 1 instead of 0).

This is best illustrated by working through some examples.

With player step count set to 0

Divide player step count (0) by the delay (5) giving 0.0
Discard anything after the decimal place which gives 0
Add 1 to get image number 1

With player step count set to 1

Divide player step count (1) by the delay (5) giving 0.2
Discard anything after the decimal place which gives 0
Add 1 to get image number 1

With player step count set to 5

Divide player step count (5) by the delay (5) giving 1.0
Discard anything after the decimal place which gives 1
Add 1 to get image number 2

With player step count set to 19

Divide player step count (19) by the delay (5) giving 3.8
Discard anything after the decimal place which gives 3
Add 1 to get image number 4

With player step count set to 20, the maximum value has been
exceeded so set back to 0 and recalculate the value.

Most of this uses basic operations, but to discard the value after the
decimal point, you will need the function floor() which is included in the
math module. The floor function is defined as returning the largest integer
value less than or equal to x.

66

CHAPTER 3 PYGAME ZERO

The math module includes several mathematical functions, which can
be useful when creating games. More details are available from https://
docs.python.org/3.5/1ibrary/math.html

To import the math module, add the following line to the top of the code:

import math

Then update the set_actor_image function (which was added to the
bottom of the code) to match the following:

Show image matching new_direction and current step count
def set actor image (new direction):
global player, player step count

step_delay = 5
player step count += 1

if player step count >= 4 * step_delay:
player step count = 1

player step position = math.floor(player step count / step_
delay) +1

player.image = "compassgame person "+new_direction+" "+
str(player step position)

The updated file is included as compassgame-movement3.py in the
source code.

If you run the updated code, you should see the legs move at a more
realistic speed.

Keeping Game State

An important concept in programming is to be able to keep track of the
state that the program is in. This is where the program needs to keep track
of what has happened in the past and which influences how it will then
handle future events.

67

https://docs.python.org/3.5/library/math.html
https://docs.python.org/3.5/library/math.html

CHAPTER 3 PYGAME ZERO

Ifyou think in terms of a board game, then the initial state may be when
you have got the game out of the box and are placing the appropriate counters
into each position. Once the game is set up, then there may be another state
to determine who will be playing first (perhaps based on rolls of the dice).

Then when the game starts, the status will change between each
person in turn for them to roll the device, move to the next position, and
carry out any actions required. Finally, there will be some winning state
when a player reaches the goal.

In a computer game, this is something that needs to be tracked using
one or more variables. The game code can then handle key presses
differently if it was displaying a menu screen rather than if the game was
already in progress. The variable could be anything from a single number
that has a specific meeting to a complete class with multiple properties.

For this game the code will need to track two things. One is the status
of the game, so that it doesn’t keep moving the character around the
screen when the game ends, and the other is which direction the player
needs to move in. These could be combined into a single variable, but
to make it easier to follow this example uses two separate variables, one
called game_state and the other target_direction.

The first variable is called game_state and tracks the different stages in
the game. These are an empty string “ when the game has not yet started,
the string ‘playing’ when the game is in progress, and a string ‘end’ when
the game has finished.

In summary:

¢ “-Game not started
o ‘playing’ - Game in process
¢ ‘end’ - Game over

For the target direction, the variable can be the different cardinal
’

directions (four primary directions on a compass). These are ‘north, ‘east;
‘south; and ‘west’ as shown in Figure 3-5.

68

CHAPTER 3 PYGAME ZERO

North

West East

South

Figure 3-5. The four points on a compass

The code will be updated to generate a random direction. So, the
random module needs to be imported by adding the following entry to the
top of the file:

import random

Add the variables by adding the following lines near the top of the file
(such as just after the BACKGROUND_IMG entry):

game_state =
target direction =

Near the top of the update function, replace the global directionline
with the following:

global direction, game state, target direction

If state is not running then we give option to start or
quit
if (game_state == " or game state == 'end'):
Display instructions (in draw() rather than here)

If space key then start game

69

CHAPTER 3 PYGAME ZERO

if (keyboard.space):
game_state = "playing"
target direction = get new direction()
If escape then quit the game
if (keyboard.escape):
quit()
return

At the bottom of the file, add the following function:

def get new direction():
move choices = ['north', 'east', 'south', 'west']
return random.choice(move choices)

This code will handle the state for starting the game.

If the game is not in progress, then it waits for the player to press the
Start key, which in this case is the space key. If that is pressed, then it sets
the status to playing and assigns a new target_direction.

The get_new_direction function has a list of the different directions
and uses the random choice to choose one of the directions at random.

This is available in the source code as compassgame_statel.py.

You can now run the game again. Remember you will now need to
press the space bar before you the player can be moved around.

The next thing to add is a way of telling the player which way to go.
This can be done by using screen.draw.text() which will display text on the
screen. Replace the current draw function with the following code:

def draw():
screen.blit(BACKGROUND IMG, (0,0))
If game not running then give instruction
if (game state == "):
Display message on screen

70

CHAPTER 3 PYGAME ZERO

screen.draw.text("Press space bar to start",
center=(WIDTH/2,HEIGHT/2), fontsize=60, shadow=(1,1),
color=(255,255,255), scolor="#202020")
elif (game state == 'end'):
screen.draw.text("Game Over\nPress space bar to start
again", center=(WIDTH/2,HEIGHT/2), fontsize=60,
shadow=(1,1), color=(255,255,255), scolor="#202020")
else:
screen.draw.text(target direction, center=(WIDTH/2,50),
fontsize=60, shadow=(1,1), color=(255,255,255),
scolor="#202020")
player.draw()

The new draw function shows three different blocks of text depending
upon the game state. The first block is when game_state = ", in which case
it instructs the player to press the space bar to start the game. The second
is controlled by an elif (else if) which checks for the end of the game, and
the third block is when the game is in progress. There is no need to check
for the playing game state because if it’s not the previous two states, then it
must be in the state playing.

The player.drawis only called when the game is playing, because
otherwise the text overlaps over the player. It is not yet possible to reach
the end of the game. That will be something that will be implemented later.

The interesting thing about this code is the part that displays the text.
Here are details of the first entry, but the others all work in a similar way:

screen.draw.text("Press space bar to start",
center=(WIDTH/2,HEIGHT/2), fontsize=60, shadow=(1,1),
color=(255,255,255), scolor="#202020")

71

CHAPTER 3 PYGAME ZERO

The text method takes a string to show and a position; the rest of the
arguments are optional. The position can be entered by just putting a tuple
as the second argument, such as (10,10). In this case it looks better with the
text in the center of the screen, so the tuple is passed to the center argument.
It uses half the WIDTH and HEIGHT values to determine the position.

The other optional arguments used here are

« fontsize - Used to set the size of the font; the default
value is 24.

o shadow - Adds a shadow to the text; the values are the x
and y offsets for the shadow position.

e color - The color of the text.
e scolor - The color of the shadow.

As you can see, the code uses different ways to enter the color. You
can use a few different color formats such as (1,g,b) where (255,255,255)
is white or html color strings where “#202020” is a light gray color. See
Chapter 6 for more details about how colors can be created.

Note The random numbers created by the random module are
pseudo-random. Computers struggle with creating true random
numbers, so instead they have a way of generating numbers that
appear to be random to the end user. Depending upon the operating
system and hardware, it may include less deterministic sources such
as time and movement of the mouse to make it less predictable.
This is usually sufficient for games, but if using it for cryptographic
purposes, you may want to look at alternative random sources.

72

CHAPTER 3 PYGAME ZERO

Detecting Collisions

If you've followed the code so far (or run compassgame-movement3.py),
then you should now have a character that can work around the screen.
The next stage is to detect when the player moves to the correct side of
the screen. In this case it’s enough for the character to be near that side
rather than at the extreme edge as that is a bit more natural than having
to actually stop at the side. One of the ways to achieve is to create code to
look at the position of the character and check to see if it reaches a certain
threshold. While that’s a valid way of doing this, it is a bit inflexible, if you
change the size of the character (perhaps to something that has a different
height to width ratio) as you may need to update the code to handle that.
Instead there is a nice feature available in Pygame Zero that allows it to
check for a collision.

Unfortunately, the Pygame Zero documentation doesn’t provide
much information on detecting collisions. Pygame Zero uses the
standard Pygame methods which are well documented in the pygame
documentation (see the links in Appendix B).

The collision detection is often used to detect if two sprites (Actors)
collide. To understand this, you need to be aware that all sprites in Pygame
have a Rect property. That is something that is automatically created when
you create an Actor through Pygame Zero. The Rect is a virtual rectangle
that you cannot see. It is the minimum size rectangle that will fully include
the size of the image. This is shown in Figure 3-6 where a representation of
the bounding rectangle has been added around the actor.

73

CHAPTER 3 PYGAME ZERO

b

Figure 3-6. Actor with bounding rectangle

The collideRect method can be used to determine if one rectangle
overlaps the other. For example, consider a car game where two cars are
moving around the game area and you want to know if they crash (collide)
into each other. If you have actors called carl and car2, you can detect to
see if they have hit using

if cari.collideRect(car2):
print ("Car 1 and Car 2 have collided")

Back to the game, we are currently working on “compass game”; for
this particular detection, we don’t actually need to create an actor to
collide with, we just need to know when they are near to an edge of the
screen. Instead we can create a simple Rect object with the appropriate
dimensions. Then if the actor collides with one of those Rects, we know
they are in that area. The image in Figure 3-7 shows the layout of the game
with the rectangles shown on the playing grid. In this image the rectangles
have been exaggerated to make them easier to see.

74

CHAPTER 3 PYGAME ZERO

Pygame Zero Game - X

SO

Figure 3-7. Collision rectangles to detect the player approaching the
edge of the screen

You will see that the rectangles overlap. That’s not a problem with this
game as we only check to see if the player has reached one of these, but it is
something you may need to be aware of when creating other games.

The following code is used to create the rectangles, which can be
added before the draw function:

#Rectangles for compass points for collision detection to
ensure player is in correct position

box_size = 50

north box = Rect((0, 0), (WIDTH, box size))

east _box = Rect((WIDTH-box size, 0), (WIDTH, HEIGHT))
south box = Rect((0, HEIGHT-box size), (WIDTH, HEIGHT))
west box = Rect((0, 0), (box size, HEIGHT))

75

CHAPTER 3 PYGAME ZERO

The preceding rectangles are invisible, which is what we want. Itis a
good idea to temporarily display the rectangles as it can help show if any of
the rectangles are in the wrong place. To do so you can add the following
to the draw function (after screen.blit). This also includes a box around the
player and uses a different color for each of the rectangles.

screen.draw.rect(north box, (255,0,0))
screen.draw.rect(east_box, (0,255,0))
screen.draw.rect(south _box, (0,0,255))
screen.draw.rect(west_box, (255,255,255))
screen.draw.rect(Rect(player.topleft, player.size), (0,0,0))

The source code is included as compassgame-collidel.py. It is a good
idea to have a little play with that version so you can see the rectangle
around the actor move as you move around the screen. Whenever the box
around the player overlaps with one of the other rectangles, that can be
detected as a collision.

To detect the collisions, you can add the following code to the bottom
of the update function:

if (player.colliderect(north box)):
print ("Collided with North")

if (player.colliderect(south box)):
print ("Collided with South")

if (player.colliderect(east box)):
print ("Collided with East")

if (player.colliderect(west box)):
print ("Collided with West")

This is included as compassgame-collide2.py in the source code. Now
if you run the program and if you watch in the console in Mu (or in the
terminal if you launched it from there), you will see several print messages
whenever the player enters one of the rectangles.

76

CHAPTER 3 PYGAME ZERO

This is good for testing, but you should now delete the blocks of code
with the colliderect and draw.rect statements before the next stage.

Using rectangles is a convenient way of performing collision detection
and works well enough for this game. If using other games, you may need
to consider how the sprites interact particularly if they have a lot of “white
space” around them. If you have a shape that doesn’t fill the rectangle,
then it can be frustrating for players if a player does not actually touch the
other object, but that the rectangles overlap. It is instead possible to test
on a specific point using the collidepoint method or to implement more
accurate collision detection in your own code.

Change in Direction

Now you can add the code to handle the situation when the player reaches
their target. Once they reach the required area, the player needs to be
told where they need to go next. The player should then move to the new
location before being told the next target and so on.

After deleting the code that printed out the collision notification, add
the following in its place at the bottom of the update function:

if (reach_target(target direction)):
target direction = get new direction()

Also add the following after the update function:

def reach target(target direction):
if (target direction == 'north'):
if (player.colliderect(north box)):
return True
else:
return False

77

CHAPTER 3 PYGAME ZERO

elif (target direction == 'south'):
if (player.colliderect(south box)):
return True
else:
return False
elif (target direction == 'east'):
if (player.colliderect(east box)):
return True
else:
return False
elif (target direction == 'west'):
if (player.colliderect(west box)):
return True
else:
return False

The extra code in the update function will check to see if the player has
reached their target destination using the function reach_target.

The reach_target function returns true if the player collides with the
box associated with the current target direction. If not, then it returns false.

This code is available as compassgame-collide3.py.

If you run the game, you should see instructions at the top of the screen,
and if you go to the side specifying them, then you will get a new instruction.

Keeping Score

To add a scoring mechanism, there just needs to be a variable that is
updated each time that the target is reached. To implement this, create a
new global variable to hold the current score.

Current score for this game
score = 0

78

CHAPTER 3 PYGAME ZERO

This needs to be a global variable, so within the update function,
update the global line to read

global direction, game_state, target direction, score

The score needs to be reset at the start of each game, so add score = 0
into the block of text where the game_state is set to “playing”.

To increase the score, at the bottom of the update function, add score
+=1 within the if statement that checks if the target is reached.

So

if (reach_target(target direction)):
target direction = get new direction()

becomes

if (reach target(target direction)):
target direction = get new direction()
score += 1

This will keep track of the score. To display it on the screen, you can
update the draw function to also display the score. First add it as a global
to the start of the draw, then add the following in the final else text block to
show the score while the game is playing. You can place it just before the
call to player.draw().

screen.draw.text('Score '+str(score),
fontsize=60, center=(WIDTH-130,50), shadow=(1,1),
color=(255,255,255), scolor="#202020")

You can also add the final score in the end of the game section.

screen.draw.text("Game Over score "+str(score)+
"\nPress space to start", fontsize=60,
center=(WIDTH/2,HEIGHT/2), shadow=(1,1),
color=(255,255,255), scolor="#202020")

79

CHAPTER 3 PYGAME ZERO

The draw function will then look like the following:

def draw():
global score
screen.blit(BACKGROUND IMG, (0,0))

If game not running then give instruction

if (game_state == "):
Display message on screen
screen.draw.text("Press space bar to start”,
center=(WIDTH/2,HEIGHT/2), fontsize=60, shadow=(1,1),
color=(255,255,255), scolor="#202020")

elif (game state == 'end'):
screen.draw.text("Game Over "+str(score+"\nPress
space bar to start again", center=(WIDTH/2,HEIGHT/2),
fontsize=60, shadow=(1,1), color=(255,255,255),
scolor="#202020")

else:
screen.draw.text(target direction, center=(WIDTH/2,50),
fontsize=60, shadow=(1,1), color=(255,255,255),
scolor="#202020")
screen.draw.text('Score '+str(score),
fontsize=60, center=(WIDTH-130,50), shadow=(1,1),
color=(255,255,255), scolor="#202020")
player.draw()

This is included in the source code as compassgame-score.py.
If you run the updated code, you will see the score increase as you
reach each target.

80

CHAPTER 3 PYGAME ZERO

Adding a Countdown Timer

Finally, there needs to be something to make it a challenge. Otherwise,
you can just keep going forever between the sides. Without any form of
challenge, I'm sure most would get bored very quickly.

To add a challenge, there will be a timer so that the player needs to
move around the screen in a set amount of time. The timer will start at
a fixed time, for example, 10 seconds, giving the player time to reach the
target. If they succeed, then the timer is reset but decremented slightly to
make it a little harder. If they are unable to complete in the time, then it’s
game over.

A crude way of calculating the time is to consider how regularly the
update function is run. In Pygame Zero the update function is normally
called 60 times per second or approximately 0.016 seconds, so by counting
the number of times the function is called, you can work out how long
the player has had to complete the task. The problem with this is that the
frequency of the loops is not guaranteed; if the computer is busy, then it
may take longer between updates giving the player an unfair advantage.
Instead the code should track how much time has elapsed since the last
time the update function is called. This can be achieved by adding a
parameter to the update() method to find out how long since the last run.
To do this, replace update() with update(time_interval). The time_
interval variable will be set with the number of seconds since the last time
update was run (which should be approximately 0.016).

To implement this, add the following global variables:

Number of seconds to play when the timer starts
timer start = 10.9
number of seconds to decrement the timer each time we score a
point
timer decrement = 0.2
This is the actual timer set to the initial start value
timer = timer start

81

CHAPTER 3 PYGAME ZERO

Add the timer variable to the global variable list in the update method
(there is no need to add the other new variables as we don’t need to
change those).

In the block of code which handles when the keyboard.space key is
pressed for the start of the game, add

timer = timer_ start

Just before the direction keys are pressed, decrement the timer and
check we haven’t gone below 0.9.

Update timer with difference from previous
timer -= time_interval
Check to see if timer has run out
if (timer < 0.9):
game_state = 'end'
return

Then after the score is increased (each time the target is reached), the
timer needs to be reset (but including a decrement based on the current
score).

Update timer - subtracting timer decrement for each
point scored
timer = timer start - (score = timer decrement)

Finally, to see timer on the screen, add timer as a global to the draw
function and add the following displayed at the same time that the Score is

shown on the screen.

screen.draw.text('Time: '+str(math.floor(timer)),
fontsize=60, center=(100,50), shadow=(1,1),
color=(255,255,255), scolor="#202020")

You may be wondering why the timer is set to 10.9 seconds for a
10-second countdown.

82

CHAPTER 3 PYGAME ZERO

This is because the print uses the floor function to strip off any
fractions and display the timer in whole seconds. The player will expect
the game to end as soon as the timer display reaches zero and not continue
to count for a further second if we instead tested for the timer being above
zero. Also, the player will also expect the timer to stay on 10 for 1 second
and not go to 9 once we subtract the first time interval. Starting the timer
at 10.9 seconds and ending at less than 1 second will be almost exactly 10
seconds, and the user will see the values from 10 to 0.

Final Code for Compass Game Version 0.1

You will now have a complete game that you can play. When you reach
the end, then it will tell you your score. You can then press space to try the
game and see if you can beat that score. The complete listing of the game,
so far, is included in Listing 3-4. This is also included in the source code as
compassgame-v0.1.py.

Listing 3-4. Compass game. A simple Pygame Zero program with
image background

import random
import math

WIDTH = 800
HEIGHT = 600

BACKGROUND IMG = "compassgame background 01"

game_state =
target direction =

#Player character
player = Actor('compassgame person down 1', (WIDTH/2,HEIGHT/2))
Which image is being displayed

83

CHAPTER 3 PYGAME ZERO

player step count =1
Direction that player is facing
direction = 'down’

Number of seconds to play when the timer starts

timer start = 10.9

number of seconds to decrement the timer each time we score a
point

timer_decrement = 0.2

This is the actual timer set to the initial start value

timer = timer start

#Rectangles for compass points for collision detection to
ensure player is in correct position

box_size = 50

north box = Rect((0, 0), (WIDTH, box size))

east _box = Rect((WIDTH-box size, 0), (WIDTH, HEIGHT))
south box = Rect((0, HEIGHT-box size), (WIDTH, HEIGHT))
west box = Rect((0, 0), (box size, HEIGHT))

Current score for this game
score = 0

def draw():
global score, timer
screen.blit(BACKGROUND IMG, (0,0))

If game not running then give instruction

if (game_state == "):
Display message on screen
screen.draw.text("Press space bar to start"”,
center=(WIDTH/2,HEIGHT/2), fontsize=60, shadow=(1,1),
color=(255,255,255), scolor="#202020")

elif (game state == 'end'):

84

CHAPTER 3 PYGAME ZERO

screen.draw.text("Game Over "+str(score)+"\nPress
space bar to start again", center=(WIDTH/2,HEICHT/2),
fontsize=60, shadow=(1,1), color=(255,255,255),
scolor="#202020")

else:
screen.draw.text(target direction, center=(WIDTH/2,50),
fontsize=60, shadow=(1,1), color=(255,255,255),
scolor="#202020")
screen.draw.text('Score '+str(score),
fontsize=60, center=(WIDTH-130,50), shadow=(1,1),
color=(255,255,255), scolor="#202020")
screen.draw.text('Time: '+str(math.floor(timer)),
fontsize=60, center=(100,50), shadow=(1,1),
color=(255,255,255), scolor="#202020")
player.draw()

def update(time interval):
Need to be able to update global variable direction
global direction, game_state, target_direction, score,
timer start, timer decrement, timer

If state is not running then we give option to start or
quit
if (game state == " or game state == 'end'):
Display instructions (in draw() rather than here)
If space key then start game
if (keyboard.space):
game_state = "playing"
timer = timer start
target direction = get new direction()
If escape then quit the game

85

CHAPTER 3 PYGAME ZERO

if (keyboard.escape):

quit()
return

Update timer with difference from previous
timer -= time_interval
Check to see if timer has run out
if (timer < 0.9):
game_state = 'end’
return

Check for direction keys pressed
Can have multiple pressed in which case we move in all
the directions
The last one in the order below is set as the direction
to determine the
image to use
new direction = "
if (keyboard.up):
new_direction = 'up’
move_actor(new direction)
if (keyboard.down):
new_direction = 'down'
move_actor(new _direction)
if (keyboard.left) :
new_direction = 'left’
move_actor(new _direction)
if (keyboard.right) :
new _direction = 'right'
move_actor(new direction)

If new direction is not then we have a move button

pressed

86

def

CHAPTER 3 PYGAME ZERO

so set appropriate image

if (new direction != ") :
Set image based on new direction
set_actor image (new direction)
direction = new direction

if (reach_target(target direction)):
target direction = get new direction()
score += 1
Update timer - subtracting timer decrement for each
point scored
timer = timer start - (score x timer decrement)

reach target(target direction):
if (target direction == 'north'):
if (player.colliderect(north box)):
return True
else:
return False
elif (target direction == 'south'):
if (player.colliderect(south box)):
return True
else:
return False
elif (target direction == 'east'):
if (player.colliderect(east box)):
return True
else:
return False
elif (target direction == 'west'):
if (player.colliderect(west box)):
return True

87

CHAPTER 3 PYGAME ZERO

else:
return False

def move actor(direction, distance = 5):

if (direction == 'up'):
player.y -= distance

if (direction == 'right'):
player.x += distance

if (direction == 'down'):

player.y += distance
if (direction == 'left'):
player.x -= distance

Check not moved past the edge of the screen
if (player.y <= 30):
player.y = 30
if (player.x <= 12):
player.x = 12
if (player.y >= HEIGHT - 30):
player.y = HEIGHT - 30
if (player.x >= WIDTH - 12):
player.x = WIDTH - 12

Show image matching new_direction and current step count
def set actor image (new_direction):
global player, player step count

step_delay = 5
player step count += 1

if player_step count >= 4 % step delay:
player step count =1

88

CHAPTER 3 PYGAME ZERO

player step position = math.floor(player step count / step_
delay) +1

player.image = "compassgame person "+new direction+" "+
str(player step position)

def get new direction():
move _choices = ['north', 'east', 'south', 'west']
return random.choice(move choices)

The complete game is about 170 lines of code, including comments
and blank lines. This may sound a lot, but it’s much less than it would have
been in many other programming languages.

Summary

This chapter has introduced Pygame Zero as well as creating a first
graphical game. The code is quite long, which reflects the effort involved in
creating a game, but it’s much shorter than the equivalent code that would
be needed in many other programming languages.

The game is quite basic at the moment and will be developed further
in the next chapter which is on game design.

89

CHAPTER 4

Game Design

Hopefully you've had chance to play the game from Chapter 3 before
moving on to this chapter. What did you think of it?

If your experience is like mine, then the first few goes were quite fun,
but then the enjoyment dropped off somewhat. Two reasons for this: one
is that once you've memorized the moves, it’s quite straightforward to play
and is in fact a bit too simple, and the other thing is that because of the way
the timer reduces with every level, it quickly gets to the point where there
is too little time to make the move, which means you get end up with a
similar score on each game.

In this chapter we will look at what makes a game interesting to play
and how we can make a few changes to improve the game. This forms the
basis of game design.

What Makes a Game Enjoyable?

Before we look at adding any code, think about the games you have played
and what makes them enjoyable. Here are a few of the things I came up
with, perhaps you can think of other factors:

o Challenging but achievable
e Choices and consequences

e Rewards and progress

© Stewart Watkiss 2020 91
S. Watkiss, Beginning Game Programming with Pygame Zero,
https://doi.org/10.1007/978-1-4842-5650-3_4

CHAPTER 4 GAME DESIGN

o Likeable characters

e Storyline/historical relevance

e Educational (sometimes)

o Takes an appropriate level of time to play
e Inclusivity

e Age appropriate

These are not required for all games. Think of them as being guidelines
that make you think about the game design, but without being too
restrictive. Being aware of when you can include these features can make
a game more enjoyable. These may also relate to each other, such as how
rewards can help overcome a challenge or where progress is used to reveal
the next part in a storyline.

When designing a new game, it’s a good idea to work through these
and think about how they can be implemented in the game. If you don’t
think it’s important to your game, then that’s fine.

There is no single answer to all these features, and it really depends
upon what type of game you want to create and who your target audience is.

Challenging but Achievable

When you are playing a game, you want to be able to feel you have
achieved something. This is often achieved by having a challenge in the
game that you need to overcome. The challenge may be a skill; it may be
about quick reactions; or it may involve having to use brain power to solve
apuzzle.

There are some games that are popular that don’t provide a challenge,
but they normally provide something else. If you think about the paint by
number apps, they are not what you would normally consider challenging,
but instead are relaxing or therapeutic; some games may be creative rather

92

CHAPTER4 GAME DESIGN

than competitive such as Minecraft in creative mode. Arguably you could
say that the lack of challenge means that they wouldn’t be classed as
games, which is something to think about.

In most games there is a balance between it being easy to play and
challenging enough to feel like you have achieved something. Make a
game too easy and the player may get bored and look for a new challenge
elsewhere, make it too hard and they may give up thinking they can’t
progress any further.

In general, you will want the game to start easy, so that the player
understands how to play without facing too much challenge. Then as they
progress through the game, it should get harder to make it challenging and
give the player a sense of achievement.

When thinking about how to make a game challenging, you should
think about whether the game will be predictable or whether there will
be random elements. A predictable game would react in exactly the same
way each time it is played. This means that every game has the same level
of difficulty, but with lots of practice a player may learn the level. With a
random element, the game is less predictable, and the player will need to
adapt their play to fit the game.

Choices and Consequences

Some games create choices that the player needs to make. Some choices
just change the look or feel of the game (perhaps a different color
costume), but I am really talking about choices that determine the play
of the game. These could be a choice of direction, a decision of whether
to battle or choose diplomacy, or what technology to pursue. This is

a particularly good way of making a game challenging and having the
player feel in control of the game. If providing a choice, then there should
normally be a consequence to the choice that the player made which
determines how they progress through the game.

93

CHAPTER 4 GAME DESIGN

Rewards and Progress

When a game includes a challenge, then it’s useful to reward the player
which gives them a feeling of satisfaction that it was worth the effort. The
reward can be just progressing through the levels (level up), or it could
involve unlocking a new character or a power-up. These power-ups often
can work in conjunction with the challenge where they help in completing
the next level.

Likeable Characters

Many computer games put you in the role of a particular character or
control of a team of characters. A character in your game may be specially
created for your game, or it may be related to an existing franchise such as
film or TV.

You may want to try and create a game that relates to your favorite film,
perhaps a Harry Potter Wizard game, but you are likely to come across
copyright issues. If it is for an existing franchise, then you need to be aware
of the copyright and licensing restrictions. In general, if you use anything
based around a place from a film, TV, or well-known character, then you
will need to get permission from the owner of the franchise.

If you create your own characters, then you can give them their own
personality and traits so that players can associate with them. In some
cases, the characters can become personalities in their own right, just
think about the Lara Croft character who started as a video character and
was made into a film.

Also remember that characters don’t have to be people. They could
be creatures or vehicles, or you could even make inanimate objects come
to life.

94

CHAPTER4 GAME DESIGN

Storyline/Historical Relevance

One thing that is often optional is whether the game follows a storyline
or is set in a historical story. A story can help the player to relate more to
the game and make them feel a part of the story. This can be a powerful
motivation to keep playing the game.

A historical relevance is where you base your game around a real
moment in history. A popular one is to have a game that is associated with a
historic battle or an important time in history such as birth of the railways.

There are however many games that don’t have any kind of storyline and
you just play for fun. It all depends upon the type of game you want to create.

Educational

Another optional aspect is whether the game is educational or not. This
can include traditional children’s educational games such as addition
and multiplication games, adult “brain games’, games to help teach you
to play a musical instrument, or perhaps games that include references to
historical events.

These can be an obvious goal or just a subtle feature to the game play.
This can then tie into the reward, but instead of just a badge on the screen,
the player can have the feeling that they have learned something that they
can use away from the computer. They could also be very subtle, perhaps
learning history through the storyline or by learning how to overcome an
obstacle.

Takes an Appropriate Level of Time to Play

When thinking about how long it takes to play, you need to think of how
the player is going to be playing. Is this a game you expect them to sit down
at for a long time or something they may use to pass away a few minutes
that they have spare during the day?

95

CHAPTER 4 GAME DESIGN

You should also think about whether the game can be saved and how
long it can go between saves. It can be very frustrating if you have spent a
long time trying to complete a level, but then don’t have the time to finish
it. If you can save and resume that level, that may avoid the frustration of
needing to be elsewhere.

Inclusivity

There are several ways that a game can be made more inclusive of other
people. This may include additional/simplified controls for those with a
disability that may find traditional keyboard controls difficult to use. Or it
may include the ability to have different characters to represent the gender
or skin color of those that may play the game.

It can be just as important to make sure you don’t use any negative
stereotypes. In the past female characters have been used as damsels in
distress, waiting for a male knight to come to her rescue. Thankfully, these
are now becoming less common with more female characters taking a lead
role in films and computer games.

Keeping these thoughts in mind when developing the game, there may
be some simple things that can be implemented to make the game more
appealing to a more diverse group of people.

Age Appropriate

Finally, I will mention that a game should be age appropriate. The games
in this book are all designed to be family-friendly. If you are aiming for
older players, then you may use less family friend language, but that
would may make it less suitable for others. There is a similar thing with the
amount of violence or the realism of harm inflicted. The target age of the
game should also be reflected in the type of graphics used which will be
considered more in the next chapter on graphics.

96

CHAPTER4 GAME DESIGN

Improving Compass Game

Taking some of these suggestions, there are some things that can be done
to make compass game a bit better. It won’t be possible to implement all
these ideas in this chapter, but you will be able to add three new features to

improve the gameplay:

1. Improve the timer so that there is more chance of
completing even when the score is quite high.

2. Add some random obstacles to make the game more challenging.
3. Add a high score, which saves the highest achieved score.

These are about making the game more challenging, but also include
aspects of a reward in terms of saving the high score.

Note The code used in this chapter needs the same resources as
Chapter 3. You will need to copy the source code from Chapter 4 to
the same directory as Chapter 3’s source code.

Updated Timer

The problem with the game timer is that it decrements linearly, counting down
the same length of time each go. This works well initially, but then after around
38 points scored, it gets so difficult; it is practically impossible to complete the
task. What is needed is a timer function which reduces the time quite quickly
at first (to create an element of challenge), but that over time it decreases less
quickly giving a reasonable chance of still being able to complete the task.

This will involve some math. We will keep this simple at this stage.
The formula to be used is x / (x + h). Here x is the score and h is an offset
amount. We will use an offset of 10. This formula increases quickly at first,
but then as x gets larger, it tends toward the value 1. To get the time for the
timer, we then subtract this from the start time.

97

CHAPTER 4 GAME DESIGN

To determine the appropriate values, this was tested using the Python
plot module. I won’t go into details on how the code works, but the source
code is provided in a file called timedecaygraph.py. If you look in the source
code, you should be able to see how it works. If you would like to try running
the code, you will first need to install the plotly module. Future versions of the
Mu editor will include a way of installing modules, but that is not available at
the time of writing. To add a module, perform one of the following:

e OnaRaspberry Pi, you can install the module using
sudo pip3 install plotly

e On other Linux distributions
Install either the same as previously or
sudo pip install plotly

e On Windows

You will need to tell pip the location of the pkgs that
Mu is using.

On my computer, that is achieved using

pip install plotly --target="c:\users\stewart\AppData\
Local\Mu\pkgs"

You will need to replace stewart with the username
that Mu was installed under.

¢ OnMacOSX

First create a separate directory to run the program
and copy in the timedecaygraph.py file.

Create a file called setup.cfg with the following:

[install]
Prefix=

98

CHAPTER4 GAME DESIGN

Then install the package using

pip3 install plotly --upgrade --target /Applications/
mu-editor.app/Contents/Resources/app_packages

Once you have installed plotly, you can then run timedecaygraph.py
from within Mu (change the mode from Pygame Zero to Python 3 first).

Depending upon your system, it may open the results in a web
browser, but on others you may need to save the output as an html file and
then opening it with your web browser manually.

Through adjusting the formula values, I found that the following
formula worked well:

start value + 1.5 - (start_value = (i/ (i + 10)))

See the screenshot in Figure 4-1 showing how this new formula
compares with the linear decay.

ternp-plothtml - Chromium

@ temp-plothtml x| +

& 3 (& @ Fie| /home/pifmu_code/temp-plot.htmi « B O :
Different timers

— Linear
— Improved

Figure 4-1. Screenshot of graph showing different decay formulas

99

CHAPTER 4 GAME DESIGN

As you can see from the graph, the improved formula initially
decreases much quicker than the linear decay, but the decay is much
smaller as the score increases.

To implement this in the code, load the current version of code from
the end of the previous chapter (compassgame-v0.1.py).

Remove the timer_decrement variable as that is no longer required.

Then in the update function, replace the following entry

timer = timer start - (score x timer decrement)
with
timer = timer start + 1.5 - (timer start = (score/ (score + 10)))

The value of 10 sets the decay speed and 1.5 is used to increase the
offset. These could be changed to variables if you want to be able to fine
tune the values.

This is included in the source code as compassgame-timer2.py.

Adding Obstacles

The next thing we can do is to add a bit more of a challenge through
adding obstacles that the player must avoid. This can be done by adding
new levels. The first level does not have any obstacles, level 2 adds some
obstacles, level 3 adds some different obstacles, and so on. The screenshot
in Figure 4-2 shows how the game will look with some obstacles to avoid.

100

CHAPTER4 GAME DESIGN

Pygame Zero Game v x

Tinz: 7 WEST Secora 92

i

)

Figure 4-2. Compass game with obstacles to avoid

There are several changes needed for adding the obstacles. Start with
the code from the end of Chapter 3 (compassgame-v0.1.py). The first is to
add some more variables and definitions near the top of the file:

OBSTACLE_IMG = "compassgame obstacle 01"
Current score for this game

score = 0

Score for each level

score_per level = 20

What level are we on
level = 1

#0bstacles - these are actors, but stationary ones - default
positions

101

CHAPTER 4 GAME DESIGN

obstacles = []

Positions to place obstacles Tuples: (x,y)

obstacle positions = [(200,200), (400, 400), (500,500),
(80,120), (700, 150), (750,540), (200,550), (60,320), (730,
290), (390,170), (420,500)]

To display the obstacles, add this to the draw function making sure it’s
not within any of the if-else clauses.

for i in range (0,len(obstacles)):
obstacles[i].draw()

Add a new set_level function which creates obstacle Actors. This can
be toward the end of the tile.

def set level(level number):
global level, obstacles, obstacle positions

level = level number

Reset / remove all obstacles
obstacles = []
if (level < 1):
return
Add appropriate number of obstacles - up to maximum
available positions
for i in range (0,len(obstacle_positions)):
If we have already added more than the obstacle level
number then stop adding more
if (i »>= level number - 1):
break
obstacles.append(Actor (OBSTACLE_IMG, obstacle
positions[i]))

102

CHAPTER4 GAME DESIGN

This function is to be called whenever the level increases. As well
as updating the global variable for the level number, it also creates the
obstacles to be avoided.

The obstacles list starts out as empty, so no obstacles are drawn. When
the level is changed above level 1, then new obstacles are created. These
are added as Actors, but unlike our player, they won'’t be able to move
around the screen.

You will need to make sure that the obstacle image exists; otherwise,
the program may hang with no error message making it difficult to know
what has gone wrong.

Update the if(reach_target(target_direction)): block of code which is
located near the bottom of the update function.

if (reach target(target direction)):

target direction = get new direction()

score += 1

check if we need to move up a level

if (score >= level * score per level):

set _level(level + 1)

Level score is the number of points scored in this
level

level score = score - ((level - 1) * score per level)

Update timer - subtracting timer decrement for each
point scored

timer = timer start + 1.5 - (timer start * (level

score/ (level score + 10)))

In this code the level increases every 20 levels. There will be no
obstacles until 20 points are scored, then one obstacle will be added, and
the second obstacle at 40 points and so on. This gives a reasonable level
of difficulty for each level but is a lot of time to be playing when testing the
game during development. You may want to reduce the value of score_
per_level to 10 so that you can test that the obstacles are created correctly

103

CHAPTER 4 GAME DESIGN

without needing to play for a long time. This is a common thing to do when
developing games. In some games these are coded into the game as special
“cheat codes” which would be used to jump direct to a certain level or add
certain power-ups to help with testing.

The updated code is provided as compassgame-obstaclel.py in the
source code. You can test the code and the obstacles will appear after the
scoring 20 points, but the player is able to walk straight through them.
Clearly some extra code is needed to do something when the player bumps
into them. This is done by adding the following block of code at the end of
the update function:

detect if collision with obstacle (game over)
for current_obstacle in obstacles:
if player.colliderect(current obstacle):
game_state = "end"
return

This is the same as the code that is used to detect when the player
reaches one of the sides of the game area but using a loop to compare
against each of the obstacles in the list. If the player collides with an
obstacle, then the game is set to the “end” state which triggers the end of
the game. The code so far is included as compassgame-obstacle2.py in the
source code.

Adding a High Score

The next feature is to add a high score. This tells the player what the
previously attained highest score is and gives the player something to aim
for. Typically, a high score will store multiple values along with their name
or initials, but for now you should start with a single highest score value.
One thing about a high score is that it needs to be saved somewhere so that
it’s not lost when the computer is switched off. This will therefore cover

104

CHAPTER4 GAME DESIGN

how to save data to a file on disk and how to read it back. In the case of
the Raspberry Pj, instead of a physical hard disk, it will be stored on an SD
card, but using Python it is accessed in the same way as if it was on a disk.
In recent versions of Pygame Zero, there is a storage function which
provides a simple way of storing information. At the time of writing, the
function is not fully documented in the Pygame Zero documents. While
the traditional Python file operations are more difficult to use, they are
a useful tool for any Python programming. I recommend learning the
method used here which will be useful for future Python programming.
Add the following new global variable near the top of the file:

HIGH SCORE_FILENAME = "compassgame score.dat"

Add two new functions, one to retrieve the high score from the disk
(get_high_score) and the other to save the latest high score (set_high_
score). These can be added at the bottom of the file.

Reads high score from file and returns as a number
def get high score():

file = open(HIGH SCORE_FILENAME, 'r')

entry = file.readline()

file.close()

high score = int(entry)

return high_score

Writes a high score to the file

def set_high score(new_score):
file = open(HIGH SCORE FILENAME, 'w')
file.write(str(high score))
file.close()

The get_high_score function reads a value from a file. First it opens the
file using the open function. The first argument is the filename, the second
is one or more characters to denote what mode the file should be opened

105

CHAPTER 4 GAME DESIGN

in. In this case ‘1’ is for read, other common modes are write ‘w’ and
append ‘a’ By default, the file is opened in the default text mode, but you
could access the file in binary mode by using the ‘b’ option. For example,
to open a file as read-only binary mode, you would use ‘rb’

The file is returned as a file object which can then be used for reading
the file. The function uses the file object with the readline method which
will read a line from the file. Subsequent calls to readline will read in
further lines. In this case we only have a single entry, so it only needs to be
called once.

As the high score has been stored into a text file, it will be a string
rather than as a number. As we need to be able to compare it to a number,
it needs to be converted from a character to an integer using the int
function. The resulting value is then returned.

You will also notice that there is a line file.close() which closes the file
when the function has finished reading it. This is needed to free the file up,
so that it can be opened by this or another program later.

The set_high_score function works in a similar way to get_high_score,
but it is writing to the file instead of reading from it. First the global
variable high_score is updated and then it opens the file in write mode and
writes the high score value converted to a string. Then the file is closed.

Inside the update function, add the following code just before the line
score = O:

high score = get high score()
if (score > high score) :
set_high score(score)

Where this is placed in the code means that the new high score is not
saved until after the next game is started. This is done to keep the code
simple and make it easier to read. You may like to look at checking this
once the game ends instead.

106

CHAPTER4 GAME DESIGN

Finally, the code is needed to display the high score when the game
is over. Replace the current print statement for “Game Over” with the
following two lines:

high score = get high score()

screen.draw.text("Game Over\nScore "+str(score)+"\nHigh
score "+str(high _score)+"\nPress map or duck button

to start", fontsize=60, center=(WIDTH/2,HEIGHT/2),
shadow=(1,1), color=(255,255,255), scolor="#202020")

Try and Except

If you try and run the code now, then it will not work. Unfortunately, it
fails without giving an error message, which can be frustrating. The reason
for this is that there is no error checking on the file access. When the code
tries to read in the high score file for the first time, then it doesn’t exist.
You could add code to check to see if the file exists or not, but then there
are other things that can go wrong during file operations. For example,
the file may exist, but the value is corrupt. To avoid having to put in lots
of different checks, we can use Python exception handling with the try
except blocks of code.

The try except has three steps. First the “try” block will run the code; if
there are any errors (exceptions), then they can be handled using “except”
blocks, and then the “finally” block will run whether an exception has
occurred or not.

Listing 4-1 shows a generic example of code used for handling an
exception.

107

CHAPTER 4 GAME DESIGN

Listing 4-1. Example of a try except exception handling

try:

operation_that may fail()
except:

print ("An exception occurred")
finally:

print ("I run regardless")

Here the code tries to run operation_that _may_fail. If it triggers an
exception, then the except code will run. The finally block runs regardless.

You can also catch only certain exceptions. The following code shows
how you would only catch IO errors:

except IOError:

You can also use multiple except blocks for different kinds of errors.
When an exception occurs, you can access the exception attributes as
follows:

except Exception as e:

This will provide an Exception value in the variable e. You can
display this to the console screen using print (e). Exception handling is
explained further in Chapter 11.

To use the try except exception handling on the access of the high
score file, you can replace the two high score functions with the following

new code:

Reads high score from file and returns as a number
def get high score():
try:
file = open(HIGH SCORE _FILENAME, 'r')
entry = file.readline()
file.close()

108

CHAPTER4 GAME DESIGN

high_score = int(entry)
except Exception as e:
print ("An error occurred reading the high score file :
+ str(e))
high score = 0

return high score

Writes a high score to the file
def set_high score(new_score):
global high score
high score = new_score
try:
file = open(HIGH SCORE_FILENAME, 'w")
file.write(str(high score))
file.close()
except Exception as e:
print ("An error occurred writing to the high score
file :" + str(e))

The updated code is named compassgame-highscore.py.

The way that the exception is handled in the code means that if there is
an exception, the program continues to run. In the case of a read error, the
high_score is just given a value of zero. This is acceptable here because the
game can still be played without saving the high score. On some programs,
a failure to save the data may be a critical issue and would therefore result
in other actions, possibly including terminating the program.

A simple high score like this can add additional game play for a while,
but eventually you will reach a point where it is difficult or even impossible
to beat the score. Many games overcome this by adding different elements
or by earning credits when you play which can be used to buy objects to
make it easier to gain a higher score. In a military game, this may be armor
or a more powerful weapon. That is beyond the scope of this book as it

109

CHAPTER 4 GAME DESIGN

would need a lot of additional code to include a reward-based system but
is something you may want to consider when designing your own games.

This game has just implemented a few of the ideas. This is enough to
make the game a bit more enjoyable. The compass game is never going to
be a particularly good game in its current form as it is a little too simplistic.
It is however a good game for demonstrating how to include graphics into
a game and the basics of computer animation. The new features should
give you an idea of how to implement some of these features to make your
own game more interesting.

Summary

You have now seen how some additional elements can change the game
play and make a game more interesting. This has been achieved by adding
a new feature at a time which is a feature of agile programming.
This chapter has also shown how you can include timing elements
to add a challenge element. It has then shown how files can be read and
written to and how to handle errors that can occur when accessing files.
The next chapter will look at how graphics can be created and used in
games.

110

CHAPTER 5

Graphic Design

The visual graphics are a key part of any game. They are what set the
scene, set the tone of the game, and determine whether a game is visually
appealing. The level of detail varies greatly between games, from the
original pong games which had a simple block bat and ball to modern
commercial games which may involve realistic video footage.

In an ideal world, all developers would also be great artists or have an
artist that can create the graphics for them. That is not always the case, so this
chapter looks at some simple ways of creating graphics suitable for use in
games. Even if you have a professional artist, some programmers may create
basic images known as programmer art, which is used as a place holder to
demonstrate the game prior to the professional artwork being created.

To keep it simple, this book will mainly cover simple pixel art-based
characters and simple 2D images. These graphics would be suitable for
that retro 1980s feel or consistent with the style used in many indie games.
It will also look at some other tools that are useful if you want to create
some more complex 2D or 3D graphics.

The level of detail that you include in a game will depend upon your
own artistic talent (or that of your graphic designer if part of a multi-person
team) and the amount of time devoted to creating the graphics. Even if you
are not particularly artistic when it comes to drawings, you can still create
some simple cartoon style images. I created the graphics for all the games
in this book; while they are unlikely to win any prizes for realism, they
show that you can create some simple graphics without needing to be a
professional artist.
© Stewart Watkiss 2020 111

S. Watkiss, Beginning Game Programming with Pygame Zero,
https://doi.org/10.1007/978-1-4842-5650-3_5

CHAPTER5 GRAPHIC DESIGN

Creating a Theme

Before you start creating your graphics, you should decide on the style and
theme of your graphics. When starting out programming, it is often a good
idea to start off with simple images as those work well in the simple Actor
objects that Pygame Zero uses. These will also need much less processing
power compared to the lifelike characters you see in commercial AAA
games. This doesn’t mean your characters need to be lifeless as you can
still give the characters their own style and personality.

Some other things to consider:

e Whatkind of environment is the game based in? Games
could be based on land, on the sea, or even in space.
Each location has its own challenges and advantages
regarding the graphics.

o Will the graphics be realistic? Graphics can be created
that create realism or that can take you to a fantasy
world.

e Will the game be family friendly? If you want the
game to be suitable for young children, then you
should avoid violence, bad language, and other
inappropriate content. If the game does include some
level of violence or destruction, then comic-style
violence is more suitable for children than if you use
lifelike images. You may consider having a family-
friendly mode with more appropriate graphics for
younger players.

112

CHAPTER5 GRAPHIC DESIGN

e Can the characters be customized? If the main
character is a person, then players may like to choose
a character that they can associate with. This may be
through providing a different gender, color of skin, hair
color, or choice in clothes. If instead the character is
an animal or fantasy creature, then maybe there could
be an option for different animals or creatures. This
can also apply for inanimate objects, in the case of a
vehicle, a different make, model, or color.

Having decided on the theme, you can create images for the
background and the characters in the game.

File Formats

There are different file formats that can be used for images. The two most
common are bitmap and vector formats which will be considered here.

Bitmap Images

The images that have been used so far have all been bitmap images.
Bitmap images (also known as raster images) are created as individual
pixels which are the smallest individual block of the image. The bitmap
defines the color of each of the pixels making up the image.

This is shown in Figure 5-1. This is a simple image of 10 x 10 pixels with
a white background and a black rectangle. The squares that are colored
white would be stored as a white pixel, and those that are colored black

would be stored as a black pixel.

113

CHAPTER5 GRAPHIC DESIGN

Figure 5-1. Simple bitmap image

This is a trivial image. Bitmap images usually consist of a lot more
pixels, and so storing the color of each pixel can result in very large file
sizes. For example, the background image used in the compass game is
800 x 600 pixels, which is 480,000 pixels. If 3 bytes are used to represent the
color (which is typical), then that image would be about 1.4 MB in size. You
could prove this yourself by converting the image to a Windows Bitmap
(.bmp) image format. To avoid such large file sizes, image formats often
support compression.

The two most popular image formats that are used in Pygame Zero are
PNG (.png) and JPEG (.jpg). The PNG (Portable Network Graphics) format
supports lossless compression. This reduces the file size but keeps all the data
in the image intact. The JPEG format (created by Joint Photographic Experts
Group) uses lossy compression, which removes some of the information
in the file while making it look as close as possible to the original. The lossy
compression often makes the files smaller but can result in loss of quality.

JPEG files are good for large images where compression is a priority.
This makes them a useful format for photos.

PNG has good compression with no loss of quality and has support for
transparency, so it is usually a good choice for game programming.

114

CHAPTER5 GRAPHIC DESIGN

Vector Images

An alternative to a bitmap image is a vector image. Instead of storing
details of each of the pixels, a vector image stores instructions on how to
create the image from shapes. In the case of the image previously used in
Figure 5-1, the file format would instead describe how to create the image
using a rectangle.

Listing 5-1 shows pseudo-code for how the bitmap image could be
drawn as a vector image.

Listing 5-1. Example of a try except exception handling

Create blank page 10 pixels x 10 pixels

Set the page color to white

Draw a rectangle starting at position 1,1 which is 6 x 7 pixels
in size.

Color the rectangle black

Tip Pseudo-code is used to describe how a program works. It

cannot be run directly in any programming language as it doesn’t
have the correct vocabulary or syntax that a normal programming
language needs. It is useful for explaining how the code will work.

The main advantages of a vector image are as follows:

e The shapes can be edited and moved without losing
any information where overlapping other shapes.

e When zooming in on a shape, it continues to be crisp,
whereas a bitmap becomes pixelated.

e Usually the file size is smaller.

115

CHAPTER5 GRAPHIC DESIGN

A popular format for vector images is SVG (Scalable Vector Graphics)
which is a generic file format. There are lots of other vector file formats,
which are normally associated with a particular editing application (such
as ODG which is used in LibreOffice Draw).

Pygame Zero is not able to display these images in the same way
that it can with bitmap images. Vector images have to be converted to
bitmap images when designing the game, converted using code that can
understand the vector image format, or to have code that instructs Pygame
Zero to create the images using its built-in shape tools. Each of these
methods will be covered in this or the next two chapters.

Useful Tools

There are many tools that can be used to design computer graphics.
The examples shown here are all freely available and will work on the
Raspberry Pi. For some of these, an example of how to create an image is

shown.

LibreOffice Draw

Draw is one of the applications included in the LibreOffice Office suite. It
is included by default in the Raspberry Pi NOOBs image and available for
other operating systems from the web site waw.libreoffice.org/.

Draw is useful for creating 2D vector images, which can then be
converted into bitmap images for using in Pygame Zero.

The screenshot in Figure 5-2 shows a person created in Draw. The
figure on the right has been separated into its different components to
demonstrate how these were created using basic shapes.

116

http://www.libreoffice.org/

CHAPTER5 GRAPHIC DESIGN

Untitled 1 - LibreOffice Draw

iC-B-B-1Fa8 Frlalb o lEdamTRIiO = -0 o L8 ol 3
...... T - . - ; . B —

L} 1‘ i ¥ ot 1 z 1 L} 5 L3 ? 4 s 1] 1n 12 13 1 15 16 17 18 L] 6' a a2 LD & .
=p
. @
- - A, 4
- o)
2 O
. 9

*a.

e.

pvi.

- .

ﬁv

- "

| _E N

al | :lﬂ

w I

Shie 1of1 | Defauit IESF-THEE T10.00x000 [e ———

Figure 5-2. Person sprite image created in LibreOffice Draw

There are several different shapes that can be used which are shown
in Figure 5-3. For more complex shapes, the draw tool includes an option
for creating an irregular polygon using a collection of lines which can be
formed in any shape.

117

CHAPTER5 GRAPHIC DESIGN

28"

"l - -

)" - ——
- EeRN®FV
®e0bCa
;:Ak00®®
. PEIBEO
*
.

Figure 5-3. Simple shape drawing tools in LibreOffice Draw

After designing the sprite, it can be exported to a PNG file using the
export option. If you tick the “selection” checkbox, then it will just export
the selected objects. That can be useful if you create multiple images in the
same document.

Inkscape

LibreOffice Draw is a good program, but for a more professional drawing
application, there is another free alternative in the form of Inkscape.
Inkscape is a vector drawing program which compares itself to Adobe
lustrator and Corel DRAW. It isn’t included by default in the NOOBS
install, but can be installed using

sudo apt install inkscape

118

CHAPTER5 GRAPHIC DESIGN

Inkscape is also available for other operating systems and can be
downloaded from https://inkscape.org/. The screenshot in Figure 5-4
shows Inkscape with a drawing of a car.

‘bluecar svy - Inkscape - 8%
$ v y el - F ¢ Ha
x5 = a &
S B~
& 1 &
Q 3 =
LV =)
@ 4 1
e] L
O 14 W
I‘!‘I 1 -
) .
.‘/ - -
X R’
¥ > &
A i s
L R Q .
& 3 a A
“Be =
» '. . = I
S EE = ¢ NN BN EEEEET ST - L T . A

Figure 5-4. Car image created in Inkscape

Inkscape is a bit harder to use than LibreOffice Draw, but more
powerful. If you are not already familiar with a vector drawing program,
then you may like to try LibreOffice Draw first and then use Inkscape when
ready to move to the next level. An example of how it works differently is
that LibreOffice Draw has a polygon tool for creating irregular polygons,
whereas in Inkscape this is achieved by using the pencil tool. To create a
polygon, draw the first line, then start each subsequent line from the end
of the previous line. When complete, clicking the beginning of the first line
will result in a polygon which you can fill with color.

The Inkscape files are saved directly as SVG files which makes them
useful for sharing with other applications and the images can be exported
as PNG bitmap files for use in Pygame Zero.

119

https://inkscape.org/

CHAPTER5 GRAPHIC DESIGN

GIMP

GIMP (GNU Image Manipulation Program) is a bitmap editor. It is a
powerful tool with lots of features, but due to this, it can be difficult to
learn. It can be installed on the Raspberry Pi using

sudo apt install gimp

On other operating systems, you can download a version at waw.gimp.org.
There are many ways that GIMP can be used for creating graphics. Two
examples are shown here, one creating a background image from a
drawing or photo and the other showing how it can be used to create
simple pixel art suitable for sprites.

Creating a Computer Image from a Drawing or Photo

This example will show the principles behind creating a computer graphic
image from a drawing or photo. This can be used to take concept artwork
and make it into a background for a game. In this case I have created a
computer graphic image of a castle from a photo of a castle. The photo
image is first loaded into GIMP and resized to the size of the finished

image as shown in Figure 5-5.

120

http://www.gimp.org

CHAPTER5 GRAPHIC DESIGN

*jcastie-ongnad] {imponed]-2 0 (RGA colour 8-t gamma integer. GIMP buit-m sAGH, 1 layer) 00600 - GMF

Figure 5-5. GIMP with photo of a castle

You will see that there is a transparent area at the top of the image
(checkerboard pattern). This is due to the image being resized to achieve
the desired aspect ratio.

The image will be created on a new layer and the photograph
eventually removed. The new layer has been created using the layer tool as

shown in Figure 5-6.

Figure 5-6. GIMP layer dialog with new layer

121

CHAPTER5 GRAPHIC DESIGN

The new layer has been divided into two areas showing green land
with a blue sky. The main tools that are used are the free select tool (lasso)
and the fill tool (bucket); these are both highlighted in Figure 5-7.

Figure 5-7. GIMP tools dialog showing free select and fill tools

The order and opacity of the layers can be adjusted so that it is possible
to see the photo in the background and then the outline drawn using
the free select tool. You can zoom in and out using Ctrl and the mouse
roller wheel. You can move around the image using the scroll bars. If you
accidentally click in the wrong place, then use the backspace key on the
keyboard. The selection is shown in Figure 5-8, where you can see a faint
outline of the shape of the castle.

122

CHAPTER5 GRAPHIC DESIGN

Figure 5-8. Selection of castle outline in GIMP

The fill tool is then used to fill the outline with the appropriate color.
This is repeated to add more details, such as the door and windows. The
image can be saved as a GIMP XCF file which will allow you to continue
editing it and exported as a PNG file for use in Pygame Zero. The exported
image of the castle is shown in Figure 5-9.

123

CHAPTER5 GRAPHIC DESIGN

Figure 5-9. Exported image of the castle

This process is repeated until the appropriate level of detail is
achieved. I've added a bridge, the road, and a darker green for the far side
of the dry moat.

It is also possible to draw onto the image using a pencil or paintbrush.
I've used the paintbrush tool to add some clouds. These have been drawn
using a soft brush on two layers with partial transparency to give it a softer
appearance.

124

CHAPTER5 GRAPHIC DESIGN

Creating a Pixel Art Sprite

An alternative is to create the image completely from scratch using your
own imagination. In this example, a simple pixel art sprite of a spacecraft.
Start by creating a new image. Set the size to the appropriate level of detail
(in this example 32 x 32 pixels), and under the more options dialog, choose
the background as transparency.

You can then zoom in to the image, and using the pen with size set to 1
individually, color the relevant pixels. I started by creating a simple outline
shape as shown in Figure 5-10.

*fUniithod;-2 0 (RGE colour B-bit gamma integer GIMP built-in SRGE. 1 laper) 32032 - GIMP

(aEd 2 ¢ 2 é
b

Figure 5-10. Creating a pixel art sprite in GIMP

To make it easier to create symmetry, I added a temporary layer with
a line showing the middle of the image. You can then count the same
number of pixels for each side of the line. This is shown in Figure 5-11.

125

CHAPTER5 GRAPHIC DESIGN

wiUntitied}-2 0 (RGH colour 854 gamma integer GIMP buitin sHGH, 2 layers) 32632 - GIMP

;&

Figure 5-11. Creating a pixel art sprite in GIMP with a line of
symmetry

Continue adding detail as necessary. Once complete, the image can be
exported as a PNG file as shown in Figure 5-12. You should normally leave
any unused pixels as transparent when exporting the image, but I have
colored the background gray to make it easier to see the white image.

Figure 5-12. Pixel art spacecraft

126

CHAPTER5 GRAPHIC DESIGN

Blender

The tools discussed so far are designed for 2D images. Blender is a 3D
design tool. This can be useful for creating 3D games, but that is beyond
the scope of this book; instead, I will show an example of how it can be
used to create a more 3D appearance by applying lighting and shadows to
a 3D model and then exporting it as a 2D image.

Blender is a professional design tool that is available for free. It can be
installed on the Raspberry Pi.

sudo apt install blender

If running on a Raspberry Pi, then I suggest getting a Raspberry
Pi 4 with 4GB of memory; it will run on older versions but is very slow
and barely usable. For other operating systems, the program can be
downloaded from www.blender.org.

Blender is an incredibly powerful tool, but it can be difficult to learn. It
has tools all around the screen with multiple pull-down menus in different
places, and the mouse operations work differently to the 2D tools. As a
result, it can be very confusing for new users.

Ifyou do learn it, then it can be useful. You may want to start by
working through some short tutorials looking at certain aspects rather than
trying to take it all in during one project.

Creating a 3D object is beyond the scope of this book, but it may be
useful to understand how you can use objects created in Blender in your
games. The following steps show how you can export a Blender model as a
2D image suitable for use in a game.

The image in Figure 5-13 shows a simple missile/bullet image created
for a game. It is made up of a cylinder and cone. As a basic 2D object
without shading, it would look very basic, but by applying a light source so
that you can see the shadows, it can take on a more 3D appearance.

127

http://www.blender.org

CHAPTER5 GRAPHIC DESIGN

Filoncler [fhaorem

L owee L ¢

Figure 5-13. Blender with 3D model of a missile

After designing the image, the object can be rendered to a 2D image,
then saved as an image file as shown in Figure 5-14.

Bilencier [hvormepties npace autarmedn Tiendes mane biend]
TR W .

R CTED D GEERD SR ERE

Figure 5-14. Blender with Save As Image menu option

128

CHAPTER5 GRAPHIC DESIGN

Create Using Code

The tools so far have looked at ways of creating images in a tool that are
then exported for use in Pygame Zero. An alternative is to generate the
image in Pygame Zero using code. This can make use of the shape drawing
tools within Pygame Zero.

Chapter 7 includes a game created completely from scratch using this
technique. A screenshot of the game is shown in Figure 5-15.

Figure 5-15. Screenshot of tank game created using code

The graphics in this game are basic, but more detail could be added to

make them more realistic.

129

CHAPTER5 GRAPHIC DESIGN

Other Sources

If you don’t want to create your own images, then you could get some
graphics created by someone else. You will need to check the licenses
for the graphics allowing you to use them in your game. Some licenses
may put restrictions on how the graphics can be used, modified, and
distributed. They may also impose different licenses depending upon
whether your game is monetized.

The following is a small selection of sources that may be useful; be
aware that some of these sites can use different licenses for different
images or may use licenses that restrict how the images may be used:

e Open Game Art - https://opengameart.org/
o Kenny - https://kenney.nl/
o Pixabay - https://pixabay.com/

o [Itch.io free game assets - https://itch.io/game-
assets/free

This is not an exhaustive list. A search using an Internet search engine
will list other sites with graphics suitable for use in your own games.

Summary

This has shown some common tools that can be used for creating
images for use in computer game programming. It is beyond the scope
of this book to go into details of how they are used, but it has included
an overview of some of the techniques that you may want to use when
creating graphics. It has also included a few suggestions of sites that may
have suitable graphics that can be used.

The next chapter will look at how colors are used in Pygame Zero and

some techniques for using colors in game programming.

130

https://opengameart.org/
https://kenney.nl/
https://pixabay.com/
https://itch.io/game-assets/free
https://itch.io/game-assets/free

CHAPTER 6

Colors

In Chapter 3 there was a brief mention that there are different ways of
defining colors. This chapter will look at the different ways that colors can
be used in Pygame Zero. You will also see how the mouse can be used to
interact with a program.

This chapter will use some code examples, but this chapter is not about
creating a specific game; it is about learning new tools and techniques that
may be useful in future.

Color Mixing

To understand the color model, it is useful to look at different ways that
colors can be defined. At a young age, you would have learned that you
can make up different colors from mixing different colored paints together.
Through that you learned that the primary colors were blue, red, and
yellow. If you look at the ink in a color printer, then you will still see this

in action, but using cyan (light blue), magenta (light red), and yellow. You
will also see that you have a black ink to give a true black color. This is
known as the CMYK color model.

The CMYK model works well for printers because it is a subtractive
color model. You start with a pale color (often white paper) and the ink
that is added prevents colors from being reflected. By adding ink in specific
quantities, you can filter out unwanted light to get the color you want.

© Stewart Watkiss 2020 131
S. Watkiss, Beginning Game Programming with Pygame Zero,
https://doi.org/10.1007/978-1-4842-5650-3_6

CHAPTER6 COLORS

The RGB scheme used on computer screens is the opposite. Instead
of blocking colors, it starts with a black screen and adds colored light to
reach the desired color. Because the colors are being added rather than
subtracted, it uses different colors to the subtractive color scheme. The
colors used on a computer screen are red, green, and blue (RGB). There
are other color schemes and there are modules in Python that can convert
between the different color models, but essentially it is just RGB that is
needed for most game programming.

In Pygame Zero RGB values are often entered as a tuple listing the
three different color components as numbers from 0 to 255. For example,
to represent orange you could use (255, 165, 0) which has 255 for the red
component (the maximum), 165 for the green component, and 0 for the
blue component. It can also be entered as a hexadecimal value which is
the same as if it was defined in HTML or CSS. This shows the same three
values but converted to hexadecimal (base 16) instead of decimal. For
orange this would be #ffa500. There are also some 657 different words that
can be used for colors ranging from “aliceblue” to “yellowgreen”. A small
selection of the color codes is shown in Figure 6-1.

132

aquamarinei 127,255,212

black
blue
magenta
gray
green
limegreen
maroon
navy
brown
purple
red
lightgray
orange
white
yellow

violet

0,0,0
0,0,255
255,0,255
190,190,190
0,255,0
50,205,50
176,48,96
0,0,128
165,42,42
160,32,240
255,0,0
211,211,211
255,165,0
255,255,255
255,255,0
238,130,238

Figure 6-1. List of color codes

CHAPTER 6

#71ffd4
#000000
#0000ff
#f00ff
#bebebe
#001£f00
#32cd32
#b03060
#000080
#ab2a2a
#a020f0
#0000
#d3d3d3
#{fa500
ittt
#1ff00
#eeB2ee

The code to generate this list is in Listing 6-1 and included in the

both a black and white background to make the colors visible.

COLORS

source code as color-demo.py. The demonstration program displays the
word, RGB, and HTML values for a selection of colors. It shows them on

133

CHAPTER6 COLORS

Listing 6-1. Code to display a selection of color words with color
codes

Program to demonstrate some of the color words including in
Pygame / Pygame Zero
import pygame

WIDTH = 800
HEIGHT = 600
colors = ['aquamarine1', 'black', 'blue', 'magenta’, 'gray',

‘green', 'limegreen', 'maroon', 'navy', 'brown', 'purple’,
'‘red', 'lightgray', 'orange', 'white', 'yellow', 'violet']

def draw():
screen.draw.filled rect(Rect((400,0), (400,600)), (255,255,255))
line_number = 0
for color in colors:
print _color (color, line number)
line_number += 1

def print _color (colorname, line number):
color_rgb string = "{},{},{}".format(pygame.
Color(colorname).r, pygame.Color(colorname).g, pygame.
Color(colorname).b)
color_html string = "#{:02x}{:02x}{:02x}".format(pygame.
Color(colorname).r, pygame.Color(colorname).g, pygame.
Color(colorname).b)
screen.draw.text(colorname, (20,30*(1line_number+1)),
color=colorname)
screen.draw.text(color rgh string, (130,30*(line_
number+1)), color=colorname)
screen.draw.text(color html string, (250,30*(line_
number+1)), color=colorname)

134

CHAPTER6 COLORS

screen.draw.text(colorname, (420,30*(1line_number+1)),
color=colorname)

screen.draw.text(color rgb string, (530,30*(1line_
number+1)), color=colorname)
screen.draw.text(color_html string, (650,30*(1line_
number+1)), color=colorname)

The code uses Pygame Zero to display the text, but accesses the
pygame.Color list directly. The list of colors is not available through the
Pygame Zero documentation, but a link is included in Appendix B to the
Pygame source code where you can see all the colors defined.

Bouncing Ball

As a further demonstration of the use of color, I have created a short
program which shows a ball bouncing around the screen. The ball changes
color as it moves around. I won't use this in a game, but I will explain the
technique used which could be useful if you wanted to make a game that
relies on bouncing a ball such as Breakout. A screenshot of the program is
shown in Figure 6-2.

135

CHAPTER6 COLORS

Figure 6-2. Color bouncing ball

The code for this is shown in Listing 6-2 and is included in the supplied
source code as bouncingball.py.

Listing 6-2. Code to display a selection of color words with color

codes
WIDTH = 800
HEIGHT = 600

starting positions
ball x = 400

ball y = 300

ball speed = 5

136

CHAPTER6 COLORS

Velocity separated into x and y components

ball velocity = [0.7 * ball speed, 1 * ball speed]
ball radius = 20

ball color pos = 0

def draw():
screen.clear()
draw_ball()

def update():
global ball x, ball y, ball velocity, ball color_pos
ball color pos += 1
if (ball_color_pos > 255):
ball color pos = 0
ball x += (ball velocity[0])
ball y += (ball velocity[1])
if (ball_x + ball radius >= WIDTH or ball x - ball radius
<= 0):
ball velocity[0] = ball velocity[o] * -1
if (ball_y + ball radius >= HEIGHT or ball y - ball radius
<= 0):
ball velocity[1] = ball velocity[1] * -1

def draw ball():
color = color wheel (ball color pos)
screen.draw.filled circle ((ball x,ball y), ball radius,
color)

Cycle around a color wheel - 0 to 255
def color wheel(pos):
if pos < 85:
return (pos * 3, 255 - pos * 3, 0)

137

CHAPTER6 COLORS

elif pos < 170:

pos -= 85

return (255 - pos * 3, 0, pos * 3)
else:

pos -= 170

return (0, pos * 3, 255 - pos * 3)

As with all Pygame Zero code, the code is based around the draw and
update functions.

The update function handles the movement of the ball. The ball has a
velocity (combination of speed and direction) which is stored in terms of
the change in x and y for each run of the update function. Using the default
speed of 5, the ball will move 3.5 pixels in the X direction and 5 pixels in the
Y direction each time the function is called. When the ball hits a wall, then
it’s velocity in the appropriate direction will be reversed.

The draw function runs the draw_ball function which draws the ball
using screen.draw.filled_circle. It works out the color for the ball from a
color_wheel function.

The color wheel is created in three phases. The first phase starts with
no red light, full green light, and no blue light. Then red light is increased,
and blue light decreased as you move around this phase.

The second phase is where the red light decreases and blue light
increases, with no green light.

The third phase is where green light increases and blue light decreases,
with no red light.

This uses just one slice around the wheel with a fixed amount of
brightness. The total number of colors available is over 16 million, but
because it only takes one slice, the color_wheel function will return one of
256 different colors each time it is called. Using the next color, each time
the ball is drawn means that the ball will change color as it moves around
the screen.

138

CHAPTER6 COLORS

Background Color Selector

To help visualize the different colors, the next program will provide a
means of viewing colors associated with different color codes.

The program allows the user to select a color, and it will be displayed
across the bottom half of the window. This is shown in Figure 6-3.

Figure 6-3. Color selector program

Like the rest of this chapter, it won’t involve creating a complete game,
but it will demonstrate techniques that can be used in creating games. This
includes how to handle mouse events to create games using the mouse.

139

CHAPTER6 COLORS

Handling Mouse Events

When the mouse is moved, clicked, or dragged, then it causes an event to be
triggered. These then call mouse event functions which you can implement
in your own code. These functions are on_mouse_down, on_mouse_up,
and on_mouse_move. If you implement these functions in your Pygame
Zero code, then they will be called whenever one of the events is triggered.
Looking at the function on_mouse_down, it is triggered each time
that one of the mouse buttons is pressed. The function can have two
arguments; if they are included in the function, then they will be provided
with the position of the mouse and the mouse button pressed.
An example function is shown in Listing 6-3.

Listing 6-3. Code to handle mouse press

def on_mouse_down(pos, button):
if (button == mouse.LEFT):
print ("Mouse pressed, position {} {}".format((pos[0]),

pos[1]))

Using this code each time the left button is pressed, it will print out
the coordinates of the mouse to the console. If there are actors on the
screen, then it is possible to detect whether the mouse is over one of those
actors using the actor collidepoint method. This is different than if using
a conventional (non-game) application. In a game you normally want the
action (such as pressing a button, firing a laser, or turning a card) as soon
as the mouse is clicked. In a conventional application, to press a button,
you normally press on the button and then also need to release it while
the mouse is over the same point. This means keeping track of whether
the button was during the on_mouse_down, then waiting until after a on_
mouse_up is called. As this is a game programming book, it will just cover
the first, but it’s something you may want to consider if using Pygame Zero
for a non-game application.

140

CHAPTER6 COLORS

Creating the Color Selector

The color selector creates a filled_rectangle with the selected color. The
rectangle takes up half of the program window. This is like the filled_circle
used previously, except it uses a Rect object. The color is set based on
variables for color_red, color_green, and color_blue. The value of each
of those is set using plus and minus button using the on_mouse_down
function. These buttons are images which are created as actor objects the
same as if creating a character or other sprite.

The code for the color selector is shown in Listing 6-4.

Listing 6-4. Color selector program

WIDTH = 800
HEIGHT = 600

color red = 0
color_green = 0
color blue = 0

change_amount = 5
BOX = Rect((0,300),(800,300))

button minus red = Actor("button minus red", (260,63))
button plus red = Actor("button plus red", (310,63))

button minus green = Actor("button minus green", (260,143))
button_plus green = Actor("button plus green", (310,143))
button minus blue = Actor("button minus blue", (260,223))
button_plus _blue = Actor("button_plus_blue", (310,223))

def draw() :
screen.clear()

screen.draw.text("Red", (45,45), fontsize=40, color="red")
screen.draw.text(str(color red), (160,45), fontsize=40,
color="red")

141

CHAPTER6 COLORS

screen.draw.text("Green", (45,125), fontsize=40,
color="green")

screen.draw.text(str(color green), (160,125), fontsize=40,
color="green")

screen.draw.text("Blue", (45,205), fontsize=40,
color="blue")

screen.draw.text(str(color blue), (160,205), fontsize=40,
color="blue")

button minus red.draw()
button plus red.draw()
button_minus_green.draw()
button_plus green.draw()
button minus blue.draw()
button_plus blue.draw()

screen.draw.filled rect (BOX, (color red,color green,
color blue))

def update() :
pass

def on_mouse_down(pos, button):
global color red, color green, color blue
if (button == mouse.LEFT):
if (button minus red.collidepoint(pos)):
color red -= change amount
if (color red < 1):
color red = 0
elif (button plus red.collidepoint(pos)):
color_red += change amount
if (color red > 255):
color red = 255

142

CHAPTER6 COLORS

elif (button minus_green.collidepoint(pos)):
color_green -= change_amount
if (color green < 1):
color green = 0
elif (button plus green.collidepoint(pos)):
color green += change amount
if (color green > 255):
color_green = 255
elif (button _minus blue.collidepoint(pos)):
color blue -= change_amount
if (color blue < 1):
color blue = 0
elif (button plus blue.collidepoint(pos)):
color blue += change_amount
if (color blue > 255):
color blue = 255

The on_mouse_down function handles all the button presses. There is
a block of text for each button which looks to see if the button collides with
the position of the mouse. If a collision is detected, then it increases or
decreases the value of the appropriate color by 5. The reason for changing
by 5 rather than 1 is to reduce the number of button clicks needed,
although that does mean that only a subset of colors can be displayed.

Summary

This chapter has looked at how colors are created in Pygame Zero and how
the colors can be used. The bouncing ball program showed how the colors
can be used. The color selector provides a way of creating different colors
and how to use the mouse to interact with the program. The code used in
these programs can be used as a building block for creating games.

In the next chapter, the colors will be used to create another game

using vector images.

143

CHAPTER 7

Tank Game Zero

The last few chapters have covered some theory; now you will get a
chance to apply some of those techniques into a new game. The game is
an artillery battle game called Tank Game Zero - a battle to destroy your
enemy’s tank.

The game will use some of the features learned in the previous
chapters and expand on those. It will use dynamic vector graphics to create
sprites and the background image. It will also cover a new technique for
tracking a trajectory for shells fired from a tank’s gun.

Rather than cover the program line by line, I've explained some of the
different techniques used to create the game. These will come together
toward the end of this chapter to create a working game.

The game is a two-player turn-based game. Player 1 will fire a shell
toward the enemy tank to try and destroy it. If that is unsuccessful, then
player 2 has a go. This repeats until one of the players’ shells successfully
hits the opponent’s tank.

Vector Image of Tank

Instead of using bitmap images, the game is created using the built-in
Pygame Zero shapes. This includes the landscape which is created as a
polygon and the tanks which are created using simple shapes. The basic
outline for the tank is shown in Figure 7-1.

© Stewart Watkiss 2020 145
S. Watkiss, Beginning Game Programming with Pygame Zero,
https://doi.org/10.1007/978-1-4842-5650-3_7

CHAPTER 7 TANK GAME ZERO

spx — 20p =\
m_l SSaE 7 \
mpx] {
Sy
- D
spx] /ﬁ \\5
m:[\ //
I
Spx Spx apx

Figure 7-1. Tank shape created using vector shapes

In the code the bottom part of the tank is known as the track, which
is created as a polygon; the main part is known as the hull, created as a
rectangle; the top is the turret which is an ellipse; and the gun is a rectangle
shape but created as a polygon.

This is going to need additional code to work out the position of the
tank and the relative coordinates of the different shapes. The math for
drawing the gun position is going to be quite involved so that is put into
a separate function. The code to draw one of the tanks is shown in
Listing 7-1. This is included in the source code as tankshape.py.

Listing 7-1. Code to display a tank created using shapes

import math
import pygame

WIDTH=800
HEIGHT=600

left_tank_position = 50,400
left_gun_angle = 20

def draw():
draw_tank ("left", left tank position, left gun angle)

146

CHAPTER 7 TANK GAME ZERO

def draw_tank (left right, tank start pos, gun angle):
(xpos, ypos) = tank start pos
tank color = (216, 216, 153)

The shape of the tank track is a polygon
(uses list of tuples for the x and y co-ords)
track positions = [

(xpos+5, ypos-5),

(xpos+10, ypos-10),

(xpos+50, ypos-10),

(xpos+55, ypos-5),

(xpos+50, ypos),

(xpos+10, ypos)
]
Polygon for tracks (pygame not pygame zero)
pygame.draw.polygon(screen.surface, tank color, track
positions)

hull uses a rectangle which uses top right coords and
dimensions

hull rect = Rect((xpos+15,ypos-20),(30,10))

Rectangle for tank body "hull" (pygame zero)

screen.draw.filled rect(hull rect, tank color)

Despite being an ellipse pygame requires this as a rect
turret_rect = Rect((xpos+20,ypos-25),(20,10))

Ellipse for turret (pygame not pygame zero)
pygame.draw.ellipse(screen.surface, tank color, turret rect)

Gun position involves more complex calculations so in a
separate function

gun_positions = calc_gun positions (left right, tank start

pos, gun_angle)

147

CHAPTER 7 TANK GAME ZERO

Polygon for gun barrel (pygame not pygame zero)
pygame.draw.polygon(screen.surface, tank color,
gun_positions)

Calculate the polygon positions for the gun barrel

def

148

calc_gun positions (left right, tank start pos, gun angle):
(xpos, ypos) = tank start pos
Set the start of the gun (top of barrel at point it joins
the tank)
if (left _right == "right"):
gun_start pos top = (xpos+20, ypos-20)
else:
gun_start pos top = (xpos+40, ypos-20)
Convert angle to radians (for right subtract from 180 deg
first)
relative_angle = gun_angle
if (left right == "right"):
relative angle = 180 - gun angle
angle rads = math.radians(relative angle)
Create vector based on the direction of the barrel
Y direction *-1 (due to reverse y of screen)
gun_vector = (math.cos(angle rads), math.sin(angle rads) * -1)

Determine position bottom of barrel
Create temporary vector 90deg to existing vector
if (left right == "right"):

temp_angle rads = math.radians(relative angle - 90)
else:

temp _angle rads = math.radians(relative angle + 90)
temp_vector = (math.cos(temp_angle rads), math.sin(temp
angle rads) * -1)

CHAPTER 7 TANK GAME ZERO

Add constants for gun size
GUN_LENGTH = 20
GUN_DIAMETER = 3
gun_start pos bottom = (gun_start pos top[0] + temp_
vector[o0] *
GUN_DIAMETER, gun start pos top[1] + temp vector[1] *
GUN_DIAMETER)

Calculate barrel positions based on vector from start
position
gun_positions = [
gun_start pos_bottom,
gun_start_pos_top,
(gun_start pos top[0] + gun_vector[0] * GUN_LENGTH,
gun_start pos top[1] + gun vector[1] * GUN_LENGTH),
(gun_start pos bottom[0] + gun vector[0] * GUN_LENGTH,
gun_start pos bottom[1] + gun vector[1] * GUN_LENGTH),

]

return gun positions

The program first imports some modules. One is the math module and
the other is pygame. The reason for needing to import pygame is that while
the game is designed for Pygame Zero, there are some features that are not
currently available in Pygame Zero. Importing pygame enables the code to
make use of functionality in the pygame module.

Next there are some global variables for the position of the tank and
the angle for the gun. These refer to the left tank; in the final game, there
will be two tanks and variable names are consistent to how they will be as
the game is developed.

The draw function is a single entry that draws the tank by calling the
draw_tank function. There is no update function as that is not needed at
this point.

149

CHAPTER 7 TANK GAME ZERO

The task of drawing the tank goes to the draw_tank function. The first
argument to the function is a word “left” or “right” This is not used in this
code as currently it only creates the left tank, but it’s often better to include
any future arguments where it is known they will be needed later. The
other arguments represent the position of the tank and the angle that the
gun is pointing at.

The draw_tank function first defines the shape which represents the
tank tracks. This is created as a polygon. A polygon can be any closed
shape with at least three sides which makes it ideal for irregular shapes.

track positions = [
(xpos+5, ypos-5),
(xpos+10, ypos-10),
(xpos+50, ypos-10),
(xpos+55, ypos-5),
(xpos+50, ypos),
(xpos+10, ypos)
]
pygame.draw.polygon(screen.surface, tank_color, track
positions)

The track_positions listis created with all the vertices that represent
the shape (each of the corners). Pygame Zero does not currently include
the code to create polygons. To overcome this limitation, the Pygame
method is used instead. Instead of beginning screen.draw as is used in
Pygame Zero, the method is pygame.draw.polygon and the surface to draw
on is passed as the first argument using screen. surface.

The next shape is a rectangle which can be drawn directly from
Pygame Zero.

hull rect = Rect((xpos+15,ypos-20),(30,10))
screen.draw.filled rect(hull_rect, tank_color)

150

CHAPTER 7 TANK GAME ZERO

The hull rect is Rect object, which has a tuple to represent the
starting position (left, top) and a tuple to represent the size of the rectangle
in pixels (width, height). That is then passed along with the color to
screen.draw.filled rect.

The turret is created as an ellipse. Pygame Zero does not currently
support an ellipse (only having a circle), so this also needs to be created
using Pygame. The ellipse is defined as a rectangle (Rect object), which
contains the ellipse.

turret rect = Rect((xpos+20,ypos-25),(20,10))
pygame.draw.ellipse(screen.surface, tank color, turret rect)

The last item in the draw function is to draw the gun barrel. This is a
rectangle which is rotated to reflect the selected angle. As this is drawn at
an angle, it is created as a polygon. The math in determining the positions
of the vertices is quite involved so it is broken out into a separate function
calc_gun_positions. The gun is shown in Figure 7-2 showing how the gun
is positioned on the tank and the gun angle.

Gun start :
position ™) Elevation angle
Reference
line
Angle for base
of gun

Figure 7-2. Tank shape created using vector shapes

151

CHAPTER 7 TANK GAME ZERO

The calc_gun_positions function has been written to support the
tank being on the left of the screen (with the gun pointing to the right) or
on the right of the screen (with the gun pointing to the left). This is done by
first setting the appropriate start position for the top of the barrel where it
overlaps the hull of the tank. The gun_angle is the number of degrees from
the reference line shown in Figure 7-2. If the tank is on the right, then the
gun angle is converted to a relative angle by subtracting 180 degrees.

The angle is then converted to radians as that is what the math module
uses for the trigonometric functions. The gun_vector is then created based
on the cosine for the change in the x axis and the sine for the change in the
y axis. That vector gives the relative x and y changes and can be multiplied
by the length of the gun to calculate the position of the vertex at the top of
the gun. A similar technique is used to find the bottom position, which is
at an angle of 90 degrees (minus or plus depending upon whether it is right
or left) compared to the gun vector. Finally, a list is created called gun_
positions, which is returned to the draw function to create the polygon.

Creating a Dynamic Landscape

In the previous code, the tank is just positioned in a stationary position
hovering in the air. This next part will create the landscape for the tanks

to stand on. Rather than create a static landscape which is the same each
time the game is played, a dynamic landscape will be created. This will
show how a dynamic landscape can be generated using random numbers.
An example landscape is shown in Figure 7-3.

152

CHAPTER 7 TANK GAME ZERO

Pygame Zero Game LA

Figure 7-3. Dynamic landscape for the tank game

The landscape will be generated as a polygon. You may be thinking
that you can just use a random number value to determine the value of
the y axis. It is not quite that simple as the random number would result
in sharp differences between each point causing the landscape to be too
rugged and unrealistic. Instead the landscape is created by calculating a
random value as a difference from the previous position. This gives a more
gradual change. I've also created a flat area on both the left and right
which is where the tanks will be positioned. The code for this is shown in
Listing 7-2. The code is included in the source code as tanktrajectory.py.

Listing 7-2. Code to generate a random landscape for the tank
game

import random
import pygame

WIDTH=800
HEIGHT=600

153

CHAPTER 7 TANK GAME ZERO

SKY COLOR = (165, 182, 209)
GROUND COLOR = (9,84,5)

How big a chunk to split up x axis
LAND_CHUNK_SIZE = 20

Max that land can go up or down within chunk size
LAND MAX CHG = 20

Max height of ground

LAND_MIN Y = 200

Position of the two tanks - set to zero, update before use
left tank position = (0,0)
right tank position = (0,0)

def draw():
screen.fill(SKY COLOR)
pygame.draw.polygon(screen.surface, GROUND COLOR, land_
positions)

Setup game - allows create new game
def setup():
global left tank position, right tank position, land_
positions
Setup landscape (these positions represent left side of
platform)
Choose a random position
The complete x,y co-ordinates will be saved in a
tuple in left_tank rect and right tank rect
left tank x_position = random.randint (10,300)
right tank x position = random.randint (500,750)

Sub divide screen into chunks for the landscape
store as list of x positions (0 is first position)
current land x = 0

154

CHAPTER 7 TANK GAME ZERO

current_land y = random.randint (300,400)
land positions = [(current land x,current land y)]
while (current land x < WIDTH):
if (current_land x == left_tank x_position):
handle tank platform
left tank position = (current land x, current
land_y)
Create level ground for the tank to sit on
Add another 50 pixels further along at same y
position
current land x += 60
land positions.append((current land x, current
land_y))
continue
elif (current land x == right tank x position):
handle tank platform
right tank position = (current land x, current_
land y)
Create level ground for the tank to sit on
Add another 50 pixels further along at same y
position
current_land x += 60
land_positions.append((current_land x, current_
land y))
continue
Checks to see if next position will be where the
tanks are
if (current_land x < left tank x_position and current_
land_x +
LAND CHUNK SIZE »>= left tank x_position):
set x position to tank position
current_land x = left_tank x_position

155

CHAPTER 7 TANK GAME ZERO

elif (current land x < right tank x position and
current land x +
LAND_CHUNK_SIZE >= right tank_x_position):
set x position to tank position
current_land x = right tank x_position
elif (current land x + LAND CHUNK SIZE > WIDTH):
current_land x = WIDTH
else:
current_land x += LAND CHUNK SIZE
Set the y height
current_land y += random.randint(0-LAND_MAX CHG,
LAND MAX_CHG)
check not too high or too low
Note the reverse logic as high y is bottom of screen
if (current land y > HEICHT): # Bottom of screen
current_land_y = HEIGHT
if (current land y < LAND MIN Y):
LAND MIN Y

current land y
Add to list
land positions.append((current land x, current land y))
Add end corners
land positions.append((WIDTH,HEIGHT))
land_positions.append((0,HEIGHT))

Setup the game (at end so that it can see the other
functions)
setup()

After setting up some constants and variables, the setup function is
called. The instruction to call setup is at the bottom of the file. This is
because in Python the function must be defined before it’s called, so by
placing it at the bottom of the file, all earlier functions are already loaded.

156

CHAPTER 7 TANK GAME ZERO

Before creating the ground, the tank positions need to be calculated.
This is so that the code can ensure that the tank is mounted on a level
section of ground. The x position of the tanks is set based on a random
integer; the y position will be added later once the ground is calculated.
The background is then split into chunks of a fixed size. If a tank will be on
the next section, then the chunk is ended at the position so that the level
section can be created. The next chunk is then created with the y axis left
unchanged.

If the current section won’t have a tank on it, then it will be changed by
arandom amount. All these positions are added to a list which is then used
by the draw function to draw the polygon.

Calculating the Trajectory

When the shell is fired from the gun, it does not follow a straight line. This
is because of several factors, the main influence being gravity. Ignoring the
other factors, then the force of gravity pulling it toward earth would result
in the path of the shell forming a parabola as it first gains height and then
starts to fall back toward earth.

In the real world, the path would be distorted because of air resistance
and any wind resistance that it encounters. To keep it fairly simple, this
program will just consider gravity. This will be handled by a function
update _shell positionand adraw_shell function. To illustrate this, I
have created a program tanktrajectory.py which will display the entire path
for a certain set of values. The path is shown in Figure 7-4 with the colors
modified to improve the contrast.

157

CHAPTER 7 TANK GAME ZERO

Pygame Zero Game

Figure 7-4. Example trajectory of a tank shell being fired

The code to demonstrate this is shown in Listing 7-3.

Listing 7-3. Code to demonstrate trajectory for a tank shell being
fired

import math
import pygame

WIDTH=800
HEIGHT=600

SKY_COLOR = (165, 182, 209)
SHELL_COLOR = (255,255,255)
shell start position = (50,500)

158

left_gun_angle
left_gun_power

CHAPTER 7 TANK GAME ZERO

50
60

shell positions = []

def

def

def

draw_shell (position):

(xpos, ypos) = position

Create rectangle of the shell

shell rect = Rect((xpos,ypos),(5,5))
pygame.draw.ellipse(screen.surface, SHELL COLOR,
shell rect)

draw():

screen.fill(SKY COLOR)

for this position in shell positions:
draw_shell(this position)

update_shell position (left right):
global shell power, shell angle, shell start position,
shell current position, shell time

init velocity y = shell power * math.sin(shell angle)

Direction - multiply by -1 for left to right
if (left_right == 'left'):
init velocity x = shell power * math.cos(shell angle)

else:

init velocity x = shell power * math.cos(math.pi -
shell angle)
Gravity constant is 9.8 m/s"2 but this is in terms of
screen so instead use a suitable value
GRAVITY CONSTANT = 0.004
Constant to give a sensible distance on x axis

DISTANCE _CONSTANT = 1.5

159

CHAPTER 7 TANK GAME ZERO

def

time is calculated in update cycles
shell x = shell start position[0] + init velocity x *
shell time * DISTANCE CONSTANT
shell y = shell start position[1] + -1 * ((init_velocity y *
shell time) -
(0.5 * GRAVITY CONSTANT * shell time * shell time))

shell current position = (shell x, shell y)
shell time += 1

setup_trajectory():
global shell positions, shell current_position, shell
power, shell angle, shell time

shell current position = shell start position

shell angle
shell power
shell time = 0

math.radians (left gun angle)
left_gun_power / 40

while (shell current position[0] < WIDTH and shell current
position[1] < HEICHT):

update_shell position("left")

shell positions.append(shell current position)

setup_trajectory()

The setup_trajectory function is used to demonstrate the trajectory

and won'’t be included in the game. It sets the angle and then creates a

while loop which calculates all the positions that the shell will go through

before hitting the ground or going off the right-hand side of the screen.

The update_shell position function starts with calculating the initial

velocity in the x and y directions. This is based on the power and angle of

the gun.

160

CHAPTER 7 TANK GAME ZERO

There then needs to be two constants: a value that represents
GRAVITY_CONSTANT (amount of force pulling down toward earth) and
DISTANCE_CONSTANT which influences how far the shell travels in
the x direction on each step. The value for gravity is 9.8 m/s2, but that is
assuming real distance measured in meters. In the case of a computer
screen, we have a virtual distance measured in pixels. The value used is
created using trial and error to get a value that looks realistic and gives a
suitable curve. The same trial and error method is used for the DISTANCE_
CONSTANT. These values are then included in the following algorithms to
determine the position of the shell at each time interval.

shell x = shell start position[0] + init velocity x *
shell time * DISTANCE_CONSTANT
shell y = shell start position[1] + -1 * ((init velocity y *
shell time) -
(0.5 * GRAVITY_CONSTANT * shell time * shell time))

This doesn’t include any factor for air resistance, wind resistance, or
any of the other forces acting upon the shell except for gravity.

This demonstration program shows all the shell positions
simultaneously, but in the game only a single shell will be drawn at a time,
which will move slowly across the screen.

Detecting a Collision

In the earlier game, the collisions were based on the Rect collide feature.
Although a useful technique, it does not have the accuracy needed for this
game. An alternative technique is to detect when the shell collides with a
tank or the ground by looking for the color of the pixel to see if it matches
with the color of the tank or ground. For this to work, the color of the
ground and of each of the tanks needs to be unique. Listing 7-4 shows the
function that will be used to detect the collision.

161

CHAPTER 7 TANK GAME ZERO

Listing 7-4. Function to detect collision with tank or ground

def detect_hit (left right):
global shell current position
(shell x, shell y) = shell current position
Add offset (3 pixels)
offset left/right depending upon direction of fire
if (left _right == "left"):

shell x += 3
else:

shell x -= 3
shell y += 3

offset position = (math.floor(shell x), math.
floor(shell y))

Check whether it's off the screen

temporary if just y axis, permanent if x

if (shell x > WIDTH or shell x <= 0 or shell y >= HEIGHT):
return 10

if (shell y < 1):
return 1

Get color at position

color pixel = screen.surface.get at(offset position)

if (color pixel == GROUND COLOR):
return 11

if (left_right == 'left' and color pixel == TANK COLOR P2):
return 20

if (left right == 'right' and color pixel == TANK COLOR P1):
return 20

return O

162

CHAPTER 7 TANK GAME ZERO

This code creates an offset just in front of the shell, so as not to look at
its own color. It then checks to see if that position is off the screen. If it has
gone above the top of the screen, then that is just a temporary situation, so
it returns a different value to if it goes off the right or left side of the screen.
The code then uses the following line to read the value of the pixel at the
offset position:

color pixel = screen.surface.get at(offset position)

This returns the value of the pixel at the offset position. If that value is a
match with the color of a tank or the ground, then it returns an appropriate
value.

In this function the values returned are just values which have been
chosen to represent the different conditions. If you are writing code that
will be reused in other programs, then it is usually a good idea to create a
constant to make it easier to see what that value means. For example, when
looking at the status of the mouse in Chapter 6, a test was made to see if
the value of the button was equal to mouse. LEFT. The value of mouse.LEFT
is just a number, which happens to be 1. It is generally easier to remember
mouse. LEFT rather than having to remember the number that is generated
for each of the different buttons. As this is only used for this particular
function, the real value is returned but comments have been included in
the code to explain what those values mean.

Complete Game Code

There is quite a bit of additional code still, but most of that includes
techniques that have already been demonstrated in earlier chapters.

As with most programs, the state of the game needs to be tracked to
know which player is currently active or to display the appropriate message.
This is done by setting appropriate text in the variable game_state.

163

CHAPTER 7 TANK GAME ZERO

The different states are listed in comments at the start of the program;
they are

o ‘“start” - Timed delay before start

o ‘“playerl” - Waiting for player to set position
o ‘“playerlfire” - Player 1 fired

o ‘“player2” - Player 2 set position

o ‘“player2fire” - Player 2 fired

e ‘“game_over_1" - Show that player 1 won

e ‘“game_over_2” - Show that player 2 won

These states have appropriate codes in the update or draw functions
to make sure that the game gives the correct prompts or handles the input
appropriately.

The player_keyboard function is called from the update function to
check to see if any keys are pressed. If the up or down buttons are pressed,
then the gun elevation angle is adjusted; if the left or right buttons are
pressed, then the power is adjusted (as a percentage of maximum power),
and if space is pressed, then the shell is fired. There is an additional test
to see if the left-shift key is pressed, which is another option instead of the
space to fire the shell. This is included so that the game can work with the
Picade or other Raspberry Pi-based arcade machines which map that key
to a physical button.

There is a setup function used for all the code that needs to be run
when the game is first run. This creates the landscape as well as setting
values for many of the variables that will be needed later. There is also
additional code to display messages to the user. The code for the complete
game is shown in Listing 7-5.

164

CHAPTER 7 TANK GAME ZERO

Listing 7-5. Complete code for Tank Game Zero

import math
import random
import pygame

WIDTH=800

HEIGHT=600

States are:

start - timed delay before start

playerl - waiting for player to set position

playerifire - player 1 fired

player2 - player 2 set position

player2fire - player 2 fired

game_over 1 / game _over 2 - show who won 1 = player 1 won etc.

game_state = "player1"

Color constants

SKY COLOR = (165, 182, 209)

GROUND_COLOR = (9,84,5)

Different tank colors for player 1 and player 2

These colors must be unique as well as the GROUND COLOR
TANK_COLOR P1 = (216, 216, 153)

TANK COLOR P2 = (219, 163, 82)

SHELL_COLOR = (255,255,255)

TEXT_COLOR = (255,255,255)

How big a chunk to split up x axis
LAND_CHUNK_SIZE = 20

Max that land can go up or down within chunk size
LAND MAX CHG = 20

Max height of ground

LAND_MIN Y = 200

165

CHAPTER 7 TANK GAME ZERO

Timer used to create delays before action (prevent accidental
button press)
game_timer = 0

Angle that the gun is pointing (degrees relative to
horizontal)

left_gun_angle = 20

right gun angle = 50

Amount of power to fire with - is divided by 40 to give scale
10 to 100

left gun_power = 25

right_gun_power = 25

These are shared between left and right as we only fire one
shell at a time

shell power = 1

shell _angle = 0

shell time = 0

Position of shell when fired (create as a global - but update
before use)

shell start position = (0,0)

shell current position = (0,0)

Position of the two tanks - set to zero, update before use
left tank position = (0,0)
right_tank position = (0,0)

Draws tank (including gun - which depends upon direction and
aim)

left right can be "left" or "right" to depict which position
the tank is in

tank start pos requires x, y co-ordinates as a tuple

angle is relative to horizontal - in degrees

166

CHAPTER 7 TANK GAME ZERO

def draw_tank (left right, tank start pos, gun angle):
(xpos, ypos) = tank start pos

Set appropriate color for the tank

if (left_right == "left"):
tank_color = TANK_COLOR_P1
else:
tank _color = TANK COLOR P2

The shape of the tank track is a polygon
(uses list of tuples for the x and y co-ords)
track positions = [

(Xpos+5, ypos-5),

(xpos+10, ypos-10),

(xpos+50, ypos-10),

(xpos+55, ypos-5),

(xpos+50, ypos),

(xpos+10, ypos)
]
Polygon for tracks (pygame not pygame zero)
pygame.draw.polygon(screen.surface, tank color, track
positions)

hull uses a rectangle which uses top right co-ords and
dimensions

hull rect = Rect((xpos+15,ypos-20),(30,10))

Rectangle for tank body "hull" (pygame zero)

screen.draw.filled rect(hull rect, tank color)

Despite being an ellipse pygame requires this as a rect
turret_rect = Rect((xpos+20,ypos-25),(20,10))

Ellipse for turret (pygame not pygame zero)
pygame.draw.ellipse(screen.surface, tank color, turret rect)

167

CHAPTER 7 TANK GAME ZERO

def

Gun position involves more complex calculations so in a
separate function

gun_positions = calc_gun positions (left right, tank start

pos, gun_angle)

Polygon for gun barrel (pygame not pygame zero)

pygame.draw.polygon(screen.surface, tank color, gun_

positions)

draw_shell (position):

(xpos, ypos) = position

Create rectangle of the shell

shell rect = Rect((xpos,ypos),(5,5))
pygame.draw.ellipse(screen.surface, SHELL COLOR, shell rect)

Calculate the polygon positions for the gun barrel

def

168

calc_gun positions (left right, tank start pos, gun angle):
(xpos, ypos) = tank start pos
Set the start of the gun (top of barrel at point it joins
the tank)
if (left_right == "right"):
gun_start pos top = (xpos+20, ypos-20)
else:
gun_start pos top = (xpos+40, ypos-20)

Convert angle to radians (for right subtract from 180 deg
first)
relative_angle = gun_angle
if (left_right == "right"):
relative angle = 180 - gun_angle
angle rads = relative angle * (math.pi / 180)
Create vector based on the direction of the barrel
Y direction *-1 (due to reverse y of screen)
gun_vector = (math.cos(angle rads), math.sin(angle rads) * -1)

def

CHAPTER 7 TANK GAME ZERO

Determine position bottom of barrel
Create temporary vector 90deg to existing vector
if (left_right == "right"):

temp_angle rads = math.radians(relative angle - 90)
else:

temp _angle rads = math.radians(relative angle + 90)
temp_vector = (math.cos(temp_angle rads), math.sin(temp
angle rads) * -1)

Add constants for gun size

GUN_LENGTH = 20

GUN_DIAMETER = 3

gun_start pos bottom = (gun_start pos top[0] + temp_
vector[0] * GUN_DIAMETER, gun start pos top[1] + temp
vector[1] * GUN_DIAMETER)

Calculate barrel positions based on vector from start
position

gun_positions = [
gun_start pos bottom,
gun_start_pos_top,
(gun_start pos top[0] + gun_vector[0] * GUN_LENGTH,
gun_start pos top[1] + gun_vector[1] * GUN_LENGTH),
(gun_start pos bottom[0] + gun vector[0] * GUN_LENGTH,
gun_start pos bottom[1] + gun vector[1] * GUN_LENGTH),

]

return gun _positions

draw():

global game state, left tank position, right tank position,
left_gun_angle, right gun_angle, shell start position
screen.fill(SKY_COLOR)

169

CHAPTER 7 TANK GAME ZERO

def

170

pygame.draw.polygon(screen.surface, GROUND COLOR, land
positions)
draw_tank ("left", left tank position, left gun angle)
draw_tank ("right", right tank _position, right gun_angle)
if (game_state == "player1" or game state == "playerifire"):
screen.draw.text("Player 1\nPower "+str(left gun_
power)+"%", fontsize=30, topleft=(50,50), color=(TEXT_
COLOR))
if (game_state == "player2" or game state == "player2fire"):
screen.draw.text("Player 2\nPower "+str(right gun_
power)+"%", fontsize=30, topright=(WIDTH-50,50),
color=(TEXT_COLOR))
if (game state == "playerifire" or game state ==
"player2fire"):
draw_shell(shell current position)
if (game_state == "game over 1"):
screen.draw.text("Game Over\nPlayer 1 wins!",
fontsize=60, center=(WIDTH/2,200), color=(TEXT COLOR))
if (game_state == "game over 2"):
screen.draw.text("Game Over\nPlayer 2 wins!",
fontsize=60, center=(WIDTH/2,200), color=(TEXT COLOR))
update():
global game state, left gun angle, left tank position,
shell start position, shell current position, shell angle,
shell time, left gun power, right gun power, shell power,
game_timer
Delayed start (prevent accidental firing by holding start
button down)
if (game state == 'start'):
game_timer += 1

CHAPTER 7 TANK GAME ZERO

if (game_timer == 30):
game_timer = 0
game_state = 'player1’
Only read keyboard in certain states
if (game_state == 'playeri'):
playeri fired = player keyboard("left")
if (playeri fired == True):
Set shell position to end of gun
Use gun_positions so we can get start position
gun_positions = calc gun positions ("left", left
tank_position, left gun_angle)
shell start position = gun positions[3]
shell current_position = gun_positions[3]
game_state = 'playerifire’
shell angle = math.radians (left gun angle)
shell power = left_gun_power / 40
shell time = 0
if (game_state == 'playerifire'):
update shell position ("left")
shell value is whether the shell is inflight, hit or
missed
shell value = detect hit("left")
shell value 20 is if other tank hit
if (shell value »= 20):
game_state = 'game over 1'
10 is offscreen and 11 is hit ground, both indicate
missed
elif (shell value >= 10):
game_state = 'player2’
if (game_state == 'player2'):
player2 fired = player keyboard("right")

171

CHAPTER 7 TANK GAME ZERO

172

if (player2 fired == True):
Set shell position to end of gun
Use gun positions so we can get start position
gun_positions = calc_gun positions ("right", right_
tank_position, right gun_angle)
shell start position = gun positions[3]
shell current_position = gun_positions[3]
game_state = 'player2fire’
shell angle = math.radians (right gun angle)
shell power = right gun_power / 40
shell time = 0
if (game_state == 'player2fire'):
update shell position ("right")
shell value is whether the shell is inflight, hit or
missed
shell value = detect hit("right")
shell value 20 is if other tank hit
if (shell value »= 20):
game_state = 'game over 2'
10 is offscreen and 11 is hit ground, both indicate
missed
elif (shell value >= 10):
game_state = 'player1’
if (game_state == 'game over 1' or game state == 'game_
over 2'):
Allow space key or left-shift (picade) to continue
if (keyboard.space or keyboard.lshift):
game_state = 'start’
Reset position of tanks and terrain
setup()

CHAPTER 7 TANK GAME ZERO

def update_shell position (left right):
global shell power, shell angle, shell start position,
shell current position, shell time

init velocity y = shell power * math.sin(shell angle)

Direction - multiply by -1 for left to right
if (left_right == 'left'):
init velocity x = shell power * math.cos(shell angle)
else:
init _velocity x
shell angle)

shell power * math.cos(math.pi -

Gravity constant is 9.8 m/s”2 but this is in terms of
screen so instead use a sensible constant

GRAVITY CONSTANT = 0.004

Constant to give a sensible distance on x axis

DISTANCE_CONSTANT = 1.5

Wind is not included in this version, to implement then

decreasing wind value is when the wind is against the fire

direction

wind > 1 is where wind is against the direction of fire.

Wind must never be 0 or negative (which would make it

impossible to fire forwards)

wind value =1

time is calculated in update cycles

shell x = shell start position[0] + init velocity x *
shell time * DISTANCE CONSTANT

shell y = shell start position[1] + -1 * ((init velocity y
* shell time) - (0.5 * GRAVITY_CONSTANT * shell time *
shell time * wind value))

shell current position = (shell x, shell y)

shell time += 1

173

CHAPTER 7 TANK GAME ZERO

1

HoH OHF OH BT HF O H =

def

174

Detects if the shell has hit something.

Simple detection looks at color of the screen at the position
uses an offset to not detect the actual shell

Return 0 for in-flight,

for offscreen temp (too high),

10 for offscreen permanent (too far),
11 for hit ground,
20 for hit other tank

detect hit (left right):

global shell current position

(shell x, shell y) = shell current position

Add offset (3 pixels)

offset left/right depending upon direction of fire
if (left _right == "left"):

shell x += 3
else:

shell x -= 3
shell y += 3

offset position = (math.floor(shell x), math.floor(shell y))

Check whether it's off the screen

temporary if just y axis, permanent if x

if (shell x > WIDTH or shell x <= 0 or shell y >= HEIGHT):
return 10

if (shell y < 1):
return 1

Get color at position

color pixel = screen.surface.get at(offset position)

if (color_pixel == GROUND_COLOR):
return 11

if (left_right == 'left' and color pixel == TANK COLOR P2):
return 20

CHAPTER 7 TANK GAME ZERO

if (left right == 'right' and color pixel == TANK COLOR P1):
return 20
return 0

Handles keyboard for players
If player has hit fire key (space) then returns True
Otherwise changes angle of gun if applicable and returns
False
def player keyboard(left right):
global shell start position, left gun_angle, right gun_
angle, left gun power, right gun power

get current angle

if (left_right == 'left'):
this_gun_angle = left _gun_angle
this gun power = left gun power

else:

this_gun_angle = right gun_angle
this gun power = right gun power

Allow space key or left-shift (picade) to fire
if (keyboard.space or keyboard.lshift):
return True
Up moves firing angle upwards, down moves it down
if (keyboard.up):
this_gun_angle += 1
if (this_gun_angle > 85):
this gun angle = 85
if (keyboard.down):
this_gun_angle -= 1
if (this_gun_angle < 0):
this_gun_angle = 0

175

CHAPTER 7 TANK GAME ZERO

left reduces power, right increases power
if (keyboard.right):
this _gun power += 1
if (this_gun_power > 100):
this_gun_power = 100
if (keyboard.left):
this_gun_power -= 1
if (this_gun power < 10):
this gun power = 10

Update the appropriate global (left / right)
if (left_right == 'left'):

left gun_angle = this gun_angle

left _gun_power
else:

this _gun power

right gun_angle = this_gun_angle

right gun power = this gun power

return False

Setup game - allows create new game

def

176

setup():

global left tank position, right tank position, land_

positions

Setup landscape (these positions represent left side of
platform)

Choose a random position

The complete x,y co-ordinates will be saved in a tuple in
left tank rect and right tank rect

left tank x_position = random.randint (10,300)

right tank x position = random.randint (500,750)

Sub divide screen into chunks for the landscape

CHAPTER 7 TANK GAME ZERO

store as list of x positions (0 is first position)
current land x = 0
current _land y = random.randint (300,400)
land positions = [(current land x,current land y)]
while (current land x < WIDTH):
if (current land x == left tank x_position):
handle tank platform
left tank position = (current land x, current
land y)
Add another 50 pixels further along at same y
position (level ground for tank to sit on)
current_land x += 60
land_positions.append((current_land x, current_
land y))
continue

elif (current_land x == right tank x_position):
handle tank platform
right tank position = (current land x, current_
land y)
Add another 50 pixels further along at same y
position (level ground for tank to sit on)
current_land x += 60
land_positions.append((current_land x, current_
land y))
continue
Checks to see if next position will be where the
tanks are
if (current_land x < left tank x_position and current_
land_x + LAND_CHUNK SIZE >= left tank_x_position):
set x position to tank position
current land x = left tank x position

177

CHAPTER 7 TANK GAME ZERO

elif (current land x < right tank x position and
current_land x + LAND_CHUNK SIZE >= right tank x_
position):
set x position to tank position
current_land x = right tank x_position
elif (current land x + LAND CHUNK SIZE > WIDTH):
current_land x = WIDTH
else:
current_land x += LAND CHUNK SIZE
Set the y height
current_land y += random.randint(0-LAND MAX CHG,LAND
MAX_CHG)
check not too high or too lower (note the reverse
logic as high y is bottom of screen)
if (current land y > HEICHT): # Bottom of screen
current_land_y = HEIGHT
if (current land y < LAND MIN Y):
current land y = LAND MIN Y
Add to list
land positions.append((current land x, current land y))
Add end corners
land positions.append((WIDTH,HEIGHT))
land_positions.append((0,HEIGHT))

Setup the game (at end so that it can see the other
functions)
setup()

Rather than typing all the code yourself, you will find a copy with the
book source code named tankgame.py.

178

CHAPTER 7 TANK GAME ZERO

You may notice that there is some code that is repeated. This is because
there is some code for when player 1 is playing and very similar code for
player 2. This is something that is generally best avoided; not only does it
mean more typing, it also makes it more difficult to remember to update
the code for both tanks and to debug if things go wrong. This is something
that could be refactored in a future version and is something that object-
oriented programming can help with, which is covered in Chapter 9.

Improving the Game

This game has the starting of making an enjoyable game. In fact, there are
several commercial games that are based on the concept of the artillery
game. Many use a tank, but others replace the tanks with other objects,
such as a catapult against a castle wall or worms with a variety of different
weapons. There is even a game which uses a catapult to fire different birds
at pigs that are trying to steal their eggs.

So now you've learned the concepts involved, can you think of ways to
make the game more enjoyable? Here are some of my thoughts:

o Have multiple lives or different amount of damage level
required (health).

o Change the order of which player goes first so that
player 1 doesn’t always have the advantage.

e Add wind resistance with different amounts of wind.
e Add sound effects or background music.

e Show an explosion when the shell hits.

e Add a computer player option.

o Have different shapes of tanks or different colors.

179

CHAPTER 7 TANK GAME ZERO

o Different tanks could have different amount of power
vs. health to give a choice between more powerful gun
and better resistance against hits.

« Earn points to spend on tank upgrades.

o Allow the tank to move.

e Multiple tanks.

o Different weapons.

e Replace the tanks with a different object or creature.

You could add these features to the existing code or use the concepts
you have learned to create another game.

Summary

This chapter has covered various techniques including drawing vector
images, creating dynamic landscapes, calculating a trajectory, and other
steps involved in creating a game. The tank game will be used again during
the next chapter which will add some sound effects and background
music.

180

CHAPTER 8

Sound

Adding sound to a game will add an additional dimension and can help
bring the game come to life. This can be achieved by adding special effect
sounds or adding background music to set the mood. You may also use the
sound as a key component in the game.

As well as looking at how music can be added to a game through
Pygame Zero, this chapter will also look at ways of creating the sound effects
or music and some of the tools that can be used to process the sounds.

This chapter starts with looking at how you can create your own
sounds and music. If you are just interested in using sound effects or
music that have been created by someone else, you can skip to later in the
chapter where the sounds are added to a Pygame Zero game.

Recording Sound Effects

For realistic sound effects, they are often created by recording real sounds.
It may not however be possible to record the effect you are creating in the
game. If you don’t happen to own a challenger tank, then you may need to
look at something that sounds like a tank rather than recording a real tank.
Ifyou are creating a futuristic sci-fi game, then you may need to look at
sounds being computer generated.

Even if you can record the exact effect that you want, that may not
sound quite right for a game. One of the things I looked at was how you
could create the sound of a steam train. I have several preservation

© Stewart Watkiss 2020 181
S. Watkiss, Beginning Game Programming with Pygame Zero,
https://doi.org/10.1007/978-1-4842-5650-3_8

CHAPTER 8 SOUND

railways within a reasonable distance, so I visited them to record the
sounds. One problem is that there is a lot of additional background noise
from people, pets, and other things around such as car traffic. Also, the
sounds recorded while realistic did not match the sound that you may
expect or that fit in with what is happening in the game. For example,
when recording the sound of the train, the sound of the locomotive was
accompanied by lots of different noises, such as the carriages clanging
and the sound of the wheels squealing against the track. I found a better
sound was achieved by recording the sound of the locomotive when it was
uncoupled from the train rather than when it was pulling a train.

You probably won’t be wanting to carry a Raspberry Pi, screen, and
accessories around when you want to record sounds. In that case you
can use a portable recorder, perhaps a mobile phone either using a video
recorder or using an audio recording tool. Details are provided on how
you can convert and edit suitable audio formats using Audacity if you have
captured them with a mobile phone.

Creating Artificial Sound Effects

If you can’t record the real sound effects, then it may be possible to create
an equivalent sound using household items. Here are a few examples:

e The crunch of walking feet using a shoe in a tray of gravel.

e The clip-clop of horse hooves by tapping coconut shells
together.

o Explosions based on fireworks. If local laws don’t
permit consumer fireworks, then you could record a
professional display.

¢ Water sounds created in a bathtub.

182

CHAPTER 8 SOUND

I have used artificial sound effects in creating the sounds for the tank
game. The sound of the tank firing is based on popping a balloon, with the
time slowed down. The sound of the explosion was recorded at a public
firework display.

You can also create sound effects synthetically using music creation
tools such as Sonic Pi. It is possible to use different shaped waveforms and
adding audio effects to create various sounds, particularly useful for sci-fi
type effects.

There are some web sites with examples of how you can create artificial
sound effects. Two examples are listed here, but there are others.

o EpicSound - www.epicsound.com/sfx/

o The Art of Foley - www.marblehead.net/foley/
specifics.html

Recording Audio on the Raspberry Pi

The Raspberry Pi does not include an audio input. If you want to record
sounds directly on a Raspberry Pi, then you will need an audio input
device. The most common methods would be either a USB microphone
(as shown in Figure 8-1) or a USB audio adapter with a microphone socket.

183

http://www.epicsound.com/sfx/
http://www.marblehead.net/foley/specifics.html
http://www.marblehead.net/foley/specifics.html

CHAPTER 8 SOUND

Figure 8-1. Raspberry Piwith USB microphone

Before recording sounds, you should test that audio is working on the
Raspberry Pi by playing sounds through a TV or external speaker. The
aplay command can be used using the following commands:

aplay /usr/share/sounds/alsa/Front_Left.wav
aplay /usr/share/sounds/alsa/Front Right.wav

These commands test for stereo through the left and right speakers.
If there is no sound, then the sound icon on the top right of the desktop
provides a choice of Analog (headphone jack) or HDMI. Alternatively, it
can be changed through the terminal configuration tool.

sudo raspi-config

184

CHAPTER 8 SOUND

Choose advanced options and then Audio which gives the option of using
e Auto
e Force 3.5mm (“headphone”) jack

e Force HDMI

Connecting a USB Microphone

After connecting the microphone, you should run the dmesg from the
terminal to see details of the connected device. The dmesg tool will show
messages from the kernel ring buffer logs.

dmesg

At the bottom, you should see an entry like the messages shown in
Listing 8-1.

Listing 8-1. Partial output of dmesg showing USB microphone

[3407.526441] usb 1-1.3: new full-speed USB device number 4
using xhci_hcd

[3407.670531] usb 1-1.3: New USB device found, idVendor=0c76,
idProduct=1690, bcdDevice= 1.00

[3407.670539] usb 1-1.3: New USB device strings: Mfr=0,
Product=1, SerialNumber=0

[3407.670544] usb 1-1.3: Product: USB PnP Device(Echo-058)

[3407.677945] input: USB PnP Device(Echo-058) as /devices/
platform/scb/fd500000.pcie/pci0000:00/0000:00:00.0/0000:01:00.
0/usb1/1-1/1-1.3/1-1.3:1.2/0003:0C76:1690.0007/input/input15

[3407.746906] hid-generic 0003:0C76:1690.0007: input,hidraw3:
USB HID v1.00 Device [USB PnP Device(Echo-058)] on usb-
0000:01:00.0-1.3/input2

185

CHAPTER 8 SOUND

[3407.844707] usb 1-1.3: Warning! Unlikely big volume range
(=496), cval->res is probably wrong.

[3407.844724] usb 1-1.3: [50] FU [Mic Capture Volume] ch = 1,
val = 0/7936/16

[3407.847365] usbcore: registered new interface driver snd-
usb-audio

This example is using a Fifine Technology USB microphone. It uses the
driver Echo-058.

You can also see the device by right-clicking the sound icon at the top
right of the desktop as shown in Figure 8-2.

3

Analog
v HDMI

ol))

) 2109

USB PnP Device(Echo-058)

USB Device Settings

Figure 8-2. Raspberry Pi sound settings with USB microphone

Using arecord

Once the microphone is connected, then there are a few different tools that
can be used to record sounds. For a simple command-line tool, arecord is
included in the standard NOOBS image.

To use arecord, find the device by running arecord -1, which will give
an output like that in Listing 8-2.

Listing 8-2. Output of arecord -1 command

arecord -1

xxkxx List of CAPTURE Hardware Devices x¥*x

card 1: DeviceEcho058 [USB PnP Device(Echo-058)], device 0: USB
Audio [USB Audio]

186

CHAPTER 8 SOUND

Subdevices: 1/1
Subdevice #0: subdevice #0

The card number (in this case 1) and the device number (in this case
0) form the basis of the device reference which in this case is hw:1,0. The
plughw plugin needs to be used; in this case, the device is plughw:1,0.

The following command will create a wav file, 16-bit little endian, with
a maximum duration of 60 seconds, saved as a file audiorecord.wav:

arecord -D plughw:1,0 -t wav -f S16 LE -d 60 audiorecord.wav

An alternative to using the command line is the graphical application
Audacity, which will be covered next.

Audacity

Audacity is a powerful tool which can be used for recording and editing
audio. Here you will see how Audacity can be used for recording audio on
the Raspberry Pi, converting audio formats, extracting audio from video
files, and trimming audio files.

Audacity is not included by default on the Raspberry Pi but can be
installed using

sudo apt install audacity

This will add an option to the “Sound & Video” menu. For other operating
systems, you can download Audacity from www.audacityteam.org.
A screenshot of the program is shown in Figure 8-3.

187

http://www.audacityteam.org

CHAPTER 8 SOUND

=ou:-m\e

llb

Transport Tracks Generate Effect Analyze "“:‘:
B I T T R T I I R A e

ow ..,QH* 5 e e e KA e

ﬂLSA 4 JSB PP BQMEG‘O-O‘ 1(Monc) R = ¥ bom2835 ALSAEC »

V0

Lo 20 Lo ao 0 w0 .0 [y we oo 1o o 1.0 e

Pm,wnat {Hz} | Snap-To | Audio Position St and End of Selection

on - 90RO0mO00000ET CONOCMOO000EY OOROOmMeo000aY

Figure 8-3. Screenshot of Audacity audio editor

Here are a few suggestions of things you may like to try which will help

familiarize yourself with some of the features of Audacity.

Recording Sounds with Audacity

Audacity can record directly from a microphone. The microphone can be

selected, recording started, and recording stopped using the graphical user

interface.

188

Launch Audacity and it will not show any sound waveforms.

Ensure that the microphone is selected as the input
device (shown alongside the microphone icon).

Click the red record button and talk into the
microphone or record nearby sounds.

Stop recording.

Export the audio as a suitable sound format (WAV and
OGG are good formats for use in Pygame Zero).

CHAPTER 8 SOUND

Convert Audio Formats

Audacity can read from multiple different audio file formats and then
convert them to another when you export them. This may be to convert
from an MP3 file or an M4A file (often used on mobile phones) to a WAV or
OGG file.

e Close any existing project.
e Load an audio file using open from the file menu.

e Choose export to save as a different audio format.

Extract Audio from Video Files

As well as reading audio files, Audacity can extract the audio from video
format files such as MP4 and AVI. The process is the same as converting
audio formats except that you select video as the source instead of an
audio file.

Trim Audio Files

Often when creating audio files, you will have additional recording before
and after the sounds you want.

e Open the audio file.

o Select the part to be trimmed using the mouse along
the waveform.

e Press the Delete key.
o Export the updated sound to a suitable file format.

This has covered some useful features but has only scratched the
surface of what Audacity can do. It can handle multiple tracks and provides
filters that allow you to apply different effects to the sounds.

189

CHAPTER 8 SOUND

Creating Music with Sonic Pi

There are multiple options for creating music. A useful tool that is included
on the Raspberry Pi is Sonic Pi.

Sonic Pi is a code-based music creation and performance tool. It is
designed for live music performances but can also be used to compose
music that can then be used as background music in computer games.

A screenshot of the interface is shown in Figure 8-4. It is considered a
programming tool so is on the programming menu in Raspbian.

live loop :kik d {run: 9, time: 3.25, thread: "live loop_vo
8.1

= synth :beep, {note: 79.0, releas

sample :bd haous, amp: 2
sleep 0.5

., time: 3.375, thread: "live
synth :beep, {note: 88.9, rel

5, thread: “live
{note: 59.8, rel

19 with_fx :echo
live loop :vortex d
use random seed 800

nntec = ferala -83 sminnr nentatnnir PLm

5, thread: *live loop kik

). It's going 1o be 2
ore

Figure 8-4. Screenshot of Sonic Pi music creation tool

The program has several buffer text edit tabs where code can be
entered. The code is based on Ruby which is quite different from Python.
It’s not possible to go into detail in this book, but an example will be given
of how it can be used to create background music.

Music in Sonic Pi is often created using samples which can be
manipulated in code. It can also be used by entering musical notes to play
a tune using different sample instruments. An example piece of music is

included in Listing 8-3.

190

CHAPTER 8 SOUND

Listing 8-3. Code to create music in Sonic Pi

piano notes = (ring :r, :c4, :e4, :f4, :g4, :r, :r, 1,
:r, :c4, :e4, :f4, :g4, :r, 1, T,
:r, :c4, :e4, :f4, :g4, :e4, :c4, :e4,
:d4, :r, :r, :e4, :e4, :d4, :c4, :c4,
e4, :g4, :g4, g4, :Tt4, :r, :r, :e4,
:f4, :g4, :e4, :c4, :d4, :c4)

live loop :piano do
use_synth :piano

tick
play piano notes.look, attack: 0.2, release: 0.1, amp: 0.5
sleep 0.25

end

Enter the code into one of the buffers and press Run.

This code works by playing musical notes which are stored in an array
(list), which is played in the loop. The tune is a simplified version of When
the Saints Go Marching In. It’s a traditional song which doesn’t have any
copyright issues.

Another example is shown in Listing 8-4 which is an original

composition as an example of a different way of creating music in Sonic Pi.

Listing 8-4. Another musical tune created in Sonic Pi

Example tune for Sonic-Pi

tunel notes = (ring :c4, :d4, :e4, :f4, :g4, :f4, :d4, :c3)
dsaw_notes = (ring :e4, :r, :g4, :r, :a4, :b4, :r, :a4, :b4,
:r, :d5, :r, :b4, :d5, :r, :b4, :r, :e4, :r, :g4, :r, :a4,
b4, :r, :a4, :b4, :r, :d5, :r, :b4, :d5, :r, :b4, :r, :g4, :z,
e4, :r, :e4, :r, :e4, :r, :g4, :r)

piano notes = (ring :r, :f4, :r, :a4, :r, :g4, :r, :b4)

191

CHAPTER 8 SOUND

with fx :reverb, room: 1, mix: 0.3 do
live loop :tuneil do
8.times do
tick
play tunel notes.look, release: 0.1, amp: 0.6
sleep 0.25
end
end
end

with fx :echo do
live loop :dsaw do
use_synth :mod_dsaw
play dsaw_notes.look, attack: 0.2, release: 0.1, amp: 0.05
sleep 0.125
end
end

with fx :flanger do
live loop :piano do
use_synth :piano
play piano_notes.look, attack: 0.2, release: 0.1, amp: 0.5
sleep 0.125
end
end

This uses three different loops with some special effects. This creates a
tune that could be used as a background music for a game.

To record the music as a WAV file that can be used in Pygame Zero,
click the record button before starting the music, then click the record
button again to stop recording, and save it as a file. You will then need to
trim out any unwanted silence at the beginning or end using Audacity.

192

CHAPTER 8 SOUND

The code is based on Ruby which is very different from Python and
is beyond the scope of this book. To learn more about Sonic Pj, there is a
good tutorial included in the program. Look in the bottom left corner of
Sonic Pi for more details.

Downloading Free Sounds and Music

There are many places where you can download free sounds and music.
These include recordings of live effects as well as original music which is
made available for free use. Whenever you get sound or music from one of
these sites, you need to check that the license allows for your intended use.

Two popular sites for sound effects are Sound Bible (http://
soundbible.com/) and Freesound (https://freesound.org). Most of the
sound effects listed on the sites are under an Attribution license which
means you can use for most purposes as long as you credit the creator.
Some of the samples do restrict the sounds to personal use only, so you
may need to be careful with those.

If you are looking for music, then there are several links on the Creative
Commons web site http://bit.ly/ccmusici. This site links to other
web sites known to have free music, but you will need to check for any
restrictions on use.

Adding Sound Effects in Pygame Zero

Having created or downloaded an appropriate sound effect, the next stage
is to add it to your games. The sounds can be in WAV or OGG formats.

To play sounds in Pygame Zero, first create a new sub-directory called
sounds and copy your sound effects in there. The format of the command
to play the sound is sounds, followed by the filename (without any
extension) and by the appropriate method such as play.

193

http://soundbible.com/
http://soundbible.com/
https://freesound.org
http://bit.ly/ccmusic1

CHAPTER 8 SOUND
To play the sound “explode.wav’, you would use
sounds.explode.play()

This method should only be used for short sound effects. It loads the
entire sound file into memory and can have a significant performance
impact if you try to use it on long music files. If you want to play longer pieces
of music, then see “Playing Music in Pygame Zero” later in this chapter.

I have included two sound effects in the sounds sub-directory called
tankfire.wav and explode.wav. These are used to add some sound effects to
the tank game created in the last chapter.

To add the sound of the tank gun firing, add the sounds.tankfire.
play() entry when the game state is set to 'playerifire’.

game_state = 'playerifire’
sounds.tankfire.play()

For the explosion when the shell hits, add sounds.explode.play()
when the game state is set to 'game_over 1'.

game_state = 'game over 1'
sounds .explode.play()

This should be repeated for 'player2fire’ and 'game over 2'.All the
required files are included in the supplied source code.

Playing Music in Pygame Zero

When you need some music to play longer, then there is a music player
option. The built-in music object provides the ability to play music by
loading the track a bit at a time. It only allows a single track to play at a
time but can be combined with sounds to have special effects playing at
the same time as background music. The music files should be stored in a
directory called music.

194

CHAPTER 8 SOUND

This is a relatively new feature in Pygame Zero and comes with a
warning. The music support depends upon the computer system and
how well they support playback of a particular codec. It should work with
MP3, OGG, and WAV files. MP3 music cannot be played on certain Linux
systems, which may be due to patents that have now expired. There have
also been reported issues with OGG files. It would seem that WAV may be
the safer option, although that may be just that there have been less reports
of issues. WAV files are uncompressed which can result in large file sizes.

To play a music track, call music.play with the name of the music
track. For instance, if you have a track saved in the music directory called
backing.ogg, then you can play it using

music.play('backing")

The track will then play continuously in the background. If you only
wanted the track to play once, such as at the end of a game, then you can
use the play _once method instead.

music.play one('victorymusic')

In either case it will stop any previous track or any in the queue. If you
would like to add another track to play next after the current one, then you
can use music.queue.

Itis possible to stop, pause, and unpause the music as well as changing the
volume through set_volume prefixing the method name with the music object.

Piano Game Created with Tones

Another alternative with Pygame Zero is to play computer-generated
sounds using the built-in tone generator. The tone generator can be a
useful way for creating sounds, but it uses synthesized sounds and is not
as good quality as could be created using sampled sounds. It was added
in version 1.2 of Pygame Zero, which is included in the latest version of
Raspbian and Mu. It may not work on some older versions.

195

CHAPTER 8 SOUND

The tone generator allows you to select the pitch and duration for the
tone. These do take a short time to generate (several milliseconds per
note), so are better created in advance. This is achieved using tone.create
with the pitch and duration. For example, to play middle C (4th octave),
you would load the tone using

middle ¢ = tone.create('C4', 0.5)
Then play using
middle c.play()

To make this into a game, I have used the tone generator for a simple
piano-based game. The game will allow you to play music using a virtual
keyboard and provide a game where the player presses the appropriate key
to play a tune. A screenshot is shown in Figure 8-5.

Pygame Zero Game v %

Demo

Figure 8-5. Screenshot of Piano Game

196

CHAPTER 8 SOUND

Clicking any of the keys will play the appropriate note. Clicking the
Demo button will play a demonstration of the tune. Clicking Start will play
the game; clicking the correct key when the note reaches the target line will
score a point.

This game is designed for use with the Raspberry Pi touch screen. It
can still be used with a mouse but is harder to play when you need to move
the mouse pointer. A limitation to this game is that the player can only
press one key at a time. This is a limitation of Pygame Zero, which does not
support multi-touch. If you wanted to use multi-touch, then you would
need to look at a different programming framework such as Kivy, but that
is beyond the scope of this book.

The code for the complete game is shown in Listing 8-5. The buttons
are created using shapes so there are no image or sound files required.

Listing 8-5. Code for Piano Game

Piano Game
Screen resolution based on Raspberry Pi 7" screen
WIDTH = 800
HEIGHT = 410

Notes are stored as quarter time intervals
where no note is played use "
There is no error checking of the tune, all must be valid notes
When the saints go marching in
tune = [
") 'C4'J IE4|) 'F4'J IG4|) ") "J ") ") 'C4'J IE4|) 'F4'J
IG4" "J "J ")
") 'C4'J IE4|) 'F4'J IG4|) 'E4'J IC4|) 'E4'J ID4|) "} "J
'E4", 'E4", D4, 'C4°, 'C4°,

197

CHAPTER 8 SOUND

'E4', 'G4', 'G4', 'G4', 'F4', ", ", 'E4', 'F4", 'G4', 'E4'
, 'C4', 'D4", 'C4'
]
State allows 'menu’ (waiting), 'demo’ (play demo), 'game'
(game mode), 'gameover' (show score)
state = "menu’
score = 0
note start = (50,250)
note size = (50,160)
List of notes to include on noteboard
notes_include natural = ['F3','G3',"'A3",'B3",'C4','D4", "E4", " 'F4
','G4',"A4","'B4","C5",'D5 ", "ES"]
List of sharps (just reference note without sharp)
notes_include sharp = ['F3','G3',"'A3",'C4','D4","'F4',"'C4"," A4",
'c5','D5"]
note rect sharp = {}
note rect natural = {}
notes tones = {}

beats_per minute = 116

Crotchet is a quarter note

1 min div by bpm

time crotchet = (60/beats per minute)
time_note = time_crotchet/2

how long has elapsed since the last note was started - or a
rest

time_since beat = 0

The current position that is playing in the list

A negative number indicates that the notes are shown falling,

but hasn't reached the play line

note position = -10

198

CHAPTER 8 SOUND

button _demo = Actor("button demo", (650,40))
button start = Actor("button start", (150,40))
Setup notes
def setup():
global note_rect natural, note _rect sharp, notes_tones
i=o0
sharp width = 2#note size[0]/3
sharp_height = 2xnote size[1]/3
for note_ref in notes _include natural:
note rect natural[note ref] = Rect(
(note_start[0]+(note size[0]*i),note
start[1]), (note_size)
)
Add note
notes tones[note ref]=tone.create(note ref, time note)
Is there a sharp note?
if note_ref in notes_include sharp:
note rect sharp[note ref] = Rect(
(note_start[o0]+(note _size[0]*i)+sharp width,
note start[1]),
(sharp_width,sharp_height)
)
Create version in Note#Octave eg. C#4
note ref sharp = note ref[0]+"#"+note ref[1]
notes tones[note ref sharp]=tone.create(note ref
sharp, time note)
i+=1

def draw():
screen.fill('white")
button_demo.draw()
button start.draw()

199

CHAPTER 8 SOUND

draw_piano()
if (state == 'demo' or state == 'game'):
draw_notes()
draw line for hit point
screen.draw.line ((50, 220), (WIDTH-50, 220), "black")
if (state == 'game'):
screen.draw.text("Score {}".format(score),
center=(WIDTH/2,50), fontsize=60,
shadow=(1,1), color=("black"), scolor="white")
if (state == 'gameover'):
screen.draw.text("Game over. Score {}".format(score),
center=(WIDTH/2,150), fontsize=60,
shadow=(1,1), color=("black"), scolor="white")
def draw notes():
for i in range (0, 10):
if (note position + i < 0):
continue
If no more notes then finish
if (note_position + i »>= len(tune)):
break
draw_a note (tune[note position+i], i)

position is how far ahead
0 = current note, 1 = next_note etc.
def draw_a note(note value, position):
if (len(note value) > 2 and note value[2] == 's'):
sharp = True
note value = note value[0:2]
else:
sharp = False
if (position == 0) :
color = 'green'

200

CHAPTER 8 SOUND

else:
color = 'black'
if note value != ":
if sharp == False:
screen.draw.filled circle((note rect natural[note
value].centerx, 220-(15*position)), 10, color)
else:
screen.draw.filled circle((note rect sharp[note
value].centerx, 220-(15*position)), 10, color)
screen.draw.text("#", center=(note_rect sharp[note_
value].centerx+20, 220-(15xposition)),
fontsize=30, color=(color))
def update(time_interval):
global time since beat, note_position, state
time _since beat += time_ interval
Only update when the time since last beat is reached
if (time_since beat < time crotchet):
return

reset timer
time since beat = 0

if state == 'demo':

note position += 1

if (note_position »>= len(tune)):
note position = -10
state = "menu’

Play current note

if (note_position >= 0 and tune[note_position] != "):
notes tones[tune[note position]].play()

elif state == 'game':
note position += 1

201

CHAPTER 8 SOUND

if (note_position »>= len(tune)):
note position = -10
state = 'gameover'

def draw_piano():
for this note rect in note rect natural.values() :
screen.draw.rect(this note rect, 'black')
for this note rect in note rect sharp.values() :
screen.draw.filled rect(this note rect, 'black")

def on_mouse_down(pos, button):
global state, note position, score
if (button == mouse.LEFT):
if button_demo.collidepoint(pos):
note position = -10
state = "demo"
elif button start.collidepoint(pos):
note_position = -10
state = "game"
else:
First check sharp notes as they overlap the
natural keys
for note key, note rect in note rect sharp.items():
if (note rect.collidepoint(pos)):
note _key sharp = note key[0]+"#"+note

key[1]
if (note_key sharp == tune[note position]):
score += 1
notes tones[note key sharp].play()
return
for note_key, note_rect in note rect natural.

items():

202

CHAPTER 8 SOUND

if (note_rect.collidepoint(pos)):
if (note_key == tune[note position]):

score += 1
notes_tones[note key].play()
return

setup()

I won’t go through this line by line, but I will go through some of the
key parts of how the code works.

Starting from the top, you will see that the screen resolution is set to a
HEIGHT of only 410. This is because of the resolution of the 7-inch screen
after subtracting the top menu bar and window decoration.

The tune is an array which lists the notes that need to be played. In
this case it is for When the Saints Go Marching In. The music originates
from around the late 19th to early 20th century. You could replace that
with a more modern tune, but in that case, you would need to take into
consideration any copyright issues if you then redistributed the game. The
tune needs to be quite simple as only one note can be played at a time, and
it will only play quarter notes (crotchets) and rests. In this case the music
has been simplified and altered slightly. Chords have been replaced with
single notes and the sustain removed on longer notes. The tune should still
be recognizable. The notes are stored in the list as strings which are based on
the note and the octave, where C4 is middle C. If there is a sharp, then that
can be indicated by adding an # between the note and the octave number.

There are several other variables and two Actors which represent the
two buttons which are created as images. The tempo is determined by the
number of beats per minute, which is then converted into the length of
time between each beat, measured in seconds. In the case of 116 beats per
minute, that is the number of quarter notes (crotchets) in a minute. This
works out as 0.51 seconds between each quarter note which is each entry
in the list. The update function is called approximately every 0.016 seconds,

203

CHAPTER 8 SOUND

which should provide a reasonably accurate timing. The note duration is
stored in the variable time note, which is half of the time between notes so
that the notes don’t merge if played quickly.

Another variable is the note_position which is used to indicate the
position of the array where the current note is. The variable starts at -10
because that allows the notes to fall from the top of the screen. Only when
the note_position reaches 0 will that note be played (if playing the demo)
or the player needs to click the note (in the game). After the variables are
the functions followed by a call to setup. This is because the functions
need to be loaded into memory before the setup function tries to use
them. Even though the call to setup is the last line of the file, it is still run
before Pygame Zero runs the update and draw functions.

The setup function creates the rect objects needed to create the
keyboard and pre-loads all the notes of the keyboard. The keys are created
as two separate lists, the accidentals (sharp and flat keys) are the black keys
and the natural keys are white. The accidentals are referred to as sharp
keys in the code as they are created offset from previous natural key, so the
sharp named C3 is C#3.

Each of the notes that will be used is pre-loaded into the dictionary
notes_tones using the code

notes_tones[note ref]=tone.create(note ref, time note)

This prevents delays when the note is placed. Once created, it can be
played by using

notes_tones['C3'].play()

The draw_piano function calls screen.draw.rect for the natural keys
and screen.draw.filled rect for the accidentals.

The on_mouse_down function handles the clicks on the buttons, which
sets the state to demo or game as appropriate. It also detects if any of the keys
on the piano keyboard are pressed, and if so, it starts the note playing. If in
game mode it increases the score if the correct key being pressed.

204

CHAPTER 8 SOUND

The update function checks to see if enough time has expired for the
next note. It uses the argument timer interval which gives the amount
of time that has passed since the update function was last run. It uses this
to track the time since the last note was played. If it has not reached the
time in time_crotchet, then it returns from the function. If the timer has
exceeded that time, then it can update the note_position ifitis in either
the demo or game states.

The draw function displays the buttons, keyboard, and any notes or text
that needs to be displayed. A line is drawn as the target for when the note
should be played. This uses screen.draw.line which uses the start and
end coordinates. It also displays the score during the game and the game
over message when complete.

This is a simple fun game but would need quite a lot more to create a
game that could be used to help teach someone how to play the piano. As
mentioned previously the lack of multi-touch is quite limiting. There are
still things that you could do to improve the game, such as lighting up the
keys when they should be pressed (by using filled_rect with an appropriate
color) and providing a way to change the tempo. It’s also limited in playing
only quarter notes, which could be changed but would involve loading
multiple versions of each note depending upon the duration of the note.

Summary

This chapter has covered a few different ways of making and using sounds
and music in Sonic Pi. This has included using the Raspberry Pi as a
recording device or for converting and editing sounds recorded on another
device. It has also covered creating your own music using Sonic Pi.

It then covered the three different ways of playing sounds through
Pygame Zero. Sound effects played using the sound object, music played
with the music object, and tone using the tone object.

The next chapter is on object-oriented programming, showing an
alternative way to creating software using Python.

205

CHAPTER 9

Object-Oriented
Programming

The programs so far have been primarily using a procedural style

of programming. The procedural coding style is a good way to

learn programming, but there are benefits to using object-oriented
programming, which will be covered next. A useful thing about Python is
that it supports many different coding styles, even allowing multiple styles
in the same code. You have already been using some object-oriented code
when making use of Python modules, including Pygame Zero.

After explaining the main concepts of object-oriented programming,
this chapter will start a new game. This is based on the classic game
“matching pairs’, sometimes called memory game. In this game there
are several cards face down on the table. Each card has a picture with a
matching pair. You need to find the pairs by turning over two cards in each
turn. If you are successful, then you keep those cards and score a point.

What Is Object-Oriented Programming?

Object-oriented programming (OOP) is a different style of programming
which is based around data and operations on that data. You have already
seen this throughout this book when interacting with Pygame Zero. An
Actor is an instance of an object. An Actor can be manipulated by changing

© Stewart Watkiss 2020 207
S. Watkiss, Beginning Game Programming with Pygame Zero,
https://doi.org/10.1007/978-1-4842-5650-3_9

CHAPTER9 OBJECT-ORIENTED PROGRAMMING

its attributes such as pos (which changes its position on the screen) and
can have operations performed on it such as the draw method (which
draws it on the screen).

The four main concepts in object-oriented programming are
encapsulation, data abstraction, polymorphism, and inheritance. These
are known as four pillars of object-oriented programming:

o Encapsulation is about keeping the internal state
private to protect the data. Python doesn't have true
encapsulation which is normally achieved using private
variables and methods. Python does however have a
convention of using __ (double underscore) before the
name to prevent accidental use of a private variable or
method.

o Data abstraction is an extension of encapsulation
which makes it easier to hide the details of internal
operations. This helps create a simple, more stable

interface.

e Polymorphism allows a child to act as though it is
its parent. This is a way to allow better code reuse
through sharing code. It can also provide different
implementations of methods based on the input
parameters.

o Inheritance allows the reuse of parts of code between
similar objects.

This book will concentrate on the specific aspects that object-oriented
programming provides which make it easier to design and program games.
It will show how encapsulation and abstraction can be used to make game
programming simpler and easier to write and understand. It will also
give an example of how inheritance can help reduce the amount of code
that needs to be written by making use of existing code. It will also help

208

CHAPTER9 OBJECT-ORIENTED PROGRAMMING

reduce the number of global variables which make the code difficult to
understand and to debug when things go wrong.

OOP Classes and Objects

Object-oriented programming is based around objects. In the real

world, we think of objects as physical things, such as a laptop, a phone,
or a book. In programming objects can be anything that stores data or
what you interact with. Built-in objects include the screen, an Actor, or a
sound, and you can create your own objects for just about anything. The
object holds the data as internal variables of the object which can be read
and manipulated through the object attributes. Most objects also have
operations (methods) that can be performed on the object.

Creating a Class, Attributes, and Methods

To create objects, there needs to be a blueprint that tells the computer
what to do with the object. The blueprint is known as a class. Each object is
known as an instance of the class. Normally a class is created in a separate
file named the same as the class, ending with .py. The code in Listing 9-1
shows a skeleton class that could be used to represent a ball. The class has
the name Ball which follows a convention of using an initial capital letter
for a class name. If there are multiple words in the class, then the first letter
of any word is also capitalized such as MyClass. The filename is normally
the same as the class name, but all lowercase. In this example the class
name is Ball, so the file is called ball.py. You don’t need to split each class
into a file; you could have them in the existing file or a file with multiple
classes, but it’s usually a good idea to have one file per class.

209

CHAPTER9 OBJECT-ORIENTED PROGRAMMING

Listing 9-1. Example of a OOP class

class Ball():
shape = "sphere"

def _init (self, position, radius, color):
self.position = position
self.radius = radius
self.color = color

def draw(self, screen):
screen.draw.filled circle(self.position, self.radius,
self.color)

The file starts with a class definition to state that this is an
object-oriented class. This is the blueprint for creating Ball objects.

The first variable listed is called shape which has the value “sphere”.
This is a class variable. There is only one instance of the variable which
spans all instances of the class. It is most often used for values that don’t
change, although in the next chapter, you will see an example of a class
variable which is edited by multiple objects.

It is more common to have instance variables, which are unique to
each instance of the class. Instance variables are created within methods
and are prefixed with the self keyword. The instance variables that
are created prefixed with self will be available to all methods defined in
the class. Local variables can also be created without the self keyword,
and they will behave in the same way as local variables in procedural
programming.

In this class there are two methods. A method is essentially the same
as a function except that they perform operations on the object and
have access to the data within the object. They are created using the def
keyword similar to how functions are defined.

210

CHAPTER9 OBJECT-ORIENTED PROGRAMMING

The first method is called __init__. This is known as the constructor
and is called whenever you create an instance of the class. There is a
method called draw, which will draw the ball on the screen. You can see
that both the methods have self as the first argument. The self keyword
is used to represent the instance of the class and is used by methods
to access the data within the instance of the class. You do not provide
anything on the argument when calling the method; instead, self is
passed automatically to the method and is used to access the instance
variables.

The constructor method (__init) is run when an object is first
created. It is often used to set up any variables. In this case it takes three
values for the position, size, and color. The arguments in the method are
always held as local variables so these are copied into self.position,
self.radius, and self.color. These are stored in the object and can
be read and written to by any of the other methods as required. There is
no need to mark these as global; they are automatically available to all
methods through the self keyword.

The next method is draw which draws the ball on the screen as a filled
circle. It can access all the variables that were previously set through
the constructor which are self.position, self.radius, and self.color.
There is one anomaly with this method. Previously when calling
screen.draw operations, it used the built-in screen object. That works
from within the draw function in the top-level function that Pygame Zero
uses, but when using a separate object, the reference to the screen object
needs to be provided as an argument.

Creating an Instance of a Class (Object)

After creating the Class, you can create an instance of the class. This is like
creating a physical object using the Class as its blueprint. This is shown in
Listing 9-2 which creates an executable program balldemo.py.

211

CHAPTER9 OBJECT-ORIENTED PROGRAMMING

Listing 9-2. Creating instances of a class
from ball import Ball

WIDTH = 800
HEIGHT = 600

balll = Ball((400,300),10,"red")

def draw():
balli.draw(screen)

This is a basic program which when run will display the ball in the
center of the screen. The first line imports the class. It reads it from the
file ball.py (in the same directory as the main program file) and from that
imports the class Ball. Once imported, you can use the class.

A new object is created called balll, which is an instance of the class.
To create the instance, it uses the name of the class followed by the
arguments listed in the constructor. This creates the new instance and runs
the __init__ method.

Within the draw function, the draw method is called on the instance
balll which draws the ball. The built-in screen needs to be passed to the
draw method of balll so that it is able to draw to the screen.

This creates one instance of a ball, but you could create a second
instance using

ball2 = Ball((100,100),20,"green")
Then add to the draw method using
ball2.draw(screen)

which draws a large green ball in the top left of the screen.

212

CHAPTER9 OBJECT-ORIENTED PROGRAMMING

Accessing Attributes of an Object

The variables within an object are known as attributes. As you have seen,
the variables in the class definition are prefixed with self which refers to
the instance of the class.

If you are outside of the class, then you can replace self with the
instance name. In the case of the instance balll, you can access its
variable using

balli.color
If you wanted to check the value, then you could use

if balli.color == "red":

Or if you wanted to change the value, then you could use
balli.color = "orange"

This applies to all the variables created in the __init__ method, or any
other methods as long as the variables are prefixed with self.

Terminology

One thing about object-oriented programming is all the new terminology
it uses. Here is a recap of some of the terminology that has been covered to
help make it clearer. Figure 9-1 shows the relationship between the class
and the instances.

213

CHAPTER9 OBJECT-ORIENTED PROGRAMMING
Class

(blueprint)
Ball

4

Objects
Instance Instance
balll ball2
color = red color = green

Figure 9-1. Class to instance relationship

The Class shown at the top of the diagram is a blueprint for creating
the objects. It defines how the class will be created, what attributes they
have, and the operations that can be performed on them. You cannot
normally use the class directly and instead need to create specific objects
known as instances. In this example we created two instances known as
balll and ball2. These were both created from the same blueprint, so will
behave in a similar way, but they have their own set of attributes (stored
as the instance variables). Using this balll color is set to red, whereas ball2
color is set to green.

214

CHAPTER9 OBJECT-ORIENTED PROGRAMMING

Encapsulation and Data Abstraction

As mentioned previously two of the benefits of object-oriented
programming are encapsulation and data abstraction. The benefit of this
to the programmer is that it separates the internal structure of the class
from the code that is making use of that. This can make it easier when
different programmers work on the same project, and it can make it easier
to make changes in the future.

One scenario that this can be useful is when multiple people are
working on the same project. If the programmers agree in advance on
the interface to the class, then they can work independently. This has
implications beyond an individual project; it also helps with creating
libraries of code that can be used by others.

Another scenario is where you want to make changes to the code in the
future. If you wanted to add a new feature or improve existing code, then
it separates that class from others. If you keep the interface the same, you
can change any of the internal code in the ball class to draw the ball in a
completely different way.

Python does not enforce the data abstraction as strictly as some other
programming languages. It is possible to change any of the instance
variables from outside of the class which could result in a loss of the data
abstraction. If you want to make some variables hidden from outside the
class, then you can hide them by prefixing them with __ (two underscore
characters). Even if using this, it is not full data abstraction. Python is
useful for object-oriented programming but relies on the programmers to
create a stable interface and to use good programming best practices.

215

CHAPTER9 OBJECT-ORIENTED PROGRAMMING

Inheritance

Inheritance allows the creation of a child class which inherits some of its
attributes and operations from a parent class. This is a way of avoiding
the duplication of code. This has the advantage of saving typing from the
programmer but more importantly can help reduce the number of bugs.
To demonstrate this, you can imagine a flight game which has an
airplane class to represent the plane. If a game had different kinds of
planes, then they may have different things that those planes may be able
to do. This is illustrated in Figure 9-2 which shows three very different
types of plane: a passenger plane, a cargo plane, and a fighter plane.

Parent Class
Airplane
number_engines
take off()
land()

‘ g ‘ Zarg0 , *
|)

Child Class Child Class Child Class
PassengerPlane CargoPlane FighterPlane
number_passengers cargo_capacity number_missiles
load_passengers() load_cargo() load_missiles()
unload_passengers() unload_cargo() fire_missiles()

Figure 9-2. Inheritance using parent and child classes

216

CHAPTER9 OBJECT-ORIENTED PROGRAMMING

These are all different types of planes so will have some things in
common. Other things may only apply to certain types of plane. All planes
have a number of engines and the ability to take off and land, so those
can all be configured in the Airplane (parent) class. There are some other
attributes and operations that are unique to certain types of balls. For
example, the passenger plane has a number of passengers, but that does
not make sense for a fighter plane. The fighter plane can load and fire
missiles, but neither passenger nor cargo planes would need that ability.

Inheritance works by defining the common attributes and methods in
the parent class and then adding any unique features into the child class.
Code that uses the child class can use the operations that are inherited
from the parent or that are in the child class. The code in Listing 9-3 is a
demonstration of how a child class refers to its parent.

Listing 9-3. Inheritance demonstration showing a child class
from airplane import Airplane
class PassengerPlane(Airplane):

def _init (self):
Airplane. init (self)
self.number passengers = 0

def load passengers (number passengers):
self.number_passengers = number_passengers

def unload passengers ():

self.number passengers = 0

This code inherits from the Airplane class, adding a new attribute called
number passengers and two new methods called 1load passengers and
unload_passengers. An instance of the passenger plane can be created using

planel = PassengerPlane()

217

CHAPTER9 OBJECT-ORIENTED PROGRAMMING

This will then have access to its own methods such as
planel.load passengers(20)
as well as the parent methods such as

planel.take off()

Design for Object-Oriented Programming

When I first started using object-oriented programming, one of the
challenges I found was deciding what objects to define. In the case of
something that represents an object in the real world, it’s obvious. In the
plane example, it's obvious that would be considered an object, but what
about something less tangible? Is the player’s score an object, or is it an
attribute? If it’s an attribute, then what’s the object that the score belongs to?

In some cases, there is no definitive answer to whether something
should be an object or not. It depends upon the type of game, how it
interacts with other objects, and the programmer’s personal preference.
I will show the technique I use which you may find helpful when designing
your own games. It's not mandatory, and with experience, you may not
need to do this, but itis a technique I often use when creating a new
program.

This technique helps show what classes to create and what their
attributes and operations should be. First start by writing down, in one
or two paragraphs, what the game does and how it will work. You should
actually write this down (or type it into a computer) and write in full
sentences rather than bullet points. Don'’t try and do this from memory
as you need to see the words for the next step. Now look through the
description you have written and find all the nouns. Write the nouns
down as possible class names. Next look at all the adjectives, then apply to
those nouns and write them under the associated noun. These will be the
attributes (variables). Then look for the active verbs and how they relate to

218

CHAPTER9 OBJECT-ORIENTED PROGRAMMING

the nouns. List these under their associated noun; these will become the
operations (methods).
Here’s a quick summary:

e Nouns (names) - Classes
e Adjectives (describing words) - Attributes (variables)
e Active verbs (action words) - Operations (methods)

These words then provide suggestions for the classes, attributes, and
operations. Note that these are suggestions only; you should then apply
your own judgment on whether those are all necessary. It may be that
some items are similar to each other or that some of the nouns are not
significant enough to have their own class. It does however give you a
starting point to design your class structure. You can always revisit the
structure as you develop the game.

Matching Pairs Memory Game

Now that you are familiar with some of the aspects of object-oriented
programming, it’s time to put that into practice with another game. This

is a digital version of a traditional card-based memory game. The game

is normally played using picture cards with each card being one of a
matching pair. The cards are placed face down, and players take it in turn
to turn over two cards trying to find the matching pairs. A screenshot of the
game is shown in Figure 9-3.

219

CHAPTER9 OBJECT-ORIENTED PROGRAMMING

L kosmadesome .«

Time remaining: 43 Score: 2

EEEE
o
EEEE

Figure 9-3. Screenshot of matching pairs memory game

In the traditional game, there are normally two or more people taking
itin turns to try to win the most points, but in this version, there will be
just one player who will play against the clock. To create this using object-
oriented programming, I first followed the design methodology explained
earlier. I have written down the following explanation of the game.

This is a memory game. The game starts with a number of cards which
are face down. Each card has a picture on it which matches one other
card. The player turns over two cards and looks to see if they match. If they
do match, then the player’s score is increased. If they don't match, then
the cards are reset and the player has another go. There is a timer which
counts down over time, and if the timer value is zero, then the game ends.
If the player matches all pairs on a level, then the player is awarded bonus
points and the cards are dealt again.

220

CHAPTER9 OBJECT-ORIENTED PROGRAMMING

I have then identified the nouns marked with (), which will become
the classes. Adjectives are marked with []; they will be the attributes. Active
verbs are marked with {}; they will become the operations.

This is a (memory game). The game starts with a number of (cards)
which are [face down]. Each (card) has a [picture] on it which matches
one other card. The (player) {turns over} two cards and looks to see if they
{match}. If they do match, then the player’s (score) is {increased}. If they
don't match, then the cards are {reset} and the player has another go. There
is a (timer) which counts down over time, and if the [timer value] is zero,
then the game ends. If the player matches all pairs on a (level), then the
player is awarded [bonus points] and the cards are (dealt) again.

Remember that these are guidelines rather than fixed rules. You can
use your own discretion when identifying the appropriate words and
phrases, or you can do that at a later stage. This is just a way to make it
easier for the programmer to decide on how to create the different classes.
I have then made them into the following:

Memory Game
Attributes: N/A

Operations: reset; deal

Player
Attributes: score; bonus points

Operations: N/A

Card
Attributes: face down; picture

Operations: matches (another card); reset

221

CHAPTER9 OBJECT-ORIENTED PROGRAMMING

Timer
Attributes: time remaining

Operations: count down; reach zero

Level
Attributes: N/A
Operations: N/A

This should only be considered a starting point. You should now
review and see if there are any you want to change now. You can revisit this
when implementing the code as it may need to change.

There are some things that made sense to change immediately. One thing is
that memory game defines the overall game. We can create this without defining
it as a separate class which will allow it to use the Pygame Zero draw and update
functions; it will also need a variable for tracking the state of the game.

Another that is worth considering is that the bonus points don’t need
to be an attribute but can instead be added to the normal score; it makes
sense for adding bonus points to be an operation instead of an attribute.
Also, the level probably doesn’t need to be a class, but can be incorporated
into the memory game or player classes.

Having worked through that exercise, you should have an idea of what
classes will be needed and some of the attributes and operations. As you
write the code, you may decide that there are other classes, attributes, or
operations needed. You can add any additional attributes or operations as
you create the code.

There are two versions of code in the supplied source code, one is the
initial version and the other is an updated version. To try out the code, you
will need some card pictures. The source code for this book includes some
photographs I took around the Lake District in the United Kingdom. These
are used to create the cards, but you could use your own photos or pictures
to personalize the game.

222

CHAPTER9 OBJECT-ORIENTED PROGRAMMING

Creating the Classes

There is no fixed order that you create the code. I usually start by creating
some of the classes before creating the main program. This means that

I can perform some testing on those classes before writing the main
program. The classes I created are explained here.

Timer Class

The first class is the Timer class. The timer class is used to track how much
time has lapsed so that the game has to be completed within the allotted
time. This is a very simple class but is useful to demonstrate how the class is
created. The code is shown in Listing 9-4 and is saved in a file called timer.py.

Listing 9-4. Timer class

import math
import time

class Timer():

def init (self, start count):
self.start_count = start _count
self.start time = time.time()

start count down, with optional parameter to replace the
start_count value

-1 is used as a "magic number", this method should only
be called with positive number

if it isn't given a number then -1 indicates no new time give

def start count down(self, new_time = -1):

223

CHAPTER9 OBJECT-ORIENTED PROGRAMMING

if (new_time >= 0):
self.start count = new time
self.start time = time.time()

def get time remaining(self):
current_time = self.start count + self.start time -
time.time()
if (current time <= 0):
return 0
return math.ceil(current time)

The file starts by importing the two modules, math and time. As the
name suggests, these provide mathematical and time functions.
The class is defined by the entry

class Timer():

This creates the class definition for a regular class. The class name is
Timer. The constructor is defined as the __init method. Its first argument
is self, which is always included in a class constructor. It then takes one
argument which is the start_count value. This is a countdown timer with
the start_count value as the number of seconds to count down from.

def _init (self, start count):
self.start count = start count
self.start time = time.time()

The constructor also creates a variable self.start time which is
passed the number of seconds since the epoch. On a Linux system, the
epoch is 00:00:00 1970-01-01 UTC (January 1, 1970). The actual time is not
important for this game, but it is used as a reference point to measure the
amount of time which has elapsed.

224

CHAPTER9 OBJECT-ORIENTED PROGRAMMING

The start_count_down method is used to start the timer. It includes
the usual self argument. It then has an argument new_time = -1. By setting
new_time to have a value in the arguments, it makes the argument optional.
If an argument is passed, then that will be placed in the new_time variable;
if there is no argument passed, then the variable will take the value -1.

def start count down(self, new time = -1):

If new_time is changed, then that is placed in the self.new_time
variable. The method then restarts the timer by storing the current time
(in seconds since the epoch) in the self.start_time variable.

The get_time_remaining method returns the number of seconds
remaining before the counter reaches zero, or zero if the countdown time
has already been exceeded. The math.ceil function is used to round the
time up to the nearest whole second. This makes it so that the countdown
always shows a whole number of seconds and only decrements when a full
second has passed.

Card Class

The next class is the card class which displays the card to the player. This
is shown in Listing 9-5 and should be saved as card.py. This class also
demonstrates how inheritance works as it extends the Actor class.

Listing 9-5. Card class with inheritance
from pgzero.actor import Actor

Card is based on an Actor (uses inheritance)
class Card(Actor):

def _init (self, name, back image, card image):
Actor. init (self, back image, (0,0))
self.name = name
self.back image = back_image

225

CHAPTER9 OBJECT-ORIENTED PROGRAMMING

self.card_image = card_image

Status can be 'back' (turned over) 'front' (turned
up) or 'hidden' (already used)

self.status = 'back'

Override Actor.draw
def draw(self):
if (self.status == "hidden'):
return
Actor.draw(self)

def turn over(self):
if (self.status == "back'):
self.status = 'front'
self.image = self.card image
elif (self.status == 'front'):
self.status = 'back’
self.image = self.back_image
Attempt to turn over a hidden card - ignore
else:
return

def hide(self):
self.status = "hidden'

When unhide set it to back image
def unhide (self):
self.status = 'back’
self.image = self.back image

def is _hidden (self):
if self.status == 'hidden':
return True
return False

226

CHAPTER9 OBJECT-ORIENTED PROGRAMMING

Is it turned to face forward
def is faceup (self):
if self.status == 'front':
return True
return False

def reset (self):
self.unhide()

def set position(self, x, y):
self.x = x
self.y =y

def equals (self, othercard):
if self.name == othercard.name:
return True
return False

The first entry on the file is to import the Actor class which is
in pgzero.actor.

from pgzero.actor import Actor

This is something that the Pygame Zero normally loads automatically,
but because this is in a separate class file, it needs to be imported explicitly.
It then defines a new class called Card:

class Card(Actor):

The word “Actor” in brackets indicates that this is to be a child of the
Actor class.

The new class imports the methods from the parent class which can
then be overridden. The __init__method is included which overrides
the constructor method. It includes the reference to self and then three
variables. The name variable is a label used to check for a matching pair;
the other arguments are used to pass the image filenames to the Card class.

227

CHAPTER9 OBJECT-ORIENTED PROGRAMMING

def _init (self, name, back image, card image):
Actor. init (self, back image, (0,0))
self.name = name
self.back_image = back_image
self.card _image = card image
self.status = 'back’

There is a variable called status which will track if the card is face up
(front) or face down (back) or if it is already used (hidden).

You will also see within that block of code that the Actor. init
method is then called. This is the same method as that of an Actor
being created without being part of a child class. In this case the call is
made directly to the parent’s __init method by prefixing it with the
name of the parent class. If thereisno __init method, then the parent’s
__init__ will be called instead.

The next method in the Card class is the draw method, which also
overrides the method from the parent class. This is created so that it
only displays the card if the status is not equal to hidden. If the card is
not hidden, then it makes the call to the parent’s draw method by calling
Actor.draw(self).

There are then some methods that perform operations on the Card
object. These methods don’t exist in the parent class. They are methods
that are specifically for cards and in most cases wouldn’t make sense on
other Actors that aren’t Cards.

The card has two different images. The card starts by showing the
back _image, but it is changed to the card_image when the turn_over
method is called. This is done by changing the self.image property, which
is a feature of the Actor class. Some of the other methods are primarily
getting and setting the values of variables. For example, the hide and
unhide methods are used to change the value of the hidden variable, and
the is_hidden method returns the value of the hidden variable. These
methods are not actually required as it’s possible to change the hidden

228

CHAPTER9 OBJECT-ORIENTED PROGRAMMING

variable directly. There are pros and cons to whether you update and read
the variables directly or using methods. The Python mantra is usually to
take the simpler option of updating the variable directly, whereas for some
other programming languages, it is encouraged to have getter and setter
methods whenever you need to access a variable in an object.

I usually prefer to use methods to access variables. The main
advantage is that it supports the concept of data abstraction. Imagine that
at a future date you decided to add an option to partially hide a card. For
example, you may add a feature that a card can only be turned over if it
hasn’t been turned over in the previous turn; if a card has been used in the
previous turn, then it should be grayed out to show that it cannot be used.
To achieve this, you may change the hidden variable so that instead of
being a Boolean which can only hold two states (True or False), you use a
number to represent the amount of transparency. If you only use methods
to access the values, then you could add this as a new feature without
breaking the way that the library is used. This is particularly useful when
you reuse the same code between different programs.

The equals method compares the name of the current card with the
name of another card. The argument othercard will be passed the object
from which it can check the name of the other card.

GamePlay Class

At this point I decided not to create a separate Players class as it would just
hold a single variable for the score. It is not normally worth creating a class
for just one variable.

Initially I incorporated all the score and state tracking into the main
program file. When I did the program file, it became long and difficult to
understand how it worked. This is known as a bad smell. To avoid this,

I created a new class called the GamePlay class. This is known as refactoring
the code, which is when the code is updated, but not normally adding any

229

CHAPTER9 OBJECT-ORIENTED PROGRAMMING

additional functionality. It's normally a case reorganizing and changing the
code to make it easier to read, or perhaps more efficient.

Note Bad smell is a programming term which indicates a bad code
design. It is not usually a bug, but may slow down development,
make it hard to understand the code, or increase the risk of bugs in
the future.

Another advantage of creating the GamePlay class is that it separates
the user score from the main code and should make it easier to make into a
two-player game at a later stage.

The GamePlay class is shown in Listing 9-6 and is saved as gameplay.py.

Listing 9-6. GamePlay class

State is tracked as a number, but to make the code readable
constants are used

STATE NEW = 0 # Game ready to start, but not running

STATE_PLAYER1_START = 1 # Player 1 to turn over card

STATE_PLAYER1_CARDS 1

STATE_PLAYER1_CARDS 2

STATE_END = 50

2 # Card 1 turned over
30 # Card 2 turned over

Number of seconds to display high score before allowing click
to continue
TIME_DISPLAY SCORE = 3

class GamePlay:

def init (self):
These are what we need to track
self.score = 0
self.state = STATE_NEW

230

CHAPTER9 OBJECT-ORIENTED PROGRAMMING

These are the cards that have been turned up.
self.cards selected = [None, None]

If game has not yet started
def is new game(self):
if self.state == STATE_NEW:
return True
return False

def is game over(self):
if self.state == STATE_END:
return True
return False

def set game over(self):
player gets to see high score
self.state = STATE_END

def is_game running(self):
if (self.state >= STATE_PLAYER1 START and self.state <
STATE_END):
return True
return False

def start game(self):
self.score = 0
self.state = STATE_PLAYER1 START

def set new_game(self):
self.state = STATE_NEW

def is pair turned over(self):
if (self.state == STATE PLAYER1 CARDS 2):
return True
return False

231

CHAPTER9 OBJECT-ORIENTED PROGRAMMING

Return the index position of the specified card
def get card(self, card number):
return self.cards selected[card number]

Point scored, so add score and update state
def score point(self):

self.score += 1

self.state = STATE PLAYER1 START

Not a pair - just update state
def not_pair(self):
self.state = STATE _PLAYER1 START

If a card is clicked then update the state accordingly
def card clicked(self, card index):
if (self.state == STATE PLAYER1 START):
self.cards selected[0] = card index
self.state = STATE_PLAYER1 CARDS 1
elif (self.state == STATE_PLAYER1 CARDS 1):
self.cards selected[1] = card index
self.state = STATE_PLAYER1 CARDS 2

The main things that the GamePlay class provides are tracking the
state of the game and keeping track of the score. The file starts by creating
some constants which are used to denote the different states. These aren’t
necessary, but state == STATE_PLAYER1 START is more readable than
state == 1. The constants are all in capitals to make it clear that they are
constants and shouldn’t be changed, but as far as Python is concerned,
these are just variables. The value of the variables isn’t important as long
as they are always referenced using the constant.

The _init__ method is used to create the score and state variables.
The next variable cards_selected is a list which tracks which of the cards
has been turned face up. It starts with each of the values as None. None is a

232

CHAPTER9 OBJECT-ORIENTED PROGRAMMING

special variable type that indicates that no value has been set. It is needed
so that the two entries exist so that the card number can be stored in them.

The methods included are mainly about providing the status of
the game. For example, the method is_new_game will return a value of
True if the game is about to start; otherwise, it will return False. These
are provided as it makes it easier to understand what the code is doing
compared to checking against the status code.

The one method that is a little more complex is the card_clicked
method. This method looks at the current state to determine whether the
card that has been clicked is the first or the second card and updates the
appropriate entry in cards_selected.

Program File

Having created the class files, the program file is much simpler. It’s still
quite long, but shorter than if all the code was in a single file. The code is
shown in Listing 9-7.

Listing 9-7. Memory game main program file

Memory Card Game - PyGame Zero
import random

from card import Card
from timer import Timer
from gameplay import GamePlay

These constants are used to simplify the game

For more flexibility these could be replaced with
configurable variables

(eg. different number of cards for different difficulty levels)

NUM_CARDS_PER ROW = 4

X _DISTANCE BETWEEN CARDS = 120

233

CHAPTER9 OBJECT-ORIENTED PROGRAMMING

Y _DISTANCE_BETWEEN CARDS = 120
CARD_START X = 220
CARD_START_Y = 130

TIME_LIMIT = 60

TITLE = "Lake District Memory Game"
WIDTH = 800
HEIGHT = 600

cards_available = {

'airafalls’ memorycard airafalls’,

'ambleside’ : 'memorycard ambleside’,

'bridgehouse’ : 'memorycard bridgehouse',
'derwentwater' : 'memorycard derwentwater',
'ravenglassrailway' : 'memorycard ravenglassrailway',
'ullswater' : 'memorycard ullswater’,

'weatherstone' : 'memorycard weatherstone',
'windermere’ : 'memorycard windermere’

}

card back = "memorycard back"

Setup instance variables
count_down = Timer(TIME_LIMIT)
game_state = GamePlay()
all cards = []
Create individual card objects, two per image
for key in cards available.keys():
Add to list of cards
all cards.append(Card(key, card back, cards available[key]))
Add again (to have 2 cards for each img)
all cards.append(Card(key, card back, cards available[key]))

234

CHAPTER9 OBJECT-ORIENTED PROGRAMMING

Functions are defined here - the rest of the initialization
is at the bottom of the file

Shuffle the cards and update their positions
Do not draw as this is called before the screen is properly setup
def deal cards():

Create a temporary list of card indexes that is then shuffled

keys = []

for i in range (len(all cards)):

keys.append(i)
random. shuffle(keys)

Setup card positions
Xxpos = CARD_START X
ypos = CARD START_ Y
cards on_row = 0
for key in keys:
Reset (ie. unhide if hidden and display back)
all cards[key].reset()
all cards[key].set position(xpos,ypos)
xpos += X_DISTANCE BETWEEN CARDS

cards_on_row += 1
If reached end of row - move to next
if (cards_on_row >= NUM_CARDS_PER_ROW):
cards on_row = 0
xpos = CARD_START X
ypos += Y_DISTANCE BETWEEN CARDS

def update():
if (game_state.is new game()):
pass
elif (game state.is game over()):
pass

235

CHAPTER9 OBJECT-ORIENTED PROGRAMMING

else:
if (count_down.get time remaining()<=0):
game_state.set game over()

Mouse clicked
def on_mouse_down(pos, button):
Only interested in the left button
if (not button == mouse.LEFT):
return
If new game then this click is to start the game
if (game_state.is new game()):
game_state.start game()
start the timer
count_down.start count down(TIME_ LIMIT)
deal cards()
return
If game over then this click is to get to new game screen
if (game_state.is game over()):
Make sure the timer has reached zero (short delay to
see state)
if (count_down.get time remaining()<=0):
game_state.set new_game()
return

Reach here then we are in game play
First check for both already clicked and this is a click
to test
if (game_state.is pair turned over()):
if (all cards[game state.get card(0)].equals(all_
cards[game_state.get card(1)])):
Add points and hide the cards
game_state.score point()

236

CHAPTER9 OBJECT-ORIENTED PROGRAMMING

all cards[game state.get card(0)].hide()
all cards[game_state.get card(1)].hide()
Check if we are at the end of this level (all
cards done)
if (end level reached()):
deal cards()
If not match then turn both around
else:
all cards[game state.get card(0)].turn over()
all cards[game state.get card(1)].turn over()
game_state.not pair()
return

Otherwise we just turn over the next card if clicked
for i in range (len(all cards)):
if (all cards[i].collidepoint(pos)):
Ignore if card hidden, or has already been turned up
if (all cards[i].is hidden() or all cards[i].is
faceup()):
return
all cards[i].turn over()
Update state
game_state.card clicked(i)

If reach end of level ?
def end level reached():
for card in all cards:
if (not card.is_hidden()):
return False
return True

237

CHAPTER9 OBJECT-ORIENTED PROGRAMMING

def draw():

screen.fill((220, 220, 220))

if (game_state.is new game()):
screen.draw.text("Click mouse to start", fontsize=60,
center=(WIDTH/2,HEIGHT/2), shadow=(1,1),
color=(255,255,255), scolor="#202020")

if (game state.is game over()):
screen.draw.text("Game Over\nScore: "+str(game state.
score), fontsize=60, center=(WIDTH/2,HEIGHT/2),
shadow=(1,1), color=(255,255,255), scolor="#202020")

if (game_state.is game running()):
for card in all cards:

card.draw()

screen.draw.text("Time remaining: "+str(count down.
get time remaining()), fontsize=40, bottomleft=(50,50),
color=(0,0,0))
screen.draw.text("Score: "+str(game_state.score),
fontsize=40, bottomleft=(600,50), color=(0,0,0))

End of functions - start of initialization code
deal cards()

Unlike the other files, the main program file is not created as a separate
class. This is different to some other programming languages which would
require everything to be object-oriented. In the case of Python, that’s
optional, and in the case of Pygame Zero, it’s easier to not use a separate
class in the main part of the program. Instead the program makes use of
the Pygame Zero hooks such as the draw and update functions.

To understand the program, it’s useful to take a look at the overall file.
The imports and variables are defined at the top of the file, along with the
initialization of the class instances. The functions are in the middle, and

238

CHAPTER9 OBJECT-ORIENTED PROGRAMMING

then additional code that runs during the initialization of the program is at
the bottom after the line

End of functions - start of initialization code

The program first imports the random module and then the three
classes created previously: Card, Timer, and GamePlay. There are several
constants defined which are used for the spacing of the cards and game
settings such as the duration of the timer. There is also a variable for the
filename of the image for the back of the cards as well as a dictionary with
the filenames for the different card images. These settings would typically
be stored in a separate configuration file, but to keep it simple, they have
been included in the memory.py file. There is then an empty list created
called all cards which will hold the instances of the Card class.

The creation of the instances for the classes is handled next. The Timer
and GamePlay classes only need a single instance created by a normal

assignment.
count_down = Timer(TIME_ LIMIT)
game_state = GamePlay()

For the Cards class, there needs to be an instance for each of the
cards that will be displayed. A for loop is used to create these and append
them to the all cards list. This is a list of Card objects. Two instances are
created for each card to have the matching pairs in the list.

all cards = []

Create individual card objects, two per image

for key in cards available.keys():
Add to list of cards
all cards.append(Card(key, card back, cards available[key]))
Add again (to have 2 cards for each img)
all cards.append(Card(key, card back, cards
available[key]))

239

CHAPTER9 OBJECT-ORIENTED PROGRAMMING

The functions are listed after this, followed by the call to deal cards
at the bottom of the file. This needs to be placed after the deal cards
function is defined; otherwise, it will cause an error. Placing it at the end
makes the code easier to follow.

The deal cards function works by creating a list of all keys from the
cards. It then calls the random. shuffle function which mixes the cards up
into a random order. It then updates each of the cards with their coordinates
based on the spacing between the cards. The cards can be accessed by using
their index in the list as shown in the following example entry:

all cards[key].set position(xpos,ypos)

Next is the update function. It first checks to see if the game is either
new or finished. If that is the case, it does nothing which is indicated
by the pass keyword. Using pass does nothing, but it can be useful as a
placeholder if you plan to add additional code in the future. If the game is
in progress, then it calls the get_time remaining method on the timer and
changes the game state if the end of the game is reached.

if (count down.get time remaining()<=0):
game_state.set game over()

Most of the code to update the game is driven by the mouse action
and so isin on_mouse_down rather than the update function.
The on_mouse_down function is handled differently on whether the user
is playing the game. If the game is not in progress, then the click changes
the state of the game, such as to start the game. If the game is in progress,
then it will first test for both cards already being turned over. If it is, then
it tests to see if the two cards match and either hides the cards (if they do)
or resets the cards back to face down. If both cards are not yet turned over,
then it checks to see if a card has been clicked using the collidepoint
method and if so turns the card over and updates the game state. There is
also a check against the end_level reached function which checks to see

240

CHAPTER9 OBJECT-ORIENTED PROGRAMMING

if all cards have been turned over and if so shuffles the cards ready for the
player to start again.

The draw function puts some messages on the screen and if
appropriate calls the draw method for each of the cards to display them on
the screen.

You may have noticed that there are no global variables that are
updated in any of the functions. The class instances do act like global
variables, but because they are updated using the methods for the classes
means it is less likely to create obscure bugs compared to updating global
variables directly.

This completes the game. There is plenty of scope for improving the
game. You could improve the look of the game by having different card
patterns available or change the difficulty by changing the number of
cards or the length of time to play the game. You could also look changing
the game into a two-player game, or instead of playing against the clock,
have the player compete against the computer. Using the object-oriented
techniques is likely easier than if it was done using procedural coding style.

Summary

Object-oriented programming is an alternative to procedural
programming closely associating the data with the methods to work on
them. This is particularly useful for code reuse and to help organize the
structure of the program as the amount of code increases. This chapter
has explained some of the key concepts of object-oriented programming
and how they can be implemented in Python. It includes a game which
demonstrates how to implement many of those concepts.

The next chapter will look at adding artificial intelligence to games to
create a computer-based competitor.

241

CHAPTER 10

Artificial Intelligence

Artificial intelligence (AI) in computer games is programming to make
the computer behave as though it is intelligent. Typically, this may be
showing intelligence behind a character or object that is controlled by the
computer.

This is not normally the same as machine learning which is what
people often associated with artificial intelligence. Machine learning is a
type of artificial associated with other systems such as speech recognition
or pattern recognition.

In a computer game, artificial intelligence could be as simple as a
pre-determined route that the enemy takes, or it could include some
complicated algorithm that tracks the players’ movement and responds
in a lifelike way. To work well, it needs to be set at an appropriate level
of difficulty for the player. The problem with machine learning is that if
you use it to create an opponent, then it may become unbeatable rather
than just challenging. Machine learning may be more suitable for creating
realistic backgrounds or special effects.

When I refer to artificial intelligence, I'm really looking at algorithms
that can be used to create a computer player at the appropriate level. This
chapter will look at some examples of simple artificial intelligence that can
be applied to games, with some theory around how to make a computer
player as well as some code examples.

© Stewart Watkiss 2020 243
S. Watkiss, Beginning Game Programming with Pygame Zero,
https://doi.org/10.1007/978-1-4842-5650-3_10

CHAPTER 10 ARTIFICIAL INTELLIGENCE

Memory Game with Al

The memory game from Chapter 9 is currently a case of trying to beat the
clock. This gives a little challenge but is not the same as playing against an
opponent. Instead it is possible to create an artificial intelligence player

to play against. To design the Al player, think about how people normally
play the game, what the challenges are, and what strategies they use to
win. As its name suggests, the challenge in the game is memory. If you can
memorize all the cards as they are turned over, then the chance of winning
the game is greatly increased. There is also an element of luck which we
can be factored into the Al I'will also show the Al can be adjusted to create
different difficulties.

In my first attempt at rewriting the code, I added and changed code in
the existing files. As this developed, the code became long and confusing,
a classic case of a bad smell. To fix this, I refactored the code, adding
new classes to simplify the program. As the code increases, then there
are multiple different classes, and it becomes harder to keep track of the
files. One way to make this easier to understand is to create a diagram
that shows the relationship between the classes. To do this, I created a
UML class diagram which is shown in Figure 10-1. The diagram is only an
approximation as it would be overcrowded to include all the attributes and
methods. It also shows the top-level memory.py file as a class, which isn’t
correct. Despite not being a “pure” UML file, it is useful for showing how
the program works.

244

CHAPTER 10 ARTIFICIAL INTELLIGENCE

memory
+ game_state : GamePlay
Actor + player : Player
+ image : string +ai. PlayerAi
+ draw() + all_cards : CardTable
+allcards | timer : Timer
CardTable ot dawl - Player
+ cards : Card + update() tplayerl 3 guess : Card
+ deal_cards() + on_mouse_down() + score : int
+ draw_cards() {] + new_game()
+ end_level_reached() + resel_cards()
[B + select_card()
1game_slate e
,ﬁ(+ai
+limer
+ name : slring
+ back_image : string GamePlay PlayerAi
+ card_image : string + state ;. inl
+ status : string + start_new_game() + make_guess()
+ number : int + continue_player() + guess_random()
+draw() + next_player() + get_card()
+ turn_over()
+ equals() -
Timer

+ start_count . int

+ start_down :int

+ starl_count_down()
+ get_time_remaining()

Figure 10-1. UML class diagram for the memory game

The lines and arrows on the diagram show the relationships between
the classes. The triangular arrowheads represent inheritance where a child
inherits attributes and methods from a parent. The filled diamonds show a
composition relationship, also known as a “has a” relationship as the class
has one or more instances of the class. Most of the compositions are 1 to 1
(the numbers have been left off for simplicity), but the CardTable contains
multiple instances of the cards in a 1 to many relationship (1:x).

The code files are included in the source code in a directory called
memorygame2. The first class is the Card class. This class has only had a
few changes from the previous version. The code is shown in Listing 10-1.

245

CHAPTER 10 ARTIFICIAL INTELLIGENCE

Listing 10-1. Card class for Al memory game
from pgzero.actor import Actor

Card is based on an Actor (uses inheritance)
class Card(Actor):

def _init (self, name, back image, card image):
Actor. init (self, back image, (0,0))
self.name = name
self.back_image = back_image
self.card_image = card image
Status can be 'back' (turned over) 'front' (turned
up) or ‘hidden' (already used)
self.status = "back'
Number is unique number based on position
count left to right, top to bottom
updated after dealt
self.number = None

Override Actor.draw
def draw(self):
if (self.status == "hidden'):
return
Actor.draw(self)

def turn over(self):

if (self.status == 'back'):
self.status = 'front'
self.image = self.card image

elif (self.status == 'front'):
self.status = "back'
self.image = self.back image

Attempt to turn over a hidden card - ignore

246

CHAPTER 10

else:
return

def hide(self):
self.status = 'hidden'

When unhide set it to back image
def unhide (self):
self.status = "back'
self.image = self.back image

def is _hidden (self):
if self.status == 'hidden':
return True
return False

Is it turned to face forward
def is faceup (self):
if self.status == 'front':
return True
return False

Is it turned to face down
def is facedown (self):
if self.status == 'back':
return True
return False

def reset (self):
self.unhide()

def set position(self, x, y):
self.x = x
self.y =y

ARTIFICIAL INTELLIGENCE

247

CHAPTER 10 ARTIFICIAL INTELLIGENCE

def equals (self, othercard):
if self.name == othercard.name:
return True
return False

A new class is the CardTable class which has been created to simplify
some of the code from the memory.py file. It contains the list of all the
cards. It also includes methods to set up the table, deal the cards, and then
draw them all on the screen. There is a method that returns all the cards
which are face down, which is needed for the Al to know which cards it
can pick from. There is also a method to test to see if the end of the level is
reached (all cards are successfully paired).

The code for the CardTable class is shown in Listing 10-2.

Listing 10-2. CardTable class file

import random
from card import Card

class CardTable:

def _init (self, card back, cards available):

self.cards = []

Create individual card objects, two per image

for key in cards available.keys():
Add to list of cards
self.cards.append(Card(key, card back, cards
available[key]))
Add again (to have 2 cards for each img)
self.cards.append(Card(key, card back, cards
available[key]))

def draw_cards(self):
for this_card in self.cards:

248

CHAPTER 10 ARTIFICIAL INTELLIGENCE
this card.draw()

Set the table settings
def setup table(self, card start x, card start y, num_
cards_per row, x_distance between cards, y distance_
between_cards):
self.card start x = card start x
self.card start y = card start y
self.num_cards_per row = num_cards_per_row

self.x distance between cards = x _distance between cards
self.y distance between cards = y distance between cards

Returns all cards that are face down as Card objects
def cards face down(self):
selected cards = []
for this card in self.cards:
if (this_card.is facedown()):
selected cards.append(this_card)
return selected cards

Shuffle the cards and update their positions
def deal cards(self):
Create a temporary list of card indexes that is then
shuffled
keys = []
for i in range (len(self.cards)):
keys.append(i)
random. shuffle(keys)

Setup card positions
xpos = self.card start x
ypos = self.card start y
cards on_row = 0

249

CHAPTER 10 ARTIFICIAL INTELLIGENCE

Give each card number based on position

count left to right, top to bottom

card number = 0

for key in keys:
Reset (ie. unhide if hidden and display back)
self.cards[key].reset()
self.cards[key].number = card number
self.cards[key].set position(xpos,ypos)
xpos += self.x distance between cards

cards on_row += 1
If reached end of row - move to next
if (cards _on row >= self.num cards per row):
cards on_row = 0
xpos = self.card start x
ypos += self.y distance between cards
card number += 1

If reach end of level
def end level reached(self):
for card in self.cards:
if (not card.is hidden()):
return False
return True

def check card clicked (self, pos):
for this card in self.cards:
If not facedown then skip
if (not this card.is facedown()):
continue
if (this_card.collidepoint(pos)):
return this_card
return None

250

CHAPTER 10 ARTIFICIAL INTELLIGENCE

The GamePlay class is a simplified version of the previous GamePlay
class. The score attribute has been removed as that is now handled by
the Player classes to provide a score for each of the players. There are
additional state attributes and methods to handle the second player. The
code for GamePlay class is included in Listing 10-3.

Listing 10-3. GamePlay class file

State is tracked as a number, but to make the code readable
constants are used

STATE_NEW = 0 # Game ready to start, but not running

STATE _PLAYER1 START = 10 # Player 1 to turn over card

STATE_PLAYER1 CARDS 1 = 11 # Card 1 turned over

STATE_PLAYER1_CARDS_2 = 12 # Card 2 turned over

STATE_PLAYER2_START = 20 # Player 2 starts go

STATE_PLAYER2 WAIT = 21 # Delay before Card 1 turned over

STATE_PLAYER2_CARDS 1 = 22 # Card 1 turned over

STATE _PLAYER2 CARDS 2 = 23 # Card 2 turned over

STATE_END = 50

Number of seconds to display high score before allowing click
to continue
TIME DISPLAY SCORE = 3

class GamePlay:

def _init (self):
self.state = STATE_NEW

If game has not yet started
def is new game(self):
if self.state == STATE_NEW:
return True
return False

251

CHAPTER 10 ARTIFICIAL INTELLIGENCE

def is_game over(self):
if self.state == STATE_END:
return True
return False

def is player 1(self):
if (self.state >= STATE_PLAYER1 START and self.state <=
STATE_PLAYER1 CARDS 2):
return True
return False

def is player 2(self):
if (self.state >= STATE_PLAYER2_START and self.state <=
STATE_PLAYER2 CARDS 2):
return True
return False

def is player 2 start(self):
if (self.state == STATE PLAYER2 START):
return True
return False

def is player 2 wait(self):
if (self.state == STATE PLAYER2 WAIT):
return True
return False

def is player 2 cardi(self):
if (self.state == STATE _PLAYER2 CARDS 1):
return True
return False

252

CHAPTER 10 ARTIFICIAL INTELLIGENCE

def is player 2 card2(self):
if (self.state == STATE_PLAYER2 CARDS 2):
return True
return False

def set player 2 wait(self):
self.state = STATE _PLAYER2 WAIT

def set player 2 cardi(self):
self.state = STATE PLAYER2 CARDS 1

def set player 2 card2(self):
self.state = STATE_PLAYER2 CARDS 2

def start game(self):
self.state = STATE _PLAYER1 START

def set game over(self):
player gets to see high score
self.state = STATE_END

def is _game running(self):
if (self.state >= STATE_PLAYER1 START and self.state <
STATE_END):
return True
return False

Continue with current player (matched correctly)
def continue player (self):
if self.state <= STATE_PLAYER1_CARDS_2:
self.state = STATE_PLAYER1 START
else:
self.state

STATE_PLAYER2_START

253

CHAPTER 10 ARTIFICIAL INTELLIGENCE

Switch to next player (not matched)
def next player (self):
if self.state <= STATE_PLAYER1 CARDS 2:
self.state = STATE_PLAYER2_ START
else:
self.state

STATE_PLAVER1_START

def set new game(self):
self.state = STATE_NEW

def is _pair turned over(self):
if (self.state == STATE PLAYER1 CARDS 2):
return True
return False

If a card is clicked then update the state accordingly
def card clicked(self):
if (self.state == STATE _PLAYER1 START):
self.state = STATE_PLAYER1 CARDS 1
elif (self.state == STATE PLAYER1 CARDS 1):
self.state = STATE PLAYER1 CARDS 2

The Timer class is the same as previously, but it is used in a different
way. Instead of being used as a timer for the player to play against, it’s used
to add a delay for the Al player so that the human player can see the cards
that the computer was turning over. The Timer class is shown in Listing 10-4.

Listing 10-4. Timer class file

import math
import time

class Timer():

def init (self, start count):

254

CHAPTER 10 ARTIFICIAL INTELLIGENCE

self.start_count = start _count
self.start time = time.time()

start count down, with optional parameter to replace the
start_count value
-1 is used as a "magic number", this method should only
be called with positive number
if it isn't given a number then -1 indicates no new time give
def start count down(self, new_time = -1):
if (new_time >= 0):
self.start count = new_time
self.start time = time.time()

def get time remaining(self):
current time = self.start count + self.start time -
time.time()
if (current time <= 0):
return 0
return math.ceil(current time)

The Player class was considered in the earlier version but was not
necessary at the time. With the addition of the Al, it was more useful to
have a separate class for the player. This is a simple class which holds the
score for the player and the card selection. It uses the card class having
an instance of the card passed during the select card method and
then returning it using the get_card method. This is the reason for the
composition between the Player and the Card class shown in Figure 10-1.
The code for the Player class is shown in Listing 10-5.

255

CHAPTER 10 ARTIFICIAL INTELLIGENCE

Listing 10-5. Player class file
from card import Card
class Player():

def init (self):
Track which cards are turned over
self.guess = [None, None]
self.score = 0

def score point (self):
self.score += 1

Returns a single card object - either 0 or 1
def get card (self, card number):
return self.guess[card number]

Reset cards held in hand, but does not hide / turn_over card
def reset cards(self):

self.guess[0] = None

self.guess[1] = None

def select card(self, card):
if (self.guess[0] == None):
self.guess[0] = card
else:
self.guess[1] = card

Returns the number of cards that are selected
def num cards selected(self):
if (self.guess[0] == None):
return 0

256

CHAPTER 10 ARTIFICIAL INTELLIGENCE

elif (self.guess[1] == None):
return 1

else:
return 2

The last of the class files contains the PlayerAi class which inherits
from the Player class adding the ability for the Al player to make a random
guess. This is a very basic form of Al which will be expanded on later. The
code is included in Listing 10-6.

Listing 10-6. Player class file

import random
from player import Player

class PlayerAi (Player):

def init (self):
Player. init (self)

def make guess(self, available cards):
self.guess random(available cards)

def guess _random (self, available cards):
this guess = random.choice(available cards)
this guess.turn over()
self.select card(this guess)

def get card (self, card number):
return self.guess[card number]

Finally, the memory.py file has been updated. The user interaction is still
handled within the on_mouse_down function, but it now includes the Al player
in the update function. Each time that the Al player performs an operation,
there is a delay triggered by timer.start count_down, which effectively

257

CHAPTER 10 ARTIFICIAL INTELLIGENCE

pauses the Al from any operations until timer.get time_remaining shows
that the time has been exceeded. This is shown in Listing 10-7.

Listing 10-7. The main memory.py file with basic Al

Memory Card Game - PyGame Zero
import random

from card import Card

from gameplay import GamePlay
from player import Player

from playerai import PlayerAi
from timer import Timer

from cardtable import CardTable

These constants are used to simplify the game

For more flexibility these could be replaced with
configurable variables

(eg. different number of cards for different difficulty
levels)

NUM_CARDS PER ROW = 4

X_DISTANCE BETWEEN_CARDS

Y_DISTANCE_BETWEEN_CARDS

CARD_START X = 220

CARD_START Y = 130

120
120

TITLE = "Lake District Memory Game"
WIDTH = 800
HEIGHT = 600

cards_available = {

'airafalls’ memorycard airafalls',
'ambleside’ : 'memorycard ambleside’,
'bridgehouse’ : 'memorycard bridgehouse',

258

CHAPTER 10 ARTIFICIAL INTELLIGENCE

'derwentwater' : 'memorycard derwentwater',
'ravenglassrailway' : 'memorycard ravenglassrailway',
'ullswater’ : 'memorycard ullswater’,

'weatherstone' : 'memorycard weatherstone',
'windermere' : 'memorycard windermere'

}

card back = "memorycard back"

Setup instance variables

game_state = GamePlay()

playerl = Player()

ai = PlayerAi()

Timer is used for AI thinking time

timer = Timer(2)

all cards = CardTable(card back, cards available)

all cards.setup_table(CARD_START X, CARD START_Y, NUM_CARDS_
PER_ROW, X DISTANCE BETWEEN CARDS, Y DISTANCE BETWEEN CARDS)
all cards.deal cards()

def update():
if (game state.is player 2 start()):
timer.start count _down()
game_state.set player 2 wait()
if (game_state.is player 2 wait()):
if (timer.get time_remaining() <= 0):
ai.make guess(all cards.cards_face down())
timer.start count down()
game_state.set player 2 cardi()
card 1 turned
elif (game state.is player 2 cardi()):
if (timer.get time_remaining() <= 0):
ai.make guess(all cards.cards_face down())

259

CHAPTER 10 ARTIFICIAL INTELLIGENCE

timer.start count_down()
game_state.set player 2 card2()
Card 2 selected - wait then check if matches
elif (game state.is player 2 card2()):
if (timer.get_time_remaining() <= 0):
if ai.get card(0).equals(ai.get card(1)):
If match add points and hide the cards
ai.score point()
ai.get card(0).hide()
ai.get card(1).hide()
ai.reset cards()
Game Over
if (all cards.end level reached()):
game_state.set game over()
If user guess correct then they get
another attempt
else:
game_state.continue player()
If not match then turn both around
else:
ai.get card(0).turn_over()
ai.get card(1).turn over()
ai.reset cards()
game_state.next_player()

Mouse clicked
def on_mouse_down(pos, button):
Only interested in the left button
if (not button == mouse.LEFT):
return
If new game then this click is to start the game
if (game_state.is new game() or game state.is game over()):

260

CHAPTER 10 ARTIFICIAL INTELLIGENCE

game_state.start_game()
all cards.deal cards()
playeri.score = 0
ai.score = 0

return

Reach here then we are in game play
Is it playeri's turn
if (game_state.is player 1()):
Check for both already clicked and this is a click to
test
if (game state.is pair turned over()):
if (playeri.get card(0).equals(playeri.get card(1))):
If match add points and hide the cards
playeri.score point()
playeri.get card(0).hide()
playeri.get card(1).hide()
playeri.reset cards()
End of game
if (all cards.end level reached()):
game_state.set game over()
If user guess correct then they get another
attempt
else:
game_state.continue_player()
If not match then turn both around
else:
playeri.get card(0).turn over()
playeri.get card(1).turn over()
playeri.reset cards()
game_state.next player()
return

261

CHAPTER 10 ARTIFICIAL INTELLIGENCE

Check if clicked on a card
card clicked = all cards.check card clicked(pos)
if (card clicked != None):

card clicked.turn over()

playeri.select card(card clicked)

Update state

game_state.card clicked()

def draw():
screen.fill((220, 220, 220))
if (game_state.is new game()):
screen.draw.text("Click mouse to start", fontsize=60,
center=(WIDTH/2,HEIGHT/2), shadow=(1,1),
color=(255,255,255), scolor="#202020")
if (game state.is game over()):
screen.draw.text("Game Over\nPlayer 1 score:
"+str(playeri.score)+"\nPlayer 2 (AI) score: "+str(ai.
score), fontsize=60, center=(WIDTH/2,HEIGHT/2),
shadow=(1,1), color=(255,255,255), scolor="#202020")
if (game_state.is _game running()):
Set colors based on which player is selected
if (game_state.is player 1()):
playeri color = (0,0,0)
player2 color = (128,128,128)
else:

playerl color = (128,128,128)

player2 color = (0,0,0)
all cards.draw_cards()
screen.draw.text("Player 1: "+str(playeri.score),
fontsize=40, bottomleft=(50,50), color=playerl color)
screen.draw.text("Player 2 (AI): "+str(ai.score),
fontsize=40, bottomleft=(550,50), color=player2 color)

262

CHAPTER 10 ARTIFICIAL INTELLIGENCE

Display computer status during ai turns
if (game_state.is player 2 wait() or game state.is_
player 2 cardi()):
screen.draw.text("Thinking which card to
pick", fontsize=40, center=(WIDTH/2,HEIGHT/2),
shadow=(1,1), color=(255,255,255),
scolor="#202020")

This can be run and played but is extremely easy to beat. The game just
chooses arandom card each time, so until there are only a few cards left,
the probability of them getting a match is very small.

A Good Memory

To make the game more challenging, we can have the computer remember
the guesses that are made. As the player code is separated from the rest of
the code, there are only two files that need to be updated. These are the
files containing the Player class and the PlayerAi class. The two modified
files will be listed here, but the complete source code is included in the
memory3 directory.

First there needs to be somewhere to store the cards that have been
seen. If the cards seen are stored in the PlayerAi class, then it will only see
the cards that the Al player turns over. If the cards are instead stored in the
Player class, then it’s possible to store all the cards that are turned over by
the human player as well as the Al player.

Saving the list as a class variable instead of an instance variable will
make it visible to all instances, including all instances of child classes. This
is done by placing the variables at the top of the class as shown here:

class Player():

{}
[]

card _memory
click_order

263

CHAPTER 10 ARTIFICIAL INTELLIGENCE

There are two variables created here: card_memory is a dictionary to
hold the card with an index of the card’s name and click order is a list that
remembers the order that the cards are clicked. The second is not actually
required at the moment, but adding it now will simplify the next stage.

To update the class variables whenever a card is revealed needs the
following to be added to the select_card method:

Player.card memory[card.number] = card

As this method is inherited by PlayerAi, then it will be called each time
the human player or the computer player turns a card over. The variables also
need to be reset at the start of a new game which is implemented in a static
method reset_cards. The updated player.py file is shown in Listing 10-8.

Listing 10-8. Updated Player class to add improved Al
from card import Card
class Player():

Index of cards that ai remembers

Stored as dictionary as cards will be missing or be forgotten
card memory = {}

click order = []

def init (self):
Track which cards are turned over
self.guess = [None, None]
self.score = 0

@staticmethod
def new_game():

{}
[]

Player.card memory
Player.click order

264

CHAPTER 10 ARTIFICIAL INTELLIGENCE

def score point (self):
self.score += 1

Returns a single card object - either 0 or 1
def get card (self, card number):
return self.guess[card_number]

Reset cards held in hand, but does not hide / turn_over card
def reset cards(self):

self.guess[0] = None

self.guess[1] = None

def select card(self, card):
if (self.guess[0] == None):
self.guess[0] = card
else:

card

self.guess[1]
Player.card memory[card.number] = card

Returns the number of cards that are selected
def num_cards selected(self):
if (self.guess[0] == None):
return O
elif (self.guess[1] == None):
return 1
else:
return 2

There are three different methods added to the PlayerAi class
showing different ways that improved memory can be implemented. The
updated source code is shown in Listing 10-9. Each of the new methods is
explained later.

265

CHAPTER 10 ARTIFICIAL INTELLIGENCE
Listing 10-9. Updated PlayerAi class to add improved Al

import random
from player import Player

class PlayerAi (Player):

def _init (self):
Player. init (self)

def make guess(self, available cards):
#self.guess random(available cards)
#self.guess_remember all(available cards)
#self.guess_remember sometimes(available cards)
self.guess remember recent(available cards)

def guess random (self, available cards):
this_guess = random.choice(available_cards)
this guess.turn over()
self.select card(this guess)

def guess remember all (self, available cards):
If first guess then use random
if (self.guess[0] == None):
self.guess random(available cards)
return
Search to see if we have seen a matching card
for search card in Player.card memory.values():
ignore if current card - or card has been hidden
since
if (search card == self.guess[0] or search card.
is_hidden()):
continue
Check to see if the card matches

266

CHAPTER 10 ARTIFICIAL INTELLIGENCE

if (search card.equals(self.guess[0])):
search_card.turn over()
self.select card(search card)
return
If not found the matching card then use random
self.guess random(available cards)

def guess remember sometimes (self, available cards):
If first guess then use random
if (self.guess[0] == None):
self.guess random(available cards)
return
Random whether make a proper guess or random guess
if (random.randint(1,10) < 5):
self.guess_random(available cards)
return
Search to see if we have seen a matching card
for search_card in Player.card memory.values():
ignore if current card - or card has been hidden
since
if (search card == self.guess[0] or search card.
is_hidden()):
continue
Check to see if the card matches
if (search card.equals(self.guess[0])):
search_card.turn over()
self.select card(search card)
return
If not found the matching card then use random
self.guess random(available cards)

def guess remember recent (self, available cards):

267

CHAPTER 10 ARTIFICIAL INTELLIGENCE

If first guess then use random
if (self.guess[0] == None):
self.guess random(available cards)
return
Get last 4 cards that were clicked
These are just card numbers
recent _cards = Player.click order[:-4]
Search to see if one of those is a matching card
for search card in Player.card memory.values():
ignore if current card - or card has been hidden
since
if (search card == self.guess[0] or search card.
is_hidden()):
continue
ignore if not a recent card
if (search card.number not in recent cards):
continue
Check to see if the card matches
if (search card.equals(self.guess[0])):
search_card.turn _over()
self.select card(search card)
return
If not found the matching card then use random
self.guess random(available cards)

def get card (self, card number):
return self.guess[card number]

The first of the new methods is guess_remember all, which
remembers every card that is turned over. The method starts by choosing a
random card. If the corresponding pair has already been turned over, then
it will turn over the corresponding card. This is handled by looking for the

268

CHAPTER 10 ARTIFICIAL INTELLIGENCE

card in Player.card_memory.values which returns the list of all values in
the dictionary. The key parts of that method are listed as follows:

for search card in Player.card memory.values():

This is a for loop that cycles through all the values in the dictionary.
The value is a Card object which is held in the variable search _card. It
then checks for a match using

if (search card.equals(self.guess[0])):

If it matches the previously turned over card, then it turns the
matching card over using

search_card.turn over()
self.select card(search card)

As this method remembers every card turned over, it is a very difficult
level to beat. If you have a good memory or are very lucky with your choice
of card, then it is possible to beat this, but it is frustratingly difficult.

The next method is called guess_remember sometimes. As its name
suggests, this remembers previous cards but only sometimes. This is based
on a random check to determine whether to search for the card from
memory or not. This is essentially the same as the guess_remember all
except for the following additional code:

if (random.randint(1,10) < 5):
self.guess random(available cards)
return

It creates a random number between 1 and 10. If the number is less
than 5, then it performs a random guess. If the number is 5 or greater, then
it searches for the card in the memory. The value to compare against (in
this case 5) can be adjusted up and down to improve the probability of a
successful guess.

269

CHAPTER 10 ARTIFICIAL INTELLIGENCE

This gives a reasonable level of difficulty, but it is not particularly
realistic. The reason being is that human players are usually much better
at remembering a card that was turned over recently compared to one that
was turned over some time ago.

The final method is called guess_remember_recent. This provides the
computer player with a short-term memory. All the cards that are turned
over are still stored in the dictionary, but the computer only uses the most
recent ones listed in the Player.click order variable when checking for a
match.

This is achieved by creating a separate list which only holds the last
four entries of the click order list.

recent _cards = Player.click order[:-4]

Then when checking for a match, it uses the following to skip any cards
that are not in the recent_cards list:

if (search card.number not in recent cards):
continue

You can try adjusting the number of recent cards that the computer
looks through to change the difficulty.

There are other things that you could do to make it appear more
realistic. For example, you could combine these techniques to have a
computer player which behaves more naturally by having a memory that is
very good for recent cards but is randomly less likely to guess correctly as
more cards are turned over. This has been left as an exercise for the reader.

If you look at the make _guess method, you can see that the different
methods are all commented out except for the guess_remember_recent
method. This provides a way for you to try out the different methods and
compare them. Just remove the “#” character which is commenting out the
one you want to test and comment out the others.

270

CHAPTER 10 ARTIFICIAL INTELLIGENCE

def make guess(self, available cards):
#self.guess_random(available cards)
#self.guess remember all(available cards)
#self.guess_remember sometimes(available cards)
self.guess remember recent(available cards)

One thing that you could do is to have the player choose the difficulty.
Think about how you could add that. I've added another version of the
memory game in the source code which includes that option. It’s stored in
the directory memory4; think about how you would add that first before
looking at the supplied code.

Battleships

Another example of how you can create artificial intelligence can be seen
in the game Battleships. This is the classic game you have almost certainly
played at some stage. Originally a paper-based game where you had to try
and sink your opponent’s ships, this is now commonly played as a board
game using model ships and plastic pegs to show when a ship has been hit
or missed. This is shown in Figure 10-2.

271

CHAPTER 10 ARTIFICIAL INTELLIGENCE

Figure 10-2. Traditional Battleship board game

This game will be a computer version of this classic game which is
used to demonstrate artificial intelligence. The intelligence involved in
playing battleships is something that most of us do sub-consciously.

It’s true that a lot of the game is based on luck, but without a strategy,
a non-intelligent computer version will almost certainly lose against a
human opponent.

There are three main strategies that can be considered when playing
battleships:

e Random - Playing each turn randomly is the most
basic strategy. The odds of successfully hitting each
of the opponent’s ships are very low until many of the
positions have already been tried.

e Random with ship awareness - This second strategy is
where you fire shots randomly until successfully hitting
an opponent’s ship. Upon hitting the opponent’s ship,
you fire against adjacent positions until the ship is

272

CHAPTER 10 ARTIFICIAL INTELLIGENCE

sunk. After the ship is sunk, then you start again trying
random positions.

o Probability analysis - This is the ultimate strategy
where a computer opponent can work out the
probability for the remaining ships being in a particular
position.

In this game I have implemented the second strategy of random shots
with ship awareness. The reason is that the first level is far too easy for
most players and the third is likely to be too difficult to beat.

To keep the code short, the version listed in the book has fixed
positions for the ships of both the human and computer players. This
allows me to demonstrate the way that the computer player works without
having to list a lot of additional code. I have however included a second
version in the source code which is a complete game where the player gets
to position their own ships and the computer chooses random positions
for its ships. The version listed in this book is in the directory battleship,
and the more complete version is in the directory battleship2.

There are six Python files included in this game, plus some images in
the image folder. The game uses a similar object-oriented programming
methodology to the memory game. The file battleship.py is the main
executable file. There is a fleet for each player, with the fleet consisting
of five ships. Each ship is a child of the Actor class. There is a grid class
which handles the grid position and translates the position on the grid to
the position on the screen. Finally, the Ai class is the one that is of most
interest for this chapter as that is where the intelligence is coded.

I'will give a quick run through of each of the files finishing with an
explanation of the Ai class at the end.

The first file is the battleship.py main program file. This is shown in
Listing 10-10.

273

CHAPTER 10 ARTIFICIAL INTELLIGENCE

Listing 10-10. The main battleship.py program file for Battleship game

from fleet import Fleet
from grid import Grid
from ai import Ai

WIDTH = 1024
HEIGHT = 768

Start of your grid (after labels)
YOUR_GRID START = (94,180)

Start of enemy grid

ENEMY_GRID START = (544,180)

GRID SIZE = (38,38)

player = "player1"

grid img 1 = Actor ("grid", topleft=(50,150))
grid img 2 = Actor ("grid", topleft=(500,150))

own_fleet = Fleet(YOUR GRID START, GRID SIZE)
enemy fleet = Fleet(ENEMY GRID START, GRID SIZE)

Manually position ships position random or allow
player to choose.

own_fleet.add ship("destroyer",(7,0),"horizontal")
own_fleet.add ship("cruiser",(1,1),"horizontal™)
own_fleet.add ship("submarine",(1,4),"vertical")
own_fleet.add ship("battleship",(4,5),"horizontal")
own_fleet.add ship("carrier",(9,3),"vertical")

enemy fleet.add ship("destroyer",(5,8),"horizontal", True)
enemy fleet.add ship("cruiser",(3,4),"vertical", True)
enemy fleet.add ship("submarine",(4,1),"horizontal", True)
enemy fleet.add ship("battleship”,(8,3),"vertical", True)
enemy fleet.add ship("carrier",(1,1),"vertical", True)

274

CHAPTER 10 ARTIFICIAL INTELLIGENCE

Don't need a player1 object
Player 2 represents the AI player
player2=Ai()

def draw():

screen.fil11((192,192,192))

grid img 1.draw()

grid_img 2.draw()

screen.draw.text("Battleships", fontsize=60,

center=(WIDTH/2,50), shadow=(1,1), color=(255,255,255),

scolor=(32,32,32))

screen.draw.text("Your fleet", fontsize=40,

topleft=(100,100), color=(255,255,255))

screen.draw.text("The enemy fleet", fontsize=40,

topleft=(550,100), color=(255,255,255))

own_fleet.draw()

enemy fleet.draw()

if (player == "gameover"):
screen.draw.text("Game Over", fontsize=60,
center=(WIDTH/2,HEIGHT/2), shadow=(1,1),
color=(255,255,255), scolor=(32,32,32))

def update():
global player
if (player == "player2"):
grid pos = player2.fire shot()
result = own fleet.fire(grid pos)
player2.fire result (grid pos, result)
If ship sunk then inform Ai player
if (result == True):
if (own_fleet.is ship sunk grid pos(grid pos)):
player2.ship sunk(grid pos)

275

CHAPTER 10 ARTIFICIAL INTELLIGENCE

As a ship is sunk - check to see if all ships
are sunk
if own fleet.all sunk():
player = "gameover"
return

If reach here then not gameover, so switch back to
main player
player = "player1"

def on_mouse_down(pos, button):
global player
if (button != mouse.LEFT):
return
if (player == "playeri"):
if (enemy fleet.grid.check in grid(pos)):
grid location = enemy fleet.grid.get grid pos(pos)
#print (Grid.grid to string(grid location))
enemy fleet.fire(grid location)
if enemy fleet.all sunk():
player = "gameover"
else:
switch to player 2
player = "player2"

This file imports some of the classes and creates the instances of the
main classes. This includes two grids and corresponding fleets, one for
the human player’s fleet positions and the other for the computer player.
The ships are added to the fleet through hard-coded positions for both the
human and computer fleets. This is to reduce the amount of code at this
stage. The draw function loops through the various objects and calls each
of their draw methods, as well as displaying the status text.

276

CHAPTER 10 ARTIFICIAL INTELLIGENCE

There is a separation between the human and Ai code. The update
function handles the computer player, whereas the on_mouse_down
function handles the interaction with the human player.

The fleet class handles tracking the ships and the shots that are fired. It
includes methods for testing to see if a ship is sunk (in which case, it is set
to visible) and to test if the entire fleet is sunk which is the trigger for game
over. The code for fleet.py is shown in Listing 10-11.

Listing 10-11. Fleet class for Battleship game

import math

from grid import Grid

from ship import Ship

from pgzero.actor import Actor

class Fleet:

def _init (self, start grid, grid size):
self.start_grid = start grid
self.grid size = grid size
self.ships = []
self.grid = Grid(start grid, grid size)
self.shots = []

Is there a ship at this position that has sunk
def is_ship sunk grid pos (self, check grid pos):
find ship at that position
for this ship in self.ships:
if (this_ship.includes grid pos(check grid pos)):
return this ship.is sunk()
If there is no ship at this position then return False
return False

277

CHAPTER 10 ARTIFICIAL INTELLIGENCE

def add ship (self, type, position, direction, hidden=False):
self.ships.append(Ship(type, self.grid, position,
direction, hidden))

check through ships to see if any still floating
def all sunk (self):
for this ship in self.ships:
if not this ship.is sunk():
return False
return True

Draws entire fleet (each of the ships)
def draw(self):
for this_ship in self.ships:
this ship.draw()
for this shot in self.shots:
this shot.draw()

def fire (self, pos):
Is this a hit
for this ship in self.ships:
if (this_ship.fire(pos)):
Hit
self.shots.append(Actor("hit",topleft=self.
grid.grid pos to screen pos(pos)))
#check if this ship sunk
if this ship.is sunk():
Ship sunk so make it visible
this_ship.hidden = False
return True
self.shots.append(Actor("miss",topleft=self.grid.grid
pos_to_screen pos(pos)))
return False

278

CHAPTER 10 ARTIFICIAL INTELLIGENCE

One of the main things that the fleet class provides is the list of all the
ships belonging to that fleet. This is in the list self.ships and is created
based on the Ship class. It also holds all the shots that have been fired as a
list of Actors representing either a hit or miss.

The Ship class is shown in Listing 10-12. It is a child of the Actor class
with some additional code to handle the placement of the ship on the
appropriate grid and to handle when the ship is hidden or visible.

Listing 10-12. Ship class for Battleship game

from pgzero.actor import Actor
from grid import Grid

Ship is referred to using an x,y position
class Ship (Actor):

def _init (self, ship_type, grid, grid pos, direction,
hidden=False):
Actor. init (self, ship type, (10,10))
self.ship type = ship type
self.grid = grid
self.image = ship type
self.grid pos = grid pos
self.topleft = self.grid.grid pos to screen pos((grid pos))
Set the actor anchor position to center of the first square
self.anchor = (38/2, 38/2)

self.direction = direction
if (direction == 'vertical'):
self.angle = -90

self.hidden = hidden

if (ship_type == "destroyer"):
self.ship size = 2
self.hits = [False, False]

279

CHAPTER 10 ARTIFICIAL INTELLIGENCE

elif (ship type == "cruiser"):
self.ship size = 3
self.hits = [False, False, False]
elif (ship_type == "submarine"):
self.ship size = 3
self.hits = [False, False, False]
elif (ship_type == "battleship"):
self.ship size = 4
self.hits = [False, False, False, False]
elif (ship_type == "carrier"):
self.ship size = 5
self.hits = [False, False, False, False, False]

def draw(self):
if (self.hidden):

return
Actor.draw(self)

def is sunk (self):
if (False in self.hits):
return False
return True

def fire (self, fire grid pos):
if self.direction == "horizontal':
if (fire_grid pos[0] >= self.grid pos[0] and

fire grid pos[0] < self.grid pos[0]+self.ship
size and
fire grid pos[1] == self.grid pos[1]):
self.hits[fire grid pos[0]-self.grid pos[0]] =
True
return True

else:

280

CHAPTER 10 ARTIFICIAL INTELLIGENCE

if (fire grid pos[0] == self.grid pos[0] and
fire grid pos[1] »>= self.grid pos[1] and
fire grid pos[1] < self.grid pos[1]+self.ship size):
self.hits[fire grid pos[1]-self.grid pos[1]] = True
return True
return False

Does this ship cover this grid position
def includes grid pos (self, check grid pos):

If first pos then return True

if (self.grid pos == check grid pos):
return True

check x axis

elif (self.direction == 'horizontal' and
self.grid pos[1] == check _grid pos[1] and
check_grid pos[0] >= self.grid pos[0] and
check _grid pos[0] < self.grid pos[0] + self.ship_
size):
return True

elif (self.direction == 'vertical' and
self.grid pos[0] == check grid pos[0] and
check_grid pos[1] >= self.grid pos[1] and
check grid pos[1] < self.grid pos[1] + self.ship_
size):
return True

else :
return False

The Ship class uses a ship type to determine the size of the ship. This
is based on the name of the ship, such as destroyer (two grid positions) or
battleship (four grid positions). It also updates the anchor position. This
has nothing to do with a nautical anchor used in a ship but instead relates

281

CHAPTER 10 ARTIFICIAL INTELLIGENCE

to the anchor position of the Pygame Zero Actor. By default, the anchor
is the center of the image, but in this case, it is set as the center of the first
grid position (top, left) that the ship occupies. This position is used for
placement of the ship and its rotation. It makes it easier to position the
ship on the grid, and so that when a ship is placed vertically, it is rotated
within the grid column.

The constructor then creates a list corresponding to each of the grid
positions called self.hits. The list is set to False for each of the positions,
which are then updated to True whenever one of them is hit. If they are all
set to True, then the ship is considered sunk. This can be tested using the
is_sunk method.

The fire method determines whether the fire hits the ship by looking
at whether its grid position matches any of the positions that the ship
occupies and updates the status accordingly. The includes grid
position method performs a similar check but is used to check whether a
ship exists in that position and does not change its status.

The methods in the Fleet and Ship class use a grid position rather than
the screen location. The Grid class is used to convert the screen position
from the mouse click to the grid position on one of the two grids. It is used
by both the Ship class and the on_mouse_down function in battleship.py.
The Grid class is shown in Listing 10-13.

Listing 10-13. Grid class for Battleship game
import math

class Grid:
Grid dimensions are in terms of screen pixels
def _init (self, start grid, grid size):
self.start grid = start grid
self.grid size = grid size

282

CHAPTER 10 ARTIFICIAL INTELLIGENCE

Does co-ordinates match this grid - if so which screen_
position
def check in grid (self, screen pos):
if (screen pos[0] < self.start grid[o] or
screen_pos[1] < self.start grid[1] or
screen_pos[0] > self.start grid[o] + (self.grid_
size[0] * 10) or
screen_pos[1] > self.start grid[1] + (self.grid_
size[1] * 10)):
return False
else:
return True

def get grid pos (self, screen pos):
x_offset = screen pos[0] - self.start grid[0]
x = math.floor(x_offset / self.grid size[0])
y offset = screen pos[1] - self.start grid[1]
y = math.floor(y offset / self.grid size[1])
if (x<0Oory<o0orx>9o0ry>9):
return None
return (x,y)

Gets top left of a grid position - returns as screen position
def grid pos to screen pos (self, grid pos):
x = self.start grid[o] + (grid pos[0] * self.grid size[0])
y = self.start grid[1] + (grid pos[1] * self.grid size[1])
return (x,y)

This is handled using the start position of the grid, stored in grid_pos,
and the size of each grid square, stored in grid_size. The floor method
from the math module is used to round the values down to the nearest

whole number.

283

CHAPTER 10 ARTIFICIAL INTELLIGENCE

The final class is the Ai class which is where the computer player is
implemented. This is the key part for this chapter, so it will be explained in
more detail. The code is shown in Listing 10-14.

Listing 10-14. Ai class for Battleship game

import random
from grid import Grid

Provides Ai Player
class Ai:

NA =0
MISS =1
HIT = 2

def _init (self):

Create 2 dimension list with no shots fired

access using [x value][y value]

Pre-populate with NA

self.shots = [[Ai.NA for y in range(10)] for x in

range(10)]

Hit ship is the position of the first successful hit
on a ship

self.hit _ship = None

def fire shot(self):
If not targeting hit ship
if (self.hit _ship == None):
return (self.get random())
else:
Have scored a hit - so find neighboring positions
copy hit ship into separate values to make easier
to follow

284

CHAPTER 10 ARTIFICIAL INTELLIGENCE

hit x = self.hit ship[o]
hit y = self.hit ship[1]
Try horizontal if not at edge
if (hit x < 9):
for x in range (hit x+1,10):
if (self.shots[x][hit y] == Ai.NA):
return (x,hit_y)
if (self.shots[x][hit y] == Ai.MISS):
break
if (hit x > 0):
for x in range (hit x-1,-1, -1):
if (self.shots[x][hit y] == Ai.NA):
return (x,hit_y)
if (self.shots[x][hit y] == Ai.MISS):
break
if (hity < 9):
for y in range (hit_y+1,10):
if (self.shots[hit x][y] == Ai.NA):
return (hit x,y)
if (self.shots[hit x][y] == Ai.MISS):
break
if (hit.y > 0):
for y in range (hit y-1,-1, -1):
if (self.shots[hit x][y] == Ai.NA):
return (hit x,y)
if (self.shots[hit x][y] == Ai.MISS):
break
Catch all - shouldn't get this, but just in case
guess random

return (self.get random())

def fire result(self, grid pos, result):

285

CHAPTER 10 ARTIFICIAL INTELLIGENCE

Xx_pos = grid pos[0]
y _pos = grid pos[1]
if (result == True):
result value = Ai.HIT
if (self.hit ship == None):
self.hit ship = grid pos
else:
result value = Ai.MISS
self.shots[x pos][y pos] = result value

def get random(self):
Copy only non-used positions into a temporary list
non_shots = []
for x_pos in range (0,10):
for y pos in range (0,10):
if self.shots[x pos][y pos] == Ai.NA:
non_shots.append((x_pos,y pos))
return random.choice(non_shots)

Let Ai know that the last shot sunk a ship
list pos is provided, but not currently used
def ship _sunk(self, grid pos):

reset hit ship

self.hit_ship = None

After the import and the class definition, there are three class variables
called NA, MISS, and HIT. These are used as constants and just make
the rest of the code easier to understand. Reading the code, it’s easier to
understand that Ai.MISS represents a miss than just using the number 1,
the same for NA (no shot fired at that position) and HIT.

After that, there is the usual constructor __init__ which has an entry

self.shots = [[Ai.NA for y in range(10)] for x in range(10)]

286

CHAPTER 10 ARTIFICIAL INTELLIGENCE

This is a way of creating a 2D list and pre-populating it with Ai.NA. This
will end up with a list which looks like this:

[[o, O, O, O, O, O, O, O, O, O],
[0, 0, O, O, O, O, O, O, O, O],
[o, 0, O, O, O, O, O, O, O, O],
[o, O, O, O, O, O, O, O, O, O],
[0, 0, O, O, O, O, O, O, O, O],
[0, 0, O, O, O, O, O, O, O, O],
[o, O, O, O, O, O, O, O, O, O],
[0, 0, O, O, O, O, O, O, O, O],
[0, 0, O, O, O, O, O, O, O, O],
[0, 0, O, O, O, O, O, O, O, O]]

This has an entry for every position in the grid which can be accessed
using self.shots[x-pos][y-pos].If you look at the grid in the preceding
format, then the x and y axis are switched (y goes across and x goes down),
but that is only how it is represented in the print listing. The important
thing is how it is accessed using x, y positions.

The other variable created in the constructor is self.hit_ship. This
will keep track of the position of the last time a shot successfully hit a
target. It is reset to None when the ship is sunk.

When a shot is fired, there are multiple stages:

1. The fire_shot method is called which works out the
next “guess” for where to fire the shot. The Ai class
does not know if that shot is successful or not at this
stage.

2. Dbattleship.py then calls the fire method from
the fleet class, which adds the appropriate hit or
miss Actor and returns a True or False to indicate
whether the shot hit a target or not.

287

CHAPTER 10 ARTIFICIAL INTELLIGENCE

3. The fire_result method is called which allows the Ai
class to update the shots list to know whether the
shot resulted in a hit.

4. Ifthe ship has been sunk, then the ship_sunk
method is called so that the Ai class knows that it
doesn’t need to keep targeting that ship.

The reason for needing to do this in multiple stages is because the Ai
cannot see where the ships of the enemy are located. As a result, it does not
know whether its shots were successful or not.

The first thing that the fire_shot does is to look to see if it knows the
location of a ship that is not yet sunk. It does that by looking at whether
self.hit _ship is set to None. If it does not know the location of an enemy
ship, then it takes a random guess using the get _random method which is
shown as follows:

def get random(self):
Copy only non-used positions into a temporary list
non_shots = []
for x_pos in range (0,10):
for y pos in range (0,10):
if self.shots[x pos][y pos] == Ai.NA:
non_shots.append((x_pos,y pos))
return random.choice(non_shots)

This uses the random. choice method to choose from available
positions. Before it can call that, it needs a list showing only the shots that
have not already been tried, which is what the rest of that code does. It
creates a non_shots list, and then using a nested for loop checks all the
grid locations and adds any grid positions to the non_shots list that have
not already been tried. The grid position is then returned to fire_shot
which in turn uses it that location as its return value.

288

CHAPTER 10 ARTIFICIAL INTELLIGENCE

If there is already a ship that was hit recently, but which has not been
sunk, then there will be a position in self.hit_ship. In that case the code
tries four different directions until it finds a suitable grid position to try
next. A suitable position is any location that it has not been tried and is
adjacent to a successful shot. This can be seen in the following excerpt
from the code:

if (hit_ x < 9):
for x in range (hit x+1,10):
if (self.shots[x][hit y] == Ai.NA):
return (x,hit y)
if (self.shots[x][hit y] == Ai.MISS):
break

If the x position of the hit_ship is less than 9 (not at the right-hand side
of the grid), then it will loop across all positions to the right. If it comes
across a position that has the value of NA, then that is a valid shot and so it
returns that position. If instead it comes across a MISS, then it knows that
the ship is not in that direction so it uses a break to exit from the for loop
which moves the code on to check the next direction.

The other if statements do the same thing but looking in the other
directions until a valid shot is found.

There is a final entry so that if none of the four directions apply, then
it returns a random guess instead. This should never be called, as until
the ship is sunk, there should always be a valid position to try. There are
differences of opinions on whether adding “just in case” code is a good
idea. My rationale is that if there is some situation I haven’t thought of or
perhaps a mistake in the code, then this will allow the game to continue
without giving the user an error. The counter argument is that this could
hide a problem with the code further up, where the game continues to run,
but not in the way it was intended.

289

CHAPTER 10 ARTIFICIAL INTELLIGENCE

The fire_result method is called when the result of the shot is
known. It updates the grid location with whether the hit was successful or
not. It also updates the value of hit_ship if the shot was a hit and the value
of hit_ship is currently set to None. The last method is ship_sunk which
resets the value of hit_ship to None after the ship is successfully sunk.

This code implements the strategy quite well, but there are a couple of
things that could be improved. One is that the Ai always tries the positions
in the same order (horizontal and then vertical). If the player understands
this, then they could gain an advantage by always placing ships away
from the left and right edges and always vertically. This would only make
a small difference but could be fixed by using a random decision on
which direction to try first. It can also be tricked where there are two ships
touching, where it hits one ship first but then sinks the second ship. It will
not go back to finish off the first ship it hit. These do not stop the game
from working but would be a good challenge for the reader to create an
improved version.

AsIwarned in the beginning, graphical game programming uses lots of
code. To get this far has needed 300 lines of code, but that hasn’t included
the ability for the user to place their own ships or for the computer to
choose positions for its ships. This is something you may like to have a go
at implementing yourself, or you can look in the folder battleship2 in the
source code where I have created another version which implements that
feature as well as some other improvements.

290

CHAPTER 10 ARTIFICIAL INTELLIGENCE

A screenshot of the final game is shown in Figure 10-3.

Batilashios

Your fleet The enemy fleet

«

& + ¥

HIGHTTEOVES

paIx :
LYOURVOT

4K

Figure 10-3. Complete Battleship game

Summary

This chapter has looked at ways that computers can be made to behave like
a human player. In both the examples listed, the artificial intelligence has
been created to mimic the same process that a human would go through
when playing that game.

When designing some computer programs, you may be looking to
make the computer as “clever” as possible. The problem the computer
being too intelligent is that the computer can analyze the possible
outcomes can making it too difficult to beat. When creating computer

291

CHAPTER 10 ARTIFICIAL INTELLIGENCE

games, it's important to think about the level of difficulty to make it
challenging, but not too difficult.

There is scope to improve these games by creating different difficulty
levels or by making the game appear more human-like. You may like to have
a go at tweaking the AI or thinking of how you could add Al to other games.

292

CHAPTER 11

Improvements
and Debugging

This final chapter will look at a few additional techniques for making
improvements to your code. It will also provide some help with debugging
when things go wrong. The final game will be a 2D top-down space shooter
game. This should help give you the confidence to create your own games
using the knowledge acquired from this book.

Additional Techniques

Throughout this book, there have been several different techniques
introduced for creating games. Some of these are then widely used across
multiple games, whereas others may only benefit a certain type of game.
There are plenty of other things that can improve gameplay, make the
game appear more professional, or save you time. I have added a few more
here which can help improve the number of programming techniques you

can use.

© Stewart Watkiss 2020 293
S. Watkiss, Beginning Game Programming with Pygame Zero,
https://doi.org/10.1007/978-1-4842-5650-3_11

CHAPTER 11 IMPROVEMENTS AND DEBUGGING

More About Pygame Zero

The official documentation for Pygame Zero is available online at
https://pygame-zero.readthedocs.io/en/stable/. The documentation
is very useful when first learning Pygame Zero, but it is limited in what it
provides.

There are some features that are not included in the official
documentation. One example of this is the TITLE variable. This is like the
WIDTH and HEIGHT variables which have been used to change the size of
the window, but in this case, the TITLE replaces the title on the title bar of
the game window. There is also an ICON option that can be used to add a
thumbnail icon to the application on the task bar. Listing 11-1 shows both

these in action on an example program.

Listing 11-1. Program with TITLE and ICON options

WIDTH = 400

HEIGHT = 200

TITLE = "My Game Title"
ICON = "spacecrafticon.png"

The file referred to in the ICON needs to be in the directory that the
application is running in. This is normally the same directory as the
executable file, but in the case of Mu, you may need to copy it to the mu_
code directory. Ideally the icon should be a PNG file of 32 x 32 pixels in
dimension.

Figure 11-1 shows the program running on a Raspberry Pi. The game
on the left does not include the TITLE or ICON entries so has the default
“Pygame Zero Game” and default icon. The one on the right is titled “My
Game Title” and includes a spacecraft icon.

294

https://pygame-zero.readthedocs.io/en/stable/

CHAPTER 11 IMPROVEMENTS AND DEBUGGING

$ IZ:__/‘I Bl @®rygame Zero Game *_. My Game Title

w x | v Game Title i

Figure 11-1. Running programs with and without the TITLE and
ICON entries

If these are undocumented, then how do you find out about them? I think
it's worth considering that Pygame Zero is still in an early stage and is being
developed over time. It’s possible that these features may have been added to
the documentation by the time you read this. It may also be the case that there
are more new features that have not yet made it into the documentation.

One way to find out about these features is to look at programs created
by other people. That way, you can see what others have discovered.
Another place is to look at the source code for Pygame Zero. The source
code is on GitHub at https://github.com/lordmauve/pgzero. The
source code is quite advanced code so it can be difficult to read for less
experienced programmers. It can sometimes be useful when looking for
something specific.

More About Pygame

In addition to Pygame Zero, you can make calls to methods in the
parent library Pygame. This has already been used in the tank game in
Chapter 7. An example is pygame.draw. polygon which made use of the
Pygame libraries directly.

You can find more about Pygame at the official documentation at
www . pygame.org/docs/.

295

https://github.com/lordmauve/pgzero
http://www.pygame.org/docs/

CHAPTER 11 IMPROVEMENTS AND DEBUGGING

Adding Fonts

In the previous games, the text shown on the screen has been using the
default font. You can make use of other fonts by creating a fonts directory
within your game directory and copying the fonts there. You can either
copy existing fonts into that folder or add custom fonts without installing
them on the system. On Linux (including the Raspberry Pi), you can
normally use the system fonts by copying them from /usr/share/fonts/
truetype. Alternatively, you can find many free fonts by searching on the
Internet. Other systems, such as Windows, are likely to have copyright
restrictions on many of the fonts. You should avoid any non-free fonts if
you intend to share your games with others. You may also need to include
the copyright information from the font when you distribute your game.

There is an anomaly with how fonts are installed, in that for Pygame
Zero, the filename for the font must be all in lowercase. The font file must
also be a True Type font ending with a .ttf extension. You will need to
rename the font file when copying it into the fonts directory to remove any
uppercase letters.

Once the file is in the font directory, you can use it by using the
filename (without the .ttf extension). This is shown in the following code:

screen.draw.text("This is using the Deja Vu Sans Font",
fontname="dejavusans", fontsize=40, topleft=(30,30),
color=(255,255,255))

This uses the Deja Vu font which is available as standard on the Raspberry
Pi or can be downloaded free from https://dejavu-fonts.github.io/.

Scrolling Screen

Several games can make use of a scrolling background. This is often used
where a player stays stationary on the screen (or moves within the confines
of the screen), but the background moves to make it appear that the player

296

https://dejavu-fonts.github.io/

CHAPTER 11 IMPROVEMENTS AND DEBUGGING

is moving. This can be scrolling from side to side (often used in platform
games where a player walks from left to right) or from top to bottom (used
to show that a vehicle such as a plane is moving toward the top of the
screen).

Depending upon the game, you may have a single background image
which is repeated, or you may have multiple images which are designed to
scroll from one to another. Typically, these images are the same size of the
screen, but that’s not necessary.

One way of creating this effect is to use screen.blit which has already
been used for the background images in most of the games in this book.
This is used to show an image on the screen. Using an offset in the image
position will show the part of the image that overlaps with the screen. The
diagram in Figure 11-2 shows how positioning two identical images with
different offsets results in what appears to be a continuous image.

Figure 11-2. Creating a scrolling screen

The code in Listing 11-2 shows how this can be implemented. It uses a
scroll position which is the x position of the first image and the second
image follows directly afterward, starting just off-screen. The scroll speed
can be adjusted to make the scroll go faster or slower as appropriate.

297

CHAPTER 11 IMPROVEMENTS AND DEBUGGING

Listing 11-2. Creating a scrolling background

scroll speed = 2
scroll position = 0

def draw ():
screen.blit("background scroll”, (scroll position,0))
screen.blit("background scroll", (scroll position+800,0))

def update():
global scroll position
scroll position -= scroll speed
if (scroll position <= -800):
scroll position = 0

Reading from a CSV config file

Reading and writing to a file was covered in Chapter 4 when saving the
high score for a game. In that case it was just a single entry. When there is
more information stored, then the data needs to be stored in a way that the
information can be easily retrieved.

There are many different file formats that can be used, each of which
has its pros and cons. A simple format is to store the information as
comma-separated values, known as a CSV file. In this format each line of
the file holds multiple values which are separated by a comma, such as in
the following line:

String value,1,2,3.1

In this example there is a string, followed by two integer numbers and
one floating-point number. An important thing to note is that the numbers
are stored as strings, so you cannot manipulate the values until they have

been converted to numbers.

298

CHAPTER 11 IMPROVEMENTS AND DEBUGGING

The first step is to split the file into separate components. As these are
separated using a comma, you can use the string.split method which
divides a string based on a character. In this case it would split the line
based on the positions of the commas. What if there is a comma within the
string? If there is a comma within the string, then the CSV format places
quotes around the string to indicate that the comma within the quotes
should not be split. In the following entry, the values are the same, but this
time there is a comma in the string.

"String, value",1,2,3.1

It is now no longer possible to use the split method as that will ignore
the quotes and result in the string being split into two values.

The solution is to use a module that knows how to handle a CSV file.
Python includes the csv module which can do that. To demonstrate this,
we need a CSV file. The file in Listing 11-3 is a simplified version of the
enemies file that will be used in the space shooter game.

Listing 11-3. Sample CSV file for reading demo

0.3,asteroid,asteroid sml,200,0,4
0.9,asteroid,asteroid sml,100,0,4
0.9,asteroid,asteroid med,400,0,3
1.2,asteroid,asteroid sml,750,0,4

This is used to create asteroids that need to be dodged or destroyed.
The first field is when the asteroid appears on the screen (in seconds), a
keyword “asteroid” to indicate it is an asteroid, an image filename, the x
and y coordinates, and finally the velocity of the asteroid (in pixels per time
interval).

The file is saved as csvdemo.csv. The extension indicates it’s a CSV file,
but it can have a different extension. In the game it will be named enemies.
dat to indicate it’s a form of data file. The extension doesn’t make any
difference to how the file is handled in the program, but if you name the

299

CHAPTER 11 IMPROVEMENTS AND DEBUGGING

file .csv, then it may be possible to open the file in a spreadsheet or similar
application. This is something you probably don’t want the players to be
able to do.

The file has been created in a text editor. It is not possible to use Mu
to edit the file as it only allows you to edit Python files, but there is a text
editor app on the Raspberry Pi and Linux distributions, or using other
operating systems the editor may be known as Notepad or TextEdit.

The source code for reading the file is shown in Listing 11-4.

Listing 11-4. Code to read in a CSV configuration file

import csv
import sys

configfile = "csvdemo.csv"

try:
with open(configfile, 'r') as file:
csv_reader = csv.reader(file)
for enemy details in csv_reader:
start_time = float(enemy details[0])
value 1 is type
image = enemy details[2]
start pos = (int(enemy details[3]),
int(enemy details[4]))
velocity = float(enemy details[5])
print ("Start time {}, Image {}, Start Pos {},
Velocity {}".format(start time, image, start pos,
velocity))
except IOError:
print ("Error reading configuration file "+configfile)
Just end as cannot play without config file
sys.exit()

300

CHAPTER 11 IMPROVEMENTS AND DEBUGGING

except:
print ("Corrupt configuration file "+configfile)
sys.exit()

This is a standard Python 3 executable rather than being a Pygame
Zero file. To run the code in Mu, you will need to change the mode.

The code uses the with keyword before the file open command but is
otherwise similar to the way that files were read before. When using the
with keyword, there is no need to explicitly close the file. This can be
useful in the event of a problem reading the file as closing it is handled
automatically.

The entire operation is enclosed in a try except clause which will try
and catch any errors. In this case there is nothing that can be done in the
event of an error as the program cannot do anything without the data from
the file. If the error is due to an IOError reading the file, then it gives a
different error message than if the file is corrupt.

The CSV file is handled using the csv.reader which parses the file
and places into a csv_reader which stores the data as a 2D list. Where
numerical values are required, these are converted using int or float as
appropriate. These will trigger an exception if the data is not in the correct
format, so they are also included in the try clause.

Joysticks and Gamepads

The games so far have been designed to be played with the mouse

or keyboard. The next step would be to add support for joysticks or
gamepads. Unfortunately, Pygame Zero does not yet support gamepads,
although it is listed on the roadmap as a potential future feature. Until
that is added, it is possible to use a gamepad to emulate key presses using
QJoyPad. This can be downloaded from http://qjoypad.sourceforge.
net/. The gamepad would need to be configured on each computer it is
used.

301

http://qjoypad.sourceforge.net/
http://qjoypad.sourceforge.net/

CHAPTER 11 IMPROVEMENTS AND DEBUGGING

For a more authentic arcade gaming experience, the Picade or Picade
console can provide a joystick that can act as though it is a keyboard.

Creating Arcade Games for Picade

If you want to get the full arcade game experience for your games, then the
Picade is a compact arcade machine based around the Raspberry Pi. It is
available as a console which needs to be connected to a TV or monitor or
as a complete arcade cabinet with built-in screen.

A photo of the Picade arcade cabinet is shown in Figure 11-3.

Figure 11-3. Pimoroni Picade running the space shooter game

The Picade uses a HAT which is mounted on the Raspberry Pi.
The HAT is then connected to a joystick and arcade buttons (switches)
mounted on the top and side of the cabinet. The HAT translates the button
presses into signals sent to the Raspberry Pi as though they were from a
keyboard. You can also get the HAT separately and use that to create your
own cabinet. An alternative is to use a different board that can emulate key
presses such as a Makey Makey or Arduino.

302

CHAPTER 11 IMPROVEMENTS AND DEBUGGING

The image in Figure 11-4 shows the keys associated with the joystick
and each of the buttons on the Picade.

ESCAPE RETURN

up Left Left

\
et ot Q O @

I [e]

Figure 11-4. Pimoroni Picade button layout to key presses

Most of the games designed for a keyboard use the direction keys,
which are mapped to the joystick on the Picade. The buttons are a bit
more obscure, so to make the game playable on a standard keyboard and
a Picade, then it can be useful to allow two different keys to be pressed to
provide compatibility for both Picade and normal keyboard.

This is achieved using a boolean “or” in the check for the key press.
The following code is taken from the tank game in Chapter 7, which allows
either the keyboard space key or the Picade bottom yellow button (Left
Shift) to be used to fire a shell.

if (keyboard.space or keyboard.lshift):
game_state = 'start’

303

CHAPTER 11 IMPROVEMENTS AND DEBUGGING

You may also want to consider making the key codes to be configurable
through a config file.

Another thing to be aware of is that the Picade has a tradition 4:3
screen size, and while it can play games designed for a different screen
size, the resolutions 800 x 600 and 1024 x 768 are a good choice.

Games designed for the Picade can be run on any Raspberry Pi using
the keyboard instead of the joystick and buttons. The Picade usually runs
RetroPie which is discussed next.

RetroPie

RetroPie provides a way of playing retro computer games on a Raspberry
Pi. This can be a Picade or a regular Raspberry Pi. RetroPie is usually used
for playing old computer games through emulators. It does not normally
include any games by default due to potential copyright issues with
commercial games.

As well as running emulator games, RetroPie can also run games
created in Pygame or Pygame Zero. Adding support for your games to
work in RetroPie could make it available to a wider audience. RetroPie
can be downloaded and installed following the instructions at https://
retropie.org.uk/.

RetroPie does not include Pygame Zero by default, but Pygame Zero
can be installed using

sudo apt install python3-pgzero

You can add a new menu to install your own games. To add a new
menu to the system, add the coding in Listing 11-5 to the file /etc/
emulationstation/es_systems.cfg before the </systemList> entry.

304

https://retropie.org.uk/
https://retropie.org.uk/

CHAPTER 11 IMPROVEMENTS AND DEBUGGING
Listing 11-5. Define new menu for RetroPie

<system>
<name>pgzero</name>
<fullname>Pygame Zero</fullname>
<path>/home/pi/RetroPie/roms/pgzero</path>
<extension>.sh</extension>
<command>%ROM%< /command>
<theme>pgzero</theme>

</system>

There also needs to be an entry in the appropriate themes folder. There
is a file included in the source code. This can be extracted by following
these instructions:

cd ~

tar -xvzf pgzero-retro-theme.tgz

cd /etc/emulationstation/themes/carbon
sudo cp -r ~/retropietheme/* .

When installed, there will be a menu for Pygame Zero.

To install a game on RetroPie, create a folder in the roms directory
which is usually ~/RetroPie/roms. In my case I created one called pgzero.
In that directory, create a simple shell script to launch the program. The
script file is shown in Listing 11-6.

Listing 11-6. Script file for launching the compass game ~/
RetroPie/roms/pgzero/CompassGame.py

cd ~/compassgame
pgzrun compassgame.py

The script file also needs executable permission, which can be done using

chmod +x ~/RetroPie/roms/pgzero/CompassGame.py

305

CHAPTER 11 IMPROVEMENTS AND DEBUGGING

The game can now be selected from the main menu. A screenshot of
the menu is shown in Figure 11-5.

1 GAMES AVAILABLE

Figure 11-5. Pygame Zero menu on RetroPie

Debugging

When things go wrong in a program, it is known as a bug. Early bugs could
include mechanical problems which included a dead moth that prevented
arelay from closing. Nowadays, it usually refers to errors in computer
code. This can be anything that negatively affects the way that the program
runs compared to the way it is expected to behave. This can range from the
program not running at all to a minor error where an actor may need to
move two extra pixels before it’s detected. It could also be a performance
issue where a program runs slower than it should.

306

CHAPTER 11 IMPROVEMENTS AND DEBUGGING

The details of how to test and debug programs could easily fill an entire
book. This book will look at a few techniques relating to debugging and
performance.

Error Messages

The first thing to check is to see if there are any error messages. In Mu
these are normally displayed in a panel at the bottom of the screen. They
will however be lost when you click stop. An alternative is to try running
the program from the command line and see if you get an error message.
Sometimes the message given will be obvious and help you find the
problem straight away. With some error messages, you may need to do
some investigation. For example, a typical error message may include

KeyError: "No image found like 'batleship'. Are you sure the
image exists?"

The first thing to check is that the name matches an expected file. In
this case there is a typo with the word battleship spelt incorrectly.

If the name was correct, then you should check to see if the file is in the
correct directory. In the case of an image, it should be in the images/ sub-
directory. Also be aware that in some cases files are referred to from other
places, which would be relative to the location of the program file, or in
some cases in the directory, the program appears to run from (such as the
~/mu_code directory).

Other errors may refer to syntax errors in your code. They will often give
you the line number, but beware that the error may be earlier in the code
than it says. For example, this is part of an invalid syntax error message:

File "battleship.py", line 19
grid img 2 = Actor ("grid", topleft=(500,150))

N

SyntaxError: invalid syntax

307

CHAPTER 11 IMPROVEMENTS AND DEBUGGING

The error appears to indicate that the problem is on line 19. However,
looking at the code at lines 18 and 19 shows that the error is actually on
line 18.

Actor ("grid", topleft=(50,150)
Actor ("grid", topleft=(500,150))

18. grid img 1
19. grid_img 2

In this case there is a missing closing bracket on line 18. As a result of
the missing bracket, the interpreter thinks that line 19 is a continuation
of line 18 and that line 19 has the error. This is a common occurrence, so
always make an effort to check to look for an error in the line prior to the
one with the error.

Also don'’t forget to make sure that Mu is in Pygame Zero mode. If you
get an error which says “NameError: name ‘Actor’ is not defined’, then it
maybe because you are trying to run in Python 3 mode instead.

Check for Variable Names

Another common problem is to mistype a variable name. If you try and
store something into a different variable, then Python will just create that
as a new variable. As a result, code that refers to the correct variable will
not see the updates. Remember that variable names are case sensitive, so
using the wrong case has the same effect.

You should also check that the variable is accessible in the current
scope. If you try and update a variable that’s not included in the globals,
then it will create a local variable and not update the global variable.

Print Statements

A useful tool when trying to understand a program’s behavior is the use of
print commands. These can be used to display a message to the console
while the program is running in the graphical display.

308

CHAPTER 11 IMPROVEMENTS AND DEBUGGING

By adding a number of print commands, you can follow the status of
the variables as the game progresses and see what happens.

IDE Debugging Tools

The Mu editor does include some basic debugging tools which can be an
improvement on adding print statements. There is a debug mode within
Mu (next to the play button). You can set breakpoints within the code by
clicking the line number. The breakpoints are indicated by a red circle.
From the menu, you can run to the breakpoints, or step over and some of
the variables are shown in a new pane on the right-hand side.

As your programming progresses, you may want to look at a
professional IDE (integrated development environment). Unfortunately,
the setup for most IDEs with Pygame Zero is difficult, so you may want to
stick with Mu for now, but it is something you may want to look at in the
future.

Rubber Duck Debugging

Sometimes the program doesn’t behave in the way you expect it to, and
you can’t see why. If this is the case, then it’s useful to walk through how
the program is supposed to work. A good way to do this is to talk out loud
describing the way that it should work while stepping through the code.
This can be done to an inanimate object such as a rubber duck. The idea
is that while talking through the way that the code works, you may realize
why it is not working as expected. It is surprising how effective this is. My
favorite debug duck is shown in Figure 11-6, but you don’t need to use a
duck; any other object works just as well.

309

CHAPTER 11 IMPROVEMENTS AND DEBUGGING

4

\
:"CON UK
UG puck

Figure 11-6. Pycon UK debug duck

Performance

One of the things about Python is that it is an interpreted language.
This means that the text-based code you write is converted to code that
the computer understands at runtime. This compares with compiled
languages where this is done before the program is run. Generally
interpreted languages are slower than if the program is compiled first
which may contribute to performance issues.

The games that have been created so far in this book are quite short
and so shouldn’t result in performance issues, but as you increase the
number of actors and resources being used, you may find the code starts to
run slow.

Some of the code in this book has already made allowances for
running at different speeds by checking the time since the update
function last ran, but that may not be enough to stop the game from being
unresponsive.

When writing code, the priority is normally about making the code as
simple as possible and so it is easy to understand how it works. That helps
limit the number of bugs and make it easier to maintain, but it may not
result in the most efficient code.

310

CHAPTER 11 IMPROVEMENTS AND DEBUGGING

There are steps that can be done to improve performance of a program.
The first thing is to identify where the performance issues may be. Without
understanding where the issue is, then resources may be wasted on
optimizing code that is rarely used or where the computer is idle and will
not notice the performance improvement. Normally you will need to look
within loops that are called regularly during the running of the program.

The next thing is to make sure that you have some way of testing to see
if your changes improve the performance. Sometimes changes made may
sound like they will improve performance, but actually make it slower.

Here are a few suggestions on ways which may improve performance:

o Ifan existing Python library already exists, then use that
(it’s likely already been optimized).

e Check for loops that are consuming lots of resources.
e Avoid global variables.

e Whenin a function return once you are complete
rather than continuing through code that is not

necessary.

e Use code patterns (find code that others have created
that has already considered performance).

o Redesign the algorithm.

These are just a few suggestions which may or may not improve
performance. The last tip is vague and really depends upon what code
you are creating. If you are doing something that others may have already
done, such as sorting information, then look at what code others have
created. It may be that some algorithms work better with a small amount of
data rather than with a lot of data.

311

CHAPTER 11 IMPROVEMENTS AND DEBUGGING

Space Shooter Game

The final game in this book is a space shooter top-down game. In this a
spacecraft flies around shooting at obstacles that block its path. The game takes
in a lot of the techniques that have been discussed throughout the book. It is
designed for the Picade but can work equally well using keyboard controls. To
fitin with the theme of an arcade machine, the game has an intentional retro
feel including bitmap images, block font for the score, and tinny sound effects.

The design for the game simulates an asteroid field that the spacecraft
must navigate around or blast its way through. The asteroids are referred
to as enemies as a possible future addition would be to also include enemy
spaceships which fly across the screen.

A screenshot of the game is shown in Figure 11-7.

Figure 11-7. Space shooter game

312

CHAPTER 11 IMPROVEMENTS AND DEBUGGING

The source code is split across multiple files for the different classes.
The spaceship is defined as a subclass of the Actor class. This is shown in
Listing 11-7.

Listing 11-7. Spaceship class in file spaceship.py
from pgzero.actor import Actor
class SpaceShip(Actor):

def set speed (self, movement speed):
self.movement_speed = movement_speed

def move (self, direction):
if (direction == "up"):
self.y -= self.movement speed
elif (direction == "down"):
self.y += self.movement speed
elif (direction == "left"):
self.x -= self.movement_speed
elif (direction == "right"):
self.x += self.movement speed
Make sure that the ship remains on the screen
if self.x < 20:

self.x = 20
if self.x > 780:
self.x = 780
if self.y < 20:
self.y = 20
if self.y > 580:
self.y = 580

This is essentially an object-oriented version of the code for the
character in the compass game. This is simpler than the compass game

313

CHAPTER 11 IMPROVEMENTS AND DEBUGGING

as the image doesn’t change when the spacecraft moves. A possible
improvement would be to add different images if you wanted the ship to
look like it was banking over when moving to the side or for the flame to
get bigger when it’s accelerating forward.

The next file is the Asteroid class. This is a child of the Actor class
handling the drawing of asteroids on the screen. This is shown in Listing 11-8.

Listing 11-8. Asteroid class in file asteroid.py

from pgzero.actor import Actor
import time
from constants import *

class Asteroid(Actor):

def _init (self, screen size, start time, image, start
pos, velocity):

Actor. init (self, image, (start pos))

self.screen_size = screen_size

self.start pos = start pos

self.start time = start time

self.velocity = velocity

self.status = STATUS WAITING

def update(self, level time, time interval):
if self.status == STATUS WAITING:

Check if time reached

if (time.time() > level time + self.start time):
Reset to start position
self.x = self.start pos[0]
self.y = self.start pos[1]
self.status = STATUS VISIBLE

314

CHAPTER 11 IMPROVEMENTS AND DEBUGGING

elif self.status == STATUS VISIBLE:
self.y+=self.velocity * 60 * time interval

def reset(self):
self.status = STATUS WAITING

def draw(self):
if self.status == STATUS VISIBLE:
Actor.draw(self)

def hit(self):
self.status = STATUS DESTROYED

This class extends the Actor class by adding a few variables and
methods. The start_time is the time that the asteroid appears on
the screen relative to the start of each level. The asteroids can have
different images depending upon the size of the asteroid. The start_pos
determines where the asteroid starts on the screen, and then the velocity is
the speed that the asteroid moves toward the bottom of the screen, which
is a measure of the number of pixels that the asteroid moves.

The update method handles when the asteroid becomes visible and
moves the asteroid relative to its velocity. The reset method hides the
asteroid. The hit method updates the status showing whether the asteroid
has been destroyed. The draw method tests to see if the asteroid should be
visible and if so then calls the parent draw method to show it on the screen.

There are several constants required which are stored in the constants.
py file. This is so that they can be made available across multiple files and
classes. This is shown in Listing 11-9.

Listing 11-9. Shared constants in file constants.py

Status for each of the enemies
STATUS_WAITING = 0
STATUS_VISIBLE = 1

315

CHAPTER 11 IMPROVEMENTS AND DEBUGGING

STATUS_DESTROYED
STATUS_OFFSCREEN

2

Delay in seconds for messages on screen
DELAY_TIME = 2

This could be used similar to a system configuration file, but care
needs to be taken when editing the file as it’s a Python file and any errors
could stop the program from running with an obscure error message.

The Asteroid class defines a single asteroid. The Enemies class
provides a collection of Asteroids so that multiple instances can be
handled at the same time. This is shown in Listing 11-10.

Listing 11-10. Enemies class in file enemies.py

import sys

import time

import csv

from constants import *

from pgzero.actor import Actor
from asteroid import Asteroid

Enemies is anything that needs to be destroyed
Could be an asteroid or an enemy fighter etc.

class Enemies:

def init (self, screen size, configfile):
self.screen_size = screen_size
self.asteroids = []
Time that this level started
self.level time = time.time()
self.level end = None
Load the config file

316

CHAPTER 11 IMPROVEMENTS AND DEBUGGING

try:
with open(configfile, 'r') as file:
csv_reader = csv.reader(file)
for enemy details in csv_reader:

if enemy details[1] == "end":
self.level end = float(enemy details[0])
elif enemy details[1] == "asteroid":

start time = float(enemy details[o0])
value 1 is type
image = enemy details[2]
start_pos = (int(enemy details[3]),
int(enemy details[4]))
velocity = float(enemy details[5])
self.asteroids.append(Asteroid(start_
time, image, start pos, velocity))
except IOError:
print ("Error reading configuration file "+configfile)
Just end as cannot play without config file
sys.exit()
except:
print ("Corrupt configuration file "+configfile)
sys.exit()

Next level reset time
def next level (self):
self.level time = time.time()
for this asteroid in self.asteroids:
this asteroid.reset()

def reset (self):
self.level time = time.time()
for this asteroid in self.asteroids:

317

CHAPTER 11 IMPROVEMENTS AND DEBUGGING

this asteroid.reset()
Updates positions of all enemies
def update(self, time interval):
Check for level end reached
if (self.level end != None and
time.time() > self.level time + self.level end):
self.next level()

for this_asteroid in self.asteroids:
this asteroid.update(self.level time, time interval)

Draws all active enemies on the screen
def draw(self, screen):
for this_asteroid in self.asteroids:
this asteroid.draw()

Check if a shot hits something - return True if hit
otherwise return False
def check shot(self, shot):
check for any visible objects colliding with shot
for this asteroid in self.asteroids:
skip any that are not visible
if this asteroid.status != STATUS VISIBLE:
continue
if (this_asteroid.colliderect(shot)):
this asteroid.hit()
return True
return False

Check if crashed - return True if crashed

otherwise return False

def check crash(self, spacecraft, collide points=None):
for this asteroid in self.asteroids:

318

CHAPTER 11 IMPROVEMENTS AND DEBUGGING

skip any that are not visible
if this asteroid.status != STATUS VISIBLE:
continue
Crude detection based on rectangles
if (this_asteroid.colliderect(spacecraft)):
More accurate detection, but more time consuming
(optional if collide points default to None)
if (collide points == None):
this asteroid.status = STATUS DESTROYED
return True
for this point in collide points:
if this asteroid.collidepoint(
spacecraft.x+this point[o],
spacecraft.y+this point[1]):
this asteroid.status = STATUS DESTROYED
return True
return False

The class has been named and written so that it can be extended to
other enemies, not just asteroids. Much of the __init__ method is devoted
to reading the configuration file. The configuration file uses comma-
separated variations that define when each enemy appears, where they
appear, and the speed at which they travel. This is the same as the previous
code in Listing 11-4 but adds an extra option “end” to signify when the end
of the level is reached and instead of printing to the screen a new instance
of the Asteroid object is created. This is stored in the asteroids list.

Other methods handle changing a level including resetting all the
enemies. The update method checks for the end of level time reached,
but otherwise just calls the update for each of the asteroids. The draw
method cycles through the draw of any asteroids that have been created.
The check_shot and check_crash methods check to see if any shots or
the spacecraft has hit an asteroid. If either of these has occurred, then the

319

CHAPTER 11 IMPROVEMENTS AND DEBUGGING

asteroid is set to destroyed. The check_crash method uses a new technique
to detect a collision. Previously the collision has used colliderect which
uses a rectangle that encompasses the entire spacecraft. The problem with
this is that due to the large area at the top of the image which is not part of
the ship, the collision occurs too soon. This can be seen in Figure 11-8
where there is still a significant gap between the spacecraft and the
asteroid, but their rectangles overlap.

Figure 11-8. Problem with colliderect on irregular shapes

To overcome this problem, a list of points is used which is based on the
extremities of the spacecraft.

The Player class is used for variables relating to the player. The code is
included in Listing 11-11.

Listing 11-11. Player class in file player.py

class Player:
def init (self):
self.lives = 3
self.score = 0

def reset (self):
self.lives = 3
self.score = 0

320

CHAPTER 11 IMPROVEMENTS AND DEBUGGING

As you can see, this is a very simple class with only a few lines of code.
It is used to store the number of lives that a player has remaining and to
track the score. This is to avoid having global variables which are difficult
to manage. Instead there is a single instance of the player class which can
be used to hold the number of lives and the score.

The Shot class is a child of the Actor class used to track the shot. This is
shown in Listing 11-12.

Listing 11-12. Player class in file player.py
from pgzero.actor import Actor
class Shot(Actor):

def update(self, time_ interval):
self.y-=3 * 60 * time interval

The shot is basically an actor with the image of the shot fired. Most of
the functionality needed for the shot is provided from the parent class, but
an update method is provided to move the position of the Actor on each
refresh.

The rest of the code is in the spaceshooter.py file which is shown in
Listing 11-13.

Listing 11-13. Space shooter main program file spaceshooter.py

import time

from constants import *

from spaceship import SpaceShip
from player import Player

from shot import Shot

from enemies import Enemies

WIDTH=800
HEIGHT=600

321

CHAPTER 11 IMPROVEMENTS AND DEBUGGING

TITLE="Space shooter game"
ICON="spacecrafticon.png"

scroll speed = 2
player = Player()

spacecraft = SpaceShip("spacecraft”, (400,480))
spacecraft.set_speed(4)

enemies = Enemies((WIDTH,HEIGHT), "enemies.dat")

List to track shots

shots = []

shot last fired timestamp - to ensure don't fire too many shots
shot_last fired = 0

time in seconds

time between shots = 0.5

scroll position = 0

spacecraft hit points
positions relative to spacecraft center which classes as a collide
spacecraft_hit pos = [
(0,-40), (10,-30), (-10,-30), (13,-15), (-13,-15), (25,-3),
(-25,-3),
(46,12), (-46,12), (25,24), (-25,24), (10,27), (-10,27), (0,27)]

Status

"start" = Press fire to start
"game" = Game in progress

"gameover" = Game Over

status = "start"

value for waiting when asking for option
wait timer = 0

322

def

def

CHAPTER 11 IMPROVEMENTS AND DEBUGGING

draw ():

Scrolling background

screen.blit("background”, (0,scroll position-600))
screen.blit("background", (0,scroll position))

enemies.draw(screen)

spacecraft.draw()

Shots

for this shot in shots:
this shot.draw()

screen.draw.text("Score: {}".format(player.score),
fontname="computerspeak”, fontsize=40, topleft=(30,30),
color=(255,255,255))

screen.draw.text("Lives: {}".format(player.lives),
fontname="computerspeak”, fontsize=40, topright=(770,30),
color=(255,255,255))

if status == "start" or status == "start-wait":
screen.draw.text("Press fire to start game",
fontname="computerspeak", fontsize=40,
center=(400,300), color=(255,255,255))

elif status == "gameover" or status == "gameover-wait":
screen.draw.text("Game Over", fontname="computerspeak",
fontsize=40, center=(400,200), color=(255,255,255))

update(time interval):
global status, scroll position, shot last fired, wait timer
Allow Escape to quit straight out of the game regardless
of state of the game
if keyboard.escape:

sys.exit()
Wait on fire key press to start game

323

CHAPTER 11 IMPROVEMENTS AND DEBUGGING

if status == "start":
start timer
wait timer = time.time() + DELAY_ TIME
status = "start-wait"
if status == "start-wait":
if (time.time() < wait_timer):
return
if keyboard.space or keyboard.lshift:
player.reset()
enemies.reset()
status = "game"
elif status == "gameover":
start timer
wait timer = time.time() + DELAY_TIME
status = "gameover-wait"

elif status == "gameover-wait":
if (time.time() < wait timer):
return

if keyboard.space or keyboard.lshift:
status = "start"
elif status == "game":
Scroll screen
scroll position += scroll speed
if (scroll position >= 600):
scroll position = 0

Update existing shots
for this_shot in shots:
Update position of shot
this shot.update(time interval)
if this_shot.y <= 0:
shots.remove(this shot)

324

CHAPTER 11 IMPROVEMENTS AND DEBUGGING

Check if hit asteroid or enemy
elif enemies.check shot(this shot):
player.score += 10
remove shot (otherwise it continues to hit
others)
shots.remove(this shot)
sounds.asteroid explode.play()

if enemies.check crash(spacecraft, spacecraft hit pos):
player.lives -= 1
if player.lives < 1:
status = "gameover"
return
else:
sounds.space_crash.play()

Update enemies after checking for a shot hit
enemies.update(time_interval)

Handle keyboard
if keyboard.up:
spacecraft.move("up")
if keyboard.down:
spacecraft.move("down")
if keyboard.left:
spacecraft.move("left")
if keyboard.right:
spacecraft.move("right")
if keyboard.space or keyboard.lshift:
check if time since last shot reached
if (time.time() > shot_last fired + time between shots):
rest time last fired
shot last fired = time.time()

325

CHAPTER 11 IMPROVEMENTS AND DEBUGGING

shots.append(Shot("shot", (spacecraft.x,spacecra
ft.y-25)))

Play sound of gun firing
sounds.space_gun.play()

Much of this code should be familiar as it uses similar techniques to
those used in other games or in the listings earlier in this chapter.

The main class instances are the player, the spacecraft, and the
enemies. There is also a list for tracking the shots that are fired. The list
spacecraft_hit_pos is used for the collidepoint positions of the spacecraft.

The draw function includes the background scrolling code from
Listing 11-2. It then calls each of the draw methods from the enemies
and spacecraft objects. It also displays text as required, which uses the
Computer Speak font. Details of the font are available from https://
fontstruct.com/fontstructions/show/1436469 and license details
included in the fonts directory.

The update function handles the state of the game, calling the various
update methods and updates the position of the background scroll images.

It updates the shots and removes any shots that have gone off the top
of the screen. It also checks to see if the spacecraft has crashed and update
the lives or change the state to game over. The rest of the code handles key
presses and movement of the craft and creates a new instance of the Shot
class when the fire button is pressed.

The spaceshooter.py file also adds the sound effects through three files
located in the sounds directory: asteroid_explode.wav, space_crash.wav,
and space_gun.wav. These sound files are based on files under a Creative
Commons license which are from the freesound library. I have edited
the sounds using Audacity to change the pitch and filter out a limited
frequency range. Details of the source are included in the license.txt file.

There is another file need to determine when the asteroids should
appear. This is a file called enemies.dat. Unfortunately, Mu can only be
used to edit files ending with .py so another text editor should be used to

326

https://fontstruct.com/fontstructions/show/1436469
https://fontstruct.com/fontstructions/show/1436469

CHAPTER 11

IMPROVEMENTS AND DEBUGGING

edit the file. This is a configuration file which determines when each of the

asteroids will appear. The configuration file is shown in Listing 11-14.

Listing 11-14. Space shooter enemies configuration file enemies.dat

OW VU1 U1 U1 U1 U1 U1 U1 U1 LT H B W W W W W N DNMNDNMNMN PR BB 2P O o o

.3,asteroid,asteroid sml,200,0,4
.9,asteroid,asteroid sml,100,0,4
.9,asteroid,asteroid med,400,0,3
.2,asteroid,asteroid sml,750,0,4
.2,asteroid,asteroid sml,400,0,4
.6,asteroid,asteroid lge,350,0,4
.0,asteroid,asteroid med,200,0,4
.4,asteroid,asteroid sml,150,0,2.
.5,asteroid,asteroid med,450,0,4
.7,asteroid,asteroid med,605,0,4
.0,asteroid,asteroid lge,720,0,4
.1,asteroid,asteroid sml,380,0,4
.6,asteroid,asteroid lge,770,0,4
.8,asteroid,asteroid sml,200,0,3
.8,asteroid,asteroid sml,100,0,4
.1,asteroid,asteroid med,400,0,4
.4,asteroid,asteroid sml,750,0,4.
.0,asteroid,asteroid sml,400,0,4
.0,asteroid,asteroid lge,350,0,3
.0,asteroid,asteroid med,200,0,4
.2,asteroid,asteroid sml,150,0,4
.2,asteroid,asteroid sml,600,0,3
.2,asteroid,asteroid med,620,0,4
.2,asteroid,asteroid med,450,0,5
.5,asteroid,asteroid lge,720,0,4
.6,asteroid,asteroid sml,380,0,4
.0,asteroid,asteroid lge,770,0,4
.0,end

327

CHAPTER 11 IMPROVEMENTS AND DEBUGGING

There are three different images referenced in the file, asteroid_sml.png,
asteroid_med.png, and asteroid_lge.png, which are in the images directory.

There is also an icon file called spacecrafticon.png used for the icon
shown on the application title bar.

The files enemies.dat and spacecrafticon.png need to be in the
directory where the program is running. When running from the
command line, this is normally where the spaceshooter.py file is located. If
running the game from the Mu editor, then these two files will need to be
in the mu_code directory.

Summary

The space shooter game has used various techniques that have been
covered throughout the book. There are still other features that could be
added. One feature that would be useful would be a high score such as
the one added to the compass game. Another would be for a different type
of enemy, perhaps one that could fire back instead of just crashing into
the spacecraft. If you don't like the retro feel, then you could change the
images to ones with better quality graphics.

Where Next?

Looking back through the games in the book, you can see that many of the
games use the same or similar techniques. These are the essential skills
needed to start creating games, but there is still lots more to learn. The best
way to learn is by having a go write some code and create your own game.

You could start with one of the games from this book adding new
features. You could start with one of the existing games and change the
main player image to completely transform the game. Perhaps changing
the spacecraft for a racing car and replacing the background with a
racetrack that the car must navigate.

328

CHAPTER 11 IMPROVEMENTS AND DEBUGGING

Feeling more adventurous? Now, that you have seen these
implemented in different games, you will hopefully have learned enough
to design and create your own games. The appendicies have some useful
links to more information that you may find useful; this includes the
Pygame Zero code as well as Pygame which can be used together.

Hopefully this has shown that programming games is something that is
open to everyone with some programming experience.

I'will be developing some of these games further or feel free to create your
own versions. Any new versions I make will be shared using social media
PenguinTutor on Twitter, Facebook, and YouTube. Feel free to share any
improvements you make or anything that you create inspired by this book.

329

APPENDIX A

Quick Reference

This is a quick reference summary of some useful keywords, modules, and
methods that are useful when programming in Pygame Zero.

Pygame Zero
Useful Keywords

WIDTH = 800 # Width of screen in pixels
HEIGHT = 600 # Height of screen in pixels
TITLE = "Title of game" # Title bar text

ICON = "filename" # ICON image

Actor (Sprite)

Basic sprite operations:

sprite = Actor ('filename") # Create sprite
sprite.topright = x_pos,y pos # Move top right to position
sprite.x = x_pos # Change x position

sprite.y =y pos # Change y position

sprite.image = 'newfilename') # Change image

© Stewart Watkiss 2020 331
S. Watkiss, Beginning Game Programming with Pygame Zero,
https://doi.org/10.1007/978-1-4842-5650-3

https://doi.org/10.1007/978-1-4842-5650-3

APPENDIXA QUICK REFERENCE
Detect collisions:

sprite.collidepoint(pos) # Collide with position
sprite.colliderect(rect) # Collide with rect or another sprite

Background Image or Color

For a background image, include this in the draw function:

screen.blit("imagefile", (0,0)) # Place image at 0,0
For a background color, include this in the draw function:

screen.fill ((red,green,blue))

Sound Effects

Play a sound effect from the sounds folder with a file filename.wav or
filename.mp3.

sounds.filename.play()

Mouse Events

A common event is to check for a button click.

def on_mouse_down(pos, button):
print ("Mouse button {}, clicked at {}".format(button, pos))

Other useful functions include on_mouse_up and on_mouse_move.

The button numbers are as follows:
1. Left button
2. Middle button

3. Right button

332

APPENDIXA QUICK REFERENCE

4. Scroll forward

5. Scroll backward

Keyboard Events

Detect a keyboard event using similar methods to the mouse handling.

def on_key down (key, mod, unicode):
print ("Key {}, mod {}, char {}".format(key, mod, unicode))

The key value is the numerical value assigned to the key, mod is a
bitmask for modifiers that are pressed at the time (shift has value 1), and
unicode is the letter that is pressed.

You can also test if specific keys are pressed using

keyboard. <keyname>

Displaying Text

There are lots of options that can be applied when displaying text.
Many of these are optional. Some common ones are shown here, but

there are more.

screen.draw.text(
"The text",
(x_pos, y_pos),
fontname="computerspeak”, fontsize=40,
color=(red,green,blue),
shadow=(2,2), scolor=(red,green,blue)

)

333

APPENDIXA QUICK REFERENCE

Python 3

These are lots of different techniques that are used in game programming.
These are some useful ones.

Lists

Create a list.

list1a = ["valueo", "value1", "value2"]
Access a list through numerical index.

print (list[1])

Index for lists starts at 0.

Dictionaries
Dictionaries are lists with a key for the index.
dictionaryl = {'key1':'valuel', 'key2':'value2'}
Access using the key as the index.
print (dictionaryi['key1'])
Access all keys.
dictionary1.keys()
Access all values.

dictionaryl.values()

334

APPENDIXA QUICK REFERENCE

Conditional Statements (if, elif, else)

Conditional statements are used to run the appropriate action depending
upon the boolean output of the condition.

if (conditioni):
actioni()
elif (condition2):
action2()
else:
action3()

Loops

While loop across set number of loops:

num_times = 0

while (num times < 10):
print ("This is line number "+str(num times))
num_times += 1

For loop across range of values:

for x in range(0,10):
print ("This is line number "+str(x))

For loop over a list:

for this entry in this list:
print ("This entry "+this_entry)

To exit a loop:
break
To continue to the start of the loop:

continue

335

APPENDIXA QUICK REFERENCE

Python 3 Modules

These are part of the core modules which are included in all Python
installs.

Random

First the random module must be imported.
import random

Random number between 0.0 and 1.0:
random.random()

Random integer:
random.randint (0,10)

Select a random entry.

random.choice (list)

Math

The math module includes numerous mathematical functions. First
import the module.

import math

Round the value in x up to the nearest whole integer.
math.ceil(x)

Round the value in x down to the nearest whole integer.

math.floor(x)

336

APPENDIXA QUICK REFERENCE
Convert angle x from radians to degrees.

math.degrees(x)
Convert angle x from degrees to radians.

math.radians(x)
Trigonometry functions using angle in radians.

math.cos(x)
math.sin(x)
math.tan(x)

Pi constant for x:

math.pi

Time

The time module provides the time relative to the epoch. The epoch is
system dependent which for Linux is January 1, 1970, 00:00:00 (UTC).
The time module is useful for relative times for use within a game. For the
actual date and time, see the datetime module. First import the module.

import time
Get time as a floating-point number in seconds from the epoch.
time.time()

Suspend the program for a number of seconds. This is not normally
used for games created using Pygame Zero.

time.sleep(secs)

337

APPENDIXA QUICK REFERENCE

DateTime

The datetime module is used for the date and time.
import datetime

Get current date and time. When printed, display using yyyy-mm-dd
hh:mm:ss.microseconds.

now = datetime.datetime.now()
Get the different components of the date.

year = now.year
month = now.month
day = now.day

hour = now.hour
minute = now.minute
second

now.second
microsecond = now.microsecond

Format the date and time into a string (yyyy-mm-dd hh:mm:ss).

now.strftime("%Y-%m-%d %H:%M.%S")

The different options can be rearranged into an appropriate date format.

338

APPENDIX B

More Information

These are some links to the official documentation where more

information can be found.

Python

Python 3 documentation:
https://docs.python.org/3/
Python 3 string methods:
https://docs.python.org/3/1library/stdtypes.html#text-
sequence-type-str
Python 3 data structures (including lists and dictionaries):
https://docs.python.org/3/tutorial/datastructures.html
Python 3 control flow (if statement and loops):
https://docs.python.org/3/tutorial/controlflow.html

Pygame Zero

Pygame Zero documentation:
https://pygame-zero.readthedocs.io/en/stable/

© Stewart Watkiss 2020
S. Watkiss, Beginning Game Programming with Pygame Zero,
https://doi.org/10.1007/978-1-4842-5650-3

339

https://doi.org/10.1007/978-1-4842-5650-3
https://docs.python.org/3/
https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str
https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str
https://docs.python.org/3/tutorial/datastructures.html
https://docs.python.org/3/tutorial/controlflow.html
https://pygame-zero.readthedocs.io/en/stable/

APPENDIXB MORE INFORMATION

Pygame

Pygame documentation:

www . pygame .org/docs/

Pygame color names (this is a link to the actual source code for
Pygame):

https://github.com/pygame/pygame/blob/master/src_py/
colordict.py

340

http://www.pygame.org/docs/
https://github.com/pygame/pygame/blob/master/src_py/colordict.py
https://github.com/pygame/pygame/blob/master/src_py/colordict.py

Index

A
Agile programming
features, 5
style methodology, 4
all cards list, 239
aplay command, 184
arecord, 186
Artificial intelligence (AI), 243
Artificial sound effects, 182, 183
Audacity
audio formats, conversion, 189
audio from video, 189
defined, 187
sounds record, 188
trim files, 189
Audio, Raspberry Pi
advanced options, 185
aplay command, 184
arecord, 186, 187
USB microphone, 183, 185-186

B

Battleships, Al
Ai class, 284-286
classic game, 271
directory, 273
final game, 291

© Stewart Watkiss 2020

fire_result method, 290

fleet class, 277, 278

get_random method, 288

main battleship.py
program file, 274-276

non_shots list, 288

object-oriented programming
methodology, 273

paper-based game, 271

random.choice method, 288

random shots with ship
awareness, 273

ship class, 279-282

stages, 287, 288

strategies, 272

traditional board game, 272

Blender

design tool, 127

image menu option, 128

missile, 3D model, 128

Raspberry Pi, 127

Break statement, 41

C

Card class
data abstraction, 229
equals method, 229

341

S. Watkiss, Beginning Game Programming with Pygame Zero,

https://doi.org/10.1007/978-1-4842-5650-3

https://doi.org/10.1007/978-1-4842-5650-3

INDEX

Card class (cont.)

images, 228

inheritance, 225-227

pgzero.actor, 227

status, 228
card_clicked method, 233
check_crash methods, 319
check _shot method, 319
CMYK color model, 131
collidepoint method, 240
collideRect method, 74
Color bouncing ball

bouncingball.py, 136

Breakout, 135

color wheel, 138

draw function, 138

update function, 138
Color mixing

CMYK model, 131

color codes, 132, 133

color words, 134

RGB scheme, 132
Color Selector

creation, 141-143

mouse events, 140

program, 139
Comma-separated values (CSV)

file, 298

IOError reading, 301

reading demo, 299

source code, reading, 300
Compass game

adding obstacles, 100-104

collision detection, 84

342

Cub Scouts, 52

direction keys, 86-89

global variable direction, 85

image background, 83

update timer, 86
compassgame_ prefix, 57
Compiled vs. interpreted, 7, 8
Conditional statements, 335

comparison operators, 33

if, 32

logical operators, 34
Continue statement, 41

D

deal_cards function, 240
Debugging
error message, 307, 308
IDE tools, 309
performance, 310, 311
print commands, 308
variable name, 308
def draw(), 56
Design
adding high score, 104-107
challenge, 92, 93
character, 94
choices and consequences, 93
compass game, 97
education, 95
factors, 91
guidelines, 92
historical relevance, 95
inclusivity, 96

rewards and progress, 94
storyline, 95
target age, 96

try except exception handling,

107-110
updated timer, 97
decay formulas, 99, 100
formula values, 99
module installation, 98
setup.cfg, 98
Dictionaries, 30, 334
draw and update functions, 238
draw_piano function, 204
draw.rect statements, 77
draw_shell function, 157
draw_tank function, 150

E

end_level_reached function, 240

F

fire_result method, 288
fire_shot method, 287
Font directory, 296
Forever loop, 41

For loop, 39, 40
Freesound, 193

G, H

GamePlay class, 239
gameplay.py, 230
method, 233

INDEX

refactoring the code, 229
variables, 232
Games
copyright, 2
creating resources, 3
patents, 2
trademarks, 2
Game state
color strings, 72
compass, points, 69
draw function, 70
game_state, 68
get_new_direction function, 70
global direction line, 69
handle key presses, 68
optional arguments, 72
player.draw, 71
status, 68
target_direction, 68, 70
tracking, 67
get_card method, 255
get_random method, 288
get_time_remaining
method, 225, 240
global_function, 46
GNU Image Manipulation
Program (GIMP)
castle outline selection, 123
computer image, 120
exported image, 124
layer dialog, 121
photo of castle, 121
pixel art sprite, 125
creation, 125

343

INDEX

GNU Image Manipulation
Program (GIMP) (cont.)

line of symmetry, 126
spacecraft, 126
select and fill tools, 122
tools, 120
Graphic design
bitmap images, 113, 114
code creation, 129
licenses, 130
theme, 112,113
2D images, 111
vector images, 115, 116
Graphics-intensive game, 8
guess_remember_recent
method, 270
guess_remember_sometimes
method, 269

includes_grid_position
method, 282

Inheritance

attribute, 217

child class, 217

parent and child classes, 216
__init_ method, 211, 224, 232
Inkscape

GIMP, 120

image creation, 119

operating systems, 119

SVG files, 119

344

J, K
Joke quiz
arguments, 17
auto-indenting, 16
conditional statements, 18
input function, 18
joke.py game, output, 17
print function, 18
Python program, 15, 16
Joysticks/gamepads, 301

L

LibreOffice draw
Pygame Zero, 116
shape drawing tools, 118
sprite image, 117
Lists, 27, 334
local_function, 46
Loops, 37, 335

M,N

Machine learning, 243

make_guess method, 270

Matching pairs memory game
adjectives, 221
attribute, 222
digital version, 219
guidelines, 221
program file, 233-238
screenshot, 220

math.ceil function, 225

Memory game, Al
CardTable, 245-248
class file, 248-250
GamePlay class, 251-253
inheritance, 245
level of difficulty, 270
memory.py file, 258-260, 262,
263, 265
player class file, 256, 257
rewriting the code, 244
Timer class file, 254
UML class diagram, 244, 245
updated PlayerAi class, 266-268
Mouse events, 332
Move_actor, 63
Mu editor
basic program, 12
command line, 14
Hello World program, 12
REPL, 14, 15
terminal program, 13
text-based program, 11, 12
Music, playing
backing.ogg, 195
music directory, 194
piano game
chords, 203
code, 197-201, 203
draw function, 205
note_position, 204
Raspberry Pi touch
screen, 197
setup, 204
tempo, 203

INDEX

tone generator, 195

update function, 205

virtual keyboard, 196
play_once method, 195
WAV files, 195

O

Object-oriented programming
(00P)
attributes, 213
class, 209, 210
creating instances of a class, 212
data abstraction, 208, 215
design, 218, 219
encapsulation, 208, 215
inheritance, 208
local variables, 211
method, 210
polymorphism, 208
screen.draw operations, 211
self keyword, 210
terminology, 213, 214
on_mouse_down function, 204,
257,277, 282
othercard argument, 229

P, Q

Picade, arcade game
cabinet, 302
HAT, 302
Raspberry Pi, 304
tank game, 303

345

INDEX

Player.click_order variable, 270
player_keyboard function, 164
player_step_count, 65
Playing games, 3
pygame.draw.polygon method, 150
Pygame Zero, 333
adding actor, 57
compassgame-player.py, 59, 60
coordinate system, 58
screen coordinates, 59
sprite creation, 58
background image, 55, 56, 332
boilerplate code, 51
collision detecting
bounding rectangle, 74
compassgame-collidel.py, 76
edge of the screen, 75
threshold, 73
compass game
(see Compass game)
countdown timer, 81-83
development, 51
documentation, 339, 340
ICON option, 294, 295
keywords, 331
movement, 64-68
Mu editor, 54, 55
multiple platforms, 51
scoring mechanism, 78-80
sprite (Actor)
game programming, 60
move character, 61, 62
new_direction
variable, 63

346

sprite operations, 331
TITLE variable, 294, 295
update function, 77, 78
Python, 6, 7
conditional statements
(see Conditional statements)
datetime module, 338
dictionary, 30, 31
documentation, 339
functions, 42, 43
lists, 27-29
math module, 336, 337
random module, 336
refactoring the
code, 47, 48
time module, 337
tuple, 31
variable scope, 44-46

R

random.choice method, 288
random.shuffle function, 240
Raspberry Pi

learning Python, 8

Mu editor, 9

programming environments, 10

Raspbian, 9
reach_target function, 78
Read-eval-print loop (REPL), 14
RetroPie

installation, 304

new menu, 305

Pygame Zero, 306

Raspberry Pi, 304
script game, 305
Reward-based system, 110
Rubber duck debugging, 5, 309, 310

S

screen.blit, 56
screen.draw.text(), 70
Scrolling screen, 296-298
select_card method, 255
set_actor_image, 65
set_high_score function, 106
setup_trajectory function, 160
Simple quiz game, 35-37
Sonic Pi
create music, 190
defined, 190
musical tune, 191
Raspbian, 190
WAV file, 192
Sound Bible, 193
Sound effects, 332
download, 193
recording, 181-182
sounds.explode.play(), 193, 194
sounds.tankfire.play() entry,
194
Space shooter game
Asteroid class, 314
class, 313
configuration file, 319, 327, 328
detect collision, 320
draw function, 326

INDEX

enemies class, 316-318
HAT, 302
irregular shapes, 320
keyboard controls, 312
Pimoroni Picade, 302
player class, 320, 321
program file, 321-325
screenshots, 312
shared constants, 315
sound effects, 326
spacecrafticon.png, 328
start_pos, 315
update method, 315
Speech/pattern recognition, 243
Sprites, 57
start_count_down
method, 225
Strings and format
concatenation, 25
f-strings, 26
joke quiz program, 27
printf-style formatting, 25
special character
sequences, 24
string.split method, 299

-

Tank Game Zero
code, 165, 168-170, 173, 175,
176,178,179
collisions detection, 161-163
dynamic landscape, 152-154,
156, 157

347

INDEX

Tank Game Zero (cont.)
game states, 164
improvement, 179, 180
setup function, 164
trajectory
DISTANCE_CONSTANT, 161
GRAVITY_CONSTANT, 161
tanktrajectory.py, 157-160
vector image
calc_gun_positions, 151, 152
display tank, 146, 148, 149
draw function, 149
draw_tank function, 150
gun_angle, 152
gun_vector, 152
shapes, 146
track_positions, 150
Timer class
constructor, 224
tracking, 223
timer_decrement variable, 100
Tone generator, 195
Tuples, 31

348

U

update() method, 81
update_shell_position function,
157, 160

\'

Variables

arithmetic operations, 22
booleans, 20
character, 20
floating-point

value, 19, 23
integers (int), 19
operator, 22
str function, 21
strings, 20
underscore character, 19

W XY,Z
while loop, 38, 39
with keyword, 301

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Creating Computer Games
	Inspiration Rather Than Imitation
	Playing Games
	Create the Resources
	Development Cycle
	Making Programming Enjoyable
	Python and Pygame Zero
	Compiled vs. Interpreted
	Choosing a Programming Environment
	Summary

	Chapter 2: Getting Started with Python
	Using the Mu Editor
	Python Programming
	Variables
	Strings and Format
	Lists
	Dictionaries
	Tuples
	Conditional Statements (if, elif, else)
	Simple Quiz Game
	Loops – While, For
	While Loop
	For Loop
	Forever Loop – while True
	Changing Loop Flow – break and continue

	Functions
	Variable Scope

	Refactoring the Code
	Further Improvements
	Summary

	Chapter 3: Pygame Zero
	Pygame Zero Development
	Compass Game
	Required Files

	Running Mu in Pygame Zero Mode
	Adding a Background Image
	Adding an Actor
	Moving the Sprite Around the Screen
	Making the Movements More Realistic
	Keeping Game State
	Detecting Collisions
	Change in Direction
	Keeping Score
	Adding a Countdown Timer
	Final Code for Compass Game Version 0.1
	Summary

	Chapter 4: Game Design
	What Makes a Game Enjoyable?
	Challenging but Achievable
	Choices and Consequences
	Rewards and Progress
	Likeable Characters
	Storyline/Historical Relevance
	Educational
	Takes an Appropriate Level of Time to Play
	Inclusivity
	Age Appropriate
	Improving Compass Game
	Updated Timer
	Adding Obstacles
	Adding a High Score
	Try and Except

	Summary

	Chapter 5: Graphic Design
	Creating a Theme
	File Formats
	Bitmap Images
	Vector Images

	Useful Tools
	LibreOffice Draw
	Inkscape
	GIMP
	Creating a Computer Image from a Drawing or Photo
	Creating a Pixel Art Sprite

	Blender
	Create Using Code

	Other Sources
	Summary

	Chapter 6: Colors
	Color Mixing
	Bouncing Ball
	Background Color Selector
	Handling Mouse Events
	Creating the Color Selector

	Summary

	Chapter 7: Tank Game Zero
	Vector Image of Tank
	Creating a Dynamic Landscape
	Calculating the Trajectory
	Detecting a Collision
	Complete Game Code
	Improving the Game
	Summary

	Chapter 8: Sound
	Recording Sound Effects
	Creating Artificial Sound Effects
	Recording Audio on the Raspberry Pi
	Connecting a USB Microphone
	Using arecord

	Audacity
	Recording Sounds with Audacity
	Convert Audio Formats
	Extract Audio from Video Files
	Trim Audio Files

	Creating Music with Sonic Pi
	Downloading Free Sounds and Music
	Adding Sound Effects in Pygame Zero
	Playing Music in Pygame Zero
	Piano Game Created with Tones

	Summary

	Chapter 9: Object-Oriented Programming
	What Is Object-Oriented Programming?
	OOP Classes and Objects
	Creating a Class, Attributes, and Methods
	Creating an Instance of a Class (Object)
	Accessing Attributes of an Object
	Terminology

	Encapsulation and Data Abstraction
	Inheritance
	Design for Object-Oriented Programming
	Matching Pairs Memory Game
	Creating the Classes
	Timer Class
	Card Class
	GamePlay Class

	Program File

	Summary

	Chapter 10: Artificial Intelligence
	Memory Game with AI
	A Good Memory

	Battleships
	Summary

	Chapter 11: Improvements and Debugging
	Additional Techniques
	More About Pygame Zero
	More About Pygame
	Adding Fonts
	Scrolling Screen
	Reading from a CSV config file
	Joysticks and Gamepads
	Creating Arcade Games for Picade
	RetroPie

	Debugging
	Error Messages
	Check for Variable Names
	Print Statements
	IDE Debugging Tools
	Rubber Duck Debugging
	Performance

	Space Shooter Game
	Summary
	Where Next?

	Appendix A:
Quick Reference
	Pygame Zero
	Useful Keywords
	Actor (Sprite)
	Background Image or Color
	Sound Effects
	Mouse Events
	Keyboard Events
	Displaying Text

	Python 3
	Lists
	Dictionaries
	Conditional Statements (if, elif, else)
	Loops

	Python 3 Modules
	Random
	Math
	Time
	DateTime

	Appendix B:
More Information
	Python
	Pygame Zero
	Pygame

	Index

