
T E C H N O L O G Y I N A C T I O N ™

Beginning Game
Programming
with Pygame Zero

Coding Interactive Games on
Raspberry Pi Using Python
—
Stewart Watkiss

Beginning Game
Programming with

Pygame Zero
Coding Interactive Games on
Raspberry Pi Using Python

Stewart Watkiss

Beginning Game Programming with Pygame Zero: Coding Interactive
Games on Raspberry Pi Using Python

ISBN-13 (pbk): 978-1-4842-5649-7		 ISBN-13 (electronic): 978-1-4842-5650-3
https://doi.org/10.1007/978-1-4842-5650-3

Copyright © 2020 by Stewart Watkiss

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology now known or hereafter
developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use the
names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress
Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business
Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book's product page, located at www.apress.com/
978-1-4842-5649-7. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Stewart Watkiss
Redditch, UK

https://doi.org/10.1007/978-1-4842-5650-3

For my children Oliver and Amelia.
You are the inspiration in my life.

v

Chapter 1: Creating Computer Games���1

Inspiration Rather Than Imitation���2

Playing Games���3

Create the Resources���3

Development Cycle��4

Making Programming Enjoyable��6

Python and Pygame Zero���6

Compiled vs. Interpreted��7

Choosing a Programming Environment���8

Summary���10

Chapter 2: Getting Started with Python���11

Using the Mu Editor��11

Python Programming���15

Variables��19

Strings and Format��24

Lists���27

Table of Contents

About the Author��xiii

About the Technical Reviewer���xv

Acknowledgments���xvii

Introduction��xix

vi

Dictionaries��30

Tuples���31

Conditional Statements (if, elif, else)��31

Simple Quiz Game��35

Loops – While, For��37

While Loop��38

For Loop��39

Forever Loop – while True��41

Changing Loop Flow – break and continue��41

Functions���42

Variable Scope��44

Refactoring the Code���47

Further Improvements���48

Summary���49

Chapter 3: Pygame Zero��51

Pygame Zero Development��51

Compass Game��52

Required Files���53

Running Mu in Pygame Zero Mode��54

Adding a Background Image��55

Adding an Actor��57

Moving the Sprite Around the Screen��60

Making the Movements More Realistic��63

Keeping Game State��67

Detecting Collisions���73

Change in Direction��77

Keeping Score��78

Table of ContentsTable of Contents

vii

Adding a Countdown Timer��81

Final Code for Compass Game Version 0.1��83

Summary���89

Chapter 4: Game Design��91

What Makes a Game Enjoyable?��91

Challenging but Achievable��92

Choices and Consequences���93

Rewards and Progress���94

Likeable Characters���94

Storyline/Historical Relevance���95

Educational��95

Takes an Appropriate Level of Time to Play���95

Inclusivity���96

Age Appropriate���96

Improving Compass Game���97

Updated Timer��97

Adding Obstacles���100

Adding a High Score��104

Try and Except��107

Summary���110

Chapter 5: Graphic Design���111

Creating a Theme���112

File Formats���113

Bitmap Images���113

Vector Images���115

Table of ContentsTable of Contents

viii

Useful Tools��116

LibreOffice Draw���116

Inkscape���118

GIMP���120

Blender���127

Create Using Code��129

Other Sources��130

Summary���130

Chapter 6: Colors���131

Color Mixing���131

Bouncing Ball���135

Background Color Selector��139

Handling Mouse Events��140

Creating the Color Selector��141

Summary���143

Chapter 7: Tank Game Zero��145

Vector Image of Tank��145

Creating a Dynamic Landscape���152

Calculating the Trajectory��157

Detecting a Collision��161

Complete Game Code���163

Improving the Game���179

Summary���180

Chapter 8: Sound���181

Recording Sound Effects��181

Creating Artificial Sound Effects��182

Table of ContentsTable of Contents

ix

Recording Audio on the Raspberry Pi��183

Connecting a USB Microphone���185

Using arecord���186

Audacity���187

Recording Sounds with Audacity��188

Creating Music with Sonic Pi���190

Downloading Free Sounds and Music��193

Adding Sound Effects in Pygame Zero���193

Playing Music in Pygame Zero���194

Piano Game Created with Tones���195

Summary���205

Chapter 9: Object-Oriented Programming���207

What Is Object-Oriented Programming?��207

OOP Classes and Objects��209

Creating a Class, Attributes, and Methods��209

Creating an Instance of a Class (Object)���211

Accessing Attributes of an Object��213

Terminology��213

Encapsulation and Data Abstraction��215

Inheritance���216

Design for Object-Oriented Programming��218

Matching Pairs Memory Game���219

Creating the Classes���223

Program File���233

Summary���241

Table of ContentsTable of Contents

x

Chapter 10: Artificial Intelligence��243

Memory Game with AI��244

A Good Memory��263

Battleships���271

Summary���291

Chapter 11: Improvements and Debugging���������������������������������������293

Additional Techniques��293

More About Pygame Zero���294

More About Pygame���295

Adding Fonts���296

Scrolling Screen���296

Reading from a CSV config file���298

Joysticks and Gamepads��301

Creating Arcade Games for Picade���302

RetroPie��304

Debugging��306

Error Messages��307

Check for Variable Names��308

Print Statements���308

IDE Debugging Tools���309

Rubber Duck Debugging���309

Performance���310

Space Shooter Game���312

Summary���328

Where Next?���328

Table of ContentsTable of Contents

xi

Appendix A: Quick Reference��331

Pygame Zero��331

�Useful Keywords���331

�Actor (Sprite)��331

�Background Image or Color��332

�Sound Effects���332

�Mouse Events���332

�Keyboard Events���333

�Displaying Text��333

Python 3��� �334

�Lists�� �334

�Dictionaries�� �334

�Conditional Statements (if, elif, else)�� �335

�Loops�� �335

Python 3 Modules��336

�Random��336

�Math���336

�Time��337

�DateTime��338

Appendix B: More Information���339

Python��339

Pygame Zero��339

Pygame��340

Index��341

Table of ContentsTable of Contents

xiii

About the Author

Stewart Watkiss is a keen maker and

programmer. He has a master’s degree in

electronic engineering from the University

of Hull and a master’s degree in computer

science from Georgia Institute of Technology.

He has over 20 years of experience in the

IT industry, working in computer networking,

Linux system administration, technical

support, and cyber security. While working

toward Linux certification, he created the web

site www.penguintutor.com. The web site originally provided information

for those studying toward certification but has since added information on

electronics, projects, and learning computer programming.

Stewart often gives talks and runs workshops at local Raspberry Pi events.

He is also a STEM Ambassador and Code Club volunteer, helping to support

teachers and children learning programming.

http://www.penguintutor.com/

xv

About the Technical Reviewer

Sai Yamanoor is an embedded systems engineer working for an industrial

gases company in Buffalo, NY. His interests, deeply rooted in DIY and

open source hardware, include developing gadgets that aid behavior

modification. He has published two books with his brother, and in his

spare time, he likes to contribute to build things that improve quality of

life. You can find his project portfolio at http://saiyamanoor.com.

https://urldefense.proofpoint.com/v2/url?u=http-3A__saiyamanoor.com_&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=E3AfiyxVwcAufBzWHjWU0E9DTfK7pUxOd3Vq_E0yK-A&m=XnS36DAEF2AJNAgdQVt3Udw3zJxHjAlGZxueTpbVaE4&s=bNX8CY93lJm-jjfZ643KcRLONwzXHQQrMMP4GS_i2ho&e=#_blank

xvii

Acknowledgments

My family has been very supportive in my maker activities and while

writing this book. Thank you to my wife Sarah for her support and to my

children Oliver and Amelia who have been a source of inspiration and help

while writing the book. Oliver has been particularly helpful in testing the

games and giving me feedback, and my daughter’s knowledge of music

was a great help while writing about making sounds.

I’d also like to thank the team behind the Raspberry Pi including the

Raspberry Pi Foundation and the community that has grown around it.

I’ve also been inspired by the work of Nicholas Tollervey who created the

Mu editor that is used throughout the book and Daniel Pope who created

Pygame Zero, without which the book wouldn’t have been possible.

I’m also grateful to all the support from the team at Apress, to Jessica

Vakili for her support in putting the book together, and to Sai Yamanoor

for the technical review. There are also many other people who helped to

contribute through reviews and getting the book production ready.

xix

Introduction

This book is designed for anyone wanting to learn programming through

making fun games. It will also be useful for someone who has already

learned the basics of programming and wants to learn how to add fun

graphics and create their own games.

It is focused on making the games rather than teaching programming

theory. In this book, you're more likely to see code on how gravity affects

a missile’s trajectory rather than the most efficient way to search through

data. Even then the code is kept simple as games should be more about

playability rather than complex physics.

The book starts with a simple text-based game to cover the basics

of programming in Python. It then quickly moves on to creating simple

graphical games in Pygame Zero. The book introduces object-oriented

programming to make it easier to make more complex games. It also

explains how you can create your own graphics and sounds.

Throughout the book, you will get to apply the new techniques in a

variety of 2D games. As well as some new games, there are some variations

on class games including a space shooter game and battleships.

The games are designed to run on the Raspberry Pi, although they can

be used on other platforms that support Python 3 with Pygame Zero.

The games you make will be playable and hopefully fun to play. They are

only the beginning. If all you ever do is copy the code from this book, then you

are only going to learn so much, but by adapting and improving these games,

they can become more enjoyable as well as helping you learn more than you

xx

ever will from just typing out code that's written down for you. For each of the

games, there is a list of suggestions for you to develop the games further.

All the code and resource files used in the book are available from

the page to accompany the book at https://www.apress.com/gb/

book/9781484256497.

IntroductionIntroduction

https://www.apress.com/gb/book/9781484256497
https://www.apress.com/gb/book/9781484256497

1© Stewart Watkiss 2020
S. Watkiss, Beginning Game Programming with Pygame Zero,
https://doi.org/10.1007/978-1-4842-5650-3_1

CHAPTER 1

Creating Computer
Games
Writing computer games is a great way to make programming enjoyable,

but it does have its disadvantages. The main disadvantage is that to make

a working game you need to write a lot of code which takes a lot of time.

A full working game is usually too much for a beginner programming book.

Fear not, as this book uses worked examples and takes advantage of the

simplicity of Python and Pygame Zero to make it as painless as possible.

In this book you will create a few different games to illustrate different

programming techniques.

Creating a game is more than just writing code. This book covers

some of the other aspects of creating a computer game as well as the

programming.

First you need an idea. That idea then needs to be developed to come

up with a set of rules and controls. It will likely need additional resources

such as images and sounds. You will then need to write the code to make it

happen. Next (and now comes the fun part) you need to test it to find out

what works and how it can be improved. You then go back to the start to

redefine the idea and repeat the programming cycle.

In this chapter you’ll also find out about Python and Pygame Zero and

some of the reasons that make it suitable for game programming.

2

�Inspiration Rather Than Imitation
The first step is about coming up with an idea. For this you may take

inspiration from games you have played, which can be existing computer

games, card games, board games, or playground games. Or you could

come up with a completely new game, perhaps taking inspiration from

activities in the real world. If you are looking to create a game based on

something that has already been done before, then you do need to be

careful about infringing on other people’s intellectual property, including

copyright, patents, and trademarks.

Like many laws, the rules protecting games and computer programs

are complex and vary among different countries. It would not be possible

to provide real guidance on the complex legal intricacies, but there are

some general rules that you should follow.

Copyright can protect various aspects of work such as words, graphics,

code, and music. Copyright does not however cover the idea of the game

or how it’s played. The work is automatically copyrighted when it is created

and doesn’t normally need a specific copyright notice or registration,

although that can provide additional protection.

Patents are far more complex and can cover ideas and concepts.

Patents are intended for inventions, and in the case of game programming,

they can be granted for specific technical aspect of a game. For example,

there are patents covering the way that directions are shown in a car racing

game and how players are identified in a soccer game. It’s incredibly

difficult to know about what patents may relate to a game you are

developing. If you are creating a commercial game, then you may want to

look at getting professional advice on patents.

Trademarks are a way to protect names and logos, and in the case of

computer games, they can include the appearance of the characters. This

may prevent you from using a recognizable character if that character

Chapter 1 Creating Computer Games

3

is protected under a trademark. If you want to use any character that is

protected under a trademark, then you will need to get a license granting

you permission from the trademark owner.

�Playing Games
The best way to learn about what makes a good game is to play them.

Rather than just playing one game, play lots of different ones. Play good

games and bad games and think about what makes the game good and bad.

Are you getting bored playing the game or does it have you hooked

so you can’t drag yourself away from the screen? Which games make you

want to keep playing and why?

As mentioned previously you don’t just need to take inspiration from

computer games. Play some board games as well. Think about what works

well and what doesn’t. Think about the differences between playing a

game using physical objects and when it is on a computer screen; there are

likely to be both advantages and disadvantages to both.

�Create the Resources
When looking at additional resources, you will likely be thinking about

graphics and sound effects. There are other resources that you may need

including introductory videos, tutorials, and background music.

For most games you are going to want to include graphics. The look

and size of these graphics can determine the programming. For example,

if you have a character that needs to move around the screen, then you

will need to know how the character moves (whether its feet move) and

the amount of space that is needed for that character to move around. It

therefore makes sense to at least create an outline of any graphics prior to

starting programming.

Chapter 1 Creating Computer Games

4

Sound effects can sometimes be left until later in the project, although

they are often still an important part of creating an overall game. If leaving

them to be added later, then it is still a good idea to think about when they

will be used and what impact they will have when designing the game.

�Development Cycle
The main buzzword relating to programming is agile. Agile programming

is a way of developing software creating code in small increments

implementing a feature at a time and then going back to add more code.

The term agile programming is normally used to refer to a programming

technique used for developing software across a team with regular reviews

and team meetings (called scrums), but a similar technique can be used

when programming on your own.

Some key points about developing code using an agile style

methodology:

	 1.	 Gather requirements. Meet with end users or review

your ideas with yourself as though you are the customer.

	 2.	 Plan the development. Split the work into small

chunks that can be implemented a bit at a time.

	 3.	 Design the code to complete the current feature.

	 4.	 Write the code.

	 5.	 Test the code. As well as testing the standalone code,

test how it interacts with other parts.

	 6.	 Assess whether the code is still in line with the

requirements.

	 7.	 Return to 1. Consider the code that has been created.

Is that compatible with what it is trying to achieve?

Chapter 1 Creating Computer Games

5

Keep repeating this cycle for each part of the code you develop.

You then reach a release version once all the required parts have been

implemented. Follow the same cycle when adding more features or

improving the code.

Some things that are useful when using agile programming:

•	 Design interfaces between how the different parts of

the code interact.

•	 Work in short code sprints with incremental releases.

•	 Perform regular short reviews of what has been

completed during the last step and what you will be

creating next. Reviews are normally performed daily

in a work environment but differ if you are working in

your spare time.

•	 Perform test-driven development by having specific

tests that the code needs to pass. Automated tests are

popular in agile programming, but you can also test

manually.

•	 Refactor code regularly; review code for improvements

for clarity/performance.

•	 Regularly check with the users (or yourself if it’s a

personal project) to see that the design is in line with

the expectations.

•	 Use rubber duck debugging (see Chapter 11).

The games in this book are created based around agile programming.

There will not be any of the code reviews specifically listed in the book, but

you will see how the code is built up starting a feature at a time.

Chapter 1 Creating Computer Games

6

�Making Programming Enjoyable
Whether you have a full-time job writing computer games, or it’s

something you do in your spare time, programming should be something

you enjoy. I find a great deal of satisfaction from creating something that I

would like to play myself.

While you can try and think of the concepts in advance, you may not

know whether you enjoy the game until you get to play it. It’s then when

you get to tune the game to make sure it is the right difficulty or if there are

features that you will want to add. This is discussed more in Chapter 4

when you will see some of the techniques used to improve on an initial

game design.

�Python and Pygame Zero
Python is a popular programming language used throughout education

and in industry. It is available across a number of different computer

operating systems including Apple Mac OS X, Microsoft Windows, and

Linux. Some of the benefits of learning Python are it is easy to learn, uses

less code (compared with some other languages), and can help teach good

programming techniques.

Pygame is a library that can be used within Python to make graphical

game programming easier. Pygame Zero is a library that uses Pygame but

makes graphical game programming even easier than Pygame by reducing

the amount of code needed. Using these, it is possible to create characters

on the screen and move them around very easily.

This book uses version 3.7 of Python running on Linux which is the

current version on the Raspberry Pi. The games should work across

different computer systems and more recent versions of Python with

Pygame Zero installed.

Chapter 1 Creating Computer Games

7

There are different styles for programming in Python. In this book the

first few programs are written using primarily functional programming

techniques, but then the later programs will be based around object-

oriented programming. The functional programming style is generally

considered easier to learn when starting programming, but once you start

creating longer programs, then it is often easier to write and understand

the code when written using object-oriented programming.

�Compiled vs. Interpreted
Different computers and operating systems work in different ways. If you

are creating a game designed for a phone or tablet (using a touch screen),

then you may need to design the interface differently than if you are

designing a game for a game console with a game controller. Also, different

processors inside the computer and different ways that the operating

system works mean that it can be difficult to write games that will work

across multiple computers.

When writing computer code, you will normally use a programming

language which uses a text-based language. Computers can’t run that

directly, and the code needs to be converted into the machine code that

the computer can understand. When using a computer language such

as C, the code must be converted to machine code before you can run the

program. This is known as a compiled language and the program needs to

be compiled into machine code that matches the computer architecture it

will run on.

Python does this differently by converting the code to the machine

language using an interpreter. This is done while the program is running.

The benefit of this is that as long as there is an interpreter for the computer

you want to run the code, you don’t normally need to do anything extra

to run it on that computer. The disadvantage is that interpreted languages

can run slower because it needs to convert this code while it is running.

Chapter 1 Creating Computer Games

8

This performance won’t be an issue with any of the games in this book, but

you should be aware of it if programming a graphics-intensive game.

There is also a hybrid where the code is compiled to an intermediate

form, but then still needs an interpreter (or something similar) for it to run

on each particular computer architecture. This is how Java works using

the Java Virtual Machine to convert from the Java Bytecode to machine

language the computer can understand.

As Python is interpreted, it should be able to run on a variety of

different computers without needing any changes. Unfortunately, it

can sometimes be a little tricky to install the Python interpreter and the

Pygame Zero libraries on some platforms. Fortunately, there is a simpler

solution using the Mu editor which is the preferred editor for those starting

with Pygame Zero programming.

�Choosing a Programming Environment
In this book the games have been designed for a Raspberry Pi, which is

a small, inexpensive computer designed specifically for those learning

computing and computer programming. There are different variants of the

Raspberry Pi including the tiny Raspberry Pi Zero and the fully featured

Raspberry Pi 4. You can use any model of Raspberry Pi for the games in

this book, although I would suggest using a Raspberry Pi 2 or better for

performance reasons. If you are also using the Raspberry Pi for designing

images for the games (as explained in Chapter 5), then a Raspberry Pi 4

may be advantageous, but it is not a requirement.

The Raspberry Pi is ideal for learning Python as most of the software

you need is already pre-installed. The programs will still run on other

computers and you are free to develop the code on another platform if you

prefer, but there are a few extra steps involved on other systems.

Python programs are text files, and as such, you can create them in any

text editor. If you’ve not programmed with Python before, then I suggest

Chapter 1 Creating Computer Games

9

you start with the Mu editor. The Mu editor is not the most powerful editor

available, but its simplicity makes it ideal for getting started. It also handles

most of the setup including Pygame Zero.

If using a Raspberry Pi, then latest versions of Raspbian include Mu,

but if it’s not already installed, then you can install Mu from a command

shell. Start the command shell by clicking the black terminal icon at the

top of the screen.

Then enter the following commands:

sudo apt update

sudo apt install mu-editor

You can then run Mu from the Raspbian menu system. From the start

menu, select the programming menu, then click Mu, which should look

like Figure 1-1.

Figure 1-1.  A screenshot of the Mu editor

Chapter 1 Creating Computer Games

10

If you would like to install Mu on other operating systems, then you

can download the Mu editor from https://codewith.mu/. When installing

under Windows, the recommendation on the Mu web site is to install for

“this user only”. That will make it easier to add any modules that may be

required later.

The Mu editor has different modes which are useful for different

programming environments. This book uses the Python 3 and Pygame

Zero modes.

When you have more experience, you may want to change to a more

powerful editor. If using a Raspberry Pi, then you have a number to choose

from and you can run the programs directly from the command line. If you

are using a different environment, then you may need to set up a native

Python environment with Pygame Zero.

�Summary
This chapter has looked at some of the things you should think of before

you start programming. It has given suggestions on where you can get

inspiration from and a warning about some of the pitfalls that you should

avoid around other people’s intellectual property.

It has explained what Python is and why Pygame Zero is a good choice

for those starting out in game programming.

In the next chapter, you will get started with creating code and create a

command-line game using Python.

Chapter 1 Creating Computer Games

https://codewith.mu/

11© Stewart Watkiss 2020
S. Watkiss, Beginning Game Programming with Pygame Zero,
https://doi.org/10.1007/978-1-4842-5650-3_2

CHAPTER 2

Getting Started
with Python
To get started with programming Python, this chapter begins with some

basic command-line programming. This will create a simple text-based

game that can be played using the keyboard. This is only the beginning;

from the next chapter onward, you will be able to create graphical games

that are fun to play.

�Using the Mu Editor
When you first start the editor, it will ask you which mode to start in. The

modes that you will use for the projects in this book are Python 3 and

Pygame Zero. If you have already run the editor before, then it will start

in the mode last used, in which case you can change the mode using the

mode button on the top left of the editor.

For this chapter you will create basic text-based program, so you

should select Python 3. In future chapters, you should use Pygame Zero.

When you first start Mu, there should be an empty screen with a

comment # Write your code here :-).

The # at the beginning of the line means that this is a comment

and would be ignored. Comments are really useful for programmers to

explain how the program works, but Python just ignores them. You can

12

delete that line for now, but when you write your own code, I suggest you

add comments to explain how the code works as that can be useful in

understanding the code in future.

To get started, you can create a basic program called “Hello World”. It is

one of the smallest programs that you can create. This is literally one line of

code as shown here:

print ("Hello World")

Replace the comment in the Mu editor with this print statement. You

will then need to save the program before running it; I’d suggest saving it in

the default folder (/home/pi/mu_code) and calling it helloworld.py. If you

try to run the code before saving, then you will be prompted to save it first.

After saving the file, click Run and you will see the program running in

the bottom part of the screen. In this case it prints Hello World to the text-

based screen area. This is shown in Figure 2-1.

Figure 2-1.  The Hello World program running in the Mu editor

Chapter 2 Getting Started with Python

13

Once you have finished, click the Stop icon to stop the program from

running.

This is the most common way of running a Python program from

Mu. Another alternative is to run the program from a Raspbian Linux

command shell. Save the current program using the Save button. You will

see where the file is saved by looking at the status message at the bottom of

the editor, in this case

/home/pi/mu_code/helloworld.py

To run this program from the command line, launch the terminal

program from the Raspbian menu launcher. The terminal is a text-based

interface used to communicate with the operating system including

starting other programs. You can change to the folder that the program is

stored in by using the cd command. The filename consists of the directory

which consists of all the characters up to the last “/” character (note that

the directory separator on Linux faces the opposite way to the folder

separator used on the Windows operating system).

In this case the directory path is /home/pi/mu_code/ and the filename

is helloworld.py. To change to the directory and run the program, enter the

following commands:

cd /home/pi/mu_code/

python3 helloworld.py

Your program will now run and display the same “Hello World” text as

you saw previously in the Mu output screen. This is shown in Figure 2-2.

Chapter 2 Getting Started with Python

14

Another way to run Python code is using the REPL. It stands for read-

eval-print loop (but the name is not important). What the REPL does is it

provides a way of running Python code in an interactive mode. This can be

useful to test running small amounts of code prior to including it in your

programs.

To run the same code in the REPL, click REPL in the Mu editor menu

bar. You must be in the Python 3 mode to see that menu option. If the

REPL icon is not shown, then use the mode icon on the Mu menu bar to

change mode. After clicking the REPL icon, there will be an interactive

shell at the bottom of the screen. Note that if your previous programming

is still running, then it will show the program output and the REPL side by

side, and if so, then click the Stop button which will give the REPL the full

width of the editor.

You will see a prompt in the REPL screen which will normally show

“IN [1]:”. Enter the previous program code at the prompt

print ("Hello World")

Figure 2-2.  Running the Hello World code from the command line

Chapter 2 Getting Started with Python

15

Then press Enter to see the effect of running that instruction. This is

shown in Figure 2-3.

You can also access the REPL by running python3 from the command

line. In that case the REPL prompt is shown by three greater than

characters “>>>”. If running from the command line, then you need to

press Ctrl-D to exit.

�Python Programming
When creating a Python program, you need to follow a certain structure so

that the program can run correctly. This first game will cover some of the

rules that need to be followed for a Python program to work.

The game is a simple joke quiz. The program will ask the player a

question with a joke answer. If the player answers the question correctly,

then they will be congratulated; otherwise, they will be given the

punchline.

Figure 2-3.  The REPL in the Mu editor running the Hello World code

Chapter 2 Getting Started with Python

16

Click the New button in Mu to create a new file and enter the code in

Listing 2-1.

Listing 2-1.  Joke quiz program

1 print ("Welcome to the Python joke program")

2 �player_guess = input ("Why couldn't the engineer fix the

computer?\n")

3 if (player_guess == "too many bits"):

4 print ("Well done!")

5 else:

6 print ("too many bits")

The code must be entered exactly as shown, except for the numbers

on the left which should not be typed in (and are shown by default in the

margin of the Mu editor). The numbers are included to make it easier to

explain the code or to help fix problems if the code doesn’t work correctly.

They should not be included as they don’t form part of the code.

Python code is case sensitive, so print, Print, and PRiNT are completely

different as far as Python is concerned. The spacing is also important.

Lines 1, 2, 3, and 5 should start in the first character position on the left-

hand side of the editor. Lines 4 and 6 should be indented by four spaces;

the editor will help by auto-indenting after it sees a colon “:” character. Mu

also inserts four spaces whenever you press the Tab button.

Save and then run the program. When you first click Save, you will

need to give it a filename. Name the file joke.py or another appropriate

name. You can then click the Play button to run the program.

The program will print “Welcome to the Python joke” followed by

“Why couldn’t the engineer fix the computer?”. At this point the player

needs to have a guess. Enter I don't know. The computer will then

respond with “too many bits”.

Chapter 2 Getting Started with Python

17

At this point I’d like to apologize for such an awful joke. I’m sure that

you can do much better, so feel free to change the text between the quotes

to your favorite joke.

If you run the program a second time, then you already know the

answer, so you can type in the answer when prompted as shown in

Figure 2-4.

To explain how the code works, it is useful to look at it one line at a time.

The first line is print ("Welcome to the Python joke program").

This code runs a function called print. A function is a block of code that

performs a certain function. In this case the print function is included with

Python and contains code that can print text to the screen. You can identify

print as a function because of the brackets. Some functions need one or

more values inside the brackets which are known as arguments, but not

all functions use arguments. In the case of print, it takes a single argument

which is a text string. The quotes around the text indicate that the text is to

be used as a text string rather than a variable.

Figure 2-4.  The output of the joke.py game

Chapter 2 Getting Started with Python

18

Note  Functions and methods. You may see references to both
functions and methods in this book. In Python a method is like a
function but is contained within a class and operates on an object.
Python uses both depending upon the context. These are object-
oriented programming terms and are explained in Chapter 9.

Line 2 uses the input function, which displays a message to the user

and then waits for the user to respond with an input. The argument is

a text string, like that used in line 1. The function returns a string value

containing what the player entered as their guess. The returned value is

stored in a variable called player_guess.

The argument text string includes a special sequence \n at the end.

This is an escape sequence that moves the cursor onto the next line. This is

required, as unlike the print function, the output function does not add the

new line automatically. Both variables and the escape sequences will be

explained later in this chapter when looking at variables.

Line 3 compares the variable that is stored in player_guess and sees

if it matches the text string "too many bits". If it does match, then it runs

the block of code that is indented, which in this case is line 4. Line 4 is the

print function again which gives the player the message "Well done!".

Line 5 is an else which is the opposite of the if on line 3. If the

condition in line 3 is not met, then it runs the indented block of text after

the else clause which is line 6. Line 6 uses the print function to print

"too many bits".

The if and else clauses are conditional statements, which are

explained in more details later.

There are some more things that can be added to improve the

program, but first it will be useful to understand how data can be stored

inside a computer program.

Chapter 2 Getting Started with Python

19

�Variables
A common way of storing information in a computer program is using

variables. You can imagine a variable as a box that you can store something

in, but rather than storing physical objects, the variables store information.

The following example will create a new variable called my_variable

and store the value 7 inside the variable.

my_variable = 7

The variable name must start with a letter or an underscore character.

The rest of the variable name can then include letters, numbers, and

underscores. Variable names are always case sensitive, so a variable called

My_Variable would be different to my_variable.

In some programming languages, you need to specify what you will

be storing in the variable, such as whether it will be a number or a string.

In Python this is dynamic so a variable can change type as required. It is

important to know about the different variable types as it is often necessary

to convert between the different variable types.

The main variable types used in Python are

Integers (int) which store whole numbers without

any fractions.

Examples of integers are 3, 3948392, and –237 (they

don’t need to be positive numbers).

Floating-point numbers (float) which store

numbers that include fractions or a decimal point.

Examples of floating-point numbers include 2.99,

3.14159, –345.2, and 1.0.

Chapter 2 Getting Started with Python

20

Character (chr) which refers to a single character

of text. In Python characters are stored in unicode,

so as well as being able to store standard text like

‘a’ and digits such as ‘3’, there are many different

characters such as Greek letters or letters with an

accent symbol. Note that the ‘3’ character is not the

same as the number 3; when stored as a character, it

normally needs to be converted to a number before

any arithmetic operations can be performed on it.

Strings (str) are used to hold text. They are stored as

a collection of characters which are strung together.

You can imagine this as a string of letter beads

where each bead has a letter to make up a word

(see Figure 2-5). A string can be any length from an

empty string (zero characters) to an entire book (if

you wanted to).

Booleans (bool) can represent either true of false.

The fact that they can only hold those two values

means that they are useful for making simple yes

and no decisions.

Chapter 2 Getting Started with Python

21

The text in brackets for each of the variable types (such as int) is the

name of the built-in function that is used to convert a different variable

into that variable type. For instance, if you have an integer, but want it to

be a string, then you can use the str function. You can then use the type

function to see what type of variable is being stored.

To see this in action, you can enter some commands into the

REPL. Within Mu, click the REPL button and then enter the text that

follows the >>> characters shown here. The response is shown in bold.

>>> variable1 = 10

>>> print (variable1)

10

>>> type(variable1)

int

Figure 2-5.  A string of characters making up the word PYTHON

Chapter 2 Getting Started with Python

22

>>> variable2 = str(variable1)

>>> print(variable2)

10

>>> type(variable2)

str

As you can see, variable1 and variable2 appear to show the same value

when printed using the print function, but they are stored as different

variable types.

If you tried to join the two variables using the + operator, then you will

get an error as shown here:

>>> variable3 = variable1 + variable2

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for +: 'int' and 'str'

A common reason for needing to convert between variable types is if

you wanted to print the value stored in an integer or float variable. This can

be achieved by printing the output of the str function.

>>> print ("The value of variable1 is " + str(variable1))

The value of variable1 is 10

It’s also important to understand when numbers are stored as strings

and integers/floats when you need to perform arithmetic operations on

them. You can see this yourself by testing some operations in the REPL.

>>> integer1 = 1

>>> integer2 = 2

>>> integer3 = integer1 + integer2

>>> print (integer3)

3

Chapter 2 Getting Started with Python

23

>>>

>>> string1 = "1"

>>> string2 = "2"

>>> string3 = string1 + string2

>>> print (string3)

12

As you can see, when adding the integer numbers together, you get the

arithmetic sum which is in this case 1 + 2 = 3. If they are stored as strings,

then the second string is appended to the first one giving the string “12”.

That example shows why it is important to differentiate between

numbers and numbers within a string, but what about floating-point

numbers instead of integers? In fact, why do we even need integers as a

floating-point number can hold any integer value, just with zero after the

decimal point? There are two main reasons. The first is for efficiency; it

takes less space to store integer numbers and they are much easier for the

computer to manipulate. The other is about inaccuracies due to rounding

up values. To store floating-point numbers, particularly those created

as the result of a division, the computer may need to round the value. If

you then create a different variable with the same amount but using a

different technique, then it may be rounded off differently giving a value

that is almost the same number, but not quite. As a result, it is not normally

considered safe to check for a floating-point value being equal to another.

If you want to check a floating-point value for a certain value, you should

always compare to see if is within a certain range rather than assuming it

is an exact value. If you only need whole numbers, then it is better to store

them as integers.

It’s quite common to want to increase or decrease numbers by a

set amount. For example, when a player scores, then you may need to

increment the score variable. You can achieve this with the following code:

score = score + 1

Chapter 2 Getting Started with Python

24

This will work, but there is a shortcut that allows you to increase an

existing variable. In Python you can use += to increase and -= to decrease a

variable. You can see this by testing this in the REPL.

>>> score = 0

>>> score += 1

>>> score

1

>>> score += 2

>>> score

3

>>> score -= 1

>>> score

2

The += and -= shortcut is used a lot by programmers, and you will

rarely see the longer format in programs.

The += also works with strings, which will append the new string to the

end of the first. This is demonstrated as follows:

>>> var1 = "string 1"

>>> var1 += " string 2"

>>> var1

'string 1 string 2'

�Strings and Format
As mentioned previously strings are a group of characters. The strings

don’t need to be limited to normal text characters as they can also make

use of special character sequences. You have already seen the escape

sequence \n which inserts a newline character; there are also others such

Chapter 2 Getting Started with Python

25

as \' and \" which are used when you want to include a quotation mark

within the string and \\ which is used when you want to include the \

character within the string.

To create a string is as simple as putting some text in quotes (either

single or double quotes). “This is a string”, ‘This is also a string’. The only

difference between using single and double quotation marks in Python is

that if you want to use the same quotation mark within the string, then you

will need to use the escape character first.

As shown previously you can also add strings together using the plus

sign +. This combines the two strings into a new single string (referred to

by some other programming languages as concatenation). If you want to

include a non-string variable, then convert it into a string first as shown here:

>>> string1 = "Your score is "

>>> score = 10

>>> string2 = string1 + str(score) + "points"

>>> print (string2)

Your score is 10 points

There are some alternative techniques which can be used for

formatting strings. The first is known as the printf-style formatting. The

Python documents now discourage using printf-style formatting as

it is easy to make a mistake when using it. It’s useful to recognize this

formatting if you come across it in someone else’s code. If you come across

a string with a % after the closing quotes, then they are using printf-style

formatting:

>>> score = 20

>>> "Your score is %d points" % (score)

'Your score is 20 points'

Chapter 2 Getting Started with Python

26

An improved way of formatting string is to use str.format(). This uses

braces {} to show where a variable should be inserted. To create the same

as the preceding example, you would enter

>>> score = 30

>>> "Your score is {} points".format(score)

'Your score is 30 points'

An even better way is using the new f-strings. These include the name

of the variable within the main part of the string rather than having to add

it to the end.

>>> score = 40

>>> f"Your score is {score} points"

'Your score is 40 points'

Unfortunately, the f-strings are only available in recent versions of

Python (version 3.6 or later) and will fail on older versions. Raspbian did

not include a compatible version prior to the Buster image (2019). It is now

possible to use f-strings on a Raspberry Pi, but the usage will restrict is to

those running recent versions of Raspbian. It will also take some time for

other computers to upgrade to the latest version of Python, so you may

be better using str.format or concatenating the strings together using a +

character. The code in this book uses mainly the concatenation or the str.

format method depending upon which is most readable.

There are also lots of built-in string methods which help when

manipulating text. For example, if you want to compare text ignoring the

difference between upper- and lowercase letters, then you can convert the

string to lowercase by using the str.lower method. This is included in the

improved code for the joke program shown in Listing 2-2.

Chapter 2 Getting Started with Python

27

Listing 2-2.  Updated joke quiz program

print ("Welcome to the Python joke program")

player_guess = input ("Why couldn't the engineer fix the

computer?\n")

if (player_guess.lower() == "too many bits"):

 print ("Well done!")

else:

 print ("too many bits")

The updated version of the joke quiz program will now accept the

answer regardless of whether the player uses any capital letters or not.

�Lists
The variables mentioned previously are great for storing a single piece

of information, but are a bit limiting when you need to store more

information. For that Python provides lists.

For example, if you want to have a number of different questions for

a quiz game, then instead of creating different variables called question1,

question2, and so on, you can create a single list called questions. The

following two lists show five questions and answers for quiz. This will be

used to create the first game.

answers = ["Tetris", "Picade", "Python", "Sega", "luigi"]

questions = [

 �"What Russian tile matching game was popular in the 1980s?",

 �"What is the name of the Raspberry Pi arcade machine from

Pimoroni?",

 �"What programming language has a logo featuring two snakes?",

 "Which company created Sonic The Hedgehog?",

 "What is the name of Mario's twin brother?"

]

Chapter 2 Getting Started with Python

28

I’ve put the answers first as they are shorter so easier to follow. The

answers list contains five strings. The square brackets denote this as a list,

and the individual entries are separated by commas.

If the entries are more than a few words long, then it’s often easier to

read the code by placing each entry on a separate line. As you can see from

the questions list, this follows the same format as the answers with the

square brackets and the separating commas, but each entry is placed on a

new line and there are four space characters at the beginning of each line

to indicate that this is part of the same block.

The individual entries can be accessed by using the name of the list

followed by the index position in square brackets. As is common with most

programming languages, the index starts at position 0. The following example

shows how the first question and answer can be printed to the screen:

>>> answers = ["Tetris", "Picade", "Python", "Sega", "luigi"]

>>>

>>> questions = [

... �"What Russian tile matching game was popular in the

1980s?",

... �"What is the name of the Raspberry Pi arcade machine

from Pimoroni?",

... �"What programming language has a logo featuring two

snakes?"

... "Which company created Sonic The Hedgehog?",

... "What is the name of Mario's twin brother?"

...]

>>> print (questions[0])

What Russian tile matching game was popular in the 1980s?

>>> print (answers[0])

Tetris

Chapter 2 Getting Started with Python

29

You can also update one of the questions by referring to it by its index.

To correct the intentional mistake of not starting Luigi with a capital letter,

we can update it as follows:

answers[4] = "Luigi"

To add a question to the list, use the append method.

>>> questions.append("What is the name of the giant barrel

throwing ape in Nintendo's classic game?")

>>> questions.append("Donkey Kong")

You can also create an empty list just by using []. To store the players

guesses, you could use

>>> guesses = []

If you decide you want to delete an entry, then the del statement can

be used to delete an entry as the specified index. For example, to remove

the second question, use

>>> del questions[1]

This will move the rest of the entries in the list to fill the gap, so if you

wanted to keep the two arrays in sequence, then you would need to do the

same to the answers list.

There is much more that you can do with lists, including inserting

entries at a specified position, removing entries based on their value,

or even re-ordering the entire list. For more details see the Python

documentation, a link is included in Appendix B.

Chapter 2 Getting Started with Python

30

Note P ython also has a different data storage object type known
as an array. It works in a similar way to lists, but first needs to be
imported. Arrays do have some advantages such as if you need to
perform mathematical operations over an entire array. Arrays are
beyond the scope of this book. If you want to find out more, see the
links in Appendix B.

�Dictionaries
Lists can be a useful way to organize data when you want to access it based

on its index position, but sometimes you want to associate the information

with a word instead. In this case you can use a dictionary where each entry

is associated to a key instead of a numerical position.

You can think of this just like a traditional dictionary book, where it

is indexed by a word and then provides a description. The dictionary in

Python can use any string for the index, which is known as the key. The

description can be any kind of variable or object and is known as the value.

A dictionary is created in a similar way to a list but uses braces {}

around the dictionary and uses key value pairs.

>>> dictionary1 = {'key1':'value1', 'key2':'value2'}

The individual entries are then referenced using the key instead of the

numerical index that we used in a list

>>> print (dictionary1['key2'])

value2

An example would be if you have a game with a different welcome

message depending upon a user selected language. You could use the

user’s language as the key.

Chapter 2 Getting Started with Python

31

>>> �welcome_message = {'english':'Welcome',

'french':'Bienvenue', 'german':'Herzlich willkommen'}

>>> language = 'french'

>>> print (welcome_message[language])

Bienvenue

�Tuples
Another type of data structure commonly used in Python is the tuple. The

best way to think of a tuple is as a list that cannot be changed once created

(in programming “jargon” this is known as being immutable). These are

commonly used in Python as return values, where more than one value

needs to be returned, or to represent an object that has multiple values

such as x,y coordinates.

To create a tuple, you just create a list of values surrounded by

brackets. For example, the following could represent the position of a

spaceship where x = 10 and y = 15.

position1 = (10,15)

You will see examples of where tuples are used in Chapter 3 when

creating an actor on the screen.

�Conditional Statements (if, elif, else)
Conditional statements provide a way to change the execution of code.

They work by testing for a certain condition and only running parts of the

code if that condition is met.

Chapter 2 Getting Started with Python

32

You have already seen an if statement in the earlier code in Listing 2-1.

The section of the code dealing with the if statement is repeated here:

3 if (player_guess.lower() == "too many bits"):

4 print ("Well done!")

5 else:

6 print ("too many bits")

In this case the code on line 4 is only run “if” the condition is met. The

code on line 6 is only run if the condition is not met as defined by the “else”.

The if statement evaluates any tests or instructions up to the colon.

This is known as the conditional expression. It determines whether the

output of the conditional statement is true or false. If it is true, then it runs

the block of text indented after the if. If it is not true, then it will skip that

block of text.

The “else” clause and associated block of code is optional. When that is

included, then that code will only run when the “if” condition is not met.

The indentation of the block of text is important. I recommend each

block is moved in by four spaces for each indent. In Mu this is usually done

automatically, and pressing the Tab button will automatically replace it

with the correct number of spaces. In other editors pressing the Tab key

may generate a tab character instead of four spaces; this will prevent the

code from running.

When adding an if statement, the value you need to evaluate may

not necessarily be a true or false answer, in which case you can use a

comparison operator to change it to a true or false answer. Consider a

game where you add different amounts of points as the player progresses

through the game. A silver coin adds 1 point, a gold coin adds 5 points, and

a bag of coins adds 10 points. If the player reaches 100 points, then they get

a level up. This is easy to achieve within the add score code using

if (score == 100):

 level += 1

 print ("Level up to "+str(level))

Chapter 2 Getting Started with Python

33

There is however a problem with this code. If the player has reached 98

points and then collects a bag of coins which earns them 10 points, then

their score will increase to 108 points. The comparison will never be true

as the score will have increased too quickly, and they will not have met the

condition where score was equal to 100.

Instead you need to check to see if the score is either equal to or

greater than 100. The angle brackets “< >” can be used to check whether

something is less than or greater than a value. So

if (score > 99):

will check for 100 or higher. Alternatively, you could combine that with an

equals to compare to it being greater than or equal to. So

if (score >= 100):

will work if the score is equal to 100 or if the score is greater than 100.

A summary of the different comparisons is shown in Figure 2-6.

Figure 2-6.  Common comparison operators

Chapter 2 Getting Started with Python

34

If you change the code using greater than in place of equality test, then

you may also need to update related parts of the code. If greater than or

equals was substituted in the earlier code, it would increase the level every

time that the player scored a point after 100. So instead of just increasing

the level, the code needs to check within certain bounds such as

if (score >= 100 and score < 200):

 level = 1

 print ("Level up to "+str(level))

This adds another test which is the logical and operator. Using the and

statement, the condition is only met when both the left-hand and right-

hand side are true.

This is used in the form of

if (condition1 and condition2):

Another logical operator is the or operator which will evaluate to true if

either condition is true. This is summarized in Figure 2-7.

At first glance, including True and False may feel superfluous, but

sometimes they can be useful. Typically, these can be used as a condition

in a loop (a True operator in a loop creates a forever loop), or it can be

useful to use either of these temporarily when debugging code.

There are other ways of evaluating a true or false condition. This may

be through a function that returns a value or by entering a variable directly.

Figure 2-7.  Logical operators

Chapter 2 Getting Started with Python

35

In these cases, if a value is equal to false or zero, then it is evaluated as

false. For any other return value, the value evaluates as true. This may be

that the return value is positive or negative, or a string is non-empty. This

can cause a little bit of confusion when trying to understand how a value

is going to be interpreted. If there is some ambiguity, then I recommend

comparing it against a known value to make it clear.

�Simple Quiz Game
After covering some of the basics, you should now be ready to create a

simple quiz using the list of questions and answers created earlier.

Enter the code in Listing 2-3 into a new file. Ignore the line numbers

which are included to make the code easier to explain.

Listing 2-3.  Simple quiz game – quiz0.1.py

 1 # Simple quiz game

 2

 3 # Score starts at 0 - add one for each correct answer

 4 score = 0

 5

 6 # List of questions

 7 questions = [

 8 �"What Russian tile matching game was popular in the 1980s? ",

 9 �"What is the name of the Raspberry Pi arcade machine from

Pimoroni? ",

10 �"What programming language has a logo featuring two snakes? ",

11 "Which company created Sonic The Hedgehog? ",

12 "What is the name of Mario's twin brother? "

13]

14

15 # Answers - correspond to each question

Chapter 2 Getting Started with Python

36

16 answers = ["Tetris", "Picade", "Python", "Sega", "Luigi"]

17

18 print ("Welcome to the computer game quiz")

19

20 # Ask the first questions, store response in player_guess

21 player_guess = input (questions[0])

22 if (player_guess.lower() == answers[0].lower()):

23 # If correct say so and add 1 point

24 print ("Correct")

25 score += 1

26 else:

27 print ("Incorrect")

28

29 # Ask the second question

30 player_guess = input (questions[1])

31 if (player_guess.lower() == answers[1].lower()):

32 # If correct say so and add 1 point

33 print ("Correct")

34 score += 1

35 else:

36 print ("Incorrect")

37

38 # Ask the third questions

39 player_guess = input (questions[2])

40 if (player_guess.lower() == answers[2].lower()):

41 # If correct say so and add 1 point

42 print ("Correct")

43 score += 1

44 else:

45 print ("Incorrect")

46

47 print ("You scored {} points".format(score))

Chapter 2 Getting Started with Python

37

This program is included in the accompanying source code named

quiz0.1.py.

The code starts with some comments prefixed with the # character.

Line 4 creates the score variable and sets its initial value to 0.

Lines 6 to 16 add the questions and answers, as explained previously.

After giving a welcome message to the player (18), lines 21 to 27 ask the

first question and check if it is correct using an if statement. You will see on

line 22 that both the player’s answer and the correct answer are converted

to lowercase (.lower function) so that it doesn’t matter if the player inputs

the answer using capital letters or not.

Lines 29 to 36 ask the second question and then lines 38 to 45 ask the

third question.

Finally line 47 tells the player how well they did.

If you look at lines 21 to 27, 30 to 36, and 39 to 45, you will notice that

some of the code is repeated between the blocks. Except for the question

number, the block of text for the first question is the same as that for the

second and third. This is quite a lot of wasted code for just three questions,

but imagine if there were more questions. If you have to add eight additional

lines of code (including a comment) for every new question, then that is

going to add up to a lot of code. This is where loops come in useful.

�Loops – While, For
After conditional statements, one of the most important things that code

needs to do is to repeat actions. This is usually done in the form of a loop.

The quiz code in Listing 2-3 showed how repeating code can increase

the amount of code that needs to be written. It also means that if you want

to make a change to the code, then changes will need to be made across

multiple lines which is a waste of time and increases the risk of mistakes.

Loops are even more important when it comes to code that needs to

keep running. If you have an arcade machine, then it would not be much

Chapter 2 Getting Started with Python

38

good if the whole machine needed to be rebooted after each person has

finished playing. For most computer games after the “game over”, you

expect to have the option to play again without needing to restart.

When creating loops in Python, there are essentially two different

types of loop. The while loop is the easiest to construct and so will be

covered first.

�While Loop
The while loop can be shown through a demonstration

num_times = 0

while (num_times < 10):

 print ("This is line number "+str(num_times))

 num_times += 1

If you enter the code in the Mu REPL and hit Enter, then you should see

the following:

This is line number 0

This is line number 1

This is line number 2

This is line number 3

This is line number 4

This is line number 5

This is line number 6

This is line number 7

This is line number 8

This is line number 9

This repeats the command ten times.

The main thing to consider is the while loop which will run “while”

the variable num_times is less than 10. To run this as a loop, num_times

variable must be updated during each loop.

Chapter 2 Getting Started with Python

39

In this case the variable is incremented once during each loop, but

sometimes the variable may change differently. It may be that the loop

needs to run while the player’s score is less than a certain value or until a

certain trigger is reached. There will be further examples of loops in the

code used in later games.

�For Loop
An alternative is the for loop. Typically, a for loop is often used to iterate

over a list. This makes it useful when you want to give it a list and run some

code for each of the items in the list.

Again, this is easiest demonstrated through an example

questions = [

 "What Russian tile matching game was popular in the 1980s?",

 �"What is the name of the Raspberry Pi arcade machine from

Pimoroni?",

 "What programming language has a logo featuring two snakes?"

 "Which company created Sonic The Hedgehog?",

 "What is the name of Mario's twin brother?"

]

for this_question in questions:

 print (this_question)

which will print out each of the questions in turn showing the following

output:

What Russian tile matching game was popular in the 1980s?

What is the name of the Raspberry Pi arcade machine from

Pimoroni?

What programming language has a logo featuring two snakes?

Which company created Sonic The Hedgehog?

What is the name of Mario's twin brother?

Chapter 2 Getting Started with Python

40

Looking at the code in the for loop, what it is doing is iterating over the

list questions and storing the current value in a temporary variable called

this_question. It then prints the content of this_question.

Another example is where you want to run a loop a fixed number of

times. This is an alternative to the while loop used previously:

for x in range(0,10):

 print ("This is line number "+str(x))

This time the for loop uses the range function which allows it to iterate

over a range of numbers. Effectively it is like having a list of numbers

from the first argument to the second argument (not including second

argument). This will give a list going 0,1,2,3,4,5,6,7,8,9. There is a third

parameter which can be used to change the size of the step between the

numbers.

So range(0,10,2) will only show the even numbers between 0 and 9.

The format for the function is

range(start, stop, step)

start (optional if only one parameter is used) - the first

number included

stop (required) - the maximimum value is one less than the stop

value

step (optional) - the difference between each value

The values can be negative. If you wanted to count down, then the step

could be –1 to count down one per iteration.

Some other programming languages have different for and foreach

loops. The Python for loop is like the foreach loop in other programming

languages, but with the range function, it can act like a for loop from other

programming languages.

Chapter 2 Getting Started with Python

41

�Forever Loop – while True
A special case with the while loop is that it can be run with the condition

set as True. This means that the loop will run forever.

while True:

 print ("Program is still running")

I don’t recommend you run the preceding code as it will just keep

running forever. Actually, forever is perhaps an exaggeration (but is a term

used in some other programming languages); the loop actually runs until

you stop the program externally, the computer stops, or the end of the

world, whichever comes first!

If you do run the program, then you can cancel using the Stop button

in Mu or Ctrl-C if running Python from the command line. The Ctrl-C will

send a signal telling Python to stop running and give a KeyboardInterrupt

error message. It is quite common to include a forever loop in command-

line programs, although less so in Pygame Zero where the forever loop is

handled in the background.

You may also see other programs using while 1. As 1 evaluates as

True, then that is the same.

�Changing Loop Flow – break and continue
What happens if you want an “almost forever” loop? Perhaps you want the

program to continue running forever, except if the player requests to quit.

There are two statements that can be used to change the flow within a loop

(which applies to the for loop as well) which are break and continue.

A break statement will cause the program to exit the loop at that point

and then run the code outside of the loop. A continue statement causes

the code to jump back to the start of the loop, re-evaluate the expression,

and then run the loop again (if the condition is met) or exit the loop (if the

condition is not met).

Chapter 2 Getting Started with Python

42

�Functions
A function is a way of defining a block of code so that it can be used

elsewhere within the program. These can be built in and included in

libraries or you can create your own.

One of the most popular Python functions is the print function, which

has already been used in many of the examples in this chapter. At its

most basic use, the print function takes a single string which the function

displays in the console.

print ("string")

Essentially what happens when you call a function is that the current

program flow pauses. Any arguments provided are passed to the function,

the code in the function runs, and then when the function is complete, the

flow returns to the previous point in the code.

You can create your own functions as shown in Listing 2-4.

Listing 2-4.  Example of a Python function

1 def ask_question (question, answer):

2 player_guess = input(question)

3 if (player_guess.lower() == answer.lower()):

4 print ("Correct")

5 return 1

6 else:

7 print ("Incorrect")

8 return 0

Again, note that the line numbers would not be in the code.

This code won’t do anything if you try to run it but should instead be

included as part of a bigger program. In that case the line numbers would

not normally start from 0 as a function would not normally be the first

entry in an executable the file.

Chapter 2 Getting Started with Python

43

This is the same code that was used earlier in Listing 2-3 (lines 20 to

27) but using a function called ask_question and passing the question and

answer as an argument instead of accessing the list directly.

The first line uses the “def” statement which identifies this as a

function. The next item on line 1 is ask_question which is the name of the

function. The function name follows a similar convention as variables, for

example, it cannot start with a number and the convention recommends

using underscore characters instead of a space. The brackets are used to

include any arguments that need to be passed to the function. In this case

there are two arguments: question and answer. The final character on

line 1 is the “:” character which denotes the start of the function and the

content of the function needs to be indented below.

Arguments do not need to be used in functions, but the brackets are

still required if there are no arguments. An important thing to know when

passing arguments to functions is that the function makes a local copy of

the data passed as an argument, so any changes made to those variables

are lost when the function returns.

The body of the function is then the same as the previous code except

for the return statements (which will be explained shortly), and that

instead of using the entries from the list code in the function uses the

values provided in the argument. This means that instead of having to

duplicate code, different arguments can be passed to the function.

The return statements on lines 5 and 8 used to end the function and

return to the main code. Return statements are not always necessary as if

you reach the end of the function there is an implied return, but a return can

be added if you would like the code to return before reaching the end of the

function or if the function needs to pass a value back. A return statement is

often followed by a value or variable to be returned, but if not (or if there is

no return statement), then a special value is returned which is “None”.

Chapter 2 Getting Started with Python

44

�Variable Scope
Variables can be created in the main part of the code or inside a function; the

scope defines where the variable can be updated which can be either local

or global. If the variable is created inside a function, then it will be a local

variable which is only available inside that function. This is also the case

for arguments which are copied into a local function. This allows multiple

variables with the same name, which is an important feature for code reuse.

It also prevents accidentally changing a variable in another function.

Sometimes you will need to access variables that are created

elsewhere. For example, if there is a variable that holds the score, then that

may need to be updated by any functions that need to update that score.

To achieve this, the global keyword should be used within the function so

that it can access the variable as a global variable.

This is easiest to understand through an example. Listing 2-5 shows

example code to demonstrate the use of local and global variables.

Listing 2-5.  Code demonstrating variable scope

variable1 = 1

variable2 = 1

def local_function (variable1):

 variable1 += 1

 variable2 = 5

 print ("variable1 in local_function {}".format(variable1))

 print ("variable2 in local_function {}\n".format(variable2))

def global_function (argument1):

 global variable1, variable2

 variable1 = argument1 + 10

 variable2 = 15

 print ("variable1 in global_function {}".format(variable1))

 print ("variable2 in global_function {}\n".format(variable2))

Chapter 2 Getting Started with Python

45

print ("variable1 in top level-code {}".format(variable1))

print ("variable2 in top level-code {}\n".format(variable2))

local_function (variable1)

print ("variable1 in top level-code {}".format(variable1))

print ("variable2 in top level-code {}\n".format(variable2))

global_function (variable1)

print ("variable1 in top level-code {}".format(variable1))

print ("variable2 in top level-code {}".format(variable2))

When this is run, it will produce the output shown in Listing 2-6.

Listing 2-6.  Output of code demonstrating variable scope

variable1 in top-level code 1

variable2 in top-level code 1

variable1 in local_function 2

variable2 in local_function 5

variable1 in top-level code 1

variable2 in top-level code 1

variable1 in global_function 11

variable2 in global_function 15

variable1 in top-level code 11

variable2 in top-level code 15

There are two variables which are created at the top level of the code

(outside of any functions). There are two functions; the local_function

demonstrates local variables and the global_function shows how the

global variables can be altered instead. There is no significance in the

naming other than to make it clear which is being referred to. Any function

can have any combination of local or global variables.

Chapter 2 Getting Started with Python

46

The variables are both set to 1 and that is confirmed by the first print

statements. The first variable is passed as an argument to local_function

which is defined as a local variable only visible inside that function. That

value is increased to 2 which is displayed inside the function, but after

the function finishes the original variable is unchanged. Another variable

called variable2 is created and set to 5. When used within the local_

function, it shows the value of 5, but this variable only exists within the

function, and outside of that function, the value of variable2 remains as 1.

In global_function, variable1 is passed as an argument but is stored

as a local variable named argument1. Both variable1 and variable2 are set

as global through the global statement, and when they are updated inside

that function, it also updates the value in the global top-level variable.

There is one more thing. If a variable is created at the top level and

then read within a function without using the global statement, then

the value of the top-level variable will be read. That same variable name

cannot then be used as the name of a local variable.

Global variables are something that should, where possible, be

avoided. The reason for this is that having multiple places update

variables can result in code that is difficult to understand and debug.

This is sometimes referred to as a “bad smell” if you see too many global

variables in code. When using Pygame Zero (starting from the next

chapter), you will see that there are quite a few global variables used. This

is a nature of Pygame Zero in that the code runs within different functions

which are part of Pygame Zero, and it is very difficult to pass variables

into those functions without using global variables. Fortunately, object-

oriented programming makes this easier, but that won’t be discussed until

Chapter 9. For the next few chapters, please accept that there will be a

number of global variables but that the situation will change later in

the book.

Chapter 2 Getting Started with Python

47

�Refactoring the Code
Now that you’ve learned the theory of some additional programming

techniques, you can put this into action with a new improved quiz. The

player of the game won’t notice any difference in this version, but I like to

think of it as being “better code”.

This is known as refactoring the code. Refactoring is where changes

are made to the structure of the code that does not normally add any

additional functionality but makes the code cleaner and easier to

understand. It can also be used to make it easier to add new features.

The new code is shown in Listing 2-7, which I’ve called quiz0.2.py.

Listing 2-7.  Refactored version of simple quiz game – quiz0.2.py

Simple quiz game

def ask_question (question, answer):

 player_guess = input(question)

 if (player_guess.lower() == answer.lower()):

 print ("Correct")

 return 1

 else:

 print ("Incorrect")

 return 0

List of questions

questions = [

 "What Russian tile matching game was popular in the 1980s? ",

 �"What is the name of the Raspberry Pi arcade machine from

Pimoroni? ",

 "What programming language has a logo featuring two snakes? ",

 "Which company created Sonic The Hedgehog? ",

 "What is the name of Mario's twin brother? "

]

Chapter 2 Getting Started with Python

48

Answers - correspond to each question

answers = ["Tetris", "Picade", "Python", "Sega", "Luigi"]

while True:

 print ("Welcome to the computer game quiz")

 # Score starts at 0 - add one for each correct answer

 score = 0

 for i in range (0,len(questions)):

 if (ask_question (questions[i], answers[i]) == True):

 score += 1

 print ("You scored {} points\n".format(score))

This improved quiz starts with a function called ask_question. This

function asks the player the question, checks for a correct response, and

returns a 1 or 0 depending upon whether the provided answer is correct or

not. The function is at the beginning of the code as it needs to be defined

before it is called.

The questions and answers are then stored as lists. The order of the

lists is such so that the question and answer have the same index. The rest

of the code is wrapped in a while True loop, so that after the questions

have been answered, the quiz goes back to the start.

�Further Improvements
As with all the games in this book, this is a working game, but with scope

for improvement. Some ideas for improvement are adding more questions

(or changing them for a topic you are interested in), choosing questions

to appear at random, and changing the output to give a different phrase

depending upon the number of questions answered correctly.

Chapter 2 Getting Started with Python

49

Have a go at adding these and see if you can make the game more

entertaining. You will need to use the random module to select the

questions at random; you can find details on the Internet or you could

return here after the next chapter where it is explained. In the supplied

source code, I have included an example incorporating all of these as

quiz0.3.py, although I suggest you have a go at making your own changes

before you look at the code.

�Summary
This chapter has been a very brief run through of the Python programming

language. There is not enough space in this book to explain Python in

detail. From now on the book will assume some familiarity of the Python

programming language. If you need more information about getting

started in Python, then I suggest the book Beginning Python by M. L.

Hetland, published by Apress.

I have also included links to the official Python documentation in

Appendix B.

The next chapter will move on to creating graphical games using

Pygame Zero.

Chapter 2 Getting Started with Python

51© Stewart Watkiss 2020
S. Watkiss, Beginning Game Programming with Pygame Zero,
https://doi.org/10.1007/978-1-4842-5650-3_3

CHAPTER 3

Pygame Zero
So far, the programs have been text-based, but if we just stuck with text-

based games, they would not have the same appeal as graphical ones.

The rest of this book is about graphical games, which will be created using

Pygame Zero.

To understand what Pygame Zero is, you first need to understand what

pygame is. Pygame is a programming library for Python. It is designed

for creating multimedia applications (such as games) easier. It also works

across multiple platforms making it easier to share the games you make

with other computers.

While pygame made it much easier to create games in Python, it still

needs a reasonable amount of standard code, known as boilerplate code,

before you can get started.

Pygame Zero is a more recent programming library which uses

pygame but removes the need for much of the boilerplate code making it

even easier to create games. Designed for use in education to help teach

programming, it is a great way to get started creating computer games.

�Pygame Zero Development
At the time of writing, Pygame Zero is an active project with improvements

on a regular basis. Fortunately, most changes have maintained backward

compatibility, but some new features will not work on all installations of

Pygame Zero. If you are confident that the games you write will only be run

52

on current or later versions, then you can include these into your game

design, but if it is more important that your game will run on a wider range

of computers, then you may want to restrict yourself to features compatible

with older versions of the Pygame Zero libraries.

One example is that you can now include file path and filename

extensions on resources (such as image files), but that does not work on

older versions of Pygame Zero (prior to summer 2018). The code in this

book has been tested with a recent version of Pygame Zero, but where I

am aware of an issue with backward compatibility, I have tried to write the

code so as to work with older versions as well.

�Compass Game
The first graphical game will be known as Compass Game. The compass

game is inspired by a game that is played by the Cub Scouts who I

volunteer with; this in turn is a variation of a game known as Captain’s

Coming. The game is used to help teach the four cardinal directions

(points of a compass). In the real (non-computer) game, a label is placed

on each of the walls of the scout hall. The Cubs are given a direction, and

they must run to the appropriate wall. Additional instructions can also

be given, such as Captain’s Coming, where the Cubs must stand still and

make a salute.

In this chapter you will create a computer version of this game where

the player is given an instruction that they must follow. The player must

move their character in the direction stated. The game is shown in

Figure 3-1.

Chapter 3 Pygame Zero

53

This will provide an opportunity to learn about Pygame Zero and how

to make a character appear to walk around the screen. This will be created

using an agile methodology, adding a feature at a time to create the game.

�Required Files
There are several image files that are needed for this project. These need to

be in an image directory directly below your source code for the game.

You will need the files from the source code in the directory chapter3

and then the sub-directory images. If you are using the Mu editor, then

they should be copied to the directory /home/pi/mu_code/images.

If you look in the chapter3 directory in the supplied source code, you

will see a number of Python files prefixed with compassgame. The game

is going to go through multiple iterations, and these files are used in the

different stages in the development of the game. If you are following the

instructions on your computer, then you create the game using just a

Figure 3-1.  Screenshot of Compass Game

Chapter 3 Pygame Zero

54

single file called compassgame.py which will then evolve throughout this

chapter. The files provided in the source code can be used if you want to

jump straight to the code for each stage rather than typing it yourself.

�Running Mu in Pygame Zero Mode
The game should be created as a new file in Mu. You will need to change

the mode to Pygame Zero. This is achieved by clicking the Mode icon on

the top left of the editor. This is shown in Figure 3-2.

Start by adding the following two lines to the file and then save it as

compassgame.py.

WIDTH = 800

HEIGHT = 600

Figure 3-2.  Changing to Pygame Zero mode in the Mu editor

Chapter 3 Pygame Zero

55

Then click the Play button in Mu and you should see a black screen,

800 pixels wide and 600 pixels high. This first example acts as a good

demonstration of why Pygame Zero is so easy to use. Just defining the

dimensions of the screen is enough to create a game window. In fact, this

could have just been launched using an empty file, as those are the default

values. This is less than the equivalent code using Pygame and it’s easier to

understand.

You can close the program by clicking the x in the top right or by

pressing Stop from the Mu menu bar.

If you are not using Mu, then the file can be created in any other editor,

but should be run from the command line using the following command:

pgzrun compassgame.py

This code is available in the source code in the file compassgame-

layout1.py.

Tip R emember, if the menu has a run menu item instead of play,
then you need to switch to Pygame Zero mode. Click the Mode button
at the top left to select your mode.

�Adding a Background Image
Now that you know how to create a basic Pygame Zero application, it’s

time to add something a bit more interesting. You can start by replacing

the plain black background with something a bit more interesting.

Replace the current code with the code in Listing 3-1.

Chapter 3 Pygame Zero

56

Listing 3-1.  Simple Pygame Zero program with image background

WIDTH = 800

HEIGHT = 600

BACKGROUND_IMG = "compassgame_background_01"

def draw():

 screen.blit(BACKGROUND_IMG, (0,0))

The code is available in the supplied source code as compassgame-

layout2.py.

Click the Play button and you should now see the same screen

as before, but it will now have a green background image. If it doesn’t

work, make sure you have copied the images into the correct directory.

There should be a file compassgame_background_01.png in the

mu_code/images directory.

The code works by creating a variable BACKGROUND_IMG which

has the name of the file to display. The image is entered as the filename

without any path information or the .png suffix. On recent versions of

Pygame Zero, you can use the full filename if you prefer, but to maintain

compatibility with older versions of Pygame Zero, the files must be in the

image folder and not include the suffix. This is the same for any image files

used as Actors and backgrounds.

The line def draw(): is defining the draw function. This is a Python

function that Pygame Zero calls approximately 60 times per second. It

should be used to tell Pygame Zero what should be displayed on the screen.

The function calls screen.blit which displays a bitmap image at the

appropriate position (in this case 0,0 starting at the top left of the screen).

Chapter 3 Pygame Zero

57

Note T he reason for using such long filenames is because by default
Mu puts all the code into the same directory. If you create multiple
Python programs, they all share the same image directory. Naming
them like this makes it obvious which files are for which program.

If you are using a different editor or have organized your game
into a dedicated directory, then you may want to remove the
compassgame_ prefix from the start of the filenames.

The image filenames also include a number which will allow us to
change the look of the background or person.

�Adding an Actor
In computer graphics, characters and other objects are known as sprites.

In the case of Pygame Zero, it uses a more “friendly” name calling sprites

Actors. I will often refer to these as sprites as that is the correct computing

term, but remember when defining these in Pygame Zero to add them as

an Actor object.

A sprite is an image used in a computer game that is often created from

a bitmap image. These often take the forms of characters (people, animals,

aliens, etc.), but they could also be used for objects that the players need to

interact with such as obstacles, balls, or bullets fired from a weapon.

In this case you can start with a single sprite representing the player

character. Later you can add more sprites to act as obstacles to add a

challenge.

You will need several images for the sprites for the player character,

so that you can show it facing different directions and to make it appear

to move. The minimum needed would be an image with the character

facing each of the following directions: front, right, left, and rear. To make

Chapter 3 Pygame Zero

58

the movement a little more realistic, additional images can be used with

the legs moving between the images. In Chapter 5, you will get to see how

to design your own sprite characters, but for now you can use the sprites

included in the source code. This is easiest by copying the files from the

image directory in the source code in the image sub-directory within mu_

code. The sprite for this game is a person, but it could be replaced with an

animal or with a different character completely such as a car.

To create a sprite, use the Actor object, with an image file.

player = Actor('imagefile')

The same rules apply about the image as previously mentioned for

background images. If you want maximum compatibility, use the name of

the image located in the image directory and without an extension. If using

a recent version of Pygame Zero, you can include the extension and a path

to the file location.

To position the sprite in a specific position of the screen, you can add

the location as a tuple afterward. The following will create a sprite in the

center of the screen:

player = Actor('compassgame_person_down_1', (WIDTH/2,HEIGHT/2))

The coordinate system starts in the top left-hand corner of the screen.

The x-coordinate increases to the right and the y-coordinate increases

downward. This is different to how graphs and maps work. The image in

Figure 3-3 shows the game screen with some key coordinates marked.

Chapter 3 Pygame Zero

59

As well as creating the actor, you need to include code to draw it onto

the screen. This is achieved by putting the following entry inside the draw

function:

player.draw()

The code to demonstrate this is shown in Listing 3-2, which is included

in the source code as compassgame-player.py.

Figure 3-3.  The Pygame Zero screen coordinates

Chapter 3 Pygame Zero

60

Listing 3-2.  Simple Pygame Zero program with player actor

WIDTH = 800

HEIGHT = 600

BACKGROUND_IMG = "compassgame_background_01"

#Player character

player = Actor('compassgame_person_down_1', (WIDTH/2,HEIGHT/2))

def draw():

 screen.blit(BACKGROUND_IMG, (0,0))

 player.draw()

�Moving the Sprite Around the Screen
Now that you have created a sprite (Actor), you can read the keys from the

keyboard and make the player move in the direction of the key press.

To make it easier to test whether a key is pressed, Pygame Zero

provides an attribute for each key. To test if the up arrow key is pressed,

you should check the value of “keyboard.up”. If the value is true, then the

up key is pressed, if it is false, then it is not pressed.

You wouldn’t use this method for getting text input from a player,

because it doesn’t tell you the order that the keys being pressed. It is

however useful for game programming where there is just a small number

of keys that can be pressed and where multiple keys can be pressed at the

same time (such as up and right to move diagonally).

When you know which direction to move the player, then you can just

change the x and y attributes to move the character a certain number of

pixels in that direction.

The code to move the character is shown in Listing 3-3. Replace the

current code with this updated code.

Chapter 3 Pygame Zero

61

Listing 3-3.  Code to allow the character to move around the screen

WIDTH = 800

HEIGHT = 600

BACKGROUND_IMG = "compassgame_background_01"

#Player character

player = Actor('compassgame_person_down_1', (WIDTH/2,HEIGHT/2))

Direction that player is facing

direction = 'down'

def draw():

 screen.blit(BACKGROUND_IMG, (0,0))

 player.draw()

def update():

 # �Need to be able to update global variable direction

 global direction

 # Check for direction keys pressed

 �# �Can have multiple pressed in which case we move in all

the directions

 �# �The last one in the order below is set as the direction

to determine the

 # image to use

 new_direction = "

 if (keyboard.up):

 new_direction = 'up'

 move_actor(new_direction)

 if (keyboard.down):

 new_direction = 'down'

 move_actor(new_direction)

Chapter 3 Pygame Zero

62

 if (keyboard.left) :

 new_direction = 'left'

 move_actor(new_direction)

 if (keyboard.right) :

 new_direction = 'right'

 move_actor(new_direction)

 �# �If new direction is not "" then we have a move button

pressed

 # so set appropriate image

 if (new_direction != ") :

 # Set image based on new_direction

 player.image = "compassgame_person_"+new_direction+"_1"

 direction = new_direction

def move_actor(direction, distance = 5):

 if (direction == 'up'):

 player.y -= distance

 if (direction == 'right'):

 player.x += distance

 if (direction == 'down'):

 player.y += distance

 if (direction == 'left'):

 player.x -= distance

 # Check not moved past the edge of the screen

 if (player.y <= 30):

 player.y = 30

 if (player.x <= 12):

 player.x = 12

 if (player.y >= HEIGHT - 30):

 player.y = HEIGHT - 30

 if (player.x >= WIDTH - 12):

 player.x = WIDTH - 12

Chapter 3 Pygame Zero

63

This is included in the source code named compassgame-movement1.py.

You should be able to follow most of the code by now, but there are a

few new things which may need explaining.

The new_direction variable is a local variable inside the update

function. It is used to hold the direction of the last key that it detected was

pressed (so if you pressed up and right, it would hold right). This is used

so that the character doesn’t change between up and right when both

keys are pressed, but also will be useful later when making the character’s

legs move. As new_direction is stored as a string, it can be included in the

player image using the following line:

player.image = "compassgame_person_"+new_direction+"_1"

If the player is facing right, this will show the image compassgame_

person_right_1.png.

A new function has been added called move_actor. As its name suggests,

this moves the position of the actor on the screen. The first argument is

the direction to move. The second argument for the function is defined as

“distance = 5”. This means that if a value is provided to the function, then

that value will be stored in the distance variable, but if nothing is passed in

the argument, then the distance variable will be set to 5. This can be useful

when you want to include a default value for an argument.

When moving the actor, the code checks the position to make sure that

the character does not go beyond the edge of the screen. It uses a y offset

value of 30 pixels and an x offset value of 12 pixels so that the whole of the

actor remains on the screen.

�Making the Movements More Realistic
If you run the code in Listing 3-3, you will see the character move around

and face the direction they are walking, but it does not look particularly

realistic. As the legs are not moving, it appears as though the player is

Chapter 3 Pygame Zero

64

sliding rather than walking. To make the movement look a little more

realistic, we can change the image to show the person’s legs moving.

The technique used is similar to the way that cartoons are made, where

each frame is individually drawn with a slight movement. The frames are

then shown one after another to make a moving image. In a typical cartoon,

they may create around 20 images for each second of movement. In theory

it would be possible to have the image change on every run of the update

function, which is around 60 times per second; however, to keep this

simple, the code will only update on every 5th time that the update function

is called. This will give a frame rate of 12 frames per second. To achieve

this requires four images for each direction that the player is moving in.

Figure 3-4 shows the four images used for the right direction.

In this example only the legs are moving, but you could have the arms

moving as well to make it a little more realistic.

Using 4 images per direction needs 16 unique images. If you wanted

to increase the frame rate, then you can increase the number of images. If

you wanted to move the character twice as often, you would half the delay

between each image and double the number of images to 32.

Figure 3-4.  The four sprite images for walking to the right

Chapter 3 Pygame Zero

65

Previously the image was changed by updating the actor attribute.

To allow for different images to be displayed, this can be changed to

a function call to a new function called set_actor_image which will

determine the correct image based on the direction of travel and the

appropriate image in the sequence.

To update your previous code to show the character working, perform

the following steps.

Add a new global variable near the top of the code called player_step_

count. It can be placed after the definition of the direction variable.

player_step_count = 1

Replace the line

player.image = "compassgame_person_"+new_direction+"_1"

with

set_actor_image (new_direction)

Then add the following code to the bottom of the file:

Show image matching new_direction and current step count

def set_actor_image (new_direction):

 global player, player_step_count

 player_step_count += 1

 if player_step_count >= 4:

 player_step_count = 1

 �player.image = "compassgame_person_"+new_direction+"_"+

str(player_step_count)

The updated code is included in the source code as compassgame-

movement2.py. If you run the code now, then you will see the legs move,

but it will be far too fast. It still needs the code to slow the movement down

by only replacing the image on every 5th frame.

Chapter 3 Pygame Zero

66

This is achieved by allowing the player_step_count to count up until

five times the number of images and then dividing the image number by

5. The code will then discard any remainder and then add 1 (to start the

image numbering from 1 instead of 0).

This is best illustrated by working through some examples.

With player_step_count set to 0

Divide player_step_count (0) by the delay (5) giving 0.0

Discard anything after the decimal place which gives 0

Add 1 to get image number 1

With player_step_count set to 1

Divide player_step_count (1) by the delay (5) giving 0.2

Discard anything after the decimal place which gives 0

Add 1 to get image number 1

With player_step_count set to 5

Divide player_step_count (5) by the delay (5) giving 1.0

Discard anything after the decimal place which gives 1

Add 1 to get image number 2

With player_step_count set to 19

Divide player_step_count (19) by the delay (5) giving 3.8

Discard anything after the decimal place which gives 3

Add 1 to get image number 4

With player_step_count set to 20, the maximum value has been

exceeded so set back to 0 and recalculate the value.

Most of this uses basic operations, but to discard the value after the

decimal point, you will need the function floor() which is included in the

math module. The floor function is defined as returning the largest integer

value less than or equal to x.

Chapter 3 Pygame Zero

67

The math module includes several mathematical functions, which can

be useful when creating games. More details are available from https://

docs.python.org/3.5/library/math.html.

To import the math module, add the following line to the top of the code:

import math

Then update the set_actor_image function (which was added to the

bottom of the code) to match the following:

Show image matching new_direction and current step count

def set_actor_image (new_direction):

 global player, player_step_count

 step_delay = 5

 player_step_count += 1

 if player_step_count >= 4 * step_delay:

 player_step_count = 1

 �player_step_position = math.floor(player_step_count / step_

delay) +1

 �player.image = "compassgame_person_"+new_direction+"_"+

str(player_step_position)

The updated file is included as compassgame-movement3.py in the

source code.

If you run the updated code, you should see the legs move at a more

realistic speed.

�Keeping Game State
An important concept in programming is to be able to keep track of the

state that the program is in. This is where the program needs to keep track

of what has happened in the past and which influences how it will then

handle future events.

Chapter 3 Pygame Zero

https://docs.python.org/3.5/library/math.html
https://docs.python.org/3.5/library/math.html

68

If you think in terms of a board game, then the initial state may be when

you have got the game out of the box and are placing the appropriate counters

into each position. Once the game is set up, then there may be another state

to determine who will be playing first (perhaps based on rolls of the dice).

Then when the game starts, the status will change between each

person in turn for them to roll the device, move to the next position, and

carry out any actions required. Finally, there will be some winning state

when a player reaches the goal.

In a computer game, this is something that needs to be tracked using

one or more variables. The game code can then handle key presses

differently if it was displaying a menu screen rather than if the game was

already in progress. The variable could be anything from a single number

that has a specific meeting to a complete class with multiple properties.

For this game the code will need to track two things. One is the status

of the game, so that it doesn’t keep moving the character around the

screen when the game ends, and the other is which direction the player

needs to move in. These could be combined into a single variable, but

to make it easier to follow this example uses two separate variables, one

called game_state and the other target_direction.

The first variable is called game_state and tracks the different stages in

the game. These are an empty string “ when the game has not yet started,

the string ‘playing’ when the game is in progress, and a string ‘end’ when

the game has finished.

In summary:

•	 “ – Game not started

•	 ‘playing’ – Game in process

•	 ‘end’ – Game over

For the target direction, the variable can be the different cardinal

directions (four primary directions on a compass). These are ‘north’, ‘east’,

‘south’, and ‘west’ as shown in Figure 3-5.

Chapter 3 Pygame Zero

69

The code will be updated to generate a random direction. So, the

random module needs to be imported by adding the following entry to the

top of the file:

import random

Add the variables by adding the following lines near the top of the file

(such as just after the BACKGROUND_IMG entry):

game_state = "

target_direction = "

Near the top of the update function, replace the global direction line

with the following:

 global direction, game_state, target_direction

 �# �If state is not running then we give option to start or

quit

 if (game_state == " or game_state == 'end'):

 # Display instructions (in draw() rather than here)

 # If space key then start game

Figure 3-5.  The four points on a compass

Chapter 3 Pygame Zero

70

 if (keyboard.space):

 game_state = "playing"

 target_direction = get_new_direction()

 # If escape then quit the game

 if (keyboard.escape):

 quit()

 return

At the bottom of the file, add the following function:

def get_new_direction():

 move_choices = ['north', 'east', 'south', 'west']

 return random.choice(move_choices)

This code will handle the state for starting the game.

If the game is not in progress, then it waits for the player to press the

Start key, which in this case is the space key. If that is pressed, then it sets

the status to playing and assigns a new target_direction.

The get_new_direction function has a list of the different directions

and uses the random choice to choose one of the directions at random.

This is available in the source code as compassgame_state1.py.

You can now run the game again. Remember you will now need to

press the space bar before you the player can be moved around.

The next thing to add is a way of telling the player which way to go.

This can be done by using screen.draw.text() which will display text on the

screen. Replace the current draw function with the following code:

def draw():

 screen.blit(BACKGROUND_IMG, (0,0))

 # If game not running then give instruction

 if (game_state == "):

 # Display message on screen

Chapter 3 Pygame Zero

71

 �screen.draw.text("Press space bar to start",

center=(WIDTH/2,HEIGHT/2), fontsize=60, shadow=(1,1),

color=(255,255,255), scolor="#202020")

 elif (game_state == 'end'):

 �screen.draw.text("Game Over\nPress space bar to start

again", center=(WIDTH/2,HEIGHT/2), fontsize=60,

shadow=(1,1), color=(255,255,255), scolor="#202020")

 else:

 �screen.draw.text(target_direction, center=(WIDTH/2,50),

fontsize=60, shadow=(1,1), color=(255,255,255),

scolor="#202020")

 player.draw()

The new draw function shows three different blocks of text depending

upon the game state. The first block is when game_state = ", in which case

it instructs the player to press the space bar to start the game. The second

is controlled by an elif (else if) which checks for the end of the game, and

the third block is when the game is in progress. There is no need to check

for the playing game state because if it’s not the previous two states, then it

must be in the state playing.

The player.draw is only called when the game is playing, because

otherwise the text overlaps over the player. It is not yet possible to reach

the end of the game. That will be something that will be implemented later.

The interesting thing about this code is the part that displays the text.

Here are details of the first entry, but the others all work in a similar way:

screen.draw.text("Press space bar to start",

center=(WIDTH/2,HEIGHT/2), fontsize=60, shadow=(1,1),

color=(255,255,255), scolor="#202020")

Chapter 3 Pygame Zero

72

The text method takes a string to show and a position; the rest of the

arguments are optional. The position can be entered by just putting a tuple

as the second argument, such as (10,10). In this case it looks better with the

text in the center of the screen, so the tuple is passed to the center argument.

It uses half the WIDTH and HEIGHT values to determine the position.

The other optional arguments used here are

•	 fontsize – Used to set the size of the font; the default

value is 24.

•	 shadow – Adds a shadow to the text; the values are the x

and y offsets for the shadow position.

•	 color – The color of the text.

•	 scolor – The color of the shadow.

As you can see, the code uses different ways to enter the color. You

can use a few different color formats such as (r,g,b) where (255,255,255)

is white or html color strings where “#202020” is a light gray color. See

Chapter 6 for more details about how colors can be created.

Note T he random numbers created by the random module are
pseudo-random. Computers struggle with creating true random
numbers, so instead they have a way of generating numbers that
appear to be random to the end user. Depending upon the operating
system and hardware, it may include less deterministic sources such
as time and movement of the mouse to make it less predictable.
This is usually sufficient for games, but if using it for cryptographic
purposes, you may want to look at alternative random sources.

Chapter 3 Pygame Zero

73

�Detecting Collisions
If you’ve followed the code so far (or run compassgame-movement3.py),

then you should now have a character that can work around the screen.

The next stage is to detect when the player moves to the correct side of

the screen. In this case it’s enough for the character to be near that side

rather than at the extreme edge as that is a bit more natural than having

to actually stop at the side. One of the ways to achieve is to create code to

look at the position of the character and check to see if it reaches a certain

threshold. While that’s a valid way of doing this, it is a bit inflexible, if you

change the size of the character (perhaps to something that has a different

height to width ratio) as you may need to update the code to handle that.

Instead there is a nice feature available in Pygame Zero that allows it to

check for a collision.

Unfortunately, the Pygame Zero documentation doesn’t provide

much information on detecting collisions. Pygame Zero uses the

standard Pygame methods which are well documented in the pygame

documentation (see the links in Appendix B).

The collision detection is often used to detect if two sprites (Actors)

collide. To understand this, you need to be aware that all sprites in Pygame

have a Rect property. That is something that is automatically created when

you create an Actor through Pygame Zero. The Rect is a virtual rectangle

that you cannot see. It is the minimum size rectangle that will fully include

the size of the image. This is shown in Figure 3-6 where a representation of

the bounding rectangle has been added around the actor.

Chapter 3 Pygame Zero

74

The collideRect method can be used to determine if one rectangle

overlaps the other. For example, consider a car game where two cars are

moving around the game area and you want to know if they crash (collide)

into each other. If you have actors called car1 and car2, you can detect to

see if they have hit using

if car1.collideRect(car2):

 print ("Car 1 and Car 2 have collided")

Back to the game, we are currently working on “compass game”; for

this particular detection, we don’t actually need to create an actor to

collide with, we just need to know when they are near to an edge of the

screen. Instead we can create a simple Rect object with the appropriate

dimensions. Then if the actor collides with one of those Rects, we know

they are in that area. The image in Figure 3-7 shows the layout of the game

with the rectangles shown on the playing grid. In this image the rectangles

have been exaggerated to make them easier to see.

Figure 3-6.  Actor with bounding rectangle

Chapter 3 Pygame Zero

75

You will see that the rectangles overlap. That’s not a problem with this

game as we only check to see if the player has reached one of these, but it is

something you may need to be aware of when creating other games.

The following code is used to create the rectangles, which can be

added before the draw function:

#Rectangles for compass points for collision detection to

ensure player is in correct position

box_size = 50

north_box = Rect((0, 0), (WIDTH, box_size))

east_box = Rect((WIDTH-box_size, 0), (WIDTH, HEIGHT))

south_box = Rect((0, HEIGHT-box_size), (WIDTH, HEIGHT))

west_box = Rect((0, 0), (box_size, HEIGHT))

Figure 3-7.  Collision rectangles to detect the player approaching the
edge of the screen

Chapter 3 Pygame Zero

76

The preceding rectangles are invisible, which is what we want. It is a

good idea to temporarily display the rectangles as it can help show if any of

the rectangles are in the wrong place. To do so you can add the following

to the draw function (after screen.blit). This also includes a box around the

player and uses a different color for each of the rectangles.

 screen.draw.rect(north_box, (255,0,0))

 screen.draw.rect(east_box, (0,255,0))

 screen.draw.rect(south_box, (0,0,255))

 screen.draw.rect(west_box, (255,255,255))

 screen.draw.rect(Rect(player.topleft, player.size), (0,0,0))

The source code is included as compassgame-collide1.py. It is a good

idea to have a little play with that version so you can see the rectangle

around the actor move as you move around the screen. Whenever the box

around the player overlaps with one of the other rectangles, that can be

detected as a collision.

To detect the collisions, you can add the following code to the bottom

of the update function:

 if (player.colliderect(north_box)):

 print ("Collided with North")

 if (player.colliderect(south_box)):

 print ("Collided with South")

 if (player.colliderect(east_box)):

 print ("Collided with East")

 if (player.colliderect(west_box)):

 print ("Collided with West")

This is included as compassgame-collide2.py in the source code. Now

if you run the program and if you watch in the console in Mu (or in the

terminal if you launched it from there), you will see several print messages

whenever the player enters one of the rectangles.

Chapter 3 Pygame Zero

77

This is good for testing, but you should now delete the blocks of code

with the colliderect and draw.rect statements before the next stage.

Using rectangles is a convenient way of performing collision detection

and works well enough for this game. If using other games, you may need

to consider how the sprites interact particularly if they have a lot of “white

space” around them. If you have a shape that doesn’t fill the rectangle,

then it can be frustrating for players if a player does not actually touch the

other object, but that the rectangles overlap. It is instead possible to test

on a specific point using the collidepoint method or to implement more

accurate collision detection in your own code.

�Change in Direction
Now you can add the code to handle the situation when the player reaches

their target. Once they reach the required area, the player needs to be

told where they need to go next. The player should then move to the new

location before being told the next target and so on.

After deleting the code that printed out the collision notification, add

the following in its place at the bottom of the update function:

 if (reach_target(target_direction)):

 target_direction = get_new_direction()

Also add the following after the update function:

def reach_target(target_direction):

 if (target_direction == 'north'):

 if (player.colliderect(north_box)):

 return True

 else:

 return False

Chapter 3 Pygame Zero

78

 elif (target_direction == 'south'):

 if (player.colliderect(south_box)):

 return True

 else:

 return False

 elif (target_direction == 'east'):

 if (player.colliderect(east_box)):

 return True

 else:

 return False

 elif (target_direction == 'west'):

 if (player.colliderect(west_box)):

 return True

 else:

 return False

The extra code in the update function will check to see if the player has

reached their target destination using the function reach_target.

The reach_target function returns true if the player collides with the

box associated with the current target direction. If not, then it returns false.

This code is available as compassgame-collide3.py.

If you run the game, you should see instructions at the top of the screen,

and if you go to the side specifying them, then you will get a new instruction.

�Keeping Score
To add a scoring mechanism, there just needs to be a variable that is

updated each time that the target is reached. To implement this, create a

new global variable to hold the current score.

Current score for this game

score = 0

Chapter 3 Pygame Zero

79

This needs to be a global variable, so within the update function,

update the global line to read

global direction, game_state, target_direction, score

The score needs to be reset at the start of each game, so add score = 0

into the block of text where the game_state is set to “playing”.

To increase the score, at the bottom of the update function, add score

+= 1 within the if statement that checks if the target is reached.

So

 if (reach_target(target_direction)):

 target_direction = get_new_direction()

becomes

 if (reach_target(target_direction)):

 target_direction = get_new_direction()

 score += 1

This will keep track of the score. To display it on the screen, you can

update the draw function to also display the score. First add it as a global

to the start of the draw, then add the following in the final else text block to

show the score while the game is playing. You can place it just before the

call to player.draw().

 �screen.draw.text('Score '+str(score),

fontsize=60, center=(WIDTH-130,50), shadow=(1,1),

color=(255,255,255), scolor="#202020")

You can also add the final score in the end of the game section.

 �screen.draw.text("Game Over score "+str(score)+

"\nPress space to start", fontsize=60,

center=(WIDTH/2,HEIGHT/2), shadow=(1,1),

color=(255,255,255), scolor="#202020")

Chapter 3 Pygame Zero

80

The draw function will then look like the following:

def draw():

 global score

 screen.blit(BACKGROUND_IMG, (0,0))

 # If game not running then give instruction

 if (game_state == "):

 # Display message on screen

 �screen.draw.text("Press space bar to start",

center=(WIDTH/2,HEIGHT/2), fontsize=60, shadow=(1,1),

color=(255,255,255), scolor="#202020")

 elif (game_state == 'end'):

 �screen.draw.text("Game Over "+str(score+"\nPress

space bar to start again", center=(WIDTH/2,HEIGHT/2),

fontsize=60, shadow=(1,1), color=(255,255,255),

scolor="#202020")

 else:

 �screen.draw.text(target_direction, center=(WIDTH/2,50),

fontsize=60, shadow=(1,1), color=(255,255,255),

scolor="#202020")

 �screen.draw.text('Score '+str(score),

fontsize=60, center=(WIDTH-130,50), shadow=(1,1),

color=(255,255,255), scolor="#202020")

 player.draw()

This is included in the source code as compassgame-score.py.

If you run the updated code, you will see the score increase as you

reach each target.

Chapter 3 Pygame Zero

81

�Adding a Countdown Timer
Finally, there needs to be something to make it a challenge. Otherwise,

you can just keep going forever between the sides. Without any form of

challenge, I’m sure most would get bored very quickly.

To add a challenge, there will be a timer so that the player needs to

move around the screen in a set amount of time. The timer will start at

a fixed time, for example, 10 seconds, giving the player time to reach the

target. If they succeed, then the timer is reset but decremented slightly to

make it a little harder. If they are unable to complete in the time, then it’s

game over.

A crude way of calculating the time is to consider how regularly the

update function is run. In Pygame Zero the update function is normally

called 60 times per second or approximately 0.016 seconds, so by counting

the number of times the function is called, you can work out how long

the player has had to complete the task. The problem with this is that the

frequency of the loops is not guaranteed; if the computer is busy, then it

may take longer between updates giving the player an unfair advantage.

Instead the code should track how much time has elapsed since the last

time the update function is called. This can be achieved by adding a

parameter to the update() method to find out how long since the last run.

To do this, replace update() with update(time_interval). The time_

interval variable will be set with the number of seconds since the last time

update was run (which should be approximately 0.016).

To implement this, add the following global variables:

�Number of seconds to play when the timer starts

 timer_start = 10.9

�number of seconds to decrement the timer each time we score a

point

timer_decrement = 0.2

This is the actual timer set to the initial start value

timer = timer_start

Chapter 3 Pygame Zero

82

Add the timer variable to the global variable list in the update method

(there is no need to add the other new variables as we don’t need to

change those).

In the block of code which handles when the keyboard.space key is

pressed for the start of the game, add

 timer = timer_start

Just before the direction keys are pressed, decrement the timer and

check we haven’t gone below 0.9.

 # Update timer with difference from previous

 timer -= time_interval

 # Check to see if timer has run out

 if (timer < 0.9):

 game_state = 'end'

 return

Then after the score is increased (each time the target is reached), the

timer needs to be reset (but including a decrement based on the current

score).

 �# �Update timer - subtracting timer decrement for each

point scored

 timer = timer_start - (score ∗ timer_decrement)

Finally, to see timer on the screen, add timer as a global to the draw

function and add the following displayed at the same time that the Score is

shown on the screen.

 �screen.draw.text('Time: '+str(math.floor(timer)),

fontsize=60, center=(100,50), shadow=(1,1),

color=(255,255,255), scolor="#202020")

You may be wondering why the timer is set to 10.9 seconds for a

10-second countdown.

Chapter 3 Pygame Zero

83

This is because the print uses the floor function to strip off any

fractions and display the timer in whole seconds. The player will expect

the game to end as soon as the timer display reaches zero and not continue

to count for a further second if we instead tested for the timer being above

zero. Also, the player will also expect the timer to stay on 10 for 1 second

and not go to 9 once we subtract the first time interval. Starting the timer

at 10.9 seconds and ending at less than 1 second will be almost exactly 10

seconds, and the user will see the values from 10 to 0.

�Final Code for Compass Game Version 0.1
You will now have a complete game that you can play. When you reach

the end, then it will tell you your score. You can then press space to try the

game and see if you can beat that score. The complete listing of the game,

so far, is included in Listing 3-4. This is also included in the source code as

compassgame-v0.1.py.

Listing 3-4.  Compass game. A simple Pygame Zero program with

image background

import random

import math

WIDTH = 800

HEIGHT = 600

BACKGROUND_IMG = "compassgame_background_01"

game_state = "

target_direction = "

#Player character

player = Actor('compassgame_person_down_1', (WIDTH/2,HEIGHT/2))

Which image is being displayed

Chapter 3 Pygame Zero

84

player_step_count = 1

Direction that player is facing

direction = 'down'

Number of seconds to play when the timer starts

timer_start = 10.9

�number of seconds to decrement the timer each time we score a

point

timer_decrement = 0.2

This is the actual timer set to the initial start value

timer = timer_start

#Rectangles for compass points for collision detection to

ensure player is in correct position

box_size = 50

north_box = Rect((0, 0), (WIDTH, box_size))

east_box = Rect((WIDTH-box_size, 0), (WIDTH, HEIGHT))

south_box = Rect((0, HEIGHT-box_size), (WIDTH, HEIGHT))

west_box = Rect((0, 0), (box_size, HEIGHT))

Current score for this game

score = 0

def draw():

 global score, timer

 screen.blit(BACKGROUND_IMG, (0,0))

 # If game not running then give instruction

 if (game_state == "):

 # Display message on screen

 �screen.draw.text("Press space bar to start",

center=(WIDTH/2,HEIGHT/2), fontsize=60, shadow=(1,1),

color=(255,255,255), scolor="#202020")

 elif (game_state == 'end'):

Chapter 3 Pygame Zero

85

 �screen.draw.text("Game Over "+str(score)+"\nPress

space bar to start again", center=(WIDTH/2,HEIGHT/2),

fontsize=60, shadow=(1,1), color=(255,255,255),

scolor="#202020")

 else:

 �screen.draw.text(target_direction, center=(WIDTH/2,50),

fontsize=60, shadow=(1,1), color=(255,255,255),

scolor="#202020")

 �screen.draw.text('Score '+str(score),

fontsize=60, center=(WIDTH-130,50), shadow=(1,1),

color=(255,255,255), scolor="#202020")

 �screen.draw.text('Time: '+str(math.floor(timer)),

fontsize=60, center=(100,50), shadow=(1,1),

color=(255,255,255), scolor="#202020")

 player.draw()

def update(time_interval):

 # Need to be able to update global variable direction

 �global direction, game_state, target_direction, score,

timer_start, timer_decrement, timer

 �# �If state is not running then we give option to start or

quit

 if (game_state == " or game_state == 'end'):

 # Display instructions (in draw() rather than here)

 # If space key then start game

 if (keyboard.space):

 game_state = "playing"

 timer = timer_start

 target_direction = get_new_direction()

 # If escape then quit the game

Chapter 3 Pygame Zero

86

 if (keyboard.escape):

 quit()

 return

 # Update timer with difference from previous

 timer -= time_interval

 # Check to see if timer has run out

 if (timer < 0.9):

 game_state = 'end'

 return

 # Check for direction keys pressed

 �# �Can have multiple pressed in which case we move in all

the directions

 �# �The last one in the order below is set as the direction

to determine the

 # image to use

 new_direction = "

 if (keyboard.up):

 new_direction = 'up'

 move_actor(new_direction)

 if (keyboard.down):

 new_direction = 'down'

 move_actor(new_direction)

 if (keyboard.left) :

 new_direction = 'left'

 move_actor(new_direction)

 if (keyboard.right) :

 new_direction = 'right'

 move_actor(new_direction)

 �# �If new direction is not "" then we have a move button

pressed

Chapter 3 Pygame Zero

87

 # so set appropriate image

 if (new_direction != ") :

 # Set image based on new_direction

 set_actor_image (new_direction)

 direction = new_direction

 if (reach_target(target_direction)):

 target_direction = get_new_direction()

 score += 1

 �# �Update timer - subtracting timer decrement for each

point scored

 timer = timer_start - (score ∗ timer_decrement)

def reach_target(target_direction):

 if (target_direction == 'north'):

 if (player.colliderect(north_box)):

 return True

 else:

 return False

 elif (target_direction == 'south'):

 if (player.colliderect(south_box)):

 return True

 else:

 return False

 elif (target_direction == 'east'):

 if (player.colliderect(east_box)):

 return True

 else:

 return False

 elif (target_direction == 'west'):

 if (player.colliderect(west_box)):

 return True

Chapter 3 Pygame Zero

88

 else:

 return False

def move_actor(direction, distance = 5):

 if (direction == 'up'):

 player.y -= distance

 if (direction == 'right'):

 player.x += distance

 if (direction == 'down'):

 player.y += distance

 if (direction == 'left'):

 player.x -= distance

 # Check not moved past the edge of the screen

 if (player.y <= 30):

 player.y = 30

 if (player.x <= 12):

 player.x = 12

 if (player.y >= HEIGHT - 30):

 player.y = HEIGHT - 30

 if (player.x >= WIDTH - 12):

 player.x = WIDTH - 12

Show image matching new_direction and current step count

def set_actor_image (new_direction):

 global player, player_step_count

 step_delay = 5

 player_step_count += 1

 if player_step_count >= 4 ∗ step_delay:
 player_step_count = 1

Chapter 3 Pygame Zero

89

 �player_step_position = math.floor(player_step_count / step_

delay) +1

 �player.image = "compassgame_person_"+new_direction+"_"+

str(player_step_position)

def get_new_direction():

 move_choices = ['north', 'east', 'south', 'west']

 return random.choice(move_choices)

The complete game is about 170 lines of code, including comments

and blank lines. This may sound a lot, but it’s much less than it would have

been in many other programming languages.

�Summary
This chapter has introduced Pygame Zero as well as creating a first

graphical game. The code is quite long, which reflects the effort involved in

creating a game, but it’s much shorter than the equivalent code that would

be needed in many other programming languages.

The game is quite basic at the moment and will be developed further

in the next chapter which is on game design.

Chapter 3 Pygame Zero

91© Stewart Watkiss 2020
S. Watkiss, Beginning Game Programming with Pygame Zero,
https://doi.org/10.1007/978-1-4842-5650-3_4

CHAPTER 4

Game Design
Hopefully you’ve had chance to play the game from Chapter 3 before

moving on to this chapter. What did you think of it?

If your experience is like mine, then the first few goes were quite fun,

but then the enjoyment dropped off somewhat. Two reasons for this: one

is that once you’ve memorized the moves, it’s quite straightforward to play

and is in fact a bit too simple, and the other thing is that because of the way

the timer reduces with every level, it quickly gets to the point where there

is too little time to make the move, which means you get end up with a

similar score on each game.

In this chapter we will look at what makes a game interesting to play

and how we can make a few changes to improve the game. This forms the

basis of game design.

�What Makes a Game Enjoyable?
Before we look at adding any code, think about the games you have played

and what makes them enjoyable. Here are a few of the things I came up

with, perhaps you can think of other factors:

•	 Challenging but achievable

•	 Choices and consequences

•	 Rewards and progress

92

•	 Likeable characters

•	 Storyline/historical relevance

•	 Educational (sometimes)

•	 Takes an appropriate level of time to play

•	 Inclusivity

•	 Age appropriate

These are not required for all games. Think of them as being guidelines

that make you think about the game design, but without being too

restrictive. Being aware of when you can include these features can make

a game more enjoyable. These may also relate to each other, such as how

rewards can help overcome a challenge or where progress is used to reveal

the next part in a storyline.

When designing a new game, it’s a good idea to work through these

and think about how they can be implemented in the game. If you don’t

think it’s important to your game, then that’s fine.

There is no single answer to all these features, and it really depends

upon what type of game you want to create and who your target audience is.

�Challenging but Achievable
When you are playing a game, you want to be able to feel you have

achieved something. This is often achieved by having a challenge in the

game that you need to overcome. The challenge may be a skill; it may be

about quick reactions; or it may involve having to use brain power to solve

a puzzle.

There are some games that are popular that don’t provide a challenge,

but they normally provide something else. If you think about the paint by

number apps, they are not what you would normally consider challenging,

but instead are relaxing or therapeutic; some games may be creative rather

Chapter 4 Game Design

93

than competitive such as Minecraft in creative mode. Arguably you could

say that the lack of challenge means that they wouldn’t be classed as

games, which is something to think about.

In most games there is a balance between it being easy to play and

challenging enough to feel like you have achieved something. Make a

game too easy and the player may get bored and look for a new challenge

elsewhere, make it too hard and they may give up thinking they can’t

progress any further.

In general, you will want the game to start easy, so that the player

understands how to play without facing too much challenge. Then as they

progress through the game, it should get harder to make it challenging and

give the player a sense of achievement.

When thinking about how to make a game challenging, you should

think about whether the game will be predictable or whether there will

be random elements. A predictable game would react in exactly the same

way each time it is played. This means that every game has the same level

of difficulty, but with lots of practice a player may learn the level. With a

random element, the game is less predictable, and the player will need to

adapt their play to fit the game.

�Choices and Consequences
Some games create choices that the player needs to make. Some choices

just change the look or feel of the game (perhaps a different color

costume), but I am really talking about choices that determine the play

of the game. These could be a choice of direction, a decision of whether

to battle or choose diplomacy, or what technology to pursue. This is

a particularly good way of making a game challenging and having the

player feel in control of the game. If providing a choice, then there should

normally be a consequence to the choice that the player made which

determines how they progress through the game.

Chapter 4 Game Design

94

�Rewards and Progress
When a game includes a challenge, then it’s useful to reward the player

which gives them a feeling of satisfaction that it was worth the effort. The

reward can be just progressing through the levels (level up), or it could

involve unlocking a new character or a power-up. These power-ups often

can work in conjunction with the challenge where they help in completing

the next level.

�Likeable Characters
Many computer games put you in the role of a particular character or

control of a team of characters. A character in your game may be specially

created for your game, or it may be related to an existing franchise such as

film or TV.

You may want to try and create a game that relates to your favorite film,

perhaps a Harry Potter Wizard game, but you are likely to come across

copyright issues. If it is for an existing franchise, then you need to be aware

of the copyright and licensing restrictions. In general, if you use anything

based around a place from a film, TV, or well-known character, then you

will need to get permission from the owner of the franchise.

If you create your own characters, then you can give them their own

personality and traits so that players can associate with them. In some

cases, the characters can become personalities in their own right, just

think about the Lara Croft character who started as a video character and

was made into a film.

Also remember that characters don’t have to be people. They could

be creatures or vehicles, or you could even make inanimate objects come

to life.

Chapter 4 Game Design

95

�Storyline/Historical Relevance
One thing that is often optional is whether the game follows a storyline

or is set in a historical story. A story can help the player to relate more to

the game and make them feel a part of the story. This can be a powerful

motivation to keep playing the game.

A historical relevance is where you base your game around a real

moment in history. A popular one is to have a game that is associated with a

historic battle or an important time in history such as birth of the railways.

There are however many games that don’t have any kind of storyline and

you just play for fun. It all depends upon the type of game you want to create.

�Educational
Another optional aspect is whether the game is educational or not. This

can include traditional children’s educational games such as addition

and multiplication games, adult “brain games”, games to help teach you

to play a musical instrument, or perhaps games that include references to

historical events.

These can be an obvious goal or just a subtle feature to the game play.

This can then tie into the reward, but instead of just a badge on the screen,

the player can have the feeling that they have learned something that they

can use away from the computer. They could also be very subtle, perhaps

learning history through the storyline or by learning how to overcome an

obstacle.

�Takes an Appropriate Level of Time to Play
When thinking about how long it takes to play, you need to think of how

the player is going to be playing. Is this a game you expect them to sit down

at for a long time or something they may use to pass away a few minutes

that they have spare during the day?

Chapter 4 Game Design

96

You should also think about whether the game can be saved and how

long it can go between saves. It can be very frustrating if you have spent a

long time trying to complete a level, but then don’t have the time to finish

it. If you can save and resume that level, that may avoid the frustration of

needing to be elsewhere.

�Inclusivity
There are several ways that a game can be made more inclusive of other

people. This may include additional/simplified controls for those with a

disability that may find traditional keyboard controls difficult to use. Or it

may include the ability to have different characters to represent the gender

or skin color of those that may play the game.

It can be just as important to make sure you don’t use any negative

stereotypes. In the past female characters have been used as damsels in

distress, waiting for a male knight to come to her rescue. Thankfully, these

are now becoming less common with more female characters taking a lead

role in films and computer games.

Keeping these thoughts in mind when developing the game, there may

be some simple things that can be implemented to make the game more

appealing to a more diverse group of people.

�Age Appropriate
Finally, I will mention that a game should be age appropriate. The games

in this book are all designed to be family-friendly. If you are aiming for

older players, then you may use less family friend language, but that

would may make it less suitable for others. There is a similar thing with the

amount of violence or the realism of harm inflicted. The target age of the

game should also be reflected in the type of graphics used which will be

considered more in the next chapter on graphics.

Chapter 4 Game Design

97

�Improving Compass Game
Taking some of these suggestions, there are some things that can be done

to make compass game a bit better. It won’t be possible to implement all

these ideas in this chapter, but you will be able to add three new features to

improve the gameplay:

	 1.	 Improve the timer so that there is more chance of

completing even when the score is quite high.

	 2.	 Add some random obstacles to make the game more challenging.

	 3.	 Add a high score, which saves the highest achieved score.

These are about making the game more challenging, but also include

aspects of a reward in terms of saving the high score.

Note T he code used in this chapter needs the same resources as
Chapter 3. You will need to copy the source code from Chapter 4 to
the same directory as Chapter 3’s source code.

�Updated Timer
The problem with the game timer is that it decrements linearly, counting down

the same length of time each go. This works well initially, but then after around

38 points scored, it gets so difficult; it is practically impossible to complete the

task. What is needed is a timer function which reduces the time quite quickly

at first (to create an element of challenge), but that over time it decreases less

quickly giving a reasonable chance of still being able to complete the task.

This will involve some math. We will keep this simple at this stage.

The formula to be used is x / (x + h). Here x is the score and h is an offset

amount. We will use an offset of 10. This formula increases quickly at first,

but then as x gets larger, it tends toward the value 1. To get the time for the

timer, we then subtract this from the start time.

Chapter 4 Game Design

98

To determine the appropriate values, this was tested using the Python

plot module. I won’t go into details on how the code works, but the source

code is provided in a file called timedecaygraph.py. If you look in the source

code, you should be able to see how it works. If you would like to try running

the code, you will first need to install the plotly module. Future versions of the

Mu editor will include a way of installing modules, but that is not available at

the time of writing. To add a module, perform one of the following:

•	 On a Raspberry Pi, you can install the module using

sudo pip3 install plotly

•	 On other Linux distributions

Install either the same as previously or

sudo pip install plotly

•	 On Windows

You will need to tell pip the location of the pkgs that

Mu is using.

On my computer, that is achieved using

pip install plotly --target="c:\users\stewart\AppData\

Local\Mu\pkgs"

You will need to replace stewart with the username

that Mu was installed under.

•	 On Mac OS X

First create a separate directory to run the program

and copy in the timedecaygraph.py file.

Create a file called setup.cfg with the following:

[install]

Prefix=

Chapter 4 Game Design

99

Then install the package using

pip3 install plotly --upgrade --target /Applications/

mu-editor.app/Contents/Resources/app_packages

Once you have installed plotly, you can then run timedecaygraph.py

from within Mu (change the mode from Pygame Zero to Python 3 first).

Depending upon your system, it may open the results in a web

browser, but on others you may need to save the output as an html file and

then opening it with your web browser manually.

Through adjusting the formula values, I found that the following

formula worked well:

start_value + 1.5 - (start_value ∗ (i/ (i + 10)))

See the screenshot in Figure 4-1 showing how this new formula

compares with the linear decay.

Figure 4-1.  Screenshot of graph showing different decay formulas

Chapter 4 Game Design

100

As you can see from the graph, the improved formula initially

decreases much quicker than the linear decay, but the decay is much

smaller as the score increases.

To implement this in the code, load the current version of code from

the end of the previous chapter (compassgame-v0.1.py).

Remove the timer_decrement variable as that is no longer required.

Then in the update function, replace the following entry

timer = timer_start - (score ∗ timer_decrement)

with

timer = timer_start + 1.5 - (timer_start ∗ (score/ (score + 10)))

The value of 10 sets the decay speed and 1.5 is used to increase the

offset. These could be changed to variables if you want to be able to fine

tune the values.

This is included in the source code as compassgame-timer2.py.

�Adding Obstacles
The next thing we can do is to add a bit more of a challenge through

adding obstacles that the player must avoid. This can be done by adding

new levels. The first level does not have any obstacles, level 2 adds some

obstacles, level 3 adds some different obstacles, and so on. The screenshot

in Figure 4-2 shows how the game will look with some obstacles to avoid.

Chapter 4 Game Design

101

There are several changes needed for adding the obstacles. Start with

the code from the end of Chapter 3 (compassgame-v0.1.py). The first is to

add some more variables and definitions near the top of the file:

OBSTACLE_IMG = "compassgame_obstacle_01"

Current score for this game

score = 0

Score for each level

score_per_level = 20

What level are we on

level = 1

#Obstacles - these are actors, but stationary ones - default

positions

Figure 4-2.  Compass game with obstacles to avoid

Chapter 4 Game Design

102

obstacles = []

Positions to place obstacles Tuples: (x,y)

obstacle_positions = [(200,200), (400, 400), (500,500),

(80,120), (700, 150), (750,540), (200,550), (60,320), (730,

290), (390,170), (420,500)]

To display the obstacles, add this to the draw function making sure it’s

not within any of the if-else clauses.

 for i in range (0,len(obstacles)):

 obstacles[i].draw()

Add a new set_level function which creates obstacle Actors. This can

be toward the end of the tile.

def set_level(level_number):

 global level, obstacles, obstacle_positions

 level = level_number

 # Reset / remove all obstacles

 obstacles = []

 if (level < 1):

 return

 �# �Add appropriate number of obstacles - up to maximum

available positions

 for i in range (0,len(obstacle_positions)):

 �# �If we have already added more than the obstacle level

number then stop adding more

 if (i >= level_number - 1):

 break

 �obstacles.append(Actor(OBSTACLE_IMG, obstacle_

positions[i]))

Chapter 4 Game Design

103

This function is to be called whenever the level increases. As well

as updating the global variable for the level number, it also creates the

obstacles to be avoided.

The obstacles list starts out as empty, so no obstacles are drawn. When

the level is changed above level 1, then new obstacles are created. These

are added as Actors, but unlike our player, they won’t be able to move

around the screen.

You will need to make sure that the obstacle image exists; otherwise,

the program may hang with no error message making it difficult to know

what has gone wrong.

Update the if(reach_target(target_direction)): block of code which is

located near the bottom of the update function.

 if (reach_target(target_direction)):

 target_direction = get_new_direction()

 score += 1

 # check if we need to move up a level

 if (score >= level * score_per_level):

 set_level(level + 1)

 �# �Level score is the number of points scored in this

level

 level_score = score - ((level - 1) * score_per_level)

 �# �Update timer - subtracting timer decrement for each

point scored

 �timer = timer_start + 1.5 - (timer_start * (level_

score/ (level_score + 10)))

In this code the level increases every 20 levels. There will be no

obstacles until 20 points are scored, then one obstacle will be added, and

the second obstacle at 40 points and so on. This gives a reasonable level

of difficulty for each level but is a lot of time to be playing when testing the

game during development. You may want to reduce the value of score_

per_level to 10 so that you can test that the obstacles are created correctly

Chapter 4 Game Design

104

without needing to play for a long time. This is a common thing to do when

developing games. In some games these are coded into the game as special

“cheat codes” which would be used to jump direct to a certain level or add

certain power-ups to help with testing.

The updated code is provided as compassgame-obstacle1.py in the

source code. You can test the code and the obstacles will appear after the

scoring 20 points, but the player is able to walk straight through them.

Clearly some extra code is needed to do something when the player bumps

into them. This is done by adding the following block of code at the end of

the update function:

 # detect if collision with obstacle (game over)

 for current_obstacle in obstacles:

 if player.colliderect(current_obstacle):

 game_state = "end"

 return

This is the same as the code that is used to detect when the player

reaches one of the sides of the game area but using a loop to compare

against each of the obstacles in the list. If the player collides with an

obstacle, then the game is set to the “end” state which triggers the end of

the game. The code so far is included as compassgame-obstacle2.py in the

source code.

�Adding a High Score
The next feature is to add a high score. This tells the player what the

previously attained highest score is and gives the player something to aim

for. Typically, a high score will store multiple values along with their name

or initials, but for now you should start with a single highest score value.

One thing about a high score is that it needs to be saved somewhere so that

it’s not lost when the computer is switched off. This will therefore cover

Chapter 4 Game Design

105

how to save data to a file on disk and how to read it back. In the case of

the Raspberry Pi, instead of a physical hard disk, it will be stored on an SD

card, but using Python it is accessed in the same way as if it was on a disk.

In recent versions of Pygame Zero, there is a storage function which

provides a simple way of storing information. At the time of writing, the

function is not fully documented in the Pygame Zero documents. While

the traditional Python file operations are more difficult to use, they are

a useful tool for any Python programming. I recommend learning the

method used here which will be useful for future Python programming.

Add the following new global variable near the top of the file:

HIGH_SCORE_FILENAME = "compassgame_score.dat"

Add two new functions, one to retrieve the high score from the disk

(get_high_score) and the other to save the latest high score (set_high_

score). These can be added at the bottom of the file.

Reads high score from file and returns as a number

def get_high_score():

 file = open(HIGH_SCORE_FILENAME, 'r')

 entry = file.readline()

 file.close()

 high_score = int(entry)

 return high_score

Writes a high score to the file

def set_high_score(new_score):

 file = open(HIGH_SCORE_FILENAME, 'w')

 file.write(str(high_score))

 file.close()

The get_high_score function reads a value from a file. First it opens the

file using the open function. The first argument is the filename, the second

is one or more characters to denote what mode the file should be opened

Chapter 4 Game Design

106

in. In this case ‘r’ is for read, other common modes are write ‘w’ and

append ‘a’. By default, the file is opened in the default text mode, but you

could access the file in binary mode by using the ‘b’ option. For example,

to open a file as read-only binary mode, you would use ‘rb’.

The file is returned as a file object which can then be used for reading

the file. The function uses the file object with the readline method which

will read a line from the file. Subsequent calls to readline will read in

further lines. In this case we only have a single entry, so it only needs to be

called once.

As the high score has been stored into a text file, it will be a string

rather than as a number. As we need to be able to compare it to a number,

it needs to be converted from a character to an integer using the int

function. The resulting value is then returned.

You will also notice that there is a line file.close() which closes the file

when the function has finished reading it. This is needed to free the file up,

so that it can be opened by this or another program later.

The set_high_score function works in a similar way to get_high_score,

but it is writing to the file instead of reading from it. First the global

variable high_score is updated and then it opens the file in write mode and

writes the high score value converted to a string. Then the file is closed.

Inside the update function, add the following code just before the line

score = 0:

 high_score = get_high_score()

 if (score > high_score) :

 set_high_score(score)

Where this is placed in the code means that the new high score is not

saved until after the next game is started. This is done to keep the code

simple and make it easier to read. You may like to look at checking this

once the game ends instead.

Chapter 4 Game Design

107

Finally, the code is needed to display the high score when the game

is over. Replace the current print statement for “Game Over” with the

following two lines:

 high_score = get_high_score()

 �screen.draw.text("Game Over\nScore "+str(score)+"\nHigh

score "+str(high_score)+"\nPress map or duck button

to start", fontsize=60, center=(WIDTH/2,HEIGHT/2),

shadow=(1,1), color=(255,255,255), scolor="#202020")

�Try and Except
If you try and run the code now, then it will not work. Unfortunately, it

fails without giving an error message, which can be frustrating. The reason

for this is that there is no error checking on the file access. When the code

tries to read in the high score file for the first time, then it doesn’t exist.

You could add code to check to see if the file exists or not, but then there

are other things that can go wrong during file operations. For example,

the file may exist, but the value is corrupt. To avoid having to put in lots

of different checks, we can use Python exception handling with the try

except blocks of code.

The try except has three steps. First the “try” block will run the code; if

there are any errors (exceptions), then they can be handled using “except”

blocks, and then the “finally” block will run whether an exception has

occurred or not.

Listing 4-1 shows a generic example of code used for handling an

exception.

Chapter 4 Game Design

108

Listing 4-1.  Example of a try except exception handling

try:

 operation_that_may_fail()

except:

 print ("An exception occurred")

finally:

 print ("I run regardless")

Here the code tries to run operation_that_may_fail. If it triggers an

exception, then the except code will run. The finally block runs regardless.

You can also catch only certain exceptions. The following code shows

how you would only catch IO errors:

except IOError:

You can also use multiple except blocks for different kinds of errors.

When an exception occurs, you can access the exception attributes as

follows:

except Exception as e:

This will provide an Exception value in the variable e. You can

display this to the console screen using print (e). Exception handling is

explained further in Chapter 11.

To use the try except exception handling on the access of the high

score file, you can replace the two high score functions with the following

new code:

Reads high score from file and returns as a number

def get_high_score():

 try:

 file = open(HIGH_SCORE_FILENAME, 'r')

 entry = file.readline()

 file.close()

Chapter 4 Game Design

109

 high_score = int(entry)

 except Exception as e:

 �print ("An error occurred reading the high score file :"

+ str(e))

 high_score = 0

 return high_score

Writes a high score to the file

def set_high_score(new_score):

 global high_score

 high_score = new_score

 try:

 file = open(HIGH_SCORE_FILENAME, 'w')

 file.write(str(high_score))

 file.close()

 except Exception as e:

 �print ("An error occurred writing to the high score

file :" + str(e))

The updated code is named compassgame-highscore.py.

The way that the exception is handled in the code means that if there is

an exception, the program continues to run. In the case of a read error, the

high_score is just given a value of zero. This is acceptable here because the

game can still be played without saving the high score. On some programs,

a failure to save the data may be a critical issue and would therefore result

in other actions, possibly including terminating the program.

A simple high score like this can add additional game play for a while,

but eventually you will reach a point where it is difficult or even impossible

to beat the score. Many games overcome this by adding different elements

or by earning credits when you play which can be used to buy objects to

make it easier to gain a higher score. In a military game, this may be armor

or a more powerful weapon. That is beyond the scope of this book as it

Chapter 4 Game Design

110

would need a lot of additional code to include a reward-based system but

is something you may want to consider when designing your own games.

This game has just implemented a few of the ideas. This is enough to

make the game a bit more enjoyable. The compass game is never going to

be a particularly good game in its current form as it is a little too simplistic.

It is however a good game for demonstrating how to include graphics into

a game and the basics of computer animation. The new features should

give you an idea of how to implement some of these features to make your

own game more interesting.

�Summary
You have now seen how some additional elements can change the game

play and make a game more interesting. This has been achieved by adding

a new feature at a time which is a feature of agile programming.

This chapter has also shown how you can include timing elements

to add a challenge element. It has then shown how files can be read and

written to and how to handle errors that can occur when accessing files.

The next chapter will look at how graphics can be created and used in

games.

Chapter 4 Game Design

111© Stewart Watkiss 2020
S. Watkiss, Beginning Game Programming with Pygame Zero,
https://doi.org/10.1007/978-1-4842-5650-3_5

CHAPTER 5

Graphic Design
The visual graphics are a key part of any game. They are what set the

scene, set the tone of the game, and determine whether a game is visually

appealing. The level of detail varies greatly between games, from the

original pong games which had a simple block bat and ball to modern

commercial games which may involve realistic video footage.

In an ideal world, all developers would also be great artists or have an

artist that can create the graphics for them. That is not always the case, so this

chapter looks at some simple ways of creating graphics suitable for use in

games. Even if you have a professional artist, some programmers may create

basic images known as programmer art, which is used as a place holder to

demonstrate the game prior to the professional artwork being created.

To keep it simple, this book will mainly cover simple pixel art-based

characters and simple 2D images. These graphics would be suitable for

that retro 1980s feel or consistent with the style used in many indie games.

It will also look at some other tools that are useful if you want to create

some more complex 2D or 3D graphics.

The level of detail that you include in a game will depend upon your

own artistic talent (or that of your graphic designer if part of a multi-person

team) and the amount of time devoted to creating the graphics. Even if you

are not particularly artistic when it comes to drawings, you can still create

some simple cartoon style images. I created the graphics for all the games

in this book; while they are unlikely to win any prizes for realism, they

show that you can create some simple graphics without needing to be a

professional artist.

112

�Creating a Theme
Before you start creating your graphics, you should decide on the style and

theme of your graphics. When starting out programming, it is often a good

idea to start off with simple images as those work well in the simple Actor

objects that Pygame Zero uses. These will also need much less processing

power compared to the lifelike characters you see in commercial AAA

games. This doesn’t mean your characters need to be lifeless as you can

still give the characters their own style and personality.

Some other things to consider:

•	 What kind of environment is the game based in? Games

could be based on land, on the sea, or even in space.

Each location has its own challenges and advantages

regarding the graphics.

•	 Will the graphics be realistic? Graphics can be created

that create realism or that can take you to a fantasy

world.

•	 Will the game be family friendly? If you want the

game to be suitable for young children, then you

should avoid violence, bad language, and other

inappropriate content. If the game does include some

level of violence or destruction, then comic-style

violence is more suitable for children than if you use

lifelike images. You may consider having a family-

friendly mode with more appropriate graphics for

younger players.

Chapter 5 Graphic Design

113

•	 Can the characters be customized? If the main

character is a person, then players may like to choose

a character that they can associate with. This may be

through providing a different gender, color of skin, hair

color, or choice in clothes. If instead the character is

an animal or fantasy creature, then maybe there could

be an option for different animals or creatures. This

can also apply for inanimate objects, in the case of a

vehicle, a different make, model, or color.

Having decided on the theme, you can create images for the

background and the characters in the game.

�File Formats
There are different file formats that can be used for images. The two most

common are bitmap and vector formats which will be considered here.

�Bitmap Images
The images that have been used so far have all been bitmap images.

Bitmap images (also known as raster images) are created as individual

pixels which are the smallest individual block of the image. The bitmap

defines the color of each of the pixels making up the image.

This is shown in Figure 5-1. This is a simple image of 10 x 10 pixels with

a white background and a black rectangle. The squares that are colored

white would be stored as a white pixel, and those that are colored black

would be stored as a black pixel.

Chapter 5 Graphic Design

114

This is a trivial image. Bitmap images usually consist of a lot more

pixels, and so storing the color of each pixel can result in very large file

sizes. For example, the background image used in the compass game is

800 x 600 pixels, which is 480,000 pixels. If 3 bytes are used to represent the

color (which is typical), then that image would be about 1.4 MB in size. You

could prove this yourself by converting the image to a Windows Bitmap

(.bmp) image format. To avoid such large file sizes, image formats often

support compression.

The two most popular image formats that are used in Pygame Zero are

PNG (.png) and JPEG (.jpg). The PNG (Portable Network Graphics) format

supports lossless compression. This reduces the file size but keeps all the data

in the image intact. The JPEG format (created by Joint Photographic Experts

Group) uses lossy compression, which removes some of the information

in the file while making it look as close as possible to the original. The lossy

compression often makes the files smaller but can result in loss of quality.

JPEG files are good for large images where compression is a priority.

This makes them a useful format for photos.

PNG has good compression with no loss of quality and has support for

transparency, so it is usually a good choice for game programming.

Figure 5-1.  Simple bitmap image

Chapter 5 Graphic Design

115

�Vector Images
An alternative to a bitmap image is a vector image. Instead of storing

details of each of the pixels, a vector image stores instructions on how to

create the image from shapes. In the case of the image previously used in

Figure 5-1, the file format would instead describe how to create the image

using a rectangle.

Listing 5-1 shows pseudo-code for how the bitmap image could be

drawn as a vector image.

Listing 5-1.  Example of a try except exception handling

Create blank page 10 pixels x 10 pixels

Set the page color to white

Draw a rectangle starting at position 1,1 which is 6 x 7 pixels

in size.

Color the rectangle black

Tip P seudo-code is used to describe how a program works. It
cannot be run directly in any programming language as it doesn’t
have the correct vocabulary or syntax that a normal programming
language needs. It is useful for explaining how the code will work.

The main advantages of a vector image are as follows:

•	 The shapes can be edited and moved without losing

any information where overlapping other shapes.

•	 When zooming in on a shape, it continues to be crisp,

whereas a bitmap becomes pixelated.

•	 Usually the file size is smaller.

Chapter 5 Graphic Design

116

A popular format for vector images is SVG (Scalable Vector Graphics)

which is a generic file format. There are lots of other vector file formats,

which are normally associated with a particular editing application (such

as ODG which is used in LibreOffice Draw).

Pygame Zero is not able to display these images in the same way

that it can with bitmap images. Vector images have to be converted to

bitmap images when designing the game, converted using code that can

understand the vector image format, or to have code that instructs Pygame

Zero to create the images using its built-in shape tools. Each of these

methods will be covered in this or the next two chapters.

�Useful Tools
There are many tools that can be used to design computer graphics.

The examples shown here are all freely available and will work on the

Raspberry Pi. For some of these, an example of how to create an image is

shown.

�LibreOffice Draw
Draw is one of the applications included in the LibreOffice Office suite. It

is included by default in the Raspberry Pi NOOBs image and available for

other operating systems from the web site www.libreoffice.org/.

Draw is useful for creating 2D vector images, which can then be

converted into bitmap images for using in Pygame Zero.

The screenshot in Figure 5-2 shows a person created in Draw. The

figure on the right has been separated into its different components to

demonstrate how these were created using basic shapes.

Chapter 5 Graphic Design

http://www.libreoffice.org/

117

There are several different shapes that can be used which are shown

in Figure 5-3. For more complex shapes, the draw tool includes an option

for creating an irregular polygon using a collection of lines which can be

formed in any shape.

Figure 5-2.  Person sprite image created in LibreOffice Draw

Chapter 5 Graphic Design

118

After designing the sprite, it can be exported to a PNG file using the

export option. If you tick the “selection” checkbox, then it will just export

the selected objects. That can be useful if you create multiple images in the

same document.

�Inkscape
LibreOffice Draw is a good program, but for a more professional drawing

application, there is another free alternative in the form of Inkscape.

Inkscape is a vector drawing program which compares itself to Adobe

Illustrator and CorelDRAW. It isn’t included by default in the NOOBS

install, but can be installed using

sudo apt install inkscape

Figure 5-3.  Simple shape drawing tools in LibreOffice Draw

Chapter 5 Graphic Design

119

Inkscape is also available for other operating systems and can be

downloaded from https://inkscape.org/. The screenshot in Figure 5-4

shows Inkscape with a drawing of a car.

Inkscape is a bit harder to use than LibreOffice Draw, but more

powerful. If you are not already familiar with a vector drawing program,

then you may like to try LibreOffice Draw first and then use Inkscape when

ready to move to the next level. An example of how it works differently is

that LibreOffice Draw has a polygon tool for creating irregular polygons,

whereas in Inkscape this is achieved by using the pencil tool. To create a

polygon, draw the first line, then start each subsequent line from the end

of the previous line. When complete, clicking the beginning of the first line

will result in a polygon which you can fill with color.

The Inkscape files are saved directly as SVG files which makes them

useful for sharing with other applications and the images can be exported

as PNG bitmap files for use in Pygame Zero.

Figure 5-4.  Car image created in Inkscape

Chapter 5 Graphic Design

https://inkscape.org/

120

�GIMP
GIMP (GNU Image Manipulation Program) is a bitmap editor. It is a

powerful tool with lots of features, but due to this, it can be difficult to

learn. It can be installed on the Raspberry Pi using

sudo apt install gimp

On other operating systems, you can download a version at www.gimp.org.

There are many ways that GIMP can be used for creating graphics. Two

examples are shown here, one creating a background image from a

drawing or photo and the other showing how it can be used to create

simple pixel art suitable for sprites.

�Creating a Computer Image from a Drawing or Photo

This example will show the principles behind creating a computer graphic

image from a drawing or photo. This can be used to take concept artwork

and make it into a background for a game. In this case I have created a

computer graphic image of a castle from a photo of a castle. The photo

image is first loaded into GIMP and resized to the size of the finished

image as shown in Figure 5-5.

Chapter 5 Graphic Design

http://www.gimp.org

121

You will see that there is a transparent area at the top of the image

(checkerboard pattern). This is due to the image being resized to achieve

the desired aspect ratio.

The image will be created on a new layer and the photograph

eventually removed. The new layer has been created using the layer tool as

shown in Figure 5-6.

Figure 5-5.  GIMP with photo of a castle

Figure 5-6.  GIMP layer dialog with new layer

Chapter 5 Graphic Design

122

The new layer has been divided into two areas showing green land

with a blue sky. The main tools that are used are the free select tool (lasso)

and the fill tool (bucket); these are both highlighted in Figure 5-7.

The order and opacity of the layers can be adjusted so that it is possible

to see the photo in the background and then the outline drawn using

the free select tool. You can zoom in and out using Ctrl and the mouse

roller wheel. You can move around the image using the scroll bars. If you

accidentally click in the wrong place, then use the backspace key on the

keyboard. The selection is shown in Figure 5-8, where you can see a faint

outline of the shape of the castle.

Figure 5-7.  GIMP tools dialog showing free select and fill tools

Chapter 5 Graphic Design

123

The fill tool is then used to fill the outline with the appropriate color.

This is repeated to add more details, such as the door and windows. The

image can be saved as a GIMP XCF file which will allow you to continue

editing it and exported as a PNG file for use in Pygame Zero. The exported

image of the castle is shown in Figure 5-9.

Figure 5-8.  Selection of castle outline in GIMP

Chapter 5 Graphic Design

124

This process is repeated until the appropriate level of detail is

achieved. I’ve added a bridge, the road, and a darker green for the far side

of the dry moat.

It is also possible to draw onto the image using a pencil or paintbrush.

I’ve used the paintbrush tool to add some clouds. These have been drawn

using a soft brush on two layers with partial transparency to give it a softer

appearance.

Figure 5-9.  Exported image of the castle

Chapter 5 Graphic Design

125

�Creating a Pixel Art Sprite

An alternative is to create the image completely from scratch using your

own imagination. In this example, a simple pixel art sprite of a spacecraft.

Start by creating a new image. Set the size to the appropriate level of detail

(in this example 32 x 32 pixels), and under the more options dialog, choose

the background as transparency.

You can then zoom in to the image, and using the pen with size set to 1

individually, color the relevant pixels. I started by creating a simple outline

shape as shown in Figure 5-10.

To make it easier to create symmetry, I added a temporary layer with

a line showing the middle of the image. You can then count the same

number of pixels for each side of the line. This is shown in Figure 5-11.

Figure 5-10.  Creating a pixel art sprite in GIMP

Chapter 5 Graphic Design

126

Continue adding detail as necessary. Once complete, the image can be

exported as a PNG file as shown in Figure 5-12. You should normally leave

any unused pixels as transparent when exporting the image, but I have

colored the background gray to make it easier to see the white image.

Figure 5-11.  Creating a pixel art sprite in GIMP with a line of
symmetry

Figure 5-12.  Pixel art spacecraft

Chapter 5 Graphic Design

127

�Blender
The tools discussed so far are designed for 2D images. Blender is a 3D

design tool. This can be useful for creating 3D games, but that is beyond

the scope of this book; instead, I will show an example of how it can be

used to create a more 3D appearance by applying lighting and shadows to

a 3D model and then exporting it as a 2D image.

Blender is a professional design tool that is available for free. It can be

installed on the Raspberry Pi.

sudo apt install blender

If running on a Raspberry Pi, then I suggest getting a Raspberry

Pi 4 with 4GB of memory; it will run on older versions but is very slow

and barely usable. For other operating systems, the program can be

downloaded from www.blender.org.

Blender is an incredibly powerful tool, but it can be difficult to learn. It

has tools all around the screen with multiple pull-down menus in different

places, and the mouse operations work differently to the 2D tools. As a

result, it can be very confusing for new users.

If you do learn it, then it can be useful. You may want to start by

working through some short tutorials looking at certain aspects rather than

trying to take it all in during one project.

Creating a 3D object is beyond the scope of this book, but it may be

useful to understand how you can use objects created in Blender in your

games. The following steps show how you can export a Blender model as a

2D image suitable for use in a game.

The image in Figure 5-13 shows a simple missile/bullet image created

for a game. It is made up of a cylinder and cone. As a basic 2D object

without shading, it would look very basic, but by applying a light source so

that you can see the shadows, it can take on a more 3D appearance.

Chapter 5 Graphic Design

http://www.blender.org

128

After designing the image, the object can be rendered to a 2D image,

then saved as an image file as shown in Figure 5-14.

Figure 5-13.  Blender with 3D model of a missile

Figure 5-14.  Blender with Save As Image menu option

Chapter 5 Graphic Design

129

�Create Using Code
The tools so far have looked at ways of creating images in a tool that are

then exported for use in Pygame Zero. An alternative is to generate the

image in Pygame Zero using code. This can make use of the shape drawing

tools within Pygame Zero.

Chapter 7 includes a game created completely from scratch using this

technique. A screenshot of the game is shown in Figure 5-15.

The graphics in this game are basic, but more detail could be added to

make them more realistic.

Figure 5-15.  Screenshot of tank game created using code

Chapter 5 Graphic Design

130

�Other Sources
If you don’t want to create your own images, then you could get some

graphics created by someone else. You will need to check the licenses

for the graphics allowing you to use them in your game. Some licenses

may put restrictions on how the graphics can be used, modified, and

distributed. They may also impose different licenses depending upon

whether your game is monetized.

The following is a small selection of sources that may be useful; be

aware that some of these sites can use different licenses for different

images or may use licenses that restrict how the images may be used:

•	 Open Game Art – https://opengameart.org/

•	 Kenny – https://kenney.nl/

•	 Pixabay – https://pixabay.com/

•	 Itch.io free game assets – https://itch.io/game-

assets/free

This is not an exhaustive list. A search using an Internet search engine

will list other sites with graphics suitable for use in your own games.

�Summary
This has shown some common tools that can be used for creating

images for use in computer game programming. It is beyond the scope

of this book to go into details of how they are used, but it has included

an overview of some of the techniques that you may want to use when

creating graphics. It has also included a few suggestions of sites that may

have suitable graphics that can be used.

The next chapter will look at how colors are used in Pygame Zero and

some techniques for using colors in game programming.

Chapter 5 Graphic Design

https://opengameart.org/
https://kenney.nl/
https://pixabay.com/
https://itch.io/game-assets/free
https://itch.io/game-assets/free

131© Stewart Watkiss 2020
S. Watkiss, Beginning Game Programming with Pygame Zero,
https://doi.org/10.1007/978-1-4842-5650-3_6

CHAPTER 6

Colors
In Chapter 3 there was a brief mention that there are different ways of

defining colors. This chapter will look at the different ways that colors can

be used in Pygame Zero. You will also see how the mouse can be used to

interact with a program.

This chapter will use some code examples, but this chapter is not about

creating a specific game; it is about learning new tools and techniques that

may be useful in future.

�Color Mixing
To understand the color model, it is useful to look at different ways that

colors can be defined. At a young age, you would have learned that you

can make up different colors from mixing different colored paints together.

Through that you learned that the primary colors were blue, red, and

yellow. If you look at the ink in a color printer, then you will still see this

in action, but using cyan (light blue), magenta (light red), and yellow. You

will also see that you have a black ink to give a true black color. This is

known as the CMYK color model.

The CMYK model works well for printers because it is a subtractive

color model. You start with a pale color (often white paper) and the ink

that is added prevents colors from being reflected. By adding ink in specific

quantities, you can filter out unwanted light to get the color you want.

132

The RGB scheme used on computer screens is the opposite. Instead

of blocking colors, it starts with a black screen and adds colored light to

reach the desired color. Because the colors are being added rather than

subtracted, it uses different colors to the subtractive color scheme. The

colors used on a computer screen are red, green, and blue (RGB). There

are other color schemes and there are modules in Python that can convert

between the different color models, but essentially it is just RGB that is

needed for most game programming.

In Pygame Zero RGB values are often entered as a tuple listing the

three different color components as numbers from 0 to 255. For example,

to represent orange you could use (255, 165, 0) which has 255 for the red

component (the maximum), 165 for the green component, and 0 for the

blue component. It can also be entered as a hexadecimal value which is

the same as if it was defined in HTML or CSS. This shows the same three

values but converted to hexadecimal (base 16) instead of decimal. For

orange this would be #ffa500. There are also some 657 different words that

can be used for colors ranging from “aliceblue” to “yellowgreen”. A small

selection of the color codes is shown in Figure 6-1.

Chapter 6 Colors

133

The code to generate this list is in Listing 6-1 and included in the

source code as color-demo.py. The demonstration program displays the

word, RGB, and HTML values for a selection of colors. It shows them on

both a black and white background to make the colors visible.

Figure 6-1.  List of color codes

Chapter 6 Colors

134

Listing 6-1.  Code to display a selection of color words with color

codes

�Program to demonstrate some of the color words including in

Pygame / Pygame Zero

import pygame

WIDTH = 800

HEIGHT = 600

colors = ['aquamarine1', 'black', 'blue', 'magenta', 'gray',

'green', 'limegreen', 'maroon', 'navy', 'brown', 'purple',

'red', 'lightgray', 'orange', 'white', 'yellow', 'violet']

def draw():

 screen.draw.filled_rect(Rect((400,0),(400,600)),(255,255,255))

 line_number = 0

 for color in colors:

 print_color (color, line_number)

 line_number += 1

def print_color (colorname, line_number):

 �color_rgb_string = "{},{},{}".format(pygame.

Color(colorname).r, pygame.Color(colorname).g, pygame.

Color(colorname).b)

 �color_html_string = "#{:02x}{:02x}{:02x}".format(pygame.

Color(colorname).r, pygame.Color(colorname).g, pygame.

Color(colorname).b)

 �screen.draw.text(colorname, (20,30*(line_number+1)),

color=colorname)

 �screen.draw.text(color_rgb_string, (130,30*(line_

number+1)), color=colorname)

 �screen.draw.text(color_html_string, (250,30*(line_

number+1)), color=colorname)

Chapter 6 Colors

135

 �screen.draw.text(colorname, (420,30*(line_number+1)),

color=colorname)

 �screen.draw.text(color_rgb_string, (530,30*(line_

number+1)), color=colorname)

 �screen.draw.text(color_html_string, (650,30*(line_

number+1)), color=colorname)

The code uses Pygame Zero to display the text, but accesses the

pygame.Color list directly. The list of colors is not available through the

Pygame Zero documentation, but a link is included in Appendix B to the

Pygame source code where you can see all the colors defined.

�Bouncing Ball
As a further demonstration of the use of color, I have created a short

program which shows a ball bouncing around the screen. The ball changes

color as it moves around. I won't use this in a game, but I will explain the

technique used which could be useful if you wanted to make a game that

relies on bouncing a ball such as Breakout. A screenshot of the program is

shown in Figure 6-2.

Chapter 6 Colors

136

The code for this is shown in Listing 6-2 and is included in the supplied

source code as bouncingball.py.

Listing 6-2.  Code to display a selection of color words with color

codes

WIDTH = 800

HEIGHT = 600

starting positions

ball_x = 400

ball_y = 300

ball_speed = 5

Figure 6-2.  Color bouncing ball

Chapter 6 Colors

137

Velocity separated into x and y components

ball_velocity = [0.7 * ball_speed, 1 * ball_speed]

ball_radius = 20

ball_color_pos = 0

def draw():

 screen.clear()

 draw_ball()

def update():

 global ball_x, ball_y, ball_velocity, ball_color_pos

 ball_color_pos += 1

 if (ball_color_pos > 255):

 ball_color_pos = 0

 ball_x += (ball_velocity[0])

 ball_y += (ball_velocity[1])

 �if (ball_x + ball_radius >= WIDTH or ball_x - ball_radius

<= 0):

 ball_velocity[0] = ball_velocity[0] * -1

 �if (ball_y + ball_radius >= HEIGHT or ball_y - ball_radius

<= 0):

 ball_velocity[1] = ball_velocity[1] * -1

def draw_ball():

 color = color_wheel (ball_color_pos)

 �screen.draw.filled_circle ((ball_x,ball_y), ball_radius,

color)

Cycle around a color wheel - 0 to 255

def color_wheel(pos):

 if pos < 85:

 return (pos * 3, 255 - pos * 3, 0)

Chapter 6 Colors

138

 elif pos < 170:

 pos -= 85

 return (255 - pos * 3, 0, pos * 3)

 else:

 pos -= 170

 return (0, pos * 3, 255 - pos * 3)

As with all Pygame Zero code, the code is based around the draw and

update functions.

The update function handles the movement of the ball. The ball has a

velocity (combination of speed and direction) which is stored in terms of

the change in x and y for each run of the update function. Using the default

speed of 5, the ball will move 3.5 pixels in the X direction and 5 pixels in the

Y direction each time the function is called. When the ball hits a wall, then

it’s velocity in the appropriate direction will be reversed.

The draw function runs the draw_ball function which draws the ball

using screen.draw.filled_circle. It works out the color for the ball from a

color_wheel function.

The color wheel is created in three phases. The first phase starts with

no red light, full green light, and no blue light. Then red light is increased,

and blue light decreased as you move around this phase.

The second phase is where the red light decreases and blue light

increases, with no green light.

The third phase is where green light increases and blue light decreases,

with no red light.

This uses just one slice around the wheel with a fixed amount of

brightness. The total number of colors available is over 16 million, but

because it only takes one slice, the color_wheel function will return one of

256 different colors each time it is called. Using the next color, each time

the ball is drawn means that the ball will change color as it moves around

the screen.

Chapter 6 Colors

139

�Background Color Selector
To help visualize the different colors, the next program will provide a

means of viewing colors associated with different color codes.

The program allows the user to select a color, and it will be displayed

across the bottom half of the window. This is shown in Figure 6-3.

Like the rest of this chapter, it won’t involve creating a complete game,

but it will demonstrate techniques that can be used in creating games. This

includes how to handle mouse events to create games using the mouse.

Figure 6-3.  Color selector program

Chapter 6 Colors

140

�Handling Mouse Events
When the mouse is moved, clicked, or dragged, then it causes an event to be

triggered. These then call mouse event functions which you can implement

in your own code. These functions are on_mouse_down, on_mouse_up,

and on_mouse_move. If you implement these functions in your Pygame

Zero code, then they will be called whenever one of the events is triggered.

Looking at the function on_mouse_down, it is triggered each time

that one of the mouse buttons is pressed. The function can have two

arguments; if they are included in the function, then they will be provided

with the position of the mouse and the mouse button pressed.

An example function is shown in Listing 6-3.

Listing 6-3.  Code to handle mouse press

def on_mouse_down(pos, button):

 if (button == mouse.LEFT):

 �print ("Mouse pressed, position {} {}".format((pos[0]),

pos[1]))

Using this code each time the left button is pressed, it will print out

the coordinates of the mouse to the console. If there are actors on the

screen, then it is possible to detect whether the mouse is over one of those

actors using the actor collidepoint method. This is different than if using

a conventional (non-game) application. In a game you normally want the

action (such as pressing a button, firing a laser, or turning a card) as soon

as the mouse is clicked. In a conventional application, to press a button,

you normally press on the button and then also need to release it while

the mouse is over the same point. This means keeping track of whether

the button was during the on_mouse_down, then waiting until after a on_

mouse_up is called. As this is a game programming book, it will just cover

the first, but it’s something you may want to consider if using Pygame Zero

for a non-game application.

Chapter 6 Colors

141

�Creating the Color Selector
The color selector creates a filled_rectangle with the selected color. The

rectangle takes up half of the program window. This is like the filled_circle

used previously, except it uses a Rect object. The color is set based on

variables for color_red, color_green, and color_blue. The value of each

of those is set using plus and minus button using the on_mouse_down

function. These buttons are images which are created as actor objects the

same as if creating a character or other sprite.

The code for the color selector is shown in Listing 6-4.

Listing 6-4.  Color selector program

WIDTH = 800

HEIGHT = 600

color_red = 0

color_green = 0

color_blue = 0

change_amount = 5

BOX = Rect((0,300),(800,300))

button_minus_red = Actor("button_minus_red", (260,63))

button_plus_red = Actor("button_plus_red", (310,63))

button_minus_green = Actor("button_minus_green", (260,143))

button_plus_green = Actor("button_plus_green", (310,143))

button_minus_blue = Actor("button_minus_blue", (260,223))

button_plus_blue = Actor("button_plus_blue", (310,223))

def draw() :

 screen.clear()

 screen.draw.text("Red", (45,45), fontsize=40, color="red")

 �screen.draw.text(str(color_red), (160,45), fontsize=40,

color="red")

Chapter 6 Colors

142

 �screen.draw.text("Green", (45,125), fontsize=40,

color="green")

 �screen.draw.text(str(color_green), (160,125), fontsize=40,

color="green")

 �screen.draw.text("Blue", (45,205), fontsize=40,

color="blue")

 �screen.draw.text(str(color_blue), (160,205), fontsize=40,

color="blue")

 button_minus_red.draw()

 button_plus_red.draw()

 button_minus_green.draw()

 button_plus_green.draw()

 button_minus_blue.draw()

 button_plus_blue.draw()

 �screen.draw.filled_rect (BOX, (color_red,color_green,

color_blue))

def update() :

 pass

def on_mouse_down(pos, button):

 global color_red, color_green, color_blue

 if (button == mouse.LEFT):

 if (button_minus_red.collidepoint(pos)):

 color_red -= change_amount

 if (color_red < 1):

 color_red = 0

 elif (button_plus_red.collidepoint(pos)):

 color_red += change_amount

 if (color_red > 255):

 color_red = 255

Chapter 6 Colors

143

 elif (button_minus_green.collidepoint(pos)):

 color_green -= change_amount

 if (color_green < 1):

 color_green = 0

 elif (button_plus_green.collidepoint(pos)):

 color_green += change_amount

 if (color_green > 255):

 color_green = 255

 elif (button_minus_blue.collidepoint(pos)):

 color_blue -= change_amount

 if (color_blue < 1):

 color_blue = 0

 elif (button_plus_blue.collidepoint(pos)):

 color_blue += change_amount

 if (color_blue > 255):

 color_blue = 255

The on_mouse_down function handles all the button presses. There is

a block of text for each button which looks to see if the button collides with

the position of the mouse. If a collision is detected, then it increases or

decreases the value of the appropriate color by 5. The reason for changing

by 5 rather than 1 is to reduce the number of button clicks needed,

although that does mean that only a subset of colors can be displayed.

�Summary
This chapter has looked at how colors are created in Pygame Zero and how

the colors can be used. The bouncing ball program showed how the colors

can be used. The color selector provides a way of creating different colors

and how to use the mouse to interact with the program. The code used in

these programs can be used as a building block for creating games.

In the next chapter, the colors will be used to create another game

using vector images.

Chapter 6 Colors

145© Stewart Watkiss 2020
S. Watkiss, Beginning Game Programming with Pygame Zero,
https://doi.org/10.1007/978-1-4842-5650-3_7

CHAPTER 7

Tank Game Zero
The last few chapters have covered some theory; now you will get a

chance to apply some of those techniques into a new game. The game is

an artillery battle game called Tank Game Zero – a battle to destroy your

enemy’s tank.

The game will use some of the features learned in the previous

chapters and expand on those. It will use dynamic vector graphics to create

sprites and the background image. It will also cover a new technique for

tracking a trajectory for shells fired from a tank’s gun.

Rather than cover the program line by line, I’ve explained some of the

different techniques used to create the game. These will come together

toward the end of this chapter to create a working game.

The game is a two-player turn-based game. Player 1 will fire a shell

toward the enemy tank to try and destroy it. If that is unsuccessful, then

player 2 has a go. This repeats until one of the players’ shells successfully

hits the opponent’s tank.

�Vector Image of Tank
Instead of using bitmap images, the game is created using the built-in

Pygame Zero shapes. This includes the landscape which is created as a

polygon and the tanks which are created using simple shapes. The basic

outline for the tank is shown in Figure 7-1.

146

In the code the bottom part of the tank is known as the track, which

is created as a polygon; the main part is known as the hull, created as a

rectangle; the top is the turret which is an ellipse; and the gun is a rectangle

shape but created as a polygon.

This is going to need additional code to work out the position of the

tank and the relative coordinates of the different shapes. The math for

drawing the gun position is going to be quite involved so that is put into

a separate function. The code to draw one of the tanks is shown in

Listing 7-1. This is included in the source code as tankshape.py.

Listing 7-1.  Code to display a tank created using shapes

import math

import pygame

WIDTH=800

HEIGHT=600

left_tank_position = 50,400

left_gun_angle = 20

def draw():

 draw_tank ("left", left_tank_position, left_gun_angle)

Figure 7-1.  Tank shape created using vector shapes

Chapter 7 Tank Game Zero

147

def draw_tank (left_right, tank_start_pos, gun_angle):

 (xpos, ypos) = tank_start_pos

 tank_color = (216, 216, 153)

 # The shape of the tank track is a polygon

 # (uses list of tuples for the x and y co-ords)

 track_positions = [

 (xpos+5, ypos-5),

 (xpos+10, ypos-10),

 (xpos+50, ypos-10),

 (xpos+55, ypos-5),

 (xpos+50, ypos),

 (xpos+10, ypos)

]

 # Polygon for tracks (pygame not pygame zero)

 �pygame.draw.polygon(screen.surface, tank_color, track_

positions)

 �# �hull uses a rectangle which uses top right coords and

dimensions

 hull_rect = Rect((xpos+15,ypos-20),(30,10))

 # Rectangle for tank body "hull" (pygame zero)

 screen.draw.filled_rect(hull_rect, tank_color)

 # Despite being an ellipse pygame requires this as a rect

 turret_rect = Rect((xpos+20,ypos-25),(20,10))

 # Ellipse for turret (pygame not pygame zero)

 pygame.draw.ellipse(screen.surface, tank_color, turret_rect)

 �# �Gun position involves more complex calculations so in a

separate function

 �gun_positions = calc_gun_positions (left_right, tank_start_

pos, gun_angle)

Chapter 7 Tank Game Zero

148

 # Polygon for gun barrel (pygame not pygame zero)

 �pygame.draw.polygon(screen.surface, tank_color,

gun_positions)

Calculate the polygon positions for the gun barrel

def calc_gun_positions (left_right, tank_start_pos, gun_angle):

 (xpos, ypos) = tank_start_pos

 �# �Set the start of the gun (top of barrel at point it joins

the tank)

 if (left_right == "right"):

 gun_start_pos_top = (xpos+20, ypos-20)

 else:

 gun_start_pos_top = (xpos+40, ypos-20)

 �# �Convert angle to radians (for right subtract from 180 deg

first)

 relative_angle = gun_angle

 if (left_right == "right"):

 relative_angle = 180 - gun_angle

 angle_rads = math.radians(relative_angle)

 # Create vector based on the direction of the barrel

 # Y direction *-1 (due to reverse y of screen)

 gun_vector = (math.cos(angle_rads), math.sin(angle_rads) * -1)

 # Determine position bottom of barrel

 # Create temporary vector 90deg to existing vector

 if (left_right == "right"):

 temp_angle_rads = math.radians(relative_angle - 90)

 else:

 temp_angle_rads = math.radians(relative_angle + 90)

 �temp_vector = (math.cos(temp_angle_rads), math.sin(temp_

angle_rads) * -1)

Chapter 7 Tank Game Zero

149

 # Add constants for gun size

 GUN_LENGTH = 20

 GUN_DIAMETER = 3

 �gun_start_pos_bottom = (gun_start_pos_top[0] + temp_

vector[0] *

 �GUN_DIAMETER, gun_start_pos_top[1] + temp_vector[1] *

GUN_DIAMETER)

 �# Calculate barrel positions based on vector from start

position

 gun_positions = [

 gun_start_pos_bottom,

 gun_start_pos_top,

 (gun_start_pos_top[0] + gun_vector[0] * GUN_LENGTH,

 gun_start_pos_top[1] + gun_vector[1] * GUN_LENGTH),

 (gun_start_pos_bottom[0] + gun_vector[0] * GUN_LENGTH,

 gun_start_pos_bottom[1] + gun_vector[1] * GUN_LENGTH),

]

 return gun_positions

The program first imports some modules. One is the math module and

the other is pygame. The reason for needing to import pygame is that while

the game is designed for Pygame Zero, there are some features that are not

currently available in Pygame Zero. Importing pygame enables the code to

make use of functionality in the pygame module.

Next there are some global variables for the position of the tank and

the angle for the gun. These refer to the left tank; in the final game, there

will be two tanks and variable names are consistent to how they will be as

the game is developed.

The draw function is a single entry that draws the tank by calling the

draw_tank function. There is no update function as that is not needed at

this point.

Chapter 7 Tank Game Zero

150

The task of drawing the tank goes to the draw_tank function. The first

argument to the function is a word “left” or “right”. This is not used in this

code as currently it only creates the left tank, but it’s often better to include

any future arguments where it is known they will be needed later. The

other arguments represent the position of the tank and the angle that the

gun is pointing at.

The draw_tank function first defines the shape which represents the

tank tracks. This is created as a polygon. A polygon can be any closed

shape with at least three sides which makes it ideal for irregular shapes.

 track_positions = [

 (xpos+5, ypos-5),

 (xpos+10, ypos-10),

 (xpos+50, ypos-10),

 (xpos+55, ypos-5),

 (xpos+50, ypos),

 (xpos+10, ypos)

]

 �pygame.draw.polygon(screen.surface, tank_color, track_

positions)

The track_positions list is created with all the vertices that represent

the shape (each of the corners). Pygame Zero does not currently include

the code to create polygons. To overcome this limitation, the Pygame

method is used instead. Instead of beginning screen.draw as is used in

Pygame Zero, the method is pygame.draw.polygon and the surface to draw

on is passed as the first argument using screen.surface.

The next shape is a rectangle which can be drawn directly from

Pygame Zero.

 hull_rect = Rect((xpos+15,ypos-20),(30,10))

 screen.draw.filled_rect(hull_rect, tank_color)

Chapter 7 Tank Game Zero

151

The hull_rect is Rect object, which has a tuple to represent the

starting position (left, top) and a tuple to represent the size of the rectangle

in pixels (width, height). That is then passed along with the color to

screen.draw.filled_rect.

The turret is created as an ellipse. Pygame Zero does not currently

support an ellipse (only having a circle), so this also needs to be created

using Pygame. The ellipse is defined as a rectangle (Rect object), which

contains the ellipse.

 turret_rect = Rect((xpos+20,ypos-25),(20,10))

 �pygame.draw.ellipse(screen.surface, tank_color, turret_rect)

The last item in the draw function is to draw the gun barrel. This is a

rectangle which is rotated to reflect the selected angle. As this is drawn at

an angle, it is created as a polygon. The math in determining the positions

of the vertices is quite involved so it is broken out into a separate function

calc_gun_positions. The gun is shown in Figure 7-2 showing how the gun

is positioned on the tank and the gun angle.

Figure 7-2.  Tank shape created using vector shapes

Chapter 7 Tank Game Zero

152

The calc_gun_positions function has been written to support the

tank being on the left of the screen (with the gun pointing to the right) or

on the right of the screen (with the gun pointing to the left). This is done by

first setting the appropriate start position for the top of the barrel where it

overlaps the hull of the tank. The gun_angle is the number of degrees from

the reference line shown in Figure 7-2. If the tank is on the right, then the

gun angle is converted to a relative angle by subtracting 180 degrees.

The angle is then converted to radians as that is what the math module

uses for the trigonometric functions. The gun_vector is then created based

on the cosine for the change in the x axis and the sine for the change in the

y axis. That vector gives the relative x and y changes and can be multiplied

by the length of the gun to calculate the position of the vertex at the top of

the gun. A similar technique is used to find the bottom position, which is

at an angle of 90 degrees (minus or plus depending upon whether it is right

or left) compared to the gun vector. Finally, a list is created called gun_

positions, which is returned to the draw function to create the polygon.

�Creating a Dynamic Landscape
In the previous code, the tank is just positioned in a stationary position

hovering in the air. This next part will create the landscape for the tanks

to stand on. Rather than create a static landscape which is the same each

time the game is played, a dynamic landscape will be created. This will

show how a dynamic landscape can be generated using random numbers.

An example landscape is shown in Figure 7-3.

Chapter 7 Tank Game Zero

153

The landscape will be generated as a polygon. You may be thinking

that you can just use a random number value to determine the value of

the y axis. It is not quite that simple as the random number would result

in sharp differences between each point causing the landscape to be too

rugged and unrealistic. Instead the landscape is created by calculating a

random value as a difference from the previous position. This gives a more

gradual change. I’ve also created a flat area on both the left and right

which is where the tanks will be positioned. The code for this is shown in

Listing 7-2. The code is included in the source code as tanktrajectory.py.

Listing 7-2.  Code to generate a random landscape for the tank

game

import random

import pygame

WIDTH=800

HEIGHT=600

Figure 7-3.  Dynamic landscape for the tank game

Chapter 7 Tank Game Zero

154

SKY_COLOR = (165, 182, 209)

GROUND_COLOR = (9,84,5)

How big a chunk to split up x axis

LAND_CHUNK_SIZE = 20

Max that land can go up or down within chunk size

LAND_MAX_CHG = 20

Max height of ground

LAND_MIN_Y = 200

Position of the two tanks - set to zero, update before use

left_tank_position = (0,0)

right_tank_position = (0,0)

def draw():

 screen.fill(SKY_COLOR)

 �pygame.draw.polygon(screen.surface, GROUND_COLOR, land_

positions)

Setup game - allows create new game

def setup():

 �global left_tank_position, right_tank_position, land_

positions

 �# �Setup landscape (these positions represent left side of

platform)

 # Choose a random position

 # The complete x,y co-ordinates will be saved in a

 # tuple in left_tank_rect and right_tank_rect

 left_tank_x_position = random.randint (10,300)

 right_tank_x_position = random.randint (500,750)

 # Sub divide screen into chunks for the landscape

 # store as list of x positions (0 is first position)

 current_land_x = 0

Chapter 7 Tank Game Zero

155

 current_land_y = random.randint (300,400)

 land_positions = [(current_land_x,current_land_y)]

 while (current_land_x < WIDTH):

 if (current_land_x == left_tank_x_position):

 # handle tank platform

 �left_tank_position = (current_land_x, current_

land_y)

 # Create level ground for the tank to sit on

 �# �Add another 50 pixels further along at same y

position

 current_land_x += 60

 �land_positions.append((current_land_x, current_

land_y))

 continue

 elif (current_land_x == right_tank_x_position):

 # handle tank platform

 �right_tank_position = (current_land_x, current_

land_y)

 # Create level ground for the tank to sit on

 �# �Add another 50 pixels further along at same y

position

 current_land_x += 60

 �land_positions.append((current_land_x, current_

land_y))

 continue

 �# �Checks to see if next position will be where the

tanks are

 �if (current_land_x < left_tank_x_position and current_

land_x +

 LAND_CHUNK_SIZE >= left_tank_x_position):

 # set x position to tank position

 current_land_x = left_tank_x_position

Chapter 7 Tank Game Zero

156

 �elif (current_land_x < right_tank_x_position and

current_land_x +

 LAND_CHUNK_SIZE >= right_tank_x_position):

 # set x position to tank position

 current_land_x = right_tank_x_position

 elif (current_land_x + LAND_CHUNK_SIZE > WIDTH):

 current_land_x = WIDTH

 else:

 current_land_x += LAND_CHUNK_SIZE

 # Set the y height

 �current_land_y += random.randint(0-LAND_MAX_CHG,

LAND_MAX_CHG)

 # check not too high or too low

 # Note the reverse logic as high y is bottom of screen

 if (current_land_y > HEIGHT): # Bottom of screen

 current_land_y = HEIGHT

 if (current_land_y < LAND_MIN_Y):

 current_land_y = LAND_MIN_Y

 # Add to list

 land_positions.append((current_land_x, current_land_y))

 # Add end corners

 land_positions.append((WIDTH,HEIGHT))

 land_positions.append((0,HEIGHT))

�Setup the game (at end so that it can see the other

functions)

setup()

After setting up some constants and variables, the setup function is

called. The instruction to call setup is at the bottom of the file. This is

because in Python the function must be defined before it’s called, so by

placing it at the bottom of the file, all earlier functions are already loaded.

Chapter 7 Tank Game Zero

157

Before creating the ground, the tank positions need to be calculated.

This is so that the code can ensure that the tank is mounted on a level

section of ground. The x position of the tanks is set based on a random

integer; the y position will be added later once the ground is calculated.

The background is then split into chunks of a fixed size. If a tank will be on

the next section, then the chunk is ended at the position so that the level

section can be created. The next chunk is then created with the y axis left

unchanged.

If the current section won’t have a tank on it, then it will be changed by

a random amount. All these positions are added to a list which is then used

by the draw function to draw the polygon.

�Calculating the Trajectory
When the shell is fired from the gun, it does not follow a straight line. This

is because of several factors, the main influence being gravity. Ignoring the

other factors, then the force of gravity pulling it toward earth would result

in the path of the shell forming a parabola as it first gains height and then

starts to fall back toward earth.

In the real world, the path would be distorted because of air resistance

and any wind resistance that it encounters. To keep it fairly simple, this

program will just consider gravity. This will be handled by a function

update_shell_position and a draw_shell function. To illustrate this, I

have created a program tanktrajectory.py which will display the entire path

for a certain set of values. The path is shown in Figure 7-4 with the colors

modified to improve the contrast.

Chapter 7 Tank Game Zero

158

The code to demonstrate this is shown in Listing 7-3.

Listing 7-3.  Code to demonstrate trajectory for a tank shell being

fired

import math

import pygame

WIDTH=800

HEIGHT=600

SKY_COLOR = (165, 182, 209)

SHELL_COLOR = (255,255,255)

shell_start_position = (50,500)

Figure 7-4.  Example trajectory of a tank shell being fired

Chapter 7 Tank Game Zero

159

left_gun_angle = 50

left_gun_power = 60

-

shell_positions = []

def draw_shell (position):

 (xpos, ypos) = position

 # Create rectangle of the shell

 shell_rect = Rect((xpos,ypos),(5,5))

 �pygame.draw.ellipse(screen.surface, SHELL_COLOR,

shell_rect)

def draw():

 screen.fill(SKY_COLOR)

 for this_position in shell_positions:

 draw_shell(this_position)

def update_shell_position (left_right):

 �global shell_power, shell_angle, shell_start_position,

shell_current_position, shell_time

 init_velocity_y = shell_power * math.sin(shell_angle)

 # Direction - multiply by -1 for left to right

 if (left_right == 'left'):

 init_velocity_x = shell_power * math.cos(shell_angle)

 else:

 �init_velocity_x = shell_power * math.cos(math.pi -

shell_angle)

 �# �Gravity constant is 9.8 m/s^2 but this is in terms of

screen so instead use a suitable value

 GRAVITY_CONSTANT = 0.004

 # Constant to give a sensible distance on x axis

 DISTANCE_CONSTANT = 1.5

Chapter 7 Tank Game Zero

160

 # time is calculated in update cycles

 �shell_x = shell_start_position[0] + init_velocity_x *

shell_time * DISTANCE_CONSTANT

 �shell_y = shell_start_position[1] + -1 * ((init_velocity_y *

shell_time) -

 (0.5 * GRAVITY_CONSTANT * shell_time * shell_time))

 shell_current_position = (shell_x, shell_y)

 shell_time += 1

def setup_trajectory():

 �global shell_positions, shell_current_position, shell_

power, shell_angle, shell_time

 shell_current_position = shell_start_position

 shell_angle = math.radians (left_gun_angle)

 shell_power = left_gun_power / 40

 shell_time = 0

 �while (shell_current_position[0] < WIDTH and shell_current_

position[1] < HEIGHT):

 update_shell_position("left")

 shell_positions.append(shell_current_position)

setup_trajectory()

The setup_trajectory function is used to demonstrate the trajectory

and won’t be included in the game. It sets the angle and then creates a

while loop which calculates all the positions that the shell will go through

before hitting the ground or going off the right-hand side of the screen.

The update_shell_position function starts with calculating the initial

velocity in the x and y directions. This is based on the power and angle of

the gun.

Chapter 7 Tank Game Zero

161

There then needs to be two constants: a value that represents

GRAVITY_CONSTANT (amount of force pulling down toward earth) and

DISTANCE_CONSTANT which influences how far the shell travels in

the x direction on each step. The value for gravity is 9.8 m/s2, but that is

assuming real distance measured in meters. In the case of a computer

screen, we have a virtual distance measured in pixels. The value used is

created using trial and error to get a value that looks realistic and gives a

suitable curve. The same trial and error method is used for the DISTANCE_

CONSTANT. These values are then included in the following algorithms to

determine the position of the shell at each time interval.

 �shell_x = shell_start_position[0] + init_velocity_x *

shell_time * DISTANCE_CONSTANT

 �shell_y = shell_start_position[1] + -1 * ((init_velocity_y *

shell_time) -

 (0.5 * GRAVITY_CONSTANT * shell_time * shell_time))

This doesn’t include any factor for air resistance, wind resistance, or

any of the other forces acting upon the shell except for gravity.

This demonstration program shows all the shell positions

simultaneously, but in the game only a single shell will be drawn at a time,

which will move slowly across the screen.

�Detecting a Collision
In the earlier game, the collisions were based on the Rect collide feature.

Although a useful technique, it does not have the accuracy needed for this

game. An alternative technique is to detect when the shell collides with a

tank or the ground by looking for the color of the pixel to see if it matches

with the color of the tank or ground. For this to work, the color of the

ground and of each of the tanks needs to be unique. Listing 7-4 shows the

function that will be used to detect the collision.

Chapter 7 Tank Game Zero

162

Listing 7-4.  Function to detect collision with tank or ground

def detect_hit (left_right):

 global shell_current_position

 (shell_x, shell_y) = shell_current_position

 # Add offset (3 pixels)

 # offset left/right depending upon direction of fire

 if (left_right == "left"):

 shell_x += 3

 else:

 shell_x -= 3

 shell_y += 3

 �offset_position = (math.floor(shell_x), math.

floor(shell_y))

 # Check whether it's off the screen

 # temporary if just y axis, permanent if x

 if (shell_x > WIDTH or shell_x <= 0 or shell_y >= HEIGHT):

 return 10

 if (shell_y < 1):

 return 1

 # Get color at position

 color_pixel = screen.surface.get_at(offset_position)

 if (color_pixel == GROUND_COLOR):

 return 11

 if (left_right == 'left' and color_pixel == TANK_COLOR_P2):

 return 20

 if (left_right == 'right' and color_pixel == TANK_COLOR_P1):

 return 20

 return 0

Chapter 7 Tank Game Zero

163

This code creates an offset just in front of the shell, so as not to look at

its own color. It then checks to see if that position is off the screen. If it has

gone above the top of the screen, then that is just a temporary situation, so

it returns a different value to if it goes off the right or left side of the screen.

The code then uses the following line to read the value of the pixel at the

offset position:

 color_pixel = screen.surface.get_at(offset_position)

This returns the value of the pixel at the offset position. If that value is a

match with the color of a tank or the ground, then it returns an appropriate

value.

In this function the values returned are just values which have been

chosen to represent the different conditions. If you are writing code that

will be reused in other programs, then it is usually a good idea to create a

constant to make it easier to see what that value means. For example, when

looking at the status of the mouse in Chapter 6, a test was made to see if

the value of the button was equal to mouse.LEFT. The value of mouse.LEFT

is just a number, which happens to be 1. It is generally easier to remember

mouse.LEFT rather than having to remember the number that is generated

for each of the different buttons. As this is only used for this particular

function, the real value is returned but comments have been included in

the code to explain what those values mean.

�Complete Game Code
There is quite a bit of additional code still, but most of that includes

techniques that have already been demonstrated in earlier chapters.

As with most programs, the state of the game needs to be tracked to

know which player is currently active or to display the appropriate message.

This is done by setting appropriate text in the variable game_state.

Chapter 7 Tank Game Zero

164

The different states are listed in comments at the start of the program;

they are

•	 “start” – Timed delay before start

•	 “player1” – Waiting for player to set position

•	 “player1fire” – Player 1 fired

•	 “player2” – Player 2 set position

•	 “player2fire” – Player 2 fired

•	 “game_over_1” – Show that player 1 won

•	 “game_over_2” – Show that player 2 won

These states have appropriate codes in the update or draw functions

to make sure that the game gives the correct prompts or handles the input

appropriately.

The player_keyboard function is called from the update function to

check to see if any keys are pressed. If the up or down buttons are pressed,

then the gun elevation angle is adjusted; if the left or right buttons are

pressed, then the power is adjusted (as a percentage of maximum power),

and if space is pressed, then the shell is fired. There is an additional test

to see if the left-shift key is pressed, which is another option instead of the

space to fire the shell. This is included so that the game can work with the

Picade or other Raspberry Pi-based arcade machines which map that key

to a physical button.

There is a setup function used for all the code that needs to be run

when the game is first run. This creates the landscape as well as setting

values for many of the variables that will be needed later. There is also

additional code to display messages to the user. The code for the complete

game is shown in Listing 7-5.

Chapter 7 Tank Game Zero

165

Listing 7-5.  Complete code for Tank Game Zero

import math

import random

import pygame

WIDTH=800

HEIGHT=600

States are:

start - timed delay before start

player1 - waiting for player to set position

player1fire - player 1 fired

player2 - player 2 set position

player2fire - player 2 fired

game_over_1 / game_over_2 - show who won 1 = player 1 won etc.

game_state = "player1"

Color constants

SKY_COLOR = (165, 182, 209)

GROUND_COLOR = (9,84,5)

Different tank colors for player 1 and player 2

These colors must be unique as well as the GROUND_COLOR

TANK_COLOR_P1 = (216, 216, 153)

TANK_COLOR_P2 = (219, 163, 82)

SHELL_COLOR = (255,255,255)

TEXT_COLOR = (255,255,255)

How big a chunk to split up x axis

LAND_CHUNK_SIZE = 20

Max that land can go up or down within chunk size

LAND_MAX_CHG = 20

Max height of ground

LAND_MIN_Y = 200

Chapter 7 Tank Game Zero

166

�Timer used to create delays before action (prevent accidental

button press)

game_timer = 0

�Angle that the gun is pointing (degrees relative to

horizontal)

left_gun_angle = 20

right_gun_angle = 50

�Amount of power to fire with - is divided by 40 to give scale

10 to 100

left_gun_power = 25

right_gun_power = 25

�These are shared between left and right as we only fire one

shell at a time

shell_power = 1

shell_angle = 0

shell_time = 0

�Position of shell when fired (create as a global - but update

before use)

shell_start_position = (0,0)

shell_current_position = (0,0)

�Position of the two tanks - set to zero, update before use

left_tank_position = (0,0)

right_tank_position = (0,0)

�Draws tank (including gun - which depends upon direction and

aim)

�left_right can be "left" or "right" to depict which position

the tank is in

tank_start_pos requires x, y co-ordinates as a tuple

angle is relative to horizontal - in degrees

Chapter 7 Tank Game Zero

167

def draw_tank (left_right, tank_start_pos, gun_angle):

 (xpos, ypos) = tank_start_pos

 # Set appropriate color for the tank

 if (left_right == "left"):

 tank_color = TANK_COLOR_P1

 else:

 tank_color = TANK_COLOR_P2

 # The shape of the tank track is a polygon

 # (uses list of tuples for the x and y co-ords)

 track_positions = [

 (xpos+5, ypos-5),

 (xpos+10, ypos-10),

 (xpos+50, ypos-10),

 (xpos+55, ypos-5),

 (xpos+50, ypos),

 (xpos+10, ypos)

]

 # Polygon for tracks (pygame not pygame zero)

 �pygame.draw.polygon(screen.surface, tank_color, track_

positions)

 # �hull uses a rectangle which uses top right co-ords and

dimensions

 hull_rect = Rect((xpos+15,ypos-20),(30,10))

 # Rectangle for tank body "hull" (pygame zero)

 screen.draw.filled_rect(hull_rect, tank_color)

 # Despite being an ellipse pygame requires this as a rect

 turret_rect = Rect((xpos+20,ypos-25),(20,10))

 # Ellipse for turret (pygame not pygame zero)

 �pygame.draw.ellipse(screen.surface, tank_color, turret_rect)

Chapter 7 Tank Game Zero

168

 # �Gun position involves more complex calculations so in a

separate function

 �gun_positions = calc_gun_positions (left_right, tank_start_

pos, gun_angle)

 # Polygon for gun barrel (pygame not pygame zero)

 �pygame.draw.polygon(screen.surface, tank_color, gun_

positions)

def draw_shell (position):

 (xpos, ypos) = position

 # Create rectangle of the shell

 shell_rect = Rect((xpos,ypos),(5,5))

 pygame.draw.ellipse(screen.surface, SHELL_COLOR, shell_rect)

Calculate the polygon positions for the gun barrel

def calc_gun_positions (left_right, tank_start_pos, gun_angle):

 (xpos, ypos) = tank_start_pos

 # �Set the start of the gun (top of barrel at point it joins

the tank)

 if (left_right == "right"):

 gun_start_pos_top = (xpos+20, ypos-20)

 else:

 gun_start_pos_top = (xpos+40, ypos-20)

 # �Convert angle to radians (for right subtract from 180 deg

first)

 relative_angle = gun_angle

 if (left_right == "right"):

 relative_angle = 180 - gun_angle

 angle_rads = relative_angle * (math.pi / 180)

 # Create vector based on the direction of the barrel

 # Y direction *-1 (due to reverse y of screen)

 gun_vector = (math.cos(angle_rads), math.sin(angle_rads) * -1)

Chapter 7 Tank Game Zero

169

 # Determine position bottom of barrel

 # Create temporary vector 90deg to existing vector

 if (left_right == "right"):

 temp_angle_rads = math.radians(relative_angle - 90)

 else:

 temp_angle_rads = math.radians(relative_angle + 90)

 �temp_vector = (math.cos(temp_angle_rads), math.sin(temp_

angle_rads) * -1)

 # Add constants for gun size

 GUN_LENGTH = 20

 GUN_DIAMETER = 3

 �gun_start_pos_bottom = (gun_start_pos_top[0] + temp_

vector[0] * GUN_DIAMETER, gun_start_pos_top[1] + temp_

vector[1] * GUN_DIAMETER)

 # �Calculate barrel positions based on vector from start

position

 gun_positions = [

 gun_start_pos_bottom,

 gun_start_pos_top,

 �(gun_start_pos_top[0] + gun_vector[0] * GUN_LENGTH,

gun_start_pos_top[1] + gun_vector[1] * GUN_LENGTH),

 �(gun_start_pos_bottom[0] + gun_vector[0] * GUN_LENGTH,

gun_start_pos_bottom[1] + gun_vector[1] * GUN_LENGTH),

]

 return gun_positions

def draw():

 �global game_state, left_tank_position, right_tank_position,

left_gun_angle, right_gun_angle, shell_start_position

 screen.fill(SKY_COLOR)

Chapter 7 Tank Game Zero

170

 �pygame.draw.polygon(screen.surface, GROUND_COLOR, land_

positions)

 draw_tank ("left", left_tank_position, left_gun_angle)

 draw_tank ("right", right_tank_position, right_gun_angle)

 if (game_state == "player1" or game_state == "player1fire"):

 s�creen.draw.text("Player 1\nPower "+str(left_gun_

power)+"%", fontsize=30, topleft=(50,50), color=(TEXT_

COLOR))

 if (game_state == "player2" or game_state == "player2fire"):

 �screen.draw.text("Player 2\nPower "+str(right_gun_

power)+"%", fontsize=30, topright=(WIDTH-50,50),

color=(TEXT_COLOR))

 �if (game_state == "player1fire" or game_state ==

"player2fire"):

 draw_shell(shell_current_position)

 if (game_state == "game_over_1"):

 �screen.draw.text("Game Over\nPlayer 1 wins!",

fontsize=60, center=(WIDTH/2,200), color=(TEXT_COLOR))

 if (game_state == "game_over_2"):

 �screen.draw.text("Game Over\nPlayer 2 wins!",

fontsize=60, center=(WIDTH/2,200), color=(TEXT_COLOR))

def update():

 �global game_state, left_gun_angle, left_tank_position,

shell_start_position, shell_current_position, shell_angle,

shell_time, left_gun_power, right_gun_power, shell_power,

game_timer

 # �Delayed start (prevent accidental firing by holding start

button down)

 if (game_state == 'start'):

 game_timer += 1

Chapter 7 Tank Game Zero

171

 if (game_timer == 30):

 game_timer = 0

 game_state = 'player1'

 # Only read keyboard in certain states

 if (game_state == 'player1'):

 player1_fired = player_keyboard("left")

 if (player1_fired == True):

 # Set shell position to end of gun

 # Use gun_positions so we can get start position

 �gun_positions = calc_gun_positions ("left", left_

tank_position, left_gun_angle)

 shell_start_position = gun_positions[3]

 shell_current_position = gun_positions[3]

 game_state = 'player1fire'

 shell_angle = math.radians (left_gun_angle)

 shell_power = left_gun_power / 40

 shell_time = 0

 if (game_state == 'player1fire'):

 update_shell_position ("left")

 # �shell value is whether the shell is inflight, hit or

missed

 shell_value = detect_hit("left")

 # shell_value 20 is if other tank hit

 if (shell_value >= 20):

 game_state = 'game_over_1'

 # �10 is offscreen and 11 is hit ground, both indicate

missed

 elif (shell_value >= 10):

 game_state = 'player2'

 if (game_state == 'player2'):

 player2_fired = player_keyboard("right")

Chapter 7 Tank Game Zero

172

 if (player2_fired == True):

 # Set shell position to end of gun

 # Use gun_positions so we can get start position

 �gun_positions = calc_gun_positions ("right", right_

tank_position, right_gun_angle)

 shell_start_position = gun_positions[3]

 shell_current_position = gun_positions[3]

 game_state = 'player2fire'

 shell_angle = math.radians (right_gun_angle)

 shell_power = right_gun_power / 40

 shell_time = 0

 if (game_state == 'player2fire'):

 update_shell_position ("right")

 # �shell value is whether the shell is inflight, hit or

missed

 shell_value = detect_hit("right")

 # shell_value 20 is if other tank hit

 if (shell_value >= 20):

 game_state = 'game_over_2'

 # �10 is offscreen and 11 is hit ground, both indicate

missed

 elif (shell_value >= 10):

 game_state = 'player1'

 �if (game_state == 'game_over_1' or game_state == 'game_

over_2'):

 # Allow space key or left-shift (picade) to continue

 if (keyboard.space or keyboard.lshift):

 game_state = 'start'

 # Reset position of tanks and terrain

 setup()

Chapter 7 Tank Game Zero

173

def update_shell_position (left_right):

 �global shell_power, shell_angle, shell_start_position,

shell_current_position, shell_time

 init_velocity_y = shell_power * math.sin(shell_angle)

 # Direction - multiply by -1 for left to right

 if (left_right == 'left'):

 init_velocity_x = shell_power * math.cos(shell_angle)

 else:

 �init_velocity_x = shell_power * math.cos(math.pi -

shell_angle)

 # �Gravity constant is 9.8 m/s^2 but this is in terms of

screen so instead use a sensible constant

 GRAVITY_CONSTANT = 0.004

 # Constant to give a sensible distance on x axis

 DISTANCE_CONSTANT = 1.5

 �# Wind is not included in this version, to implement then

decreasing wind value is when the wind is against the fire

direction

 �# wind > 1 is where wind is against the direction of fire.

Wind must never be 0 or negative (which would make it

impossible to fire forwards)

 wind_value = 1

 # time is calculated in update cycles

 �shell_x = shell_start_position[0] + init_velocity_x *

shell_time * DISTANCE_CONSTANT

 �shell_y = shell_start_position[1] + -1 * ((init_velocity_y

* shell_time) - (0.5 * GRAVITY_CONSTANT * shell_time *

shell_time * wind_value))

 shell_current_position = (shell_x, shell_y)

 shell_time += 1

Chapter 7 Tank Game Zero

174

Detects if the shell has hit something.

Simple detection looks at color of the screen at the position

uses an offset to not detect the actual shell

Return 0 for in-flight,

1 for offscreen temp (too high),

10 for offscreen permanent (too far),

11 for hit ground,

20 for hit other tank

def detect_hit (left_right):

 global shell_current_position

 (shell_x, shell_y) = shell_current_position

 # Add offset (3 pixels)

 # offset left/right depending upon direction of fire

 if (left_right == "left"):

 shell_x += 3

 else:

 shell_x -= 3

 shell_y += 3

 offset_position = (math.floor(shell_x), math.floor(shell_y))

 # Check whether it's off the screen

 # temporary if just y axis, permanent if x

 if (shell_x > WIDTH or shell_x <= 0 or shell_y >= HEIGHT):

 return 10

 if (shell_y < 1):

 return 1

 # Get color at position

 color_pixel = screen.surface.get_at(offset_position)

 if (color_pixel == GROUND_COLOR):

 return 11

 if (left_right == 'left' and color_pixel == TANK_COLOR_P2):

 return 20

Chapter 7 Tank Game Zero

175

 if (left_right == 'right' and color_pixel == TANK_COLOR_P1):

 return 20

 return 0

Handles keyboard for players

If player has hit fire key (space) then returns True

�Otherwise changes angle of gun if applicable and returns

False

def player_keyboard(left_right):

 �global shell_start_position, left_gun_angle, right_gun_

angle, left_gun_power, right_gun_power

 # get current angle

 if (left_right == 'left'):

 this_gun_angle = left_gun_angle

 this_gun_power = left_gun_power

 else:

 this_gun_angle = right_gun_angle

 this_gun_power = right_gun_power

 # Allow space key or left-shift (picade) to fire

 if (keyboard.space or keyboard.lshift):

 return True

 # Up moves firing angle upwards, down moves it down

 if (keyboard.up):

 this_gun_angle += 1

 if (this_gun_angle > 85):

 this_gun_angle = 85

 if (keyboard.down):

 this_gun_angle -= 1

 if (this_gun_angle < 0):

 this_gun_angle = 0

Chapter 7 Tank Game Zero

176

 # left reduces power, right increases power

 if (keyboard.right):

 this_gun_power += 1

 if (this_gun_power > 100):

 this_gun_power = 100

 if (keyboard.left):

 this_gun_power -= 1

 if (this_gun_power < 10):

 this_gun_power = 10

 # Update the appropriate global (left / right)

 if (left_right == 'left'):

 left_gun_angle = this_gun_angle

 left_gun_power = this_gun_power

 else:

 right_gun_angle = this_gun_angle

 right_gun_power = this_gun_power

 return False

Setup game - allows create new game

def setup():

 �global left_tank_position, right_tank_position, land_

positions

 �# �Setup landscape (these positions represent left side of

platform)

 # Choose a random position

 �# �The complete x,y co-ordinates will be saved in a tuple in

left_tank_rect and right_tank_rect

 left_tank_x_position = random.randint (10,300)

 right_tank_x_position = random.randint (500,750)

 # Sub divide screen into chunks for the landscape

Chapter 7 Tank Game Zero

177

 # store as list of x positions (0 is first position)

 current_land_x = 0

 current_land_y = random.randint (300,400)

 land_positions = [(current_land_x,current_land_y)]

 while (current_land_x < WIDTH):

 if (current_land_x == left_tank_x_position):

 # handle tank platform

 �left_tank_position = (current_land_x, current_

land_y)

 �# �Add another 50 pixels further along at same y

position (level ground for tank to sit on)

 current_land_x += 60

 �land_positions.append((current_land_x, current_

land_y))

 continue

 elif (current_land_x == right_tank_x_position):

 # handle tank platform

 �right_tank_position = (current_land_x, current_

land_y)

 # �Add another 50 pixels further along at same y

position (level ground for tank to sit on)

 current_land_x += 60

 �land_positions.append((current_land_x, current_

land_y))

 continue

 # �Checks to see if next position will be where the

tanks are

 �if (current_land_x < left_tank_x_position and current_

land_x + LAND_CHUNK_SIZE >= left_tank_x_position):

 # set x position to tank position

 current_land_x = left_tank_x_position

Chapter 7 Tank Game Zero

178

 �elif (current_land_x < right_tank_x_position and

current_land_x + LAND_CHUNK_SIZE >= right_tank_x_

position):

 # set x position to tank position

 current_land_x = right_tank_x_position

 elif (current_land_x + LAND_CHUNK_SIZE > WIDTH):

 current_land_x = WIDTH

 else:

 current_land_x += LAND_CHUNK_SIZE

 # Set the y height

 �current_land_y += random.randint(0-LAND_MAX_CHG,LAND_

MAX_CHG)

 �# �check not too high or too lower (note the reverse

logic as high y is bottom of screen)

 if (current_land_y > HEIGHT): # Bottom of screen

 current_land_y = HEIGHT

 if (current_land_y < LAND_MIN_Y):

 current_land_y = LAND_MIN_Y

 # Add to list

 land_positions.append((current_land_x, current_land_y))

 # Add end corners

 land_positions.append((WIDTH,HEIGHT))

 land_positions.append((0,HEIGHT))

�Setup the game (at end so that it can see the other

functions)

setup()

Rather than typing all the code yourself, you will find a copy with the

book source code named tankgame.py.

Chapter 7 Tank Game Zero

179

You may notice that there is some code that is repeated. This is because

there is some code for when player 1 is playing and very similar code for

player 2. This is something that is generally best avoided; not only does it

mean more typing, it also makes it more difficult to remember to update

the code for both tanks and to debug if things go wrong. This is something

that could be refactored in a future version and is something that object-

oriented programming can help with, which is covered in Chapter 9.

�Improving the Game
This game has the starting of making an enjoyable game. In fact, there are

several commercial games that are based on the concept of the artillery

game. Many use a tank, but others replace the tanks with other objects,

such as a catapult against a castle wall or worms with a variety of different

weapons. There is even a game which uses a catapult to fire different birds

at pigs that are trying to steal their eggs.

So now you’ve learned the concepts involved, can you think of ways to

make the game more enjoyable? Here are some of my thoughts:

•	 Have multiple lives or different amount of damage level

required (health).

•	 Change the order of which player goes first so that

player 1 doesn’t always have the advantage.

•	 Add wind resistance with different amounts of wind.

•	 Add sound effects or background music.

•	 Show an explosion when the shell hits.

•	 Add a computer player option.

•	 Have different shapes of tanks or different colors.

Chapter 7 Tank Game Zero

180

•	 Different tanks could have different amount of power

vs. health to give a choice between more powerful gun

and better resistance against hits.

•	 Earn points to spend on tank upgrades.

•	 Allow the tank to move.

•	 Multiple tanks.

•	 Different weapons.

•	 Replace the tanks with a different object or creature.

You could add these features to the existing code or use the concepts

you have learned to create another game.

�Summary
This chapter has covered various techniques including drawing vector

images, creating dynamic landscapes, calculating a trajectory, and other

steps involved in creating a game. The tank game will be used again during

the next chapter which will add some sound effects and background

music.

Chapter 7 Tank Game Zero

181© Stewart Watkiss 2020
S. Watkiss, Beginning Game Programming with Pygame Zero,
https://doi.org/10.1007/978-1-4842-5650-3_8

CHAPTER 8

Sound
Adding sound to a game will add an additional dimension and can help

bring the game come to life. This can be achieved by adding special effect

sounds or adding background music to set the mood. You may also use the

sound as a key component in the game.

As well as looking at how music can be added to a game through

Pygame Zero, this chapter will also look at ways of creating the sound effects

or music and some of the tools that can be used to process the sounds.

This chapter starts with looking at how you can create your own

sounds and music. If you are just interested in using sound effects or

music that have been created by someone else, you can skip to later in the

chapter where the sounds are added to a Pygame Zero game.

�Recording Sound Effects
For realistic sound effects, they are often created by recording real sounds.

It may not however be possible to record the effect you are creating in the

game. If you don’t happen to own a challenger tank, then you may need to

look at something that sounds like a tank rather than recording a real tank.

If you are creating a futuristic sci-fi game, then you may need to look at

sounds being computer generated.

Even if you can record the exact effect that you want, that may not

sound quite right for a game. One of the things I looked at was how you

could create the sound of a steam train. I have several preservation

182

railways within a reasonable distance, so I visited them to record the

sounds. One problem is that there is a lot of additional background noise

from people, pets, and other things around such as car traffic. Also, the

sounds recorded while realistic did not match the sound that you may

expect or that fit in with what is happening in the game. For example,

when recording the sound of the train, the sound of the locomotive was

accompanied by lots of different noises, such as the carriages clanging

and the sound of the wheels squealing against the track. I found a better

sound was achieved by recording the sound of the locomotive when it was

uncoupled from the train rather than when it was pulling a train.

You probably won’t be wanting to carry a Raspberry Pi, screen, and

accessories around when you want to record sounds. In that case you

can use a portable recorder, perhaps a mobile phone either using a video

recorder or using an audio recording tool. Details are provided on how

you can convert and edit suitable audio formats using Audacity if you have

captured them with a mobile phone.

�Creating Artificial Sound Effects
If you can’t record the real sound effects, then it may be possible to create

an equivalent sound using household items. Here are a few examples:

•	 The crunch of walking feet using a shoe in a tray of gravel.

•	 The clip-clop of horse hooves by tapping coconut shells

together.

•	 Explosions based on fireworks. If local laws don’t

permit consumer fireworks, then you could record a

professional display.

•	 Water sounds created in a bathtub.

Chapter 8 Sound

183

I have used artificial sound effects in creating the sounds for the tank

game. The sound of the tank firing is based on popping a balloon, with the

time slowed down. The sound of the explosion was recorded at a public

firework display.

You can also create sound effects synthetically using music creation

tools such as Sonic Pi. It is possible to use different shaped waveforms and

adding audio effects to create various sounds, particularly useful for sci-fi

type effects.

There are some web sites with examples of how you can create artificial

sound effects. Two examples are listed here, but there are others.

•	 EpicSound – www.epicsound.com/sfx/

•	 The Art of Foley – www.marblehead.net/foley/

specifics.html

�Recording Audio on the Raspberry Pi
The Raspberry Pi does not include an audio input. If you want to record

sounds directly on a Raspberry Pi, then you will need an audio input

device. The most common methods would be either a USB microphone

(as shown in Figure 8-1) or a USB audio adapter with a microphone socket.

Chapter 8 Sound

http://www.epicsound.com/sfx/
http://www.marblehead.net/foley/specifics.html
http://www.marblehead.net/foley/specifics.html

184

Before recording sounds, you should test that audio is working on the

Raspberry Pi by playing sounds through a TV or external speaker. The

aplay command can be used using the following commands:

aplay /usr/share/sounds/alsa/Front_Left.wav

aplay /usr/share/sounds/alsa/Front_Right.wav

These commands test for stereo through the left and right speakers.

If there is no sound, then the sound icon on the top right of the desktop

provides a choice of Analog (headphone jack) or HDMI. Alternatively, it

can be changed through the terminal configuration tool.

sudo raspi-config

Figure 8-1.  Raspberry Pi with USB microphone

Chapter 8 Sound

185

Choose advanced options and then Audio which gives the option of using

•	 Auto

•	 Force 3.5mm (“headphone”) jack

•	 Force HDMI

�Connecting a USB Microphone
After connecting the microphone, you should run the dmesg from the

terminal to see details of the connected device. The dmesg tool will show

messages from the kernel ring buffer logs.

dmesg

At the bottom, you should see an entry like the messages shown in

Listing 8-1.

Listing 8-1.  Partial output of dmesg showing USB microphone

[3407.526441] usb 1-1.3: new full-speed USB device number 4

using xhci_hcd

[3407.670531] usb 1-1.3: New USB device found, idVendor=0c76,

idProduct=1690, bcdDevice= 1.00

[3407.670539] usb 1-1.3: New USB device strings: Mfr=0,

Product=1, SerialNumber=0

[3407.670544] usb 1-1.3: Product: USB PnP Device(Echo-058)

[3407.677945] input: USB PnP Device(Echo-058) as /devices/

platform/scb/fd500000.pcie/pci0000:00/0000:00:00.0/0000:01:00.

0/usb1/1-1/1-1.3/1-1.3:1.2/0003:0C76:1690.0007/input/input15

[3407.746906] hid-generic 0003:0C76:1690.0007: input,hidraw3:

USB HID v1.00 Device [USB PnP Device(Echo-058)] on usb-

0000:01:00.0-1.3/input2

Chapter 8 Sound

186

[3407.844707] usb 1-1.3: Warning! Unlikely big volume range

(=496), cval->res is probably wrong.

[3407.844724] usb 1-1.3: [50] FU [Mic Capture Volume] ch = 1,

val = 0/7936/16

[3407.847365] usbcore: registered new interface driver snd-

usb-audio

This example is using a Fifine Technology USB microphone. It uses the

driver Echo-058.

You can also see the device by right-clicking the sound icon at the top

right of the desktop as shown in Figure 8-2.

Figure 8-2.  Raspberry Pi sound settings with USB microphone

�Using arecord
Once the microphone is connected, then there are a few different tools that

can be used to record sounds. For a simple command-line tool, arecord is

included in the standard NOOBS image.

To use arecord, find the device by running arecord –l, which will give

an output like that in Listing 8-2.

Listing 8-2.  Output of arecord –l command

arecord -l

***** List of CAPTURE Hardware Devices ****
card 1: DeviceEcho058 [USB PnP Device(Echo-058)], device 0: USB

Audio [USB Audio]

Chapter 8 Sound

187

 Subdevices: 1/1

 Subdevice #0: subdevice #0

The card number (in this case 1) and the device number (in this case

0) form the basis of the device reference which in this case is hw:1,0. The

plughw plugin needs to be used; in this case, the device is plughw:1,0.

The following command will create a wav file, 16-bit little endian, with

a maximum duration of 60 seconds, saved as a file audiorecord.wav:

arecord -D plughw:1,0 -t wav -f S16_LE -d 60 audiorecord.wav

An alternative to using the command line is the graphical application

Audacity, which will be covered next.

�Audacity
Audacity is a powerful tool which can be used for recording and editing

audio. Here you will see how Audacity can be used for recording audio on

the Raspberry Pi, converting audio formats, extracting audio from video

files, and trimming audio files.

Audacity is not included by default on the Raspberry Pi but can be

installed using

sudo apt install audacity

This will add an option to the “Sound & Video” menu. For other operating

systems, you can download Audacity from www.audacityteam.org.

A screenshot of the program is shown in Figure 8-3.

Chapter 8 Sound

http://www.audacityteam.org

188

Here are a few suggestions of things you may like to try which will help

familiarize yourself with some of the features of Audacity.

�Recording Sounds with Audacity
Audacity can record directly from a microphone. The microphone can be

selected, recording started, and recording stopped using the graphical user

interface.

•	 Launch Audacity and it will not show any sound waveforms.

•	 Ensure that the microphone is selected as the input

device (shown alongside the microphone icon).

•	 Click the red record button and talk into the

microphone or record nearby sounds.

•	 Stop recording.

•	 Export the audio as a suitable sound format (WAV and

OGG are good formats for use in Pygame Zero).

Figure 8-3.  Screenshot of Audacity audio editor

Chapter 8 Sound

189

�Convert Audio Formats

Audacity can read from multiple different audio file formats and then

convert them to another when you export them. This may be to convert

from an MP3 file or an M4A file (often used on mobile phones) to a WAV or

OGG file.

•	 Close any existing project.

•	 Load an audio file using open from the file menu.

•	 Choose export to save as a different audio format.

�Extract Audio from Video Files

As well as reading audio files, Audacity can extract the audio from video

format files such as MP4 and AVI. The process is the same as converting

audio formats except that you select video as the source instead of an

audio file.

�Trim Audio Files

Often when creating audio files, you will have additional recording before

and after the sounds you want.

•	 Open the audio file.

•	 Select the part to be trimmed using the mouse along

the waveform.

•	 Press the Delete key.

•	 Export the updated sound to a suitable file format.

This has covered some useful features but has only scratched the

surface of what Audacity can do. It can handle multiple tracks and provides

filters that allow you to apply different effects to the sounds.

Chapter 8 Sound

190

�Creating Music with Sonic Pi
There are multiple options for creating music. A useful tool that is included

on the Raspberry Pi is Sonic Pi.

Sonic Pi is a code-based music creation and performance tool. It is

designed for live music performances but can also be used to compose

music that can then be used as background music in computer games.

A screenshot of the interface is shown in Figure 8-4. It is considered a

programming tool so is on the programming menu in Raspbian.

Figure 8-4.  Screenshot of Sonic Pi music creation tool

The program has several buffer text edit tabs where code can be

entered. The code is based on Ruby which is quite different from Python.

It’s not possible to go into detail in this book, but an example will be given

of how it can be used to create background music.

Music in Sonic Pi is often created using samples which can be

manipulated in code. It can also be used by entering musical notes to play

a tune using different sample instruments. An example piece of music is

included in Listing 8-3.

Chapter 8 Sound

191

Listing 8-3.  Code to create music in Sonic Pi

piano_notes = (ring :r, :c4, :e4, :f4, :g4, :r, :r, :r,

 :r, :c4, :e4, :f4, :g4, :r, :r, :r,

 :r, :c4, :e4, :f4, :g4, :e4, :c4, :e4,

 :d4, :r, :r, :e4, :e4, :d4, :c4, :c4,

 :e4, :g4, :g4, :g4, :f4, :r, :r, :e4,

 :f4, :g4, :e4, :c4, :d4, :c4)

live_loop :piano do

 use_synth :piano

 tick

 play piano_notes.look, attack: 0.2, release: 0.1, amp: 0.5

 sleep 0.25

end

Enter the code into one of the buffers and press Run.

This code works by playing musical notes which are stored in an array

(list), which is played in the loop. The tune is a simplified version of When

the Saints Go Marching In. It’s a traditional song which doesn’t have any

copyright issues.

Another example is shown in Listing 8-4 which is an original

composition as an example of a different way of creating music in Sonic Pi.

Listing 8-4.  Another musical tune created in Sonic Pi

Example tune for Sonic-Pi

tune1_notes = (ring :c4, :d4, :e4, :f4, :g4, :f4, :d4, :c3)

dsaw_notes = (ring :e4, :r, :g4, :r, :a4, :b4, :r, :a4, :b4,

:r, :d5, :r, :b4, :d5, :r, :b4, :r, :e4, :r, :g4, :r, :a4,

:b4, :r, :a4, :b4, :r, :d5, :r, :b4, :d5, :r, :b4, :r, :g4, :r,

:e4, :r, :e4, :r, :e4, :r, :g4, :r)

piano_notes = (ring :r, :f4, :r, :a4, :r, :g4, :r, :b4)

Chapter 8 Sound

192

with_fx :reverb, room: 1, mix: 0.3 do

 live_loop :tune1 do

 8.times do

 tick

 play tune1_notes.look, release: 0.1, amp: 0.6

 sleep 0.25

 end

 end

end

with_fx :echo do

 live_loop :dsaw do

 use_synth :mod_dsaw

 play dsaw_notes.look, attack: 0.2, release: 0.1, amp: 0.05

 sleep 0.125

 end

end

with_fx :flanger do

 live_loop :piano do

 use_synth :piano

 play piano_notes.look, attack: 0.2, release: 0.1, amp: 0.5

 sleep 0.125

 end

end

This uses three different loops with some special effects. This creates a

tune that could be used as a background music for a game.

To record the music as a WAV file that can be used in Pygame Zero,

click the record button before starting the music, then click the record

button again to stop recording, and save it as a file. You will then need to

trim out any unwanted silence at the beginning or end using Audacity.

Chapter 8 Sound

193

The code is based on Ruby which is very different from Python and

is beyond the scope of this book. To learn more about Sonic Pi, there is a

good tutorial included in the program. Look in the bottom left corner of

Sonic Pi for more details.

�Downloading Free Sounds and Music
There are many places where you can download free sounds and music.

These include recordings of live effects as well as original music which is

made available for free use. Whenever you get sound or music from one of

these sites, you need to check that the license allows for your intended use.

Two popular sites for sound effects are Sound Bible (http://

soundbible.com/) and Freesound (https://freesound.org). Most of the

sound effects listed on the sites are under an Attribution license which

means you can use for most purposes as long as you credit the creator.

Some of the samples do restrict the sounds to personal use only, so you

may need to be careful with those.

If you are looking for music, then there are several links on the Creative

Commons web site http://bit.ly/ccmusic1. This site links to other

web sites known to have free music, but you will need to check for any

restrictions on use.

�Adding Sound Effects in Pygame Zero
Having created or downloaded an appropriate sound effect, the next stage

is to add it to your games. The sounds can be in WAV or OGG formats.

To play sounds in Pygame Zero, first create a new sub-directory called

sounds and copy your sound effects in there. The format of the command

to play the sound is sounds, followed by the filename (without any

extension) and by the appropriate method such as play.

Chapter 8 Sound

http://soundbible.com/
http://soundbible.com/
https://freesound.org
http://bit.ly/ccmusic1

194

To play the sound “explode.wav”, you would use

sounds.explode.play()

This method should only be used for short sound effects. It loads the

entire sound file into memory and can have a significant performance

impact if you try to use it on long music files. If you want to play longer pieces

of music, then see “Playing Music in Pygame Zero” later in this chapter.

I have included two sound effects in the sounds sub-directory called

tankfire.wav and explode.wav. These are used to add some sound effects to

the tank game created in the last chapter.

To add the sound of the tank gun firing, add the sounds.tankfire.

play() entry when the game state is set to 'player1fire'.

 game_state = 'player1fire'

 sounds.tankfire.play()

For the explosion when the shell hits, add sounds.explode.play()

when the game state is set to 'game_over_1'.

 game_state = 'game_over_1'

 sounds.explode.play()

This should be repeated for 'player2fire' and 'game_over_2'. All the

required files are included in the supplied source code.

�Playing Music in Pygame Zero
When you need some music to play longer, then there is a music player

option. The built-in music object provides the ability to play music by

loading the track a bit at a time. It only allows a single track to play at a

time but can be combined with sounds to have special effects playing at

the same time as background music. The music files should be stored in a

directory called music.

Chapter 8 Sound

195

This is a relatively new feature in Pygame Zero and comes with a

warning. The music support depends upon the computer system and

how well they support playback of a particular codec. It should work with

MP3, OGG, and WAV files. MP3 music cannot be played on certain Linux

systems, which may be due to patents that have now expired. There have

also been reported issues with OGG files. It would seem that WAV may be

the safer option, although that may be just that there have been less reports

of issues. WAV files are uncompressed which can result in large file sizes.

To play a music track, call music.play with the name of the music

track. For instance, if you have a track saved in the music directory called

backing.ogg, then you can play it using

music.play('backing')

The track will then play continuously in the background. If you only

wanted the track to play once, such as at the end of a game, then you can

use the play_once method instead.

music.play_one('victorymusic')

In either case it will stop any previous track or any in the queue. If you

would like to add another track to play next after the current one, then you

can use music.queue.

It is possible to stop, pause, and unpause the music as well as changing the

volume through set_volume prefixing the method name with the music object.

�Piano Game Created with Tones
Another alternative with Pygame Zero is to play computer-generated

sounds using the built-in tone generator. The tone generator can be a

useful way for creating sounds, but it uses synthesized sounds and is not

as good quality as could be created using sampled sounds. It was added

in version 1.2 of Pygame Zero, which is included in the latest version of

Raspbian and Mu. It may not work on some older versions.

Chapter 8 Sound

196

The tone generator allows you to select the pitch and duration for the

tone. These do take a short time to generate (several milliseconds per

note), so are better created in advance. This is achieved using tone.create

with the pitch and duration. For example, to play middle C (4th octave),

you would load the tone using

middle_c = tone.create('C4', 0.5)

Then play using

middle_c.play()

To make this into a game, I have used the tone generator for a simple

piano-based game. The game will allow you to play music using a virtual

keyboard and provide a game where the player presses the appropriate key

to play a tune. A screenshot is shown in Figure 8-5.

Figure 8-5.  Screenshot of Piano Game

Chapter 8 Sound

197

Clicking any of the keys will play the appropriate note. Clicking the

Demo button will play a demonstration of the tune. Clicking Start will play

the game; clicking the correct key when the note reaches the target line will

score a point.

This game is designed for use with the Raspberry Pi touch screen. It

can still be used with a mouse but is harder to play when you need to move

the mouse pointer. A limitation to this game is that the player can only

press one key at a time. This is a limitation of Pygame Zero, which does not

support multi-touch. If you wanted to use multi-touch, then you would

need to look at a different programming framework such as Kivy, but that

is beyond the scope of this book.

The code for the complete game is shown in Listing 8-5. The buttons

are created using shapes so there are no image or sound files required.

Listing 8-5.  Code for Piano Game

Piano Game

Screen resolution based on Raspberry Pi 7" screen

WIDTH = 800

HEIGHT = 410

Notes are stored as quarter time intervals

where no note is played use "

There is no error checking of the tune, all must be valid notes

When the saints go marching in

tune = [

 �", 'C4', 'E4', 'F4', 'G4', ", ", ", ", 'C4', 'E4', 'F4',

'G4', ", ", ",

 �", 'C4', 'E4', 'F4', 'G4', 'E4', 'C4', 'E4', 'D4', ", ",

'E4', 'E4', 'D4', 'C4', 'C4',

Chapter 8 Sound

198

 �'E4', 'G4', 'G4', 'G4', 'F4', ", ", 'E4', 'F4', 'G4', 'E4'

, 'C4', 'D4', 'C4'

]

State allows 'menu' (waiting), 'demo' (play demo), 'game'

(game mode), 'gameover' (show score)

state = 'menu'

score = 0

note_start = (50,250)

note_size = (50,160)

List of notes to include on noteboard

notes_include_natural = ['F3','G3','A3','B3','C4','D4','E4','F4

','G4','A4','B4','C5','D5','E5']

List of sharps (just reference note without sharp)

notes_include_sharp = ['F3','G3','A3','C4','D4','F4','G4','A4',

'C5','D5']

note_rect_sharp = {}

note_rect_natural = {}

notes_tones = {}

beats_per_minute = 116

Crotchet is a quarter note

1 min div by bpm

time_crotchet = (60/beats_per_minute)

time_note = time_crotchet/2

�how long has elapsed since the last note was started - or a

rest

time_since_beat = 0

The current position that is playing in the list

A negative number indicates that the notes are shown falling,

�but hasn't reached the play line

note_position = -10

Chapter 8 Sound

199

button_demo = Actor("button_demo", (650,40))

button_start = Actor("button_start", (150,40))

Setup notes

def setup():

 global note_rect_natural, note_rect_sharp, notes_tones

 i = 0

 sharp_width = 2*note_size[0]/3

 sharp_height = 2*note_size[1]/3

 for note_ref in notes_include_natural:

 note_rect_natural[note_ref] = Rect(

 �(note_start[0]+(note_size[0]*i),note_

start[1]),(note_size)

)

 # Add note

 notes_tones[note_ref]=tone.create(note_ref, time_note)

 # Is there a sharp note?

 if note_ref in notes_include_sharp:

 note_rect_sharp[note_ref] = Rect(

 �(note_start[0]+(note_size[0]*i)+sharp_width,

note_start[1]),

 (sharp_width,sharp_height)

)

 # Create version in Note#Octave eg. C#4

 note_ref_sharp = note_ref[0]+"#"+note_ref[1]

 �notes_tones[note_ref_sharp]=tone.create(note_ref_

sharp, time_note)

 i+=1

def draw():

 screen.fill('white')

 button_demo.draw()

 button_start.draw()

Chapter 8 Sound

200

 draw_piano()

 if (state == 'demo' or state == 'game'):

 draw_notes()

 # draw line for hit point

 screen.draw.line ((50, 220), (WIDTH-50, 220), "black")

 if (state == 'game'):

 �screen.draw.text("Score {}".format(score),

center=(WIDTH/2,50), fontsize=60,

 �shadow=(1,1), color=("black"), scolor="white")

 if (state == 'gameover'):

 �screen.draw.text("Game over. Score {}".format(score),

center=(WIDTH/2,150), fontsize=60,

 shadow=(1,1), color=("black"), scolor="white")

def draw_notes():

 for i in range (0, 10):

 if (note_position + i < 0):

 continue

 # If no more notes then finish

 if (note_position + i >= len(tune)):

 break

 draw_a_note (tune[note_position+i], i)

position is how far ahead

0 = current_note, 1 = next_note etc.

def draw_a_note(note_value, position):

 if (len(note_value) > 2 and note_value[2] == 's'):

 sharp = True

 note_value = note_value[0:2]

 else:

 sharp = False

 if (position == 0) :

 color = 'green'

Chapter 8 Sound

201

 else:

 color = 'black'

 if note_value != ":

 if sharp == False:

 �screen.draw.filled_circle((note_rect_natural[note_

value].centerx, 220-(15*position)), 10, color)

 else:

 �screen.draw.filled_circle((note_rect_sharp[note_

value].centerx, 220-(15*position)), 10, color)

 �screen.draw.text("#", center=(note_rect_sharp[note_

value].centerx+20, 220-(15*position)),

 fontsize=30, color=(color))

def update(time_interval):

 global time_since_beat, note_position, state

 time_since_beat += time_interval

 # Only update when the time since last beat is reached

 if (time_since_beat < time_crotchet):

 return

 # reset timer

 time_since_beat = 0

 if state == 'demo':

 note_position += 1

 if (note_position >= len(tune)):

 note_position = -10

 state = 'menu'

 # Play current note

 if (note_position >= 0 and tune[note_position] != "):

 notes_tones[tune[note_position]].play()

 elif state == 'game':

 note_position += 1

Chapter 8 Sound

202

 if (note_position >= len(tune)):

 note_position = -10

 state = 'gameover'

def draw_piano():

 for this_note_rect in note_rect_natural.values() :

 screen.draw.rect(this_note_rect, 'black')

 for this_note_rect in note_rect_sharp.values() :

 screen.draw.filled_rect(this_note_rect, 'black')

def on_mouse_down(pos, button):

 global state, note_position, score

 if (button == mouse.LEFT):

 if button_demo.collidepoint(pos):

 note_position = -10

 state = "demo"

 elif button_start.collidepoint(pos):

 note_position = -10

 state = "game"

 else:

 �# First check sharp notes as they overlap the

natural keys

 for note_key, note_rect in note_rect_sharp.items():

 if (note_rect.collidepoint(pos)):

 �note_key_sharp = note_key[0]+"#"+note_

key[1]

 if (note_key_sharp == tune[note_position]):

 score += 1

 notes_tones[note_key_sharp].play()

 return

 �for note_key, note_rect in note_rect_natural.

items():

Chapter 8 Sound

203

 if (note_rect.collidepoint(pos)):

 if (note_key == tune[note_position]):

 score += 1

 notes_tones[note_key].play()

 return

setup()

I won’t go through this line by line, but I will go through some of the

key parts of how the code works.

Starting from the top, you will see that the screen resolution is set to a

HEIGHT of only 410. This is because of the resolution of the 7-inch screen

after subtracting the top menu bar and window decoration.

The tune is an array which lists the notes that need to be played. In

this case it is for When the Saints Go Marching In. The music originates

from around the late 19th to early 20th century. You could replace that

with a more modern tune, but in that case, you would need to take into

consideration any copyright issues if you then redistributed the game. The

tune needs to be quite simple as only one note can be played at a time, and

it will only play quarter notes (crotchets) and rests. In this case the music

has been simplified and altered slightly. Chords have been replaced with

single notes and the sustain removed on longer notes. The tune should still

be recognizable. The notes are stored in the list as strings which are based on

the note and the octave, where C4 is middle C. If there is a sharp, then that

can be indicated by adding an # between the note and the octave number.

There are several other variables and two Actors which represent the

two buttons which are created as images. The tempo is determined by the

number of beats_per_minute, which is then converted into the length of

time between each beat, measured in seconds. In the case of 116 beats per

minute, that is the number of quarter notes (crotchets) in a minute. This

works out as 0.51 seconds between each quarter note which is each entry

in the list. The update function is called approximately every 0.016 seconds,

Chapter 8 Sound

204

which should provide a reasonably accurate timing. The note duration is

stored in the variable time_note, which is half of the time between notes so

that the notes don’t merge if played quickly.

Another variable is the note_position which is used to indicate the

position of the array where the current note is. The variable starts at –10

because that allows the notes to fall from the top of the screen. Only when

the note_position reaches 0 will that note be played (if playing the demo)

or the player needs to click the note (in the game). After the variables are

the functions followed by a call to setup. This is because the functions

need to be loaded into memory before the setup function tries to use

them. Even though the call to setup is the last line of the file, it is still run

before Pygame Zero runs the update and draw functions.

The setup function creates the rect objects needed to create the

keyboard and pre-loads all the notes of the keyboard. The keys are created

as two separate lists, the accidentals (sharp and flat keys) are the black keys

and the natural keys are white. The accidentals are referred to as sharp

keys in the code as they are created offset from previous natural key, so the

sharp named C3 is C#3.

Each of the notes that will be used is pre-loaded into the dictionary

notes_tones using the code

notes_tones[note_ref]=tone.create(note_ref, time_note)

This prevents delays when the note is placed. Once created, it can be

played by using

notes_tones['C3'].play()

The draw_piano function calls screen.draw.rect for the natural keys

and screen.draw.filled_rect for the accidentals.

The on_mouse_down function handles the clicks on the buttons, which

sets the state to demo or game as appropriate. It also detects if any of the keys

on the piano keyboard are pressed, and if so, it starts the note playing. If in

game mode it increases the score if the correct key being pressed.

Chapter 8 Sound

205

The update function checks to see if enough time has expired for the

next note. It uses the argument timer_interval which gives the amount

of time that has passed since the update function was last run. It uses this

to track the time since the last note was played. If it has not reached the

time in time_crotchet, then it returns from the function. If the timer has

exceeded that time, then it can update the note_position if it is in either

the demo or game states.

The draw function displays the buttons, keyboard, and any notes or text

that needs to be displayed. A line is drawn as the target for when the note

should be played. This uses screen.draw.line which uses the start and

end coordinates. It also displays the score during the game and the game

over message when complete.

This is a simple fun game but would need quite a lot more to create a

game that could be used to help teach someone how to play the piano. As

mentioned previously the lack of multi-touch is quite limiting. There are

still things that you could do to improve the game, such as lighting up the

keys when they should be pressed (by using filled_rect with an appropriate

color) and providing a way to change the tempo. It’s also limited in playing

only quarter notes, which could be changed but would involve loading

multiple versions of each note depending upon the duration of the note.

�Summary
This chapter has covered a few different ways of making and using sounds

and music in Sonic Pi. This has included using the Raspberry Pi as a

recording device or for converting and editing sounds recorded on another

device. It has also covered creating your own music using Sonic Pi.

It then covered the three different ways of playing sounds through

Pygame Zero. Sound effects played using the sound object, music played

with the music object, and tone using the tone object.

The next chapter is on object-oriented programming, showing an

alternative way to creating software using Python.

Chapter 8 Sound

207© Stewart Watkiss 2020
S. Watkiss, Beginning Game Programming with Pygame Zero,
https://doi.org/10.1007/978-1-4842-5650-3_9

CHAPTER 9

Object-Oriented
Programming
The programs so far have been primarily using a procedural style

of programming. The procedural coding style is a good way to

learn programming, but there are benefits to using object-oriented

programming, which will be covered next. A useful thing about Python is

that it supports many different coding styles, even allowing multiple styles

in the same code. You have already been using some object-oriented code

when making use of Python modules, including Pygame Zero.

After explaining the main concepts of object-oriented programming,

this chapter will start a new game. This is based on the classic game

“matching pairs”, sometimes called memory game. In this game there

are several cards face down on the table. Each card has a picture with a

matching pair. You need to find the pairs by turning over two cards in each

turn. If you are successful, then you keep those cards and score a point.

�What Is Object-Oriented Programming?
Object-oriented programming (OOP) is a different style of programming

which is based around data and operations on that data. You have already

seen this throughout this book when interacting with Pygame Zero. An

Actor is an instance of an object. An Actor can be manipulated by changing

208

its attributes such as pos (which changes its position on the screen) and

can have operations performed on it such as the draw method (which

draws it on the screen).

The four main concepts in object-oriented programming are

encapsulation, data abstraction, polymorphism, and inheritance. These

are known as four pillars of object-oriented programming:

•	 Encapsulation is about keeping the internal state

private to protect the data. Python doesn't have true

encapsulation which is normally achieved using private

variables and methods. Python does however have a

convention of using __ (double underscore) before the

name to prevent accidental use of a private variable or

method.

•	 Data abstraction is an extension of encapsulation

which makes it easier to hide the details of internal

operations. This helps create a simple, more stable

interface.

•	 Polymorphism allows a child to act as though it is

its parent. This is a way to allow better code reuse

through sharing code. It can also provide different

implementations of methods based on the input

parameters.

•	 Inheritance allows the reuse of parts of code between

similar objects.

This book will concentrate on the specific aspects that object-oriented

programming provides which make it easier to design and program games.

It will show how encapsulation and abstraction can be used to make game

programming simpler and easier to write and understand. It will also

give an example of how inheritance can help reduce the amount of code

that needs to be written by making use of existing code. It will also help

Chapter 9 Object-Oriented Programming

209

reduce the number of global variables which make the code difficult to

understand and to debug when things go wrong.

�OOP Classes and Objects
Object-oriented programming is based around objects. In the real

world, we think of objects as physical things, such as a laptop, a phone,

or a book. In programming objects can be anything that stores data or

what you interact with. Built-in objects include the screen, an Actor, or a

sound, and you can create your own objects for just about anything. The

object holds the data as internal variables of the object which can be read

and manipulated through the object attributes. Most objects also have

operations (methods) that can be performed on the object.

�Creating a Class, Attributes, and Methods
To create objects, there needs to be a blueprint that tells the computer

what to do with the object. The blueprint is known as a class. Each object is

known as an instance of the class. Normally a class is created in a separate

file named the same as the class, ending with .py. The code in Listing 9-1

shows a skeleton class that could be used to represent a ball. The class has

the name Ball which follows a convention of using an initial capital letter

for a class name. If there are multiple words in the class, then the first letter

of any word is also capitalized such as MyClass. The filename is normally

the same as the class name, but all lowercase. In this example the class

name is Ball, so the file is called ball.py. You don’t need to split each class

into a file; you could have them in the existing file or a file with multiple

classes, but it’s usually a good idea to have one file per class.

Chapter 9 Object-Oriented Programming

210

Listing 9-1.  Example of a OOP class

class Ball():

 shape = "sphere"

 def __init__(self, position, radius, color):

 self.position = position

 self.radius = radius

 self.color = color

 def draw(self, screen):

 �screen.draw.filled_circle(self.position, self.radius,

self.color)

The file starts with a class definition to state that this is an

object-oriented class. This is the blueprint for creating Ball objects.

The first variable listed is called shape which has the value “sphere”.

This is a class variable. There is only one instance of the variable which

spans all instances of the class. It is most often used for values that don’t

change, although in the next chapter, you will see an example of a class

variable which is edited by multiple objects.

It is more common to have instance variables, which are unique to

each instance of the class. Instance variables are created within methods

and are prefixed with the self keyword. The instance variables that

are created prefixed with self will be available to all methods defined in

the class. Local variables can also be created without the self keyword,

and they will behave in the same way as local variables in procedural

programming.

In this class there are two methods. A method is essentially the same

as a function except that they perform operations on the object and

have access to the data within the object. They are created using the def

keyword similar to how functions are defined.

Chapter 9 Object-Oriented Programming

211

The first method is called __init__. This is known as the constructor

and is called whenever you create an instance of the class. There is a

method called draw, which will draw the ball on the screen. You can see

that both the methods have self as the first argument. The self keyword

is used to represent the instance of the class and is used by methods

to access the data within the instance of the class. You do not provide

anything on the argument when calling the method; instead, self is

passed automatically to the method and is used to access the instance

variables.

The constructor method (__init__) is run when an object is first

created. It is often used to set up any variables. In this case it takes three

values for the position, size, and color. The arguments in the method are

always held as local variables so these are copied into self.position,

self.radius, and self.color. These are stored in the object and can

be read and written to by any of the other methods as required. There is

no need to mark these as global; they are automatically available to all

methods through the self keyword.

The next method is draw which draws the ball on the screen as a filled

circle. It can access all the variables that were previously set through

the constructor which are self.position, self.radius, and self.color.

There is one anomaly with this method. Previously when calling

screen.draw operations, it used the built-in screen object. That works

from within the draw function in the top-level function that Pygame Zero

uses, but when using a separate object, the reference to the screen object

needs to be provided as an argument.

�Creating an Instance of a Class (Object)
After creating the Class, you can create an instance of the class. This is like

creating a physical object using the Class as its blueprint. This is shown in

Listing 9-2 which creates an executable program balldemo.py.

Chapter 9 Object-Oriented Programming

212

Listing 9-2.  Creating instances of a class

from ball import Ball

WIDTH = 800

HEIGHT = 600

ball1 = Ball((400,300),10,"red")

def draw():

 ball1.draw(screen)

This is a basic program which when run will display the ball in the

center of the screen. The first line imports the class. It reads it from the

file ball.py (in the same directory as the main program file) and from that

imports the class Ball. Once imported, you can use the class.

A new object is created called ball1, which is an instance of the class.

To create the instance, it uses the name of the class followed by the

arguments listed in the constructor. This creates the new instance and runs

the __init__ method.

Within the draw function, the draw method is called on the instance

ball1 which draws the ball. The built-in screen needs to be passed to the

draw method of ball1 so that it is able to draw to the screen.

This creates one instance of a ball, but you could create a second

instance using

ball2 = Ball((100,100),20,"green")

Then add to the draw method using

 ball2.draw(screen)

which draws a large green ball in the top left of the screen.

Chapter 9 Object-Oriented Programming

213

�Accessing Attributes of an Object
The variables within an object are known as attributes. As you have seen,

the variables in the class definition are prefixed with self which refers to

the instance of the class.

If you are outside of the class, then you can replace self with the

instance name. In the case of the instance ball1, you can access its

variable using

ball1.color

If you wanted to check the value, then you could use

if ball1.color == "red":

...

Or if you wanted to change the value, then you could use

ball1.color = "orange"

This applies to all the variables created in the __init__ method, or any

other methods as long as the variables are prefixed with self.

�Terminology
One thing about object-oriented programming is all the new terminology

it uses. Here is a recap of some of the terminology that has been covered to

help make it clearer. Figure 9-1 shows the relationship between the class

and the instances.

Chapter 9 Object-Oriented Programming

214

The Class shown at the top of the diagram is a blueprint for creating

the objects. It defines how the class will be created, what attributes they

have, and the operations that can be performed on them. You cannot

normally use the class directly and instead need to create specific objects

known as instances. In this example we created two instances known as

ball1 and ball2. These were both created from the same blueprint, so will

behave in a similar way, but they have their own set of attributes (stored

as the instance variables). Using this ball1 color is set to red, whereas ball2

color is set to green.

Figure 9-1.  Class to instance relationship

Chapter 9 Object-Oriented Programming

215

�Encapsulation and Data Abstraction
As mentioned previously two of the benefits of object-oriented

programming are encapsulation and data abstraction. The benefit of this

to the programmer is that it separates the internal structure of the class

from the code that is making use of that. This can make it easier when

different programmers work on the same project, and it can make it easier

to make changes in the future.

One scenario that this can be useful is when multiple people are

working on the same project. If the programmers agree in advance on

the interface to the class, then they can work independently. This has

implications beyond an individual project; it also helps with creating

libraries of code that can be used by others.

Another scenario is where you want to make changes to the code in the

future. If you wanted to add a new feature or improve existing code, then

it separates that class from others. If you keep the interface the same, you

can change any of the internal code in the ball class to draw the ball in a

completely different way.

Python does not enforce the data abstraction as strictly as some other

programming languages. It is possible to change any of the instance

variables from outside of the class which could result in a loss of the data

abstraction. If you want to make some variables hidden from outside the

class, then you can hide them by prefixing them with __ (two underscore

characters). Even if using this, it is not full data abstraction. Python is

useful for object-oriented programming but relies on the programmers to

create a stable interface and to use good programming best practices.

Chapter 9 Object-Oriented Programming

216

�Inheritance
Inheritance allows the creation of a child class which inherits some of its

attributes and operations from a parent class. This is a way of avoiding

the duplication of code. This has the advantage of saving typing from the

programmer but more importantly can help reduce the number of bugs.

To demonstrate this, you can imagine a flight game which has an

airplane class to represent the plane. If a game had different kinds of

planes, then they may have different things that those planes may be able

to do. This is illustrated in Figure 9-2 which shows three very different

types of plane: a passenger plane, a cargo plane, and a fighter plane.

Figure 9-2.  Inheritance using parent and child classes

Chapter 9 Object-Oriented Programming

217

These are all different types of planes so will have some things in

common. Other things may only apply to certain types of plane. All planes

have a number of engines and the ability to take off and land, so those

can all be configured in the Airplane (parent) class. There are some other

attributes and operations that are unique to certain types of balls. For

example, the passenger plane has a number of passengers, but that does

not make sense for a fighter plane. The fighter plane can load and fire

missiles, but neither passenger nor cargo planes would need that ability.

Inheritance works by defining the common attributes and methods in

the parent class and then adding any unique features into the child class.

Code that uses the child class can use the operations that are inherited

from the parent or that are in the child class. The code in Listing 9-3 is a

demonstration of how a child class refers to its parent.

Listing 9-3.  Inheritance demonstration showing a child class

from airplane import Airplane

class PassengerPlane(Airplane):

 def __init__(self):

 Airplane.__init__(self)

 self.number_passengers = 0

 def load_passengers (number_passengers):

 self.number_passengers = number_passengers

 def unload_passengers ():

 self.number_passengers = 0

This code inherits from the Airplane class, adding a new attribute called

number_passengers and two new methods called load_passengers and

unload_passengers. An instance of the passenger plane can be created using

plane1 = PassengerPlane()

Chapter 9 Object-Oriented Programming

218

This will then have access to its own methods such as

plane1.load_passengers(20)

as well as the parent methods such as

plane1.take_off()

�Design for Object-Oriented Programming
When I first started using object-oriented programming, one of the

challenges I found was deciding what objects to define. In the case of

something that represents an object in the real world, it’s obvious. In the

plane example, it’s obvious that would be considered an object, but what

about something less tangible? Is the player’s score an object, or is it an

attribute? If it’s an attribute, then what’s the object that the score belongs to?

In some cases, there is no definitive answer to whether something

should be an object or not. It depends upon the type of game, how it

interacts with other objects, and the programmer’s personal preference.

I will show the technique I use which you may find helpful when designing

your own games. It’s not mandatory, and with experience, you may not

need to do this, but it is a technique I often use when creating a new

program.

This technique helps show what classes to create and what their

attributes and operations should be. First start by writing down, in one

or two paragraphs, what the game does and how it will work. You should

actually write this down (or type it into a computer) and write in full

sentences rather than bullet points. Don’t try and do this from memory

as you need to see the words for the next step. Now look through the

description you have written and find all the nouns. Write the nouns

down as possible class names. Next look at all the adjectives, then apply to

those nouns and write them under the associated noun. These will be the

attributes (variables). Then look for the active verbs and how they relate to

Chapter 9 Object-Oriented Programming

219

the nouns. List these under their associated noun; these will become the

operations (methods).

Here’s a quick summary:

•	 Nouns (names) – Classes

•	 Adjectives (describing words) – Attributes (variables)

•	 Active verbs (action words) – Operations (methods)

These words then provide suggestions for the classes, attributes, and

operations. Note that these are suggestions only; you should then apply

your own judgment on whether those are all necessary. It may be that

some items are similar to each other or that some of the nouns are not

significant enough to have their own class. It does however give you a

starting point to design your class structure. You can always revisit the

structure as you develop the game.

�Matching Pairs Memory Game
Now that you are familiar with some of the aspects of object-oriented

programming, it’s time to put that into practice with another game. This

is a digital version of a traditional card-based memory game. The game

is normally played using picture cards with each card being one of a

matching pair. The cards are placed face down, and players take it in turn

to turn over two cards trying to find the matching pairs. A screenshot of the

game is shown in Figure 9-3.

Chapter 9 Object-Oriented Programming

220

In the traditional game, there are normally two or more people taking

it in turns to try to win the most points, but in this version, there will be

just one player who will play against the clock. To create this using object-

oriented programming, I first followed the design methodology explained

earlier. I have written down the following explanation of the game.

This is a memory game. The game starts with a number of cards which

are face down. Each card has a picture on it which matches one other

card. The player turns over two cards and looks to see if they match. If they

do match, then the player’s score is increased. If they don't match, then

the cards are reset and the player has another go. There is a timer which

counts down over time, and if the timer value is zero, then the game ends.

If the player matches all pairs on a level, then the player is awarded bonus

points and the cards are dealt again.

Figure 9-3.  Screenshot of matching pairs memory game

Chapter 9 Object-Oriented Programming

221

I have then identified the nouns marked with (), which will become

the classes. Adjectives are marked with []; they will be the attributes. Active

verbs are marked with {}; they will become the operations.

This is a (memory game). The game starts with a number of (cards)

which are [face down]. Each (card) has a [picture] on it which matches

one other card. The (player) {turns over} two cards and looks to see if they

{match}. If they do match, then the player’s (score) is {increased}. If they

don't match, then the cards are {reset} and the player has another go. There

is a (timer) which counts down over time, and if the [timer value] is zero,

then the game ends. If the player matches all pairs on a (level), then the

player is awarded [bonus points] and the cards are (dealt) again.

Remember that these are guidelines rather than fixed rules. You can

use your own discretion when identifying the appropriate words and

phrases, or you can do that at a later stage. This is just a way to make it

easier for the programmer to decide on how to create the different classes.

I have then made them into the following:

Memory Game

Attributes: N/A

Operations: reset; deal

Player

Attributes: score; bonus points

Operations: N/A

Card

Attributes: face down; picture

Operations: matches (another card); reset

Chapter 9 Object-Oriented Programming

222

Timer

Attributes: time remaining

Operations: count down; reach zero

Level

Attributes: N/A

Operations: N/A

This should only be considered a starting point. You should now

review and see if there are any you want to change now. You can revisit this

when implementing the code as it may need to change.

There are some things that made sense to change immediately. One thing is

that memory game defines the overall game. We can create this without defining

it as a separate class which will allow it to use the Pygame Zero draw and update

functions; it will also need a variable for tracking the state of the game.

Another that is worth considering is that the bonus points don’t need

to be an attribute but can instead be added to the normal score; it makes

sense for adding bonus points to be an operation instead of an attribute.

Also, the level probably doesn’t need to be a class, but can be incorporated

into the memory game or player classes.

Having worked through that exercise, you should have an idea of what

classes will be needed and some of the attributes and operations. As you

write the code, you may decide that there are other classes, attributes, or

operations needed. You can add any additional attributes or operations as

you create the code.

There are two versions of code in the supplied source code, one is the

initial version and the other is an updated version. To try out the code, you

will need some card pictures. The source code for this book includes some

photographs I took around the Lake District in the United Kingdom. These

are used to create the cards, but you could use your own photos or pictures

to personalize the game.

Chapter 9 Object-Oriented Programming

223

�Creating the Classes
There is no fixed order that you create the code. I usually start by creating

some of the classes before creating the main program. This means that

I can perform some testing on those classes before writing the main

program. The classes I created are explained here.

�Timer Class

The first class is the Timer class. The timer class is used to track how much

time has lapsed so that the game has to be completed within the allotted

time. This is a very simple class but is useful to demonstrate how the class is

created. The code is shown in Listing 9-4 and is saved in a file called timer.py.

Listing 9-4.  Timer class

import math

import time

class Timer():

 def __init__(self, start_count):

 self.start_count = start_count

 self.start_time = time.time()

 �# �start count down, with optional parameter to replace the

start_count value

 �# �-1 is used as a "magic number", this method should only

be called with positive number

 # if it isn't given a number then -1 indicates no new time give

 def start_count_down(self, new_time = -1):

Chapter 9 Object-Oriented Programming

224

 if (new_time >= 0):

 self.start_count = new_time

 self.start_time = time.time()

 def get_time_remaining(self):

 �current_time = self.start_count + self.start_time -

time.time()

 if (current_time <= 0):

 return 0

 return math.ceil(current_time)

The file starts by importing the two modules, math and time. As the

name suggests, these provide mathematical and time functions.

The class is defined by the entry

class Timer():

This creates the class definition for a regular class. The class name is

Timer. The constructor is defined as the __init__ method. Its first argument

is self, which is always included in a class constructor. It then takes one

argument which is the start_count value. This is a countdown timer with

the start_count value as the number of seconds to count down from.

def __init__(self, start_count):

 self.start_count = start_count

 self.start_time = time.time()

The constructor also creates a variable self.start_time which is

passed the number of seconds since the epoch. On a Linux system, the

epoch is 00:00:00 1970-01-01 UTC (January 1, 1970). The actual time is not

important for this game, but it is used as a reference point to measure the

amount of time which has elapsed.

Chapter 9 Object-Oriented Programming

225

The start_count_down method is used to start the timer. It includes

the usual self argument. It then has an argument new_time = -1. By setting

new_time to have a value in the arguments, it makes the argument optional.

If an argument is passed, then that will be placed in the new_time variable;

if there is no argument passed, then the variable will take the value –1.

def start_count_down(self, new_time = -1):

If new_time is changed, then that is placed in the self.new_time

variable. The method then restarts the timer by storing the current time

(in seconds since the epoch) in the self.start_time variable.

The get_time_remaining method returns the number of seconds

remaining before the counter reaches zero, or zero if the countdown time

has already been exceeded. The math.ceil function is used to round the

time up to the nearest whole second. This makes it so that the countdown

always shows a whole number of seconds and only decrements when a full

second has passed.

�Card Class

The next class is the card class which displays the card to the player. This

is shown in Listing 9-5 and should be saved as card.py. This class also

demonstrates how inheritance works as it extends the Actor class.

Listing 9-5.  Card class with inheritance

from pgzero.actor import Actor

Card is based on an Actor (uses inheritance)

class Card(Actor):

 def __init__(self, name, back_image, card_image):

 Actor.__init__(self, back_image, (0,0))

 self.name = name

 self.back_image = back_image

Chapter 9 Object-Oriented Programming

226

 self.card_image = card_image

 �# Status can be 'back' (turned over) 'front' (turned

up) or 'hidden' (already used)

 self.status = 'back'

 # Override Actor.draw

 def draw(self):

 if (self.status == 'hidden'):

 return

 Actor.draw(self)

 def turn_over(self):

 if (self.status == 'back'):

 self.status = 'front'

 self.image = self.card_image

 elif (self.status == 'front'):

 self.status = 'back'

 self.image = self.back_image

 # Attempt to turn over a hidden card - ignore

 else:

 return

 def hide(self):

 self.status = 'hidden'

 # When unhide set it to back image

 def unhide (self):

 self.status = 'back'

 self.image = self.back_image

 def is_hidden (self):

 if self.status == 'hidden':

 return True

 return False

Chapter 9 Object-Oriented Programming

227

 # Is it turned to face forward

 def is_faceup (self):

 if self.status == 'front':

 return True

 return False

 def reset (self):

 self.unhide()

 def set_position(self, x, y):

 self.x = x

 self.y = y

 def equals (self, othercard):

 if self.name == othercard.name:

 return True

 return False

The first entry on the file is to import the Actor class which is

in pgzero.actor.

from pgzero.actor import Actor

This is something that the Pygame Zero normally loads automatically,

but because this is in a separate class file, it needs to be imported explicitly.

It then defines a new class called Card:

class Card(Actor):

The word “Actor” in brackets indicates that this is to be a child of the

Actor class.

The new class imports the methods from the parent class which can

then be overridden. The __init__ method is included which overrides

the constructor method. It includes the reference to self and then three

variables. The name variable is a label used to check for a matching pair;

the other arguments are used to pass the image filenames to the Card class.

Chapter 9 Object-Oriented Programming

228

 def __init__(self, name, back_image, card_image):

 Actor.__init__(self, back_image, (0,0))

 self.name = name

 self.back_image = back_image

 self.card_image = card_image

 self.status = 'back'

There is a variable called status which will track if the card is face up

(front) or face down (back) or if it is already used (hidden).

You will also see within that block of code that the Actor.__init__

method is then called. This is the same method as that of an Actor

being created without being part of a child class. In this case the call is

made directly to the parent’s __init__ method by prefixing it with the

name of the parent class. If there is no __init__ method, then the parent’s

__init__ will be called instead.

The next method in the Card class is the draw method, which also

overrides the method from the parent class. This is created so that it

only displays the card if the status is not equal to hidden. If the card is

not hidden, then it makes the call to the parent’s draw method by calling

Actor.draw(self).

There are then some methods that perform operations on the Card

object. These methods don’t exist in the parent class. They are methods

that are specifically for cards and in most cases wouldn’t make sense on

other Actors that aren’t Cards.

The card has two different images. The card starts by showing the

back_image, but it is changed to the card_image when the turn_over

method is called. This is done by changing the self.image property, which

is a feature of the Actor class. Some of the other methods are primarily

getting and setting the values of variables. For example, the hide and

unhide methods are used to change the value of the hidden variable, and

the is_hidden method returns the value of the hidden variable. These

methods are not actually required as it’s possible to change the hidden

Chapter 9 Object-Oriented Programming

229

variable directly. There are pros and cons to whether you update and read

the variables directly or using methods. The Python mantra is usually to

take the simpler option of updating the variable directly, whereas for some

other programming languages, it is encouraged to have getter and setter

methods whenever you need to access a variable in an object.

I usually prefer to use methods to access variables. The main

advantage is that it supports the concept of data abstraction. Imagine that

at a future date you decided to add an option to partially hide a card. For

example, you may add a feature that a card can only be turned over if it

hasn’t been turned over in the previous turn; if a card has been used in the

previous turn, then it should be grayed out to show that it cannot be used.

To achieve this, you may change the hidden variable so that instead of

being a Boolean which can only hold two states (True or False), you use a

number to represent the amount of transparency. If you only use methods

to access the values, then you could add this as a new feature without

breaking the way that the library is used. This is particularly useful when

you reuse the same code between different programs.

The equals method compares the name of the current card with the

name of another card. The argument othercard will be passed the object

from which it can check the name of the other card.

�GamePlay Class

At this point I decided not to create a separate Players class as it would just

hold a single variable for the score. It is not normally worth creating a class

for just one variable.

Initially I incorporated all the score and state tracking into the main

program file. When I did the program file, it became long and difficult to

understand how it worked. This is known as a bad smell. To avoid this,

I created a new class called the GamePlay class. This is known as refactoring

the code, which is when the code is updated, but not normally adding any

Chapter 9 Object-Oriented Programming

230

additional functionality. It's normally a case reorganizing and changing the

code to make it easier to read, or perhaps more efficient.

Note B ad smell is a programming term which indicates a bad code
design. It is not usually a bug, but may slow down development,
make it hard to understand the code, or increase the risk of bugs in
the future.

Another advantage of creating the GamePlay class is that it separates

the user score from the main code and should make it easier to make into a

two-player game at a later stage.

The GamePlay class is shown in Listing 9-6 and is saved as gameplay.py.

Listing 9-6.  GamePlay class

�State is tracked as a number, but to make the code readable

constants are used

STATE_NEW = 0 # Game ready to start, but not running

STATE_PLAYER1_START = 1 # Player 1 to turn over card

STATE_PLAYER1_CARDS_1 = 2 # Card 1 turned over

STATE_PLAYER1_CARDS_2 = 30 # Card 2 turned over

STATE_END = 50

�Number of seconds to display high score before allowing click

to continue

TIME_DISPLAY_SCORE = 3

class GamePlay:

 def __init__ (self):

 # These are what we need to track

 self.score = 0

 self.state = STATE_NEW

Chapter 9 Object-Oriented Programming

231

 # These are the cards that have been turned up.

 self.cards_selected = [None, None]

 # If game has not yet started

 def is_new_game(self):

 if self.state == STATE_NEW:

 return True

 return False

 def is_game_over(self):

 if self.state == STATE_END:

 return True

 return False

 def set_game_over(self):

 # player gets to see high score

 self.state = STATE_END

 def is_game_running(self):

 �if (self.state >= STATE_PLAYER1_START and self.state <

STATE_END):

 return True

 return False

 def start_game(self):

 self.score = 0

 self.state = STATE_PLAYER1_START

 def set_new_game(self):

 self.state = STATE_NEW

 def is_pair_turned_over(self):

 if (self.state == STATE_PLAYER1_CARDS_2):

 return True

 return False

Chapter 9 Object-Oriented Programming

232

 # Return the index position of the specified card

 def get_card(self, card_number):

 return self.cards_selected[card_number]

 # Point scored, so add score and update state

 def score_point(self):

 self.score += 1

 self.state = STATE_PLAYER1_START

 # Not a pair - just update state

 def not_pair(self):

 self.state = STATE_PLAYER1_START

 # If a card is clicked then update the state accordingly

 def card_clicked(self, card_index):

 if (self.state == STATE_PLAYER1_START):

 self.cards_selected[0] = card_index

 self.state = STATE_PLAYER1_CARDS_1

 elif (self.state == STATE_PLAYER1_CARDS_1):

 self.cards_selected[1] = card_index

 self.state = STATE_PLAYER1_CARDS_2

The main things that the GamePlay class provides are tracking the

state of the game and keeping track of the score. The file starts by creating

some constants which are used to denote the different states. These aren’t

necessary, but state == STATE_PLAYER1_START is more readable than

state == 1. The constants are all in capitals to make it clear that they are

constants and shouldn’t be changed, but as far as Python is concerned,

these are just variables. The value of the variables isn’t important as long

as they are always referenced using the constant.

The __init__ method is used to create the score and state variables.

The next variable cards_selected is a list which tracks which of the cards

has been turned face up. It starts with each of the values as None. None is a

Chapter 9 Object-Oriented Programming

233

special variable type that indicates that no value has been set. It is needed

so that the two entries exist so that the card number can be stored in them.

The methods included are mainly about providing the status of

the game. For example, the method is_new_game will return a value of

True if the game is about to start; otherwise, it will return False. These

are provided as it makes it easier to understand what the code is doing

compared to checking against the status code.

The one method that is a little more complex is the card_clicked

method. This method looks at the current state to determine whether the

card that has been clicked is the first or the second card and updates the

appropriate entry in cards_selected.

�Program File
Having created the class files, the program file is much simpler. It’s still

quite long, but shorter than if all the code was in a single file. The code is

shown in Listing 9-7.

Listing 9-7.  Memory game main program file

Memory Card Game - PyGame Zero

import random

from card import Card

from timer import Timer

from gameplay import GamePlay

These constants are used to simplify the game

�For more flexibility these could be replaced with

configurable variables

(eg. different number of cards for different difficulty levels)

NUM_CARDS_PER_ROW = 4

X_DISTANCE_BETWEEN_CARDS = 120

Chapter 9 Object-Oriented Programming

234

Y_DISTANCE_BETWEEN_CARDS = 120

CARD_START_X = 220

CARD_START_Y = 130

TIME_LIMIT = 60

TITLE = "Lake District Memory Game"

WIDTH = 800

HEIGHT = 600

cards_available = {

 'airafalls' : 'memorycard_airafalls',

 'ambleside' : 'memorycard_ambleside',

 'bridgehouse' : 'memorycard_bridgehouse',

 'derwentwater' : 'memorycard_derwentwater',

 'ravenglassrailway' : 'memorycard_ravenglassrailway',

 'ullswater' : 'memorycard_ullswater',

 'weatherstone' : 'memorycard_weatherstone',

 'windermere' : 'memorycard_windermere'

 }

card_back = "memorycard_back"

Setup instance variables

count_down = Timer(TIME_LIMIT)

game_state = GamePlay()

all_cards = []

Create individual card objects, two per image

for key in cards_available.keys():

 # Add to list of cards

 all_cards.append(Card(key, card_back, cards_available[key]))

 # Add again (to have 2 cards for each img)

 �all_cards.append(Card(key, card_back, cards_available[key]))

Chapter 9 Object-Oriented Programming

235

Functions are defined here - the rest of the initialization

is at the bottom of the file

Shuffle the cards and update their positions

Do not draw as this is called before the screen is properly setup

def deal_cards():

 # Create a temporary list of card indexes that is then shuffled

 keys = []

 for i in range (len(all_cards)):

 keys.append(i)

 random.shuffle(keys)

 # Setup card positions

 xpos = CARD_START_X

 ypos = CARD_START_Y

 cards_on_row = 0

 for key in keys:

 # Reset (ie. unhide if hidden and display back)

 all_cards[key].reset()

 all_cards[key].set_position(xpos,ypos)

 xpos += X_DISTANCE_BETWEEN_CARDS

 cards_on_row += 1

 # If reached end of row - move to next

 if (cards_on_row >= NUM_CARDS_PER_ROW):

 cards_on_row = 0

 xpos = CARD_START_X

 ypos += Y_DISTANCE_BETWEEN_CARDS

def update():

 if (game_state.is_new_game()):

 pass

 elif (game_state.is_game_over()):

 pass

Chapter 9 Object-Oriented Programming

236

 else:

 if (count_down.get_time_remaining()<=0):

 game_state.set_game_over()

Mouse clicked

def on_mouse_down(pos, button):

 # Only interested in the left button

 if (not button == mouse.LEFT):

 return

 # If new game then this click is to start the game

 if (game_state.is_new_game()):

 game_state.start_game()

 # start the timer

 count_down.start_count_down(TIME_LIMIT)

 deal_cards()

 return

 # If game over then this click is to get to new game screen

 if (game_state.is_game_over()):

 �# Make sure the timer has reached zero (short delay to

see state)

 if (count_down.get_time_remaining()<=0):

 game_state.set_new_game()

 return

 ## Reach here then we are in game play

 �# �First check for both already clicked and this is a click

to test

 if (game_state.is_pair_turned_over()):

 �if (all_cards[game_state.get_card(0)].equals(all_

cards[game_state.get_card(1)])):

 # Add points and hide the cards

 game_state.score_point()

Chapter 9 Object-Oriented Programming

237

 all_cards[game_state.get_card(0)].hide()

 all_cards[game_state.get_card(1)].hide()

 �# Check if we are at the end of this level (all

cards done)

 if (end_level_reached()):

 deal_cards()

 # If not match then turn both around

 else:

 all_cards[game_state.get_card(0)].turn_over()

 all_cards[game_state.get_card(1)].turn_over()

 game_state.not_pair()

 return

 ## Otherwise we just turn over the next card if clicked

 for i in range (len(all_cards)):

 if (all_cards[i].collidepoint(pos)):

 # Ignore if card hidden, or has already been turned up

 �if (all_cards[i].is_hidden() or all_cards[i].is_

faceup()):

 return

 all_cards[i].turn_over()

 # Update state

 game_state.card_clicked(i)

If reach end of level ?

def end_level_reached():

 for card in all_cards:

 if (not card.is_hidden()):

 return False

 return True

Chapter 9 Object-Oriented Programming

238

def draw():

 screen.fill((220, 220, 220))

 if (game_state.is_new_game()):

 �screen.draw.text("Click mouse to start", fontsize=60,

center=(WIDTH/2,HEIGHT/2), shadow=(1,1),

color=(255,255,255), scolor="#202020")

 if (game_state.is_game_over()):

 �screen.draw.text("Game Over\nScore: "+str(game_state.

score), fontsize=60, center=(WIDTH/2,HEIGHT/2),

shadow=(1,1), color=(255,255,255), scolor="#202020")

 if (game_state.is_game_running()):

 for card in all_cards:

 card.draw()

 �screen.draw.text("Time remaining: "+str(count_down.

get_time_remaining()), fontsize=40, bottomleft=(50,50),

color=(0,0,0))

 �screen.draw.text("Score: "+str(game_state.score),

fontsize=40, bottomleft=(600,50), color=(0,0,0))

End of functions - start of initialization code

deal_cards()

Unlike the other files, the main program file is not created as a separate

class. This is different to some other programming languages which would

require everything to be object-oriented. In the case of Python, that’s

optional, and in the case of Pygame Zero, it’s easier to not use a separate

class in the main part of the program. Instead the program makes use of

the Pygame Zero hooks such as the draw and update functions.

To understand the program, it’s useful to take a look at the overall file.

The imports and variables are defined at the top of the file, along with the

initialization of the class instances. The functions are in the middle, and

Chapter 9 Object-Oriented Programming

239

then additional code that runs during the initialization of the program is at

the bottom after the line

End of functions - start of initialization code

The program first imports the random module and then the three

classes created previously: Card, Timer, and GamePlay. There are several

constants defined which are used for the spacing of the cards and game

settings such as the duration of the timer. There is also a variable for the

filename of the image for the back of the cards as well as a dictionary with

the filenames for the different card images. These settings would typically

be stored in a separate configuration file, but to keep it simple, they have

been included in the memory.py file. There is then an empty list created

called all_cards which will hold the instances of the Card class.

The creation of the instances for the classes is handled next. The Timer

and GamePlay classes only need a single instance created by a normal

assignment.

count_down = Timer(TIME_LIMIT)

game_state = GamePlay()

For the Cards class, there needs to be an instance for each of the

cards that will be displayed. A for loop is used to create these and append

them to the all_cards list. This is a list of Card objects. Two instances are

created for each card to have the matching pairs in the list.

all_cards = []

Create individual card objects, two per image

for key in cards_available.keys():

 # Add to list of cards

 all_cards.append(Card(key, card_back, cards_available[key]))

 # Add again (to have 2 cards for each img)

 �all_cards.append(Card(key, card_back, cards_

available[key]))

Chapter 9 Object-Oriented Programming

240

The functions are listed after this, followed by the call to deal_cards

at the bottom of the file. This needs to be placed after the deal_cards

function is defined; otherwise, it will cause an error. Placing it at the end

makes the code easier to follow.

The deal_cards function works by creating a list of all keys from the

cards. It then calls the random.shuffle function which mixes the cards up

into a random order. It then updates each of the cards with their coordinates

based on the spacing between the cards. The cards can be accessed by using

their index in the list as shown in the following example entry:

all_cards[key].set_position(xpos,ypos)

Next is the update function. It first checks to see if the game is either

new or finished. If that is the case, it does nothing which is indicated

by the pass keyword. Using pass does nothing, but it can be useful as a

placeholder if you plan to add additional code in the future. If the game is

in progress, then it calls the get_time_remaining method on the timer and

changes the game state if the end of the game is reached.

if (count_down.get_time_remaining()<=0):

 game_state.set_game_over()

Most of the code to update the game is driven by the mouse action

and so is in on_mouse_down rather than the update function.

The on_mouse_down function is handled differently on whether the user

is playing the game. If the game is not in progress, then the click changes

the state of the game, such as to start the game. If the game is in progress,

then it will first test for both cards already being turned over. If it is, then

it tests to see if the two cards match and either hides the cards (if they do)

or resets the cards back to face down. If both cards are not yet turned over,

then it checks to see if a card has been clicked using the collidepoint

method and if so turns the card over and updates the game state. There is

also a check against the end_level_reached function which checks to see

Chapter 9 Object-Oriented Programming

241

if all cards have been turned over and if so shuffles the cards ready for the

player to start again.

The draw function puts some messages on the screen and if

appropriate calls the draw method for each of the cards to display them on

the screen.

You may have noticed that there are no global variables that are

updated in any of the functions. The class instances do act like global

variables, but because they are updated using the methods for the classes

means it is less likely to create obscure bugs compared to updating global

variables directly.

This completes the game. There is plenty of scope for improving the

game. You could improve the look of the game by having different card

patterns available or change the difficulty by changing the number of

cards or the length of time to play the game. You could also look changing

the game into a two-player game, or instead of playing against the clock,

have the player compete against the computer. Using the object-oriented

techniques is likely easier than if it was done using procedural coding style.

�Summary
Object-oriented programming is an alternative to procedural

programming closely associating the data with the methods to work on

them. This is particularly useful for code reuse and to help organize the

structure of the program as the amount of code increases. This chapter

has explained some of the key concepts of object-oriented programming

and how they can be implemented in Python. It includes a game which

demonstrates how to implement many of those concepts.

The next chapter will look at adding artificial intelligence to games to

create a computer-based competitor.

Chapter 9 Object-Oriented Programming

243© Stewart Watkiss 2020
S. Watkiss, Beginning Game Programming with Pygame Zero,
https://doi.org/10.1007/978-1-4842-5650-3_10

CHAPTER 10

Artificial Intelligence
Artificial intelligence (AI) in computer games is programming to make

the computer behave as though it is intelligent. Typically, this may be

showing intelligence behind a character or object that is controlled by the

computer.

This is not normally the same as machine learning which is what

people often associated with artificial intelligence. Machine learning is a

type of artificial associated with other systems such as speech recognition

or pattern recognition.

In a computer game, artificial intelligence could be as simple as a

pre-determined route that the enemy takes, or it could include some

complicated algorithm that tracks the players’ movement and responds

in a lifelike way. To work well, it needs to be set at an appropriate level

of difficulty for the player. The problem with machine learning is that if

you use it to create an opponent, then it may become unbeatable rather

than just challenging. Machine learning may be more suitable for creating

realistic backgrounds or special effects.

When I refer to artificial intelligence, I’m really looking at algorithms

that can be used to create a computer player at the appropriate level. This

chapter will look at some examples of simple artificial intelligence that can

be applied to games, with some theory around how to make a computer

player as well as some code examples.

244

�Memory Game with AI
The memory game from Chapter 9 is currently a case of trying to beat the

clock. This gives a little challenge but is not the same as playing against an

opponent. Instead it is possible to create an artificial intelligence player

to play against. To design the AI player, think about how people normally

play the game, what the challenges are, and what strategies they use to

win. As its name suggests, the challenge in the game is memory. If you can

memorize all the cards as they are turned over, then the chance of winning

the game is greatly increased. There is also an element of luck which we

can be factored into the AI. I will also show the AI can be adjusted to create

different difficulties.

In my first attempt at rewriting the code, I added and changed code in

the existing files. As this developed, the code became long and confusing,

a classic case of a bad smell. To fix this, I refactored the code, adding

new classes to simplify the program. As the code increases, then there

are multiple different classes, and it becomes harder to keep track of the

files. One way to make this easier to understand is to create a diagram

that shows the relationship between the classes. To do this, I created a

UML class diagram which is shown in Figure 10-1. The diagram is only an

approximation as it would be overcrowded to include all the attributes and

methods. It also shows the top-level memory.py file as a class, which isn’t

correct. Despite not being a “pure” UML file, it is useful for showing how

the program works.

Chapter 10 Artificial Intelligence

245

The lines and arrows on the diagram show the relationships between

the classes. The triangular arrowheads represent inheritance where a child

inherits attributes and methods from a parent. The filled diamonds show a

composition relationship, also known as a “has a” relationship as the class

has one or more instances of the class. Most of the compositions are 1 to 1

(the numbers have been left off for simplicity), but the CardTable contains

multiple instances of the cards in a 1 to many relationship (1:∗).

The code files are included in the source code in a directory called

memorygame2. The first class is the Card class. This class has only had a

few changes from the previous version. The code is shown in Listing 10-1.

Figure 10-1.  UML class diagram for the memory game

Chapter 10 Artificial Intelligence

246

Listing 10-1.  Card class for AI memory game

from pgzero.actor import Actor

Card is based on an Actor (uses inheritance)

class Card(Actor):

 def __init__(self, name, back_image, card_image):

 Actor.__init__(self, back_image, (0,0))

 self.name = name

 self.back_image = back_image

 self.card_image = card_image

 �# �Status can be 'back' (turned over) 'front' (turned

up) or 'hidden' (already used)

 self.status = 'back'

 # Number is unique number based on position

 # count left to right, top to bottom

 # updated after dealt

 self.number = None

 # Override Actor.draw

 def draw(self):

 if (self.status == 'hidden'):

 return

 Actor.draw(self)

 def turn_over(self):

 if (self.status == 'back'):

 self.status = 'front'

 self.image = self.card_image

 elif (self.status == 'front'):

 self.status = 'back'

 self.image = self.back_image

 # Attempt to turn over a hidden card - ignore

Chapter 10 Artificial Intelligence

247

 else:

 return

 def hide(self):

 self.status = 'hidden'

 # When unhide set it to back image

 def unhide (self):

 self.status = 'back'

 self.image = self.back_image

 def is_hidden (self):

 if self.status == 'hidden':

 return True

 return False

 # Is it turned to face forward

 def is_faceup (self):

 if self.status == 'front':

 return True

 return False

 # Is it turned to face down

 def is_facedown (self):

 if self.status == 'back':

 return True

 return False

 def reset (self):

 self.unhide()

 def set_position(self, x, y):

 self.x = x

 self.y = y

Chapter 10 Artificial Intelligence

248

 def equals (self, othercard):

 if self.name == othercard.name:

 return True

 return False

A new class is the CardTable class which has been created to simplify

some of the code from the memory.py file. It contains the list of all the

cards. It also includes methods to set up the table, deal the cards, and then

draw them all on the screen. There is a method that returns all the cards

which are face down, which is needed for the AI to know which cards it

can pick from. There is also a method to test to see if the end of the level is

reached (all cards are successfully paired).

The code for the CardTable class is shown in Listing 10-2.

Listing 10-2.  CardTable class file

import random

from card import Card

class CardTable:

 def __init__ (self, card_back, cards_available):

 self.cards = []

 # Create individual card objects, two per image

 for key in cards_available.keys():

 # Add to list of cards

 �self.cards.append(Card(key, card_back, cards_

available[key]))

 # Add again (to have 2 cards for each img)

 �self.cards.append(Card(key, card_back, cards_

available[key]))

 def draw_cards(self):

 for this_card in self.cards:

Chapter 10 Artificial Intelligence

249

 this_card.draw()

 # Set the table settings

 �def setup_table(self, card_start_x, card_start_y, num_

cards_per_row, x_distance_between_cards, y_distance_

between_cards):

 self.card_start_x = card_start_x

 self.card_start_y = card_start_y

 self.num_cards_per_row = num_cards_per_row

 self.x_distance_between_cards = x_distance_between_cards

 self.y_distance_between_cards = y_distance_between_cards

 # Returns all cards that are face down as Card objects

 def cards_face_down(self):

 selected_cards = []

 for this_card in self.cards:

 if (this_card.is_facedown()):

 selected_cards.append(this_card)

 return selected_cards

 # Shuffle the cards and update their positions

 def deal_cards(self):

 �# �Create a temporary list of card indexes that is then

shuffled

 keys = []

 for i in range (len(self.cards)):

 keys.append(i)

 random.shuffle(keys)

 # Setup card positions

 xpos = self.card_start_x

 ypos = self.card_start_y

 cards_on_row = 0

Chapter 10 Artificial Intelligence

250

 # Give each card number based on position

 # count left to right, top to bottom

 card_number = 0

 for key in keys:

 # Reset (ie. unhide if hidden and display back)

 self.cards[key].reset()

 self.cards[key].number = card_number

 self.cards[key].set_position(xpos,ypos)

 xpos += self.x_distance_between_cards

 cards_on_row += 1

 # If reached end of row - move to next

 if (cards_on_row >= self.num_cards_per_row):

 cards_on_row = 0

 xpos = self.card_start_x

 ypos += self.y_distance_between_cards

 card_number += 1

 # If reach end of level

 def end_level_reached(self):

 for card in self.cards:

 if (not card.is_hidden()):

 return False

 return True

 def check_card_clicked (self, pos):

 for this_card in self.cards:

 # If not facedown then skip

 if (not this_card.is_facedown()):

 continue

 if (this_card.collidepoint(pos)):

 return this_card

 return None

Chapter 10 Artificial Intelligence

251

The GamePlay class is a simplified version of the previous GamePlay

class. The score attribute has been removed as that is now handled by

the Player classes to provide a score for each of the players. There are

additional state attributes and methods to handle the second player. The

code for GamePlay class is included in Listing 10-3.

Listing 10-3.  GamePlay class file

�State is tracked as a number, but to make the code readable

constants are used

STATE_NEW = 0 # �Game ready to start, but not running

STATE_PLAYER1_START = 10 # Player 1 to turn over card

STATE_PLAYER1_CARDS_1 = 11 # Card 1 turned over

STATE_PLAYER1_CARDS_2 = 12 # Card 2 turned over

STATE_PLAYER2_START = 20 # Player 2 starts go

STATE_PLAYER2_WAIT = 21 # Delay before Card 1 turned over

STATE_PLAYER2_CARDS_1 = 22 # Card 1 turned over

STATE_PLAYER2_CARDS_2 = 23 # Card 2 turned over

STATE_END = 50

�Number of seconds to display high score before allowing click

to continue

TIME_DISPLAY_SCORE = 3

class GamePlay:

 def __init__ (self):

 self.state = STATE_NEW

 # If game has not yet started

 def is_new_game(self):

 if self.state == STATE_NEW:

 return True

 return False

Chapter 10 Artificial Intelligence

252

 def is_game_over(self):

 if self.state == STATE_END:

 return True

 return False

 def is_player_1(self):

 �if (self.state >= STATE_PLAYER1_START and self.state <=

STATE_PLAYER1_CARDS_2):

 return True

 return False

 def is_player_2(self):

 �if (self.state >= STATE_PLAYER2_START and self.state <=

STATE_PLAYER2_CARDS_2):

 return True

 return False

 def is_player_2_start(self):

 if (self.state == STATE_PLAYER2_START):

 return True

 return False

 def is_player_2_wait(self):

 if (self.state == STATE_PLAYER2_WAIT):

 return True

 return False

 def is_player_2_card1(self):

 if (self.state == STATE_PLAYER2_CARDS_1):

 return True

 return False

Chapter 10 Artificial Intelligence

253

 def is_player_2_card2(self):

 if (self.state == STATE_PLAYER2_CARDS_2):

 return True

 return False

 def set_player_2_wait(self):

 self.state = STATE_PLAYER2_WAIT

 def set_player_2_card1(self):

 self.state = STATE_PLAYER2_CARDS_1

 def set_player_2_card2(self):

 self.state = STATE_PLAYER2_CARDS_2

 def start_game(self):

 self.state = STATE_PLAYER1_START

 def set_game_over(self):

 # player gets to see high score

 self.state = STATE_END

 def is_game_running(self):

 �if (self.state >= STATE_PLAYER1_START and self.state <

STATE_END):

 return True

 return False

 # Continue with current player (matched correctly)

 def continue_player (self):

 if self.state <= STATE_PLAYER1_CARDS_2:

 self.state = STATE_PLAYER1_START

 else:

 self.state = STATE_PLAYER2_START

Chapter 10 Artificial Intelligence

254

 # Switch to next player (not matched)

 def next_player (self):

 if self.state <= STATE_PLAYER1_CARDS_2:

 self.state = STATE_PLAYER2_START

 else:

 self.state = STATE_PLAYER1_START

 def set_new_game(self):

 self.state = STATE_NEW

 def is_pair_turned_over(self):

 if (self.state == STATE_PLAYER1_CARDS_2):

 return True

 return False

 # If a card is clicked then update the state accordingly

 def card_clicked(self):

 if (self.state == STATE_PLAYER1_START):

 self.state = STATE_PLAYER1_CARDS_1

 elif (self.state == STATE_PLAYER1_CARDS_1):

 self.state = STATE_PLAYER1_CARDS_2

The Timer class is the same as previously, but it is used in a different

way. Instead of being used as a timer for the player to play against, it’s used

to add a delay for the AI player so that the human player can see the cards

that the computer was turning over. The Timer class is shown in Listing 10-4.

Listing 10-4.  Timer class file

import math

import time

class Timer():

 def __init__(self, start_count):

Chapter 10 Artificial Intelligence

255

 self.start_count = start_count

 self.start_time = time.time()

 �# �start count down, with optional parameter to replace the

start_count value

 �# �-1 is used as a "magic number", this method should only

be called with positive number

 # �if it isn't given a number then -1 indicates no new time give

 def start_count_down(self, new_time = -1):

 if (new_time >= 0):

 self.start_count = new_time

 self.start_time = time.time()

 def get_time_remaining(self):

 �current_time = self.start_count + self.start_time -

time.time()

 if (current_time <= 0):

 return 0

 return math.ceil(current_time)

The Player class was considered in the earlier version but was not

necessary at the time. With the addition of the AI, it was more useful to

have a separate class for the player. This is a simple class which holds the

score for the player and the card selection. It uses the card class having

an instance of the card passed during the select_card method and

then returning it using the get_card method. This is the reason for the

composition between the Player and the Card class shown in Figure 10-1.

The code for the Player class is shown in Listing 10-5.

Chapter 10 Artificial Intelligence

256

Listing 10-5.  Player class file

from card import Card

class Player():

 def __init__ (self):

 # Track which cards are turned over

 self.guess = [None, None]

 self.score = 0

 def score_point (self):

 self.score += 1

 # Returns a single card object - either 0 or 1

 def get_card (self, card_number):

 return self.guess[card_number]

 # Reset cards held in hand, but does not hide / turn_over card

 def reset_cards(self):

 self.guess[0] = None

 self.guess[1] = None

 def select_card(self, card):

 if (self.guess[0] == None):

 self.guess[0] = card

 else:

 self.guess[1] = card

 # Returns the number of cards that are selected

 def num_cards_selected(self):

 if (self.guess[0] == None):

 return 0

Chapter 10 Artificial Intelligence

257

 elif (self.guess[1] == None):

 return 1

 else:

 return 2

The last of the class files contains the PlayerAi class which inherits

from the Player class adding the ability for the AI player to make a random

guess. This is a very basic form of AI which will be expanded on later. The

code is included in Listing 10-6.

Listing 10-6.  Player class file

import random

from player import Player

class PlayerAi (Player):

 def __init__(self):

 Player.__init__(self)

 def make_guess(self, available_cards):

 self.guess_random(available_cards)

 def guess_random (self, available_cards):

 this_guess = random.choice(available_cards)

 this_guess.turn_over()

 self.select_card(this_guess)

 def get_card (self, card_number):

 return self.guess[card_number]

Finally, the memory.py file has been updated. The user interaction is still

handled within the on_mouse_down function, but it now includes the AI player

in the update function. Each time that the AI player performs an operation,

there is a delay triggered by timer.start_count_down, which effectively

Chapter 10 Artificial Intelligence

258

pauses the AI from any operations until timer.get_time_remaining shows

that the time has been exceeded. This is shown in Listing 10-7.

Listing 10-7.  The main memory.py file with basic AI

Memory Card Game - PyGame Zero

import random

from card import Card

from gameplay import GamePlay

from player import Player

from playerai import PlayerAi

from timer import Timer

from cardtable import CardTable

These constants are used to simplify the game

�For more flexibility these could be replaced with

configurable variables

�(eg. different number of cards for different difficulty

levels)

NUM_CARDS_PER_ROW = 4

X_DISTANCE_BETWEEN_CARDS = 120

Y_DISTANCE_BETWEEN_CARDS = 120

CARD_START_X = 220

CARD_START_Y = 130

TITLE = "Lake District Memory Game"

WIDTH = 800

HEIGHT = 600

cards_available = {

 'airafalls' : 'memorycard_airafalls',

 'ambleside' : 'memorycard_ambleside',

 'bridgehouse' : 'memorycard_bridgehouse',

Chapter 10 Artificial Intelligence

259

 'derwentwater' : 'memorycard_derwentwater',

 'ravenglassrailway' : 'memorycard_ravenglassrailway',

 'ullswater' : 'memorycard_ullswater',

 'weatherstone' : 'memorycard_weatherstone',

 'windermere' : 'memorycard_windermere'

 }

card_back = "memorycard_back"

Setup instance variables

game_state = GamePlay()

player1 = Player()

ai = PlayerAi()

Timer is used for AI thinking time

timer = Timer(2)

all_cards = CardTable(card_back, cards_available)

all_cards.setup_table(CARD_START_X, CARD_START_Y, NUM_CARDS_

PER_ROW, X_DISTANCE_BETWEEN_CARDS, Y_DISTANCE_BETWEEN_CARDS)

all_cards.deal_cards()

def update():

 if (game_state.is_player_2_start()):

 timer.start_count_down()

 game_state.set_player_2_wait()

 if (game_state.is_player_2_wait()):

 if (timer.get_time_remaining() <= 0):

 ai.make_guess(all_cards.cards_face_down())

 timer.start_count_down()

 game_state.set_player_2_card1()

 # card 1 turned

 elif (game_state.is_player_2_card1()):

 if (timer.get_time_remaining() <= 0):

 ai.make_guess(all_cards.cards_face_down())

Chapter 10 Artificial Intelligence

260

 timer.start_count_down()

 game_state.set_player_2_card2()

 # Card 2 selected - wait then check if matches

 elif (game_state.is_player_2_card2()):

 if (timer.get_time_remaining() <= 0):

 if ai.get_card(0).equals(ai.get_card(1)):

 # If match add points and hide the cards

 ai.score_point()

 ai.get_card(0).hide()

 ai.get_card(1).hide()

 ai.reset_cards()

 # Game Over

 if (all_cards.end_level_reached()):

 game_state.set_game_over()

 �# �If user guess correct then they get

another attempt

 else:

 game_state.continue_player()

 # If not match then turn both around

 else:

 ai.get_card(0).turn_over()

 ai.get_card(1).turn_over()

 ai.reset_cards()

 game_state.next_player()

Mouse clicked

def on_mouse_down(pos, button):

 # Only interested in the left button

 if (not button == mouse.LEFT):

 return

 # If new game then this click is to start the game

 if (game_state.is_new_game() or game_state.is_game_over()):

Chapter 10 Artificial Intelligence

261

 game_state.start_game()

 all_cards.deal_cards()

 player1.score = 0

 ai.score = 0

 return

 ## Reach here then we are in game play

 # Is it player1's turn

 if (game_state.is_player_1()):

 �# �Check for both already clicked and this is a click to

test

 if (game_state.is_pair_turned_over()):

 if (player1.get_card(0).equals(player1.get_card(1))):

 # If match add points and hide the cards

 player1.score_point()

 player1.get_card(0).hide()

 player1.get_card(1).hide()

 player1.reset_cards()

 # End of game

 if (all_cards.end_level_reached()):

 game_state.set_game_over()

 �# �If user guess correct then they get another

attempt

 else:

 game_state.continue_player()

 # If not match then turn both around

 else:

 player1.get_card(0).turn_over()

 player1.get_card(1).turn_over()

 player1.reset_cards()

 game_state.next_player()

 return

Chapter 10 Artificial Intelligence

262

 # Check if clicked on a card

 card_clicked = all_cards.check_card_clicked(pos)

 if (card_clicked != None):

 card_clicked.turn_over()

 player1.select_card(card_clicked)

 # Update state

 game_state.card_clicked()

def draw():

 screen.fill((220, 220, 220))

 if (game_state.is_new_game()):

 �screen.draw.text("Click mouse to start", fontsize=60,

center=(WIDTH/2,HEIGHT/2), shadow=(1,1),

color=(255,255,255), scolor="#202020")

 if (game_state.is_game_over()):

 �screen.draw.text("Game Over\nPlayer 1 score:

"+str(player1.score)+"\nPlayer 2 (AI) score: "+str(ai.

score), fontsize=60, center=(WIDTH/2,HEIGHT/2),

shadow=(1,1), color=(255,255,255), scolor="#202020")

 if (game_state.is_game_running()):

 # Set colors based on which player is selected

 if (game_state.is_player_1()):

 player1_color = (0,0,0)

 player2_color = (128,128,128)

 else:

 player1_color = (128,128,128)

 player2_color = (0,0,0)

 all_cards.draw_cards()

 �screen.draw.text("Player 1: "+str(player1.score),

fontsize=40, bottomleft=(50,50), color=player1_color)

 �screen.draw.text("Player 2 (AI): "+str(ai.score),

fontsize=40, bottomleft=(550,50), color=player2_color)

Chapter 10 Artificial Intelligence

263

 # Display computer status during ai turns

 �if (game_state.is_player_2_wait() or game_state.is_

player_2_card1()):

 �screen.draw.text("Thinking which card to

pick", fontsize=40, center=(WIDTH/2,HEIGHT/2),

shadow=(1,1), color=(255,255,255),

scolor="#202020")

This can be run and played but is extremely easy to beat. The game just

chooses a random card each time, so until there are only a few cards left,

the probability of them getting a match is very small.

�A Good Memory
To make the game more challenging, we can have the computer remember

the guesses that are made. As the player code is separated from the rest of

the code, there are only two files that need to be updated. These are the

files containing the Player class and the PlayerAi class. The two modified

files will be listed here, but the complete source code is included in the

memory3 directory.

First there needs to be somewhere to store the cards that have been

seen. If the cards seen are stored in the PlayerAi class, then it will only see

the cards that the AI player turns over. If the cards are instead stored in the

Player class, then it’s possible to store all the cards that are turned over by

the human player as well as the AI player.

Saving the list as a class variable instead of an instance variable will

make it visible to all instances, including all instances of child classes. This

is done by placing the variables at the top of the class as shown here:

class Player():

 card_memory = {}

 click_order = []

Chapter 10 Artificial Intelligence

264

There are two variables created here: card_memory is a dictionary to

hold the card with an index of the card’s name and click_order is a list that

remembers the order that the cards are clicked. The second is not actually

required at the moment, but adding it now will simplify the next stage.

To update the class variables whenever a card is revealed needs the

following to be added to the select_card method:

Player.card_memory[card.number] = card

As this method is inherited by PlayerAi, then it will be called each time

the human player or the computer player turns a card over. The variables also

need to be reset at the start of a new game which is implemented in a static

method reset_cards. The updated player.py file is shown in Listing 10-8.

Listing 10-8.  Updated Player class to add improved AI

from card import Card

class Player():

 # Index of cards that ai remembers

 # Stored as dictionary as cards will be missing or be forgotten

 card_memory = {}

 click_order = []

 def __init__ (self):

 # Track which cards are turned over

 self.guess = [None, None]

 self.score = 0

 @staticmethod

 def new_game():

 Player.card_memory = {}

 Player.click_order = []

Chapter 10 Artificial Intelligence

265

 def score_point (self):

 self.score += 1

 # Returns a single card object - either 0 or 1

 def get_card (self, card_number):

 return self.guess[card_number]

 # Reset cards held in hand, but does not hide / turn_over card

 def reset_cards(self):

 self.guess[0] = None

 self.guess[1] = None

 def select_card(self, card):

 if (self.guess[0] == None):

 self.guess[0] = card

 else:

 self.guess[1] = card

 Player.card_memory[card.number] = card

 # Returns the number of cards that are selected

 def num_cards_selected(self):

 if (self.guess[0] == None):

 return 0

 elif (self.guess[1] == None):

 return 1

 else:

 return 2

There are three different methods added to the PlayerAi class

showing different ways that improved memory can be implemented. The

updated source code is shown in Listing 10-9. Each of the new methods is

explained later.

Chapter 10 Artificial Intelligence

266

Listing 10-9.  Updated PlayerAi class to add improved AI

import random

from player import Player

class PlayerAi (Player):

 def __init__(self):

 Player.__init__(self)

 def make_guess(self, available_cards):

 #self.guess_random(available_cards)

 #self.guess_remember_all(available_cards)

 #self.guess_remember_sometimes(available_cards)

 self.guess_remember_recent(available_cards)

 def guess_random (self, available_cards):

 this_guess = random.choice(available_cards)

 this_guess.turn_over()

 self.select_card(this_guess)

 def guess_remember_all (self, available_cards):

 # If first guess then use random

 if (self.guess[0] == None):

 self.guess_random(available_cards)

 return

 # Search to see if we have seen a matching card

 for search_card in Player.card_memory.values():

 �# ignore if current card - or card has been hidden

since

 �if (search_card == self.guess[0] or search_card.

is_hidden()):

 continue

 # Check to see if the card matches

Chapter 10 Artificial Intelligence

267

 if (search_card.equals(self.guess[0])):

 search_card.turn_over()

 self.select_card(search_card)

 return

 # If not found the matching card then use random

 self.guess_random(available_cards)

 def guess_remember_sometimes (self, available_cards):

 # If first guess then use random

 if (self.guess[0] == None):

 self.guess_random(available_cards)

 return

 # Random whether make a proper guess or random guess

 if (random.randint(1,10) < 5):

 self.guess_random(available_cards)

 return

 # Search to see if we have seen a matching card

 for search_card in Player.card_memory.values():

 �# �ignore if current card - or card has been hidden

since

 �if (search_card == self.guess[0] or search_card.

is_hidden()):

 continue

 # Check to see if the card matches

 if (search_card.equals(self.guess[0])):

 search_card.turn_over()

 self.select_card(search_card)

 return

 # If not found the matching card then use random

 self.guess_random(available_cards)

 def guess_remember_recent (self, available_cards):

Chapter 10 Artificial Intelligence

268

 # If first guess then use random

 if (self.guess[0] == None):

 self.guess_random(available_cards)

 return

 # Get last 4 cards that were clicked

 # These are just card numbers

 recent_cards = Player.click_order[:-4]

 # Search to see if one of those is a matching card

 for search_card in Player.card_memory.values():

 �# �ignore if current card - or card has been hidden

since

 �if (search_card == self.guess[0] or search_card.

is_hidden()):

 continue

 # ignore if not a recent card

 if (search_card.number not in recent_cards):

 continue

 # Check to see if the card matches

 if (search_card.equals(self.guess[0])):

 search_card.turn_over()

 self.select_card(search_card)

 return

 # If not found the matching card then use random

 self.guess_random(available_cards)

 def get_card (self, card_number):

 return self.guess[card_number]

The first of the new methods is guess_remember_all, which

remembers every card that is turned over. The method starts by choosing a

random card. If the corresponding pair has already been turned over, then

it will turn over the corresponding card. This is handled by looking for the

Chapter 10 Artificial Intelligence

269

card in Player.card_memory.values which returns the list of all values in

the dictionary. The key parts of that method are listed as follows:

for search_card in Player.card_memory.values():

This is a for loop that cycles through all the values in the dictionary.

The value is a Card object which is held in the variable search_card. It

then checks for a match using

if (search_card.equals(self.guess[0])):

If it matches the previously turned over card, then it turns the

matching card over using

search_card.turn_over()

self.select_card(search_card)

As this method remembers every card turned over, it is a very difficult

level to beat. If you have a good memory or are very lucky with your choice

of card, then it is possible to beat this, but it is frustratingly difficult.

The next method is called guess_remember_sometimes. As its name

suggests, this remembers previous cards but only sometimes. This is based

on a random check to determine whether to search for the card from

memory or not. This is essentially the same as the guess_remember_all

except for the following additional code:

if (random.randint(1,10) < 5):

 self.guess_random(available_cards)

 return

It creates a random number between 1 and 10. If the number is less

than 5, then it performs a random guess. If the number is 5 or greater, then

it searches for the card in the memory. The value to compare against (in

this case 5) can be adjusted up and down to improve the probability of a

successful guess.

Chapter 10 Artificial Intelligence

270

This gives a reasonable level of difficulty, but it is not particularly

realistic. The reason being is that human players are usually much better

at remembering a card that was turned over recently compared to one that

was turned over some time ago.

The final method is called guess_remember_recent. This provides the

computer player with a short-term memory. All the cards that are turned

over are still stored in the dictionary, but the computer only uses the most

recent ones listed in the Player.click_order variable when checking for a

match.

This is achieved by creating a separate list which only holds the last

four entries of the click_order list.

recent_cards = Player.click_order[:-4]

Then when checking for a match, it uses the following to skip any cards

that are not in the recent_cards list:

if (search_card.number not in recent_cards):

 continue

You can try adjusting the number of recent cards that the computer

looks through to change the difficulty.

There are other things that you could do to make it appear more

realistic. For example, you could combine these techniques to have a

computer player which behaves more naturally by having a memory that is

very good for recent cards but is randomly less likely to guess correctly as

more cards are turned over. This has been left as an exercise for the reader.

If you look at the make_guess method, you can see that the different

methods are all commented out except for the guess_remember_recent

method. This provides a way for you to try out the different methods and

compare them. Just remove the “#” character which is commenting out the

one you want to test and comment out the others.

Chapter 10 Artificial Intelligence

271

 def make_guess(self, available_cards):

 #self.guess_random(available_cards)

 #self.guess_remember_all(available_cards)

 #self.guess_remember_sometimes(available_cards)

 self.guess_remember_recent(available_cards)

One thing that you could do is to have the player choose the difficulty.

Think about how you could add that. I’ve added another version of the

memory game in the source code which includes that option. It’s stored in

the directory memory4; think about how you would add that first before

looking at the supplied code.

�Battleships
Another example of how you can create artificial intelligence can be seen

in the game Battleships. This is the classic game you have almost certainly

played at some stage. Originally a paper-based game where you had to try

and sink your opponent’s ships, this is now commonly played as a board

game using model ships and plastic pegs to show when a ship has been hit

or missed. This is shown in Figure 10-2.

Chapter 10 Artificial Intelligence

272

This game will be a computer version of this classic game which is

used to demonstrate artificial intelligence. The intelligence involved in

playing battleships is something that most of us do sub-consciously.

It’s true that a lot of the game is based on luck, but without a strategy,

a non-intelligent computer version will almost certainly lose against a

human opponent.

There are three main strategies that can be considered when playing

battleships:

•	 Random – Playing each turn randomly is the most

basic strategy. The odds of successfully hitting each

of the opponent’s ships are very low until many of the

positions have already been tried.

•	 Random with ship awareness – This second strategy is

where you fire shots randomly until successfully hitting

an opponent’s ship. Upon hitting the opponent’s ship,

you fire against adjacent positions until the ship is

Figure 10-2.  Traditional Battleship board game

Chapter 10 Artificial Intelligence

273

sunk. After the ship is sunk, then you start again trying

random positions.

•	 Probability analysis – This is the ultimate strategy

where a computer opponent can work out the

probability for the remaining ships being in a particular

position.

In this game I have implemented the second strategy of random shots

with ship awareness. The reason is that the first level is far too easy for

most players and the third is likely to be too difficult to beat.

To keep the code short, the version listed in the book has fixed

positions for the ships of both the human and computer players. This

allows me to demonstrate the way that the computer player works without

having to list a lot of additional code. I have however included a second

version in the source code which is a complete game where the player gets

to position their own ships and the computer chooses random positions

for its ships. The version listed in this book is in the directory battleship,

and the more complete version is in the directory battleship2.

There are six Python files included in this game, plus some images in

the image folder. The game uses a similar object-oriented programming

methodology to the memory game. The file battleship.py is the main

executable file. There is a fleet for each player, with the fleet consisting

of five ships. Each ship is a child of the Actor class. There is a grid class

which handles the grid position and translates the position on the grid to

the position on the screen. Finally, the Ai class is the one that is of most

interest for this chapter as that is where the intelligence is coded.

I will give a quick run through of each of the files finishing with an

explanation of the Ai class at the end.

The first file is the battleship.py main program file. This is shown in

Listing 10-10.

Chapter 10 Artificial Intelligence

274

Listing 10-10.  The main battleship.py program file for Battleship game

from fleet import Fleet

from grid import Grid

from ai import Ai

WIDTH = 1024

HEIGHT = 768

Start of your grid (after labels)

YOUR_GRID_START = (94,180)

Start of enemy grid

ENEMY_GRID_START = (544,180)

GRID_SIZE = (38,38)

player = "player1"

grid_img_1 = Actor ("grid", topleft=(50,150))

grid_img_2 = Actor ("grid", topleft=(500,150))

own_fleet = Fleet(YOUR_GRID_START, GRID_SIZE)

enemy_fleet = Fleet(ENEMY_GRID_START, GRID_SIZE)

Manually position ships position random or allow

player to choose.

own_fleet.add_ship("destroyer",(7,0),"horizontal")

own_fleet.add_ship("cruiser",(1,1),"horizontal")

own_fleet.add_ship("submarine",(1,4),"vertical")

own_fleet.add_ship("battleship",(4,5),"horizontal")

own_fleet.add_ship("carrier",(9,3),"vertical")

enemy_fleet.add_ship("destroyer",(5,8),"horizontal", True)

enemy_fleet.add_ship("cruiser",(3,4),"vertical", True)

enemy_fleet.add_ship("submarine",(4,1),"horizontal", True)

enemy_fleet.add_ship("battleship",(8,3),"vertical", True)

enemy_fleet.add_ship("carrier",(1,1),"vertical", True)

Chapter 10 Artificial Intelligence

275

Don't need a player1 object

Player 2 represents the AI player

player2=Ai()

def draw():

 screen.fill((192,192,192))

 grid_img_1.draw()

 grid_img_2.draw()

 �screen.draw.text("Battleships", fontsize=60,

center=(WIDTH/2,50), shadow=(1,1), color=(255,255,255),

scolor=(32,32,32))

 �screen.draw.text("Your fleet", fontsize=40,

topleft=(100,100), color=(255,255,255))

 �screen.draw.text("The enemy fleet", fontsize=40,

topleft=(550,100), color=(255,255,255))

 own_fleet.draw()

 enemy_fleet.draw()

 if (player == "gameover"):

 �screen.draw.text("Game Over", fontsize=60,

center=(WIDTH/2,HEIGHT/2), shadow=(1,1),

color=(255,255,255), scolor=(32,32,32))

def update():

 global player

 if (player == "player2"):

 grid_pos = player2.fire_shot()

 result = own_fleet.fire(grid_pos)

 player2.fire_result (grid_pos, result)

 # If ship sunk then inform Ai player

 if (result == True):

 if (own_fleet.is_ship_sunk_grid_pos(grid_pos)):

 player2.ship_sunk(grid_pos)

Chapter 10 Artificial Intelligence

276

 �# �As a ship is sunk - check to see if all ships

are sunk

 if own_fleet.all_sunk():

 player = "gameover"

 return

 �# �If reach here then not gameover, so switch back to

main player

 player = "player1"

def on_mouse_down(pos, button):

 global player

 if (button != mouse.LEFT):

 return

 if (player == "player1"):

 if (enemy_fleet.grid.check_in_grid(pos)):

 grid_location = enemy_fleet.grid.get_grid_pos(pos)

 #print (Grid.grid_to_string(grid_location))

 enemy_fleet.fire(grid_location)

 if enemy_fleet.all_sunk():

 player = "gameover"

 else:

 # switch to player 2

 player = "player2"

This file imports some of the classes and creates the instances of the

main classes. This includes two grids and corresponding fleets, one for

the human player’s fleet positions and the other for the computer player.

The ships are added to the fleet through hard-coded positions for both the

human and computer fleets. This is to reduce the amount of code at this

stage. The draw function loops through the various objects and calls each

of their draw methods, as well as displaying the status text.

Chapter 10 Artificial Intelligence

277

There is a separation between the human and Ai code. The update

function handles the computer player, whereas the on_mouse_down

function handles the interaction with the human player.

The fleet class handles tracking the ships and the shots that are fired. It

includes methods for testing to see if a ship is sunk (in which case, it is set

to visible) and to test if the entire fleet is sunk which is the trigger for game

over. The code for fleet.py is shown in Listing 10-11.

Listing 10-11.  Fleet class for Battleship game

import math

from grid import Grid

from ship import Ship

from pgzero.actor import Actor

class Fleet:

 def __init__ (self, start_grid, grid_size):

 self.start_grid = start_grid

 self.grid_size = grid_size

 self.ships = []

 self.grid = Grid(start_grid, grid_size)

 self.shots = []

 # Is there a ship at this position that has sunk

 def is_ship_sunk_grid_pos (self, check_grid_pos):

 # find ship at that position

 for this_ship in self.ships:

 if (this_ship.includes_grid_pos(check_grid_pos)):

 return this_ship.is_sunk()

 # If there is no ship at this position then return False

 return False

Chapter 10 Artificial Intelligence

278

 �def add_ship (self, type, position, direction, hidden=False):

 �self.ships.append(Ship(type, self.grid, position,

direction, hidden))

 # check through ships to see if any still floating

 def all_sunk (self):

 for this_ship in self.ships:

 if not this_ship.is_sunk():

 return False

 return True

 # Draws entire fleet (each of the ships)

 def draw(self):

 for this_ship in self.ships:

 this_ship.draw()

 for this_shot in self.shots:

 this_shot.draw()

 def fire (self, pos):

 # Is this a hit

 for this_ship in self.ships:

 if (this_ship.fire(pos)):

 # Hit

 �self.shots.append(Actor("hit",topleft=self.

grid.grid_pos_to_screen_pos(pos)))

 #check if this ship sunk

 if this_ship.is_sunk():

 # Ship sunk so make it visible

 this_ship.hidden = False

 return True

 �self.shots.append(Actor("miss",topleft=self.grid.grid_

pos_to_screen_pos(pos)))

 return False

Chapter 10 Artificial Intelligence

279

One of the main things that the fleet class provides is the list of all the

ships belonging to that fleet. This is in the list self.ships and is created

based on the Ship class. It also holds all the shots that have been fired as a

list of Actors representing either a hit or miss.

The Ship class is shown in Listing 10-12. It is a child of the Actor class

with some additional code to handle the placement of the ship on the

appropriate grid and to handle when the ship is hidden or visible.

Listing 10-12.  Ship class for Battleship game

from pgzero.actor import Actor

from grid import Grid

Ship is referred to using an x,y position

class Ship (Actor):

 �def __init__ (self, ship_type, grid, grid_pos, direction,

hidden=False):

 Actor.__init__(self, ship_type, (10,10))

 self.ship_type = ship_type

 self.grid = grid

 self.image = ship_type

 self.grid_pos = grid_pos

 self.topleft = self.grid.grid_pos_to_screen_pos((grid_pos))

 # Set the actor anchor position to center of the first square

 self.anchor = (38/2, 38/2)

 self.direction = direction

 if (direction == 'vertical'):

 self.angle = -90

 self.hidden = hidden

 if (ship_type == "destroyer"):

 self.ship_size = 2

 self.hits = [False, False]

Chapter 10 Artificial Intelligence

280

 elif (ship_type == "cruiser"):

 self.ship_size = 3

 self.hits = [False, False, False]

 elif (ship_type == "submarine"):

 self.ship_size = 3

 self.hits = [False, False, False]

 elif (ship_type == "battleship"):

 self.ship_size = 4

 self.hits = [False, False, False, False]

 elif (ship_type == "carrier"):

 self.ship_size = 5

 self.hits = [False, False, False, False, False]

 def draw(self):

 if (self.hidden):

 return

 Actor.draw(self)

 def is_sunk (self):

 if (False in self.hits):

 return False

 return True

 def fire (self, fire_grid_pos):

 if self.direction == 'horizontal':

 if (fire_grid_pos[0] >= self.grid_pos[0] and

 �fire_grid_pos[0] < self.grid_pos[0]+self.ship_

size and

 fire_grid_pos[1] == self.grid_pos[1]):

 �self.hits[fire_grid_pos[0]-self.grid_pos[0]] =

True

 return True

 else:

Chapter 10 Artificial Intelligence

281

 if (fire_grid_pos[0] == self.grid_pos[0] and

 fire_grid_pos[1] >= self.grid_pos[1] and

 fire_grid_pos[1] < self.grid_pos[1]+self.ship_size):

 self.hits[fire_grid_pos[1]-self.grid_pos[1]] = True

 return True

 return False

 # Does this ship cover this grid_position

 def includes_grid_pos (self, check_grid_pos):

 # If first pos then return True

 if (self.grid_pos == check_grid_pos):

 return True

 # check x axis

 elif (self.direction == 'horizontal' and

 self.grid_pos[1] == check_grid_pos[1] and

 check_grid_pos[0] >= self.grid_pos[0] and

 �check_grid_pos[0] < self.grid_pos[0] + self.ship_

size):

 return True

 elif (self.direction == 'vertical' and

 self.grid_pos[0] == check_grid_pos[0] and

 check_grid_pos[1] >= self.grid_pos[1] and

 �check_grid_pos[1] < self.grid_pos[1] + self.ship_

size):

 return True

 else :

 return False

The Ship class uses a ship type to determine the size of the ship. This

is based on the name of the ship, such as destroyer (two grid positions) or

battleship (four grid positions). It also updates the anchor position. This

has nothing to do with a nautical anchor used in a ship but instead relates

Chapter 10 Artificial Intelligence

282

to the anchor position of the Pygame Zero Actor. By default, the anchor

is the center of the image, but in this case, it is set as the center of the first

grid position (top, left) that the ship occupies. This position is used for

placement of the ship and its rotation. It makes it easier to position the

ship on the grid, and so that when a ship is placed vertically, it is rotated

within the grid column.

The constructor then creates a list corresponding to each of the grid

positions called self.hits. The list is set to False for each of the positions,

which are then updated to True whenever one of them is hit. If they are all

set to True, then the ship is considered sunk. This can be tested using the

is_sunk method.

The fire method determines whether the fire hits the ship by looking

at whether its grid position matches any of the positions that the ship

occupies and updates the status accordingly. The includes_grid_

position method performs a similar check but is used to check whether a

ship exists in that position and does not change its status.

The methods in the Fleet and Ship class use a grid position rather than

the screen location. The Grid class is used to convert the screen position

from the mouse click to the grid position on one of the two grids. It is used

by both the Ship class and the on_mouse_down function in battleship.py.

The Grid class is shown in Listing 10-13.

Listing 10-13.  Grid class for Battleship game

import math

class Grid:

 # Grid dimensions are in terms of screen pixels

 def __init__ (self, start_grid, grid_size):

 self.start_grid = start_grid

 self.grid_size = grid_size

Chapter 10 Artificial Intelligence

283

 �# �Does co-ordinates match this grid - if so which screen_

position

 def check_in_grid (self, screen_pos):

 if (screen_pos[0] < self.start_grid[0] or

 screen_pos[1] < self.start_grid[1] or

 �screen_pos[0] > self.start_grid[0] + (self.grid_

size[0] * 10) or

 �screen_pos[1] > self.start_grid[1] + (self.grid_

size[1] * 10)):

 return False

 else:

 return True

 def get_grid_pos (self, screen_pos):

 x_offset = screen_pos[0] - self.start_grid[0]

 x = math.floor(x_offset / self.grid_size[0])

 y_offset = screen_pos[1] - self.start_grid[1]

 y = math.floor(y_offset / self.grid_size[1])

 if (x < 0 or y < 0 or x > 9 or y > 9):

 return None

 return (x,y)

 # Gets top left of a grid position - returns as screen position

 def grid_pos_to_screen_pos (self, grid_pos):

 x = self.start_grid[0] + (grid_pos[0] * self.grid_size[0])

 y = self.start_grid[1] + (grid_pos[1] * self.grid_size[1])

 return (x,y)

This is handled using the start position of the grid, stored in grid_pos,

and the size of each grid square, stored in grid_size. The floor method

from the math module is used to round the values down to the nearest

whole number.

Chapter 10 Artificial Intelligence

284

The final class is the Ai class which is where the computer player is

implemented. This is the key part for this chapter, so it will be explained in

more detail. The code is shown in Listing 10-14.

Listing 10-14.  Ai class for Battleship game

import random

from grid import Grid

Provides Ai Player

class Ai:

 NA = 0

 MISS = 1

 HIT = 2

 def __init__ (self):

 # Create 2 dimension list with no shots fired

 # access using [x value][y value]

 # Pre-populate with NA

 �self.shots = [[Ai.NA for y in range(10)] for x in

range(10)]

 �# �Hit ship is the position of the first successful hit

on a ship

 self.hit_ship = None

 def fire_shot(self):

 # If not targeting hit ship

 if (self.hit_ship == None):

 return (self.get_random())

 else:

 # Have scored a hit - so find neighboring positions

 �# �copy hit_ship into separate values to make easier

to follow

Chapter 10 Artificial Intelligence

285

 hit_x = self.hit_ship[0]

 hit_y = self.hit_ship[1]

 # Try horizontal if not at edge

 if (hit_x < 9):

 for x in range (hit_x+1,10):

 if (self.shots[x][hit_y] == Ai.NA):

 return (x,hit_y)

 if (self.shots[x][hit_y] == Ai.MISS):

 break

 if (hit_x > 0):

 for x in range (hit_x-1,-1, -1):

 if (self.shots[x][hit_y] == Ai.NA):

 return (x,hit_y)

 if (self.shots[x][hit_y] == Ai.MISS):

 break

 if (hit_y < 9):

 for y in range (hit_y+1,10):

 if (self.shots[hit_x][y] == Ai.NA):

 return (hit_x,y)

 if (self.shots[hit_x][y] == Ai.MISS):

 break

 if (hit_y > 0):

 for y in range (hit_y-1,-1, -1):

 if (self.shots[hit_x][y] == Ai.NA):

 return (hit_x,y)

 if (self.shots[hit_x][y] == Ai.MISS):

 break

 �# �Catch all - shouldn't get this, but just in case

guess random

 return (self.get_random())

 def fire_result(self, grid_pos, result):

Chapter 10 Artificial Intelligence

286

 x_pos = grid_pos[0]

 y_pos = grid_pos[1]

 if (result == True):

 result_value = Ai.HIT

 if (self.hit_ship == None):

 self.hit_ship = grid_pos

 else:

 result_value = Ai.MISS

 self.shots[x_pos][y_pos] = result_value

 def get_random(self):

 # Copy only non-used positions into a temporary list

 non_shots = []

 for x_pos in range (0,10):

 for y_pos in range (0,10):

 if self.shots[x_pos][y_pos] == Ai.NA:

 non_shots.append((x_pos,y_pos))

 return random.choice(non_shots)

 # Let Ai know that the last shot sunk a ship

 # list_pos is provided, but not currently used

 def ship_sunk(self, grid_pos):

 # reset hit ship

 self.hit_ship = None

After the import and the class definition, there are three class variables

called NA, MISS, and HIT. These are used as constants and just make

the rest of the code easier to understand. Reading the code, it’s easier to

understand that Ai.MISS represents a miss than just using the number 1,

the same for NA (no shot fired at that position) and HIT.

After that, there is the usual constructor __init__ which has an entry

self.shots = [[Ai.NA for y in range(10)] for x in range(10)]

Chapter 10 Artificial Intelligence

287

This is a way of creating a 2D list and pre-populating it with Ai.NA. This

will end up with a list which looks like this:

[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]

This has an entry for every position in the grid which can be accessed

using self.shots[x-pos][y-pos]. If you look at the grid in the preceding

format, then the x and y axis are switched (y goes across and x goes down),

but that is only how it is represented in the print listing. The important

thing is how it is accessed using x, y positions.

The other variable created in the constructor is self.hit_ship. This

will keep track of the position of the last time a shot successfully hit a

target. It is reset to None when the ship is sunk.

When a shot is fired, there are multiple stages:

	 1.	 The fire_shot method is called which works out the

next “guess” for where to fire the shot. The Ai class

does not know if that shot is successful or not at this

stage.

	 2.	 battleship.py then calls the fire method from

the fleet class, which adds the appropriate hit or

miss Actor and returns a True or False to indicate

whether the shot hit a target or not.

Chapter 10 Artificial Intelligence

288

	 3.	 The fire_result method is called which allows the Ai

class to update the shots list to know whether the

shot resulted in a hit.

	 4.	 If the ship has been sunk, then the ship_sunk

method is called so that the Ai class knows that it

doesn’t need to keep targeting that ship.

The reason for needing to do this in multiple stages is because the Ai

cannot see where the ships of the enemy are located. As a result, it does not

know whether its shots were successful or not.

The first thing that the fire_shot does is to look to see if it knows the

location of a ship that is not yet sunk. It does that by looking at whether

self.hit_ship is set to None. If it does not know the location of an enemy

ship, then it takes a random guess using the get_random method which is

shown as follows:

 def get_random(self):

 # Copy only non-used positions into a temporary list

 non_shots = []

 for x_pos in range (0,10):

 for y_pos in range (0,10):

 if self.shots[x_pos][y_pos] == Ai.NA:

 non_shots.append((x_pos,y_pos))

 return random.choice(non_shots)

This uses the random.choice method to choose from available

positions. Before it can call that, it needs a list showing only the shots that

have not already been tried, which is what the rest of that code does. It

creates a non_shots list, and then using a nested for loop checks all the

grid locations and adds any grid positions to the non_shots list that have

not already been tried. The grid position is then returned to fire_shot

which in turn uses it that location as its return value.

Chapter 10 Artificial Intelligence

289

If there is already a ship that was hit recently, but which has not been

sunk, then there will be a position in self.hit_ship. In that case the code

tries four different directions until it finds a suitable grid position to try

next. A suitable position is any location that it has not been tried and is

adjacent to a successful shot. This can be seen in the following excerpt

from the code:

 if (hit_x < 9):

 for x in range (hit_x+1,10):

 if (self.shots[x][hit_y] == Ai.NA):

 return (x,hit_y)

 if (self.shots[x][hit_y] == Ai.MISS):

 break

If the x position of the hit_ship is less than 9 (not at the right-hand side

of the grid), then it will loop across all positions to the right. If it comes

across a position that has the value of NA, then that is a valid shot and so it

returns that position. If instead it comes across a MISS, then it knows that

the ship is not in that direction so it uses a break to exit from the for loop

which moves the code on to check the next direction.

The other if statements do the same thing but looking in the other

directions until a valid shot is found.

There is a final entry so that if none of the four directions apply, then

it returns a random guess instead. This should never be called, as until

the ship is sunk, there should always be a valid position to try. There are

differences of opinions on whether adding “just in case” code is a good

idea. My rationale is that if there is some situation I haven’t thought of or

perhaps a mistake in the code, then this will allow the game to continue

without giving the user an error. The counter argument is that this could

hide a problem with the code further up, where the game continues to run,

but not in the way it was intended.

Chapter 10 Artificial Intelligence

290

The fire_result method is called when the result of the shot is

known. It updates the grid location with whether the hit was successful or

not. It also updates the value of hit_ship if the shot was a hit and the value

of hit_ship is currently set to None. The last method is ship_sunk which

resets the value of hit_ship to None after the ship is successfully sunk.

This code implements the strategy quite well, but there are a couple of

things that could be improved. One is that the Ai always tries the positions

in the same order (horizontal and then vertical). If the player understands

this, then they could gain an advantage by always placing ships away

from the left and right edges and always vertically. This would only make

a small difference but could be fixed by using a random decision on

which direction to try first. It can also be tricked where there are two ships

touching, where it hits one ship first but then sinks the second ship. It will

not go back to finish off the first ship it hit. These do not stop the game

from working but would be a good challenge for the reader to create an

improved version.

As I warned in the beginning, graphical game programming uses lots of

code. To get this far has needed 300 lines of code, but that hasn’t included

the ability for the user to place their own ships or for the computer to

choose positions for its ships. This is something you may like to have a go

at implementing yourself, or you can look in the folder battleship2 in the

source code where I have created another version which implements that

feature as well as some other improvements.

Chapter 10 Artificial Intelligence

291

A screenshot of the final game is shown in Figure 10-3.

�Summary
This chapter has looked at ways that computers can be made to behave like

a human player. In both the examples listed, the artificial intelligence has

been created to mimic the same process that a human would go through

when playing that game.

When designing some computer programs, you may be looking to

make the computer as “clever” as possible. The problem the computer

being too intelligent is that the computer can analyze the possible

outcomes can making it too difficult to beat. When creating computer

Figure 10-3.  Complete Battleship game

Chapter 10 Artificial Intelligence

292

games, it’s important to think about the level of difficulty to make it

challenging, but not too difficult.

There is scope to improve these games by creating different difficulty

levels or by making the game appear more human-like. You may like to have

a go at tweaking the AI or thinking of how you could add AI to other games.

Chapter 10 Artificial Intelligence

293© Stewart Watkiss 2020
S. Watkiss, Beginning Game Programming with Pygame Zero,
https://doi.org/10.1007/978-1-4842-5650-3_11

CHAPTER 11

Improvements
and Debugging
This final chapter will look at a few additional techniques for making

improvements to your code. It will also provide some help with debugging

when things go wrong. The final game will be a 2D top-down space shooter

game. This should help give you the confidence to create your own games

using the knowledge acquired from this book.

�Additional Techniques
Throughout this book, there have been several different techniques

introduced for creating games. Some of these are then widely used across

multiple games, whereas others may only benefit a certain type of game.

There are plenty of other things that can improve gameplay, make the

game appear more professional, or save you time. I have added a few more

here which can help improve the number of programming techniques you

can use.

294

�More About Pygame Zero
The official documentation for Pygame Zero is available online at

https://pygame-zero.readthedocs.io/en/stable/. The documentation

is very useful when first learning Pygame Zero, but it is limited in what it

provides.

There are some features that are not included in the official

documentation. One example of this is the TITLE variable. This is like the

WIDTH and HEIGHT variables which have been used to change the size of

the window, but in this case, the TITLE replaces the title on the title bar of

the game window. There is also an ICON option that can be used to add a

thumbnail icon to the application on the task bar. Listing 11-1 shows both

these in action on an example program.

Listing 11-1.  Program with TITLE and ICON options

WIDTH = 400

HEIGHT = 200

TITLE = "My Game Title"

ICON = "spacecrafticon.png"

The file referred to in the ICON needs to be in the directory that the

application is running in. This is normally the same directory as the

executable file, but in the case of Mu, you may need to copy it to the mu_

code directory. Ideally the icon should be a PNG file of 32 x 32 pixels in

dimension.

Figure 11-1 shows the program running on a Raspberry Pi. The game

on the left does not include the TITLE or ICON entries so has the default

“Pygame Zero Game” and default icon. The one on the right is titled “My

Game Title” and includes a spacecraft icon.

Chapter 11 Improvements and Debugging

https://pygame-zero.readthedocs.io/en/stable/

295

If these are undocumented, then how do you find out about them? I think

it’s worth considering that Pygame Zero is still in an early stage and is being

developed over time. It’s possible that these features may have been added to

the documentation by the time you read this. It may also be the case that there

are more new features that have not yet made it into the documentation.

One way to find out about these features is to look at programs created

by other people. That way, you can see what others have discovered.

Another place is to look at the source code for Pygame Zero. The source

code is on GitHub at https://github.com/lordmauve/pgzero. The

source code is quite advanced code so it can be difficult to read for less

experienced programmers. It can sometimes be useful when looking for

something specific.

�More About Pygame
In addition to Pygame Zero, you can make calls to methods in the

parent library Pygame. This has already been used in the tank game in

Chapter 7. An example is pygame.draw.polygon which made use of the

Pygame libraries directly.

You can find more about Pygame at the official documentation at

www.pygame.org/docs/.

Figure 11-1.  Running programs with and without the TITLE and
ICON entries

Chapter 11 Improvements and Debugging

https://github.com/lordmauve/pgzero
http://www.pygame.org/docs/

296

�Adding Fonts
In the previous games, the text shown on the screen has been using the

default font. You can make use of other fonts by creating a fonts directory

within your game directory and copying the fonts there. You can either

copy existing fonts into that folder or add custom fonts without installing

them on the system. On Linux (including the Raspberry Pi), you can

normally use the system fonts by copying them from /usr/share/fonts/

truetype. Alternatively, you can find many free fonts by searching on the

Internet. Other systems, such as Windows, are likely to have copyright

restrictions on many of the fonts. You should avoid any non-free fonts if

you intend to share your games with others. You may also need to include

the copyright information from the font when you distribute your game.

There is an anomaly with how fonts are installed, in that for Pygame

Zero, the filename for the font must be all in lowercase. The font file must

also be a True Type font ending with a .ttf extension. You will need to

rename the font file when copying it into the fonts directory to remove any

uppercase letters.

Once the file is in the font directory, you can use it by using the

filename (without the .ttf extension). This is shown in the following code:

screen.draw.text("This is using the Deja Vu Sans Font",

fontname="dejavusans", fontsize=40, topleft=(30,30),

color=(255,255,255))

This uses the Deja Vu font which is available as standard on the Raspberry

Pi or can be downloaded free from https://dejavu-fonts.github.io/.

�Scrolling Screen
Several games can make use of a scrolling background. This is often used

where a player stays stationary on the screen (or moves within the confines

of the screen), but the background moves to make it appear that the player

Chapter 11 Improvements and Debugging

https://dejavu-fonts.github.io/

297

is moving. This can be scrolling from side to side (often used in platform

games where a player walks from left to right) or from top to bottom (used

to show that a vehicle such as a plane is moving toward the top of the

screen).

Depending upon the game, you may have a single background image

which is repeated, or you may have multiple images which are designed to

scroll from one to another. Typically, these images are the same size of the

screen, but that’s not necessary.

One way of creating this effect is to use screen.blit which has already

been used for the background images in most of the games in this book.

This is used to show an image on the screen. Using an offset in the image

position will show the part of the image that overlaps with the screen. The

diagram in Figure 11-2 shows how positioning two identical images with

different offsets results in what appears to be a continuous image.

Figure 11-2.  Creating a scrolling screen

The code in Listing 11-2 shows how this can be implemented. It uses a

scroll_position which is the x position of the first image and the second

image follows directly afterward, starting just off-screen. The scroll_speed

can be adjusted to make the scroll go faster or slower as appropriate.

Chapter 11 Improvements and Debugging

298

Listing 11-2.  Creating a scrolling background

scroll_speed = 2

scroll_position = 0

def draw ():

 screen.blit("background_scroll", (scroll_position,0))

 screen.blit("background_scroll", (scroll_position+800,0))

def update():

 global scroll_position

 scroll_position -= scroll_speed

 if (scroll_position <= -800):

 scroll_position = 0

�Reading from a CSV config file
Reading and writing to a file was covered in Chapter 4 when saving the

high score for a game. In that case it was just a single entry. When there is

more information stored, then the data needs to be stored in a way that the

information can be easily retrieved.

There are many different file formats that can be used, each of which

has its pros and cons. A simple format is to store the information as

comma-separated values, known as a CSV file. In this format each line of

the file holds multiple values which are separated by a comma, such as in

the following line:

String value,1,2,3.1

In this example there is a string, followed by two integer numbers and

one floating-point number. An important thing to note is that the numbers

are stored as strings, so you cannot manipulate the values until they have

been converted to numbers.

Chapter 11 Improvements and Debugging

299

The first step is to split the file into separate components. As these are

separated using a comma, you can use the string.split method which

divides a string based on a character. In this case it would split the line

based on the positions of the commas. What if there is a comma within the

string? If there is a comma within the string, then the CSV format places

quotes around the string to indicate that the comma within the quotes

should not be split. In the following entry, the values are the same, but this

time there is a comma in the string.

"String, value",1,2,3.1

It is now no longer possible to use the split method as that will ignore

the quotes and result in the string being split into two values.

The solution is to use a module that knows how to handle a CSV file.

Python includes the csv module which can do that. To demonstrate this,

we need a CSV file. The file in Listing 11-3 is a simplified version of the

enemies file that will be used in the space shooter game.

Listing 11-3.  Sample CSV file for reading demo

0.3,asteroid,asteroid_sml,200,0,4

0.9,asteroid,asteroid_sml,100,0,4

0.9,asteroid,asteroid_med,400,0,3

1.2,asteroid,asteroid_sml,750,0,4

This is used to create asteroids that need to be dodged or destroyed.

The first field is when the asteroid appears on the screen (in seconds), a

keyword “asteroid” to indicate it is an asteroid, an image filename, the x

and y coordinates, and finally the velocity of the asteroid (in pixels per time

interval).

The file is saved as csvdemo.csv. The extension indicates it’s a CSV file,

but it can have a different extension. In the game it will be named enemies.

dat to indicate it’s a form of data file. The extension doesn’t make any

difference to how the file is handled in the program, but if you name the

Chapter 11 Improvements and Debugging

300

file .csv, then it may be possible to open the file in a spreadsheet or similar

application. This is something you probably don’t want the players to be

able to do.

The file has been created in a text editor. It is not possible to use Mu

to edit the file as it only allows you to edit Python files, but there is a text

editor app on the Raspberry Pi and Linux distributions, or using other

operating systems the editor may be known as Notepad or TextEdit.

The source code for reading the file is shown in Listing 11-4.

Listing 11-4.  Code to read in a CSV configuration file

import csv

import sys

configfile = "csvdemo.csv"

try:

 with open(configfile, 'r') as file:

 csv_reader = csv.reader(file)

 for enemy_details in csv_reader:

 start_time = float(enemy_details[0])

 # value 1 is type

 image = enemy_details[2]

 start_pos = (int(enemy_details[3]),

 int(enemy_details[4]))

 velocity = float(enemy_details[5])

 �print ("Start time {}, Image {}, Start Pos {},

Velocity {}".format(start_time, image, start_pos,

velocity))

except IOError:

 print ("Error reading configuration file "+configfile)

 # Just end as cannot play without config file

 sys.exit()

Chapter 11 Improvements and Debugging

301

except:

 print ("Corrupt configuration file "+configfile)

 sys.exit()

This is a standard Python 3 executable rather than being a Pygame

Zero file. To run the code in Mu, you will need to change the mode.

The code uses the with keyword before the file open command but is

otherwise similar to the way that files were read before. When using the

with keyword, there is no need to explicitly close the file. This can be

useful in the event of a problem reading the file as closing it is handled

automatically.

The entire operation is enclosed in a try except clause which will try

and catch any errors. In this case there is nothing that can be done in the

event of an error as the program cannot do anything without the data from

the file. If the error is due to an IOError reading the file, then it gives a

different error message than if the file is corrupt.

The CSV file is handled using the csv.reader which parses the file

and places into a csv_reader which stores the data as a 2D list. Where

numerical values are required, these are converted using int or float as

appropriate. These will trigger an exception if the data is not in the correct

format, so they are also included in the try clause.

�Joysticks and Gamepads
The games so far have been designed to be played with the mouse

or keyboard. The next step would be to add support for joysticks or

gamepads. Unfortunately, Pygame Zero does not yet support gamepads,

although it is listed on the roadmap as a potential future feature. Until

that is added, it is possible to use a gamepad to emulate key presses using

QJoyPad. This can be downloaded from http://qjoypad.sourceforge.

net/. The gamepad would need to be configured on each computer it is

used.

Chapter 11 Improvements and Debugging

http://qjoypad.sourceforge.net/
http://qjoypad.sourceforge.net/

302

For a more authentic arcade gaming experience, the Picade or Picade

console can provide a joystick that can act as though it is a keyboard.

�Creating Arcade Games for Picade
If you want to get the full arcade game experience for your games, then the

Picade is a compact arcade machine based around the Raspberry Pi. It is

available as a console which needs to be connected to a TV or monitor or

as a complete arcade cabinet with built-in screen.

A photo of the Picade arcade cabinet is shown in Figure 11-3.

The Picade uses a HAT which is mounted on the Raspberry Pi.

The HAT is then connected to a joystick and arcade buttons (switches)

mounted on the top and side of the cabinet. The HAT translates the button

presses into signals sent to the Raspberry Pi as though they were from a

keyboard. You can also get the HAT separately and use that to create your

own cabinet. An alternative is to use a different board that can emulate key

presses such as a Makey Makey or Arduino.

Figure 11-3.  Pimoroni Picade running the space shooter game

Chapter 11 Improvements and Debugging

303

The image in Figure 11-4 shows the keys associated with the joystick

and each of the buttons on the Picade.

Most of the games designed for a keyboard use the direction keys,

which are mapped to the joystick on the Picade. The buttons are a bit

more obscure, so to make the game playable on a standard keyboard and

a Picade, then it can be useful to allow two different keys to be pressed to

provide compatibility for both Picade and normal keyboard.

This is achieved using a boolean “or” in the check for the key press.

The following code is taken from the tank game in Chapter 7, which allows

either the keyboard space key or the Picade bottom yellow button (Left

Shift) to be used to fire a shell.

if (keyboard.space or keyboard.lshift):

 game_state = 'start'

Figure 11-4.  Pimoroni Picade button layout to key presses

Chapter 11 Improvements and Debugging

304

You may also want to consider making the key codes to be configurable

through a config file.

Another thing to be aware of is that the Picade has a tradition 4:3

screen size, and while it can play games designed for a different screen

size, the resolutions 800 x 600 and 1024 x 768 are a good choice.

Games designed for the Picade can be run on any Raspberry Pi using

the keyboard instead of the joystick and buttons. The Picade usually runs

RetroPie which is discussed next.

�RetroPie
RetroPie provides a way of playing retro computer games on a Raspberry

Pi. This can be a Picade or a regular Raspberry Pi. RetroPie is usually used

for playing old computer games through emulators. It does not normally

include any games by default due to potential copyright issues with

commercial games.

As well as running emulator games, RetroPie can also run games

created in Pygame or Pygame Zero. Adding support for your games to

work in RetroPie could make it available to a wider audience. RetroPie

can be downloaded and installed following the instructions at https://

retropie.org.uk/.

RetroPie does not include Pygame Zero by default, but Pygame Zero

can be installed using

sudo apt install python3-pgzero

You can add a new menu to install your own games. To add a new

menu to the system, add the coding in Listing 11-5 to the file /etc/

emulationstation/es_systems.cfg before the </systemList> entry.

Chapter 11 Improvements and Debugging

https://retropie.org.uk/
https://retropie.org.uk/

305

Listing 11-5.  Define new menu for RetroPie

 <system>

 <name>pgzero</name>

 <fullname>Pygame Zero</fullname>

 <path>/home/pi/RetroPie/roms/pgzero</path>

 <extension>.sh</extension>

 <command>%ROM%</command>

 <theme>pgzero</theme>

 </system>

There also needs to be an entry in the appropriate themes folder. There

is a file included in the source code. This can be extracted by following

these instructions:

cd ~

tar -xvzf pgzero-retro-theme.tgz

cd /etc/emulationstation/themes/carbon

sudo cp -r ~/retropietheme/* .

When installed, there will be a menu for Pygame Zero.

To install a game on RetroPie, create a folder in the roms directory

which is usually ~/RetroPie/roms. In my case I created one called pgzero.

In that directory, create a simple shell script to launch the program. The

script file is shown in Listing 11-6.

Listing 11-6.  Script file for launching the compass game ~/

RetroPie/roms/pgzero/CompassGame.py

cd ~/compassgame

pgzrun compassgame.py

The script file also needs executable permission, which can be done using

chmod +x ~/RetroPie/roms/pgzero/CompassGame.py

Chapter 11 Improvements and Debugging

306

The game can now be selected from the main menu. A screenshot of

the menu is shown in Figure 11-5.

�Debugging
When things go wrong in a program, it is known as a bug. Early bugs could

include mechanical problems which included a dead moth that prevented

a relay from closing. Nowadays, it usually refers to errors in computer

code. This can be anything that negatively affects the way that the program

runs compared to the way it is expected to behave. This can range from the

program not running at all to a minor error where an actor may need to

move two extra pixels before it’s detected. It could also be a performance

issue where a program runs slower than it should.

Figure 11-5.  Pygame Zero menu on RetroPie

Chapter 11 Improvements and Debugging

307

The details of how to test and debug programs could easily fill an entire

book. This book will look at a few techniques relating to debugging and

performance.

�Error Messages
The first thing to check is to see if there are any error messages. In Mu

these are normally displayed in a panel at the bottom of the screen. They

will however be lost when you click stop. An alternative is to try running

the program from the command line and see if you get an error message.

Sometimes the message given will be obvious and help you find the

problem straight away. With some error messages, you may need to do

some investigation. For example, a typical error message may include

KeyError: "No image found like 'batleship'. Are you sure the

image exists?"

The first thing to check is that the name matches an expected file. In

this case there is a typo with the word battleship spelt incorrectly.

If the name was correct, then you should check to see if the file is in the

correct directory. In the case of an image, it should be in the images/ sub-

directory. Also be aware that in some cases files are referred to from other

places, which would be relative to the location of the program file, or in

some cases in the directory, the program appears to run from (such as the

~/mu_code directory).

Other errors may refer to syntax errors in your code. They will often give

you the line number, but beware that the error may be earlier in the code

than it says. For example, this is part of an invalid syntax error message:

 File "battleship.py", line 19

 grid_img_2 = Actor ("grid", topleft=(500,150))

 ^

SyntaxError: invalid syntax

Chapter 11 Improvements and Debugging

308

The error appears to indicate that the problem is on line 19. However,

looking at the code at lines 18 and 19 shows that the error is actually on

line 18.

18. grid_img_1 = Actor ("grid", topleft=(50,150)

19. grid_img_2 = Actor ("grid", topleft=(500,150))

In this case there is a missing closing bracket on line 18. As a result of

the missing bracket, the interpreter thinks that line 19 is a continuation

of line 18 and that line 19 has the error. This is a common occurrence, so

always make an effort to check to look for an error in the line prior to the

one with the error.

Also don’t forget to make sure that Mu is in Pygame Zero mode. If you

get an error which says “NameError: name ‘Actor’ is not defined”, then it

maybe because you are trying to run in Python 3 mode instead.

�Check for Variable Names
Another common problem is to mistype a variable name. If you try and

store something into a different variable, then Python will just create that

as a new variable. As a result, code that refers to the correct variable will

not see the updates. Remember that variable names are case sensitive, so

using the wrong case has the same effect.

You should also check that the variable is accessible in the current

scope. If you try and update a variable that’s not included in the globals,

then it will create a local variable and not update the global variable.

�Print Statements
A useful tool when trying to understand a program’s behavior is the use of

print commands. These can be used to display a message to the console

while the program is running in the graphical display.

Chapter 11 Improvements and Debugging

309

By adding a number of print commands, you can follow the status of

the variables as the game progresses and see what happens.

�IDE Debugging Tools
The Mu editor does include some basic debugging tools which can be an

improvement on adding print statements. There is a debug mode within

Mu (next to the play button). You can set breakpoints within the code by

clicking the line number. The breakpoints are indicated by a red circle.

From the menu, you can run to the breakpoints, or step over and some of

the variables are shown in a new pane on the right-hand side.

As your programming progresses, you may want to look at a

professional IDE (integrated development environment). Unfortunately,

the setup for most IDEs with Pygame Zero is difficult, so you may want to

stick with Mu for now, but it is something you may want to look at in the

future.

�Rubber Duck Debugging
Sometimes the program doesn’t behave in the way you expect it to, and

you can’t see why. If this is the case, then it’s useful to walk through how

the program is supposed to work. A good way to do this is to talk out loud

describing the way that it should work while stepping through the code.

This can be done to an inanimate object such as a rubber duck. The idea

is that while talking through the way that the code works, you may realize

why it is not working as expected. It is surprising how effective this is. My

favorite debug duck is shown in Figure 11-6, but you don’t need to use a

duck; any other object works just as well.

Chapter 11 Improvements and Debugging

310

�Performance
One of the things about Python is that it is an interpreted language.

This means that the text-based code you write is converted to code that

the computer understands at runtime. This compares with compiled

languages where this is done before the program is run. Generally

interpreted languages are slower than if the program is compiled first

which may contribute to performance issues.

The games that have been created so far in this book are quite short

and so shouldn’t result in performance issues, but as you increase the

number of actors and resources being used, you may find the code starts to

run slow.

Some of the code in this book has already made allowances for

running at different speeds by checking the time since the update

function last ran, but that may not be enough to stop the game from being

unresponsive.

When writing code, the priority is normally about making the code as

simple as possible and so it is easy to understand how it works. That helps

limit the number of bugs and make it easier to maintain, but it may not

result in the most efficient code.

Figure 11-6.  Pycon UK debug duck

Chapter 11 Improvements and Debugging

311

There are steps that can be done to improve performance of a program.

The first thing is to identify where the performance issues may be. Without

understanding where the issue is, then resources may be wasted on

optimizing code that is rarely used or where the computer is idle and will

not notice the performance improvement. Normally you will need to look

within loops that are called regularly during the running of the program.

The next thing is to make sure that you have some way of testing to see

if your changes improve the performance. Sometimes changes made may

sound like they will improve performance, but actually make it slower.

Here are a few suggestions on ways which may improve performance:

•	 If an existing Python library already exists, then use that

(it’s likely already been optimized).

•	 Check for loops that are consuming lots of resources.

•	 Avoid global variables.

•	 When in a function return once you are complete

rather than continuing through code that is not

necessary.

•	 Use code patterns (find code that others have created

that has already considered performance).

•	 Redesign the algorithm.

These are just a few suggestions which may or may not improve

performance. The last tip is vague and really depends upon what code

you are creating. If you are doing something that others may have already

done, such as sorting information, then look at what code others have

created. It may be that some algorithms work better with a small amount of

data rather than with a lot of data.

Chapter 11 Improvements and Debugging

312

�Space Shooter Game
The final game in this book is a space shooter top-down game. In this a

spacecraft flies around shooting at obstacles that block its path. The game takes

in a lot of the techniques that have been discussed throughout the book. It is

designed for the Picade but can work equally well using keyboard controls. To

fit in with the theme of an arcade machine, the game has an intentional retro

feel including bitmap images, block font for the score, and tinny sound effects.

The design for the game simulates an asteroid field that the spacecraft

must navigate around or blast its way through. The asteroids are referred

to as enemies as a possible future addition would be to also include enemy

spaceships which fly across the screen.

A screenshot of the game is shown in Figure 11-7.

Figure 11-7.  Space shooter game

Chapter 11 Improvements and Debugging

313

The source code is split across multiple files for the different classes.

The spaceship is defined as a subclass of the Actor class. This is shown in

Listing 11-7.

Listing 11-7.  Spaceship class in file spaceship.py

from pgzero.actor import Actor

class SpaceShip(Actor):

 def set_speed (self, movement_speed):

 self.movement_speed = movement_speed

 def move (self, direction):

 if (direction == "up"):

 self.y -= self.movement_speed

 elif (direction == "down"):

 self.y += self.movement_speed

 elif (direction == "left"):

 self.x -= self.movement_speed

 elif (direction == "right"):

 self.x += self.movement_speed

 # Make sure that the ship remains on the screen

 if self.x < 20:

 self.x = 20

 if self.x > 780:

 self.x = 780

 if self.y < 20:

 self.y = 20

 if self.y > 580:

 self.y = 580

This is essentially an object-oriented version of the code for the

character in the compass game. This is simpler than the compass game

Chapter 11 Improvements and Debugging

314

as the image doesn’t change when the spacecraft moves. A possible

improvement would be to add different images if you wanted the ship to

look like it was banking over when moving to the side or for the flame to

get bigger when it’s accelerating forward.

The next file is the Asteroid class. This is a child of the Actor class

handling the drawing of asteroids on the screen. This is shown in Listing 11-8.

Listing 11-8.  Asteroid class in file asteroid.py

from pgzero.actor import Actor

import time

from constants import *

class Asteroid(Actor):

 �def __init__ (self, screen_size, start_time, image, start_

pos, velocity):

 Actor.__init__(self, image, (start_pos))

 self.screen_size = screen_size

 self.start_pos = start_pos

 self.start_time = start_time

 self.velocity = velocity

 self.status = STATUS_WAITING

 def update(self, level_time, time_interval):

 if self.status == STATUS_WAITING:

 # Check if time reached

 if (time.time() > level_time + self.start_time):

 # Reset to start position

 self.x = self.start_pos[0]

 self.y = self.start_pos[1]

 self.status = STATUS_VISIBLE

Chapter 11 Improvements and Debugging

315

 elif self.status == STATUS_VISIBLE:

 self.y+=self.velocity * 60 * time_interval

 def reset(self):

 self.status = STATUS_WAITING

 def draw(self):

 if self.status == STATUS_VISIBLE:

 Actor.draw(self)

 def hit(self):

 self.status = STATUS_DESTROYED

This class extends the Actor class by adding a few variables and

methods. The start_time is the time that the asteroid appears on

the screen relative to the start of each level. The asteroids can have

different images depending upon the size of the asteroid. The start_pos

determines where the asteroid starts on the screen, and then the velocity is

the speed that the asteroid moves toward the bottom of the screen, which

is a measure of the number of pixels that the asteroid moves.

The update method handles when the asteroid becomes visible and

moves the asteroid relative to its velocity. The reset method hides the

asteroid. The hit method updates the status showing whether the asteroid

has been destroyed. The draw method tests to see if the asteroid should be

visible and if so then calls the parent draw method to show it on the screen.

There are several constants required which are stored in the constants.

py file. This is so that they can be made available across multiple files and

classes. This is shown in Listing 11-9.

Listing 11-9.  Shared constants in file constants.py

Status for each of the enemies

STATUS_WAITING = 0

STATUS_VISIBLE = 1

Chapter 11 Improvements and Debugging

316

STATUS_DESTROYED = 2

STATUS_OFFSCREEN = 3

Delay in seconds for messages on screen

DELAY_TIME = 2

This could be used similar to a system configuration file, but care

needs to be taken when editing the file as it’s a Python file and any errors

could stop the program from running with an obscure error message.

The Asteroid class defines a single asteroid. The Enemies class

provides a collection of Asteroids so that multiple instances can be

handled at the same time. This is shown in Listing 11-10.

Listing 11-10.  Enemies class in file enemies.py

import sys

import time

import csv

from constants import *

from pgzero.actor import Actor

from asteroid import Asteroid

Enemies is anything that needs to be destroyed

Could be an asteroid or an enemy fighter etc.

class Enemies:

 def __init__(self, screen_size, configfile):

 self.screen_size = screen_size

 self.asteroids = []

 # Time that this level started

 self.level_time = time.time()

 self.level_end = None

 # Load the config file

Chapter 11 Improvements and Debugging

317

 try:

 with open(configfile, 'r') as file:

 csv_reader = csv.reader(file)

 for enemy_details in csv_reader:

 if enemy_details[1] == "end":

 self.level_end = float(enemy_details[0])

 elif enemy_details[1] == "asteroid":

 start_time = float(enemy_details[0])

 # value 1 is type

 image = enemy_details[2]

 start_pos = (int(enemy_details[3]),

 int(enemy_details[4]))

 velocity = float(enemy_details[5])

 �self.asteroids.append(Asteroid(start_

time, image, start_pos, velocity))

 except IOError:

 print ("Error reading configuration file "+configfile)

 # Just end as cannot play without config file

 sys.exit()

 except:

 print ("Corrupt configuration file "+configfile)

 sys.exit()

 # Next level reset time

 def next_level (self):

 self.level_time = time.time()

 for this_asteroid in self.asteroids:

 this_asteroid.reset()

 def reset (self):

 self.level_time = time.time()

 for this_asteroid in self.asteroids:

Chapter 11 Improvements and Debugging

318

 this_asteroid.reset()

 # Updates positions of all enemies

 def update(self, time_interval):

 # Check for level end reached

 if (self.level_end != None and

 time.time() > self.level_time + self.level_end):

 self.next_level()

 for this_asteroid in self.asteroids:

 this_asteroid.update(self.level_time, time_interval)

 # Draws all active enemies on the screen

 def draw(self, screen):

 for this_asteroid in self.asteroids:

 this_asteroid.draw()

 # Check if a shot hits something - return True if hit

 # otherwise return False

 def check_shot(self, shot):

 # check for any visible objects colliding with shot

 for this_asteroid in self.asteroids:

 # skip any that are not visible

 if this_asteroid.status != STATUS_VISIBLE:

 continue

 if (this_asteroid.colliderect(shot)):

 this_asteroid.hit()

 return True

 return False

 # Check if crashed - return True if crashed

 # otherwise return False

 def check_crash(self, spacecraft, collide_points=None):

 for this_asteroid in self.asteroids:

Chapter 11 Improvements and Debugging

319

 # skip any that are not visible

 if this_asteroid.status != STATUS_VISIBLE:

 continue

 # Crude detection based on rectangles

 if (this_asteroid.colliderect(spacecraft)):

 # More accurate detection, but more time consuming

 # (optional if collide_points default to None)

 if (collide_points == None):

 this_asteroid.status = STATUS_DESTROYED

 return True

 for this_point in collide_points:

 if this_asteroid.collidepoint(

 spacecraft.x+this_point[0],

 spacecraft.y+this_point[1]):

 this_asteroid.status = STATUS_DESTROYED

 return True

 return False

The class has been named and written so that it can be extended to

other enemies, not just asteroids. Much of the __init__ method is devoted

to reading the configuration file. The configuration file uses comma-

separated variations that define when each enemy appears, where they

appear, and the speed at which they travel. This is the same as the previous

code in Listing 11-4 but adds an extra option “end” to signify when the end

of the level is reached and instead of printing to the screen a new instance

of the Asteroid object is created. This is stored in the asteroids list.

Other methods handle changing a level including resetting all the

enemies. The update method checks for the end of level time reached,

but otherwise just calls the update for each of the asteroids. The draw

method cycles through the draw of any asteroids that have been created.

The check_shot and check_crash methods check to see if any shots or

the spacecraft has hit an asteroid. If either of these has occurred, then the

Chapter 11 Improvements and Debugging

320

asteroid is set to destroyed. The check_crash method uses a new technique

to detect a collision. Previously the collision has used colliderect which

uses a rectangle that encompasses the entire spacecraft. The problem with

this is that due to the large area at the top of the image which is not part of

the ship, the collision occurs too soon. This can be seen in Figure 11-8

where there is still a significant gap between the spacecraft and the

asteroid, but their rectangles overlap.

Figure 11-8.  Problem with colliderect on irregular shapes

To overcome this problem, a list of points is used which is based on the

extremities of the spacecraft.

The Player class is used for variables relating to the player. The code is

included in Listing 11-11.

Listing 11-11.  Player class in file player.py

class Player:

 def __init__ (self):

 self.lives = 3

 self.score = 0

 def reset (self):

 self.lives = 3

 self.score = 0

Chapter 11 Improvements and Debugging

321

As you can see, this is a very simple class with only a few lines of code.

It is used to store the number of lives that a player has remaining and to

track the score. This is to avoid having global variables which are difficult

to manage. Instead there is a single instance of the player class which can

be used to hold the number of lives and the score.

The Shot class is a child of the Actor class used to track the shot. This is

shown in Listing 11-12.

Listing 11-12.  Player class in file player.py

from pgzero.actor import Actor

class Shot(Actor):

 def update(self, time_interval):

 self.y-=3 * 60 * time_interval

The shot is basically an actor with the image of the shot fired. Most of

the functionality needed for the shot is provided from the parent class, but

an update method is provided to move the position of the Actor on each

refresh.

The rest of the code is in the spaceshooter.py file which is shown in

Listing 11-13.

Listing 11-13.  Space shooter main program file spaceshooter.py

import time

from constants import *

from spaceship import SpaceShip

from player import Player

from shot import Shot

from enemies import Enemies

WIDTH=800

HEIGHT=600

Chapter 11 Improvements and Debugging

322

TITLE="Space shooter game"

ICON="spacecrafticon.png"

scroll_speed = 2

player = Player()

spacecraft = SpaceShip("spacecraft", (400,480))

spacecraft.set_speed(4)

enemies = Enemies((WIDTH,HEIGHT), "enemies.dat")

List to track shots

shots = []

shot last fired timestamp - to ensure don't fire too many shots

shot_last_fired = 0

time in seconds

time_between_shots = 0.5

scroll_position = 0

spacecraft hit points

positions relative to spacecraft center which classes as a collide

spacecraft_hit_pos = [

 �(0,-40), (10,-30), (-10,-30), (13,-15), (-13,-15), (25,-3),

(-25,-3),

 (46,12), (-46,12), (25,24), (-25,24), (10,27), (-10,27), (0,27)]

Status

"start" = Press fire to start

"game" = Game in progress

"gameover" = Game Over

status = "start"

value for waiting when asking for option

wait_timer = 0

Chapter 11 Improvements and Debugging

323

def draw ():

 # Scrolling background

 screen.blit("background", (0,scroll_position-600))

 screen.blit("background", (0,scroll_position))

 enemies.draw(screen)

 spacecraft.draw()

 # Shots

 for this_shot in shots:

 this_shot.draw()

 �screen.draw.text("Score: {}".format(player.score),

fontname="computerspeak", fontsize=40, topleft=(30,30),

color=(255,255,255))

 �screen.draw.text("Lives: {}".format(player.lives),

fontname="computerspeak", fontsize=40, topright=(770,30),

color=(255,255,255))

 if status == "start" or status == "start-wait":

 �screen.draw.text("Press fire to start game",

fontname="computerspeak", fontsize=40,

center=(400,300), color=(255,255,255))

 elif status == "gameover" or status == "gameover-wait":

 �screen.draw.text("Game Over", fontname="computerspeak",

fontsize=40, center=(400,200), color=(255,255,255))

def update(time_interval):

 global status, scroll_position, shot_last_fired, wait_timer

 �# Allow Escape to quit straight out of the game regardless

of state of the game

 if keyboard.escape:

 sys.exit()

 # Wait on fire key press to start game

Chapter 11 Improvements and Debugging

324

 if status == "start":

 # start timer

 wait_timer = time.time() + DELAY_TIME

 status = "start-wait"

 if status == "start-wait":

 if (time.time() < wait_timer):

 return

 if keyboard.space or keyboard.lshift:

 player.reset()

 enemies.reset()

 status = "game"

 elif status == "gameover":

 # start timer

 wait_timer = time.time() + DELAY_TIME

 status = "gameover-wait"

 elif status == "gameover-wait":

 if (time.time() < wait_timer):

 return

 if keyboard.space or keyboard.lshift:

 status = "start"

 elif status == "game":

 # Scroll screen

 scroll_position += scroll_speed

 if (scroll_position >= 600):

 scroll_position = 0

 # Update existing shots

 for this_shot in shots:

 # Update position of shot

 this_shot.update(time_interval)

 if this_shot.y <= 0:

 shots.remove(this_shot)

Chapter 11 Improvements and Debugging

325

 # Check if hit asteroid or enemy

 elif enemies.check_shot(this_shot):

 player.score += 10

 �# �remove shot (otherwise it continues to hit

others)

 shots.remove(this_shot)

 sounds.asteroid_explode.play()

 if enemies.check_crash(spacecraft, spacecraft_hit_pos):

 player.lives -= 1

 if player.lives < 1:

 status = "gameover"

 return

 else:

 sounds.space_crash.play()

 # Update enemies after checking for a shot hit

 enemies.update(time_interval)

 # Handle keyboard

 if keyboard.up:

 spacecraft.move("up")

 if keyboard.down:

 spacecraft.move("down")

 if keyboard.left:

 spacecraft.move("left")

 if keyboard.right:

 spacecraft.move("right")

 if keyboard.space or keyboard.lshift:

 # check if time since last shot reached

 �if (time.time() > shot_last_fired + time_between_shots):

 # rest time last fired

 shot_last_fired = time.time()

Chapter 11 Improvements and Debugging

326

 �shots.append(Shot("shot",(spacecraft.x,spacecra

ft.y-25)))

 # Play sound of gun firing

 sounds.space_gun.play()

Much of this code should be familiar as it uses similar techniques to

those used in other games or in the listings earlier in this chapter.

The main class instances are the player, the spacecraft, and the

enemies. There is also a list for tracking the shots that are fired. The list

spacecraft_hit_pos is used for the collidepoint positions of the spacecraft.

The draw function includes the background scrolling code from

Listing 11-2. It then calls each of the draw methods from the enemies

and spacecraft objects. It also displays text as required, which uses the

Computer Speak font. Details of the font are available from https://

fontstruct.com/fontstructions/show/1436469 and license details

included in the fonts directory.

The update function handles the state of the game, calling the various

update methods and updates the position of the background scroll images.

It updates the shots and removes any shots that have gone off the top

of the screen. It also checks to see if the spacecraft has crashed and update

the lives or change the state to game over. The rest of the code handles key

presses and movement of the craft and creates a new instance of the Shot

class when the fire button is pressed.

The spaceshooter.py file also adds the sound effects through three files

located in the sounds directory: asteroid_explode.wav, space_crash.wav,

and space_gun.wav. These sound files are based on files under a Creative

Commons license which are from the freesound library. I have edited

the sounds using Audacity to change the pitch and filter out a limited

frequency range. Details of the source are included in the license.txt file.

There is another file need to determine when the asteroids should

appear. This is a file called enemies.dat. Unfortunately, Mu can only be

used to edit files ending with .py so another text editor should be used to

Chapter 11 Improvements and Debugging

https://fontstruct.com/fontstructions/show/1436469
https://fontstruct.com/fontstructions/show/1436469

327

edit the file. This is a configuration file which determines when each of the

asteroids will appear. The configuration file is shown in Listing 11-14.

Listing 11-14.  Space shooter enemies configuration file enemies.dat

0.3,asteroid,asteroid_sml,200,0,4

0.9,asteroid,asteroid_sml,100,0,4

0.9,asteroid,asteroid_med,400,0,3

1.2,asteroid,asteroid_sml,750,0,4

1.2,asteroid,asteroid_sml,400,0,4

1.6,asteroid,asteroid_lge,350,0,4

2.0,asteroid,asteroid_med,200,0,4

2.4,asteroid,asteroid_sml,150,0,2.5

2.5,asteroid,asteroid_med,450,0,4

2.7,asteroid,asteroid_med,605,0,4

3.0,asteroid,asteroid_lge,720,0,4

3.1,asteroid,asteroid_sml,380,0,4

3.6,asteroid,asteroid_lge,770,0,4

3.8,asteroid,asteroid_sml,200,0,3

3.8,asteroid,asteroid_sml,100,0,4

4.1,asteroid,asteroid_med,400,0,4

4.4,asteroid,asteroid_sml,750,0,4.5

5.0,asteroid,asteroid_sml,400,0,4

5.0,asteroid,asteroid_lge,350,0,3

5.0,asteroid,asteroid_med,200,0,4

5.2,asteroid,asteroid_sml,150,0,4

5.2,asteroid,asteroid_sml,600,0,3

5.2,asteroid,asteroid_med,620,0,4

5.2,asteroid,asteroid_med,450,0,5

5.5,asteroid,asteroid_lge,720,0,4

5.6,asteroid,asteroid_sml,380,0,4

6.0,asteroid,asteroid_lge,770,0,4

9.0,end

Chapter 11 Improvements and Debugging

328

There are three different images referenced in the file, asteroid_sml.png,

asteroid_med.png, and asteroid_lge.png, which are in the images directory.

There is also an icon file called spacecrafticon.png used for the icon

shown on the application title bar.

The files enemies.dat and spacecrafticon.png need to be in the

directory where the program is running. When running from the

command line, this is normally where the spaceshooter.py file is located. If

running the game from the Mu editor, then these two files will need to be

in the mu_code directory.

�Summary
The space shooter game has used various techniques that have been

covered throughout the book. There are still other features that could be

added. One feature that would be useful would be a high score such as

the one added to the compass game. Another would be for a different type

of enemy, perhaps one that could fire back instead of just crashing into

the spacecraft. If you don’t like the retro feel, then you could change the

images to ones with better quality graphics.

�Where Next?
Looking back through the games in the book, you can see that many of the

games use the same or similar techniques. These are the essential skills

needed to start creating games, but there is still lots more to learn. The best

way to learn is by having a go write some code and create your own game.

You could start with one of the games from this book adding new

features. You could start with one of the existing games and change the

main player image to completely transform the game. Perhaps changing

the spacecraft for a racing car and replacing the background with a

racetrack that the car must navigate.

Chapter 11 Improvements and Debugging

329

Feeling more adventurous? Now, that you have seen these

implemented in different games, you will hopefully have learned enough

to design and create your own games. The appendicies have some useful

links to more information that you may find useful; this includes the

Pygame Zero code as well as Pygame which can be used together.

Hopefully this has shown that programming games is something that is

open to everyone with some programming experience.

I will be developing some of these games further or feel free to create your

own versions. Any new versions I make will be shared using social media

PenguinTutor on Twitter, Facebook, and YouTube. Feel free to share any

improvements you make or anything that you create inspired by this book.

Chapter 11 Improvements and Debugging

331© Stewart Watkiss 2020
S. Watkiss, Beginning Game Programming with Pygame Zero,
https://doi.org/10.1007/978-1-4842-5650-3

�APPENDIX A

Quick Reference
This is a quick reference summary of some useful keywords, modules, and

methods that are useful when programming in Pygame Zero.

�Pygame Zero
�Useful Keywords
WIDTH = 800 # Width of screen in pixels

HEIGHT = 600 # Height of screen in pixels

TITLE = "Title of game" # Title bar text

ICON = "filename" # ICON image

�Actor (Sprite)
Basic sprite operations:

sprite = Actor ('filename') # Create sprite

sprite.topright = x_pos,y_pos # Move top right to position

sprite.x = x_pos # Change x position

sprite.y = y_pos # Change y position

sprite.image = 'newfilename') # Change image

https://doi.org/10.1007/978-1-4842-5650-3

332

Detect collisions:

sprite.collidepoint(pos) # Collide with position

sprite.colliderect(rect) # Collide with rect or another sprite

�Background Image or Color
For a background image, include this in the draw function:

screen.blit("imagefile", (0,0)) # Place image at 0,0

For a background color, include this in the draw function:

screen.fill ((red,green,blue))

�Sound Effects
Play a sound effect from the sounds folder with a file filename.wav or

filename.mp3.

sounds.filename.play()

�Mouse Events
A common event is to check for a button click.

def on_mouse_down(pos, button):

 print ("Mouse button {}, clicked at {}".format(button, pos))

Other useful functions include on_mouse_up and on_mouse_move.

The button numbers are as follows:

	 1.	 Left button

	 2.	 Middle button

	 3.	 Right button

Appendix A Quick Reference

333

	 4.	 Scroll forward

	 5.	 Scroll backward

�Keyboard Events
Detect a keyboard event using similar methods to the mouse handling.

def on_key_down (key, mod, unicode):

 print ("Key {}, mod {}, char {}".format(key, mod, unicode))

The key value is the numerical value assigned to the key, mod is a

bitmask for modifiers that are pressed at the time (shift has value 1), and

unicode is the letter that is pressed.

You can also test if specific keys are pressed using

keyboard.<keyname>

�Displaying Text
There are lots of options that can be applied when displaying text.

Many of these are optional. Some common ones are shown here, but

there are more.

screen.draw.text(

 "The text",

 (x_pos, y_pos),

 fontname="computerspeak", fontsize=40,

 color=(red,green,blue),

 shadow=(2,2), scolor=(red,green,blue)

)

Appendix A Quick Reference

334

�Python 3
These are lots of different techniques that are used in game programming.

These are some useful ones.

�Lists
Create a list.

list1 = ["value0", "value1", "value2"]

Access a list through numerical index.

print (list[1])

Index for lists starts at 0.

�Dictionaries
Dictionaries are lists with a key for the index.

dictionary1 = {'key1':'value1', 'key2':'value2'}

Access using the key as the index.

print (dictionary1['key1'])

Access all keys.

dictionary1.keys()

Access all values.

dictionary1.values()

Appendix A Quick Reference

335

�Conditional Statements (if, elif, else)
Conditional statements are used to run the appropriate action depending

upon the boolean output of the condition.

if (condition1):

 action1()

elif (condition2):

 action2()

else:

 action3()

�Loops
While loop across set number of loops:

num_times = 0

while (num_times < 10):

 print ("This is line number "+str(num_times))

 num_times += 1

For loop across range of values:

for x in range(0,10):

 print ("This is line number "+str(x))

For loop over a list:

for this_entry in this_list:

 print ("This entry "+this_entry)

To exit a loop:

break

To continue to the start of the loop:

continue

Appendix A Quick Reference

336

�Python 3 Modules
These are part of the core modules which are included in all Python

installs.

�Random
First the random module must be imported.

import random

Random number between 0.0 and 1.0:

random.random()

Random integer:

random.randint (0,10)

Select a random entry.

random.choice (list)

�Math
The math module includes numerous mathematical functions. First

import the module.

import math

Round the value in x up to the nearest whole integer.

math.ceil(x)

Round the value in x down to the nearest whole integer.

math.floor(x)

Appendix A Quick Reference

337

Convert angle x from radians to degrees.

math.degrees(x)

Convert angle x from degrees to radians.

math.radians(x)

Trigonometry functions using angle in radians.

math.cos(x)

math.sin(x)

math.tan(x)

Pi constant for π:

math.pi

�Time
The time module provides the time relative to the epoch. The epoch is

system dependent which for Linux is January 1, 1970, 00:00:00 (UTC).

The time module is useful for relative times for use within a game. For the

actual date and time, see the datetime module. First import the module.

import time

Get time as a floating-point number in seconds from the epoch.

time.time()

Suspend the program for a number of seconds. This is not normally

used for games created using Pygame Zero.

time.sleep(secs)

Appendix A Quick Reference

338

�DateTime
The datetime module is used for the date and time.

import datetime

Get current date and time. When printed, display using yyyy-mm-dd

hh:mm:ss.microseconds.

now = datetime.datetime.now()

Get the different components of the date.

year = now.year

month = now.month

day = now.day

hour = now.hour

minute = now.minute

second = now.second

microsecond = now.microsecond

Format the date and time into a string (yyyy-mm-dd hh:mm:ss).

now.strftime("%Y-%m-%d %H:%M.%S")

The different options can be rearranged into an appropriate date format.

Appendix A Quick Reference

339© Stewart Watkiss 2020
S. Watkiss, Beginning Game Programming with Pygame Zero,
https://doi.org/10.1007/978-1-4842-5650-3

APPENDIX B�

More Information
These are some links to the official documentation where more

information can be found.

�Python
Python 3 documentation:

https://docs.python.org/3/

Python 3 string methods:

https://docs.python.org/3/library/stdtypes.html#text-

sequence-type-str

Python 3 data structures (including lists and dictionaries):

https://docs.python.org/3/tutorial/datastructures.html

Python 3 control flow (if statement and loops):

https://docs.python.org/3/tutorial/controlflow.html

�Pygame Zero
Pygame Zero documentation:

https://pygame-zero.readthedocs.io/en/stable/

https://doi.org/10.1007/978-1-4842-5650-3
https://docs.python.org/3/
https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str
https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str
https://docs.python.org/3/tutorial/datastructures.html
https://docs.python.org/3/tutorial/controlflow.html
https://pygame-zero.readthedocs.io/en/stable/

340

�Pygame
Pygame documentation:

www.pygame.org/docs/

Pygame color names (this is a link to the actual source code for

Pygame):

https://github.com/pygame/pygame/blob/master/src_py/

colordict.py

Appendix B More Information

http://www.pygame.org/docs/
https://github.com/pygame/pygame/blob/master/src_py/colordict.py
https://github.com/pygame/pygame/blob/master/src_py/colordict.py

341© Stewart Watkiss 2020
S. Watkiss, Beginning Game Programming with Pygame Zero,
https://doi.org/10.1007/978-1-4842-5650-3

Index

A
Agile programming

features, 5
style methodology, 4

all_cards list, 239
aplay command, 184
arecord, 186
Artificial intelligence (AI), 243
Artificial sound effects, 182, 183
Audacity

audio formats, conversion, 189
audio from video, 189
defined, 187
sounds record, 188
trim files, 189

Audio, Raspberry Pi
advanced options, 185
aplay command, 184
arecord, 186, 187
USB microphone, 183, 185–186

B
Battleships, AI

Ai class, 284–286
classic game, 271
directory, 273
final game, 291

fire_result method, 290
fleet class, 277, 278
get_random method, 288
main battleship.py

program file, 274–276
non_shots list, 288
object-oriented programming

methodology, 273
paper-based game, 271
random.choice method, 288
random shots with ship

awareness, 273
ship class, 279–282
stages, 287, 288
strategies, 272
traditional board game, 272

Blender
design tool, 127
image menu option, 128
missile, 3D model, 128
Raspberry Pi, 127

Break statement, 41

C
Card class

data abstraction, 229
equals method, 229

https://doi.org/10.1007/978-1-4842-5650-3

342

images, 228
inheritance, 225–227
pgzero.actor, 227
status, 228

card_clicked method, 233
check_crash methods, 319
check_shot method, 319
CMYK color model, 131
collidepoint method, 240
collideRect method, 74
Color bouncing ball

bouncingball.py, 136
Breakout, 135
color wheel, 138
draw function, 138
update function, 138

Color mixing
CMYK model, 131
color codes, 132, 133
color words, 134
RGB scheme, 132

Color Selector
creation, 141–143
mouse events, 140
program, 139

Comma-separated values (CSV)
file, 298

IOError reading, 301
reading demo, 299
source code, reading, 300

Compass game
adding obstacles, 100–104
collision detection, 84

Cub Scouts, 52
direction keys, 86–89
global variable direction, 85
image background, 83
update timer, 86

compassgame_ prefix, 57
Compiled vs. interpreted, 7, 8
Conditional statements, 335

comparison operators, 33
if, 32
logical operators, 34

Continue statement, 41

D
deal_cards function, 240
Debugging

error message, 307, 308
IDE tools, 309
performance, 310, 311
print commands, 308
variable name, 308

def draw(), 56
Design

adding high score, 104–107
challenge, 92, 93
character, 94
choices and consequences, 93
compass game, 97
education, 95
factors, 91
guidelines, 92
historical relevance, 95
inclusivity, 96

Card class (cont.)

INDEX

343

rewards and progress, 94
storyline, 95
target age, 96
try except exception handling,

107–110
updated timer, 97

decay formulas, 99, 100
formula values, 99
module installation, 98
setup.cfg, 98

Dictionaries, 30, 334
draw and update functions, 238
draw_piano function, 204
draw.rect statements, 77
draw_shell function, 157
draw_tank function, 150

E
end_level_reached function, 240

F
fire_result method, 288
fire_shot method, 287
Font directory, 296
Forever loop, 41
For loop, 39, 40
Freesound, 193

G, H
GamePlay class, 239

gameplay.py, 230
method, 233

refactoring the code, 229
variables, 232

Games
copyright, 2
creating resources, 3
patents, 2
trademarks, 2

Game state
color strings, 72
compass, points, 69
draw function, 70
game_state, 68
get_new_direction function, 70
global direction line, 69
handle key presses, 68
optional arguments, 72
player.draw, 71
status, 68
target_direction, 68, 70
tracking, 67

get_card method, 255
get_random method, 288
get_time_remaining

method, 225, 240
global_function, 46
GNU Image Manipulation

Program (GIMP)
castle outline selection, 123
computer image, 120
exported image, 124
layer dialog, 121
photo of castle, 121
pixel art sprite, 125

creation, 125

INDEX

344

line of symmetry, 126
spacecraft, 126

select and fill tools, 122
tools, 120

Graphic design
bitmap images, 113, 114
code creation, 129
licenses, 130
theme, 112, 113
2D images, 111
vector images, 115, 116

Graphics-intensive game, 8
guess_remember_recent

method, 270
guess_remember_sometimes

method, 269

I
includes_grid_position

method, 282
Inheritance

attribute, 217
child class, 217
parent and child classes, 216

__init__ method, 211, 224, 232
Inkscape

GIMP, 120
image creation, 119
operating systems, 119
SVG files, 119

J, K
Joke quiz

arguments, 17
auto-indenting, 16
conditional statements, 18
input function, 18
joke.py game, output, 17
print function, 18
Python program, 15, 16

Joysticks/gamepads, 301

L
LibreOffice draw

Pygame Zero, 116
shape drawing tools, 118
sprite image, 117

Lists, 27, 334
local_function, 46
Loops, 37, 335

M, N
Machine learning, 243
make_guess method, 270
Matching pairs memory game

adjectives, 221
attribute, 222
digital version, 219
guidelines, 221
program file, 233–238
screenshot, 220

math.ceil function, 225

GNU Image Manipulation
Program (GIMP) (cont.)

INDEX

345

Memory game, AI
CardTable, 245–248
class file, 248–250
GamePlay class, 251–253
inheritance, 245
level of difficulty, 270
memory.py file, 258–260, 262,

263, 265
player class file, 256, 257
rewriting the code, 244
Timer class file, 254
UML class diagram, 244, 245
updated PlayerAi class, 266–268

Mouse events, 332
Move_actor, 63
Mu editor

basic program, 12
command line, 14
Hello World program, 12
REPL, 14, 15
terminal program, 13
text-based program, 11, 12

Music, playing
backing.ogg, 195
music directory, 194
piano game

chords, 203
code, 197–201, 203
draw function, 205
note_position, 204
Raspberry Pi touch

screen, 197
setup, 204
tempo, 203

tone generator, 195
update function, 205
virtual keyboard, 196

play_once method, 195
WAV files, 195

O
Object-oriented programming

(OOP)
attributes, 213
class, 209, 210
creating instances of a class, 212
data abstraction, 208, 215
design, 218, 219
encapsulation, 208, 215
inheritance, 208
local variables, 211
method, 210
polymorphism, 208
screen.draw operations, 211
self keyword, 210
terminology, 213, 214

on_mouse_down function, 204,
257, 277, 282

othercard argument, 229

P, Q
Picade, arcade game

cabinet, 302
HAT, 302
Raspberry Pi, 304
tank game, 303

INDEX

346

Player.click_order variable, 270
player_keyboard function, 164
player_step_count, 65
Playing games, 3
pygame.draw.polygon method, 150
Pygame Zero, 333

adding actor, 57
compassgame-player.py, 59, 60
coordinate system, 58
screen coordinates, 59
sprite creation, 58

background image, 55, 56, 332
boilerplate code, 51
collision detecting

bounding rectangle, 74
compassgame-collide1.py, 76
edge of the screen, 75
threshold, 73

compass game
(see Compass game)

countdown timer, 81–83
development, 51
documentation, 339, 340
ICON option, 294, 295
keywords, 331
movement, 64–68
Mu editor, 54, 55
multiple platforms, 51
scoring mechanism, 78–80
sprite (Actor)

game programming, 60
move character, 61, 62
new_direction

variable, 63

sprite operations, 331
TITLE variable, 294, 295
update function, 77, 78

Python, 6, 7
conditional statements

(see Conditional statements)
datetime module, 338
dictionary, 30, 31
documentation, 339
functions, 42, 43
lists, 27–29
math module, 336, 337
random module, 336
refactoring the

code, 47, 48
time module, 337
tuple, 31
variable scope, 44–46

R
random.choice method, 288
random.shuffle function, 240
Raspberry Pi

learning Python, 8
Mu editor, 9
programming environments, 10
Raspbian, 9

reach_target function, 78
Read-eval-print loop (REPL), 14
RetroPie

installation, 304
new menu, 305
Pygame Zero, 306

INDEX

347

Raspberry Pi, 304
script game, 305

Reward-based system, 110
Rubber duck debugging, 5, 309, 310

S
screen.blit, 56
screen.draw.text(), 70
Scrolling screen, 296–298
select_card method, 255
set_actor_image, 65
set_high_score function, 106
setup_trajectory function, 160
Simple quiz game, 35–37
Sonic Pi

create music, 190
defined, 190
musical tune, 191
Raspbian, 190
WAV file, 192

Sound Bible, 193
Sound effects, 332

download, 193
recording, 181–182
sounds.explode.play(), 193, 194
sounds.tankfire.play() entry,

194
Space shooter game

Asteroid class, 314
class, 313
configuration file, 319, 327, 328
detect collision, 320
draw function, 326

enemies class, 316–318
HAT, 302
irregular shapes, 320
keyboard controls, 312
Pimoroni Picade, 302
player class, 320, 321
program file, 321–325
screenshots, 312
shared constants, 315
sound effects, 326
spacecrafticon.png, 328
start_pos, 315
update method, 315

Speech/pattern recognition, 243
Sprites, 57
start_count_down

method, 225
Strings and format

concatenation, 25
f-strings, 26
joke quiz program, 27
printf-style formatting, 25
special character

sequences, 24
string.split method, 299

T
Tank Game Zero

code, 165, 168–170, 173, 175,
176, 178, 179

collisions detection, 161–163
dynamic landscape, 152–154,

156, 157

INDEX

348

game states, 164
improvement, 179, 180
setup function, 164
trajectory

DISTANCE_CONSTANT, 161
GRAVITY_CONSTANT, 161
tanktrajectory.py, 157–160

vector image
calc_gun_positions, 151, 152
display tank, 146, 148, 149
draw function, 149
draw_tank function, 150
gun_angle, 152
gun_vector, 152
shapes, 146
track_positions, 150

Timer class
constructor, 224
tracking, 223

timer_decrement variable, 100
Tone generator, 195
Tuples, 31

U
update() method, 81
update_shell_position function,

157, 160

V
Variables

arithmetic operations, 22
booleans, 20
character, 20
floating-point

value, 19, 23
integers (int), 19
operator, 22
str function, 21
strings, 20
underscore character, 19

W, X, Y, Z
while loop, 38, 39
with keyword, 301

Tank Game Zero (cont.)

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Creating Computer Games
	Inspiration Rather Than Imitation
	Playing Games
	Create the Resources
	Development Cycle
	Making Programming Enjoyable
	Python and Pygame Zero
	Compiled vs. Interpreted
	Choosing a Programming Environment
	Summary

	Chapter 2: Getting Started with Python
	Using the Mu Editor
	Python Programming
	Variables
	Strings and Format
	Lists
	Dictionaries
	Tuples
	Conditional Statements (if, elif, else)
	Simple Quiz Game
	Loops – While, For
	While Loop
	For Loop
	Forever Loop – while True
	Changing Loop Flow – break and continue

	Functions
	Variable Scope

	Refactoring the Code
	Further Improvements
	Summary

	Chapter 3: Pygame Zero
	Pygame Zero Development
	Compass Game
	Required Files

	Running Mu in Pygame Zero Mode
	Adding a Background Image
	Adding an Actor
	Moving the Sprite Around the Screen
	Making the Movements More Realistic
	Keeping Game State
	Detecting Collisions
	Change in Direction
	Keeping Score
	Adding a Countdown Timer
	Final Code for Compass Game Version 0.1
	Summary

	Chapter 4: Game Design
	What Makes a Game Enjoyable?
	Challenging but Achievable
	Choices and Consequences
	Rewards and Progress
	Likeable Characters
	Storyline/Historical Relevance
	Educational
	Takes an Appropriate Level of Time to Play
	Inclusivity
	Age Appropriate
	Improving Compass Game
	Updated Timer
	Adding Obstacles
	Adding a High Score
	Try and Except

	Summary

	Chapter 5: Graphic Design
	Creating a Theme
	File Formats
	Bitmap Images
	Vector Images

	Useful Tools
	LibreOffice Draw
	Inkscape
	GIMP
	Creating a Computer Image from a Drawing or Photo
	Creating a Pixel Art Sprite

	Blender
	Create Using Code

	Other Sources
	Summary

	Chapter 6: Colors
	Color Mixing
	Bouncing Ball
	Background Color Selector
	Handling Mouse Events
	Creating the Color Selector

	Summary

	Chapter 7: Tank Game Zero
	Vector Image of Tank
	Creating a Dynamic Landscape
	Calculating the Trajectory
	Detecting a Collision
	Complete Game Code
	Improving the Game
	Summary

	Chapter 8: Sound
	Recording Sound Effects
	Creating Artificial Sound Effects
	Recording Audio on the Raspberry Pi
	Connecting a USB Microphone
	Using arecord

	Audacity
	Recording Sounds with Audacity
	Convert Audio Formats
	Extract Audio from Video Files
	Trim Audio Files

	Creating Music with Sonic Pi
	Downloading Free Sounds and Music
	Adding Sound Effects in Pygame Zero
	Playing Music in Pygame Zero
	Piano Game Created with Tones

	Summary

	Chapter 9: Object-Oriented Programming
	What Is Object-Oriented Programming?
	OOP Classes and Objects
	Creating a Class, Attributes, and Methods
	Creating an Instance of a Class (Object)
	Accessing Attributes of an Object
	Terminology

	Encapsulation and Data Abstraction
	Inheritance
	Design for Object-Oriented Programming
	Matching Pairs Memory Game
	Creating the Classes
	Timer Class
	Card Class
	GamePlay Class

	Program File

	Summary

	Chapter 10: Artificial Intelligence
	Memory Game with AI
	A Good Memory

	Battleships
	Summary

	Chapter 11: Improvements and Debugging
	Additional Techniques
	More About Pygame Zero
	More About Pygame
	Adding Fonts
	Scrolling Screen
	Reading from a CSV config file
	Joysticks and Gamepads
	Creating Arcade Games for Picade
	RetroPie

	Debugging
	Error Messages
	Check for Variable Names
	Print Statements
	IDE Debugging Tools
	Rubber Duck Debugging
	Performance

	Space Shooter Game
	Summary
	Where Next?

	Appendix A:
Quick Reference
	Pygame Zero
	Useful Keywords
	Actor (Sprite)
	Background Image or Color
	Sound Effects
	Mouse Events
	Keyboard Events
	Displaying Text

	Python 3
	Lists
	Dictionaries
	Conditional Statements (if, elif, else)
	Loops

	Python 3 Modules
	Random
	Math
	Time
	DateTime

	Appendix B:
More Information
	Python
	Pygame Zero
	Pygame

	Index

