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Preface

Python is a powerful and flexible programming language that is fun and easy to learn. It is the
programming language of choice for many professionals, hobbyists, and scientists. The power of Python
comes from its large ecosystem of packages and a friendly community, and its ability to communicate
seamlessly with compiled extension modules. This means that Python is ideal for solving problems
of all kinds, especially mathematical problems.

Mathematics is usually associated with calculations and equations but, in reality, these are very small
parts of a much larger subject. At its core, mathematics is about solving problems, and the logically
structured approach to solutions. Once you explore past the equations, calculations, derivatives, and
integrals, you discover a vast world of beautiful, elegant structures.

This book is an introduction to solving mathematical problems using Python. It introduces some of the
basic concepts of mathematics and how to use Python to work with these concepts. It also introduces
some basic templates for solving a variety of mathematical problems across a large number of topics
within mathematics. The first few chapters focus on core skills such as working with NumPy arrays,
plotting, calculus, and probability. These topics are very important throughout mathematics and act as
a foundation for the rest of the book. In the remaining chapters, we discuss more practical problems,
covering topics such as data analysis and statistics, networks, regression and forecasting, optimization,
and game theory. We hope that this book provides a basis for solving mathematical problems and the
tools for you to further explore the world of mathematics.

Who this book is for

This book is primarily aimed at people who have some experience with Python and have projects
(for work or just for fun) that involve solving some kind of mathematical problem. In the first few
chapters we aim to give a small taste of the mathematical background for those who are not familiar
with the basics, but we are rather limited by space. I've provided some suggestions for further reading
at the end of each chapter to point you to resources where you can learn more. I hope that this book
gets you started on your mathematical problems, and sparks your curiosity to learn more about the
mathematics behind these subjects.
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What this book covers

Chapter 1, An Introduction to Basic Packages, Functions, and Concepts, introduces some of the basic
tools and concepts that will be needed in the rest of the book, including the main Python packages
for mathematical programming, NumPy and SciPy.

Chapter 2, Mathematical Plotting with Matplotlib, covers the basics of plotting with Matplotlib, which
is useful when solving almost all mathematical problems.

Chapter 3, Calculus and Differential Equations, introduces topics from calculus such as differentiation
and integration, and some more advanced topics such as ordinary and partial differential equations.

Chapter 4, Working with Randomness and Probability, introduces the fundamentals of randomness
and probability, and how to use Python to explore these ideas.

Chapter 5, Working with Trees and Networks, covers working with trees and networks (graphs) in
Python using the NetworkX package.

Chapter 6, Working with Data and Statistics, gives various techniques for handling, manipulating, and
analyzing data using Python.

Chapter 7, Using Regression and Forecasting, describes various techniques for modeling data and
predicting future values using the Stat smodels package and scikit-learn.

Chapter 8, Geometric Problems, demonstrates various techniques for working with geometric objects
in Python using the Shapely package.

Chapter 9, Finding Optimal solutions, introduces optimization and game theory, which uses mathematical
methods to find the best solutions to problems.

Chapter 10, Increasing your Productivity, covers an assortment of situations you might encounter while
solving mathematical problems using Python.

To get the most out of this book

You will need to have a basic knowledge of Python. We don't assume any knowledge of mathematics,
although if you are familiar with some basic mathematical concepts, you will better understand the
context and details of the techniques we discuss.

The only requirement throughout this book is a recent version of Python - at least Python 3.6, but
higher versions are preferable. (The code for this edition has been tested on Python 3.10, but should
work on earlier versions too.) You might prefer to use the Anaconda distribution of Python, which
comes with many of the packages and tools required in this book. If this is the case, you should use
the conda package manager to install the packages. Python is supported on all major operating
systems — Windows, macOS, and Linux — and on many platforms.
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The packages that are used in this book and their versions at the time of writing: NumPy 1.23.3, SciPy
1.9.1 Matplotlib 3.6.0, Jax 0.3.13 (and jaxlib 0.3.10), Diffrax 0.1.2, PyMC 4.2.2, pandas 1.4.3 Bokeh
2.4.3, NetworkX 3.5.3, Scikit-learn 1.1.2, StatsModels 0.13.2, Shapely 1.8.4, NashPy 0.0.35, Pint 0.20.1,
Uncertainties 3.1.7, Xarray 2022.11.0, NetCDF4 1.6.1, Geopandas 0.12.1, CartoPy 0.21.0, Cerberus
1.3.4, Cython 0.29.32, Dask 2022.10.2.

Software/hardware covered in the book  |Operating system requirements
Python 3.10 'Windows, macOS, or Linux

If you are using the digital version of this book, we advise you to type the code yourself or access
the code from the book’s GitHub repository (a link is available in the next section). Doing so will
help you avoid any potential errors related to the copying and pasting of code.

You may prefer to work through the code samples in this book in a Jupyter notebook rather than in a
simple Python file. There are one or two places in this book where you might need to repeat plotting
commands, as plots cannot be updated in later cells in the way that is shown here.

Download the example code files

You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Applying-Math-with-Python-2nd-Edition. If there’s an update
to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https: //
github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots and diagrams used in this book.
You can download it here: http://packt.link/OxkXD.

Conventions used

There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “The
Decimal package also provides the Context object, which allows for fine-grained control over
the precision, display, and attributes of Decimal objects”

xvii
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A block of code is set as follows:

from decimal import getcontext

ctx = getcontext ()

num = Decimal ('1.1')

num**4 # Decimal ('1.4641"'")
ctx.prec=4 # set the new precision
num**4 # Decimal ('1.464"')

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:

from numpy import linalg
A = np.array([[3, -2, 1], [1, 1, -2], [-3, -2, 111)
b = np.array([7, -4, 11)

Any command-line input or output is written as follows:
$ python3.10 -m pip install numpy scipy

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance,
words in menus or dialog boxes appear in bold. Here is an example: “Select System info from the
Administration panel”

Tips or important notes
Appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercaree
packtpub . com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www . packtpub.com/support/errata and fill in the form.


http://www.packtpub.com/support/errata

Preface

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt . com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors . packtpub. com.

Share your thoughts

Once you've read Applying Math with Python, we'd love to hear your thoughts! Please click here to go
straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.
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Download a free PDF copy of this book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere? Is your eBook
purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don't stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781804618370

2. Submit your proof of purchase

3. That’s it! We'll send your free PDF and other benefits to your email directly
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An Introduction to
Basic Packages, Functions,
and Concepts

Before getting started on any practical recipes, we'll use this opening chapter to introduce several core
mathematical concepts and structures and their Python representations. We'll look at basic numerical
types, basic mathematical functions (trigonometric functions, exponential function, and logarithms),
and matrices. Matrices are fundamental in most computational applications because of the connection
between matrices and solutions of systems of linear equations. We'll explore some of these applications
in this chapter, but matrices will play an important role throughout this book.

We'll cover the following main topics in this order:

« Exploring Python numerical types
o Understanding basic mathematical functions
« Diving into the world of NumPy

o Working with matrices and linear algebra

NumPy arrays and the basic mathematical functions we will see in this chapter will be used throughout
the rest of the book—they appear in essentially every recipe. Matrix theory, and other topics discussed
here, underpin many of the computational methods that are used behind the scenes in packages
discussed in this book. Some other topics are important to know about, though we will not necessarily
use these in recipes in the book (for example, the alternative numerical types).
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Technical requirements

In this chapter, and throughout this book, we will use Python version 3 . 10, which is the most recent
version of Python at the time of writing. Most of the code in this book will work on recent versions
of Python from 3 . 6. We will use features that were introduced in Python 3.6 at various points,
including f-strings. This means that you may need to change python3 . 10, which appears in any
terminal commands, to match your version of Python. This might be another version of Python,
such as python3. 6 or python3. 7, or a more general command such as python3 or python.
For the latter commands, you need to check that the version of Python is at least 3.6 by using the
following command:

python --version

Python has built-in numerical types and basic mathematical functions that suffice for small applications
that involve only small calculations. The NumPy package provides a high-performance array type and
associated routines (including basic mathematical functions that operate efficiently on arrays). This
package will be used in many of the recipes in this chapter and the remainder of this book. We will
also make use of the SciPy package in the latter recipes of this chapter. Both can be installed using
your preferred package manager, such as pip:

python3.10 -m pip install numpy scipy

By convention, we import these packages under a shorter alias. We import numpy as np and scipy
as sp using the following import statements:

import numpy as np

import scipy as sp

These conventions are used in the official documentation (https://numpy.org/doc/stable/
and https://docs.scipy.org/doc/scipy/) for these packages, along with many tutorials
and other materials that use these packages.

The code for this chapter can be found in the Chapter 01 folder of the GitHub repository
athttps://github.com/PacktPublishing/Applying-Math-with-Python-2nd-
Edition/tree/main/Chapter%2001.

Exploring Python numerical types

Python provides basic numerical types such as arbitrarily sized integers and floating-point numbers
(double precision) as standard, but it also provides several additional types that are useful in specific
applications where precision is especially important. Python also provides (built-in) support for
complex numbers, which is useful for some more advanced mathematical applications. Let’s take a
look at some of these different numerical types, starting with the Decimal type.


https://numpy.org/doc/stable/
https://docs.scipy.org/doc/scipy/
https://github.com/PacktPublishing/Applying-Math-with-Python-2nd-Edition/tree/main/Chapter%2001
https://github.com/PacktPublishing/Applying-Math-with-Python-2nd-Edition/tree/main/Chapter%2001
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Decimal type

For applications that require decimal digits with accurate arithmetic operations, use the Decimal
type from the decimal module in the Python Standard Library:

from decimal import Decimal
Decimal ('1.1")

num2 = Decimal('1.563"')

numl + num2 # Decimal('2.663")

numl

Performing this calculation with float objects gives the result 2.6630000000000003, which includes a
small error arising from the fact that certain numbers cannot be represented exactly using a finite sum
of powers of 2. For example, 0.1 has a binary expansion 0.000110011..., which does not terminate. Any
floating-point representation of this number will therefore carry a small error. Note that the argument
to Decimal is given as a string rather than a float.

The Decimal type is based on the IBM General Decimal Arithmetic Specification (http://
speleotrove.com/decimal/decarith.html), which is an alternative specification for
floating-point arithmetic that represents decimal numbers exactly by using powers of 10 rather than
powers of 2. This means that it can be safely used for calculations in finance where the accumulation of
rounding errors would have dire consequences. However, the Decimal format is less memory efficient,
since it must store decimal digits rather than binary digits (bits), and these are more computationally
expensive than traditional floating-point numbers.

The decimal package also provides a Context object, which allows fine-grained control over the
precision, display, and attributes of Decimal objects. The current (default) context can be accessed
using the getcontext function from the decimal module. The Context object returned by
getcontext has a number of attributes that can be modified. For example, we can set the precision
for arithmetic operations:

from decimal import getcontext
ctx = getcontext ()

num = Decimal('1.1"')

num**4 # Decimal ('1.4641"')
ctx.prec = 4 # set new precision

num**4 # Decimal ('1.464"')

When we set the precision to 4, rather than the default 28, we see that the fourth power of 1.1 is
rounded to four significant figures.


http://speleotrove.com/decimal/decarith.html
http://speleotrove.com/decimal/decarith.html
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The context can even be set locally by using the 1localcontext function, which returns a context
manager that restores the original environment at the end of the with block:

from decimal import localcontext
num = Decimal ("1.1")
with localcontext () as ctx:
ctx.prec = 2
num**4 # Decimal ('1.5"')
num**4 # Decimal ('1.4641")

This means that the context can be freely modified inside the with block, and will be returned to
the default at the end.

Fraction type

Alternatively, for working with applications that require accurate representations of integer fractions,
such as when working with proportions or probabilities, there is the Fraction type from the
fractions module in the Python Standard Library. The usage is similar, except that we typically
give the numerator and denominator of the fraction as arguments:

from fractions import Fraction
numl = Fraction(l, 3)
num2 = Fraction(l, 7)

numl * num2 # Fraction(l, 21)

The Fraction type simply stores two integers—the numerator and the denominator—and arithmetic
is performed using the basic rules for the addition and multiplication of fractions.

Complex type

The square root function works fine for positive numbers but isn't defined for negative numbers. However,
we can extend the set of real numbers by formally adding a symbol, i—the imaginary unit—whose
square is —1 (that is, i = —1). A complex number is a number of the form x + iy, where x and
y are real numbers (those that we are used to). In this form, the number x is called the real part, and
vy is called the imaginary part. Complex numbers have their own arithmetic (addition, subtraction,
multiplication, division) that agrees with the arithmetic of real numbers when the imaginary part is
zero. For example, we can add the complex numbers 1 + 2i and 2 — i to get (1 +2) +(2—1) =3 +1,
or multiply them together to get the following:

A+202-D=Q2+2)+M@i—-i)=4+3i



Understanding basic mathematical functions

Complex numbers appear more often than you might think, and are often found behind the scenes
when there is some kind of cyclic or oscillatory behavior. This is because the cos and sin trigonometric
functions are the real and imaginary parts, respectively, of the complex exponential:

el = cos(t) +isin(t)

Here, t is any real number. The details, and many more interesting facts and theories of complex
numbers, can be found in many resources covering complex numbers. The following Wikipedia page
is a good place to start: https://en.wikipedia.org/wiki/Complex number.

Python has support for complex numbers, including a literal character to denote the complex unit
17j in code. This might be different from the idiom for representing the complex unit that you are
familiar with from other sources on complex numbers. Most mathematical texts will often use the i
symbol to represent the complex unit:

z =1 + 13
z + 2 # 3 + 13
z.conjugate() # 1 - 1j

The complex conjugate of a complex number is the result of making the imaginary part negative. This
has the effect of swapping between two possible solutions to the equation i2 = —1.

Special complex number-aware mathematical functions are provided in the cmath module of the
Python Standard Library.

Now that we have seen some of the basic mathematical types that Python has to offer, we can start to
explore some of the mathematical functions that it provides.

Understanding basic mathematical functions

Basic mathematical functions appear in many applications. For example, logarithms can be used to
scale data that grows exponentially to give linear data. The exponential function and trigonometric
functions are common fixtures when working with geometric information, the gamma function appears
in combinatorics, and the Gaussian error function is important in statistics.

The math module in the Python Standard Library provides all of the standard mathematical
functions, along with common constants and some utility functions, and it can be imported using
the following command:

import math
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Once it’s imported, we can use any of the mathematical functions that are contained in this module.
For instance, to find the square root of a non-negative number, we would use the sqgrt function
from math:

import math
math.sqrt(4) # 2.0

Attempting to use the sqrt function with a negative argument will raise a value error. The square root
of a negative number is not defined for this sqrt function, which deals only with real numbers. The
square root of a negative number—this will be a complex number—can be found using the alternative
sqgrt function from the cmath module in the Python Standard Library.

The sine, cosine, and tangent trigonometric functions are available under their common abbreviations
sin, cos, and tan, respectively, in the math module. The pi constant holds the value of rr, which
is approximately 3.1416:

theta = math.pi/4

math.cos (theta) # 0.7071067811865476
math.sin(theta) # 0.7071067811865475
math.tan (theta) # 0.9999999999999999

The inverse trigonometric functions are named acos, asin, and atan in the math module:

math.asin(-1) # -1.5707963267948966
math.acos (-1) # 3.141592653589793
math.atan (1) # 0.7853981633974483

The 1og function in the math module performs logarithms. It has an optional argument to specify
the base of the logarithm (note that the second argument is positional only). By default, without the
optional argument, it is the natural logarithm with base e. The e constant can be accessed using math. e:

math.log(10) # 2.302585092994046
math.log (10, 10) # 1.0

The math module also contains the gamma function, which is the gamma function, and the erf
function, the Gaussian error function, which is important in statistics. Both functions are defined by
integrals. The gamma function is defined by this integral:
oo
I'(s)=/ tsle tdt
0

The Gaussian error function is defined by this integral:

2 *
erf(x) =—/ et dt
T o
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The integral in the definition of the error function cannot be evaluated using calculus, and instead
must be computed numerically:

math.gamma (5) # 24.0
math.erf (2) # 0.9953222650189527

In addition to standard functions such as trigonometric functions, logarithms, and exponential
functions, the math module contains various theoretic and combinatorial functions. These include the
comb and factorial functions, which are useful in a variety of applications. The comb function
called with arguments n and k returns the number of ways to choose k items from a collection of
n without repeats if the order is not important. For example, picking 1 then 2 is the same as picking
2 then 1. This number is sometimes written ""C),. The factorial called with argument 7 returns the
factorial n! =n(n—1D(n—-2)..1:

math.comb (5, 2) # 10
math.factorial (5) # 120

Applying the factorial to a negative number raises a ValueError. The factorial of an integer, n,
coincides with the value of the gamma function at n + 1; that is:

'n+1)=n!

The math module also contains a function that returns the greatest common divisor of its arguments
called gcd. The greatest common divisor of @ and b is the largest integer k such that k divides both
a and b exactly:

math.gecd (2, 4) # 2
math.ged (2, 3) # 1

There are also a number of functions for working with floating-point numbers. The £ sum function
performs addition on an iterable of numbers and keeps track of the sums at each step to reduce the
error in the result. This is nicely illustrated by the following example:

nums = [0.1]*10 # list containing 0.1 ten times
sum (nums) # 0.9999999999999999

math.fsum (nums) # 1.0

The isclose function returns True if the difference between the arguments is smaller than the
tolerance. This is especially useful in unit tests, where there may be small variations in results based
on machine architecture or data variability.

Finally, the f1oor and ceil functions from math provide the floor and ceiling of their argument.
The floor of a number X is the largest integer f with f < x, and the ceiling of x is the smallest integer
¢ with x < c. These functions are useful when converting between a float obtained by dividing one
number by another and an integer.
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The math module contains functions that are implemented in C (assuming you are running CPython),
and so are much faster than those implemented in Python. This module is a good choice if you need
to apply a function to a relatively small collection of numbers. If you want to apply these functions
to a large collection of data simultaneously, it is better to use their equivalents from the NumPy
package, which is more efficient for working with arrays. In general, if you have imported the NumPy
package already, then it is probably best to always use NumPy equivalents of these functions to limit
the chance of error. With this in mind, let’s now introduce the NumPy package and its basic objects:
multi-dimensional arrays.

Diving into the world of NumPy

NumPy provides high-performance array types and routines for manipulating these arrays in Python.
These arrays are useful for processing large datasets where performance is crucial. NumPy forms the
base for the numerical and scientific computing stack in Python. Under the hood, NumPy makes
use of low-level libraries for working with vectors and matrices, such as the Basic Linear Algebra
Subprograms (BLAS) package, to accelerate computations.

Traditionally, the NumPy package is imported under the shorter alias np, which can be accomplished
using the following import statement:

import numpy as np

This convention is used in the NumPy documentation and in the wider scientific Python ecosystem
(SciPy, pandas, and so on).

The basic type provided by the NumPy library is the ndarray type (henceforth referred to as a
NumPy array). Generally, you won't create your own instances of this type, and will instead use one
of the helper routines such as array to set up the type correctly. The array routine creates NumPy
arrays from an array-like object, which is typically a list of numbers or a list of lists (of numbers). For
example, we can create a simple array by providing a list with the required elements:

arr = np.array([1, 2, 3, 4]) # array([1, 2, 3, 4])

The NumPy array type (ndarray) is a Python wrapper around an underlying C array structure. The
array operations are implemented in C and optimized for performance. NumPy arrays must consist
of homogeneous data (all elements have the same type), although this type could be a pointer to
an arbitrary Python object. NumPy will infer an appropriate data type during creation if one is not
explicitly provided using the dt ype keyword argument:

np.array([1, 2, 3, 4], dtype=np.float32)
# array([1., 2., 3., 4.1, dtype=float32)
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NumPy offers type specifiers for numerous C-types that can be passed into the dtype parameter,
such as np . £1loat32 used previously. Generally speaking, these type specifiers are of form namexx
where the name is the name of a type—such as int, float, or complex—and xx is a number of bits—for
example, 8, 16, 32, 64, 128. Usually, NumPy does a pretty good job of selecting a good type for the input
given, but occasionally, you will want to override it. The preceding case is a good example— without
the dtype=np. float32 argument, NumPy would assume the type to be int64.

Under the hood, a NumPy array of any shape is a buffer containing the raw data as a flat (one-dimensional)
array and a collection of additional metadata that specifies details such as the type of the elements.

After creation, the data type can be accessed using the dtype attribute of the array. Modifying the
dtype attribute will have undesirable consequences since the raw bytes that constitute the data in
the array will simply be reinterpreted as the new data type. For example, if we create an array using
Python integers, NumPy will convert those to 64-bit integers in the array. Changing the dtype value
will cause NumPy to reinterpret these 64-bit integers to the new data type:

arr = np.array([1, 2, 3, 4])

print (arr.dtype) # inté64

arr.dtype = np.float32

print (arr)

# [1.e-45 0.e+00 3.e-45 0.e+00 4.e-45 0.e+00 6.e-45 0.e+00]

Each 64-bit integer has been re-interpreted as two 32-bit floating-point numbers, which clearly give
nonsense values. Instead, if you wish to change the data type after creation, use the astype method
to specify the new type. The correct way to change the data type is shown here:

arr = arr.astype(np.float32)
print (arr)
# [1. 2. 3. 4.]

NumPy also provides a number of routines for creating various standard arrays. The zeros routine
creates an array of the specified shape, in which every element is 0, and the ones routine creates an
array in which every element is 1.

Element access

NumPy arrays support the get item protocol, so elements in an array can be accessed as if they were
a list and support all of the arithmetic operations, which are performed component-wise. This means
we can use the index notation and the index to retrieve the element from the specified index, as follows:

arr = np.array([1, 2, 3, 4])
arr[0] # 1
arr[2] # 3
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This also includes the usual slice syntax for extracting an array of data from an existing array. A slice
of an array is again an array, containing the elements specified by the slice. For example, we can
retrieve an array containing the first two elements of ary, or an array containing the elements at
even indexes, as follows:

first two = arr[:2] # array([1, 2])

even idx = arr[::2] # array([1, 31)

The syntax for a slice is start : stop : step. We can omit either, or both, of start and stop to
take from the beginning or the end, respectively, of all elements. We can also omit the step parameter,
in which case we also drop the trailing :. The step parameter describes the elements from the
chosen range that should be selected. A value of 1 selects every element or, as in the recipe, a value of
2 selects every second element (starting from 0 gives even-numbered elements). This syntax is the
same as for slicing Python lists.

Array arithmetic and functions

NumPy provides a number of universal functions (ufuncs), which are routines that can operate
efficiently on NumPy array types. In particular, all of the basic mathematical functions discussed in
the Understanding basic mathematical functions section have analogs in NumPy that can operate on
NumPy arrays. Universal functions can also perform broadcasting, to allow them to operate on arrays
of different—but compatible—shapes.

The arithmetic operations on NumPy arrays are performed component-wise. This is best illustrated
by the following example:

arr a = np.array([1, 2, 3, 4])

arr b = np.array([1l, 0, -3, 11)

arr a + arr b # array([2, 2, 0, 5])
# array ([0, 2, 6, 31)
arr a * arr b # array([ 1, 0, -9, 4])
# array([ 1. , 0. , -1. , 0.25])

arr b**arr a # array([1l, 0, -27, 11])

arr_a arr b

arr b / arr a

Note that the arrays must be the same shape, which means they have the same length. Using an
arithmetic operation on arrays of different shapes will result in a ValueError. Adding, subtracting,
multiplying, or dividing by a number will result in an array where the operation has been applied to each
component. For example, we can multiply all elements in an array by 2 by using the following command:

arr

np.array ([1, 2, 3, 41)

new 2*arr
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print (new)
# [2, 4, 6, 8]

As we can see, the printed array contains the numbers 2, 4, 6, and 8, which are the elements of the
original array multiplied by 2.

In the next section, we'll look at various ways that you can create NumPy arrays in addition to the
np.array routine that we used here.

Useful array creation routines

To generate arrays of numbers at regular intervals between two given endpoints, you can use either
the arange routine or the 1inspace routine. The difference between these two routines is that
linspace generates a number (the default is 50) of values with equal spacing between the two
endpoints, including both endpoints, while arange generates numbers at a given step size up to,
but not including, the upper limit. The 1 inspace routine generates values in the closed interval
a < x < b, and the arange routine generates values in the half-open interval a < x < b:

np.linspace(0, 1, 5) # array([0., 0.25, 0.5, 0.75, 1.0])
np.arange (0, 1, 0.3) # array([0.0, 0.3, 0.6, 0.9])

Note that the array generated using 1inspace has exactly five points, specified by the third argument,
including the two endpoints, 0 and 1. The array generated by arange has four points, and does not
include the right endpoint, 1; an additional step of 0. 3 would equal 1. 2, which is larger than 1.

Higher-dimensional arrays

NumPy can create arrays with any number of dimensions, which are created using the same array
routine as simple one-dimensional arrays. The number of dimensions of an array is specified by the
number of nested lists provided to the array routine. For example, we can create a two-dimensional
array by providing a list of lists, where each member of the inner list is a number, such as the following:

mat = np.array ([[1, 2], [3, 4]1)

NumPy arrays have a shape attribute, which describes the arrangement of the elements in each
dimension. For a two-dimensional array, the shape can be interpreted as the number of rows and the
number of columns of the array.

Arrays with three or more dimensions are sometimes called tensors. (In fact, one might call any
sized array a tensor: a vector (one-dimensional array) is a 1-tensor; a two-dimensional array is a
2-tensor or matrix—see the next section.) Common machine learning (ML) frameworks such as
TensorFlow and PyTorch implement their own class for tensors, which invariably behave in a similar
way to NumPy arrays.

11
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NumPy stores the shape as the shape attribute on the array object, which is a tuple. The number
of elements in this tuple is the number of dimensions:

vec = np.array([1l, 2])
mat.shape # (2, 2)
vec.shape # (2,)

Since the data in a NumPy array is stored in a flat (one-dimensional) array, an array can be reshaped
with little cost by simply changing the associated metadata. This is done using the reshape method
on a NumPy array:

mat.reshape(4,) # array([1l, 2, 3, 4])

Note that the total number of elements must remain unchanged. The mat matrix originally has shape
(2, 2) with a total of four elements, and the latter is a one-dimensional array with shape (4, ),
which again has a total of four elements. Attempting to reshape when there is a mismatch in the total
number of elements will result in a ValueError.

To create an array of higher dimensions, simply add more levels of nested lists. To make this clearer,
in the following example, we separate out the lists for each element in the third dimension before we
construct the array:

matl = [[1, 2], [3, 411

mat2 = [[5, 6], [7, 8]1]

mat3 = [[9, 10], [11, 12]]

arr 3d = np.array([matl, mat2, mat3])
arr_3d.shape # (3, 2, 2)

Note
The first element of the shape is the outermost, and the last element is the innermost.

This means that adding a dimension to an array is a simple matter of providing the relevant metadata.
Using the array routine, the shape metadata is described by the length of each list in the argument.
The length of the outermost list defines the corresponding shape parameter for that dimension,
and so on.

The size in memory of a NumPy array does not significantly depend on the number of dimensions,
but only on the total number of elements, which is the product of the shape parameters. However,
note that the total number of elements tends to be larger in higher-dimensional arrays.
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To access an element in a multi-dimensional array, you use the usual index notation, but rather than
providing a single number, you need to provide the index in each dimension. For a 2 x 2 matrix, this
means specifying the row and column for the desired element:

mat [0, 0] # 1 - top left element
mat [1, 1] # 4 - bottom right element

The index notation also supports slicing in each dimension, so we can extract all members of a single
column by using themat [:, 0] slice, like so:

mat [:, O]
# array([1, 31)

Note that the result of the slice is a one-dimensional array.

The array creation functions, zeros and ones, can create multi-dimensional arrays by simply
specifying a shape with more than one dimension parameter.

In the next section, we will look at the special case of two-dimensional NumPy arrays, which serve
as matrices in Python.

Working with matrices and linear algebra

NumPy arrays also serve as matrices, which are fundamental in mathematics and computational
programming. A matrix is simply a two-dimensional array. Matrices are central in many applications,
such as geometric transformations and simultaneous equations, but also appear as useful tools in other
areas such as statistics. Matrices themselves are only distinctive (compared to any other array) once we
equip them with matrix arithmetic. Matrices have element-wise addition and subtraction operations,
just as for NumPy arrays, a third operation called scalar multiplication, where we multiply every
element of the matrix by a constant number, and a different notion of matrix multiplication. Matrix
multiplication is fundamentally different from other notions of multiplication, as we will see later.

One of the most important attributes of a matrix is its shape, defined exactly as for NumPy arrays. A
matrix with m rows and n columns is usually described as an m X n matrix. A matrix that has the
same number of rows as columns is said to be a square matrix, and these matrices play a special role
in the theory of vectors and matrices.

The identity matrix (of size n) is a n X n matrix where the (i, i)-th entry is 1, and the (i, j)-th entry
is zero for i # j. There is an array creation routine that gives an n X n identity matrix for a specified
n value:

np.eye(3)
# array([[1., 0., 0.], [O0., 1., O0.], [O0., O., 1.11)

13
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As the name suggests, the identity matrix is a special matrix that

Basic methods and properties

There are a large number of terms and quantities associated with matrices. We only mention two such
properties here, since they will be useful later. These are the transpose of a matrix, where rows and
columns are interchanged, and the trace of a square matrix, which is the sum of the elements along
the leading diagonal. The leading diagonal consists of the elements a; ; along the line from the top left
of the matrix to the bottom right.

NumPy arrays can be easily transposed by calling the t ranspose method on the array object.
In fact, since this is such a common operation, arrays have a convenience property T that returns
the transpose of the matrix. The transposition reverses the order of the shape of a matrix (array) so
that rows become columns and columns become rows. For example, if we start with a 3 x 2 matrix
(three rows, two columns), then its transpose will be a 2 x 3 matrix, such as in the following example:

= np.array ([[1, 2], [3, 411)
.transpose ()
array ([[1, 31,
[2, 411)
T
array ([[1, 3],
[2, 411)

H*+ o P H H PP

Note

The transpose function does not actually modify the data in the underlying array but instead
changes the shape and an internal flag that indicates the order of stored values to be from row-
contiguous (C style) to column-contiguous (F style). This makes the operation very cheap.

Another quantity associated with matrices that is occasionally useful is the trace. The trace of a square
matrix A, with entries as in the preceding code, is defined to be the sum of the elements along the
leading diagonal, which consists of the elements starting from the top left diagonally to the bottom
right. The formula for the trace is given as follows:
n
trace(4) =Y a;;
i=1
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NumPy arrays have a t race method that returns the trace of a matrix:

A = np.array([[1, 2], [3, 411])
A.trace() # 5

The trace can also be accessed using the np . trace function, which is not bound to the array.

Matrix multiplication

Matrix multiplication is an operation performed on two matrices, which preserves some of the
structure and character of both matrices. Formally, suppose we are given two matrices A, an [ X m
matrix, and B, an m X n matrix, as follows:

a1 Q2 v Aim biy by - big

dzq1 G2z =+ Qm b b - b
S DI TV C N SR O

aipr Q2 o Am bm1 bmz -t bpn

The matrix product C of A and Bisan [ X n matrix whose (p, q) -th entry is given by the following equation:

m
Cpq =X pibig
i=1

Note that the number of columns of the first matrix must match the number of rows of the second
matrix in order for matrix multiplication to be defined. We usually write AB for the matrix product of
Aand B, if it is defined. Matrix multiplication is a peculiar operation. It is not commutative like most
other arithmetic operations: even if AB and BA can both be computed, there is no need for them to
be equal. In practice, this means that the order of multiplication matters for matrices. This arises from
the origins of matrix algebras as representations of linear maps, where multiplication corresponds to
the composition of functions.

Python has an operator reserved for matrix multiplication, @, which was added in Python 3.5. NumPy
arrays implement the operator to perform matrix multiplication. Note that this is fundamentally
different from the component-wise multiplication of arrays, *:

= np.array ([[1, 2], [3, 411)
= np.array([[-1, 1], [0, 111)
@ B
array ([[-1, 31,

[-3, 711)
* B # different from A @ B

B S SR = ve B o
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# array([[-1, 21,
# [ 0, 411)

The identity matrix is a neutral element under matrix multiplication. That is, if A is any k X m matrix
and [ is the m X m identity matrix, then Al = 4, and similarly, if B is an m X k matrix, then IB = B.
This can be easily checked for specific examples using NumPy arrays:

= np.array([[1, 2], [3, 4]1])
np.eye(2)
@ I

array ([[1., 2.],
[3., 4.11)

H o P H P

You can see that the printed resulting matrix is equal to the original matrix. The same is true if we
reversed the order of A and [ and performed the multiplication /A. In the next section, we'll look at
matrix inverses; a matrix B that when multiplied by A gives the identity matrix.

Determinants and inverses

The determinant of a square matrix is important in most applications because of its strong link with
finding the inverse of a matrix. A matrix is square if the number of rows and columns are equal. In
particular, a matrix that has a nonzero determinant has a (unique) inverse, which translates to unique
solutions of certain systems of equations. The determinant of a matrix is defined recursively. Suppose
that we have a generic 2 x 2 matrix, as follows:

a2
az,

)

a1
A= (az,1
The determinant of this generic matrix 4 is defined by the following formula:

detA = ay1a;, — @120z

For a general n X n matrix where 1 > 2, we define the determinant recursively. For 1 < i,j < n,
the i--th submatrix A; ; is the result of deleting the i th row and jth column from A. The submatrix
A; jisan (n —1) X (n — 1) matrix, and so we can compute the determinant. We then define the
determinant of A to be the following quantity:
n
detA=Y (-1 a;detd,;

j=1
In fact, the index 1 that appears in the preceding equation can be replaced byany 1 < i < n and
the result will be the same.

The NumPy routine for computing the determinant of a matrix is contained in a separate module
called 1inalg. This module contains many common routines for linear algebra, which is the branch
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of mathematics that covers vector and matrix algebra. The routine for computing the determinant of
a square matrix is the det routine:

from numpy import linalg
linalg.det (A) # -2.0000000000000004

Note that a floating-point rounding error has occurred in the calculation of the determinant.

The SciPy package, if installed, also offers a 1inalg module, which extends NumPy’s 1inalg. The
SciPy version not only includes additional routines, but it is also always compiled with BLAS and
Linear Algebra PACKage (LAPACK) support, while for the NumPy version, this is optional. Thus,
the SciPy variant may be preferable, depending on how NumPy was compiled, if speed is important.

The inverse of an 1 X 1 matrix A4 is the (necessarily unique) n X n matrix B, such that AB = BA = |,
where I denotes the n X n identity matrix and the multiplication performed here is matrix multiplication.
Not every square matrix has an inverse; those that do not are sometimes called singular matrices. In
fact, a matrix is non-singular (that is, has an inverse) if, and only if, the determinant of that matrix is
not 0. When A has an inverse, it is customary to denote it by 472,

The inv routine from the 1inalg module computes the inverse of a matrix if it exists:

linalg.inv (&)
# array([[-2. , 1. 1,
4 [ 1.5, -0.5]1)

We can check that the matrix given by the inv routine is indeed the matrix inverse of A by matrix
multiplying (on either side) by the inverse and checking that we get the 2 x 2 identity matrix:

Ainv = linalg.inv (d)

Ainv @ A
Approximately
array([[1., 0.1,

[0., 1.1])

#

#

#

A @ Ainv
# Approximately

# array([[1., 0.1,

# [0., 1.11)

There will be a floating-point error in these computations, which has been hidden away behind the
Approximately comment, due to the way that matrix inverses are computed.
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The 1inalg package also contains a number of other methods such as norm, which computes
various norms of a matrix. It also contains functions for decomposing matrices in various ways and
solving systems of equations.

There are also the matrix analogs of the exponential function expm, the logarithm 1ogm, sine sinm,
cosine cosm, and tangent tanm. Note that these functions are not the same as the standard exp,
log, sin, cos, and tan functions in the base NumPy package, which apply the corresponding
function on an element-by-element basis. In contrast, the matrix exponential function is defined
using a power series of matrices:

[o2)

k

A
ep) =3
k=0

This is defined for any . X 1 matrix 4, and A¥ denotes the kth matrix power of A; that is, the A matrix
multiplied by itself k times. Note that this “power series” always converges in an appropriate sense.
By convention, we take Ay = I, where [ is the 1 X 1 identity matrix. This is completely analogous
to the usual power series definition of the exponential function for real or complex numbers, but
with matrices and matrix multiplication in place of numbers and (regular) multiplication. The other
functions are defined in a similar fashion, but we will skip the details.

In the next section, we'll see one area where matrices and their theory can be used to solve systems
of equations.

Systems of equations

Solving systems of (linear) equations is one of the main motivations for studying matrices in mathematics.
Problems of this type occur frequently in a variety of applications. We start with a system of linear
equations written as follows:

ay1x1 + ayx; + o+ ay Xy = by

az1X1 + A%y + -+ Ay Xy = by

(n1X1 + ApoXy + o+ AypXy = by

Here, n is at least two, @; j and b; are known values, and the X; values are the unknown values that
we wish to find.

Before we can solve such a system of equations, we need to convert the problem into a matrix equation.
This is achieved by collecting together the coefficients a; ; into an 7 X n matrix and using the properties
of matrix multiplication to relate this matrix to the system of equations. So, we construct the following
matrix containing the coeflicients taken from the equations:

a1_1 al'z o al,n

a a e az'
A=

an,l an,2 an,n
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Then, if we take X to be the unknown (column) vector containing the X; values and b to be the
(column) vector containing the known values b;, then we can rewrite the system of equations as the
following single matrix equation:

Ax = b.

We can now solve this matrix equation using matrix techniques. In this situation, we view a column
vector as an n X 1 matrix, so the multiplication in the preceding equation is matrix multiplication.
To solve this matrix equation, we use the solve routine in the 1inalg module. To illustrate the
technique, we will solve the following system of equations as an example:
3.X'1 _Z.X'Z +X3 =7
Xy +xy —2x3=—4
—3x1—2x;+x3=1

These equations have three unknown values: X1, X5, and X3. First, we create a matrix of coefficients
and the vector b. Since we are using NumPy as our means of working with matrices and vectors, we
create a two-dimensional NumPy array for the matrix A and a one-dimensional array for b:

import numpy as np

from numpy import linalg

A
b

np.array([[3, -2, 11, [1, 1, -2]1, [-3, -2, 111)

np.array([7, -4, 11)

Now, the solution to the system of equations can be found using the solve routine:
linalg.solve (A, b) # array([ 1., -1., 2.])

This is indeed the solution to the system of equations, which can be easily verified by computing A
@ x and checking the result against the b array. There may be a floating-point rounding error in
this computation.

The solve function expects two inputs, which are the matrix of coeflicients A and the right-hand
side vector b. It solves the system of equations using routines that decompose matrix 4 into simpler
matrices to quickly reduce to an easier problem that can be solved by simple substitution. This
technique for solving matrix equations is extremely powerful and efficient and is less prone to the
floating-point rounding errors that dog some other methods. For instance, the solution to a system of
equations could be computed by multiplying (on the left) by the inverse of the matrix 4, if the inverse
is known. However, this is generally not as good as using the solve routine since it may be slower
or result in larger numerical errors.

In the example we used, the coefficient matrix A was square. That is, there is the same number of
equations as there are unknown values. In this case, the system of equations has a unique solution
if (and only if) the determinant of this matrix 4 is not 0. In cases where the determinant of 4 is
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0, one of two things can happen: the system can have no solution, in which case we say that the
system is inconsistent, or there can be infinitely many solutions. The difference between a consistent
and inconsistent system is usually determined by the vector b. For example, consider the following
systems of equations:

1
2

x+y =2 x+Yy
x+y =2 x+y

The left-hand system of equations is consistent and has infinitely many solutions; for instance, taking
x=1andy =1orx = 0 and Yy = 2 are both solutions. The right-hand system of equations is
inconsistent, and there are no solutions. In both of the preceding systems of equations, the solve
routine will fail because the coeflicient matrix is singular.

The coeflicient matrix does not need to be square for the system to be solvable—for example, if there
are more equations than there are unknown values (a coeflicient matrix has more rows than columns).
Such a system is said to be over-specified and, provided that it is consistent, it will have a solution. If
there are fewer equations than there are unknown values, then the system is said to be under-specified.
Under-specified systems of equations generally have infinitely many solutions if they are consistent
since there is not enough information to uniquely specify all the unknown values. Unfortunately, the
solve routine will not be able to find solutions for systems where the coefficient matrix is not square,
even if the system does have a solution.

In the next section, we'll discuss eigenvalues and eigenvectors, which arise by looking at a very specific
kind of matrix equation, similar to those seen previously.

Eigenvalues and eigenvectors

Consider the matrix equation Ax = Ax, where 4 is a square (1 X 1) matrix, X is a vector, and A is
a number. Numbers A for which there is an x that solves this equation are called eigenvalues, and the
corresponding vectors X are called eigenvectors. Pairs of eigenvalues and corresponding eigenvectors
encode information about the matrix A4, and are therefore important in many applications where
matrices appear.

We will demonstrate computing eigenvalues and eigenvectors using the following matrix:

3 -1 4
A=(-1 0 -1)
4 -1 2

We must first define this as a NumPy array:

import numpy as np
from numpy import linalg
A = np.array([[3, -1, 4], [-1, O, -1], [4, -1, 2]])
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The eig routine in the 1inalg module is used to find the eigenvalues and eigenvectors of a square
matrix. This routine returns a pair (v, B), where v is a one-dimensional array containing the
eigenvalues and B is a two-dimensional array whose columns are the corresponding eigenvectors:

v, B = linalg.eig(d)

It is perfectly possible for a matrix with only real entries to have complex eigenvalues and eigenvectors.
For this reason, the return type of the eig routine will sometimes be a complex number type such
as complex32 or complex64. In some applications, complex eigenvalues have a special meaning,
while in others we only consider the real eigenvalues.

We can extract an eigenvalue/eigenvector pair from the output of eig using the following sequence:

i =0 # first eigenvalue/eigenvector pair
lambda0 = v[i]

print (lambda0)

# 6.823156164525971

x0 = B[:, 1] # ith column of B

print (x0)

# [ 0.73271846, -0.20260301, 0.649672352]

The eigenvectors returned by the eig routine are normalized so that they have norm (length) 1.
(The Euclidean norm is defined to be the square root of the sum of the squares of the members of
the array.) We can check that this is the case by evaluating in the norm of the vector using the norm
routine from 1linalg:

linalg.norm(x0) # 1.0 - eigenvectors are normalized.

Finally, we can check that these values do indeed satisfy the definition of an eigenvalue/eigenvector
pair by computing the product A @ x0 and checking that, up to floating-point precision, this is
equal to lambda0*x0:

1lhs A @ x0
rhs = lambda0*x0
linalg.norm(lhs - rhs) # 2.8435583831733384e-15 - very small.

The norm computed here represents the distance between the left-hand side (Lhs) and the right-hand
side (rhs) of the equation Ax = AX . Since this distance is extremely small (0 to 14 decimal places),
we can be fairly confident that they are actually the same. The fact that this is not zero is likely due to
floating-point precision error.
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The theoretical procedure for finding eigenvalues and eigenvectors is to first find the eigenvalues A
by solving the following equation:

det(A—2AD) =0

Here, [ is the appropriate identity matrix. The equation determined by the left-hand side is a polynomial
in A and is called the characteristic polynomial of A. The eigenvector corresponding to the eigenvalue
A; can then be found by solving the following matrix equation:

(A= 4Dx=0

In practice, this process is somewhat inefficient, and there are alternative strategies for computing
eigenvalues and eigenvectors numerically more efficiently.

We can only compute eigenvalues and eigenvectors for square matrices; for non-square matrices, the
definition does not make sense. There is a generalization of eigenvalues and eigenvectors to non-square
matrices called singular values. The trade-off that we have to make in order to do this is that we must
compute two vectors U and U, and a singular value ¢ that solves the following equation:

Au = ov

If Ais an m X n matrix, then u will have n elements and v will have M elements. The interesting U
vectors are actually the (orthonormal) eigenvectors of the symmetric matrix A” A with the eigenvalue
7. From these values, we can find the ¥ vectors using the previous defining equation. This will
genera;ge all of the interesting combinations, but there are additional vectors u and vV where Au = 0
and A'v =0,

The utility of singular values (and vectors) comes from the singular value decomposition (SVD),
which writes the matrix A as a product:

A=UzVT

Here, U has orthogonal columns and V has orthogonal rows, and Z is a diagonal matrix, usually written
so that the values decrease as one moves along the leading diagonal. We can write this formula out
in a slightly different way, as follows:

— T
A=Y ojuv;

What this says is that any matrix can be decomposed into a weight sum of outer products—pretend u
and v are matrices with 11 rows and 1 column and matrix multiply u with the transpose of ¥ - of vectors.

Once we have performed this decomposition, we can look for 0 values that are especially small, which
contribute very little to the value of the matrix. If we throw away the terms with small o values, then
we can effectively approximate the original matrix by a simpler representation. This technique is used
in principal component analysis (PCA)—for example, to reduce a complex, high-dimensional dataset
to a few components that contribute the most to the overall character of the data.
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In Python, we can use the 1inalg. svd function to compute the SVD of a matrix. This works in
a similar way to the eig routine described previously, except it returns the three components of
the decomposition:

mat = np.array([[0., 1., 2., 3.1, [4., 5., 6., 7.11)
U, s, VT = np.linalg.svd(mat)

The arrays returned from this function have shapes (2, 2), (2,),and (4, 4), respectively. As
the names suggest, the U matrix and VT matrices are those that appear in the decomposition, and s is
a one-dimensional vector containing the nonzero singular values. We can check that decomposition
is correct by reconstructing the X matrix and evaluating the product of the three matrices:

Sigma = np.zeros (mat.shape)
Sigma[:len(s), :len(s)] = np.diag(s)

# array([[11.73352876, 0., 0., 0.],

# [0., 1.52456641, 0., 0.11)
reconstructed = U @ Sigma @ VT

# array([[-1.87949788e-15, 1., 2., 3.],
# (4., 5., 6., 7.11)

Notice that the matrix has been reconstructed almost exactly, except for the first entry. The value in
the top-left entry is very close to zero—within floating point error—so can be considered zero.

Our method for constructing the matrix X is rather inconvenient. The SciPy version of the 1inalg
module contains a special routine for reconstructing this matrix from the one-dimensional array of
singular values called 1inalg. diagsvd. This routine takes the array of singular values, s, and the
shape of the original matrix and constructs the matrix % with the appropriate shape:

Sigma = sp.linalg.diagsvd(s, *mat.shape)

(Recall that the SciPy package is imported under the alias sp.) Now, let’s change pace and look at
how we might be more efficient in the way we describe matrices in which most of the entries are zero.
These are the so-called sparse matrices.

Sparse matrices

Systems of linear equations such as those discussed earlier are extremely common throughout
mathematics and, in particular, in mathematical computing. In many applications, the coefficient
matrix will be extremely large, with thousands of rows and columns, and will likely be obtained from
an alternative source rather than simply entering by hand. In many cases, it will also be a sparse matrix,
where most of the entries are 0.
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A matrix is sparse if a large number of its elements are zero. The exact number of elements that need
to be zero in order to call a matrix sparse is not well defined. Sparse matrices can be represented more
efficiently—for example, by simply storing the indexes (i, j) and the values a; ; that are nonzero. There
are entire collections of algorithms for sparse matrices that offer great improvements in performance,
assuming the matrix is indeed sufficiently sparse.

Sparse matrices appear in many applications, and often follow some kind of pattern. In particular,
several techniques for solving partial differential equations (PDEs) involve solving sparse matrix
equations (see Chapter 3, Calculus and Differential Equations), and matrices associated with networks
are often sparse. There are additional routines for sparse matrices associated with networks (graphs)
contained in the sparse. csgraph module. We will discuss these further in Chapter 5, Working
with Trees and Networks.

The sparse module contains several different classes representing the different means of storing a
sparse matrix. The most basic means of storing a sparse matrix is to store three arrays, two containing
integers representing the indices of nonzero elements, and the third the data of the corresponding
element. This is the format of the coo_matrix class. Then, there are the compressed sparse column
(CSC) (csc_matrix) and the compressed sparse row (CSR) (csr matrix) formats, which
provide efficient column or row slicing, respectively. There are three additional sparse matrix classes
in sparse, including dia_matrix, which efficiently stores matrices where the nonzero entries
appear along a diagonal band.

The sparse module from SciPy contains routines for creating and working with sparse matrices.
We import the sparse module from SciPy using the following import statement:

import numpy as np

from scipy import sparse

A sparse matrix can be created from a full (dense) matrix or some other kind of data structure. This
is done using the constructor for the specific format in which you wish to store the sparse matrix.

For example, we can take a dense matrix and store it in CSR format by using the following command:
A = np.array([[1., 0., O0.], [O0., 1., 0.1, [O0., O., 1.11)

sp A = sparse.csr matrix(A)
print (sp A)

# (0, 0) 1.0
# (1, 1) 1.0
# (2, 2) 1.0

If you are generating a sparse matrix by hand, the matrix probably follows some kind of pattern, such
as the following tridiagonal matrix:
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2 -1 0 0 0
-1 2 -1 0 0
0o -1 2 -1 0
0 o -1 2 -1
0 0 0 -1 2

T=

Here, the nonzero entries appear on the diagonal and on either side of the diagonal, and the nonzero
entries in each row follow the same pattern. To create such a matrix, we could use one of the array
creation routines in sparse such as diags, which is a convenience routine for creating matrices
with diagonal patterns:

T = sparse.diags([-1, 2, -1], (-1, 0, 1),
shape=(5, 5), format="csr")

This will create a matrix T, as described previously, and store it as a sparse matrix in CSR format. The
first argument specifies the values that should appear in the output matrix, and the second argument
is the positions relative to the diagonal position in which the values should be placed. So, the 0 index
in the tuple represents the diagonal entry, -1 is to the left of the diagonal in the row, and +1 is to the
right of the diagonal in the row. The shape keyword argument gives the dimensions of the matrix
produced, and the format specifies the storage format for the matrix. If no format is provided using
the optional argument, then a reasonable default will be used. The array T can be expanded to a full
(dense) matrix using the toarray method:

T.toarray ()
# array([[ 2, -1, 0, 0, 0],

# =1, 2, =i, @, 0I,
# (o, -1, 2, -1, 07,
# o, @, =1, 2, =1],
# (o, o, o0, -1, 211])

When the matrix is small (as it is here), there is little difference in performance between the sparse
solving routine and the usual solving routines.

Once a matrix is stored in a sparse format, we can use the sparse solving routines in the 1inalg
submodule of sparse. For example, we can solve a matrix equation using the spsolve routine
from this module. The spsolve routine will convert the matrix into CSR or CSC, which may add
additional time to the computation if it is not provided in one of these formats:

from scipy.sparse import linalg
linalg.spsolve(T.tocsr (), np.array([1l, 2, 3, 4, 51))

# array ([ 5.83333333, 10.66666667, 13.5 , 13.33333333,
9.16666667])
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The sparse.linalg module also contains many of the routines that can be found in the 1inalg
module of NumPy (or SciPy) that accept sparse matrices instead of full NumPy arrays, such as eig
and inv.

This concludes our tour of the basic tools for mathematics available in Python and its ecosystem. Let’s
summarize what we've seen.

Summary

Python offers built-in support for mathematics with some basic numerical types, arithmetic, extended
precision numbers, rational numbers, complex numbers, and a variety of basic mathematical functions.
However, for more serious computations involving large arrays of numerical values, you should use
the NumPy and SciPy packages. NumPy provides high-performance array types and basic routines,
while SciPy provides more specific tools for solving equations and working with sparse matrices
(among many other things).

NumPy arrays can be multi-dimensional. Two-dimensional arrays have matrix properties that can be
accessed using the 1inalg module from either NumPy or SciPy (the former is a subset of the latter).
Moreover, there is a special operator in Python for matrix multiplication, @, which is implemented
for NumPy arrays. SciPy also provides support for sparse matrices via the sparse module. We also
touched on matrix theory and linear algebra, which underpins most of the numerical methods found
in this book—often behind the scenes.

In the next chapter, we'll get started looking at some recipes.

Further reading

There are many mathematical textbooks describing the basic properties of matrices and linear algebra,
which is the study of vectors and matrices. The following are good introductory texts for linear algebra:

o Strang, G. (2016). Introduction to Linear Algebra. Wellesley, MA: Wellesley-Cambridge Press,
Fifth Edition.

o Blyth, T. and Robertson, E. (2013). Basic Linear Algebra. London: Springer London, Limited.

NumPy and SciPy are part of the Python mathematical and scientific computing ecosystem and have
extensive documentation that can be accessed from the official website, https://scipy.org.
We will see several other packages from this ecosystem throughout this book.

More information about the BLAS and LAPACK libraries that NumPy and SciPy use behind the
scenes can be found at the following links:

e BLAS:https://www.netlib.org/blas/
e LAPACK: https://www.netlib.org/lapack/


https://scipy.org
https://www.netlib.org/blas/
https://www.netlib.org/lapack/

2

Mathematical
Plotting with Matplotlib

Plotting is a fundamental tool in all of mathematics. A good plot can reveal hidden details, suggest
future directions, verify results, or reinforce an argument. It is no surprise, then, that the scientific
Python stack features a powerful and flexible plotting library called Matplotlib.

In this chapter, we will plot functions and data in a variety of styles and create figures that are fully
labeled and annotated. We will create three-dimensional plots, customize the appearance of figures,
create figures that contain multiple plots using subplots, and save figures directly to files for applications
that are not running in an interactive environment.

Plotting is one of the most important aspects covered in this book. Plotting data, functions, or solutions
can often help you gain an understanding of a problem that can really help to reason about your
methods. We will see plotting again in every chapter of this book.

In this chapter, we will cover the following recipes:

« Basic plotting with Matplotlib

o Adding subplots

« DPlotting with error bars

o Saving Matplotlib figures

o Surface and contour plots

o Customizing three-dimensional plots

o Plotting vector fields with quiver plots



28

Mathematical Plotting with Matplotlib

Technical requirements

The main plotting package for Python is Matplotlib, which can be installed using your favorite package
manager, such as pip:

python3.10 -m pip install matplotlib

This will install the most recent version of Matplotlib, which, at the time of writing this book, is
version 3.5.2.

Matplotlib contains numerous sub-packages, but the main user interface (UI) is thematplotlib.
pyplot package, which, by convention, is imported under the p1t alias. This is achieved using the
following import statement:

import matplotlib.pyplot as plt

Many of the recipes in this chapter also require NumPy, which, as usual, is imported under the np alias.

The code for this chapter can be found in the Chapter 02 folder of the GitHub repository
athttps://github.com/PacktPublishing/Applying-Math-with-Python-2nd-
Edition/tree/main/Chapter%2002.

Basic plotting with Matplotlib

Plotting is an important part of understanding behavior. So much can be learned by simply plotting
a function or data that would otherwise be hidden. In this recipe, we will walk through how to plot
simple functions or data using Matplotlib, set the plotting style, and add labels to a plot.

Matplotlib is a very powerful plotting library, which means it can be rather intimidating to perform
simple tasks with it. For users who are used to working with MATLAB and other mathematical software
packages, there is a state-based interface called pyplot. There is also an object-oriented interface
(OOI), which might be more appropriate for more complex plots. In either case, the pyplot interface
is a convenient way to create basic objects.

Getting ready

Most commonly, the data that you wish to plot will be stored in two separate NumPy arrays, which we
will label x and y for clarity (although this naming does not matter in practice). We will demonstrate
plotting the graph of a function, so we will generate an array of x values and use the function to
generate the corresponding y values. We're going to plot three different functions over the range
—0.5 < x < 3 on the same axes:

def £ (x):

return x*(x - 2)*np.exp(3 - x)
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def g(x):
return x**2
def h(x):

return 1 - X

Let’s plot these three functions in Python using Matplotlib.

How to do it...

Before we can plot the function, we must generate x and y data to be plotted. If you are plotting existing
data, you can skip these commands. We need to create a set of x values that cover the desired range,
and then use the function to create y values:

1. The linspace routine from NumPy is ideal for creating arrays of numbers for plotting. By
default, it will create 50 equally spaced points between the specified arguments. The number of
points can be customized by providing an additional argument, but 50 is sufficient for most cases:

x = np.linspace(-0.5, 3.0) # 50 values between -0.5 and
3.0

2. Once we have created x values, we can generate y values:

vl = £(x) # evaluate f on the x points
yv2 = g(x) # evaluate g on the x points
y3 = h(x) # evaluate h on the x points

3. To plot the data, we first need to create a new figure and attach axes objects, which can be
achieved by calling the plt . subplots routine without any arguments:

fig, ax = plt.subplots()

Now, we use the plot method on the ax object to plot the first function. The first two arguments
are x and y coordinates to be plotted, and the third (optional) argument specifies that the line color
should be black:

ax.plot(x, y1, "k") # black solid line style
To help distinguish the plots for the other functions, we plot those with a dashed line and a dot-dash line:

ax.plot(x, y2, "k--") # black dashed line style
ax.plot(x, y3, "k.-") # black dot-dashed line style
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Every plot should have a title and axis labels. In this case, there isn’t anything interesting to label the
axes with, so we just label them "x" and "y":

ax.set title("Plot of the functions £, g, and h")
ax.set xlabel ("x")

ax.set_ylabel ("y")

Let’s also add a legend to help you distinguish between the different function plots without having to
look elsewhere to see which line is which:

ax. 1egend ( [Ilfll , Ilgll , Ilhll] )
Finally, let’s annotate the plot to mark the intersection between the functions g and h with text:
ax.text (0.4, 2.0, "Intersection")

This will plot the y values against the x values on a new figure. If you are working within IPython
or with a Jupyter notebook, then the plot should automatically appear at this point; otherwise, you
might need to call the p1t . show function to make the plot appear:

plt.show ()

If you use plt . show, the figure should appear in a new window. We won’t add this command to
any further recipes in this chapter, but you should be aware that you will need to use it if you are not
working in an environment where plots will be rendered automatically, such as an IPython console
or a Jupyter Notebook. The resulting plot should look something like the plot in Figure 2.1:
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Plot of the functions f, g, and h

40 - — f
-=- 9
—e— h

30 A

20 A

Figure 2.1 - Three functions on a single set of axes, each with a

different style, with labels, legend, and an annotation

Note

If you are using a Jupyter notebook and the subplots command, you must include the call to
subplots within the same cell as the plotting commands or the figure will not be produced.

How it works...

Here, we're using the OOI because it allows us to keep track of exactly which figure and axes object
were plotting on. This isn’t so important here where we have only a single figure and axes, but
one can easily envisage situations where you might have two or more figures and axes concurrently.
Another reason to follow this pattern is to be consistent when you add multiple subplots—see the
Adding subplots recipe.

You can produce the same plot as in the recipe via the state-based interface by using the following
sequence of commands:

plt.plot(x, y1, "k", x, y2, "k--", x, y3, "k.-")
plt.title("Plot of the functions f, g, and h")
plt.xlabel ("x")
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plt.ylabel ("y")
plt.legend( [Ilfll, Ilgll, Ilhll] )
plt.text (0.4, 2.0, "Intersection")

If there are currently no Figure or Axes objects, the plt . plot routine creates a new Figure
object, adds a new Axes object to the figure, and populates this Axes object with the plotted data.
A list of handles to the plotted lines is returned. Each of these handles is a Lines2D object. In this
case, this list will contain a single Lines2D object. We could use this Lines2D object to further
customize the appearance of the line later.

Notice that in the preceding code, we combined all the calls to the plot routine together. This is also
possible if you use the OOI; the state-based interface is passing the arguments to the axes method on
the set of axes that it either retrieves or creates.

The object layer of Matplotlib interacts with a lower-level backend, which does the heavy lifting of
producing the graphical plot. The p1t . show function issues an instruction to the backend to render
the current figure. There are a number of backends that can be used with Matplotlib, which can be
customized by setting the MPLBACKEND environment variable, modifying the matplotlibrc file,
or by calling matplotlib.use from within Python with the name of an alternative backend. By
default, Matplotlib picks a backend that is appropriate for the platform (Windows, macOS, Linux)
and purpose (interactive or non-interactive), based on which backends are available. For example,
on the author’s system, the Qt Agg backend is the default. This is an interactive backend based on the
Anti-Grain Geometry (AGG) library. Alternatively, one might want to use the Qt Cairo backend,
which uses the Cairo library for rendering.

Note

The plt . show function does more than simply call the show method on a figure. It also
hooks into an event loop to correctly display the figure. The plt . show routine should be
used to display a figure, rather than the show method on a Figure object.

The format string used to quickly specify the line style has three optional parts, each consisting of one
or more characters. The first part controls the marker style, which is the symbol that is printed at each
data point; the second controls the style of the line that connects the data points; the third controls
the color of the plot. In this recipe, we only specified the line style. However, one could specify both
line style and marker style or just marker style. If you only provide the marker style, no connecting
lines are drawn between the points. This is useful for plotting discrete data where no interpolation
between points is necessary.

Four line-style parameters are available: a solid line (-), a dashed line (- -), a dash-dot line (- .), or
a dotted line (: ). Only a limited number of colors can be specified in the format string; they are red,
green, blue, cyan, yellow, magenta, black, and white. The character used in the format string is the
first letter of each color (with the exception of black), so the corresponding characters are r, g, b, c,
v, m, k, and w, respectively.
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In the recipe, we saw three examples of these format strings: the single k format string only changed
the color of the line and kept the other settings at default (small point markers and unbroken blue
line); the k- - and k. - format strings both changed the color and the line style. For an example of
changing the point style, see the There’s more... section and Figure 2.2:

Plot of several data points with only markers
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1.0 4

0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0

Figure 2.2 - Plot of three sets of data, each plotted using a different marker style

The set _title,set xlabel,and set ylabel methods simply add the text argument to the
corresponding position of the Axes object. The 1legend method, as called in the preceding code,
adds the labels to the datasets in the order that they were added to the plot—in this case, y1, y2,
and then y3.

There are a number of keyword arguments that can be supplied to the set _title, set xlabel,
and set_ylabel routines to control the style of the text. For example, the fontsize keyword
can be used to specify the size of the label font in the usual pt point measure.

The annotate method on the Axes object adds arbitrary text to a specific position on the plot.
This routine takes two arguments—the text to display as a string and the coordinates of the point at
which the annotation should be placed. This routine also accepts keyword arguments that can be used
to customize the style of the annotation.
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There’s more...

The plt .plot routine accepts a variable number of positional inputs. In the preceding code, we
supplied two positional arguments that were interpreted as x values and y values (in that order). If
we had instead provided only a single array, the plot routine would have plotted the values against
their position in the array; that is, the x values are taken to be 0, 1, 2, and so on.

The plot method also accepts a number of keyword arguments that can also be used to control
the style of a plot. Keyword arguments take precedence over format string parameters if both are
present, and they apply to all sets of data plotted by the call. The keyword to control the marker style
is marker, the keyword for the line style is 1 inestyle, and the keyword for color is color. The
color keyword argument accepts a number of different formats to specify a color, which includes
RGBvaluesasa (r, g, b) tuple, where each character is a float between 0 and 1 or is a hex string.
The width of the line plotted can be controlled using the 1 inewidth keyword, which should be
provided with a f£1oat value. Many other keyword arguments can be passed to plot;a list is given
in the Matplotlib documentation. Many of these keyword arguments have a shorter version, such as
c for color and 1w for linewidth.

In the this recipe, we plotted a large number of coordinates generated by evaluating functions on
a selection of x values. In other applications, one might have data sampled from the real world (as
opposed to generated). In these situations, it might be better to leave out the connecting lines and
simply plot the markers at the points. Here is an example of how this might be done:

yl = np.array([1.0, 2.0, 3.0, 4.0, 5.0])

y2 = np.array([1.2, 1.6, 3.1, 4.2, 4.8])

y3 = np.array([3.2, 1.1, 2.0, 4.9, 2.5])

fig, ax = plt.subplots/()

ax.plot(yl, 'o', y2, 'x', y3, '*', color="k")

The result of these commands is shown in Figure 2.2. Matplotlib has a specialized method for producing
scatter plots such as this, called scatter.

Other aspects of the plot can be customized by using methods on the Axes object. The axes ticks
can be modified using the set _xticks and set yticks methods on the Axes object, and the
grid appearance can be configured using the grid method. There are also convenient methods in
the pyplot interface that apply these modifications to the current axes (if they exist).

For example, we modify the axis limits, set the ticks at every multiple of 0 . 5 in both the X and ¥
direction, and add a grid to the plot by using the following commands:

ax.axis([-0.5, 5.5, 0, 5.5]) # set axes
ax.set xticks([0.5*1i for i in range(9)]) # set xticks
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ax.set yticks([0.5*1 for i in range(11l)]) # set yticks
ax.grid() # add a grid

Notice how we set the limits slightly larger than the extent of the plot. This is to avoid markers being
placed on the boundary of the plot window.

Matplotlib has many other plotting routines besides the plot routine described here. For example,
there are plotting methods that use a different scale for the axes, including the logarithmic x or y
axes separately (semilogx or semilogy, respectively) or together (Loglog). These are explained
in the Matplotlib documentation. The scatter plotting routine may be useful if you wish to plot
discrete data on axes without connecting the points with a line. This allows more control over the
style of the marker. For example, you can scale the marker according to some additional information.

We can use a different font by using the font family keyword, the value of which can be the name
ofafontor serif, sans-serif, or monospace, which will choose the appropriate built-in font.
A complete list of modifiers can be found in the Matplotlib documentation for the matplotlib.
text . Text class.

Text arguments can also be rendered using TeX for additional formatting by supplying usetex=True
to the routine. We'll demonstrate the use of TeX formatting of labels in Figure 2.3 in the following
recipe. This is especially useful if the title or axis label contains a mathematical formula. Unfortunately,
the usetex keyword argument cannot be used if TeX is not installed on the system—it will cause an
error in this case. However, it is still possible to use the TeX syntax for formatting mathematical text
within labels, but this will be typeset by Matplotlib, rather than by TeX.

Adding subplots

Occasionally, it is useful to place multiple related plots within the same figure side by side but not on
the same axes. Subplots allow us to produce a grid of individual plots within a single figure. In this
recipe, we will see how to create two plots side by side on a single figure using subplots.

Getting ready

You will need the data to be plotted on each subplot. As an example, we will plot the first five iterates
of Newton’s method applied to the f(x) = x% — 1 function with an initial value of Xo = 2 on the first
subplot, and for the second, we will plot the error of the iterate. We first define a generator function
to get the iterates:

def generate newton iters(x0, number) :
iterates = [x0]
errors = [abs(x0 - 1.)]

for _ in range (number) :
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x0 = x0 - (x0*x0 - 1.)/(2*x0)
iterates.append (x0)
errors.append (abs (x0 - 1.))

return iterates, errors

This routine generates two lists. The first list contains iterates of Newtons method applied to the
function, and the second contains the error in the approximation:

iterates, errors = generate newton iters (2.0, 5)

How to do it...

The following steps show how to create a figure that contains multiple subplots:

1.

We use the subplots routine to create a new figure and references to all of the Axes objects
in each subplot, arranged in a grid with one row and two columns. We also set the tight
layout keyword argument to True to fix the layout of the resulting plots. This isn’t strictly
necessary, but it is in this case as it produces a better result than the default:

fig, (axl, ax2) = plt.subplots(l, 2,
tight layout=True)

#1 row, 2 columns

Once Figure and Axes objects are created, we can populate the figure by calling the relevant
plotting method on each Axes object. For the first plot (displayed on the left), we use the plot
method on the ax1 object, which has the same signature as the standard p1t . plot routine.
We can then call the set_title, set xlabel,and set ylabel methodson axl to set
the title and the x and y labels. We also use TeX formatting for the axes labels by providing the
usetex keyword argument; you can ignore this if you don’t have TeX installed on your system:

axl.plot (iterates, "kx")
axl.set title("Iterates")
axl.set xlabel ("$is$", usetex=True)

axl.set ylabel ("$x i$", usetex=True)

Now, we can plot the error values on the second plot (displayed on the right) using the ax2
object. We use an alternative plotting method that uses a logarithmic scale on the y axis, called
semilogy. The signature for this method is the same as the standard plot method. Again,
we set the axes labels and the title. Again, the use of usetex can be left out if you don’t have
TeX installed:

ax2.semilogy (errors, "kx") # plot y on logarithmic scale

ax2.set _title("Error")
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ax2.set xlabel ("$i$", usetex=True)

ax2.set ylabel ("Error")

The result of this sequence of commands is shown here:

lterates Error
209X 1004 %
X
1072 1 x
1.8 A %
1074 1
1.6 10—6 4
- S X
8 & 1078+
1.4
10—10 4
X
1.2 A 10—12 i
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Figure 2.3 - Multiple subplots on the same Matplotlib figure

The left-hand side plots the first five iterates of Newton’s method, and the right-hand side is the
approximation error plotted on a logarithmic scale.

How it works...

A Figure object in Matplotlib is simply a container for plot elements, such as Axes, of a certain
size. A Figure object will usually only hold a single Axes object, which occupies the entire figure
area, but it can contain any number of Axes objects in the same area. The subplots routine does
several things. It first creates a new figure and then creates a grid with the specified shape in the figure
area. Then, a new Axes object is added to each position of the grid. The new Figure object and
one or more Axes objects are then returned to the user. If a single subplot is requested (one row and
one column, with no arguments) then a plain Axes object is returned. If a single row or column is
requested (with more than one column or row, respectively), then a list of Axes objects is returned.
If more than one row and column are requested, a list of lists, with rows represented by inner lists
filled with Axes objects, will be returned. We can then use the plotting methods on each of the Axes
objects to populate the figure with the desired plots.
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In this recipe, we used the standard plot method for the left-hand side plot, as we have seen in
previous recipes. However, for the right-hand side plot, we used a plot where the y axis had been
changed to a logarithmic scale. This means that each unit on the y axis represents a change of a power
of 10 rather than a change of one unit so that 0 represents 10° = 1, 1 represents 10, 2 represents 100,
and so on. The axes labels are automatically changed to reflect this change in scale. This type of scaling
is useful when the values change by an order of magnitude, such as the error in an approximation, as
we use more and more iterations. We can also plot with a logarithmic scale for x only by using the
semilogx method, or both axes on a logarithmic scale by using the 1oglog method.

There’s more...

There are several ways to create subplots in Matplotlib. If you have already created a Figure object,
then subplots can be added using the add_subplot method of the Figure object. Alternatively,
you can use the subplot routine from matplotlib.pyplot to add subplots to the current
figure. If one does not yet exist, it will be created when this routine is called. The subplot routine
is a convenience wrapper of the add_subplot method on the Figure object.

In the preceding example, we created two plots with differently scaled y axes. This demonstrates one
of the many possible uses of subplots. Another common use is for plotting data in a matrix where
columns have a common x label and rows have a common y label, which is especially common in
multivariate statistics when investigating the correlation between various sets of data. The p1t .
subplots routine for creating subplots accepts the sharex and sharey keyword parameters,
which allows the axes to be shared among all subplots or among a row or column. This setting affects
the scale and ticks of the axes.

See also

Matplotlib supports more advanced layouts by providing the gridspec_kw keyword arguments to
the subplots routine. See the documentation formatplotlib.gridspec for more information.

Plotting with error bars

It is quite common that the values that we gather from the real world carry some uncertainty; no
measurement of a real-world quantity is perfectly accurate. For example, if we measure a distance with
a tape measure, there is a certain amount of accuracy that we can assume in our results, but beyond
this accuracy, we cannot be sure that our measurement is valid. For such a situation, we can probably
be confident of our accuracy up to about 1 millimeter or a little less than 1/16 inch. (This is, of course,
assuming that we are measuring perfectly.) These values are the smallest subdivisions on typical tape
measures. Let’s assume that we have collected such a set of 10 measurements (in centimeters) and we
wish to plot these values along with the accuracy that we are confident about. (The range of values
that lie above or below the measurement by the accuracy amount is called the error.) This is what we
address in this recipe.
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Getting ready

As usual, we have the Matplotlib pyplot interface imported under the alias p1lt. We first need to
generate our hypothetical data and the assumed accuracy in NumPy arrays:

measurement id = np.arange (1, 11)

measurements = np.array([2.3, 1.9, 4.4, 1.5, 3.0, 3.3,
2.9, 2.6, 4.1, 3.6]) # cm

err = np.array([0.1]1*10) # 1lmm

Let’s see how to use plotting routines in Matplotlib to plot these measurements with error bars to
indicate the uncertainty in each measurement.

How to do it...

The following steps show how to plot measurements along with accuracy information on a figure.

First, we need to generate a new figure and axis object as usual:
fig, ax = plt.subplots/()

Next, we use the errorbar method on the axis object to plot the data along with the error bars. The
accuracy information (the error) is passed as the yerr argument:

ax.errorbar (measurement id,
measurements, yerr=err, fmt="kx",

capsize=2.0)
As usual, we should always add meaningful labels to the axes and a title to the plot:

ax.set title("Plot of measurements and their estimated error")
ax.set xlabel ("Measurement ID")

ax.set ylabel ("Measurement (cm) ")

Since Matplotlib will not produce x1abel ticks at every value by default, we set the x-tick values to
the measurement IDs so that they are all displayed on the plot:

ax.set xticks (measurement id)

The resulting plot is shown in Figure 2.4. The recorded value is shown at the x markers, and the error
bar extends above and below that value by an accuracy of 0.1 cm (1 mm):
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Plot of measurements and their estimated error

4.5 - X
40- ¥
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3.0 1 % %
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1 2 3 4 5 6 7 8 9 10
Measurement ID

Figure 2.4 - Plot of a set of 10 sample measurements (in centimeters) with their measurement error shown

We can see here that each of the markers has a vertical bar that indicates the range in which we expect
the true measurement (y-value) to lie.

How it works...

The errorbar method works in a similar way to other plotting methods. The first two arguments
are the x and y coordinates of the points to be plotted. (Note that both must be provided, which
is not the case for other plotting methods.) The yerr argument indicates the size of the error bars
to be added to the plot and should all be positive values. The form of the value(s) passed to this
argument determines the nature of the error bars. In the recipe, we provided a flat NumPy array with
10 entries—one for each measurement—which leads to error bars above and below each point with
the same size (the corresponding value from the argument). Alternatively, we could have specified
a 2-by-10 array, where the first row contains the lower error and the second row contains the upper
error. (Since all our errors are the same, we could also have provided a single float containing the
common error for all measurements.)

In addition to the data arguments, there are the usual format arguments, including the fmt format
string. (We used this here as a keyword argument because we named the yerr argument that precedes
it.) In addition to the formatting of lines and points found in other plotting methods, there are special
arguments for customizing the look of error bars. In the recipe, we used the capsize argument to
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add “caps” to either end of the error bars so that we could easily identify the ends of those bars; the
default style is a simple line.

There’s more...

In the recipe, we only plotted errors in the y axis because the x values were simply ID values. If both
sets of values have uncertainty, you can also specify the x error values using the xerr argument. This
argument functions in the same way as the yerr argument used previously.

If you are plotting a very large number of points that follow some kind of trend, you might wish
to plot error bars more selectively. For this, you can use the errorevery keyword argument to
instruct Matplotlib to add error bars at every nth data point rather than at all of them. This can be
either a positive integer—indicating the “stride” to use to select points that will have errors—or a tuple
containing an offset from the first value and a stride. For example, errorevery=(2, 5) would
place error bars every five data points, starting from the second entry.

You can also add error bars to bar charts in the same way (except here, the xerr and yerr
arguments are keywords only). We could have plotted the data from the recipe as a bar chart using
the following commands:

ax.bar (measurement id, measurements,

yerr=err, capsize=2.0, alpha=0.4)

If this line is used instead of the call to errorbar in the recipe, then we would get a bar chart, as
shown in Figure 2.5:

Plot of measurements and their estimated error

Measurement (cm)

1 2 3 4 5 6 7 8 9 10
Measurement ID

Figure 2.5 - Bar chart of measurements with error bars
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As before, the measurement bar is capped with an indicator of the y range in which we expect the
true measurement to lie.

Saving Matplotlib figures

When you work in an interactive environment, such as an IPython console or a Jupyter notebook,
displaying a figure at runtime is perfectly normal. However, there are plenty of situations where it
would be more appropriate to store a figure directly to a file, rather than rendering it on screen. In this
recipe, we will see how to save a figure directly to a file, rather than displaying it on screen.

Getting ready

You will need the data to be plotted and the path or file object in which you wish to store the output.
We store the result in savingfigs.png in the current directory. In this example, we will plot the
following data:

X

np.arange(l, 5, 0.1)

Yy = X*X

Let’s see how to plot this curve using Matplotlib and save the resulting plot to a file (without needing
to interact with the plot GUI).

How to do it...
The following steps show how to save a Matplotlib plot directly to a file:

1. The first step is to create a figure, as usual, and add any labels, titles, and annotations that are
necessary. The figure will be written to the file in its current state, so any changes to the figure
should be made before saving:

fig, ax = plt.subplots()

ax.plot (x, y)

ax.set title("Graph of Sy = x*2$", usetex=True)
ax.set xlabel ("$x$", usetex=True)

ax.set _ylabel ("Sys$", usetex=True)

2. Then, we use the savefig method on £ig to save this figure to a file. The only required
argument is the path to output to or a file-like object that the figure can be written to. We can
adjust various settings for the output format, such as the resolution, by providing the appropriate
keyword arguments. We'll set the Dots per Inch (DPI) of the output figure to 300, which is a
reasonable resolution for most applications:

fig.savefig("savingfigs.png", dpi=300)
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Matplotlib will infer that we wish to save the image in the Portable Network Graphics (PNG) format
from the extension of the file given. Alternatively, a format can be explicitly provided as a keyword
argument (by using the format keyword), or it will fall back to the default from the configuration file.

How it works...

The savefig method chooses the appropriate backend for the output format and then renders
the current figure in that format. The resulting image data is written to the specified path or file-like
object. If you have manually created a Figure instance, the same effect can be achieved by calling
the savefig method on that instance.

There’s more...

The savef ig routine takes a number of additional optional keyword arguments to customize the
output image. For example, the resolution of the image can be specified using the dpi keyword. The
plots in this chapter have been produced by saving the Matplotlib figures to the file.

The output formats available include PNG, Scalable Vector Graphics (SVG), PostScript (PS),
Encapsulated PostScript (EPS), and Portable Document Format (PDF). You can also save to JPEG
format if the Pillow package is installed, but Matplotlib does not support this natively since version
3.1. There are additional customization keyword arguments for JPEG images, such as quality and
optimize. A dictionary of image metadata can be passed to the metadata keyword, which will
be written as image metadata when saving.

See also

The examples gallery on the Matplotlib website includes examples of embedding Matplotlib figures
into a GUI application using several common Python GUI frameworks.

Surface and contour plots

Matplotlib can also plot three-dimensional data in a variety of ways. Two common choices for
displaying data such as this are using surface plots or contour plots (think of contour lines on a
map). In this recipe, we will see a method for plotting surfaces from three-dimensional data and how
to plot contours of three-dimensional data.

Getting ready

To plot three-dimensional data, it needs to be arranged into two-dimensional arrays for the X, ¥, and
Z components, where both the x and y components must be of the same shape as the z component.
For the sake of this demonstration, we will plot the surface corresponding to the following function:

fOoy) = exp(=((x = 2)* + (y = 3)*)/4) — exp(—((x + 3)* + (v + 2)*)/3)
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For 3D data, we can't just use the routines from the pyplot interface. We need to import some extra
functionality from another part of Matplotlib. We'll see how to do this next.

How to do it...

We want to plot the function f(x,y) on the =5 < x < 5and =5 <y < 5range. The first task is to create
a suitable grid of (x,y) pairs on which to evaluate this function:

1. Wefirst use np.linspace to generate a reasonable number of points in these ranges:

X = np.linspace (-5, 5)
Y = np.linspace (-5, 5)

2. Now, we need to create a grid on which to create our z values. For this, we use the
np .meshgrid routine:

grid x, grid y = np.meshgrid(X, Y)
3. Now, we can create z values to plot, which hold the value of the function at each of the grid points:

z = np.exp(-((grid x-2.)**2 + (
grid y-3.)**2)/4) - np.exp(-(
(grid x+3.)**2 + (grid y+2.)**2)/3)

4. To plot three-dimensional surfaces, we need to load a Matplotlib toolbox, mplot3d, which
comes with the Matplotlib package. This won’t be used explicitly in the code, but behind the
scenes, it makes the three-dimensional plotting utilities available to Matplotlib:

from mpl toolkits import mplot3d

5. Next, we create a new figure and a set of three-dimensional axes for the figure:

fig = plt.figure()
# declare 3d plot
ax = fig.add subplot (projection="3d")

6. Now, we can call the plot surface method on these axes to plot the data (we set the
colormap to gray for better visibility in print; see the next recipe for a more detailed discussion):

ax.plot surface(grid x, grid y, z, cmap="gray")

7. Itis extra important to add axis labels to three-dimensional plots because it might not be clear
which axis is which on the displayed plot. We also set the title at this point:

ax.set xlabel ("x")

ax.set_ylabel ("y")
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ax.set zlabel("z")
ax.set title("Graph of the function f(x, y)")

You can use the plt . show routine to display the figure in a new window (if you are using
Python interactively and not in a Jupyter notebook or on an IPython console) or p1t . savefig
to save the figure to a file. The result of the preceding sequence is shown here:

Graph of the function f(x, y)

Figure 2.6 - A three-dimensional surface plot produced with Matplotlib

Contour plots do not require the mplot3d toolkit, and there is a contour routine in the
pyplot interface that produces contour plots. However, unlike the usual (two-dimensional)
plotting routines, the contour routine requires the same arguments as the plot surface
method. We use the following sequence to produce a plot:

fig = plt.figure() # Force a new figure
plt.contour(grid x, grid y, =z, cmap="gray")
plt.title("Contours of f(x, y)")

plt.xlabel ("x")

plt.ylabel ("y")
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The result is shown in the following plot:

Contours of f(x, y)

Figure 2.7 - Contour plot produced using Matplotlib with the default settings

The peak and basin of the function are shown clearly here by the rings of concentric circles. In the
top right, the shading is lighter, indicating that the function is increasing, and in the bottom left, the
shade is darker, indicating that the function is decreasing. The curve that separates the regions in
which the function is increasing and decreasing is shown between them.

How it works...

The mplot3d toolkit provides an Axes3D object, which is a three-dimensional version of the Axes
object in the core Matplotlib package. This is made available to the axes method on a Figure object
when the projection="3d" keyword argument is given. A surface plot is obtained by drawing
quadrilaterals in the three-dimensional projection between nearby points in the same way that a
two-dimensional curve is approximated by straight lines joining adjacent points.

The plot_surface method needs the z values to be provided as a two-dimensional array that encodes
the Z values on a grid of (x, y) pairs. We created a range of X and y values that we are interested in, but
if we simply evaluate our function on the pairs of corresponding values from these arrays, we will get
the z values along a line and not over a grid. Instead, we use the meshgrid routine, which takes the
two X and Y arrays and creates from them a grid consisting of all the possible combinations of values
in X and Y. The output is a pair of two-dimensional arrays on which we can evaluate our function.
We can then provide all three of these two-dimensional arrays to the plot surface method.
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There’s more...

The routines described in the preceding section, contour and plot_surface, only work with
highly structured data where the x, y, and z components are arranged into grids. Unfortunately,
real-life data is rarely so structured. In this case, you need to perform some kind of interpolation
between known points to approximate the value on a uniform grid, which can then be plotted. A
common method for performing this interpolation is by triangulating the collection of (X, y) pairs
and then using the values of the function on the vertices of each triangle to estimate the value on the
grid points. Fortunately, Matplotlib has a method that does all of these steps and then plots the result,
which is the plot trisurf routine. We briefly explain how this can be used here

1. To illustrate the use of plot trisurf, we will plot a surface and contours from the
following data:

x = np.array([ 0.19, -0.82, 0.8 , 0.95, 0.46, 0.71,
-0.86, -0.55, 0.75,-0.98, 0.55, -0.17, -0.89,
-0.4 , 0.48, -0.09, 1., -0.03, -0.87, -0.431)
y = np.array([-0.25, -0.71, -0.88, 0.55, -0.88, 0.23,
0.18,-0.06, 0.95, 0.04, -0.59, -0.21, 0.14, 0.94,
0.51, 0.47, 0.79, 0.33, -0.85, 0.19])
z = np.array([-0.04, 0.44, -0.53, 0.4, -0.31,
0,13,=0,12, 0,03, 0,53, =0.03, =0.25, 0,03,
-0.1 ,-0.29, 0.19, -0.03, 0.58, -0.01, 0.55,
-0.06])

2. 'This time, we will plot both the surface and contour (approximations) on the same figure as
two separate subplots. For this, we supply the projection="3d" keyword argument to
the subplot that will contain the surface. We use the plot trisurf method on the three-
dimensional axes to plot the approximated surface, and the tricontour method on the
two-dimensional axes to plot the approximated contours:

fig = plt.figure(tight layout=True) # force new figure

axl = fig.add subplot (1, 2, 1, projection="3d") # 3d
axes

axl.plot trisurf(x, y, 2z)
")
)

axl.set xlabel ("x'
axl.set ylabel ("y"
Z 1

axl.set zlabel ("

axl.set title("Approximate surface")
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3. We can now plot the contours for the triangulated surface using the following command:

ax2 = fig.add subplot (1, 2, 2) # 2d axes
ax2.tricontour (x, y, 2z)

ax2.set xlabel ("x")

ax2.set_ylabel ("y")

ax2.set title("Approximate contours")

We include the tight layout=True keyword argument with the figure to save a call to the p1t .
tight layout routine later. The result is shown here:

Approximate contours

Approximate surface

[

0.5 1.0

Figure 2.8 - Approximate surface and contour plots generated from unstructured data using triangulation

In addition to surface plotting routines, the Axes3D object has a plot (or plot3D) routine for simple
three-dimensional plotting, which works exactly as the usual plot routine but on three-dimensional
axes. This method can also be used to plot two-dimensional data on one of the axes.

See also

Matplotlib is the go-to plotting library for Python, but other options do exist. We'll see the Bokeh library
in Chapter 6. There are other libraries, such as Plotly (https://plotly.com/python/), that
simplify the process of creating certain types of plots and adding more features, such as interactive plots.
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Customizing three-dimensional plots

Contour plots can hide some detail of the surface that they represent since they only show where the
“height” is similar and not what the value is, even in relation to the surrounding values. On a map,
this is remedied by printing the height onto certain contours. Surface plots are more revealing, but the
problem of projecting three-dimensional objects into 2D to be displayed on a screen can itself obscure
some details. To address these issues, we can customize the appearance of a three-dimensional plot
(or contour plot) to enhance the plot and make sure the detail that we wish to highlight is clear. The
easiest way to do this is by changing the colormap of the plot, as we saw in the previous recipe. (By
default, Matplotlib will produce surface plots with a single color, which makes details difficult to see in
printed media.) In this recipe, we look at some other ways we can customize 3D surface plots, including
changing the initial angle of the display and changing the normalization applied for the colormap.

Getting ready

In this recipe, we will further customize the function we plotted in the previous recipe:

fOoy) =exp(=((x — 2)* + (y — 3)%)/4) — exp(—((x + 3)* + (v + 2)%)/3)

We generate points at which this should be plotted, as in the previous recipe:

t = np.linspace(-5, 5)

X, y = np.meshgrid(t, t)

z = np.exp (- ((x-2.)**2 + (y-3.)**2)/4) - np.exp (
- ((x43.)**2 + (y+2.)**2)/3)

Let’s see how to customize a three-dimensional plot of these values.

How to do it...

The following steps show how to customize the appearance of a 3D plot:

As usual, our first task is to create a new figure and axes on which we will plot. Since we’re going to
customize the properties of the Axes3D object, we'll just create a new figure first:

fig = plt.figure()

Now, we need to add a new Axes3D object to this figure and change the initial viewing angle by setting
the azimand elev keyword arguments along with the projection="3d" keyword argument
that we have seen before:

ax = fig.add subplot (projection="3d", azim=-80, elev=22)
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With this done, we can now plot the surface. We're going to change the bounds of the normalization
so that the maximum value and minimum value are not at the extreme ends of our colormap. We do
this by changing the vmin and vmax arguments:

ax.plot surface(x, y, z, cmap="gray", vmin=-1.2, vmax=1.2)
Finally, we can set up the axes labels and the title as usual:

ax.set title("Customized 3D surface plot")
ax.set xlabel ("x")
ax.set _ylabel ("y")
ax.set zlabel ("z")

The resulting plot is shown in Figure 2.9:

Customized 3D surface plot
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Figure 2.9 - Customized 3D surface plot with modified normalization and an initial viewing angle

Comparing Figure 2.6 with Figure 2.9, we can see that the latter generally contains darker shades
compared to the former, and the viewing angle offers a better view of the basin where the function
is minimized. The darker shade is due to the normalization applied to the values for the colormap,
which we altered using the vmin and vmax keyword arguments.



Customizing three-dimensional plots

How it works...

Color mapping works by assigning an RGB value according to a scale—the colormap. First, the values
are normalized so that they lie between 0 and 1, which is typically done by a linear transformation
that takes the minimum value to 0 and the maximum value to 1. The appropriate color is then applied
to each face of the surface plot (or line, in another kind of plot).

In the recipe, we used the vmin and vmax keyword arguments to artificially change the value that
is mapped to 0 and 1, respectively, for the purposes of fitting the colormap. In effect, we changed the
ends of the color range applied to the plot.

Matplotlib comes with a number of built-in colormaps that can be applied by simply passing the name
to the cmap keyword argument. A list of these colormaps is given in the documentation (https://
matplotlib.org/tutorials/colors/colormaps.html)and also comes with a reversed
variant, which is obtained by adding the _r suffix to the name of the chosen colormap.

The viewing angle for a 3D plot is described by two angles: the Azimuthal angle, measured within
the reference plane (here, the x-y-plane), and the elevation angle, measured as the angle from the
reference plane. The default viewing angle for Axes3D is -60 Azimuthal and 30 elevation. In the
recipe, we used the azim keyword argument of plot surface to change the initial Azimuthal
angle to -80 degrees (almost from the direction of the negative y axis) and the elev argument to
change the initial elevation to 22 degrees.

There’s more...

The normalization step in applying a colormap is performed by an object derived from the Normalize
class. Matplotlib provides a number of standard normalization routines, including LogNorm and
PowerNorm. Of course, you can also create your own subclass of Normalize to perform the
normalization. An alternative Normalize subclass can be added using the norm keyword of
plot_surface or other plotting functions.

For more advanced uses, Matplotlib provides an interface for creating custom shading using light
sources. This is done by importing the Light Source class from the matplotlib.colors
package, and then using an instance of this class to shade the surface elements according to the z
value. This is done using the shade method on the Light Source object:

from matplotlib.colors import LightSource

light source = LightSource (0, 45) # angles of lightsource
cmap = plt.get cmap ("binary r")

vals = light source.shade(z, cmap)

surf = ax.plot surface(x, y, z, facecolors=vals)

Complete examples are shown in the Matplotlib gallery should you wish to learn more about how this.
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In addition to the viewing angle, we can also change the type of projection used to represent 3D data
as a 2D image. The default is a perspective projection, but we can also use an orthogonal projection
by setting the proj type keyword argument to "ortho".

Plotting vector fields with quiver plots

A vector field is a function that assigns to each point in a region a vector—it is a vector-valued function
defined on a space. These are especially common in the study of (systems of) differential equations,
where a vector field typically appears as the right-hand side of the equation. (See the Solving systems
of differential equations recipe from Chapter 3 for more details.) For this reason, it is often useful to
visualize a vector field and understand how the function will evolve over space. For now, were simply
going to produce a plot of a vector field using a quiver plot, which takes a set of x and Y coordinates
and a set of dx and dy vectors, and produces a plot on which each point has an arrow in the direction
(dx, dy) and whose length is the length of this vector. (Hopefully, this will become more clear when
we actually create the said plot.)

Getting ready

As usual, we import the Matplotlib pyplot interface under the alias p1t. Before we start, we need
to define a function that takes a point and produces a vector; we'll use this later to generate dx and
dy data that will be passed to the plotting function.

For this example, we're going to plot the following vector field:

fx,y) = (exp(=2(x? + y2)) (x + y), exp(—2(x* + y»)) (x — ¥))

For this example, we'll plot the vector field over the region where =1 <x <land -1 <y <1.

How to do it...

The following steps show how to visualize the aforementioned vector field over the specified region.

First, we need to define a Python function that evaluates our vector field at points:

def f(x, vy):
V = X**%2 1y**2
return np.exp (-2*v) * (x+y) , np.exp (

_2*V) * (X—y)

Next, we need to create our grid of points covering the region. For this, we first create a temporary
linspace routine with values between -1 and 1. Then, we use meshgrid to generate a grid of points:

t = np.linspace(-1., 1.)
x, vy = np.meshgrid(t, t)
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Plotting vector fields with quiver plots

Quiver plot of a vector field
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ax = plt.subplots()
ax.quiver

dy = f(x,

fig,

Next, we use our function to generate dx and dy values that describe the vectors at each grid point:
ax,

Now, we can create a new figure and axis and use the quiver method to generate a plot:

The resulting plot is shown in Figure 2.10:
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Figure 2.10 - Visualization of a vector field using a quiver plot

-1.00
Our example from the recipe is a mathematical construction rather than something that might arise

from real data. For this particular case, the arrows describe how some quantity might evolve if it flows

The size of the arrow is determined by the magnitude of the vector field. At the origin, the vector field
according to the vector field we specified.

In Figure 2.10, we can see the (dx, dy) value represented as an arrow based at each (x,y) coordinate.
has (dx, dy) = (0,0), so the arrows nearby are very small.

How it works...
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Each point in the grid is the base of an arrow. The direction of the arrow is given by the corresponding
(dx, dy) value, and the length of the arrow is normalized by length (so, a vector (dx, dy) with smaller
components produces a shorter arrow). This can be customized by changing the scale keyword
argument. Many other aspects of the plot can be customized too.

There’s more...

If you want to plot a set of trajectories that follow a vector field, you can use the st reamplot method.
This will plot trajectories starting at various points to indicate the general flow in different parts of
the domain. Each streamline has an arrow to indicate the direction of flow. For example, Figure 2.11
shows the result of using the st reamplot method with the vector field in the recipe:

Stream plot of a vector field
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Figure 2.11 - Plot of the trajectories described by the vector field from the recipe

In a different scenario, you might have data about wind speed (or similar quantities) at a number of
coordinates—on a map, say—and you want to plot these quantities in the standard style for weather
charts. Then, we can use the barbs plotting method. The arguments are similar to the quiver method.



Further reading

Further reading

The Matplotlib package is extensive, and we can scarcely do it justice in such a short space. The
documentation contains far more detail than is provided here. Moreover, there is a large gallery of
examples (https://matplotlib.org/gallery/index.html#) covering many more of
the capabilities of the package than in this book.

Other packages build on top of Matplotlib to offer high-level plotting methods for specific applications.
For example, the Seaborn libraries provide routines for visualizing data (https://seaborn.
pydata.org/).
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Calculus and
Differential Equations

In this chapter, we will discuss various topics related to calculus. Calculus is the branch of mathematics
that concerns the processes of differentiation and integration. Geometrically, the derivative of a function
represents the gradient of the curve of the function, and the integral of a function represents the area
below the curve of the function. Of course, these characterizations only hold in certain circumstances,
but they provide a reasonable foundation for this chapter.

We'll start by looking at calculus for a simple class of functions: polynomials. In the first recipe, we'll
create a class that represents a polynomial and define methods that differentiate and integrate the
polynomial. Polynomials are convenient because the derivative or integral of a polynomial is again a
polynomial. Then, we'll use the SymPy package to perform symbolic differentiation and integration
on more general functions. After that, we'll look at methods for solving equations using the SciPy
package. Then, we'll turn our attention to numerical integration (quadrature) and solving differential
equations. We'll use the SciPy package to solve ordinary differential equations (ODEs) and systems
of ODEs, and then use a finite difference scheme to solve a simple partial differential equation. Finally,
we'll use the Fast Fourier transform (FFT) to process a noisy signal and filter out the noise.

The content of this chapter will help you solve problems that involve calculus, such as computing the
solution to differential equations, which frequently arise when describing the physical world. We'll also
dip into calculus later in Chapter 9 when we discuss optimization. Several optimization algorithms
require some kind of knowledge of derivatives, including the backpropagation commonly used in
machine learning (ML).



58 Calculus and Differential Equations

In this chapter, we will cover the following recipes:

o Working with polynomials and calculus

o Differentiating and integrating symbolically using SymPy
» Solving equations

o Integrating functions numerically using SciPy

« Solving simple differential equations numerically
 Solving systems of differential equations

o Solving partial differential equations numerically

o Using discrete Fourier transforms for signal processing

« Automatic differentiation and calculus using JAX

 Solving differential equations using JAX

Technical requirements

In addition to the scientific Python packages NumPy and SciPy, we also need the SymPy, JAX, and
dif frax packages. These can be installed using your favorite package manager, such as pip:

python3.10 -m pip install sympy jaxlib jax sympy diffrax

There are different options for the way you install JAX. Please see the official documentation for more
details: https://github.com/google/jax#installation.

The code for this chapter can be found in the Chapter 03 folder of the GitHub repository
athttps://github.com/PacktPublishing/Applying-Math-with-Python-2nd-
Edition/tree/main/Chapter%2003.

Primer on calculus

Calculus is the study of functions and the way that they change. There are two major processes
in calculus: differentiation and integration. Differentiation takes a function and produces a new
function—called the derivative—that is the best linear approximation at each point. (You may see this
described as the gradient of the function. Integration is often described as anti-differentiation—indeed,
differentiating the integral of a function does give back the original function—but is also an abstract
description of the area between the graph of the function and the x axis, taking into account where
the curve is above or below the axis.
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Working with polynomials and calculus

Abstractly, the derivative of a function y = f(x) at a point a is defined as a limit (which we won't
describe here) of the quantity:

fla+h) —f(a)
h

This is because this small number h becomes smaller and smaller. This is the difference in y divided
by the difference in x, which is why the derivative is sometimes written as follows:

dy

dx

There are numerous rules for differentiating common function forms: for example, in the first recipe,
we will see that the derivative of x™ is nx™~ 1. The derivative of the exponential function e is, again,
e*; the derivative of sin(x) is cos(x); and the derivative of cos(x) is — sin(x). These basic building
blocks can be combined using the product rule and chain rule, and by the fact that derivatives of sums
are sums of derivatives, to differentiate more complex functions.

In its indefinite form, integration is the opposite process of differentiation. In its definite form, the
integral of a function f(x) is the (signed) area that lies between the curve of f(x) and the x axis—note
that this is a simple number, not a function. The indefinite integral of f(x) is usually written like this:

[ f()dx

Here, the derivative of this function is f(x). The definite integral of f(x) between a and b is given
by the following equation:

b
] fe)dx = F(b) — F(a)

Here, F (x) is the indefinite integral of f(x). We can, of course, define the indefinite integral abstractly,
using limits of sums approximating the area below the curve, and then define the indefinite integral in
terms of this abstract quantity. (We won’t go into detail here.) The most important thing to remember
with indefinite integrals is the constant of integration.

There are several easily deduced indefinite integrals (anti-derivatives) that we can quickly deduce:
the integral of x™ is x™*1/(n+ 1) + C (this is what we would differentiate to get x™); the integral
of e* is e* + C; the integral of cos(x) is sin(x) + C; and the integral of sin(x) is — cos(x) + C. In all
these examples, C is the constant of integration. We can combine these simple rules to integrate more
interesting functions by using the techniques of integration by parts or integration by substitution
(and a host of much more involved techniques that we won’t mention here).

Working with polynomials and calculus

Polynomials are among the simplest functions in mathematics and are defined as a sum:

p(x) =ap +ayx + -+ ax"
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Here, x represents a placeholder to be substituted (an indeterminate), and @; is a number. Since
polynomials are simple, they provide an excellent means for a brief introduction to calculus.

In this recipe, we will define a simple class that represents a polynomial and write methods for this
class to perform differentiation and integration.

Getting ready

There are no additional packages required for this recipe.

How to do it...

The following steps describe how to create a class representing a polynomial, and implement
differentiation and integration methods for this class:

1.

Let’s start by defining a simple class to represent a polynomial:

class Polynomial:

"""Basic polynomial class"""

def init (self, coeffs):

self.coeffs = coeffs

def repr (self):

return f"Polynomial ({repr (self.coeffs)})"

def call (self, x):

return sum(coeff*x**i for i, coeff in enumerate (
self.coeffs))

Now that we have defined a basic class for a polynomial, we can move on to implement the
differentiation and integration operations for this Polynomial class to illustrate how these
operations change polynomials. We start with differentiation. We generate new coefficients by
multiplying each element in the current list of coeflicients without the first element. We use
this new list of coefficients to create a new Polynomial instance that is returned:

def differentiate (self) :

"vnDifferentiate the polynomial and return the
derivative"""
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coeffs = [i*c for 1, ¢ 1in enumerate (
self.coeffs[1:], start=1)]

return Polynomial (coeffs)

3. To implement the integration method, we need to create a new list of coefficients containing
the new constant (converted to a float for consistency) given by the argument. We then add to
this list of coefficients the old coeflicients divided by their new position in the list:

def integrate(self, constant=0) :

""r"Integrate the polynomial and return the
integral"""

coeffs = [float (constant)]
coeffs += [c¢/1i for 1, ¢ in enumerate (
self.coeffs, start=1)]

return Polynomial (coeffs)

4. Finally, to make sure these methods work as expected, we should test these two methods with
a simple case. We can check this using a very simple polynomial, such as x* — 2x + 1:

= Polynomial ([1, -2, 1])

.differentiate ()

Polynomial ([-2, 2])

.integrate (constant=1)

Polynomial ([1.0, 1.0, -1.0, 0.3333333333])

#+ T #+ T ©

The derivative here is given the coefficients —2 and 2, which corresponds to the polynomial —2x + 2x2,
which is indeed the derivative of x2 — 2x + 1. Similarly, the coeflicients of the integral correspond to
the polynomial x3/3 —x2 + x + 1, which is also correct (with constant of integration € = 1).

How it works...

Polynomials offer an easy introduction to the basic operations of calculus, but it isn’t so easy to construct
Python classes for other general classes of functions. That being said, polynomials are extremely useful
because they are well understood and, perhaps more importantly, calculus for polynomials is very
easy. For powers of a variable x, the rule for differentiation is to multiply by the power and reduce
the power by 1 so that x™ becomes nx™ ™, so our rule for differentiating a polynomial is to simply
multiply each coefficient by its position and remove the first coefficient.

Integration is more complex since the integral of a function is not unique. We can add any constant
to an integral and obtain a second integral. For powers of a variable x, the rule for integration is to
increase the power by 1 and divide by the new power so that x™ becomes x™*!/(n + 1). Therefore, to
integrate a polynomial, we increase each power of x by 1 and divide the corresponding coefficient by
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the new power. Hence, our rule is to first insert the new constant of integration as the first element
and divide each of the existing coefficients by its new position in the list.

The Polynomial class that we defined in the recipe is rather simplistic but represents the core idea.
A polynomial is uniquely determined by its coeflicients, which we can store as a list of numerical
values. Differentiation and integration are operations that we can perform on this list of coefficients.
We include a simple _repr  method to help with the display of Polynomial objects, and a
__call method to facilitate evaluation at specific numerical values. This is mostly to demonstrate
the way that a polynomial is evaluated.

Polynomials are useful for solving certain problems that involve evaluating a computationally expensive
function. For such problems, we can sometimes use some kind of polynomial interpolation, where
we fit a polynomial to another function, and then use the properties of polynomials to help solve
the original problem. Evaluating a polynomial is much cheaper than the original function, so this
can lead to dramatic improvements in speed. This usually comes at the cost of some accuracy. For
example, Simpson’s rule for approximating the area under a curve approximates the curve by quadratic
polynomials over intervals defined by three consecutive mesh points. The area below each quadratic
polynomial can be calculated easily by integration.

There’s more...

Polynomials have many more important roles in computational programming than simply demonstrating
the effect of differentiation and integration. For this reason, a much richer Polynomial class is provided
in the numpy . polynomial NumPy package. The NumPy Polynomial class, and the various
derived subclasses, are useful in all kinds of numerical problems and support arithmetic operations as
well as other methods. In particular, there are methods for fitting polynomials to collections of data.

NumPy also provides classes, derived from Polynomial, that represent various special kinds of
polynomials. For example, the Legendre class represents a specific system of polynomials called
Legendre polynomials. Legendre polynomials are defined for x satisfying =1 <x <1 and form an
orthogonal system, which is important for applications such as numerical integration and the finite
element method for solving partial differential equations. Legendre polynomials are defined using a
recursive relation. We define them as follows:

Py(x) =1 and Pi(x)=x
Furthermore, for each n = 2, we define the nth Legendre polynomial to satisty the recurrence relation:
nP(x) = 2n = DxPpq (x) = (n = Py, (x)

There are several other so-called orthogonal (systems of) polynomials, including Laguerre polynomials,
Chebyshev polynomials, and Hermite polynomials.



Differentiating and integrating symbolically using SymPy

See also

Calculus is certainly well documented in mathematical texts, and there are many textbooks that cover
the basic methods all the way to the deep theory. Orthogonal systems of polynomials are also well
documented among numerical analysis texts.

Differentiating and integrating symbolically using SymPy

At some point, you may have to differentiate a function that is not a simple polynomial, and you
may need to do this in some kind of automated fashion—for example, if you are writing software for
education. The Python scientific stack includes a package called SymPy, which allows us to create
and manipulate symbolic mathematical expressions within Python. In particular, SymPy can perform
differentiation and integration of symbolic functions, just like a mathematician.

In this recipe, we will create a symbolic function and then differentiate and integrate this function

using the SymPy library.

Getting ready

Unlike some of the other scientific Python packages, there does not seem to be a standard alias under
which SymPy is imported in the literature. Instead, the documentation uses a star import at several points,
which is not in line with the PEPS style guide. This is possibly to make the mathematical expressions
more natural. We will simply import the module under its name sympy, to avoid any confusion with
the scipy package’s standard abbreviation, sp (which is the natural choice for sympy too):

import sympy

In this recipe, we will define a symbolic expression that represents the following function:
f) = (x? = 2x)e>™*

Then, we will see how to symbolically differentiate and integrate this function.
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How to do it...

Differentiating and integrating symbolically (as you would do by hand) is very easy using the SymPy
package. Follow these steps to see how it is done:

1.

Once SymPy is imported, we define the symbols that will appear in our expressions. This is a
Python object that has no particular value, just like a mathematical variable, but can be used
in formulas and expressions to represent many different values simultaneously. For this recipe,
we need only define a symbol for x, since we will only require constant (literal) symbols and
functions in addition to this. We use the symbols routine from sympy to define a new
symbol. To keep the notation simple, we will name this new symbol x:

X = sympy.symbols('x"')

The symbols defined using the symbols function support all of the arithmetic operations, so
we can construct the expression directly using the symbol x we just defined:

f = (x**2 - 2*x)*sympy.exp (3 - x)

Now, we can use the symbolic calculus capabilities of SymPy to compute the derivative of
f—that is, differentiate £. We do this using the dif f routine in sympy, which differentiates
a symbolic expression with respect to a specified symbol and returns an expression for the
derivative. This is often not expressed in its simplest form, so we use the sympy . simplify
routine to simplify the result:

fp = sympy.simplify (sympy.diff (f£))
print (fp) # (-x**2 + 4*x - 2)*exp(3 - x)

We can check whether the result of the symbolic differentiation using SymPy is correct,
compared to the derivative computed by hand using the product rule, defined as a SymPy
expression, as follows:

fp2 = (2*x - 2)*sympy.exp(3 - x) - (
X**2 - 2%x)*gympy.exp (3 - X)
SymPy equality tests whether two expressions are equal, but not whether they are symbolically

equivalent. Therefore, we must first simplify the difference of the two statements we wish to
test and test for equality to O:

print (sympy.simplify (fp2 - fp) == 0) # True
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6. We can integrate the derivative £p using SymPy by using the integrate function and
check that this is again equal to £. It is a good idea to also provide the symbol with which the
integration is to be performed by providing it as the second optional argument:

F = sympy.integrate (fp, x)
print (F) # (x**2 - 2*x)*exp(3 - x)

As we can see, the result of integrating the derivative £p gives back the original function £ (although
we are technically missing the constant of integration C).

How it works...

SymPy defines various classes to represent certain kinds of expressions. For example, symbols,
represented by the Symbol class, are examples of atomic expressions. Expressions are built up in a
similar way to how Python builds an abstract syntax tree from source code. These expression objects
can then be manipulated using methods and standard arithmetic operations.

SymPy also defines standard mathematical functions that can operate on Symbol objects to create
symbolic expressions. The most important feature is the ability to perform symbolic calculus—rather
than the numerical calculus that we explore in the remainder of this chapter—and give exact (sometimes
called analytic) solutions to calculus problems.

The diff routine from the SymPy package performs differentiation on these symbolic expressions.
The result of this routine is usually not in its simplest form, which is why we used the simplify
routine to simplify the derivative in the recipe. The integrate routine symbolically integrates a
scipy expression with respect to a given symbol. (The diff routine also accepts a symbol argument
that specifies the symbol for differentiating against.) This returns an expression whose derivative is
the original expression. This routine does not add a constant of integration, which is good practice
when doing integrals by hand.

There’s more...

SymPy can do much more than simple algebra and calculus. There are submodules for various areas of
mathematics, such as number theory, geometry, and other discrete mathematics (such as combinatorics).

SymPy expressions (and functions) can be built into Python functions that can be applied to NumPy
arrays. This is done using the 1ambdi fy routine from the sympy .utilities module. This
converts a SymPy expression to a numerical expression that uses the NumPy equivalents of the SymPy
standard functions to evaluate the expressions numerically. The result is similar to defining a Python
Lambda, hence the name. For example, we could convert the function and derivative from this recipe
into Python functions using this routine:

from sympy.utilities import lambdify
lam f = lambdify(x, £f)

65



66

Calculus and Differential Equations

lam fp = lambdify(x, £p)

The 1ambdi £y routine takes two arguments. The first is the variables to be provided, x in the
previous code block, and the second is the expression to be evaluated when this function is called.
For example, we can evaluate the lambdified SymPy expressions defined previously as if they were
ordinary Python functions:

lam f(4) # 2.9430355293715387
lam fp(7) # -0.4212596944408861

We can even evaluate these lambdified expressions on NumPy arrays (as usual, with NumPy imported
as np):

lam f (np.array ([0, 1, 2])) # array([ 0. , -7.3890561, 0. 1)

Note

The 1ambdi fy routine uses the Python exec routine to execute the code, so it should not
be used with unsanitized input.

Solving equations

Many mathematical problems eventually reduce to solving an equation of the form f(x) = 0, where
f is a function of a single variable. Here, we try to find a value of x for which the equation holds.
The values of x for which the equation holds are sometimes called roots of the equation. There are
numerous algorithms for finding solutions to equations of this form. In this recipe, we will use the
Newton-Raphson and secant methods to solve an equation of the form f(x) = 0.

The Newton-Raphson method (Newton’s method) and the secant method are good, standard root-
finding algorithms that can be applied in almost any situation. These are iterative methods that start
with an approximation of the root and iteratively improve this approximation until it lies within a
given tolerance.

To demonstrate these techniques, we will use the function from the Differentiating and integrating
symbolically using SymPy recipe, defined by the following formula:

f(x) = (x* = 2x) exp(3 — x)
This is defined for all real values of x and has exactly two roots, one at X = 0 and one at x = 2.
Getting ready

The SciPy package contains routines for solving equations (among many other things). The root-
finding routines can be found in the opt imize module from the scipy package. As usual, we
import NumPy as np.
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How to do it...

The opt imize package provides routines for numerical root finding. The following instructions
describe how to use the newton routine from this module:

1. 'The optimize module is not listed in the scipy namespace, so you must import it separately:
from scipy import optimize
2. Then, we must define this function and its derivative in Python:

from math import exp
def f (x):

return x* (x - 2)*exp(3 - x)

3. The derivative of this function was computed in the previous recipe:

def fp(x):

return - (x**2 - 4*x + 2)*exp(3 - x)

4.  For both the Newton-Raphson and secant methods, we use the newton routine from optimize.
Both the secant method and the Newton-Raphson method require the function as the first
argument and the first approximation, x0, as the second argument. To use the Newton-Raphson
method, we must provide the derivative of f, using the fprime keyword argument:

optimize.newton(f, 1, fprime=fp) # Using the Newton-
Raphson method

# 2.0

5. To use the secant method, only the function is needed, but we must provide the first two
approximations for the root; the second is provided as the x1 keyword argument:

optimize.newton(f, 1., x1=1.5) # Using x1 = 1.5 and the
secant method

# 1.9999999999999862

Note

Neither the Newton-Raphson nor the secant method is guaranteed to converge to a root. It is
perfectly possible that the iterates of the method will simply cycle through a number of points
(periodicity) or fluctuate wildly (chaos).
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How it works...

The Newton-Raphson method for a function f(x) with derivative f , (x) and initial approximation
X is defined iteratively using this formula:

_ fGx)
f ()
For each integer, i > 0. Geometrically, this formula arises by considering the direction in which

the gradient is negative (so, the function is decreasing) if f(x;) > 0 or positive (so, the function is
increasing) if f(x;) < 0.

Xi+1 = X

The secant method is based on the Newton-Raphson method, but replaces the first derivative with
the following approximation:

' fCe) — flxi-1)
fo)s———

Xi = Xi—1
When X; — x;_1 is sufficiently small, which occurs if the method is converging, then this is a good
approximation. The price paid for not requiring the derivative of the function f is that we require an
additional initial guess to start the method. The formula for the method is given as follows:

Xi — Xi—1

Xiy1 = X; — f(xi)m

Generally speaking, if either method is given an initial guess (guesses for the secant method) that is
sufficiently close to a root, then the method will converge to that root. The Newton-Raphson method
can also fail if the derivative is zero at one of the iterations, in which case the formula is not well defined.

There’s more...

The methods mentioned in this recipe are general-purpose methods, but there are others that may
be faster or more accurate in some circumstances. Broadly speaking, root-finding algorithms fall into
two categories: algorithms that use information about the function’s gradient at each iterate (Newton-
Raphson, secant, Halley) and algorithms that require bounds on the location of a root (bisection
method, Regula-Falsi, Brent). The algorithms discussed so far are of the first kind, and while generally
quite fast, they may fail to converge.
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The second kind of algorithm is those for which a root is known to exist within a specified interval
a < x < b. We can check whether a root lies within such an interval by checking that f(a) and f(b)
have different signs—that is, one of f(a) <0 < f(b) or f(b) < 0 < f(a) is true (provided, of course,
that the function is continuous, which tends to be the case in practice). The most basic algorithm of
this kind is the bisection algorithm, which repeatedly bisects the interval until a sufficiently good
approximation to the root is found. The basic premise is to split the interval between a and b at the
mid-point and select the interval in which the function changes sign. The algorithm repeats until the
interval is very small. The following is a rudimentary implementation of this algorithm in Python:

from math import copysign

def bisect (f, a, b, tol=1le-5):
""n"Bisection method for root finding"""
fa, fb = £(a), £ (b)
assert not copysign(fa, fb) == fa, "Function must change
signs"
while (b - a) > tol:
m = (a + b)/2 # mid point of the interval
fm = £ (m)
if fm == 0:
return m

if copysign (fm, fa) == fm: # fa and fm have the same
sign

else: # fb and fm have the same sign
b=m

return a

This method is guaranteed to converge since, at each step, the distance b — a is halved. However, it
is possible that the method will require more iterations than Newton-Raphson or the secant method.
A version of the bisection method can also be found in optimize. This version is implemented in
C and is considerably more efficient than the version presented here, but the bisection method is not
the fastest method in most cases.
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Brent’s method is an improvement on the bisection method and is available in the opt imize module
asbrentgq. It uses a combination of bisection and interpolation to quickly find the root of an equation:

optimize.brentg(f, 1.0, 3.0) # 1.9999999999998792

It is important to note that the techniques that involve bracketing (bisection, regula-falsi, Brent) cannot
be used to find the root functions of a complex variable, whereas those techniques that do not use
bracketing (Newton, secant, Halley) can.

Finally, some equations are not quite of the form f (x) = 0but can still be solved using these techniques.
This is done by rearranging the equation so that it is of the required form (renaming functions if
necessary). This is usually not too difficult and simply requires moving any terms on the right-hand
side over to the left-hand side. For example, if you wish to find the fixed points of a function—that is,
when g(x) = x—then we would apply the method to the related function given by f(x) = g(x) — x.

Integrating functions numerically using SciPy

Integration can be interpreted as the area that lies between a curve and the x axis, signed according
to whether this area is above or below the axis. Some integrals cannot be computed directly using
symbolic means, and instead, have to be approximated numerically. One classic example of this is the
Gaussian error function, which was mentioned in the Understanding basic mathematical functions
section in Chapter 1, An Introduction to Basic Packages, Functions, and Concepts. This is defined by
the following formula:

1 .* 2
erf(x) = ﬁf et dt
—X

Furthermore, the integral that appears here cannot be evaluated symbolically.

In this recipe, we will see how to use numerical integration routines in the SciPy package to compute
the integral of a function.

Getting ready

We use the scipy. integrate module, which contains several routines for computing numerical
integrals. We also import the NumPy library as np. We import this module as follows:

from scipy import integrate
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How to do it...

The following steps describe how to numerically integrate a function using SciPy:

1.

We evaluate the integral that appears in the definition of the error function at the value x = 1.
For this, we need to define the integrand (the function that appears inside the integral) in Python:

def erf integrand(t) :

return np.exp (-t**2)

There are two main routines in scipy.integrate for performing numerical integration
(quadrature) that can be used. The first is the quad function, which uses QUADPACK to
perform the integration, and the second is quadrature.

The quad routine is a general-purpose integration tool. It expects three arguments, which
are the function to be integrated (erf integrand), the lower limit (-1 . 0), and the upper
limit (1. 0):

val quad, err quad = integrate.quad(erf integrand, -1.0,
1.0)

# (1.493648265624854, 1.6582826951881447e-14)
The first returned value is the value of the integral, and the second is an estimate of the error.

Repeating the computation with the quadrature routine, we get the following. The arguments
are the same as for the quad routine:

val quadr, err quadr =
integrate.quadrature (
erf integrand, -1.0, 1.0)
# (1.4936482656450039, 7.459897144457273e-10)

The output is the same format as the code, with the value of the integral and then an estimate
of the error. Notice that the error is larger for the quadrature routine. This is a result of
the method terminating once the estimated error falls below a given tolerance, which can be
modified when the routine is called.

How it works...

Most numerical integration techniques follow the same basic procedure. First, we choose points
X for i = 1,2,...,n in the region of integration, and then use these values and the values f(x;) to
approximate the integral. For example, with the trapezium rule, we approximate the integral with
the following formula:

n-1

b h
J o dx~Z(fl@+fB)+2% f(x)

j=1
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Here, a < x; < x, <+ <xp_; <b and h is the (common) difference between adjacent X; values,
including the endpoints a and b. This can be implemented in Python as follows:

def trapezium(func, a, b, n steps):
"""Estimate an integral using the trapezium rule"""
h = (b - a) / n steps
x vals = np.arange(a + h, b, h)
y vals = func(x vals)

return 0.5*h* (func(a) + func(b) + 2.*np.sum(y vals))

The algorithms used by quad and quadrature are far more sophisticated than this. Using this
function to approximate the integral of erf integrand using trapezium with 500 steps
yields a result of 1.4936463036001209, which agrees with the approximations from the quad and
guadrature routines to five decimal places.

The quadrature routine uses a fixed tolerance Gaussian quadrature, whereas the quad routine
uses an adaptive algorithm implemented in the Fortran library QUADPACK routines. Timing both
routines, we find that the quad routine is approximately five times faster than the quadrature
routine for the problem described in the recipe. The quad routine executes in approximately 27 ys,
averaging over 1 million executions, while the quadrature routine executes in approximately
134 ps. (Your results may differ depending on your system.) Generally speaking, you should use
the quad method since it is both faster and more accurate unless you need the Gaussian quadrature
implemented by quadrature.

There’s more...

The routines mentioned in this section require the integrand function to be known, which is not
always the case. Instead, it might be the case that we know a number of pairs (x,y) with y = f(x),
but we don’t know the function f to evaluate at additional points. In this case, we can use one of the
sampling quadrature techniques from scipy. integrate. If the number of known points is very
large and all points are equally spaced, we can use Romberg integration for a good approximation
of the integral. For this, we use the romb routine. Otherwise, we can use a variant of the trapezium
rule (as shown previously) using the t rapz routine, or Simpson’s rule using the simps routine.

Solving simple differential equations numerically

Differential equations arise in situations where a quantity evolves, usually over time, according to a given
relationship. They are extremely common in engineering and physics, and appear quite naturally. One
of the classic examples of a (very simple) differential equation is the law of cooling devised by Newton.
The temperature of a body cools at a rate proportional to the current temperature. Mathematically,
this means that we can write the derivative of the temperature T of the body at time ¢t > 0 using the
following differential equation:

dT

= kT
dt k



Solving simple differential equations numerically

Here, k is a positive constant that determines the rate of cooling. This differential equation can be
solved analytically by first separating the variables and then integrating and rearranging them. After
performing this procedure, we obtain the general solution:

T (t) = To e —kt
Here, T is the initial temperature.

In this recipe, we will solve a simple ODE numerically using the solve_ivp routine from SciPy.

Getting ready

We will demonstrate the technique for solving a differential equation numerically in Python using the
cooling equation described previously since we can compute the true solution in this case. We take the
initial temperature to be Ty = 50 and k = 0.2. Let’s also find the solution for t values between 0 and 5.

For this recipe, we will need the NumPy library imported as np, the Matplotlib pyplot interface
imported as p1t, and the integrate module imported from SciPy:

from scipy import integrate

A general (first-order) differential equation has the following form:
dy

Here, f is some function of t (the independent variable) and y (the dependent variable). In this
formula, T is the dependent variable and f(t,T) = —kT. The routines for solving differential equations
in the SciPy package require the function f* and an initial value ypand the range of t values where we
need to compute the solution. To get started, we need to define our function f in Python and create
a variables yp and t range ready to be supplied to the SciPy routine:

def f(t, vy):
return -0.2*y

t_range = (0, 5)

Next, we need to define the initial condition from which the solution should be found. For technical
reasons, the initial ¥ values must be specified as a one-dimensional NumPy array:

TO = np.array([50.])

Since, in this case, we already know the true solution, we can also define this in Python ready to
compare to the numerical solution that we will compute:

def true solution(t):

return 50.*np.exp(-0.2*t)
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Let’s see how to solve this initial value problem using SciPy.

How to do it...

Follow these steps to solve a differential equation numerically and plot the solution along with the error:

1.

We use the solve ivp routine from the integrate module in SciPy to solve the differential
equation numerically. We add a parameter for the maximum step size, with a value of 0. 1, so
that the solution is computed at a reasonable number of points:

sol = integrate.solve ivp(f, t range, TO, max step=0.1)
Next, we extract the solution values from the sol object returned from the solve ivp method:

t vals = sol.t
T vals = sol.yl[0, :]

Next, we plot the solution on a set of axes, as follows. Since we are also going to plot the
approximation error on the same figure, we create two subplots using the subplots routine:

fig, (axl, ax2) = plt.subplots(l, 2, tight layout=True)
axl.plot(t vals, T valsm "k")

axl.set xlabel ("$ts$")

axl.set ylabel ("$TS")

axl.set title("Solution of the cooling equation")

This plots the solution on a set of axes displayed on the left-hand side of Figure 3.1.

To do this, we need to compute the true solution at the points that we obtained from the
solve ivp routine, and then calculate the absolute value of the difference between the true
and approximated solutions:

err = np.abs (T _vals - true solution(t vals))

Finally, on the right-hand side of Figure 3.1, we plot the error in the approximation with a
logarithmic scale on the y axis. We can then plot this on the right-hand side with a logarithmic
scale y axis using the semilogy plot command, as we saw in Chapter 2, Mathematical Plotting
with Matplotlib:

ax2.semilogy(t _vals, err, "k")
ax2.set xlabel ("$ts$")
ax2.set ylabel ("Error")

ax2.set title("Error in approximation")
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The left-hand plot in Figure 3.1 shows decreasing temperature over time, while the right-
hand plot shows that the error increases as we move away from the known value given by the
initial condition:

Solution of the cooling equation Error in approximation

50 4

45 A 10-11 4

40 4

354

-
Error

304

25 4

201 10-12 -

Figure 3.1 - Plot of the numerical solution to the cooling equation

Notice that the right-hand side plot is on a logarithmic scale and, while the rate of increase looks fairly
dramatic, the values involved are very small (of order 10710y,

How it works...

Most methods for solving differential equations are time-stepping methods. The pairs (t;,¥;) are
generated by taking small € steps and approximating the value of the function y. This is perhaps best
illustrated by Euler’s method, which is the most basic time-stepping method. Fixing a small step size
h > 0, we form the approximation at the ith step using the following formula:

Vi = Yi1 +hf (tic1, yiz1)

We start from the known initial value Y. We can easily write a Python routine that performs Euler’s
method as follows (there are, of course, many different ways to implement Euler’s method; this is a
very simple example).



76 Calculus and Differential Equations

First, we set up the method by creating lists that will store the £ values and y values that we will return:

def euler (func, t _range, y0, step size):
"msolve a differential equation using Euler's method"""
t = [t_range[0]]
y = [yo0l]
i=0

Euler’s method continues until we hit the end of the t range. Here, we use a while loop to accomplish
this. The body of the loop is very simple; we first increment a counter i, and then append the new ¢
and y values to their respective lists:

while t[i] < t_rangell]:

i+=1

t

.append (t [i-1] + step size) # step t
y.append (y[i-1] + step size*func(
t[i-11, y[i-11)) # step y

return t, vy

The method used by the solve ivp routine, by default, is the Runge-Kutta-Fehlberg (RKF45)
method, which has the ability to adapt the step size to ensure that the error in the approximation stays
within a given tolerance. This routine expects three positional arguments: the function f, the ¢ range
on which the solution should be found, and the initial y value (T in our example). Optional arguments
can be provided to change the solver, the number of points to compute, and several other settings.

The function passed to the solve ivp routine must have two arguments, as in the general differential
equation described in the Getting ready section. The function can have additional arguments, which can
be provided using the args keyword for the solve ivp routine, but these must be positioned after
the two necessary arguments. Comparing the euler routine we defined earlier to the solve ivp
routine, both with a (maximum) step size of 0.1, we find that the maximum true error between the
solve ivp solution is in the order of 10"}, whereas the euler solution only manages an error of
0.19. The euler routine is working, but the step size is much too large to overcome the accumulating
error. For comparison, Figure 3.2 is a plot of the solution and error as produced by Euler’s method.
Compare Figure 3.2 to Figure 3.1. Note the scale on the error plot is dramatically different:
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Solution from Euler's method Error in approximation

50 A
45 A
1014

40 1

351

T
Error

30 A

25 A

20 A

1072 4

Figure 3.2 — Plot of solution and error using Euler’s method with step size 0.1

The solve ivp routine returns a solution object that stores information about the solution that
has been computed. Most important here are the t and y attributes, which contain the t values on
which the solution y is computed and the solution y itself. We used these values to plot the solution
we computed. The y values are stored in a NumPy array of shape (n, N), where n is the number
of components of the equation (here, 1), and N is the number of points computed. The y values held
in sol are stored in a two-dimensional array, which in this case has one row and many columns. We
use the slice y [0, :] to extract this first row as a one-dimensional array that can be used to plot
the solution in step 4.

We use a logarithmically scaled y axis to plot the error because what is interesting there is the order of
magnitude. Plotting it on a non-scaled y axis would give a line that is very close to the x axis, which
doesn’t show the increase in the error as we move through the t values. The logarithmically scaled y
axis shows this increase clearly.

There’s more...

The solve ivp routine is a convenient interface for a number of solvers for differential equations,
the default being the RKF45 method. The different solvers have different strengths, but the RKF45
method is a good general-purpose solver.
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See also

For more detailed instructions on how to add subplots to a figure in Matplotlib, see the Adding subplots
recipe from Chapter 2, Mathematical Plotting with Matplotlib.

Solving systems of differential equations

Differential equations sometimes occur in systems consisting of two or more interlinked differential
equations. A classic example is a simple model of the populations of competing species. This is a simple
model of competing species labeled P (the prey) and W (the predators) given by the following equations:

dpP

— =5P—0.1WP

dt
The first equation dictates the growth of the prey species P, which, without any predators, would be
exponential growth. The second equation dictates the growth of the predator species W, which, without
any prey, would be exponential decay. Of course, these two equations are coupled; each population
change depends on both populations. The predators consume the prey at a rate proportional to the
product of their two populations, and the predators grow at a rate proportional to the relative abundance
of prey (again the product of the two populations).

In this recipe, we will analyze a simple system of differential equations and use the SciPy integrate
module to obtain approximate solutions.

Getting ready

The tools for solving a system of differential equations using Python are the same as those for solving
a single equation. We again use the solve ivp routine from the integrate module in SciPy.
However, this will only give us a predicted evolution over time with given starting populations. For this
reason, we will also employ some plotting tools from Matplotlib to better understand the evolution. As
usual, the NumPy library is imported as np and the Matplotlib pyplot interface is imported as plt.

How to do it...
The following steps walk us through how to analyze a simple system of differential equations:

1. Our first task is to define a function that holds the system of equations. This function needs to
take two arguments as for a single equation, except the dependent variable y (in the notation
from the Solving simple differential equations numerically recipe) will now be an array with as
many elements as there are equations. Here, there will be two elements. The function we need
for the example system in this recipe is defined as follows:

def predator prey system(t, y):
return np.array ([5*y[0] - 0.1*y[0]*y[1],
0.1*y[1]*y[0] - exy[1]])
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Now we have defined the system in Python, we can use the quiver routine from Matplotlib
to produce a plot that will describe how the populations will evolve—given by the equations—
at numerous starting populations. We first set up a grid of points on which we will plot this
evolution. It is a good idea to choose a relatively small number of points for the quiver
routine; otherwise, it becomes difficult to see details in the plot. For this example, we plot the
population values between 0 and 100:

= np.linspace (0, 100, 25)
= np.linspace(0, 100, 25)

U = O

, W = np.meshgrid(p, w)

Now, we compute the values of the system at each of these pairs. Notice that neither equation
in the system is time-dependent (they are autonomous); the time variable ¢ is unimportant in
the calculation. We supply the value 0 for the ¢ argument:

dp, dw = predator prey system(0, np.array ([P, W]))

The dp and dw variables now hold the direction in which the population of P and W will evolve,
respectively, if we started at each point in our grid. We can plot these directions together using
the quiver routine from matplotlib.pyplot:

fig, ax = plt.subplots()

ax.quiver (P, W, dp, dw)

ax.set title("Population dynamics for two competing
species")

ax.set xlabel ("P")

ax.set_ylabel ("W")

Plotting the result of these commands now gives us Figure 3.3, which gives a global picture of
how solutions evolve:
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Population dynamics of two competing species
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Figure 3.3 — A quiver plot showing the population dynamics of two competing species

To understand a solution more specifically, we need some initial conditions so that we can use
the solve ivp routine described in the previous recipe.

Since we have two equations, our initial conditions will have two values. (Recall in the Solving
simple differential equations numerically recipe, we saw that the initial condition provided to
solve_ivp needs to be a NumPy array.) Let’s consider the initial values P(0) = 85 and
W(0) = 40. We define these in a NumPy array, being careful to place them in the correct order:

initial conditions = np.array (I[85, 40])

Now, we can use solve ivp from the scipy. integrate module. We need to provide

the max step keyword argument to make sure that we have enough points in the solution
to give a smooth solution curve:

from scipy import integrate
t range = (0.0, 5.0)

sol = integrate.solve ivp(predator prey system,

t_range,
initial conditions,

max_step=0.01)
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7.

Let’s plot this solution on our existing figure to show how this specific solution relates to the
direction plot we have already produced. We also plot the initial condition at the same time:
ax.plot (initial conditions([0],
initial conditions[1], "ko")

ax.plot(sol.y [0, :1, sol.yI[1l, :1, "k", linewidth=0.5)
P Y Y

The result of this is shown in Figure 3.4:

Population dynamics for two competing species
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Figure 3.4 - Solution trajectory plotted over a quiver plot showing the general behavior

We can see that the trajectory plotted is a closed loop. This means that the populations have a stable
and periodic relationship. This is a common pattern when solving these equations.

How it works...

The method used for a system of ODEs is exactly the same as for a single ODE. We start by writing
the system of equations as a single vector differential equation:

dy
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This can then be solved using a time-stepping method as though y were a simple scalar value.

The technique of plotting the directional arrows on a plane using the quiver routine is a quick
and easy way of learning how a system might evolve from a given state. The derivative of a function
represents the gradient of the curve (x,u(x)), and so a differential equation describes the gradient of
the solution function at position y and time ¢. A system of equations describes the gradient of separate
solution functions at a given position y and time t. Of course, the position is now a two-dimensional
point, so when we plot the gradient at a point, we represent this as an arrow that starts at the point,
in the direction of the gradient. The length of the arrow represents the size of the gradient; the longer
the arrow, the faster the solution curve will move in that direction.

When we plot the solution trajectory on top of this direction field, we can see that the curve (starting at
the point) follows the direction indicated by the arrows. The behavior shown by the solution trajectory
is a limit cycle, where the solution for each variable is periodic as the two species’ populations grow
or decline. This description of the behavior is perhaps clearer if we plot each population against time,
as seen in Figure 3.5. What is not immediately obvious from Figure 3.4 is that the solution trajectory
loops around several times, but this is clearly shown in Figure 3.5:

Populations against time
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Population
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30 A

Figure 3.5 - Plots of populations P and W against time

The periodic relationship described previously is clear in Figure 3.5. Moreover, we can see the lag
between the peak populations of the two species. Species W experiences peak population approximately
0.3 time periods after species P.
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There’s more...

The technique of analyzing a system of ODEs by plotting variables against one another, starting at
various initial conditions, is called phase space (plane) analysis. In this recipe, we used the quiver
plotting routine to quickly generate an approximation of the phase plane for a system of differential
equations. By analyzing the phase plane of a system of differential equations, we can identify different
local and global characteristics of the solution, such as limit cycles.

Solving partial differential equations numerically

Partial differential equations are differential equations that involve partial derivatives of functions in
two or more variables, as opposed to ordinary derivatives in only a single variable. Partial differential
equations are a vast topic, and could easily fill a series of books. A typical example of a partial differential
equation is the (one-dimensional) heat equation:

ou  0°u t.x)
E—aﬁ+f , X

Here, a is a positive constant and f (¢, x) is a function. The solution to this partial differential equation
is a function u(t, x), which represents the temperature of a rod, occupying the x range 0 < x <L, at
a given time t > 0. To keep things simple, we will take f(t,x) = 0, which amounts to saying that no
heating/cooling is applied to the system, @ = 1, and L = 2. In practice, we can rescale the problem to
fix the constant a, so this is not a restrictive problem. In this example, we will use boundary conditions:

u(t,0)=u(t,L)=0 (t>0)

These are equivalent to saying that the ends of the rod are held at the constant temperature 0. We will
also use the initial temperature profile:

T
u(0,x) = 3sin (Ex) (0<x<2)

This initial temperature profile describes a smooth curve between the values of 0 and 2 that peaks at

a value of 3, which might be the result of heating the rod at the center to a temperature of 3.

We're going to use a method called finite differences, where we divide the rod into a number of equal
segments and the time range into a number of discrete steps. We then compute approximations for
the solution at each of the segments and each time step.

In this recipe, we will use finite differences to solve a simple partial differential equation.
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Getting ready

For this recipe, we will need the NumPy and Matplotlib packages, imported as np and p1t, as usual.
We also need to import the mplot3d module from mpl toolkits since we will be producing
a 3D plot:

from mpl toolkits import mplot3d

We will also need some modules from the SciPy package.

How to do it...
In the following steps, we work through solving the heat equation using finite differences:

1. Let’s first create variables that represent the physical constraints of the system—the extent of
the bar and the value of a:

alpha =1
x0 = 0 # Left hand x limit
XL = 2 # Right hand x limit

2. We first divide the x range into N equal intervals—we take N = 10 for this example—using
N + 1 points. We can use the 1inspace routine from NumPy to generate these points. We
also need the common length of each interval h:

N = 10
X = np.linspace(x0, xL, N+1)
h = (xL - x0) / N

3. Next, we need to set up the steps in the time direction. We take a slightly different approach
here; we set the time step size k and the number of steps (implicitly making the assumption
that we start at time 0):

k =0.01

steps = 100

t = np.array([i*k for i in range(steps+1)])

4. In order for the method to behave properly, we must have the following formula:

ak<1
h? "2
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Otherwise, the system can become unstable. We store the left-hand side of this in a variable
for use in step 5, and use an assertion to check that this inequality holds:
r = alpha*k / h**2

assert r < 0.5, f"Must have r < 0.5, currently r={r}"

Now, we can construct a matrix that holds the coefficients from the finite difference scheme.
To do this, we use the diags routine from the scipy . sparse module to create a sparse,
tridiagonal matrix:

from scipy import sparse

diag = [1, *(1-2*r for _ in range(N-1)), 1]
abv_diag = [0, *(r for _ in range(N-1))]
blw diag = [*(r for _ in range(N-1)), O]

A = sparse.diags([blw diag, diag, abv diagl, (-1, 0, 1),
shape= (N+1, N+1), dtype=np.floaté4,

format="csr")
Next, we create a blank matrix that will hold the solution:
u = np.zeros((steps+l, N+1), dtype=np.floaté4)

We need to add the initial profile to the first row. The best way to do this is to create a function
that holds the initial profile and store the result of evaluating this function on the x array in
the matrix u that we just created:

def initial profile(x):

return 3*np.sin(np.pi*x/2)

ul0, :] = initial profile(x)

Now, we can simply loop through each step, computing the next row of the matrix u by
multiplying A and the previous row:

for i in range (steps) :
uli+l, :1 = A @ uli, :]
Finally, to visualize the solution we have just computed, we can plot the solution as a surface
using Matplotlib:
X, T = np.meshgrid(x, t)
fig = plt.figure()
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ax = fig.add subplot (projection="3d")

ax.plot surface(T, X, u, cmap="gray")

ax.set _title("Solution of the heat equation")
ax.set xlabel ("t")

ax.set ylabel ("x")

ax.set zlabel ("u")

The result of this is the surface plot shown in Figure 3.6:

Solution of the heat equation

Figure 3.6 -Numerical solution of the heat equation over the range 0 < x < 2

Along the x axis, we can see that the overall shape is similar to the shape of the initial profile
but becomes flatter as time progresses. Along the t axis, the surface exhibits the exponential
decay that is characteristic of cooling systems.

How it works...

The finite difference method works by replacing each of the derivatives with a simple fraction that
involves only the value of the function, which we can estimate. To implement this method, we first
break down the spatial range and time range into a number of discrete intervals, separated by mesh
points. This process is called discretization. Then, we use the differential equation and the initial
conditions and boundary conditions to form successive approximations, in a manner very similar
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to the time-stepping methods used by the solve ivp routine in the Solving simple differential
equations numerically recipe.

In order to solve a partial differential equation such as the heat equation, we need at least three pieces
of information. Usually, for the heat equation, this will come in the form of boundary conditions for
the spatial dimension, which tell us what the behavior is at either end of the rod, and initial conditions
for the time dimension, which is the initial temperature profile over the rod.

The finite difference scheme described previously is usually referred to as the forward time cen (FTCS)
scheme, since we use the forward finite difference to estimate the time derivative and the central finite
difference to estimate the (second-order) spatial derivative. The formula for the first-order finite
difference approximation is shown here:

ou B u(t+k,x) —u(t,x)
at k

Similarly, the second-order approximation is given by the following formula:

*u  u(t,x+h) —2u(t,x) + u(t,x — h)
ax? h?

Substituting these approximations into the heat equation, and using the approximation u; ; for the
value of u(t;,x;) after j time steps at the i spatial point, we get this:

J+1 _ Y | Jj
u; Ui _ aui+1 2up +u;_y

k h?

This can be rearranged to obtain the following formula:

ak
h?

j+1_ak j ak j
i —ﬁui+1+(1—2ﬁ u; +

ul_y

Roughly speaking, this equation says that the next temperature at a given point depends on the
surrounding temperatures at the previous time. This also shows why the condition on the r value is
necessary; if the condition does not hold, the middle term on the right-hand side will be negative.

We can write this system of equations in matrix form:
Wl = Aw

Here, 1/ is a vector containing the approximation u;j and matrix A, which was defined in step 4.
This matrix is tridiagonal, which means the nonzero entries appear on, or adjacent to, the leading
diagonal. We use the diag routine from the SciPy sparse module, which is a utility for defining
these kinds of matrices. This is very similar to the process described in the Solving equations recipe
of this chapter. The first and last rows of this matrix have zeros, except in the top left and bottom
right, respectively, that represent the (non-changing) boundary conditions. The other rows have
coeflicients that are given by the finite difference approximations for the derivatives on either side of
the differential equation. We first create diagonal entries and entries above and below the diagonal,
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and then we use the diags routine to create a sparse matrix. The matrix should have N + 1 rows
and columns, to match the number of mesh points, and we set the data type as double-precision floats
and compressed sparse row (CSR) format.

The initial profile gives us the vector u, and from this first point, we can compute each subsequent
time step by simply performing a matrix multiplication, as we saw in step 7.

There’s more...

The method we describe here is rather crude since the approximation can become unstable, as we
mentioned, if the relative sizes of time steps and spatial steps are not carefully controlled. This method
is explicit since each time step is computed explicitly using only information from the previous time
step. There are also implicit methods, which give a system of equations that can be solved to obtain the
next time step. Different schemes have different characteristics in terms of the stability of the solution.

When the function f(t,x) is not 0, we can easily accommodate this change by using the
following assignment:

Wt = AW + f(t;, %)

Here, the function is suitably vectorized to make this formula valid. In terms of the code used to
solve the problem, we need only include the definition of the function and then change the loop of
the solution, as follows:

for 1 in range (steps) :
uli+l, :] = A @ uli, :1 + £(t[1], x)

Physically, this function represents an external heat source (or sink) at each point along the rod. This
may change over time, which is why, in general, the function should have both ¢ and x as arguments
(though they need not both be used).

The boundary conditions we gave in this example represent the ends of the rod being kept at a constant
temperature of 0. These kinds of boundary conditions are sometimes called Dirichlet boundary
conditions. There are also Neumann boundary conditions, where the derivative of the function u is

given at the boundary. For example, we might have been given the following boundary conditions:

ou ou
— =—0 (L) =
ox (,0) ox t1)=0

This could be interpreted physically as the ends of the rod being insulated so that heat cannot escape
through the endpoints. For such boundary conditions, we need to modify the matrix A slightly, but
otherwise, the method remains the same. Indeed, inserting an imaginary x value to the left of the
boundary and using the backward finite difference at the left-hand boundary (x = 0), we obtain
the following:
J j
0 =Z—Z(tj,0) =—u_1h Yo :uil = ué
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Using this in the second-order finite difference approximation, we get this:

This means that the first row of our matrix should contain 1 — 7, then 7, followed by 0. Using a similar
computation for the right-hand limit gives a similar final row of the matrix:

diag = [1-r, *(1-2*r for _ in range(N-1)), 1-r]
abv_diag = [*(r for _ in range(N))]

blw diag = [*(r for _ in range(N))]

A = sparse.diags([blw diag, diag, abv diag], (-1, 0, 1),
shape=(N+1, N+1), dtype=np.floaté64,

format="csr")

For more complex problems involving partial differential equations, it is probably more appropriate to
use a finite elements solver. Finite element methods use a more sophisticated approach for computing
solutions than partial differential equations, which are generally more flexible than the finite difference
method we saw in this recipe. However, this comes at the cost of requiring more setup that relies on
more advanced mathematical theory. On the other hand, there is a Python package for solving partial
differential equations using finite element methods such as FEniCS (fenicsproject . org). The
advantage of using packages such as FEniCS is that they are usually tuned for performance, which is
important when solving complex problems with high accuracy.

See also

The FEniCS documentation gives a good introduction to the finite element method and a number
of examples of using the package to solve various classic partial differential equations. A more
comprehensive introduction to the method and the theory is given in the following book: Johnson,
C. (2009). Numerical solution of partial differential equations by the finite element method. Mineola,
N.Y.: Dover Publications.

For more details on how to produce three-dimensional surface plots using Matplotlib, see the Surface
and contour plots recipe from Chapter 2, Mathematical Plotting with Matplotlib.

Using discrete Fourier transforms for signal processing

One of the most useful tools coming from calculus is the Fourier transform (FT). Roughly speaking,
the FT changes the representation, in a reversible way, of certain functions. This change of representation
is particularly useful in dealing with signals represented as a function of time. In this instance, the FT
takes the signal and represents it as a function of frequency; we might describe this as transforming
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from signal space to frequency space. This can be used to identify the frequencies present in a signal
for identification and other processing. In practice, we will usually have a discrete sample of a signal,
so we have to use the discrete Fourier transform (DFT) to perform this kind of analysis. Fortunately,
there is a computationally efficient algorithm, called the FFT, for applying the DFT to a sample.

We will follow a common process for filtering a noisy signal using the FFT. The first step is to apply the
FFT and use the data to compute the power spectral density (PSD) of the signal. Then, we identify
peaks and filter out the frequencies that do not contribute a sufficiently large amount to the signal.
Then, we apply the inverse FFT to obtain the filtered signal.

In this recipe, we use the FFT to analyze a sample of a signal and identify the frequencies present and

clean the noise from the signal.

Getting ready

For this recipe, we will only need the NumPy and Matplotlib packages imported as np and plt, as
usual. We will need an instance of the default random number generator, created as follows:

rng = np.random.default rng(12345)

Now, let’s see how to use the DFT.

How to do it...
Follow these instructions to use the FFT to process a noisy signal:
1. We define a function that will generate our underlying signal:

def signal(t, freq 1=4.0, freg 2=7.0):
return np.sin(freq 1 * 2 * np.pi * t) + np.sin(

freg 2 * 2 * np.pi * t)

2. Next, we create our sample signal by adding some Gaussian noise to the underlying signal.
We also create an array that holds the true signal at the sample ¢ values for convenience later:

sample size = 2**7 # 128

sample t = np.linspace (0, 4, sample size)

sample y = signal (sample t) + rng.standard normal (
sample size)

sample d = 4./ (sample size - 1) # Spacing for linspace
array

true signal = signal (sample_ t)
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We use the £ £t module from NumPy to compute DFTs. We import this from NumPy before
we start our analysis:

from numpy import fft

To see what the noisy signal looks like, we can plot the sample signal points with the true
signal superimposed:

figl, axl = plt.subplots/()

figl, axl

axl

axl

axl

axl.
.set_ylabel ("Amplitude")

axl

axl

plt.subplots ()

.plot (sample t, sample y, "k.",

label="Noisy signal")

.plot (sample t, true signal, "k--",

label="True signal")

.set_title("Sample signal with noise")

set xlabel ("Time")

.legend ()

The plot created here is shown in Figure 3.7. As we can see, the noisy signal does not bear much
resemblance to the true signal (shown with the dashed line):
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Figure 3.7 — Noisy signal sample with true signal superimposed
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5.  Now, we will use the DFT to extract the frequencies that are present in the sample signal. The
fft routine in the ££t module performs the DFT:

spectrum = fft.fft (sample y)

6. 'The ££t module provides a routine for constructing the appropriate frequency values called
fftfreq. For convenience, we also generate an array containing the integers at which the
positive frequencies occur:

freq = fft.fftfreg(sample size, sample d)
pos_freq i = np.arange(l, sample size//2, dtype=int)

7. Next, compute the PSD of the signal, as follows:

psd = np.abs (spectrum[pos freq i])**2 + np.abs(

spectrum[-pos_ freq i]) **2

8.  Now, we can plot the PSD of the signal for the positive frequencies and use this plot to
identify frequencies:

fig2, ax2 = plt.subplots()

ax2.plot (freq[pos freq il, psd, "k")
ax2.set title("PSD of the noisy signal")
ax2.set xlabel ("Frequency")

ax2.set _ylabel ("Density")

The result can be seen in Figure 3.8. We can see in this diagram that there are spikes at roughly 4 and
7, which are the frequencies of the signal that we defined earlier:

PSD of the noisy signal
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Figure 3.8 — PSD of a signal generated using the FFT
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9. We can identify these two frequencies to try to reconstruct the true signal from the noisy
sample. All of the minor peaks that appear are not larger than 2,000, so we can use this as a
cut-off value for the filter. Let’s now extract from the list of all positive frequency indices the
(hopefully 2) indices that correspond to the peaks above 2,000 in the PSD:

filtered = pos freq i[psd > 2e3]

10. Next, we create a new, clean spectrum that contains only the frequencies that we have extracted
from the noisy signal. We do this by creating an array that contains only 0, and then copying
the value of spectrum from those indices that correspond to the filtered frequencies and
the negatives thereof:

new_spec = np.zeros_like (spectrum)
new_spec [filtered] = spectrum[filtered]

new spec|[-filtered] = spectrum[-filtered]

11. Now, we use the inverse FFT (using the 1 £ £t routine) to transform this clean spectrum back
to the time domain of the original sample. We take the real part using the real routine from
NumPy to eliminate the erroneous imaginary parts:

new sample = np.real (fft.ifft (new spec))
12. Finally, we plot this filtered signal over the true signal and compare the results:

fig3, ax3 = plt.subplots()

ax3.plot (sample t, true signal, color="#8c8c8c",
linewidth=1.5, label="True signal")

ax3.plot (sample t, new_sample, "k--",
label="Filtered signal")

ax3.legend ()

ax3.set title("Plot comparing filtered signal and true

signal™")

ax3.set xlabel ("Time")

ax3.set ylabel ("Amplitude")

The result of step 11 is shown in Figure 3.9. We can see that the filtered signal closely matches
the true signal, except for some small discrepancies:
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Plot comparing filtered signal and true signal
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Figure 3.9 - Filtered signal generated using FFTs superimposed over the true signal

We can see in Figure 3.9 that the filtered signal (dashed line) fits fairly closely over the true signal
(lighter solid line). It captures most (but not all) of the oscillations of the true signal.

How it works...

The FT of a function f(t) is given by the following integral:

feo =] wf (t)e=2mxt dt

The DFT is given by the following integral:
N-1
fu=Y fie2WkW/N forn=01,..,N—1
k=0

Here, the fk values are the sample values as complex numbers. The DFT can be computed using the
preceding formula, but in practice, this is not efficient. Computing using this formula is 0(N?). The FFT
algorithm improves the complexity to O(N log N), which is significantly better. The book Numerical
Recipes (full bibliographic details given in the Further reading section) gives a very good description
of the FFT algorithm and the DFT.

We will apply the DFT to a sample generated from a known signal (with known frequency modes)
so that we can see the connection between the results we obtain and the original signal. To keep this
signal simple, we created a signal that has only two frequency components with values 4 and 7. From
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this signal, we generated a sample that we analyzed. Because of the way the FFT works, it is best if the
sample has a size that is a power of 2; if this isn’t the case, we can pad the sample with zero elements
to make this the case. We add some Gaussian noise to the sample signal, which takes the form of a
normally distributed random number.

The array returned by the £ £t routine contains N + 1 elements, where N is the sample size. The
element that index 0 corresponds to is the 0 frequency or DC shift. The next N /2elements are the values
corresponding to the positive frequencies, and the final N/2 elements are the values corresponding
to the negative frequencies. The actual values of the frequencies are determined by the number of
sampled points N and the sample spacing, which, in this example, is stored in sample_d.

The PSD at the frequency w is given by the following formula:
PSD(w) = |H(w)I? + [H(-w)|?

Here, H(w) represents the FT of the signal at frequency w. The PSD measures the contribution of
each frequency to the overall signal, which is why we see peaks at approximately 4 and 7. Since Python
indexing allows us to use negative indices for elements starting from the end of the sequence, we can
use the positive index array to get both the positive and negative frequency elements from spectrum.

In step 9, we identified the indices of the two frequencies that peak above 2,000 on the plot. The
frequencies that correspond to these indices are 3.984375 and 6.97265625, which are not exactly equal to
4 and 7 but are very close. The reason for this discrepancy is the fact that we have sampled a continuous
signal using a finite number of points. (Using more points will, of course, yield better approximations.)

In step 11, we took the real part of the data returned from the inverse FFT. This is because, technically
speaking, the FFT works with complex data. Since our data contained only real data, we expect that
this new signal should also contain only real data. However, there will be some small errors made,
meaning that the results are not totally real. We can remedy this by taking the real part of the inverse
FFT. This is appropriate because we can see that the imaginary parts are very small.

We can see in Figure 3.9 that the filtered signal very closely matches the true signal, but not exactly.
This is because, as mentioned previously, we are approximating a continuous signal with a relatively
small sample.

There’s more...

Signal processing in a production setting would probably make use of a specialized package, such
as the signal module from scipy, or some lower-level code or hardware to perform filtering or
cleaning of a signal. This recipe should be taken as more of a demonstration of the use of FFT as a
tool for working with data sampled from some kind of underlying periodic structure (the signal).
FFTs are useful for solving partial differential equations, such as the heat equation seen in the Solving
partial differential equations numerically recipe.
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See also

More information about random numbers and the normal distribution (Gaussian) can be found in
Chapter 4, Working with Randomness and Probability.

Automatic differentiation and calculus using JAX

JAX is a linear algebra and automatic differentiation framework developed by Google for ML. It
combines the capabilities of Autograd and its Accelerated Linear Algebra (XLA) optimizing compiler
for linear algebra and ML. In particular, it allows us to easily construct complex functions, with
automatic gradient computation, that can be run on Graphics Processing Units (GPUs) or Tensor
Processing Units (TPUs). On top of all of this, it is relatively simple to use. In this recipe, we see how
to make use of the JAX just-in-time (JIT) compiler, get the gradient of a function, and make use of
different computation devices.

Getting ready

For this recipe, we need the JAX package installed. We will make use of the Matplotlib package, with
the pyplot interface imported as plt as usual. Since were going to plot a function of two variables,
we also need to import the mplot3d module from the mpl toolkits package.

How to do it...

The following steps show how to define a JIT-compiled function using JAX, compute the gradient of
this function, and use a GPU or TPU to perform calculations:

First, we need to import the parts of the JAX library that we will use:

import jax.numpy as jnp

from jax import grad, jit, vmap

Now, we can define our function, with the @j it decorator applied to tell JAX to JIT compile this
function where necessary:

@jit
def f£(x, y):
return jnp.exp (- (x**2 +y**2))

Next, we define a grid and plot our function:

t = jnp.linspace(-1.0, 1.0)
x, y = jnp.meshgrid(t, t)
fig = plt.figure()
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ax = fig.add subplot (projection="3d")
ax.plot_surface(x, y, f(x, y), cmap="gray")
ax.set title("Plot of the function f(x, y)")
ax.set xlabel ("x")

ax.set_ylabel ("y")

ax.set zlabel ("z")

The resulting plot is shown in Figure 3.10:

Plot of the function f(x, y)
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Figure 3.10 - Plot of a function of two variables computed using JAX

Now, we use the grad function (and the j it decorator) to define two new functions that are the
partial derivatives with respect to the first and second arguments:

fx = jit(grad(f, 0)) # x partial derivative
fy

jit(grad(f, 1)) # y partial derivative
To quickly check that these functions are working, we print the values of these functions at (1, —1):

print (fx(1., -1.), fy(1., -1.))
# -0.27067056 0.27067056

To finish off, let’s plot the partial derivative with respect to X:

zx = vmap (fx) (x.ravel (), y.ravel()) .reshape (x.shape)

figpd = plt.figure()
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axpd = figpd.add subplot (projection="3d")

axpd.plot surface(x, y, zx, cmap="gray")

axpd.set _title("Partial derivative with respect to x")
axpd.set xlabel ("x")

axpd.set ylabel ("y")

axpd.set zlabel ("z")

The partial derivative plot is shown in Figure 3.11:

Partial derivative with respect to x

X 05

1.0 -1.0

Figure 3.11 - Plot of the partial derivative of the function computed using autodiff in JAX

A quick check confirms that this is indeed a plot of the partial derivative with respect to X of the
function f(x,y).

How it works...

JAX is an interesting mix of a JIT compiler, with an emphasis on fast linear algebra operations, combined
with the power of Autograd, with support for acceleration devices (and several other features that we
don’t use here). The JIT compilation works by tracing the linear algebra operations performed on the
JAX version of the NumPy library and constructing an intermediate representation of the function in
a form that can be understood by the XLA compiler. For any of this to work, you need to make sure
that you only use the NumPy module from JAX (jax . numpy) rather than the real NumPy. JAX also
provides a version of the SciPy package.



Automatic differentiation and calculus using JAX

One caveat of this approach is that the functions must be pure: they should not have side effects beyond
the return value, and should not depend on any data not passed by arguments. It might still work if
this is not the case, but you might get unexpected results—remember that the Python version of the
function might only be executed once. Something else to consider is that, unlike NumPy arrays, JAX
NumPy arrays cannot be updated in place using index notation and assignment. This, and several
other current important caveats, are listed in the JAX documentation (refer to the following section,
See also...).

The jit decorator instructs JAX to construct compiled versions of the function where appropriate.
It might actually produce several compiled versions depending on the types of arguments provided
(for example, a different compiled function for scalar values versus array values).

The grad function takes a function and produces a new function that computes the derivative with
respect to the input variable. If the function has more than one input variable, then this is the partial
derivative with respect to the first argument. The second optional argument, argnums, is used to
specify which derivatives to compute. In the recipe, we have a function of two variables and used
thegrad (f, 0) andgrad(f, 1) commands to get the functions representing the two partial
derivatives of the £ function.

Most of the functions from jax . numpy have the same interface as from numpy—we see a few of
these functions in the recipe. The difference is that JAX versions produce arrays that are stored correctly
for the accelerator device if one is used. We can use these arrays in contexts that expect NumPy arrays,
such as plotting functions, without any issues.

In step 5 of the recipe, we printed the value of the two partial derivatives. Notice that we used the
values 1. and -1.. It is important to note that using the integer equivalent 1 and -1 would have
failed because of the way JAX handles floating-point numbers. (Since most GPU devices do not handle
double-precision floating-point numbers well, the default float type in JAX is £1loat32.)

In step 6, we computed the derivative over the same region as the function. To do this, we had to
flatten the x and y arrays and then use the vmap function to vectorize the £x derivative before
reshaping the result. There is a complication in the way that grad works, which means that £x does
not vectorize in the way we expect.

There’s more...

JAX is designed to scale well as needs change, so lots of the components are designed with concurrency
in mind. For instance, the random numbers module provides a random number generator that is
capable of splitting effectively so that computations can run concurrently without changing the
outcome. This wouldn’t be possible, for example, with a Mersenne Twister random generator, which
would potentially produce different answers depending on the number of threads used because it
doesn’t split in a statistically sound way.
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See also

Lots more information can be found in the JAX documentation:

https://jax.readthedocs.io/en/latest/

Solving differential equations using JAX

JAX provides a set of tools for solving a wide array of problems. Solving differential equations—such
as initial value problems described in the Solving simple differential equations numerically recipe—
should be well within the capabilities of this library. The dif frax package provides various solvers
for differential equations leveraging the power and convenience of JAX.

In the earlier recipe, we solved a relatively simple first-order ODE. In this recipe, we're going to solve
a second-order ODE to illustrate the technique. A second-order ODE is a differential equation that
involves both the first and second derivatives of a function. To keep things simple, we're going to solve
a linear second-order ODE of the following form:

d’y dy

ez TP +ay

Here, y = y(x)is a function of x to be found. In particular, we're going to solve the following equation:
d?*y

dy
w—?)xza'F(l—X)y:O

The initial conditions are y(0) = 0 and y (0) = 3. (Note that this is a second-order differential
equation, so we need two initial conditions.)

Getting ready

Before we can start to solve this equation, we need to do some pen-and-paper work to reduce the
second-order equation to a system of first-order differential equations that can be solved numerically.
To do this, we make a substitution u = y and v = y . When we do this, we get a system like this:

du_

dx_v
d
—v=3x2v—(1—x)u

dx
We also get the initial conditions u(0) = 0 and v(0) =1,

For this recipe, we will need the di f frax package installed, along with JAX. As usual, we import
the Matplotlib pyplot interface under the alias p1t. We import jax . numpy under the alias jnp
and the dif frax package.


https://jax.readthedocs.io/en/latest/

Solving differential equations using JAX

How to do it...

The following steps show how to use JAX and the diffrax library to solve a second-order linear
differential equation:

First, we need to set up our function that represents the system of first-order ODEs we constructed
in the Getting ready section:

def f(x, y, args):
u=yl[...,0]
V:Y[---,l]

return jnp.array ([v, 3*x**2*v+ (1.-x)*ul])

Next, we set up the dif frax environment that we will use to solve the equation. We'll use the solver
recommended in the dif frax quickstart guide — see the See also section below for more details.
The setup is as follows:

term = diffrax.ODETerm(f)

solver = diffrax.Dopris ()

save at = diffrax.SaveAt (ts=jnp.linspace(0., 1.))
y0 = jnp.array([0., 1.]) # initial condition

Now, we use the diffegsolve routine from diffrax to solve the differential equation on the
range 0 < x < 1:

solution = diffrax.diffegsolve(term, solver, t0=0., tl=2.,

dt0=0.1, y0=y0, saveat=save at)
Now we have solved the equation, we need to extract the values for ¥ from the solut ion object:

X solution.ts

Yy

solution.ys[:, 0] # first column is y = u
Finally, we plot the results on a new figure:

fig, ax = plt.subplots()

ax.plot(x, vy, "k")

ax.set title("Plot of the solution to the second order ODE")
ax.set xlabel ("x")

ax.set _ylabel ("y")
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The resulting plot is shown in Figure 3.12:

Plot of the solution to the second order ODE
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Figure 3.12 — Numerical solution to a second-order linear ODE

We can see that when x is close to 0, the solution is approximately linear, but later on, the solution
becomes non-linear. (The x range might be too small to see the interesting behavior of this system.)

How it works...

diffraxisbuilt on top of JAX and provides various solvers for differential equations. In the recipe,
we used the Dormand-Prince 5(4) Dopri5 solver class, which is another example of a Runge-Kutta
method for solving ODEs similar to the Runge-Kutta-Fehlberg method we saw in an earlier recipe.

Behind the scenes, dif frax translates the ODE initial value problem into a controlled differential
equation (CDE), which it then solves. This makes di f f rax able to solve other kinds of differential
equations besides these simple ODEs shown here; one of the goals of the library is to provide tools
for numerically solving stochastic differential equations (SDEs). Since it is based on JAX, it should
be easy to integrate this into other JAX workflows. It also has support for backpropagation through
various adjoint methods.

See also

More information about the dif frax library and the methods it contains can be found in
the documentation:

https://docs.kidger.site/diffrax


https://docs.kidger.site/diffrax
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Further reading

Calculus is a very important part of every undergraduate mathematics course. There are a number of
excellent textbooks on calculus, including the classic textbook by Spivak and the more comprehensive

course by Adams and Essex:

o Spivak, M. (2006). Calculus. 3rd ed. Cambridge: Cambridge University Press.

o Adams, R. and Essex, C. (2018). Calculus: A Complete Course. 9th ed. Don Mills, Ont: Pearson.
A good source for numerical differentiation and integration is the classic Numerical Recipes book,

which gives a comprehensive description of how to solve many computational problems in C++,
including a summary of the theory:

o Press, W, Teukolsky, S., Vetterling, W. and Flannery, B. (2007). Numerical Recipes: The Art of
Scientific Computing. 3rd ed. Cambridge: Cambridge University Press.
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Working with Randomness
and Probability

In this chapter, we will discuss randomness and probability. We will start by briefly exploring the
fundamentals of probability by selecting elements from a set of data. Then, we will learn how to generate
(pseudo) random numbers using Python and NumPy, and how to generate samples according to a
specific probability distribution. We will conclude the chapter by looking at a number of advanced
topics covering random processes and Bayesian techniques and using Markov Chain Monte Carlo
(MCMC) methods to estimate the parameters of a simple model.

Probability is a quantification of the likelihood of a specific event occurring. We use probabilities
intuitively all of the time, although sometimes the formal theory can be quite counterintuitive. Probability
theory aims to describe the behavior of random variables whose value is not known, but where the
probabilities of the value of this random variable take some (range of) values that are known. These
probabilities are usually in the form of one of several probability distributions. Arguably, the most
famous probability distribution of this kind is normal distribution, which, for example, can describe
the spread of a certain characteristic over a large population.

We will see probability again in a more applied setting in Chapter 6, Working with Data and Statistics,
where we will discuss statistics. Here, we will put probability theory to use to quantify errors and build
a systematic theory of analyzing data.

In this chapter, we will cover the following recipes:

o Selecting items at random

o Generating random data

o Changing the random number generator

o Generating normally distributed random numbers

o Working with random processes

o Analyzing conversion rates with Bayesian techniques

o Estimating parameters with Monte Carlo simulations
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Technical requirements

For this chapter, we require the standard scientific Python packages: NumPy, Matplotlib, and SciPy.
We will also require the PyMC package for the final recipe. You can install this using your favorite
package manager, such as pip:

python3.10 -m pip install pymc

This command will install the most recent version of PyMC, which, at the time of writing, is 4.0.1. This
package provides facilities for probabilistic programming, which involves performing many calculations
driven by randomly generated data to understand the likely distribution of a solution to a problem.

Note

In the previous edition, the current version of PyMC was 3.9.2, but since then, PyMC version
4.0 was released and the name reverted to PyMC with this update rather than PyMC3.

The code for this chapter can be found in the Chapter 04 folder of the GitHub repository
athttps://github.com/PacktPublishing/Applying-Math-with-Python-2nd-
Edition/tree/main/Chapter%2004.

Selecting items at random

At the core of probability and randomness is the idea of selecting an item from some kind of collection.
As we know, the probability of selecting an item from a collection quantifies the likelihood of that item
being selected. Randomness describes the selection of items from a collection according to probabilities
without any additional bias. The opposite of a random selection might be described as a deterministic
selection. In general, it is very difficult to replicate a purely random process using a computer because
computers and their processing are inherently deterministic. However, we can generate sequences of
pseudorandom numbers that, when properly constructed, demonstrate a reasonable approximation
of randomness.

In this recipe, we will select items from a collection and learn about some of the key terminology
associated with probability and randomness that we will need throughout this chapter.

Getting ready

The Python Standard Library contains a module for generating (pseudo) random numbers called
random, but in this recipe and throughout this chapter, we will use the NumPy random module
instead. The routines in the NumPy random module can be used to generate arrays of random
numbers and are slightly more flexible than their standard library counterparts. As usual, we import
NumPy under the np alias.


https://github.com/PacktPublishing/Applying-Math-with-Python-2nd-Edition/tree/main/Chapter%2004
https://github.com/PacktPublishing/Applying-Math-with-Python-2nd-Edition/tree/main/Chapter%2004

Selecting items at random

Before we can proceed, we need to fix some terminology. A sample space is a set (a collection with no
repeated elements) and an event is a subset of the sample space. The probability that an event, 4, occurs
is denoted as P(4), and is a number between 0 and 1. A probability of 0 indicates that the event can
never occur, while a probability of 1 indicates that an event will certainly occur. The probability of the
whole sample space must be 1.

When the sample space is discrete, then probabilities are just numbers between 0 and 1 associated with
each of the elements, where the sum of all these numbers is 1. This gives meaning to the probability
of selecting a single item (an event consisting of a single element) from a collection. We will consider
methods for selecting items from a discrete collection here and deal with the continuous case in the
Generating normally distributed random numbers recipe.

How to do it...
Perform the following steps to select items at random from a container:

1. The first step is to set up the random number generator. For the moment, we will use the default
random number generator for NumPy, which is recommended in most cases. We can do this
by calling the default rng routine from the NumPy random module, which will return
an instance of a random number generator. We will usually call this function without a seed,
but for this recipe, we will add a 12345 seed so that our results are repeatable:

rng = np.random.default rng(12345)
# changing seed for repeatability

2. Next, we need to create the data and probabilities that we will select from. This step can be skipped
if you already have the data stored or if you want to select elements with equal probabilities:

data = np.arange(15)
probabilities = np.array(
[0.3, 0.2, 0.1, 0.05, 0.05, 0.05, 0.05, 0.025,
0.025, 0.025, 0.025, 0.025, 0.025, 0.025, 0.025]
)

As a quick sanity test, we can use an assertion to check that these probabilities do indeed sum to 1:

assert round(sum(probabilities), 10) == 1.0,

"Probabilities must sum to 1"
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Now, we can use the choice method on the random number generator, rng, to select the
samples from data according to the probabilities just created. For this selection, we want to
turn the replacement on, so calling the method multiple times can select from the entire data:

selected = rng.choice(data,p=probabilities,replace=True)
# 0

To select multiple items from data, we can also supply the size argument, which specifies
the shape of the array to be selected. This plays the same role as the shape keyword argument
with many of the other NumPy array creation routines. The argument given to size can be
either an integer or a tuple of integers:

selected array = rng.choice(data,
p=probabilities, replace=True, size=(5, 5))

#array ([[ 1, 6, 4, 1, 11,

# [ 2, 0, 4, 12, 0],
# [12, 4, 0, 1, 10],
# L[4, 1, 5, @, @],

# [ 0, 1, 1, 0, 711)

We can see that there appear to be more Os and 1s in the sampled data, for which we assigned probabilities
of 0.3 and 0.2 respectively. Interestingly, only one 2 appears, and yet we have two 12s, despite the
probability of a 12 appearing being half that of a 2. This is not a problem; a larger probability does
not guarantee that individual numbers will appear in a sample, only that wed expect to see roughly
twice as many 2s as 12s in a large number of samples.

How it works...

The default_rng routine creates a new Pseudorandom Number Generator (PRNG) instance
(with or without a seed) that can be used to generate random numbers or, as we saw in the recipe,
select items at random from predefined data. NumPy also has an implicit state-based interface for
generating random numbers using routines directly from the random module. However, it is generally
advisable to create the generator explicitly, using default rng, or create a Generator instance
yourself. Being more explicit in this way is more Pythonic and should lead to more reproducible
results (in some sense).

A seed is a value that is passed to a random number generator in order to generate the values. The
generator generates a sequence of numbers in a completely deterministic way based only on the seed.
This means that two instances of the same PRNGs provided with the same seed will generate the same
sequence of random numbers. If no seed is provided, the generators typically produce a seed that
depends on the user’s system.



Generating random data

The Generator class from NumPy is a wrapper around a low-level pseudorandom bit generator,
which is where the random numbers are actually generated. In recent versions of NumPy, the default
PRNG algorithm is the 128-bit permuted congruential generator. By contrast, Python’s built-in random
module uses a Mersenne Twister PRNG. More information about the different options for PRNG
algorithms is given in the Changing the random number generator recipe.

The choice method on a Generator instance performs selections according to random numbers
generated by the underlying Bi tGenerator. The optional p keyword argument specifies the
probability associated with each item from the data provided. If this argument isn’t provided, then a
uniform probability is assumed, where each item has an equal probability of being selected. The replace
keyword argument specifies whether selections should be made with or without a replacement. We
turned replacement on so that the same element can be selected more than once. The choice method
uses the random numbers given by the generator to make the selections, which means that two PRNGs
of the same type using the same seed will select the same items when using the choice method.

This process of choosing points from a bag of possible choices is a good way to think about discrete
probability. This is where we assign a certain weight — for example, 1 over the number of points -
to each of a finite number of points, where the sum of these weights is 1. Sampling is the process
of choosing points at random according to the weights assigned by the probability (we can assign
discrete probabilities to infinite sets too, but this is more complicated because of the constraint that
the weights must sum to 1 and this is also impractical for computation).

There’s more...

The choice method can also be used to create random samples of a given size by passing
replace=False as an argument. This guarantees the selection of distinct items from the data,
which is good for generating a random sample. This might be used, for example, to select users to
test a new version of an interface from the whole group of users; most sample statistical techniques
rely on randomly selected samples.

Generating random data

Many tasks involve generating large quantities of random numbers, which, in their most basic form,
are either integers or floating-point numbers (double-precision) lying within the range 0 < x < 1.
Ideally, these numbers should be selected uniformly, so that if we draw a large number of these
numbers, they are distributed roughly evenly across the range 0 < x < 1.

In this recipe, we will see how to generate large quantities of random integers and floating-point
numbers using NumPy, and show the distribution of these numbers using a histogram.
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Getting ready

Before we start, we need to import the default rng routine from the NumPy random module
and create an instance of the default random number generator to use in the recipe:

from numpy.random import default rng

rng = default rng(12345) # changing seed for reproducibility

We have discussed this process in the Selecting items at random recipe.

We also import the Matplotlib pyplot module under the plt alias.

How to do it...

Perform the following steps to generate uniform random data and plot a histogram to understand
its distribution:

1. To generate random floating-point numbers between 0 and 1, including 0 but not 1, we use
the random method on the rng object:

random floats = rng.random(size=(5, 5))

array([[0.22733602, 0.31675834, 0.79736546, 0.67625467,
.39110955],

[0.33281393, 0.59830875, 0.18673419,
.67275604, 0.94180287],

#
0
#
0
# [0.24824571, 0.94888115, 0.66723745,
0.09589794, 0.44183967],

#

0

#

0

[0.88647992, 0.6974535 , 0.32647286,
.73392816, 0.22013496],

[0.08159457, 0.1598956 , 0.34010018,
.46519315, 0.26642103]1])

2. To generate random integers, we use the integers method on the rng object. This will
return integers in the specified range:

random_ ints = rng.integers(l, 20, endpoint=True, size=10)
# array([1l2, 17, 10, 4, 1, 3, 2, 2, 3, 12])

3. To examine the distribution of the random floating-point numbers, we first need to generate a
large array of random numbers, just as we did in step 1. While this is not strictly necessary, a larger
sample will be able to show the distribution more clearly. We generate these numbers as follows:

dist = rng.random(size=1000)



Generating random data

4. To show the distribution of the numbers we have generated, we plot a histogram of the data:

fig, ax = plt.subplots/()
ax.hist (dist, color="k", alpha=0.6)
ax.set title("Histogram of random numbers")
ax.set xlabel ("Value")
ax.set ylabel ("Density")
The resulting plot is shown in Figure 4.1. As we can see, the data is roughly evenly distributed

across the whole range:

Histogram of random numbers
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Figure 4.1 - Histogram of randomly generated random numbers between 0 and 1

As the number of sampled points increases, we would expect these bars to “even out” and look more
and more like the flat line that we expect from a uniform distribution. Compare this to the same

histogram with 10,000 random points in Figure 4.2 here:
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Histogram of random numbers
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Figure 4.2 - Histogram of 10,000 uniformly distributed random numbers

We can see here that, although not totally flat, the distribution is much more even across the whole range.

How it works...

The Generator interface provides three simple methods for generating basic random numbers, not
including the choice method that we discussed in the Selecting items at random recipe. In addition
to the random method for generating random floating-point numbers and the integers method
for generating random integers, there is also a byt es method for generating raw random bytes.
Each of these methods calls a relevant method on the underlying Bi tGenerator instance. Each of
these methods also enables the data type of the generated numbers to be changed, for example, from
double- to single-precision floating-point numbers.

There’s more...

The integers method on the Generator class combines the functionality of the randint and
random_integers methods on the old RandomState interface through the addition of the
endpoint optional argument (in the old interface, the randint method excluded the upper endpoint,
whereas the random_integers method included the upper endpoint). All of the random data
generating methods on Generator allow the data type of the data they generate to be customized,
which was not possible using the old interface (this interface was introduced in NumPy 1.17).



Changing the random number generator

In Figure 4.1, we can see that the histogram of the data that we generated is approximately uniform
over the range 0 < x < 1. That s, all of the bars are approximately level (they are not completely level
due to the random nature of the data). This is what we expect from uniformly distributed random
numbers, such as those generated by the random method. We will explain distributions of random
numbers in greater detail in the Generating normally distributed random numbers recipe.

Changing the random number generator

The random module in NumPy provides several alternatives to the default PRNG, which uses a 128-bit
permutation congruential generator. While this is a good general-purpose random number generator,
it might not be sufficient for your particular needs. For example, this algorithm is very different from
the one used in Python’s internal random number generator. We will follow the guidelines for best
practice set out in the NumPy documentation for running repeatable but suitably random simulations.

In this recipe, we will show you how to change to an alternative PRNG and how to use seeds effectively
in your programs.

Getting ready

As usual, we import NumPy under the np alias. Since we will be using multiple items from the random
package, we import that module from NumPy, too, using the following code:

from numpy import random

You will need to select one of the alternative random number generators that are provided by NumPy
(or define your own; refer to the There’s more... section in this recipe). For this recipe, we will use the
MT1993 7 random number generator, which uses a Mersenne Twister-based algorithm like the one
used in Python’s internal random number generator.

How to do it...

The following steps show how to generate seeds and different random number generators in a
reproducible way:

1. We will generate a SeedSequence object that can reproducibly generate new seeds from a
given source of entropy. We can either provide our own entropy as an integer, very much like
how we provide the seed for default rng, or we can let Python gather entropy from the
operating system. We will pick the latter method here to demonstrate its use. For this, we do
not provide any additional arguments to create the SeedSequence object:

seed seq = random.SeedSequence ()

2. Now that we have the means to generate the seeds for random number generators for the rest
of the session, we log the entropy next so that we can reproduce this session later if necessary.
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The following is an example of what the entropy should look like; your results will inevitably
differ somewhat:

print (seed seqg.entropy)
# 9219863422733683567749127389169034574

3. Now, we can create the underlying BitGenerator instance that will provide the random
numbers for the wrapping Generator object:

bit gen = random.MT19937 (seed seq)

4. Next, we create the wrapping Generator object around this BitGenerator instance to
create a usable random number generator:

rng = random.Generator (bit gen)

Once created, you can use this random number generator as we have seen in any of the previous recipes.

How it works...

As mentioned in the Selecting items at random recipe, the Generator class is a wrapper around an
underlying BitGenerator that implements a given pseudorandom number algorithm. NumPy
provides several implementations of pseudorandom number algorithms through the various subclasses
of the BitGenerator class: PCG64 (default); MT19937 (as seen in this recipe); Philox; and
SFC64. These bit generators are implemented in Cython.

The PCG64 generator should provide high-performance random number generation with good
statistical quality (this might not be the case on 32-bit systems). The MT1993 7 generator is slower
than more modern PRNGs and does not produce random numbers with good statistical properties.
However, this is the random number generator algorithm that is used by the Python Standard Library
random module. The Philox generator is relatively slow but produces random numbers of very
high quality while the SFC64 generator is fast and of reasonably good quality, but doesn’t have as
good statistical properties as other generators.

The SeedSequence object created in this recipe is a means to create seeds for random number
generators in an independent and reproducible manner. In particular, this is useful if you need to
create independent random number generators for several parallel processes, but still need to be able
to reconstruct each session later to debug or inspect results. The entropy stored on this object is a
128-bit integer that was gathered from the operating system and serves as a source of random seeds.

The SeedSequence object allows us to create a separate random number generator for each
independent process or thread, which eliminates any data race problems that might make results
unpredictable. It also generates seed values that are very different from one another, which can help
avoid problems with some PRNGs (such as MT1993 7, which can produce very similar streams
with two similar 32-bit integer seed values). Obviously, having two independent random number
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generators producing the same or very similar values will be problematic when we are depending on
the independence of these values.

There’s more...

The BitGenerator class serves as a common interface for generators of raw random integers. The
classes mentioned previously are those that are implemented in NumPy with the BitGenerator
interface. You can also create your own BitGenerator subclasses, although this needs to be
implemented in Cython.

Note

Refer to the NumPy documentation at https: //numpy . org/devdocs/reference/
random/extending.html#new-bit-generators for more information.

Generating normally distributed random numbers

In the Generating random data recipe, we generated random floating-point numbers following a
uniform distribution between 0 and 1, but not including 1. However, in most cases where we require
random data, we need to follow one of several different distributions instead. Roughly speaking, a
distribution function is a function, f (x), that describes the probability that a random variable has a
value that is below x. In practical terms, the distribution describes the spread of the random data over
a range. In particular, if we create a histogram of data that follows a particular distribution, then it
should roughly resemble the graph of the distribution function. This is best seen by example.

One of the most common distributions is normal distribution, which appears frequently in statistics
and forms the basis for many statistical methods that we will see in Chapter 6, Working with Data and
Statistics. In this recipe, we will demonstrate how to generate data following normal distribution, and
plot a histogram of this data to see the shape of the distribution.

Getting ready

As in the Generating random data recipe, we import the default rng routine from the NumPy
random module and create a Generator instance with a seeded generator for demonstration purposes:

from numpy.random import default rng
rng = default rng(12345)

As usual, we import the Matplotlib pyplot module as p1t, and NumPy as np.
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How to do it...

In the following steps, we generate random data that follows a normal distribution:

1.

We use the normal method on our Generator instance to generate the random data
according to the normal distribution. The normal distribution has two parameters: location
and scale. There is also an optional size argument that specifies the shape of the generated
data (see the Generating random data recipe for more information on the size argument).
We generate an array of 10,000 values to get a reasonably sized sample:

mu = 5.0 # mean value
sigma = 3.0 # standard deviation

rands = rng.normal (loc=mu, scale=sigma, size=10000)

Next, we plot a histogram of this data. We have increased the number of bins in the histogram.
This isn’t strictly necessary, as the default number (10) is perfectly adequate, but it does show
the distribution slightly better:

fig, ax = plt.subplots()

ax.hist (rands, bins=20, color="k", alpha=0.6)

ax.set title("Histogram of normally distributed data")
ax.set xlabel ("Value")

ax.set ylabel ("Density")

Next, we create a function that will generate the expected density for a range of values. This is
given by multiplying the probability density function for normal distribution by the number
of samples (10,000):

def normal dist curve(x):
return 10000*np.exp (
-0.5* ((x-mu) /sigma) **2) / (sigma*np.sqgrt (2*np.pi))

Finally, we plot our expected distribution over the histogram of our data:

X _range = np.linspace(-5, 15)
y = normal dist curve (x_ range)

ax.plot (x_range, y, "k--")

The result is shown in Figure 4.3. We can see here that the distribution of our sampled data
closely follows the expected distribution from a normal distribution curve:
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Histogram of normally distributed data
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Figure 4.3 — Histogram of data drawn from a normal distribution, with the expected density overlaid

Again, if we took larger and larger samples, we'd expect that the roughness of the sample would begin
to smooth out and approach the expected density (shown as the dashed line in Figure 4.3).
How it works...

Normal distribution has a probability density function defined by the following formula:

£ =—=ew (-5 (1))

oV2m g

This is related to the normal distribution function, F(x), according to the following formula:

F(x) =f f(t) dt

This probability density function peaks at the mean value, which coincides with the location parameter,
and the width of the bell shape is determined by the scale parameter. We can see in Figure 4.3 that the
histogram of the data generated by the normal method on the Generator object fits the expected
distribution very closely.

The Generator class uses a 256-step ziggurat method to generate normally distributed random
data, which is fast compared to the Box-Muller or inverse CDF implementations that are also available
in NumPy.
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There’s more...

The normal distribution is one example of a continuous probability distribution, in that it is defined for
real numbers and the distribution function is defined by an integral (rather than a sum). An interesting
feature of normal distribution (and other continuous probability distributions) is that the probability
of selecting any given real number is 0. This is reasonable because it only makes sense to measure the
probability that a value selected in this distribution lies within a given range.

Normal distribution is important in statistics, mostly due to the central limit theorem. Roughly speaking,
this theorem states that sums of Independent and Identically Distributed (IID) random variables,
with a common mean and variance, are eventually like normal distribution with a common mean and
variance. This holds, regardless of the actual distribution of these random variables. This allows us to
use statistical tests based on normal distribution in many cases even if the actual distribution of the
variables is not necessarily normal (we do, however, need to be extremely cautious when appealing
to the central limit theorem).

There are many other continuous probability distributions aside from normal distribution. We have
already encountered uniform distribution over a range of 0 to 1. More generally, uniform distribution
over the range a < x < b has a probability density function given by the following equation:

f(x)=bia

Other common examples of continuous probability density functions include exponential distribution,
beta distribution, and gamma distribution. Each of these distributions has a corresponding method
on the Generator class that generates random data from that distribution. These are typically
named according to the name of the distribution, all in lowercase letters, so for the aforementioned
distributions, the corresponding methods are exponential, beta, and gamma. These distributions
each have one or more parameters, such as location and scale for normal distribution, that determine
the final shape of the distribution. You may need to consult the NumPy documentation (https://
numpy .org/doc/1.18/reference/random/generator.html#numpy.random.
Generator) or other sources to see what parameters are required for each distribution. The NumPy
documentation also lists the probability distributions from which random data can be generated.

Working with random processes

In this recipe, we will examine a simple example of a random process that models the number of bus
arrivals at a stop over time. This process is called a Poisson process. A Poisson process, N(t), has a
single parameter, A, which is usually called the infensity or rate, and the probability that N(t) takes
the value n at a given time t is given by the following formula:

(1"

P(N(t) =n) = o

exp(—At)
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This equation describes the probability that n buses have arrived by time t. Mathematically, this
equation means that N(t) has a Poisson distribution with the parameter At. There is, however, an easy
way to construct a Poisson process by taking sums of inter-arrival times that follow an exponential
distribution. For instance, let X; be the time between the (; — 1)-st arrival and the i -th arrival, which
are exponentially distributed with parameter A. Now, we take the following equation:

Tn=X1 +X2+"’+Xn

Here, the number N(¢) is the maximum 7 such that T,, < t. This is the construction that we will work

through in this recipe. We will also estimate the intensity of the process by taking the mean of the
inter-arrival times.

Getting ready

Before we start, we import the default rng routine from NumPy’s random module and create
a new random number generator with a seed for the purpose of demonstration:

from numpy.random import default rng
rng = default rng(12345)

In addition to the random number generator, we also import NumPy as np and the Matplotlib pyplot
module as p1t. We also need to have the SciPy package available.

How to do it...
The following steps show how to model the arrival of buses using a Poisson process:

1. Our first task is to create the sample inter-arrival times by sampling data from an exponential
distribution. The exponential method on the NumPy Generator class requires a scale
parameter, which is 1/A, where A is the rate. We choose a rate of 4, and create 50 sample
inter-arrival times:

rate = 4.0
inter arrival times = rng.exponential (

scale=1./rate, size=50)

2. Next, we compute the actual arrival times by using the accumulate method of the NumPy
add universal function. We also create an array containing the integers 0 to 49, representing
the number of arrivals at each point:

arrivals = np.add.accumulate (inter arrival times)

count = np.arange (50)
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3. Next, we plot the arrivals over time using the step plotting method:

figl, axl = plt.subplots()
axl.step(arrivals, count, where="post")
axl.set xlabel ("Time")

axl.set ylabel ("Number of arrivals")

axl.set title("Arrivals over time")

The result is shown in Figure 4.4, where the length of each horizontal line represents the
inter-arrival times:

Arrivals over time
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Figure 4.4 — Arrivals over time where inter-arrival times are exponentially distributed

4. Next, we define a function that will evaluate the probability distribution of the counts at a time,
which we will take as 1 here. This uses the formula for the Poisson distribution that we gave
in the introduction to this recipe:

def probability(events, time=1, param=rate) :
return ((param*time)**events/factorial (

events) ) *np.exp (- param*time)



Working with random processes 121

5. Now, we plot the probability distribution over the count per unit of time, since we chose
time=1 in the previous step. We will add to this plot later:

fig2, ax2 = plt.subplots()

ax2.plot (N, probability(N), "k", label="True
distribution")

ax2.set xlabel ("Number of arrivals in 1 time unit")
ax2.set ylabel ("Probability")
ax2.set title("Probability distribution")

6. Now, we move on to estimate the rate from our sample data. We do this by computing the mean
of the inter-arrival times, which, for exponential distribution, is an estimator of the scale 1/A,

estimated scale = np.mean(inter arrival times)

estimated rate = 1.0/estimated scale

7. Finally, we plot the probability distribution with this estimated rate for the counts per unit of
time. We plot this on top of the true probability distribution that we produced in step 5:

ax2.plot (N, probability(

N, param=estimated rate),

"k--" label="Estimated distribution")
ax2.legend ()

The resulting plot is given in Figure 4.5, where we can see that, apart from a small discrepancy,
the estimated distribution is very close to the true distribution:
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Number of arrivals in 1 time unit

Figure 4.5 - Distribution of the number of arrivals per time unit, estimated and true
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The distribution shown in Figure 4.5 follows the Poisson distribution as described in the introduction
to this recipe. You can see that moderate numbers of arrivals per unit of time are more likely than
large numbers. The most likely counts are determined by the rate parameter A, which is 4.0 in
this example.

How it works...

Random processes exist everywhere. Roughly speaking, a random process is a system of related random
variables, usually indexed with respect to time £ = 0 for a continuous random process, or by natural
numbers = 1,2, ... for a discrete random process. Many (discrete) random processes satisfy the
Markov property, which makes them a Markov chain. The Markov property is the statement that
the process is memoryless, in that only the current value is important for the probabilities of the
next value.

A Poisson process is a counting process that counts the number of events (bus arrivals) that occur
in an amount of time if the events are randomly spaced (in time) with an exponential distribution
with a fixed parameter. We constructed the Poisson process by sampling inter-arrival times from
exponential distribution, following the construction we described in the introduction. However, it
turns out that this fact (that the inter-arrival times are exponentially distributed) is a property of all
Poisson processes when they are given their formal definition in terms of probabilities.

In this recipe, we sampled 50 points from an exponential distribution with a given rate parameter.
We had to do a small conversion because the NumPy Generator method for sampling from an
exponential distribution uses a related scale parameter, which is 1 over the rate parameter.
Once we have these points, we create an array that contains cumulative sums of these exponentially
distributed numbers. This creates our arrival times. The actual Poisson process is the one displayed
in Figure 4.4 and is a combination of the arrival times with the corresponding number of events that
have occurred at that time.

The mean (expected value) of an exponential distribution coincides with the scale parameter, so the
mean of a sample drawn from an exponential distribution is one way to estimate the scale (rate)
parameter. This estimate will not be perfect since our sample is relatively small. This is why there is a
small discrepancy between the two plots in Figure 4.5.

There’s more...

There are many types of random processes describing a wide variety of real-world scenarios. In this
recipe, we modeled arrival times using a Poisson process. A Poisson process is a continuous random
process, meaning that it is parameterized by a continuous variable, t = 0, rather than a discrete
variable, * = 1,2, .... Poisson processes are actually Markov chains, under a suitably generalized
definition of a Markov chain, and also an example of a renewal process. A renewal process is a process
that describes the number of events that occur within a period of time. The Poisson process described
here is an example of a renewal process.
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Many Markov chains also satisfy some properties in addition to their defining Markov property. For
example, a Markov chain is homogeneous if the following equality holds for all n, i, and J values:

1:)(Xn+1 = len =i) = P(Xl = leO =1)

In simple terms, this means that the probabilities of moving from one state to another over a single
step do not change as we increase the number of steps. This is extremely useful for examining the
long-term behavior of a Markov chain.

It is very easy to construct simple examples of homogeneous Markov chains. Suppose that we have two
states, A and B. At any given step, we could be either at state A or state B. We move between states
according to a certain probability. For instance, let’s say that the probability of transitioning from state
A to state A is 0.4 and the probability of transitioning from A to B is 0.6. Similarly, lets say that the
probability of transitioning from B to B is 0.2, and transitioning from B to A is 0.8. Notice that both
the probability of switching and the probability of staying the same sum 1 in both cases. We can represent
the probability of transitioning from each state in matrix form given, in this case, with the following equation:

=06 02)

This matrix is called the transition matrix. The idea here is that the probability of being in a particular
state after a step is given by multiplying the vector containing the probability of being in state A and
B (position 0 and 1, respectively). For example, if we start in state A, then the probability vector will
contain a 1 at index 0 and 0 at index 1. Then, the probability of being in state A after 1 step is given
by 0.4, and the probability of being in state B is 0.6. This is what we expect given the probabilities we
outlined previously. However, we could also write this calculation using the matrix formula:

04 0.8\/1y_ (04
(0.6 0.2) (0) - (0.6)

To get the probability of being in either state after two steps, we multiply the right-hand side vector

again by the transition matrix, T, to obtain the following:

0.4 0.8)/0.4\ _ (0.64
(0.6 0.2) (0.6) B (0.36)
We can continue this process ad infinitum to obtain a sequence of state vectors, which constitute our

Markov chain. This construction can be applied, with more states if necessary, to model many simple,
real-world problems.

Analyzing conversion rates with Bayesian techniques

Bayesian probability allows us to systematically update our understanding (in a probabilistic sense)
of a situation by considering data. In more technical language, we update the prior distribution (our
current understanding) using data to obtain a posterior distribution. This is particularly useful, for
example, when examining the proportion of users who go on to buy a product after viewing a website.
We start with our prior belief distribution. For this, we will use the beta distribution, which models
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the probability of success given a number of observed successes (completed purchases) against failures
(no purchases). For this recipe, we will assume that our prior belief is that we expect 25 successes from
100 views (75 fails). This means that our prior belief follows a beta (25, 75) distribution. Let’s say that
we wish to calculate the probability that the true rate of success is at least 33%.

Our method is roughly divided into three steps. First, we need to understand our prior belief for the
conversion rate, which we have decided follows a beta (25, 75) distribution. We compute the probability
that the conversion rate is at least 33% by integrating (numerically) the probability density function for
the prior distribution from 0.33 to 1. The next step is to apply Bayesian reasoning to update our prior
belief with new information. Then, we can perform the same integration with the posterior (updated)
belief to examine the probability that the conversion rate is at least 33% given this new information.

In this recipe, we will see how to use Bayesian techniques to update a prior belief based on new
information for our hypothetical website.

Getting ready

As usual, we will need the NumPy and Matplotlib packages imported as np and plt, respectively.
We will also require the SciPy package, imported as sp.

How to do it...
The following steps show how to estimate and update conversion rate estimations using Bayesian reasoning:

1. The first step is to set up the prior distribution. For this, we use the beta distribution object
from the SciPy stats module, which has various methods for working with beta distribution.
We import the beta distribution object from the stats module under abeta dist alias
and then create a convenience function for the probability density function:

from scipy.stats import beta as beta dist
beta pdf = beta dist.pdf

2. Next, we need to compute the probability, under the prior belief distribution, that the success
rate is at least 33%. To do this, we use the quad routine from the SciPy integrate module,
which performs numerical integration of a function. We use this to integrate the probability
density function for the beta distribution, imported in step 1, with our prior parameters. We
print the probability according to our prior distribution to the console:

prior alpha = 25

prior beta = 75

args = (prior alpha, prior beta)

prior over 33, err = sp.integrate.quad(
beta pdf, 0.33, 1, args=args)
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print ("Prior probability", prior over 33)
# 0.037830787030165056

Now, suppose we have received some information about successes and failures over a new
period of time. For example, we observed 122 successes and 257 failures over this period. We
create new variables to reflect these values:

observed successes = 122

observed failures = 257

To obtain the parameter values for the posterior distribution with a beta distribution, we
simply add the observed successes and failures to the prior alpha and prior beta
parameters, respectively:

posterior alpha = prior alpha + observed successes

posterior beta = prior beta + observed failures

Now, we repeat our numerical integration to compute the probability that the success rate is
now above 33% using the posterior distribution (with our new parameters computed earlier).
Again, we print this probability to the terminal:

args = (posterior alpha, posterior beta)

posterior over 33, err2 = sp.integrate.quad(
beta pdf, 0.33, 1, args=args)

print ("Posterior probability", posterior over 33)

# 0.13686193416281017

We can see here that the new probability, given the updated posterior distribution, is 14% as
opposed to the prior 4%. This is a significant difference, although we are still not confident
that the conversion rate is above 33% given these values. Now, we plot the prior and posterior
distribution to visualize this increase in probability. To start with, we create an array of values
and evaluate our probability density function based on these values:

p = np.linspace(0, 1, 500)
prior dist = beta pdf (p, prior alpha, prior beta)
posterior dist = beta_ pdf(

p, posterior alpha, posterior beta)

Finally, we plot the two probability density functions computed in step 6 onto a new plot:

fig, ax = plt.subplots()
ax.plot (p, prior dist, "k--", label="Prior")
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ax.plot (p, posterior dist, "k", label="Posterior")
ax.legend ()

ax.set xlabel ("Success rate")

ax.set ylabel ("Density")

ax.set title("Prior and posterior distributions for

success rate")

The resulting plot is shown in Figure 4.6, where we can see that the posterior distribution is
much more narrow and centered to the right of the prior:

Prior and posterior distributions for success rate
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Figure 4.6 - Prior and posterior distributions of a success rate following a beta distribution

We can see that the posterior distribution peaks at around 0.3, but most of the mass of the distribution
lies close to this peak.

How it works...

Bayesian techniques work by taking a prior belief (probability distribution) and using Bayes’ theorem
to combine the prior belief with the likelihood of our data given this prior belief to form a posterior
(updated) belief. This is similar to how we might understand things in real life. For example, when
you wake up on a given day, you might have the belief (from a forecast or otherwise) that there is a
40% chance of rain outside. Upon opening the blinds, you see that it is very cloudy outside, which
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might indicate that rain is more likely, so we update our belief according to this new data to say a
70% chance of rain.

To understand how this works, we need to understand conditional probability. Conditional probability
deals with the probability that one event will occur given that another event has already occurred. In
symbols, the probability of event A given that event B has occurred is written as follows:

P(A|B)

Bayes’ theorem is a powerful tool that can be written (symbolically) as follows:

P(A)P(B|A)

PAIB) = =

The probability P(A) represents our prior belief. The event B represents the data that we have gathered,
so that P(B|A)is the likelihood that our data arose given our prior belief. The probability P(B) represents
the probability that our data arose, and P(A|B) represents our posterior belief given the data. In
practice, the probability P (B) can be difficult to calculate or otherwise estimate, so it is quite common
to replace the strong equality above with a proportional version of Bayes’ theorem:

P(A|B) x P(B|A)P(A)

In the recipe, we assumed that our prior belief was beta-distributed. The beta distribution has a
probability density function given by the following equation:

Fla+p) ,_ _
raorp? P

Here, I'(0) is the gamma function. The likelihood is binomially distributed, which has a probability
density function given by the following equation:

Beta(p; a, B) =

Bk, j) = (']‘) pI(1 - p)k-)

Here, k is the number of observations, and J is one of those that were successful. In the recipe, we
observed m = 122 successes and n = 257 failures, which gives k = m +n =379 and j = m = 122,
To calculate the posterior distribution, we can use the fact that the beta distribution is a conjugate
prior for the binomial distribution to see that the right-hand side of the proportional form of Bayes’
theorem is beta-distributed with parameters of ¢ + mand B + n. This is what we used in the recipe.
The fact that the beta distribution is a conjugate prior for binomial random variables makes them
useful in Bayesian statistics.

The method we demonstrated in this recipe is a rather basic example of using a Bayesian method, but
it is still useful for updating our prior beliefs when systematically given new data.
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There’s more...

Bayesian methods can be used for a wide variety of tasks, making it a powerful tool. In this recipe, we
used a Bayesian approach to model the success rate of a website based on our prior belief of how it
performs and additional data gathered from users. This is a rather complex example since we modeled
our prior belief on a beta distribution. Here is another example of using Bayes’ theorem to examine
two competing hypotheses using only simple probabilities (numbers between 0 and 1).

Suppose you place your keys in the same place every day when you return home, but one morning
you wake up to find that they are not in this place. After searching for a short time, you cannot find
them and so conclude that they must have vanished from existence. Let’s call this hypothesis /1. Now,
Hj certainly explains the data, D, that you cannot find your keys - hence, the likelihood P(D|H;) = 1
(if your keys vanished from existence, then you could not possibly find them). An alternative hypothesis
is that you simply placed them somewhere else when you got home the night before. Let’s call this
hypothesis /2. Now, this hypothesis also explains the data, so P(D|H,) = 1, but in reality, Hy, is far
more plausible than Hz. Let’s say that the probability that your keys completely vanished from existence
is 1 in 1 million - this is a huge overestimation, but we need to keep the numbers reasonable — while
you estimate that the probability that you placed them elsewhere the night before is 1 in 100. Computing
the posterior probabilities, we have the following:

1 1
P(H, D) o P(DIH)P(H,) ¢ o5, P(H,ID) o —oooers

100
This highlights the reality that it is 10,000 times more likely that you simply misplaced your keys as
opposed to the fact that they simply vanished. Sure enough, you soon find your keys already in your
pocket because you had picked them up earlier that morning.

Estimating parameters with Monte Carlo simulations

Monte Carlo methods broadly describe techniques that use random sampling to solve problems. These
techniques are especially powerful when the underlying problem involves some kind of uncertainty.
The general method involves performing large numbers of simulations, each sampling different
inputs according to a given probability distribution, and then aggregating the results to give a better
approximation of the true solution than any individual sample solution.

MCMC is a specific kind of Monte Carlo simulation in which we construct a Markov chain of
successively better approximations of the true distribution that we seek. This works by accepting or
rejecting a proposed state, sampled at random, based on carefully selected acceptance probabilities
at each stage, with the aim of constructing a Markov chain whose unique stationary distribution is
precisely the unknown distribution that we wish to find.

In this recipe, we will use the PyMC package and MCMC methods to estimate the parameters of a
simple model. The package will deal with most of the technical details of running simulations, so we
don’t need to go any further into the details of how the different MCMC algorithms actually work.
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Getting ready

As usual, we import the NumPy package and Matplotlib pyplot module as np and plt, respectively.
We also import and create a default random number generator, with a seed for the purpose of
demonstration, as follows:

from numpy.random import default rng
rng = default rng(12345)

We will also need a module from the SciPy package for this recipe as well as the PyMC package,
which is a package for probabilistic programming. We import the PyMC package under the pm alias:

import pymc as pm

Let’s see how to use the PyMC package to estimate the parameters of a model given an observed,
noisy sample.

How to do it...

Perform the following steps to use MCMC simulations to estimate the parameters of a simple model
using sample data:

1. Our first task is to create a function that represents the underlying structure that we wish to
identify. In this case, we will be estimating the coefficients of a quadratic (a polynomial of degree 2).
This function takes two arguments, which are the points in the range, which is fixed, and the
variable parameters that we wish to estimate:

def underlying(x, params) :

return params[0] *x**2 + params[l]*x + params[2]

2. Next, we set up the true parameters and a size parameter that will determine how many
points are in the sample that we generate:

size = 100

true params = [2, -7, 6]

3. We generate the sample that we will use to estimate the parameters. This will consist of the
underlying data, generated by the underlying function we defined in step 1, plus some
random noise that follows a normal distribution. We first generate a range of x values, which
will stay constant throughout the recipe, and then use the underlying function and the
normal method on our random number generator to generate the sample data:

x vals = np.linspace(-5, 5, size)

raw_model = underlying(x vals, true params)
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noise = rng.normal (loc=0.0, scale=10.0, size=size)

sample = raw model + noise

4. Itisagood idea to plot the sample data, with the underlying data overlaid, before we begin the
analysis. We use the scatter plotting method to plot only the data points (without connecting
lines), and then plot the underlying quadratic structure using a dashed line:

figl, axl = plt.subplots()
axl.scatter (x_vals, sample,
label="Sampled data", color="k",
alpha=0.6)
axl.plot (x_vals, raw_model,
"k--", label="Underlying model")
axl.set title("Sampled data")
axl.set xlabel ("x")

axl.set ylabel ("y")

The result is Figure 4.7, where we can see that the shape of the underlying model is still visible even
with the noise, although the exact parameters of this model are no longer obvious:
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Figure 4.7 — Sampled data with the underlying model overlaid
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The basic object of PYMC programming is the Model class, which is usually created using
the context manager interface. We also create our prior distributions for the parameters. In
this case, we will assume that our prior parameters are normally distributed with a mean of 1
and a standard deviation of 1. We need three parameters, so we provide the shape argument.
The Normal class creates random variables that will be used in the Monte Carlo simulations:

with pm.Model () as model:
params = pm.Normal (

"params", mu=1l, sigma=1, shape=3)

We create a model for the underlying data, which can be done by passing the random variable,
param, that we created in step 6 into the underlying function that we defined in step 1. We
also create a variable that handles our observations. For this, we use the Normal class since we
know that our noise is normally distributed around the underlying data, y. We set a standard
deviation of 2 and pass our observed sample data into the observed keyword argument
(this is also inside the Model context):

y = underlying(x vals, params)
y _obs = pm.Normal ("y obs",

mu=y, sigma=2, observed=sample)

To run the simulations, we need only call the sample routine inside the Model context. We
pass the cores argument to speed up the calculations, but leave all of the other arguments
as the default values:

trace = pm.sample (cores=4)
These simulations should take a short time to execute.

Next, we plot the posterior distributions that use the plot posterior routine from PyMC.
This routine takes the t race result from the sampling step that performed the simulations.
We create our own figures and axes using the plt . subplots routine in advance, but this
isn’t strictly necessary. We are using three subplots on a single figure, and we pass the axs2
tuple of Axes to the plotting routing under the ax keyword argument:

fig2, axs2 = plt.subplots(l, 3, tight layout=True)
pm.plot posterior(trace, ax=axs2, color="k")

The resulting plot is shown in Figure 4.8, where you can see that each of these distributions is
approximately normal, with a mean that is similar to the true parameter values:
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params params params
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Figure 4.8 - Posterior distributions of estimated parameters

9. Now, retrieve the mean of each of the estimated parameters from the t race result. We access
the estimated parameters from the posterior attribute on trace and then use the mean
method on the params item (with axes= (0, 1) to average over all chains and all samples)
and convert this into a NumPy array. We print these estimated parameters in the terminal:

estimated params = trace.posterior["params"] .mean (
axis=(0, 1)). to_numpy ()
print ("Estimated parameters", estimated params)

# Estimated parameters [ 2.03220667
-7.09727509 5.27548983]

10. Finally, we use our estimated parameters to generate our estimated underlying data by passing
the x values and the estimated parameters to the underlying function defined in step 1. We
then plot this estimated underlying data together with the true underlying data on the same axes:

estimated underlying(x vals, estimated params)
fig3, ax3 = plt.subplots()
ax3.plot (x vals, raw model, "k", label="True model")

ax3.plot(x vals, estimated, "k--", label="Estimated
model")

ax3.set _title("Plot of true and estimated models")
ax3.set xlabel ("x")

ax3.set_ylabel ("y")

ax3.legend ()
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The resulting plot is in Figure 4.9, where there is only a small difference between these two
models in this range:

Plot of true and estimated models

—— True model
—==- Estimated model
80 4
60 -
>
40 -
20 A
O -

Figure 4.9 - True model and estimated model plotted on the same axes

In Figure 4.9 we can see that there is a small discrepancy between the true model and the estimated model.

How it works...

The interesting part of the code in this recipe can be found in the Model context manager. This object
keeps track of the random variables, orchestrates the simulations, and keeps track of the state. The context
manager gives us a convenient way to separate the probabilistic variables from the surrounding code.

We start by proposing a prior distribution for the distribution of the random variables representing
our parameters, of which there are three. We proposed a normal distribution since we know that
the parameters cannot stray too far from the value 1 (we can tell this by looking at the plot that we
generated in step 4, for example). Using a normal distribution will give a higher probability to the
values that are close to the current values. Next, we add the details relating to the observed data, which
is used to calculate the acceptance probabilities that are used to either accept or reject a state. Finally,
we start the sampler using the sample routine. This constructs the Markov chain and generates all
of the step data.

The sample routine sets up the sampler based on the types of variables that will be simulated. Since
the normal distribution is a continuous variable, the sample routine selected the No U-turn Sampler
(NUTS). This is a reasonable general-purpose sampler for continuous variables. A common alternative
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to the NUTS is the Metropolis sampler, which is less reliable but faster than the NUTS in some cases.
The PyMC documentation recommends using the NUTS whenever possible.

Once the sampling is complete, we plotted the posterior distribution of the trace (the states given by
the Markov chain) to see the final shape of the approximations we generated. We can see here that
all three of our random variables (parameters) are normally distributed around approximately the
correct value.

Under the hood, PyMC uses Aesara - the successor to Theano used by PyMC3 - to speed up its
calculations. This makes it possible for PyMC to perform computations on a Graphics Processing Unit
(GPU) rather than on the Central Processing Unit (CPU) for a considerable boost to computation speed.

There’s more...

The Monte Carlo method is very flexible and the example we gave here is one particular case where
it can be used. A more typical basic example of where the Monte Carlo method is applied is for
estimating the value of integrals - commonly, Monte Carlo integration. A really interesting case of
Monte Carlo integration is estimating the value of Tt & 3.1415. Let’s briefly look at how this works.

First, we take the unit disk, whose radius is 1 and therefore has an area of Tt. We can enclose this disk
inside a square with vertices at the points (1,1), (—=1,1), (1, —1), and (=1, —1). This square has an
area of 4 since the edge length is 2. Now, we can generate random points uniformly over this square.
When we do this, the probability that any one of these random points lies inside a given region is
proportional to the area of that region. Thus, the area of a region can be estimated by multiplying the
proportion of randomly generated points that lie within the region by the total area of the square. In
particular, we can estimate the area of the disk (when the radius is 1, this is 7t ~ 3.1415) by simply
multiplying the number of randomly generate points that lie within the disk by 4 and dividing by the
total number of points we generated.

We can easily write a function in Python that performs this calculation, which might be the following:

import numpy as np

from numpy.random import default rng

def estimate pi(n points=10000) :
rng = default rng()
points = rng.uniform(-1, 1, size=(2, n points))
inside = np.less(points[0, :]**2 + points[l, :]1**2, 1)

return 4.0*inside.sum() / n_points
Running this function just once will give a reasonable approximation of m:

estimate pi() # 3.14224



Further reading

We can improve the accuracy of our estimation by using more points, but we could also run this a
number of times and average the results. Let’s run this simulation 100 times and average the results
(we'll use concurrent futures to parallelize this so that we can run larger numbers of samples if we want):

from statistics import mean
results = list(estimate pi() for _ in range(100))

print (mean (results))

Running this code once prints the estimated value of Tt as 3.1415752, which is an even better estimate
of the true value.

See also

The PyMC package has many features that are documented by numerous examples (https://
docs.pymc. io/). There is also another probabilistic programming library based on TensorFlow
(https://www.tensorflow.org/probability).

Further reading
A good, comprehensive reference for probability and random processes is the following book:

o Grimmett, G. and Stirzaker, D. (2009). Probability and random processes. 3rd ed. Oxford: Oxford
Univ. Press.

An easy introduction to Bayes’ theorem and Bayesian statistics is the following:

o Kurt, W. (2019). Bayesian statistics the fun way. San Francisco, CA: No Starch Press, Inc.
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Working with

Trees and Networks

Networks are objects that contain nodes and edges between pairs of nodes. They can be used to represent
a wide variety of real-world situations, such as distribution and scheduling. Mathematically, networks
are useful for visualizing combinatorial problems and make for a rich and fascinating theory.

There are, of course, several different kinds of networks. We will mostly deal with simple networks,
where edges connect two distinct nodes (so there are no self-loops), there is, at most, one edge between
any two nodes, and all the edges are bidirectional. A tree is a special kind of network in which there
are no cycles; that is, there are no lists of nodes in which each node is connected to the following
node by an edge, and the final node is connected to the first. Trees are especially simple in terms of
their theory because they connect several nodes with the fewest possible edges. A complete network
is a network in which every node is connected to every other node by an edge.

Networks can be directed, where each edge has a source and a destination node or can carry additional
attributes, such as weights. Weighted networks are especially useful in certain applications. There are
also networks in which we allow multiple edges between two given nodes.

In this chapter, we will learn how to create, manipulate, and analyze networks, and then apply network
algorithms to solve various problems.

Note

In the literature, especially in mathematical texts, networks are more commonly called graphs.
Nodes are sometimes called vertices. We favor the term network to avoid confusion with the
more common usage of a graph to mean a plot of a function.
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We will cover the following recipes in this chapter:

o Creating networks in Python

o Visualizing networks

o Getting the basic characteristics of networks

o Generating the adjacency matrix for a network
+ Creating directed and weighted networks

« Finding the shortest paths in a network

o Quantifying clustering in a network

o Coloring a network

+ Finding minimal spanning trees and dominating sets

Let’s get started!

Technical requirements

In this chapter, we will primarily use the NetworkX package for working with trees and networks.
This package can be installed using your favorite package manager, such as pip:

python3.10 -m pip install networkx

We usually import this under the nx alias, following the conventions established in the official
NetworkX (https://networkx.org/documentation/stable/) documentation, using
the following import statement:

import networkx as nx

The code for this chapter can be found in the Chapter 05 folder of this book’s GitHub repository
athttps://github.com/PacktPublishing/Applying-Math-with-Python-2nd-
Edition/tree/main/Chapter%2005.

Creating networks in Python

To solve the multitude of problems that can be expressed as network problems, we need a way of
creating networks in Python. For this, we will make use of the NetworkX package and the routines
and classes it provides to create, manipulate, and analyze networks.


https://networkx.org/documentation/stable/
https://github.com/PacktPublishing/Applying-Math-with-Python-2nd-Edition/tree/main/Chapter%2005
https://github.com/PacktPublishing/Applying-Math-with-Python-2nd-Edition/tree/main/Chapter%2005

Creating networks in Python

In this recipe, we'll create an object in Python that represents a network and add nodes and edges to
this object.

Getting ready

As we mentioned in the Technical requirements section, we need the NetworkX package to be imported
under the nx alias. We can do this using the following import statement:

import networkx as nx

How to do it...
Follow these steps to create a Python representation of a simple graph:

1. We need to create a new Graph object that will store the nodes and edges that constitute
the graph:

G = nx.Graph()

2. Next, we need to add the nodes for the network using the add node method:

G.add node (1)
G.add node (2)

3. To avoid calling this method repetitively, we can use the add_nodes_from method to add
nodes from an iterable, such as a list:

G.add nodes from([3, 4, 5, 6])

4. Next, we need to add edges between the nodes that we've added using either the
add_edge or add_edges_frommethod, which adds either a single edge or a list of edges
(as tuples), respectively:

G.add edge(l, 2) # edge from 1 to 2
G.add edges from([(2, 3), (3, 4) (3, 5),(3, 6),
(4,5),(5,6)1)

5. Finally, we must retrieve a view of the current nodes and edges in a graph by accessing the
nodes and edges attributes, respectively:

print (G.nodes)

print (G.edges)
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How it works...

The NetworkX package adds several classes and routines for creating, manipulating, and analyzing
networks using Python. The Graph class is the most basic class for representing networks that do not
contain multiple edges between any given nodes and where their edges are undirected (bidirectional).

Once a blank Graph object has been created, we can add new nodes and edges using the methods
described in this recipe. In this recipe, we created nodes that hold integer values. However, a node can
hold any hashable Python object except None. Moreover, associated data can be added to a node via
keyword arguments passed to the add_node method. Attributes can also be added when using the
add_nodes_from method by supplying a list of tuples containing the node object and a dictionary
of attributes. The add_nodes_from method is useful for adding nodes in bulk, while add_node
is useful for attaching individual nodes to an existing network.

An edge in a network is a tuple containing two (distinct) nodes. In a simple network, such as the one
represented by the basic Graph class, there can be, at most, one edge between any two given nodes.
These edges are added via the add_edge or add_edges_from method, which adds either a
single edge or a list of edges to the network, respectively. As for the nodes, edges can hold arbitrary
associated data via an attributes dictionary. In particular, weights can be added by supplying the
weight attribute when adding edges. We will provide more details about weighted graphs in the
Creating directed and weighted networks recipe.

The nodes and edges attributes hold the nodes and edges that constitute the network, respectively.
The nodes attribute returns a NodesView object, which is a dictionary-like interface to the nodes
and their associated data. Similarly, the edges attribute returns an EdgeView object. This can be
used to inspect individual edges and their associated data.

There’s more...

The Graph class represents simple networks, which are networks in which nodes are joined by, at most,
one edge, and the edges are not directed. We will discuss directed networks in the Creating directed
and weighted networks recipe. There is a separate class for representing networks in which there can
be multiple edges between a pair of nodes called Mult iGraph. All of the network types allow self-
loops, which are sometimes not allowed in a simple network in the literature, where a simple network
typically refers to an undirected network with no self-loops.

All network types offer various methods for adding nodes and edges, as well as inspecting the current
nodes and edges. There are also methods for copying networks into some other kind of network or
extracting subnetworks. There are also several utility routines in the NetworkX package for generating
standard networks and adding subnetworks to an existing network.



Visualizing networks

NetworkX also provides various routines for reading and writing networks to different file formats,
such as GraphML, JSON, and YAML. For example, we can write a network to a GraphML file using
thenx.write graphml routine and read it using the nx . read_graphml routine.

Visualizing networks

A common first step in analyzing a network is to draw the network, which can help us identify some
of the prominent features of a network. (Of course, drawings can be misleading, so we should not
rely on them too heavily in our analysis.)

In this recipe, we'll describe how to use the network drawing facilities in the NetworkX package to
visualize a network.

Getting ready

For this recipe, we will need to import the NetworkX package under the nx alias, as described in the
Technical requirements section. We will also need the Matplotlib package. For this, as usual, we must
import the pyplot module as p1t using the following import statement:

import matplotlib.pyplot as plt

How to do it...

The following steps outline how to draw a simple network object using the drawing routines
from NetworkX:

1. First, we will create a simple example network to draw:

G = nx.Graph()

G.add nodes from(range(1l, 7))

G.add edges from( [
(1, 2y, (2, 3)¥, (3, 4y, (3, 5),
3, ), (&, 8), (B3, 6)

1)

2. Next, we will create new Matplotlib Figure and Axes objects for it, ready to plot the network
using the subplots routine from plt:

fig, ax = plt.subplots()
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3. Now, we can create a layout that will be used to position the nodes on the figure. For this figure,
we shall use a shell layout using the shell layout routine:

layout = nx.shell layout (G)

4. 'We can use the draw routine to draw the network on the figure. Since we have already created
a Matplotlib Figure and Axes, we can supply the ax keyword argument. We will also add
labels to the nodes using the with_ labels keyword argument and specify the layout that
we just created using the pos argument:

nx.draw (G, ax=ax, pos=layout, with labels=True)

ax.set _title("Simple network drawing")

The resulting drawing can be seen in the following figure:

Simple network drawing

Figure 5.1 — A drawing of a simple network arranged using a shell layout

Since the number of nodes in this example is relatively small, they are arranged in a single circle. The
edges are indicated by lines.

How it works...

The draw routine is a specialized plotting routine specifically for drawing networks. The layout we
created specifies the coordinates at which each of the nodes will be placed. We used a shell layout,
which arranges the nodes in a concentric circle arrangement (only a single circle was used in this
recipe), which is determined by the nodes and edges of the network. By default, the draw routine
creates a randomized layout.



Getting the basic characteristics of networks

The draw routine has numerous keyword arguments for customizing the appearance of the plotted
network. In this recipe, we added the with labels keyword argument to label the nodes in the
figure according to the objects they hold. The nodes hold integers, which is why the nodes in the
preceding figure are labeled by integers.

We also created a set of axes separately using the p1t . subplots routine. This isn’t strictly necessary
since the draw routine will automatically create a new figure and new axes if they’re not provided.

There’s more...

The NetworkX package provides several layout-generating routines, similar to the shell layout
routine that we used in this recipe. This layout is simply a dictionary, indexed by the nodes, whose
elements are the x and y coordinates of the position where the node should be plotted. The NetworkX
routines for creating layouts represent common arrangements that will be useful for most cases, but
you can also create custom layouts, should you need them. A full list of the different layout creation
routines is provided in the NetworkX documentation. There are also shortcut drawing routines that
will use a specific layout with the need to create the layout separately; for example, the draw_shell
routine will draw the network with the shell layout that is equivalent to the draw call given in this recipe.

The draw routine takes several keyword arguments to customize the appearance of the figure. For
example, there are keyword arguments to control the node’s size, color, shape, and transparency. We
can also add arrows (for directed edges) and/or only draw a specific set of nodes and edges from
the network.

Getting the basic characteristics of networks

Networks have various basic characteristics beyond the number of nodes and edges that are useful
for analyzing a graph. For example, the degree of a node is the number of edges that start (or end)
at that node. A higher degree indicates that the node is better connected to the rest of the network.

In this recipe, we will learn how to access the basic attributes and compute various basic measures
associated with a network.

Getting ready

As usual, we need to import the NetworkX package under the nx alias. We also need to import the
Matplotlib pyplot module as plt.
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How to do it...

Follow these steps to access the various basic characteristics of a network:
1. Create the sample network that we will analyze in this recipe, like so:

G = nx.Graph()

G.add nodes from(range (10))

G.add edges from/( [
@, 1), (1, ), (8, 3), (B, &),
(2, 5), (3, 4), (4, 5), (6, 7),
(6, 8), (6, 9), (7, 8), (8, 9)

1)

2. Next, it is good practice to draw the network and arrange the nodes in a circular layout:

fig, ax = plt.subplots()
nx.draw_circular (G, ax=ax, with labels=True)

ax.set _title("Simple network")

The resulting plot can be seen in the following figure. As we can see, the network is split into

two distinct parts:

Simple network

Figure 5.2 - A simple network drawn in a circular arrangement with two distinct components



Getting the basic characteristics of networks

3. Next, we must print the Graph object to display some basic information about the network:

print (G)

# Name:

# Type: Graph

# Number of nodes: 10

# Number of edges: 12

# Average degree: 2.4000

4. Now, we can use the degree property of the Graph object to retrieve the degree of a specific node:

for i in [0, 2, 71]:
degree = G.degree[il]
print (f"Degree of {i}: {degree}")
# Degree of 0: 1
# Degree of 2: 4
# Degree of 7: 2

5.  We can get the connected components of the network using the connected_components
routine, which returns a generator that we make into a list:

components = list (nx.connected components (G))
print (components)
# [{o, 1, 2, 3, 4, 5}, {8, 9, 6, 7}I

6. We can compute the density of a network using the density routine, which returns a float
between 0 and 1. This represents the proportion of edges meeting the node to the total number
of possible edges at the node:

density = nx.density (G)
print ("Density", density)
# Density 0.26666666666666666

7.  Finally, we can determine whether a network is planar — meaning that no two edges need to
be drawn crossing one another - by using the check planarity routine:

is planar, _ = nx.check planarity(G)
print ("Is planar", is planar)

# Is planar True
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If we glance back at Figure 5.2, we can see that we can indeed draw this graph without having to cross
two of the edges.

How it works...

The info routine generates a small summary of the network, including the type of the network (which
is a simple Graph type in this recipe), the number of nodes and edges, and the average degrees of the
nodes in the network. The actual degree of a node in the network can be accessed using the degree
property, which offers a dictionary-like interface for finding the degree of each node.

A set of nodes is said to be connected if every node in the set is joined to the others by an edge or
sequence of edges. The connected components of a network are the largest sets of nodes that are
connected. Any two distinct connected components are disjointed. Every network can be decomposed
into one or more connected components. The network we defined in this recipe has two connected
components, {0, 1, 2, 3, 4, 5}and {8, 9, 6, 7}.These are visible in the preceding
figure, where the first connected component is drawn above the second connected component. In
this figure, we can trace a path along the edges of the network from any node in a component to any
other; for example, from 0 to 5.

The density of a network measures the ratio of the number of edges in the network to the total possible
number of edges given by the number of nodes in a network. The density of a complete network is 1,
but in general, the density will be less than 1.

A network is planar if it can be drawn on a flat surface without crossing edges. The easiest example of
a non-planar network is a complete network with five nodes. Complete networks with, at most, four
nodes are planar. A little experimentation with the way you draw these networks on paper will reveal a
drawing that doesn’t contain crossing edges. In addition, any network that contains a complete graph
with at least five nodes is not planar. Planar networks are important in theory due to their relative
simplicity, but they are less common in networks that arise in applications.

There’s more...

In addition to the methods on the network classes, there are several other routines in the NetworkX
package that can be used to access the attributes of the nodes and edges in a network. For example,
nx.get node_ attributes gets a named attribute from each node in the network.

Generating the adjacency matrix for a network

One potent tool for analyzing graphs is the adjacency matrix, which has entries a; ; = 1if there is an edge
from node i to node j, and 0 otherwise. For most networks, the adjacency matrix will be sparse (most
of the entries are 0). For networks that are not directed, the matrix will also be symmetric (a;; = ;).
Numerous other matrices can be associated with a network. We will briefly discuss these in the There’s
more... section of this recipe.
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In this recipe, we will generate the adjacency matrix for a network and learn how to get some basic
properties of the network from this matrix.

Getting ready

For this recipe, we will need the NetworkX package imported under the nx alias, and the NumPy
module imported as np.

How to do it...

The following steps outline how to generate the adjacency matrix for a network and derive some
simple properties of the network from this matrix:

1. First, we will generate a network to work with throughout this recipe. We'll generate a random
network with five nodes and five edges while using a seed for reproducibility:

G

nx.dense gnm random graph(5, 5, seed=12345)

2. To generate the adjacency matrix, we can use the adjacency matrix routine from NetworkX.
This returns a sparse matrix by default, so we will also convert this into a full NumPy array for
this demonstration using the todense method:

matrix

nx.adjacency matrix(G) .todense ()

print (matrix)

#

#
#
#
#

([0
[0
[1
[0
[0

0

0
1
1
0

1

1
0
0
1

0

1
0
0
1

0]
0]
1]
1]
0]]

3. Taking the nth power of the adjacency matrix gives us the number of paths of length n from

one node to another:

paths len 4

print

#
#

#
#
#

[l
[

[
[
[

(p
3
5
0
0
5

= np.linalg.matrix power (matrix, 4)

aths len 4)

5
9
0
0
9

0
0
13
10
0

0 5]
0 9]
10 0]
8 0]
0 911
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Both the adjacency matrix from step 2 and the fourth power from step 3 are symmetric matrices. Also,
notice that the non-zero entries of paths_len 4 are located in the positions where 0 appears in
the adjacency matrix. This is because there are two distinct groups of nodes, and paths of odd length
swap between these two groups whereas paths of even length return to the starting group.

How it works...

The dense_gnm_random_graph routine generates a (dense) random network, chosen uniformly
from the family of all networks with n nodes and m edges. In this recipe, n = 5 and m = 5. The
dense prefix indicates that this routine uses an algorithm that should be faster than the alternative
gnm_random_graph for dense networks with a relatively large number of edges compared to nodes.

The adjacency matrix of a network is easy to generate, especially in sparse form, when the graph is
relatively small. For larger networks, this can be an expensive operation, so it might not be practical,
particularly if you convert it into a full matrix, as we saw in this recipe. You don’t need to do this in
general, since we can simply use the sparse matrix generated by the adjacency matrix routine
and the sparse linear algebra tools in the SciPy sparse module instead.

The matrix powers provide information about the number of paths of a given length. This can easily
be seen by tracing through the definitions of matrix multiplication. Remember that the entries of the
adjacency matrix are 1 when there is an edge (path of length 1) between two given nodes.

There’s more...

The Eigenvalues of the adjacency matrix for a network provide some additional information about
the structure of the network, such as the bounds for the chromatic number of the network. (See the
Coloring a network recipe for more information about coloring a network.) There is a separate routine
for computing the Eigenvalues of the adjacency matrix. For example, the adjacency spectrum
routine to generate the Eigenvalues of the adjacency matrix of a network. Methods involving the
Eigenvalues of a matrix associated with a network are usually called spectral methods.

There are other matrices associated with networks, such as the incidence matrix and the Laplacian
matrix. The incidence matrix of a network is an M x N matrix, where M is the number of nodes and
N is the number of edges. This has an i, jth entry of 1 if node i appears in edge j and 0 otherwise. The
Laplacian matrix of a network is defined to be the L = D — A matrix, where D is the diagonal matrix
containing the degrees of the nodes in the network and 4 is the adjacency matrix of the network.
Both of these matrices are useful for analyzing networks.

Creating directed and weighted networks

Simple networks, such as those described in the previous recipes, are useful for describing networks
where the direction of an edge is unimportant and where the edges carry equal weight. In practice,
most networks carry additional information, such as weights or directions.
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In this recipe, we will create a directed and weighted network and explore some of the basic properties
of such networks.

Getting ready

For this recipe, we will need the NetworkX package, imported under the nx alias (as usual), the
Matplotlib pyplot module imported as plt, and the NumPy package imported as np.

How to do it...

The following steps outline how to create a directed network with weights, as well as how to explore
some of the properties and techniques we discussed in the previous recipes:

1. To create a directed network, we can use the DiGraph class from NetworkX rather than the
simple Graph class:

G = nx.DiGraph ()
2. Asusual, we must add nodes to the network using the add_node or add nodes_frommethod:

G.add nodes_ from(range (5))

3. To add weighted edges, we can use either the add_edge method and provide the weight
keyword argument, or use the add_weighted edges from method:

G.add edge (0, 1, weight=1.0)

G.add weighted edges from( [
(1, 2, 0.8), (i, 3, 3.0), (B, 3, 0.3), (3, B, 0.3),
(2, 4, 1.2), (3, 4, 0.8)

1)

4. Next, we must draw the network with arrows to indicate the direction of each edge. We must
also provide positions for this plot:

fig, ax = plt.subplots()

pos = {0: (-1, 0), 1: (0, 0), 2: (1, 1), 3: (1, -1),
4:(2, 0)}

nx.draw (G, ax=ax, pos=pos, with labels=True)

ax.set title("Weighted, directed network")
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The resulting plot can be seen in the following figure:

Weighted, directed network

Figure 5.3 — A weighted, directed network

5. The adjacency matrix of a directed matrix is created in the same way as a simple network, but
the resulting matrix will not be symmetric:

adj mat = nx.adjacency matrix(G) .todense ()

print (adj mat)

# [[0. 1. 0. 0. 0. 1
# [0. 0. 0.5 2. 0. ]
# [0. 0. 0. 0.3 1.2]
# [0. 0. 0.3 0. 0.8]
# [0. 0. 0. 0. 0. 11

Rather than the number of edges between two given nodes, the adjacency matrix contains the sum
of the weights of edges between those nodes.

How it works...

The DiGraph class represents a directed network, where the order of the nodes when adding an edge
is important. In this recipe, we added two edges for connecting nodes 2 and 3, one in each direction.
In a simple network (the Graph class), the addition of the second edge would not add another edge.
However, for a directed network (the DiGraph class), the order that the nodes are given in when
adding the edge determines the direction.
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There is nothing special about weighted edges except for the addition of the weight attribute thats
attached to the edge. (Arbitrary data can be attached to an edge or node in a network via keyword
arguments.) The add_weighted edges_ from method simply adds the corresponding weight
value (the third value in the tuple) to the edge in question. Weights can be added to any edge in any
network, not just the directed networks shown in this recipe.

The draw routine automatically adds arrows to edges when drawing a directed network. This behavior
can be turned off by passing the arrows=False keyword argument. The adjacency matrix for a
directed or weighted network also differs from that of a simple network. In a directed network, the
matrix is not generally symmetrical, because edges may exist in one direction but not the other. For
a weighted network, the entries can be different from 1 or 0, and will instead be the weight of the
corresponding edge.

There’s more...

Weighted networks appear in lots of applications, such as when describing transportation networks
with distances or speeds. You can also use networks to examine flow through a network by providing
a capacity for edges in the network (as a weight or as another attribute). NetworkX has several tools
for analyzing flow through a network, such as finding the maximum flow through a network via the
nx.maximum_flow routine.

Directed networks add directional information to a network. Many real-world applications give rise
to networks that have unidirectional edges, such as those in industrial processes or supply chain
networks. This additional directional information has consequences for many of the algorithms for
working with networks, as well see throughout this chapter.

Finding the shortest paths in a network

A common problem where networks make an appearance is in the problem of finding the shortest -
or perhaps more precisely, the highest reward - route between two nodes in a network. For instance,
this could be the shortest distance between two cities, where the nodes represent the cities, and the
edges are roads connecting pairs of cities. In this case, the weights of the edges would be their lengths.

In this recipe, we will find the shortest path between two nodes in a network with weights.

Getting ready

For this recipe, we will need the NetworkX package imported, as usual, under the nx alias, the
Matplotlib pyplot module imported as p1t, and a random number generator object from NumPy:

from numpy.random import default rng

rng = default rng(12345) # seed for reproducibility
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How to do it...

Follow these steps to find the shortest path between two nodes in a network:

1.

First, we will create a random network using gnm_random_graph and a seed for
this demonstration:

G = nx.gnm_random graph (10, 17, seed=12345)
Next, we'll draw the network with a circular arrangement to see how the nodes connect:

fig, ax = plt.subplots()
nx.draw_circular (G, ax=ax, with labels=True)

ax.set title("Random network for shortest path finding")

The resulting plot can be seen in the following figure. Here, we can see that there is no direct
edge from node 7 to node 9:

Random network for shortest path finding

Figure 5.4 — A randomly generated network with 10 nodes and 17 edges

Now, we need to add a weight to each of the edges so that some routes are preferable to others
in terms of the shortest path:

for u, v in G.edges:

G.edges[u, Vv] ["weight"] = rng.integers(5, 15)
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4. Next, we will compute the shortest path from node 7 to node 9 using the nx . shortest
path routine:

path = nx.shortest path(G, 7, 9, weight="weight")
print (path)
# [7, 5, 2, 9]

5. We can find the length of this shortest path using the nx . shortest path

6. length routine:

length = nx.shortest path length(G, 7, 9,
weight="weight")

print ("Length", length)

# Length 32

Here the length of the path is the sum of the weights of the edges along the shortest path. If the network
is not weighted, then this will be equal to the number of edges traversed along this path.

How it works...

The shortest path routine computes the shortest path between each pair of nodes. Alternatively,
when supplied with the source and destination node, which is what we did in this recipe, it computes the
shortest path between the two specified nodes. We supplied the optional weight keyword argument,
which makes the algorithm find the shortest path according to the weight attribute of the edge. This
argument changes the meaning of shortest, with the default being the fewest edges.

The default algorithm for finding the shortest path between two nodes is Dijkstra’s algorithm, which is
a staple of computer science and mathematics courses. It is a good general-purpose algorithm but is not
particularly efficient. Other route-finding algorithms include the A* algorithm. Greater efficiency can
be obtained by using the A* algorithm with additional heuristic information to guide node selection.

There’s more...

There are many algorithms for finding the shortest path between two nodes in a network. There are
also variants for finding the maximum weighted path.

There are several related problems regarding finding the paths in a network, such as the traveling
salesperson problem and the route inspection problem. In the traveling salesperson problem, we find
a cycle (a path starting and ending at the same node) that visits every node in the network, with the
smallest (or largest) total weight. In the route inspection problem, we seek the shortest cycle (by weight)
that traverses every edge in the network and returns to the starting point. The traveling salesperson
problem is known to be NP-hard, but the route inspection problem can be solved in polynomial time.



154

Working with Trees and Networks

A famous problem in graph theory is the bridges at Kénigsberg, which asks to find a path in a network
that traverses every edge in the network exactly once. It turns out, as proved by Euler, that finding
such a path in the Konigsberg bridges problem is impossible. A path that traverses every edge exactly
once is called an Eulerian circuit. A network that admits an Eulerian circuit is called Eulerian. A
network is Eulerian if and only if every node has an even degree. The network representation of the
Konigsberg bridge problem can be seen in the following figure. The edges in this figure represent the
different bridges over the rivers, while the nodes represent the different land masses. We can see that
all four of the nodes have an odd degree, which means that there cannot be a path that crosses every
edge exactly once:

Figure 5.5 — A network representing the Konigsberg bridge problem

The edges represent the bridges between the different land masses represented by the nodes.

Quantifying clustering in a network

There are various quantities associated with networks that measure the characteristics of the network.
For example, the clustering coefficient of a node measures the interconnectivity between the nodes
nearby (here, nearby means connected by an edge). In effect, it measures how close the neighboring
nodes are to forming a complete network or clique.

The clustering coeflicient of a node measures the proportion of the adjacent nodes that are connected
by an edge; that is, two adjacent nodes form a triangle with the given node. We count the number
of triangles and divide this by the total number of possible triangles that could be formed, given the
degree of the node. Numerically, the clustering coeflicient at a node, u, in a simple unweighted network
is given by the following equation:
~ 2T,
™ deg(w)(deg(u) -~ 1)

Here, Ty, is the number of triangles at u and the denominator is the total possible number of triangles
at u. If the degree of u (the number of edges from u) is 0 or 1, then we set Cy, to 0.

In this recipe, we will learn how to compute the clustering coeflicient of a node in a network.



Quantifying clustering in a network

Getting ready

For this recipe, we will need the NetworkX package under the nx alias and the Matplotlib pyplot
module imported as p1t.

How to do it...
The following steps show you how to compute the clustering coeflicient of a node in a network:
1. First, we need to create a sample network to work with:

G = nx.Graph()

complete part = nx.complete graph(4)
cycle part = nx.cycle graph(range (4, 9))
G.update (complete part)

G.update (cycle part)

G.add _edges from([(0, 8), (3, 4)])

2. Next, we must draw the network so that we can compare the clustering coeflicients that we'll
be calculating. This will allow us to see how these nodes appear in the network:

fig, ax = plt.subplots/()
nx.draw_circular (G, ax=ax, with labels=True)

ax.set title("Network with different clustering
behavior")

The resulting plot can be seen in the following figure:

Network with different clustering behavior

Figure 5.6 — A sample network for testing clustering
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3. Now, we can compute the clustering coefficients of the nodes in the network using the
nx.clustering routine:

cluster coeffs = nx.clustering(G)

4. The output of the nx . clustering routine is a dictionary over the nodes in the network.
So, we can print some selected nodes as follows:

for i in [0, 2, 6]:
print (£"Node {i}, clustering {cluster coeffs[i]}")
# Node 0, clustering 0.5
# Node 2, clustering 1.0
# Node 6, clustering 0

5. The average clustering coeflicient for all the nodes in the network can be computed using the
nx.average_clustering routine:

av_clustering = nx.average clustering(G)
print (av_clustering)
# 0.3333333333333333

This average clustering coefficient indicates that, on average, the nodes have approximately 1/3 of the
total possible connections.

How it works...

The clustering coeficient of a node measures how close the neighborhood of that node is to being
a complete network (all the nodes are connected). In this recipe, we have three different computed
values: 0 has a clustering coeflicient of 0.5, 2 has a clustering coefficient of 1.0, and 6 has a clustering
coeflicient of 0. This means that the nodes connected to node 2 form a complete network, which is
because we designed our network in this way. (Nodes 0 to 4 form a complete network by design.) The
neighborhood of node 6 is very far from being complete since there are no interconnecting edges
between either of its neighbors.

The average clustering value is a simple average of the clustering coefficients over all the nodes
in the network. It is not quite the same as the global clustering coeflicient (computed using the
nx.transitivity routine in NetworkX), but it does give us an idea of how close the network is
to being a complete network as a whole. The global clustering coeflicient measures the ratio of the
number of triangles to the number of triplets — a collection of three nodes that are connected by at
least two edges — over the whole network.

The difference between global clustering and average clustering is quite subtle. The global clustering
coeflicient measures the clustering of the network as a whole, but the average clustering coefficient
measures how much, on average, the network is locally clustered. The difference is best seen in a
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windmill network, which consists of a single node surrounded by a circle of an even number of
nodes. All the nodes are connected to the center, but the nodes on the circle are only connected in
an alternating pattern. The outer nodes have a local clustering coeflicient of 1, while the center node
has a local clustering coefficient of 1/(2N — 1), where N denotes the number of triangles joining the
center node. However, the global clustering coefficient is 3/(2N — 1).

There’s more...

Clustering coeflicients are related to cliques in a network. A clique is a subnetwork that is complete
(all the nodes are connected by an edge). An important problem in network theory is finding the
maximal cliques in a network, which is a very difficult problem in general (here, maximal means
cannot be made larger).

Coloring a network

Networks are also useful in scheduling problems, where you need to arrange activities into different
slots so that there are no conflicts. For example, we could use networks to schedule classes to make
sure that students who are taking different options do not have to be in two classes at once. In this
scenario, the nodes will represent the different classes and the edges will indicate that students are
taking both classes. The process we use to solve these kinds of problems is called network coloring.
This process involves assigning the fewest possible colors to the nodes in a network so that no two
adjacent nodes have the same color.

In this recipe, we will learn how to color a network to solve a simple scheduling problem.

Getting ready
For this recipe, we need the NetworkX package imported under the nx alias and the Matplotlib
pyplot module imported as plt.
How to do it...
Follow these steps to solve a network coloring problem:
1. First, we will create a sample network to use in this recipe:

G = nx.complete graph(3)

G.add nodes from(range (3, 7))

G.add _edges from( [
(2, 3), (2, 4), (2, &), (0, 3), (0, 6), (1, 6),
(1, 5), (2, 5), (4, 5) 1)
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2. Next, we will draw the network so that we can understand the coloring when it is generated.
For this, we will use the draw_circular routine:

fig, ax = plt.subplots()
nx.draw_circular (G, ax=ax, with labels=True)

ax.set title("Scheduling network")
The resulting plot can be seen in the following figure:

Scheduling network

Figure 5.7 — Example network for a simple scheduling problem

3. We will generate the coloring using the nx . greedy color routine:

coloring = nx.greedy color (G)
print ("Coloring", coloring)
# Coloring {2: 0, 0: 1, 1: 2, 5: 1, 6: 3, 3: 2, 4: 2}

4. To see the actual colors that were used in this coloring, we will generate a set of values from
the coloring dictionary:

different colors = set(coloring.values())
print ("Different colors", different colors)
# Different colors {0, 1, 2, 3}

Notice that the number of colors in the coloring cannot be smaller since nodes 0, 1, 2, and 6 form
a complete network — each of these nodes is connected to the others, so each of them requires a
separate color.
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How it works...

The nx.greedy color routine colors the network using one of several possible strategies. By
default, it works in order of degree from largest to smallest. In our case, it started by assigning color
0 to node 2, which has a degree of 6, then color 1 to node 0, which has a degree of 4, and so on. The
first available color is chosen for each node in this sequence. This is not necessarily the most efficient
algorithm for coloring a network.

Any network can be colored by assigning every node a different color, but in most cases, fewer colors
are necessary. In the recipe, the network has seven nodes, but only four colors are required. The smallest
number of colors necessary is called the chromatic number of the network.

The problem we have described here is the node coloring problem. There is a related problem known
as edge coloring. We can turn an edge coloring problem into a node coloring problem by considering
the network whose nodes are the edges of the original network, with an edge between two of these
notes added whenever the edges share a common node in the original network.

There’s more...

There are several variations of the coloring problem for networks. One such variation is the list
coloring problem, in which we seek a coloring for a network where each node is given a color from
a predefined list of possible colors. This problem is more difficult than the general coloring problem.

The general coloring problem has surprising results. For example, every planar network can be colored
by, at most, four different colors. This is a famous theorem from graph theory called the four-color
theorem, which was proved by Appel and Haken in 1977. This theorem states that every planar graph
has a chromatic number that is no larger than 4.

Finding minimal spanning trees and dominating sets

Networks have applications for a wide variety of problems. Two obvious areas that see many applications
are communication and distribution. For example, we might wish to find a way of distributing goods
to several cities (nodes) in a road network that covers the smallest distance from a particular point.
For problems like this, we need to look at minimal spanning trees and dominating sets.

In this recipe, we will find a minimal spanning tree and a dominating set in a network.

Getting ready

For this recipe, we need to import the NetworkX package under the nx alias and the Matplotlib
pyplot module as plt.
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How to do it...
Follow these steps to find a minimum spanning tree and dominating set for a network:
1.  First, we will create a sample network to analyze:
G = nx.gnm random graph (15, 22, seed=12345)
2. Next, as usual, we will draw the network before doing any analysis:

fig, ax = plt.subplots()
pos = nx.circular layout (G)
nx.draw (G, pos=pos, ax=ax, with labels=True, style="--")

ax.set title("Network with minimum spanning tree
overlaid")

3. The minimum spanning tree can be computed using the nx . minimum spanning tree routine:

min span tree = nx.minimum spanning tree (G)

print (list (min span tree.edges))

# [(o, 13), (o, 7), (o, 5), (1, 13), (1, 11),
# 2, B), 3, 9), (3, B), (3, 3), (B, 13),
# (3, 4), (4, 6), (5, 14), (8, 10)]

4. Next, we will overlay the edges of the minimum spanning tree onto the plot:

nx.draw_networkx edges (min span tree, pos=pos,

ax=ax,width=2.)

5. Finally, we will find a dominating set — a set where every node in the network is adjacent to
at least one node from the set - for the network using the nx . dominating_set routine:

dominating set = nx.dominating set (G)
print ("Dominating set", dominating set)
# Dominating set {0, 1, 2, 4, 10, 14}
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A plot of the network with the minimum spanning tree overlaid can be seen in the following figure:

Network with minimum spanning tree overlaid

Figure 5.8 — The network drawn with the minimum spanning tree overlaid

The edges used in the minimum spanning tree are the bold unbroken lines, and the edges from the
original network are the dashed lines. The fact that the minimum spanning tree is indeed a tree is
slightly obscured by the layout, but we can easily trace through and see that no two nodes connected
to a single parent node are connected.

How it works...

The spanning tree of a network is a tree contained in the network that contains all the nodes. A
minimum spanning tree is a spanning tree that contains the fewest edges possible - or has the lowest
total weight. Minimum spanning trees are useful for distribution problems over a network. A simple
algorithm for finding minimum spanning trees is to simply select the edges (of the smallest weight first,
if the network is weighted) in such a way that it does not create cycles until this is no longer possible.

A dominating set for a network is a set of vertices where every node in the network is adjacent to at
least one node in the dominating set. Dominating sets have applications in communication networks.
We are often interested in finding minimal dominating sets, but this is computationally difficult.
Testing whether there is a dominating set that’s smaller than a given size is NP-complete. However,
there are some efficient algorithms for finding the smallest dominating sets for certain classes of
graphs. Informally speaking, the problem is that once you've identified a candidate for a minimum-
size dominating set, you have to verify that there are no dominating sets that are smaller in size. This
is very difficult if you do not know all the possible dominating sets in advance.
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Further reading
There are several classical texts on graph theory, including books by Bollobas and Diestel:

o Diestel, R., 2010. Graph Theory. 3rd ed. Berlin: Springer.
o Bollobas, B., 2010. Modern Graph Theory. New York, NY: Springer.



6
Working with Data
and Statistics

One of the most attractive features of Python for people who need to analyze data is the huge ecosystem
of data manipulation and analysis packages, as well as the active community of data scientists working
with Python. Python is easy to use, while also offering very powerful, fast libraries, which enables even
relatively novice programmers to quickly and easily process vast sets of data. At the heart of many
data science packages and tools is the pandas library. pandas provides two data container types that
build on top of NumPy arrays and have good support for labels (other than simple integers). These
data containers make working with large sets of data extremely easy.

Data and statistics are part of everything in the modern world. Python is leading the charge in trying
to make sense of the vast quantity of data produced every day, and usually, this all starts with pandas
— Python’s basic library for working with data. First, we'll see some basic techniques for working with
data using pandas. Then, we'll discuss the basics of statistics, which will provide us with a systematic
approach to understanding a whole population by looking at a small sample.

In this chapter, we will learn how to leverage Python and pandas to work with large sets of data and
perform statistical tests.

This chapter covers the following recipes:

o Creating Series and DataFrame objects

o Loading and storing data from a DataFrame

o Manipulating data in DataFrames

 Plotting data from a DataFrame

o Getting descriptive statistics from a DataFrame
o Understanding a population using sampling

o Performing operations on grouped data in a DataFrame
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o Testing hypotheses using t-tests
o Testing hypotheses using ANOVA
o Testing hypotheses for non-parametric data

o Creating interactive plots with Bokeh

What is statistics?

Statistics is the systematic study of data using mathematical - specifically, probability - theory. There
are two major aspects to statistics. The first aspect of statistics is summarizing data. This is where we
find numerical values that describe a set of data, including characteristics such as the center (mean or
median) and spread (standard deviation or variance) of the data. These values are called descriptive
statistics. What we’re doing here is fitting a probability distribution that describes the likelihood of a
particular characteristic appearing in a population. Here, a population simply means a complete set
of measurements of a particular characteristic — for example, the height of every person currently
alive on Earth.

The second - and arguably more important — aspect of statistics is inference. Here, we try to estimate
the distribution of data describing a population by computing numerical values on a relatively small
sample of that population. Not only do we try to estimate the distribution of the population, but we also
try to quantify how good our approximation is. This usually takes the form of a confidence interval.
A confidence interval is a range of values where we are confident the true value lies given the data we
have observed. We usually give 95% or 99% confidence intervals for estimated values.

Inference also includes tests for whether two or more sets of sampled data come from the same
population. This is the area of hypothesis testing. Here, we compare the likely distributions of both
sets of data to determine whether they are likely to be the same. Many hypothesis tests require that
the data is a normal distribution or, more likely, that we can apply the central limit theorem. These
tests are sometimes described as parametric tests and include t-tests and ANOVA. However, if your
data is not sufficiently nice that the central limit theorem can help, then some tests do not require the
assumption of normality. These are called non-parametric tests.

Technical requirements

For this chapter, we will mostly make use of the pandas library for data manipulation, which provides
R-like data structures, such as Series and DataFrame objects, for storing, organizing, and
manipulating data. We will also use the Bokeh data visualization library in the final recipe of this
chapter. These libraries can be installed using your favorite package manager, such as pip:

python3.10 -m pip install pandas bokeh

We will also make use of the NumPy and SciPy packages.
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The code for this chapter can be found in the Chapter 06 folder of this booK’s GitHub repository
athttps://github.com/PacktPublishing/Applying-Math-with-Python-2nd-
Edition/tree/main/Chapter%2006.

Creating Series and DataFrame objects

Most data handling in Python is done using the pandas library, which builds on NumPy to provide
R-like structures for holding data. These structures allow the easy indexing of rows and columns, using
strings or other Python objects besides just integers. Once data is loaded into a pandas DataFrame
or Series, it can be easily manipulated, just as if it were in a spreadsheet. This makes Python, when
combined with pandas, a powerful tool for processing and analyzing data.

In this recipe, we will see how to create new pandas Series and DataFrame objects and access
items from them.

Getting ready
For this recipe, we will import the pandas library as pd using the following command:
import pandas as pd

The NumPy package is np. We must also create a (seeded) random number generator from NumPy,
as follows:

from numpy.random import default rng
rng = default rng(12345)
How to do it...
The following steps outline how to create Series and DataFrame objects that hold data:

1. First, create the random data that we will store in the Series and DataFrame objects:

diff data = rng.normal (0, 1, size=100)

cumulative = diff data.cumsum()

2. Next, create a Series object that holds diff data. We'll print Series to produce a view
of the data:

data series = pd.Series(diff data)

print (data_series)


https://github.com/PacktPublishing/Applying-Math-with-Python-2nd-Edition/tree/main/Chapter%2006
https://github.com/PacktPublishing/Applying-Math-with-Python-2nd-Edition/tree/main/Chapter%2006
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3. Now;, create a DataFrame object with two columns:

data frame = pd.DataFrame ({
"diffs": data series,

"cumulative": cumulative

3]

4. Print the DataFrame object to produce a view of the data it holds:

print (data frame)

The printed objects are as follows; the Series object is on the left and the DataFrame object is

on the right:

diffs cumulative
0 -1.423825 0 -1.423825 -1.423825
1 1.263728 1 1.263728 -0.160097
2 -0.870662 2 -0.870662 -1.030758
3 -0.259173 3 -0.259173 -1.289932
4 -0.075343 4 -0.075343 -1.365275
95 -0.061905 95 -0.061905 -1.107210
96 -0.359480 96 -0.359480 -1.466690
97 -0.748644 97 -0.748644 -2.215334
98 -0.965479 98 -0.965479 -3.180813
99 0.360035 99 0.360035 -2.820778

Length: 100, dtype: float64 [100 rows x 2 columns]

As expected, both Series and DataFrame contain 100 rows. Since the data in the series is of a
single type — guaranteed by the fact that it is just a NumPy array - the data type is shown as f1loat64.
DataFrame has two columns, which may have different data types in general (although here, they
both have floaté4).
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How it works...

The pandas package provides the Series and DataFrame classes, which mirror the function and
capabilities of their R counterparts. Series is used to store one-dimensional data, such as time
series data, and DataFrame is used to store multidimensional data; you can think of a DataFrame
object as a “spreadsheet”

What separates Series from a simple NumPy ndarray is the way that Series indexes its items. A
NumPy array is indexed by integers, which is also the default for a Series object. However, Series
can be indexed by any hashable Python object, including strings and datet ime objects. This makes
Series useful for storing time series data. A Series can be created in several ways. In this recipe,
we used a NumPy array, but any Python iterable, such as a list, can be used instead.

Each column in a DataFrame object is a series containing rows, just as in a traditional database or
spreadsheet. In this recipe, the columns are given labels when the Dat aFrame object is constructed
via the keys of the dictionary.

The DataFrame and Series objects create a summary of the data they contain when printed. This
includes column names, the number of rows and columns, and the first and last five rows of the frame
(series). This is useful for quickly obtaining an overview of the object and the spread of data it contains.

There’s more...

The individual rows (records) of a Series object can be accessed using the usual index notation by
providing the corresponding index. We can also access the rows by their numerical position using the
special i1oc property object. This allows us to access the rows by their numerical (integer) index,
such as with Python lists or NumPy arrays.

The columns in a DataFrame object can be accessed using the usual index notation, providing the
name of the column. The result of this is a Series object that contains the data from the selected
column. DataFrame also provides two properties that can be used to access data. The 1oc attribute
provides access to individual rows by their index, whatever this object may be. The iloc attribute
provides access to the rows by numerical index, just as for the Series object.

You can provide selection criteria to Loc (or just use index notation for the object) to select data. This
includes a single label, a list of labels, a slice of labels, or a Boolean array (of an appropriate size). The
iloc selection method accepts similar criteria.

There are other ways to select data from a Series or DataFrame object beyond the simple methods
we describe here. For example, we can use the at attribute to access a single value at a specified row
(and column) in the object.

Sometimes, a pandas Series or DataFrame is not sufficiently rich to describe the data because they
are inherently low-dimensional. The xarray package builds upon the pandas interface and provides
support for labeled multidimensional arrays (that is, NumPy arrays). We'll learn about xarray in the
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Loading and storing data from NetCDF files recipe in Chapter 10. More information about xarray can
be found in the documentation: https://docs.xarray.dev/en/stable/index.html.

See also

The pandas documentation contains a detailed description of the different ways to create and index
aDataFrame or Series object: https://pandas.pydata.org/docs/user guide/
indexing.html.

Loading and storing data from a DataFrame

It is fairly unusual to create a DataFrame object from the raw data in a Python session. In practice,
the data will often come from an external source, such as an existing spreadsheet or CSV file, database,
or API endpoint. For this reason, pandas provides numerous utilities for loading and storing data
to file. Out of the box, pandas supports loading and storing data from CSV, Excel (x1s or x1sx),
JSON, SQL, Parquet, and Google BigQuery. This makes it very easy to import your data into pandas
and then manipulate and analyze this data using Python.

In this recipe, we will learn how to load and store data in a CSV file. The instructions will be similar
for loading and storing data in other file formats.

Getting ready

For this recipe, we will need to import the pandas package under the pd alias and the NumPy library as
np. We must also create a default random number generator from NumPy using the following commands:

from numpy.random import default rng

rng = default rng(12345) # seed for example

Let’s learn how to store and then load data from a DataFrame.

How to do it...
Follow these steps to store data in a file and then load the data back into Python:

1.  First, well create a sample DataFrame object using random data. Then, we will print this
DataFrame object so that we can compare it to the data that we will read later:

diffs = rng.normal (0, 1, size=100)

cumulative = diffs.cumsum/()

data_ frame = pd.DataFrame ({
"diffs": diffs,
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"cumulative": cumulative

1)

print (data_ frame)

We will store the data in this DataFrame object in the sample . csv file by using the to_csv
method on the DataFrame object. We will use the index=False keyword argument so
that the index is not stored in the CSV file:

data frame.to csv("sample.csv", index=False)

Now, we can use the read_csv routine from pandas to read the sample. csv file into a
new DataFrame object. We will print this object to show the result:

df = pd.read csv("sample.csv", index col=False)
print (df)

The two printed DataFrames are shown side by side. The DataFrame object from step I is on the
left and the DataFrame object from step 3 is on the right:

diffs cumulative diffs cumulative

0 -1.423825  -1.423825 0 -1.423825  -1.423825
1 1.263728 -0.160097 1  1.263728 -0.160097
2 -0.870662 -1.030758 2 -0.870662 -1.030758
3 -0.259173  -1.289932 3 -0.259173  -1.289932
4 -0.075343  -1.365275 4 -0.075343  -1.365275
95 -0.061905 -1.107210 95 -0.061905 -1.107210
96 -0.359480 -1.466690 96 -0.359480 -1.466690
97 -0.748644 -2.215334 97 -0.748644 -2.215334
98 -0.965479 -3.180813 98 -0.965479 -3.180813
99 0.360035 -2.820778 99 0.360035 -2.820778
[100 rows x 2 columns] [100 rows x 2 columns]

As we can see from the rows, these two DataFrames are identical.

How it works...

The core of this recipe is the read_csv routine in pandas. This routine takes path- or file-like objects
as an argument and reads the contents of the file as CSV data. We can customize the delimiter using
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the sep keyword argument, which is a comma (, ) by default. There are also options to customize
the column headers and customize the type of each column.

The to_csv method in a DataFrame or Series stores the contents in a CSV file. We used the
index keyword argument here so that the indices are not printed into the file. This means that pandas
will infer the index from the row number in the CSV file. This behavior is desirable if the data is indexed
by integers, but this might not be the case if the data is indexed by times or dates, for example. We
can also use this keyword argument to specify which column in the CSV file is the indexing column.

See also
See the pandas documentation for a list of supported file formats: https: //pandas.pydata.
org/docs/reference/io.html.

Manipulating data in DataFrames

Once we have data in a DataFrame, we often need to apply some simple transformations or filters
to the data before we can perform any analysis. This could include, for example, filtering the rows that
are missing data or applying a function to individual columns.

In this recipe, we will learn how to perform some basic manipulation of DataFrame objects to
prepare the data for analysis.

Getting ready

For this recipe, we will need the pandas package imported under the pd alias, the NumPy package
imported under the np alias, and a default random number generator object from NumPy to be
created using the following commands:

from numpy.random import default rng
rng = default rng(12345)

Let’s learn how to perform some simple manipulations on data in a DataFrame.

How to do it...

The following steps illustrate how to perform some basic filtering and manipulations on a
pandas DataFrame:

1. First, we will create a sample DataFrame using random data:

three = rng.uniform(-0.2, 1.0, size=100)

three [three < 0] = np.nan
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data frame = pd.DataFrame ({
"one": rng.random(size=100),
"two": rng.normal (0, 1, size=100).cumsum(),

"three": three

1)

2. Next, we will generate a new column from an existing column. This new column will hold True
if the corresponding entry of the "one" column is greater than 0. 5, and False otherwise:

data frame["four"] = data frame["one"] > 0.5

3. Now, let’s create a new function that we will apply to our DataFrame. This function multiplies
the row "two" value by the maximum of row "one" and 0. 5 (there are more concise ways
to write this function):

def transform function (row) :
if row["four"]:
return 0.5*row["two"]

return row["one"] *row["two"]

4. Now, we will apply the previously defined function to each row in the DataFrame to generate
a new column. We will also print the updated DataFrame for comparison later:

data frame["five"] = data frame.apply(
transform function, axis=1)

print (data frame)

5. Finally, we have to filter out the rows in the DataFrame that contain a Not a Number (NaN)
value. We will print the resulting DataFrame:

df = data frame.dropna ()
print (df)

The output from the print command in step 4 is as follows:

one two three four five
.168629 1.215005 .072803 False 0.204885
.240144 1.431064 .180110 False 0.343662
.780008 0.466240 .756839 True 0.233120
.203768 -0.090367 .611506 False -0.018414
.552051 -2.388755 .269331 True -1.194377
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95 0.437305 2.262327 0.254499 False 0.989326
96 0.143115 1.624691 0.131136 False 0.232517
97 0.422742 2.769187 0.959325 False 1.170652
98 0.764412 1.128285 NaN True 0.564142
99 0.413983 -0.185719 0.290481 False -0.076885

[100 rows x 5 columns]

There is a single NaN value visible in row 98. As expected, we have 100 rows total and 5 columns of
data. Now, we can compare this to the output of the print command in step 6:

one two three four five

0 0.168629 1.215005 0.072803 False 0.204885
1 0.240144 1.431064 0.180110 False 0.343662
2 0.780008 0.466240 0.756839 True 0.233120
3 0.203768 -0.090367 0.611506 False -0.018414
4 0.552051 -2.388755 0.269331 True -1.194377
94 0.475131 3.065343 0.330151 False 1.456440
95 0.437305 2.262327 0.254499 False 0.989326
96 0.143115 1.624691 0.131136 False 0.232517
97 0.422742 2.769187 0.959325 False 1.170652
99 0.413983 -0.185719 0.290481 False -0.076885

[88 rows x 5 columns]

As expected, the number of rows has dropped by 12, since we have removed all the rows that contain
a NaN value. (Notice that row 98 no longer contains NaN in column 3.)

How it works...

New columns can be added to an existing Dat aFrame by simply assigning them to the new column
index. However, some care needs to be taken here. In some situations, pandas will create a “view”
of a DataFrame object rather than copying, and in this case, assigning it to a new column might
not have the desired effect. This is discussed in the pandas documentation (https://pandas.
pydata.org/pandas-docs/stable/user guide/indexing.html#returning-
a-view-versus-a-copy).
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pandas Series objects (columns in a DataFrame) support rich comparison operators, such
as equality and less than or greater than (in this recipe, we used the greater than operator). These
comparison operators return a Series containing Boolean values corresponding to the positions
at which the comparison was true and false. This can, in turn, be used to index the original Series
and get just the rows where the comparison was true. In this recipe, we simply added this Series
of Boolean values to the original DataFrame.

The apply method takes a function (or other callable function) and applies it to each column in the
DataFrame object. In this recipe, we instead wanted to apply the function to each row, so we used
the axis=1 keyword argument to apply the function to each row in the DataFrame object. In
either case, the function is provided with a Series object indexed by the rows (columns). We also
applied a function to each row, which returned a value computed using the data from each row. In
practice, this application would be quite slow if the DataFrame object contains a large number of
rows. If possible, you should operate on the columns as a whole, using functions designed to operate
on NumPy arrays, for better efficiency. This is especially true for performing simple arithmetic on
values in columns of a DataFrame. Just like NumPy arrays, Series objects implement standard
arithmetic operations, which can greatly improve the operation time for large DataFrames.

In the final step of this recipe, we used the dropna method to quickly select only the rows from
the DataFrames that do not contain a NaN value. pandas uses NaN to represent missing data in a
DataFrame, so this method selects the rows that don’t contain a missing value. This method returns
a view to the original DataFrame object, but it can also modify the original Dat aFrame by passing
the inplace=True keyword argument. As in this recipe, this is roughly equivalent to using the
indexing notation to select rows using an indexing array containing Boolean values.

( R
Note

You should always be cautious when modifying original data directly since it might not be
possible to return to this data to repeat your analysis later. If you do need to modify the data
directly, you should make sure that it is either backed up or that the modifications do not
remove data that you might need later.

There’s more...

Most pandas routines deal with missing data (NaN) sensibly. However, if you do need to remove or
replace missing data in a DataFrame, then there are several ways to do this. In this recipe, we used
the dropna method to simply drop the rows from the DataFrames that are missing data. Instead,
we could fill all the missing values with a specific value using the £i11na method, or interpolate
missing values using the surrounding values using the interpolate method.

More generally, we can use the replace method to replace specific (non-NaN) values with other
values. This method can work with both numeric values and string values, including pattern-matching
with regex.
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The DataFrame class has many useful methods. We've only covered the very basic methods here,
but there are two other methods that we should also mention. These are the agg method and the
merge method.

The agg method aggregates the results of one or more operations over a given axis of the DataFrame
object. This allows us to quickly produce summary information for each column (or row) by applying
an aggregating function. The output is a DataFrame that contains the names of the functions applied
as the rows, and the labels for the chosen axis (column labels, for instance) for the columns.

The merge method performs a SQL-like join over two DataFrames. This will produce a new DataFrame
that contains the result of the join. Various parameters can be passed to the how keyword argument to
specify the type of merge to be performed, with the default being inner. The name of the column or
index over which to perform the join should be passed to either the on keyword argument - if both
DataFrame objects contain the same key - or to left onand right on. Here is a very simple
example of a merge on DataFrames:

rng = default rng(12345)
dfl = pd.DataFrame ({
"label": rng.choice(["A", "B", "C"], size=5),

"datal": rng.standard normal (size=5)

df2 = pd.DataFrame ({
"label": rng.choice(["A", "B", "C", "D"], size=4),
"data2": rng.standard normal (size=4)

1)

df3 = dfl.merge(df2, how="inner", on="label")

This will produce a DataFrame that contains rows with 1abel, datal, and data2 corresponding to
the rows from df1 and d£2 that share the same label. Let’s print the three DataFrames to see the result:

>>> print (dfl) >>> print (df2)
label datal label data2
0 C -0.259173 0 D 2.347410
1 A -0.075343 1 A 0.968497
2 C -0.740885 2 C -0.759387
3 A -1.367793 3 C 0.902198
4 A 0.648893
>>> df3
label datal data2

0 C -0.259173 -0.759387
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1 C -0.259173 0.902198
2 C -0.740885 -0.759387
3 C -0.740885 0.902198
4 A -0.075343 0.968497
5 A -1.367793 0.968497
6 A 0.648893 0.968497

Here, you can see that each combination of datal and data2 values from df1 and df2, respectively,
with matching labels, have a row in d£3. Moreover, the row with label D from d£2 is not used since
there is no row with label Din df1.

Plotting data from a DataFrame

As with many mathematical problems, one of the first steps to finding some way to visualize the
problem and all the information is to formulate a strategy. For data-based problems, this usually
means producing a plot of the data and visually inspecting it for trends, patterns, and the underlying
structure. Since this is such a common operation, pandas provides a quick and simple interface for
plotting data in various forms, using Matplotlib under the hood by default, directly from a Series
or DataFrame.

In this recipe, we will learn how to plot data directly from a DataFrame or Series to understand
the underlying trends and structure.

Getting ready

For this recipe, we will need the pandas library imported as pd, the NumPy library imported as np,
the Matplotlib pyplot module imported as p1t, and a default random number generator instance
created using the following commands:

from numpy.random import default rng
rng = default rng(12345)

How to do it...

Follow these steps to create a simple DataFrame using random data and produce plots of the data
it contains:

1. Create a sample DataFrame using random data:

diffs = rng.standard normal (size=100)
walk = diffs.cumsum()
df = pd.DataFrame ({
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"diffg": diffs,
"walk": walk

H
Next, we have to create a blank figure with two subplots ready for plotting:

fig, (axl, ax2) = plt.subplots(l, 2, tight layout=True)

We have to plot the walk column as a standard line graph. This can be done by using the
plot method on the Series (column) object without additional arguments. We will force
the plotting on ax1 by passing the ax=ax1 keyword argument:

df ["walk"] .plot (ax=ax1l, title="Random walk", color="k")
axl.set xlabel ("Index")
axl.set _ylabel ("Value")

Now, we have to plot a histogram of the diffs column by passing the kind="hist" keyword
argument to the plot method:

df ["diffs"] .plot (kind="hist", ax=ax2,
title="Histogram of diffs", color="k", alpha=0.6)

ax2.set xlabel ("Difference")

The resulting plots are shown here:
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Figure 6.1 - Plot of the walk value and a histogram of differences from a DataFrame
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Here, we can see that the histogram of differences approximates a standard normal distribution (mean
0 and variance 1). The random walk plot shows the cumulative sum of the differences and oscillates
(fairly symmetrically) above and below 0.

How it works...

The plot method ona Series (or aDataFrame) is a quick way to plot the data it contains against
the row index. The kind keyword argument is used to control the type of plot that is produced, with a
line plot being the default. There are lots of options for the plotting type, including bar for a vertical bar
chart, barh for a horizontal bar chart, hist for a histogram (also seen in this recipe), box for a box plot,
and scatter for a scatter plot. There are several other keyword arguments to customize the plot that it
produces. In this recipe, we also provided the t it1e keyword argument to add a title to each subplot.

Since we wanted to put both plots on the same figure side by side using subplots that we had already
created, we used the ax keyword argument to pass in the respective axes handles to the plotting
routine. Even if you let the plot method construct a figure, you may still need to use the plt . show
routine to display the figure with certain settings.

There’s more...

We can produce several common types of plots using the pandas interface. This includes, in addition
to those mentioned in this recipe, scatter plots, bar plots (horizontal bars and vertical bars), area plots,
pie charts, and box plots. The plot method also accepts various keyword arguments to customize
the appearance of the plot.

Getting descriptive statistics from a DataFrame

Descriptive statistics, or summary statistics, are simple values associated with a set of data, such as the
mean, median, standard deviation, minimum, maximum, and quartile values. These values describe
the location and spread of a dataset in various ways. The mean and median are measures of the center
(location) of the data, and the other values measure the spread of the data from the mean and median.
These statistics are vital for understanding a dataset and form the basis for many techniques for analysis.

In this recipe, we will learn how to generate descriptive statistics for each column in a DataFrame.

Getting ready

For this recipe, we need the pandas package imported as pd, the NumPy package imported as np,
the Matplotlib pyplot module imported as plt, and a default random number generator created
using the following commands:

from numpy.random import default rng
rng = default rng(12345)

177



178 Working with Data and Statistics

How to do it...
The following steps show how to generate descriptive statistics for each column in a DataFrame:
1.  First, we will create some sample data that we can analyze:

uniform = rng.uniform(l, 5, size=100)
normal = rng.normal(l, 2.5, size=100)
bimodal = np.concatenate ([rng.normal (0, 1, size=50),
rng.normal (6, 1, size=50)])
df = pd.DataFrame ({
"uniform": uniform,
"normal": normal,
"bimodal": bimodal

3]

2. Next, we will plot histograms of the data so that we can understand the distribution of the data
in the DataFrame object:

fig, (axl, ax2, ax3) = plt.subplots(l, 3,
tight layout=True)

df ["uniform"] .plot (kind="hist",

title="Uniform", ax=axl, color="k", alpha=0.6)
df ["normal"] .plot (kind="hist",

title="Normal", ax=ax2, color="k", alpha=0.6)

3. To get a proper view of the distribution for the bimodal data, we will change the number of
bins in the histogram to 20:

df ["bimodal"] .plot (kind="hist", title="Bimodal",
ax=ax3, bins=20, color="k", alpha=0.6)

4. pandas DataFrame objects have a method for getting several common descriptive statistics for
each column. The describe method creates a new DataFrame, where the column headers
are the same as from the original object and each row contains a different descriptive statistic:

descriptive = df.describe ()

5. We must also compute the kurtosis and add this to the new DataFrame object we just obtained.
We must also print the descriptive statistics to the console to see what the values are:

descriptive.loc["kurtosis"] = df.kurtosis()

print (descriptive)
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# uniform normal bimodal
# count 100.000000 100.000000 100.000000

# mean 2.813878 1.087146 2.977682
# std 1.093795 2.435806 3.102760
# min 1.020089 -5.806040 -2.298388
# 25% 1.966120 -0.498995 0.069838
# 50% 2.599687 1.162897 3.100215
# 75% 3.674468 2.904759 5.877905
# max 4.891319 6.375775 8.471313
# kurtosis -1.055983 0.061679 -1.604305

6.  Finally, we must add vertical lines to the histograms to illustrate the value of the mean in each case:

uniform mean = descriptive.loc["mean", "uniform"]
normal mean = descriptive.loc["mean", "normal"]
bimodal mean = descriptive.loc["mean", "bimodal"]
axl.vlines (uniform mean, 0, 20, "k")

ax2.vlines (normal mean, 0, 25, "k")

ax3.vlines (bimodal mean, 0, 20, "k")

The resulting histograms are shown here:
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Figure 6.2 — Histograms of three sets of data with their mean values indicated
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Here, we can see that the mean is central to the normally distributed data (middle), but for the
uniformly distributed data (left), the “mass” of the distribution is slightly more biased toward the
lower values to the left of the mean. With the bimodal day (right), the mean line lies exactly between
the two components of mass.

How it works...

The describe method returns a DataFrame with rows for the following descriptive statistics of
the data: the count, mean, standard deviation, minimum value, 25% quartile, median (50% quartile),
75% quartile, and maximum value. The count is fairly self-explanatory, as are the minimum and
maximum values. The mean and the median are two different averages of the data, which roughly
represent the central value of the data. The definition of the mean should be familiar, as the sum of
all values divided by the number of values. We can express this quantity using the following formula:

Here, the x; values represent the data values and N is the number (count) of values. Here, we also
adopt the common notation of the bar to represent the mean value. The median is the “middle value”
when all the data is sorted (taking an average of the two middle values if there is an odd number of
values). The quartile values at 25% and 75% are similarly defined, but taking the value at 25% or 75%
of the way through the ordered values. You might also think of the minimum as the 0% quartile and
the maximum as the 100% quartile.

Standard deviation is a measure of the spread of the data from the mean and is related to another
quantity that is frequently mentioned in statistics: the variance. The variance is the square of the
standard deviation and is defined as follows:

1 N
s = NZ(xi - %)?
=1

You might also see N — 1 appear in the fraction here, which is a correction for bias when estimating
population parameters from a sample. We will discuss population parameters and their estimation
in the next recipe. The standard deviation, variance, quartiles, and maximum and minimum values
describe the spread of the data. For example, if the maximum value is 5, the minimum value is 0, the
25% quartile is 2, and the 75% quartile is 4, then this indicates that most (at least 50% of the values,
in fact) of the data is concentrated between 2 and 4.

The kurtosis is a measure of how much the data is concentrated in the “tails” of the distribution (far
from the mean). This is not as common as the other quantities we have discussed in this recipe, but it
does appear in some analyses. We have included it here mostly as a demonstration of how to compute
summary statistic values that do not appear in the DataFrame object returned from the describe
method using the appropriately named method - here, kurtosis. There are, of course, separate
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methods for computing the mean (mean), standard deviation (std), and the other quantities from
the describe method.

Note

When pandas computes the quantities described in this recipe, it will automatically ignore any
“missing values” represented by NaN. This will also be reflected in the count reported in the
descriptive statistics.

There’s more...

The third dataset that we included in our statistics illustrates the importance of looking at the data to
make sure the values we have calculated make sense. Indeed, we compute the mean as approximately
2.9, but looking at the histogram, it is clear that most of the data is relatively far from this value. We
should always check whether the summary statistics that we calculate give an accurate summary of the
data in our sample. Simply quoting the mean might give an inaccurate representation of the sample.

Understanding a population using sampling

One of the central problems in statistics is to make estimations — and quantify how good these
estimations are — of the distribution of an entire population given only a small (random) sample. A
classic example is to estimate the average height of all the people in a country when measuring the
height of a randomly selected sample of people. These kinds of problems are particularly interesting
when the true population distribution, by which we usually mean the mean of the whole population,
cannot feasibly be measured. In this case, we must rely on our knowledge of statistics and a (usually
much smaller) randomly selected sample to estimate the true population mean and standard deviation,
and also quantify how good our estimations are. It is the latter that is the source of confusion,
misunderstanding, and misrepresentation of statistics in the wider world.

In this recipe, we will learn how to estimate the population mean and give a confidence interval for
these estimates.

Getting ready

For this recipe, we need the pandas package imported as pd, the math module from the Python
standard library, and the SciPy stats module, imported using the following command:

from scipy import stats

Let’s learn how to construct confidence intervals using the statistical routines from SciPy.
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How to do it...

In the following steps, we will give an estimation of the mean height of males in the United Kingdom,
based on a randomly selected sample of 20 people:

1.  First, we must load our sample data into a pandas Series:

sample data = pd.Series(
[172.3, 171.3, 164.7, 162.9, 172.5, 176.3, 174.8,
171.9,176.8, 167.8, 1l64.5, 179.7, 157.8, 170.6,
189.9, 185., 172.7, 165.5, 174.5, 171.5]

)

2. Next, we must compute the sample mean and standard deviation:

sample mean = sample data.mean ()

sample std = sample data.std()

print (£"Mean {sample mean}, st. dev {sample std}")
# Mean 172.15, st. dev 7.473778724383846

3. 'Then, we must compute the standard error, as follows:

N = sample data.count ()

std err = sample std/math.sgrt (N)

4. 'We must compute the critical values for the confidence values we desire from the student
t distribution:

cv_95, cv_99 = stats.t.ppf([0.975, 0.995], df=N-1)

5.  Now, we can compute the 95% and 99% confidence intervals for the true population mean
using the following code:

pm 95 = cv_95*std err

conf interval 95 = [sample mean - pm 95,
sample mean + pm_ 95]

pm_99 = cv_99*std err

conf interval 99 = [sample mean - pm 99,

sample mean + pm 99]

print ("95% confidence", conf interval 95)
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# 95% confidence [168.65216388659374, 175.64783611340627]
print ("99% confidence", conf interval 99)
# 99% confidence [167.36884119608774, 176.93115880391227]

How it works...

The key to parameter estimation is normal distribution, which we discussed in Chapter 4, Working
with Randomness and Probability. If we find the critical value of zZ for which the probability that a
standard, normally distributed random number lies below this value z is 97.5%, then the probability
that such a number lies between the values of —z and z is 95% (2.5% in each tail). This critical value
of zZ turns out to be 1.96, rounded to 2 decimal places. That is, we can be 95% sure that the value of a
standard normally distributed random number lies between —z and z. Similarly, the critical value of
99% confidence is 2.58 (rounded to 2 decimal places).

If our sample is “large,” we could invoke the central limit theorem, which tells us that even if the
population is not normally distributed the means of random samples drawn from this population will
be normally distributed with the same mean as the whole population. However, this is only valid if
our samples are large. In this recipe, the sample is not large - it only has 20 values, which is certainly
not large compared to the male population of the UK. This means that, rather than the normal
distribution, we have to use a student t distribution with N — 1 degrees of freedom to find our critical
values, where N is the size of our sample. For this, we must use the stats. t . ppf routine from the
SciPy stats module.

The student t distribution is related to the normal distribution but has a parameter - the degree of
freedom - that changes the shape of the distribution. As the number of degrees of freedom increases,
the student t distribution will look more and more like a normal distribution. The point at which
you consider the distributions to be sufficiently similar depends on your application and your data.
A general rule of thumb says that a sample size of 30 is sufficient to invoke the central limit theorem
and simply use the normal distribution, but it is by no means a good rule. You should be very careful
when making deductions based on a sample, especially if the sample is very small compared to the
total population.

Once we have the critical values, the confidence interval for the true population mean can be computed
by multiplying the critical value by the standard error of the sample and adding and subtracting this
from the sample mean. The standard error is an approximation of the spread of the distribution of
sample means of a given sample size from the true population mean. This is why we use the standard
error to give the confidence interval for our estimation of the population mean. When we multiply
the standard error by the critical value taken from the student t distribution (in this case), we obtain
an estimate of the maximum difference between the observed sample mean and the true population
mean at the given confidence level.
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In this recipe, that means that we are 95% certain that the mean height of UK males lies between
168.7 cm and 175.6 cm, and we are 99% certain that the mean height of UK males lies between 167.4
cm and 176.9 cm. Our sample was drawn from a population with a mean of 175.3 cm and a standard
deviation of 7.2 cm. This true mean (175.3 cm) does indeed lie within both of our confidence intervals,
but only just.

See also

There is a useful package called uncertainties for doing computations involving values with
some uncertainty attached. See the Accounting for uncertainty in calculations recipe in Chapter 10,
Improving Your Productivity, for more information.

Performing operations on grouped data in a DataFrame

One of the great features of pandas DataFrames is the ability to group the data by the values in particular
columns. For example, we might group assembly line data by the line ID and the shift ID. The ability
to operate on this grouped data ergonomically is very important since data is often aggregated for
analysis but needs to be grouped for preprocessing.

In this recipe, we will learn how to perform operations on grouped data in a DataFrame. We'll also
take the opportunity to show how to operate on rolling windows of (grouped) data.

Getting ready

For this recipe, we will need the NumPy library imported as np, the Matplotlib pyplot interface
imported as plt, and the pandas library imported as pd. We'll also need an instance of the default
random number generator created as follows:

rng = np.random.default rng(12345)

Before we start, we also need to set up the Matplotlib plotting settings to change the plotting style in
this recipe. We're going to change the mechanism that cycles through the plotting style when multiple
plots are produced on the same axes, which usually results in different colors. To do this, we're going
to change this to produce black lines with different line styles:

from matplotlib.rcsetup import cycler
plt.rc("axes", prop cycle=cycler
c:[llkll]*3, lS:[Il_Il, Il__Il, Il_.ll]))

Now, let’s learn how to use the grouping features of pandas DataFrames.
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How to do it...
Follow these steps to learn how to perform operations on grouped data inside a pandas DataFrame:

1. First, we need to generate some sample data in a DataFrame. For this example, we're going
to generate two label columns and one column of numerical data:

labelsl = rng.choice(["A", "B", "C"], size=50)
labels2 = rng.choice([1, 2], size=50)
data = rng.normal (0.0, 2.0, size=50)

df = pd.DataFrame({"labell": labelsl, "label2": labels2,
"data": datal})

2. Next, let’s add a new column that consists of the cumulative sum of the "data" column,
grouped by the first label, "1abell":

df [“first group”] = df.groupby(“labell”) [“*data”] .cumsum/()
print (df .head())

The first five rows of Af are now as follows:

labell 1label2 data first group
0 c 2 0.867309 0.867309
1 A 2 0.554967 0.554967
2 © 1 1.060505 1.927814
3 A 1 1.073442 1.628409
4 A 1 1.236700 2.865109

Here, we can see that the "first group" column contains the cumulative sum for each
of the labels in the "1abell" column. For instance, the row 0 and row 1 sums are just the
value from the "data" column. The new entry in row 2 is the sum of the data in row 0 and
row 2 since these are the first two rows with the label “C”.

3. Now, lets perform a grouping on both the "labell" and "label2" columns simultaneously:

grouped = df.groupby(["labell", "label2"])

4. Now, we can compute the rolling mean over consecutive entries within each group using the
transformand rolling methods on the grouped data:

df ["second group"] = grouped["data"].transform(lambda d:
d.rolling (2, min periods=1) .mean())

print (df.head())

print (df [df ["1labell"]=="C"] .head())
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The first five printed rows are as follows:

labell 1label2 data first group second group
0 c 2 0.867309 0.867309 0.867309
1 A 2 0.554967 0.554967 0.554967
2 c 1 1.060505 1.927814 1.060505
3 A 1 1.073442 1.628409 1.073442
4 A 1 1.236700 2.865109 1.155071

As before, the first few rows all represent different groups, so the values in the "second__
group" column are the same as the corresponding values in the "data" column. The value
in row 4 is the mean of the data values in rows 3 and 4. The next five printed rows are those
with the label C:

labell 1label2 data first group second group
0 C 2 0.867309 0.867309 0.867309
2 C 1 1.060505 1.927814 1.060505
5 C 1 -1.590035 0.337779 -0.264765
7 C 1 -3.205403 -2.867624 -2.397719
8 C 1 0.533598 -2.334027 -1.335903

Here, we can see the rolling average and cumulative sums more clearly. All but the first row
have the same labels.

5.  Finally, let’s plot the values of the "first group" column grouped by the "labell" column:

fig, ax = plt.subplots()
df .groupby ("labell") ["first group"] .plot (ax=ax)

ax.set (title="Grouped data cumulative sums",
xlabel="Index", ylabel="value")

ax.legend /()
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The resulting plot is shown in Figure 6.3:

Grouped data cumulative sums

value

—-10 41

—-12 1

Figure 6.3 - Plot of cumulative sums by the label1 group

Here, we can see that each of the groups has produced a distinct line on the plot. This is a quick and
easy way to produce plots of grouped data from a DataFrame. (Remember that we changed the
default style cycle in the Getting ready section to make the plot style more distinctive on the page.)

How it works...

The groupby method creates a proxy for the DataFrame with an index generated from the requested
columns. We can then perform operations on this proxy object. In this case, we used the cumsum
method to generate the cumulative sum of the numerical values in the "data" column within each
of the groups. We can use this approach to generate summary statistics of the grouped data in the
same way. This is very useful for data exploration.

In the second part of this recipe, we grouped by two different label columns and computed a rolling
average (with window length 2) on each group. Notice that we “wrap” this computation using the
transform method rather than calling rolling directly on the grouped DataFrame. This is
so that the result has the correct indexing to be put back into d£f. Otherwise, the output of mean will
inherit the grouped index, and we will not be able to put the result into df. We used the min_periods
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optional argument on rolling to make sure that all rows had a value. Otherwise, the rows that
appeared before the window size would be assigned NaN.

The final part of this recipe used the plot routine on the data grouped by "label1". This is a fast and
easy way to plot multiple streams of data from within the same DataFrame object. Unfortunately, it
is a little difficult to customize the plotting in this case, although it can be done using the rcparams
settings in Matplotlib.

Testing hypotheses using t-tests

One of the most common tasks in statistics is to test the validity of a hypothesis about the mean of
a normally distributed population, given that you have collected sample data from that population.
For example, in quality control, we might wish to test that the thickness of a sheet produced at a mill
is 2 mm. To test this, we can randomly select sample sheets and measure the thickness to obtain our
sample data. Then, we can use a t-test to test our null hypothesis, H,, that the mean paper thickness
is 2 mm, against the alternative hypothesis, H;, that the mean paper thickness is not 2 mm. We can
use the SciPy stats module to compute a t statistic and a P value. If the P value is below 0.05, then
we accept the null hypothesis with 5% significance (95% confidence). If the P value is larger than 0.05,
then we must reject the null hypothesis in favor of our alternative hypothesis.

In this recipe, we will learn how to use a t-test to test whether the assumed population mean is valid
given a sample.

Getting ready

For this recipe we will need the pandas package imported as pd and the SciPy stats module imported
using the following command:

from scipy import stats

Let’s learn how to perform t-tests using the SciPy stats module.

How to do it...

Follow these steps to use a t-test to test the validity of a proposed population mean given some
sample data:

1.  First, we must load the data into a pandas Series:

sample = pd.Series ([
2.4, 2.4, 2.9, 2.6, 1.8, 2.7, 2.6, 2.4, 2.8,
2.4, 2.4, 2.4, 2.7, 2.7, 2.3, 2.4, 2.4, 3.2,
2.9, 2.5, 2.5, 3.2, 2. ,;, 2.3,; 3. , 4.5, 3.,
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2.5, B.2, 2.5, 2.,1,1.8, 3.1, 2.4, 3. , 2.5,
2.7y B, 2.3, 2.2, 2.5, 2.6, 2.5, 2.8, 2.5,
9, 2.1, 2.8, 2.1, 2.3

2. Now, let’s set the hypothesized population mean and the significance level that we will be testing at:

mul0 = 2.0

significance = 0.05

3. Next, we will use the ttest_1samp routine from the SciPy stats module to generate the
t statistic and the P value:

t statistic, p value = stats.ttest lsamp (sample, mu0)
print (£"t stat: {t_statistic}, p value: {p value}")

# t stat: 9.752368720068665, p value: 4.596949515944238e-
13

4. Finally, lets test whether the P value is smaller than the significance level we chose:

if p value <= significance:

print ("Reject HO in favour of Hl: mu != 2.0")
else:

print ("Accept HO: mu = 2.0")
# Reject HO in favour of H1: mu != 2.0

We can conclude with 95% confidence that the mean of the population from which the data was sampled
is not equal to 2. (Given that most of the numbers shown in the sample are greater than 2, this isn't
much of a surprise.) We can be very confident that this is the case given how small the P value is here.

How it works...

The t statistic is computed using the following formula:

X =g

s/VN
Here, Ho is the hypothesized mean (from the null hypothesis), X is the sample mean, S is the sample
standard deviation, and N is the size of the sample. The t statistic is an estimation of the difference
between the observed sample mean and the hypothesized population mean, Ho, normalized by the

standard error. Assuming the population is normally distributed, the t statistic will follow a t distribution
with N — 1 degrees of freedom. Looking at where the t statistic lies within the corresponding student
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t distribution gives us an idea of how likely it is that the sample mean we observed came from the
population with the hypothesized mean. This is given in the form of a P value.

The p value is the probability of observing a more extreme value than the sample mean we have
observed, given the assumption that the population mean is equal to Ho. If the P value is smaller than
the significance value we have chosen, then we cannot expect the true population mean to be the
value, Mo, that we assumed. In this case, we accept the alternative hypothesis that the true population
norm is not equal to Ho.

There’s more...

The test that we demonstrated in this recipe is the most basic use of a t-test. Here, we compared the
sample mean to a hypothesized population mean to decide whether it was reasonable that the mean
of the whole population is this hypothesized value. More generally, we can use t-tests to compare
two independent populations given samples taken from each using a two-sample t-test, or compare
the populations where data is paired (in some way) using a paired t-test. This makes the t-test an
important tool for a statistician.

Significance and confidence are two concepts that occur frequently in statistics. A statistically
significant result has a high probability of being correct. In many contexts, we consider any result that
has a probability of being wrong below a certain threshold (usually either 5% or 1%) to be statistically
significant. Confidence is a quantification of how certain we are about a result. The confidence of a
result is 1 minus the significance.

Unfortunately, the significance of a result is something that is often misused or misunderstood. To say
that a result is statistically significant at 5% is to say that there is a 5% chance that we have wrongly
accepted the null hypothesis. That is, if we repeated the same test on 20 other samples from the
population, we would expect at least one of them to give the opposite result. That, however, is not to
say that one of them is guaranteed to do so.

High significance indicates that we are more sure that the conclusion we have reached is correct, but
it is certainly not a guarantee that this is indeed the case. The results found in this recipe are evidence
for this; the sample that we used was drawn from a population with a mean of 2 . 5 and a standard
deviation of 0. 35. (Some rounding was applied to the sample after creation, which will have altered
the distribution slightly.) This is not to say that our analysis is wrong, or that the conclusion we reached
from our sample is not the right one.

It is important to remember that t-tests are only valid when the underlying populations follow a
normal distribution, or at least approximately do so. If this is not the case, then you might need to
use a non-parametric test instead. We will discuss this in the Testing hypotheses for non-parametric
data recipe.
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Testing hypotheses using ANOVA

Suppose we have designed an experiment that tests two new processes against the current process

and we want to test whether the results of these new processes are different from the current process.
In this case, we can use Analysis of Variance (ANOVA) to help us determine whether there are any
differences between the mean values of the three sets of results (for this, we need to assume that each
sample is drawn from a normal distribution with a common variance).

In this recipe, we will learn how to use ANOVA to compare multiple samples with one another.

Getting ready

For this recipe, we need the SciPy stats module. We will also need to create a default random
number generator instance using the following commands:

from numpy.random import default rng

rng

= default rng(12345)

How to do it...

Follow these steps to perform a (one-way) ANOVA test to test for differences between three
different processes:

L.

2.

3.

First, we will create some sample data, which we will analyze:

current = rng.normal (4.0, 2.0, size=40)
process _a = rng.normal (6.2, 2.0, size=25)

process b = rng.normal(4.5, 2.0, size=64)

Next, we will set the significance level for our test:

significance = 0.05

Then, we will use the £_oneway routine from the SciPy stats module to generate the
F-statistic and the P value:

F stat, p value = stats.f oneway(
current, process_a, process b)
print (£"F stat: {F _stat}, p value: {p value}")

# F stat: 9.949052026027028, p value: 9.732322721019206e-
05
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4. Now, we must test whether the P value is sufficiently small to see whether we should accept or
reject our null hypothesis that all mean values are equal:

if p value <= significance:

print ("Reject HO: there is a difference between
means")
else:

print ("Accept HO: all means equal")

# Reject HO: there is a difference between means

Here, the P value is so small (of order 107°) that the difference is significant not only at 95% confidence
(that is, p < 0.05) but also at 99% confidence (P < 0.01),

How it works...

ANOVA is a powerful technique for comparing multiple samples against one another simultaneously. It
works by comparing the variation in the samples relative to the overall variation. ANOVA is especially
powerful when comparing three or more samples since no cumulative error is incurred from running
multiple tests. Unfortunately, if ANOVA detects that not all the mean values are equal, then there is
no way from the test information to determine which sample(s) are significantly different from the
others. For this, you would need to use an extra test to find the differences.

The £ oneway SciPy stats module routine performs a one-way ANOVA test — the test statistic
generated in ANOVA follows an F-distribution. Again, the P value is the crucial piece of information
coming from the test. We accept the null hypothesis if the P value is less than our predefined significance
level (in this recipe, 5%) and reject the null hypothesis otherwise.

There’s more...

The ANOVA method is very flexible. The one-way ANOVA test that we presented here is the most
simple case as there is only a single factor to test. A two-way ANOVA test can be used to test for
differences between two different factors. This is useful in clinical trials of medicines, for example,
where we test against a control measure but also measure the effects of gender (for instance) on the
outcomes. Unfortunately, SciPy does not have a routine for performing two-way ANOVA in the
stats module. You will need to use an alternative package, such as the stat smodels package.

As mentioned previously, ANOVA can only detect whether there are differences. It cannot detect
where these differences occur if there are significant differences. For example, we can use Durnett’s
test to test whether the other sample’s mean values differ from a control sample, or Tukey’s range test
to test each group’s mean against every other group’s mean.
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Testing hypotheses for non-parametric data

Both t-tests and ANOVA have a major drawback: the population that is being sampled must follow
a normal distribution. In many applications, this is not too restrictive because many real-world
population values follow a normal distribution, or some rules, such as the central limit theorem,
allow us to analyze some related data. However, it is simply not true that all possible population values

follow a normal distribution in any reasonable way. For these (thankfully, rare) cases, we need some
alternative test statistics to use as replacements for t-tests and ANOVA.

In this recipe, we will use a Wilcoxon rank-sum test and the Kruskal-Wallis test to test for differences
between two (or more, in the latter case) populations.

Getting ready

For this recipe, we will need the pandas package imported as pd, the SciPy stats module, and a
default random number generator instance created using the following commands:

from numpy.random import default rng

rng

= default rng(12345)

Let’s learn how to use the non-parametric hypothesis testing tools in SciPy stats.

How to do it...

Follow these steps to compare the populations of two or more populations that are not normally distributed:

1.

First, we will generate some sample data to use in our analysis:

sample A = rng.uniform(2.5, 3.5, size=25)

rng.uniform (3.0, 4.4, size=25)

sample B

sample C rng.uniform(3.1, 4.5, size=25)

Next, we will set the significance level that we will use in this analysis:

significance = 0.05

Now, we will use the stats.kruskal routine to generate the test statistic and the P value
for the null hypothesis that the populations have the same median value:

statistic, p value = stats.kruskal (sample A, sample B,
sample C)
print (f"Statistic: {statistic}, p value: {p value}")

# Statistic: 40.22214736842102, p value:
1.8444703308682906e-09
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4. 'We will use a conditional statement to print a statement about the outcome of the test:

if p value <= significance:

print ("There are differences between
population medians")

else:
print ("Accept HO: all medians equal")

# There are differences between population medians

5. Now, we will use Wilcoxon rank-sum tests to obtain the P values for the comparisons between
each pair of samples. The null hypothesis for these tests is that they are drawn from the
same distribution:

_, P AB
., pPAC
_, p_B C = stats.ranksums (sample B, sample C)

stats.ranksums (sample A, sample B)

stats.ranksums (sample A, sample C)

6. Next, we will use conditional statements to print out messages for those comparisons that
indicate a significant difference:

if p A B <= significance:
print ("Significant differences between A and B,
p value", p A B)
# Significant differences between A and B, p value
1.0035366080480683e-07
if p A C <= significance:
print ("Significant differences between A and C,
p value", p A C)
# Significant differences between A and C, p value
2.428534673701913e-08
if p B C <= significance:
print ("Significant differences between B and C,
p value", p B C)
else:
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print ("No significant differences between B and C,
p value", p B C)
# No significant differences between B and C, p value
0.3271631660572756

These printed lines show that our tests have detected significant differences between populations A
and B and populations A and C, but not between populations B and C.

How it works...

We say that data is non-parametric if the population from which the data was sampled does not
follow a distribution that can be described by a small number of parameters. This usually means that
the population is not normally distributed but is broader than this. In this recipe, we sampled from
uniform distributions, but this is still a more structured example than we would generally have when
non-parametric tests are necessary. Non-parametric tests can and should be used in any situation
where we are not sure about the underlying distribution. The cost of doing this is that the tests are
slightly less powerful.

The first step of any (real) analysis should be to plot a histogram of the data and inspect the distribution
visually. If you draw a random sample from a normally distributed population, you might also expect
the sample to be normally distributed (we have seen this several times in this book). If your sample
shows the characteristic bell curve of a normal distribution, then it is fairly likely that the population
is itself normally distributed. You might also use a kernel density estimation plot to help determine
the distribution. This is available on the pandas plotting interface as kind="kde". If you still aren’t
sure whether the population is normal, you can apply a statistical test, such as D’Agostino’s K-squared
test or Pearson’s Chi-squared test for normality. These two tests are combined into a single routine to
test for normality called normaltest in the SciPy stats module, along with several other tests
for normality.

The Wilcoxon rank-sum test is a non-parametric replacement for a two-sample t-test. Unlike the
t-test, the rank-sum test does not compare the sample mean values to quantify whether the populations
have different distributions. Instead, it combines the data of the samples and ranks them in order of
size. The test statistic is generated from the sum of the ranks from the sample with the fewest elements.
From here, as usual, we generate a P value for the null hypothesis that the two populations have the
same distribution.

The Kruskal-Wallis test is a non-parametric replacement for a one-way ANOVA test. Like the rank-
sum test, it uses the ranking of the sample data to generate a test statistic and P values for the null
hypothesis that all the populations have the same median value. As with one-way ANOVA, we can
only detect whether all the populations have the same median, not where the differences lie. For this,
we would have to use additional tests.
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In this recipe, we used the Kruskal-Wallis test to determine whether there were any significant
differences between the populations corresponding to our three samples. A difference was detected
with a P value with a very small P value. We then used rank-sum tests to determine where significant
differences occur between the populations. Here, we found that sample A is significantly different
from samples B and C, but B is not significantly different from sample C. This is hardly surprising
given the way that these samples were generated.

( 7
Note

Unfortunately, since we have used multiple tests in this recipe, our overall confidence in our
conclusions is not as high as we might expect it to be. We performed four tests with 95%
confidence, which means our overall confidence in our conclusion is only approximately 81%.
This is because errors aggregate over multiple tests, reducing the overall confidence. To correct
this, we would have to adjust our significance threshold for each test, using the Bonferroni
correction (or similar).

Creating interactive plots with Bokeh

Test statistics and numerical reasoning are good for systematically analyzing sets of data. However, they
don’t give us a good picture of the whole set of data like a plot would. Numerical values are definitive
but can be difficult to understand, especially in statistics, whereas a plot instantly illustrates differences
between sets of data and trends. For this reason, there is a large number of libraries for plotting data
in even more creative ways. One particularly interesting package for producing plots of data is Bokeh,
which allows us to create interactive plots in the browser by leveraging JavaScript libraries.

In this recipe, we will learn how to use Bokeh to create an interactive plot that can be displayed in
the browser.

Getting ready

For this recipe, we will need the pandas package imported as pd, the NumPy package imported as
np, an instance of the default random number generator constructed with the following code, and
the plotting module from Bokeh, which we have imported under the bk alias:

from bokeh import plotting as bk
from numpy.random import default rng
rng = default rng(12345)
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How to do it...
These steps show how to create an interactive plot in the browser using Bokeh:
1.  First, we need to create some sample data to plot:

date range = pd.date range("2020-01-01", periods=50)
data = rng.normal (0, 3, size=50) .cumsum()

series = pd.Series(data, index=date range)

2. Next, we must specify the output file where the HTML code for the plot will be stored by using
the output file routine:

bk.output file("sample.html")

3. Now, we will create a new figure and set the title and axes labels, and set the x-axis type to
datetime so that our date index will be correctly displayed:

fig = bk.figure(title="Time series data",
X _axis label="date",
X axis type="datetime",

y_axis label="value")
4.  We will add the data to the figure as a line:
fig.line(date range, series)

5.  Finally, we can use either the show routine or the save routine to save or update the HTML
in the specified output file. We are using show here to cause the plot to open in the browser:

bk .show (fig)

Bokeh plots are not static objects and are supposed to be interactive via the browser. The data as it will
appear in the Bokeh plot has been recreated here, using matplot1ib for comparison:
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Time series data
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Figure 6.4 — Plot of time series data created using Matplotlib

The real power of Bokeh is its ability to insert dynamic, interactive plots into web pages and documents
(for example, Jupyter notebooks) so that the reader can look into the detail of the data that is plotted.

How it works...

Bokeh uses a JavaScript library to render a plot in a browser, using data provided by the Python
backend. The advantage of this is that it can generate plots that a user can inspect for themselves. For
instance, we can zoom in to see detail in the plot that might otherwise be hidden, or pan through
the data naturally. The example given in this recipe is just a taster of what is possible using Bokeh.

The figure routine creates an object representing the plot, which we add elements to — such as a
line through the data points — in the same way that we would add plots to a Matplotlib Axes object.
In this recipe, we created a simple HTML file that contains JavaScript code to render the data. This
HTML code is dumped to the specified file whenever we save or, as is in the recipe, call the show
routine. In practice, the smaller the P value, the more confident we can be that the hypothesized
population mean is correct.



Further reading

There’s more...

The capabilities of Bokeh go far beyond what is described here. Bokeh plots can be embedded in
files such as Jupyter notebooks, which are also rendered in the browser, or into existing websites. If
you are using a Jupyter notebook, you should use the output notebook routine instead of the
output file routine to print the plot directly into the notebook. It has a wide array of different
plotting styles, supports sharing data between plots (data can be selected in one plot and highlighted
in the other(s), for example), and supports streaming data.

Further reading

There are a large number of textbooks on statistics and statistical theory. The following books are good
references for the statistics covered in this chapter:

o Mendenhall, W,, Beaver, R., and Beaver, B. (2006), Introduction To Probability And Statistics.
12th ed., (Belmont, Calif.: Thomson Brooks/Cole).

o TFreedman, D, Pisani, R., and Purves, R. (2007), Statistics. New York: W.W. Norton.

The pandas documentation (https://pandas.pydata.org/docs/index.html) and the
following pandas book serve as good references for working with pandas:

o McKinney, W,, (2017), Python for Data Analysis. 2nd ed., (Sebastopol: O’Reilly Media, Inc, US).

The SciPy documentation (https://docs.scipy.org/doc/scipy/tutorial/stats.
html) also contains detailed information about the statistics module that was used several times in
this chapter.
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7

Using Regression
and Forecasting

One of the most important tasks that a statistician or data scientist has is to generate a systematic
understanding of the relationship between two sets of data. This can mean a continuous relationship
between two sets of data, where one value depends directly on the value of another variable. Alternatively,
it can mean a categorical relationship, where one value is categorized according to another. The tool
for working with these kinds of problems is regression. In its most basic form, regression involves
fitting a straight line through a scatter plot of the two sets of data and performing some analysis to
see how well this line fits the data. Of course, we often need something more sophisticated to model
more complex relationships that exist in the real world.

Forecasting typically refers to learning trends in time series data with the aim of predicting values
in the future. Time series data is data that evolves over a period of time, and usually exhibits a high
degree of noise and oscillatory behavior. Unlike more simple data, time series data usually has complex
dependencies between consecutive values; for instance, a value may depend on both of the previous
values, and perhaps even on the previous noise. Time series modeling is important across science
and economics, and there are a variety of tools for modeling time series data. The basic technique for
working with time series data is called autoregressive integrated moving average (ARIMA). This
model incorporates two underlying components: an autoregressive (AR) component and a moving
average (MA) component, to construct a model for the observed data.

In this chapter, we will learn how to model the relationship between two sets of data, quantify how
strong this relationship is, and generate forecasts about other values (the future). Then, we will learn
how to use logistic regression, which is a variation of a simple linear model, in classification problems.
Finally, we will build models for time series data using ARIMA and build on these models for different
kinds of data. We will finish this chapter by using a library called Prophet to automatically generate
a model for time series data.

In the first three recipes, we will learn how to perform various kinds of regression to simple data. In
the next four recipes, we will learn about various techniques for working with time series data. The
final recipe deals with an alternative means of summarizing time series data for various purposes
using signature methods.



202 Using Regression and Forecasting

In this chapter, we will cover the following recipes:

o Using basic linear regression

o Using multilinear regression

o Classifying using logarithmic regression

o Modeling time series data with ARMA

« Forecasting from time series data using ARIMA
« Forecasting seasonal data using ARIMA

o Using Prophet to model time series data

o Using signatures to summarize time series data

Let’s get started!

Technical requirements

In this chapter, as usual, we will need the NumPy package imported under the np alias, the Matplotlib
pyplot module imported as p1lt, and the Pandas package imported as pd. We can do this using
the following commands:

import numpy as np
import matplotlib.pyplot as plt

import pandas as pd

We will also need some new packages in this chapter. The stat smodels package is used for regression
and time series analysis, the scikit-1learn package (sklearn) provides general data science
and machine learning tools, and the Prophet package (prophet) is used for automatically modeling
time series data. These packages can be installed using your favorite package manager, such as pip:

python3.10 -m pip install statsmodels sklearn prophet

The Prophet package can prove difficult to install on some operating systems because of its dependencies.
If installing prophet causes a problem, you might want to try using the Anaconda distribution of
Python and its package manager, conda, which handles the dependencies more rigorously:

conda install prophet

Note

Previous versions of the Prophet library (prior to version 1.0) were called fbprophet, whereas
the newer versions of Prophet are just prophet.
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Finally, we also need a small module called t sdata that is contained in the repository for this chapter.
This module contains a series of utilities for producing sample time series data.

The code for this chapter can be found in the Chapter 07 folder of the GitHub repository
athttps://github.com/PacktPublishing/Applying-Math-with-Python-2nd-
Edition/tree/main/Chapter%2007.

Using basic linear regression

Linear regression is a tool for modeling the dependence between two sets of data so that we can
eventually use this model to make predictions. The name comes from the fact that we form a linear
model (straight line) of one set of data based on a second. In the literature, the variable that we wish
to model is frequently called the response variable, and the variable that we are using in this model
is the predictor variable.

In this recipe, we’ll learn how to use the stat smodels package to perform simple linear regression
to model the relationship between two sets of data.

Getting ready

For this recipe, we will need the statsmodels.api module imported under the sm alias, the
NumPy package imported as np, the Matplotlib pyplot module imported as plt, and an instance
of a NumPy default random number generator. All this can be achieved with the following commands:

import statsmodels.api as sm

import numpy as np

import matplotlib.pyplot as plt

from numpy.random import default rng
rng = default rng(12345)

Let’s see how to use the stat smodels package to perform basic linear regression.

How to do it...

The following steps outline how to use the statsmodels package to perform a simple linear
regression on two sets of data:

1. First, we generate some example data that we can analyze. We'll generate two sets of data that
will illustrate a good fit and a less good fit:

x = np.linspace(0, 5, 25)
rng.shuffle (x)
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trend = 2.0
shift 5.0

yl = trend*x + shift + rng.normal(0, 0.5, size=25)

y2 = trend*x + shift + rng.normal (0, 5, size=25)

2. A good first step in performing regression analysis is to create a scatter plot of the datasets.
We'll do this on the same set of axes:

fig, ax = plt.subplots()
ax.scatter(x, yl, c="k", marker="x",
label="Good correlation")
ax.scatter(x, y2, c="k", marker="o",
label="Bad correlation")
ax.legend/()
ax.set xlabel ("X"),
ax.set_ylabel ("Y")
ax.set title("Scatter plot of data with best fit lines")

3.  Weneed to use the sm.add constant utility routine so that the modeling step will include
a constant value:

pred x = sm.add constant (x)

4.  Now, we can create an OLS model for our first set of data and use the £it method to fit the
model. We then print a summary of the data using the summary method:

modell = sm.OLS(yl, pred x).fit()
print (modell.summary () )

5. We repeat the model fitting for the second set of data and print the summary:

model2 = sm.OLS(y2, pred x).fit()
print (model2.summary () )

6. Now, we create a new range of x values using 1 inspace that we can use to plot the trend
lines on our scatter plot. We need to add the constant column to interact with the models
that we have created:

model x = sm.add constant (np.linspace(0, 5))
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7. Next, we use the predict method on the model objects so that we can use the model to
predict the response value at each of the X values we generated in the previous step:

model y1 = modell.predict (model x)

model y2 model2.predict (model x)

8. Finally, we plot the model data computed in the previous two steps on top of the scatter plot:

ax.plot (model x[:, 1], model yl1, 'k')
ax.plot (model x[:, 1], model y2, 'k--')

The scatter plot, along with the best fit lines (the models) we added, can be seen in the following figure:

Scatter plot of data with best fit lines

¥ Good correlation ®
17.51 e Bad correlation
15.0
12.5 A
10.0
>
7.5
5.0
2.5 - L4
0.0 A °
L
0 1 2 3 4 5

X

Figure 7.1 - Scatter plot of data with lines of best fit computed using least squares regression.

The solid line indicates the line fitted to the well-correlated data (marked by x symbols) and the dashed
line indicates the line fitted to the poorly correlated data (marked by dots). We can see in the plot that
the two best-fit lines are fairly similar, but the line fitted (dashed) to the data with lots of noise has
drifted away from the true model ¥ = 2x + 5 defined in step I.
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How it works...
Elementary mathematics tells us that the equation of a straight line is given by the following:

y =c¢+ mx

Here, ¢ is the value at which the line meets the ¥-axis, usually called the Y-intercept, and m is the
gradient of the line. In the linear regression context, we are trying to find a relationship between the
response variable, Y, and the predictor variable, X, which has the form of a straight line so that the
following occurs:

Y ~c + mX

Here, ¢ and m are now parameters that are to be found. We can write this in a different way, as follows:

Y=c+mX+E

Here, E is an error term, which, in general, depends on X. To find the “best” model, we need to find
values for the ¢ and m parameters for which the error term, E, is minimized (in an appropriate sense).
The basic method for finding the values of the parameters such that this error is minimized is the
method of least squares, which gives its name to the type of regression used here: ordinary least squares.
Once we have used this method to establish some relationship between a response variable and a
predictor variable, our next task is to assess how well this model actually represents this relationship.
For this, we form the residuals given by the following equation:

EL:Yl—(C+mXL)

We do this for each of the data points, X; and Y;. In order to provide a rigorous statistical analysis of
how well we have modeled the relationship between the data, we need the residuals to satisfy certain
assumptions. First, we need them to be independent in the sense of probability. Second, we need them
to be normally distributed about 0 with a common variance (in practice, we can relax these slightly
and still make reasonable comments about the accuracy of the model).

In this recipe, we generated response data from the predictor data using a linear relationship. The
difference between the two response datasets we created is the “size” of the error at each value. For
the first dataset, y1, the residuals were normally distributed with a standard deviation of 0.5, whereas
for the second dataset, y2, the residuals have a standard deviation of 5.0. We can see this variability
in the scatter plot shown in Figure 7.1, where the data for y1 is generally very close to the best fit
line — which closely matches the actual relationship that was used to generate the data — whereas the
y2 data is much further from the best-fit line.

The OLS object from the stat smodels package is the main interface for ordinary least squares
regression. We provide the response data and the predictor data as arrays. In order to have a constant
term in the model, we need to add a column of ones in the predictor data. The sm.add_constant
routine is a simple utility for adding this constant column. The £1t method of the OLS class computes
the parameters for the model and returns a results object (model1 and model2) that contains the
parameters for the best fit model. The summary method creates a string containing information about
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the model and various statistics about the goodness of fit. The predict method applies the model
to new data. As the name suggests, it can be used to make predictions using the model.

There are two basic statistics reported in the summary that give us information about the fit. The first
is the R% value, or the adjusted version, which measures the variability explained by the model against
the total variability. This number is defined as follows. First, define the following quantities:

TSS=Y (y;—¥)> and RSS=Y E?
i i
Here, E; are the residuals defined previously and 7 is the mean of the data. We then define R? and
its adjusted counterpart:
RSS n—1

2 _q D92 . 2_1_(1_n2
R*=1 TSS and adjusted R 1-(1 R)n—p

In the latter equation, 7 is the size of the sample and P is the number of variables in the model
(including the y-intercept ). A higher value indicates a better fit, with a best possible value of 1. Note
that the ordinary R? value tends to be overly optimistic, especially when the model contains more
variables, so it is usually better to look at the adjusted version.

The second is the F statistic p-value. This is a hypothesis test that at least one of the coefficients of the
model is non-zero. As with ANOVA testing (see Testing Hypotheses with ANOVA, Chapter 6), a small
p-value indicates that the model is significant, meaning that the model is more likely to accurately
model the data.

In this recipe, the first model, mode11, has an adjusted R? value of 0.986, indicating that the model
very closely fits the data, and a p-value of 6.43e-19, indicating high significance. The second model
has an adjusted R? value of 0.361, which indicates that the model less closely fits the data, and a p-value
0f 0.000893, which also indicates high significance. Even though the second model less closely fits the
data, in terms of statistics, that is not to say that it is not useful. The model is still significant, although
less so than the first model, but it doesn’t account for all of the variability (or at least a significant
portion of it) in the data. This could be indicative of additional (non-linear) structures in the data, or
that the data is less correlated, which means there is a weaker relationship between the response and
predictor data (due to the way we constructed the data, we know that the latter is true).

There’s more...

Simple linear regression is a good general-purpose tool in a statistician’s toolkit. It is excellent for finding
the nature of the relationship between two sets of data that are known (or suspected) to be connected
in some way. The statistical measurement of how much one set of data depends on another is called
correlation. We can measure correlation using a correlation coeflicient, such as Spearman’s rank correlation
coefficient. A high positive correlation coeflicient indicates a strong positive relationship between the
data, such as that seen in this recipe, while a high negative correlation coefficient indicates a strong
negative relationship, where the slope of the best-fit line through the data is negative. A correlation
coeficient of 0 means that the data is not correlated: there is no relationship between the data.
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If the sets of data are clearly related but not in a linear (straight line) relationship, then it might follow
a polynomial relationship where, for example, one value is related to the other squared. Sometimes,
you can apply a transformation, such as a logarithm, to one set of data and then use linear regression
to fit the transformed data. Logarithms are especially useful when there is a power-law relationship
between the two sets of data.

The scikit-learn package also provides facilities for performing ordinary least squares regression.
However, their implementation does not offer an easy way to generate goodness-of-fit statistics,
which are often useful when performing a linear regression in isolation. The summary method on
the OLS object is very convenient for producing all the required fitting information, along with the
estimated coefficients.

Using multilinear regression

Simple linear regression, as seen in the previous recipe, is excellent for producing simple models of a
relationship between one response variable and one predictor variable. Unfortunately, it is far more
common to have a single response variable that depends on many predictor variables. Moreover, we
might not know which variables from a collection make good predictor variables. For this task, we
need multilinear regression.

In this recipe, we will learn how to use multilinear regression to explore the relationship between a
response variable and several predictor variables.

Getting ready

For this recipe, we will need the NumPy package imported as np, the Matplotlib pyplot module
imported as plt, the Pandas package imported as pd, and an instance of the NumPy default random
number generator created using the following commands:

from numpy.random import default rng
rng = default rng(12345)

We will also need the statsmodels.api module imported as sm, which can be imported using
the following command:

import statsmodels.api as sm

Let’s see how to fit a multilinear regression model to some data.



Using multilinear regression 209

How to do it...

The following steps show you how to use multilinear regression to explore the relationship between
several predictors and a response variable:

1. First, we need to create the predictor data to analyze. This will take the form of a Pandas
DataFrame with four terms. We will add the constant term at this stage by adding a column
of ones:

p vars = pd.DataFrame ({
"const": np.ones((100,)),
"X1": rng.uniform(0, 15, size=100),
(0, 25, size=100),
(5

, 25, size=100)

"X2": rng.uniform

"X3": rng.uniform

})

2. Next, we will generate the response data using only the first two variables:

residuals = rng.normal (0.0, 12.0, size=100)
Y = -10.0 + 5.0*p vars["X1"] - 2.0*p vars["X2"]
+ residuals

3. Now, we'll produce scatter plots of the response data against each of the predictor variables:

fig, (axl, ax2, ax3) = plt.subplots(l, 3, sharey=True,
tight layout=True)

axl.scatter(p vars["X1"], Y, c="k")

ax2.scatter(p _vars["X2"], Y, c="k")

ax3.scatter (p vars["X3"], Y, c="k")

4. 'Then, we'll add axis labels and titles to each scatter plot since this is good practice:

axl.set title("Y against X1")
axl.set xlabel ("X1")

axl.set ylabel ("Y")

ax2.set title("Y against X2")
ax2.set xlabel ("X2")

ax3.set title("Y against X3")
ax3.set xlabel ("X3")
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The resulting plots can be seen in the following figure:
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Figure 7.2 - Scatter plots of the response data against each of the predictor variables

As we can see, there appears to be some correlation between the response data and the first
two predictor columns, X1 and X2. This is what we expect, given how we generated the data.

5.  We use the same OLS class to perform multilinear regression; that is, providing the response
array and the predictor DataFrame:

model = sm.OLS(Y, p vars) .fit()

print (model.summary () )

The first half of the output of the print statement is as follows:

OLS Regression Results

Dep. Variable: vy R-squared:0.769

Model : OLS Adj. R-squared:0.764
Method: Least Squares F-statistic:161.5

Date: Fri, 25 Nov 2022 Prob (F-statistic):1.35e-31
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Time: 12:38:40 Log-Likelihood:-389.48
No. Observations: 100 AIC: 785.0
Df Residuals: 97 BIC: 792.8

Df Model: 2
Covariance Type: nonrobust

This gives us a summary of the model, various parameters, and various goodness-of-fit
characteristics such as the R- squared values (0.77 and 0.762), which indicate that the fit is
reasonable but not very good. The second half of the output contains information about the
estimated coefficients:

coef std

const -11.1058 2.878 -3.859 0.000 -16.818 -5.393

X1 4.7245 0.301 15.672 0.00 4.126 5.323
X2 -1.9050 0.164 -11.644 0.000 -2.230 -1.580
Omnibus: 0.259 Durbin-Watson: 1.875
Prob (Omnibus) : 0.878 Jarque-Bera (JB): 0.260
Skew: 0.115 Prob (JB) : 0.878
Kurtosis: 2.904 Cond. No 38.4

Notes:

[1] Standard Errors assume that the covariance matrix of
the errors is correctly specified.

In the summary data, we can see that the X3 variable is not significant since it has a p-value
of 0.66.
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6. Since the third predictor variable is not significant, we eliminate this column and perform the
regression again:

second_model = sm.OLS (
Y, p vars.loc[:, "const":"X2"]).fit ()

print (second model.summary () )

This results in a small increase in the goodness-of-fit statistics.

How it works...

Multilinear regression works in much the same way as simple linear regression. We follow the same
procedure here as in the previous recipe, where we use the stat smodels package to fit a multilinear
model to our data. Of course, there are some differences behind the scenes. The model we produce
using multilinear regression is very similar in form to the simple linear model from the previous
recipe. It has the following form:

Y=ﬁo+ﬁ1X1++ﬁan+E

Here, Y is the response variable, X; represents the predictor variables, E is the error term, and B; is
the parameters to be computed. The same requirements are also necessary for this context: residuals
must be independent and normally distributed with a mean of 0 and a common standard deviation.

In this recipe, we provided our predictor data as a Pandas DataFrame rather than a plain NumPy array.
Notice that the names of the columns have been adopted in the summary data that we printed. Unlike
the first recipe, Using basic linear regression, we included the constant column in this DataFrame,
rather than using the add_constant utility from statsmodels.

In the output of the first regression, we can see that the model is a reasonably good fit with an adjusted
R? value of 0.762, and is highly significant (we can see this by looking at the regression F statistic
p-value). However, looking closer at the individual parameters, we can see that both of the first two
predictor values are significant, but the constant and the third predictor are less so. In particular, the
third predictor parameter, X3, is not significantly different from 0 and has a p-value of 0.66. Given
that our response data was constructed without using this variable, this shouldn’t come as a surprise.
In the final step of the analysis, we repeat the regression without the predictor variable, X3, which is
a mild improvement to the fit.

Classifying using logarithmic regression

Logarithmic regression solves a different problem from ordinary linear regression. It is commonly
used for classification problems where, typically, we wish to classify data into two distinct groups,
according to a number of predictor variables. Underlying this technique is a transformation that’s
performed using logarithms. The original classification problem is transformed into a problem of
constructing a model for the log-odds. This model can be completed with simple linear regression. We
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apply the inverse transformation to the linear model, which leaves us with a model of the probability
that the desired outcome will occur, given the predictor data. The transform we apply here is called
the logistic function, which gives its name to the method. The probability we obtain can then be used
in the classification problem we originally aimed to solve.

In this recipe, we will learn how to perform logistic regression and use this technique in
classification problems.

Getting ready

For this recipe, we will need the NumPy package imported as np, the Matplotlib pyplot module
imported as p1t, the Pandas package imported as pd, and an instance of the NumPy default random
number generator to be created using the following commands:

from numpy.random import default rng
rng = default rng(12345)

We also need several components from the scikit -1learn package to perform logistic regression.
These can be imported as follows:

from sklearn.linear model import LogisticRegression

from sklearn.metrics import classification report

How to do it...
Follow these steps to use logistic regression to solve a simple classification problem:

1. First, we need to create some sample data that we can use to demonstrate how to use logistic
regression. We start by creating the predictor variables:

df = pd.DataFrame ({
"varl": np.concatenate ([
rng.normal (3.0, 1.5, size=50),
rng.normal (-4.0, 2.0, size=50)]),
"var2": rng.uniform(size=100),
"var3": np.concatenate ([
rng.normal (-2.0, 2.0, size=50),

rng.normal (1.5, 0.8, size=50)])

213



214 Using Regression and Forecasting

2. Now, we use two of our three predictor variables to create our response variable as a series of
Boolean values:

4.0 + df ["varl"] -

score >= 0

score =
Y =

df ["var3"]

3. Next, we scatterplot the points, styled according to the response variable, of the var3 data
against the varl data, which are the variables used to construct the response variable:

figl, axl = plt.subplots/()

plot (df.loc[Y, "wvarl"],
"ko", label="True data")
plot (df.loc[~Y,

n kX n ,

axl. df .loc[Y, "var3"],

axl. "varl"],

label="False data")

df.loc[~Y, "var3"],

axl.
axl.

axl.

legend ()
set xlabel ("varl")

set _ylabel ("var3")

axl.set title("Scatter plot of var3 against varl")

The resulting plot can be seen in the following figure:

Scatter plot of var3 against varl
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Figure 7.3 — Scatter plot of the var3 data against var1, with classification marked
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4. Next, we create a LogisticRegression object from the scikit-1learn package and
fit the model to our data:

model = LogisticRegression ()
model.fit (df, Y)

5. Next, we prepare some extra data, different from what we used to fit the model, to test the
accuracy of our model:

test df = pd.DataFrame ({
"varl": np.concatenate ([
rng.normal (3.0, 1.5, size=50),
rng.normal (-4.0, 2.0, size=50)]),
"var2": rng.uniform(size=100),
"var3": np.concatenate ([
rng.normal (-2.0, 2.0, size=50),
rng.normal (1.5, 0.8, size=50)])
1)
test scores = 4.0 + test df["varl"] - test df["var3"]

test Y = test scores >= 0

6. Then, we generate predicted results based on our logistic regression model:

test predicts = model.predict (test df)

7.  Finally, we use the classification_report utility from scikit-learn to printa
summary of predicted classification against known response values to test the accuracy of the
model. We print this summary to the Terminal:

print (classification report (test Y, test predicts))

The report that’s generated by this routine looks as follows:

precision recall fl-score support
False 0.82 1.00 0.90 18
True 1.00 0.88 0.93 32
accuracy 0.92 50
macro avg 0.91 0.94 0.92 50
weighted avg 0.93 0.92 0.92 50

The report here contains information about the performance of the classification model on the test
data. We can see that the reported precision and recall are good, indicating that there were relatively
few false positive and false negative identifications.
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How it works...

Logistic regression works by forming a linear model of the log-odds ratio (or logit), which, for a single
predictor variable, x, has the following form:

p(x)
1+px)

Here, p(x) represents the probability of a true outcome in response to the given predictor, x. Rearranging
this gives a variation of the logistic function for the probability:

log ( ) = Bo + Bix

eBotBix

p(x) =17 T ePothix

The parameters for the log-odds are estimated using a maximum likelihood method.

The LogisticRegression class from the linear model modulein scikit-learnisan
implementation of logistic regression that is very easy to use. First, we create a new model instance
of this class, with any custom parameters that we need, and then use the £it method on this object
to fit (or train) the model to the sample data. Once this fitting is done, we can access the parameters
that have been estimated using the get params method.

The predict method on the fitted model allows us to pass in new (unseen) data and make predictions
about the classification of each sample. We could also get the probability estimates that are actually
given by the logistic function using the predict_proba method.

Once we have built a model for predicting the classification of data, we need to validate the model.
This means we have to test the model with some previously unseen data and check whether it correctly
classifies the new data. For this, we can use classification report, which takes a new set
of data and the predictions generated by the model and computes several summary values about the
performance of the model. The first reported value is the precision, which is the ratio of the number of
true positives to the number of predicted positives. This measures how well the model avoids labeling
values as positive when they are not. The second reported value is the recall, which is the ratio of
the number of true positives to the number of true positives plus the number of false negatives. This
measures the ability of the model to find positive samples within the collection. A related score (not
included in the report) is the accuracy, which is the ratio of the number of correct classifications to
the total number of classifications. This measures the ability of the model to correctly label samples.
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The classification report we generated using the scikit-learn utility performs a comparison
between the predicted results and the known response values. This is a common method for validating
a model before using it to make actual predictions. In this recipe, we saw that the reported precision for
each of the categories (True and False) was 1. 00, indicating that the model performed perfectly
in predicting the classification with this data. In practice, it is unlikely that the precision of a model
will be 100%.

There’s more...

There are lots of packages that offer tools for using logistic regression for classification problems.
The statsmodels package has the Logit class for creating logistic regression models. We used
the scikit-1learn package in this recipe, which has a similar interface. scikit-learnisa
general-purpose machine learning library and has a variety of other tools for classification problems.

Modeling time series data with ARMA

Time series, as the name suggests, track a value over a sequence of distinct time intervals. They are
particularly important in the finance industry, where stock values are tracked over time and used to
make predictions — known as forecasting — of the value at some point in the future. Good predictions
coming from this kind of data can be used to make better investments. Time series also appear in
many other common situations, such as weather monitoring, medicine, and any places where data is
derived from sensors over time.

Time series, unlike other types of data, do not usually have independent data points. This means that
the methods that we use for modeling independent data will not be particularly effective. Thus, we
need to use alternative techniques to model data with this property. There are two ways in which a
value in a time series can depend on previous values. The first is where there is a direct relationship
between the value and one or more previous values. This is the autocorrelation property and is modeled
by an AR model. The second is where the noise that’s added to the value depends on one or more
previous noise terms. This is modeled by an MA model. The number of terms involved in either of
these models is called the order of the model.

In this recipe, we will learn how to create a model for stationary time series data with ARMA terms.
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Getting ready

For this recipe, we need the Matplotlib pyplot module imported as p1t and the statsmodels
package api module imported as sm. We also need to import the generate sample data
routine from the t sdata package from this book’s repository, which uses NumPy and Pandas to
generate sample data for analysis:

from tsdata import generate sample data

To avoid repeatedly setting colors in plotting functions, we do some one-time setup to set the plotting
color here:

from matplotlib.rcsetup import cycler

plt.rc("axes", prop cycle=cycler (c="k"))

With this set up, we can now see how to generate an ARMA model for some time series data.

How to do it...
Follow these steps to create an ARMA model for stationary time series data:
1. First, we need to generate the sample data that we will analyze:

sample ts, = generate sample data()

2. As always, the first step in the analysis is to produce a plot of the data so that we can visually
identify any structure:

ts fig, ts _ax = plt.subplots()

sample ts.plot (ax=ts ax, label="Observed",
lg="--", alpha=0.4)

ts ax.set title("Time series data")

ts ax.set xlabel ("Date")

ts ax.set ylabel ("Value")

The resulting plot can be seen in the following figure:
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Figure 7.4 - Plot of the time series data that we will analyze (there doesn’t appear to be a trend in this data)

Here, we can see that there doesn’t appear to be an underlying trend, which means that the
data is likely to be stationary (a time series is said to be stationary if its statistical properties
do not vary with time. This often manifests in the form of an upward or downward trend).

3. Next, we compute the augmented Dickey-Fuller test. This is a hypothesis test for whether a
time series is stationary or not. The null hypothesis is that the time series is not stationary:

adf results = sm.tsa.adfuller (sample ts)

adf pvalue = adf results[1]

print ("Augmented Dickey-Fuller test:\nP-value:",
adf pvalue)

The reported adf pwvalue is 0.000376 in this case, so we reject the null hypothesis and
conclude that the series is stationary.

4. Next, we need to determine the order of the model that we should fit. For this, we'll plot the
autocorrelation function (ACF) and the partial autocorrelation function (PACF) for the
time series:

ap fig, (acf ax, pacf ax) = plt.subplots(
2, 1, tight layout=True)
sm.graphics.tsa.plot acf (sample ts, ax=acf ax,
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title="Observed autocorrelation")
sm.graphics.tsa.plot pacf (sample ts, ax=pacf ax,
title="Observed partial autocorrelation")
acf ax.set xlabel ("Lags")
pacf ax.set xlabel ("Lags")
pacf ax.set ylabel ("Value")
acf ax.set ylabel ("Value")

The plots of the ACF and PACEF for our time series can be seen in the following figure. These
plots suggest the existence of both AR and MA processes:
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Figure 7.5 - The ACF and PACF for the sample time series data

5. Next, we create an ARMA model for the data, using the ARIMA class from the t sa module.
This model will have an order 1 AR component and an order 1 MA component:

arma model = sm.tsa.ARIMA (sample ts, order=(1, 0, 1))

6. Now, we fit the model to the data and get the resulting model. We print a summary of these
results to the Terminal:

arma_results = arma model.fit ()

print (arma_results.summary () )
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7. The summary data given for the fitted model is as follows:

ARMA Model Results

Dep. Variable: y No. Observations: 366
Model: ARMA (1, 1) Log Likelihood -513.038
Method: css-mle S.D. of innovations
0.982
Date: Fri, 01 May 2020 AIC 1034.077
Time: 12:40:00 BIC 1049.687
Sample: 01-01-2020 HQIC 1040.280
- 12-31-2020
coef std err z P>|z| [0.025
0.975]

const -0.0242 0.143 -0.169 0.866 -0.305 0.256
ar.Ll.y 0.8292 0.057 14.562 0.000 0.718 0.941
ma.Ll.y -0.5189 0.090 -5.792 0.000 -0.695 -0.343

Roots

Frequency

AR.1 1.2059 +0.0000j 1.2059
0.0000

MA.1 1.9271 +0.0000j 1.9271
0.0000

Here, we can see that both of the estimated parameters for the AR and MA components
are significantly different from 0. This is because the value in the P > |z | column is 0 to 3
decimal places.
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8. Next, we need to verify that there is no additional structure remaining in the residuals (error)
of the predictions from our model. For this, we plot the ACF and PACF of the residuals:

residuals = arma results.resid
rap fig, (racf ax, rpacf ax) = plt.subplots/(
2, 1, tight layout=True)
sm.graphics.tsa.plot acf (residuals, ax=racf ax,
title="Residual autocorrelation")
sm.graphics.tsa.plot pacf (residuals, ax=rpacf ax,
title="Residual partial autocorrelation")
racf ax.set xlabel ("Lags")
rpacf ax.set xlabel ("Lags")
rpacf ax.set ylabel ("Value")

racf ax.set ylabel ("Value")

The ACF and PACEF of the residuals can be seen in the following figure. Here, we can see that
there are no significant spikes at lags other than 0, so we conclude that there is no structure
remaining in the residuals:
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Figure 7.6 - The ACF and PACF for the residuals from our model
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9. Now that we have verified that our model is not missing any structure, we plot the values that
are fitted to each data point on top of the actual time series data to see whether the model is a
good fit for the data. We plot this model in the plot we created in step 2:

fitted = arma results.fittedvalues
fitted.plot (ax=ts_ax, label="Fitted")
ts_ax.legend()

The updated plot can be seen in the following figure:
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Figure 7.7 - Plot of the fitted time series data over the observed time series data

The fitted values give a reasonable approximation of the behavior of the time series but reduce the

noise from the underlying structure.

How it works...

The ARMA model that we used in this recipe is a basic means of modeling the behavior of stationary
time series. The two parts of an ARMA model are the AR and MA parts, which model the dependence
of the terms and noise, respectively, on previous terms and noise. In practice, time series are usually
not stationary, and we have to perform some kind of transformation to make this the case before we

can fit an ARMA model.
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An order 1 AR model has the following form:
Yo =@o+@1Y1 +&

Here, ®i represents the parameters and &, is the noise at a given step. The noise is usually assumed to
be normally distributed with a mean of 0 and a standard deviation that is constant across all the time
steps. The Y; value represents the value of the time series at the time step, t. In this model, each value
depends on the previous value, although it can also depend on some constants and some noise. The
model will give rise to a stationary time series precisely when the ®1 parameter lies strictly between
-land 1.

An order 1 MA model is very similar to an AR model and is given by the following equation:
Yt = 90 + &t + 918,:,1

Here, the variants of 6; are parameters. Putting these two models together gives us an ARMA(1,1)
model, which has the following form:

Yo =@+ @1V 1 +e& + 016

In general, we can have an ARMA(p,q) model that has an order P AR component and an order ¢ MA
component. We usually refer to the quantities, P and 4, as the orders of the model.

Determining the orders of the AR and MA components is the most tricky aspect of constructing an
ARMA model. The ACF and PACF give some information about this, but even then, it can be quite
difficult. For example, an AR process will show some kind of decay or oscillating pattern on the
ACF as lag increases, and a small number of peaks on the PACF and values that are not significantly
different from zero beyond that. The number of peaks that appear on the PAF plot can be taken as
the order of the process. For an MA process, the reverse is true. There is usually a small number of
significant peaks on the ACF plot, and a decay or oscillating pattern on the PACF plot. Of course,
sometimes, this isn't obvious.

In this recipe, we plotted the ACF and PACF for our sample time series data. In the autocorrelation
plot in Figure 7.5 (top), we can see that the peaks decay rapidly until they lie within the confidence
interval of zero (meaning they are not significant). This suggests the presence of an AR component.
On the partial autocorrelation plot in Figure 7.5 (bottom), we can see that there are only two peaks
that can be considered not zero, which suggests an AR process of order 1 or 2. You should try to keep
the order of the model as small as possible. Due to this, we chose an order 1 AR component. With this
assumption, the second peak on the partial autocorrelation plot is indicative of decay (rather than an
isolated peak), which suggests the presence of an MA process. To keep the model simple, we try an
order 1 MA process. This is how the model that we used in this recipe was decided on. Notice that
this is not an exact process, and you might have decided differently.

We use the augmented Dickey-Fuller test to test the likelihood that the time series that we have observed
is stationary. This is a statistical test, such as those seen in Chapter 6, Working with Data and Statistics,
that generates a test statistic from the data. This test statistic, in turn, determines a p-value that is used
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to determine whether to accept or reject the null hypothesis. For this test, the null hypothesis is that a
unit root is present in the time series that’s been sampled. The alternative hypothesis - the one we are
really interested in - is that the observed time series is (trend) stationary. If the p-value is sufficiently
small, then we can conclude with the specified confidence that the observed time series is stationary.
In this recipe, the p-value was 0.000 to 3 decimal places, which indicates a strong likelihood that the
series is stationary. Stationarity is an essential assumption for using the ARMA model for the data.

Once we have determined that the series is stationary, and decided on the orders of the model, we
have to fit the model to the sample data that we have. The parameters of the model are estimated
using a maximum likelihood estimator. In this recipe, the learning of the parameters is done using
the £it method, in step 6.

The statsmodels package provides various tools for working with time series, including utilities
for calculating - and plotting - ACF and PACEF of time series data, various test statistics, and creating
ARMA models for time series. There are also some tools for automatically estimating the order of
the model.

We can use the Akaike information criterion (AIC), Bayesian information criterion (BIC), and
Hannan-Quinn Information Criterion (HQIC) quantities to compare this model to other models
to see which model best describes the data. A smaller value is better in each case.

( 7

Note

When using ARMA to model time series data, as in all kinds of mathematical modeling tasks,
it is best to pick the simplest model that describes the data to the extent that is needed. For
ARMA models, this usually means picking the smallest order model that describes the structure
of the observed data.

There’s more...

Finding the best combination of orders for an ARMA model can be quite difficult. Often, the best way
to fit a model is to test multiple different configurations and pick the order that produces the best fit.
For example, we could have tried ARMA(0,1) or ARMA(1, 0) in this recipe, and compared it to the
ARMA(1,1) model we used to see which produced the best fit by considering the AIC statistic reported
in the summary. In fact, if we build these models, we will see that the AIC value for ARMA(1,1) - the
model we used in this recipe - is the “best” of these three models.

Forecasting from time series data using ARIMA

In the previous recipe, we generated a model for a stationary time series using an ARMA model, which
consists of an AR component and an MA component. Unfortunately, this model cannot accommodate
time series that have some underlying trend; that is, they are not stationary time series. We can often
get around this by differencing the observed time series one or more times until we obtain a stationary
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time series that can be modeled using ARMA. The incorporation of differencing into an ARMA model
is called an ARIMA model.

Differencing is the process of computing the difference between consecutive terms in a sequence
of data - so, applying first-order differencing amounts to subtracting the value at the current step
from the value at the next step (t;+1 — t;). This has the effect of removing the underlying upward or
downward linear trend from the data. This helps to reduce an arbitrary time series to a stationary
time series that can be modeled using ARMA. Higher-order differencing can remove higher-order
trends to achieve similar effects.

An ARIMA model has three parameters, usually labeled P, d, and 9. The P and 9 order parameters
are the order of the AR component and the MA component, respectively, just as they are for the ARMA
model. The third order parameter, d, is the order of differencing to be applied. An ARIMA model
with these orders is usually written as ARIMA (P, d, 9). Of course, we will need to determine what
order differencing should be included before we start fitting the model.

In this recipe, we will learn how to fit an ARIMA model to a non-stationary time series and use this
model to generate forecasts about future values.

Getting ready

For this recipe, we will need the NumPy package imported as np, the Pandas package imported as
pd, the Matplotlib pyplot module as plt, and the statsmodels.api module imported as sm.
We will also need the utility for creating sample time series data from the t sdata module, which is
included in this booK’s repository:

from tsdata import generate sample data

As in the previous recipe, we use the Matplotlib rcparams to set the color for all plots in the recipe:
from matplotlib.rcsetup import cycler
plt.rc("axes", prop cycle=cycler(c="k"))

How to do it...

The following steps show you how to construct an ARIMA model for time series data and use this
model to make forecasts:

1. First, we load the sample data using the generate sample_ data routine:

sample ts, test ts = generate sample data(
trend=0.2, undiff=True)
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2.

As usual, the next step is to plot the time series so that we can visually identify the trend of
the data:

ts fig, ts_ax = plt.subplots(tight layout=True)
sample ts.plot (ax=ts_ax, label="Observed")

ts ax.set title("Training time series data")
ts_ax.set xlabel ("Date")
ts_ax.set ylabel ("Value")

The resulting plot can be seen in the following figure. As we can see, there is a clear upward
trend in the data, so the time series is certainly not stationary:
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Figure 7.8 - Plot of the sample time series

There is an obvious positive trend in the data.

Next, we difference the series to see whether one level of differencing is sufficient to remove
the trend:

diffs = sample ts.diff () .dropna ()
Now, we plot the ACF and PACEF for the differenced time series:

ap fig, (acf ax, pacf ax) = plt.subplots(2, 1,
tight layout=True)

sm.graphics.tsa.plot acf (diffs, ax=acf ax)

227



228 Using Regression and Forecasting

sm.graphics.tsa.plot pacf (diffs, ax=pacf ax)
acf ax.set ylabel ("Value")

acf ax.set xlabel ("Lag")

pacf ax.set_ xlabel ("Lag")

pacf ax.set ylabel ("Value")

The ACF and PACF can be seen in the following figure. We can see that there do not appear
to be any trends left in the data and that there appears to be both an AR component and an

MA component:
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Figure 7.9 - ACF and PACF for the differenced time series
5.  Now, we construct the ARIMA model with order 1 differencing, an AR component, and an

MA component. We fit this to the observed time series and print a summary of the model:

model = sm.tsa.ARIMA (sample ts, order=(1,1,1))

fitted = model.fit ()
print (fitted.summary())
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The summary information that’s printed looks as follows:

SARIMAX Results

Dep. Variable: vy No. Observations: 366
Model: ARIMA(1, 0, 1) Log Likelihood -513.038
Date: Fri, 25 Nov 2022 AIC 1034.077
Time: 13:17:24 BIC

1049.687
Sample: 01-01-2020 HQIC 1040.280

- 12-31-2020
Covariance Type: opg
coef std err z P>|z| [0.025
0.975]

0 0.866 -0.307 0.258
0 0.000 0.717 0.941

ma.Ll -0.5189 0.087 -5.954 0.000 -0.690 -0.348
0 0.000 0.819 1.112

Ljung-Box (L1l) (Q): 0.04 Jarque-Bera (JB): 0.59
Prob (Q) : 0.84 Prob (JB) :
0.74
Heteroskedasticity (H): 1.15 Skew:
-0.06
Prob (H) (two-sided) : 0.44 Kurtosis:
2.84
Warnings:

[1] Covariance matrix calculated using the outer product
of gradients (complex-step).

Here, we can see that all 3 of our estimated coeflicients are significantly different from 0 since
all three have 0 to 3 decimal places in the P> | z | column.
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Now, we can use the get forecast method to generate predictions of future values and
generate a summary DataFrame from these predictions. This also returns the standard error
and confidence intervals for predictions:

forecast =fitted.get forecast (steps=50) .summary frame ()

Next, we plot the forecast values and their confidence intervals on the figure containing the
time series data:

forecast ["mean"] .plot (
ax=ts_ax, label="Forecast", ls="--")
ts ax.fill between (forecast.index,
forecast ["mean ci lower"],
forecast ["mean ci upper"],
alpha=0.4)

Finally, we add the actual future values to generate, along with the sample in step I, to the plot (it
might be easier if you repeat the plot commands from step I to regenerate the whole plot here):

test ts.plot (ax=ts ax, label="Actual", 1ls="-.")
ts_ax.legend()

The final plot containing the time series with the forecast and the actual future values can be
seen in the following figure:
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Figure 7.10 - Sample time series with forecast values and actual future values for comparison
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Here, we can see that the actual future values are within the confidence interval for the forecast values.

How it works...

The ARIMA model — with orders P, d, and g - is simply an ARMA (P,4) model that’s applied to a
time series. This is obtained b vy applying differencing of order d to the original time
series data. It is a fairly simple way to generate a model for time series data. The stat smodels
ARIMA class handles the creation of a model, while the £it method fits this model to the data.

The model is fit to the data using a maximum likelihood method and the final estimates for the
parameters — in this case, one parameter for the AR component, one for the MA component, the
constant trend parameter, and the variance of the noise. These parameters are reported in the summary.
From this output, we can see that the estimates for the AR coefficient (0. 9567) and the MA constant
(-0.6407) are very good approximations of the true estimates that were used to generate the data,
which were 0 . 8 for the AR coefficient and -0 . 5 for the MA coefficient. These parameters are set in
the generate sample data routine from the tsdata. py file in the code repository for this
chapter. This generates the sample data in step 1. You might have noticed that the constant parameter
(1.0101)isnot 0.2, as specified in the generate sample data callin step 1. In fact, it is not
so far from the actual drift of the time series.

The get _forecast method on the fitted model (the output of the £it method) uses the model
to make predictions about the value after a given number of steps. In this recipe, we forecast for up
to 50 time steps beyond the range of the sample time series. The output of the command in step 6 is
a DataFrame containing the forecast values, the standard error for the forecasts, and the upper and
lower bounds for the confidence interval (by default, 95% confidence) of the forecasts.

When you construct an ARIMA model for time series data, you need to make sure you use the smallest
order differencing that removes the underlying trend. Applying more differencing than is necessary
is called over-differencing and can lead to problems with the model.

Forecasting seasonal data using ARIMA

Time series often display periodic behavior so that peaks or dips in the value appear at regular intervals.
This behavior is called seasonality in the analysis of time series. The methods we have used thus far
in this chapter to model time series data obviously do not account for seasonality. Fortunately, it is
relatively easy to adapt the standard ARIMA model to incorporate seasonality, resulting in what is
sometimes called a SARIMA model.

In this recipe, we will learn how to model time series data that includes seasonal behavior and use
this model to produce forecasts.
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Getting ready

For this recipe, we will need the NumPy package imported as np, the Pandas package imported as
pd, the Matplotlib pyplot module as p1t, and the statsmodels api module imported as sm.
We will also need the utility for creating sample time series data from the t sdata module, which is
included in this booK’s repository:

from tsdata import generate sample data

Let’s see how to produce an ARIMA model that takes seasonal variations into account.

How to do it...

Follow these steps to produce a seasonal ARIMA model for sample time series data and use this
model to produce forecasts:

1.

First, we use the generate sample data routine to generate a sample time series to analyze:

sample ts, test ts = generate sample data(undiff=True,

seasonal=True)

As usual, our first step is to visually inspect the data by producing a plot of the sample time series:

ts fig, ts _ax = plt.subplots(tight layout=True)

sample ts.plot (ax=ts ax, title="Time series",
label="Observed")

ts_ax.set xlabel ("Date")

ts_ax.set ylabel ("Value")

The plot of the sample time series data can be seen in the following figure. Here, we can see
that there seem to be periodic peaks in the data:
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Figure 7.11 - Plot of the sample time series data

3. Next, we plot the ACF and PACF for the sample time series:

ap fig, (acf ax, pacf ax) = plt.subplots(2, 1,
tight layout=True)

sm.graphics.tsa.plot acf (sample ts, ax=acf ax)

sm.graphics.tsa.plot pacf (sample ts, ax=pacf ax)

acf ax.set xlabel ("Lag")

pacf ax.set xlabel ("Lag")

acf ax.set ylabel ("Value")

pacf ax.set_ylabel ("Value")
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The ACF and PACF for the sample time series can be seen in the following figure:

Autocorrelation

1.0

[ ]
0.5
- HHH“H””TTT
= 0.
>
-0.5 4
_10 T T T T T T
0 5 10 15 20 25
Lag
Vi Partial Autocorrelation
0.5
)
=2 00 ° rJHtwaLTq;J_,J;;JLF,Hr1H;__
E SRR
*0.5‘
_1.0 T T T T T T
0 5 10 15 20 25
Lag

Figure 7.12 - The ACF and PACF for the sample time series

These plots possibly indicate the existence of AR components, but also a significant spike in
the PACF with lag 7.

4. Next, we difference the time series and produce plots of the ACF and PACF for the differenced
series. This should make the order of the model clearer:

diffs = sample ts.diff () .dropna/()

dap fig, (dacf ax, dpacf ax) = plt.subplots(
2, 1, tight layout=True)

sm.graphics.tsa.plot acf (diffs, ax=dacf ax,
title="Differenced ACF")

sm.graphics.tsa.plot pacf (diffs, ax=dpacf ax,
title="Differenced PACF")

dacf ax.set_xlabel ("Lag")

dpacf ax.set xlabel ("Lag")

dacf ax.set ylabel ("Value")

dpacf ax.set ylabel ("Value")
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The ACF and PACEF for the differenced time series can be seen in the following figure. We can
see that there is definitely a seasonal component with lag 7:
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Figure 7.13 - Plot of the ACF and PACF for the differenced time series

Now, we need to create a SARIMAX object that holds the model, with an ARIMA order of
(1, 1, 1) andaSARIMA orderof (1, 0, 0, 7).Wefitthis model to the sample time
series and print summary statistics. We plot the predicted values on top of the time series data:

model = sm.tsa.SARIMAX (sample ts, order=(1, 1, 1),
seasonal order=(1, 0, 0, 7))

fitted seasonal = model.fit ()

print (fitted seasonal.summary())

The first half of the summary statistics that are printed to the terminal are as follows:

SARIMAX Results

Dep. Variable: vy No. Observations: 366
Model :ARIMA (1, 0, 1) Log Likelihood -513.038
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Date: Fri, 25 Nov 2022 AIC 1027.881
Time: 14:08:54 BIC 1043.481
Sample:01-01-2020 HQIC 1034.081

- 12-31-2020
Covariance Type: opg

As before, the first half contains some information about the model, parameters, and fit. The
second half of the summary (here) contains information about the estimated model coefficients:

err z P>|z| [0.025 0.975]

ar.L1 0.7939 0 0

ma.Ll -0.4544 0 0

ar.S.L7 0.7764 0.034 22.951 0.000 0.710 0.843
0 0

sigma2 0.9388 073 2.783 000 0.795 1.083
Ljung-Box (L1) (Q): 0.03 Jarque-Bera (JB):
0.47

Prob (Q) : 0.86 Prob (JB) : 0.79
Heteroskedasticity (H): 1.15 Skew: -0.03

Prob (H) (two-sided) : 0.43 Kurtosis: 2.84
Warnings:

[1] Covariance matrix calculated using the outer product
of gradients (complex-step).

6. 'This model appears to be a reasonable fit, so we move ahead and forecast 50 time steps into
the future:

forecast result = fitted seasonal.get forecast (steps=50)
forecast index = pd.date range("2021-01-01", periods=50)
forecast = forecast result.predicted mean
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7.

Finally, we add the forecast values to the plot of the sample time series, along with the confidence
interval for these forecasts:

forecast.plot (ax=ts_ax, label="Forecasts", ls="--")

conf = forecast result.conf int ()

ts ax.fill between(forecast index, conf["lower y"],
conf ["upper y"], alpha=0.4)

test ts.plot (ax=ts_ax, label="Actual future", 1ls="-.")

ts_ax.legend()

The final plot of the time series, along with the predictions and the confidence interval for the
forecasts, can be seen in the following figure:

Time series
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50 - —-= Actual future
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—25 4

Value
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2020 2021
Date

Figure 7.14 - Plot of the sample time series, along with the forecasts and confidence interval
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As we can see, the forecast evolution follows roughly the same upward trajectory as the final portion of
observed data, and the confidence region for predictions expands quickly. We can see that the actual
future values dip down again after the end of the observed data but do stay within the confidence interval.

How it works...

Adjusting an ARIMA model to incorporate seasonality is a relatively simple task. A seasonal component
is similar to an AR component, where the lag starts at some number larger than 1. In this recipe, the
time series exhibits seasonality with period 7 (weekly), which means that the model is approximately
given by the following equation:

Vi=@1Yq + &+ DY

Here, 1 and @, are the parameters and €, is the noise at time step t. The standard ARIMA model is
easily adapted to include this additional lag term.

The SARIMA model incorporates this additional seasonality into the ARIMA model. It has four
additional order terms on top of the three for the underlying ARIMA model. These four additional
parameters are the seasonal AR, differencing, and MA components, along with the period of seasonality.
In this recipe, we took the seasonal AR as order 1, with no seasonal differencing or MA components
(order 0), and a seasonal period of 7. This gives us the additional parameters (1, 0, 0, 7) that we used
in step 5 of this recipe.

Seasonality is clearly important in modeling time series data that is measured over a period of time
covering days, months, or years. It usually incorporates some kind of seasonal component based on
the time frame that they occupy. For example, a time series of national power consumption measured
hourly over several days would probably have a 24-hour seasonal component since power consumption
will likely fall during the night hours.

Long-term seasonal patterns might be hidden if the time series data that you are analyzing does not
cover a sufficiently large time period for the pattern to emerge. The same is true for trends in the
data. This can lead to some interesting problems when trying to produce long-term forecasts from a
relatively short period represented by observed data.

The SARIMAX class from the stat smodels package provides the means of modeling time series
data using a seasonal ARIMA model. In fact, it can also model external factors that have an additional
effect on the model, sometimes called exogenous regressors (we will not cover these here). This class
works much like the ARMA and ARIMA classes that we used in the previous recipes. First, we create
the model object by providing the data and orders for both the ARIMA process and the seasonal
process, and then use the £it method on this object to create a fitted model object. We use the
get forecasts method to generate an object holding the forecasts and confidence interval data
that we can then plot, thus producing Figure 7.14.
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There’s more...

There is a small difference in the interface between the SARIMAX class used in this recipe and the
ARIMA class used in the previous recipe. At the time of writing, the stat smodels package (v0.11)
includes a second ARIMA class that builds on top of the SARIMAX class, thus providing the same
interface. However, at the time of writing, this new ARIMA class does not offer the same functionality
as that used in this recipe.

Using Prophet to model time series data

The tools we have seen so far for modeling time series data are very general and flexible methods,
but they require some knowledge of time series analysis in order to be set up. The analysis needed to
construct a good model that can be used to make reasonable predictions for the future can be intensive
and time-consuming, and may not be viable for your application. The Prophet library is designed
to automatically model time series data quickly, without the need for input from the user, and make
predictions for the future.

In this recipe, we will learn how to use Prophet to produce forecasts from a sample time series.

Getting ready

For this recipe, we will need the Pandas package imported as pd, the Matplotlib pyplot package
imported as plt, and the Prophet object from the Prophet library, which can be imported using
the following command:

from prophet import Prophet

Prior to version 1.0, the prophet library was called fbprophet.

We also need to import the generate sample data routine from the t sdata module, which
is included in the code repository for this book:

from tsdata import generate sample data

Let’s see how to use the Prophet package to quickly generate models of time series data.

How to do it...

The following steps show you how to use the Prophet package to generate forecasts for a sample
time series:

1. First, we use generate sample_ data to generate the sample time series data:

sample ts, test ts = generate sample data(
undiffTrue, trend=0.2)
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2.

We need to convert the sample data into a DataFrame that Prophet expects:

df for prophet = pd.DataFrame ({
"ds": sample ts.index, # dates

"y": sample ts.values # values

|3
Next, we make a model using the Prophet class and fit it to the sample time series:

model = Prophet ()
model.fit (df for prophet)

Now, we create a new DataFrame that contains the time intervals for the original time series,
plus the additional periods for the forecasts:

forecast df = model.make future dataframe (periods=50)

Then, we use the predict method to produce the forecasts along the time periods we just created:

forecast = model.predict (forecast df)

Finally, we plot the predictions on top of the sample time series data, along with the confidence
interval and the true future values:

fig, ax = plt.subplots(tight layout=True)

sample ts.plot (ax=ax, label="Observed",
title="Forecasts", c="k")

forecast.plot (x="ds", y="yhat", ax=ax, c="k",
label="Predicted", 1ls="--")

ax.fill between (forecast["ds"] .values, forecast["yhat
lower"] .values,

forecast ["yhat upper"] .values, color="k", alpha=0.4)
test ts.plot (ax=ax, c="k", label="Future", ls="-.")
ax.legend/()
ax.set xlabel ("Date")

ax.set ylabel ("Value")
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The plot of the time series, along with forecasts, can be seen in the following figure:
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Figure 7.15 - Plot of sample time series data, along with forecasts and a confidence interval

We can see that the fit of the data up to (approximately) October 2020 is pretty good, but then a sudden
dip in the observed data causes an abrupt change in the predicted values, which continues into the
future. This can probably be rectified by tuning the settings of the Prophet prediction.

How it works...

Prophet is a package that’s used to automatically produce models for time series data based on sample
data, with little extra input needed from the user. In practice, it is very easy to use; we just need to
create an instance of the Prophet class, call the £it method, and then we are ready to produce
forecasts and understand our data using the model.

The Prophet class expects the data in a specific format: a DataFrame with columns named ds for
the date/time index, and y for the response data (the time series values). This DataFrame should
have integer indices. Once the model has been fit, we use make future dataframe to createa
DataFrame in the correct format, with appropriate date intervals, and with additional rows for future
time intervals. The predict method then takes this DataFrame and produces values using the
model to populate these time intervals with predicted values. We also get other information, such as
the confidence intervals, in this forecast’s DataFrame.
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There’s more...

Prophet does a fairly good job of modeling time series data without any input from the user. However,
the model can be customized using various methods from the Prophet class. For example, we could
provide information about the seasonality of the data using the add_seasonality method of the
Prophet class, prior to fitting the model.

There are alternative packages for automatically generating models for time series data. For example,
popular machine learning libraries such as TensorFlow can be used to model time series data.

Using signatures to summarize time series data

Signatures are a mathematical construction that arises from rough path theory - a branch of mathematics
established by Terry Lyons in the 1990s. The signature of a path is an abstract description of the
variability of the path and, up to “tree-like equivalence,” the signature of a path is unique (for instance,
two paths that are related by a translation will have the same signature). The signature is independent
of parametrization and, consequently, signatures handle irregularly sampled data effectively.

Recently, signatures have found their way into the data science world as a means of summarizing
time series data to be passed into machine learning pipelines (and for other applications). One of the
reasons this is effective is because the signature of a path (truncated to a particular level) is always
a fixed size, regardless of how many samples are used to compute the signature. One of the easiest
applications of signatures is for classification (and outlier detection). For this, we often compute the
expected signature — the component-wise mean of signatures — of a family of sampled paths that
have the same underlying signal, and then compare the signatures of new samples to this expected
signature to see whether they are “close”

In terms of practical use, there are several Python packages for computing signatures from sampled
paths. We'll be using the esig package in this recipe, which is a reference package developed by
Lyons and his team — the author is the maintainer of this package at the time of writing. There are
alternative packages such as iisignature and signatory (based on PyTorch, but not actively
developed). In this recipe, we will compute signatures for a collection of paths constructed by adding
noise to two known signals and compare the expected signatures of each collection to the signature
of the true signal and one another.

Getting ready

For this recipe, we will make use of the NumPy package (imported as np as usual) and the Matplotlib
pyplot interface imported as p1t. We will also need the esig package. Finally, we will create an
instance of the default random number generator from the NumPy random library created as follows:

rng = np.random.default rng(12345)

The seed will ensure that the data generated will be reproducible.



Using signatures to summarize time series data

How to do it...

Follow the steps below to compute signatures for two signals and use these signatures to distinguish
observed data from each signal:

1. To start, let’s define some parameters that we will use in the recipe:

upper limit = 2*np.pi
depth = 2

noise variance = 0.1

2. Next, we define a utility function that we can use to add noise to each signal. The noise we add
is simply Gaussian noise with mean 0 and variance defined previously:

def make noisy(signal) :

return signal + rng.normal (0.0, noise variance,
size=gsignal.shape)

3. Now, we define functions that describe the true signals over the interval 0 < t < 21 with
irregular parameter values that are defined by taking drawing increments from an
exponential distribution:

def signal a(count) :
t = rng.exponential (
upper limit/count, size=count) .cumsum/()
return t, np.column_ stack(
[E/(1.+t)**2, 1./(1.+t)**2])
def signal b (count) :
t = rng.exponential (
upper limit/count, size=count) .cumsum/()
return t, np.column_ stack(
[np.cos(t), np.sin(t)])

4. Let’s generate a sample signal and plot these to see what our true signals look like on the plane:

params_a, true signal a = signal a(100)

params b, true signal b = signal b(100)

fig, ((ax11l, ax12), (ax21l, ax22)) = plt.subplots
2, 2,tight layout=True)
axll.plot (params_a, true signal al[:, 0], "k")

axll.plot (params_a, true signal al:, 1], "k--")
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axll.legend(["x", "y"])

ax1l2.plot (params_b, true signal b[:, 0], "k")

ax1l2.plot (params_b, true signal b[:, 1], "k--")
axl2.legend (["x", "y"])

ax21l.plot (true signal al:, 0], true signal al:, 11, "k")
ax22.plot (true signal b[:, 0], true signal b[:, 1], "k")
axll.set title("Components of signal a")
axll.set xlabel ("parameter")

axll.set_ylabel ("value")

axl2.set title("Components of signal b")
axl2.set xlabel ("parameter")

axl2.set ylabel ("value")

ax2l.set title("Signal a")

ax2l.set xlabel ("x")

ax2l.set ylabel ("y")

ax22.set _title("Signal b")

ax22.set xlabel ("x")

ax22.set _ylabel ("y")

The resulting plot is shown in Figure 7.16. On the first row, we can see the plots of each component
of the signal over the parameter interval. On the second row, we can see the Y component plotted
against the X component:
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Figure 7.16 - Components (top row) of signals a and b and the signals on the plane (bottom row)
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Now, we use the stream2sig routine from the esig package to compute the signature of
the two signals. This routine takes the stream data as the first argument and the depth (which
determines the level at which the signature is truncated) as the second argument. We use the
depth set in step 1 for this argument:

signature a = esig.stream2sig(true signal a, depth)
signature b = esig.stream2sig(true signal b, depth)
print (signature a, signature b, sep="\n")

This will print the two signatures (as NumPy arrays) as follows:
[ 1. 0.11204198 -0.95648657 0.0062767 -0.15236199

0.04519534 0.45743328]

[ 1.00000000e+00 7.19079669e-04 -3.23775977e-
02 2.58537785e-07 3.12414826e+00 -3.12417155e+00
5.24154417e-04]

Now, we generate several noisy signals using our make noisy routine from step 2. Not only
do we randomize the parametrization of the interval but also the number of samples:

sigs a = np.vstack([esig.stream2sig(
make noisy(signal a(
rng.integers (50, 100)) [1]), depth)
for in range(50)])
sigs b = np.vstack([esig.stream2sig(
make noisy(signal b (
rng.integers (50, 100)) [1]), depth)

for in range(50)])

Now, we compute the mean of each collection of signatures component by component to
generate an “expected signature” We can compare these to the true signal signatures and one
another to illustrate the ability of signatures to discriminate between the two signals:

expected sig a = np.mean(sigs_a, axis=0)
expected sig b = np.mean(sigs b, axis=0)

print (expected sig a, expected sig b, sep="\n")
This will print out the two expected signatures, as follows:

[ 1. 0.05584373 -0.82468682 0.01351423 -0.1040297
0.0527106 0.36009198]

[ 1. -0.22457304 -0.05130969 0.07368485 3.0923422
-3.09672887 0.17059484]
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8. Finally, we print the maximum difference (in absolute value) between each expected signature
and the corresponding true signal signature and between the two expected signatures:

print ("Signal a", np.max(

np.abs (expected sig a - signature a)))
print ("Signal b", np.max(

np.abs (expected sig b -signature b)))
print ("Signal a vs signal b", np.max(

np.abs (expected sig a - expected sig b)))
The results are shown here:

Signal a 0.13179975589137582
Signal b 0.22529211936796972
Signal a vs signal b 3.1963719013938148

We can see that the difference between the expected signature and the true signature in each case is
relatively small, whereas the difference between the two expected signatures is relatively large.

How it works...

The signature of a path X; (taking values in the d-dimensional real space) over an interval 0 <t < T
is an element of the free tensor algebra over R? (in this notation, X; denotes the value of

the path at time t. You may prefer to think of this as X(t)). We denote this signature as Sor(X,).
Formality aside, we realize the signature as a sequence of elements as follows:

Sor(Xe) = (L,Sor(X)D, ..., Sor (X))@, So 1 (X)W, ..., So 1 (X) D, .., So1(X) @D, )

The superscripts denote the index within the free tensor. For example, the indices with two terms
(i,J) (degree 2) are like the rows and columns of a matrix. The first term of the signature is always 1.
The following d-terms are given by the increments in each of the component directions: if we write
the path X, as a vector ( Xt(l), Xt(z), " Xt(d)), then these terms are given by the following formula:

T
SorX)®@ = [ dx® = x¥ - x{
0

The higher order terms are given by iterated integrals of these component functions:
Sor(Xp) @) = [ dxWdx® .ax(™
0<ty <<t <T "

The full signature of a path is an infinite sequence - so for practical uses, we usually truncate at a
particular depth that determines the maximum size of indices, such as (iy, ..., i) here.
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This iterated integral definition is not especially useful in practice. Fortunately, when we sample a
path and make the modest assumption that the path is linear between successive samples, then we
can compute the signature by computing the product of tensor exponentials of increments. Concretely,
if x4,...,xy are sample values taken from our path X; at ty, ..., ty, respectively, all lying between 0
and T, then (assuming X, is linear between t; and ;1) the signature is given by the following:

Sor (X1, e, xy) = exp(a; — x1) @ exp(xz — x2) @ exp(xy — xy_1)

Here, the & symbol denotes multiplication in the free tensor algebra (this multiplication is defined
by the concatenation of indices - so, for instance, the (i, /)-th value on the left and the (® @)-th value
on the right will contribute to the (i,7, v, @)-th value in the result). Remember that these are exponents
of free tensor objects — not the usual exponential function — which are defined using the familiar
power series:
© M®i
exp(M) =3 =
j=0

When the constant term of a tensor M is zero and we truncate the tensor algebra to depth D, then the
value of exp(M) is exactly equal to the sum of the first D + 1 terms of this sum, which is a finite sum
that can be computed efficiently.

The importance of the signature of a path in a data science context is from the fact that the signature
is representative of the path from the perspective of functions. Any continuous function defined on
the path X, is approximately (in a very precise sense) a linear function defined on the signature. Thus,
anything that can be learned about a path can also be learned from the signature.

The esig package is built on top of the 1ibalgebra C++ library for computations involving the
free tensor algebra (and other kinds of algebraic objects). The st ream2sig routine from esig
takes a sequence of path samples in the form of an N (number of samples) x d (number of dimensions)
NumPy array and returns a flat NumPy array containing the components of the signature, laid out in
sequence as described here. The second argument to st ream2sig is the depth parameter D, which
we have chosen to be 2 in this recipe. The size of the signature array is determined only by the dimension
of the space and the depth, and is given by the following formula:

o gy

) = -
X odl=—
Jj=0

In the recipe, both of our paths were 2-dimensional, and signatures were computed to depth 2 so the
signature has 2® —1 =7 elements (notice that the number of samples varied in each case and were
generated randomly and irregularly, yet the signature was the same size in each case).

Now that the theory is out of the way, let’s look at the recipe. We define two true paths (signals),
which we called signal a and signal b. We draw samples from each signal by drawing parameter values
t1, ..., ty with differences taken from an exponential distribution so that (on average) ty = 2. Then,
we feed these parameter values into the formula for the path (see step 3). In the latter steps, we also
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add Gaussian noise to generated paths with mean 0 and variance 0.1. This guarantees that our 2
signals are irregularly sampled and noisy - to demonstrate the robustness of signature calculations.

Signal a is defined by the following formula:

A= t 1
te ((1+t)2'(1+t)2)

Because this is a nice (smooth) path over the interval 0 <t < 2m , we can compute the signature
precisely using the iterated integrals to (approximately) get the sequence:

(1,0.11845,-0.98115,0.0070153,—0.16512,0.048901,0.48133)
This is remarkably close to the computed signature for the signal as given here:

[1. 0.11204198 -0.95648657 0.0062767 -0.15236199 0.04519534
0.45743328]

We expect a reasonable amount of error because our sampling is fairly coarse (only 100 points) and
our parameter values might finish before 21 because of the way we randomized.

Signal b is defined by the following formula:

B; = (cos(t), sin(t))

The component functions for this signal are also smooth, so we can compute the signature by
computing the iterated integrals. Following this procedure, we see that the signature of the true signal
is the following:

(1,0,0,0, 7, —m, 0)

Comparing this to the compute value, we see that we're fairly close:

[ 1.00000000e+00 7.19079669e-04 -3.23775977e-02 2.58537785e-
07 3.12414826e+00 -3.12417155e+00 5.24154417e-04]

Again, we expect some error because of coarse sampling and not covering the parameter interval
exactly (in Figure 7.16, you can see that there are some substantial “straight sections” indicating that
the parameter values are spaced far apart in some places on the plots for signal b).

In step 6, we generate a number of signatures for noisy samples taken from both signals, all with
different and irregular time steps (the count of which is also randomly drawn between 50 and 100)
and Gaussian noise. These are stacked into an array with N = 50 rows and 7 columns (the size of the
signature). We compute the row-wise mean of each array of signatures using the np . mean routine
with axis=0. This produces an expected signature for each signal. We then compare these expected
signatures to the “true signature” computed in step 5 and one another. We can see that the difference
between the two expected signatures is significantly larger (not in the statistical sense) than the
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difference between the expected and true signatures for each signal. This illustrates the discriminative
power of the signature for classifying time series data.

There’s more...

The example problem we addressed in the recipe is extremely simple. Signatures have been used in
a wide variety of contexts, including sepsis detection, handwriting recognition, natural language
processing, human action recognition, and drone identification. Usually, signatures are used in
tandem with a selection of “preprocessing steps” that address various deficiencies in the sampled
data. For example, in the recipe, we deliberately chose signals that are bounded (and relatively small)
on the interval in question. In practice, data will likely be spread more widely and in this case, the
higher order terms in the signature can grow quite rapidly, which can have important consequences
for numerical stability. These preprocessing steps include lead-lag transformations, pen-on-pen-oft
transformations, the missing data transformation, and time integration. Each of these has a specific
role in making data more amenable to signature based methods.

Signatures contain a large amount of redundancy. Many of the higher order terms can be computed
from the others because of the geometry. This means that we can reduce the number of terms we need
without discarding any information about the path. This reduction involves projecting the signature
(in the free tensor algebra) onto the log signature (in the free Lie algebra). The log signature is an
alternative representation of the path that has fewer terms than the signature. Many of the properties
remain true for log signatures, except that we lose linearity in the approximation of functions (this
may or may not be important for specific applications).

See also

The theory of rough paths and signature methods is obviously too broad - and rapidly expanding
— to cover in such a short space. Here are some sources where you can find additional information
about signatures:

o Lyons, T. and McLeod, A., 2022. Signature Methods in Machine Learninghttps://arxiv.
org/abs/2206.14674

o Lyons, T, Caruana, M., and Lévy, T., 2004. Differential Equations Driven by Rough Paths,
Springer, Ecole d’Eté de Probabilités de Saint-Flour XXXIV

o Several Jupyter notebooks walking through analyzing time series data using signatures on the
Datasig website: https://datasig.ac.uk/examples.
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Further reading

A good textbook on regression in statistics is the book Probability and Statistics by Mendenhall, Beaver,
and Beaver, as mentioned in Chapter 6, Working with Data and Statistics. The following books provide
a good introduction to classification and regression in modern data science:

 James, G. and Witten, D., 2013. An Introduction To Statistical Learning: With Applications In
R. New York: Springer.

o Miiller, A. and Guido, S., 2016. Introduction To Machine Learning With Python. Sebastopol:
O’Reilly Media.

A good introduction to time series analysis can be found in the following book:

o Cryer, J. and Chan, K., 2008. Time Series Analysis. New York: Springer.
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Geometric Problems

This chapter describes solutions to several problems concerning two-dimensional geometry. Geometry
is a branch of mathematics concerned with the characteristics of points, lines, and other figures (shapes),
the interaction between these figures, and the transformation of these figures. In this chapter, we’ll
focus on the characteristics of two-dimensional figures and the interactions between these objects.

There are several problems we must overcome when working with geometric objects in Python.
The biggest hurdle is the problem of representation. Most geometric objects occupy a region on the
two-dimensional plane and, as such, it is impossible to store every point that lies within the region.
Instead, we have to find a more compact way to represent the region that can be stored as a relatively
small number of points or other attributes. For example, we might store a selection of points along the
boundary of an object that we can reconstruct the boundary and the object itself from. We also have
to reformulate the problems into questions that can be answered using representative data.

The second biggest problem is converting purely geometric questions into a form that can be understood
and solved using software. This can be relatively simple — for example, finding the point at which
two straight lines intersect is a matter of solving a matrix equation - or it can be extremely complex,
depending on the type of question being asked. A common technique that’s used to solve these
problems is to represent the figure in question using more simple objects and solve the (hopefully)
easier problem using each of the simple objects. This should then give us an idea of the solution to
the original problem.

We will start by showing you how to visualize two-dimensional shapes using patches, and then learn
how to determine whether a point is contained within another figure. Then, we’ll move on and look
at edge detection, triangulation, and finding convex hulls. We'll conclude this chapter by constructing
Bezier curves.

This chapter covers the following recipes:
o Visualizing two-dimensional geometric shapes
o Finding interior points

o Finding edges in an image
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o Triangulating planar figures
o Computing convex hulls

o Constructing Bezier curves

Let’s get started!

Technical requirements

For this chapter, we will need the NumPy package and the Matplotlib package, as usual. We will also
need the Shapely package and the scikit - image package, which can be installed using your
favorite package manager, such as pip:

python3.10 -m pip install numpy matplotlib shapely scikit-image

The code for this chapter can be found in the Chapter 08 folder of the GitHub repository
athttps://github.com/PacktPublishing/Applying-Math-with-Python-2nd-
Edition/tree/main/Chapter%2008.

Visualizing two-dimensional geometric shapes

The focus of this chapter is on two-dimensional geometry, so our first task is to learn how to visualize
two-dimensional geometric figures. Some of the techniques and tools mentioned here might apply to
three-dimensional geometric figures, but generally, this will require more specialized packages and tools.
The first method for plotting a region on the plane might be to pick a selection of points around the
boundary and plot these with the usual tools. However, this is generally going to be inefficient. Instead,
we're going to implement Matplotlib patches that make use of efficient representations of these figures
- in this recipe, the center and radius of a circle (disk) - that Matplotlib can fill efficiently on a plot.

A geometric figure, at least in the context of this book, is any point, line, curve, or closed region
(including the boundary) whose boundary is a collection of lines and curves. Simple examples include
points and lines (obviously), rectangles, polygons, and circles.

In this recipe, we will learn how to visualize geometric figures using Matplotlib patches.

Getting ready

For this recipe, we need the NumPy package imported as np, and the Matplotlib pyplot module
imported as plt. We also need to import the Circle class from the Matplotlib pat ches module
and the PatchCollection class from the Matplotlib collections module.


https://github.com/PacktPublishing/Applying-Math-with-Python-2nd-Edition/tree/main/Chapter%2008
https://github.com/PacktPublishing/Applying-Math-with-Python-2nd-Edition/tree/main/Chapter%2008

Visualizing two-dimensional geometric shapes

This can be done with the following commands:

import numpy as np

import matplotlib.pyplot as plt

from matplotlib.patches import Circle

from matplotlib.collections import PatchCollection

We will also need the swisscheese-grid-10411.csv data file from the code repository for
this chapter.

How to do it...

The following steps show you to visualize a two-dimensional geometric figure:

1.

First, we load the data from the swisscheese-grid-10411. csv file from this booK’s
code repository:

data = np.loadtxt ("swisscheese-grid-10411.csv")

We create a new patch object that represents a region on a plot. This is going to be a circle
(disk) with the center at the origin and a radius of 1. We create a new set of axes and add this
patch to them:

fig, ax = plt.subplots()
outer = Circle((0.0, 0.0), 1.0, zorder=0, fc="k")
ax.add patch (outer)

Next, we create a PatchCollect ion object from the data we loaded in step I, which contains
centers and radii for a number of other circles. We then add this PatchCollection to the
axes we created in step 2:

col = PatchCollection(
(Circle((x, y), r) for x, y, ¥ in data),
facecolor="white", zorder=1, linewidth=0.2,
ls="-", ec="k"

)

ax.add collection(col)

Finally, we set the x- and Y-axis ranges so that the whole image is displayed and then turn the
axes off:

ax.set xlim((-1.1, 1.1))
ax.set ylim((-1.1, 1.1))

ax.set axis off ()
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The resulting image is of a Swiss cheese, as shown here:

Figure 8.1 - Plot of a Swiss cheese

You can see in Figure 8.1 that most of the original disk (shaded black) has been covered by subsequent
disks (shaded white).

How it works...

Key to this recipe are the Circle and PatchCollection objects, which represent the regions
of the plot area on Matplotlib axes. In this case, we are creating one large circular patch, centered at
the origin and with a radius of 1, that has a black face color and uses zorder=0 to place it behind
other patches. This patch is added to the Axes object using the add_patch method.

The next step is to create an object that will render the circles represented by the data that we loaded
from the CSV file in step 1. This data consisted of x, ¥, and r values for the center (x,y) and the radius,
7, of the individual circles (10,411 in total). The PatchCollection object combines a sequence of
patches into a single object that can be added to an Axes object. Here, we add one Circle for each
row in our data, which is then added to the Axes object using the add_collection method. Notice
that we have applied the face color to the whole collection, rather than to each individual Circle
constituent. We set the face color to white (using the facecolor="w" argument), the edge color
to black (using ec="k"), the line width (of the edge lines) to 0.2 (using 1inewidth=0.2), and
the edge style to a continuous line. All of this, when put together, results in our image.
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The image that we have created here is called a Swiss cheese. It was first used in rational approximation
theory in 1938 by Alice Roth; it was subsequently rediscovered, and similar constructions have been
used many times since. We used this example because it consists of one large individual part, plus a
large collection of smaller individual parts. Roth’s Swiss cheese is an example of a set in the plane that
has a positive area but no topological interior. This means that we cannot find any disk of positive
radius that is wholly contained within the set (it is amazing that such a set can even exist!). More
importantly, there are continuous functions defined on this Swiss cheese that cannot be uniformly
approximated by rational functions. This property has made similar constructions useful in the theory
of uniform algebras.

The Circle class is a subclass of the more general Patch class. There are numerous other Patch
classes that represent different planar figures, such as Polygon and PathPatch, which represent
the region bounded by a path (curve or collection of curves). These can be used to generate complex
patches that can be rendered in a Matplotlib figure. Collections can be used to apply settings to a
number of patch objects simultaneously, which can be especially useful if, as in this recipe, you have
a large number of objects that will all be rendered in the same style.

There’s more...

There are many different patch types available in Matplotlib. In this recipe, we used the Circle
patch class, which represents a circular region on the axes. There is also the Polygon patch class,
which represents a polygon (regular or otherwise). There are also PatchPath objects, which are
regions that are surrounded by a curve that does not necessarily consist of straight-line segments. This
is similar to the way a shaded region can be constructed in many vector graphics software packages.

In addition to the single patch types in Matplotlib, there are a number of collection types that gather a
number of patches together to be used as a single object. In this recipe, we used the PatchCollection
class to gather a large number of Circle patches. There are more specialized patch collections that
can be used to generate these internal patches automatically, rather than us generating them ourselves.

See also

A more detailed history of Swiss cheeses in mathematics can be found in the following biographical
article: Daepp, U., Gauthier, P, Gorkin, P., and Schmieder, G., 2005. Alice in Switzerland: The life and
mathematics of Alice Roth. The Mathematical Intelligencer, 27(1), pp. 41-54.

Finding interior points

One problem with working with two-dimensional figures in a programming environment is that you
can’t possibly store all the points that lie within the figure. Instead, we usually store far fewer points
that represent the figure in some way. In most cases, this will be a number of points (connected by
lines) that describe the boundary of the figure. This is efficient in terms of memory and makes it easy
to visualize them on screen using Matplotlib patches, for example. However, this approach makes
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it more difficult to determine whether a point or another figure lies within a given figure. This is a
crucial question in many geometric problems.

In this recipe, we will learn how to represent geometric figures and determine whether a point lies
within a figure or not.

Getting ready

For this recipe, we will need to import the matplotlib package (as a whole) as mpl and the
pyplot moduleasplt:

import matplotlib as mpl
import matplotlib.pyplot as plt

We also need to import the Point and Polygon objects from the geomet ry module of the Shapely
package. The Shapely package contains many routines and objects for representing, manipulating,
and analyzing two-dimensional geometric figures:

from shapely.geometry import Polygon, Point

These two classes will be used to represent our two-dimensional geometric figures. Let’s see how to
use these classes to see whether a polygon contains a point or not.

How to do it...

The following steps show you how to create a Shapely representation of a polygon and then test whether
a point lies within this polygon:

1. Create a sample polygon to test:

polygon = Polygon (
((0, 2), (-1, 1), (-0.5, -1), (0.5, -1), (1, 1)1,
)

2. Next, we plot the polygon onto a new figure. First, we need to convert the polygon into a
Matplotlib Polygon patch that can be added to the figure:

fig, ax = plt.subplots()
poly patch = mpl.patches.Polygon (
polygon.exterior.coords,
ec=(0,0,0,1), fc=(0.5,0.5,0.5,0.4))
ax.add patch(poly patch)
ax.set (xlim=(-1.05, 1.05), ylim=(-1.05, 2.05))
ax.set axis off ()



Finding interior points

3. Now, we need to create two test points, one of which will be inside the polygon and one of
which will be outside the polygon:

pl = Point (0.0, 0.0)
p2 Point (-1.0, -0.75)

4.  We plot and annotate these two points on top of the polygon to show their positions:

ax.plot (0.0, 0.0, "k*")

ax.annotate ("pl", (0.0, 0.0), (0.05, 0.0))

ax.plot (-0.8, -0.75, "k*")

ax.annotate ("p2", (-0.8, -0.75), (-0.8 + 0.05, -0.75))

5. Finally, we test where each point lies within the polygon using the contains method, and
then print the result to the Terminal:

print ("pl inside polygon?", polygon.contains(pl)) # True
print ("p2 inside polygon?", polygon.contains (p2))
# False

The results show that the first point, p1, is contained in the polygon, while the second point, p2, is
not. This can also be seen in the following figure, which clearly shows that one point is contained
within the shaded polygon, while the other point is not:

* P2

Figure 8.2 - Points inside and outside a polygonal region

Once we plot the points and the polygon it is easy (for us) to see that p1 lies inside the polygon and
p2 does not. The contains method on the polygon object correctly classifies the points too.

257



258

Geometric Problems

How it works...

The Shapely Polygon class is a representation of a polygon that stores its vertices as points. The
region enclosed by the outer boundary - the five straight lines between the stored vertices - is obvious
to us and easily identified by the eye, but the notion of being inside the boundary is difficult to define
in a way that can be easily understood by a computer. It is not even straightforward to give a formal
mathematical definition of what it means to lie within a given curve.

There are two main ways to determine whether a point lies within a simple closed curve - that is, a
curve that starts and ends at the same place that does not contain any self-intersections. The first uses
a mathematical concept called the winding number, which counts the number of times the curve
wraps around a point, and the ray crossing counting method, where we count the number of times a
ray from the point to a point at infinity crosses the curve. Fortunately, we don’t need to compute these
numbers ourselves since we can use the tools from the Shapely package to do this computation for
us. This is what the contains method of a polygon does (under the hood, Shapely uses the GEOS
library to perform this calculation).

The Shapely Polygon class can be used to compute many quantities associated with these planar
figures, including perimeter length and area. The contains method is used to determine whether
a point, or a collection of points, lies within the polygon represented by the object (there are some
limitations regarding the kinds of polygons that can be represented by this class). In fact, you can use
the same method to determine whether one polygon is contained within another since, as we have
seen in this recipe, a polygon is represented by a simple collection of points.

Finding edges in an image

Finding edges in images is a good way of reducing a complex image that contains a lot of noise and
distractions to a very simple image containing the most prominent outlines. This can be useful as our
first step of the analysis process, such as in image classification, or as the process of importing line
outlines into computer graphics software packages.

In this recipe, we will learn how to use the scikit -image package and the Canny algorithm to
find the edges in a complex image.

Getting ready

For this recipe, we will need to import the Matplotlib pyplot module as plt, the imread routine
from the skimage . 1o module, and the canny routine from the skimage . feature module:

import matplotlib.pyplot as plt
from skimage.io import imread

from skimage.feature import canny

The canny routine implements the edge detection algorithm. Let’s see how to use it.



Finding edges in an image

How to do it...
Follow these steps to learn how to use the scikit-image package to find edges in an image:

1. Load the image data from the source file. This can be found in the GitHub repository for this
chapter. Crucially, we pass in as_gray=True to load the image in grayscale:

image = imread("mandelbrot."ng", as_gray=True)

The following is the original image, for reference. The set itself is shown by the white region
and, as you can see, the boundary, indicated by the darker shades, is very complex:

Figure 8.3 - Plot of the Mandelbrot set generated using Python

2. Next, we use the canny routine, which needs to be imported from the features module of
the scikit-image package. The sigma value is set to 0.5 for this image:

edges = canny (image, sigma=0.5)
3. Finally, we add the edges image to a new figure with a grayscale (reversed) color map:

fig, ax = plt.subplots/()
ax.imshow (edges, cmap="gray r")

ax.set axis off ()

259



260 Geometric Problems

The edges that have been detected can be seen in the following image. The edge-finding algorithm has
identified most of the visible details of the boundary of the Mandelbrot set, although it is not perfect
(this is an estimate, after all):
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Figure 8.4 - The edges of the Mandelbrot set found using the scikit-
image package’s Canny edge detection algorithm

We can see that the edge detection has identified a good amount of the complexity of the edge of the
Mandelbrot set. Of course, the boundary of the true Mandelbrot set is a fractal and has infinite complexity.

How it works...

The scikit - image package provides various utilities and types for manipulating and analyzing
data derived from images. As the name suggests, the canny routine uses the Canny edge detection
algorithm to find edges in an image. This algorithm uses the intensity gradients in the image to detect
edges, where the gradient is larger. It also performs some filtering to reduce the noise in the edges it finds.

The sigma keyword value we provided is the standard deviation of the Gaussian smoothing that’s
applied to the image prior to calculating the gradients for edge detection. This helps us remove some
of the noise from the image. The value we set (0 . 5) is smaller than the default (1), but it does give us
a better resolution in this case. A large value would obscure some of the finer details in the boundary
of the Mandelbrot set.
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Triangulating planar figures

As we saw in Chapter 3, Calculus and Differential Equations, we often need to break down a continuous
region into smaller, simpler regions. In earlier recipes, we reduced an interval of real numbers into a
collection of smaller intervals, each with a small length. This process is usually called discretization.
In this chapter, we are working with two-dimensional figures, so we need a two-dimensional version of
this process. For this, we’ll break a two-dimensional figure (in this recipe, a polygon) into a collection
of smaller and simpler polygons. The simplest of all polygons are triangles, so this is a good place to
start for two-dimensional discretization. The process of finding a collection of triangles that tiles a
geometric figure is called triangulation.

In this recipe, we will learn how to triangulate a polygon (with a hole) using the Shapely package.

Getting ready

For this recipe, we will need the NumPy package imported as np, the Matplotlib package imported
asmpl, and the pyplot module imported as p1lt:

import matplotlib as mpl
import matplotlib.pyplot as plt

import numpy as np
We also need the following items from the Shapely package:

from shapely.geometry import Polygon

from shapely.ops import triangulate

Let’s see how to use the t riangulate routine to triangulate a polygon.

How to do it...
The following steps show you how to triangulate a polygon with a hole using the Shapely package:
1.  First, we need to create a Polygon object that represents the figure that we wish to triangulate:

polygon = Polygon (
[(2.0, 1.0), (2.0, 1.5), (-4.0, 1.5), (-4.0, 0.5),
(-3.0, -1.5), (0.0, -1.5), (1.0, -2.0), (1.0,-0.5),
(0.0, -1.0), (-0.5, -1.0), (-0.5, 1.0)1,
holes=[np.array([[-1.5, -0.5], [-1.5, 0.5],
[=2.5, .51, [=2.5, =0.511)1
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2. Now, we should plot the figure so that we can understand the region that we will be working within:

fig, ax = plt.subplots()

plt poly = mpl.patches.Polygon (polygon.exterior.coords,
ec=(0,0,0,1), fc=(0.5,0.5,0.5,0.4), zorder=0)

ax.add patch(plt poly)

plt hole = mpl.patches.Polygon (
polygon.interiors[0] .coords, ec="k", fc="w")

ax.add patch(plt hole)

ax.set (xlim=(-4.05, 2.05), ylim=(-2.05, 1.55))

ax.set axis off ()

This polygon can be seen in the following image. As we can see, the figure has a hole in it that
must be carefully considered:

Figure 8.5 — Sample polygon but with a hole

3. Weuse the triangulate routine to generate a triangulation of the polygon. This triangulation
includes external edges, which is something we don’t want in this recipe:

triangles = triangulate (polygon)

4. To remove the triangles that lie outside the original polygon, we need to use the built-in filter
routine, along with the contains method (seen earlier in this chapter):

filtered = filter(lambda p: polygon.contains (p),
triangles)



Triangulating planar figures

5. To plot the triangles on top of the original polygon, we need to convert the Shapely triangles
into Matplotlib Patch objects, which we store in a PatchCollection:

patches = map(lambda p: mpl.patches.Polygon (
p.exterior.coords), filtered)
col = mpl.collections.PatchCollection (

patches, fc="none", ec="k")
6. Finally, we add the collection of triangular patches to the figure we created earlier:
ax.add collection(col)

The triangulation that’s been plotted on top of the original polygon can be seen in the following figure.
Here, we can see that every vertex has been connected to two others to form a system of triangles that
covers the entire original polygon:

Figure 8.6 — Triangulation of a sample polygon with a hole

The internal lines between the vertices of the original polygon in Figure 8.6 divide the polygon into
15 triangles.

How it works...

The triangulate routine uses a technique called Delaunay triangulation to connect a collection
of points to a system of triangles. In this case, the collection of points is the vertices of the polygon.
The Delaunay method finds these triangles in such a way that none of the points are contained within
the circumcircle of any of the triangles. This is a technical condition of the method, but it means that
the triangles are chosen efficiently, in the sense that it avoids very long, thin triangles. The resulting
triangulation makes use of the edges that are present in the original polygon and also connects some
of the external edges.
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In order to remove the triangles that lie outside of the original polygon, we use the built-in filter
routine, which creates a new iterable by removing the items that the criterion function falls under.
This is used in conjunction with the contains method on Shapely Polygon objects to determine
whether each triangle lies within the original figure. As we mentioned previously, we need to convert
these Shapely items into Matplotlib patches before they can be added to the plot.

There’s more...

Triangulations are usually used to reduce a complex geometric figure into a collection of triangles,
which are much simpler for computational tasks. However, they do have other uses. One particularly
interesting application of triangulations is to solve the art gallery problem. This problem concerns
finding the maximum number of guards that are necessary to guard an art gallery of a particular
shape. Triangulations are an essential part of Fisk’s simple proof of the art gallery theorem, which
was originally proved by Chvatal.

Suppose that the polygon from this recipe is the floor plan for an art gallery and that some guards
need to be placed on the vertices. A small amount of work will show that you’ll need three guards to
be placed at the polygon’s vertices for the whole museum to be covered. In the following image, we
have plotted one possible arrangement:

Figure 8.7 — One possible solution to the art gallery problem where guards are placed on vertices

In Figure 8.7 here, the guards are indicated by the X symbols and their corresponding fields of vision
are shaded. Here, you can see that the whole polygon is covered by at least one color. The solution to
the art gallery problem — which is a variation of the original problem - tells us that we need, at most,
four guards.

See also

More information about the art gallery problem can be found in the classic book by O’Rourke: O’'Rourke,
J. (1987). Art gallery theorems and algorithms. New York: Oxford University Press.
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Computing convex hulls

A geometric figure is said to be convex if every pair of points within the figure can be joined using a
straight line that is also contained within the figure. Simple examples of convex bodies include points,
straight lines, squares, circles (disks), regular polygons, and so on. The geometric figure shown in
Figure 8.5 is not convex since the points on the opposite sides of the hole cannot be connected by a
straight line that remains inside the figure.

Convex figures are simple from a certain perspective, which means they are useful in a variety of
applications. One problem involves finding the smallest convex set that contains a collection of points.
This smallest convex set is called the convex hull of the set of points.

In this recipe, we'll learn how to find the convex hull of a set of points using the Shapely package.

Getting ready

For this recipe, we will need the NumPy package imported as np, the Matplotlib package imported
asmpl, and the pyplot module imported as p1t:

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

We will also need a default random number generator from NumPy. We can import this as follows:

from numpy.random import default rng
rng = default rng(12345)

Finally, we will need to import the Mult iPoint class from Shapely:

from shapely.geometry import MultiPoint

How to do it...
Follow these steps to find the convex hull of a collection of randomly generated points:
1.  First, we generate a two-dimensional array of random numbers:
raw_points = rng.uniform(-1.0, 1.0, size=(50, 2))
2. Next, we create a new figure and plot these raw sample points on this figure:

fig, ax = plt.subplots()
ax.plot (raw_points[:, 0], raw points[:, 1], "kx")

ax.set axis off ()
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These randomly generated points can be seen in the following figure. The points are roughly
spread over a square region:
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Figure 8.8 — A collection of points on the plane

3. Next, we construct aMultiPoint object that collects all these points and put them into a
single object:

points = MultiPoint (raw_points)
4. Now, we get the convex hull of this Mult iPoint object using the convex hull attribute:
convex hull = points.convex hull

5. Then, we create a Matplotlib Polygon patch that can be plotted onto our figure to show the
result of finding the convex hull:

patch = mpl.patches.Polygon (
convex hull.exterior.coords,
ec=(0,0,0,1), £fc=(0.5,0.5,0.5,0.4), 1lw=1l.2)

6. Finally, we add the Polygon patch to the figure to show the convex hull:

ax.add patch(patch)
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The convex hull of the randomly generated points can be seen in the following figure:

X
= X
X
X
s X
] x X
X
o X
x X
% X
X
X
X X
X X
X
X
-

Figure 8.9 — The convex hull of a collection of points on the plane

The polygon shown in Figure 8.9 has vertices selected from the original points and all the other points
lie within the shaded region.

How it works...

The Shapely package is a Python wrapper around the GEOS library for geometric analysis. The
convex_hull attribute of Shapely geometric objects calls the convex hull computation routine from
the GEOS library, resulting in a new Shapely object. From this recipe, we can see that the convex hull
of the collection of points is a polygon with vertices at the points that are farthest away from the center.

Constructing Bezier curves

Bezier curves, or B-splines, are a family of curves that are extremely useful in vector graphics - for
instance, they are commonly used in high-quality font packages. This is because they are defined by
a small number of points that can then be used to inexpensively calculate a large number of points
along the curve. This allows detail to be scaled according to the needs of the user.

In this recipe, we'll learn how to create a simple class representing a Bezier curve and compute a
number of points along it.
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Getting ready

In this recipe, we will use the NumPy package imported as np, the Matplotlib pyplot module
imported as plt, and the comb routine from the Python Standard Library math module, imported
under the binom alias:

from math import comb as binom
import matplotlib.pyplot as plt

import numpy as np

How to do it...

Follow these steps to define a class that represents a Bezier curve that can be used to compute points
along the curve:

1. The first step is to set up the basic class. We need to provide the control points (nodes) and
some associated numbers to instance attributes:

class Bezier:
def init (self, *points):
self .points = points
self.nodes = n = len(points) - 1

self.degree = 1 = points[0] .size

2. Stillinsidethe init  method, we generate the coeflicients for the Bezier curve and store
them in a list on an instance attribute:

self.coeffs = [binom(n, i)*p.reshape (

(1, 1)) for i, p in enumerate (points)]

3. Next,wedefinea call method to make the class callable. We load the number of nodes
from the instance into a local variable for clarity:

def call (self, t):
n = self.nodes

4. Next, we reshape the input array so that it contains a single row:

t = t.reshape((1l, t.size))
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10.

Now, we generate a list of arrays of values using each of the coefficients in the coef £ s attribute
for the instance:

vals = [c @ (t**1i)*(1-t)**(n-i) for 1,

c 1in enumerate (self.coeffs)]

Finally, we sum all the arrays that were constructed in step 5 and return the resulting array:

return np.sum(vals, axis=0)

Now, we will test our class using an example. We'll define four control points for this example:

pl = np.array([0.0, 0.0])
p2 = np.array([0.0, 1.0])
p3 = np.array([1.0, 1.0])
p4 = np.array([1.0, 3.0])

Next, we set up a new figure for plotting, and plot the control points with a dashed connecting line:

fig, ax = plt.subplots/()
ax.plot([0.0, 0.0, 1.0, 1.0],
[0.0, 1.0, 1.0, 3.0], "*--k")
ax.set (xlabel="x", ylabel="y"
title="Bezier curve with 4 nodes, degree 3")

Then, we create a new instance of our Bezier class using the four points we defined in step 7:
b curve = Bezier(pl, p2, p3, p4)

We can now create an array of equally spaced points between 0 and 1 using 1inspace and
compute the points along the Bezier curve:

t = np.linspace(0, 1)

v = b _curve(t)
Finally, we plot this curve on top of the control points that we plotted earlier:

ax.plot(v[0,:], vI[1, :]1, "k")
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The Bezier curve that we've plotted can be seen in the following diagram. As you can see, the curve
starts at the first point (0, 0) and finishes at the final point (1, 3):

Bezier curve with 4 nodes, degree 3

3.0

2.51

2.0

> 1.5

1.0

0.5

0.0

0.0 0.2 04 0.6 0.8 1.0

Figure 8.10 — Bezier curve of degree 3 constructed using four nodes

The Bezier curve in Figure 8.10 is tangent to the vertical lines at the endpoints and smoothly connects
these points. Notice that we only have to store the four control points in order to reconstruct this
curve with arbitrary accuracy; this makes Bezier curves very efficient to store.

How it works...

A Bezier curve is described by a sequence of control points, from which we construct the curve
recursively. A Bezier curve with one point is a constant curve that stays at that point. A Bezier curve
with two control points is a line segment between those two points:

B(p1,p2;t) = (1 —t)py +tp2 (0<st<1)

When we add a third control point, we take the line segment between the corresponding points on
the Bezier curve of curves that are constructed with one less point. This means that we construct the
Bezier curve with three control points using the following formula:

B(p1, P2, p3;t) = (1 —t)B(p1, P2 t) + tB(p2, p3; t) 0<t<1
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This construction can be seen in the following diagram:

Construction of a quadratic Bezier curve
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Figure 8.11 — Construction of a quadratic Bezier curve using a recursive definition
(the two linear Bezier curves are shown by the dashed lines)

The construction continues in this manner to define the Bezier curve on any number of control points.

Fortunately, we don’t need to work with this recursive definition in practice because we can flatten the
formulae into a single formula for the curve, which is given by the following formula:

B(pl: pZI ey pn; t) =

g

n . .
(j)tf(l —omIp,  (0<t<1)
Jj=0

Here, the P; elements are the control points, t is a parameter, and each term involves the binomial coefficient:
(n) _ n!
j/ =t
Remember that the ¢ parameter is the quantity that is changing to generate the points of the curve.

We can isolate the terms in the previous sum that involve ¢t and those that do not. This defines the
coeflicients that we defined in step 2, each of which is given by the following code fragment:

binom(n, i)*p.reshape((1l, 1))

We reshape each of the points, p, in this step to make sure it is arranged as a column vector. This
means that each of the coefficients is a column vector (as a NumPy array) consisting of the control
points scaled by the binomial coefficients.
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Now, we need to specify how to evaluate the Bezier curve at various values of t. This is where we make
use of the high-performance array operations from the NumPy package. We reshaped our control
points as column vectors when forming our coeflicients. In step 4, we reshaped the input, £, values to
make a row vector. This means that we can use the matrix multiplication operator to multiply each
coeflicient by the corresponding (scalar) value, depending on the input, t. This is what happens in
step 5, inside the list comprehension. In the following line, we multiply the I X 1 array by the1 x N
array to obtain an [ X N array:

c @ (t**i)*(1-t)**(n-1)

We get one of these for each coefficient. We can then use the np . sum routine to sum each of these
[ X N arrays to get the values along the Bezier curve. In the example provided in this recipe, the top
row of the output array contains the x values of the curve and the bottom row contains the y values
of the curve. We have to be careful when specifying the axis=0 keyword argument for the sum
routine to make sure the sum takes over the list we created, and not the arrays that this list contains.

The class we defined is initialized using the control points for the Bezier curve, which are then used
to generate the coefficients. The actual computation of the curve values is done using NumPy, so this
implementation should have relatively good performance. Once a specific instance of this class has
been created, it functions very much like a function, as you might expect. However, no type-checking
is done here, so we can only call this function with a NumPy array as an argument.

There’s more...

Bezier curves are defined using an iterative construction, where the curve with n points is defined
using the straight line connecting the curves defined by the first and last n — 1 points. Keeping track
of the coeflicient of each of the control points using this construction will quickly lead you to the
equation we used to define the preceding curve. This construction also leads to interesting — and
useful — geometric properties of Bezier curves.

As we mentioned in the introduction to this recipe, Bezier curves appear in many applications that
involve vector graphics, such as fonts. They also appear in many common vector graphics software
packages. In these software packages, it is common to see quadratic Bezier curves, which are defined
by a collection of three points. However, you can also define a quadratic Bezier curve by supplying
the two endpoints, along with the gradient lines, at those points. This is more common in graphics
software packages. The resulting Bezier curve will leave each of the endpoints along the gradient lines
and connect the curve smoothly between these points.

The implementation we constructed here will have relatively good performance for small applications
but will not be sufficient for applications involving rendering curves with a large number of control
points at a large number of € values. For this, it is best to use a low-level package written in a compiled
language. For example, the bezier Python package uses a compiled Fortran backend for its
computations and provides a much richer interface than the class we defined here.



Further reading

Bezier curves can, of course, be extended to higher dimensions in a natural way. The result is a Bezier
surface, which makes them very useful general-purpose tools for high-quality, scalable graphics.

Further reading

o A description of some common algorithms from computation geometry can be found in the
following book: Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P,, 2007. Numerical
recipes: the art of scientific computing. 3rd ed. Cambridge: Cambridge University Press.

o For a more detailed account of some problems and techniques from computational geometry,
check out the following book: O’Rourke, J., 1994. Computational geometry in C. Cambridge:
Cambridge University Press.
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9
Finding Optimal Solutions

In this chapter, we'll address various methods for finding the best outcome in a given situation. This
is called optimization and usually involves either minimizing or maximizing an objective function.
An objective function is a function with one or more arguments that returns a single scalar value,
representing the cost or payoft for a given choice of parameters. The problems regarding minimizing
and maximizing functions are actually equivalent to one another, so we’ll only discuss minimizing
object functions in this chapter. Minimizing a function, f(x), is equivalent to maximizing the —f(x)
function. More details on this will be provided when we discuss the first recipe.

The algorithms available to us for minimizing a given function depend on the nature of the function.
For instance, a simple linear function containing one or more variables has different algorithms available
compared to a non-linear function with many variables. The minimization of linear functions falls
within the category of linear programming, which is a well-developed theory. Linear functions can
be solved with standard linear algebra techniques. For non-linear functions, we usually make use of
the gradient of a function in order to find the minimum points. We will discuss several methods for
minimizing various functions of different types.

Finding the minima and maxima of the functions of a single variable is especially simple and can
be done easily if the derivatives of the function are known. If not, then the method described in the
appropriate recipe will be applicable. The notes in the Minimizing a non-linear function recipe give
some extra details about this.

We'll also provide a very short introduction to game theory. Broadly speaking, this is a theory surrounding
decision-making and has wide-ranging implications in subjects such as economics. In particular, we'll
discuss how to represent simple two-player games as objects in Python, compute payoffs associated
with certain choices, and compute Nash equilibria for these games.

We will start by looking at how to minimize linear and non-linear functions containing one or more
variables. Then, we'll move on and look at gradient descent methods and curve fitting, using least
squares. We'll conclude this chapter by analyzing two-player games and Nash equilibria.
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In this chapter, we will cover the following recipes:

o Minimizing a simple linear function

o Minimizing a non-linear function

o Using gradient descent methods in optimization
o Using least squares to fit a curve to data

o Analyzing simple two-player games

« Computing Nash equilibria

Let’s get started!

Technical requirements

In this chapter, we will need the NumPy package, the SciPy package, and the Matplotlib package, as
usual. We will also need the Nashpy package for the final two recipes. These packages can be installed
using your favorite package manager, such as pip:

python3.10 -m pip install numpy scipy matplotlib nashpy

The code for this chapter can be found in the Chapter 09 folder of the GitHub repository
athttps://github.com/PacktPublishing/Applying-Math-with-Python-2nd-
Edition/tree/main/Chapter%20009.

Minimizing a simple linear function

The most basic type of problem we face in optimization is finding the parameters where a function
takes its minimum value. Usually, this problem is constrained by some bounds on the possible values
of the parameters, which increases the complexity of the problem. Obviously, the complexity of this
problem increases further if the function that we are minimizing is also complex. For this reason, we
must first consider linear functions, which are in the following form:

fX)=c-x=cyx; + x5 + 4 Cpxp

To solve this kind of problem, we need to convert the constraints into a form that can be used by a
computer. In this case, we usually convert them into a linear algebra problem (matrices and vectors).
Once this is done, we can use the tools from the linear algebra packages in NumPy and SciPy to find
the parameters we seek. Fortunately, since this kind of problem occur quite frequently, SciPy has
routines that handle this conversion and subsequent solving.


https://github.com/PacktPublishing/Applying-Math-with-Python-2nd-Edition/tree/main/Chapter%2009
https://github.com/PacktPublishing/Applying-Math-with-Python-2nd-Edition/tree/main/Chapter%2009

Minimizing a simple linear function

In this recipe, we'll solve the following constrained linear minimization problem using routines from
the SciPy opt imize module:

fX)=c-x=x5+5x;

This will be subject to the following conditions:
29 +x, <6
Xo+x1 =4
—3<x <14

2<x; <12
Let’s see how to use the SciPy opt imi ze routines to solve this linear programming problem.

Getting ready

For this recipe, we need to import the NumPy package under the alias np, the Matplotlib pyplot
module under the name plt, and the SciPy opt imize module. We also need to import the Axes3D
class frommpl toolkits.mplot3d to make 3D plotting available:

import numpy as np

from scipy import optimize

import matplotlib.pyplot as plt

from mpl toolkits.mplot3d import Axes3D

Let’s see how to use the routines from the opt imize module to minimize a constrained linear system.

How to do it...
Follow these steps to solve a constrained linear minimization problem using SciPy:
1.  Set up the system in a form that SciPy can recognize:

A = np.array (I
[2, 11, # 2*x0 + x1 <= 6
[-1, -1] # -x0 - x1 <= -4
1)

b = np.array([6, -41)

x0 bounds = (-3, 14) # -3 <= x0 <= 14

x1l bounds = (2, 12) # 2 <= x1 <= 12
c = np.array([1, 51])
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2. Next, we need to define a routine that evaluates the linear function at a value of x, which is a
vector (a NumPy array):

def func(x) :

return np.tensordot(c, x, axes=1)

3. Then, we create a new figure and add a set of 3d axes that we can plot the function on:

fig = plt.figure()
ax = fig.add subplot (projection="3d")
ax.set (xlabel="x0", ylabel="x1", zlabel="func")

ax.set title("Values in Feasible region")

4. Next, we create a grid of values covering the region from the problem and plot the value of the
function over this region:

X0 = np.linspace (*x0_ bounds)

X1 = np.linspace (*x1 bounds)

x0, x1 = np.meshgrid (X0, X1)

z = func([x0, x1])

ax.plot surface(x0, x1, z, cmap="gray",
vmax=100.0, alpha=0.3)

5. Now, we plot the line in the plane of the function values that corresponds to the critical line,
2*x0 + x1 == 6,and plot the values that fall within the range on top of our plot:

Y = (b[0] - A[0, 0]*X0) / A[O0, 1]
I = np.logical and(Y >= x1 bounds[0], Y <= x1 bounds[1])
ax.plot (X0[I], Y[I], func([XO0[I], Y[I]]),

"k", lw=1.5, alpha=0.6)

6. We repeat this plotting step for the second critical line, x0 + x1 == -4:

Y = (b[1] - A[1, 0]*X0) / A[1, 1]
I = np.logical and(Y >= x1 bounds[0], Y <= x1 bounds([1])
ax.plot (X0[I], Y[I], func([XO0[I], YI[I]]),

"k", 1lw=1.5, alpha=0.6)

7. Next, we shade the region that lies within the two critical lines, which corresponds to the feasible
region for the minimization problem:

B = np.tensordot (A, np.array([x0, x1]), axes=1)
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<= b[0], B[1l, ...] <= b[1])
z[II],

IT = np.logical and (B[O, ...]
ax.plot trisurf (x0[II], x1[II],
color="k", alpha=0.5)

The plot of the function values over the feasible region can be seen in the following diagram:

Values in feasible region
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il func
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x0 T10.05 5 2

Figure 9.1 - The values of the linear function with the feasible region highlighted

As we can see, the minimum value that lies within this shaded region occurs at the intersection

of the two critical lines.
Next, we use Linprog to solve the constrained minimization problem with the bounds we
created in step 1. We print the resulting object in the terminal:

res = optimize.linprog(c, A ub=A, b ub=b,
bounds= (x0_ bounds, x1 bounds))
print (res)
9. Finally, we plot the minimum function value on top of the feasible region:

ax.plot ([res.x[0]], [res.x[1]], I[res.fun], "kx")
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The updated plot can be seen in the following diagram:

Values in feasible region
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Figure 9.2 — The minimum value plotted on the feasible region

Here, we can see that the 1inprog routine has indeed found that the minimum is at the intersection

of the two critical lines.

How it works...

Constrained linear minimization problems are common in economic situations, where you try to
minimize costs while maintaining other aspects of the parameters. In fact, a lot of the terminology from
optimization theory mirrors this fact. A very simple algorithm for solving these kinds of problems is
called the simplex method, which uses a sequence of array operations to find the minimal solution.
Geometrically, these operations represent changing to different vertices of a simplex (which we won't
define here), and it is this that gives the algorithm its name.

Before we continue, we'll provide a brief outline of the process used by the simplex method to solve
a constrained linear optimization problem. The problem, as presented to us, is not a matrix equation
problem but a matrix inequality problem. We can remedy this problem by introducing slack variables,
which turn an inequality into an equality. For example, the first constraint inequality can be rewritten
as follows by introducing the slack variable, $;:

2x0+x1+51=6
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This satisfies the desired inequality, provided that s, is not negative. The second constraint inequality
is greater than or equal to type inequality that we must first change so that it’s of the less than or equal
to type. We do this by multiplying all terms by -1. This gives us the second row of the A matrix that
we defined in the recipe. After introducing a second slack variable,S;, we get the second equation:

—xO—X1+52=—4

From this, we can construct a matrix whose columns contain the coefficients of the two parameter
variables, X1 and X, and the two slack variables, $; and S,. The rows of this matrix represent the two
bounding equations and the objective function. This system of equations can now be solved, using
elementary row operations on this matrix, to obtain the values of x; and X,, which minimize the
objective function. Since solving matrix equations is easy and fast, this means that we can minimize
linear functions quickly and efficiently.

Fortunately, we don’t need to remember how to reduce our system of inequalities into a system of
linear equations, since routines such as 1 inprog do this for us. We can simply provide the bounding
inequalities as a matrix and vector pair, consisting of the coefficients of each, and a separate vector
that defines the objective function. The 1inprog routine takes care of formulating and then solving
the minimization problem.

In practice, the simplex method is not the algorithm used by the 1inprog routine to minimize the
function. Instead, 1 inprog uses an interior point algorithm, which is more efficient. (The method can
actually be set to simplex or revised-simplex by providing the method keyword argument
with the appropriate method name. In the printed resulting output, we can see that it only took five
iterations to reach the solution.) The resulting object that is returned by this routine contains the
parameter values at which the minimum occurs, stored in the x attribute, the value of the function
at this minimum value stored in the fun attribute, and various other pieces of information about
the solving process. If the method had failed, then the status attribute would have contained a
numerical code that described why the method failed.

In step 2 of this recipe, we created a function that represents the objective function for this problem.
This function takes a single array as input, which contains the parameter space values at which the
function should be evaluated. Here, we used the tensordot routine (with axes=1) from NumPy to
evaluate the dot product of the coefficient vector, ¢, with each input, x. We have to be quite careful here,
since the values that we pass into the function will be a 2 x 50 x 50 array in a later step. The ordinary
matrix multiplication (np . dot) would not give the 50 x 50 array output that we desire in this case.

In step 5 and step 6, we computed the points on the critical lines as those points with the following equation:
X1 = (bo - 1‘10,0950)/1‘10,15‘nd X1 = (b1 - A1,0X0)/A1,1

We then computed the corresponding z values so that we could plot the lines that lie on the plane
defined by the objective function. We also need to trim the values so that we only include those that
lie in the range specified in the problem. This is done by constructing the indexing array labeled I in
the code, consisting of the points that lie within the boundary values.
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There’s more...

This recipe covered the constrained minimization problem and how to solve it using SciPy. However, the
same method can be used to solve the constrained maximization problem. This is because maximization
and minimization are dual to one another, in the sense that maximizing a function, f (x), is the same
as minimizing the —f (x) function and then taking the negative of this value. In fact, we used this fact
in this recipe to change the second constraining inequality from > to <.

In this recipe, we solved a problem with only two parameter variables, but the same method will work
(except for the plotting steps) for a problem involving more than two such variables. We just need to
add more rows and columns to each of the arrays to account for this increased number of variables
- this includes the tuple of bounds supplied to the routine. The routine can also be used with sparse
matrices, where appropriate, for extra efficiency when dealing with very large amounts of variables.

The 1inprog routine gets its name from linear programming, which is used to describe problems of
this type - finding values of X that satisfy some matrix inequalities subject to other conditions. Since
there is a very close connection between the theory of matrices and linear algebra, there are many
very fast and eflicient techniques available for linear programming problems that are not available
in a non-linear context.

Minimizing a non-linear function

In the previous recipe, we saw how to minimize a very simple linear function. Unfortunately, most
functions are not linear and usually don’t have nice properties that we would like. For these non-linear
functions, we cannot use the fast algorithms that have been developed for linear problems, so we need
to devise new methods that can be used in these more general cases. The algorithm that we will use
here is called the Nelder-Mead algorithm, which is a robust and general-purpose method that’s used
to find the minimum value of a function and does not rely on its gradient.

In this recipe, we'll learn how to use the Nelder-Mead simplex method to minimize a non-linear
function containing two variables.

Getting ready

In this recipe, we will use the NumPy package imported as np, the Matplotlib pyplot module
imported as plt, the Axes3D class imported from mpl toolkits.mplot3d to enable 3D
plotting, and the SciPy opt imize module:

import numpy as np
import matplotlib.pyplot as plt
from mpl toolkits.mplot3d import Axes3D

from scipy import optimize

Let’s see how to use these tools to solve a non-linear optimization problem.
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How to do it...

The following steps show you how to use the Nelder-Mead simplex method to find the minimum of
a general non-linear objective function:

1. Define the objective function that we will minimize:

def func (x):
return ((x[0] - 0.5)**2 + (
x[1] + 0.5)**2)*np.cos(0.5*x[0] *x[1])

2. Next, create a grid of values that we can plot our objective function on:

np.linspace (-1, 1)

np.linspace (-2, 2)

X, y = np.meshgrid(x r, y r)
3. Now, we evaluate the function on this grid of points:
z = func([x, yl)
4. Next, we create a new figure with a 3d axes object and set the axis labels and the title:

fig = plt.figure(tight layout=True)

ax = fig.add subplot (projection="3d")

ax.tick params(axis="both", which="major", labelsize=9)
ax.set (xlabel="x", ylabel="y", zlabel="z")

ax.set title("Objective function")

5. Now, we can plot the objective function as a surface on the axes we just created:

ax.plot surface(x, y, z, cmap="gray",

vmax=8.0, alpha=0.5)

6. We choose an initial point that our minimization routine will start its iteration at and plot this
on the surface:

x0 = np.array([-0.5, 1.0])
ax.plot ([x0[0]], [x0[1]], func(x0), "k*")
The plot of the objective function’s surface, along with the initial point, can be seen in the

following diagram. Here, we can see that the minimum value appears to occur at around 0.5
on the x axis and -0.5 on the y axis:
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7.

Objective function

Figure 9.3 — A non-linear objective function with a starting point
Now, we use the minimize routine from the opt imize package to find the minimum value

and print the result object that it produces:

result = optimize.minimize (
func, x0, tol=1le-6, method= "Nelder-Mead")
print (result)

Finally, we plot the minimum value found by the minimize routine on top of the objective
function surface:

ax.plot ([result.x[0]], [result.x[1]], [result.fun], "kx")

The updated plot of the objective function, including the minimum point found by the
minimize routine, can be seen in the following diagram:
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Objective function

Figure 9.4 — An objective function with a starting point and a minimum point

This shows that the method has indeed found the minimum point (bottom right) within the region
starting from the initial point (top left).

How it works...

The Nelder-Mead simplex method - not to be confused with the simplex method for linear optimization
problems - is a simple algorithm for finding the minimum values of a non-linear function and works
even when the objective function does not have a known derivative. (This is not the case for the function
in this recipe; the only gain from using a gradient-based method is the speed of convergence.) The
method works by comparing the values of the objective function at the vertices of a simplex, which is
a triangle in a two-dimensional space. The vertex with the largest function value is reflected through
the opposite edge and performs an appropriate expansion or contraction that, in effect, moves the
simplex downbhill.

The minimize routine from the SciPy opt imize module is an entry point for many non-linear
function minimization algorithms. In this recipe, we used the Nelder-Mead simplex algorithm, but
there are also a number of other algorithms available. Many of these algorithms require knowledge of
the gradient of the function, which might be computed automatically by the algorithm. The algorithm
can be used by providing the appropriate name to the method keyword argument.
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The result object that’s returned by the minimize routine contains lots of information about the
solution that has been found - or not found, if an error occurred - by the solver. In particular, the
desired parameters that the calculated minimum occurs at are stored in the x attribute of the result,
while the value of the function is stored in the fun attribute.

The minimize routine requires the function and a starting value of x0. In this recipe, we also
provided a tolerance value that the minimum should be computed at using the tol keyword argument.
Changing this value will modify the accuracy of the computed solution.

There’s more...

The Nelder-Mead algorithm is an example of a gradient-free minimization algorithm, since it does not
require any information about the gradient (derivative) of the objective function. There are several
such algorithms, all of which typically involve evaluating the objective function at several points, and
then using this information to move toward the minimum value. In general, gradient-free methods
tend to converge more slowly than gradient-descent models. However, they can be used for almost
any objective function, even where it is not easy to compute the gradient either exactly or by means
of approximation.

Optimizing the functions of a single variable is generally easier than the multidimensional case and has
its own special function in the SciPy opt imize library. Theminimize scalar routine performs
minimization for functions of a single variable and should be used instead of minimize in this case.

Using gradient descent methods in optimization

In the previous recipe, we used the Nelder-Mead simplex algorithm to minimize a non-linear function
containing two variables. This is a fairly robust method that works even if very little is known about
the objective function. However, in many situations, we do know more about the objective function,
and this fact allows us to devise faster and more efficient algorithms for minimizing the function. We
can do this by making use of properties such as the gradient of the function.

The gradient of a function of more than one variable describes the rate of change of the function in
each of its component directions. This is a vector of the partial derivatives of the function with respect
to each of the variables. From this gradient vector, we can deduce the direction in which the function
is increasing most rapidly and, conversely, the direction in which the function is decreasing most
rapidly from any given position. This gives us the basis for gradient descent methods for minimizing
a function. The algorithm is very simple: given a starting position,X, we compute the gradient at X
and the corresponding direction in which the gradient is most rapidly decreasing, and then make
a small step in that direction. After a few iterations, this will move from the starting position to the
minimum of the function.

In this recipe, we will learn how to implement an algorithm based on the steepest descent algorithm
to minimize an objective function within a bounded region.
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Getting ready

For this recipe, we will need the NumPy package imported as np, the Matplotlib pyplot module
imported as plt, and the Axes3D object imported frommpl toolkits.mplot3d:

import numpy as np
import matplotlib.pyplot as plt
from mpl toolkits.mplot3d import Axes3D

Let’s implement a simple gradient descent algorithm and use it to solve the minimization problem
described in the previous recipe to see how it works.

How to do it...

In the following steps, we will implement a simple gradient descent method to minimize an objective
function with a known gradient function (we’re actually going to use a generator function so that we
can see the method as it works):

1.  We will start by defining a descend routine, which will carry out our algorithm. The function
declaration is as follows:

def descend(func,x0,grad,bounds,tol=1e-8,max iter=100) :

2. Next, we need to implement this routine. We start by defining the variables that will hold the
iterate values while the method is running:

xn = x0
previous = np.inf

grad_xn = grad(x0)

3. We then start our loop, which will run the iterations. We immediately check whether we are
making meaningful progress before continuing:

for i in range (max iter):
if np.linalg.norm(xn - previous) < tol:
break

4. The direction is minus the gradient vector. We compute this once and store it in the
direction variable:

direction = -grad xn
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5.  Now, we update the previous and current values, xnm1 and xn respectively, ready for the next
iteration. This concludes the code for the descend routine:

previous = xn

xn = xn + 0.2*direction

6. Now, we can compute the gradient at the current value and yield all the appropriate values:

grad xn = grad(xn)

yield i, xn, func(xn), grad xn
This concludes the definition of the descend routine.

7. We can now define a sample objective function to minimize:

def func(x) :
return ((x[0] - 0.5)**2 + (
x[1] + 0.5)**2)*np.cos(0.5*x[0]*x[1])

8. Next, we create a grid that we will evaluate and then plot the objective function on:

X r = np.linspace(-1, 1)
y r = np.linspace (-2, 2)

x, y = np.meshgrid(x r, y r)

9. Once the grid has been created, we can evaluate our function and store the result in the z variable:
z = func([x, vyl)

10. Next, we create a three-dimensional surface plot of the objective function:

surf fig = plt.figure(tight layout=True)

surf ax = surf fig.add subplot (projection="3d")

surf ax.tick params(axis="both", which="major",
labelsize=9)

surf ax.set (xlabel="x", ylabel="y", zlabel="z")

surf ax.set title("Objective function")

surf ax.plot surface(x, y, z, cmap="gray",

vmax=8.0, alpha=0.5)

11. Before we can start the minimization process, we need to define an initial point, x0. We plot
this point on the objective function plot we created in the previous step:

x0 = np.array([-0.8, 1.3])
surf ax.plot ([x0[0]], [x0[1]], func(x0), "k*")
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The surface plot of the objective function, along with the initial value, can be seen in the following diagram:

Objective function

Figure 9.5 - The surface of the objective function with the initial position

12. Our descend routine requires a function that evaluates the gradient of the objective function,
so we will define one:

def grad(x) :
cl = x[0]**2 - x[0] + x[1]1**2 + x[1] + 0.5
cos t = np.cos(0.5*x[0]*x[1])
sin t = np.sin(0.5*x[0] *x[1])
return np.array ([
(2*x[0]-1) *cos_t - 0.5*x[1]*cl*sin t,
(2*x[1]+1) *cos_ t - 0.5*x[0] *cl*sin t
1)
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13. We will plot the iterations on a contour plot, so we set this up as follows:

14.

15.

16.

cont fig, cont ax = plt.subplots()

cont ax.set (xlabel="x", ylabel="y")

cont ax.set title("Contour plot with iterates")
cont_ax.contour(x, y, z, levels=25, cmap="gray",

vmax=8.0, opacity=0.6)

Now, we create a variable that holds the bounds in the x and y directions as a tuple of tuples.
These are the same bounds from the 1inspace calls in step 10:

bounds = ((-1, 1), (-2, 2))

We can now use a for loop to drive the descend generator to produce each of the iterations
and add the steps to the contour plot:

xnml = x0

for i, xn, fxn, grad xn in descend(func, x0, grad,
bounds) :

cont ax.plot ([xnml[0], xn[0]], [xnml[1], xn[1]],
nk*__n)

xnml, grad xnml = xn, grad xn
Once the loop is complete, we print the final values to the Terminal:

print (f"iterations={i}")
print (f"min val at {xn}")

print (f"min func value = {fxn}")

The output of the preceding print statements is as follows:

iterations=37
min val at [ 0.49999999 -0.49999999]
min func value = 2.1287163880894953e-16

Here, we can see that our routine used 37 iterations to find a minimum at approximately
(0.5, -0.5), which is correct.

The contour plot with its iterations plotted can be seen in the following diagram:
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Contour plot with iterates

.0 /r T T T T T T
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
X

Figure 9.6 — A contour plot of the objective function with the
gradient descent iterating to a minimum value

Here, we can see that the direction of each iteration — shown by the dashed lines - is in the direction
where the objective function is decreasing most rapidly. The final iteration lies at the center of the
bowl of the objective function, which is where the minimum occurs.

How it works...

The heart of this recipe is the descend routine. The process that’s defined in this routine is a very
simple implementation of the gradient descent method. Computing the gradient at a given point is
handled by the grad argument, which is then used to deduce the direction of travel for the iteration
by taking direction = -grad. We multiply this direction by a fixed scale factor (sometimes
called the learning rate) with a value of 0.2 to obtain the scaled step, and then take this step by adding
0.2*direction to the current position.

The solution in the recipe took 37 iterations to converge, which is a mild improvement on the
Nelder-Mead simplex algorithm from the Minimizing a non-linear function recipe, which took 58
iterations. (This is not a perfect comparison, since we changed the starting position for this recipe.)
This performance is heavily dependent on the step size that we choose. In this case, we fixed the
maximum step size to be 0.2 times the size of the direction vector. This keeps the algorithm simple,
but it is not particularly efficient.
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In this recipe, we chose to implement the algorithm as a generator function so that we could see the
output of each step and plot this on our contour plot as we stepped through the iteration. In practice,
we probably wouldn’t want to do this and instead return the calculated minimum once the iterations
have finished. To do this, we can simply remove the yield statement and replace it with return
xn at the very end of the function, at the main function’s indentation (that is, not inside the loop). If
you want to guard against non-convergence, you can use the else feature of the for loop to catch
cases where the loop finishes because it has reached the end of its iterator without hitting the break
keyword. This e1se block could raise an exception to indicate that the algorithm has failed to stabilize
to a solution. The condition we used to end the iteration in this recipe does not guarantee that the
method has reached a minimum, but this will usually be the case.

There’s more...

In practice, you would not usually implement the gradient descent algorithm for yourself and instead
use a general-purpose routine from a library such as the SciPy opt imi ze module. We can use the
same minimize routine that we used in the previous recipe to perform minimization with a variety
of different algorithms, including several gradient descent algorithms. These implementations are likely
to have much higher performance and be more robust than a custom implementation such as this.

The gradient descent method we used in this recipe is a very naive implementation and can be greatly
improved by allowing the routine to choose the step size at each step. (Methods that are allowed to choose
their own step size are sometimes called adaptive methods.) The difficult part of this improvement is
choosing the size of the step to take in this direction. For this, we need to consider the function of a
single variable, which is given by the following equation:

g(t) = f(x, + tdy)

Here, X;, represents the current point, d,, represents the current direction, and t is a parameter.
For simplicity, we can use a minimization routine called minimize scalar for scalar-valued
functions from the SciPy opt imize module. Unfortunately, it is not quite as simple as passing in
this auxiliary function and finding the minimum value. We have to bound the possible value of t
so that the computed minimizing point, x,, + td,,, lies within the region that we are interested in.

To understand how we bound the values of t, we must first look at the construction geometrically. The
auxiliary function that we introduce evaluates the objective function along a single line in the given
direction. We can picture this as taking a single cross section through the surface that passes through
the current X;, point in the d,, direction. The next step of the algorithm is finding the step size, t,
that minimizes the values of the objective function along this line - this is a scalar function, which is
much easier to minimize. The bounds should then be the range of t values, during which this line lies
within the rectangle defined by the x and y boundary values. We determine the four values at which
this line crosses those x and y boundary lines, two of which will be negative and two of which will
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be positive. (This is because the current point must lie within the rectangle.) We take the minimum
of the two positive values and the maximum of the two negative values and pass these bounds to the
scalar minimization routine. This is achieved using the following code:

alphas = np.array ([
(bounds [0] [0] - xn[0]) / direction[O0],
# x lower
(bounds [1] [0] - xn[1]) / direction[1],

# y lower

(bounds [0] [1] - xn[0]) / direction[O0],
# x upper

(bounds [1] [1] - xn[1]) / direction[1]
# y upper

1)

alpha max = alphas[alphas >= 0] .min()

alpha min = alphas[alphas < 0] .max()

result = minimize scalar(lambda t:
func (xn + t*direction),
method="bounded",
bounds=(alpha min, alpha max))

amount = result.x
Once the step size has been chosen, the only remaining step is to update the current xn value, as follows:
Xn = xn + amount * direction

Using this adaptive step size increases the complexity of the routine, but the performance is massively
improved. Using this revised routine, the method converged in just three iterations, which is far
fewer than the number of iterations used by the naive code in this recipe (37 iterations) or by the
Nelder-Mead simplex algorithm in the previous recipe (58 iterations). This reduction in the number
of iterations is exactly what we expected by providing the method with more information in the form
of the gradient function.

We created a function that returned the gradient of the function at a given point. We computed this
gradient by hand before we started, which will not always be easy or even possible. Instead, it is much
more common to replace the analytic gradient used here with a numerically computed gradient that’s
been estimated using finite differences or a similar algorithm. This has an impact on performance and
accuracy, as all approximations do, but these concerns are usually minor given the improvement in
the speed of convergence offered by gradient descent methods.
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Gradient descent-type algorithms are particularly popular in machine learning applications. Most of
the popular Python machine learning libraries - including PyTorch, TensorFlow, and Theano - offer
utilities for automatically computing gradients numerically for data arrays. This allows gradient descent
methods to be used in the background to improve performance.

A popular variation of the gradient descent method is stochastic gradient descent, where the gradient
is estimated by sampling randomly rather than using the whole set of data. This can dramatically reduce
the computational burden of the method - at the cost of slower convergence — especially for high-
dimensional problems such as those that are common in machine learning applications. Stochastic
gradient descent methods are often combined with backpropagation to form the basis for training
artificial neural networks in machine learning applications.

There are several extensions of the basic stochastic gradient descent algorithm. For example, the
momentum algorithm incorporates the previous increment into the calculation of the next increment.
Another example is the adaptive gradient algorithm, which incorporates per-parameter learning rates
to improve the rate of convergence for problems that involve a large number of sparse parameters.

Using least squares to fit a curve to data

Least squares is a powerful technique for finding a function from a relatively small family of potential
functions that best describe a particular set of data. This technique is especially common in statistics.
For example, least squares is used in linear regression problems - here, the family of potential functions
is the collection of all linear functions. Usually, the family of functions that we try to fit has relatively
few parameters that can be adjusted to solve the problem.

The idea of least squares is relatively simple. For each data point, we compute the square of the residual
- the difference between the value of the point and the expected value given a function - and try to
make the sum of these squared residuals as small as possible (hence, least squares).

In this recipe, we'll learn how to use least squares to fit a curve to a sample set of data.

Getting ready

For this recipe, we will need the NumPy package imported, as usual, as np, and the Matplotlib pyplot
module imported as plt:

import numpy as np

import matplotlib.pyplot as plt
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We will also need an instance of the default random number generator from the NumPy random
module imported, as follows:

from numpy.random import default rng
rng = default rng(12345)

Finally, we need the curve_fit routine from the SciPy optimize module:
from scipy.optimize import curve fit

Let’s see how to use this routine to fit a non-linear curve to some data.

How to do it...
The following steps show you how to use the curve_ fit routine to fit a curve to a set of data:
1. The first step is to create the sample data:

SIZE = 100
x data = rng.uniform(-3.0, 3.0, size=SIZE)
noise = rng.normal (0.0, 0.8, size=SIZE)

y data = 2.0*x data**2 - 4*x data + noise

2. Next, we produce a scatter plot of the data to see whether we can identify the underlying trend
in the data:

fig, ax = plt.subplots()

ax.scatter(x data, y data)

ax.set (xlabel="x", ylabel="y"
title="Scatter plot of sample data")

The scatter plot that we have produced can be seen in the following diagram. Here, we can see that the
data certainly doesn’t follow a linear trend (straight line). Since we know the trend is a polynomial,
our next guess would be a quadratic trend. This is what we’re using here:
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Scatter plot of sample data
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Figure 9.7 — Scatter plot of the sample data — we can see that it does not follow a linear trend

3. Next, we create a function that represents the model that we wish to fit:

def func(x, a, b, c):

return a*x**2 + b*x + C

4. Now, we can use the curve fit routine to fit the model function to the sample data:

coeffs, = curve fit(func, x data, y data)
print (coeffs)

# [ 1.99611157 -3.97522213 0.04546998]

5.  Finally, we plot the best fit curve on top of the scatter plot to evaluate how well the fitted curve
describes the data:

X = np.linspace(-3.0, 3.0, SIZE)
y = func(x, coeffs[0], coeffs[l], coeffs[2])
ax.plot(x, y, "k--")

The updated scatter plot can be seen in the following diagram:



Using least squares to fit a curve to data 297

Scatter plot of sample data
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Figure 9.8 — A scatter plot with the curve of the best fit found using superimposed least squares

Here, we can see that the curve we have found fits the data reasonably well. The coefficients are not
exactly equal to the true model - this is the effect of the added noise.

How it works...

The curve fit routine performs least-squares fitting to fit the model’s curve to the sample data.
In practice, this amounts to minimizing the following objective function:

99
B(a,b,6) = ) (i = ax? —bx;—c)’
i=0

Here, the pairs (X;,y;) are the points from the sample data. In this case, we are optimizing over a
three-dimensional parameter space, with one dimension for each of the parameters. The routine
returns the estimated coeflicients — the point in the parameter space at which the objective function
is minimized - and a second variable that contains estimates for the covariance matrix for the fit. We
ignored this in this recipe.

The estimated covariance matrix that’s returned from the curve fit routine can be used to give
a confidence interval for the estimated parameters. This is done by taking the square root of the
diagonal elements divided by the sample size (100 in this recipe). This gives the standard error for
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the estimate that, when multiplied by the appropriate values corresponding to the confidence, gives
us the size of the confidence interval. (We discussed confidence intervals in Chapter 6, Working with
Data and Statistics.)

You might have noticed that the parameters estimated by the curve fit routine are close, but not
exactly equal, to the parameters that we used to define the sample data in step 1. The fact that these
are not exactly equal is due to the normally distributed noise that we added to the data. In this recipe,
we knew that the underlying structure of the data was quadratic - that is, a degree 2 polynomial —
and not some other, more esoteric, function. In practice, we are unlikely to know so much about the
underlying structure of the data, which is the reason we added noise to the sample.

There’s more...

There is another routine in the SciPy opt imize module for performing least-squares fitting called
least squares. This routine has a slightly less intuitive signature but does return an object
containing more information about the optimization process. However, the way this routine is set up
is perhaps more similar to the way that we constructed the underlying mathematical problem in the
How it works... section. To use this routine, we define the objective function as follows:

def func(params, x, Vy):
return y - (

params [0] *x**2 + params[1l]*x + params[2])

We pass this function along with a starting estimate in the parameter space, x0, suchas (1, 0, 0).
The additional parameters for the objective function, func, can be passed using the args keyword
argument — for example, we could use args= (x_data, y_data). These arguments are passed
into the x and y arguments of the objective function. To summarize, we could have estimated the
parameters using the following call to least squares:

results = least squares(func, [1, 0, 0], args=(x data, y data))

The results object that’s returned from the least squares routine is actually the same as the
one returned by the other optimization routines described in this chapter. It contains details such
as the number of iterations used, whether the process was successful, detailed error messages, the
parameter values, and the value of the objective function at the minimum value.

Analyzing simple two-player games

Game theory is a branch of mathematics concerned with the analysis of decision-making and strategy.
It has applications in economics, biology, and behavioral science. Many seemingly complex situations
can be reduced to a relatively simple mathematical game that can be analyzed in a systematic way to
find optimal solutions.
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A classic problem in game theory is the prisoner’s dilemma, which, in its original form, is as follows:
two co-conspirators are caught and must decide whether to remain quiet or to testify against the other.
If both remain quiet, they both serve a 1-year sentence; if one testifies but the other does not, the
testifier is released and the other serves a 3-year sentence; and if both testify against one another, they
both serve a 2-year sentence. What should each conspirator do? It turns out that the best choice each
conspirator can make, given any reasonable distrust of the other, is to testify. Adopting this strategy,
they will either serve no sentence or a 2-year sentence maximum.

Since this book is about Python, we will use a variation of this classic problem to illustrate just how
universal the idea of this problem is. Consider the following problem: you and your colleague have
to write some code for a client. You think that you could write the code faster in Python, but your
colleague thinks that they could write it faster in C. The question is, which language should you
choose for the project?

You think that you could write the Python code four times faster than in C, so you write C with speed
1 and Python with speed 4. Your colleague says that they can write C slightly faster than Python, so
they write C with speed 3 and Python with speed 2. If you both agree on a language, then you write the
code at the speed you predicted, but if you disagree, then the productivity of the faster programmer
is reduced by 1. We can summarize this as follows:

Colleague/You | C Python
C 3/1 3/2
Python 2/1 2/4

Figure 9.9 — A table of the predicted work speed in various configurations

In this recipe, we will learn how to construct an object in Python to represent this simple two-player
game, and then perform some elementary analysis regarding the outcomes of this game.

Getting ready

For this recipe, we will need the NumPy package imported as np, and the Nashpy package imported
asnash:

import numpy as np

import nashpy as nash

Let’s see how to use the nashpy package to analyze a simple two-player game.
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How to do it...

The following steps show you how to create and perform some simple analysis of a two-player game
using Nashpy:

1. First, we need to create matrices that hold the payoft information for each player (you and
your colleague, in this example):

you = np.array([[1, 3], [1, 4]1])
colleague = np.array([[3, 2], [2, 2]1])

2. Next, we create a Game object that holds the game represented by these payoff matrices:

dilemma = nash.Game (you, colleague)

3. We compute the utility for the given choices using index notation:

print (dilemma[[1, 0], [1, 011) # [1 3]
print (dilemma[[1, 0], [0, 111) # [3 2]
print (dilemma[[0, 11, [1, 011) # [1 2]
print (dilemma[[0, 11, [0, 111) # [4 2]

4. We can also compute the expected utilities based on the probabilities of making a specific choice:

print (dilemma [[0.1, 0.9], [0.5, 0.5]]1) # [2.45 2.05]

These expected utilities represent what wed expect (on average) to see if we repeated the game numerous
times with the specified probabilities.

How it works...

In this recipe, we built a Python object that represents a very simple two-player strategic game. The
idea here is that there are two players who have decisions to make, and each combination of both
players’ choices gives a specific payoft value. What were aiming to do here is find the best choice that
each player can make. The players are assumed to make a single move simultaneously, in the sense that
neither is aware of the other’s choice. Each player has a strategy that determines the choice they make.

In step 1, we create two matrices — one for each player - that are assigned to each combination of
choices for the payoft value. These two matrices are wrapped by the Game class from Nashpy, which
provides a convenient and intuitive (from a game-theoretic point of view) interface for working with
games. We can quickly calculate the utility of a given combination of choices by passing in the choices
using index notation.
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We can also calculate expected utilities based on a strategy where choices are chosen at random according
to some probability distribution. The syntax is the same as for the deterministic case described previously,
except we provide a vector of probabilities for each choice. We compute the expected utilities based
on the probability that you choose Python 90% of the time, while your colleague chooses Python 50%
of the time. The expected speeds are 2.45 and 2.05 for you and your colleague respectively.

There’s more...

There is an alternative to computational game theory in Python. The Gambit project is a collection of
tools used for computation in game theory that has a Python interface (http://www.gambit -
project.org/). This is a mature project built around C libraries and offers more performance
than Nashpy.

Computing Nash equilibria

A Nash equilibrium is a two-player strategic game — similar to the one we saw in the Analyzing simple
two-player games recipe — that represents a steady state in which every player sees the best possible
outcome. However, this doesn’t mean that the outcome linked to a Nash equilibrium is the best overall.
Nash equilibria are more subtle than this. An informal definition of a Nash equilibrium is as follows:
an action profile in which no individual player can improve their outcome, assuming that all other
players adhere to the profile.

We will explore the notion of a Nash equilibrium with the classic game of rock-paper-scissors. The
rules are as follows. Each player can choose one of the options: rock, paper, or scissors. Rock beats
scissors, but loses to paper; paper beats rock, but loses to scissors; scissors beats paper, but loses to
rock. Any game in which both players make the same choice is a draw. Numerically, we represent a
win by +1, aloss by -1, and a draw by 0. From this, we can construct a two-player game and compute
Nash equilibria for this game.

In this recipe, we will compute Nash equilibria for the classic game of rock-paper-scissors.

Getting ready

For this recipe, we will need the NumPy package imported as np, and the Nashpy package imported
asnash:

import numpy as np

import nashpy as nash

Let’s see how to use the nashpy package to compute Nash equilibria for a two-player strategy game.
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How to do it...
The following steps show you how to compute Nash equilibria for a simple two-player game:
1. First, we need to create a payoff matrix for each player. We will start with the first player:

rps pl = np.array ([
[ 0, -1, 1], # rock payoff
[ 1, 0, -1], # paper payoff
[-1, 1, 0] # scissors payoff
1)
2. The payoft matrix for the second player is the transpose of rps_p1:
rps_p2 = rps_pl.transpose ()
3. Next, we create the Game object to represent the game:
rock paper scissors = nash.Game (rps pl, rps_p2)
4. 'We compute the Nash equilibria for the game using the support enumeration algorithm:

equilibria = rock paper scissors.support enumeration/()

5.  We iterate over the equilibria and print the profile for each player:

for pl, p2 in equilibria:
print ("Player 1", pl)
print ("Player 2", p2)

The output of these print statements is as follows:

Player 1 [0.33333333 0.33333333 0.33333333]
Player 2 [0.33333333 0.33333333 0.33333333]

How it works...

Nash equilibria are extremely important in game theory because they allow us to analyze the outcomes
of strategic games and identify advantageous positions. They were first described by John F. Nash
in 1950 and have played a pivotal role in modern game theory. A two-player game may have many
Nash equilibria, but any finite two-player game must have at least one. The problem is finding all the
possible Nash equilibria for a given game.

In this recipe, we used the support enumeration, which effectively enumerates all possible strategies
and filters down to those that are Nash equilibria. In this recipe, the support enumeration algorithm
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found just one Nash equilibrium, which is a mixed strategy. This means that the only strategy for which
there is no improvement involves picking one of the choices at random, each with a 1/3 probability.
This is hardly a surprise to anyone who has played rock-paper-scissors, since for any choice we make,
our opponent has a 1 in 3 chance of choosing (at random) the move that beats our choice. Equally, we
have a 1 in 3 chance of drawing or winning the game, so our expected value over all these possibilities
is as follows:

1 1 1 1

3><0+3>< +3><( 1)=0

Without knowing exactly which of the choices our opponent will choose, there is no way to improve
this expected outcome.

There’s more...

The Nashpy package also provides other algorithms for computing Nash equilibria. Specifically,
the vertex_enumeration method, when used on a Game object, uses the vertex enumeration
algorithm, while the lemke howson_enumeration method uses the Lemke-Howson algorithm.
These alternative algorithms have different characteristics and may be more efficient for some problems.

See also

The documentation for the Nashpy package contains more detailed information about the algorithms
and game theory involved. This includes a number of references to texts on game theory. This
documentation can be found at ht tps: //nashpy.readthedocs.io/en/latest/.

Further reading

As usual, the Numerical Recipes book is a good source of numerical algorithms. Chapter 10, Minimization
or Maximization of Functions, deals with the maximization and minimization of functions:

o Press, WH., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P,, 2017. Numerical recipes: the
art of scientific computing. 3rd ed. Cambridge: Cambridge University Press.

More specific information on optimization can be found in the following books:

o Boyd, S.P. and Vandenberghe, L., 2018. Convex optimization. Cambridge: Cambridge
University Press.

o Griva, I, Nash, S., and Sofer, A., 2009. Linear and nonlinear optimization. 2nd ed. Philadelphia:
Society for Industrial and Applied Mathematics.

Finally, the following book is a good introduction to game theory:

o Osborne, M.J., 2017. An introduction to game theory. Oxford: Oxford University Press.
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In this chapter, we will look at several topics that don’t fit within the categories that we discussed in
the previous chapters of this book. Most of these topics are concerned with different ways to facilitate
computing and otherwise optimize the execution of our code. Others are concerned with working
with specific kinds of data or file formats.

The aim of this chapter is to provide you with some tools that, while not strictly mathematical in
nature, often appear in mathematical problems. These include topics such as distributed computing
and optimization - both help you to solve problems more quickly, validate data and calculations, load
and store data from file formats commonly used in scientific computation, and incorporate other
topics that will generally help you be more productive with your code.

In the first two recipes, we will cover packages that help keep track of units and uncertainties in
calculations. These are very important for calculations that concern data that have a direct physical
application. In the next recipe, we will look at loading and storing data from Network Common Data
Form (NetCDF) files. NetCDF is a file format usually used for storing weather and climate data. In
the fourth recipe, we'll discuss working with geographical data, such as data that might be associated
with weather or climate data. After that, we'll discuss how we can run Jupyter notebooks from the
terminal without having to start up an interactive session. Then, we will turn to validating data for
the next recipe and then focus on performance with tools such as Cython and Dask. Finally, we will
give a very short overview of some techniques for writing reproducible code for data science.

In this chapter, we will cover the following recipes:

o Keeping track of units with Pint

o Accounting for uncertainty in calculations

o Loading and storing data from NetCDF files
o Working with geographical data

o Executing a Jupyter notebook as a script

o Validating data
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o Accelerating code with Cython
o Distributing computation with Dask

o  Writing reproducible code for data science

Let’s get started!

Technical requirements

This chapter requires many different packages due to the nature of the recipes it contains. The list of
packages we need is as follows:

¢« Pint

e uncertainties

« netCDF4
o Xarray
o Pandas

o Scikit-learn

o GeoPandas

o Geoplot

o Jupyter

o Papermill

o Cerberus

o Cython

o Dask

All of these packages can be installed using your favorite package manager, such as pip:

python3.10 -m pip install pint uncertainties netCDF4 xarray
pandas scikit-learn geopandas geoplot jupyter papermill

cerberus cython

To install the Dask package, we need to install the various extras associated with the package. We can
do this using the following pip command in the terminal:

python3.10 -m pip install dask[complete]
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In addition to these Python packages, we will also need to install some supporting software. For the
Working with geographical data recipe, the GeoPandas and Geoplot libraries have numerous lower-
level dependencies that might need to be installed separately. Detailed instructions are given in the
GeoPandas package documentation at https://geopandas.org/install . html.

For the Accelerating code with Cython recipe, we will need to have a C compiler installed. Instructions
on how to obtain the GNU C compiler (GCC) are given in the Cython documentation at https: //
cython.readthedocs.io/en/latest/src/quickstart/install.html.

The code for this chapter can be found in the Chapter 10 folder of the GitHub repository
athttps://github.com/PacktPublishing/Applying-Math-with-Python-2nd-
Edition/tree/main/Chapter%2010.

Keeping track of units with Pint

Correctly keeping track of units in calculations can be very difficult, particularly if there are places
where different units can be used. For example, it is very easy to forget to convert between different
units — feet/inches into meters — or metric prefixes — converting 1 km into 1,000 m, for instance.

In this recipe, we'll learn how to use the Pint package to keep track of units of measurement in calculations.

Getting ready
For this recipe, we need the Pint package, which can be imported as follows:

import pint

How to do it...
The following steps show you how to use the Pint package to keep track of units in calculations:
1. First, we need to create a UnitRegistry object:
ureg = pint.UnitRegistry(system="mks")

2. To create a quantity with a unit, we multiply the number by the appropriate attribute of the
registry object:

distance = 5280 * ureg.feet
3. We can change the units of the quantity using one of the available conversion methods:

print (distance.to("miles"))
print (distance.to base units())

print (distance.to base units () .to_ compact ())
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The output of these print statements is as follows:

0.9999999999999999 mile
1609.3439999999998 meter
1.6093439999999999 kilometer

4. 'We wrap a routine to make it expect an argument in seconds and output a result in meters:

@ureg.wraps (ureg.meter, ureg.second)
def calc depth(dropping time) :

# s = u*t + 0.5*a*t*t

#u=20, a=9.81

return 0.5*9.81*dropping time*dropping time

5.  Now, when we call the calc_depth routine with a minute unit, it is automatically converted
into seconds for the calculation:

depth = calc depth(0.05 * ureg.minute)
print ("Depth", depth)
# Depth 44.144999999999996 meter

How it works...

The Pint package provides a wrapper class for numerical types that adds unit metadata to the type. This
wrapper type implements all the standard arithmetic operations and keeps track of the units throughout
these calculations. For example, when we divide a length unit by a time unit, we will get a speed unit.
This means that you can use Pint to make sure the units are correct after a complex calculation.

The UnitRegistry object keeps track of all the units that are present in the session and handles
things such as conversion between different unit types. It also maintains a reference system of
measurements, which, in this recipe, is the standard international system with meters, kilograms,
and seconds as base units, denoted by mks.

The wraps functionality allows us to declare the input and output units of a routine, which allows
Pint to make automatic unit conversions for the input function - in this recipe, we converted from
minutes into seconds. Trying to call a wrapped function with a quantity that does not have an associated
unit, or an incompatible unit, will raise an exception. This allows runtime validation of parameters
and automatic conversion into the correct units for a routine.

There’s more...

The Pint package comes with a large list of preprogrammed units of measurement that cover most
globally used systems. Units can be defined at runtime or loaded from a file. This means that you can
define custom units or systems of units that are specific to the application that you are working with.
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Units can also be used within different contexts, which allows for easy conversion between different
unit types that would ordinarily be unrelated. This can save a lot of time in situations where you need
to move between units fluidly at multiple points in a calculation.

Accounting for uncertainty in calculations

Most measuring devices are not 100% accurate and instead are accurate up to a certain amount,
usually somewhere between 0 and 10%. For instance, a thermometer might be accurate to 1%, while
a pair of digital calipers might be accurate up to 0.1%. The true value in both of these cases is unlikely
to be exactly the reported value, although it will be fairly close. Keeping track of the uncertainty in
a value is difficult, especially when you have multiple different uncertainties combined in different
ways. Rather than keeping track of this by hand, it is much better to use a consistent library to do this
for you. This is what the uncertainties package does.

In this recipe, we will learn how to quantify the uncertainty of variables and see how these uncertainties
propagate through a calculation.

Getting ready

For this recipe, we will need the uncertainties package, from which we will import the ufloat
class and the umath module:

from uncertainties import ufloat, umath

How to do it...

The following steps show you how to quantify uncertainty on numerical values in calculations:

1.

First, we create an uncertain float value of 3 . 0 plus or minus 0 . 4:

seconds = ufloat (3.0, 0.4)
print (seconds) # 3.0+/-0.4

Next, we perform a calculation involving this uncertain value to obtain a new uncertain value:

depth = 0.5*9.81*seconds*seconds

print (depth) # 44+/-12

Next, we create a new uncertain float value and apply the sgrt routine from the umath
module and perform the reverse of the previous calculation:

other depth = ufloat (44, 12)
time = umath.sqgrt(2.0*other depth/9.81)
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print ("Estimated time", time)
# Estimated time 3.0+/-0.4

As we can see, the result of the first calculation (step 2) is an uncertain float with a value of 44, and
112 systematic error. This means that the true value could be anything between 32 and 56. We cannot
be more accurate than this with the measurements that we have.

How it works...

The ufloat class wraps around f1loat objects and keeps track of the uncertainty throughout
calculations. The library makes use of linear error propagation theory, which uses derivatives of
non-linear functions to estimate the propagated error during calculations. The library also correctly
handles correlation so that subtracting a value from itself gives zero with no error.

To keep track of uncertainties in standard mathematical functions, you need to use the versions that
are provided in the umath module, rather than those defined in the Python Standard Library or a
third-party package such as NumPy.

There’s more...

The uncertainties package provides support for NumPy, and the Pint package mentioned in the
previous recipe can be combined with uncertainties to make sure that units and error margins
are correctly attributed to the final value of a calculation. For example, we could compute the units
in the calculation from step 2 of this recipe, as follows:

import pint

from uncertainties import ufloat

ureg = pint.UnitRegistry(system="mks")

g = 9.81l*ureg.meters / ureg.seconds ** 2

seconds = ufloat (3.0, 0.4) * ureg.seconds
depth = 0.5*g*seconds**2
print (depth)

As expected, the print statement on the last line gives us 44+ /- 12 meters.

Loading and storing data from NetCDF files

Many scientific applications require that we start with large quantities of multi-dimensional data in a
robust format. NetCDF is one example of a format used for data that’s developed by the weather and
climate industry. Unfortunately, the complexity of the data means that we can’t simply use the utilities
from the Pandas package, for example, to load this data for analysis. We need the net cdf4 package to
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be able to read and import the data into Python, but we also need to use xarray. Unlike the Pandas
library, xarray can handle higher-dimensional data while still providing a Pandas-like interface.

In this recipe, we will learn how to load data from and store data in NetCDF files.

Getting ready

For this recipe, we will need to import the NumPy package as np, the Pandas package as pd, the
Matplotlib pyplot module as plt, and an instance of the default random number generator
from NumPy:

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from numpy.random import default rng
rng = default rng(12345)

We also need to import the xarray package under the xr alias. You will also need to install the Dask
package, as described in the Technical requirements section, and the net CDF4 package:

import xarray as Xr

We don’t need to import either of these packages directly.

How to do it...

Follow these steps to load and store sample data in a NetCDF file:

1.

First, we need to create some random data. This data consists of a range of dates, a list of location
codes, and randomly generated numbers:

dates = pd.date range("2020-01-01", periods=365,
name="date")

locations = list (range(25))
steps = rng.normal (0, 1, size=(365,25))

accumulated = np.add.accumulate (steps)

Next, we create a xarray Dataset object containing the data. The dates and locations are
indexes, while the steps and accumulated variables are the data:

data_array = xr.Dataset ({
"steps": (("date", "location"), steps),

"accumulated": (("date", "location"), accumulated)
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b

{"location": locations, "date": dates}

)

The output from the print statement is shown here:

<xXarray.Dataset>

Dimensions: (date: 365, location: 25)
Coordinates:
* location (location) int64 0 1 2 3 4 5 6 7 8 ... 17 18

19 20 21 22 23 24

* date (date) datetime64 [ns] 2020-01-01 2020-01-02
2020-12-30

Data variables:

steps (date, location) float64 geoplot.pointplot (cities,
ax=ax, fc="r", marker="2")

ax.axis((-180, 180, -90, 90))-1.424 1.264 ... -0.4547
-0.4873

accumulated (date, location) float64 -1.424 1.264 -0.8707
8.935 -3.525

3. Next, we compute the mean over all the locations at each time index:

means = data array.mean(dim="location")

4. Now, we plot the mean accumulated values on a new set of axes:

fig, ax = plt.subplots()
means ["accumulated"] .to dataframe () .plot (ax=ax)
ax.set (title="Mean accumulated values",

xlabel="date", ylabel="value")
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The resulting plot looks as follows:
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Figure 10.1 - Plot of accumulated means over time

Save this dataset into a new NetCDF file using the to_netcdf method:

data_array.to netcdf ("data.nc")

Now, we can load the newly created NetCDF file using the Lload_dataset routine from xarray:

new data = xr.load dataset ("data.nc")

print (new data)

The output of the preceding code is as follows:

<xarray.Dataset>
Dimensions: (date: 365, location: 25)
Coordinates:

* location (location) int64 0 1 2 3 4 5 6 7 8
17 18 19 20 21 22 23 24

* date (date) datetime64 [ns] 2020-01-01 2020-
01-02 ... 2020-12-30

Data variables:
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steps (date, location) float64 -1.424 1.264
-0.4547 -0.4873

accumulated (date, location) float64 -1.424
1.264 -0.8707 ... 8.935 -3.525

The output shows that the loaded array contains all of the data that we added in the earlier steps. The
important steps are 5 and 6, where we store and load this "data.nc" data.

How it works...

The xarray package provides the DataArray and DataSet classes, which are (roughly speaking)
multi-dimensional equivalents of the Pandas Series and DataFrame objects. We're using a
dataset in this example because each index - a tuple of a date and location - has two pieces of data
associated with it. Both of these objects expose a similar interface to their Pandas equivalents. For
example, we can compute the mean along one of the axes using the mean method. The DataArray
and DataSet objects also have a convenience method for converting into a Pandas DataFrame
called to_dataframe. We used it in this recipe to convert the accumulated column from the means
Dataset into a DataFrame for plotting, which isn’t really necessary because xarray has plotting
features built into it.

The real focus of this recipe is on the to_netcdf method and the 1oad dataset routine. The
former stores a DataSet object in a NetCDF format file. This requires the net CDF4 package to
be installed, as it allows us to access the relevant C library for decoding NetCDF-formatted files. The
load dataset routine is a general-purpose routine for loading data into a DataSet object from
various file formats, including NetCDF (again, this requires the net CDF4 package to be installed).

There’s more...

The xarray package has support for a number of data formats in addition to NetCDE, such as
OPeNDAP, Pickle, GRIB, and other formats that are supported by Pandas.

Working with geographical data

Many applications involve working with geographical data. For example, when tracking global
weather, we might want to plot the temperature as measured by various sensors around the world at
their position on a map. For this, we can use the GeoPandas package and the Geoplot package, both
of which allow us to manipulate, analyze, and visualize geographical data.

In this recipe, we will use the GeoPandas and Geoplot packages to load and visualize some sample
geographical data.
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Getting ready

For this recipe, we will need the GeoPandas package, the Geoplot package, and the Matplotlib pyplot
package imported as p1t:

import geopandas

import geoplot

import matplotlib.pyplot as plt

How to do it...

Follow these steps to create a simple plot of the capital cities plotted on a map of the world using
sample data:

1.

First, we need to load the sample data from the GeoPandas package, which contains the world
geometry information:

world = geopandas.read file(
geopandas.datasets.get path("naturalearth lowres")

)

Next, we need to load the data containing the name and position of each of the capital cities
of the world:

cities = geopandas.read file(
geopandas.datasets.get path("naturalearth cities")

)

Now, we can create a new figure and plot the outline of the world geometry using the
polyplot routine:

fig, ax = plt.subplots()
geoplot.polyplot (world, ax=ax, alpha=0.7)

Finally, we use the pointplot routine to add the positions of the capital cities on top of the
world map. We also set the axes limits to make the whole world visible:

geoplot.pointplot (cities, ax=ax, fc="k", marker="2")
ax.axis((-180, 180, -90, 90))
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The resulting plot of the positions of the capital cities of the world looks as follows:

Figure 10.2 - Plot of the world’s capital cities on a map

The plot shows a rough outline of the different countries of the world. Each of the capital cities is
indicated by a marker. From this view, it is quite difficult to distinguish individual cities in central Europe.

How it works...

The GeoPandas package is an extension of Pandas that works with geographical data, while the
Geoplot package is an extension of Matplotlib that’s used to plot geographical data. The GeoPandas
package comes with a selection of sample datasets that we used in this recipe. naturalearth
lowres contains geometric figures that describe the boundaries of countries in the world. This
data is not very high-resolution, as signified by its name, which means that some of the finer details
of geographical features might not be present on the map (some small islands are not shown at all).
naturalearth cities contains the namesand locations of the capital cities of the world. We're
using the datasets.get path routine to retrieve the path for these datasets in the package data
directory. The read file routine imports the data into the Python session.

The Geoplot package provides some additional plotting routines specifically for plotting geographical
data. The polyplot routine plots polygonal data from a GeoPandas DataFrame, which might
describe the geographical boundaries of a country. The pointplot routine plots discrete points on
a set of axes from a GeoPandas DataFrame, which, in this case, describe the positions of capital cities.
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Executing a Jupyter notebook as a script

Jupyter notebooks are a popular medium for writing Python code for scientific and data-based
applications. A Jupyter notebook is really a sequence of blocks that is stored in a file in JavaScript
Object Notation (JSON) with the ipynb extension. Each block can be one of several different types,
such as code or markdown. These notebooks are typically accessed through a web application that
interprets the blocks and executes the code in a background kernel that then returns the results to
the web application. This is great if you are working on a personal PC, but what if you want to run
the code contained within a notebook remotely on a server? In this case, it might not even be possible
to access the web interface provided by the Jupyter Notebook software. The papermill package
allows us to parameterize and execute notebooks from the command line.

In this recipe, we'll learn how to execute a Jupyter notebook from the command line using papermill.

Getting ready

For this recipe, we will need to have the papermill package installed, and also have a sample
Jupyter notebook in the current directory. We will use the sample . ipynb notebook file stored in
the code repository for this chapter.

How to do it...

Follow these steps to use the papermill command-line interface to execute a Jupyter notebook remotely:

1. First, we open the sample notebook, sample . ipynb, from the code repository for this
chapter. The notebook contains three code cells that hold the following code:

import matplotlib.pyplot as plt
from numpy.random import default rng
rng = default rng(12345)

uniform data = rng.uniform(-5, 5, size=(2, 100))

fig, ax = plt.subplots(tight layout=True)
ax.scatter (uniform data[0, :], uniform datall, :1)

ax.set (title="Scatter plot", xlabel="x", ylabel="y")

2. Next, we open the folder containing the Jupyter notebook in the terminal and use the
following command:

papermill --kernel python3 sample.ipynb output.ipynb
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3. Now, we open the output file, output . ipynb, which should now contain the notebook that’s
been updated with the result of the executed code. The scatter plot that’s generated in the final
block is shown here:

Scatter plot
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Figure 10.3 - Scatter plot of the random data that was generated inside a Jupyter notebook

Notice that the output of the papermill command is an entirely new notebook that copies the code
and text content from the original and is populated with the output of running commands. This is
useful for “freezing” the exact code that was used to generate the results.

How it works...

The papermill package provides a simple command-line interface that interprets and then
executes a Jupyter notebook and stores the results in a new notebook file. In this recipe, we gave the
first argument — the input notebook file - sample . ipynb, and the second argument - the output
notebook file - output . ipynb. The tool then executes the code contained in the notebook and
produces the output. The notebooK’s file format keeps track of the results of the last run, so these results
are added to the output notebook and stored at the desired location. In this recipe, this is a simple
local file, but papermill can also store them in a cloud location such as Amazon Web Services
(AWS) S3 storage or Azure data storage.

In step 2, we added the - -kernel python3 option when using the papermill command-line
interface. This option allows us to specify the kernel that is used to execute the Jupyter notebook.
This might be necessary to prevent errors if papermill tries to execute the notebook with a kernel
other than the one used to write the notebook. A list of available kernels can be found by using the
following command in the terminal:

jupyter kernelspec list
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If you get an error when executing a notebook, you could try changing to a different kernel.

There’s more...

Papermill also has a Python interface so that you can execute notebooks from within a Python
application. This might be useful for building web applications that need to be able to perform long-
running calculations on external hardware and where the results need to be stored in the cloud. It
also has the ability to provide parameters to a notebook. To do this, we need to create a block in the
notebook marked with the parameters tag with the default values. Updated parameters can then be
provided through the command-line interface using the -p flag, followed by the name of the argument
and the value.

Validating data

Data is often presented in a raw form and might contain anomalies or incorrect or malformed data,
which will obviously present a problem for later processing and analysis. It is usually a good idea
to build a validation step into a processing pipeline. Fortunately, the Cerberus package provides a
lightweight and easy-to-use validation tool for Python.

For validation, we have to define a schema, which is a technical description of what the data should
look like and the checks that should be performed on the data. For example, we can check the type
and place bounds on the maximum and minimum values. Cerberus validators can also perform type
conversions during the validation step, which allows us to plug data loaded directly from CSV files
into the validator.

In this recipe, we will learn how to use Cerberus to validate data loaded from a CSV file.

Getting ready

For this recipe, we need to import the csv module from the Python Standard Library (https://
docs.python.org/3/library/csv.html), as well as the Cerberus package:

import csv

import cerberus

We will also need the sample . csv file from the code repository (https://github.com/
PacktPublishing/Applying-Math-with-Python/tree/master/Chapter%2010)
for this chapter.
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How to do it...
In the following steps, we will validate a set of data that’s been loaded from CSV using the Cerberus package:

1.  First, we need to build a schema that describes the data we expect. To do this, we must define
a simple schema for floating-point numbers:

float schema = {"type": "float", "coerce": float,

"min": -1.0, "max": 1.0}

2. Next, we build the schema for individual items. These will be the rows of our data:

item schema = {
"type": "dict",
"schema": {
"id": {"type": "string"},
"number" : {"type": "integer",
"coerce": int},

"lower": float schema,
"upper": float schema,

}
}

3. Now, we can define the schema for the whole document, which will contain a list of items:

schema = ({
"rows": {
"type": "liSt",
"schema": item schema

}

4. Next, we create a Validator object with the schema we just defined:

validator = cerberusg.Validator (schema)

5. 'Then, we load the data using a DictReader from the csv module:

with open("sample.csv") as f:
dr = csv.DictReader (f)

document = {"rows": list (dr)}
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6. Next, we use the validate method on validator to validate the document:
validator.validate (document)

7. 'Then, we retrieve the errors from the validation process from the validator object:
errors = validator.errors["rows"] [0]

8. Finally, we can print any error messages that appeared:

for row n, errs in errors.items() :

print (f"row {row n}: {errs}")

The output of the error messages is as follows:

row 11: [{'lower': ['min value is -1.0']}]

row 18: [{'number': ['must be of integer

type', "field 'number' cannot be coerced: invalid
literal for int() with base 10: 'None'"]}]

row 32: [{'upper': ['min value is -1.0']}]

row 63: [{'lower': ['max value is 1.0']}]

This has identified four rows that do not conform to the schema that we set out, which limits the float
values in “lower” and “upper” to those between -1.0 and 1. 0.

How it works...

The schema that we created is a technical description of all the criteria that we need to check our
data against. This will usually be defined as a dictionary with the name of the item as the key and a
dictionary of properties, such as the type or bounds on the value in a dictionary, as the value. For
example, in step 1, we defined a schema for floating-point numbers that limits the numbers so that
they’re between the values of -1 and 1. Note that we include the coerce key, which specifies the type
that the value should be converted into during the validation. This allows us to pass in data that’s been
loaded from a CSV document, which only contains strings, without having to worry about its type.

The validator object takes care of parsing documents so that they’re validated and checking the
data they contain against all the criteria described by the schema. In this recipe, we provided the
schema to the validator object when it was created. However, we could also pass the schema
into the validate method as a second argument. The errors are stored in a nested dictionary that
mirrors the structure of the document.
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Accelerating code with Cython

Python is often criticized for being a slow programming language — an endlessly debatable statement.
Many of these criticisms can be addressed by using a high-performance compiled library with a Python
interface - such as the scientific Python stack - to greatly improve performance. However, there are
some situations where it is difficult to avoid the fact that Python is not a compiled language. One way to
improve performance in these (fairly rare) situations is to write a C extension (or even rewrite the code
entirely in C) to speed up the critical parts. This will certainly make the code run more quickly, but it
might make it more difficult to maintain the package. Instead, we can use Cython, which is an extension
of the Python language that is transpiled into C and compiled for great performance improvements.

For example, we can consider some code that’s used to generate an image of the Mandelbrot set. For
comparison, the pure Python code — which we assume is our starting point - is as follows:

# mandelbrot/python mandel.py
import numpy as np

def in mandel (cx, cy, max_iter):

X = Cx
Yy = ¢y
for i in range (max iter) :
X2 = X**2
Y2 = y**2

if (x2 + y2) >= 4:
return i
y = 2.0*xX*y + cy
X = X2 - y2 + CX
return max_iter

def compute mandel (N x, N y, N iter):

xlim 1 = -2.5
xlim u = 0.5
ylim 1 = -1.2

ylim u = 1.2
x vals = np.linspace(xlim 1, xlim u,

N x, dtype=np.floaté64)
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y vals = np.linspace(ylim 1, ylim u,
N y, dtype=np.floaté64)
height = np.empty((N x, N y), dtype=np.inté4)
for i in range (N _x):
for j in range (N y):
height [1, j] = in mandel (
x vals([i], y vals[j], N_iter)

return height

The reason why this code is relatively slow in pure Python is fairly obvious: the nested loops. For
demonstration purposes, let’s assume that we can’t vectorize this code using NumPy. A little preliminary
testing shows that using these functions to generate the Mandelbrot set using 320 x 240 points and
255 steps takes approximately 6.3 seconds. Your times may vary, depending on your system.

In this recipe, we will use Cython to greatly improve the performance of the preceding code in order
to generate an image of the Mandelbrot set.

Getting ready

For this recipe, we will need the NumPy package and the Cython package to be installed. You will
also need a C compiler such as the GCC installed on your system. For example, on Windows, you
can obtain a version of the GCC by installing MinGW.

How to do it...

Follow these steps to use Cython to greatly improve the performance of the code for generating an
image of the Mandelbrot set:

1. Start a new file called cython mandel.pyx in the mandelbrot folder. In this file, we
will add some simple imports and type definitions:

# mandelbrot/cython mandel.pyx

import numpy as np

cimport numpy as np

cimport cython

ctypedef Py ssize t Int
ctypedef np.float64 t Double
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2. Next, we define a new version of the in_mandel routine using the Cython syntax. We add
some declarations to the first few lines of this routine:

cdef int in mandel (Double cx, Double cy, int max_ iter):
cdef Double x
cdef Double y = cy
cdef Double x2, y2
cdef Int i

CcX

3. 'The rest of the function is identical to the Python version of the function:

for i in range(max_iter) :
X2 = X**2
V2 = y**2
if (x2 + y2) >= 4:
return i
y = 2.0*xX*y + cCy
X = X2 - Y2 + CX

return max iter

4. Next, we define a new version of the compute mandel function. We add two decorators to
this function from the Cython package:

@cython.boundscheck (False)
@cython.wraparound (False)

def compute mandel (int N x, int N y, int N iter):

5. Then, we define the constants, just as we did in the original routine:

cdef double xlim 1 = -2.5
cdef double xlim u = 0.5
cdef double ylim 1 = -1.2
cdef double ylim u = 1.2

6. We use the linspace and empty routines from the NumPy package in exactly the same
way as in the Python version. The only addition here is that we declare the i and j variables,
which are of the Int type:

cdef np.ndarray x vals = np.linspace(xlim 1,
xlim u, N x, dtype=np.floaté4)

cdef np.ndarray y vals = np.linspace(ylim 1,
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ylim u, N y, dtype=np.floaté64)
cdef np.ndarray height = np.empty(

(N x, N_y),dtype=np.inté4)
cdef Int i, j

7. The remainder of the definition is exactly the same as in the Python version:

for i in range (N _x):
for j in range (N y):
height[i, j] = in mandel (
xx vals[i], y vals[j]l, N_iter)

return height

8. Next, we create a new file called setup . py in the mandelbrot folder and add the following
imports to the top of this file:

# mandelbrot/setup.py

import numpy as np
from setuptools import setup, Extension

from Cython.Build import cythonize

9.  After that, we define an extension module with the source pointing to the original python
mandel . py file. Set the name of this module to hybrid mandel:

hybrid = Extension (
"hybrid mandel",
sources=["python mandel.py"],
include dirs=[np.get include()],
define macros=[("NPY NO DEPRECATED API",
"NPY 1 7 API VERSION")]
)

10. Now, we define a second extension module with the source set as the cython mandel.
pyx file that we just created:

cython = Extension (
"cython mandel",
sources=["cython mandel.pyx"],
include dirs=[np.get include()],
define macros=[("NPY NO DEPRECATED API",
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"NPY 1 7 API_VERSION")]
)

11. Next, we add both these extension modules to a list and call the setup routine to register
these modules:

extensions = [hybrid, cython]
setup (
ext modules = cythonize (

extensions, compiler_directives:{
"language level": "3"}),

)

12. Create a new empty filecalled init .pyinthe mandelbrot folder to make this into
a package that can be imported into Python.

13. Open the terminal inside the mandelbrot folder and use the following command to build
the Cython extension modules:

python3.8 setup.py build ext --inplace

14. Now, start a new file called run . py and add the following import statements:

# run.py

from time import time
from functools import wraps

import matplotlib.pyplot as plt

15. Import the various compute mandel routines from each of the modules we have defined:
python mandel for the original; hybrid mandel for the Cythonized Python code; and
cython mandel for the compiled pure Cython code:

from mandelbrot.python mandel import compute mandel
as compute mandel py

from mandelbrot.hybrid mandel import compute mandel
as compute mandel hy

from mandelbrot.cython mandel import compute mandel

as compute mandel cy
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16. Define a simple timer decorator that we will use to test the performance of the routines:

def timer (func, name) :

@wraps (func)

def wrapper (*args, **kwargs) :
t_start = time()
val = func(*args, **kwargs)
t _end = time()
print (f"Time taken for {name}:

{t end - t start}m)

return val

return wrapper

17. Apply the t imer decorator to each of the imported routines, and define some constants
for testing:

mandel py = timer (compute mandel py, "Python")
mandel hy = timer (compute mandel hy, "Hybrid")

mandel cy = timer (compute mandel cy, "Cython")

Nx = 320
Ny = 240
steps = 255

18. Run each of the decorated routines with the constants we set previously. Record the output of
the final call (the Cython version) in the vals variable:

mandel py(Nx, Ny, steps)
mandel hy (Nx, Ny, steps)
vals = mandel cy(Nx, Ny, steps)

19. Finally, plot the output of the Cython version to check that the routine computes the Mandelbrot
set correctly:

fig, ax = plt.subplots/()
ax.imshow(vals.T, extent=(-2.5, 0.5, -1.2, 1.2))
plt.show ()
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Running the run . py file will print the execution time of each of the routines to the terminal,

as follows:
Time taken for Python: 11.399756908416748

Time taken for Hybrid: 10.955225229263306
Time taken for Cython: 0.24534869194030762

Note

These timings are not as good as in the first edition, which is likely due to the way Python is
installed on the author’s PC. Your timings may vary.

The plot of the Mandelbrot set can be seen in the following figure:

1.0 1

0.514

0.0 1 #

-1.0

=25 -2.0 -15 -1.0 -0.5 0.0 0.5

Figure 10.4 - Image of the Mandelbrot set computed using Cython code

This is what we expect for the Mandelbrot set. Some of the finer detail is visible around the boundary.

How it works...

There is a lot happening in this recipe, so let’s start by explaining the overall process. Cython takes
code that is written in an extension of the Python language and compiles it into C code, which is then
used to produce a C extension library that can be imported into a Python session. In fact, you can even
use Cython to compile ordinary Python code directly to an extension, although the results are not as
good as when using the modified language. The first few steps in this recipe define the new version
of the Python code in the modified language (saved as a . pyx file), which includes type information
in addition to the regular Python code. In order to build the C extension using Cython, we need to

define a setup file, and then we create a file that we run to produce the results.
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The final compiled version of the Cython code runs considerably faster than its Python equivalent.
The Cython-compiled Python code (hybrid, as we called it in this recipe) performs slightly better
than the pure Python code. This is because the produced Cython code still has to work with Python
objects with all of their caveats. By adding the typing information to the Python code, in the . pyx
file, we start to see major improvements in performance. This is because the in_mandel function is
now effectively defined as a C-level function that has no interaction with Python objects, and instead
operates on primitive data types.

There are some small, but very important differences, between the Cython code and the Python
equivalent. In step 1, you can see that we imported the NumPy package as usual but that we also
used the cimport keyword to bring some C-level definitions into the scope. In step 2, we used the
cdef keyword instead of the de f keyword when we defined the in_mandel routine. This means
that the in_mande1l routine is defined as a C-level function that cannot be used from the Python
level, which saves a significant amount of overhead when calling this function (which happens a lot).

The only other real differences regarding the definition of this function are the inclusion of some type
declarations in the signature and the first few lines of the function. The two decorators we applied
here disable the checking of bounds when accessing elements from a list (array). The boundscheck
decorator disables checking whether the index is valid (between 0 and the size of the array), while the
wraparound decorator disables the negative indexing. Both of these give a modest improvement
to speed during execution, although they disable some of the safety features built into Python. In this
recipe, it is OK to disable these checks because we are using a loop over the valid indices of the array.

The setup file is where we tell Python (and therefore Cython) how to build the C extension. The
cythonize routine from Cython is the key here, as it triggers the Cython build process. In steps
9 and 10, we defined extension modules using the Extension class from setuptools so that
we could define some extra details for the build; specifically, we set an environment variable for the
NumPy compilation and added the include files for the NumPy C headers. This is done via the
define macros keyword argument for the Extension class. The terminal command we used
in step 13 uses setuptools to build the Cython extensions, and the addition of the --inplace
flat means that the compiled libraries will be added to the current directory, rather than being placed
in a centralized location. This is good for development.

The run script is fairly simple: import the routines from each of the defined modules - two of these
are actually C extension modules — and time their execution. We have to be a little creative with the
import aliases and routine names to avoid collisions.

There’s more...

Cython is a powerful tool for improving the performance of some aspects of your code. However, you
must always be careful to spend your time wisely while optimizing code. Using a profile such as cProfile
that is provided in the Python Standard Library can be used to find the places where performance
bottlenecks occur in your code. In this recipe, it was fairly obvious where the performance bottleneck
was occurring. Cython is a good remedy to the problem in this case because it involves repetitive calls
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to a function inside a (double) £or loop. However, it is not a universal fix for performance issues
and, more often than not, the performance of code can be greatly improved by refactoring it so that
it makes use of high-performance libraries.

Cython is well integrated with Jupyter Notebook and can be used seamlessly in the code blocks of a
notebook. Cython is also included in the Anaconda distribution of Python, so no additional setup is
required for using Cython with Jupyter notebooks when it’s been installed using the Anaconda distribution.

There are alternatives to Cython when it comes to producing compiled code from Python. For example,
the Numba package (http://numba.pydata.org/) provides a Just-in-Time (JIT) compiler
that optimizes Python code at runtime by simply placing a decorator on specific functions. Numba is
designed to work with NumPy and other scientific Python libraries and can also be used to leverage
GPUs to accelerate code.

There is also a general-purpose JIT compiler for Python available through the pyjion package
(https://www.trypyjion.com/). This can be used in a variety of situations, unlike the Numba
library, which is primarily for numerical code. The jax library discussed in Chapter 3 also has a JIT
compiler built in, but this too is limited to numerical code.

Distributing computing with Dask

Dask is a library that’s used for distributing computing across multiple threads, processes, or even
computers in order to effectively perform computation on a huge scale. This can greatly improve
performance and throughput, even if you are working on a single laptop computer. Dask provides
replacements for most of the data structures from the Python scientific stack, such as NumPy arrays
and Pandas DataFrames. These replacements have very similar interfaces, but under the hood, they
are built for distributed computing so that they can be shared between multiple threads, processes,
or computers. In many cases, switching to Dask is as simple as changing the import statement, and
possibly adding a couple of extra method calls to start concurrent computations.

In this recipe, we will learn how to use Dask to do some simple computations on a DataFrame.

Getting ready

For this recipe, we will need to import the dataframe module from the Dask package. Following
the convention set out in the Dask documentation, we will import this module under the dd alias:

import dask.dataframe as dd

We will also need the sample . csv file from the code repository for this chapter.


http://numba.pydata.org/
https://www.trypyjion.com/
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How to do it...
Follow these steps to use Dask to perform some computations on a DataFrame object:

1. First, we need to load the data from sample. csv into a Dask DataFrame. The type of the
number column is set to "object" because otherwise, Dask’s type inference will fail (since
this column contains None but is otherwise integers):

data = dd.read csv("sample.csv", dtype={

"number" : "object"})

2. Next, we perform a standard calculation on the columns of the DataFrame:
sum_data = data.lower + data.upper
print (sum data)

Unlike Pandas DataFrames, the result is not a new DataFrame. The print statement gives us
the following information:

Dask Series Structure:
npartitions=1
floate4

dtype: floate64
Dask Name: add, 4 graph layers

3. To actually get the result, we need to use the compute method:

result = sum data.compute ()

print (result.head())

The result is now shown as expected:

0 -0.911811
1 0.947240
2 -0.552153
3 -0.429914
4 1.229118

dtype: floaté4

4. 'We compute the means of the final two columns in exactly the same way we would with a Pandas
DataFrame, but we need to add a call to the compute method to execute the calculation:

means = datal[["lower", "upper"]].mean/() .compute ()
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print (means)

The result, as printed, is exactly as we expect it to be:

lower -0.060393
upper -0.035192
dtype: floaté64

How it works...

Dask builds a task graph for the computation, which describes the relationships between the various
operations and calculations that need to be performed on the collection of data. This breaks down
the steps of the calculation so that calculations can be done in the right order across the different
workers. This task graph is then passed into a scheduler that sends the actual tasks to the workers for
execution. Dask comes with several different schedulers: synchronous, threaded, multiprocessing, and
distributed. The type of scheduler can be chosen in the call to the comput e method or set globally.
Dask will choose a sensible default if one is not given.

The synchronous, threaded, and multiprocessing schedulers work on a single machine, while the
distributed scheduler is for working with a cluster. Dask allows you to change between schedulers
in a relatively transparent way, although for small tasks, you might not get any performance benefits
because of the overhead of setting up more complicated schedulers.

The compute method is the key to this recipe. The methods that would ordinarily perform the
computation on Pandas DataFrames now just set up a computation that is to be executed through the
Dask scheduler. The computation isn't started until the compute method is called. This is similar
to the way that a Future (such as from the asyncio standard library package) is returned as a proxy
for the result of an asynchronous function call, which isn't fulfilled until the computation is complete.

There’'s more...

Dask provides interfaces for NumPy arrays, as well as the DataFrames shown in this recipe. There is
also a machine learning interface called dask_m1 that exposes similar capabilities to the scikit -
learn package. Some external packages, such as xarray, also have a Dask interface. Dask can
also work with GPUs to further accelerate computations and load data from remote sources, which
is useful if the computation is distributed across a cluster.

Writing reproducible code for data science

One of the fundamental principles of the scientific method is the idea that results should be reproducible
and independently verifiable. Sadly, this principle is often undervalued in favor of “novel” ideas and
results. As practitioners of data science, we have an obligation to do our part to make our analyses
and results as reproducible as possible.



Writing reproducible code for data science

Since data science is typically done entirely on computers - that is, it doesn’t usually involve instrumental
errors involved in measurements - some might expect that all data science is inherently reproducible. This
is certainly not the case. It is easy to overlook simple things such as seeding randomness (see Chapter 3)
when using randomized hyperparameter searches or stochastic gradient descent-based optimization.
Moreover, more subtle non-deterministic factors (such as use of threading or multiprocessing) can
dramatically change results if you are not aware of them.

In this recipe, we’ll look at an example of a basic data analysis pipeline and implement some basic
steps to make sure you can reproduce the results.

Getting ready

For this recipe, we will need the NumPy package, imported as np, as usual, the Pandas package,
imported as pd, the Matplotlib pyplot interface imported as p1t, and the following imports from
the scikit-learn package:

from sklearn.metrics import ConfusionMatrixDisplay, accuracy
score

from sklearn.model selection import train test split

from sklearn.tree import DecisionTreeClassifier

We're going to simulate our data (rather than having to acquire it from elsewhere), so we need to
set up an instance of the default random number generator with a seed value (for reproducibility):

rng = np.random.default rng(12345)
To generate the data, we define the following routine:

def get data():

permute = rng.permutation (200)

data = np.vstack ([
rng.normal ((1.0, 2.0, -3.0), 1.0,
size=(50, 3)),
rng.normal((-1.0, 1.0, 1.0), 1.0,
size=(50, 3)),
rng.normal ((0.0, -1.0, -1.0), 1.0,
size= (50, 3)),
rng.normal((-1.0, -1.0, -2.0), 1.0,
size=(50, 3))
1)

labels = np.hstack(
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[[1]1*50, [2]*50, [3]1*50,[4]*50])
pd.DataFrame (

b
I

np.take (data, permute, axis=0),
columns= [llAll , ngn , ncn] )
y = pd.Series (np.take(labels, permute, axis=0))

return X, y

We're using this function in place of some other method of loading the data into Python, such as
reading from a file or downloading from the internet.

How to do it...
Follow the steps below to create a very simple and reproducible data science pipeline:
1. First, we need to “load” our data using the get data routine we defined previously:

data, labels = get data()

2. Since our data is acquired dynamically, it is a good idea to store the data alongside any results
that we generate.

data.to_csv("data.csv")

labels.to csv("labels.csv")

3. Now, we need to split the data into a training cohort and a testing cohort using the train
test_split routine from scikit-learn. We split the data 80/20 (%) train/test, and
make sure the random state is set so this can be repeated (although we will save the indices
for reference in the next step):

X train, X test, y train, y test = train test split(
data,labels, test size=0.2, random state=23456)

4. Now, we make sure that we save the indices of the training and test cohorts so we know precisely
which observations were taken in each sample. We can use the indices along with the data
stored in step 2 to completely reconstruct the cohorts later:

X train.index.to series () .to csv("train index.csv",
index=False, header=False)
X test.index.to series() .to csv("test index.csv",

index=False, header=False)
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Now, we can set up and train the classifier. We're using a simple DecisionTreeClassifier
for this example, but this choice is not important. Since the training process involves some
randomness, make sure to set the random_state keyword argument to seed this randomness:

classifier = DecisionTreeClassifier (random state=34567)

classifer.fit (X train, y train)

Before we go any further, it is a good idea to gather some information about the trained model
and store it along with the results. The interesting information will vary from model to model. For
this model, the feature importance information might be useful, so we record this in a CSV file:

feat importance = pd.DataFrame (
classifier.feature importances ,
index=classifier.feature names in ,
columns=["Importance"])

feat importance.to csv("feature importance.csv")

Now, we can proceed to check the performance of our model. We'll evaluate the model on both
the training data and the test data, which we will later compare to the true labels:

train predictions = classifier.predict (X train)

test predictions = classifier.predict (X test)

Always save the results of this kind of prediction task (or regression, or any other final results
that will in some way be part of the report). We convert these into Series objects first to
make sure the indices are set correctly:

pd.Series (train predictions,index=X train.index,
name="Predicted label") .to_ csv(
"train predictions.csv")
pd.Series (test predictions, index=X test.index,
name="Predicted label") .to csv(

"test predictions.csv")

Finally, we can produce any graphics or metrics that will inform how we proceed with the
analysis. Here, we'll produce a confusion matrix plot for both training and testing cohorts and
print out some accuracy summary scores:

fig, (axl, ax2) = plt.subplots(l, 2, tight layout=True)
axl.set title("Confusion matrix for training data")
ax2.set title("Confusion matrix for test data")

ConfusionMatrixDisplay.from predictions (
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y train, train predictions,

ax=axl cmap="Greys", colorbar=False)
ConfusionMatrixDisplay.from predictions (

y test, test predictions,

ax=ax2 cmap="Greys", colorbar=False)

print (f"Train accuracy {accuracy score(y train, train
predictions) } ",

f"Test accuracy {accuracy score(y test, test
predictions) } ",

sep= n \Il" )
# Train accuracy 1.0

# Test accuracy 0.65

The resulting confusion matrices are shown in Figure 10.5:

Confusion matrix for training data Confusion matrix for test data
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Figure 10.5 - Confusion matrices for a simple classification task

The test results for this example are not spectacular, which should not be a surprise because we spent no
time choosing the most appropriate model or tuning, and our sample size was pretty small. Producing
an accurate model for this data was not the aim. In the current directory (wherever the script was run),
there should be a number of new CSV files containing all the intermediate data we wrote to the disk:
data.csv, labels.csv, train index.csv,test index.csv, feature importance.

csv, train_predictions.csv,and test_predictions.csv.
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How it works...

The are no definitive right answers when it comes to reproducibility, but there are certainly wrong
answers. We've only touched on a few ideas of how to make your code more reproducible here, but
there are many more things one can do. (See There’s more...). In the recipe, we really focused on
storing intermediate values and results more than anything else. This is often overlooked in favor of
producing plots and graphs - since these are usually the way results will be presented. However, we
should not have to rerun the whole pipeline in order to change the styling of a plot. Storing intermediate
values allows you to audit various parts of the pipeline and check that what you did was sensible and
appropriate and that you can reproduce the results from these intermediate values.

Generally speaking, a data science pipeline will consist of five steps:

1. Data acquisition

2. Data preprocessing and feature selection
3.  Model and hyperparameter tuning

4. Model training
5

Evaluation and results generation

In the recipe, we replaced the data acquisition with a function that randomly generates data. As
mentioned in the introduction, this step will usually involve loading data from disk (from CSV files or
databases), downloading it from the internet, or gathering it directly from measurement devices. We
cached the results of our data acquisition because we are assuming that this is an expensive operation.
Of course, this is not always the case; if you load all of the data directly from disk (via a CSV file, for
example) then there is obviously no need to store a second copy of this data. However, if you generate
the data by querying a large database, then storing a flat copy of the data will dramatically improve
the speed at which you can iterate on your pipeline.

Our preprocessing consists only of splitting the data into training and testing cohorts. Again, we
store enough data after this step to recreate these cohorts independently later — we stored just the
IDs corresponding to each cohort. Since we're storing these sets, it isn’t totally necessary to seed the
randomness in the train test split routine, but it is usually a good idea. If your preprocessing
involves more intensive operations, then you might consider caching the processed data or the
generated features that you will use in the pipeline (we will cover caching in more detail shortly). If
your preprocessing step involves selecting features from the columns of your data, then you should
absolutely save those selected features to disk alongside the results.

Our model is very simple and doesn’t have any (non-default) hyperparameters. If you have done
some hyperparameter tuning, you should store these, along with any other metadata that you might
need to reconstruct the model. Storing the model itself (via pickling or otherwise) can be useful but
remember that a pickled model might not be readable by another party (for example, if they are using
a different version of Python).
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You should always store the numerical results from your model. It is impossible to compare plots
and other summary figures when you're checking that your results are the same on subsequent runs.
Moreover, this allows you to quickly regenerate figures or values later should this be required. For
example, if your analysis involves a binary classification problem, then storing the values used to
generate a Receiver Operating Characteristic (ROC) curve is a good idea, even if one also produces
a plot of the ROC curve and reports the area under the curve.

There’s more...

There is a lot we have not discussed here. First, let’s address an obvious point. Jupyter notebooks are a
common medium for producing data science pipelines. This is fine, but users should understand that
this format has several shortcomings. First, and probably most importantly, is the fact that Jupyter
notebooks can be run out of order and that later cells might have non-trivial dependencies on earlier
cells. To address this, make sure that you always run a notebook on a clean kernel in its entirety, rather
than simply rerunning each cell in a current kernel (using tools such as Papermill from the Executing a
Jupyter notebook as a script recipe, for example.) Second, the results stored inside the notebook might
not correspond to the code that is written in the code cells. This happens when the notebook is run
and the code is modified after the fact without a rerun. It might be a good idea to keep a master copy
of the notebook without any stored results and make copies of this that are populated with results
and are never modified further. Finally, Jupyter notebooks are often executed in environments where
it is challenging to properly cache the results of intermediate steps. This is partially addressed by the
internal caching mechanism inside the notebook, but this is not always totally transparent.

Let’s address two general concerns of reproducibility now: configuration and caching. Configuration
refers to the collection of values that are used to control the setup and execution of the pipeline. We
don’t have any obvious configuration values in the recipe except for the random seeds used in the
train test split routine and the model (and the data generation, but let’s ignore this), and
the percentage of values to take in the train/test split. These are hardcoded in the recipe, but this is
probably not the best idea. At the very least, we want to be able to record the configuration used in
any given run of the analysis. Ideally, the configuration should be loaded (exactly once) from a file and
then finalized and cached before the pipeline runs. What this means is that the full configuration is
loaded from one or more sources (config files, command-line arguments, or environmental variables),
consolidated into a single source of truth, and then serialized into a machine- and human-readable
format such as JSON alongside the results. This is so you know precisely what configuration was used
to generate the results.

Caching is the process of storing intermediate results so they can be reused later to decrease the running
time on subsequent runs. In the recipe, we did store the intermediate results, but we didn't build the
mechanism to reuse the stored data if it exists and is valid. This is because the actual mechanism for
checking and loading the cached values is complicated and somewhat dependent on the exact setup.
Since our project is very small, it doesn’t necessarily make any sense to cache values. However, for
larger projects that have multiple components, this absolutely makes a difference. When implementing
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a caching mechanism, you should build a system to check whether the cache is valid by, for example,
using the SHA-2 hash of the code file and any data sources on which it depends.

When it comes to storing results, it is generally a good idea to store all the results together in a
timestamped folder or similar. We don’t do this in the recipe, but it is relatively easy to achieve. For
example, using the datetime and pathlib modules from the standard library, we can easily create
a base path in which results can be stored:

from pathlib import Path

from datetime import datetime
RESULTS OUT = Path(datetime.now() .isoformat ())

results.to_ csv(RESULTS OUT / "name.csv")

You must be a little careful if you are using multiprocessing to run multiple analyses in parallel since
each new process will generate a new RESULTS_OUT global variable. A better option is to incorporate
this into the configuration process, which would also allow the user to customize the output path.

Besides the actual code in the script that we have discussed so far, there is a great deal one can do at
the project level to make the code more reproducible. The first, and probably most important step,
is to make the code available as far as possible, which includes specifying the license under which
the code can be shared (if at all). Moreover, good code will be robust enough that it can be used for
analyzing multiple data (obviously, the data should be of the same kind as the data originally used).
Also important is making use of version control (Git, Subversion, and so on) to keep track of changes.
This also helps distribute the code to other users. Finally, the code needs to be well documented and
ideally have automated tests to check that the pipeline works as expected on an example dataset.

See also...
Here are some additional sources of information about reproducible coding practices:

o The Turing Way. Handbook on reproducible, ethical, and collaborative data science produced
by the Alan Turing Institute. https://the-turing-way.netlify.app/welcome

o Review criteria for the Journal of Open Source Software: Good practice guidelines to follow with
your own code, even if it is not intended to be published: https://joss.readthedocs.
io/en/latest/review criteria.html

This concludes the 10" and final chapter of the book. Remember that we have barely scratched the surface
of what is possible when doing mathematics with Python, and you should read the documentation
and sources mentioned throughout this book for much more information about what these packages
and techniques are capable of.
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