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Preface

The rapid development of computing places special demands on the training of
young specialists in this field. The complexity of the problems that must be
solved to satisfy the needs of science, technology, industry and the economy also
grows, simultaneously with the rapid growth in the power of modern computer
systems. In this connection, we believe that it is essential that computing specialists
have fundamental knowledge about the development of the related mathematical
frameworks and about how to create methods for solving the above problems.

Algebra and geometry are deemed important areas whose ideas and results are
actively used in the development of information systems, as well as in software
developed for business projects. The basic notions of algebra are numerical matrices
and the methods for working with matrix algorithms. They may be used extensively
in scientific and technical problems and in the game industry. The rapid development
of game technologies, as well as augmented and alternative reality technologies,
means that we must pay special attention to university courses in analytical
geometry and linear algebra, pattern properties in 3D space and fast algorithms for
working with two- and three-dimensional objects.

Another promising area of application for linear algebra algorithms that has seen
rapid development in recent years is Big Data. Analysis of extremely large arrays
requires not only knowledge and use of the known methods, but it also issues the
challenge to develop new approaches and high-performance algorithms.

This textbook is an introduction to linear algebra and analytical geometry for
higher-education students in the natural sciences. It is based on the courses Algebra
and Geometry, Analytical Geometry and Fundamental and Computer Algebra,
which are taught to first-year students of the Faculty of Computer Sciences at
the Voronezh State University. The teaching is meant for theoretical training, as
a supplement to the existing textbooks, for practical and laboratory classes, and also
for self-study. Going forward, the terms “Algebra” and “Linear Algebra” will be
considered equivalent, as well as “Geometry” and “Analytical Geometry”.
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The authors have attempted to lay the material down in the most comprehensible
form while not sacrificing strictness in definitions and theorems. The statements
(theorems, properties) are accompanied with proofs, or references to specialist
literature for advanced study of the materials.

The fundamentals of algebra and geometry are presented in the form most
suitable for future specialists in computing. We have considered the basic algorithms
for working with matrices, vectors and systems of linear equations. The theoretical
material contains solutions of most types of problems and is supplemented with
plenty of analysed examples. The end of an example is designated by the symbol
[. Each chapter ends with problems for self-study. Many of them are provided not
only with full answers but also with detailed solutions. The asterisk sign () marks
the advanced (enhanced complexity) problems.

Apart from the sections traditionally included in algebra and geometry courses,
one of the chapters is devoted to the mathematical fundamentals of the modern
section of cryptography, namely elliptic curve cryptography. The availability of this
chapter will be a connecting link between the mathematical courses and methods
applied in practice by the application software developers.

The section about quantum computing is devoted to one of the examples of the
application of algebra. It demonstrates that the notions of linear algebra are used for
constructing new algorithms, whose computation capacity exceeds the existing ones
considerably.

Let us briefly summarize the content of this textbook. The first four chapters
are devoted to classical divisions of linear algebra; they consider matrices and
determinants, and systems of linear equations; definitions are given for the notion of
vector space and the fundamental solution of a homogeneous system. The next few
chapters introduce the fundamentals of vector algebra and the coordinate method
on a plane and in a 3D space. The following subjects are considered: vectors in
three-dimensional space, the equation of a line on a plane, the equation of a plane
in space and the equation of a line in space. Second-order curves are analysed.
Material on elliptic curves is usually not included in a “traditional” algebra and
geometry course. However, its presence in this book, in our opinion, contributes to a
deeper understanding of the methods of linear algebra and analytical geometry and
provides an example of the implementation of such methods for solving problems
in theoretical and practical cryptography.

We use the Python programming language for illustration of the considered
algorithms. This allows us to familiarize readers with implementation at the initial
stage of study. Python was selected because it is a universal and widely used general-
purpose programming language, suitable for the successful realization of numerical
algorithms; Python is a continuously evolving language; and many of its realizations
are open source. Python has the necessary tools to automatically check for the
errors that might appear in the program code in the process of its creation. The
availability of a great number of additional libraries (such as NumPy, SciPy, pandas)
substantially expands the programmer’s capabilities. Thus, this language is quite
suitable for teaching linear algebra and analytical geometry algorithms.
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As the time of writing, the version of Python known as “Python 2” is still being
used in many significant projects and in the literature. However, official support for
Python 2 is diminishing and is scheduled to end. So, we use the latest major version,
“Python 3”, in this book. Note that there are significant differences between Python
2 and Python 3; however, extended support documentation and tools are available
for conversion between the two major versions. Refer to the official Python webpage
(https://www.python.org/) for more details.

The book offers a list of training literature on linear algebra and analytical
geometry, which may be used for a more detailed study on the issues touched upon
in this textbook.

The appendices contain reference information, including basic operators in
Python and C, trigonometric formulae and the Greek alphabet. These reduce the
necessity to address reference literature.

Below you can see the chart of the chapter information dependence in the form of
an oriented graph reflecting the preferable order of covering the academic material.
For instance, after having studied Chaps. 1, 2 and 3, you can move to one of the two
chapters, Chap. 4 or Chap. 6, the contents of which are relatively independent. After
Chap. 9, we think Chaps. 11 and 12 can be mastered in any order.


https://www.python.org/
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Chapter 1 )
Matrices and Matrix Algorithms Shethie

1.1 Matrices and Operations with Them

Matrix of size m x n is a rectangular table of numbers with m rows and n columns.
A matrix is written in the form

a a2 aln
azl azp ... ap

A= " (1.1)
aml Am?2 Amn

Matrices are usually denoted by capital Latin letters, for example, A, B, U, . ..
Numbers a;;, included into the matrix, are its elements. An ordered set of
elements a;1, a;2, . . ., a;, of the matrix A, having similar first index i, is referred
to as the i-th row of the matrix, while an ordered set of elements a1, azj, . . ., amj,
having similar second index j, is referred to as the j-th column. Thus, the first
index of an arbitrary element a;; indicates the row number, while the second index
indicates the column number, at the intersection of which this element is situated.
A brief matrix record is widely used:

A=(aj), i=1,2...,m; j=12,...,n (1.2)

The column of n numbers is also called n-vector, or simply vector. So, the 1st
vector represents a single number, or, in other words, scalar.

© Springer Nature Switzerland AG 2021 1
S. Kurgalin, S. Borzunov, Algebra and Geometry with Python,
https://doi.org/10.1007/978-3-030-61541-3_1
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2 1 Matrices and Matrix Algorithms

Note Matrices were initially introduced for a compact record of linear equations.
Now, they are used in various divisions of mathematics and physics and their
applications for simpler presentation of various mathematical operations on matrix
elements.

Example 1.1 A point on a computer screen in RGB format is presented in the form
of a 3-vector with components

PR
P={ps|, (1.3)

PB
where pr, pg, pp are real numbers from interval [0, 1], they characterize the inten-

sity of red, green and blue colour components, respectively. Various combinations
of the component values allow obtaining any colour. In particular, vectors

1 0.2
Pi=|0|and P,=| 0.2 (1.4)
0 0.6
determine red and dark-blue colours, respectively. (]

If the condition m = n is met, then the matrix is called square matrix of order ».
If the number of rows is not equal to the number of columns, and thus the inequality
m # n is met, then such a matrix is a rectangular one.

Note For presentation of matrices, the following notations are also used:

ai ap ... ai ai ap ... ai
a1 ay ... a a ay ... a

" or " (1.5)
Aml Am2 - - - Amn aml Am2 - - - Amn

The elements of real matrices are real numbers from the set R = (—o0, 00),
while the elements of complex matrices are complex numbers.

Note In a standard mathematical notation, the indices of the elements begin with
one: i, j = 1,2,... In many programming languages, including Python and C,
rows and columns are numbered from zero to m — 1 and n — 1, respectively.
This difference should be paid attention to when realizing matrix algorithms in the
mentioned languages.
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For the matrix A we will build a new matrix B, where we transpose the rows and
the columns:

al ay ... ami
ayn ay ... am

B— . (1.6)
dln A2n Amn

Such a matrix B is called transposed with respect to A and is denoted as A7 . As is
easy to see, reapplication of the transposition operation returns to the initial matrix:
AN = A.

50 —4
Example 1.2 Transposed with respect to the matrix A = is the matrix
2-13

5 2
AT =10 —1|. O
-4 3
Let A be a square matrix. Its main diagonal is a set of elements
aii, ax, ..., dn,, having the same indices, and secondary diagonal, or cross-
diagonal, is the set of elements a,1, a,—1)2, . . ., @1, of the matrix.

A square matrix is called diagonal, if all of her elements located outside the main
diagonal are equal to zero:

d 0...0
0dr... 0
(1.7)
0 0...dy
If in a diagonal matrix of form (1.7) for all valuesi = 1, 2, ..., n the equalities
d; = 1 are true, then the matrix is called identity matrix, or unit matrix, and is

denoted through 7, while of all the elements d; = 0, then it is called zero matrix,
or null matrix, and is denoted by O:

10...0 00...0

01...0 00...0
[ = , 0= . (1.8)
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For notation of the elements of an identity matrix, Kronecker' symbol is used,
defined as follows:

1, ifi =j,
ij = .
0, ifi #j.

(1.9)

Thus, in symbolic notations, we have I = (§;;), wherei, j =1,2...,n.

Note Often, in the notation of Kronecker symbol, the indices are divided by
commas: J; ;.

The matrix A = (a;;) is called upper triangular, if a;; = O ati > j, i.e. all
the elements, positioned below the main diagonal, are equal to zero. Similarly the
matrix B = (b;;) is called lower triangular, if b;; = O ati < j,i.e. all the elements
above the main diagonal are equal to 0.

Upper and lower triangular matrices may schematically be denoted as shown in
Fig. 1.1.

Square matrix A = (a;;) is called symmetric, if for all valuesi, j =1,2,...,n
elements a;; = aj;, in other words, all the elements symmetric with respect to the
main diagonal are equal to each other.

Taking into account the notion of transposed matrix, the symmetry condition may
be written in the form of the equality A = AT,

For the antisymmetric matrix, the elements a;; = —aj;, where i,j =
1,2,...,n.

Let us turn to the notion of equality of matrices. Two matrices A = (a;;) and
B = (b;j) of size m x n are equal to each other if and only if a;; = b;; for all i and
Jj. Thus, the property of equality can only be met for the matrices of the same size.

Fig. 1.1 Schematic notation for upper A and lower B triangular matrices. Highlighted is the
position of the elements other than zero

1Leopold Kronecker (1823-1891), German mathematician.
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Example 1.3 Consider two matrices C and D:

1 ¢ d* —d
C = , D= , (1.10)
-t d d?

where ¢ and d are some real numbers.
Equality of matrices C = D is equivalent to the system of equations reflecting
equality of separate elements:

> = 1,
¢t =—d,
(1.11)
—c? d,
= d%

Then, the matrices C and D are equal if and only if the equalities ¢ = +1 and
d = —1 are met. O

Example 1.4 Binary matrix or (0, 1)-matrix is called a matrix, whose elements
take values O or 1. Let us calculate how many binary matrices of size m x n exist.
Each element of such a matrix may only take two values. Since the matrix
consisting of m rows and n columns has a total of mn elements, then we obtain
2"™" ways to assign values to the elements. Hence, the number of binary matrices of
size m x nis 2", ]

Consider the basic operations on matrices. Operations on matrices are introduced
using the well-known arithmetic operations on their elements. Addition and multi-
plication of real numbers are naturally transferred to the matrices and form the basic
operations of matrix algebra.

Sum of two matrices A = (a;;) and B = (b;;) of the same size m x n is the
matrix C = (c;j) of the same size, consisting of the elements ¢;; = a;; + b;;. And,
for the sum of matrices, it is written C = A + B.

Note, that one may only add square or rectangular matrices of the same size.

Example 1.5 Given two matrices A and B:

201 053
A= B = . (1.12)

13 4 | 214
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Find their sum A + B, having performed the operations of addition of the
respective elements:

24004+5—1+3 252
App=|-T00F L . (1.13)
142341 4+4 348

O

Product oA of the real number « and the matrix A = (a;;) is the matrix C =
(cij), consisting of the elements ¢;; = o - a;;.

Example 1.6 Assume that the real numbers « = 2, § = —3 are set, and the
. 0 —-12 0 —24
matrix A = . Then ¢A = 2A = , BA = (-3)A =
-2 3 4 —4 6 8
03 -6
6-9—12|
O

Based on the introduced operations, we may make up a difference of matrices
according to the definition: A — B = A + (—1)B. Thus, the matrices difference is
nothing but the sum of the first summand and the second summand, multiplied by
the number (—1).

Note that for antisymmetric matrix A the equality A7 = —A is true.

Example 1.7 Find the difference of the matrices defined in Example 1.5:

20-1 053 20-1 053

A-B= - = +(=1)
13 4 214 13 4 214
24 D00+ (=5 1+ (=D3| | 2 —5-4
14+ (=123 4 (=1 4+ (—1)4 “12 0

O

The introduced operations have the following properties that are true for arbitrary
matrices A, Band C and all A, u € R:

A + B = B + A (commutativity of addition);

. (A+ B)+ C = A+ (B + C) (associativity of addition);
A (RA) = (A - wA;

. MA+£B)=)A+t)\B;

.Mt wA =AA L uA;

A+0=0+A=A.
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The primary operation of linear algebra is the product of matrices. It, based on
the two initial matrices, allows constructing a new matrix.

In order to introduce this notion, let us first consider one special case. The product
of a row of n elements by a column of n elements is the element, equal to the sum
of the products of the respective elements of the raw and the column:

by
by

larar. ]| ) | = b +abr+ -+ anby. (1.14)
b

Example 1.8 Calculate the product of the row [1,2,4,8, 16] by the column
[16,8,4,2,117:

[124316] —1-164+2-8+4-4+42-8+1-16=80. (1.15)

—_ N B~

O

Now let us consider the general case of matrices of an arbitrary size.

Product of the matrix A = (a;;) of size m x n and the matrix B = (b;;) of
size n x p is the matrix C = (¢;;) of size m x p, whose elements are expressed in
accordance with the rule:

n
Cij = Zaikbkj- (1.16)
k=1

The product of matrices is writtenas C = A - Bor C = AB.

Thus, the element ¢;; of the matrix C = AB is the sum of the products of the
elements of the i-th row of the matrix A by the respective elements of the j-th
column of the matrix B (Fig. 1.2).
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by ;
ij E
i_otg il Q2 .. Qg : TGy ;;53
L bn] - I
J-th
j-th column
column
n
Cij = > Qikby;
k=1
Fig. 1.2 Multiplication of matrices (a;;) and (b;;)
. S . 12
Example 1.9 Execute the operation of multiplication of matrices and
=34
=36 |
5 —4|
L2)(=36]_ 1-(=3)+2-5 1-64+2-(—4)
-34 5 -4 (=3)-(=3)+4-5(-3)-64+4-(—4)
7 -2
- . (1.17)
29 —-34
(]

Note The definition of the product of matrices introduced above looks less natural
than the definition of the sum. However, exactly this method of introducing the
operation of multiplication allows, in matrix algebra, preserving many properties
typical for the product of real numbers.

The following properties are met:

1. A(B4+C)=AB+ AC, (B+ C)A = BA + CA (distributivity of multiplication
with respect to addition);

2. (AB)C = A(BC) (associativity of multiplication);

. OA = AO = O (property of zero matrix);

4. 1A = Al = A (property of identity matrix).

(O8]
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In the general case, in the product of matrices, their order is essential, which is
demonstrated by the following example.

2 —1 30
Example 1.10 Let A = and B =
10 1 -1
Then we have
AB— 2 -1 30 _ 2:34+4(-D-12-04+(=1)- (=1 _ 51
10 1-1 1-340-1 1-04+0-(=1) 30

(1.18)

at the same time, the product of matrices, executed in a different order, is equal to

A |30 |21 _| 32401 3.(=D+0.0 | |63
1-1||10 124 (=D)-11-(=D)+(=D-0 1 -1
(1719)

O

So, matrix multiplication is non-commutative, i.e. when the multipliers are
permuted, the result may change.

As it directly follows from the definition of matrix product, they can be multiplied
when and only when the number of rows of the first multiplier—matrix A, coincides
with the number of rows of the second multiplie—matrix B. We should also note
that the existence of the product AB does not imply the existence of the product
BA.

Matrix Commutator and Matrix Trace
Matrices A and B are called commuting (or permutation), if AB = BA. The
commuting matrices are necessarily square and have the same order.

Commutator of two square matrices of the same order is the value

[A, B]= AB — BA. (1.20)
By definition for commuting matrices, the condition [A, B] = O is met.

Example 1.11 Calculate [A, B], if

-1 2 =2 1 0-1
A=|2 1 —-1|, B=|-111 |- (1.21)
—1-1-1 200
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Solution
(12 2 1o-1] [=72 3]
AB=|2 1 —1| |=111|=|=11 =11, (1.22)
—1-1-1] [200] |-2-10 |
1 0-1][-12 =2] [o 3 —1]
BA=|-111 2 1 =1|=|2 =20, (1.23)
200 | [—1-1-1] |24 —4]
—7-1 4
[A,B|=AB—BA=|_-3 3 —1]. (1.24)
0 —5 4

O

Example 1.12 Prove Jacobi” identity, true for the commutators of any matrices of
size n x n:

([P, Q1 R+ [[Q, R], P1+[[R, P], Q] = O. (1.25)
Proof Use the definition of commutator [P, Q] = PQ — QP, then

([P, O, RI=[PQ—-QP,R]=(PQ—-QP)R—R(PQ—QP)
= PQR— QPR — RPQ + RQP. (1.26)

Then, in a similar manner, we will present the remaining summands in the sum:

[[Q,R], P]=QRP —-RQP - PQOR+ PRO, (1.27)
[[R,P],Q]=RPQ —PRQ — ORP + QOPR. (1.28)

The sum of the values (1.26), (1.27) and (1.28), as is easy to see after reducing
such summands, is equal to zero. Thus, the Jacobi identity is proved.
O

2Carl Gustav Jacob Jacobi (1804—1851), German mathematician.
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Trace tr A of the square matrix A = (a;;), where 1 < i, j < n, is the sum of its
diagonal elements:

n
trA = Za;i. (1.29)
i=1

Another designation of the matrix A trace is Sp A, from a German word “spur”.

Example 1.13 The trace of the identity matrix / of size n x n is equal to its order:
trl =n. (]

Estimate of the Number of Multiplication Operations When Multiplying
Matrices
In order to estimate the working time of the computing algorithms it is necessary to
know the number of the multiplication operations executed in the program. Let us
determine this number for the matrix multiplication operation.

Let both product matrices be square and have the same order n. Then AB
is the matrix n x n. For calculation of all the result elements we will need n?
multiplications of row by column. The multiplication of row by column contains
exactly n multiplications of real numbers. Hence, in order to determine the product
AB we will need n3 real multiplications.

Note There exist non-elementary algorithms that allow multiplying matrices in a
smaller number of operations. Among the most well known of such algorithms is
Strassen® algorithm. Note that the advantages of using Strassen algorithm and
similar non-elementary methods of matrices multiplication become apparent only
for sufficiently large matrix size values [20].

Modern scientific and technical tasks, game industry projects, and technologies
of augmented and alternative reality require fast execution of matrix operations on
the mass data. This is why such actions with matrices as transposition, multiplication
and others are presently executed using the parallel programming methods. Working
with matrices on high-performance parallel systems has its own peculiarities associ-
ated with the methods of data presentation in the computer memory and the methods
of interprocessor communication. In the works [5, 27, 56] basic algorithms of matrix
algebra are presented, adapted for application on high-performance computing
systems. The examples of implementation of such algorithms are provided in [42].

Note As was noted above, the matrix elements are real and complex numbers. Apart
from this, the elements may also be functions on which algebraic operations can
be performed. In such a case we say about functional matrices. Later on, unless
otherwise specified, only numerical matrices are considered.

3Volker Strassen (born 1936), German mathematician.
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1.2 Concept of Algorithm, Correctness of Algorithms

In the Sect. 1.4 will be shown algorithms for working with matrices in Python
language. This is why, below we will preliminarily consider the concept of
algorithm and algorithm correctness and show how to estimate their efficiency.

Algorithm is an exact prescription defining the computational process leading
from the varying source data to the result sought for (the data is the ordered set of
symbols) [48, 49]. In other words, an algorithm describes a certain computational
procedure with the help of which a computational problem is solved. As a rule,
the algorithm is used for solving some class of problems rather than one certain
problem [16, 69]. The term ‘“algorithm” derives from the name of a medieval
mathematician al-Khwarizmi.*

The concept of algorithm belongs to basic fundamental notions of mathematics.
Many researchers use various definitions of algorithm that differ from each other.
However, all definitions express or imply the following algorithm properties [48,
49].

1. Discreteness. An algorithm must represent a process of problem solving as a
sequential execution of separate steps. Execution of each algorithm step takes
some time, and each operation is only executed wholly and cannot be executed
partly.

2. Elementary character of steps. The method of execution of each command
should be known and simple enough.

3. Determinateness (from Latin determinare—determine). Each successive step of
the algorithm operation is uniquely determined. The result should be the same
for the same source data.

4. Directedness. It should be known what to consider as the algorithm operation
result.

5. Mass character. There must be a possibility to apply the algorithm to all
collections of source data from the certain pre-fixed set.

Correctness of Algorithms

Consider the algorithm A that solves a certain computational problem. The pos-
sibility of applying this algorithm in a computer program requires justification of
correct problem solution for all input data, i.e. we should carry out the proof of the
algorithm A correctness. For this, we need to trace all changes of the variables’
values that occur as a result of the algorithm’s operation. From the mathematical
point of view, we are talking about establishing the true values of some predicates
describing the variables.

4al-Khwarizmi (Muhammad ibn Miusa al-Khwarizmi) (about 780-about 850), a distinguished
mathematician, astronomer, geographer and philosopher. The term “algebra” derives from the
name of his work containing the general techniques for solving problems reduced to several
algebraic equations [9].
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Assume that P is a predicate true for the input data of the algorithm A, Q is a
predicate taking a true value after completion of .A. The introduced predicates are
called precondition and postcondition, respectively.

Proposition {P}.A{Q} means the following: “if operation of the algorithm A
starts from the true value of the predicate P, then it will end at the true value of
Q”. We obtain that the proof of correctness of the algorithm A is equivalent to
the proof of trueness of {P}.A{Q}. The pre- and postcondition together with the
algorithm itself are referred to as the Hoare” triple. The Hoare triple describes how
the execution of the given fragment of the computer program changes the state of
computation [59].

Example 1.14 Let us prove the correctness of the algorithm of exchanging the
values of two variables.

Listing 1.1
s N
1 # Exchanging of values of variables a and b
2 temp = a
3 a=>b
4 b = temp
N J

Proof Let the variables a and b take the following values: a = ag, b = by.
Precondition: P = {a = ag, b = by}, postcondition: Q = {a = by, b = ap}.
Substitute the values of the variables a and b into the body of the algorithm A,

which will result in the following values: temp = ag, a = by, b = agp. This is

why the predicate { P}.A{Q} takes the true value, and thus the correctness of the
algorithm swap(a, b) is proved. ]

1.3 Estimation of Algorithm Efficiency

An important task of the algorithm analysis is the estimation of the number
of operations executed by the algorithm over a certain class of input data. The
exact number of elementary operations does not play any significant role here,
since it depends on the software implementation of the algorithm, the computer’s
architecture and other factors. This is why the algorithm’s performance indicator is
the growth rate of this value with the growth of the input data volume [16, 51].

In order to analyse the algorithm efficiency, it is necessary to estimate the
running time of the computer that solves the set problem, as well as the volume of
memory used. The estimate of the running time of the computing system is usually
obtained by calculating the number of elementary operations performed during
computations (such operations are called basic operations). With the supposition

SCharles Antony Richard Hoare (born 1934), English scientist specializing in computer science.
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that one elementary operation is performed in a strictly defined time, the function
f(n), defined as the number of operations during computations on input data of size
n, is called a time-complexity function [51].

In algorithm analysis, the number of basic operations is estimated, and it is
assumed that execution of each of the listed below operations takes constant and not
depending on n time [52].

1. Binary arithmetic operations (+, —, *, /) and operations of comparison of real
numbers (<, <, >, >, =, #).

2. Logic operations (and, or).

3. Branching operations.

4. Calculation of the values of elementary functions for relatively small values of
their arguments.

During implementation of matrix algorithms, in most cases the basic operation
is considered as the operation of multiplication of two real numbers.

Let us consider the functions f, g: N — (0, 0co0). Assume that g(n) describes the
time complexity of the known algorithm.

It is said that a function f(n) belongs to the class O(g(n)) (read as “big O of
g”), if the growth rate of f(n) does not exceed the growth rate of g(n). We give a
strict definition: f(n) = O(g(n)), if, for all values of the argument n, starting from
a threshold value n = no, the inequality f(n) < cg(n) is valid for some positive c:

O(gn)) ={f(m): 3¢ >0, no € N such thatforall n > ng
f(n) < cg(n) isvalid}. (1.30)

The notation f(n) € O(g(n)) can be read as “the function g majorizes the
function f”.

Since O(g(n)) denotes a set of functions growing no faster than the function
g(n), then, in order to indicate that a function belongs to this set, the notation
f(n) € O(g(n)) is used. Another notation is rather common in the literature:
f(n) = O(g(n)), where the equals sign is understood conventionally, namely in
the sense of belonging to the set. The class O(g(n)) are referred also to as the “big
O notation”.

Example 1.15 Prove that the asymptotic estimate 313 € O (n*) is true.

Proof According to the definition (1.30) we should prove that there exists a positive
constant ¢ such that starting from some number n¢, the inequality 3n3 < cnt is met,
or (cn — 3)n? > 0.

Assume that ¢ = 3, then, starting from ng = 1, the last inequality is true. Then,
3n3 € O(n*). O

Note The notation O (f(¢)) is used not only for t — oo, but may also be generalized
in case of an arbitrary limit value of the argument t+ — #y. For example, the
expression

J@)=0(g®) at t — 19 (1.31)
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means that the limit of the ration limit of the functions f(#) and g(¢) is taken at the
point t = fg:

f@

im = const > 0. (1.32)
t—ty g(t)

1.4 Primitive Matrix Operations in Python

In the programs in Python language, the matrices are presented in the form of two-
dimensional arrays [62]. For the arrays in Python, a special term “lis¢” is used. List
is an ordered sequence of numbers or other presentable in the computing system’s
memory objects. Thus, the matrix is specified in the form of a list, whose elements
are lists of the same length. In particular, the matrix

11 13 15 17
A=|-9-8-7-6 (1.33)
—1-212 14

in a Python program will be presented as

A=[[11, 13, 15, 171, [-9, -8, -7, -6], [-1, -2, 12,
14]1]

As is seen, for formation of a list an enumeration of its elements separated by
commas is used. In order to address the matrix elements, square brackets are used,
for example, A [1, j].

Note that the indices of arrays in Python begin from zero rather than one. For
example, for the matrix (1.33) we have the following equalities:

A0, 0] = 11

Al2, 1] = -2

Note The agreement about zero starting values of indices is also used in such
programming languages as C and Java [39]. However, in Fortran and Pascal
languages, the indices by default begin from one [12, 74].

Let us show a program code used for inputting the matrix elements from the
console and outputting the matrix to the console (see Listing 1.2).

Listing 1.2
s 3
1 def read matrix from console():
2 n = int (input()) # Number of rows
3 m = int (input()) # Number of columns
4 A = []
5
6 for 1 in range(n):
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int (row([j])

16

7 row = input () .split ()
8 for j in range (m) :

9 row[j] =

10 A.append (row)

11 return A

12

13

14 def print matrix to console(A):

15 for row in A:
16 for elem in row:
17 print (elem,
18 print ()

N

end="'

")

Example of call of functions read matrix from console () and

print matrix to console():

A
print matrix to console (A)

read matrix from console()

The following functions presented in Listing 1.3 perform standard operations on
matrices: addition, multiplication by a number and transposition.

Listing 1.3
s N
1 def matrix add(A, B):
2 if len(A) == len(B) and \
3 len(A[0]) == len(B[O0]):
4 C = [[0 for j in range(len(A[0]))] \
5 for 1 in range(len(d))]
6
7 for 1 in range(len(A)):
8 for j in range(len(A[0])):
9 Cli1[3]1 = Ali1[3]1 + BIil[3]
10
11 return C
12
13

14 def matrix mult by scalar(A, alpha):

\

alpha * A[i] [j]

15 C = [[0 for j in range(len(A[0]))]
16 for 1 in range(len(d))]

17

18 for 1 in range(len(d)):

19 for j in range(len(A[0])):

20 Clil [3] =

21

22 return C

23
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24

25 def matrix subtract (A, B):

26 if len(A) == len(B) and \

27 len(A[0]) == len(B[O0]):

28 C = [[0 for j in range(len(A[0]1))] \
29 for 1 in range(len(d))]
30

31 for 1 in range(len(a)):

32 for j in range(len(A[0])):
33 Cli]l [31 = A[il [3] - BIi] [3]
34

35 return C

36

37

38 def matrix transpose(A) :

39 C = [[0 for j in range(len(a))] \
40 for 1 in range(len(A[0]))]

41

42 for 1 in range(len(d)):

43 for j in range(len(A[0])):

44 Clj1[i]l = A[i] [37]

45

46 return C

\ J

An important function calculating the product of matrices by formula (1.16) is
presented in Listing 1.4.

Listing 1.4
r 3
1 # Multiplication of matrices A and B
2 def matrix mult (A, B):
3 C = [[0 for j in range(len(B[0]))] \
4 for 1 in range(len(d))]
5
6 for 1 in range(len(d)):
7 for j in range(len(B[0])):
8 s =0
9
10 for k in range(len(B)) :
11 s += A[i] [k] % BI[k] []]
12
13 Cclil [j]1 = s
14
15 return C



18 1 Matrices and Matrix Algorithms

Table 1.1 Matrix functions and NumPy procedures

Name Comment
dot (A, B) The product of matrices A and B
trace (&) Trace of matrix
linalg.inv (a) Inversion of matrix
linalg.det (a) Determinant of matrix
linalg.matrix power (A, n) Raising matrix A to power n
linalg.eigvals(d) Calculation of eigenvalues of matrix
linalg.eig(a) Solution of problems on eigenvalues and eigenvectors,
the function return all solutions (A, X) of the system
AX = AX
linalg.solve (A, B) Solution of the system of linear equations AX = B with

vector B on its right side

1.4.1 NumPy Library

For high-performance calculations, the library NumPy with open source code is
widely used [46, 57]. In this package, for presentation of matrices in the memory,
the data type array is introduced. Apart from this, when including NumPy using the
command
from numpy importsx
a great number of matrix functions and procedures become available. The most
important ones are listed in Table 1.1.
In particular, transposition of arbitrary rectangular matrices is performed using
the method ““. T”:
A=array([[11, 13, 15, 17, [-9, -8, -7, -6], [-1, -2,
12, 14]11])
A.T
To the console (more specifically, into the standard output stream) will be sent
A=array([[11, -9, -11,
[13, -8, -21,
[15, -7, 1271,
[17, -6, 1411)

1.5 Matrix Algorithms in the Graph Theory

As an example of the algorithm’s operation with matrices, let us consider one of the
important algorithms of the graph theory—Warshall® algorithm [1, 61], which is
used for calculating the reachability matrix of the specified directed graph D(V, E).

6Stephen Warshall (1935-2006), American researcher in the field of computer sciences.
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First we will recall the basic notions of the graph theory. Everywhere below, the
multiplication operation signs “-”” and “x” will be considered as equivalent. In some
cases, when it is clear that we are dealing with multiplication, they may be omitted.

Graph is a pair G = (V, E), where V is the set of vertices, while E is the set
of edges, connecting some pairs of vertices [22, 31, 55, 73]. In directed graphs,
the edges are the ordered pair of vertices, i.e. it is of importance which vertex is the
beginning of the edge and which one is the end. Directed graphs are also referred to
as digraphs.

A drawing where the graph vertex is shown as points and the edges are shown as
segments or arcs is called a graph diagram.

Two vertices u and v of the graph are adjacent, if they are connected by the
edge r = uv. In this case it is said that the vertices u and v are the endpoints of the
edge r. If the vertex v is the endpoint of the edge r, then v and r are considered to
be incident (from Latin incédere—to distribute).

The number of elements (cardinality) of any set, for example V, is denoted as
[V].

Adjacency matrix M is a binary matrix of a relation over the set of vertices of
the graph G(V, E), which is specified by its edges. The adjacency matrix as the size
|V] x | V], and its elements are determined in accordance with the rule

1, ifedgeij e E,

M@, j) = (1.34)

0, ifedgeij ¢ E.
A path of length k in the graph G is a sequence of vertices vy, vi, ..., Uk such
that Vi = 1, ..., k the vertices v;_; and v; are adjacent. There are also considered

trivial paths of the form v;, v;. For undirected graphs, paths are also called routes.
The length of the path is the number of edges in it, taking into account the
iterations.

Example 1.16 Consider a digraph D(V, E), the set of vertices V and the set of
edges E of which are specified as follows:

V=\a,b,c,d,e}, E ={ab,ae,bc,bd,dc,de,ec}.

The graph D(V, E) is presented in Fig. 1.3.
The adjacency matrix M of the digraph D has the form:

abcde

[01001]
00110
00000]|-
00101

e|00100]

S EEEEN

(1.35)

<
[
ISV
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Fig. 1.3 The digraph
D(V, E) to the Example 1.3

Reachability matrix M* of the digraph D(V, E) is a logic closing matrix by
transitivity relation E. The reachability matrix stores the information about the
existence of paths between the digraph vertices: at the intersection of the i-th row
and the j-the column stands 1 when and only when there exists a path from the
vertex v; to v;. M* may be calculated by a formula using the logical operation
or [29]

M*=MorM?or ...or M", (1.36)

where n is the number of vertices of the directed graph, i.e. n = |V|. Note, that
determining the elements of the matrix M* by formula (1.36) is associated with
a considerable volume of calculations, this is why for the digraphs with a great
number of vertices, the Warshall algorithm is used, also known as the algorithm
of R0y7—Warshall [61].

The Warshall algorithm is based on formation of a sequence of auxiliary binary
matrices WO, w_ w® where n = |V|. The first matrix is set equal to the
adjacency matrix M of the digraph. The elements Wl.(jk), where 1 < i, j, k < n, are

calculated by the rule: Wl.(.k) = 1, if there exists a path connecting the vertices v;
and v; such that all the inner vertices belong to the set Vy = {v1, v2,..., v}, and
Wl.(jk) = 0 otherwise. Note that the inner vertex of the path P = v;, ..., v, ..., v;
is any vertex v, 1 <1 < n, belonging to P, except the first v; and the last v;. The
resulting matrix W appears to be equal to W = M*, since M}, = 1 when and

only when there exists the path v;, ..., v}, all inner vertices of which are contained
inV ={v,v,..., v}

The principal moment is that the matrix W® can be obtained from W&*—D as
follows. The path v;, ..., v;, containing the inner vertices only from the set Vj,
exists when and only when one of the conditions is fulfilled:

1. there exists a path v;,...,v; with inner vertices only from V;_; =

{vi,v2, ..., vk}

"Bernard Roy (born 1934), French mathematician.
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2. there are paths vy, ..., v and v, ..., vj, also containing inner vertices only
from Vj_1.

We obtain two cases: either Wi(]k_l) = 1, if vg is included into the set of vertices

allowed at this stage, or Wl.(]ffl) =1 and W,g.cfl) = 1. Therefore, using the logical
operations or (disjunction) and and (conjunction) we may write

wi = wi D or (Wi and wY). (1.37)

Let us show a respective algorithm for constructing M* by the specified
adjacency matrix M of size n x n, where n > 1. The intermediate matrices w®,
where 0 < k < n — 1, should not necessarily be stored in memory until the end
of the algorithm’s operation, this is why, in the suggested realization, the elements
W% =D are substituted by the elements of the subsequent matrix W&,

Listing 1.5
r 3
1 def Warshall algorithm(M) :
2 n = len(M)
3
4 W = [[0 for j in range(n)] \
5 for i in range(n)]
6
7 for 1 in range(n):
8 for j in range(n):
9 Wil [J1 = M[4i] [3]
10
11 for k in range(n) :
12 for i in range(n):
13 for j in range(n) :
14 Wil [3] = W[il [§] or \
15 (W[i] [k] and W[k] [3])
16
17 return W
C y

Correctness of algorithm WarshallAlgo can be proved by the method of math-
ematical induction (see the description of this method below on page 53) [61].
Solution of the problem for finding M* is also investigated in Problem 1.39 and
in [61].

Example 1.17 Let digraph D be specified (Fig.1.4). Construct the reachability
matrix M*, using Warshall algorithm.
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Fig. 1.4 Directed graph D

d C

Solution The matrix W(® coincides with the adjacency matrix of the digraph and
has the form

abcd
0100
1010
0000
{1010

S Q

WO —

o

Calculate W If Wi(jp) = 1, then the respective element Wi(jl) is also equal to

1: Wl.(jl) =1.1If Wl.(.o) = 0, then attention should be paid to the elements of the first
row and the first column, standing at the intersection with the j-th column and the
i-the row: if Wl((;) = Wl.(f) ) — 1, then Wi(}) = 1. The condition Wl((;) = Wl.(P ) — 1
is fulfilled for the two pairs (i, j), namely fori = j = 2 andi = 4, j = 2.
Then, Wz(é) = Wg) = 1, and all the rest elements WD coincide with the respective
elements of the matrix W . For illustration, in the notation of the matrix we will

highlight in bold and underline the elements W(! that have changed values at this
step:

abcd
0100
1110
cloooo]|
dl1110

S Q

wh —

Then we will calculate W@ . Consider the second row and the second column
of the matrix W, The elements W) that are positioned in the same row with the
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elements of Wi(zl ) = 1 from the second column and in the same column with the

elements of Wz(}) = 1 from the second row, will change their values in wO for 1.

Such will be the elements Wﬁ) and Wl(;). The rest of the elements W@ coincide
with the respective elements of the matrix W),

wo —

abcd
1110
1110
0000]
1110

9} S

IS

At the next step, the vertex c is added to the set of vertices. This does not result
in appearance of new elements with value 1.

wo —

At the final step, we obtain w® =
D will have the form

M*

Review Questions

abcd
1110
1110
0000]
1110

(9} S Q

IS

W and the reachability matrix of digraph

abcd
1110
1110
0000
1110

)

QU

1. Define diagonal matrix, upper triangular matrix, lower triangular matrix,
symmetric matrix and binary matrix.
2. How is the matrix transposition operation performed?
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PN W

11.
12.
13.
14.
15.

1 Matrices and Matrix Algorithms

How is the Kronecker delta determined?

What matrices are called symmetric? antisymmetric?

Formulate the definition of product of two matrices of size m x n andn x p.
What is the commutator of the matrices A and B?

Define trace of a square matrix.

What is algorithm?

Enumerate the properties of an algorithm.

How is the algorithm efficiency estimated?

Explain the meaning of the notation O (f (n)).

Describe the presentation of matrices in Python.

Enumerate the basic matrix functions and the procedures of NumPy library.
How are graphs presented in the computer memory?

For solution of what problem is the Warshall algorithm used?

Problems

21 -1 -210
1.1. Calculate 3A + 2B, where A = , B= .
1
1.2. Calculate AB, where A = , B =2
3

01 4 —322

1

1-10
—1|. Find BT AT and

234
0

AaBr.

1.3. Let the matrix A = (a;;) be of size n1 x n; and the matrix B = (b;;) be of

size ny x nj. Prove that the following equality is fulfilled:
(AB)T = BT AT, (1.38)

i.e. the transposed product of two matrices is equal to product of the
transposed matrices in reversed order.

1.4. Write the matrices of size 3 x 3, whose elements are determined by the

formulas:

(1) ayj = (=L
P+j+li—

@) by = JHIli—=Jl

2 b
B3) cij =0 =2+ —-2%
(@) dij = sin(|i — j|).

Calculate the sum of all elements S of each matrix.
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1.5. Let A = (a;j) be a square matrix of order n > 3. Using the summation
symbol ), write the following values:

(1) the sum of the elements of the third row;

(2) the sum of the elements of the second column;

(3) the sum of squares of the diagonal elements;

(4) the module of the sum of the elements positioned on the secondary
diagonal.

1.6. How to write the sum of the elements of the square matrix positioned above
the main diagonal using the summation sign? How to do this for the elements
positioned below the main diagonal?

1.7. A student carrying out an experiment in a chemical laboratory has acciden-
tally spilled a reagent on an algebra notes page, where antisymmetric matrix
was written. As a result, it was impossible to read some of its elements. If we
denote such elements by symbol “?”, the notation will look as

01-17?
70 2 2
7?7777
7?70 7?7
Restore the unknown elements and write the original matrix.
1.8. Determine the number of binary matrices of n rows and n columns that are

(1) symmetric and
(2) antisymmetric

relative to the main diagonal.
1.9. Calculate

001
1 -1 3
112 4 1 -2
a) 2 2 ;b
223 1 34
1 1
334
1.10. Consider the binary matrices
010 001
Qi=[100|. Q2=1]010
001 100

Calculate Q1 Q2, 0201, Q7 and Q3.
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1.11.

1.12.

1.13.

1.14.

*1.15.

1.16.

1.17.

1.18.

1.19.

1.20.

1 Matrices and Matrix Algorithms

For what matrices D of the second order the square of D is equal to the zero
matrix?

Let the matrices L = [-2,—1,0,1,2], M = [0, 2, 4, 6, 8] be specified.
Calculate the products of LM T and MT L.

The elements of the matrix G = (g;;) are determined in accordance with the
rule

1, ifi > j,
g =
Y o, i <

What are the elements of the matrix G> equal to?

At the examination in linear algebra, a student says that multiplication of two
non-zero matrices will necessarily result in a non-zero matrix. Is the student
right?

Let us denote by x; the number of processors produced by some plant starting
from the beginning of the year. In particular, the plant’s operation during the

first month is described by the vector X = [x1,x2,..., x31]7 . Determine
the matrix D, which should influence the X, in order to obtain the vector
Y =[x2— X1, X3 — X2, ..., % —Xn—1]17: Y = D - X. The vector Y reflects

the daily production capacity gain of the plant.
Calculate the product of the functional matrices A(y) B(6)A(p), if

cose sing 0 1 0 0
A(p) = | —singp cosp 0|, BE)= |0 cosd sind
0 0 1 0 —sinf cosé

Calculate the commutator [A, B], if

753 623

A=1[132|,B=|521

227 116
Calculate the commutator [A, B], if A is an arbitrary matrix, B = [ is

identity matrix of the same order as A.
Consider the matrices

0-10 00 0 001
PP=]100|, P=]00-1|, P=]|000]- (1.39)
000 01 0 —-100

Calculate the commutators [Py, P2], [P2, P3] and [P3, P1].
Is it true that for any square matrices A, B and C of the same size the equality
[A+ B,C] =[A, C]+[B, C]is fulfilled?



Problems 27

1.21.

1.22.

1.23.

1.24.

1.25.

1.26.

1.27.

1.28.

Prove that for any matrices A, B and C of the same size, the identity is true
[AB,C] = A[B,C]+[A, C]B. (1.40)

Is it true that for any square matrices A, B and C of the same size the equality
[A,[B, C]]l =[[A, B], C] is fulfilled?

Given the square matrices A and B of the same order. In what case the
equality (A + B)> = A®> + 2AB + B? is true?

Is it true thatif [A, B] = O and [A, C] = O, then the matrices B and C are
commuting?

Suppose that the sizes of the matrices A, B and C are equal to ny x no,
ny x n3 and n3 X ng4, respectively. In order to calculate the product of ABC,
the multiplication operations can be executed in two ways: (A - B) - C or
A - (B - C). With what relation between the variables n1, ny, n3 and n4 the
calculation using the first method—as (A - B)-C—will require less operations
of multiplication of real numbers in comparison with the second method?
Prove the correctness of the algorithm of change of values of two variables
without using the auxiliary variable.

Listing 1.6
-
1 # Exchanging of values of variables a and b
2 # without using the auxiliary variable
3 a=a+b
4 b=a-5>
5 a=a->b
\ J

Prove the correctness of the algorithm of addition of square matrices.

Listing 1.7
s N
1 # Addition of matrices A and B
2 def matrix_add(a, B):
3 if len(aA) == len(B) and \
4 len(A[0]) == len(B[O0]):
5 C = [[0 for j in range(len(A[0]))]1 \
6 for 1 in range(len(d))]
7
8 for 1 in range(len(d)):
9 for j in range(len(A[0])):
10 Clil [J]1 = A[i]l[3]1 + BI[il []]
11
12 return C
N U

Prove the correctness of the square matrix multiplication algorithm.
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Listing 1.8
r 3
1 # Multiplication of matrices A and B
2 def matrix mult (A, B):
3 C = [[0 for j in range(len(B[0]))] \
4 for 1 in range(len(d))]
5
6 for 1 in range(len(d)):
7 for j in range(len(B[0])):
8 s =0
9
10 for k in range(len(B)) :
11 s += A[i] [k] % BI[k] []]
12
13 clil [§]1 = s
14
15 return C
N y

1.29. Prove the correctness of the optimized matrix multiplication algorithm.
Listing 1.9
- A
1 # Optimized multiplication
2 # of matrices a and b

3 def matrix mult2(A, B):

4 n = len(A)

5

6 C = [[0 for 1 in range(n)] \
7 for j in range(n)]

8

9 D = [0 for i in range(n)]
10

11 for 1 in range(n):

12 for j in range(n):

13 s =0

14

15 for k in range(n) :
16 D[k] = BIk] []]
17

18 for k in range(n) :
19 s += A[i] [k] % DI[k]
20

21 c[i]l [§]1 = s

22

23 return C
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1.30.

1.31.

1.32.

1.33.

1.34.

1.35.

+1.36.

1.37.

1.38.

1.39.

Note The considered option of matrix multiplication is optimized in such a
manner as to preliminarily select the elements of the column b(k, ;) into the
intermediate array d, which may fully be placed in a fast cache memory.

Determine the number of operations of addition of two numbers executed by
the algorithm matrix add for the matrices of size N x N.

Determine the number of operations of addition and multiplication, executed
by the algorithm matrix mult for the matrices of size N x N.

Suggest a method to decrease the number of addition operations executed by
the algorithm matrix mult.

Let Ay, Ay and A3 be numerical matrices of size 50 x 25,25 x 30 and 30 x 10,
respectively. Determine the minimal number of multiplication operations
required to calculate the product of AjAzA3 by the standard algorithm
matrix mult, whose realization for square matrices is presented in
Problem 1.28.

Let A;, Ar, A3 and A4 be numerical matrices of size 25 x 10, 10 x 50,
50 x 5 and 5 x 30, respectively. Find the minimal number of multiplication
operations, required for calculation of the product of A1A2A3A4 by the
standard algorithm matrix mult.

Let Ay, Ay, Az and A4 be numerical matrices of size 100 x 20, 20 x 15,
1550 and 50 x 100, respectively. Find the minimal number of multiplication
operations required for calculation of the product of AjA2A3A4 by the
standard algorithm matrix mult.

Prove that the number of methods for calculation of the product of the
matrices A1A2...Au+1, m = 1, or, in other words, the number of ways
to place brackets in this product, where A, A2, ..., A,41 are numerical
matrices of size n1 X ny, N2 X 03, ..., Ay41 X Ny42, respectively, is equal to
the Catalan® number Cp, determined by formula

1
Cn = CQ2m,m) forallm > 1, (1.41)
m+1

where C(2m, m) is a binomial coefficient.

Estimate the number of operations executed by Warshall algorithm for
obtaining the reachability matrix of a digraph.

Using the Warshall algorithm, calculate the reachability matrix of the digraph
D, presented in Fig. 1.5.

One of the ways to modify the Warshall algorithm consists in presentation
of the rows of binary matrices as bit strings. In this case, for calculation of
the elements of the matrices W& for 1 < i < N, the bitwise operation or
is used. Find the number of operation in the bit strings executed by the given
realization of the Warshall algorithm.

8Eugene Charles Catalan (1814—1894), Belgian mathematician.
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Fig. 1.5 To Problem 1.38 3

1.40. Write the analytical expression for the function f(n), represented by the
algorithm:
Listing 1.10

s N
1 def f(n: int):
2 temp = 0
3
4 for i in range(l, n + 1):
5 for j in range(l, n + 1):
6 for k in range(j, n + 1):
7 temp += 1
8
9 return temp
N J

x1.41. Write the analytical expression for the function g(n), represented by the

algorithm:
Listing 1.11
Is N
1 def g(n: int)
2 temp = 0
3
4 for i in range(l, n + 1):
5 for j in range(n, 1 - 1, -1):
6 for k in range(l, j + 1):
7 temp += 1
8
9 return temp
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x1.42. Write the analytical expression for the function k(n), represented by the
algorithm:
Listing 1.12

- N

1

2

3

4 for 1 in range(l, n + 1):

5 for j in range(1l, 1 + 1):

6 for k in range(l, j + 1):

7 for 1 in range(l, k + 1):
8 temp += 1

9

10 return temp
\ J

1.43. Calculate the trace of the matrix A = (a;;), where 1 < i, j < n, whose

elements are specified by the formulas:

) aij =i+ J;

2) aij=i—j;

() aij =In@* + j?);

4) a;j = max(i,n — j);

(11
(5) aij =mln<., )
L
(6) aij =sin(w (@ +2j));

n
M aij = ) -G+
1
®) ajj =i+ ..
J

1.44. Prove that the trace of the product of the square matrices does not depend on
the order of multipliers: tr (AB) = tr (BA).

Answers and Solutions

1.1 Solution.

. 63 -3 —420
We calculate the summands in the sum: 3A = ,2B = .
0312 —644
2 5-3

We perform the matrix summation operation: 3A 4+ 2B =
—67 16
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1.2 Solution.
We will calculate the product A B relying on the formula (1.16) on page 7:

1-10
A-B= _
234
|t D 2403114 (=D (=D +0-0| |1 2
2.143.244.3  2.143-(=1)+4.0 20 —1

We execute the matrix transposition operation:

e 123
AT =|_13|.B" = ;
1-10
0 4
BT . AT 1-1+2-(-1)+3-0 1-2+2-343-4
1-14+(=D-(=D)+0-01-2+(=1)-34+0-4
_|-120
2 —1
4. B)F — —-120
2 —1

Note that the equality (AB)T = BT AT is fulfilled for any matrices A and B, for
which the product A B is determined.

1.3 Proof.
Based on the definition of the matrix transposition and on the formula (1.16), the
left part of the equality (1.38) consists of elements:

ni
(ABT),; = (AB)ji =) ajibui,
k=1

where | <i < n3,1 <j<ny.
Further, we represent elements of the right side of Eq. (1.38) in the form

ny ny ny
(BT AT);j =Y (BN (A" =) briajk =Y ajibii,
k=1 k=1 k=1

where 1| <i <n3,1 < j<ny.
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It is proved that for all possible numbers i and j elements of matrices (AB)” and
BT AT coincide. In accordance with the definition of equality of matrices on page 4
we get

(AB)T = BT AT,

1.4 Solution.
Having calculated the matrix elements by the specified formulas, we obtain

[—1 1 -1
(1) 1 —1 1 |, thesum ofall elements S = —1;
-1 1 -1
[123]
2) 1223, §=22
|333]
[212]
3)|101], S=12
1212
i 0 sinl sin2
4) |sinl 0 sinl|, S=4sinl+2sin2.
| sin2sinl 0O

1.5 Solution.

(1) For the elements of the third row we have i = 3, j = 1,2,..., n. Therefore,

the sum of the elements of the third row is presented in the form i asj.

(2) The elements of the second column may be written as a,-z,j :v\l/here i =
1,2, ..., n. Then, their sum is equal to i apn.

(3) For the diagonal elements, the indices i lailld Jj coincide: g;;. The sum of squares

n
of such elements is ) a?.

1=
(4) The secondary diagonal is formed by the elements whose sum of indices is
greater by one to the order of the matrix: i +j = n+1. Therefore, j = (n+1)—i,
n
the module of the sum of these elements is also equal to abs [ Y ai(n+1,-)).
i=1
1.6 Solution.
Let us write the sum of the elements of the square matrix positioned above the
main diagonal. The number of the elements to be summed up in the rows above
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the main diagonal decreases by one as the row number increases. Due to this,
summation of the elements in the i-th row begins with i 4+ 1, then the sum in one

n
row willbe )" a;;. Performing the summation operation over all rows, we obtain
j=i+1

Now let us write the sum of the elements positioned below the main diagonal.
The number of the elements to be summed up below the main diagonal increases by
one as the row number increases. Then, the upper summation threshold should be

i—1
equal to i — 1, and the sum for one row is calculated as Y a; - For the sum of the
j=1
n i—1
elements positioned below the main diagonal, we obtain ) > a;;.
i=1j=1

1.7 Solution.

By definition of an antisymmetric matrix, AT = — A, then
0 apr az1 7 0 -1 1 —a
1 0 azagp —ay; 0 -2 =2
AT = ) , —A=
-1 2 a3 0 —az| —azy —asz —azs4
a4 2 ass as 7 —ap, 0 —au

Equating the respective matrix elements, we obtain

0o 1 -1-7

-1 0 2 2
A=

1 =20 0

7 -20 0

1.8 Solution.
First of all we should note that the number of the elements on the main diagonal
of the matrix is n, while the number of the elements lying above itis n(n — 1)/2.

(1) The elements of the symmetric matrix lying below the main diagonal are
uniquely determined by the upper triangular part of the matrix; this can be
done by 2""~D/2 methods. There exist 2" methods for selection of diagonal
elements. We obtain that the number of symmetric matrices of n rows and n
columns is equal to 27"~ 1D/2 . g1 — pn(n+1/2,

(2) The main diagonal of the antisymmetric matrix is filled with zeros. In order to
determine such a matrix, it is sufficient to specify the elements above the main
diagonal; this can be done by 2""~1/2 methods. Therefore, all in all there exist
27n=D/2 antisymmetric matrices of size n x n.
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1.9 Solution.

35

001 R D R 5
112 33| |4 15
a) 2 2 = = ;
223 L 5501 25
334] 77 35
3 — —
b 12| [r-=2f|1-2||t—2| |-56]]1-2
34 3-4|[3-4||3-4 910 |3 -4
1314
21 -22 |
1.10 Solution_. o _ ~ _
o10|fo01 010
0102=|100||0o10|=]001;
loo1]|100] [100]
001][o10] [oo01]
0:01=|010(|100|=]100;
100]]|0o01]| [o010]
fo10][o10] [100]
ot=|100||100|=|010]
001]|0o01| [o001]
[001][oo1] [100]
oi=|o10||0o10|=]010]
100]|100] [001]
1.11 Solution. _
b
Let the matrix D have the form “ , where a, b, ¢, d are unknown real
cd

numbers.
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Let us square the D and equate the obtained result to the zero matrix.

ab||ab| |a*+bcab+bd| |00
cd||cd| |ac+dcbe+d®| |00
Let us write the system of relatively unknown a, b, c, d:
a+bc=0,
cla+d) =0,
b(a+d) =0,
bc+d* = 0.

From the obtained system it follows that the matrix D should have the form

, and the variables a, b and ¢ are bound by the condition a’> + bec = 0.
Cc —a

1.12 Answer:
The size of the matrix L is equal to 1 x 5, the size of the matrix M7 is equal to

5 x 1. Therefore, the matrices LM T and MT L have the sizes 1 x 1 (this is a scalar)
and 5 x 5, respectively. Having executed the multiplication operations, we obtain

N
2
LMT =[-2,-1,0,1,2] |4 | =(=2)- 04+ (=1)-240-44+1-6+2-8 =20;
6
._8_
0] [0 0000
2 —4 -202 4
MTL=1{4]|[-2,-1,0,1,2]=| —8 —404 8
6 —-12-60612
8 | —16 -8 08 16 |
1.13 Answer:
LetH:Gz,then
i—j+1,ifi> ],
hij = J J

0, ifi < j.
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1.14 Solution.

t0 00
Let A = , B = ,where t € R.

00 t0

As is easy to see, the equality AB = O is fulfilled here, therefore, the product of
two non-zero matrices may be equal to a zero matrix. The student is wrong.

1.16 Solution.

cosyy sinyy 0| |1 O 0
AW)B@®) = | —sinyr cosy 0| | 0 cosf siné
0 0O 1]|]|0—sin6 cos6

cosy sinyrcosf siny siné

= | —siny cos ¥ cosd cos Y sinf

. 0 —sin6 cos 6
A()B(0)A(p)
cosy sinircosd siny sinf cose sing 0
= | —sinyr cos ¥ cosO cos Y sin6 —sing cosg 0
0 —siné cos 6 0 0 1

cosycose —sinycosfsing cosysing + siny cosf cose  siny sind

= | —siny¥ cos ¢ — cos Y cos @ sing — sin i sin @ + cos 1 cos & cos ¢ cos ¥ sin 6

sin @ sin @ —sinf cos ¢ cos
1.17 Solution. B B _
753 623 70 27 44
AB=1]132 5211 =1231018,
1227 [116] | 29 15 50 |
(623] [753] [504243]
BA=]521 132(=1393326|,
| 116] [227] | 20 20 47 |
20 —15 1
[A,B]=AB—-BA=|—-16 —23 -8 |.
9 -5 3

1.18 Answer: [A,I] = O.
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1.19 Answer:
[P, P2] = P3, [P, P3] = Py and [P3, P1] = P».

1.20 Solution.
Yes, the equality [A 4+ B, C] = [A, C] + [B, C] is true for any square matrices
A, B and C of the same size. Simple calculations show that

[(A+B),C]=(A+B)C—-C(A+B) =AC—-CA+BC—-CB =[A, C]+I[B, C].

1.21 Proof.
Transform the right side of the equality (1.40), relying on the definition of (1.20):

A[B,C]+[A,C]B=A(BC —CB) + (AC — CA)B.

Then, remove the brackets and indicate the similar summands, following which use
the definition of the commutator once again:

A[B,C]+[A,C]B=ABC—-ACB+ACB—-CAB=ABC—-CAB =[AB,C].

Thus the identity (1.40) is proved.

1.22 Solution.
No, the equality [A, [B, C]] = [[A, B], C] is fulfilled not for all A, B and C, as
the following counterexample shows:

10 01 00
A= . B= . C= ,
00 00 10

00
[A,[B,C]] = . [[A, B], Cl=
00

Therefore, for the arbitrary matrices [A, [B, C]] # [[A, B], C].

1.23 Answer: the equality is true in the case AB = BA, i.e. if the matrices are
commuting.

1.24 Solution.
This is not true. The following counterexample can be given to the proposition
from the problem situation:

10 10 01
A= . B= . C=
01 0-1 10
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In this case, the equalities [A, B] = [A, C] = O are fulfilled, while

10 01 01|(10 0 -2
[B,C]= - = £ 0.
0-1]110 10[]0-1 -2 0

Therefore, the matrices B and C are not necessarily commuting.

1.25 Solution.
Calculate the number of multiplication operations for each of the two methods.

(1) During multiplication of each row of the matrix A by each column of the matrix
B, ny multiplication operations are performed. Since the number of rows is n1,
and the number of columns is 73, as a result we obtain njn,n3 operations. The
matrix AB has the size n; x n3; then for obtaining the matrix ABC from AB
and C we need nin3n4 operations of multiplication of real numbers. Thus, the
calculation of (AB)C requires n1n3(ny + n4) multiplication operations.

(2) Reasoning similarly, we obtain nyn4(n1+n3) multiplication operations required
for calculation by the scheme A(BC).

As a result, calculation by the first method—as (A B)C—requires less operations
of multiplication of real numbers when fulfilling the condition nin3(ny + n4) <
nong(ny + n3).

1.30 Answer: for calculation of the sum of two matrices A and B we will need N2
additions for determining each of N? elements A + B.

1.31 Solution.
Each of N2 elements of the matrix AB is calculated as a scalar product of two
vectors of size N, which, respectively, requires N additions and N multiplications.

The total number of both additions and multiplications appears to be equal to N -
N? = N3.

1.32 Solution.
The cycle body by the variable k may be rewritten in the form

for k in range(l, len(B)):
Cli] [3§]1 = CIlil[j]1 + A[i]l[k] * BI[k] []]

Then the number of additions reduces to N3 — N2, while the number of
multiplications remains unchanged.

1.33 Solution.

As is known, the number of multiplication operations required to calculate the
product of matrices of size n1 x ny and ny x n3 equals to ninans. (Recall that
the product of two matrices is defined if the number of columns of the first one
coincides with the number of rows of the second one.) Due to associativity of
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the multiplication operation, the product A1 A A3 can be calculated in two ways:
(A1A2)Az and A1(A2A3).

In the first case, we will need 50-25-30+450-30-10 = 52 500 multiplications and
in the second case— 25-30- 10+ 50-25-10 = 20000. So, the minimal number of
multiplication operations required to calculate the elements of the matrix A1A2A3
by the standard algorithm equals to 20 000.

Note There exists an efficient algorithm for finding the order of multiplications in
the product A1A> ... A,, n > 2, with the minimal number of operations [16].

1.34 Answer: 7500.
1.35 Answer: 255,000.

1.37 Solution.

In order to calculate Wi, j] in the rows with numbers 14-15 (see the algorithm
on page 21), two logical operations are required. Since this row is executed N X
N x N = N3 times, where N is the size of the adjacency matrix of the digraph, the
full number of operations for obtaining M* equals to 2N3.

1.38 Answer:
[o1111]
01110
M*=101110
01110
01110]
N? 1
1.40 Answer: f(N) = (1\;+ ).
NN+ 1)2N +1
1.41 Answer: g(N) = (N + ;( + ).
N(N + 1)(N +2)(N +3
1.42 Answer: h(N) = (N +1)( 24+ )(N + )'

1.43 Answer:

(1) rA=nn+1);
2) rA=0;
n
(3) trA =nlIn2+ 21In(n!), where n! = [] i is factorial of the number n;
i=1

3k2, if n = 2k,
4) rA= n where k € N;
3k24+3k+1, ifn=2k+1,
n

1
(5) tr A = H,, where H, = )_  is the n-th harmonic number;
i=11
6) trA =0;
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1
(7) trA = —2n(n + 2);
8) trA = 2n(n + 1) + H,, where H, is harmonic number (see above).

1.44 Proof.
The trueness of the statement tr (AB) = tr(BA) follows from the chain of
equalities:

tr(AB) = Zaijbj,' = ij,-aij = Zbijaj,' =tr(BA).
i\ ij i,j



Chapter 2 )
Matrix Algebra Shethie

2.1 Determinant of a Matrix: Determinants of the Second
and Third Order

One of the fundamental notions of linear algebra is the determinant of a square
matrix. Let us begin considering this notion with the determinants of the second
and third order.

. . . aip ap2 . .
‘We will associate the matrix A = of size 2 x 2 with the number

azi azz

aiaz — azaiy, 2.1

which is called the second order determinant of the matrix A and is denoted as

ail a2

A=detA = |A| = . 2.2)
azy a2
32 32
Example 2.1 Tf A = ,then A = =3.5—-1-2=13. O
15 15
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Third order determinant of the matrix A of size 3 x 3 is a number obtained by
the following formula:

ail a2 a3
A =detA = |A| = |an1 az a3

as| azy ass
= a11a22a33 + a12a23a31 + a13az1a32

—aj3a2a3| — a12021433 — A11G2303). (2.3)

The formula (2.3) can be easily remembered with the help of the triangle rule:
the value of the third order determinant is equal to the algebraic sum of six terms,
each being a product of three elements, one from each row and each column of the
matrix A. The sign “4-” is taken by the product of the elements lying on the main
diagonal, and two products of the elements forming within the matrix triangles with
bases parallel to the main diagonal. The sign “—” is taken by the products of the
elements lying on the secondary diagonal, and two products of the elements forming
triangles with bases parallel to the secondary diagonal (see Fig. 2.1). Unfortunately,
triangle rule is only applicable to calculation of the determinants of matrices of
size 3 x 3. The next Sect. 2.2 describes what to do with the matrices of greater
size.

sign “+” sign “—"

Fig. 2.1 The scheme “triangle rule” for calculation of the third order determinant
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Example 2.2
4 22
detA =|A|l=|-4-31
3 03

=4.(=3)-342-1-342-(=4)-0
—2.(=3)-3-2.(-4)-3-4-1.0
=-36+6+0+18+24—0=12.

O

Note that the first order determinant for the matrix A = [a1], consisting of one
element, is equal to the value of this element: det[a11] = ay;.

2.2 Determinants of the n-th order: Minors

The determinant of the n-th order, where n > 2, has the form

all a12 P aln
a ax ... any

A=| P (2.4)
apl Ap2 ... pp

By analogy with (2.3) it is a polynomial each summand of which is a product of
exactly n elements of the matrix (a;;), and only one multiplier is included into the
product from each row and each column of this matrix.

Now let us turn to strict definitions.

Let the ordered set of indices (ki, k2, ..., k,) form some permutation of the
numbers 1, 2, ..., n. For n first natural numbers, as is easy to see, there exist n!
pairwise different permutations.

Inversion in permutation or simply inversion is the pair (k, k2), where the
greater number stands before the smaller one: k1 > k.

Example 2.3 In the collection (4, 3,2, 1) there are six inversions: (4, 3), (4, 2),
4,1),@3,2), (3, 1), (2, 1); there are no other inversions in this collection. [l

Note The only permutation that contains no inversion is the identity permutation
(1,2,...,n).
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Determinant of the n-th order of the matrix (a;;) is the sum

detA = " (=1)%auaxu, .- - ank,. (2.5)

perm

where summation is performed over all permutations, o is the number of inversions
in the permutation (k1, k2, . . ., k). The determinant contains n! terms, half of which
is taken with a positive sign and half with a negative sign.

Example 2.4 Let us expand the definition (2.5) for the case n = 2.

Solution For n = 2 we have 2! = 1 - 2 = 2 permutations, namely k1 = 1, ky = 2
and k1 = 2, kp = 1. The sum in det A will consist of two terms: ajja2; and ajzasq,
taken with positive and negative signs, respectively:

detA = Z(_l)aalklaﬂcz = (=D°%y1axn + (-D'ana. (2.6)

perm

The obtained formula exactly correlates with the definition (2.1), provided in
Sect. 2.1. (]

If we remove from the matrix A of the n-th order the i-th row and the j-th
column, then we will obtain the matrix of the (n — 1)-th order, whose determinant is
called the complementary minor of the element q;; of the matrix A and is denoted
by M;;. o

The variable A;; = (— 1)+ M;; is called the algebraic complement (cofactor)
of the element g;; of the matrix A.

Example 2.5 Given the determinant

2 1 =2
A=]3 -1 4|, 2.7
-35 0

then the complementary minors of the elements of the matrix a3 and a3 and their
cofactors are equal to

21 243
Mo = =1043=13, Ap3=(—D*PMy=(-1)-13=-13, (2.8)
5

_|1! 4o 1 g —
M3 = =4-2=2, A31=(—1)""" M3 =2. 2.9)
-1 4
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Theorem 2.1 (Laplace') For the determinant of the matrix A = (a; i) the follow-
ing formulas are true:

n

detA =) ajAij, i=12...n, (2.10)
j=1
n

detA =) ajAij, j=12.....n, (2.11)
i=1

i.e. the determinant can be expanded over any row or any column, using the
cofactors of the matrix elements.

The formulas (2.10) and (2.11) allow reducing the calculation of the determinant
of the n-th order to calculation of the determinant of the (n — 1)-th order. The
procedure of reduction of order continues until we arrive at the determinants of
the second and third order, which are relatively easy to calculate.

Relations (2.10) and (2.11) are referred to as the Laplace expansions.

Example 2.6 Let us calculate the determinant of the fourth order, expanding it in
the first column:

23-3 4
1-12 3-3 4 3-3 4

2112
A= =221 0[—-2]21 0|+6{1—-12

621 0
30 -5 30 -5 30 -5

23 0 -5

3-34

—21-12/=2(-54+04+0-6—-0—10)
210

—2(=154040—-12—0-30)+6(15— 18 +0+ 12 — 0 — 15)
—20—124+4+8—6-0)=—42+ 11436+ 12 = 48.

!Pierre-Simon, marquis de Laplace (1749-1827), French mathematician, physicist and astronomer.
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2.3 General Properties of Determinants: Elementary
Transformations of a Matrix

Let us enumerate the general properties of determinants [43, 63].

Property 1 During transposition of a matrix, its determinant does not change:
det AT = det A. (2.12)
Property 2 After exchange of two rows (columns) of a matrix, the determinant

changes its sign.

Property 3 The determinant of a matrix with two identical rows (columns) is equal
to zero.

Property 4 The determinant of a matrix with two proportional rows (columns) is
equal to zero.

Property 5 The determinant of a matrix will not change if to all elements of its row
(column) are added the respective elements of another row (column), multiplied by
the same number.

Property 6 The determinant of a product of matrices is equal to the product of
determinants, i.e.

det(A - B) =det A - det B. (2.13)
Property 7 The determinant of a triangular matrix coincides with the product of
the elements standing on the main diagonal.

Property 8 If all the elements of some row (column) of a matrix are multiplied by
the same number, its determinant will be multiplied by this number.

Property 9 If all the elements of the i-th row of a determinant are given as a sum
of two terms a;; = u; + v; for j = 1, ..., n, then the determinant is equal to the
sum of two determinants of the following form:

ar a2 Aln apl a2 aln ay a2 Aln

Uy +viur+vy...u, +v,| = \ur ur u, |t+lvi v Uy

anl an2 Ann dnl dn2 Ann danl an2 Ann
(2.14)

Property 10 If all the elements of some row or column of a matrix are equal to
zero, then its determinant is equal to zero.
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Elementary transformations of a matrix are such transformations that are
associated with Properties 2, 5, 8: exchange of two rows (columns); multiplication
of a row (column) by a non-zero number; addition to one of the matrix row of
another one, multiplied by any non-zero number (the same for the columns).

With the help of the elementary transformations, the matrix may be reduced to a
triangular form, while its determinant may then be easily obtained using Property 7.

Example 2.7 Calculate the determinant

23-3 4
21-1 2
621 0
23 0 =5

(2.15)

using the elementary transformations of the matrix corresponding to this determi-
nant.

Solution

(1) We subtract from the second and fourth rows the first row, and from the third
row—the first row multiplied by 3.
As a result we obtain
23-3 4 23 -3 4
21-12| 0-22 =2

= ; (2.16)
621 0 0-710 —12
23 0 =5 00 3 -9
. L 7
(2) add to the third row the second row multiplied by — )
23 -34
0-212 =2
; (2.17)
00 3 =5
00 3 -9
(3) subtract from the fourth row the third row:
23 -34
0-22 =2
. (2.18)
00 3 =5
00 0 —4
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As a result we obtain the determinant of the upper triangular matrix, which is
equal to the product of the elements positioned on the main diagonal:

2.(=2)-3-(—4) = 48. (2.19)

O

Note Note that linear algebra knows alternative methods to find the variable det A,
in particular, the axiomatic definition [63].

2.4 Inverse Matrix

Let A be a square matrix of size n x n, and / is an identity matrix of the same size.
The matrix B is called the inverse of the matrix A, if the following equalities are
fulfilled

A-B=B-A=1.
The matrix inverse of A is denoted as A,

Note that the inverse matrix exists not for every matrix.

Theorem 2.2 If the determinant of the matrix A is equal to zero, i.e. det A = 0,
then the inverse matrix of A~ does not exist.

A square matrix is referred to as nonsingular (or nondegenerate), if an inverse
matrix is determined for it. Otherwise, A is a singular (degenerate) matrix. It is
known that the matrix inverse of the nonsingular matrix is the only one.

Theorem 2.3 If the determinant of the matrix A = (a;j) is other than zero, i.e.
A =det A # 0, then the inverse matrix exists:

1

AT = (a;)", (2.20)

where (A;j) is a matrix formed by cofactors of the elements a;; of the matrix A
(cofactor matrix).

Note A matrix transposed to (A;;) is called adjugate, or classical adjoint, relative
to the original one [15, 35, 64, 65].

The following statements are true:

1. If the matrix A is invertible, then AT is also invertible, and (AT)~! = (A~DT.
2. If the matrices A and B are invertible, then (A B) ™! = B~1 A—L.
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3. The matrix inverse of the upper (lower) triangular matrix is also the upper (lower)

triangular one.

4. If A~ exists, then det(A~ 1) = )
det A

Example 2.8 Find the inverse matrix of the matrix:

25 7
A=|63 4
5-2-3

Solution The determinant of the matrix is equal to

3 4 6 4 6 3
detA =2 -5 +7
-2 -3 5-3 5-2

=2(=9+8) —5(—18 —20) + 7(—12 — 15) = —1.

Calculate the cofactors:

3 4 6 4

An = (=p'*! =—1, Ap=(-D'*? =38,
-2 -3 5-3
6 3 5 7

A =(-D'? =27, Ay = (=1)*"! =1,
5-2 -2 -3
2 7 25

Ay = (—1)*? = —41, Ay = (—1)*" =29,
5-3 5-2

57 27
Az = (=1)*! =1, Ay = (1)’ = 34,
34 64

;25

Az = (—1)*t = —24.

2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)
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Write the matrix formed by the cofactors:

-1 38 —27
1 —41 29 |. (2.28)
—1 34 —24

As a result, the desired inverse matrix will have the form:

e 1 -1 1
A7l = (1) | 38 4134 [ = |38 41 34 (2.29)
—27 29 —24 27 —29 24

2.5 Integer Powers of a Matrix

The notion of raising a number to an integer power in matrix algebra is easily
generalized. By definition we have

A'=1, A'=A, A?=AA, A’=AAA, ..., (2.30)
and if A is a nondegenerate matrix, then
A7P = (A~HP = (AP)" . (2.31)

For diagonal matrices, their p-th power preserves the property of diagonality:

p
di0...0 d’ o0 ... 0

0Odr... 0| [0d)...0 o)

for all integer p.
In order to solve the following problems, we will need the mathematical
induction method.
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2.5.1 Mathematical Induction Method

For proving the statements depending on a natural parameter, mathematics widely
uses the mathematical induction method [1, 17, 66] (from Latin inductio—
derivation).

Mathematical Induction Principle Let P(n) be a statement defined for all natural
numbers n, and let the following conditions be fulfilled:

(1) P(1) is true;
(2) Yk > 1 the logical implication is true P(k) = P(k+1).
Then P(n) is true for any natural n.

The proposition / is usually referred to as the basis step, and the proposition
2—inductive step.

In order to prove identities by the mathematical induction method, the following
is done. Let the statement P (k) take the true value when the considered identity is
true for some natural number k. Then, two statements are proved:

(1) basis step, i.e. P(1);
(2) inductive step, i.e. P(k) = P(k + 1) for an arbitrary k > 1.

According to the mathematical induction method, a conclusion is made about
trueness of the considered identity for all natural values of n.
Note that in mathematical logic a statement of the form P (n) is called predicate.

Example 2.9 Using the mathematical induction method, we will prove the state-
ment:
1+34+5+---+ (2n — 1) = n? for all natural numbers 7.

Proof Let P(n) be the predicate “1 +3+54+---4+ 2n—1) = n?”.

Basis step

Forn = 1 we obtain 1 = 12, i.e. P(1) is true.

Inductive step

Assume that for n = k the statement 1 +3 + 5+ --- 4+ (2k — 1) = k? is true.
Prove the trueness of P(k + 1):

14345+ +Ck—D+QRK+1)—1)
=K+ QUhk+D) -1 =k>+2k+1=(k+ 1>~
Thus, for any natural k the implication P(k) = P(k + 1) is true. Then, by

the principle of mathematical induction the predicate P(n) has a true value for all
natural 7. ]

Example 2.10 Relying on the mathematical induction method, prove that n> + n is
even for all natural n.
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Proof Denote f(n) = n® 4+ n and P (n)—the predicate “ f (n) is divisible by 2.
Basis step
Forn = 1 we obtain f (1) = 124+ 1 = 2—even number, this is why P (1) is true.
Inductive step
Assume that f (k) is even for natural k > 1. Let us prove that it implies evenness
of f(k+ 1):

fhk+D=G+1D2+Gk+D)=k>+2k+1+k+1
= (> + k) +2k+2=fk)+2k+1).
Since in the right side of the obtained relation stands the sum of two even numbers,
then f(k + 1) is divisible by 2.

Note The statement of the example becomes apparent if we represent the expression
k% + k in the form k% 4+ k = k(k + 1). Out of two consecutive natural numbers, one

is necessarily even, and their product is divisible by two. (]
ac
Example 2.11 Calculate the hundredth power of the matrix A =
Oa
Let us find several lower powers of this matrix:
Al — ac A2 acllac| a’ 2ac A3 — a’ 3a’c
Oal Oa||O0a 0 a® | 0 a3 |

(2.33)

An assumption arises that for all natural values of n the following equality is true:
n

ac a na" ¢

Oa 0 da"

In order to verify this assumption, let us use the mathematical induction method.
Prove that for all natural n the equality is fulfilled:

. a" na""'c
A" = 0 . . (2.34)
a
n n—1
Proof Denote the predicate “A" = N through P(n).
0 a"

Basis step

Consider the case n = 1. The equality takes the form A! = A, which is the true
statement.

Inductive step
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Assume that P(k) for some k = 1,2,... takes the true value, i.e. Ak =
a* ka* ¢

0 dt

Write the predicate P(k + 1) in the form:

. Prove that P(k + 1) is true.

A _ a* 1l (k + Dake

. e (2.35)
a

Let us use the inductive supposition and rewrite the sum A1 as A*A:

k k—1 k k k—1
AR+ _ a® ka* 'c ac a“-aa“c+ka""c-a

0 d* 0a 0 ak-a

After algebraic transformations we obtain

AR _ a* 1l (k + Dake

0 ak—i—l

This expression coincides with (2.35). Then, for any £k = 1,2, ... the implication
P(k) = P(k + 1) is true, and the mathematical induction method has proved that

a" na"!
A = for all natural n.
0 a"
Substituting in (2.34) the value n = 100, we finally obtain A!%0
100 99
100.
a a“-c . |:|
0 a100

The operation of raising the matrix to power can be executed by a relatively small
number of calculations, if the original matrix is presentable in the form

B=U"'DU, (2.36)

where D is a diagonal matrix, U is a nonsingular matrix: UU ~! = I. We will carry
of the calculation of B”? = (U~!DU)P relying on the associativity property of the
multiplication operation (see page 8):

B’ = U~ 'pu)? = W 'pU)W 'DUYU'DU) ... (U 'DU)YU'DU)
p;;;-nes
=U-'pwu~hHpwuHpw...vHpwuHbpu
=U"'DIDID...DIDU=U"Y(DD...D)U =U"'D"U. (2.37)

-~
p times
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The rule of raising the matrix B to power is generalized in case of integer negative
p = —abs(p):

B—abs(p) — (U—lBU)—ab%(p) — ((U—IBU)—I)abG([J)
— (U—lB—l(U—l)—l)abS([J) — (U—IB—lU)abS([J)

=y~ g7y = pr. (2.38)

Therefore, the above reasoning proves the theorem of raising to an integer power
of matrices B of a special form (2.36).

Theorem 2.4 (Matrix Power Theorem) For an arbitrary matrix B, presentable
in the form B = U~' DU, and the integer number p the following equality is true:

B? =U"'DPU. (2.39)
Example 2.12 Prove that various integer powers of the matrix commute
APUAP2 — AP2 AP (2.40)

Proof Indeed, based on the properties of the operation of raising to power, we have
APLAP2 — AP1HP2 — AP2+P1L — AP2APL, 0

2.6 Functions of Matrices

A matrix may act as an argument of some function. Let us begin with consideration
of a polynomial of a matrix. As is known, a polynomial of degree p in variable x is
the sum f (x) of the form:

fx) :co+clx+02x2~|—~--~|—cpxp, (2.41)
where ¢; (i =0, 1, ..., p) are arbitrary numerical coefficients.
By the polynomial f(A) of degree p of the matrix A we will understand the
following expression:

(A) =col +c1A +c2A” + -+ c,AP. (2.42)
P

As is easy to see, the value of the function f(A) is, in its turn, some matrix as
well. Its elements are expressed by the formulas:

(f(A)ij = codij + c1(A)ij + c2(AD)ij + - 4 cp(AP);. (2.43)
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Using the theorem about the power of a matrix of the special form (2.39), we will
write the relation

fwtAavy =v""'fayU, (2.44)

which is true for an arbitrary orthogonal matrix U.
Fractionally rational function of a matrix is the value

f1(4)

= fi(A A= A A 2.45
(A S1(A)(f2(A)) (f2(A) ™ f1(A) (2.45)

if det f2(A) # 0.

Let us demonstrate the correctness of the introduced definition, i.e. that two
products in (2.45) are always equal to each other. Indeed, having multiplied both
parts of the equality f1(A)(f>(A)~" = ((A))~ fi(A) by f2(A) on the right and
then by f>(A) on the left, we obtain

2(A) f1(A) = f1(A) f2(A). (2.46)
The polynomials f1(A) and f>(A) depend only on the matrix A, and, therefore,

A
1(4) is defined correctly [53].
f2(A4)

commute. Due to this, the fraction

2.6.1 Exponentand Logarithm

The infinite sum of the matrices of size m x n of the form

A+B+CH+---+Z+--- (2.47)
is called a series. It is said that the series converges, if for all i = 1,2,...,m
and j = 1,2, ..., n converge the sequences of the respective components of these
matrices [53]:

aij+bij ot (2.48)

By definition, the exponent e of the square matrix A is set equal to the sum

1
AP 4 (2.49)

1 3
A4+
! p

1
eA=T+A+ 'A2—|—3

2

It is known that this series converges for any real square matrix [37]. The matrix /
in the formula (2.49) is taken of the same order as A.
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In a compact form, this sum can be presented as
AP
et = Z ) (2.50)

Sometimes, especially when writing formulas with fractions, another notation for
the matrix exponent is used, namely exp A.

1A
Example 2.13 Calculate exp , where A € R.
1

Solution As follows from the formula (2.34) in Example 2.11, for all natural p the

p
. 1A 1 px 1A

equality is fulfilled = . Denote A =
01 01 01

Using the definition (2.49), we obtain

e9]

AP 10 1A 1122 1|13
=" = + + ., + .,
pr 4 01 o1| 2'|o1 3o 1
> o A 1
p=0 P! g:olp! _ ”,,;(p—l)! e e . 1A
0 v ' 0 ¢ 0e 01
p=0 P-

(2.51)
During calculation of the elements of the matrix e we used the definition of the
number e = 2.71818 ... (also known as, bases of the natural logarithms), known
from the course the mathematical analysis [76]:

o0

1 11 1
e:Zp!=1+1!+2!+---+ + - (2.52)

p=0 P!

d

Note The notion of the matrix exponent is widely used in the theory of systems of
differential equations [3].

Logarithm of the square matrix A is the sum

InA = (A—I)—;(A—I)2+;(A—I)3—- (=P ; (A=DP+---, (253)



2.7 Matrix Rank 59

if this series converges. As in the case with the matrix exponent, the identity matrix
I in the formula (2.53) must have the same order as A. In a compact form, the
sum (2.53) can be presented as follows:

(=P
InA = (A=1D7".

1x
Example 2.14 Calculate In , where A € R.
01
Solution We will need the natural powers of the difference of the matrices (A —
0x

I = .
00

OA[]|OA 00
Since (A — I)? = = , then all the summands of the series

0000 00
in (2.53), except the first one, are in this case equal to the zero matrix. Therefore,

0
the value In A is fully defined by the first summand of the series In A = . g
00
Theorem 2.5 For the determinant of an arbitrary matrix A, the formula
det A = exp(tr In A) (2.54)

is valid.

Note Many examples of using various functions of matrices for solving practical
problems are considered in [34].

2.7 Matrix Rank

Minor of the k-th order M i ']22 }fk of the matrix A of size m X n is the determinant

of the matrix obtained from the elements, standing at the intersection of the
selected rows with numbers i1, i2, . .., iy and columns with numbers ji, j2, ..., jk
onconditionthat | <ij <ip <--- <y <mand 1 < ji< o< --- < jx<m

Example 2.15 Given the square matrix

ailp a2 ais
A= |ay ayay |, (2.55)

asy asz asz
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for which the number of rows m and the number of columns n are equal to m =
n=3.
Then the second order minors of the matrix A have the form

all a1 al ais
M5 = . Mys = : (2.56)
azl ax azl a3
1,3 apl a2 1,3 al ais
M5 = , M5 = (2.57)
asy azz asy ass
and so on until the minor
az a3
M35 = . (2.58)
asy asj3

All in all, for the matrix of size 3 x 3 nine second order minors can be formed
(the number of arbitrary order matrix minors see in solution of Problem 2.18). [

The number r is called the rank of the matrix A, if there exists a minor of order
r, other than zero, and all minors of greater order are equal to zero.

Any minor of maximal order r, other than zero, is referred to as basic minor.

For the rank of the matrix A the designation rk A is used.

In the following presentation, we need the concept of linear dependence of the
matrix rows. Let us give k rows of the form

Uy =lujjup ... ul,
Uy = [uziuz ... uzl, (2.59)

Ur = [ugiugs ... uggl,

each of which contains n real numbers.

We multiply every element of the first row by real number o, every element of
the second row multiply by «1, etc. Then we add corresponding elements of rows.
As aresult, a new row W forms

W =a1Uy +aU; + - + ajuy
=aifuriuin ... iyl

+asluziuz ... uzl (2.60)

+oaglugrug ... uggl.
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The row W is called a linear combination of rows U (i = 1,2,...,k). The
numbers «;, where i = 1,2,...,k, are said to be the coefficients of a linear
combination of rows.

If there is a collection of real numbers o1, @3, . . ., @k, among which at least one
is not equal to zero, such that W is the zero row, then Uy, Ua, ..., Uy are called
linearly dependent. Otherwise, these rows are said to be linearly independent.

Similarly, the definition of linear dependence/independence of matrix columns is
introduced.

Example 2.16 The rows U1 = [1 0 3], U = [3 2 1], Uz =[5 2 —5] are
linearly dependent, since there is a linear combination of them equal to the zero
TOW:

2U1 + U, — U3z =[000]. (2.61)

O

Theorem 2.6 (Basic Minor Theorem) The number of linearly independent rows
and columns of a matrix is the same and equals to the order of the basic minor. And
the rows (columns), included into the basic minor, are linearly independent, and the
rest are linearly expressed through them.

Note A zero matrix has no linearly independent rows. This is why the rank of the
matrix formed by zero elements will be considered as equal to zero by definition
[36, 47].

The elementary transformations do not change the rank of a matrix.
Recall that the elementary transformations of a matrix are (see Sect. 2.3):

(a) exchange of two rows (columns);

(b) multiplication of a row (column) by a non-zero number;

(c) addition to one of the matrix row of another one, multiplied by any non-zero
number (the same for the columns).

When calculating the rank of the matrix, deletion of a zero row (column) or one
of the two proportional rows (columns) is used, it does not change the rank of the
matrix.

The matrix is referred to as echelon matrix, if each its row begins with a strictly
greater number of zeroes, than the previous row.

One of the basic methods of finding the rank of the matrix is the method of
elementary transformations.

Elementary transformations method allows bringing the matrices to the
echelon form with the help of the following algorithm:

(1) Select the row at the beginning of which stands a non-zero element. This row is
written first and is called the pivot row.
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(2) To all the remaining rows the pivot row is added, multiplied by

_ i (2.62)
ail

(here i is the number of the row to which the pivot row is added). As a result, in
all rows except the pivot one the first elements will be equal to zero.

(3) Out of the remaining rows the one is selected whose second element is not equal
to zero. It is written second and is considered to be the pivot one.

(4) To the remaining rows the pivot row is added, multiplied by

_ iz (2.63)
ann

As aresult in the second column the zero elements have formed, except the first
and the second rows.

This process continues until obtaining the echelon matrix. The number of non-
zero rows in this matrix will be its rank.

Example 2.17 Find the rank of the matrix using the method of elementary transfor-

mations:

357
A=11231{. (2.64)
135

The third order minor is the determinant of the matrix: M 1122 33 = det A.

Calculate the determinant of the matrix A by the first column expansion method:

23 57 57
det A=3. (=Dt +1- (=12 +1- (=1
35 35

=3-(10-9—-1-25-21)4+1-(15—-14)=3—-4+1=0.
Consider the second order minor

M5 ="|=1#0. (2.65)

Since it is not equal to zero, thenrk A = 2. O

It is often difficult to calculate the matrix rank based on its definition because one
has to search through a great number of minors. As a rule, in order to simplify the
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calculation of the matrix rank, it is reduced to a simpler form using the elementary
transformations (see Sect. 2.3).

So, the rank of the matrix presented in the echelon form is equal to the number
of the non-zero rows.

In what follows, we will use the following designations for the equivalent
transformations:

e A — B—the matrix B is obtained as a result of the elementary transformation
of the matrix A;

* (i) 4+ a(j)—addition to the i-th row of the matrix of the row with number j,
multiplied by the constant a;

e (i) — a(j)—subtraction from the i-th row of the matrix of the row with number
Jj, multiplied by the constant a;

e (i) < (j)—exchange of two rows.

Similar designations will also be used for operations with columns, and the
column with number j will be denoted by [j].

Example 2.18 Find the rank of the matrix

3-1325
5-3234
(2.66)
1-3-50-7
7-5141
Solution Swap the first and the third rows:
1-3-50-7
5-3234
(2.67)
3-1325
7-5141

To the second row, add the elements of the first row, multiplied by (—5), to the
third—by (—3) and to the fourth—by (—7). As a result we obtain

1-3-50-7
012 27 3 39
0 8 18226
0 16 36 4 50

(2.68)
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Divide the second row by 3, and the third and fourth rows by 2:

1-3-50-7
04 9113

(2.69)
04 9113
08 18225

Then subtract from the third row the second one, and from the fourth row the
doubled second one:

1-3-50-7 1-3-50-7
04 9 113| ue|04 9113 270,
00 000 00 00-1
00 00-1 00 000

We have obtained the echelon form of the matrix. The number of non-zero rows
is three and therefore the rank of this matrix is three. O

There is one more method to calculate the matrix rank. It is referred to as the
bordering minor method and consists in the following. For computing the variable
rk A, consecutively compute the minors, passing from the lower order minors to the
higher order minors. If the r-th order minor is already found

M= , 2.71)

that is other than zero, then it is enough just to compute the minors of the (r 4 1)-th
order, bordering the minor M:

ar ayr dip
................ forall 111> > 1. (2.72)
ar Arr Qro
ayl --- Ayr Ane

If they all appeared to be equal to zero, we obtaintk A = r.

The bordering minor method is especially convenient for the problems where
functional matrices are present, or the matrices whose elements depend on the
parameters (see, for example, Problem 2.60).
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Review Questions

Nk R =

b By

11.
12.
13.
14.
15.
16.
17.

What is a determinant of the second order? of the third order?

Formulate the rule of triangle for computing a determinant of the third order.
Define the concept of inversion.

Write a formula for the determinant of the n-th order.

How are the additional minor M;; of the element a;; and its cofactor A;;
interconnected?

Formulate Laplace theorem.

Enumerate the general properties of determinants.

What matrix transformations are elementary?

What is an inverse matrix?

What matrix is called degenerate?

What is the method of mathematical induction used for?

How are the functions of matrices computed?

Define exponential and logarithm of a matrix.

Which rows are linear dependent?

Formulate the theorem of a basic minor.

What is the elementary transformations method based on?

Enumerate the methods of finding the matrix rank.

Problems

2.1. Expand the definition (2.5) for the case n = 3.
2.2. Find the number of inversions in the permutation (5, 1,4, 3,6, 8,7, 2).

2.3. How many inversions are there in the permutation (n,n — 1,...,2,1)?
2.4. Find the number of inversions in each permutation of a collection of 2n
numbers:

(1) (1,3,5,7,....2n—1,2,4,6,...,2n);
(2) (2,4,6,...,2n,1,3,5,7,....2n — 1).

2.5. With what sign does the summand a,ja,—1,2...a2,—1a1, appear in the
expression for the determinant (2.5)?
2.6. Compute the third order determinants:

3 =21 120 20 5
M]—21 3|; @01 3|5 G1 3 16];
2 0 =2 50 —1 0-110
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2 —13 210 200
@|-2 3 2[; G)[]10 3]|; ©)[330].
0 25 05—1 444

2.7. Compute the determinants of the fourth order:

-3000 2-13 4 2-110
2200 0-15-3 01 2-1
(a) ; (D) ; (© .
1 3-10 00 5-3 3-12 3
—-15 35 0002 3161

2.8. Solve the following equation relative to the variable x:

x111
1x11
=0.
11x1
111x
2.9. Compute the determinant
111...1 1
121...1 1
113...1 1
111...p 1
111 1p+1

where p is a natural number.
x2.10. Compute the determinant of the matrix Q of size n x n, whose elements are
equal to

(@) qij = 6i,j+1 + 8i+1,)>
(b) gij = 8i,j+1 — dit1,j

forall 1 < i, j < n. Here 6k, x, is the Kronecker symbol (see page 4).
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2.11. Fibonacci’ sequence
F,=1,1,2,3,5,8,13,21,34,55,... forn=1,2,...

is determined by the recurrence relation: Fj,4» = F,, + F, 41 with the initial
conditions F; = F» =1 [28, 70].

Prove that the (n + 1)-the term of the Fibonacci sequence is equal to the
determinant of the n-th order

1 100...0 O
-1 110...0 O
0 —-111...0 O
For1= ] oo . (2.73)

%2.12. The Vandermonde® determinant is the determinant of size n xn, composed

of the real numbers ay, as, ..., a,:
1 1 1 1
ai a as an
_ 2 2 2 2
Vo=1lay a5 a3 ... a; |- (274
n—1 n—1 _n—1 n—1
ay, " a, " a a,

(1) Verify that for n = 2 this determinant is equal to V, = a» — aj.

(2) By the mathematical induction method, prove that the Vandermonde
determinant V,, is equal to the product of all the possible differences
aj—ajforl <i <j<n

Vi =[](aj — ap. (2.75)

i<j

2Under the name Fibonacci is known Middle Age mathematician Leonardo Pisano (about 1170—
about 1250).

3Alexandre—Théophile Vandermonde (1735-1796), French mathematician and musician.
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2.13.

2.14.

2.15.

2.16.

2.17.

2.18.

2.19.

x2.20.

x2.21.

2.22.

2.23.

2 Matrix Algebra

Let A be a matrix of size n x n, m is an arbitrary natural number. Is it true
that the equality det(mA) = m" det A is fulfilled?

At the examination in linear algebra, the student says that the determinant
of the sum of two matrices is always equal to the sum of the determinants of
these matrices: det(A + B) = det A + det B. Is the student right?

Is the determinant

1 1 1 1 10000
10000 1 1 1 1
1 1 1 10000 1 (2.76)
1 10000 1 1 1
1 1 10000 1 1
a positive number, a negative number or zero?
Is the determinant
1 10000 3 4 5
5 1 2 3 10000
4 5 1 10000 3 2.77)
3 4 10000 1 2
10000 3 4 5 1

a positive number, a negative number or zero?
Using Python, compute the determinants in Problems 2.15 and 2.16 and
verify the correctness of the solutions of these problems.
Find the number of minors of the k-th order in a matrix consisting of m rows
and n columns.
How many minors of the k-th order in a matrix of size n x n do not contain
diagonal elements of the original matrix?
What greatest value can take the determinant of a matrix of size 3 x 3,
consisting of the elements +1 and —1?
What greatest value can take the determinant of a matrix of size 3 x 3,
consisting of the elements 0 and 1?
Will the determinant of the matrix change if its columns are permuted in the
reverse order?
Computing the determinant of the matrix using Python

In the text file input . txt are successively written in rows the elements
of the integer square matrix A. Using the recursion, compute the determinant
det A. Enter the result into the text file output . txt.
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2.24.

x2.25.

x2.26.

x2.27.

*2.28.

x2.29.

2.30.

Evaluate the number of multiplications executed by the recursive algorithm
for computing the determinant of the matrix of size n x n (see previous
Problem).

Prove that the exact number of multiplications executed by the recursive
algorithm for computing the determinant of the matrix of size n x n (see
Problems 2.23 and 2.24) is equal to

T(n) =enl'(n,1) —n!,

o
where e is the base of natural logarithms, I'(n,x) = fe_’t”_ldt—
X

incomplete gamma function (for the natural n € N the following equality

n—1 )Ck
istrue T(n,x) = (n — Dle™ ¥ )

k=0 k!
Obtain the asymptotic estimate of the mean value of the number of
inversions A(N) in the array consisting of N elements, for N — oo.

Prove the validity of the identity
det(I +eB) = 1+ etr B+ O(&?) fore — 0, (2.78)

where B is some square matrix, / is an identity matrix of the same size.
Obtain the asymptotic estimate of the variable

1
det fore — 0, 2.79)
(I +eB)?

if B is an arbitrary square matrix, / is the identity matrix of the same size,
peN

Assume that M = G + ¢ H, where ¢ is a real number, G is an invertible ma-
trix. Relying upon the equality det A = exp(tr In A) (see the Theorem 2.5
on page 59), prove that

det M

=detG(1 +etr (G™'H) + 252(&2 (GT'H) = (GT'H)*) + 0(eY))

(2.80)
fore — 0.
Assume that the real parameters a, b, ¢ and d are selected, such that the
ab

inequality ad — bc # 0 is valid. Compute the matrix inverse of A = .
cd
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2 Matrix Algebra

2.31. Find the inverse matrices of the following matrices:

12 34
(1) ;@)
34 57
3-45 273] 12 2
B3 [2-31|: @& |394]: O |21 -2
3-5-1 153] 2-21
2.32. Find the inverse matrices of the following matrices:
1111
111
11 0222
(1) (@ 022 B
02 0033
003
0004
2.33. Calculate the commutators [A, A~!] and [A, A7!], if A is an arbitrary
nonsingular matrix.
2.34. For what values of the real parameter A the matrix does not have the inverse
one?
[—1a
M rar0];
| 6 41
R
@ x x -1
| -1 -1 1

2.35. Compute the matrix inverse of A:

100
0180
001y
0001

3

where «, B, y € R. Does the matrix A~ exist for all possible values of the
parameters?
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%2.36. Compute the matrix inverse of G, of size n x n, wheren > 2:

[000...0 1

000...1
Gu=|. ...

010

(100

71

2.81)

2.37. The elements of a Hilbert* matrix H = (hij) are set by the rule h;; =

1
. ) ,wherei, j =1,2,...,n.
i+j—1

With the help of Python, compute H~!, H- H™' and H~' - H forn =

6,7, 8.
x2.38. Find the inverse of the following matrix:

TAAZA3 ... an

01 & AZ2... !
001 A ... a2

where A is some real number.

2.39. With the help of the mathematical induction method, prove the matrix

product inversion formula
(A1Asz.. Api At = A A L

2.40. Solve the matrix equations:

21 —64
) X = :

02 21
(111 211
@ lo22]-x=|-102];
[ 023 —1-20

4David Hilbert (1862-1943), German mathematician.

—14-1
AYAT

(2.82)
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2.41.

*x2.42.

2.43.

2.44.

2 Matrix Algebra

110 -3 0 —12
B X-|-362|=|-1-2-2;
2 6 -3 0 1 10
23 17 1-1
“) X =
-32 54 |01

Assuming that a is an arbitrary real number, raise the matrix of power:

256
100

010 . (2.83)
Oal

Raise the matrix of power:

512
100

g10 , (2.84)
hol

where constants g, 7 € R.
Using the mathematical induction method, prove that the n-th power of the

01
matrix F = has the form
11

F' = (2.85)
Fy, Fn+1

for all natural values n > 1, where F,, are the Fibonacci numbers (see
definition in Problem 2.11 on page 67).

lay
Compute the n-th power of the upper triangular matrix A = [0 1 8 |,

001
where o, 8,y € R.
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2.45. Compute the g-th power of the functional matrix

cos¢ sing
Up)=|
—sing cos @

for all integer values of g € Z.

2.46. It is known about the matrices A and B that their commutator is the identity
matrix: [A, B] = I. Compute [A, B?] for all integer values of the parameter
qe’l.

2.47. Compute the value of the function f(x) = x> — 3x + 2, if as the argument
is taken the matrix A, where

10

(1 A= ;
01
1 -2
(2) A=
31

2.48. Compute the value of the function g(x) = x3 + x — 3, if as the argument is
taken the matrix A, where

(100
MHA=]110];
111
210
2A=]3 -11
2 10

2.49. Compute the value of the fractionally rational function g(A), if g(x) =
W 4x2-3x-5

x3—5x -2 and
200

1) A=]0-40|;
001
(110
2)A=]010]{-
011
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2.50. Show that the equality

0-—1 cosl —sinl

10 sinl cosl

is valid.
2.51. Find e? for

(100
M A=]010]|;
1000]
[010]
2)A=1]001
1000

%2.52. Find e4 for

(101
I A=]010]:;
1001
[101]
@)A=|111
1001

2.53. For the matrices specified in the previous problem, compute In A.
x2.54. Prove that for the commuting matrices the exponential of the sum is equal
to the product of the exponentials of each of the summands:

exp(A + B) = exp(A) exp(B).

2.55. Prove thatexp(tA) =1 +tA + 0 (%) forr — 0.

2.56. Consider all possible matrices of size 3 x 3 that contain no zero column.
Enumerate pairwise various echelon forms of such matrices.

2.57. Which elementary operations with the elements of the echelon matrix
preserve its echelon form?

2.58. Find the ranks of the matrices:



Problems 75

2-43 10
1 2 -43 =2
1-2 1 —42
(HDA=]|-13 -6-241|; @ A= ;
01 —131
2-12 5 6
4-7 4 —45
0 2 —4
12 1 3
—1-4 =5
4-1-5-6
3) A= ; W A=|(3 1 7 |;
1-3-4-7
0 5 —10
21 -10
2 3 0
357 4322
5) A=]123|; 6) A=]0211];
135 0033
13 5 -1
1 1243
2-1-3 4
(MHA=]-21526|; 8 A=
51 —17
2 —1472
77 9 1

2.59. With the help of the bordering minor method, find the maximum value that
the rank of the matrix A can take

B—v 0 vy =B
A=|ly—a-y 0 «a |,
a—pB B —a O

if o, B and y are real constants.

x2.60. Find the ranks of the following matrices for all possible values of the real
parameter A:

120
@ |110]:
001
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[1-2 0 0

(b) 0 2—x2 0 |;
0 0 3-%

1 2 -3 ]
© |—-12—2 10 |;
“1 0 3-x
[ 1 1]
@]o1—-x 1 |:
0 0 2—x]
1 -6 -5 ]
@© |-12—2 5 |;
-1 6 1-2
(1-2 2 0 o0
1 2=2 0 0
0 0 3-1 0
0 0 0 4-
(1-% 2 0 0
1 144 0 0
0 0 2—1 0
0 o
(1422 0 4
110 0
0 024x—1
10 2 1

®

(2)

(h)

®

0 2+4]

)\'_

2 Matrix Algebra
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Answers and Solutions

2.1 Solution.
Forn =3 we have 3! = 1 -2 -3 = 6 permutations:
k1 = 1,k2=2,k3=3; k1 =1,k2=3,k3=2; k1 =2,k2= 1,k3=3;
k1 =2,k2=3,k3= 1; k1 =3,k2=1,k3=2; k1 =3,k2=2,k3= 1.

Therefore, the sum in det A will consist of 6 terms, half of which is taken with a
positive sign, and another half—with a negative sign:

det A =Y " (=1)%au, azm,as
perm
= (=D araznasz; + (=D'ananaz + (=1 'anazias;
+ (=D2anaxaz + (—Dazaziazn + (—1)3aizaznas
= a11a22a33 + a12a23a31 + a13a21azz

— aj3azpaszl — aj2d21d33 — d114a23as;.

The obtained formula, of course, conforms with the definition (2.3).

2.2 Answer: the number of inversions is equal to 10.

2.3 Solution.
The first element of the permutation, equal to n, forms n — 1 inversions paired
with each of the elements n —1,n—2, ..., 1. The second element of the permutation

n — 1 forms with the remaining elements n — 2 inversions. As is easy to see,
the permutation element, equal to k, where 1 < k < n, forms k — 1 inversions.

Therefore, the total number of inversions in the permutation (n,n — 1,...,2, 1) is
n
equal to the sum Y k =n(n — 1)/2.
k=1
2.4 Answer:
nn—1)
1 ;
" ot
nn
2 .
2 )
2.5 Solution.

The summand a,1a,-1,2 . ..a2,,—1a1, in the formula (2.5) is assigned the sign
(—=1)° = (=1)"=D/2_since the number of inversions in the permutation (1, n —
1,...,2,1)isequaltoo = n(n — 1)/2 (see Problem 2.3).
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Note. With the help of the function “floor” |x |—the greatest integer, which is
less than or equal to the argument x, i.e. [x] = max(n € Z, n < x), the answer
can be written in a more compact form: (—1)? = (—1) ln/2],

2.6 Solution.
(1) Calculate the determinant, using the rule of triangle for calculation by the
formula (2.3).
3 =21
-2 1 3|=3-1-(-2)4+(-2)-3-24+1-(=2)-0
2 0 =2
—1-1-2—(=2)-(-2)-(=2)—3-3.-0=—12.

(2) Expand the determinant in the first row:

20 13 03 01
01 3|=1 -2 +0

0-—1 5-1 50
50 -1

=1-(1-(-1)=0:3)=2-(0-(=1)=3-5)+0-(0-0-5-1)
= —1+30=29.

(3) Expand the determinant in the first row:

20 5
1 316=2-3-10-(=1)-16)-0-(1-10—-0-16)
0-110
+5-((=1)-1-0-3)
=92 -5=287,

(4) Expand the determinant, for example, in the third row:
2 —-13
232/=0-3-3—-(—-1D)-2)—2-2-2—-(-2)-3)
0 25
+5-2-3—(=2)-(—1))=-20+20=0.
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(5) Expand the determinant in the first row:

210
103|=2-(0-(=1)=5-3)—=1-(1-(=1)=0-3)+0-(1-5-0-0)
05—1

=30+ 1=-29.

(6) The determinant of the lower triangular matrix is calculated as the product of
its diagonal elements:

200
330 =2-3-4=24.
444

2.7 Solution.

(a) Expand the determinant in the first row:

-3000
200 2 00 220
2200
=-3-3-10/—-0-]1 —10/+0-[1 30
1 3-10
535 -135 —155
-1535
220
—0-113-1=-3-(-1040+0—-0—-0-0)
—-15 3
—040—0=30.

Note that the original matrix is the lower triangular one, hence its determi-
nant can be calculated by a simpler method as the product of diagonal elements:
A= (=3)-2-(-1)-5=30.

(b) Expand the determinant in the first column:

2-13 4
-15-3 —-13 4 —-13 4

0-15-3
=2-105-3-0-10 5-3]+0-|-15-3

005-3
002 002 002

0002
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13 4

—0-[-15-3=2-(=10+0+0-0—-0—0)—0
05-3

+0—0=—20.

The result can be obtained faster if we note that the matrix is the upper
triangular one. Then A =2 - (—1)-5-2 = -20.
(c) Expand the determinant in the first row:

2—-110
1 2-—1 02 -1 01 —1
01 2-1
=2-1-123|—-(=D-[32 3|+1-|3-1 3
3—-12 3
1 61 36 1 31 1
3161
012
—0-13-12|=2-2+6+6+2—-18+2)
316
—(-1)-(0+18—184+6—-0—06)
+1-(04+9-3-3-0-3)—-0=0.
2.8 Solution.

Denote the determinant by A and expand it in the first row. We will expand the
obtained third order determinants in the first row or in the row consisting of ones, if
any:

x11] [111 [ix1l [1x1
A=x|Ix1|—|1x1|+[111]—[11x
11x 11x 11x 111
=x(x(?=D—-Gx-D+A-0))= (=D —(x =D+ (1—-x))
(- =D+E-D-U-0)— (=D - —-D+1-x)
=x(x®=3x4+2) =32 =2x+ D =x(x - D> +x—2)—3(x —1)?
= —-DE+x*=5x+3)=@x—1D’(x+3).

As a result, the roots of the equation A = 0 are equal to x = 1 and x = —3.
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2.9 Solution.

Apply to the determinant the following equivalent transformations: from each
row, starting with the second one, subtract the first one. As a result we obtain the
determinant of the upper triangular matrix:

111 1 1
010... 0 0
002... 0 0
000... 0 0

000...p—10
000... 0 p

Such a determinant is equal to the product of the diagonal elements of the matrix:
1-1-2...(p—1)-p=pl.
2.10 Solution.

(a) Denote the determinant of the matrix Q by Q,, and write it in an explicit form:

0100...00

1010...00

0101...00
Qn:

0000 1

0000 1

Let us use the expansion in its first row, following which expand the obtained
the determinant of order (n — 1) x (n — 1) in the first column:

110...0 0 01 00
001...0 0 10”'

Q, = (=Dt 010 = (=D
............. oo
000...0 1 00 Lo
000...1 0 N
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Note that the problem reduced to computing the variable Q,_». For the
smallest possible values of the order of the matrix n = 1 and n = 2 we have

01
Q1 =det[0] =0, Qp=det =—1.
10

Thus, the recurrence relation is obtained:

Qn = _Qn—Z,
Q=0 Q=-1L

By the mathematical induction method we can show that its solution Q,, will
have the form:

0, — (—1)"/2, if n is even,
"o, if 1 is odd.

(b) Using Laplace’s method, similarly to item (a) we obtain the recurrence relation:

Qn = anzv
Q1=0, O, =1.
Its solution, as is easy to show with the help of the mathematical induction
method, has the form:

1 n
Q= 2(1 +(=D").

2.11 Solution.

Denote by P(n) the predicate “F,+1 = D(n)”, where D(n) is the determi-
nant (2.73). Let us use the mathematical induction method.

Basis step

Forn = 1andn = 2 we have

L1 1 10
= —true, F3=|—-1 1 1|—true.
—11
0 —-11

Inductive step
Assume the trueness of the statements P (k) fork =1,2,....
Prove that this entails the trueness of P(k + 1).
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Indeed, expanding the determinant D(n + 1) in the first row, we obtain
Dn+1 = Dy + Dy—1.

According to the inductive supposition D(n) = F,11, D(n — 1) = F,.

Therefore, we have obtained the true equality Fy, 42 = F41 + Fy.

Thus, the mathematical induction method has proved that F,,;; = D(n) for all
natural n.

2.12 Solution.
(1) According to the definition of (2.74) for n = 2 we have

11
V., = =ay —aj.
ay az
(2) Let us introduce for consideration the predicate “V, = [[ (a; —a;)” and
i,j€ll,n]
i<j

denote it by P(n).

Basis step
The case of the least n = 2 is proved in item (1) of this problem.
Inductive step
Let for some natural k > 2 the equality be fulfilled Vi = [][ (a = ai).

i,jell,k]
i<j
Prove that Vi1 = [ (aj —a;).
i,je[l,k+1]
i<j

Transform Vi as follows: from the (k + 1)-th row subtract the k-th one,
multiplied by a, then from the k-th one subtract the (k — 1)-th one, also multiplied
by a; and so until the second row inclusive:

1 1 1 1
0 a—a az—ay ... G+ —al
Vier =0 a2 — 2 2
k+1 a; ayjay az ajaz ... ak+1 ayai+1 |-
k k—1 _k k—1 k k—1
0ay —ajay, a3 —ajay ag, | —aia;,

The first column of the obtained determinant is formed by zeroes, except the
element in the upper left corner, equal to one. Using this fact, it is easy to perform
the expansion in the first column. After taking the common multipliers outside the
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sign of determinant, we have

1 1 1
a; as ag+1
— (a4 — _ _ 2 2 2
Vitr = (@2 —a1)(az —ap) ... (a1 —a1) | a5 a3 gy |
k=1 k-1 k=1
a, a3 <At

As a result we have obtained the determinant Vi, which, according to the
inductive supposition, is equal to the product of all the possible differences a; — a;
forl <i<j<k.

Therefore, the mathematical induction method has proved the formula of (2.75).

Note. The Vandermonde matrix, i.e. a matrix of the form

1 1 1
a az an
2 2 2
a1 612 an
n—1 n—1 n—1
a1 612 an

is widely met in the theory of approximation of functions by polynomials [11, 58].

2.13 Solution.

In case of multiplication of any row by a real number, the determinant of this
matrix is multiplied by this number. Therefore, as all the elements of the matrix A
are multiplied by m, the determinant is multiplied by the value

mxXmX---Xm.
~ - -
n times

Thus, for all m € N the equality det(mA) = m" det A is fulfilled.

2.14 Solution.

The student is wrong. The determinant of the sum of two matrices is not always
equal to the sum of the determinants of these matrices, which is confirmed by the
following counterexample.

Consider an identity matrix of size n x n. Then the inequality is valid:

det(l + I) s~ det I 4 det I,

since det(/ + 1) = det(2/) = 2" (see Problem 2.13). At the same time, det I +
det /] =14+1=2#det(I +I).
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2.15 Solution.

The expansion of the determinant by the formula (2.5) contains 5! = 120
summands. One of these summands of the form aj5as;a34a42as3 includes all the
five multipliers of value 10000 and is equal to (—1)° 10000° = (—1)°10%°. Here
o is the number of inversions in the permutation (5, 1,4, 2, 3). As is easy to see,
o =06.

The remaining 5! — 1 = 119 summands include no more than three multipliers
10000 and, therefore, do not exceed 100003 x 1 x 1 = 1012 in absolute magnitude.
Hence it may be concluded that the considered determinant is no less than the
difference 10%° — 119 - 10'% > 0.

As a result, the determinant is positive.

2.16 Solution.
Relying of the reasoning provided in the solution of Problem 2.15, we obtain: the
determinant in this case does not exceed the value

(=10 4+119-4.5-10'%) < 0.

Therefore, this determinant is a negative number.

2.17 Answer:
Computing of determinants with the help of Python provides the following
results:

1 1 1 1 10
1041 1 1 1
1 1 1 10* 1 |=99999990001999850004,
110 1 1 1
1 1101 1

1 10* 3 4 5
5 1 2 3 10
4 5 1 10% 3 | =-99999909053183731167.
3 41001 2
104 3 4 5 1

These results, of course, conform with the solution of Problems 2.15 and 2.16.

2.18 Solution.
Recall that in combinatorics the number of combinations of n various elements
of k without iterations is denoted as C(n, k) [1, 60].
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In order to form the minor of the k-th order, one should select & rows and k&
columns from the matrix. The rows can be selected by C (m, k) methods, while the
columns—by C(n, k) method. Applying the combinatory rule of product, we obtain,
that all in all we can have C(m, k)C (n, k) minors of the k-th order.

2.19 Answer:

The rows for formation of the minor may be selected using the number of
combinations, by C(n, k) methods. Then the columns should be selected so that
their numbers should not coincide with the numbers of the selected rows. This can
be done in C(n — k, k) ways. In all, according to the combinatory rule of product,
we obtain the answer: C(n, k)C(n — k, k) minors.

2.20 Solution.
Consider the matrix A of size 3 x 3

apj a2 a3
A= | ay axn axp

a3 azz asjs
and write its determinant in the form

det A = ay1axass + appazsaz + ajzazias

— aj1a23aszz — aj2da21d33 — A13dz2ds3g

=a+p+y
+d+e+¢,
where designations o = dadjianaszs, ,3 = daji2a33d31, ..., { = —ajzajpasz] are
introduced. Each of the variables «, 8, ..., ¢ takes the values from the set {—1, 1}.

All the six summands of the determinant cannot have the same sign. Indeed, the
product o8y can be presented in the form of the product of nine elements of the
matrix A:

3
O{,B)/ = l_[ aij.

i,j=1

. . . 3
At the same time, there exists the equality ¢ = (—1)3 ]_[i’j=1 ajj = —afy.
Therefore, among «, B, .. ., ¢ there exist negative summands, and det A < 6.
If five terms of the determinant have one sign, and the sixth term has a different
sign, then det A as an even number. Then, det A < 5.
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As is easy to find by direct calculation, the matrix

-1 1 1
1-1 1
1 1-1

has det A = 4.
Finally we obtain: the greatest value of the determinant of the matrix of size 3 x 3,
consisting of the elements +1 and —1, is equal to 4.

2.21 Answer: 2.

2.22 Answer: the determinant will be multiplied by (—1)*/2],
2.23 Solution.

# The number of multiplications
count = 0

def get determ(A):
global count

size = len(A)

if size ==

return A[0] [0]
elif size == 2:

count += 2

return A[0] [0] * A[1][1] - A[0][1] = A[1][0]
else:

det = 0

# Expansion over the first row
for col in range(size):
minor = [row[:col] + row[col + 1:] for row in (A[1:]1)]

det _sign = 1 if col % 2 == 0 else -1
det += det_sign x A[0] [col] * get determ(minor)

count += 1

return det

mas = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
print ("det =", get determ(mas))

print ("count =", count)

2.24 Solution.

For the matrix of size n x n, n recursive calls are performed and » multiplications
are executed of the forma;; x A;j, j = 1, ..., n. The exit from the recursion will be



88 2 Matrix Algebra

at n = 1; no multiplications are executed in this case. Due to this, the total number
of multiplications satisfies the recurrence relation:

Tn)=nTn—-1)4+n, n=>1,
T(1)=0.
Solve the obtained relation by the method of substitution, i.e. successively
expressing T (n — 1) by T(n — 2), then T'(n — 2) by T (n — 3), and so on:
T(n)=nT(n—1)+n

=nn—DTn—-2)+n—-1]+n
=nn—DTm—-2)+nn—1)+n
=nn—D[n-2D)Tn-3)+n—-2]4+nn—-1)+n
=nn—1)n—-2)Tnh-3)+nn—-1)n—-2)4+nn—1)+n.

Similarly continuing this process until 7'(1) = 0, we obtain
Tm)y=nn—1Hn—-2)...2-T(1)
+nn—-—1)n-2)..24+4nmn—-1)n—-2)...34---+n(n—1+n

0 | n! n! n!
L T A VR

1

| _
=n!|:1+2!+~~+(n_2)' (n_l)'} Zl

It is possible to write an analytical expression for 7'(n) by non-elementary
functions, however, for solution of the posed problem it is enough to evaluate the
asymptotic behaviour of the function 7 (n).

Note that forn — oo

oo o0

1 1 1
lim E = = —l=e—-1,
n—00 k! k! k!
k=1 k=1 k=0

where e = 2.71828... is the base of natural logarithms. Hence we obtain the
inequality

n—1
1
n <n!;k! < (e — Dn!,
=1

and, finally, T (n) = O (n!).
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2.25 Solution.
n—1
According to the result of the previous problem, T'(n) = n! )_ Kl
k=1 "

Let us expand the expression enI'(n, 1) — n!, taking into account the definition
of incomplete gamma function:

n—1 lk n—1 1 n—1 1
— . — -1 — = - -
enI'(n,1) —nl=en-(n—1)!le kzok! n!_n!];k! n!_n!kZ:lk!,

which coincides with T (n).

2.26 Solution.
Let us find the total number of inversions S(/N) contained in all permutations of

S(N
N elements. The relation ](V') will be equal to the mean value of the number of

inversions A(N) in the N-element array.
In order to compute the variable S(N) suppose that some permutation

(ai,, ai,, ..., a;,_;,a;,) contains exactly o inversions.
Note that in the permutation (a;,, a;,_,, ..., di,, a;;) the number of inversions is
N(N —1)

) — o. This means that the total number of inversions in the pair of arrays

@iy Qiys - -+ Qiy_y> @y) and (@, , iy - .5 Giy, Qi)

N(N -1 N(N -1
isequaltoo+( ( )—o = ( ).

2 2
Since there exist only N! permutations of the N-element array, then S(N) =
1 N(N —1
N! x ( ), and therefore there exists the following estimate of the mean

value of the number of inversions:

S(N) 1 _,
A(N) = = N+ O(N) for N - oo.
N! 4
2.27 Proof.

Denote the elements of the matrix B by b;;, 1 < i, j < n. Using the introduced
designation, we can write that the matrix / + ¢ B is formed by the elements (§;; +
Eb,'j).

According to the definition, the variable det(/ 4 ¢B) is equal to the sum over all
possible permutations:

det(I +¢B) = Z(—l)”((SUl + &eb1i,) (62i, + €b2iy) - .. (Bni, + €bni,).

perm
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Removing the brackets under the summation sign, we obtain
det(I + ¢B) = Z(—l)”(smaz,-z .
perm
+ €b1i,62i,83i5 - - . Oni,
+ €b2i,61i,83i5 - - - Oni,
+ €b3i381i,82iy - - - Spiyy + -+ -
+ €bni, 81i,82i5 - - - S(n—1)ip_
+e2 )+
The product 81;,62i, . . . 8ni, 1S equal to one, if i} = 1,ip =2, ..., i, = n,and is

equal to zero in other cases.
Further, the products of the form

Sbkik51i182i2 - S(kfl)ik,lg(kJrl)ikH . 8,”'"

reduce to the summands eby.
This implies that

det(I +&B) = (—=1)°(1 + &by + &by + - - - + ebuy + O(e?)),

where o is the number of inversions in the permutation (iy,i2,...,i,) =
(1,2,...,n).

It is clear that op = 0.

As a result we obtain

det(I + ¢B) = (—1)“0(1 +o b+ 0(82)) —1+4etB+ 0@,
k=1

2.28 Answer: det( ) =1— pe(tr B) + O(¢?).

(I +eB)?
2.29 Proof.
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Represent the matrix M in the form M = G + eG~'H ). Calculate the
determinant

det M = det G det(I + ¢G™'H)

_l)k—l

o0
= det G exp(tr In(/ + eG_lH)) = det G exp (tr Z ( 1

k=1

(sG_lH)k)

=detG(1 + etr (G™'H) + ;gz(trz (GT'H) = (GT'H)?) + 0(eY)).

Thus, the formula (2.80) is proved.

2.30 Solution.
The determinant of the matrix is equal to det A = ad — bc.
Calculate the cofactors for each of the elements of the matrix A:

A= (_1)1+1 -d=d, App= (—1)1+2 c=—c;
Ay = (=1D)*b=—b, Ap=(-D*"?a=a.

Write a matrix of cofactors:

d —c
—b a

Then the sought inverse matrix will have the form:

e 1 d —b
" ad - be —c a
2.31 Solution.
(1) Since det A = —2 # 0, then the inverse matrix exists. Find the cofactors of the
elements of the matrix A:
A =4, App = -3,
Ayl = -2, Axp =1.

4 -3
21

Therefore, the matrix of cofactors can be written in the form:
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T
. 4 -3 4 -2
Transpose the matrix (A;;): =
-2 1 -3 1
For computing A~!, divide the obtained adjoint matrix by the determinant:
1 4 =2 -2
AT = /(=2) =
-3 1 3/2 -1/2

(2) Since det A = 1 # 0, then the inverse matrix exists. Find the cofactors of the
elements of the matrix A:

A =7, Ap=-5,
Ay =—-4, Apn=3.

T
. 7 =5 7 —4
Transpose the matrix (A;;): =
' —4 3 -5 3
_1 1 7 —4 7 —4
Therefore, A~" = =
det A _5 3 -5 3

(3) Compute the determinant by the method of expansion in the first column:

31 45 —45
det A =3 -2 +3 =24 —-58+433=—1#£0.
51 —5-1 -31

Find the cofactors:

-3 1

Al = =8, Anp =35, Apn=-1,
-5 -1

Ap1 = =29, Axp =-—18, A3 =3,

Az =11, Ay =7, Az;z=-1

&8 5 -1
We will obtain the matrix of cofactors: | —29 —18 3
11 7 -1
Perform the transposition operation:
T
&8 5 -1 8 —29 11
—29 —-18 3 =5 —-18 7

11 7 -1 -1 3 -1
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With the help of division by det A write the inverse matrix:

8 —29 11 —829 —11

71_ — = —_ —
= oA | S 187 518 —7
-1 3 -1 1 -3 1

(4) Since det A = —3 # 0, then A~ is determined. Find the cofactors A; i

A =7, Ap=-5 A;3=6,
Ay =—6, Ap =3, Ax=-3,
Az1=1, App =1, Az;3=-3.

7 —6 1
The i trix i 1 to Al = -
e inverse matrix is equal to det A 53 1
6 -3 -3
7 1
-, 2 _?
5
-1 =
3 3
-2 1 1

(5) Find the determinant: det A = —27 # 0. The cofactors are equal to
Al =-3, Ap=-6, Aj3=—6,

Ay =—6, Axp =-3, Ay =06,
A3 =—6, Az =6, Az =-3.

Compute the elements of the inverse matrix:

-3 -6 -6 : 12 2
—-6-3 6 |= 9 21 =2
-6 6 -3 2-21

71 —
det A

93
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2.32 Answer:
— 1 —
X 1—— 0 0
1— 0 2
! 2 0! 0
_ 2 _
(1) 2@ o RS 20
0 2 1 00 3 4
00 |
00 0
L 4 J

2.33 Answer: [A, A" =[A, A" '] = 0.
2.34 Solution.

(1) As is known, the matrix A does not have the inverse one when the condition
det A = 0 is fulfilled.
1A

Calculate the determinant: | 5 ) 0| = —A3 =322 = —AZ(A + 3).

6 4
Therefore, the matrix does not have the inverse one for A € {0, —3}.
(2) The determinant is equal to A 4+32 41 -3=—-A—=3)(A—1)(A+1).The
matrix does not have the inverse one for A € {—1, 1, 3}.

2.35 Solution.
For finding the inverse matrix, compute the determinant det A.

1l 00
0180
001 y|
0001

det A =

det A = 1, since A is the upper triangular matrix and the determinant is equal to the
product of the diagonal elements.
Find the cofactors:

An=1 Ap=0, A3=0, Alu=0,
Ay =—a, Ap =1, Ax3=0, Ay =0,
Az =af, Anp=-—-8, Axz=1, A3z =0,
Ay = —afy, Ap =Py, Ap=—-y, Au=1
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We perform transposition and obtain the adjoint matrix:

1 0 OOT 1 —ax af —afy
—« 1 00 |01 =8 By
@ - 10| |oo 1 —y
—afy By —y 1 00 O 1

Since the determinant is equal to one, then A~! coincides with the adjoint matrix:

1 —a af —afy
|01 -8 By
00 1 -y
00 O 1

As is shown above, the determinant det A does not depend on the parameters
o, B, y. Therefore, the matrix A~ is defined for any values of o, B8, y € R.

2.36 Solution.

The determinant of the matrix G, = (g;;) is equal to det G, = (—1)r=D/2,
since non-zero product in the sum of the form (2.5) is equal to g1 ,82.n—1 - . - 8n.1 =
1, and the multiplier o for this product takes the value o = (—1)"("’1)/ 2 (see
Problem 2.5).

Construct the matrix of cofactors of the elements g;;, where 1 < i, j < n. The
cofactor of any element equal to zero will be equal to zero. This follows from the
fact that in case of deletion of the non-zero element in the corresponding minor
appears a zero row and a zero column, and, in turn, such a minor is equal to zero.
The minor of any element g; (,41)—;, located on the secondary diagonal, will be
equal to det G,—1 = (—DH)n=D=2)/2 gince after deletion of 8&i,(n+1)—i we will
obtain the matrix G,_1 of size (n — 1) x (n — 1).

Therefore, cofactors of such elements g; ,—; are equal to

(—1)i+(n+17i) -det G, = (_1)"+1 . (_1)(71*1)("*2)/2

Thus, the matrix of cofactors is equal to the original G,, multiplied by
(_1)}1(}171)/2'

As is easy to see, transposition does not change the obtained matrix. The last
step—divide the adjoint matrix by the determinant det G, = (—1)""~1/2_ Finally
we obtain that the matrix inverse of G coincides with it itself: G~! = G for all
values of n > 2.
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2.37 Solution.
Let us provide a code in Python for solution of the problem.

import numpy as np

def get_ Hilbert matrix(n):
return np.matrix([[ 1 /
for j in range(l, n

(i +3 - 1)
+ 1)] for i in range(l, n + 1)1])

matrix = get Hilbert matrix(6)
inversed = np.linalg.inv(matrix)
hhl = np.matmul (matrix, inversed)
hlh = np.matmul (inversed, matrix)

print (matrix)
print (inversed)
print (hhl)
print (hih)

The difference of the elements of the matrices H - H~' and H~' - H computed
with the help of Python from the identity matrix is ~ 10719 for n = 6, ~ 107 for
n = 8and ~ 1073 for n = 7. (Here, the symbol ~ means equality by the order of
value.)

Thus, Hilbert matrices demonstrate accumulation of machine errors when mak-
ing computations with real numbers [58]. These matrices are very often used for
testing of numerical algorithms.

The matrix H~! can be found in an explicit form; the analytical representations
for h;; are shown in [40]. An interesting peculiarity of this problem is also the fact
that the elements of the inverse matrix are integer numbers.

2.38 Solution.

This matrix is an upper triangular one, and its determinant is equal to the product
of the elements positioned on the main diagonal, i.e. is equal to one.

Construct the matrix of cofactors. The cofactors of all unit elements positioned
on the main diagonal will be equal to one. Upon deleting all zeroes except
those standing on the diagonal below the main one, there appear matrices with
proportional rows, therefore, their minors will be equal to zero. Those zeroes that
are positioned on the diagonal below the main one, as cofactors will have the values
(=A). The sum i + j for such elements is always odd, since they are positioned
below the main diagonal, and upon their deletion we obtain an upper triangular
matrix with one element A and other unities on the main diagonal. Upon deletion of
A of any degree, except zero, we obtain an upper triangular matrix with zeroes and
unities on the main diagonal. Therefore, both the minor and the cofactor are in this
case equal to zero.
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Finally, having executed the transposition operation, we obtain the inverse
matrix:

2.39 Solution.
Let us use mathematical induction method.
Basis step
For the least natural » = 1 we have
(A)~" = A7 s true.

Inductive step
Assume that for n = k the equality

(A1As.. A A =AM A oA A!
is valid. Then we should prove that for n = k + 1 the following is true:
—1 _ 4—1 4—1 —1 41
(A1A2 ... Akr1-1A%k+1) _Ak+1Ak+1—1"‘A2 Al
Denote the expression for A;l . Al_1 by B, Then:
(BArs) ' = A B = A (A A L ATD.
Therefore, according to the mathematical induction method, Vn € N the identity

(A1Az.. A A~ = A0A AT AT!

is valid.
2.40 Solution.

. . . 21
(1) Find the matrix inverse of the matrix A = .

02
Its determinant is equal to det A = 4, the matrix of cofactors has the
) ) 1 1/2 —1/4
components , inverse of the matrix: A™" =

12 0 172
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—64
We obtain the matrix X by multiplying A~! by the matrix B = :
21
1/2 —-1/4 —64| | =7/27/4| 1]|-147
0 1/2 21 1 12| 4| 4 2
—111
(2) Let us find the matrix inverse of the matrix A=| 0 22 |.
023

The determinant is equal to det A = —2.
The inverse of the matrix A~

~11/2 0
A= 0 3/2-1
0 —1 1

Multiply the matrix inverse of the matrix A by the matrix

211

B=|-10 2]

~1-20
—1120 |[-2 11 320
X=A""B=|032-1||-102 =; ~14 6
0 -1 1 ||-1-20 0 —4—4

(3) We obtain the solution of the equation multiplying both sides of the equation
X - A = B by A ! on the right.
To do this, find the matrix inverse of the matrix A:

[0z
ATl = ol 537
3014 36
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Compute the elements of an unknown matrix X = B - A™!:

0-12] [-301238)  [-55 25 65

X: 1 =92 — . — = — —
1=2-2|- 0| =537 |= | 100 —46 124
0 110 —30 14 36 —305 143 367

(4) From the equation A - X - B = C, find the unknown matrix X by the formula
X=A"1.c-B7L
We have

1 2 -3
T 13 32

1|47

B! =
’ 3115 -1

Afl

Consecutively perform multiplications in the following order:
(A'.c).- BN

Multiply the matrix inverse of the matrix A by the matrix C:

1 [2-3|]|1-1 1125

Alc = =
13132 1]01 13 {31

Finally, multiply the product A~!C by the matrix, inverse of the matrix B:

1125 1 |1—-47 1 |-3319

X: . =
13131 315 —1 403 | —_1722
1 0 0]

241 Answer: |0 1 0.
0256a 1 |
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2.42 Solution.
Having calculated the several first powers Ak, namely the second, third, fourth
100
and fifth powers of the matrix A = gll|,we have
hO1
1 00] 100
A= |2g+h12]|, A =|3g+3n13],
2h 01| | 32 01
1 00] [ 1 00
A*=l4g+6n14|, A’=|5+10n15
4h 01 | S5h 01

Based on the obtained equalities, suppose that for all natural values of n the
identity is fulfilled:

1 00
A"=|ng+nmn—Dh/21n| ,
nh 01

denote the respective predicate by P (n).
Let us use the mathematical induction method.
Basis step

1 00
Al = l-g+1(1—1Dh/211|=Aistrue.
1-h 01

Inductive step
Assume that for n = k the predicate P (n) takes the true value, Then:

1 00
A¥ = kg +k(k— Dh/2 1k
kh 01
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Prove that for n = k + 1 the equality is valid:

1 0 0
A = e g+ k(k+ Dh/2 1k +1

(k + Dh 0 1

Indeed,
i 1 0o0][100
k+1 __

AT = kg +k(k—Dh/21k||g11

i kh 01| |ho01

i 1 0 0
=|(k+Dg+k(k+Dh/21k+1

(k + Dh 0 1

Thus, the predicate P(n) is proved for all n € N.
Substituting as the exponent of the matrix the number n = 512, we obtain the

1 00
answer: A3'? = | 256(2¢ + 511h) 1 512
512h 01
2.43 Solution. _
. n Fa1 Fy
Denote by P(n) the predicate " =
| Fo Fop1

Basis step
The basis step is formed by the statement P (2):

01(]01 L1 |k
11 11 12 R F

which corresponds to the formula (2.85).
Inductive step
Assume that for n = k the statement is true:

Fr1 F
Fre Fr

Fk =
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Compute the matrix F” forn =k + 1:

F.1 Fp 01 Fr Fr_1+ Fx
Fr Fey| |11 Fiy1 Fr + Fe

]:k+1 —

According to the definition of the Fibonacci sequence, each element of this
sequence is equal to the sum of two previous ones, and for all k¥ > 1 the identity
Fr—1 + Fy = Fiyq is valid.

Thus, the predicate P(n) is proved for all natural n > 1.

2.44 Solution.
Let us try to find regularity in the sequence Al A% A3, ....Todo this, raise the
matrix to the second, third and fourth powers:

Tay]|[1ay 120 2y +ap
A=lo1p|lo1g|l=lo1 28 |.
001[[001 00 1

_12a2y+a,3 lay 13a 3y 4+ 3ap
A=A A=|01 28 o1g|=|01 38 |.
00 1 001 00 1
133y +3aB||lay 1 4o 4y + 6af
At=AA=01 38 01B8|=1]01 48
00 1 001 00 1

Analysis of the sequence of the powers A', A%, A3, ... leads to a hypothesis that
1 nany +nn— DHaB/2
A"=10 1 np
00 1
Let us prove the truth of this supposition with the help of the mathematical

induction method.
1 na ny +n(n — Daf/2

Denote by P(n) the statement “A” = | 0 1 np

00 1

Basis step
The truth of the statement P (1) is obvious.
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Inductive step
Assume that P (n) is valid for n = k for some k > 1:

1 ka ky + k(k — Dap/2
AF =101 kB
00 1

Prove that P(k) = P(k + 1).

lka ky +k(k— Dap/2 | [1ay
A=Ak A= 01 kB 018
00 1 001

1 (k+ Da (k+ Dy +k(k+ Dap/2
=0 1 k+ 1B
0 0 1

Therefore, P(n) takes the true value for all n > 1. Thus it is proved that

1 nany +nn— Dap/2
A"=101 np
00 1

foralln € N.

2.45 Solution.
Assume that g-th power of the matrix U (¢) is determined by the formula:

Up)? = coslgy) sin(g) , where g € Z.

— sin(g¢) cos(qp)

Denote this statement by P(g) and prove it first for ¢ € N. Let us apply the
mathematical induction method.

Basis step

For n = 1 we have

Wen! = | @ SO s true.

— sin(g) cos(¢p)
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Inductive step
Assume that P (n) is true for n = k:

(U((p))k _ cos(kp) sin(ke)
— sin(k¢) cos(ke)

Prove the truth of the statement forn = k + 1.

(U((p))kH _ cos(kp) sin(ke) cos¢ sing
—sin(kg) cos(kp) —sing cos ¢

cos(kp) cosp — sin(kp) sing  cos(kg) sin ¢ + sin(kg) cos ¢
— sin(kg) cos ¢ — cos(ky) sin g — sin(kg) sin g + cos(ky) cos ¢

cos(k + )¢ sin(k + )¢
—sin(k + 1) cos(k + 1)g

Therefore, for g € N there exists the equality:

cos(gep) sin(qp)
— sin(qy) cos(qp)

U(p)? =

Now it only remains for us to prove the truth of this equality for all integer ¢.
Indeed, (U (q)))o =1 = U(0) and for all ¢ € R there exists the inverse matrix

Ulp)™' =U(-9).

Thus, forg =0, 1, 2, ... the equality (U(¢))™? = U(—q) is valid.
This means that

Uiy = | UP Sn@) | e

—sin(qy) cos(gy)
2.46 Answer:

[A, B1] = qB? ! forall g € Z.
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2.47 Solution.
Consecutively perform the algebraic operations:
(D
1010 10 10
fA) = -3 +2
01(]01 01 01
10 30 20 00
= — + —
01 03 02 00
2
1 -2 1 -2 1 -2 10 7 —4
fa) = -3 +2 =
-3 -3 1 -3 1 01 -6 7
3 -6 20 62
-9 3 02 36
2.48 Solution.
(D
[100][100][100 100 100
gAy=1{110|(110||110|(+]110|—=3(010
[ 111f]111 111 111 001
[100] [100 300 ~10 0
=|(310|+|110]|—|030|=|4 -1 0 |;
| 631 111 003 7 4 —1
2

-210|(-210|[-210
g(Ay=13 —-11 3 -11 3 —11
2 10 2 10 2 10
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210 100

+] 3 -11[-3]010

2 10 001
=21 11 -3 210 300 —-26 12 -3
=127 =135 |+ 3 -11|—]030|=] 30 —-17 6
7 -1 1 2 10 003 9 0 -2

2.49 Solution.

(1) The numerator of the fraction is equal to

1 0 0
0-41 0
0 0 -6

In turn, the denominator forms the matrix

-4 0 O
0 —46 0 |,
0 0 -6

and the matrix that is inverse of it is equal to

—1/4 0 0
0 —1/46 0
0 0 -1/6

Having performed the multiplication operation, we obtain

10 ol[-14 0o o —230 0
g(A)=[0-41 0 0 —1/46 0 |[=1/92| 0 820
00 —6 0 0 -1/6 0 092
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(2) The numerator of the fraction is equal to

-6 2 0
0 -6 0
0 2 -6

The denominator of this fraction is equal to

—-6-20
0 -6 0
0 -2-6

Let us find the matrix inverse of the denominator:

—-1/6 1/18 0
0 —-1/6 O
0 1/18 —1/6
As a result we obtain
-6 2 0 —-1/6 1/18 0 . 3-20
glA)=10 -6 0 0 —-1/6 0 = 030
0 2 -6 0 1/18 —1/6 0-23

2.50 Proof.
Let us consider the sequence of integer non-negative powers of the matrix A =

0-1
10

|01 2 |10
01 10| 0 —1

01 10
A3 = ,A4 = and so on.
—-10 01
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Therefore, the elements of the matrix exp(A) are defined by the sums

o0 k
A o =D
(e )11—1+0/1!—1/2!+0/3!+1/4!+---_]§) 20! = cos 1,
4 0 (_1)k+1
=0—-1/1!-0/214+1/3'4+0/4!+ .. = = —sinl,
(eM12 /11— 0/21+ 1/3! 4+ 0741 + Z%@k+n! sin
o (=D*
A - .
=04+ 1/1!40/2!—1/314+0/41+--- = =sinl,
()21 +1/11+0/ /31 + 0741+ g(2k+1)! sin
o (—DF
A —_— —_— —_— o e e — o —_—
(e =1+0/11 — 1/21+0/3! — 1 /41 + _kg 0! = cos 1.
Therefore, there exists the equality
cosl —sinl
exp(A) =
sinl cos1
2.51 Solution.
(1) Compute the lower powers of the matrix A:
100 100 100
A’=lo10|, A'=lo10|, A*=]010
001 000 000

It is clear that Vn > 1 (A" = A). The elements of the matrix exp(A) are
equal to

1
JFe=e (@n=1,

1
!+3

1
eHn=(Hm=1+ +,

1

and the remaining elements take zero values.
Therefore,

e00
exp(A)=10e0
001
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(2) The lower powers of the matrix are equal to

100 010 001
A=1o010|., A'=|o001|., A’=]000
001 000 000

As is easy to see, A3 = 0, and all the higher natural powers of this matrix

are equal to zero.
Finally we obtain

111/2
exp(A)= 101 1
00 1
2.52 Solution.
10n
(1) By the mathematical induction method, it is easy to prove that A” = | 01 0
001
for all integer non-negative n.
(0.¢] (0.¢] k
0
g k! kgl !
x 1
According to the formula (2.49), we have ¢4 = 0o X I 0
k=0 "* 0 1
0 0 kgo X!
The sums defining the diagonal elements converge to Euler’s number e. The

sum (e4)13 = = = is also equal to e.
ST a-nT K 4

Thus, write the answer:
el0e
e*=10e0

00e

(2) Having computed the arbitrary natural power of the matrix A, we obtain A" =

10 n
nlnmn+1)/2 |-
00 1

Calculation of the diagonal elements of the exponential and the element
(eM)13 is performed similarly to item (1) of this problem.
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The element positioned at the intersection of the second row and the third
X nn+1)

column is defined by the sum (eM)a3 = > ol Transform this sum to
n=1 n.
the form
o0 o o0 o0
n—+1 n—1D+2 1 1 2
Z ( ) :Z( ) _ Z +Z .
2(n — 1)! 2(n — 1)! 2 (n—2)! 2(n — 1)!
n=1 n=1 n=2 n=1
N 3
Therefore, (e )3 = 2e.
As a result we obtain
e e
eh=lee 3e
2
00 e
2.53 Solution.
(1) According to the formula (2.53), we have
1 2
1nA=(A—I)—2(A—I) + -,
or
2
101 001 . 001 001
In|010|=1(000 ~H 000| +---=1000
001 000 000 000

(2) After computing the lower powers of the matrix (A —I) we can write the general
formula for (A — I)", where n > 1:

00 &
(A-D"= Su1 08,1 4+ 62 | >
00 0

where §;; is the Kronecker symbol.
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This implies that

101 001
Inj111|=1{10 !
2
001 000
2.54 Hint.
Use the formula (2.49) and apply the mathematical induction method.
2.56 Answer:

A square matrix of size 3 x 3 after reducing it to the echelon form with the help
of the elementary transformations can take one of the following forms:

lab lab lab lab
Olc|> [O0O1c|> 0OO01], 00O
001 000 000 000

Here, by a, b and c are denoted the arbitrary real numbers.
2.57 Answer:

(1) addition the j-th row to the i-th row for j > i;
(2) addition the j-th column to the i-th column for j < i.

2.58 Solution.

(1) Perform the following elementary transformations: add to the second row the
first one, subtract from the third row the doubled first one, then add to the third
row the second row.

12 —4 3 -2
We will obtain the matrix in the echelon form: A — |05 —-101 2 |, its
00 0 012

rank is equal tork A = 3.

(2) Subtract from the second row half of the first one, subtract from the fourth row
two first rows, swap the second and the third rows, subtract from the fourth row
the second one, swap the third and the fourth rows and, finally, subtract from
the fourth row half of the third row.

2—-43 10
. 01 -131

We obtain A — , therefore, rk A = 3.
00 —-1-94

00 0 00O
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(3) Let us use the elementary transformation method. Subtract from the second row
the quadruplicated first row, subtract from the third row the first one, subtract
from the fourth row the doubled first row. Then, subtract from the third row the
second one, multiplied by 5/9. Finally, subtract from the fourth row the second
one, divided by 3.

Then we obtain

12 1 3

0-9-9-18
A=

00 0 O

00 0 O

therefore, tk A = 2.

(4) Swap the first and the second rows, add to the third row the triplicated first
row, add to the fifth row the doubled first row. Then, add to the third row
the second one, multiplied by 11/2. Subtract from the fourth row the second
one, multiplied by 5/2. Add to the fifth row the second one, multiplied by 5/2.
Finally, subtract from the fifth row the third one, multiplied by 2/3.

-1 -4 -5
0o 2 —4
After the said transformations we obtain A — 0 0 =30/, therefore,
0 0 O
| 0 0 0 |

the rank of this matrix is equal to three.

(5) Perform the following elementary transformations: subtract from the second
row the first row, multiplied by 1/3. Then, subtract from the third row the
first one, multiplied by 1/3. And finally, subtract from the third row the
quadruplicated second row.

35 7
After that we obtain A — | 0 1/3 2/3 |, the rank of such a matrix is equal
00 O

to two.
(6) The matrix is presented in the echelon form, and, as is easy to see, rk A = 3.
(7) Add to the second row the doubled first row, subtract from the third row the
doubled first row, add to the third row the second row.
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Then we obtain

1-12 4 3
A—>10-191012],
0099 8

and the rank of the matrix A is equal to three.

(8) Subtract from the second row the doubled first row, subtract from the third row
the first one, multiplied by five. Then, subtract from the fourth row the first
one, multiplied by seven. Subtract from the third row the doubled second one
and swap the third and the fourth rows. Finally, subtract from the third row the
doubled second row.

After the said transformations we obtain

13 5-1
0-713 6
00 0 —4
00 0 O

therefore, rk A = 3.

2.59 Solution.

Consider the minor of the first order M 11 = B —y.If B # y, then the rank of the
matrix A is no less than one.
Th : : 12 _ |B=v O
en, consider the minor of the second order M1,2 = . If the
y o=y
condition y # 0 is fulfilled, then rk A > 2.
Finally, compute the bordering minors of the third order:

B—v 0 vy
Mi33=ly—a—y 0]=0
a—fB B —«

B—v 0 —B
Mi7i=ly—a-y a|=0
a—B B 0

Therefore, the maximum value that the rank of the matrix A can take is equal to
two.
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Note that with the help of the Kronecker symbol (see page 4) the formula for the
rank of this matrix can be written in the form tk A = 2(1 — 8408505y0)-

2.60 Solution.

(a) Use the bordering minor method (see page 64):

1 12 |IA
Ml=1#£0, MZ=|"|=1-2x
11
Then, consider two cases.
110
2)—(1)
(1) If & = 1, then the matrix isequalto [ 1 10| — @<® |01 |.Itis clear
001 000

that its rank is equal to two.
(2) If » # 1, then we compute the bordering minor of the third order (it is the

only one):

1120
Mll’,22’,§)= 110 :1—)\.;&0
001

Therefore, the rank of the matrix is equal to

2, if A=1,
3, if A#1.
(b) The lower minor M11 =1-A
Then, consider two cases.
000
(1) If » = 1, then the matrix is equal to | 0 1 O |, and its rank, as is easy to see,
002

is equal to two.
(2) If A # 1, then we continue to compute the bordering minors:

M3 = =1 =22 = A).
0 2—x
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—-100

If A = 2, we obtain the matrix | (0 0 0 |, its rank is equal to two.

001
If A # 2, then we need to compute the bordering minor M 11 22 ;’ M 11
1-20)2-23—-21).
-2 00

In the case when A = 3, the matrixisequalto | 0 —1 0 [, its rank is equal

0 00
to two. Otherwise, the rank is equal to three.
As a result, we form the answer:

2, ifae(l,2,3),

3, otherwise.

(c) Since M 11 = 1 # 0, then the rank of the matrix is no less than one.
Then, consider the minors of the second order:

1 2
M5 = —4 ).
’ 12—

This minor is not equal to zero at A # 4. For this case, consider the bordering
minor of the third order:

The determinant is equal to zero for A = 2 £ 3\/ 2. For such values of A the
rank is equal to two; for other values the rank is equal to three.

Now consider the case A = 4.

Then the non-zero minor of the second order:

1.2 2 =3
M,5 = =14 #0.
’ 2—x 10

Then, the rank is no less than two. The third order minor is the only one, but
it is only equal to zero for A = 2 + 34/ 2, as is shown above. Then, in this case
the rank is equal to three.
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So, forA =2 + 34/2 the rank of the matrix is equal to two, for other A the
rank of the matrix is equal to three.
(d) There exists le = 1 # 0, therefore, the rank of the matrix is no less than one.
Then, consider the minors of the second order:

M3 = = Ak —1).
’ 0 1—2

This minor is not equal to zero at A % 0 and for A # 1. For this case, such
for the minor of the third order:

1—2 1 |=A20—=1DQ@2—=A).
0 2—A
AL —1D@2—X) #0for A # 2 (since A # 1 and A # 0). In this case, the
rank is equal to three.

For A = 2 the rank is equal to two.
Assume that now A = 0:

011
011/,
002

11
02

Then, the rank is more than two.

011
011|=0.
002

Then, in this case the rank is equal to two.
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Now consider A = 1:

—-111
001
001
) 1.2 11
The rank is equal to two, because M,y = = 1 # 0, and the
' 01

determinant of the matrix is equal to zero.
Therefore, the rank is equal to two for A € {0, 1, 2}, and is equal to three in
other cases.
(e) The minor of the first order is M 11 = 1 s# 0, therefore, the rank of the matrix
takes the value no less than one.
Let us find the bordering minor of the second order:

1 -6
M3 = =—4— A
Cm12-

This minor is not equal to zero if A # —4. Let us find the minor of the third
order for such values of A:

1 -6 -5
M3 _ .2
123=|-12—% 5 |=1"+8r+16.

-1 6 1—A

This expression may only be equal to zero for A = —4. Therefore, in this
case the rank is equal to three.
Now consider the case when A = —4.

1 —6-5

-16 5

-16 5

The rank of the obtained matrix is equal to one.
As a result, the rank is equal to one for A = —4, and is equal to three for
A #£ —4
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(f) There exists M 12 = 1 # 0, therefore, the rank is no less than one.
Let us find the minors of the second order.

M7= = A(h - 3).
’ 1 2-2

It is not equal to zero if A # 0 and A # 3. Find for such values of the
parameter A the bordering minors of the third order.

=2 2 0
=1 24 0 [=AA-3HG ).
0 0 3-2

1,
Ml,

The third order minor is non-zero for all considered in this case A. Let us find
the minor of the fourth order (it is the only one):

1—x2 2 0 0
1 2—x2 0 0
0 0 3-—-A
0 0 0 4-—A

=2 —=3)3 =)@ —1).

It is equal to zero only for A = 4. For this case, the rank is equal to three. For
A # 4 the rank is equal to four.
Then, consider the value A = 0:

30
M3 = =12+£0,
o4
300
M%g’:jz 030|=24+#0.
004

For A = 0 the determinant of the initial matrix is equal to zero. Then, the
rank is equal to three.
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For A = 3:
-2 200
1 —-100
0 000
0 001

There is no minor of the third order that is not equal to zero. Therefore, the
rank is equal to two.
Finally we obtain the rank is equal to two for A = 3, is equal to three for
A € {0, 4}, is equal to four in other cases.
(g) There exists M12 # 0, therefore, the rank is no less than one.
Let us find the minors of the second order:

, 1= 2
2=

M,
’ 1 142

= -2+ 1) #0.

This minor is always other than zero. Consider the bordering minors of the
third order:

1—2 2 0
1 144 0 |=@—=1)(=2*—=1)=0onlyfori=2, but
0 0 2—x
1—2 2 0
1 141 0 |=Q+1)(=2>=1)=0onlyforr=—2.
0 0 24

This is because the minors of the third order are not simultaneously equal to
Zero.

Calculate the determinant of the initial matrix (in other words, find the minor
of the fourth order):

1—x 2 0 0
I 1+x O 0
0 0 2-x 0
0 0 0 242

=Q24+0)2=1(=2*—1).
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For A = £+2:

2+ 1) (2 — A (=A% — 1) = 0, therefore, the rank is equal to three.

For other A the rank is equal to four.

So, the rank is equal to three for A = %2, and equal to four for A # £2.
(h) There exists M12 # 0, therefore, the rank is no less than one.

Let us find the minors of the second order:

1+x12
1,2
M1,2 =

1 1

=A—1#0fork #1.

For this case, find the minors of the third order:

1412 4
MZ3=1 1 10|=-(—1)#0
1,2,4 — - .
0 0-1

Then, the rank is greater than or equal to three. Calculate the determinant of
the initial matrix:

1412 0 4

110 of
=a2—a—12.

0 02411

10 2 1

The determinant is equal to zero for A = 4 or —3. Hence, for such values
of the parameter A the rank is equal to three. In other cases the rank is equal to
four.

Now consider the case when A = 1. Let us find the minor of the second
order:

Calculate the minor of the third order:
20 4
M50 =110 0|=12#0.
03 -1
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®

Then, the rank of the matrix is no less than three. Now find the determinant
of the initial matrix.

220 4
110 0
003 -1
102 1

= —12#£0.

This implies that in this case the rank is equal to four.

So, the rank is equal to three for A € {—3, 4}, and is equal to four in other
cases.
The size of the matrix is equal to (n + 1) x (n + 1). As is easy to see, for
A € {0,1,...,n} the determinant of the matrix takes the value equal to zero.
We should also note that in this case there exists a minor of the order n, other
than zero. For example, for A = 0:

0 n—»A

As is known, determinant of the upper triangular matrix is equal to the
product of the diagonal terms of the matrix. Since the condition A = 0 is
fulfilled, then this product is not equal to zero. Therefore, the rank of the initial
matrix in this case is equal to n. Yet, if the condition A € {0, 1, ..., n} is not
fulfilled, then the rank of the initial matrix takes the value equal to n + 1.

We obtain the final answer: the rank of the matrix is equal ton for A € {0, 1, ..., n},
and is equal to n + 1 for other values of A.



Chapter 3 )
Systems of Linear Equations Shethie

The system of m linear equations with n unknowns is written as

anxi +apxy + -+ apx, = by,

az1x1 + axnxa + - + amxn, = ba, 3.1)

Am1X1 + amax2 + - - + ApnXy = by

Here, by x1, x2, ..., x, are denoted unknown numbers, a;; and b; are prescribed
numbers, also referred to as coefficients of the system of equations (3.1). Variables
b; are called known terms or right-hand sides of equations.

Solution of the system of equations is such a collection of n numbers, which
when x1, x2, ..., x, are substituted into the system in place of the unknown, turns
all the equations into identities. The solution is written as a vector [x, x2, ..., x,,]T

Ifb;, = Oforalli = 1,2,...,m, then the system of equations is called
homogeneous. If at least one of the known terms is b; # 0, then the system of
equations is called non-homogeneous.

In case when m = n, the system of equations is called square, and when m # n,
the system is called rectangular.

A system of linear equations is called consistent, if it has at least one solution,
and inconsistent, if there are no solutions [65].

If a consistent system has the only solution, it is called determined. If the
consistent system has at least two different solutions, it is called undetermined.
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124 3 Systems of Linear Equations

A matrix

all a12 “ e aln
a21 a22 “ e azn
A= , (3.2)

consisting of coefficients of the unknown g;; is called a system matrix.
A matrix

: (3.3)

into which a column of the constant terms b; is added is called an augmented
system matrix.

If the unknown and constant terms are written in the form of a column (of
matrices of sizes n x 1 and m x 1, respectively):

X1 b1
X2 by
X = , B= , 3.4
Xn b

then the system of equations (3.1) can be presented in an abridged matrix form:

A-X=B. 3.5)
3.1 Cramer’s Rule
Consider a square system of n equations with n unknowns:
apxy +appxy + -+ ainxn = by,
ar1x] + axpxy + -+ axyx, = by,
21X1 22X2 2nin 2 (3.6)

ap1X1 + apx2 + -+ -+ appXp = by.
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Theorem 3.1 (Cramer’s' Rule) If the determinant of the matrix A of the sys-
tem (3.0) is other than zero, then the system (3.6) is determined, i.e. it has the unique
solution. This solution can be computed by the formula

X, = ,i=1,2,...,n. 3.7

Here, A; is the determinant of the matrix obtained from the initial matrix A by
replacement of the i-th column with a column of constant terms:

an ...ari—1 brariy1 ... am
a ...azi—1 by axiy1 ... axy
A= ) ) ) e (3.8)

apt - Ani—1 by ayiy1 ... apn

If A = 0 and at least one of the determinants A; is other than zero, then the
system (3.6) has no solutions (i.e. it is inconsistent).

If A = 0, but also A; = 0, then the system (3.6) has infinitely many solutions
(i.e. it is consistent but undetermined) or is inconsistent.

Example 3.1 Solve the system:

S5x — 6y = -8,

3.9
5x 4+ 6y = 28.
For the given system we have
5 -6 —8 —6 5 -8
A= =60, Ay = =120, Ay = = 180. (3.10)
56 28 6 528
Thus, according to Cramer’s rule
A 120 A, 180
x= 7 = =2, y= Y = = 3. 3.11)
A 60 A 60
([l

1Gabriel Cramer (1704—1752) was a Genevan mathematician.
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Example 3.2 Solve the system of linear equations:

2x —y+3z =8,
3x —2y+z="1.

Solution Compute the determinants required to apply Cramer’s rule:

2—-1 3 8 -1 3
A=|11 —2|=-14, Ay =|51 —2|=-56, (3.13)

3-21 7-21

28 3 2—-18
Ay=115=2|=-42, A;=|11 5|=—-14 (3.14)

37 1 3-27

Therefore
A, A, A,

T A YT A “TA (3.15)
O

3.2 Inverse Matrix Method

Consider the system of equations (3.6). Write this system in the form A - X = B in
accordance with (3.5).

Let the matrix A have the inverse one A~'. Multiply both sides of the equality
A - X = B by A~ on the left:

Al A x=4""1.B. (3.16)

Transform the obtained matrix equation. Since the identities A~! - A = I and
I - X = X are valid, the solution of the system X can be written in the form

x=4a"1.B. (3.17)

Therefore, if we find the inverse matrix A—!, then the solution of the system can
be obtained as the product of the matrices A~! and B.
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Example 3.3 Solve the system of equations

—2x 42y —3z = —10,
2x —y+2z= 17, (3.18)
3x —y+3z= 10
by the inverse matrix method.

Solution The matrix of the analysed system of equations A has the form:

22 -3
2 -1 2 |. (3.19)
3 13

We find the inverse matrix using a cofactor matrix. The determinant of the matrix
A is equal to

—-12 22 2 -1
detA = -2 -2 -3
-13 33 3-1

=(-2)(-3+2)—2(6-6)—-3(—2+3)=-1. (3.20)

Calculate the cofactors:

—-12 22
Ay = (=D =—1, App = (=)'*? -0, (3.21)
-13 33
2 —1 2 =3
Ay = (-3 =1, Ay1 = (—1)**! = -3, (3.22)
3 -1 -13
-2 -3 -2 2
Ay = (—1)*" =3, Ap3 = (—1)2F? —4, (3.23)
33 3 —1
2 =3 -2 -3
Az = (1) =1, Ay = (=1)**? =2, (3.24)
-1 2 2 2
-2 2
Aszz = (=1)*3 =-2. (3.25)

2 —1
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Write the matrix formed by the cofactors:

~10 1
33 4 |. (3.26)
1 —2-2

As a result, the desired inverse matrix will have the form:

L[ 13 —1
A7l = |0 3-2[=]o0-32) (3.27)
1 4 =2 1.4 2

Then, the solution of the system will be found using the matrix multiplication
operation:

x 1 3 —1]]|-10 —10+21 - 10 1
yl=]10 -32 7 |=| 0-21420 |=|-1]- (3.28)
z —1-4 2 10 10 — 28 + 20 2

3.3 Gaussian Elimination

The use of the notion of matrix rank allows obtaining the criterion of consistency of
the system of linear equations.
Consider the system:

aixi +anxa+ -+ ax, = by,

ax1x1 +axnxy + - -+ axxy, = b, (3.29)

Am1X1 + Am2X2 + « - - + AmnXn = by
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The augmented matrix of the system of size m x (n 4 1) has the form:

ai a2 ... aip | by
a; ax ... axy | b2
B = " ) (3.30)
................ ...
aml Am2 . Amn | b

The consistency criterion for the system of linear algebraic equations is the
Kronecker—Capelli”> theorem (also referred to as the theorem of Rouché>*~Capelli)
[64].

Theorem 3.2 (Kronecker—Capelli Theorem) A system of linear algebraic equa-
tions (3.29) is consistent if and only if the rank of the basic matrix A equals to the
rank of the augmented one, i.e.tk A =1k B =r.

If r = n, then we obtain a square matrix with a non-zero determinant. Its solution
exists and it is unique.

If r < n and the system is consistent, then there exists an infinite set of solutions.

Ifrk B > rk A, then the system is inconsistent.

In what follows, by zero equations we will understand the equations of the form
0-x1+0-x4+---+0-x,=0.

Elementary transformations of the system of linear equations are:

. interchange (swap) of any two equations;

. multiplying the equation by any non-zero number;

. adding to the equation another one multiplied by an arbitrary number;
. dropping the zero equations.

AW N =

Gaussian* method or Gaussian elimination consists in transformation of the
augmented matrix B with the help of the elementary transformations to the echelon
form. Such transformations are aimed at obtaining a system of the form:

bi1-x1+bia-x2+ - +biy-xp +---+ b1y Xy = p1,

by -x3+ -+ bor - Xy + -+ bon - Xn = p2, (3.31)

Note that for bringing the system of equations to the said form we may need to
change the numbering of the variables.

2 Alfredo Capelli (1855-1910), Italian mathematician.
3Eugéne Rouché (1832-1910), French mathematician.
“4Johann Carl Friedrich GauB} (1777-1855), prominent German mathematician and astronomer.
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The system (3.31) may contain less equations than the initial one due to dropping
of the zero equations of the form:

If the transformations result in the equation
0-x14+0-x2+-+0-x,=d #0, (3.33)

then the system is inconsistent.
It is obvious that the minor M 11 22: is a basic minor, assuming that x, 41, ..., X

are free unknowns, to which we can assign arbitrary values:
Xr41=C1, ..., x4 =Cy—r. (3.34)

Rearrange these variables to the right side; then the obtained system necessarily
has a solution relative to the unknowns x1, x2, ..., x,.
From the last equation we find x,, from the last but one we find x,_1, etc.

Note Gaussian method is sometimes referred to as method of successive elimina-
tion of unknowns.

Example 3.4 Solve the system of equations by Gaussian method:

X1 — 2x2 + x4 = -3,
3x1 — -2 = 1,
R (3.35)
2x1+ x2—2x3— x4 = 4,
X1+ 3x2 —2x3 —2x4 =
Solution Write the augmented matrix:
1-20 1 ]-3
3-1-20 ] 1
(3.36)
21 -2-1] 4

13 —2-2]7
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Bring the obtained matrix to a triangular form. For this, subtract from the second
row the triplicated first row, from the third row—the doubled first one, and from the
fourth row—the first one:

1-20 1 ]-3
05 —2-3]|10
05 —2-3]10
05 —2-3]|10

(3.37)

In the next step, subtract from the third and the fourth rows the second one. The
first and the second rows remain unchanged:

1-20 1 |-3
05 —2-3]10
000 010
00 0 010

(3.38)

It is clear that the ranks of the basic and the augmented matrices are equal to two.
The system is consistent and undetermined. As free variables, take x; and x3. Let
x1 = C1, and x3 = C». Then we have

-2 = -3-C,
X2+ x4 1 (3.39)
5:-%p0—-3-x4=104+2-C>.
We are solving this system relative to the variables x, and x4:
= _1 3 N C - 2 N C )
2 o : (3.40)
X4 =-5+4+5-C;—4-C,.
We write the final answer in the form:
X1 Ci 0 1 0
—143C; —2C —1 3 -2
x= ||| Tt T ral’l+o (340
X3 Cy 0 0 1
X4 —545C; —4C, -5 5 —4
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Example 3.5 Solve the matrix equation relative to the unknown matrix Y:

1 -1 13 —2-6
Y - . (3.42)
12 13 39

Note the degeneracy of one of the multipliers, namely the matrix
13

13
Solution Note that the degeneracy of the matrix does not allow us to use the
13
equation solving method with the help of the inverse matrix. In this case, reduce the
problem to the system of linear equations.
Denote the elements of the matrix Y by y1, y2, y3 and y4:

y= |12 (3.43)

Y3 ¥4

Successively expand the product of the matrices:
L =L fyiy2|[13] |-2-6] | yi—y3 y2—y4 13
—12 (|y»y|]|l3 39 —y1+2y3 —y2+2ys | |13

— y3 — 3 3y, —3y3 —3
_ Yi+y2—Yy3—ya y1+ 3y y3 Y4 . (3.44)

|~y nt 2y3 +2y4 —3y1 — 3y2 + 6y3 + 6y4

-2 -6

3.9
Equating the respective elements of the matrices, we obtain a non-homogeneous
system of linear equations relative to the unknowns y1, y2, y3 and y4:

The obtained matrix is equal to

Y+ Y2 —y3—y4 = =2,
3 3y, —3y3 — 3y4 = —6,
y1i+3y 3 Y4 (3.45)
—y1—y2+2y3+2ys = 3,

=3y1 —=3y2+6y3 +6y4 = 9.
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Write the augmented matrix of this system:

1 1 —1-1]-2
3 3 —3-3]-6
—1-12 213
—3-36 619

(3.46)

Subtract from the second row the first row, multiplied by 3; then, subtract from
the fourth row the third row, multiplied by 3:

1 1 —1-1]-2
000 010
~1-12 213
000 010

(3.47)

Then, add to the third row the first row. The zero rows do not influence the
solution, this is why we obtain the following equivalent matrix:

11-1-1]-2
(3.48)
001 1|1
It corresponds to the system of equations with four unknowns
+ - - = _25
YITY2—=Y3— V4 . (3.49)
»t+y= L

The ranks of the basic and augmented matrices are equal to two. Therefore, we
conclude that the system (3.49) is consistent and undetermined.
As the independent variables, select, for example y, and y4:
y2 = Cl, y4 = Cz, where Cl, C2 e R. (3.50)
Having substituted (3.50) into the system (3.49), we obtain

yi+Ci—ys—C = -2,
3+ C2 1,

(3.51)



134 3 Systems of Linear Equations

or
=-1-Cy,
. : (3.52)
3= 1-0C.
Write the coefficients y;—y4 in the form of a column:
Y1 -1 -1
) 0 1 0
= +C +C . (3.53)
y3 1 0 —1
V4 0 0 1
As a result, the matrix Y is equal to
—1-C; Cy
Y = , (3.54)
1-C,

where C1, C; are arbitrary real numbers.
Thus, the matrix equation (3.42) has the infinite set of solutions, depending on
two real parameters.

Check
By direct substitution of the obtain matrix into (3.42) it is easy to check that Y is
determined correctly:

I —1(|-1-C1 C; 13
-1 2 1-C & 13

—2—-Ci1+Cy C;1—(Cy 13 -2 -6

3+4C1—2C, —C1+2C2 | (13 39

O

Assume that A and B are arbitrary matrices with sizes m x n and n x p,
respectively. Estimate of the rank of the product of the matrices A and B is provided
by the following theorem.

Theorem 3.3 The rank of the matrix product satisfies the inequality

rkAB < min(tk A, 1k B). (3.55)
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In other words, the rank cannot increase when the matrices are multiplied [63,
64].

There exist many various methods of solving system of linear equations.

Gaussian method is one of the most frequently used.

Consider realization in Python of Gaussian method of solving system of linear
equations (Listing 3.1).

For definiteness, we will form the solutions for the systems where the number
of equations and unknowns coincides, but the provided algorithm can easily be
transformed for the systems with an arbitrary relation between equations and
unknowns.

Listing 3.1
r B
1 import math
2
3
4 def gaussian elimination(A, B):
5 m = len(A)
6 n = len(A[0])
7
8 if len(B) != m:
9 raise ValueError
10
11 C = [[A[1]1[j] 1f § !'= n else B[1i] \
12 for j in range(n+l)] for i in range(m)]
13
14 # Forward elimination
15 for r in range (min(n, m)):
16 max row pos = ¥
17
18 # Pivoting strategy
19 for i in range(r + 1, m):
20 if abs(C[i] [r]) > \
21 abs (C[max_row_pos] [r]) :
22 max_row pos = i
23
24 Clr]l, Clmax _row pos] = \
25 C[max_row _pos], Clr]
26
27 if math.isclose(C[r] [r], O0):
28 continue
29
30 for i in range(r + 1, m):
31 factor = C[i] [r] / Clr] [r]

32
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33 for j in range(r, n + 1):
34 C[i] [§j] -= factor * Clr]lI[j]
35
36 # Back substitution
37 answer = [0] * n
38
39 for i in range(min(n - 1, m - 1), -1, -1):
40 s = 0.0
41
42 for j in range(i + 1, n):
43 s += C[i] [j] * answer[j]
44
45 if not math.isclose(C[i] [1], O0):
46 answer[i] = (C[i]l[n] - s) / CI[i]I[i]
47 elif not math.isclose(C[i] [n] - s, 0):
48 return None
49
50 for i in range(n, m):
51 s = 0.0
52
53 for j in range(n):
54 s += C[i] [j] * answer[j]
55
56 if not math.isclose(C[i] [n] - s, 0):
57 return None
58
59 return answer
« o

Two parameters arrive at the input of the given function: the coefficient matrix
with the unknowns in the system of equations A and the right side matrix B.

The realization of the function consists of three main steps. In the first step, the
matrix C is constructed, which is obtained by attributing the matrix B to the initial
matrix A on the right.

Then, the so-called forward pass is performed with the purpose of bringing the
matrix to the echelon form (that is to the form when each successive row, viewed
from left to right, contains more zeroes than the previous one). This procedure is
performed by applying to the matrix C of a series of elementary transformations
by the following algorithm: successively, starting from the first one, all columns
are scanned. Among the elements of the current column, the one with the greatest
module is found, referred to as the basic or pivoet. Then, from each row, a row
is subtracted that contains the pivot and is multiplied by the coefficient equal to
the relation of the row element in the considered column to the pivot. Thus, all
the elements in the column, except the pivot, become equal to zero. The process
is performed until the matrix has a row left that contains only two variables: one
coefficient of the unknown and one value in the right side.
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In the third step, the “backward pass” is performed. The values of all unknowns
are consequently expressed in terms of the already found variables. So, the unique
solution is obtained or it is determined that there are no solutions or the the set of
solutions is infinite. The backward pass starts from the row containing the minimum
number of non-zero coefficients, and continues until all the unknowns are expressed
in terms of the already known ones, or until it is established that there is no unique
solution.

The asymptotic complexity of Gaussian elimination, due to triple loop nesting
by the variables r, i, j, is equal to 0(n3), where n is the number of equations in
the system.

Let us give an example (see Listing 3.2) of using the function
gaussian elimination (A, B) for solving the system of equations whose
matrix of size 100 x 100 has unities on the secondary diagonal and other elements
equal to zero. The column B is equal to [1, 2, 3,4, ..., 100].

Listing 3.2
o N
1 size = 100
2
3 A = [[0 for j in range(size)] \
4 for i in range(size)]
5 B = [0 for i in range(size)]
6
7 for i in range(size):
8 for j in range(size)
9 A[i]l[j] =1 if j == size - i - 1 else O
10
11 for i in range(size):
12 B[i] = float (i)
13
14 print (gaussian elimination(A, B))
N y
3.4 Fundamental System of Solutions of Homogeneous
Systems
Consider a homogeneous system of equations that has the form
ajixy +apxy + -+ apx, =0,
azi1x1 +axpxy + - -+ apx, =0, (3.56)

am1X1 + am2x2 + -+ + apnxy =0,

where m is the number of equations, n is the number of unknowns.
This system can be written in a matrix form:
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A-X=0, 3.57)

where A is the system matrix, and by X is denoted the column formed by the
variables:

X1
X2
X=| . (3.58)
Xn
This system necessarily has the solution X = [0,0,..., O]T, which is called

trivial.
Our purpose is to find all non-trivial solutions, if any.

Theorem 3.4 Let the matrix A of a homogeneous system of equations have the size
m X n and the rank r. If r = n, then the system has only a trivial solution. If
r < n, then there exist exactly n — r linearly independent solutions, referred to as
fundamental system of solutions.

Suppose that we have found the basic minor and it is located in the upper left
corner (otherwise, the order of variables and equations may be changed). Let us
keep only those equations whose coefficients are included into the basic minor, that
is from the first to the r-th. The unknowns from number r 4+ 1 to number n are
referred to as free and rearranged to the right side of the equations:

anxy + -+ ayXy = —Alr41Xr41 — + -+ — AinXn,
.............................................. (3.59)
ar1x1 + + rrXr = —Qrrp1Xr41 — c 00— ArpXp
Let us introduce for consideration a square matrix
ari - air
C=|: . |, (3.60)
arl ... Aarr

and, according to the property of a basic minor, the following inequality det C # 0
is valid.
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Denote
X1 Xr+1
v=|"er, z=|""|cr. (3.61)
Xy Xn
Then, select n — r linearly independent vectors Zi, Za, ..., Z,—,. Usually,

collections are taken that form the so-called canonical basis in R" "

1 0
0 1

Zi=|0|, z=\0o|, .... z.,=|0]. (3.62)
0 0 1

Let us call F; the vector in the right side of the equation for the given Zi, ...,
F,_,—for Z,_,.
In this case, we have the systems of equations in a matrix form:

C.-Y1=F,
................ (3.63)
C- Ynfr — Fn—r
According to Cramer’s rule, the solutions Y7, Y2,..., Y,_, are uniquely
determined. Then the full solution of the system will consist of the vectors:
Y Y.
Xi=| ") xe=| ) (3.64)
Z Zn—r
that are linearly independent, since Z1, ..., Z,_, are linearly independent.
The set of the solutions X1, X», ..., X,—, represents the fundamental system

of solutions (FSS).

If the free unknown is the only one in the system, then we assign a value to it
equal to one. If there are no free unknowns, i.e. r = n, then such a system has only
a trivial solution and therefore there are no fundamental solutions.
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We will denote the general solution of the homogeneous system by Xgep :
Xgen‘ =CiX1+CXo+- -+ Cho v X, (365)

where C1, Ca, ..., C,_, are arbitrary constants.

Example 3.6 Find the fundamental system of solutions for the homogeneous
system of equations

2x1 — 4xp +5x3 +3x4 =0,
3x1 — 6x2 +4x3 + 2x4 = 0, (3.66)
dx1 — 8xp + 17x3 + 11x4 = 0.

Solution Find the rank of the matrix of the given system

2-45 3
3-64 21, (3.67)
4-81711

by bringing it to the upper triangular form.
Subtract from the third row the second one. As a result we obtain

2-453
3-642], (3.68)
1-2139

permute the first and the third rows:

1-2139
3-642]. (3.69)
2-453

Subtract from the second row the first row multiplied by 3, and from the third
row—the doubled first row. We have

1-2 13 9
00 —35-25]|. (3.70)
00 —21-15
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Divide the second row by (—5), and the third one by (—3):

1-2139
00 75]. (3.71)
00 75

Subtract from the third row the second one:

1-2139
00 75]- (3.72)
00 00

From this we see that the rank of this matrix is equal to two.
As abasic non-zero minor, take, for example, the minor M 31 ’f of the initial matrix:

53

. (3.73)
42

Then, use the first two equations, whose coefficients are included into the basic
minor. Rearrange to the right side of the equations the summands that are not
included into the basic minor. We obtain

5x3 + 3x4 = 4xy — 2x1,

(3.74)
4x3 4+ 2x4 = 6x2 — 3x7.
Set two different values to the free unknowns x; and x;. The first case:
X1 1
= . (3.75)
X2 0
Substituting these values into the system, we obtain
5 3x4 = =2,
3 X (3.76)
4x3 4+ 2x4 = —3.

5 7
Solution of this system: x3 = — ) and x4 = 5"
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The second case:

X1 0

X2 1

Similarly to the first case, we obtain

5x3 + 3x4 = 4,
4x3 4+ 2x4 = 6.

While x3 = 5 and x4 = —7.
For the fundamental system of solutions we finally have

X1 1 0
X2 0 1
€ 9
X3 —-5/2 5
X4 7/2 -7

The general solution of this homogeneous system may be written as

where C; and C; are arbitrary numbers.

3.5 General Solution of the Non-homogeneous System
of Equations

Consider a non-homogeneous system of equations:

aixi +anxa+ -+ amx, = by,
ax1x1 +axnxy + - -+ axxy, = b,

am1X1 + amax2 + - -+ ApnXy = by

(3.77)

(3.78)

(3.79)

(3.80)

(3.81)
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Theorem 3.5 Let Xgepn, be the general solution of the homogeneous system, when
all the values b; are replaced with zeroes, and Xpec. is the particular solution of the
non-homogeneous system. Then, X, the general solution of the non-homogeneous
system, is equal to

X = Xgen. + Xspec.- (3.82)

Example 3.7 Solve the system:

2x1 +xp —x3 —3x4 = 2,
dx1 + x3 — Txg = 3,

(3.83)
2x0 —3x3+x4 =1,
2x1 + 3xp — 4x3 — 2x4 = 3.
Solution Write the augmented system matrix:
21-1-3]|2
401 =713
(3.84)
02-31]1
23-4-213

Find the rank of this matrix, for which purpose subtract from the second row the
doubled first row, and from the fourth row—the first row:

21 —1-3]2
0-23 —1]—1
(3.85)
02 -31]1
02 -31]1

One can see that the last three rows are proportional to each other, and it is enough
to keep one of them:

21 —1-3]2
0-23 —1]—1

(3.86)
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The rank of the basic and the augmented matrices is equal to two, therefore,
the system is consistent. Find the general solution of the homogeneous system, for
which purpose rearrange x3 and x4 to the right side of the equations. We obtain

2x1 + x3 = x3 + 3x4,

(3.87)
—2x2 = —3x3 + x4.
Select the following values for the independent variables:
1
N (3.88)
X4 0
in such a case, we obtain the system
2x1+x2= 1,
S (3.89)
—2xp = —3,
1
whence xo = ,x1=— .
Now, selecting the values
X3 0
= , (3.90)
X4 1
we obtain the system
2x1 4+ x2 =3,
TR 3.91)
—2x> =1,
Lo 1 7
whose solutionis xp = — _andx; = .
Therefore, the general solution of the homogeneous system has the form:
- 17 -7
4 4
3 1
Xgen.=C1| o [+C2| o |, where C1,Cr € R. (3.92)
1 0
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If we introduce for consideration new constants Ci = C1/4, C, = Cy/4, then
Xgen. Will be written in the form, free from fractions:

—1 7

6
Xgen. = C} +C} , where C, C; € R. (3.93)
4 0

In order to find the particular solution, return to the augmented matrix (3.86).
The equations for computation of Xpec, have the form:

2 = 3 2,
X1+ x2 = x3 + 3x4 + (3.94)

—2xp = =3x3 4+ x4 — 1.

Assuming that the values of the independent variables are equal to zero, we find

x| =

Xspec. = (3-95)

S O N =k W

As a result, the general solution of the non-homogeneous system is equal to

-1 7

6 -2
X = Xgen. + Xspec‘ = Ci 4 + Cé 0 + , where Ci, Cé e R.

S O NN W

(3.96)
O

Review Questions

1. Define solution of a system of linear equations.
2. What system of equations is called consistent? inconsistent?
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W

. When is the system of equations definite? indefinite?

. Explain how an augmented matrix of a system of linear equations constructed.

. Describe the methods of solving the systems of linear equations: Gaussian
method, inverse matrix method, Cramer’s method.

. What is the complexity of the Gaussian method?

. What solution does any homogeneous system of linear equations have?

. Define the fundamental system of solutions.

. How is the general solution of a non-homogeneous system computed?

[ N

O 0 3 O\

Problems

3.1. In order to expand a computer laboratory, its chief is planning to purchase
9 workstations and 7 notebooks. If 14 workstations and 9 notebooks are
ordered, the cost of the purchase will grow by 1.5 times. Find how many
times the workstation is more expensive than the notebook.

3.2. Solve the system of linear equations using Cramer’s rule:

2x1 —x2+3x3= 9,
3x =5y = 13,
(a) (b)  3x; — 5x3 — x3 = —10,
2x + 7y = 81;
dx1 —Txp +x3 = -7,
X +2y+z=4, 2x —4y +9z = 28,
(©13x—=5y+3z=1, (d{7x+3y—6z=-—1I,
2x + 7y —z=28; 7x+9y -9z = 5;
Tx + 2y 4+ 3z =15, x+y+z= 36,
(e) 5x —3y+2z=15 (f) 2x — 3z = —17,
10x — 11y 4+ 5z = 36; 6x —5z= 7;

3x1+2x2+x3 =95,
(g X1 +x2—x3 =0,
4x1 — xp 4+ 5x3 = 3.
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3.3. Solve the system of linear equations using Gaussian elimination:

6x1 + 2x2 4+ 3x3 = 74, 2x1 + 5xp — 2x3 = —6,
(a) Tx1 +4x2 =91, b)) —3x;1 —2x+x3= 0,
x1+x2+x3 = 18; 3x2+2x3 = =8;
3x1 —xp +6x3 = —4, 5x1+3x2 —3x3 = 8,
(c) 3xp—Tra= 2, @] —4x;—3x-2x3= 1,
—4x1 — 4xy — 3x3 = —10; —2x1 + 3x3 4+ 6x3 = —29.

3.4. Solve the system of linear equations using Gaussian elimination:

—2x1 + Txo + 4x3 = 32, —x] —2x3 — x4 = —6,
2x1 + 8xp — x3 + Tx4 = 63, —5x1 — xp + 6x3 + x4 = 23,
(@) (b)
—6x1 + 6x3 +8x3 —8x4 = 2, S5x; — 8xp — 9x3 +4x4 = 62,
6xp — 4x3 + Sx4 = 58; 6x1 — 9xp — Sx3 + x4 = 73;
Adx1 — 9x3 — x4 = 37, —8x1 +xp —4x3 — 8xy = 7,
Tx1 — xp — 5x3 — 5x4 = 36, —Txy —6x3+Txg4 = 56,
() (d)
8x1 — 5xp +4x4 = —38, —8x1 + 3x2 + 2x3 — 2x4 = —63,
x1 —4xy + 9x3 — 4xq4 = —25; —8x1 —3xp —x3 —4x4 = —6.

x3.5. Solve the system of linear equations relative to five unknowns:

5x1 — 8x2 — 5x3 + 8x4 +8x5 = -5,

2x3 +2x3 + x4 — X5 = 8,

(a) { —2x1 4+ 4xy 4+ 3x3 — 8x4 + 4x5 = =39,
5x1 4+ 6xp + 2x3 — 2x4 — 4x5 = 32,

X1 —2x0 —x3+2x4 —2x5 = 23;

6x1 — xp + 6x3 +3x4 — Tx5 = 6,

—4x1 —4x2 + 3x3 — x4 — 8x5 = =30,

(b) —X1 + X2 +5x4 — x5 = =22,
4x1 4+ xp — 3x3 4+ 3x4 — S5x5 = =3,

8xy2 + x4 — x5 = —61.
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x3.6. Solve the system of linear equations relative to six unknowns:

—x1 4+ 2x3 4+ 5x4 — 2x5 — 4x6 = 4,
—Xx1 — x2 +x3 — 3x4 + x5 — 4xg = —406,
—Xx1 + 5x2 +4x3 —2x5 — x = —19,

(a)
X1 —2x2 +4x3 —2x5 —x6 = —9,
—2x1 — S5x2 4+ 3x3 — 2x4 — 3x5 = =20,
3x1+x2+3x3+x6 = 4
—2x1 —4xy — 4x5 + Sx6 = 2,
—X1 4+ 5x2 4+ 3x3 4+ 5x5 = —12,
) —2x1 —5x2 +5x3 —3x4 — 5x5 — 3x¢ = -7,
—4x1 —5x2 — 3x3 +5x4 — 2x5 +3x¢ = 10,
x1 + 3x0 — 5x3 + 4x4 + 3x5 + 2x6 = 8,
—4x1 4+ x2 —4x3 4+ 3x4 + x5 — x6 = 3.

3.7. Find the fourth power polynomial p(x) with real coefficients, for which the
following properties are valid: p(5) = 1 and p(1) = p2) = p3) =
p) =0.

3.8. At what values of the parameter A is the system of equations

X1 +x2 =1,
Axy+x2 =2,
X1+ Axp = 4.

consistent?
3.9. At what values of the parameter A does the system of linear equations

x1+ix = 0,
—X1+x2—x3= 5,
—x2+x3 = —4,

have the unique solution? With these values of A, find the solution of the
system using Cramer’s rule.
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%3.10. Solve the matrix equation A - X - B = C, where

—-323 o —130
A=|-214|,B= o , C=1-250]. (3.97)
6 12 -330

Note the degeneracy of one of the multipliers, namely the matrix B.
x3.11. Solve the matrix equations:

62 —44
(1) X =
31 22
15 =5 1 —1
@ X- = :
31 21
6 —1 1 6 19 —22
G X-|-10-56|=|10 5 —6];
| 0 —2023 —6-19 22
12 5 782
@15 3 -1 |- X={2 71
7 —1-11 1 —11

3.12. A program code is given that processes the one-dimensional array a,
consisting of five elements:

for 1 in range(len(a)) :
temp = al[0]

for j in range(len(a) - 1):
aljl = -2 » alj + 1]

al[len(a) - 1] += temp

After executing this program code segment, the array a [] consists of
the following elements: [-32, 32, 32, 32, 16]. Find what values
the elements of the array a [1], where 1 = 1, ..., 5, before executing this

segment.
3.13. A program code is given that processes the one-dimensional array a,

consisting of seven elements:

for i in range(len(a)):
temp = al[0]
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for j in range(len(a) - 1):
aljl =3 » alj + 1] -1

allen(a) - 2] = -allen(a) - 2] - temp

After executing this program code segment, the array a [] consists of the
following elements: [365, 608, -769, -499, -409, 107, 5].
Find what values the elements of the array a [1],1 =1, ..., 7 took before
executing this segment.

3.14. There exists a modification of Gaussian elimination referred to as Gauss—
Jordan® elimination. In the Gauss—Jordan method, the coefficient matrix
is brought not to a triangular, but to a diagonal form. Write the realization
of this method in Python and compare its asymptotic complexity with the
complexity of the standard Gaussian elimination.

3.15. Find the general solution and the fundamental system of solutions for the
systems of equations:

x1 —4xo+x3=0, 2x1 —xp +3x3+x4 =0,
(1) X1+x2—x3=0, (2) 2x1 —5xp —x3 =0,
3x1 —2xp — x3 = 0; 4x; — Tx2 + x3 + 3x4 = 0;
X1+ 2x2 +4x3 —3x4 =0, 3x1 + 5x2 +2x3 =0,
3x1 + 5x2 + 6x3 —4x4 =0, 4x1 4+ Txp + 5x3 =0,
(3) (4)
Adx1 +5xp —2x3 +3x4 =0, X1+ x2 —4x3 =0,
3x1 + 8xp + 24x3 — 19x4 = O; 2x1 +9xp + 6x3 = 0;

2x1 +4x2 4+ 6x3 + x4 =0,

5 3 0 x+2y+3z=0,
X1+ 2x2 +3x3+x4 =0,
(5) (6)§2x +3y+47=0,
3x1 4+ 6x2 +9x3 — x4 =0,
x+y+z=0;

X1+ 2x2 + 3x3 4+ 5x4 = 0;

X1 —2x2+3x3 —4x4 =0,

2x1 —4xy +5x3+ Tx4 =0,
6x1 — 12x0 + 17x3 — 9x4 = 0,
Tx1 — 14x0 4+ 19x3 + 17x4 = 0.

(N

SWilhelm Jordan (1842-1899), German geodesist and mathematician.
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Answers and Solutions

3.1 Solution.

Denote the price of one workstation by x, and of one notebook—by y. Assume
that the cost of 9 workstations and 7 notebooks is a. Then, we obtain a system of
linear equations relative to the unknowns x and y:

O9x +7y =a,
3
14 9y = .
x +9y 2a
. 1 . .
Its solution is x = a,y = 34a. Therefore, the workstation is three times more

expensive than the notebook.

3.2 Solution.
(a) The augmented matrix of the system has the form
35113
27 81|
Compute the required determinants:
3-5
A= =21+10 =31,
27
13 =5
A, = =91 4 405 = 496.
81 7
A 496
Therefore, x = T = = 16.
A 31
313
Ay = =243 — 26 = 217,
281
A 217
y = Ay = =
(b) The augmented matrix of the system has the form
2-131] 9
3-5-1|-10{-
4-71 1 =7
2-13 11 -16 0

A=|3-5-1=0FD 13 5 _q|=11-(-12)+16-7 = —20,
4 -7 1 4 -7 1
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152
9 —-13 -21-16 0
Al =1-10 =5 —1 —(+32) 10 =5 —1 —(3)+(©2)
-7 =7 1 -7 =7 1
-21-16 0
=|—10 =5 —1| =252-272=-20,
—-17-12 0
Ay —-20
X1 = = = 1’
A —-20
2 9 3 11 -21 0
A2: 310 —1 —(D+3(2) 3 10 —1 —_3)+®2)
4 -7 1 4 -7 1
11 -21 0
=13 —10 —1| = —(=1)(—=187 + 147) = —40,
7 —17 0
A —4
_xz = 2 = O :2,
A —-20
2—-1 9 0 -1 9
Az=1[3-5—10/ =" _7 _5_10
4 -7 -7 —-10 -7 -7
= (49 — 100) + 9(49 — 50) = —60,
A3 —60
_X3: = = J.
A —-20
(c) The augmented matrix of the system has the form
12 14
3-53 |1
27 —11]8]
12 1 02 1
A=[3-5 3 |=lI"Blg_5 3 |=3-(645)=233,
27 —1 37 —1
4 2 1 4 2 1
Ay=11-53|=D72011 _53/=4.(15-9)—(—6—3)=33,
8 7 —1 03 -3
Ay 33
X = = :1,
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14 1 1 0 1
Ay=313 =13 11 3| =-11-(-1-2)=33,
28 -1 2 0 -1
Ay 33
Y= ATt
124 124
A;=3-51=92D 13 _571|=-3.(1-12) =33,
27 8 030
_ B ;; =1.
(d) The augmented matrix of the system has the form
249 |28
73 —6]|—1
79 9|5
249 2-49
A=17 3 —6|=P"@ |7 3 _g| =2(=9+36) — 7(12 — 54) = 348,
79 -9 06 -3
28 —4 9 3350
Ay =|—1 3 —6| =T |_1 3 _¢| =6(297 — 25) — 9(99 + 5) = 696,
5 9 -9 59-9
696
YT Bk
228 9 228 9
Ay=|7-1—-6|=P"D@ |7 _1 _g| =23 +36) — 7(—84 — 54) = 1044,
75 -9 06 -3
1044
VE g T
2 —4 28 2 —4 28
A, =173 —1|=P"@ 1|7 3 _1| =2(1846) —7(—24—168) = 1392,
79 5 06 6
. 1392 _
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(e) The augmented matrix of the system has the form

7 2 3|15
5 =32]15{.
10 —115] 36
7 2 3 723
A=|5 —32/=72@ |5 37/ =514~—15)+ (=21 — 10) = —36,
10 —115 0-51
15 2 3 15 2 3
Ay=115 =3 2|=P"W 19 _5 _1|=-72,
36 —115 36 —11 5
72
X = =2,
—-36
7 153 715 3
Ay =15 152] =DM |_2 0 —1| =2(75 - 108) + (252 — 150) = 36,
1036 5 10 36 5
_ 36 _
y_ —36 —_— )
7 2 15
A, =15 -3 15| = —36,
10 11 36
—-36
= :1
(f) The augmented matrix of the system has the form
111 ] 36
20-3|-17{-
60-5| 7
111
A=20-3=—(—10+18) = -8,
60 -5
36 11
Ay =1-170 =3| = —(85+21) = —106,
7 0-5

—-106 53
-8 4

X =
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136 1 136 1
3)-3(2)

Ay =12 =17 =3| =@-2(1) [0 —89 —5| = —356 + 290 = —66,

6 7 -5 058 4
_ —66 33

YT s T
11 36

A, =120-17|=-044+17-6) = —116,
60 7

~116 _ 29

— 2
(g) The augmented matrix of the system has the form

32 115]
11 -1]0}
4-15 3]
32 1 12 1 123
A=l1 1 1| =B 1 1| =B 1 o =4—-15=-11,
4-15 5-1 4 5-14
52 1 523
Ar=10 1 —1| =P g 1 o|=20-9=11,
3-15 314
11 |
X1 = = —1.
=1
35 1 45 1
Ar=1{10—1|=B g0 1| =12-45=-33,
435 93 5
33
= :3,
2T
325 125
As=111 0/ =11 1 o|=3-25=-22,
4-13 5-13
-2
X3 = =2.

—11
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3.3 Solution.
(a) Execute the following elementary transformations of the augmented system
matrix:
62374 0-4-3|-34
(1)—6(3)
740(91|—>@7G) 1g_3_-7|-35]—>""
111]18 11 1] 18
012 9 | 102 00 —19]|-38
- 10-3-7]-35|->UHD1g_3 _7|_35].
11 1] 18 11 1 | 18
. 38
Hence it follows that x3 = =2,

—3xy=-354+14==-21,x, =17,
x1=18-2-7=0.
The final answer is [x1, x2, x3]7 =9, 7, 2]7.
(b) Execute the following elementary transformations of the augmented system

matrix: ~
2 5 -2]-6 2 5 —2|-6
32110 |=*2|6-42]0]|->®70D
0 3 2 -8 |0 3 2 |-8
(25 2] —6 ] [25 21 -6
=011 -4 18| =" 011 —4| -18]| >O3®
103 2| =8 ] 033 22| —88
[25 —2| -6 |
— (011 4] —18 |
[0 0 34 | —34]
: —34
Hence it follows that x3 = 4 = -1,

1llxp = =18 —4 = =22, xp = -2,
21 =—-6—-2410=2,x1 = 1.
We obtain the answer: [x1, x2, x3]T =1, -2, l]T.
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(c) Execute the following elementary transformations of the augmented system

matrix:
3 -16] -4 3 -161—4
37012 |[=»®®lo-6-6]6 |>*0
—4—4-3]-10 —4—4-3]-10
12 —4 24| 16 0 —16 15 | —46
-0 -6-6] 6 |>PPIN1 0 —6-6] 6 | >
| —4—4-3]-10 —4 —4 —3]-10
[0 —16 15 | —46] 0 -16 15 | —46]
— | 0 —48-48] 48 | =P D0 0 —93]186 | >PD
| -4 —4 -3 | —10] —4 —4 =3 ]-10
(4 —4 -3 | -10]
=10 16 15 | —46|.
| 0 0 —93] 186 |

Hence it follows that x3 = —2,
—16x; = —-46+30=—16,x, =1,
—4x1=—-10—6+4=—-12,x; = 3.
We obtain the answer: [x1, x2, x3]17 =[3, 1, =2]7.
(d) Execute the following elementary transformations of the augmented system

matrix:
5 3 -3 8 5 3 3] 8
—4-3-2] 1 |=>®2 | o —9_14] 59 | >*D
-23 6 [-29 23 6 |-29
[10 6 —6] 16 | 0 21 24 |—129
>0 —9-14] 59 | >WH®| o _9_14] 59 | —>:D
-2 3 6 |—-29] 23 6 | —29
[0 7 8 |-43] 0 7 8 |-43
=10 —9-14] 59 | >"P=| 0 —63 -98| 413 | »>PTD
-2 3 6 [ -29] -2 3 6 |-29
(07 8 |43 o | 23 6 129
-1 00-26]| 26 | >®=@D| 07 8§ |-43].
|—23 6 [-29 0 0-26]| 26
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Hence it follows that x3 = —1,
Txp = —43 +8 = —35, xp = -5,
—2x1=-294+6+15= -8, x; =4.

We obtain the answer: [x1, x2, x3]7 = [4, =5, —1]7.
3.4 Solution.

(a) Execute the following elementary transformations of the augmented system

matrix:
27 4 0 |32 0153 7 |95
28-17163| (0|2 817163
33 4 4|1 33 4 4|1
0 6-45 |58 0 6 -4 5 |58
2 8 -1 7 |63 28 —17 ]| 63
0153 T 95| sy (0153 T 195 | L
0 6 —4 5 |58 06 —45]58
33 4 4|1 030 5 13191
(28 —17 63 28—1 7 | 63
2)—(4 _
|030 6 141190 | @@ 100 1 1 =1 |y e
06 —45]|58 06-4 5 | 58
1030 5 13191 0025 —12] —99 |
(28 -1 7 | 63
06-4 5 | 58
% t
001 1 | —1
100 0 —37| —74
74
X4 = = N
YT 3

x3=—-1-2=-3,

6x7 =58 — 12— 10 = 36, xo = 6,

261 =63 —48 -3 —14=-2,x; = —1.

Write the answer: [x1, x2, x3, x4]7 = [—1, 6, =3, 2]7.
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(b) Execute the following elementary transformations of the augmented system

matrix:
10 —2-1|-6 1 0 21]6
-5-16 123 LD —-5—-16 1|23 O+
5 -8-9 4 |62 5 -8-94|62
6 —9-51 |73 6 —9-51|73
1 0 2116 10 2 116
_§5 _ 2)+5(1 _
516 1123 @101 16 6 53] o
0 —9-35]85 0-9 -3 5 |85
6 —9-51|73 0-9—17-5|37
10 2 1] 6 10 21]6
o116 6 1S3 [0-1166153| 5 0
0-9 -3 5 | 85 0-9-35]85
(0 0 —14—10] —48 00 7 5|24
(1o 2 1 6 1021]6
|0 166 153 o |[OLI6 6 153 ) gy
0 0 —147 —49 | —392 00 056|112
00 7 5| 24 00 7 5|24
(10216
0-116 6 | 53
—_
00 7 5] 24
00 056]112
112
X4 = = 4,

Tx3 =24 —10= 14, x3 = 2,
—xp =53 —12—-32,x, = -9,

X1 =6-2—-4=0.

Write the answer: [x1, x2, x3, x4]7 = [0, =9, 2, 2]7.
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(c) Execute the following elementary transformations of the augmented system

matrix:
(h—4(4)
@-14)
40 —9-1137] &s@ [1-4 9 —4]-25
o
T-1-5-5136 | =@ 10164515137 |
8§-50 4 |-38 027 —68 23 | 211
1 -4 9 —4]-25 (027 =72 36 | 162
[1-4 9 —4|-25 [1-4 9 —4|-25
016 =45 15 1 13T | g [016 45 15 1137 |4
027 —68 23 | 211 00 4 —13] 49
03 —8 4] 18 03 -8 4 | 18
[1-4 9 —4|-25 14 9 —4|-25
048 <135 45 [ 411 | |00 71911230
00 4 —13] 49 00 4 —13] 49
03 —8 4 | 18 03 -8 4 | 18
(14 9 —4|-25 149 —4 |-25
_og @+703) _
|00 28761402 | @G 103 -8 4 |18
00 4 —13] 49 00 4 —13 | 49
03 —8 4 | 18 00 0 —167] 835
835
X4 = __5’

4x3 =49 — 65 = —16, x3 = —4,
3x =18—-324+20=06,x =2,
x1=-25+8+36—-20=—1.
Write the answer: [x1, x2, X3, x4]7 =[—1,2, =4, =5]T.
(d) Execute the following elementary transformations of the augmented system

matrix:
-8 1 —4-8]| 7 -8 1 —4-8]| 7 .
_7_ 3)—(1) _7_
0 -7-6 17| 56 L) 0 -7-6 17| 56 _)2(3)
-8 3 2 —-2]|-63 0 2 6 6 |-70
—-8-3-1—-4] -6 0 —43 4 |-13
-8 1 —4-8] 17 —-81—-4-8| 17
_7_ 2)+7(3 _
N 0 -7—-6 171 56 _)&;ng 0 015 28 |—189 L@@
0 1 3 3 ]|-35 013 3| =35

0 —43 4 |-13 0 015 16 | —153
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—81-4 -8 7
0015 28 | —189
013 3 | =35

000 —12] 36

36
X4 = = _3,

15x3 = 84 — 189, x3 = —7,
Xy =—3549+21 = —5,
8x; =7 —24—28+45=—40,x =5.

Write the answer: [x1, x2, x3, x4]7 = [3, =5, =7, =3]7.
3.5 Answer:

() [x1,x2,x3, x4, x5]7 =[6,-6,7,0, —6]7;
(b) [x1,x2,x3, x4, 517 =[6,—7,—1,—1,4]".

3.6 Answer:

(a) [x1,x2, x3, x4, x5, %6]" =[5, 0 —5,5,-5,41";
(b) [xlax25x3ax4ax55x6] _[17 705170]

3.7 Solution.
The fourth power polynomial with real coefficients can be presented in the form:

px) = a4x4 + a3)c3 + a2x2 + a1x + ag,

where ag, ai, . .., as € R are the unknown coefficients. We obtain system of linear
equations relative to the coefficients a;:

5% + 53as + 52%ar + Sa; +ap = 1,
1%as + 13az + 12a; + lay +ag = 0,
2%ay + 2%az + 2%ax + 2a; +ap = 0,
3%ay + 33az + 3%a2 + 3a; + ap = 0,
4%y + Paz +4%a3 + 4a; +ag = 0.

Write the matrix of this system and bring it to the echelon form:

(6251252551)1] [111 1 1]0]
1 1 1110 081214150
16 8 421]0|— 1006 9100
81 27 9310 00024500
256 64 164110 (000 0 1 1]
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we find the values of a;:

ap= 1,
_ 50
as+az+axy+ay+ag =0, Cll=—24,
8az + 12a + 14a; + 15a¢9 = 0, 35
6az +9a1 + 10ag =0, = 1?7 24’
24a; + 50a9 = 0, a0
an = 1: 24
0 - ’ 1
a4 = .
YT o

As a result, the sought-for fourth power polynomial is equal to

1
P =, (x* = 10x3 + 35x% — 50x + 24).
3.8 Solution.

The system of linear equations is consistent if and only if the rank of the system
matrix is equal to the rank of the augmented system matrix.

Find the rank of the basic matrix:

11
A= |11
1A
1 1
2)—A(1)
Ao O-0 g1l =@D 514
or—1 0 0
Therefore,
2, ifA#1,
rkA = ifA #
1, if A =1.
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Compute the rank of the augmented matrix:

1111 11 | 1
@)—2(1)
AB)=|r1|2|—= OO |o1-p|2-2|—> PO
Lal4 Or—1] 3
11 ] 1
- [01—A|2—A
0 0 |5—x
Thus,
2, ifa =S5,
tk (A|B) =
3, if A #5.

The condition rk A = rk (A|B) is satisfied at A = 5. Therefore the system is
consistent at A = 5.

3.9 Answer:

The system has the unique solution at A # 0. For such values of A the solution of
the system has the form x; = —1, xp = A=Al — 4.
3.10 Solution.

Since the matrix A has the size 3 x 3, and the matrix B has the size 2 x 2, then
the unknown matrix X can be represented in the form:

ab

X=\|cd|, wherea, b, c,d, e, f are some real numbers.
ef

Having substituted this matrix into the equation A-X-B = C, we obtain a system
of linear equations relative to the unknowns a, b, ..., f:

3a +3b—2c—2d —3e -3f =-13,
2a +2b— ¢c —d —4e —4f =-25,
—6a —6b— c —d —2e—-2f=-33.
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Bring the augmented system matrix to the echelon form:

3 3 -2-2-3-3|-13
M=|2 2 —1-1-4-4|-25|—
—6-6-1—-1-2-2]-33

33-2-2-3-3|-13
- 1001 1 —6-6]—-49
000 0 1 1] 8

As the basic minor we select, for example, Ml1 32 ;’ # 0. Hence, b, d, f are the

independent variables by which the variables a, c, e are expressed:

3—b b
X=|—-1—-dd|, whereb,d, f € R.
8—ff
3.11 Answer:
a b
(1) X = , where a, b € R;
—2—3a2-3b

(2) X € @, i.e. there are no solutions;
: 5a3(a—1) —a—14
3 X= 5 5d 3d—-5 —d |, wherea,d,geR;
5¢3(g+1) 4—-¢

“4) X ewo.
3.12 Solution.

Denote the initial values of the elements of the array a [] by a[1],a[2],...,
a [5]. After executing the program segment code, the array a [] will contain the

following elements:
lealll+1leal[5],

-8al[l]l+16a[2]-8al5],

4a (1] - 8a[2]+16a[3]+4a[5]

-2al[l]l+4a([2]-8a[3]+16a[4]-2a[5],
]_

a[l]—2a[2]+4a[ al[4]+17a[5].
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We obtain system of linear equations with five unknowns. Its solution is a[1] =
—4,al[1] = 1, a[1] = 3, a[1] = 3, a[1] = 2. Hence, the initial array has the form
[—4,1,3,3,2].

3.13 Answer: [—14,—5,—2,1,1,1, 5].
3.14 Solution.

import math

def gauss jordan elimination (A, B):

m = len(A)
n = len(A[0])
if len(B) != m:
raise ValueError
C = [[A[i][j] if J != n else BI[il]

for j in range(n+l)] for i in range(m)]

for r in range(n):

max row _pos = I

# Pivoting strategy
for 1 in range(r + 1, n):

if abs(C[i] [r]) > abs(C[max row pos] [r]):
max_row pos = i
Clr], Clmax _row pos] = C[max row_pos], Cl[r]

if math.isclose(C[r] [r], 0):
continue

for 1 in range(n):
factor = CI[i] [xr] / Clx] [r]

for j in range(n + 1):
if i I= r and j != r:
C[i] [j]1 -= factor = Clr]I[j]

for 1 in range(n):
if i !'= r:

c[i]l [r] = 0.0

for j in range(n + 1):
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if j I= r:
Clrl[3]1 /= Clr] [r]

Clr] [r] = 1.0
answer = [0] * n

for 1 in range(n):
if not math.isclose(C[i]
answer [1] = CI[i] [n]
elif not math.isclose(C[i]
return None

~N —

=

return answer

Let us give an example of a call of the function gauss jordan
elimination():

size = 100

A = [[0 for j in range(size)]
for 1 in range(size)]

B = [0 for 1 in range(size)]

for i in range(size):
for j in range(size) :
A[il [j] =1 if j == 1 else O

for i in range(size):
B[i] = float (i)

print (A)
print (B)

print (gauss jordan elimination (A, B))

The asymptotic complexity of the Gauss—Jordan method coincides with the
complexity of Gaussian method and is equal to O (n?), where n is the number of
equations of the initial system of equations [58].
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3.15 Solution.

(1) Denote the system matrix by A and bring it to the upper triangular form.

1-4 1 o |14 1 -4 1
A=[11 -1|=>®30 g5 2|=>O02019 5
321 010 —4 00 0

The rank of the matrix is equal to two, and the number of variables is equal to
three. This implies that the system will have 3 — 2 = 1 free variables.
Write the resulting equations:

x1 —4xo+x3=0,
5xp —2x3 = 0.

As the independent variable, select x3:

X1 = X3,

X2 = _X3.

L D W

As a result we obtain the fundamental system of solutions: {[3, 2, S]T}.
(2) Write the system matrix A and bring it to the upper triangular form.

2-13 1 2-13 1
@-()
A=|2_5_10l>0®20|0g_4_4a_1|>"1®
4-713 0-5-5 1
2-131 2-131
Sloa 41|80 4 49
0-5-51 0009

It is clear that the rank of the matrix is rk A = 3, the number of variables is
equal to 4. Therefore, the system will have 4 — 3 = 1 free variables. Write the
resulting equations:

2x1 —x2+3x3+x4 =0,
4xy +4x3+x4 =0,
9x4 = 0.
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As the independent variable, select x3:

x1 = —2x3,
X2 = —X3,
x4 = 0.

The fundamental system of solutions is {[—2, —1, 1, O]T}.
(3) Write the system matrix A and bring it to the upper triangular form.

12 4 =3 12 4 -3
i

356 4] anblo-1 -6 s

45-2 3 0-3—18 15

3824 —19 03 18 —I15

Note that the second, third and the fourth rows are proportional:
12 4 -3
0-1-65

The rank of the matrix rk A = 2, the number of variables is 4. Therefore, the
system will have 4 — 2 = 2 free variables. Write the resulting equations:

x1 +2x2 +4x3 —3x4 =0,
—xp — 6x3 + 5x4 = 0.
As the independent variables, select x3 and x4:
x1 = 8x3 — Txy4,

X2 = —6x3 + Sx4.

The fundamental system of solutions is {[8, —6, 1,017, [=7, 5,0, 1]7}.
(4) Write the system matrix A and bring it to the upper triangular form.

35 2 11 -4 11 -4
&3
A |27 e 4T3 | L man |03 L w-o
11 -4 35 2 02 14

29 6 29 6 07 14
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5)

114 11-4
0321 0321
N 5 3320
0214 000
050 050

The third row entirely consists of zero elements and can be eliminated from the
system matrix.

11—4 11—4 11 —4
0321 | =P 15 0 | >I3@ 195 9
050 03 21 00 105

The rank of the matrix rk A = 3, the number of variables is 3. Therefore, the
system has no free variables. Write the resulting equations:

x1+x—4x3 =0,

5x, =0,
105x3 = 0.
Therefore
x1 =0,
x2 =0,
x3=0.

As a result, the system has only the trivial solution: [0, O, O]T.
Write the system matrix and bring it to the upper triangular form.

246 1 123 0 1230
S50

U L0 N ) B B I 38 C XU

369 —1 369 —1 000—1

123 5 123 5 000 5

The second, third and fourth rows are proportional:

1230
0001
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The rank of the matrix tfk A = 2, the number of variables is equal to four,
therefore, the system will have 4 — 2 = 2 free variables. Write the resulting

equations:

X1+ 2x2 +3x3 =0,

x4 = 0.
Therefore

X1 = —2xp — 3x3,

x4 = 0.

The fundamental system of solutions is {[—2, 1, O, O]T, [-3,0,1, O]T}.
(6) Write the matrix A and bring it to the upper triangular form.

123 12 3
@-2(1)

A=1234|— O-M1g_1 -2

111 0—-1-2

The second and the third rows are proportional:

12 3
0—-1-2

A —

The rank of the matrix tk A = 2, the number of variables is equal to three.
Therefore, the system will have 3 — 2 = 1 free variables. Write the resulting

equations:
x+2y+3z=0,
—y—2z=0.
Therefore
x = Z1
y = —2z.

The fundamental system of solutions is {[1, —2, 1]T}.
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(7) Write the system matrix A and bring it to the upper triangular form.

1 -2 3 —4 1-2 3 —4
B2

245 71 35|00 115

6 —-1217 =9 00 —115

7 —14 19 17 0 0 =245

The second and the third rows are proportional:

1-23 —4 1-2 3 —4
00 —115|—=92P100 —115
00 —245 00 0 15

The rank of the matrix tfk A = 3, the number of variables is equal to four.

Therefore, the system will have 4 — 3 = 1 free variables. Write the resulting
equations:

X1 —2x2 +3x3 —4x4 =0,

—x3+ 15x4 =0,
15x4 = 0.
Therefore
x1 = 2x2,
x3 =0,
x4 =0.

The fundamental system of solutions has the form {[2, 1, 0, O]T}.



Chapter 4 )
Complex Numbers and Matrices Shethie

As was already mentioned in Chap. 1, complex numbers may appear as matrix
elements. Moreover, the characteristics of real matrices (such as eigenvalues, see
Chap. 5 “Vector Spaces” on page 226) in some cases appear to be complex. In this
connection, let us discuss the methods of algebra of complex numbers.

Complex number z is an ordered pair of real numbers (a, b), where a, b € R.
The first number a is called the real part of the complex number z = (a, b) and
is denoted by symbol Re z, while the second number of the pair b is called the
imaginary part z and is denoted by Im z [24].

A complex number of the form (a,0), where the imaginary part is zero, is
identified with the real number a, i.e. (a, 0) = a. This allows considering the set of
all real numbers R as a subset of a set of complex numbers C.

Two complex numbers z1 = (aj, b1) and z2 = (a2, by) are considered equal if
and only if their real and imaginary parts are pairwise equal: z1 = z2 < a1 = aa,
b1 = b.

4.1 Arithmetic Operations with Complex Numbers

On the set C are defined the operations of addition and multiplication of complex
numbers. Sum of complex numbers z; = (aj, b1) and z2 = (a2, by) is the complex
number z, equal to z1 +z2 = (a1 + a2, b1 + b2). Product of numbers z1 = (ay, b1)
and zo = (a2, by) is such a complex number z = (a, b), that a = ajar — b1ba,
b=a1by + arb,.

The pair (0, 1) is of the greatest importance in the operations with complex
numbers; it is denoted by (0, 1) = i and is called imaginary unit. The basic
property of the imaginary unit consists in that i=i-i=(0,1)-(0,1) = (—1,0),
oriz=—1.
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A complex number of the form z = (0, b) is called purely imaginary. Since
0,b) = (b,0) - (0, 1), then the purely imaginary number z is presentable in the
form of the product z = bi.

Any complex number can be presented in the form

2= (a,b) = (a,0)+ (0,b) = (a,0) + (b,0) - (0, 1) = a + ib.

Such a notation is referred to as the algebraic form of a complex number. This
allows considering i as a factor, whose square is equal to —1, and performing oper-
ations with complex numbers in the same manner as with algebraic polynomials, in
intermediate calculations assuming i> = —1.

Example 4.1 Let z1 = 2 + 5i, zp = —3 + 2i. Then, the addition of these numbers
will result in a complex number

21+2=Q24+5)+(3+2)=2-3)+5+2)i=—-1+7i. 4.1

The product of the numbers z; and z2 is computed by multiplying the expressions
(2 + 5i) and (=3 + 2i) as polynomials with regard to the equality i> = —1:

2122 = 24 5i)(=3 +2i) = 2(=3) + 2(2i) — 3(5i) + (5i)(2i)
=—6+4i — 15 +10i> = -6 — 10+ (4 — 15)i = —16 — 11i. 4.2)

O

A complex number z* = (a, —b) = a — ib is called a conjugate of the complex
number z = (a, b) = a+ib. There is one more frequent notation of a conjugate—z.
If the coefficients of the polynomial p(z) are real, the equality (p(z))* = p(z*) is
valid.

It is convenient to present the number z = a + ib as the point (x, y) of a plane
with Cartesian coordinates x = a and y = b. Correlate each complex number z
with a point with coordinates (x, y) (and a position vector, connecting the origin
of coordinates with this point). Such a plane is denoted by @ and is referred to
as complex plane (see Fig. 4.1). Note that geometric interpretation of complex
numbers is sometimes referred to as the Argand' diagram.

Many applications widely use a trigonometric form of the complex number z.
Let us introduce the polar coordinate system so that the pole is at the origin of
Cartesian system (x, y). The axis of the polar system will be directed along the
positive direction of the axis Ox.

1Jean-Robert Argand (1768-1822), French mathematician.
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Fig. 4.1 Representation of y
the number z on a complex @
plane
z=a+1
b=Imzft-—-—--; atib
L
i 3
0 a=Rez X

In this case, Cartesian and polar coordinates of an arbitrary point other than the
origin of coordinates are related by the formulae

X =pcose, y=psing,

arctany, if x > 0;
X
y . )
arctan” +mw, ifx<0,y>0;
=\/x2+y2, g = *
arctany—n, ifx <0, y<0;
X
b4
5 sign y, ifx =0.

As a result, we obtain a trigonometric form of the number z
z=(x,y)=x4iy = p(cose +ising).

The value p is called modulus, and p—argument of the complex number z and
denoted p = |z|, ¢ = argz. It should be noted that the argument ¢ is ambiguously
determined: instead of the value ¢ we can take the value ¢ + 27k, where k € Z. If
arg z is chosen in such a way that —m < argz < m, then such a value is called the
principal value of the argument.

For the numbers z; = p1(cos¢g; + isingy) and zo = pa(cos @y + isingy),
specified in the trigonometric form,

2122 = p1p2(cos(@1 + @2) + i sin(p1 + @2)),

21 P1 ..
= (cos(p1 — ¢2) +isin(pr —¢2)), p2 # 0.
22 P2
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v o " v ®
2122

21+ 2
.

29 | 77 29

- 21 o 21

®1 + @2 P2
O T O & €T

Fig. 4.2 Sum is the panel (a), and product is the panel (b) complex numbers z; and z,

Geometric illustration of the sum and the product of complex numbers is shown
in Fig. 4.2. For any z1, 72 € C, the position vector of the sum z; + z3 is equal to
the sum of the position vectors of the summands z; and z. The position vector of
the product z1z; is obtained by rotating the position vector of the number z; by the
angle of arg z> counter-clockwise and extending by |z2| times.

Euler’s” formula relates the exponential function of the imaginary argument
with trigonometric functions of the imaginary part of the argument:

€'Y = cosg + ising.

This is why we can introduce one more notation of the complex number, namely,
exponential: z = pe'?. The exponential notation is convenient for operations of
multiplication, division, raising to a power and extraction of root. For example, the
n-th power of the number z can be presented in the form

" = (pe'?)" = p"e™ = p"(cosny + i sinng)

for all integer values 7.
An important consequence of the obtained formula

(cos +ising)" = cosng + i sinng

is associated with the name of de Moivre.’
The n-th root of z = p(cos ¢ + i sin @) can be calculated as

Yz =7/ = [p(cos(p + 27k) + i sin(p + 27k)]'/", k€ Z,

2Leonhard Euler (1707-1783), prominent Swiss mathematician.
3 Abraham de Moivre (1667-1754), English mathematician of French origin.
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or, after applying Euler’s formula,

4/Z=,01/"<cos<(p+27ﬂc)+isin(¢+2ﬂk)), k=0,1,...,n—1.

n n

Here we obtain n possible values of the n-th root for k =0, 1, ...,n — 1. Other
acceptable k do not result in new values of Z/z. For example, for k = n the argument
is argz = ¢/n + 2m and differs from the case k = 0 by 2w, which corresponds to
the complex number equal to it.

Example 4.2 Denote roots of the equation z* = 1, where n is a natural number, by
wk, k = 0,...,n — 1. Prove that on a complex plane the points corresponding to
the values wy are located at the vertices of a regular n-gon, inscribed in a unit circle,
whose centre is located at the origin of coordinates [24].

Proof According to the introduced definition,
wp = (2THkIm = 2Tk — 0,1, n— 1. 4.3)
In particular, for n = 4 we have the following values v/1:
wp = (O = T2 f e 0, 1,2,3), (4.4)
or, after computing the complex exponents:

wy=1,1i, —1, —i. 4.5)
Modulus of the complex number w; = ¢***/" is equal to one for all values of
the variable k, and the argument is equal to argwy = 27wk/n, k=0,1,...,n — 1.
Thereby, we can conclude that the n-th roots of one are located on the unit circle
C, and the first root w, associated with k = 0, lies in the real axis, and w; divide
the circle by n arcs of the same length (see the example for the instance n = 9 in
Fig. 4.3). O

Fig. 4.3 Location of the
roots of the n-th power of one
on the unit circle forn =9
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4.2 Fundamental Theorem of Algebra

Theorem 4.1 (Fundamental Theorem of Algebra) States that any polynomial of
a non-zero degree with complex coefficients has a complex root [43]. This is why
an arbitrary polynomial with real (or complex) coefficients always has some root
zeC

Each polynomial of degree n

1

p)=cp" + 17" +---4+co, cieCfori=0,1,...,n, ¢, #0,

can uniquely (accurate to the order of cofactors) be expanded into the product

P@) =cp(z—z)" (2 —22)" ... (2 — z)"™,

where z; is a root of the polynomial p(z) with a multiplicity of m;, 1 <i < k.

For polynomials with degree lower than the fifth, we can always find the roots
having expressed them by arithmetic operations or arithmetic roots of an arbi-
trary multiplicity, or radicals. The method for calculating the cubic polynomial’s
roots was suggested by Cardanus* (see Sect.4.3 below), of the fourth degree
polynomial—Ferrari.> However, there are no common methods for finding roots
of polynomials of higher degrees, according to next theorem:

Theorem 4.2 (Abel°~Ruffini’” Theorem) Any arbitrary equation of degree n for
n = 5is unsolvable in radicals.

4.3 Cardano Formula

In order to determine the roots of the cubic equation

az + bz +cz+d=0, wherea,b,c,deC, (4.6)

b
proceed as follows. Using the change of the variable z = y — 3 the equation is
a

brought to a canonical form

YW4+py+g=0 pgeC. (4.7)

“4Hieronymus Cardanus (1501-1576), Italian mathematician and philosopher.
5Lodovico Ferrari (1522-1565), Italian mathematician.

6Niels Henrik Abel (1802-1829), Norwegian mathematician.

TPaolo Ruffini (1765-1822), Italian mathematician.
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By Cardano formula, the roots of the cubic equation yj, y2, y3 in the canonical
form are equal [33]

yi= o+p, (4.8)
_ a+p . a—p

n=-, +iv/3 5 (4.9)
_a+p . a=f

w=—, i3 5 (4.10)

where

a=%€+¢g
ﬂ=%€—¢g
0= (5)'+(9)"

Using these relations, one should for each of the three values of the cube root of
« take that value of the root g, for which the equality «f = —p/3 is valid.

Example 4.3 Find the roots of the equation z> —5z%+9z —5 = 0, using the Cardano
formula.

5
Solution Replace the variable z = y + 5 We obtain the cubic equation in the

canonical form

2 20
3

=0, 4.11
y +3y+27 (4.11)

2 20
here p = 3 q= ”7° Further using Cardano formula (4.8)—(4.10):

o=(5)+ () =5
a,ﬂ:i/—;gj:\/; = ;i/—loiw&

1
Let o = 3\3/6«/3 — 10, then, in order for the condition o = —p/3 to be

1
satisfied, we choose f = — 3 i/ 6+/3 + 10. The roots of the equation will have the
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form

yi= ; <i/6\/3— 10— 3/6\/3+ 10);
2= _é (i/6*/3 —10-6v3+ 10) + if <i/6¢3 10+ 6v3+ 10);

3= —é (i/6¢3 —10- i/6¢3 + 10) — if (i/éﬂ - 10+i/6\/3+ 10).

The obtained expressions can be simplified, if we note that the equality 6+/3 &
10 = (+/3 & 1)3 is valid. Then v/6+/3 & 10 = /3 £ 1, and

y1=;<«/3—1—(J3+1))=_§;

y2=—é(~/3—1—(~/3+1))+ (J3—1+J3+1)= i

i3 1
6 37T
y3=—1(J3—1—(¢3+1))—i‘6/3 ;—

; (¢3—1+¢3+1)=

i

5
Returning to the original variable 7 = y + 3 weobtainz; = 1,20 = 2+,
73=2—1. O

4.4 Complex Coefficient Matrices

Among the complex coefficient matrices, classes of Hermitian and unitary matrices
play a special role in algebra and its applications.

4.4.1 Hermitian Matrices

Consider the matrix Z, containing the complex elements Z = (z;;), where i =
1,2,....,m, j = 1,2,...,n. Hermitian conjugate matrix relative to Z is the
matrix Z¥, whose elements are equal to

=% (4.12)

In order to obtain Hermitian conjugate matrix, the operations of transposition and
complex conjugation are applied to the initial matrix. The mentioned operations are
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independent and can be executed in any sequence.

.. . . . 1+i2+3i ],

Example 4.4 A Hermitian conjugate matrix relative to Z = is the

-1 5—4i

matrix
T\ * *
ZH _ 14+i2+43i _ 1+i -1 _ 1—i -1
-1 5—-4i 243i5—-4 2-3i5+4+4i

(4.13)
(]

Note Often, for designation of a Hermitian conjugate matrix, the notations Z¥ or
Z* are used.

Let us enumerate the main properties of the Hermitian conjugation operation:
"=,
(Zv+ Z2)H =78+ Z1,
.2 = rzH  yaeC;

(zth = z;
. if A~! exists, then (A_l)H = (AH)_l;
. det A” = det A* = (det A)*.

Theorem 4.3 If for the complex matrices Z1 and Zy the product Z1Z> is deter-
mined, then

VAV WAV AL (4.14)

Proof The validity of the theorem follows from the property of the matrix product
transposition (see Problem 1.3):

VAV REYAVAR (4.15)
With the help of Eq. (4.15) we obtain a chain of equalities
(Z\ 2" = (212" = (23 Z2])* = 2 z))* =z} z{', (4.16)

which proves the identity (4.14).

Among complex matrices, Hermitian matrices are very widely used. Hermitian
matrix is a square matrix, where Z = Z. A respective condition for the elements
of such a matrix: Vi, j (z;; = z’/*.l.). In other words, the Hermitian matrix coincides
with its Hermitian-conjugated.
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Example 4.5 The matrix Z = ! —3-i is Hermitian, as is easy to see.
—34i 1
Let us verify it.
T\ * *
ZH _ 1 -3-i _ 1 34 _ 1 -3—i
—-3+i 1 —3—-i 1 347 1

(4.17)
Recall that applying the complex conjugation operation to a real number does
not change this number. O

Note Hermitian matrices are also referred to as self-adjoint matrices. The theory of
self-adjoint matrices is widely used in modern physics [44].

4.4.2 Unitary Matrices

A square matrix U with complex elements is called unitary, of the condition
UHU = I is met. The condition of unitarity can be written in other equivalent
forms as follows:

vufl =1 o UH=U"" (4.18)
) 1 1 1f, . .
Example 4.6 Prove that the matrix Z = /2 _ | is unitary. To do this, compute
—1l1
the product ZH Z:
H
H 1 11 1 11 1 |1 1 11 10
Z Z == = =
V2 \| =i V2l—ii| V2 1-i|V2|-ii 01
4.19)
Therefore, Z is a unitary matrix. O

Theorem 4.4 The determinant of a unitary matrix is a complex number whose
modulus is equal to one.

Proof See in Problem 4.51.

There is a close connection between unitary and Hermitian matrices: each unitary
matrix A is presented in the form A = exp(i B), where B is a Hermitian matrix [26].
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4.5 Fundamentals of Quantum Computing

In quantum computers, for implementation of computing, processes of a quantum
nature are used manifested in experiments with objects of the microcosm—
elementary particles, atoms, molecules, molecular clusters, etc. The description
of such processes is based on the application of complex numbers and complex
matrices.

As is well known, the basic notion of classical information theory is bit [18]. A
classical bit takes the values O or 1 (and no other).

Qubit (quantum bit) is the smallest element that executes the information storage
function in a quantum computer [6, 54, 75].

Qubit is a quantum system [¢) that allows two states: |0) and |1) [54]. In
accordance with the so-called bra-ket (bracket) Dirac® notation, the symbols |0)
or |1) are read as “ket 0” and “ket 17, respectively. The brackets |...) show that
is some state of the quantum system.

The fundamental difference between the classical bit and the qubit consists in
that the qubit can be in a state different from |0) or |1). The arbitrary state of the
qubit is defined by the linear combination of basic states:

V) =ul0) +vll), (4.20)
where the complex coefficients u and v satisty the following condition:
lul> + v)* = 1. (4.21)

The mathematical description of the basic states reduces to their representation
in matrix form:

1
10) = . D= - (4.22)
Based on the presentation (4.22) the arbitrary state of the qubit is written as

|Y) = . (4.23)

8Paul Adrien Maurice Dirac (1902-1984), English physicist.
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A system of two qubits is set by a linear combination of basic states

1 0 0 0
0 1 0 0
|00) = , |01) = , 10y = , |11) = (4.24)
0 0 1 0
0 0 0 1
Similarly are introduced the states
00...00), 00...01), ..., [11l...11) (4.25)

of several interacting qubits. Such quantum states are called computational basis
states or, for short, basis states.

For changing the state of a quantum system, quantum operations are used referred
to as gates (quantum gate). Thus, the gates perform logical operations with qubits.
Note that the change of the state |¢) in time is also referred to as the evolution of
the quantum system.

An important step of quantum algorithms is the procedure of measurement of
state. When the qubit state is measured, it randomly passes to one of its states: |0)
or |1). Therefore, the complex coefficients # and v from the qubit definition (4.20)
are associated with probability to get the value O or 1 when its state is measured.
According to the postulates of quantum theory, the probabilities of passing to the
states |0) and |1) are equal to |u|? and |v|?, respectively. In this connection, the
equality (4.21) reflects the probability conservation law. After the measurement, the
qubit passes to the basic state, complying with the classical result of measurement.
Generally speaking, the probabilities of getting the result O and 1 are different for
different states of the quantum system.

In other words, the quantum computing is a sequence of simple form operations
with the collection of the interacting qubits. In the final step of the quantum
computing procedure, the state of the quantum system is measured and a conclusion
about the computing result is made. The measurement makes it possible to obtain,
at a macroscopic level, the information about the quantum state. The peculiarity of
the quantum measurements is their irreversibility, which radically differentiates the
quantum computing from the classical one.

A quantum system, formed by N two-level elements, has ©(N) = 2V
independent states. The key point of functioning of such a system is the interaction
of separate qubits with each other. The number of states X (N) grows exponentially
with the growth of the quantum system, which allows solving practical problems of a
very high asymptotic complexity (see section “Estimation of Algorithm Efficiency”
on page 13). For example, an efficient quantum algorithm of prime factorization
is known, which is very important for cryptography. As a result, the quantum
algorithms provide exponential or polynomial acceleration in comparison with the
classical solution methods for many problems.
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Unfortunately, no full-function quantum computer has been created yet, although
many of its elements have already been built and studied at the leading world’s
laboratories [72]. The main obstacle to the development of quantum computing
is instability of a system of many qubits. The more qubits are united into an
entangled system, the more effort is required to ensure smallness of the number of
measurement errors. Nevertheless, the history of quantum computer development
demonstrates an enormous potential laid in the uniting of quantum theory and
algorithm theory.

Prior to proceeding to describing the basic quantum operations with qubits, let
us introduce the notion of the Pauli® matrices and the Dirac matrices.

4.5.1 Pauli Matrices and Dirac Matrices

The matrices o1, 0 and o3

01 0—i 10
o] = , 0= , 03
10 i 0 0-—1

(4.26)

are called the Pauli matrices. They are widely used in quantum theory for
describing half-integer spin particles, for example, an electron. (Spin is a quantum
property of an elementary particle, intrinsic angular momentum [44]. So, electrons,
protons and neutrino have half-integer spin; spin of photons and gravitons is
integer).

The following properties are valid for the Pauli matrices.

1. The Pauli matrices are Hermitian and unitary:
_ _H_ -1
Vke{l,2,3} opr=o0 =0, . (4.27)

2. Vk € {1, 2, 3} the square of the Pauli matrix is equal to the identity matrix:

, |10
o2 = , (4.28)
01

3. Vi, j € {1, 2, 3} the equalities are valid

10
0i0j +0j0; = 28,‘j 01 . (4.29)

9Wolfgang Erst Pauli (1900-1958), Swiss and American physicist.
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Sometimes, in linear algebra and its applications, one has to use matrices split
into rectangular parts or blocks [25,47]. Consider the rectangular matrix A = (a;;),
where | <i<m,1 < j<nLetm=my+my,n=n;+ns.

Let us draw horizontal and vertical lines and split the matrix A into four
rectangular blocks:

(4.30)

Thus, the matrix A is presented in the form of a block matrix, consisting of the
blocks Bi1, Bi2, B21, Byp of size m| X ny, my X np, mp X ny, mp X na, respectively.

As an example of block matrix setting, we provide the definition of the Dirac
matrices. Four Dirac matrices o, oy, 3, 8 are part of the equation named after
him [4], for a half-integer spin relativistic particle, and are expressed in terms of the
Pauli matrix oy, k = 1, 2, 3, as follows:

O oy I O
ap = , B= , (4.31)
or O o0 -1

where O is a non-zero matrix of size 2 x 2, I is an identity matrix of the same size.
(Relativistic are the particles whose velocity is close to the light velocity.)

Each of the Dirac matrices has a Hermitian property and a unitary property.
Moreover, for all /, m € {1, 2, 3} the equalities are valid:

ooy + Aoy = 28im1, (4.32)
o+ Boy = 0. (4.33)

Note that the size of the matrices I and O in formulae (4.32) and (4.33) is equal to
4 x 4.

4.5.2 Basic Operations with Qubits

Consider the basic operations with qubits.
The influence of a quantum gate on the qubit |y) is exerted by applying a
quantum-mechanical operator, for example, U |{) [67, 72]. The operators may
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be presented in the form of unitary matrices. In particular, the evolution of a single
qubit is described by a unitary matrix of size 2 x 2.

Successive application of the series of operators Uj, Ua, ..., U, to one qubit
is equivalent to the influence of the operator W, whose matrix is a product of the
matrices U1U; ... U, [54]:

Un(Up—1 (... (U2(U1|¥)))...)) = (U1U2...Un) [Y) = W V). (4.34)

Such operator W is called a composition of operators Uy, Uz,..., U,. As a
consequence of non-commutativity of the matrix multiplication operation in the
general case the sequence of applying the quantum gates is of importance.

Example 4.7 Let us show that the application of the operator o3 (see defini-
tion (4.26)) to the qubit in the state |Y) = u |0) 4+ v |1) transfers it to the state

[¥') =ul0) —vil).

Proof Write the qubit |¢) in matrix representation:

) = . (4.35)

Define the action of o3 on this quantum state:

, u 10 u u 1 0
V') =03 = = =u —v =ul0)—v]|l).
v 0-1 v —v 0 1

O

Graphic representation of quantum operations in the form schemes or diagrams
(quantum circuit) is widely used.

Some quantum-mechanical operator U that transforms a single qubit (one qubit
gate) is represented as follows:

|win> Wfout)

The sequence of steps of quantum algorithms corresponds to the direction on the
diagram from left to right.

In Table 4.1 the gates are enumerated that transform one qubit, and the matrix
representations of these gates.

Let us show the method of computing a quantum operation matrix based on its
action on the basic vectors.
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Table 4.1 One qubit operations

Name Designation Matrix
10
Identity transformation I I =
01
[01
Pauli element X X o] =
10
[0 —i
Pauli element Y Y oy =
Li 0
[1 0
Pauli element Z 7 03 =
10 —1
d d el L
Hadamard element
H V21 -1
10
Phase element S
0i
El 8 bo
ement v/ T 0 gin/d

Measurement Projection on |0) and |1)

Hadamard'? gate transforms the system’s state by the rule:

1
0 0 1)), 4.37
|)—>\/2(|)+I)) (4.37)
1
1 0) —[1)). 4.38
|)—>\/2(|) 1)) (4.38)

Therefore, the arbitrary state |y) will in this case change as follows:

u 1 0
wy=| |=u| |+v| |—
v 0 1
1 10) + 1) + 1(|0> 1)) s (4.39)
— U v — = . .
V2 V2 V2 [1-1]]v
. 111
Thus, the Hadamard element is presented by the matrix /2

1 -1

1OJacques Salomon Hadamard (1865-1963), French mathematician.
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Table 4.2 Two qubits operations

Name Designation Matrix
(10007
0010
0100
L1000 1]
(10007

0100

Exchange

Controlled NOT

S N 0001
10010
[1000]
0100
0010
s 1000 i |

Controlled phase element °

Obviously, in order to execute complex algorithms, the qubits must interact with
each other and exchange information. In this connection, of particular importance
are the logical operations that affect two or more qubits. In Table 4.2, the most
important gates are enumerated, that transform the state of two qubits.

Example 4.8 Let us determine how the qubit |1) is transformed under the action of
two applications of the Hadamard element:

2 (H] (H] [y’

Solution As shown above, in matrix representation, the Hadamard element is
described by the matrix

1 |11

My =
V21121

(4.40)

Compute the matrix that corresponds to two applications of the Hadamard
element as a matrix product (see formula (4.34)):

1|11 1|11 1|20 10
- . (4.41)

MMy = . =
V2 1-1| ¥2[1-1| 2|02 01

An identity matrix is obtained, therefore, two applications of the Hadamard
element bring the qubit back to its original state. (]
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Example 4.9 Find a matrix representation of the following quantum circuit:

B

Solution The quantum circuit consists of two elements “controlled NOT”, also
referred to as “CNOT” (Controlled NOT).
The matrix of the element CNOT has the form (see Table 4.2):

1000
0100
0001
0010

(4.42)

In view of the matrix representation of CNOT, compute how the arbitrary state
[Yr1¥2) = (u110) + vy |1))(u2 |0) 4+ v2 |1)) will change after the action of the first
CNOT:

ui 1000 Ui Ui
V] 0100 V1 V1
[Y1yn) = - = . (4.43)
us 0001 us v2
v 0010 v uy

This is equivalent to the fact that the states of the computational basis (4.24) are
transformed in accordance with the rule:

100) — [00) ,
101) — |01
110) — |11
I11) — [10).

’

)
)
(4.44)
)
)

Note that the next element CNOT takes the input states in the reverse order
relative to the first element. In this case, the basis state transformation rule has the
form:

100) — |00,
101) — |11
110y — |10
I11) — |01).

’

)
)s
(4.45)
)
)
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Therefore, the next step of the quantum system evolution is described by the matrix

1000
0001
(4.46)
0010
0100
We perform the matrix computations:
Ui 1000 Ui Ui
0001
R N RS (4.47)
v 0010 v v
u 0100 u V1
As a result, the original state |Y1vyn) = [u1,v1,u2, n]” passes to

[u1, u2, v2, v1]17. The matrix representation of the circuit under analysis can be
written in the form:

1000|{1000 1000

0100{]0001 0001
- . (4.48)

0001|[0010 0100

0010|[0100 0010
0

Review Questions

What is a complex number?

Enumerate arithmetic operations on complex numbers.

How is the number conjugate of a given complex number found?

How can a complex number be presented geometrically?

Explain the differences between the following forms of complex numbers:

algebraic, trigonometric and exponential.

Write Euler’s formula.

7. How is the root of the n-th order of a complex number found? How many values
does it take?

8. Formulate the fundamental theorem of algebra.

DD =

o
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10.
11.
12.
13.
14.
15.
16.
17.

4 Complex Numbers and Matrices

. What is Cardano formula used for?

What matrices are called Hermitian? unitary?

Define the concepts of “bit” and “qubit”.

What states are referred to as the computational basis states?
What is gate?

Explain how the quantum state is measured.

Write Pauli and Dirac matrices.

Enumerate the basic operations on one qubit.

What quantum operations are applied to a system of two qubits?

Problems

4.1. Perform algebraic manipulations and represent the specified complex num-

ber z in the algebraic form z = Rez + i Im z:

(1) B+i)2+50);
2 B=D@B+1D);

3) (1 —*+ 1+ )%
4) 2 —i3.

4.2. Perform algebraic manipulations and represent the specified complex num-

ber z in the algebraic form z = Rez 4 i Imz:
1 =i (=1+10);

(2) (6+5i)4—1i);

3) (143> + 2 ~i)%

4) 5 — i3,

4.3. Given are the complex numbers z; =5 +1i,20 =4 —i,z3 = —1 4 3i. Find
2123 — Z%.

4.4. Given are the complex numbers z; = 1 — 2i, zo0 = —1 + i, z3 = —i. Find

212223 — 7).

4.5. Perform the actions:

4.6. Having performed the division, represent the complex number z =

(1) (1+4i)3+ (1 —4i)3;

() (6—i)*+ (6 +i)*

a—+ib
c+id’
where a, b, c,d € R, c # 0,d # 0, in algebraic form.

4.7. Simplify the expressions:

34

3—i’
1430

1-3i’

ey
2



Problems 193

242

343’
i i

3)

4 .
@ 1+i+1—i

4.8. Given are the complex numbers z; = 2 4+ i, z2 = z’l‘, 73 = z1 + z2. Find
(z1 — z3)(z22 — z3)/22.
4.9. Given are the complex numbers z; = 7 4+ 2i, 220 = —z1,23 = 2 — z’l‘. Find
(z122 + 2223 + 2123) /1.
4.10. Find the number conjugate with the number z, if:

1-—-3i
Mz=1 13
2) z=2i
?2) z l+2+l

4.11. Find z, if z — 3z* = 18 + 4.
4.12. Find z,if 3z* — 7z = 10 — 10i.
4.13. Prove that for arbitrary z;, z» € C the equalities are valid:

(D) @1 +2)" =z +23;
(2) (z122)* = 2j75.

4.14. Prove that if |z| = 1, then 77! = z*.
+4.15. Prove that for any z1, zo € C triangle inequalities are valid:

abs(|z1] — lz2]) < lz1 + 22| < lz1l + |22l

*4.16. Calculate the sums:

10
() ¥ i
k=1
49
@ ¥ it
k=—49
4.17. Simplify the expression i for arbitrary m € Z.
4.18. Represent the complex number in a trigonometric form:

(1) 2;

(2) 3i;

(3) 4+ 3i;

@ —i

(5) =3 —6i;

(6) V2(1 +i);

() V/3(=1+3i);
9+i

® g
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4.19. Represent the following complex numbers in algebraic form z = Rez +
ilmz:

T LT
(1)z=cos3+ism ;
Q) 7 =4 (cos(—Z) +i sin(—’;));

V3 '
@) z= 3 37’

cos | sin
g TSy

4) 7 = cos(—’;) +i sin(—’;).

b
4.20. Prove that a complex number of the type u = a l,b, where a, b € R, can
a—i
be presented in the form of an exponent with purely imaginary index, i. e. in

the form

4.21. Calculate i'.
4.22. Calculate:

(1) v/8i;
(2) ¥/4096.
+4.23. Prove the validity of the identities for the roots of unity wy, where 0 < k <
n—1 [24]:
(1) wg4n/2 = —wi forevennand 0 <k <n/2 —1;
n—1
(2) > wr =0 forn > 1,
k=0
n—1

B) I ok = (—1)"’1 for all natural values #.
k=0

x4.24. Prove the validity of the identities for the roots of unity wy, where 0 < k <
n — 1, for all natural values n:

n—1
M J[@—wx)=2"—1;
k=0

0, 1<d<n—1;

n—1
2) Y () = !
k=0 n, d=n.

+4.25. Prove the validity of the identities for the n-th roots of unity wy, where k =
0,1,...,n—1, for all valuesn > 2:

n—2
D) Y orwry1 = —op—1;
k=0
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@ X
k=

+4.26.

+4.27.

4.28.

+4.29.

+4.30.
+4.31.

(b) sina + sin2a + - - - + sinna =

= -1+ wn-1);

=2 g1 Wk+1
1 Wk

n—1
(3) Y wrwp =0;

k,k'=0
k<k'
=l wrwp n

@ X

k=0 Ok —k l—w
k<k'
Let wi, where 0 < k < n — 1, are the n-th roots of unity, x is an arbitrary
n—1 w
k

complex number, and x # wj for any k. Calculate the sum kZO o

Prove that for natural n € N and o # 27k, k € Z, are valid the Lagrange’s'!
identities [38]:
sin(na/2)
(a) cosa +cos2a + ---+cosna = . cos[(n + 1)a/2];
sin («/2)

sin(na/2)
sin («/2)
Prove de Moivre’s formula for natural values of the exponent n, using the
mathematical induction method.

Using de Moivre’s formula, express cos 3¢ and sin 3¢ in terms of cos ¢ and
sin ¢.

Express cos 4¢ and sin 4¢ in terms of cos ¢ and sin ¢.

There exist relations that express polynomial’s coefficients by its roots
(Viete'? formulae). If oy, a2, ..., o, are roots of the polynomial p(z) =
x" + a;x" ! 4+ ... + a,, and each root is taken the number of times
corresponding to its multiplicity, then the following equalities are valid:

sin[(n + Da/2].

oy fog 4oy = —ay,
ajay + o3 + - -t ajo, o3+ - a1, = an,

a3 + arones + -+ g0 10, = —as,

0D . O] + 00220 + -+ 0003 ..o = (=) g,

arey . ..oy = (—1)"ay,.

Prove validity of Viete formulae.

1 joseph-Louis Lagrange (1736-1813), French mathematician, mechanic and astronomer.
2Frangois Viete, seigneur de la Bigotiere (1540-1603), French mathematician.
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4.32. Let z1, 22 be the roots of the quadratic trinomial p(z) = z> 4+ uz +v. Express
the following values by the coefficients u and v:

(D) 22+2%
Q) 777+

4.33. Let z1, 22 be the roots of the quadratic trinomial p(z) = z% +uz +v. Express
the following values by the coefficients u and v:

(1) 2} + 25
@ 7+
4.34. Find the sum and the product of all roots for each equation:

(1) 22 +322+3z+1=0;
(2) 2 +10z24+20=0.

4.35. Find the sum and the product of all roots for each equation:
(1) Z100 _ 100Z99 + Z98 — 0;
Q) 2+ +1=0.

+4.36. Compute the determinant

71 22 23
A=\z371 22>

22 23 21

where z1, z2 and z3 are the roots of the cubic equation Dozt B = 0 with
complex coefficients «, 8 € C.
*4.37. Solve the equation z3 — 3z + 2 = 0, using the Cardano formula.
*4.38. Solve the equation 2z° — 13z% — 17z + 70 = 0, using Cardano formula.
4.39. Solve the systems of linear equations using Cramer’s rule:

A+Dxi+(2+2Dx2+ A +Dx3=1—14,
(a) —x1+ QB =Dxa+ Q+i)xz = =T+ 2i,
(=2 —i)x1 + (=1 —i)x3 = 3 — 5i;

(242D)x1+ Q4+ Dx2+ 2+ 2i)x3 =171,
(b) (=14 2)x1 + (=2 — i)xp + 2ix3 = —8 + 2i,
(24 20)x1 + 2ixs + (1 — i)x3 = 2 + 4i;
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4.40.

+4.41.

(©

(d)

197

(=14 i)x3 = 1 — 3i,
(=1+Dx; —x2+ (=1 —i)xz3 =3 -2,
X1+ @G+ ix2+ 3 —i)xz =4+ 8i;

@A 4+i)x; —ixy+3x3 = —i,

3x1+4x + (1 —i)x3 = —4 4+ 9i,
ix1+3xy+x3=-5+6i.

Solve the systems of linear equations using Gaussian elimination:

(a)

(b)

()

(d)

Q+idx1+ 0 —=Dx24+ (1 —i)x3 = 8i,
(I=Dx1+ (—1+Dx2+ix3 = -2,
—ix1+ G+ iDxx+ (=1 —i)xz3 =8+ 4i;

@ —Dx1+@ —ixp—ix3 =2+09i,
5x1+3xp —ix3 =5+ 10i,
2x14+ R+ i)xa+ (1 +i)x3 =3+ 5i;

(I +20)x1 + G+ 20)x2 + (=2 +2i)x3 = 11 + 14,
@ —iDx1 4+ (—14+2i)x —x3 =8+ 3i,
(1 4+i)x; 4+ 2ixo =4+ 8i;

S5x1+(=2—ix2+ (=3 —Dx3 = —12—1,
ix1+A4+2Dx+QR—i)x3=-3+1,
2ix2—|—x3 = —4+[

Solve the systems of linear equations relative to five variables using Gaussian
elimination:

(a)

G —-i)x;+ixg+(—14+Dx3+ @+ 2i)xg + (=3 +i)xs = =5-09i,
2x1 —x2 —3x3+ 2 —i)x4 + (=2 —i)xs = 3 —5i,
(A =Dx1 + A =Dx2+ 2 —=i)x3 + (=2 —i)x4 +3x5 = 10+ 114,
A4+2)x; —2x20+ 24+2i)x3 —3x4 + (=2 +1i)x5s = =2,
(=34+2D)x; +x2+ (=24 i)x3 —ixg +2ix5s = —11 + 3i;
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=3x1 + (=3 —i)xa+ 2 —i)x3 + (=2 +i)xg +ixs = —2 — i,
—x1 +ixg + (=3+2)x3 + (1 +i)xg + (4 +2i)x5 =9+ 12,
(b) 2ix; + (2= i)xy+3x3+2x4 + (=2 — i)xs = —9 — 5i,
(=3 —i)x1 + (=3 —i)xa+ixs+ (1 +i)xg+ (=1 +i)xs =4,

2+ i)x1 + 2x2 + (1 + i)x34+(3 + 2i)xs = —3 + 10i.
4.42. Which of the following matrices are Hermitian?

1 2+10i
(1) ;
2-10i 3

® 1|1 -1
V2|22
1 |2+2i 2
(3) ;
V6| —2i —242i
3
4) ;
i 3
| 10 2
5) 03 0 |
V10
20 —i
11 1 1
1 i —1—i
(6)
1—1 1 -1
1 —i—1 i

4.43. What condition is imposed on the diagonal elements of the Hermitian
matrix?
4.44. Show that if Z; and Z; are complex matrices of the same order, then the

1
matrix 5 (Z1Zy 4+ Z»Zy) is Hermitian.
4.45. Anti-Hermitian or skew-Hermitian matrix is the matrix A, for which the

relation A¥ = — A is fulfilled. In other words, Hermitian conjugate of such a
matrix results in multiplying all its elements by (—1). Which of the following
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matrices are anti-Hermitian?

1 0 2+i
(1) ;
V2| 240 i

i =2
(2) ;
3 -2
1{24+i 2i
(3) ;
3 —2i 24
1_1 50 |
4 —52i =5
()5 52i =5
| 0 5 3i |
1_—21'10_
5 -10-3|;
()5 10-=3
| 0 32 |
iiod i
i o—i—i
e
I —1 1 —1
i—i—i i

4.46. What condition is imposed on the diagonal elements of an anti-Hermitian
matrix?
4.47. Which of the following matrices are unitary?

123
(@)) ;

321

1|1 =i
() ;

V2 |=i

1240 2i
3)

—2i —2+i

@ 1|3 =i
VIO | =i 3
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4.48.

4.49.

+4.50.

4.51.

4.52.

4.53.
+4.54.

4.55.
4.56.
4.57.

4.58.

4 Complex Numbers and Matrices

100

©) J10 0 e O.;
00 ¥

11 1 1
11 i —1—i
211-11 -1
1—i—1 i

(6)

What condition must satisfy the complex numbers #; and u; and the real

number ¢, in order for the matrix u,l 'ug to be unitary?

—e'%uj e'%ujy
At the examination in linear algebra the student says that for any square
matrix A the equality In(exp A) = A is valid. Is the student right?
Prove the identity det(e4) = 4, valid for the arbitrary square matrix A
with complex coefficients.
Prove the Theorem 4.4 (see page 182): the determinant of a unitary matrix is
a complex number, whose modulus is equal to one.
Compute the commutators of the Pauli matrices [o1, 02], [02,03] and
[03, 01].
Compute the product of the Pauli matrices 010203.

Prove the generalization of Euler’s identity for Pauli matrices o1, 02 and 03:
exp(ioxp) = Icose +iogsing for k=1,2,3, (4.49)
10, S .
where I = is the identity matrix of the second order.
01

What is the square of the Dirac matrices 8?
Compute the product of the Dirac matrices oy 03 8.
Compute the result of the actions of the quantum circuit

] |H] H H ]

on a qubit that is originally in the state |0).
Compute the result of the actions of the quantum circuit

Y] 4] 1Z] 7]

on a qubit that is originally in the state |1).
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4.59. Compute the result of the actions of the quantum circuit

7] 4] 5] |H] H

on a qubit that is originally in the state |4/} = u |0) + v |1), where u, v € C.
4.60. Show that the quantum circuit

VanY
>

Fan) yan)
N N

transfers the state |y11») to the state [y 1r1).

Answers and Solutions

4.1 Solution.

(1) Operations with complex numbers should be performed similarly to the respec-
tive operations with algebraic polynomials, using the property i = —1:

GB+i)2+5i)=3-2+3-Gi)+i-2+i-(5)
=64 15i +2i + 51> =6+ 17i +5(—1) = 1 + 17i;

2) B—DB+i)=3>—-i2=10;

B) A=)+ U+ =1 —4i +6i2—4i3+i% + (1 +4i +6i%+4i% +i%
=2(1+6i2+ (»)?) =2(1+6(-1)+ (-1)?) = -8

@) 2—i3=2—i-i?=2+i.

4.2 Answer:

1) -1+ 3i;

(2) 29+ 14i;

(3) =5+2i;

4) 2i.

4.3 Solution.
We perform algebraic transformations, taking into account that i> = —1:
13- =0+D1+3)-@ - =5-(=D+5-G)+i- (=) +i-

(3i) — (16 — 8i +i?) = —8 + 14i — 154 8i = —23 4 22i.
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4.4 Solution.
We perform algebraic manipulations: z1z2 = 1 + 3i, zg =1, zf = —11+ 2i,
zg — z% =11—i.Asa resultzmz(zg - zf) = 14 4 32i.

4.5 Solution.

(1) We perform algebraic transformations:
(1 +4i)° + (1 — 4i)’

= (1+4i +1—4)((1+4i)% — (1 —4i)(1 +4i) + (1 —4i)?
=2(14+8i —16—1741—8i —16) = —47-2 = —94.

(2) Use the Newton'? binomial formula:

n
(a+b)"=>_ C(n ka" b,
k=0

valid for all a, b € C and natural n:

6=+ 6+)*=6"—4.62-i4+6-6-(=1)—4-6i- (=) +(=1)-(=1)
4644463 i+6-62-(=1)4+4-6i-(=1)+(=1)-(—1) =2162.

4.6 Solution.

. . . Z
Denote z; = a +ib, 72 = ¢ + id. The fraction of the form ! , where 71,22 € C,
22

*
. e Z
can be conveniently transformed by multiplying it by 1 = i :
)
1 21 % I A%

2 2 5 2 2l

This is why the result of the division of two complex numbers z1/z2, where
z2 # 0, will be the number

21 ac+bd+,bc—ad
= i .
22 2+d> r+d?

131saac Newton (1643—1727), English mathematician, physicist, mechanic and astronomer.
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4.7 Solution.
Using the hint offered in the previous problem (i. e. z1/22 = (2125)/(2223) =
(z123)/1z21%), we obtain

3+i  B+H3B+i) 1
3—-i 9-— i22 5
1+3i (1430 1 .

= = _(—4+3i);
123 = 192 — s
3 24 2-1 1(3+,)_
343 3402 1_ 10 ; ’

i i il—-i+i(d+i .
“4) .+ .=( ). (.)=l-

141 1—1 1+ —iQ)

4.8 Solution.

Findzpand z3: 20 =2 —i, 23 = 2 +1i) + (2 — i) = 4. After this, we obtain
(z1—z3)(22—23) /22 = +i—H(2—i—4)/(2—i) = —(2—i)(=2-i)/(2—i) = 2+i.
4.9 Solution.

Findzyand zp: 20 = —7 — 2i, 23 = =5+ 2i.

Then, 7120 = —45—28i,72023 = 39—4i,z1z3 = —394+4i, 2120+ 2223+ 2123 =
—45 — 28i.

The final answer is (z1z2 + 2223 + 2123)/21 = —7 — 2i.

4.10 Answer:

1) (4 +30);

(@)

1 z= %(—4~|—3i);
@ 2= (-9

4.11 Solution.
Letz = a+ib,then z—3z* = (a+ib) —3(a —ib) = —2a+4ib. Since complex
numbers are equal if and only if their real and imaginary parts are equal, we obtain

—2a =18, a= -9,
<
4b = 4; b=1,
whence z = —9 + 1.

4.12 Answer: 7 = —; +1i.

4.13 Proof.
Let z1 = x1 +iy1, 22 = X2 + iy2, where x1, x2, y1, y2 € R.

(1) Express the left side of the equality by x1, x2, y1 and y;:

(Z1+z2)" =1 +x2) + i1+ y2)]" = (x1 +x2) — i1 + y2)-
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Now transform its right side
2+ 25 = (1 —iy) + (2 —iy2) = (x1 + x2) —i(y1 + y2).

Therefore Vz1,z2 € C (z1 +22)* = zT + z;.
(2) The left side of the equality

(z122)" = [(x1 + iy (x2 + iy)]* = (x1x2 — y1y2) — i (x1y2 + x21).

The right side coincides with the left one:
2125 = (x1 — iy (x2 —iy2) = (x1x2 — y1y2) — i(x1y2 + x2y1) = (z122)".

4.14 Proof. _
Take the number with the modulus equal to one in exponential form: z = €'%.
After algebraic transformations

Z—l — (eup)—l — ¢ lY — (eup)* — Z*

we obtain the equality z 7! = z*.

4.15 Hint.

Use the geometric interpretation of the numbers z; and z2. The length of a side
of an arbitrary triangle is no greater than the sum of the lengths of the two other
sides, and is no less than the absolute value of their difference.

4.16 Solution.
Use the formula for the geometric progression sum:

n n+l _
k=1 q-1
" g P L B —2i(—i —1) .
1T = = = = — l.
P i—1 i—1  (—=D(=i—-1
49 1 99
(2) Z lk — 49 Z l(k+49).
k=—49 k=—99

In the last sum, replace the summation index k' = k 4+ 49. Then the sought sum
takes the following form:

49 98 .99 .99
, i -1 i7 -1
1 — 1 —
k=—49 k'=0
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4.17 Solution.
The imaginary unit has the property i* = 1. Consider four cases depending on
the remainder of division m by 4:

() m=4k keZ,
im =l-4k — (14)]( — 1/{ — 1’

) m=4dk+1,keZ,
G) m=4k+2,keZ,
4) m=4k+3,keZ,

Thus, we finally obtain

1, ifm=4k, keZ;

i, ifm=4k+1, keZ;
1, ifm=4k+2, kel
—i, ifm=4k+3, kel

4.18 Solution.

(1) For transition to a trigonometric form of the complex number, we must
determine the modulus p = |z| and the argument ¢ = arg z. Using the formulae
for p and ¢, we obtain

p=\/x2+y2=\/22+02=2,
(pzarctany+2nk=0+2nk=2nk, k eZ,
X

this is why the trigonometric form of the number 2 has the form

2(cos(2mk) + i sin(2wk)), where k € Z.
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T T
2 p = VO+32 =3,¢ = 2sgn(?a) + 2nk = 5 + 27k, therefore 3i =
b4 2
3 (cos(2 + 27rk) +isin (2 ~|—3271k)), k € Z.
3) ,0=\/16+9=5,<p=arctan<4~|—2nk),

3 3
443i=5 <cos (arctan 4 + an) + i sin (arctan 4 + 271/()), k € 7.

@ p=1¢= ngn(—l) + 2ok = —Z +27k;
—i =cos(w(2k — 1/2)) +isin(x(2k — 1/2)), k € Z.
(5) p=+/9+36=235,¢=arctan2 — 7 + 27k,
—3—-6i = 3«/5(cos(arctan2 + w(2k — 1)) + i sin(arctan2 + 7w (2k — 1))),
k eZ.
6) p=2,¢=m/4+ 27k,
V2 +3/2i =2(cos( /4 + 2k) + i sin(w /4 + 27k)), k € Z.
(7) p =+/30, ¢ = arctan(—3) + 7 + 27k,
—/343/3i = /30(cos(r —arctan 3 +27k)) +i sin(7r — arctan 3+ 27k)),
k eZ.
(8) Multiply the numerator and the denominator of the fraction by the value (9 + i)
and transform the obtained expression:

9+i (9+i)O+i) 80+18 40 9
_ _ _0 9,

9—i 9-DO-=-i) = 8 41 41

40\ 2 9\2 9 .
o= \/(41) + (41) =1, ¢ = —arctan A1 + 2mk. We finally obtain

941 9 9
9 i_i = cos (an — arctan 40> + i sin (an — arctan 40>, kel.
4.19 Solution.
(1) cosn +'s'nn = ! + \/3'-
3 ’; 3727 2 a
) 4<cos (— 2) + i sin (— 2)) = —4i;
V3 V6. V6
3) =— _i—- _;
37 .. 37w 2 2
cos + 1 s
4 4
_Varv2_V2-v2

4) cos(—g)—l—isin(—g) 5 5
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4.20 Proof. '
Turn to the exponential form of the number u. Let a +ib = pe'?, thena — ib =
pe "¢ and

a+ib_ e

a—ib e~iv

— — ¢l . el — e2z(p.

Therefore u = ¢'®, where § = 2¢.

4.21 Solution.

The exponential notation of the imaginary unit has the form i = e
where k € Z. Having written the imaginary unit in the base in exponential form and
using the identity (¢?)” = ¢, we obtain

in/24+2mik

it = (elT/2A2mikyi oi-(T/242mk) _ e~TI2H2TK  here k K € Z.
As is seen from the considered example, the exponential function is a multifunc-
tion on the set of complex numbers C.
4.22 Answer:

(1) «/8i ==+2(1 +1i);
(2) Y4096 € {+4, +£2(1 +i/3), £2(1 Fiv/3)}.

4.23 Proof.

(1) Transform the exponential notation of the number wy4,/2:

2mi(k+n/2) 2wik : i
wk+n/2:e n —e n eﬂl :Cl)ke]”.
Using the equality e” i = —1, we obtain Wi+n2 = —wi forevenn and k =

0,1,...,n/2—1.
(2) The values wy; form a geometric progression, whose denominator is w; =
e?i/"_ Using the formula for the geometric progression sum 1 + ¢ + ¢ +
_ n+l

oo Vl=
+q | —

for |¢| < 1, we obtain

n—1 n—l 2wi/nyn

_ 2rik/n _ (€ =1 _
dok=7) e = mim_q =0
k=0 k=0

3)

n—l n—l nil nil
- - , 2mik/n Qri S k)/n
k=0 k=0
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. .l n(n—1)
The sum in the exponentis > k = ) , and therefore,
k=0

n—1 .

[[ox =" =cosm(n— 1) +isinz(n — 1) = (="

k=0

n
4.26 Answer: .
x" —1

4.27 Proof.

n .
Consider the sum Z = ) ¢'** 1t is easy to see that the following relations are
k=1
valid:

cosa +cos2a + - - -+ cosna = Re Z,

sina +sin2o + - - - +sinno = Im Z.
Calculate Z, using the formula for the geometric progression sum:

eia(n+1) _ eia

n
_ iak __
Z_I;e - el 1

—ia/2
Simplify the obtained expression, multiplying the fraction by 1 = ¢ and

e—ia/2
performing simple transformations:
eia(nJrl) _ eia e*ia/2 eia(n+1/2) _ eia/2

el — 1 e—iw/2 T a2 _ p—ia)2
Denominator of the obtained fraction is ¢/%/2 — e~/%/? = 2i sin & /2. Rewrite the
exponents in the numerator, using Euler’s formula:
1 o o
Z= [cos[(n F1/2)a] +isin[(n + 1/2)a] — (cosa/2 + i sma/z)]
2isina/2

_sin[(n +1/2)a] —sina /2 cos[(n + 1/2)a] — cosa/2
N 2sina/2 2i sinar/2 '

Further, use the known trigonometric formulae (see Appendix B “Trigonometric
Formulae”, formulae (B.16) and (B.18))

—-b b

sina — sinb = ZSina cosa+ ,
2 2

o a—b . a+b

cosa — cosbh = —2sin sin .

2 2
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‘We obtain

z_ sin(na/2) Da/2 . sin(na/2) | Da/2
= in @/2) cos[(n + D /2] +i sin (a/2) sin[(n + 1)« /2],

whence directly follow the Lagrange’s identities.

4.28 Proof.

Denote the predicate “(cos ¢ + i sin )" = cosng + i sinng” by P(n) and prove
the statement Vr P (n) by the mathematical induction method.

Basis step

For n = 1 we obtain the valid identity (cos¢ + i sing)! = cos¢ + ising,
therefore P (1) is true.

Inductive step

Suppose that P(k), k € N is true. Prove the truth of the proposition P(k + 1).
We need to prove that

(cos @ + i sin )1 = cos (k + 1)g + i sin (k + 1)g.
Consider the expression (cos ¢ + i sin ) ™! and represent it in the form

K1 = (cosg + i sing)* - (cos g + i sing).

(cos¢ +ising)
According to the inductive supposition, the first factor is
(cos ¢ + i sin (p)k = cos kg + i sin ko.
Then
(cos@ +isin (/))"Jrl = (cos k¢ + i sin k) - (cos¢ + i sin ).

Open the brackets in the obtained expression, using the known identities for
trigonometric functions, provided in Appendix B, formulae (B.11) and (B.9):
cos(a + b) =cosacosb —sinasinb,

sin(a + b) = sina cos b + cosa sin b,
assuming a = k¢, b = ¢. We obtain

(cos@ + isin (/))"Jrl = (cos kg cos ¢ — sinkg sin @)

cos (k+1)¢
+ i (sinkg cos¢ + coskgsing) .
sin (-l;:»l)(p
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Hence, according to the mathematical induction principle, de Moivre’s formula
(cosg +ising)" = cosng + i sinng

is valid for all natural values n € N.

4.29 Solution.

Consider a more general case of the problem statement and express cos ng and
sinng in terms and cosine and sine of the angle ¢.

For this, note that in the left side of de Moivre’s formula (4.1) stands an
expression that can be expanded by the Newton binomial formula (see page 192).
Thus, represent the left side in the form:

n
(cosg +ising)" = Z C(n, j)(cos" ™7 ¢)(i sinp)’
j=0

n
= Zij C(n, j)cos" ¢ sin/g.
j=0

It is convenient to partition the sum into two sums—by even (j = 2k) and odd
(j = 2k + 1) values of j, and introduce a new summation variable k € N:

(cos @ + i sin )"
[n/2]
= Z i%C(n, 2k) cos" % ¢ sin* ¢
k=0
L(n—1)/2]
+ Z i C(n, 2k + 1) cos" 1 g sin*H g
k=0

[n/2]
S e et g s
k=0
L(n—1)/2]
+i Z (—DFC(n, 2k + 1) cos™ 21 g sin?+1 o,
k=0

Now we only have to take advantage of the fact that cosng = Re(cos¢ +
i sin )",
sinng = Im (cos ¢ +i sin ¢)". We obtain formulae for cosine and sine of a multiple
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argument:

[n/2]
cosng = Z (—=D*C(n, 2k) cos"?* ¢ sin?* ¢,
k=0

Lin—1)/2]
sinng = Z (—=1)¥C(n, 2k + 1) cos™ %1 ¢ sin?+! .
k=0

For n = 3 the obtained formulae take the form

1
cos3p = Z(—l)kC(3, 2k) cos® 2k 17 sin ¢ = cos’ ¢ —3cosg sin? o,
k=0

1
sin3¢p = Z(—l)kC(3, 2k 4+ 1) cos® 21 © sin?k+1 @ = 30052(,0 sing — sin® Q.
k=0

4.30 Answer:

2
cosdp = Z(—l)kC(4, 2k) cos* k¢ sin* ¢
k=0

= cos? 0—6 cos? 10 sin’ @+ sin* 0,
1

sindg = Z(—l)kC(4, 2k + 1) cos* 21y sin%Fl g
k=0

= 4 cos’ @sing — 4cos @ sin® Q.
4.31 Hint.

Multiply the brackets in the right side of factorization of the polynomial p(z) and
compare the obtained coefficients at the same powers with the coefficients p(z).

4.32 Solution.

(1) Represent Z% + z% in the form

B4+ = (1 +20)? - 2un

and express the sum and the product of the roots p(z) by Viete formulae, proved
in the previous problem:

B+ = (—u)? —2v=u’—2u.
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1 1_Z%~I—Z%_u2—2v

® - -
2737 23 T »
4.33 Answer:

(1) Z? + Zg = (u? = 20)2 — 2%
11 =202 —-22

(2) + , =
AT vt
4.34 Answer:
3 3
M) Yz=-3 [la=-1
k=1 k=1

4 4
2 > z=0, J]z =20
k=1 k=1
4.35 Answer:
4 4
(1) Y zx =100, [] % =0;
k=1 k=1
5 5
@ Yu=-1, [la=-1
k=1 k=1

4.36 Solution.

4 Complex Numbers and Matrices

In the determinant, add to the first row the second and the third rows:

Z1it2twz1t+t22+z321+22+23

22

22

<1

According to Viete formulae (see Problem 4.31), the sum of all roots of z1 +z2 + 23
is equal to the coefficient of the quadratic term z2, taken with reversed sign. For
the equation P4+ az+ B = 0 we have z1 + z2 + z3 = 0, and, therefore, in the
determinant A the first row entirely consists of zero elements. It is clear that such a

determinant is equal to zero.

4.37 Answer: 71 = —2,z0 = z3 = 1.

5
4.38 Answer: z1 =7,70 = ~y 73 =2.

4.39 Answer:

(b) [x1,x2,x3]" =i, 1,2+ 2i]";

() [x1,x2,x3]7 =[-3,3, —2+i]";
(d) [x1,x2, x317 =[1,—-1+2i,-2—i]%.

>
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4.40 Answer:

@) [x1,x2, 0307 =[2i,1+i, -2 +2i];
(®) [x1,x2, x317 =[3+2i, -3+i,3—i]";
© [xt,x2, 0317 =[2,3—1i,—1+2i]";
() [x1,x2, 317 =[—242i,3i,2+i]T.

4.41 Answer:

(@) [x1,x2,x3, x4, x517 = [2+i,i,—1+i,-2,1+2il%;
(b) [x17x25x37-x47-x5]T = [la _25 _1 - ia 1 + ia 2 +2l]T

4.42 Answer: Hermitian are matrices 1) and 2).
4.43 Answer: diagonal elements of Hermitian matrix are valid.
4.44 Proof.

1
Introduce the notation W = 2(Z122 + Z»Z1) and find Hermitian conjugate
matrix relative to W:

- 1 | - g 1
W = 2(lez+2221) =2((lez) +(Z22y) )=2(2221+lez)=W-

It is proved that W is a Hermitian matrix.
4.45 Answer: anti-Hermitian are matrices (1), (5), (6).

4.46 Answer: diagonal elements of anti-Hermitian matrix are purely imaginary
values.

4.47 Answer: unitary are matrices (2), (3), (4), (6).
4.48 Answer: lu1|> + |u2|* = 1, ¢ € R is any real number.

4.49 Solution.
In this case, the student is wrong, since for A = 2mil, where [ is the identity
matrix, we have exp(A) = > = I, therefore, In(exp(A)) = O # A.

4.50 Hint.

For the diagonal matrix det(e4) = e*1e*2 ... ¢* = ¢4, As for the non-diagonal
matrix, we either diagonalize it, if possible, or, with any predefined accuracy,
approximate it by a sequence of matrices, each being diagonalizable

4.51 Proof.
Let U be an arbitrary unitary matrix. Using property (6) of Hermitian conjugate
on page 181, represent the modulus of the determinant U in the following form:

|detU| = /(detU)(det U)* = v/(det U)(det UH).
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Since the product of the determinants of matrices is equal to the determinant of their
product, VA, B (det A - det B = det(AB)), then

|detU| = /detUUH) = +/det I = 1.

Thus, the modulus of the determinant of the unitary matrix is equal to one.
4.52 Answer: |01, 03] = 2io3, [02, 03] = 2i0q, [03, 01] = 2i07.

4.53 Answer: 010203 = il, where [ is the identity matrix of size 2 x 2.
4.55 Answer: ﬁ2 = [, where [ is an identity matrix of size 4 x 4.

4.56 Answer:

00— O
000 —i
i00 0
0i 0 0

ajpe3f =

4.57 Solution.

1
The state of the qubit |0) is described by the matrix . Taking into account
0

the matrix representation of the quantum elements H, S and X from Table 4.1, we
obtain

> 1) 1|11 |lto] 1 |11 f]o1]]1 2
—_ = = .
V2 ltr=t|loi|~v2|1=1]]10]]0O 14

Thus, as a result of the quantum circuit’s action on a qubit in the state |¢) = |0),
it passes to the state

1—1 1 j
why= o+

1).
) , 1D

4.58 Answer: as a result of the quantum circuit’s action on a qubit in the state |¢) =
[1), it passes to the state

= (= p)m=("5")m.
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4.59 Answer: a qubit in the state |yy) = u|0) + v |1), passes to the state |¢') =
1 1 1 1

141 0 14+ iu— 1).
(2( —i-l)u—i-\/zv)l )+<2( +i)u sz)| )



Chapter 5 )
Vector Spaces s

By n-dimensional arithmetic vector, we will mean an ordered set of n real
numbers.

The numbers x; i = 1,2, ..., n) are called coordinates or components of the
vector x. They are written either in the row: x = (x1, x2, ..., X,), or in the column:
X1
X2
x=| |. 5.1
Xn

For designation of vectors and distinguishing them from scalar values, bold font
is used, for example, a, b, c, etc.!

The vectors x = (x1,x2,...,Xx) and y = (y1, ¥2,..., yn) are called equal
vectors, if the equalities x; = y1, x2 = y2, ..., X, = y, are valid.

Sum of the vectors x and y is the vector

x+y=@1+y,x2+y2, ..., % + yn). (5.2)
Product of the number « and a vector x is the vector

ax = (axy, 0xp, ..., Qx,). (5.3)

! Another designation of vector is also used, when an arrow is placed above its symbol. For
i ) i ) —
example, using this method, the vectors a and b will be designated as @ and & .
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Difference of the vectors x and y is the vector
x—y=x+CDy=&1 —y1, %2 — Y2, ..., Xp — V). 5.4

Zero vector, or null vector, is the vector 0 = (0,0, ...,0) that has zero
coordinates. It is obvious that x + 0 =x — 0 = x.
For the vector x € R, by —x denote the vector with the coordinates

(_-xla_-xQ.a-'-a_-xn)a (55)

such a vector being referred to as opposite relative to x.
From the introduced definitions, it follows that —x = (—1)-x and x + (—x) = 0.
A set of all arithmetic vectors with the operations of addition and multiplication
introduced on them is called a n-dimensional arithmetic space and denoted by
R™ [30].

Example 5.1 R! is a one-dimensional space (line), R? is a two-dimensional space
(plane) and R is a three-dimensional space. ]

5.1 Linear Dependence of Vectors in the Space R"

Consider a set of vectors xi,x2,...,X;y € R" and the real numbers
o1,0,...,0 e R.

The vector x = a1 - X1 + oy - X2 + -+ - + o - X is called a linear combination
of vectors x|, x7, ..., Xt.

Example 5.2 Let there be given the vectors

3 4 5
x1=|-2|, x2=|3|, x3=13 (5.6)
—1 0 7
—1
Then, the vector x = 2x1 —3x>+x3 = | —10 | is the linear combination of vectors
5
X1, X2, X3. (]
A system of vectors x, X2, ..., X is referred to as linearly independent one,

if from the equality oy - X1 + o2 - X2 + - - - + g - x; = 0, it follows that ¢; = ap =
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If there exists a set of real numbers a1, o2, ..., o, among which at least one is
not equal to zero, then the system of vectors is referred to as linearly dependent
one.

Example 5.3 Given are the vectors x1 = (2, —3) and x, = (4, 5). Show that they
are linearly independent.
Find the solution of the system of equations

0
aj + a2 = , (5.7
5 0

a1-24ar-4=0,
o1 - (=3)+ar-5=0.

(5.8)

Since this system has the unique solution «; = ap = 0, the vectors x| and x, are
linearly independent. O

Note Assume that the vectors x1, X2, ..., x; are linearly dependent. Then, at least
one of the coefficients ¢; is other than zero (for example, 1 # 0). In this case, we
can write

o) a3 oy
X]=— "Xp— "X3—--+—  Xg. (5.9
(23] (23] o]

Thus, if the vectors are linearly dependent, then one of them is linearly expressed
in terms of all others [30]. The converse is also true: if one of the vectors of the set is
linearly expressed in terms of the others, then these vectors are linearly dependent.
The last property can be considered as a definition of linear dependence of vectors.

5.2 Basis in the Space R”

Prior to introducing the concept of basis in the vector space R”, let us prove the
following theorem.

Theorem 5.1 Any system of n + 1 vectors in the space R" is linearly dependent.

Proof Take arbitrary n + 1 vectors
X; = (X1i, X2i» -+ - » Xni), (5.10)

wherei =1,2,...,n+ 1.
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Construct their linear combination and equate it to zero vector:
ap-xy1+tox-x2+ -+t - Xpp = 0. (5.11)

Writing this equality in a coordinate-wise manner, we arrive at a system of n
equations with n + 1 unknowns o1, a2, . .., &y41:

ap-xi1tox-xi2+ o F a1 X141 =0,
(5.12)

o1 Xpl + 02 Xp2+ - At - Xpar1 = 0.

The matrix of the system (5.12) differs from the respective augmented matrix
only in the zero column, this is why their ranks coincide. Therefore, according to
the Kronecker—Capelli theorem, the system has infinitely many solutions. They nec-
essarily include a non-zero solution. Thus, there exists a non-zero set of coefficients
o1, ®2, ..., 0,1, for which the linear combination of vectors x1, X2, ..., X;41 18
equal to a non-zero vector. Therefore, the vectors x;, where 1 < i < n + 1, are
linearly dependent.

Any system of n linearly independent vectors b1, b2, ..., b, is called a basis of
a vector space.

Consider in the space R” the system of vectors:

er = (1,0,...,0),
82:(0,1,...,0),

(5.13)
e, =(0,0,..., 1)
These vectors are linearly independent, since from the condition
ar-e1+---+o,-€, =0 (5.14)
directly follows the system of equalitiesa; = ap = --- =, = 0.
The vectors ey, ea, ..., e, are called normalized vectors of the space R”; they

form the basis in this space.

Conclusion: a linearly independent system of vectors in R” can have a maximum
of n vectors.

Consider a system of n vectors

x; = (x14, x2i, ..., %n;), Wherei =1,2,...,n. (5.15)
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Construct a matrix of coordinates of the vectors:

X11 X12 ... X1n
X21 X22 ... X2

(5.16)

Xnl Xn2 - .. Xnn
Such a matrix is called a matrix of a system of vectors, and its determinant is
called a determinant of a system of vectors.

Theorem 5.2 [n order for a system of n vectors to be the basis, it is necessary and
sufficient that the determinant of the system is other than zero.

Proof Consider an arbitrary system of n vectors
Xi = (X145, x2i, ..., %ni), 1 =1,2,...,n. (5.17)

Construct their linear combination and equate it to zero vector:

ap - X1 +ax-xp2+ oy X
o1 -x21+ a2 - x22+ -0y - X2 _ 0 . (5.18)

o1+ Xpl + 02 - Xp2 + -+ Oy - Xpp 0

We will obtain a homogeneous system of n equations with n unknowns and a
determinant other than zero. In this case, such a system has only a zero solution, i.e.
a; =0,wherei = 1,2, ..., n, and the system of vectors is a basis.

Theorem 5.3 Assume that the vectors x1,X2,...,Xx, form a basis. Then, any
vector y of R" can be represented, uniquely, in the form of a linear combination
of the vectorsx; (i = 1,2,...,n):

y=o1-X1+a X2+ - F0a,- X, (5.19)

Proof Write the expansion (5.19) in projections:

o] - X11+ 02 X124+ Q- Xip Vi

o] - X21 02 X2+ - Q- X2p Y2
aixp t+opxy+ -+ opXx, = =

o1 - Xpl 02 Xp2+ 0+ Ay X Yn

(5.20)
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We have obtained a non-homogeneous system of n equations with n unknowns.
Since the determinant of this system is other than zero, by virtue of Cramer’s rule,
this system has the unique solution.

Note The formula (5.19) is called an expansion of the vector y in the basis x; (i =
1,2,...,n).

Example 5.4 Show that the vectors ¢ = (1,1,4), b = (0,-3,2) and ¢ =
(2,1, —1) form a basis.
Construct the determinant of the system of vectors and compute it:

10 2
1-3 1 [=1-3=2)+2-2+12) =29. (5.21)
42 -1

Since the determinant of the system is other than zero, the vectors a, b and ¢
form a basis.

Example 5.5 Expand the vectord = (6, 5, —14) in the basis (a, b, ¢) (see previous
example).
Represent the vector d in the form of the expansion:

d=«aj-at+oy-b+a3-c. (5.22)
We have
6 1 0 2
5 =a |1 |+ | -3|+a3| 1 |. (5.23)
—14 4 2 -1

Write this equality in the form of the system of linear equations:

61
5, (5.24)
o1 +20p —az = —14.

aq +2a3

o1 —30p +az

The obtained system has the unique solution o1 = —2, p = —1, o3 = 4. Thus,
d=—-2a—b+4c. O



5.3 Euclidean Vector Space 223
5.3 Euclidean Vector Space

In an arbitrary n-dimensional vector space, it is possible to introduce a scalar
product (known also as inner product, or dot product)—the rule according to
which the two vectors a, b € R” are associated with the number (a - b). The scalar
product suggests such analogues of a spatial arrangement of the multidimensional
vectors R” as orthogonality and collinearity.

By definition, the scalar product of the vectors @ = (aj, a2, ...,a,) and b =
(b1, ba, ..., by) is computed by the formula:

(a-b)=aby +aby+ -+ aub,. (5.25)

Note that with the help of the summation sign, the variable (a - b) is compactly
n
written as (a - b) = ) a;b;.
i=1

Let us enumerate the properties of a scalar product.
For arbitrary a, ay, a>, b € R" and « € R, the following equalities are valid:

(1) (@a-b)=(b-a) (symmetry);

2) ((a;1 +az)-b) = (a;-b) + (az - b) (linearity);

3) (xa-b) =a(a-b) (linearity);

4) (a-a) >0,and (a-a) =0 < a =0 (non-negativity).

Note For the scalar product of the vectors a and b, the designations (a, b), a - b or
ab are also used.

Example 5.6 Letn = 4, and in the coordinate notation, the vectors have the form,

a=(10,-2,1,9),b=1(0,3,4,—2)and ¢ = (—12, 2, —4, —5). Then,
a-b=10-04+(-2)-34+1-449-(-2)=-20,
a-c=10-(—12)4+(-2)-2+1-(—4)+9-(-5) = —173,
b-c=0-(—-12)4+3-24+4-(—4)+(-2)- (-5 =0.

O

Example 5.7 Show that if the condition (a - t) = (b - t) is valid for all # € R”, then
the vectors @ and b are equal to each other.

Proof Based on the property of linearity, represent the equality (a - £) = (b - ¢) in
the equivalent form

(@a-t)y=0b-t) & ((a—>b)-t) =0. (5.26)

Into the obtained equality, substitute ¢ = a — b. Then, according to the property
of non-negativity, we have (a — b) = 0 or a = b, which is what we set out to
prove. O
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Length, or norm, of a vector is the value |a|| = +/(a - a).
Note the following easily provable properties of the norm, which are valid for
arbitrary vectors a and b of Euclidean space:

(1) llall =0, and [la|| =0 < a = 0;
(2) ||lxa]l = abs(x)||a] forall @ € R;
(3) lla+bl < llall + 115

The last inequality is referred to as a triangle inequality or Minkowski’
inequality.

Example 5.8 For the vectorsa = (0, —1,—1,3, 1) and b = (5, —-3,0, -2, —1) in
the space RS, we have

lall = V(@-a) =0+ (=2 + (=1)> + 32 + 12 = V12;
1Bl = /(b b) = /(=5)2 + (=3)> + 02 + (=2)2 + (—1)2 = V/39.

O

Orthogonal are the vectors whose scalar product is equal to zero. Usually, the
orthogonal vectors are designated asa L b.

A set of vectors, where all vectors are pairwise orthogonal, is naturally called
orthogonal. If in such a set all vectors have a unit norm, then such a set is
orthonormal.

Of course, in an arbitrary basis, the vectors might not possess the property of
pairwise orthogonality, a fortiori orthonormality. Show that there exists a possibility
to construct a new basis from the original one, and in the new basis, all the vectors
will be pairwise orthogonal. Such a procedure is called the Gram>-Schmidt*
process (orthogonalization).

Assume that in a vector Euclidean space with a norm, a basis (p1, p2,..., pn) is
set. The procedure of constructing a new orthonormal basis consists in performing
the following steps.

Successively compute the vectors g1, g2, . . ., g, by the formulae:
¢ f1
1=Pr1, 41 = s
izl
t

tr=pr—(p2.91)91, q2= ,
llz2|]

2Hermann Minkowski (1864-1909), German mathematician.
37 grgen Pedersen Gram (1850-1916), Danish mathematician.
4Erhardt Schmidt (1876-1959), German mathematician.
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t3
t3=p3—(p3.q1)q1 — (P3,.92)q2, g3 = T
ty
th =pn— (Pn.q1)q91 — - — (Pnsqn-1)4n-1, qn = e
n
The obtained basis (g1, g2, - . ., q,) is orthonormal.
5.4 [Eigenvalues and Eigenvectors of a Matrix
Two matrices A and A’, bound by the relation
A =P lApP, (5.27)

where P is some invertible matrix, are referred to as similar. In this case, the
designation A’ ~ A is used.

Note Transition from the matrix A to A’ is called similarity transformation.

1 -3 21
Example 5.9 Matrices and are similar, since the following
-1 2 -95
equality is valid:
- -1
-21 1 -1 1 -3 1 -1
_ . (5.28)
95 -2 1 -1 2 -2 1
-1
I -1 -1-1 . . . :
Indeed, = , and the equality (5.28) is easily verified by
-2 1 -2 -1
a direct multiplication of the matrices. O

Theorem 5.4 (On the Matrix Similarity Properties) The following properties of
similarity are valid:

(1) A~ A—reflexivity;
(2) A~ B = B~ A—symmetry;
3) ((A~ B)and (B ~ C)) = (A ~ C)—transitivity.

It follows from the theorem on the matrix similarity properties that the similarity
of matrices is an equivalence relation [1, 41, 53].
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Two similar matrices have equal determinants. Indeed, from the definition
of (5.27), it follows that

|A'| = |P~'AP| = [P |Al|P| = |A] (5.29)

Note that the equality of the determinants does not at all imply the similarity of
the matrices.

01
Example 5.10 Find out whether the following matrices are similar: and
10

10
1|
The determinants of these matrices are equal to —1 and 1, respectively. Therefore,
these matrices do not possess the property of similarity. O

The number A and the non-zero vector b are referred to as eigenvalue and
eigenvector of the matrix A, respectively, if the following equality is valid:

Ab = Ab. (5.30)

The vector b is considered as a column vector. In order to find b and A, represent
Eq. (5.30) in the following form:

(A—rD)b =0, (5.31)

where [ is an identity matrix.

We have obtained a homogeneous system of linear equations. In order for it to
have a non-zero solution, it is necessary and sufficient that the determinant of the
matrix A — A[ is equal to zero. Thus, in order to find A, we should solve the equation

|[A—AIl=0 (5.32)
or, in an expanded notation
ail—A aip ... dain
ay; ax»y-—a... an, _o (5.33)
. anl ..... a. n.2 ....... ann_ )L

This equation is referred to as characteristic equation.
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If we expand the determinant, we obtain a polynomial of power n relative to the
variable A:

P = (=) +h (=" o By (<A) A+ P, (5.34)

and the following properties are valid:

 the coefficient 1 is equal to the trace of the matrix A: h; =trA = a1 +ax» +
co A
¢ the constant term /,, coincides with the determinant: /,, = det A.

The polynomial (5.34) is also referred to as characteristic.

It is known that characteristic polynomials of similar matrices coincide.

According to the fundamental theorem of algebra, the characteristic equa-
tion (5.30) has no more than n solutions. For each solution A, it is associated with
the eigenvector b.

Note Although the eigenvalue can be equal to zero, the eigenvector, by definition,
is always different from the zero vector.

Example 5.11 Find the eigenvalues and eigenvectors of the matrix

113
A=1151]1. (5.35)
311

Compute the determinant of the matrix A — A and equate it to zero:

1-2 1 3
JA—xll=| 1 5—x 1
301 1—a
=1=N-[6-2-0==11=1=1)4+3+3-[1-3-5-1)]
=(1=2)-W=6-24+3)+9-2-39=-2>4+7-22-36
=—(A4+2)-(A—=9-14+18)=0.

Solving this equation, we will obtain three roots, Ay = —2, A» = 6 and A3 = 3.
For each A, find the eigenvector associated with it.

1. Let A = —2. Then,

313
A-MI=1{171]. (5.36)
313
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Assuming that b = (x, y, z), we will obtain the system of equations

3x+y+3z=0,
x+7y+z=0, (5.37)
3x+y+3z=0.

Write the matrix that corresponds to this system:

313
1711. (5.38)
313

Add to the third row of this matrix the second one, multiplied by (—1):

313
171} (5.39)
000

Drop the zero row and exchange places of the second and the first rows. Then,
we have

171
313

(5.40)

Bring the matrix to echelon form; add to the second row the first one,
multiplied by —3. We obtain

1 71

5.41)
0-200
Proceed to the equations and write
+7y +z =0,
Ty (5.42)
y =0,
orx+z=0.
As a free variable, select z. Then, assume that z = 1, and then x = —1.

Thus, by = (—1,0, 1).
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2. For A = 6, we obtain the system:

—Sx+y+3z2=0,
x—y+z=0, (5.43)
3x+y—5z=0.

In order to find the vector by, write the matrix of this system and its

transformations:
51 3 1 -1 1 1-11
1-11
1 -11]|—>|-51 3 [{—~(0—-48|—
01 -2
3 1 =5 3 1 -5 04 -8

Proceed to the system of equations:

Y=Y (5.44)
y = 2z.

Assuming thatz = 1, wefind y =2 and x = 1.
Thus, b, = (1,2, 1).
3. For A = 3, we have the system:

—2x+y+3z2=0,
x+2y+2z=0, (5.45)
3x+y—-2z=0.

In order to find the vector b3, we perform similar equivalent transformations:

-213 121 12 1
121
121 |—~>(-213|—>[05 5|~
011
3 1-2 312 0-5-5

Proceed to the system of equations:

Y=g (5.46)
y=—-z

Assuming thatz = 1, wefindy = —l and x = 1.
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Thus, the matrix A has the following eigenvalues and eigenvectors corre-
sponding to them:

A =-=2,b1=(-1,0,1), (5.47)
A =06, by =(1,2,1), (5.48)
A =3, b3=(,—-1,1). (5.49)

O

Note In physics, the characteristic equation is sometimes referred to as the secular
equation since such equations appeared during the analysis of the motion of the
Solar system’s planets and their satellites over considerable periods of time (referred
to as “secular” motions) [2].

Annihilating polynomial for the matrix A is such polynomial p(x) whose value
of this matrix is equal to the zero matrix: p(A) = O.

Theorem 5.5 (Cayley’~Hamilton® Theorem) For any square matrix A, the char-
acteristic polynomial is its annihilating polynomial.

Example 5.12 Let us illustrate the Cayley—Hamilton theorem with the help of the

1 —10
characteristic polynomial of the matrix A = .
—6 5
1—-x —10 ’
Indeed, p(A) = det|A — AI| = = A“ — 61 —55.
-6 5—A

Check whether the equality p(A) = O is valid:

= 2
1 —10 1 —10 10
p(A) = -6 —55
-6 5 -6 5 01
61 —60 -6 60 =55 0 00
= + + =
—-36 85 36 —30 0 =55 00
Then, p(A) is the annihilating polynomial for the matrix A. O

Recall that the similar matrices A and B are bound by the relation B = P~ AP
for some nonsingular matrix P. Selecting P composed of the columns equal to the
eigenvectors A (written in random order), we obtain the diagonal matrix B. This is
the point of the procedure of diagonalization of the initial matrix.

5 Arthur Cayley (1821-1895), English mathematician.
SWilliam Rowan Hamilton (1805-1865), Irish mathematician and physicist.
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Note that the sufficient condition for the possibility of diagonalization is the

presence of different eigenvalues of the initial matrix, and their number should
coincide with its order.

Review Questions

NN R WD =

Define n-dimensional arithmetic vector.

Enumerate the basic operations of vectors.

What is n-dimensional arithmetic space?

How is a linear combination of a system of vectors constructed?

What system of vectors is referred to as linearly dependent?

Define basis of a vector space.

Formulate the criterion that an arbitrary system of vectors is the basis.
Explain how a scalar product of vectors can be introduced into a vector space.
Enumerate the basic properties of a scalar product.

How is the norm of a vector found?

. What is the Gram—Schmidt orthogonalization procedure used for?

. What two matrices are called similar?

. Enumerate the properties of similarity of matrices.

. Define the concepts of “eigenvector” and “eigenvalue” of a matrix.

. How can one, knowing the elements of the matrix, set up its characteristic

equation?

. Formulate the Cayley—Hamilton theorem.
. What is the sufficient condition of diagonalization of a matrix?

Problems

5.1. Find out whether the vectors p, g and r form a basis in a three-dimensional

vector space. If they do, expand the vector x in this basis.

2 4 3
M p=|1|l.g=|0]|.r=|2|.x=]|1{. (5.50)
0 1 3
5 2 1 13
@ p=|1|.q=|-1|.r=]0|.x=|2]. (5.51)
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4 2 -1 -9
@ p=|1]l.g=|0|,r=|2 |, x=|5]. (5.52)
1 -3 1 5

5.2. The vectors e1, e2, e3 and e4 are specified by their coordinates in some basis.
Show that the vectors ey, e>, e3 and e4 themselves form a basis, and find the
coordinates of the vector x in this basis:

1 2 1 1 7

2 2 3 14
elz 782_ ae3= ae4= ax=

—1 0 1 —1 —1

-2 —1 4 0 2

(5.53)

5.3. Check that the vectorsa = (1,2,3),b = (-3, —-2,3) and ¢ = (0, —2, —2)
are linearly independent and thus form a basis. Is it orthogonal? Is it
orthonormal? If the answers are negative, then use the Gram—Schmidt
orthogonalization process to construct an orthonormal basis.

5.4. Check that the vectors ¢ = (3,—1,1,2), b = (-3,1,0,-2), ¢ =
0,—-2,2,—2)and d = (1,4, 2, —7) form a basis in R4, Is it orthogonal?
Is it orthonormal? If the answers are negative, then use the Gram—Schmidt
orthogonalization process to construct an orthonormal basis.

5.5. Prove that the set of vectors {(i,2—1,5), (1,241, —i), (1,i, —1)} is a basis
in the vector space C3. What are the coordinates of the vectors (1,0,0),
(1,1,0) and (1, 1, 1) in this basis?

5.6. Assume that the vectors vy = [aj,a2]” and vy = [by, b2]7 are linearly
independent. What can you say about the linear dependence or independence
of the vectors wi = [a1, b1]7 and wr = [a2, b2]7?

5.7. Prove that the set M = {M,} of all matrices with p rows and g columns
with real elements forms a vector space relative to the operations of matrix
addition and matrix multiplication by a number.

5.8. Prove the Cauchy’-Bunyakovsky® inequality (also referred to as the
Cauchy-Schwarz’ inequality):

For arbitrary vectors x, y € R", the following relation is valid:

x-y)? < (x-x)(y-y), (5.54)

7 Augustin-Louis Cauchy (1789-1857), French mathematician and mechanician.

8Viktor Yakovlevich Bunyakovsky (1804—-1889), Russian mathematician and mathematics histo-
rian.

9Karl Hermann Amandus Schwarz (1843-1921), German mathematician.
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5.9.

5.10.

5.11.

5.12.

5.13.

5.14.

5.15.

5.16.

and the equality is valid if and only if the vectors x and y differ in the scalar
factor, i.e. are proportional.
Prove the Pythagorean'® theorem:

If the vectors x, y € R" are orthogonal, then the equality

Ix + ylI? = llxl* + lIyl? (5.55)

is valid.
Check the validity of the identity

Ix + Y12+ lx — yI* = 2(x1* + Iy 1) (5.56)

for arbitrary elements of the n-dimensional vector space R"”. What is the
geometric sense of this identity in the spaces R? and R3?

It is known that the equalities ||x|| = 6, ||x + y|| = 10 and ||x — y| = 12
are valid. What is the variable ||x||?

Find the maximum number of linearly independent vectors

(1) on the plane;
(2) in the three-dimensional space;
(3) inR".

Check that the system of vectors
,1,1,....,1%,10,1,1,..., 115, 10,0, 1, ..., 117,...,10,0,0, ..., 117

forms a basis in R”.
Is the system of vectors

(1,1,1,....07, [1,2,3,....m17, [1,2%3%....2217, ...,

[1’ 271—1’ 3"—1’ e nn—l]T

a basis in R"*?

. 00 Oa o
Show that the matrices and , where a € R, are similar.

a0 00
Find whether the matrices A{ and A, are similar:
00

1 -1
() A = and Ay = ;
00 11

10pythagoras of Samos, ITuBoydpac & Ldwoc (about 570 B.C.—about 495 B.C.), Ancient Greek
philosopher and mathematician.
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100 101
(2) Air=1010|andA>=|100{.
000 010

5.17. Is it true that the traces of similar matrices coincide?
5.18. Find the eigenvalues and eigenvectors of the matrix A.

(452 31 0|
1) A=|5-73|; @ A=|—-4—-10 |;
694 4 -8 -2
2 12 010]
B A=|5 33 |; 4 A=|—-440]|;
10 —2 —212]

1 -3 3

S A=]|-2-613

—1-4 38

5.19. Diagonalize the matrix, i.e. bring the matrix to diagonal form:

4 15 -3
A=18 -3 3
0-15 7

5.20. Bring the following matrices to diagonal form:

(D
4 1 4
A=| 6 3 6 |;
—11 =5 —11
()
23 —16 —28

A= 58 39 64
—-11 =7 —-10

(5.57)

(5.58)

(5.59)
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5.21. Bring the matrix that depends on the real parameter a to diagonal form:

a —1 -1
A=|—-1a 1
1 1 a

x5.22. Write the characteristic equation for the matrix €2 of size n x n:

[010...0 0 |
001...00
Q= .............
000...0 1
(©00...0 0 |

x5.23. Using the Cayley—Hamilton theorem, compute the n-th power of the matrix
2, found in the previous problem.
x5.24. Find the value of the limit:

n

1
lim vin| (5.60)

n— 00 —(p/n 1

5.25. Bring the complex matrix to diagonal form:

1-2i 2i 2
zZ= 0 i 0
i =20

5.26. It is known that two out of three eigenvalues of the matrix

910 1013 + 57i —1013 4-57i
Y= 57-—2899i 68—1070i 57+ 1013i
—57 —899i 57 — 1013i 68 4 1070i

are equal to 11 4 57i and 11 — 57i. Without solving the characteristic
equation, find the third eigenvalue.
5.27. Prove that the eigenvalues of Hermitian operator are real.
x5.28. Prove that all eigenvalues of the unitary matrix lie in a complex plane, on a
unit circle with the centre at the origin of coordinates.
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5.29. Compute the eigenvalues and eigenvectors of the Pauli matrices o1, o2 and
o3 (see page 185).

Answers and Solutions

5.3 Solution.
Write the matrix A, composed of the coordinates of the vectors a, b and c:

1-30
A=(2-2-2
33 =2
Since det A = 16 # 0, then the vectors are linearly independent and form a

basis. The basis is neither orthogonal, because, for example, (a - b) = 2 # 0, nor
orthonormal, because ||a|| = /14 # 1.
In order to construct an orthonormal basis, apply the Gram—Schmidt algorithm:

1
t 1
tir=a=|2|,q1= = (1,2, 3);
el V14
th=b—(b-q1)q1
-3 | 1 1 —11
=|[-2|- 1-(=3)+2-(=2)+3-3) 2| = -8 |,
V14 J14 7
3 3 9
—11
D= ) ™ vaes | 0|
9
t3=c—(c-q1)q1 —(c-q2)q>
0 1
=|_2 ! 0-1-2.2-2.3) ! )
| J14 V14

) 3
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1 P I B
- O-(—-11)—2-(—-8)—-2-9) -8 | = =31
V266 V266 19
9 1
3
=" bl
3 = = p—
lesll /19
1
As a result, we obtain the orthonormal basis:
1 —11 3
- ! 2 _— 8 = ! 3
D=l T ee| 0 PT 0|
3 9 1

5.4 Solution.
Write the matrix A, composed of the coordinates of the specified vectors:

3 -30 1

-1 1 -2 4
A=

1 0 2 2

2 =2-2-7

Its determinant is equal to det A = —72 # 0.

It is clear that rk A = 4; then, according to the basic minor theorem, the vectors
a=(@3,-1,1,2),b = (-3,1,0,-2),¢c = (0,-2,2,—2)and d = (1,4,2,-17)
form a basis in the arithmetical space R*.

This basis is neither orthogonal nor orthonormal, because, for example, (a - b) =
—14#0and (a-a) =15 # 1.

In order to construct an orthonormal basis (q1, g2, g3, q4), apply the Gram—
Schmidt algorithm:

151

1
ty =a=(3,-1,1,2), tl1=”t1”=\/15(3

,—1,1,2);
tp=>b—(b-q1)q1

3 3 -3

- V3341 cn+0.1-2.2) - Lt
IERERYE VIs| |15 |

2 2 -2



238 5 Vector Spaces

-3
t 1|1
S T VST BV
-2
0 -3 3
-2 1 1 1]-—15

t3=c—(c-q1)q1 —(c-q2)q2 = -0-q1— =
2

1

t3 1 =5
ezl Va2 | o
4

ty=d—(d-q1)q1—d-q2)92 — (d-q3)q3

1 1 -3 3 4
a| 3 |-=s| #|1|, 13| 4
Ty T o T2 | TS| T o |
-7 —4 -2 2 —4
1
g 1|1
B= e = w3 | g

-1

As a result, enumerate the vectors of the orthonormal basis:



Answers and Solutions 239

1
1 -5 1
q3_\/42 o |’ q4_4«/3 0
4 4

5.5 Solution.
Construct a matrix A of the coordinates of the specified vectors:

i 1 1
A=|2—j24i i
5 —i —1
Its determinant is det A = —8 — 6i # 0, and therefore, the set of vectors forms a

basis in the space C3.

Find the coordinates of the vectorsa = (1,0,0),b = (1,1,0)andc = (1,1, 1)
in this basis.

The vector a in the basis (ej, €2, e3) has the coordinates (aj, az, a3) that satisfy
the system of equations, which in matrix notation has the form:

i 1 1 ap 1
2—i241i i a|=10
5 —i -1 as 0

In order to solve the obtained system, let us use Cramer’s rule, according to

A.
which, for i € {1, 2, 3}, the equalities a; = Al are valid.

A =—-8—6i,
1 1 1
A =024i i |=-3—1,
0 —i -1
i 11
Ap=12-i0 i |=2+4,
5 0-1
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i 1 1
Az=2—-i2+i0|=—-11-Ti.
5 =i 0

Hence, we obtain the following coordinates:

N 1(3 ) 1(4+2')and
= —i),a) = — i

—8-6i 10 SRR T)

a = (a1, az, a3), where a; =
: (13 =)
as = —1).
T 10

Write the system of equations for the coordinates of the second vector b:

i 1 1 b1 1
2—i24i i by | =
5 —i -1 b3 0
1 1 1
A =|124i i |=-2-2i,
0 —i —1
i 11
A =12—-j1 i |=-3+3i,
5 0-1
i 1 1
Az3=12—-i24+i1|=-T7T-Ti.
5 —i 0

1 1
The values of the coordinates are by = 25 T4+ i), by = 50 (3 — 21i) and

1
b3 = 50 (49 + 7i).
Finally, the coordinates of the vector ¢ satisfy the following system of equations
in matrix form:
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1 1 1
Ar=|124+i i |=-4-2i,
1 —i —1
i 11
A =12—-i1 i |=2i,
5 1-1
i 1 1
Az3=12—-j2+4i1|=—-10—4i.
5 —i1

1 1
The coordinates of the vector ¢ are equal to ¢; = 25 (11-2i),¢cp = — 25 (3+4i)
1
decs = 26 — 7i).
and c3 )5 ( i)

5.6 Solution.

The criterion, i.e. the necessary and sufficient condition of the linear indepen-
dence of the system of vectors v; and v is the determinant being not equal to zero,
which determinant is composed of their coordinates:

b
ai by 20

az by

As is known, transposition of a matrix does not change its determinant. There-
fore, there exists the inequality

ap az

b1 by

#0,

and the vectors wi = [aq, bl]T and wy = [ay, bz]T

5.7 Proof.

Each matrix from the set M can be presented as a numerical sequence of length
p % q.Indeed, for this, it is enough to write the matrix elements row by row into a
vector, or, in other words, into a one-dimensional array of size p x g. Since the
vectors of the same size form an arithmetical space, then the set M = {Mp,}
also forms a vector space relative to the operations of matrix addition and matrix
multiplication by a number.

are independent.
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5.8 Proof.

Let us introduce for consideration the vector z = x — Ay, where A is some real
number.

Based on the fourth property of scalar product, (z, z) > 0, or

(x =2p) - (x —=Ay) = (x -x) = 24(x - y) + A*(y - y) = 0. (5.61)

This inequality should be valid for any A € R. Note that the left side of the
inequality (5.61) is a quadratic trinomial. The necessary and sufficient condition of
its non-negativity is non-positivity of the discriminant:

x-y*—(x-x)(y-y) <0.

The obtained inequality, as it is easy to see, after transferring the summand (x -
x)(y - y) to the right side, coincides with the Cauchy—Bunyakovsky inequality.

The equals sign will occur if and only if z = 0, i.e. x and y are proportional and
differ in the scalar factor.

5.9 Proof.
From the definition of vector length and the properties of scalar product, follow
the equalities

Ix+ylI> = ((x+y)-x+) = @-x)+@-p)+-x)+-y) = x>+ Iyl

Thus, the Pythagorean theorem is proved for all orthogonal vectors x, y € R".
5.10 Solution.
Transforming the squares of norms in the left side of the identity, we obtain
e+ y17 = (@ +3) - @+ ) = el +20 - p) + 1yl (5.62)
e = yI? = (= p) - & = ) = IxI* =26 y) + Iy ]> (5.63)
From these relations, follow the equality (5.56). The geometric sense of this equality

consists in that the sum of the squares of the parallelogram’s diagonals is equal to
the sum of the squares of the sides.

5.11 Solution.
Express the variable | y||, using the identity (5.56) from the previous problem:
Iyl = \/(le + 17+l = ylH/2 = x|l

Having substituted the numeric data, we obtain ||y| = /(100 + 144)/2 — 36 =
/86.
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5.12 Answer.

(1) The maximum number of linearly independent vectors equals to 2;
(2 3;
3) n.

5.13 Solution.
The matrix of the system of vectors under consideration has a lower triangular

[10...00
11...00
form: | ... ... ...,
11...10
11...11

Its determinant is equal to the product of the elements located on the main
diagonal. Therefore, the vectors are linearly independent and form a basis in the
vector space R”".

5.14 Answer: It is. This is easily seen from the Vandermonde determinant being not
equal to zero in this case (see (2.74) on page 67).

5.15 Solution.
It is easy to verify that the equality is valid:

Oa 1100
=P P,
00 a0
1 iy o .
where P = . Therefore, by definition of similarity relation (5.27), the

10
matrices mentioned in the statement of the problem are similar.

5.16 Answer:
-1
01 01

(1) Yes, A = Ay ;

—-10 —-10
(2) No, since the equality of the determinants of these matrices is not fulfilled.
5.17 Solution.

Yes, as follows from Problem 1.44, for any matrices A and the invertible matrix

P, the equality

r(P'AP) = (AP7'P)=tr A

is fulfilled.
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5.18 Solution.

(1) As is known, the eigenvector of the matrix A is such vector u, in which
multiplication of A by u results in the vector Au, where A € R is the eigenvalue.
Write an equation of the form Au = Au:

4521w Ui
5-73 uy | =Alus |,
6-94 u3 u3

or in the coordinates of the vector u:

4uy — Supy + 2uz = Auq,
Sui — Tuy + 3uz = Auo,
6u1 — uy + 4uz = Aus,

4 —MNuy — Sur +2u3 =0,
Suy — (7+ Muz +3u3z =0,
6u; —9uy + 4 — Muz = 0.

Note that the eigenvector cannot be zero by definition:

uj 0
u | #10
us 0

Therefore, the equations are linearly dependent and the determinant of the
system matrix is equal to zero:

4-x Suy 2u3
Sur — (7 +Nuy 3us =0.
6uy —Ouy 4 — Mus

Having computed the determinant, we obtain the characteristic equation:
M- =0.

The eigenvalues are Aj2 = 0 and A3 = 1, so zero is an eigenvalue of
multiplicity two.
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Find the respective eigenvectors:
LetA =0.

duy — Sur + 2uz = 0,
Sui — Tupy + 3u3 =0,
6u; — uy + 4uz = 0.

Having solved this system, we obtain

ui ui
uir =0, ur =2uy, uz = 3uy, or ur | = | 2uy ,u; € R.
us 3uq

1

The eigenvectoris | 2 |.

3
LetA =1.

3u; — Suz 4 2uz =0,
Suy — 8uy + 3uz =0,
6u1 — 9uy + 3u3 = 0.

Having solved this system, we obtain

ui us
up = uz, Oup = Ouz, u3 =uz or | yp | = | uy |, u2 € R. The eigenvector
us3 us
1
is |1
1

(2) By analogy with the solution from the previous item, write an equation of the
form Au = Au. Then, we obtain the characteristic equation:

—(.+2)0.—1*=0.

The eigenvalues are equal to Ay = —2and A 3 = 1.
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Let us find the eigenvectors.

For A = -2,
Suip +uy; =0,
—4uy +ur =0,
duy — 8ur =0,
ui =0,u2=0,u3 e R.
0
The eigenvectoris | O |.
1
For A3 =1,
2uy +upy =0,
—4u; —2uy =0,
4uy — 8ur — 3uz =0,
20
ury=—2uy,uz = _ uj,
3
ui ui
uy | = —2%1 , U1 € R.
20
u
us 3 1
3
The eigenvectoris | —6 |.
20

(3) The characteristic equation: A -32-3—-1=0.

The eigenvalue is multiple of three: A = —1.

3]/[1 —Uup +2M3 = 05
Sui —2uy 4+ 3u3z =0,

—u1 —u3z =0.

5 Vector Spaces
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Find non-trivial solutions: #; = —u3 and up, = —u3.
-1
The eigenvectoris | —1
1

(4) The characteristic equation has the form: —(A — 2)3 =0.
The eigenvalue is A = 2.
Find the eigenvector for A = 2:

—2u1+uz =0,
—4u + 2uy =0,
—2u1+uz =0,

then u = c1[1/2, 1,017 + ¢,[0,0, 1]7.
The eigenvectors: [1, 2, O]T, [0, 0, 1]T.
(5) The characteristic equation: —A3 + 312 — 34 + 1 = 0.
The eigenvalue A = 1 is multiple of three.

—3uy +3u3 =0,
—2u1 — Tus + 13u3 =0,
—uy —4ur +7Tuz =0,

and therefore, up = u3 and u; = 3us.

3us3
us3 ,uz € R.

us

3

The eigenvectoris | |
1

5.19 Solution.
Compose the characteristic equation:
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Find the characteristic polynomial, expanding the determinant in the first column:

pA) =@ —MNU(=3—-A1)(T—1r)+45) —8(15(7 — r) —45),
p(L) = A% — 812 — 80A + 384.
Find the eigenvalues: A1 = 12, ., = —8 and A3 = 4.
Compose the eigenvectors.
—8x1 4+ 15xp — 3x3 =0,
(1) For A1, 1 8x; — 15x2 +3x3 =0, =a; =c@3,1,-3).

—15x, —5x3=0
(2) For Aj,

12x1 + 15xp — 3x3 =0,
8x1 +5x0+3x3 =0, = a=c(—1,1,1).
—15xp + 15x3 =0

(3) For A3,

15xp — 3x3 =0,
8x1 —Tx2+3x3=0, =az=c(—1,1,9).
—15x74+3x3=0

Werite the transformation matrix and the matrix inverse of it:

3 11 | 110
P=|1 11/, P‘1=4 231
31 5 101

As a result, the diagonalized matrix is equal to

12 0 0 -3 -1-1
B=P'AP=|0 —80|, whereP=|_-1 1 1
0 0 4 3 1 5
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5.20 Solution.
(1) The characteristic equation has the form:

4—n 1 4
|A — Al = 6 3—1 6 =0.
11 =5 —11—2

Compute the characteristic polynomial:

PO = (4 —2)((3B =M (=11 = 1) +30) — (6(—11 — A) + 30)

+4(=30— 3 = 1) - (—=11)),
p(h) = =13 — 422 — 32,

The eigenvalues are A1 = —3, A2 = —1 and A3 = 0.
Compose the eigenvectors.

For A1,
Tx1+x2 +4x3 =0,
6x1 + 6x7 + 6x3 =0, =a; =c(1,1,=-2).
—11x1 —5x —8x3=0

For A;,

S5x1+x2+4x3 =0,

6x1 + 4xy + 6x3 =0, = ay =c(5,3,-7).

—11x1 —5x2 — 10)C3 =0

4x1 4 x2 +4x3 =0,
For A3, 1 6x1 4+ 3x2 + 6x3 =0, = a3 =c(—1,0,1).
—11x; —5xp — 11x3 =0

1 5 -1
The transformation matrixis P=| 1 3 0 |,
-2-71
—-3-2-3
the matrix inverse of it has the foom P~ = | 1 1 |

1 3 2

249
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The diagonalized matrix:

-300 15 —1
B=P'AP=|0 —10|, whereP=| 1 3 0
000 -2-7 1

(2) Write the characteristic equation:

—-23 -1 —16 28

—11 =7 —-10—2x
P(A) = (=23 — 1)((39 — A)(—=10 — 1) + 64 - 7) + 16(58(—10 — 1)
+11-64) —28(—7-58 + 11(39 — 1)),
p(A) = =22+ 622 — 111 +6.

The eigenvalues are A1 = 3, A =2 and A3 = 1.
Compose the eigenvectors.

For A1,
—26x1 — 16xy — 28x3 =0,
58x1 4 36x2 4 64x3 =0, =a; =c(2,-51).
—11x; —Txp — 13x3=0
For A,,
—25x1 — 16xp — 28x3 = 0,
58x1 + 37x + 64x3 = 0, =a;=c4,-8,1).
—11x; —Txp — 12x3 =0
For A3,
—24x1 — 16xp — 28x3 =0,
58x1 4+ 38xy 4+ 64x3 =0, = a3z =c(5,—11,2).
—11x1 —7xp — 11x3=0
2 4 5
The transformation matrixis P = | —5 —8 —11 |,

1 1 2
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[ 5 -3 4
and the matrix inverse of itis P~ = | —1 —1 —3|.
|13 2 4
Write the diagonalized matrix:
300] 2 45
B=P'AP=|020]|, whereP=| _5 _8 _11
001 ] 1 1 2

5.21 Answer:

The characteristic polynomial has the form p(}) = A =3ar2 4302 — A+ (a—
a3); itsroots areequaltoA; =a — 1, Ay =aand A3 =a + 1.

The diagonalized matrix is equal to

a+10 0 -11 0
B=P'AP=| 0 4 0 |,whereP=|1 —1—-1
0 O0a-1 0 1 1

5.22 Solution.
Write the left side of the characteristic equation det($2 — AI) = 0, expanding the
determinant in the first column:

-2 10...0 0
0 —x1...0 0
det(Q2—AD)=|.....................
- 1
w 0 —A
-2 10...0 10 0 o0
0 —x1 0 -1 1 0 o
= =D
0 00 1 00 1 0
w 0 0...-x 00...—2 1

A=) (D)o = (0" — (- .

As a result, the characteristic equation for the matrix €2 has the form (—1)" (A" —
w) =0or (A" —w) =0.
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5.23 Solution.

According to the Cayley—Hamilton theorem, when the matrix is substituted into
its characteristic equation, an identity is obtained. As is shown in Problem 5.22, the
characteristic equation for 2 has the form (A" — w) = 0. Then, the equality is valid:

Q" —wl =0, or Q" =wl,

where, as usual, O is the zero matrix of size n x n and I is the identity matrix of the
same size.

5.24 Solution.
1 ¢/n

—p/n 1
The eigenvalues of this matrix are equal to A1 = 1 £ i¢/n; the eigenvectors
corresponding to them are equal to [1, i 17 and [1, —i]7.
Compute the power of A", having brought the matrix to diagonal form A’ first:

Denote A =

-1

A= 11 1 ¢/n L1 |1+ie/n 0
i —i —o/n 1 | |i—i 0 1—ig/n|

and therefore, according to the theorem on the power of a special form matrix on
page 56,

AM — 11 Ay 11
i —i i —I
— -1 -1
_ 11 (1 +ip/n)" 0 11
i —i 0 (1 —ip/n)" i —i

After simple computations, we obtain

L (I+ip/n)"+ A —ip/n)" i(=(1+i¢/m)" + (1 —ig/n)")
2 i +ip/m) — A —ip/n)y")  (I+ip/n)" + (1 —ip/n)"

A" =

Using the relation known from mathematical analysis [76]

lim (1 +1/n)" = ',
n—>oo
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which is valid for all ¢ € C, perform the limit operation:

1 ei(p/n _i_efi(p/n _i(eigo/n _ e*i(,o/n)
lim A" = ' ' ' ,
n—o00 2 _l-(e—up/n _ et(p/n) et(p/n + e—ch/n

Representing the exponent of the imaginary number by Euler’s formula cos z +
i sinz = e'%, we arrive at the final answer:

n

. 1 ¢/n cos @ sing
lim =
=00 | _p/n 1 —sing cosg
5.25 Answer:
—2i00 -2 =2i —i
Z =P 'ZzP=1| 0 io|, whereP=| 0 1—-; 0
0 01 1 2 1

5.26 Solution.

As is known, the traces of identical matrices coincide (see Problem 5.17).
Therefore, the sum of the eigenvalues of the matrix is equal to the trace of this
matrix:

3
trY =2 +x+23= Zy,-,' =910 4 (68 — 1070i) 4+ (68 4+ 1070i) = 1046,

i=1
and the third eigenvalue is equal to
A3 = 1046 — (A1 + A2) = 1046 — ((11 4+ 57i) + (11 — 57i)) = 1024.

5.27 Proof.
Let A be an arbitrary Hermitian matrix of size n x n that has the eigenvector b,
which is satisfied by the eigenvalue X¢. This means that the equality is fulfilled

Ab = ob. (5.64)

Consider the expression b7 Ab. It is equal to a real number, since according to
the theorem on Hermitian conjugation of product on page 181,

b7 AbYT = pH A" (pT)H = pH Ab. (5.65)
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According to (5.64), the equality is fulfilled
b Ab = hob"b = ho(Ib1|* + b2l + - - + bal), (5.66)
where by, b, . . ., b, are the components of the vector b.

Comparing (5.65) and (5.66), we obtain that Ao € R.

5.28 Proof.
Let U be an arbitrary unitary matrix that has the eigenvector b, which is satisfied
by the eigenvalue 1. This means that the equality is fulfilled

Ub = \ob. (5.67)

Consider the expression (Ub) (Ub). By virtue of (5.67), this expression can be
presented in the form:

(UL (Ub) = (hob)™ (hob) = M5BT )(hob) = 1i00b™ b = |20)*bh.  (5.68)

Note that the transformations used property (3) of the Hermitian conjugate operation
(see page 181).

On the other hand, relying on the theorem on Hermitian conjugation of product
on page 181 and on the property of unitarity of U# U = I, we obtain

Wby wb) = @ U Ub) = b WUTUb = b 1b = b b. (5.69)

Comparing (5.68) and (5.69), we come to the conclusion: |)\0|2 = 1.

Therefore, the complex number X is located on a complex plane, at a distance
of p = 1 from the origin of coordinates. The locus of all such points A is the unit
circle with the centre at the origin of coordinates, which is what we set out to prove.

5.29 Answer:

1 1
for o1, A1,2 = £1, the eigenvectors are by 2 = ;
V2 | £1
. 1 1
for 02, A1,2 = %1, the eigenvectors are b1 2 = ;
V2 | i

1
for 03, A1,2 = =£1, the eigenvectors are b = and by =



Chapter 6 )
Vectors in a Three-Dimensional Space Shethie

Geometrical vector is a directed segment A—>B with the beginning at the point A and
the end at the point B. Hereinafter, the word “geometrical” in this definition will be
omitted for brevity.

Zero vector, or null vector, is a vector whose beginning and end coincide.

The length of the segment A B is called the modulus or magnitude of the vector
ﬁ and is denoted by |ﬁ|.

The vectors lying on parallel lines are referred to as collinear.

Unit vector is a vector whose modulus is equal to one.

The vector b is the product of the number « and the vector a, if the following
conditions are met:

(1) [b] = abs(a)lal;
(2) directions of the vectors a and b coincide if « > 0, and these vectors are
oppositely directed if @ < 0.

The product of zero and a is equal to zero vector by definition.

— —
The two vectors AB and C D are considered to be equal, and if they are collinear,
they have the same moduli and are unidirectional.
A vector

6.1)

i
S

is called the normalized vector of the vector ﬁ It is a unit vector whose direction
coincides with that of the vector AB.

When determining the sum of vectors, the law of parallelogram should be used
(see Fig.6.1).
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Fig. 6.1 Determine the a -
vector ¢ as the sums of the Seo

vectors @ and b (law of AN
parallelogram) .

Let the line L and the point A be specified in the space. Let us draw, through the
point A, the plane 7, which is orthogonal to the line L. The point of intersection of
the plane 7 and the line L is called the projection of the point A on the line L.

Consider the vector AB and the line L in space. Let A’ and B’ be projections
of the points A and B on the line L, respectively. Then, the vector Z’—E’ is called a
projection of the vector AB on the line L and is denoted by Prp AB.

The numeric projection of the vector A—é on the line L is equal to the modulus
|ﬁ|, multiplied by the cosine of the angle o between the vector A—é and the line L,
i.e. Prg A_é = |A—§| cosa.

Numeric projections of vectors have the following properties:

Pr; (a + b) = Prpa + Pry b, (6.2)

Pr; (wa) = aPry a. (6.3)

6.1 Cartesian Coordinate System

Cartesian! coordinate system is a system that consists of the reference point O, the
mutually perpendicular axes Ox, Oy, Oz, that intersect at the point O, and a scale
unit segment.

Let A be an arbitrary point in space. The vector OA is called a position vector
of the point A. The numeric projection of the vector o_fx on the axis Ox is denoted
by x and is called an abscissa, on the axis Oy by y and is called an ordinate, and
on the axis Oz by z and is called an applicate of the point A [19, 23].

The respective coordinates of the equal vectors coincide.

René Descartes (1596-1650), French philosopher, mathematician, physicist and physiologist.
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Fig. 6.2 Cartesian P
coordinate system
A
L )
k {
0 J Y

The real numbers x, y, z are coordinates of the point A and the position vector
5)4, which can be written as A(x, y, z) and m =(x,y,2).

Normalized vectors (basis vectors) of Cartesian coordinate system are the unit
vectors i, j, k (see Fig.6.2). In coordinate representation, they have the following
form:i = (1,0,0), j = (0,1,0) and k = (0,0, 1).

An arbitrary vector ﬁ = (x, y, z) can be represented in the form of a basis
expansion of Cartesian coordinate system:

H . .
AB =xi+yj+zk. (6.4)
The linear operations on vectors, i.e. addition of vectors and multiplication of a
vector by a number, are said to be performed component-wise or coordinate-wise.
This means that if @ = (ay, ay, a;), b = (bx, by, b;) and ¢ € R, then

a+b=(ax+bx,ay+by,a;,+b;), ca=(cay,cay,cay). (6.5)

With the help of the normalized vectors of the coordinate system, the obtained
equalities can be written as

a+b = (ax+by)i+(ay+by)j+(a,+b)k, ca=cayi+cayj+cak. (6.6)

Let us illustrate the use of the introduced definitions by the following example.
Example 6.1 For the vectors vi = (—2,—1,7), v = (0,4, —6) and the scalar
t = 3, we have

vi+v2=(-240,-14+4,74+(-6)) =(-2,3,1) = -2i +3j +k,
tvi=03-(-2),3-(-1),3-7) =(—6,-3,21) = —6i — 3j + 21k.
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6.2 Scalar Product of Vectors

Recall (see page 223) that the scalar product of the two vectors @ = (x4, Y4, 24)
and b = (xp, yp, zp) is denoted by a - b and determined through their coordinates as
follows:

a-b=xuxp+ Yayb + 2a2b. (6.7)

It is easy to verify that for scalar products of basis vectors the series of equalities
is valid:

i-j=i-k=j-k=0 and i-i=j-j=k-k=1. (6.8)
Theorem 6.1 The scalar product of the two vectors a and b is equal to the product

of the moduli of these vectors by the cosine of the angle o between them.

The concepts of projection of a vector on a line and scalar product of vectors are
closely connected. Indeed, since the projection of the vector a on the line, containing
the vector b, is equal to Prp @ = |a| cos« and, on the other hand, Pr, b = |b| cos «,
then we can write

a-b=|a||b|cosa = |a|Pry b = |b|Prpa. (6.9)

Ifa-b =0,buta # 0 and b # 0, then such vectors are referred to as orthogonal,
since the angle between them is equal to 77 /2. Recall (see page 224) that the notation
of the form a L b is used to denote orthogonality of vectors.

Example 6.2 Compute the scalar product of the vectors a = (3,2,1) and b =
0,2, 1).

Solution

a-b=3-0+2.24+1-1=>5. (6.10)

The length |a| of the vector @ = (x4, Y4, 24) is computed by the formula:

a| =\/x§+y3+z5. (6.11)

Example 6.3 Find the length of the vector a = (5, —3, —1).

Solution The length |a] is equal to /52 + (=3)% 4+ (=1)2 = /25 + 9 + 1 = +/35.
O
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The distance between the points A (x4, V4, z4) and B(xp, yp, 2p) is computed by
the formula:

AB = (=) + (a = 302 + (2 — 20)°. (6.12)
Example 6.4 Find the distance between the points A(5, 3, 2) and B(0, 3, 2).
Solution
AB=+/(5-02+(3-32+@2-2)2=5. (6.13)

O

Find the angle between two arbitrary vectors of a three-dimensional vector space.
Let the vectors a = (x4, Y4, 24) and b = (xp, yp, 2p) be given. Represent the
scalar product a - b in two ways, namely by the formulae (6.7) and (6.9):

a-b=xuxp+ Yayp + 2abs (6.14)
a-b = |a||b|cosc. (6.15)
Hence, we can conclude that the cosine of the angle « is equal to

cosa = ¥a¥p + Yap + 2alb . (6.16)

VxZ+ 2+ zg\/xg +y2+7z

It is clear that
o = arccos ( XaXp + Yayb + Zalb ) (6.17)

Vit d i +g

Example 6.5 Find the angle between the vectors a = (1,2, 3) and b = (0, 2, 1).

Solution Using the formula (6.17), we obtain

1-04+2-2+3-1
VI+4+9-/0+4+1

7

6.18
V70 (6-18)

o = arccos ( ) = arccos

O

Example 6.6 Let two vectors be given: a = (5,4,1) and b = (2, -2, —2). Are
these vectors collinear or mutually orthogonal?
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Solution If the vectors are collinear, then there exists such a real number A that the
condition @ = Ab is satisfied. Hence, it follows:

Xa _ Ya — Za (6.19)

Xb b b

. . . .5 4 1
But since there exist two inequalities 5 #+ 5 #* 5 then the vectors a and b are

non-collinear.
In order to check the mutual orthogonality of the vectors, find the scalar product
ofa-b:

a-b=5-2-4.2-1.-2=0. (6.20)

Then, the vectors @ and b are mutually orthogonal. O

6.3 Vector Product of Vectors

A vector product, or cross product, of two vectors specified in Cartesian coordi-
nate system as @ = (X4, Y4, 24) and b = (xp, yp, 2p) i a vector denoted by a x b,
or [a, b], and determined according to the rule:

i jok
axb=|x, v, 24| = Oa+2b—2a - Yp)i + (Za-Xp —Xa-26)J + (Xa-Yb — Xb - Ya)k.

Xb Yb Tb
6.21)

6.3.1 Properties of the Vector Product

For the arbitrary vectors of the three-dimensional vector space R3, the following
properties are valid.

Property 1
|la x b| = |a]|b| sin«, (6.22)

where « is the angle between a and b.

Proof Prove that the equality is valid:

la x b|*> = |a|?|b|? sin® .. (6.23)
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Express |a x b|? in terms of the coordinates of the initial vectors:

la x b1> = (Vazb — 2aYp) + @aXp — Xazp)? + XaYb — XpYa)? = ¥225

~|—z§y§ + zixf + xgzﬁ + xgy;% + xfyg —2Ya2bZa Vb
—22aXpXaZb — 2XaYbXbYa-
On the other hand, the right side of the equality (6.23) can be represented in the
form:
ja*[bI? sin® & = af*|B*(1 — cos® @) = (xg + yg + 22) (x5} + ¥ +23)
—(XaXp + Yayb + 2a7)° = XGXj + X3V + Xazy + Vaxi + YaVi
+yazh + 2%
—i—zgy,f + Zﬁz% - xﬁx,f — ygy,f - Zﬁzi — 2XaXbYa Vb
—2XaXpZaZb — 2YaYbZaZb
= yazp + 20Vh + 20X) + X025 + X0¥p + XpYe — 2YaZbla Vb
—224XpXaZb — 2XaYbXbYa- (6.24)
From the relation |a x b|?> = |a|?|b|?sin® «, we finally arrive at the conclusion
that |a x b| = |a||b| sin «.

Hence, it follows: if a and b are collinear, then @ x b = 0 (since sin0 = 0 and
sint = 0).

Property 2 If the vectors @ and b are non-collinear, then the vector ¢ = a x b is
orthogonal to each of the vectors a and b.

Proof Expand the scalar product of the vectors with regard to their coordinates:
(@xb)-a = yszpXq —2aYbXa —XaZbYa+ZaXbYa +XaYbZa — YaXbZa = 0. (6.25)

Similar to formula (6.25), we obtain that (@ x b) - b = 0.
Therefore, the vector ¢ is orthogonal to both the vector a and the vector b.

Property 3
axb=-bxa. (6.26)
Property 4

axb+c)=axb+axc, (6.27)
(@a+b)xc=axc+bxc. (6.28)
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Fig. 6.3 To the computation
of the area of the triangle
ABC (Example 6.8)

Example 6.7 The vectorsa = (3, —1, —2) and b = (1, 2, —1) are given. Find the
coordinates of the vector (2a — b) x (2a + b).

Solution Determine the coordinates of the new vectors: 2a — b = (5, —4, —3) and
2a + b = (7,0, —5). Then, the sought-for vector will be equal to

i j k
5 —4 -3 =20i +4j + 28k. (6.29)
70 =5

We obtain the answer: (20, 4, 28). |

Example 6.8 The points A(1, 2, 0), B(3,0, —3) and C(5, 2, 6) are given. Compute
the area Sa 4 pc of the triangle ABC (see Fig. 6.3).

The square of the triangle ABC is a half of the square of parallelogram, formed
— —
by the vectors AB = (2, —2, —3) and AC = (4, 0, 6). Therefore,

1 1l — —
SaAaBc = ZSABDC = 2IAB x AC|. (6.30)
Then,
i j k
AB x AC = |2 —2 —3| = —12i — 24j + 8k. (6.31)
40 6
Hence,

1
Saapc = 2\/ 122 4242 4 82 = 14, (6.32)
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6.4 Scalar Triple Product

The scalar triple product, or mixed product, of the vectors a, b and c is the
number (a, b, c), resulting from computation of the expression (a x b) - ¢. First, the
vectors a and b are multiplied vectorially, and then, the resulting vector is multiplied
by ¢ scalarly.

It is easy to verify the formula that expresses the scalar triple product in terms of
their coordinates:

(a,b,¢c) =((axb) c)= (Yazb — ZaYb)Xc + (ZaXp — XaZb)Ye + (XaYb — YaXp)Ze

Xa Ya Za

= |xp Yb 2| (6.33)

Xe Ye Zc

For designation of the triple scalar product (a x b) - ¢, the notation (abc) is also
used.

6.4.1 Properties of Scalar Triple Product

Property 1
(@xb)-c=a-(bxc)=(xa)-b. (6.34)

Property 2
abs((a@a x b) -¢) =V, (6.35)

where V,, is the volume of the parallelepiped formed by the vectors a, b and ¢ (see
Fig.6.4).

Proof By the definition of numeric projection of the vector ¢ on the line, specified
by the vector @ x b, the equality is valid:

(@ xb)-c=laxb|Pryupec, (6.36)

where |a x b| = S the area of the parallelogram lying in the base of the
parallelepiped.

The vector @ x b is orthogonal to the base of the parallelepiped, and, therefore,
Pr, «p ¢ coincides with the height of the parallelepiped /.
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Fig. 6.4 To the computation D '
of the volume of the ;
parallelepiped B ' A
c
RN S C
oD
- a
B b A
Thus,
abs((a x b)-¢) =S -h, (6.37)

as we set out to prove.

Note Since the tetrahedron ABCA’ forms one-sixth part of the volume of the
parallelepiped, its volume is equal to

1 1
Vagca = 6V" = 6abs((a X b) - c). (6.38)

Three vectors are called coplanar if all of them are parallel to the same plane.
Property 3 The vectors a, b and c are coplanar if and only if (a, b, ¢) = 0.

Example 6.9 Let the vertices of the tetrahedron be given A(2, —1, 1), B(S, 5, 4),
C(3,2,—1) and D(4, 1, 3). Compute its volume.

. — — —
Solution Let us make the vectors AB = (3,6,3), AC = (1,3, —2) and AD =
(2,2,2). Then, the volume of the tetrahedron ABC D is equal to

36 3
Vasco =éabs(7x§ x AC) - AD) = éabs det| 13 2 (6.39)
222
121
=é .3.2.absdet| 13 2 | = abs(—3) = 3. (6.40)
111
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Example 6.10 Find whether the following vectors are coplanar ¢ = (2, —1,2),
b=(1,2,-3)andc = (3, —4,7).

Solution Find the scalar triple product of the given vectors:

2-12
(@bec)=11 2 —3|=2-(14—12)+1-T+9+2-(—4—6)=0. (6.41)
347

Therefore, the vectors a, b and ¢ are coplanar.

6.5 Vector Triple Product

Having three vectors, for example, a, b and ¢, apply the vector product operation
first to b and ¢, and then vectorially multiply @ and b x ¢. As a result, we obtain the
vector triple product a x (b x c).

Theorem 6.2 For arbitrary vectors of a three-dimensional vector space a, b and c,
the identity is valid:

ax (bxc)=ba-c)—c(a-b). (6.42)

For proof see Problem 6.12.
Note The relation (6.42) is also referred to as Lagrange’s identity.

Consequence. For the operation of vector triple product, the Jacobi identity is
valid:

ax(bxc)+ex(@xb)+bx(cxa)=0. (6.43)

Proof For each of the three summands of the sum, use the expansion (6.42):

ax (bxc)=ba-c)—c(a-b), (6.44)
bx(cxa)=cb-a)—a(-c), (6.45)
cx (axb)=a(c-b)—b(c-a). (6.46)

Computation of the sum of the three vector products (6.44)—(6.46) after collect-
ing similar summands results in zero. The consequence is proved.



266 6 Vectors in a Three-Dimensional Space

Review Questions

PN LD

10.
11.

12.
13.
14.
15.
16.
17.
18.
19.

Define geometric vector.

What are zero vector and unit vector?

What vectors are called collinear?

What is the condition of equality of vectors?

Formulate the rule of parallelogram for addition of vectors.

How is the projection of the vector b onto the vector a determined?
What is the Cartesian coordinate system?

Enumerate the normalizing vectors of the Cartesian coordinate system. How can
one use them to expand an arbitrary vector in the Cartesian basis?
Define scalar product of vectors.

What vectors are called orthogonal?

How do we find the distance between the two points specified by their Cartesian
coordinates?

Define vector product of vectors.

Enumerate the properties of a vector product.

Define scalar triple product of vectors.

Enumerate the properties of a scalar triple product.

What three vectors are called coplanar?

What is vector triple product?

Write Lagrange’s identity for the vector triple product.

Write the Jacobi identity.

Problems

6.1. Compute the scalar and vector products of the vectors ¢; = 2a — b and
¢y = —a + 3b, if:

(@ a=(-2,1,1),b=(3,-2,4);
b) a=2,1,-2),b=(-1,0,-2).

6.2. There are given vertices of the triangle ABC. Compute its area and the
cosine of the inner angle at the vertex B:

(a) A(2,1,0), B(3,0,3),C(2,-3,7);
(b) A4, -3,2),B(—1,4,3),C(6,3, =-2).

6.3. Find whether vectors a, b, ¢ are coplanar:

(@ a=(1,1,1),b=(2,3,0),c= (3, -1, -1);
(b) a=(-1,0,-2),b=1(0,0,-1),¢c = (-1,0,3).

6.4. Prove that the points A(1, —1, 1), B(1,3,1),C(4,3,1) and D(4, —1, 1) are
vertices of a rectangle. Compute the length of its diagonals.
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6.5.

6.6.

6.7.

6.8.

6.9.

6.10.

6.11.

6.12.
6.13.

6.14.

x6.15.

6.16.

Compute the coordinates of the vector ¢ that is orthogonal to the vectors
a=2j—kandb = —i+2j — 3k and forms an obtuse angle with the axis
Oy, if lc| = /7.

Find the angle between the vectorsa + b and a — b, if a = 3i — j + 2k and
b=i+j—k

The vectors @ and b form the angle 7 /3. Find the length of the vector a —2b,
if la] =2, |b] = 1.

For what value of the real parameter d are the vectors a = (12,2, d) and
b = (-3,17d, —1) orthogonal?

For what value of the real parameter x will the vectors of the three-
dimensional Euclidean vector space {1 = a — 10b and ¢, = a + xb be
orthogonal, if |a| = 5, |b| = 3, and the angle ¢ between the vectors a@ and b

isequalto 7?7

For what value of the real parameter x will the vectors of the three-
dimensional Euclidean vector space {1 = 2a + xb and ¢, = b — 2a be
orthogonal, if |a| = 1, |b| = 3/2, and the angle ¢ between the vectors a and

b is equal to ;T ?

The vectors a and b have, in Cartesian basis, the coordinates a = (ay, az, 0)
and b = (b1, b2, 0). Find the sine of the angle between these vectors.

Prove the theorem on vector triple product (6.42).

Prove the identities valid for the arbitrary vectors a, b, ¢ and d:

(D) (@axb)-(cxd)y=(@a-c)b-d)—(a-d)b-c);

(2) (a xb) x (¢ xd) = c(abd) — d(abc);

B axbx(exd)=b-d)axc)—(b-c)axd),

4) (((@axb)x (bxc)(bxc)x(cxa)lcxa)x(axb))) = (abc)*.

Prove the identity valid for the arbitrary vectors @, b, ¢, d, e, f:

(axb) ((cxd)x (ex f)) = (abd)(cef) — (abc)(def).
Simplify the vector expression that depends on the natural parameter n:

-

fn=£a><---x(ax(axb))...)

n products
Prove that for p1, p2, p3, p4, p5 € R3 the equality is fulfilled:

(p1p2p4) (P1P2P5)

(p1p2p3)(P1P4pPs) = )
(p1p3p4) (P1P3P5)
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x6.17.

%6.18.

%6.19.

6 Vectors in a Three-Dimensional Space

Solve the system of linear equations, represented in vector form, relative to
the unknown variables x1, x3, x3:

a-x=y,

axx+p8=0,
where x = (x1, x2, x3), and the vectors & # 0, 8 and the scalar y do not
depend on x1, x2, x3.

Solve the system of linear equations, represented in vector form, relative to
the unknown variables x1, x2, x3:

a-x =cp,
B-x=c,
Yy -x =cs3,

where x = (x1, X2, x3), and the vectors «, B8, ¥y and the constants cy, ¢2, ¢3
do not depend on x1, x2, x3 and (e, B, y) # 0.
Solve the system of equations relative to the unknown vectors x and y:

TXX+pXxy=o,

PXX—TXYy=T,

where 7, p, 0, T € R", and the vectors & and p are not equal to the zero
vector simultaneously.

Answers and Solutions

6.1 Solution.

(a) Write the vectors ¢; and ¢; in coordinate form:

1 =2(=2,1,1)— (3, =2,4) = (=7,4,-2),¢» = —(=2,1, 1)
+33,=2,4) = (11, =7, 11).

The scalar productis equaltocy - ¢ = —7-114+4-(=7)—2-11 = —127.
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The vector product is equal to
i j k
c1xecy=|-7 4 =2|=30i +55j + 5k = (30,55,5).
11 =7 11
(b) Write the vectors ¢ and ¢3: ¢1 = (5,2, —2),¢cp = (-5, —1, —4).

Their scalar productisequaltocy-co =5-(—=5)+2-(—1)—2-(—4) = —19.
The vector product:

i j ok
cioxer=|5 2 —2|=—10i +30j + 5k = (—10, 30, 5).
—5-1-4

6.2 Solution.

(a) Compute the coordinates of the vectors EK and B—C>‘:

H
BA=(2-3,1-0,0-3)=(-1,1,-3),
—
BC=(02-3,-3-0,7-3)=(=1,-3,4).

Then, find the cosine of the angle ¢ at the vertex B:

cosg = BA-BC —1- (=D +1-(=3)+(-3)-4
BA|-|BC| V(=12 + 124+ (=32 /(- 1)2 + (=32 + 42
14

T V286

The area can be computed in two ways.
The first method
— — .
The product of the vectors BA and BC is determined as

i j k

— — J

BAXBC=|-11 -3=@-9i—(—4-3)j+G@+ 1)k =—-5i+7j +4k.
-1-3 4

Substitute the obtained values of the coordinates into the formula for the area
of the triangle:

1 3
S—= |BAxBC|= 2\/(—5)2+72+42 = V1o,

1
2
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The second method
According to the fundamental trigonometric identity (see Appendix B,
formula (B.1)), we have

142 310
sin(pz\/l—coszgo:\/l— 2g6 = \/\ggél

Substitute the coordinate values into the area formula:
1l — —
S = 2|BA| -|BC| - sing

310
V286

Obviously, both methods of computing the area of the triangle result in the
same answer:

= ;\/(—1)2+ 124 (=32 V(=12 4 (=3)> + 42 = ;Jlo.

14

CcCosSp = — ,
Y V286

3
s =_+10.
v

(b) The coordinates of the vectors ﬁ and B—C) are equal to
— —
BA=(5,-7,-1), BC=(1,-1,-5).
Compute the cosine of the angle ¢ between these vectors:

(BA - BC) 5.7+ (=7)- (=) + (=5) - (=) 47

T BALBE VR TR (DT (—12 4 (=52 TS

— —
Then, compute the vector product of BA and BC:

ij k

—_— >

BA x BC =|5 -7 —1| = 34i + 18 + 44k.
6—1-5

Substitute the coordinate values into the area formula:

1 1
S = 2|B_Zx x BC| = 2~\/342-|—182~|—442=«/854.
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We finally obtain

47
cosp =, S= V/854.

6.3 Solution.

(a) Since the determinant composed of the vector coordinates is not equal to zero:

11 1
3-1-1

then the vectors a, b and ¢ are not coplanar.
(b) The determinant composed of the vector coordinates is equal to zero:

—-10-2
001]|=0,
—-10 3

and, therefore, these vectors are coplanar.

6.4 Solution.

Note that the points A, B, C and D lie in the same plane, since the applicate of
all these points is equal to z = 1.

Let us prove that these four points are vertices of a parallelogram. We have to
prove that

— — — —
|AB| =|CD|, |BC|=|AD|.
Find the coordinates of the vectors introduced for consideration:

—
AB=(1-13-(=-1,1-1)=1(0,4,0),
—>
CD=4—-4,-1-3,1—-1)=(0,—-4,0),
—

BC=4-1,3—-3,1-1)=(3,0,0),

—>
AD=@4—-1,-1—-(—-1),1—-1)=(3,0,0).
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Therefore,

|AB| = V02 +42 402 =4,

ICD| =02 +42+02=4,  |AB|=|CD|,
— — —
|IBC| = /32402402 =3, |BC| = |AD|
|AD| = /32 + 02 402 = 3;

If one of the parallelogram angles is equal to 7; , then all other angles are also equal

T
to .
2

— —
Show that the scalar product of the vectors AB and AD is equal to zero:
AB-AD=0-34+4-040.0=0= AB L AD.

Therefore, ABC D is arectangle. Find its diagonals with the help of the Pythagorean
theorem:

AC =/ AB2 + BC2? = /42 + 32 =5,

It is clear that AC = B D, since the diagonals of the rectangle are equal.
As aresult, we obtain AC = BD = 5.

6.5 Solution.

Let ¢ = (¢, ¢y, ¢;), where cy, ¢y, ¢; are the unknown coordinates of the vector.
The condition of orthogonality of @ and ¢ has the forma - ¢ = 0, or 2¢y, — ¢, = 0.
Then, the condition of orthogonality of band cis b-¢ = 0, or —cx +2cy, —3c; = 0.
Since |¢| = +/7 and the length of the vector is equal to the square root of the
sum of squares of its coordinates, \/ c)% + c§ + cg = 7, which can be written as
2+ c% + c? =17.

We obtain the system of three equations relative to the variables cy, cy, ¢;:

2¢cy —¢; =0,
—cx +2¢y — 3¢, =0,
2+ c% + c? =17.
As the independent variable select ¢y and express through it two other variables

of the system: ¢; = 2¢y and ¢x = 2¢y — 3¢; = 2¢y — 3(2¢y) = —4cy. Therefore,
¢ = (—4cy, ¢y, 2cy) = cy(—4,1,2), where ¢y € R.
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The length of the vector ¢ is equal to |¢| = V' 7, and, therefore,

V7 1 q N 1
= ,and ¢y = .
V21 /3 ’ V3

According to the problem statement, the vector ¢ forms an obtuse angle with the
axis Oy, i.e. cos¢ < 0, where ¢ is the angle between the vectors ¢ and j. Since

abs(cy)v/ (—4)2 + 12 + 22 = V/7, abs(c,) =

c-j Cy

cosp = .= < 0,
lelljl V7
1
cy = —\/3.
1
We finally obtain ¢ = 4, -1, =2).
Y V3

6.6 Solution.
Werite the vectors a and b in coordinate form:

a = (35 _152)5
b=(l,1,—1).

Then, the sum and the difference of these vectors are

a+b=0CB+1,—1+1,2+ (1)) =4,0,1),
a—b=03-1,-1-1,2— (1) = (2, -2,3).

Use the formula of the cosine of the angle o between the vectors:

cos @)
o= .
la| - |b|
After simple computations, we obtain
_(@a+b)y-(a—b) 4.240-(-2)+1-3 _

Clatblla—bl 24241224 (22432 1T

11

Therefore, « = arccos _.
17
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6.7 Solution.
Compute |a — 2b|%:

la—2b|> = (a—2b)-(a—2b) =a-a—4a-b+4b-b = |a|> —4|a||b| cos ¢ +4|b|,
where ¢ = /3 is the angle between the vectors a and b. Having substituted numeric

values, we obtain |a — 2b|2 = 1, and, therefore, |a — 2b| = 1.

6.8 Solution.

As is known, the necessary and sufficient condition of orthogonality of two
vectors is that their scalar product is equal to zero: a-b = 0. Substitute the coordinate
values from the problem statement:

12-(=3)+2-17d—1-d =0,
12

d= ".
11

12
Therefore, the vectors @ and b are orthogonal for the parameter value d =

6.9 Solution.
In order for the vectors to be orthogonal, their scalar product must be equal to
zero: t1 - t) =0,

(a —10b) - (a 4+ xb) =0,

a-a+xa-b—10a-b—10xb-b = 0.

104/3 — 10

Then, we find » = .
343 - 36

6.10 Solution.
The necessary condition of the vector orthogonality: ¢1 - £, = 0, or

2a + xb) - (b —2a) =0,

2ab — 4|a|?> + x|b|> — 2xab = 0.

3 9 3
Substitute the numeric values from the problem statement: — - 44+ : + 2% =
22
0, and, therefore, x = __.
15
aiby — axb)

6.11 Answer: singp = .
\/a% + b%\/ag + b%
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6.15 Answer:

fn _ (_1)Ln/2jan72 a(a X b), if nis Odd,
a*b — (a-b)a, ifniseven.
6.17 Answer:
14
X = a2a+a2axﬂ.
6.18 Answer:
X = caBxy)taly xa)t+c@xp)).
(e, B, y)< )

6.19 Solution.

Multiply the first equation of the system by the vector p scalarly on the right;
multiply the second equation by the vector m scalarly on the right. Subtracting one
equation from the other, we find

TXO+PpXT

X =
2+ p?

tVE + 20,

where y1, y» are real numbers.
Having substituted the obtained expression into the first equation of the system,
we find y:

TXT—pPXO

y= 22+ p2 + 2 —y1p.



Chapter 7 )
Equation of a Straight Line on a Plane Shethie

7.1 Slope-Intercept Form of the Equation of a Straight Line

Consider Cartesian coordinate system on a plane.
Let the straight line L intersect the axis Oy at the point B with the coordinates
(0, b) and forms with the axis Ox the angle « (see Fig.7.1). For definiteness, we

will assume that the angle o <

On the line, take an arbitrary point A with the coordinates (x, y). Then, from the
point A, drop a perpendicular to the axis Ox, and from the point B, a perpendicular
to the axis Oy. Consider the obtained triangle ABC. It is obvious that BC = x,
AC =y —b,/ABC = «a. Since AC = BCtanw, we obtain y — b = x - tan« or
y=tano - x + b.

Denote the tangent of the angle « by k. The variable k = tan « is referred to as
the slope of the straight line on the plane. As a result, we arrive at the equation of a
straight line of the form:

y = kx +b. (7.1)

It is called the slope-intercept form of the equation of a straight line.

Note For the lines of the form y = const, the slope is equal to zero; for the lines of
the form x = const, the slope is undefined.
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Fig. 7.1 The line L on the

plane xOy Y
B(0,b)
\ o
/ 0 x
Fig. 7.2 Construction of y
n—a normal vector to the line b
n
19) x
7.2 General Equation of a Straight Line
General equation of a straight line on a plane has the form:
Ax+ By+C =0. (7.2)

The real numbers A, B and C are called coefficients of the straight line
equation.

The variables A and B cannot simultaneously be equal to zero, because, in this
case, if C = 0, then all points on the plane will satisfy this equation. However, if
C # 0, then none of the points on the plain satisfies this equation.

A
The vector n = is called a normal vector of a line or a normal. The
B
normal vector is orthogonal to the respective line (see Fig.7.2).
Let the inequality B # 0 be valid. In this case, the summand By can be
rearranged to the right, and both parts of the equation can be divided by —B # 0.



7.3 Slope-Intercept Form of the Equation of a Straight Line Through a Given.. . 279

As a result, we obtain

Ax+ C = —By (7.3)
or
A (o
— - =y. 7.4
g* " p=7? (7.4)
. . A . .
Let us introduce notations — _ = k and — _ = b; then, we arrive at the equation

y = kx + b, which is a slope-intercept form of the equation of a straight line
(see Eq. (7.1)).

7.3 Slope-Intercept Form of the Equation of a Straight Line
Through a Given Point

Consider the slope-intercept form of the equation of a straight line:
y =kx +b. (7.5)

Let this straight line pass through a point with the coordinates (xp, yp). Substitute
these coordinates into the equation:

vo = kxo + b. (7.6)

Subtract from the Eq. (7.5) the Eq. (7.6). We obtain the sought slope-intercept form
of the equation of a straight line passing through the given point:

(y = yo) = k(x — xo). (1.7)

Example 7.1 Find the slope-intercept form of the equation of a straight line k = 2
through 7'(1, 5).

Solution Use the formula (7.7). Then, we have
=5 =2(x-1, (7.8)
or

y=2x+3. (7.9)
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7.4 Equation of a Straight Line Through Two Given Points

Find the equation of a straight line through two given points 7T7(x1, y;) and
T>(x2, y2) subject to the condition that x; # x and y; # y». For this purpose, write
the equation of a straight line in the form (7.7), assuming that is passes through the
point T7:

Yy —y1 =k(x —x1). (7.10)

Since this line also passes through the point 75, then we will substitute its
coordinates into the Eq. (7.10):

y2 —y1 = k(x2 — x1). (7.11)
Divide the Eq. (7.10) by Eq. (7.11). We obtain

Y=y _x-x 7.12)

2=y x2—x1
This is the equation of a straight line through two given points.

Note The formula (7.12) is not applicable in the case of equality of the abscissas or
equality of the ordinates of the initial points 77 and 7>. If x; = x7, then the equation
of the line 7775 has the form x = x;. If the condition y; = y; is fulfilled, then the
equation of this line has the form y = y;.

Example 7.2 Find the equation of the line through Ti(a, b) and T>(b, a), where
a,beR,and a # b.

Solution Use the formula (7.12). Substitute into it the coordinates of the points
x1=a,y1=b,x3=>b,y, = a:

y=b_=x-a (7.13)
a—b b—a
After simple transformations, we obtain the equation of the straight line:
y—b=—(x—a), (7.14)
x+y—a—->b=0. (7.15)
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7.5 Angle Between Two Straight Lines

Consider two straight lines specified by the equations y = kjx+bj and y = kox+b;
(see Fig.7.3).

By the angle « between the lines, we will understand the angle by which one of
these lines should be turned around their intersection point, anticlockwise, until the
first superposition on the other line.

From Fig.7.3, it is seen that the angle o between the lines is equal to o1 — a2.
And the equalities tano; = k1 and tanay = kp are fulfilled. In this case, based
on the formula of tangent of a difference of two arguments (see formula (B.14) in
Appendix B), we can write

tano; — tanap k1 — ko
tana = tan(a; — o) = = . (7.16)
1+ tanog - tan o 1+ kiko
Hence,
ki — ko
o = arctan . (7.17)
1+ kiky

Having exchanged places of the parameters k| and k», we obtain the tangent of
the adjacent angle ¢ = & — ¢.
From the obtained formula (7.17) follow two consequences:
(a) The straight lines with the slopes k1 and k> are orthogonal if the condition 1 +
k1ky = 0 is fulfilled, which is equivalent to k» = e
1
(b) The straight lines are parallel if k1 = k».

Consider the straight lines specified by the equations in general form:

Aix+ B1y+C; =0 and Ayx + By +C =0. (7.18)

Fig. 7.3 Definition of the
angle o between two straight
lines

Y

9 a;
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A A
Then, k; = — ! and kr = — 2. Therefore,
By B

tano = (7.19)

From (7.19) directly follows that the lines specified by the Eqgs.(7.18) are
orthogonal at A1A> + B1 By = 0 and parallel at A, By — A1B, = 0.

Example 7.3 A straight line 2x — 5y + 1 = 0 is given. Set up the equation of a
straight line that passes through the point 7y(3, 3):

(a) parallel to this line;
(b) perpendicular to this line.

Solution
A 22
B (=5 5
Write the equation of the straight line that passes through the given point
with the specified slope k1 = ko:

(a) Find the slope kg = —

y — Yo = ki(x — xo), (7.20)
2
y—3= 5()c—3). (7.21)
Thus, the sought straight line has the form: 2x — 5y +9 = 0.
1
(b) Find the slope of the line that is perpendicular to the given one: k» = — k=
0

5

5"
Write the equation of the straight line that passes through the given point
with the specified slope k»:

Yy — Yo = ka(x — xo), (7.22)
5
y—3=—2(x—3). (7.23)
We obtain the equation of the straight line: 5x 42y — 21 = 0. O

7.6 Intercept Form of the Equation of a Straight Line

Consider the equation of the line Ax + By + C = 0, where the variables A, B and
C are not equal to zero.
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Fig. 7.4 The line that passes /
through the points (a, 0) and
(0, 5)

a
O
Let us transform it as follows:
A B
_ — =1. 7.24
c* 7 ¢? (7.24)
C C
Let us introduce notations: a = — A and b = — B
As a result, we obtain the equation:
STREY (7.25)
a b

which is the intercept form of the equation of a straight line.

It is obvious that the given line passes through the points with the coordinates
(a, 0) and (0, b). It is shown in Fig.7.4.

Thus, this line cuts off segments of length abs(a) and abs(b) on the coordinate
axes.

7.7 Normal (Symmetric) Form of the Equation of a Line

Consider an arbitrary straight line L. Let us draw, through the origin of coordinates
O, a line, perpendicular to L, and denote by the letter P the intersection point of
these lines.

On the line OP, take the unit vector n, whose direction coincides with the
direction of the vector ﬂ;

Assume that p = |O P|, and the angle 6 is the angle between the vector n and
the axis Ox (see Fig.7.5).

Since n is a unit vector, its coordinates are equal to the projections of this vector
on the coordinate axes:

n = (cos@, sin0). (7.26)
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Fig. 7.5 To the derivation of Y
the normal form of the \

equation of a line

The arbitrary point 7' (x, y) lies on the considered line L if and only if the
projection of the vector OT on the axis determined by the vector n is equal to
p:

—
Pr, OT = p. (7.27)
As is well known,

—
OT -n —

—
Pr, OT = | = OT -n. (7.28)
Bearing in mind that OT = (x,y), and the vector n is determined by the

equality (7.26), we obtain the following expression for their scalar product:
H .
OT -n =xcosf + ysinf. (7.29)

From the above reasoning, it follows that the point 7 (x, y) lies on the line L if
and only if the coordinates of this point satisfy the relation:

xcosf + ysind — p =0. (7.30)
This equation is called the normal form of the equation of the line L or the
Hesse' normal form.
Let the straight line L be specified by the general equation:

Ax+By+C=0, (7.31)

where C # 0.

1 Ludwig Otto Hesse (1811-1874), German mathematician.
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In order to transform the general equation of a line into a normal form, multiply
both sides of the equation by the so-called normalizing factor:

w=— 2 sgn(C), (7.32)

1
VA +
where sgn(C) is the sign of the coefficient C determined by the rule:

+1, if C > 0,
sgn(C) =1 0, if C =0, (7.33)
—1, if C <0.

As aresult, the new coefficients at x and y (namely, 1A and p B) will satisfy the
condition:

(LA + (uB)* = 1. (7.34)

If we select the angle 6 so that cos6 = A and sinf = uB, while p =
—abs(uC), then we will obtain the normal form of the equation of a line.

Note If the condition C = 0 is fulfilled, then the line passes through the origin of

coordinates, and the normalizing factor can be taken with an arbitrary sign: u =
1

VA2 4 B2

Let us introduce the concept of deviation of an arbitrary point 7' (x, y) from the
given line L. Let the number d denote the distance from the point T to this line.

We will call the number 4 d the deviation § of the point 7 from the line L in
the event when the point 7" and the origin of coordinates O lie on the opposite sides
of the line L and the number — d in the event when the points 7 and O lie on the
same side of L.

Show that the left side of the normal form of the equation of the line is equal to
the deviation of the point 7' (x, y) from this line.

Let O be the projection of the point 7 on the axis determined by the vector n.

The deviation § of the point 7 from the line L is equal to P Q.

From Fig. 7.6, it is seen that

§=PQ0=0Q—-0P=0Q —p. (7.35)
H .
But OQ =Pr,, OT = xcosf + ysiné. So,

0OQ = xcosf + ysinf. (7.36)
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Fig. 7.6 The deviation

8 = P Q of the point T from \yn
the line L L Q
P
T(z,y)
n
9] N 7
Correlating the obtained formulae (7.35) and (7.36), we obtain
8 =xcosf 4 ysinf — p. (7.37)

This brings us to the following rule: in order to find the deviation § of the point
T (xg, yo) from the line L, we should substitute to the left side of the normal form
of the equation of the line the coordinates xo and yg of the point 7 instead of x and
y. The distance from the point 7 to the line L is equal to the absolute deviation.

Example 7.4 Let us compute the distance from the point 7'(5, 4) to the line through
A(1, —2) and B(0, 3).

Solution Write the equation of a straight line through the points A and B:

x—1 y+2

1 =5 or Sx+y—3=0. (7.38)

Having multiplied the resulting equality by u = , we bring the equation to

1
V26
the normal form:

Sx y 3

N RN

Then, the distance d from the point 7 to the line is equal to

5.5 4 3 26
d = ab - = = /26. 7.40
o <\/26 * V26 \/26) V26 (7.40)

(7.39)
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7.8 Line Segments

Line segment M M, is a part of a straight line between its two points M1 (x1, y1)
and M>(x2, y2). The points Mj(x1, y1) and Ma(x3, y2) are the endpoints of the
segment [8].

A set of points belonging to the segment is specified as follows:

MM, ={(x,y):x=0—-0x1+1tx2, y= (1 —-0y1+ty2,t €[0,1]}. (7.41)
There exists an equivalent notation of M Mj:
MMy ={(x,y): x =x1+(2—xDt, y=y1+O2—ynt, 1 €[0,1]}.  (7.42)

The variable 0 < ¢ < 1 in the formulas (7.41) and (7.42) is referred to as the
parameter of the segment.

Example 7.5 Let us write a program in Python that determines, by the segment
endpoint coordinates, in which coordinate quadrants it is located. For example, the
segment L1 L, that connects the points L1(—1, —2) and L»(4, 1), lies in the I, IIl and
IV quadrants. Another example: the segment that connects the points M (—1, —2)
and M>(—1, —2) entirely belongs to the II quadrant (see Fig. 7.7, which shows the
segments L1 Ly and M M, with the numbers of each quadrant).

Solution In order to represent a Cartesian plane point in the computer memory,
introduce a class Point, which contains two fields: x and y, the abscissa and

II I

M, \
M, / Lo

Ly

III v

Fig. 7.7 To the Example 7.5. The segment L L, lies in the I, IIl and IV quadrants, while the
segment M| M, entirely belongs to the II quadrant
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the ordinate of the point. Thus, the segment is determined by the boundary points;
denote them by P; and P,.

The main computing work is performed by the functionget quadrants (p1,
p2) . Itreturns the list that contains the numbers of the quadrants where the segment
P1 P; is located.

The auxiliary function get gquadrant (p) is used to determine the number
of the quadrant to which the only argument belongs, namely the point p. This
function returns an integer number from the set {0, 1, 2, 3, 4}. The variable
get _quadrant (p) is equal to zero if and only if p lies on the Ox or Oy axis
and therefore does not belong to any of the plane quadrants.

Execution of the function get quadrant (pl, p2) begins with checking
whether the points p1 and p2 lie in the adjacent quadrants, i.e. those that form the
unordered pairs 1-2, 2-3, 3—4, 4-1. During this check, the variables p1 guad and
p2_quad will be assigned the numbers of the quarters to which points p1 and p1
belong, respectively.

Since the numbers of the adjacent quadrants differ by one modulo two, the
False value of the boolean variable

is _adjacent = abs(pl quad - p2 quad) % 2 == 1
is a sufficient condition of adjacency.

Then, the following operations are executed. If the points p1 and p2 lie in the
adjacent quadrants, then into the final list are written the values p1l quad and
p2_quad, following which the function get _quadrants () terminates.

Otherwise, the equality of the numbers p1 _quad and p2_quad is checked. If
it is valid, then the entire segment lies in the quadrant number p1_quad, and the
function get _quadrants () terminates.

The last case of the opposite quadrants remains, i.e. of the pairs 1-3 or 2—4. The
line drawn through the points p1 and p2 intersects the ordinate axis at the point
with the coordinates (0, b), where

b = (pl.y*p2.x - pl.x*xp2.y)/(p2.x - pl.x). (7.43)

If p1 quad = 1 orpl gquad = 3, then at b > 0 it is necessary to additionally
write the second quadrant to final list, and the fourth quadrant at b < 0. Otherwise
(in the case p1_quad € {2,4}) at b > 0, it is necessary to additionally write the
first quadrant to the list, and the third quadrantat b < 0.

Thus, all the possible cases of location of the segment P; P, relative to the
coordinate axes are exhausted, on the condition that none of the segment endpoints
lies on the coordinate axis.

Listing 7.1 provides the text of the program that determines, by the segment
endpoint coordinates, in which quadrants it is located.
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Listing 7.1
s N
class Point:
def init (self, x, y):
self.x = x
self.y =y
def get gquadrant (p) :
if p.x > 0 and p.y > 0:
return 1
elif p.x < 0 and p.y > O:
return 2
elif p.x < 0 and p.y < O:
return 3
elif p.x > 0 and p.y < O:
return 4
else:
return 0
def get gquadrants(pl, p2):
pl _quad = get quadrant (pl)
p2_quad = get quadrant (p2)
is _adjacent = abs(pl quad - p2 quad) % 2 == 1

if is_adjacent:
return [pl _quad, p2_quadl
elif pl quad == p2 quad:
return [pl_gquadl
else:
b = (pl.y *» p2.x - pl.x % p2.y) \
/ (p2.x - pl.x)

if b == 0:
return [pl quad, p2_ quad]
elif pl quad == 1 or p2 quad == 3:
quadrant = 2 if b > 0 else 4
return [pl _quad, p2_ quad, quadrant]
else:
quadrant = 1 if b > 0 else 3
return [pl _quad, p2_ quad, quadrant]
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The most general case is when P; or P> can belong to the coordinate axes and
is discussed in Problem 7.30. The solution of this problem includes the function
get quadrants_general (), which is free from the mentioned constraint.

0

Review Questions

How is the slope of a straight line on a plane determined?

Write the equation of a straight line with a slope.

What is the form of the general equation of a straight line on a plane?

What is the normal to the line?

What does the equation with a slope for a straight line through a specified point
look like?

Write the equation of a straight line through two specified points.

How is the angle between two lines computed?

Write intercept form of the equation of a straight line.

Define the deviation of an arbitrary point from a given line.

For solution of what problem is it convenient to use the normal form of the
equation of a line?

11. How can the set of points of the segment M M> be specified with the help of a
parameter?

Dok =

S0 X

Problems

7.1. Find the intersection point of the lines 2x —3y+4 =0and4x+y -6 = 0.

7.2. The sides of the triangle lie on the lines 5x —y+12 =0, x +y+3 =0
and 4x 4+ 3y — 6 = 0. Find the coordinates of the vertices of this triangle.

7.3. The coordinates of the vertices of a triangle are (5, —4), (6, —6) and
(—15,4). Find the equations of its sides.

7.4. Show that the area of a triangle with the vertices (x1, y1), (x2, y2) and
(x3, y3) is equal to

L 1
§=,abs|x y2 1 - (7.44)

x3 y3 1

7.5. The sides of the triangle lie on the linesx + y+1=0,x +2y —3 =0and
4x — 3y — 2 = 0. Compute the area of this triangle.
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7.6.

7.7.

7.8.

7.9.

7.10.

7.11.
7.12.

7.13.

*7.14.

7.15.

*7.16.

7.17.

7.18.

7.19.

Median of a triangle is the segment that connects its vertex with the
midpoint of the opposite side. Set up the equations of the lines on which
the medians of the triangle ABC lie, if A(1,2), B(4, —3), C(6, 6).
Compute the distance from the point 7'(1, 7) to the line through A(—3, —20)
and B(4, 17).

Compute the distance from the origin of coordinates to the line given by the

. X — X0 Yy —=Y0
equation + = 0, where x¢, yp are real numbers not equal to

X0 Yo
ZEro.

One of the sides of the square lies on the line x -3y 4 10 = 0. Find the area
of this square if the coordinates of one of its vertices are (—4, —4).

At what point do the lines specified by the equations x/a + y/b = 1 and
x/b+y/a =1, wherea,b # 0, intersect?

Find the angle between the lines 3x +5y — 10 =0and —2x + y 4+ 4 = 0.
Find the values of the parameters A and w at which the lines Ax -6y —2 =0
and 2x + 3y —pu =0:

(1) have exactly one common point,
(2) coincide,
(3) are parallel.

Compute the distance between the parallel lines specified by the equations
Ax + By +C =0and Ax + By + C' =0, where C # C’.

On what condition do the lines A1x + Bjy+C; =0, Ayx + By +Cy =0,
...y Apx + By 4+ C, = 0 intersect at one point?

The line L passes through the point T (xg, yo) at the angle o the abscissa
axis. Write the equation of the line L* that passes through the same point Ty
at the angle A« to the line L.

The sides of a triangle are specified by the equation A;x + B;y + C; = 0,
where i = 1, 2, 3. Find the equation of

(a) median,
(b) altitude,
(c) bisector,

drawn to the third side.

Compute the area of a triangle intercepted by the line Ax + By + C = 0
from the quadrantal angle.

Find the equation of the line that passes through the point 7 (xg, yo) and
intercepts from the quadrantal angle a triangle with an area equal to S. The
variables x( and yq are positive.

Assume that some line passing through the point 7 (xg, yo) intercepts from
the quadrantal angle a right triangle. What is the least area of this triangle?
The variables xo and yq are positive.
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x7.20.

7.21.

7.22.

7.23.

7.24.

7.25.

7.26.

7.27.

7.28.

7.29.

7.30.

7 Equation of a Straight Line on a Plane

The sides of a triangle are specified by the equation «o;x + B;y + y; = 0,
where i = 1,2, 3. Show that the area of this triangle can be calculated by
the formula:

1 A2

S = , (7.45)
2 abs(A1A2A3)

a1 By
where A = |y B, y»|, A; are the cofactors of the element y;, i € {1, 2, 3}.

a3 B3 vs
Prove that the points 77(—2, —8), 72(18,2) and 73(3, —11/2) lie on the
same line.
For what values of the real parameter a do the points 77(0, 1), T2(a, 2) and
T3(3, a) lie on the same line?
The coordinates of a triangle are given: A(1, —1), B(2,4), C(—8, —1). Set
up the equation of the line that passes through the vertex A parallel to the
side BC.
The coordinates of a triangle are given: A(—2, 0), B(2, 3), C(—1, —1). Set
up the equation of the line that passes through the vertex B parallel to the
side AC.
It is known about the point N that it lies on the ordinate axis, and the distance
from this point to N'(—2, —5/2) is equal to d = 2+/2. Find the coordinates
of the point N.
It is known that the area of the triangle is equal to S = 6 and its two vertices
have the coordinates (1, 1) and (—2, —3). Find the coordinates of the third
vertex of the triangle if this vertex lies on the abscissa axis.
It is known that the area of the triangle is equal to S = 10 and its two vertices
have the coordinates (—2, 3) and (—7, —1). Find the coordinates of the third
vertex of the triangle if this vertex lies on the ordinate axis.
Find the projection of the point (2, —13) on the line that passes through the
points (0, 2) and (2, —8).
Find the projection of the point (a, a) on the line that passes through the
points (1, 2a) and (2, 3a), if a is an arbitrary real number.
Write a program in Python that determines, by the segment endpoint
coordinates, in which coordinate quadrants it is located. In contrast to the
solution of the Example 7.5 on page 287, consider the full set of possible
cases, including the one when the segment endpoints can belong to the
coordinate axes.
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Answers and Solutions

7.1 Answer: (1,2).
7.2 Answer: (—5/2,—1/2), (=30/19,78/19), (15, —18).

7.3 Solution.
Let us use the equation of a straight line through two given points (7.12):

y—Jy1 _ Xx—Xi

y2—Mn X2 — X1

Substituting the coordinates of the points from the problem statement, we obtain the
equation of the triangle sides:

2x4+y—6=0, 2x+5y+10=0, 10x+4+21y+66=0.

7.4 Solution.

Denote the triangle vertices (x1, y1), (x2, ¥2) and (x3, y3) by Ay, A and A3z,
respectively.

As is well known (see page 262), the area of an arbitrary triangle can be

—_—
represented as half of the modulus of the vector product AjA> x AjA3z:

I{x2 —x1 y2— 1

]l — —
S = 2|A1A2 X A1Az| = 5

X3 — X1 Y3 =1

This expression can be rewritten in the equivalent form:

x1y1 1l
S = _abs .
2 x2 y2 1

x3 31
Thus, the formula (7.44) is proved. It implies that the necessary and sufficient

condition of the three points belonging to one line is that the respective third-order
determinant is equal to zero.

7.5 Solution.
Solving the systems of equations:

x+y+1=0, x+y+1=0, x+2y—-3=0,
x+2y—-3=0; 4x —3y —2=0; 4x —3y -2 =0,
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we find the coordinates of the vertices of the triangle: (—5,4), (—1/7,—6/7),
(13/11, 10/11).

As is shown in Problem 7.4, the area of an arbitrary triangle A;A2A3, whose
vertices have the coordinates (x1, y1), (x2, y2) and (x3, ¥3), respectively, is equal to

x1 y1 1
S = _abs .
) x2 y2 1

x3y31

In our case,

-5 4 1
G 1abS B 1abS 1156\ 578
T2 _1/7_6/71_2 77 ) 77
13/11 10/11 1

Note. See Problem 7.20 for a general solution.

7.6 Solution.

The abscissa and the ordinate of the midpoint of the segment with the endpoints
(x1, ¥1) and (x2, y») are determined by the formulae x,, = (x1 + x2)/2 and x,, =
(y1 + y2)/2, respectively.

Find the midpoints of the sides: (5/2, —1/2), (7/2,4), (5,3/2).

Then, we apply the formula (7.12) and obtain the following equations of the
medians of the triangle ABC:

x+8y—-17=0, 14x4+y—-53=0, 13x—7y—-36=0.

7.7 Solution.

The general equation of a straight line through (-3, —20) and (4, 17) has the
form37x — 7y —29 =0.

We obtain the normal equation of this line. The normalizing multiplier (7.32) is
equal to

1 1
n=— sgn(—29) = .
V372 + 72 ¢ V1418
Thus, the equation in normal form is
37 7 29

X — — =0,
V1418 \/1418)) V1418
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and the deviation of the point 7 (1, 7) from the line is equal to

s 3T T, ® 4
T /1418 V1418 V1418  J1418°

41
Therefore, the sought distance is equal to .
V1418
7.8 Solution.

Bring the equation of a line to normal form.

The normalizing multiplier is equal to

1
w=— sgn(—2xpyp) = \/ sgn(x0yo),

e 32+ 32

and, therefore, the equation of a line can be written in the form:

o x4+ o y—2

ng +32 \/xg +y2 X2+ )2

X0Y0
g sgn(xoyo) = 0.

Compute the deviation from the origin of coordinates (0, 0):

X0Y0
s=-2 " onixoyo).

x5+

The distance from the origin of coordinates to the line is equal to the absolute
2 abs(xopyo)

value of the deviation:
N

7.9 Solution. | 3 10
The deviation from the point (—4, —4) to the line — X

_ _ =0
J100 T V100 T Vio
2

isequalto § = —3\/5.

Hence, the distance from the point to this line is equal to d = 3\/ 5 ; it coincides

with the length of the side of the square.
The area of the square is § = d*> = 18/5.
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7.10 Solution.
The system of equations:

x/a+y/b=1,
x/b+y/a=1,

for a, b # 0 has the unique solution x = y = ab/(a + b).

b b
Therefore, the lines intersect at the point ( a , a )
a+b a+b

7.11 Solution.

Take the formula (7.19) in order to find the tangent of the angle between the lines
specified in the general form. Substitute into it the values A} = 3, By =5, A, = -2
and B, = 1, and we obtain

AyB; — A1B
2B B2 _ s

tano = =
A1A2+ B1 By

Therefore, the angle between the lines is « = arctan 13.

7.12 Solution.
Consider the system of equations:

Ax +6y =2,
2x + 3y = u.

Using the bordering minor method (see page 64), we find the ranks of the system
matrix and the augmented matrix:

A6 1, if » =4,
rk =
23 2, if A # 4
A62 16 2 1,ifu=1
rk =rk = ’%'u ’
23 00u—4 2, ifpu#1.

Therefore:

(a) at A # 4, u # 1, the system has the unique solution, and the lines intersect
exactly at one point;

(b) at A = 4, u = 1, the system has an infinite set of solutions, and the lines
coincide;

(c) atX =4, u # 1, the system has no solution, and the lines are parallel.
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7.13 Solution.
Find the deviation of each line from the origin of coordinates:

1
8 = — Csen(C), 8 = —
VA2 + B2 &

Then, as is easy to see, the distance d between the parallel planes is equal to the
absolute value of the difference of the deviations:

1
Ja2a B2 C'sgn(C’).

1
d = abs(8 —8)=abs<— Csgn(C) + C’'s nC’)
1 2 JA2 4 B g JAZ + B2 g( )
__abs(C' = C)

C JA2+ B

7.14 Answer: the criterion of intersection of n lines at one point is the equality of
the ranks of the two matrices:

Al By AL By C
Ay B Ay By
and

7.15 Solution.

The equation of the line L* that passes through the point T (xg, yo) has the form
y — yo = k(x — xp). In this equation, k is the unknown slope.

In order to find the value of , let us use its property: k = tana™*, where o* is the
angle of inclination of L* relative to the abscissa axis.

Since L* passes at the angle A« to the line L, then the two options arise: a* =
a — Ao and o™ = o + Aw. Write these equations in the form of a common equality:

o =a £+ Ac.

By the formulae of tangent of sum and difference of two angles (B.13) and (B.14)
on page 412, we have

tan o & tan Ax
k = tan(o = Aa) = .
1 Ftan Ax tan o

We finally obtain the equation of the line L*:

tan o & tan A« ( )
— = X — X0).
Yy 1 Ftan Ax tan o 0
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7.16 Answer:

Ar By A3 B3
(@) (Aix+ By +Cy) = (A2x + Bay + C2) ;
A3 B3 Al By
(b) (A1x + B1y + C1)(A2A3 + B2B3) = (A2x + By + C2)(A1A3 + B B3);
© Aix + B1y + C _ Axx + Bry 4+ Co
2 2 2 2
JA4T+ B JA3+ B3
A1 By||Ay By
where s = sgn
A3 B3| |A3 B3

7.17 Solution.
Denote the intersection points of the line Ax + By + C = 0 with the coordinate

C C
axes by P(xp,0) and Q(0, yp), where xg = — A Yo = — B The coordinates xg

and yp in the absolute value are equal to the lengths of the cathetuses of the right
triangle P O Q lying on the axes Ox and Oy, respectively. The area of this triangle
is equal to the half of the product of the cathetuses:

gl _1(.c c\_¢?
TN =5 T4 B) T 248
7.18 Solution.

Write the equation of the line that passes through the point (xg, yo): y — yo =
k(x — x0), where k < oo is the slope.

The case k — oo does not require separate consideration, since in that case the
line will not intercept the triangle from the quadrantal angle.

Find the coordinates of the points of intersection of the line with the coordinate
axes:

with the axis Ox:y =0, —yg = k(x* — x0), x* = x0 — };CO, where abs(x™) is the

length of the cathetus lying on the axis Ox;
with the axis Oy: x = 0, y* — yo = —kxo, y* = yo — kxo, where abs(y™) is the
length of the cathetus lying on the axis Oy.
The area of such a triangle is equal to the half of the product of the cathetuses:
(yo — kxo)?
)-

1 1 1
§= jabs(x*y). S = (x0 yko)(yo — ko) = jabs("0

2
Let us express the variable k:

kzxg —2k(xoyo — S) + yg = (. The solution of this square equation leads to two
possible values of k:

x0y0 — S £ /S(S — 2x0y0)
k12 = .

2
X0
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We obtain the sought equation of the line:

2
X0

x0y0 — S £ /S(S — 2x0y0)
y—Yo= (x — x0).
7.19 Solution.
As is shown in the previous problem, the area of the triangle S depends on the

1 — kx0)?
slope of the line & as follows: S(k) = 2abs (o kxO) )

For the points T (x¢, yo), whose coordinates xo and yq are positive, the equality
k < O is fulfilled, i.e. in this case the line forms an obtuse angle with the axis Ox.

In order to find the minimal value of the function, let us compute the points at

d Sk 5 — k*x}
which the derivative *) % s equal to zero.
dk k2
The condition k < 0 is satisfied by the value k* = — Y0 The point k* is the
X0
d* S(k* 2y3
minimum point, since the second derivative is (k") = — 0 > 0.
dk (k*)3

Thus, the least value of the area of the triangle is equal to
Smin = S(k*) = 2x0y0.

7.20 Solution.

Compute the coordinates of the intersection points of the line pairs. Taking into
account that the area of the triangle is expressed in the form of a half of the modulus
of the vector form of the vectors that from both sides, we obtain

g Pir2—Fm <a2)/3 -y a3y — 0!1)/3)

aifo —oafr \a3fr — a3 a1fz —azfi

Bavs — B3z (063)/1 —a1y3 a1y — 062)/1>

axBs —a3fr \a1Bs —azf B —aif

B3yt — Biy3 <Ot17/2 —ayl Y3 — 0!3)/2)

azfr —a1fz \owfr —a1fy azfr — axf3

Reduce the fractions to a common denominator. After simple but somewhat
cumbersome algebraic transformations, we arrive at the formula:

_ (@1 (B2ys — B3y2) + aa(B3yi — Biy3) + as(Biya — Pay))?

S
(a1B2 — a2 B1) (@23 — a3 Br) (a3 fr — a1 B3)
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As is easy to see, the obtained expression can be presented as

g1 A?
T 2abs(A1A2A3)]

a1 B1 v
where A = |y B y»|> Ai are the cofactors of the elements y;, 7 € {1, 2, 3}.

as B3 y3

7.21 Solution.

Let us draw a line through the points 77 and 7> (see the formula (7.12)). The
slope of this line is k = 1/2. Then, the line T)73 has the slope k¥’ = 1/2. Since
k = k’, then the points Ty, 7> and T3 lie on the same line.

7.22 Solution.

The first method

Let the equation of the line passing through the three points 77, 7> and 73 have
the form y = kx + b. Having substituted the coordinates of each of these points into

the equation of the line, we obtain the system of relatively unknown variables k and
b:

b=1,
ak+b=2,
3k+b=a.

The condition of definiteness of this system (i.e. the uniqueness of its solution)
leads to the square equation a> —a — 3 = 0.
Therefore, the points 71, 7> and T3 lie on the same line at the two values of the
1 1
parameter a: a; = 2(1 ++/13) and ap = 2(1 —J13).
The second method
Let us use the consequence of the formula (7.44) from Problem 7.4: the criterion

of the three points belonging to one line is that the third-order determinant is equal
to zero:

011
a21|=0.
3al

1
The obtained equation has two roots: aj 2 = ) 1+ v 13).
Note. The necessary and sufficient condition for the three points 71, 7> and T3
— ———
to lie on the same line is collinearity of the vectors 717 and 77 73. In view of this,
there exists one more method of solving this problem, which is based on checking

whether the vector product 7175 x T1 T3 is equal to zero. Of course, different solution
methods result in the same answer.
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7.23 Solution.
The slope of the sought line coincides with the slope of the line BC. The equation

1
of the line BC has the form y = 2x + 3 (see the formula (7.12)). Then, use the
formula (7.10) for the line that passes through a given point:

y—y1 =k(x —x1), (7.46)

1
where k = 2,x1 =1y =-1
Substituting the numeric values, we obtain the equation of the line that passes
through the vertex A parallel to the side BC: x —2y —3 =0.
7.24 Answer: x +y—5=0.

7.25 Solution.

Since the point N lies on the ordinate axis, its coordinates are equal to (0, y),
where y is an unknown value. The distance d between the points N and N’ is equal
to

d =0 (=27 + (5 = (=5/2)? = /4 + (v +5/2°.

Thus, we obtain the equation relative to the variable y:

JO— 22+ - (=527 =22,

which has the solutions y; = —1/2 and y» = —9/2. Therefore, the coordinates of
the point N are equal to (0, —1/2) or (0, —9/2).

7.26 Solution.
By the triangle area formula expressed by the coordinates of its vertices (1, 1),
(=2, —3) and (x, 0) (see (7.44) on page 290), we obtain § = abs(4x — 1).
According to the problem statement, S = 6, hence abs(4x — 1) = 13/4.
Therefore, the coordinates of the vertices of the triangle are equal to (—5/4, 0)
or (7/4,0).

7.27 Solution.
The coordinates of the third vertex are (0, y).
The area of the triangle is equal to

| -2 31 :
S = 2abs -7 —-11|= 2abs(23 —5y) =10,
0 y 1

hence y = 13/5or y = 33/5.



302 7 Equation of a Straight Line on a Plane

The coordinates of the third vertex of the triangle are equal to (0, 13/5) or
(0,33/5).

7.28 Solution.

Let A(0, 2), B(2, —8). The sought projection of the point is K (2, —13).

The projection of the point is the foot of the perpendicular to the line A B. Then,
the orthogonality property for the line AB and the perpendicular from the point K :
k1 - ko = —1 is fulfilled.

Write the system of equations relative to the coefficients k; and b for the line
AB:

2 = by,

8 =2k + by,
From this system, we obtain that by = 2, k; = —5. Then, k, = 1/5.
Substitute k; into the equation of the line for the perpendicular from the point K :
—13=2-1/5+4 by, hence b, = —67/5.
Compute the coordinates of the point (xg, yo), at which the lines intersect:
1/5x9 — 67/5 = —5x0 4+ 2, x0 = 77/26, yo = —333/26.

7.29 Solution.

Let A(1, 2a), B(2,3a), K(a, a).

Projection of a point is a foot of a perpendicular to the line A B. Then, the equality
is fulfilled for the line A B and the perpendicular from the point K: k1 - ko = —1.

Write the system of equations relative to the coefficients k; and b for the line
AB:

2a = ky + by,
3a = 2k + by.
From this system, we obtain that by = a, ki = a. Then, k» = —1/a.

Substitute k» into the equation of the line for the perpendicular from the point K :
a=a(—1/a)+ by,hence b =a + 1.

The coordinate of the projection of the point K satisfies the equation:
axo+a = —1/axo+by, axo+a = —xo/a+a+1,xo(a+1/a) =1,x0 = , e
a

Let us express the ordinate of the projection: yo = —

L . a a

The sought projection has the coordinates <a2 e a-+ a4 1).
7.30 Solution.

The suggested solution generally repeats the approach discussed in Example 7.5.
Note that in order to study the full set of possible cases of mutual arrangement of
the segment endpoints and the coordinate axes, the integer variable neighbor
is additionally used. It plays an important role for the location of the segment
illustrated in Fig.7.8. Here, one of the segment endpoints, namely P,, is located
on the coordinate axis, and into the variable neighbor will be written the number
of the quadrant where the segment points from the small neighborhood P lie.
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Yy
11 1
p
P
O T
Py
11T IV

Fig. 7.8 To Problem 7.30. The segment P;P, lies in the second and third quadrants,
get quadrant (pl) =3,get gquadrant (p2) =0, neighbor =2

After performing all checks, into the answer will be written the numbers of the
quadrants within which the segment points fall.

class Point:
def  init (self, x, y):
self.x = x
self.y =y

def get quadrant (p) :
if p.x > 0 and p.y > 0:

return 1

elif p.x < 0 and p.y > O:
return 2

elif p.x < 0 and p.y < O0:
return 3

elif p.x > 0 and p.y < O0:
return 4

else:
return 0

def get quadrants general (pl, p2):
pl quad = get gquadrant (pl)
P2 _quad = get gquadrant (p2)
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is_adjacent = abs(pl quad - p2 quad) % 2 == 1
if pl gquad == 0 and p2 quad == 0:
mid = Point ((pl.x + p2.x) / 2, (pl.y + p2.y) / 2)
mid quad = get quadrant (mid)
return [] 1if mid quad == 0 else [mid quad]

elif pl gquad ==
if pl.x * p2.x < O:
neighbour =

3 - p2 _quad \

if p2 quad <= 2 else 7 - p2 quad

return [p2_ gquad,
if pl.y * p2.y < O:
neighbour =
return [p2 quad,
return [p2 quad]
elif p2 quad ==
if pl.x * p2.x < O:
neighbour =

neighbour]

5 - p2_quad

neighbour]

3 - pl quad if pl quad <= 2 \

else 7 - pl quad

return [pl quad,

if pl.y * p2.y < O:
neighbour =
return [pl quad,

return [pl quad]
elif is_adjacent:

neighbour]

7 - pl_quad

neighbour]

return [pl quad, p2_ quadl]

elif pl gquad p2_quad:
return [pl gquad]

else:

b= (pl.y » p2.x - pl.x * p2.y) \
/ (p2.x - pl.x)

if b ==
return [pl quad, p2_ quad]

elif pl quad == 1 or p2 quad == 3:
quadrant = 2 if b > 0 else 4
return [pl quad, p2 quad, gquadrant]
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else:
quadrant = 1 if b > 0 else 3
return [pl quad, p2 quad, quadrant]



Chapter 8 )
Equation of a Plane in Space Shethie

8.1 Equation of a Plane That Is Orthogonal to the Specified
Vector and Passes Through the Specified Point

Assume that it is known that the plane 7 is orthogonal to the vectorn = (A, B, C)
and passes through the point Ty (xg, o, zo). Take an arbitrary point T (x, y, z) on the

plane 7. The vector m)‘ belongs to the plane 7. From the condition of orthogonality
of the vector n of the plane 7 follows that the vector

—>
ToT = (x — x0, Yy — Y0, 2 — 20) (8.1)

is orthogonal to the vector n.
Relying on the property of the scalar product of orthogonal vectors, we can write

n-ToT =0. (8.2)

This equation is called the vector equation of a plane [8].
Rewritten in coordinate form

A(x —x0) + B(y — yo) + C(z — z0) =0, (8.3)

this equation is called the equation of a plane that is orthogonal to the vector
n = (A, B, C) and passes through the point 7y (xg, yo, z0)-
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8.2 General Equation of a Plane

Equation of the first degree
Ax+By+Cz+ D =0, 8.4)

in which A, B, C and D are arbitrary real constants such that out of the coefficients
A, B and C at least one is other than zero, is referred to as the general equation of
a plane.

A general equation (8.4) is referred to as complete if all its coefficients are other
than zero. If at least one of the mentioned coefficients is equal to zero, the equation
is referred to as incomplete.

Consider the possible types of incomplete equations.

(1) If D = 0, then the equation Ax + By 4+ Cz = 0 determines the plane that
passes through the origin of coordinates.

(2) If A = 0, then the equation By + Cz + D = 0 determines the plane
parallel to the axis Ox, since the normal vector of this plane n = (0, B, C) is
perpendicular to the axis Ox.

(3) If B = 0, then the equation Ax + Cz + D = 0 determines the plane, parallel
to the axis Oy, since its normal vector n = (A, 0, C) is perpendicular to the
axis Oy.

(4) If C = 0, then the equation Ax + By + D = 0 determines the plane parallel
to the axis Oz, since for this axis perpendicular is the normal vector with the
coordinates (A, B, 0).

(5) If A= B =0, then the equation Cz + D = 0 determines the plane parallel to
the coordinate plane x Oy.

(6) If A = 0 and C = 0, then the equation By + D = 0 determines the plane,
parallel to the coordinate plane x Oz.

(7) If B = 0 and C = 0, then the equation Ax + D = 0 determines the plane,
parallel to the coordinate plane yOz.

(8) If A =0, B =0and D = 0, then the equation of the plane Cz = 0 determines
the coordinate plane x Oy.

(9) If A=0,C = 0and D = 0, then the equation of the plane By = 0 determines
the coordinate plane x Oz.

(10) If B =0,C = 0and D = 0, then the equation of the plane Ax = 0 determines
the coordinate plane y Oz.
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8.3 Intercept Form of the Equation of a Plane

Consider the general equation of the plane Ax + By +Cz+ D = 0.
Assume that all the coefficients A, B, C and D are other than zero. Then this
equation can be written in the form:

x y z

+ + =1 (8.5)
(=D/A)  (=D/B) (=D/C)
. . D D D )
Let us introduce the notations: a = — A’ b=— B’ c=— c Then Eq. (8.5) will
be reduced to the following form:

X Z

+r 4t o (8.6)
a b ¢

This is the intercept form of the equation of a plane.

In Eq. (8.6) the numbers a, b and c have simple geometric meaning: they are
equal in absolute value to the lengths of the segments (intercepts) that the plane
intercepts on the coordinate axes Ox, Oy and Oz, respectively (see Fig. 8.1). The
plane passes through the points (a, 0, 0), (0, b, 0), (0, 0, ¢).

Fig. 8.1 The intercepts that are intercepted by the plane on the coordinate axes
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8.4 Normal Equation of a Plane

Consider the plane shown in Fig. 8.2.

Assume that p is the length of the vector ﬁ; a, B, y are the angles between the
unit vector n and the coordinate axes; Q is the arbitrary point on the plane with the
coordinates (x, y, z).

It is obvious that the projection of the vector O—Q> on the direction n is equal to p:

—_—
Pr, 00 = p, (8.7)

00

H .n

Pr, OQ = n |n| = 1. (8.8)

n

Therefore
—_—

OQ -n=xcosa+ycospB+zcosy = p. (8.9)

We have obtained the normal equation of a plane. The variables cos «, cos 3, cos y
are called the direction cosines of the vector n.
Take the general equation of a plane

Ax+By+Cz+ D =0, (8.10)

where D # 0.

Fig. 8.2 To the derivation of
the normal equation of a
plane
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The normalizing factor is calculated by the formula:
=— sgn(D) (8.11)
JA2y B4t

(cf. the formula (7.32)).
If we multiply (8.10) by the normalizing factor w, then as a result we obtain the
normal equation of the plane:

w(Ax + By +Cz + D) = 0. (8.12)

Note 1If the condition D = 0 is met, then the plane passes through the origin of

coordinates, and the normalizing factor can be taken with an arbitrary sign: u =
1

VA2 + B2+ C2

8.5 Equation of a Plane That Passes Through the Specified
Point Parallel to the Two Specified Vectors

Let the plane 7 be parallel to the vectors a1 = (k1, 11, m1) and ar = (k, l2, m3)

and pass through the point Ty (xo, yo, zo). Further, let 7' (x, y, z) be an arbitrary point
—

on the plane. Then the vectors a1, a» and ToT are coplanar. Therefore,

(ToT x ay) -az =0, (8.13)

X—=X0Yy—Y0oZ—20

k1 l1 mi =0 (8-14)
ko 15 my
or
1 my k1 m kil
(x — x0) -y — o) + (z — z0) = 0. (8.15)
I my ky m3 ka p

After expanding the second order determinants and introducing the appropriate
notation, we obtain the general equation of the plane.
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8.6 Equation of the Plane That Passes Through the Three
Specified Points

Given are the following points: Tj(x1, ¥1, 21), T2(x2, y2,z2) and T3(x3, ¥3, 23).
. . RN RGN
Take an arbitrary point 7 (x, y, z) and construct the vectors 717, T11> and T173.

They are coplanar, therefore
X=X Y=Y z2—2
X2 — X1 y2—y1 72 — 121 =O (816)

A3 — X1 Y3 — Y123 —21

The obtained equation is the equation of a plane that passes through the three
specified points.

8.7 Angle Between Two Planes

Consider the planes specified by the equations:
Aix+ Biy+Ciz+ D1 =0, (8.17)
Axx + Bry + Caz+ Dy = 0. (8.18)

For the given planes, construct the normal vectors n; = (A1, By, C1) and ny =
(A3, B, C2). Therefore, the angle w between the planes will be determined from
the relation:

ni-ny A1Ay+ BB+ C1(C

CoOsSw = | ” | = .
ni||n 2 2 2 2 2 2
%2 \/A1+Bl+C1\/A2+BZ+C2

(8.19)

If ny - nyp = 0, then the vectors n1 and n, are orthogonal. Hence,

A1As> 4+ B1 By + C1C; = 0 is the condition of orthogonality of planes.  (8.20)

. .. Ay By C1 )
But if the equalities = = are valid, then the vectors n| and ny are

2 2 2
collinear, and this will be the condition of parallelism of planes.
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8.8 Distance from a Point to a Plane

The concept of deviation of the point 7 (xo, o, zo) from the plane Ax + By +
Cz + D = 0is introduced similarly to the relation (7.37):

Axo+ Byo+ Czo+ D

o= (D) VA2 + B2 4 C?

8.21)

The distance d from the point 7 to the plane is determined as the absolute
value of the deviation d = abs(§).
If the plane is specified in the normal form, then the distance d is determined as

d = abs(cosa - xg +cos B - yo +cosy - z0 — p), (8.22)

where cos «, cos 8, cos y are the direction cosines.

8.9 Pencil of Planes

Assume that two planes are specified by the equations:

A B C D; =0,
: 1x+ Biy+Ciz+ D (8.23)

Axx + By + Caz+ Dy =0.

If these planes are neither parallel nor coincide, then they intersect on some straight
line.

It is obvious that for any real constants A and u, the plane determined by the
equation

A(A1x + By + Ciz + D1) + u(Azxx + Boy + Coz+ Dy) =0 (8.24)

will also pass through this line, because all the points governed by Egs. (8.23) satisfy
Eq. (8.24) as well. The same equation specifies all the planes that pass through a
common line.

A collection of planes passing through the same straight line is called the pencil
of planes.

Example 8.1 Find the equation of the plane that passes through the point
T (4, —1, 2) and a straight line that is the intersection of the planes x +3y—z—5=10
and 2x+y+z+4=0.
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Solution Write the equation of the pencil of planes and fit A and p so that the
required plane passes through the point 7':

AMx+3y—z-5+u-2x+y+z+4) =0, (8.25)

AMA+3- (D) -2-54+u(-2-44+ (- +2+4) =0, (8.26)
—6A—3u =0, (8.27)

21+ pn =0. (8.28)

For example, take the values A = 1 and & = —2. In this case, we obtain the answer:
x+3y—z-5+2)(—2x+y+z+4) =0, or (8.29)
Sx+y—-3z—-13=0. (8.30)

O

Review Questions

1. Write the equation of a plane orthogonal to a specified vector and passing
through a specified point.

2. Define the general equation of a plane?

3. Write the intercept form of the equation of a plane.

4. For solution of what problem is it convenient to use the normal form of the
equation of a plane?

5. How are the directing cosines of the vector @ computed?

Write the equation of a plane that passes through a specified point parallel to

two specified vectors.

Write the equation of a plan that passes through three specified points.

How is the angle between two planes computed?

Define the deviation of an arbitrary point from a given plane.

What is pencil of planes?

o

© 0o

Problems

8.1. Setup the equation of the plane that passes through the origin of coordinates,
if it has the normal vector n = (1, 2, —3).

8.2. Set up the equation of the plane that passes through the point 7'(—1, 0, 2)
and has the normal vector n = (=3, —2, 0).
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8.3.

84.

8.5.

8.6.

8.7.

8.8.

8.9.

x8.10.

8.11.

8.12.

x8.13.

Find the equation of the plane that passes through the points 771(2, —1, 0)
and T>(—5, 1, 1) parallel to the vector a = (0, —1, —7).

Find the equation of the plane that passes through the point Tp(2, —1, 0)
parallel to the vectors a; = (3,5, —8) and ay = (4, 6, —7).

Find the equation of the plane that passes through the point To(1/2, 1/2, 1/2)
parallel to the vectors a; = (0, 1, —1) and @y = (1, 1, 10).

Find the lengths of the segments intercepted by the plane 3x+4y+5z—12 =
0 on the coordinate axes.

What is the distance from the point A(1, 2,9) tothe plane x +y —2z—17 =
0?

Does the plane —2x 4+ 2y — z — 1 = 0 intersect the segment P; P, if the
segment endpoint coordinates are as follows: P;(—5, —5, —5), P»(8, 8, 8)?
Compute the distance between the parallel planes specified by the equations
Ax+By+Cz+ D=0and Ax + By + Cz+ D' =0, where D # D'.
On what condition do the three planes Ajx + B1y + Ciz+ D1 =0, Axx +
Byy + Coz+ Dy = 0and Azx + B3y + C3z + D3 = 0 intersect exactly at
one point? Find the coordinates of this point.

Find the volume of a tetrahedron intercepted by the plane Ax + By + Cz +
D = 0 from the quadrantal angle.

On the axis Oz find the points equidistant from the two planes x — y 4+ z —
10=0andx+y—z+8=0.

Compute the volume of a tetrahedron whose vertices are located at the points
with the coordinates (x1, y1, z1), (x2, ¥2, 22), (x3, ¥3, z3) and (x4, Y4, z4).

Answers and Solutions

8.1 Solution.
Use the formula (8.3) that expresses the equation of the plane that passes through
the point Ao (xg, Yo, z0) perpendicular to the vector n = (n1, na, n3):

n1(x — xo) +n2(y — yo) +n3(z — zo) = 0.

Substitute the coordinates of the point O (0, 0, 0): (x —0)+2(y—0)—3(z—0) = 0.
Hence, the equation of the sought plane has the form x + 2y — 3z = 0.

8.2 Solution.
Substitute into the formula (8.3) the coordinates of the point 7(—1, 0, 2) and the
vector n = (—3, —2, 0); we obtain the equation of the plane:

or

(D= + =D -0+0z—-2)=0,

3x+2y+3=0.
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8.3 Solution.
Select an arbitrary point T (x, y, z) on the sought plane. According to the problem
_— —

statement, the vectors 717, T17> and a are coplanar, therefore, their scalar triple
product is equal to zero:

(ﬁ, TI1T2,a) = 0.

Use the formula (6.33):

x—2y+1z
(T, Tih,a)=| -7 2 1| =—13x —49y + 77— 23 =0.
0 -1 7

Then, the equation of the plane that passes through the points 77 and 75 parallel to
the vector a can be presented in the form 13x +49y — 7z +23 = 0.

8.4 Solution.
Consider an arbitrary point 7'(x, y, z) on the sought plane. The scalar triple

product of (aj,ay, T1T) is equal to zero because of coplanarity of these three
vectors.
Having computed the scalar triple product, we obtain

3 5 =8
—
(ar,ar, ToT)=| 4 6 —7/=13x—-11y—-2z-37=0.
x—=2y+1 ¢z
Hence, the equation of the plane that passes through the point 7y parallel to the
vectors @1 and a3 can be presented in the form 13x — 11y — 2z — 37 = 0.
8.5 Solution.
Using an auxiliary point 7" with the coordinates 7' (x, y, z), similarly to the
solution of the previous problem, we obtain

—
(ay, a2, ToT) =0,

0 1 -1

As a result, the equation of the plane that passes through the point Ty parallel to the
vectors a| and a; has the form 22x —2y — 2z — 9 = 0.
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8.6 Solution.

Assume that the general equation of the plane Ax+By+Cz+ D = 0 is specified,
and D # 0. Pass on to the intercept form of the equation of a plane, dividing both
sides of the equation by —D:

D D
’b:_

D
The variables a = — and ¢ = — _ are modulo equal to the lengths

of the segments intercepted by the plane on the coordinate axes Ox, Oy and Oz,
respectively (see the formula (8.6)).
Having substituted the values of the coefficients A = 3, B =4,C =5, D =
12

—12,weobtaina =4,b =3,c = 5
8.7 Solution.

Write the equation of a plane in normal form:

1
(Fhy=2-1D=  (r+y=22-17)=0.

v

Substitute the coordinates of the point from the problem statement into the normal
equation and find the distance from this point to the plane:

V12412 4 (=2)2

32

1
d = ab 142-18—17)) = ~~.
as( 6( * )) V6

v

8.8 Solution.

The plane divides the space into two parts: —2x+2y—z—1 > 0and —2x 42y —
z—1 < 0. If two endpoints of the segment are located in different parts of the space,
then it is obvious that the segment intersects the plane. Substitute the coordinates of
the points from the problem statement:

2 (=5 +2- (=5 — (=5 —1=4>0,
~2-84+2-8-8-1=-9<0,

Therefore, the points P; and P, are situated on the opposite sides of the plane, and
the segment P; P, intersects the plane —2x +2y —z — 1 = 0.

8.9 Solution.
Find the deviation of each plane from the origin of coordinates:

1 1
Dsgn(D), & =

51 = — —
VA2 + B2 4 C? VA2 + B2 4 C?

D’sgn(D’).
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Then the distance d between the parallel planes is equal to the absolute value of
the difference of these deviations:

d = abs(§; — 62)

= abs( — Dsgn(D) + D’sgn(D’))

VA2 + B2 4 C? VA2 + B2 4 C?
_abs(D' = D)
VA2 + B2 42
8.10 Answer:
The condition of three planes intersecting at one point is that the determinant is

other than zero:

A By ¢4
AL =|A; B, Co| #0.
A3 B3 C3

The coordinates (xp, yp, zp) of the intersection point of these planes are

D By Cy | Ay Dy Cy | A1 By D
XPZ—A D> By Ca > )’PZ_A Ay Dy Cal, ZP=—A Ay By Dyl -

D3 B3 C3 A3 D3 C3 A3 B3 D3
Note that if A = 0 and at least one second order minor of the matrix
Ay B1 ¢4

Ao By C, | 1s other than zero, then all planes are parallel to the same line. But

A3 B3 C3
if all the second order minors are zeroes, then the planes have the common line.

8.11 Solution.
Pass on to the intercept form of the equation of a plane:

A B C__
p* p’ p*T "
D D D

- =a, — _b7 - =,
A B C

where a, b and ¢ are modulo equal to the lengths of the segments intercepted on the
coordinate axes by the plane and coinciding with the edges of the tetrahedron. The
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volume of the tetrahedron Ve, and the volume of the parallelepiped Vi, are bound
as follows:

1
Vietr = 6 Vpar, where Vpar = abs(abc).

Substitute the values of a, b and c:

1 D?
Viewr = éabs ABC )"

8.12 Solution.
Find the normal equations of the planes:

1
x—y+z—10) =0,
\/3( y )

1
— x+y—2z+8 =0.
\/3( y )

The coordinates of the point located on the axis Oz are (0, 0, zp), where zp € R. In
order to find the distance from this point to the plane, substitute the coordinates into
Egs. (8.22):

abs(zo — 10)
=d,
V3
abs(—zo + 8) p
= daj.
V3

Equate the distances:
abs(zg — 10) = abs(—zp + 8) = zo = 9.

So, the problem statement is satisfied by a point with the coordinates (0, 0, 9).

8.13 Solution.
Denote the vertices of the tetrahedron (x;, y;, z;) by A;, respectively (i =
1,2,3,4). The volume of the tetrahedron is one sixth part of the absolute value

of the scalar triple product (A1A2, A1A3, A1A4):

1 | X2 = X1 Y2—=Y122—21
V = 6abS(A1A2, A1A3, A1A4) = 6abs X3 — X1 y3 — yl 3 — 21 -

X4—X1 Y4 —YV124—21
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Note that this expression can be rewritten in equivalent form:

x1yrz1 1

1 X 21

V = abs 20222 .
x3y323 1

X4 y4 24 1



Chapter 9 )
Equation of a Line in a Space Shethie

9.1 Equation of a Line That Passes Through the Specified
Point Parallel to the Specified Vector

Assume that the line L passes through the point Ty(xg, yo, zo) parallel to the vector
a = (k, 1, m). Take an arbitrary point 7' (x, y, z) on the line and construct the vector
ﬁ = (x — X0,y — Yo, Z — 20), parallel to the line L and collinear with the vector
a. Then, we can write the equation

X — X0 y—=Yo =20
e S 0= (CAY)
This relation is referred to as the canonical equation of a line that passes

through the specified point parallel to the specified vector, and the vector

a = (k, 1, m) is referred to as the directing vector.

From the canonical equation (9.1), we can easily derive the parametric equation
of such a line:

X — xo = ku,

y—yo =lu, 9.2)

7 — 20 = mu,

where u € R is the parameter of the line.

Example 9.1 Let us find the equation of the line that passes through the point
T (3, —1, 0) perpendicular to the plane x — 4y + 7z — 10 = 0.
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Solution The normal vector of the plane n = (1, —4, 7) will in this case coincide
with the directing vector for the line:

_3 1
e _yrl e 9.3)
1 4 T 7

0

Example 9.2 Let us find the canonical equation of the line that is the intersection of
the planes determined by the equations —x —y +z+2=0and 2x +4y —z =0.

Solution The line is orthogonal to the normal vectors of each of the planes: n; =
(—=1,—-1,1),n2 = (2,4, —1). Therefore, as the directing vector of the line, we can
take a = n1 x nj.
i j k
a=|-1-11|=-3i+j—-2k, a=(-3,1,-2). 9.4)
2 4 -1

As the coordinates of the point that lies on the line, we select any solution of the
system

—x—y+z+2=0,

9.5)
2x +4y —z=0.
Let z = 0, then
—-Xx —y=-2,
=>x=4, y=-2. 9.6)
2x +4y =0,
Therefore, the point T (4, —2, 0) lies on the line.
Therefore, the equation of the sought line has the form:
—4 2
roa_yte < 9.7)

-3 1 -2’
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9.2 Equation of a Line That Passes Through the Two
Specified Points

Assume that the line L passes through the points T7(x1, y1, z1) and T2(x2, ¥2, 22).
—>
Then, the vectora = T17T2 = (x2 — x1, Y2 — y1, 22 — 21) is parallel to the line L, and
the equation of a line that passes through the two specified points in canonical
form looks as follows:
T yTma e (9.8)
X2 — X1 y2 =) 2 — 21
Example 9.3 The line that passes through two points with the coordinates
(11,2, —6) and (13, 0, 7) is represented by the equation:

x—=11 y=2 z+46

9.9
2 -2 13 ©-9)
O

9.3 Angle Between Two Lines

Consider two lines
T _ymn_zma (9.10)
k1 I mi

tTh_ymn_ T ©.11)

k 153 my

The angle between two lines » will be equal to the angle formed by the directing
vectors a; = (k1,11,my) and ap = (kp, I, m3):

. kiko + 111
w = arccos (@1 -a2) = arccos tha i o+ mimy . 9.12)

a a) ( 2 2 '”2 (:2 2 le
| ! | | | \/ 1 ll 1\/ 2 l2 2
Example 9.4 Given are the lines:

x—4 y+5 z+1
= = , 9.13

6 3 —1 ©.13)
x—=2 y+6 z+2

. 9.14
2 1 —1 ( )

Show that these lines are collinear and find the angle between them.
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Solution The necessary and sufficient condition of collinearity of the lines is the

equality to zero of the scalar triple product (a1, a2, T112), where a; = (6, 3, —1),
ay = (2,1, —1) are the directing vectors of the lines, and the points 77 and 7, have
the coordinates 771(4, —5, —1), T> (2, —6, —2).
—
Compute (a1, a2, T112):

6 3 —1
—>
(ar,a2, TT?))=|2 1 —1|=0. (9.15)
-2 —-1-1

Therefore, the lines are collinear. The angle w between them is determined from
the condition

6-243-14+(-1)-(—1 8
cosw = = . (9.16)
V62 +32 4 (=122 + 124 (=12 /69
As a result, we obtain the angle between the two lines
w = arccos . 9.17)
V69
O

9.4 Angle Between a Line and a Plane

Assume that the line L and the plane 7 intersect at some point, and assume that the
vectors are given: n = (A, B, C) is the normal vector of plane 7, and @ = (k, [, m)
is the directing vector (see Fig.9.1).

Fig. 9.1 The angle «
between a line and a plane a
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If the line and the plane form the angle «, and the vectors n and a for the angle
B, then o + 8 = Z Then,
(n-a)

nllal”’

os B cos B = cos (7-2[ — cx) =sina, (9.18)

and the angle o between the line and the plane is determined from the condition:

(n-a) Ak + Bl + Cm
Inllal A2+ B2+ C2/K2 4+ 12 + m2’

sina =

(9.19)

Condition of parallelism of the line L and the plane 7 (including the belonging
of L and m):

Ak + Bl +Cm = 0. (9.20)

Condition of perpendicularity of the line L and the plane 7:

A B C
= = . 9.21
k l m ( )

a c
(Here, the equalities of the form = =  are understood in terms of ad = bc.)

We obtain the condition of belonging of the line

x—xlzy_yIZZ—Zl (9.22)
k l m
to the plane Ax + By + Cz + D = 0.

For this, it is necessary and sufficient that the point 77(x1, y1, z1) should lie on
the plane, and the vectors n = (A, B, C) and a = (k, [, m) should be perpendicular
to each other. Therefore, the condition of the line’s belonging to the plane consists
in the fulfilment of the equalities:

A B C D=0,
: X1+ By1 +Cz1 + 9.23)

Ak + Bl +Cm =0.
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9.5 Condition of Two Lines’ Belonging to a Plane

The two lines:

X—Xxr _ y—n i—Z

L = ! , passing through the point 77(x1, y1,21), and
kq I mi

Ly : TR _ YT _ 7 ZZ, passing through the point 72 (x2, y2, z2),
ko I my

in space can

1. intersect;
2. be parallel;
3. be skew.

In the first two cases, they lie in the same plane. The two lines that do not intersect
and are not parallel are called skew lines.

The necessary and sufficient condition of belonging of the lines L; and L,
to the same plane consists in coplanarity of the vectors a1 = (k1, 1, m1), ay =

(k2,lr,mp) and T1' T» = (x2 — X1, Y2 — Y1, 22 — Z1), i.e. the determinant’s equality
to zero must be valid:

X2 —X1Y2—Yy122—121
kl ll mi =0 (924)

ko b my
Condition of parallelism of two lines:

f_h_m 9.25)
ky b omy ‘

For intersection of lines, it is sufficient that at least one of the equalities (9.25)
is violated and the condition (9.24) is valid.

Example 9.5 Find the planes that pass through the line

x—4 y—-8 z+l1

= = 9.26
-8 —1 3 (9-:26)

and are orthogonal to the plane —3x +y +z+3 =0.
Solution The directing vector of the given line a = (—8, —1, 3) is the normal

vector to the plane n = (-3, 1, 1).
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Fig. 9.2 To Example 9.5.
Mutual arrangement of the

—
vectors a and Ty T

/i _/
[N 4

The point Ty (4, 8, —1) belongs to the sought plane since it lies on the line (see
Fig.9.2).

Write the equation of the plane that passes through the point 7' and is parallel to
the two vectors a and n (the vectors a, n and m" are coplanar):

x—4y—-8z+1

-8 -1 3 |=0, 9.27)
-3 1 1

hence:
—4x -4 -y -8 —1lz+ 1 =0. (9.28)
Thus, we obtain the sought equation of the plane:
4x +y+11z—-13 =0. (9.29)

O

Example 9.6 Find the equation of the plane that passes through the two parallel

lines:
-U -V 4 - U -V - W
Tt _ymm_z=Woxmth Yy o (9.30)
k l m k l m

and at least one of the inequalities is valid: Uy # Ua, V1 # Vo, W1 # Wa.

Solution The sought plane passes through the points 77(Ujp, Vi, Wi) and
T>(Us, V2, W5) and is parallel to the directing vector a = (k, [, m). On the other

hand, this plane is parallel to the vector 717> = (Uy — Uy, Vo — Vo, Wo — Wp).
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Let T'(x, y, z) be the current point of the plane.
— =
Write the condition of coplanarity of the vectors 71T, @ and T T>:

x—=U y—-Vi z—W
k l m =0. (9.31)
U, -U Vo =V W, — W

The relation (9.31) sets up the equation of the plane that passes through two

parallel lines. O

Review Questions

0N Lk~ W

. Write the equation of a straight line that passes through a specified point parallel

to a specified vector.

. What does the equation of a line in space that passes through two specified points

look like?

. Write the formula for computing an angle between lines in space.
. How is an angle between a line and a plane computed?

. Formulate the condition of parallelism of a line and a plane.

. Write the condition of perpendicularity of a line and a plane.

. What lines are called skew lines?

. What is the condition of parallelism of two lines in space?

Problems

9.1. Find the intersection points of the line specified by the equation

2x +4y+2z+9=0,
4x —6y —2z+1=0,

with the coordinate planes.
9.2. Find the equation of the plane that passes through the two parallel lines:

x=2 'y z—1 x y+1 =z+1
2 3 374 6 -6

9.3. Find the coordinates of the foot of the perpendicular dropped from the point
T(,2,—4)ontotheplanex +y —z+3=0.
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-2
9.4. Determine whether the plane 8x — 3z + 11 = 0 and the line * 5 = -

-1
are parallel.

1
9.5. Determine whether the plane x + 2y — z — 2 = 0 and the line * 3 =

1
Y _?i_ = Zl are parallel?
9.6. Write the necessary and sufficient condition of perpendicularity of the plane

Ax+By+Cz+D=0mmmumex;x°:y;yozz_zq
m
—X0 _Y—Yo Z—20

9.7. Prove that the condition of belonging of the line * /
m

to the plane Ax 4+ By 4+ Cz + D = 0 has the form

A B C D=0,
X0+ Byo + Czo + 9.32)
Ak + Bl + Cm =0.
%9.8. Show that the distance from the point Ty(xg, yo, zo) to the line TR
Y _l _LmH can be calculated by the formula
m
2 2 2
g Fi+F5 + F;
k2+12+m2’
where the following designations are introduced
/ m m k k l
F = , P = , 3= .
Y1 —Y0<21 —20 21 — 20 X1 — X0 X1 —X0 Y1 — Yo
9.9. Find the acute angle between the lines specified by the equations * =
y—9 z+42 x y+1 z+4
= and = = .
-5 2 3 —6 3 . 9 5
9.10. Find the obtuse angle between the lines * +1 =7 _5 = Z—; and
x=3 y-9 z
-3 3. 5
9.11. Find the equation of the plane that passes through the line
— 10 10
* _r_Et (9.33)

-7 3 —1
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parallel to the line

1 2 -6
el _y+e_-0 (9.34)
2 4 8

. . X=X - -2
x9.12. Compute the distance between the skew lines R / - !
1 1 mi

X—X2 _y—y2_2—22
ko b my '

and

Answers and Solutions

9.1 Anszméer: 17 19 17 19
(_ s 7O>’<_ 701_ 7), (O,_ 129)-
14" 14 8 4 2
9.2 Answer:
9x — 10y —4z - 14 =0.

9.3 Solution.
Write the equation of the line that passes through the point 7' perpendicular to
the plane:

x _ y—=2 z+4

1= 1 1 (9.35)
Represent the equation of this line in parametric form:
xX=u, y=u+2, z=—u—4, (9.36)
where u € R.
Substitute these coordinates into the equation of the plane:
u+wu+2)—(—u—4)+3=0, (9.37)

hence, we obtain u = —3.
Knowing u, find the coordinates of the intersection point of the line and the plane:

x=-3, y=—-1, z=—1. (9.38)

So, the intersection point of the perpendicular dropped from the point 7 onto the
plane has the coordinates (—3, —1, —1).
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9.4 Solution.
X —x - -
The condition of parallelism of the line 0 _yTX _ <m0 and the

plane Ax+ By+Cz+ D = Oreduces to fulfilment of the equahty Ak+ Bl +Cm =20
that reflects orthogonality of the directing vector T = (k, /, m) and the normal to
the plane n = (A, B, C).

According to the problem statement, T = (2, 3, 8), n = (8,0, —3).

Since the equality to zero of the scalar product (t - n) = 0 is valid, then the line
and the plane are parallel.

-1 1
9.5 Answer: no, the plane x + 2y — z — 2 = 0 and the line * 3 = Y ;_ = Zl

are not parallel.

9.6 Solution.
The normal vector of the plane Ax + By + Cz + D = 0 has the coordinates

(A, B, C). At the same time, the directing vector of the line * —kxo = Y _l Yo =

Z—20 .
0 is equal to (k, [, m).
m

In order for the line to be perpendicular to the plane, it is necessary and sufficient
that the normal vector of the plane be collinear with the directing vector of the line:

A B C

k=1l om
9.7 Proof.
Indeed, the first equation (9.32) means that the point (xg, yo, z0), through which

the line passes, belongs to the plane. The second equation reflects the fact of
parallelism of the line and the plane (see Problem 9.4).

9.8 Proof.

From the equation of a line, we find the coordinates of its directing vector s =
(I, m, n). Denote the point (x1, y1, z1) that lies on this line by 77 (x1, y1, 21).

It is known from the properties of the vector product that the modulus of the
vector product of vectors is equal to the area of the parallelogram constructed on
these vectors:

—
= |ToT X s|.

On the other hand, the area of the parallelogram is equal to the product of its side
by the height drawn to this side: S = |s|d.

In our case, the height of the parallelogram is equal to the distance d from the
point to the plane, and its side is equal to the modulus of the directing vector |s|.
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Having equated the expressions for the area, it is easy to obtain a formula of the
distance from the point to the line:

_ |ToT7 % s|

Is|

d

Hence, we find
i j k
>
ToTy X s = |x1 —x0 y1 — Y0 21 — 20
k l m
= (m(y1 — yo) — I(z1 — 20))i
+ (k(z1 — z0) — m(x1 — x0)) J
+ ((x1 — x0) — k(y1 — yo)k.

Thus,
—
[ToT; X s|
2 2 2
l m m k k l
= + + ,
Y1 —Y0Z1 — 20 21 — 20 X1 — X0 X1 — X0 Y1 — Yo
where
Is| = VK2 + 12 + m2.
Therefore,
2 2 2
l m m k k l
+ +
Y1 — Yo Z1 — 20 21 —20 X1 — X0 X1 —X0 Y1 — Yo
d =
VIR + 12+ m?

9.9 Solution.

The lines are specified in canonical form.

Find the angle o between their directing vectors a = (2, —5,2) and b
(3,-6,3):
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2:34+(=5)-(=6)+2-3 14

cCoso = =

V22 (=52 +22 /324 (-6)2 +32 3722

14
The sought angle is « = arccos < )
3v22

9.10 Solution.
Find the angle o between the directing vectors a = (—1,—-5,7) and b =
(-3, 3, 5) of the specified lines:

a-b
la||b|

CosSo =

We substitute here the numeric values from the problem statement and obtain

(1) - (=3)+ (=5)-3+7-5 23

coso = =

JED2 4+ (=52 4 72/(=3)2 432452 54129

23
Therefore, the sought angle is 7 — o« = m — arccos .
grane (w 129)

9.11 Solution.
The sought plane is parallel to the directing vectors @y = (—7,3, —1) and a; =
(2, 4, 8) and passes through the point 7o (10, 0, —10) that lies on the first line. Thus,

—
the vectors a1, ay and ToT are coplanar.

Expanding the determinant that expresses the scalar triple product (797 , a1, a3),
for example, in the first row, we obtain

x—10y z+10
-7 3 —1 |=28(x—10)+54y —34(z+10) =0,
2 4 8

and we finally obtain
14x +27y — 17z — 310 = 0.

9.12 Solution.

Introduce the designations 71 (x1, y1, 21), T2(x2, ¥2, 22), a1 = (k1, 1, m1), az =
(k2, I, m2). N

Consider the parallelogram constructed on the vectors 717>, a; and ay, and
compute its volume V.

On the one hand, the volume V is equal to the product of the module of the
vector product |a; x a3| and the height of the parallelogram. On the other hand,

—>
V =abs(T 1>, a1, ay).
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Since the sought distance d between the skew lines is equal to the height, then

—
_ abs(T172, a1, a2)

lai x as|

X2 —X1Y2—Y122—121

abs| ki I mi

ko I mo
d= .
2 2 2

ki 11 my my ki
- +

ky Ir I my my kp



Chapter 10 )
Bilinear and Quadratic Forms fleckir

10.1 Bilinear Forms

Assume that in a n-dimensional vector space L, a basis B = (e1,e2,...,e,) is
specified. Consider two vectors belonging to the space L, :

n n
x = inei, y= Zyiei, (10.1)
i=1 i=1

where x;, y; € Rforalli =1,2,...,n.
The linear combination of all possible products of the projection of the vectors x
and y on the basic normalized vectors

n
Z aijXiyj, (10.2)

ij=1

where a;; are arbitrary real numbers, is referred to as the bilinear form of A(x, y)
defined on the basis B. The matrix A = (a;;), where 1 < i, j < n, is called the
matrix of bilinear form. As is easy to see, an arbitrary bilinear form can be written
with the help of the matrix multiplication operation as

Ax,y)=xTAy. (10.3)

The following properties of linearity of the form are fulfilled for each of its
arguments:
Vx,y,z€ L, andVa e R

1. Ax + y,z) = A(x, z) + Ay, 2),
2. Alax, z) = aA(x, 2),
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3. Ax, y +2) = Alx, y) + A(x, 2),
4, Ax,az) = aA(x, 2).

A bilinear form is referred to as symmetric, if for any x, y € L, the condition
A(x, y) = A(y, x) is fulfilled.

A bilinear form is referred to as positively definite, if Vx € L,, x # 0, the
inequality A(x, x) > 0 is fulfilled.

Example 10.1 Consider the vectors x = (x1, x2, x3) and y = (y1, y2, y3) of some
three-dimensional vector space, and the bilinear form A(x, y) = x;y; + 3x2y2 +
8x3y3, defined on the basis of this space. The matrix A of bilinear form will in this
case have the following diagonal form:

100
A=1030]- (10.4)
008
Represent .4 in matrix notation:
100 | »n
A(xsy):xTAy:[-xlv-x27-x3] 030 y2
008] |y
N
= [x1,3x2, 8x3] | yo | = x1y1 + 3x2y2 + 8x3y3. (10.5)
¥3

It is easy to show that it has the properties of symmetry and positive definiteness:

A(x, y) = x1y1 + 3x2y2 + 8x3y3 = y1x1 + 3y2x2 + 8y3x3
= A(y, x) = the form is symmetric; (10.6)

A(x, x) = x} 4 3x3 + 8x3 > 0 for all non-zero vectors x

= A(x, y)is a positively definite form. (10.7)

d

Example 10.2 M(x,y) = x1y1 — x2y2 — X3y3 — X4y4 is a bilinear form on R*. As
is easy to see, it is symmetric, but not positively definite. Note that this form defines
the space-time metric in the special theory of relativity [45]. O
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10.2 Quadratic Forms

Quadratic form will be referred to as the expression
w(x) = A(x, x), (10.8)

where A(x, x) is some bilinear form. The name “quadratic form” is associated with
the fulfilment for this expression of the property of the second degree homogeneity
in the argument of the form: Vo € R the following equation is valid:

w(ax) = a*w(x). (10.9)

Example 10.3 1In the basis of the bilinear form M (x, y), defined in Example 10.2
on page 336, we can construct the quadratic form

1(x) = M(x,x) = xi — x5 —x3 —x; (10.10)

that depends on four variables: x1, x2, x3 and x4. O

If in the n-dimensional vector space L, the basis is specified and the vector
x =[x1,x2,..., xn]T is selected, then

n
ox)=xTAx = Z aijxixj, (10.11)
i,j=1

which allows interpreting the quadratic form as a function specified on the set of all
possible vectors x.

The matrix A = (a;;) is referred to as the matrix of quadratic form w (x). This
matrix can be deemed symmetric, since the expression of the form a;; x;x j+a;x j x;,
due to commutativity of multiplication of real numbers, can always be represented
as

aijXiXj +ajixjxi =ajjXxiXj +ajixjx, (10.12)

where the designation a;; = @;; = (a;; + aj;)/2 is introduced.
So, an arbitrary quadratic form in some basis can be specified in matrix form:

xTAx, (10.13)

where x = (x1, x2, ..., X,) is the column composed of variables, and the matrix
A of quadratic form always allows a notation in symmetric form: a;; = a;; for all
i,j=1,...,n.
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The symmetric bilinear form A(x, y) is referred to as polar to the quadratic form
w(x) = A(x, x). For the quadratic form, the formula is valid:

1
Ax, y) = 2[w(x+y)—w(x)—w(y)]. (10.14)

Example 10.4 Find the bilinear form polar to w(x) = x1x2 + x2x3 + x1x3.

Solution According to the definition of polar form (10.14), we obtain

1
Ax, y) = 2[()61 + y)(x2 + y2) + (x2 + y2)(x3 + y3) + (X1 + y1)(x3 + ¥3)
— (x1x2 + x2x3 + x1x53) — (y1y2 + Y253 + y1y3) |- (10.15)

After algebraic transformations, we find the expression for the sought bilinear form:

1
A, y) = ) (1y2 +x1ys 2231 + 2233 + 0331+ x372)- (10.16)

O

When passing to a new basis, i.e. during nondegenerate change of the variables
X1, X2, ..., X, with the change matrix C, the matrix A" of quadratic form in the new
basis will take the form:

A'=cTac. (10.17)

It is known that changing the basis does not result in the change of the rank of
the matrix in quadratic form.

Rank of the matrix in quadratic form is referred to as the rank of quadratic
form. If this matrix has a rank equal to the dimension of the vector space, i.e. the
number of variables n, then the quadratic form is called nondegenerate, and if the
rank is less than n, then it is called degenerate.

Example 10.5 Find the matrix of quadratic form of the three variables:
w(x) = 3x} + 2x1x2 — Sx1x3 — X3 + X3 (10.18)

Solution The diagonal elements a;; of the matrix of quadratic form w(x) are
defined as the coefficients of the quadratic summands xl.z, and the non-diagonal ones
a;jj, where i # j, are twice smaller than the respective coefficients of the summands
of the form x;x;:

31 -5)2
A= 1 -1 o |. (10.19)
5,20 1
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Using any of the known methods for computing the rank of the matrix, for
example, the method of bringing to echelon form, we find rk A = 3. Since the
tank of the matrix A is equal to the number of variables, then this quadratic form is
nondegenerate.

In matrix notation, the quadratic form can be represented in the form:

31 =52 [«
wx) =[x, x2,x3]| 1 -1 0 x| - (10.20)
520 1 ||x

(]
10.3 Bringing the Quadratic Form to the Canonical Form
If, in some basis, the matrix of quadratic form takes diagonal form
[ 00... |
0A0...
A= ) 10.21)

then, as is easy to see, the quadratic form is formed by a linear combination of
squares of the variables x1, x2, ..., x,:

@(X) = AMXT +Ax3 + - + Apx?. (10.22)

The crossing summands of the form x;x; fori # j are in this case not included into
the expression for w(x).

Among the coefficients A;, wherei = 1,2, ..., n, there can be positive numbers,
negative numbers and numbers equal to zero.

Theorem 10.1 For each quadratic form, there exists a basis, in which it has the
canonical form:

o(x) =Y ix}. (10.23)
i=1

Attention should be paid to the fact that the canonical basis is defined non-
uniquely.
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10.3.1 Lagrange’s Method of Separating Perfect Squares

In applications, we often come across a problem of bringing a quadratic form to a
diagonal form. Several methods have been suggested for solving this problem.

Lagrange’s method of bringing the quadratic form to the canonical form
consists in the following.

n
Assume that the quadratic form w(x) = Y a; jXxixj is given, defined in the
i,j=1
basis of the space L.
Depending on the presence in the sum of the summands of the form a,-ixl.z,
consider two cases.

1. At least one of the coefficients as; of the quadratic summands is not equal to zero.

The main idea of the method consists in separating the perfect square, uniting all
the summands that contain the variable x;. The obtained perfect square is used as the
basis for change of the variables, excluding the terms linear in x;. If in the form still
remain crossing variables of the form x;x;, then we return to the beginning of the
procedure. Otherwise, the form contains only quadratic summands, and the solution
is complete.

As we can see, without loss of generality, we may assume that aj; # 0.

Consider the first step of Lagrange’s method in more detail.

Denote by S the sum of all summands containing x;:

S = anx} + 2apx1x2 + - - - + 2a1,X1 %, (10.24)

and complete the square of S. We obtain

2
S = a11<x1 + a12X2 + ..o+ alnxn) — R, (1025)
air at

where the expression R does not contain x in its notation.
Then, change the variables

ar Aain
xp=x1+ x4+ X,

arl ari (10.26)
xl=x; fori=2,...,n.

Then, the quadratic form in the new basis will take the form:

n
o) =an(x)’+ Y ajxjx). (10.27)
i, j=2
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From here on, the same method can be applied to the variables x,, x3 and so on,
to finally exclude all summands of the form x;x; fori # j.

2. All coefficients are aj; = 0.

In this case, select a;; # 0 for some i # j and change the variables:

xj=x;—x\ (10.28)

As a result, each product x;x; will be presented in the form of a linear
combination of the quadratic summands x;x; = (xlf )2 — (x})z, and we will arrive at
the first case.

After step (1) and, when necessary, step (2), bringing of the quadratic form to the
diagonal form will be completed.

Example 10.6 Using Lagrange’s method, bring the following form to the canonical
one

w(x) = 2x1x2 — 6x1x3 — X3 + 5x3. (10.29)

Solution Collect the summands that contain x»:

—x% + 2x1x2 —6x1x3 + 5)c32 = — (x% —2x1x + x%) + x% — 6x1x3 + 5)c32
-\.Sf- perfe;:quare -—YI-?
=—(x1 —x2) + xl2 — 6x1x3 + Sx?%. (10.30)

Change the variables:

y1i =X,
y2 =-x1 —xz’ (1031)
V3 = X3.
As a result, we obtain the form
_ 2 2 2
w(y) = —y; +y7 — 6y1y3 + 5y3. (10.32)

Now collect the summands that contain y;, and complete the square of them

o(y) = —y3 + OF — 6y1y3 +9y3) — 9y3 + 553
= =3+ (1 — 3y3)? — 42, (10.33)
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—_

Perform the second change of the variables:

21 =y1 — 3y3,
22 =y2,
3 =Y3.

We finally obtain w(z) = Z% - z% — 4Z§.

Bilinear and Quadratic Forms

(10.34)

O

Example 10.7 Using Lagrange’s method, bring the following form to the canonical

one

o (X) = X1X2 + X1X3 + X2x3.

(10.35)

Solution Since there are no summands of the form xl.2 in this expression, we change

the variables

X1 = x| + x5,

X2 = X| — X5, (10.36)
x3 = X3,
as a result of which we obtain
N o_ N2 ’o N2 /\2 /N2
o) = [ + 26035 + (05| - (69)? — @) (10.37)
= (x] + 2% — () — (xh)2 (10.38)
The new change
y1 = x| +x3,
y2 = X5, (10.39)
V3 = X}
results in the form
() =i —y;3 — ¥3, (10.40)
1 1
where y; = 2()61 +x2) +x3, 2 = 2()61 —X2), y3 = X3. O
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10.3.2  Jacobi Method

Let the following determinants composed of the elements of the matrix A = (a;;)
of the quadratic form w (x) be other than zero:

Ay =ay, Ay =" (10.41)

azy azz

ajp al ... din

a1 azz ... Ay

Ap=| | ) - (10.42)
anl An2 ... dpn
Then, there exists the basis B = (eq, e2, ..., €,), in which w(x) is presented in the
form:
Aq 2 AV 2 Ap 2
zZ) = cee , 10.43
(z2) A + A2 +--+ A, ( )
where z;,i = 1,2, ..., n, denote the coordinates of the vector x in the new basis

B, and for uniformity, we assume that Ag = 1. This is the essence of the Jacobi
method of bringing the quadratic form to the canonical form.

In comparison with Lagrange’s method, the Jacobi method has an advantage that
the transition to the basis B is direct, without any intermediate steps.

The transition from the basis (ej,ez,...,e,) to the canonical basis

(c1,c€2,...,cp) is performed by the formulae

i
cizzmje,, i=1,2,...,n, (10.44)
j=1

A
nyj = (=1 T (10.45)

A
where A;_1 ; is the minor of the matrix formed by the elements from (a;;) that
are situated at the intersection of the rows numbered k = 1,2, ...,i — 1 with the

columns numberedk =1,2,...,j—1,j+1,...,1i.

Note that the introduced determinants A, Ao, ..., A, are called the corner

minors of the matrix of quadratic form.
Rank of quadratic form is the number of non-zero coefficients A; # 0.
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Let us introduce the following designations:

* ny—number of positive coefficients of A; > 0,
* n_—number of negative coefficients of A; < 0,
* no—number of coefficients equal to zero of A; = 0.

The ordered set of integral non-negative numbers (ny,n_, ng) is called the
signature of quadratic form.

The quadratic form w(x) is referred to as positively definite, if for any non-zero
x the inequality

wx) >0 (10.46)

is fulfilled, and negatively definite, if w(x) < 0 is fulfilled.
The quadratic form w(x) is referred to as alternating, if there exist such x; and
X, that the following inequalities occur

wx1) >0, w(xl) <O0. (10.47)

Sylvester’s! Criterion For the positive definiteness of the quadratic form w(x),
it is necessary and sufficient that all the primary minors of its matrix should be
positive: A1 >0, A>» >0,..., A, > 0.

For the negative definiteness of the quadratic form w(x), it is necessary and
sufficient that the signs of the corner minors of its matrix should alternate, and
A1 < 0.

The Law of Inertia The number of summands with positive (negative) coefficients
of a quadratic form brought to the canonical form does not depend on the method
used to obtain such a representation.

Review Questions

Define bilinear form.

Enumerate the property of linearity of bilinear forms.

What bilinear forms are called symmetric and positively defined?

Define quadratic form.

Explain why a matrix of an arbitrary quadratic form can always be deemed to
be symmetric.

What bilinear form is called polar to the quadratic form?

How is the rank of a quadratic form determined?

8. What is the difference between degenerate and nondegenerate quadratic forms?

Dok D=

~_ o

1James Joseph Sylvester (1814—1897), English mathematician.
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9. Explain the methods of bringing quadratic forms to diagonal form: Lagrange’s
method and the Jacobi method.
10. How are the corner minors of a matrix of quadratic form determined?
11. Formulate Sylvester’s criterion.
12. What is the law of inertia of quadratic forms?

Problems

10.1.

10.2.

10.3.

10.4.

10.5.

Which of the following functions F(x, y) of the vectors x = (x1, x2) € R?
and y = (y1, y2) € R? are bilinear forms?

(1) F(x,y) =x1y1 +x2y2;

(2) F(x,y) =2

(3) F(x,y) = (x1 —y)*— (x2 — »)%
(4) F(x,y) = 4x,.

Find the bilinear form that is polar to the form:

(1) xl2 — 2x1x2 + 3x1x3 + 7x§;

(2) —2x7 + 3x1x3 + x2x3;

3) 3x1x3+ x%;

4) x12 + 4x1xp + 4x1x3 — 4x§ — 2x0x3 — x%.

Bring to the canonical form the quadratic form of three variables:

(1) x12 + 2x1xp + 4x1x3 — 4x32;

(2) x1x2 + x1x3 — 6x2x3;

3) —Zx% — Tx1x3;

4) xl2 —4dx1xy + 12x1x3 — x% + 4xox3 + 3x32.

Bring to the canonical form the quadratic form of four variables:

(1) xF +2x1x2 + 213 + 2x1x4 + 3x5 -+ 6x2x3 + 8x2x4 + X5 + 2x304 + x7;
(2) x1x2 + X1X4 4 X2X3 + X3%4;

3) —Sx% + 2x1x4 + 3x§ + x0x3 — 2Xpx4 — x% + 2x3x4 + x%;

“4) x12 + x1x2 + x1x3 + x1x4 + x% + x2x3 + xpx4 + x% + x3x4 + xi.

Which of the following quadratic forms are positively definite, negatively
definite and alternating?

(1) xl2 + x1x2 + x%;

2) x12 — 9x1x7 + x%;

(3) x1x2 + 2x1x4 4 3x2x3 + 4x3X4;
(4) x1x2 + x3%4.
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x10.6. At what values of the real parameter a is the quadratic form:
w(x) = axi + 2x1x2 + (10 — a)x3 (10.48)

positively definite and negatively definite?

L XiXj
%10.7. Show that the form )

L is positively definite.
=it j—1

Answers and Solutions

10.1 Answer:
The functions from items (1) and (4) are bilinear forms.

10.2 Solution.
Use the formula (10.14) for the polar form:

ey
1
Ax, y) = 2[w(x +y) —o®) - o]

1
= 2[(x1 +y)? = 2(x1 + y)(x2 + y2)
+3(x1 4 yD) (3 + y3) + 7(x3 + y3)?
— (¢} = 2x1x2 + 3x1x3 + 7x3) — (0F = 23132 + 3y1ys + 73]

3 3
=X1y1 —XxX1y2 + 2x1y3 —x2y1 + 2X3y1 + Tx3y3;

2
1
A, y) = [ =200+ YD+ 30+ yD (3 + ¥3) + (2 + ¥2) (3 + ¥3)
- (—2x12 + 3x1x3 + x2x3) — (—2)’% +3y1y3 + y253)]
ST SRANIL SUNL e
= X1Y1 2x1y3 2x2)’3 2x3)’1 2x3y2,
(3)

1
Ax, y) = 2[3<x1 + ¥y (3 +y3) + (2 + ¥2)?
— Bx1x3 +x3) — Gyiys +¥9)]

3 3
= 2X1y3 + x2y2 + 2X3y1,
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“4)

Ax, y) = ;[(xl +yD (1 4 y1) + 4G+ y) (o + )
+4(x1 + y1)(x3 + y3)
—4(x2 + y2)* = 2(x2 + y2) (¥3 + y3) — (x3+ y3) (3 + y3)
— (xl2 + 4dx1x2 + 4dx1x3 — 4x§ — 2xpx3 — x%)
— OF +4y1y2 +4y1y3 — 4y — 2323 — ¥3)]
= x1y1 + 2x1y2 + 2x1y3 + 2x2y1 — x2y3 — 4x2)2

+ 2x3y1 — X3y2 — X33,
10.3 Solution.
(1) Transform the expression:
xlz + 2x1x3 + 4x1x3 — 4x§
= X7 + 221 (x2 + 2x3) + (x2 + 2x3)% — (x2 + 2x3)% — 4x3
= (x1 +x2 +2x3)% — (x2 + 2x3)% — (2x3)%.
Change the variables:
Y1 =x1+x2+ 2x3,

Y2 = X2 + 2x3,
y3 = 2x3.

We obtain the quadratic form in the canonical form:
2_ 2 _ 2
Yr—Y2— V3

(2) Change the variables:

x| = x| + X35,
X2 = X| — X,

X3 = Xj.
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Transform the expression:

X1X2 + x1x3 — 6x2x3
= (xi + xé)(xi — xé) + (xi + xé)xé — 6(xi — xé)xé
= (x])? — (x3)* + x| x5 + xjx; — 6x] x5 + 6x5x}

= ()ci)2 — ()cé)2 — Sxixé + 7xéx§
5N\ /5 )\
= ()% =S¥l + (zxg) - (zxg) Tl — ()2
5 \° 5 \?
_ <x; _ 2x§) +Txhxl — () — (zxg)
— x/ _ Sx/ 2_ x/ _ 7x/ 2_ 5x/ 2_ 7x/ 2
1 2 3 2 2 3 2 3 2 3
5 \° 7 \?
= (xi - 2x§> - (xé - 2x§) + 6(x§)2.

Change the variables:

5 1
V1 =x] — %xg = _(x; 4+ x2 —5x3),
y2 =Xy — 2X§ = 2(161 —x2 — 7x3),
y3 = \/6x§.

We obtain the quadratic form in the canonical form:
V= v3 +)3
(3) Transform the expression:

— 2x12 — Tx1x3
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Change the variables:

72
yi=~/2x1 + 4
72
= X3.
y2 4 3

We obtain the quadratic form in the canonical form:
—yi + 3.
(4) Transform the expression:

xl2 —4x1xy + 12x1x3 — x% + 4xox3 + 3x32
= x} — 4x1(x2 — 3x3) + (2x2 — 6x3)*

— (2x2 — 6)(3)2 — x% + 4xox3 + 3x32

=(x] —2x2 + 6)63)2 — 4x§ + 24x7x3 — 36x§ — x% + dxox3 + 3x§

= (x1 — 2x2 4 6x3)% — 5x7 4 28x2x3 — 33x7

2
= (x1 —2x2 + 6)C3)2 — (\/S)Q) + 28x7x3

2 2
144/5 14+/5
_( ;/x3> +( !m) —33x3
2
144/5
= (x1 —2xz+6)€3)2— (x/sz— ;/ )C3>

Change the variables:

y1 =x1 — 2x2 + 6x3,

14
2 =+/5 <X2— X3),

5
\/31
= X3.
y3 5 3

We obtain the quadratic form in the canonical form:

i =3 + 3.

31
5

2

X3.

349
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10.4 Solution.

(1) Transform the expression:

xl2 + 2x1x2 + 2x1x3 + 2x1x4 + 3x§ + 6x2x3 + 8x2x4 + x_% + 2x3x4 + xi
= x% 4+ 2x1(x2 + x3 + x4) + (x2 + x3 + )C4)2 — (2 +x3+ )C4)2
+ 3x% + 6x0x3 + 8x3x4 + x32 + 2x3x4 + xf
=(x1+x2+x3+ )C4)2 — x% — 2xpx3 — 2x0X4 — x% — 2X3x4 — xf
+ 3x% + 6x0x3 + 8xx4 + x32 + 2x3x4 + xf
=(x1+x2+x3+ )C4)2 + 2x§ + 4x2x3 + 6x2x4

2
= (1 +x2+x3+x9)% + <~/2)C2) + 2x2(2x3 + 3x4)

1 ) 1 2
+ 2(2163 + 3x4)° — 2(2363 + 3x4)

2
3v2
=(x1+x2~|—x3+x4)2~|—(«/2x2—|—\/2x3+ 5 x4)

2
— (\/ny, + 3;/ZX4) .

Change the variables:

Y1 = X1+ X2 + X3 + x4,

3v2
y2 = 2x2 + /2x3 + , M
3v2
y3 = /2x3 + , M4

We obtain the quadratic form in the canonical form:

i+ 3 — 3.

(2) Change the variables:

x| = X} + X5,
X2 = x| — X5,
x3 = x5 + X},

o
X4 = X3 — X4.
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Transform the expression:
X1X2 + x1Xx4 + x2x3 + X3X4
= (¥ +x) () —xp) + (¥ + x) (x5 — x9)
+ () = )+ xp) + (v 4 xp) (v — xy)
= (x})? — (x5)? + 2x]x§ — 2xx + (6§)? — (x)?
= (x)% 4 2x]x5 + (¢5)? — ()% — 2x5x) — (x})?
= (x] + 2% — () + x>
Change the variables:

1
yi=x]+x;= 2(x1—|—x2+x3 + x4),

V2 =Xy 4+ x5 = ;(n — X2+ x3 — X4).
We obtain the quadratic form in the canonical form:
Vi =3
(3) Transform the expression:

_ 5x12 + 2x1x4 + 3x% + xpx3 — 2x0Xx4 — x32 + 2x3x4 + x‘%
= xF + 2x4(x1 — x2 + x3) + (¥1 — X2 + x3)?
—(x1 —x2 +X3)2 - SX% + 3x% —+ Xx2x3 —x%

=(x;—x2+x3+ )54)2 — 6x12 + 2x1x2 + 2x§ — 2x1x3 + 3x0x3 — 2x§

2
2 V6
= (x] — X2+ x3 +x4)* — (\/6)61) +2x1(x2 — x3) — ( 6 (x2 — X3))
2
6
+ (ﬁ (xp — x_o,)) + 2x§ + 3x2x3 — 2x§

) V6 i
= (x1 — x2 +x3 +x4)> — [ V6x1 — 6 (x2 —x3)

+ 6x2+3X2X3— 6

1,

X3
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2
V6
= (x1 —x2 +x3 +x4)2—<\/6x1— 6 (x2 — x3)
2 2 2
N \/13 N 8 N 8+/78 8+/78 11,
X X2 X X —_ X — X
6"? 372 78 78 63
2
V6
= (x1 —x2+x3 +X4)2—(\/6X1— 6 (x2 — x3)

2 2
N /13 N 878 \/69
X X — x3| .
67" 718 26
Change the variables:

Y1 = X1 — X2 + X3 + X4,

V6
y2 = /6x1 — 6 (x2 — x3),

\/ 13 N 8/78
= X X3,
y3 6 2 78 3

_\/69
ya = 26x3'

We obtain the quadratic form in the canonical form:

Y=+ — i
(4) Transform the expression:
x12 + x1x2 +x1x3 + x1x4 + x% + xox3 + xox4 + x% + x3x4 + xi
2 1 2 1 2
=x7 +x1(x2 +x3 +x4) + 2(362 +x3+x4)° — 2(362 +x3 + x4)

+x%+xpc3 + xpx4 +x§+x3X4 —i—xi
=[x X2+ x3+x X X2X X2 X.
1+, 3 4 2T XXz, XXy

4X3 2)63)64 4.X4
1 (V3
= x1+2(X2+x3+x4) + 2x2

2
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1 V3 2
+ 2162(363 + x4) + ( 6 (x3 +X4))

2
1 2 3 3
= (x1+2(x2~|—x3—|—x4)) + (ﬁ X2+\2 (x3 -I-X4)>

T NN
X X3X X
373 T g T g

2

= (X1 +  (2+x3 +X4)) <J3x + \23 (x3 +X4)>

2 2 2

2 1 6 6 2
+ <\/3X3> + 3X3)C4+ (;/2 )C4) — <\1/2 X4> + 3)&
2

1 2
= (xl + 2(362 + x3 +x4)> + (ﬁ33€2 + \23 (x3 -I-X4)>

2 2
+ <\/§x3 + {;m) + (\/410x4> .

Change the variables:

1
Y1=x1+ (x2+x3+x4)
V3
n=, x2+ (x3+x4)
\/X3+
J
y4 =

We obtain the quadratic form in the canonical form:
2 2 2 2
Yityatys+ys.

10.5 Solution.

(1) Write the matrix of quadratic form:
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Use Sylvester’s criterion. For this, compute the corner minors:

1
1

1>0 g 1 1y’ 0
=rmo | 2 () 0
1
2
Therefore, the form is positively definite.
(2) Write the matrix of quadratic form:

Therefore, the form is alternating.

(3) Assume that x3 = x4 = 0. In this case, only one non-zero summand x;x;
remains in the quadratic form. It is obvious that this summand can take both
positive and negative values. Therefore, the form is alternating.

(4) Assume that x3 = 0. In this case, only one non-zero summand xjx, remains
in the quadratic form. It is obvious that this summand can be both positive and
negative. Therefore, the form is alternating.

10.6 Solution.
Write the matrix of quadratic form:

a 1
110—a

Use Sylvester’s criterion. For this, compute the corner minors:

a 1
M —a; —a(10—a) — 1.
110—a
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In order for the form to be positively definite, it is necessary and sufficient that both
determinants should be positive:

a>0, a >0,
=
a(l0—a)—1>0; a?—10a+1 < 0;

a>0,

ae (5—2\/6,5+2x/6>.

In order for the form to be negatively definite, it is necessary and sufficient that
the corner minor of the first order should be negative, and that of the second order
should be positive:

a <0,

ae (5—2\/6,5—%2\/6).

This system is inconsistent; therefore, the form cannot be negatively definite at any
values of a.
Consider the cases when the corner minors are equal to zero:
a=0, o(x)=2x1x+ 10x3;

w(x) can take a negative value, for example, at x; = —10, xp = 1;

a=>5-2+6,

o) = (5-2v6) i} + 25122 + (5 +2v6) 13

— <\/5 - 2J6x1>2 +2x1x2 + <\/5 + 2«/6x2>2

= <\/5 — 2v6x; + \/5 + 2x/6x2>2.

It is clear that Vx # 0 the inequality w(x) > 0 is fulfilled.
Ata =5+ 2/ 6, the reasoning is similar.
We obtain the final answer: the form is positively definite if and only if a €

[5 —2J6,5+ 2\/6].
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10.7 Solution.
Transform the expression, having introduced integration by the auxiliary vari-
able ¢:

n XiX n 1 1 n 2
iAj _ =2 5, i—1
= t dt = ( t )dt.
>, =Y [ [ (X
0

ij=1 i.j=17p i=1

n . 2
As is easy to see, the expression ( > xit”l) is always greater than zero at the
i=1
non-zero values of x1, x2, ..., x, and ¢t > 0.
The initial quadratic form is positively definite, since it is the integral of the

positively definite form.



Chapter 11 )
Curves of the Second Order Creck o

The general equation of curve of the second order has the form
Ax? +2Bxy + Cy? +2Dx +2Ey + F =0, (11.1)

where the real coefficients A, B, C are not equal to zero simultaneously.

The expression Ax> + 2Bxy + Cy? is referred to as the quadratic term of the
equation of this curve, 2Dx +2EYy is referred to as the linear term, and F is referred
to as the constant term.

In the so-called canonical system of coordinates, the equation of curve of the
second order takes the simplest canonical form [8].

Let us consider the classification of curves of the second order based on their
canonical form.

11.1 Ellipse

Ellipse is a curve of the second order that in some Cartesian rectangular system of
coordinates is defined by the equation

22 =1, (11.2)
where a > b > 0. The numbers a and b are referred to as the major and minor
semiaxes of the ellipse, respectively.

The points (£a, 0) and (0, £=b) are called the vertices of the ellipse, and (+c, 0),
where ¢ = v/a? — b2, are its foci. We will denote the foci by Fj and F. Figure 11.1
schematically shows an ellipse in the canonical system of coordinates.

In case of equality of the constants a = b, the ellipse degenerates into a circle.
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Fig. 11.1 Ellipse ) y
2 2

* 47 — 1. The directri

2 + p = b e directrices b

x = *a/e are shown by the
dotted lines

|
o
.

)

From the geometrical point of view, the ellipse is a set of points of a plane,
for each of which the sum of distances to two specified points F; and F; (foci) is
constant and equal to 2a > F| F>. The focal distance, i.c. the distance between Fj
and F>, is equal to 2c.

The non-negative number ¢ = c/a < 1 defines the degree of “compression” of
the ellipse on the abscissa axis and is referred to as eccentricity. The greater is the
value ¢, the more pronounced is the “compression” (see Fig. 11.2). As is easy to see,
the eccentricity of the circle is equal to ¢ = Va? — b2 /a = 0. In this connection,
we can say that the ellipse is obtained from the circle through its compression on the
O x-axis, when the ordinates of all its points decrease in the same proportion b/a.

Theorem 11.1 The distance from an arbitrary point P(x, y), which belongs to the
ellipse, to each focus, is equal to

ri=PFi=a—¢x, rmn=PF)=a+e¢x. (11.3)

The ellipse has two directrices — the straight lines of the form x = £a/e. They
are shown in Fig. 11.1 as dotted lines. Directrices are not defined for the circle. The

Fig. 11.2 Ellipses with
different eccentricities: ¢ = 0
(solid line), ¢ = 0.7 (dotted
line), ¢ = 0.9 (dash-and-dot
line)
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directrix and the focus that lie on the same side of the axis Oy will be considered to
be corresponding to each other.

Theorem 11.2 For any point that belongs to the ellipse, the ratio of its distance to
the focus to its distance to the corresponding directrix is equal to the eccentricity of
the ellipse.

Let us consider the mutual arrangement of the ellipse and the straight line. An
arbitrary straight line either does not intersect the ellipse or intersects it at one or two
points. If there is the only common point, such a straight line is a tangent. Exactly
one tangent passes through any point on the ellipse.

The equation of tangent to the ellipse at the point Py(xo, yo) has the form:

B (11.4)

a b2

The ellipse has the following optical property: the light beams originating from
one focus, after mirror reflection from the ellipse, pass through another focus, i.e.
focus on it. This explains the origin of the term “focus” borrowed from optics.

Example 11.1 Let us find the intersection points of the coordinate axes and the

2 2
. X . . .
tangent drawn to the ellipse + Yo 1 at the point with the coordinates

9 4
(3/2,v/3).

Solution Denote the tangency point by Py and verify that it belongs to the ellipse:

2 2
G/2? 3 _

1, or1 =1 —true. (11.5)
9 4

Taking into account that the semiaxes of the ellipse are equaltoa = 3 and b = 2,
substitute the coordinates Pp(xg, yo) into the equation of tangent (11.4):

(3/2)x N V3y _

1. 11.6
9 4 (11.6)

Therefore, the general equation of straight line has the form 2x + 3v/3y — 12 = 0
(see Fig. 11.3). The intersection points of this line with the coordinate axes are (6, 0)
and (0, 4//3). O

The idea of the ellipse as the compressed circle results in an alternative method
of specifying the ellipse in parametric form.
Transform the coordinates in accordance with the formulae

xX'=x, y= y. (11.7)
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2z +3v3y — 12 = 0~
2
\\J

2 2
Fig. 11.3 To the Example 11.1 The ellipse xg + ); = 1 and the tangent to it at the point

Py(3/2,+/3)

After such a transformation, the circle x> + y> = a2

@)?  ()?

2 + 2
the course of mathematical analysis [76], any circle can be specified in parametric
form as

, in the new system of

coordinates, turns into the ellipse = 1. Asis known, for example, from

{x:acost, (11.8)

y = asint,
where the real number ¢ takes the values that belong to the interval [0, 27).

From (11.7) follows that the parametric representation of the ellipse with the
semiaxes a and b will have the form:

= t,
{x AESE T Shere 0 < 1 < 2. (11.9)

y = bsint,

The parameter ¢ is referred to as the anomaly of eccentricity.

11.2 Hyperbola

Hyperbola is a curve of the second order, which in some Cartesian rectangular
system of coordinates is defined by the equation

=1, (11.10)

where a, b > 0 (see Fig. 11.4). The numbers a and b are called real and imaginary
semiaxes of the hyperbola, respectively.
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Unlike the ellipse, which is a connected curve, the hyperbola consists of two
connected components: left and right branches (sheets of the hyperbola).

Vertices of hyperbola are the points (£a, 0). Foci of hyperbola are the points
Fi(—c, 0) and F»(c, 0), where ¢ = Va2 + b2.

b
A hyperbola has asymptotes y = + x that define the run of the curve for
a

infinitely great values of coordinates.

A hyperbola contains only those points of Cartesian plane, the modulus of the
difference of distances of each of which to the two given points F and F; (foci) is
constant and equal to 2a < Fi F». The focal distance is equal to 2c.

For the hyperbola, a concept of eccentricity ¢ = ¢/a > 1 is also introduced.

Theorem 11.3 The distances r1, ra from an arbitrary point P(x,y) of the hyper-
bola to each focus are equal

ri = PFy = abs(a — ex), ry= PF, =abs(a+ &x). (11.11)

The directrices of the hyperbola are specified in the canonical system of
coordinates by the equations x = ¢ and x = — (see Fig. 11.4, where the

directrices are shown by dotted llnes) The directrix and the focus that lie one the
same side of the axis Oy will be considered to be corresponding to each other.

Theorem 11.4 For an arbitrary point that lies on the hyperbola, the ratio of its
distance to the focus to the distance to the corresponding directrix is equal to the
eccentricity of the hyperbola.

The equation of tangent to hyperbola at the point Py(xg, yo) has the form:

XxXo  Yyo
2 =1. (11.12)
Optical property of hyperbola: the light from the source situated at one of
the hyperbola’s foci is reflected by the second branch of the hyperbola so that the
continuations of reflections of the beams intersect at the second focus.

Fig. 11.4 Hyperbola Yy
K22
e 1. The

asymptotes y = = x are

shown by thin solid lines, the
directrices x = :I:a —by F 2
dotted lines ¢ !
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Both for the ellipse and the hyperbola, in the canonical system of coordinates,
the origin of coordinates O (0, 0) is the centre of symmetry of the curve, this is why
the ellipse and the hyperbola belong to the class of central curves.

In conclusion of the section devoted to the hyperbola, we will provide its
representation in parametric form:

==+ ht,
X a cos (11.13)

y = bsinht,

where ¢t € R, coshx = (¢* + ¢7)/2 is the hyperbolic cosine, and sinhx = (e* —
e~ *)/2 is the hyperbolic sine. In the first equation of this system, the sign “+”
corresponds to the right branch of the hyperbola, and the sign “—" corresponds to
the left branch.

11.3 Parabola

Parabola is the noncentral curve of the second order, defined by the canonical
equation in Cartesian rectangular system of coordinates

y? =2px, (11.14)

where p > 0 is the focal parameter of the parabola, or simply the parameter.
The vertex of the parabola is the origin of coordinates (0, 0), the focus is the
point F(p/2,0). The directrix of the parabola is the straight line specified by the
equation x = —p/2 (see Fig. 11.5).
From the geometrical point of view, the parabola is the set of the points of the
plane, for each of which the distance to the focus F is equal to the distance to the
directrix. The distance from the focus to the directrix is equal to the parameter.

Fig. 11.5 Parabola Y
y% = 2px. The directrix
x = —p/2 is shown by a
dotted line

-p/21 \p/2 z




11.4 Degenerate Curves 363

Theorem 11.5 The distance from the point P(x, y) lying on the parabola to its
focus is equal to

r=x+p/2. (11.15)

The parabola is assigned the eccentricity equal to one.
For the parabola, the analogue of theorems 11.2 and 11.4 repeats its geometrical
property, which allows formulating the following generalized statement.

Theorem 11.6 For an arbitrary point that lies on the ellipse, hyperbola or
parabola, the ratio of the distance from this point to the focus to the distance
to the corresponding directrix (to the only directrix in case of parabola) is equal to
the eccentricity of the curve.

The equation of tangent to parabola at the point Py(xo, yo) has the form:

yyo = p(x + xo). (11.16)

Optical property of parabola: the light beams originating from the focus, after
mirror reflection from the parabola, will be directed parallel to its axis of symmetry.
Note that this property of parabola underlies the arrangement of parabolic mirrors
and parabolic antennas.

11.4 Degenerate Curves

Among the degenerate curves of the second order are the curves whose canonical
form is different from the equation of ellipse, parabola or hyperbola. There exist the
following types of such curves: imaginary ellipse, pair of intersecting lines, pair of
imaginary intersecting lines, pair of parallel lines, pair of imaginary parallel lines
and pair of coincident lines. Thus, nondegenerate curves of the second order are
ellipse, hyperbola and parabola (and they alone).

11.4.1 Imaginary Ellipse
Imaginary ellipse is described in the canonical system of coordinates by the equation

=1, (11.17)

wherea > b > 0.
Since the sum of squares of real numbers cannot be equal to a negative number,
this curve contains no points. The term “imaginary ellipse” is associated with the
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fact that when changing the variables x’ = ix, y' = iy, where i = 4/—1, in the new
coordinates we obtain the equation of ellipse (11.2).
11.4.2 Pair of Intersecting Lines
The equation of the form

-7 =0 (11.18)

corresponds to the pair of intersecting lines. Their intersection point is the origin of
coordinates.
Having written the Eq. (11.18) in the form

XY\ (X, Y _
(a _b) <a+b)_o’ (1L.19)
we conclude that it is satisfied by all points of two lines y = bx/a and y = —bx/a

intersecting at the origin of coordinates.

11.4.3 Pair of Imaginary Intersecting Lines
Pair of imaginary intersecting lines is described by the equation

0. (11.20)

The sum of squares is equal to zero if and only if each of the summands is equal
to zero: - 0 and Y _ 0,1i.e. x = y = 0. This condition specifies the only point

a
that coincides with the origin of coordinates.

11.4.4 Pair of Parallel Lines

The equation
x? —a®? =0, wherea # 0, (11.21)

defines two parallel vertical lines x = a and x = —a.
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11.4.5 Pair of Imaginary Parallel Lines

The curve of the second order, specified in the canonical system of coordinates by
the equation

2 4+a>=0 (11.22)

under condition a # 0, contains no real points.

11.4.6 Pair of Coincident Lines

And the final type of the general equation of curve of the second order is
x2=0. (11.23)

This equation is satisfied by the coordinates of all points lying on the ordinate axis.

As a result, based on the canonical form of curves of the second order, they are
subdivided into nine above classes, the most practically important being ellipse,
hyperbola and parabola.

11.5 Algorithms for Computing the Coordinates of the
Tangent Points of Second Order Curve and the Straight

Line
x2
Consider a nondegenerate curve of the second order, for example, the ellipse  , +
a
2
y2 = 1, and an arbitrary point of Cartesian plane P;(x1, y1). Let us provide the

algorithm that computes the coordinates of the tangency points of the said curve
and the lines passing through P; (see Fig. 11.6).

We will begin with deducing the analytical relations for the coordinates of
the sought points. Denote the tangency points by 77 (x;1, yr1) and T2 (x2, yr2). In
Chap. 7 “Equation of a Straight Line on a Plane” it is shown that the equation of the
family of lines passing through the set point P(x1, y;) can be written in the form
y —y1 = k(x — x1), where k < o0 is the slope. The case of a vertical tangent will
be discussed separately.
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Fig. 11.6 Tangents to the y
ellipse 22 + Zz = 1, passing I§!

through a point P T
L N
— a x
=b

It is known that the tangent to the ellipse intersects it exactly at one point (see
page 359). Therefore, the unknown slope k takes such a value that the nonlinear
system of equations

y—y1 =k(x —x1),
2 2
X

2+y2
a b

(11.24)
=1

has a unique solution. Having substituted the first equation of this system into the
second one, we obtain the quadratic equation

(@*k? + bH)x? = 2a%k (kxy — y1)x + a*(kx) — y1)? — a*b*> = 0. (11.25)

The necessary and sufficient condition for the quadratic equation to have the only
root is the discriminant’s equality to zero

D = a*k*(kx; — y1)2 +a? <a2k2 + b2) <b2 — (kx1 — y1)2)
— a2p? (a2k2 b — (kxy — y1)2) —0. (11.26)

Solution of the equation D = 0 relative to the variable k allows writing the values
of the slope:

x1y1 £ \/blez + a2y? — a2b?
k= .

2.2
xl a

(11.27)

Further, let us consider three cases depending on the mutual arrangement of the
point P; and the ellipse.
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2 2
X
1. The point P; lies inside the ellipse, i.e. ; + Z; < 1. The radical expression
a
x12b2 + yfa2 — a?b? in (11.27) is negative, and there are no real k in this case.
Therefore, it is impossible to draw a tangent through the point P, which is
situated inside the ellipse.
2 2
X
2. The point P lies on the ellipse, i.e. "} + Z 5 = 1. Then the Eq. (11.26) has the
a
X1)1

only root k = x12 Y and P is a tangency point.

Ao
a? + b2
possible values of k that satisfy two tangents. We will find the coordinates of the
tangency points by substituting (11.27) into the Eq. (11.25):

3. The point P; lies outside the ellipse, > 1. In this case, there are two

a*k(kxi — y1) b2(kx1 — y1)

waae s ma== o o0 (11.28)

Xr1,2 =

Now, let us consider a special case when x; = =a, and one of the tangents is
vertical (see Fig. 11.7).

In this case, one of the tangency points has the coordinates (a, 0) or (—a, 0), and
the second one is computed based on the equation D = 0, which leads to the condi-

2 _ 12 2 _ 2 2
—b b” — 2b
tionk = £ I and, consequently, to the coordinates ( ta y12 , y12 ),
2ay b2+ y7 b>+y;

if y1 # 0, and to the equation x = =a, if y; = 0.
As a result, we formulate the algorithm for finding the coordinates of the
tangency points of the straight line and the ellipse.

2 y12
b2
i
b2

1.If 0+ < 1, then there are no tangency points.

2. If . 4 ", =1, then there is the only tangency point (x, y1).

*1

a2

X

a?

Fig. 11.7 Tangents to the y
2 2

y
+ =1, when
a2 b2 / Pl

one of the them is vertical
/ b
— a X
b

ellipse
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3. If x; = +a, then there are two tangency points

b2 —yi 2b%y )
b2+ y2 b2+ y2/)
In all other cases, k1 and k; are calculated by the formulae:

(x1,0) and (:I:a

X1y1 ~|—\/b2x12~|—a2y%—a2b2 X1y1 —\/b29612~|—azy%—azb2
1= ko = ,
x12—a2 x12 —a?

(11.29)
and the sought tangency points will have the coordinates:

a’ky (kix1 — y1) _bz(klm - 1) a’ky(kax1 — y1) _bz(kzm —y1)
b +a%k3? T bX+a2k b +a%ks  br+a2k3
(11.30)

Example 11.2 Let us apply the above algorithm to the values of the parameters
a =8,b =75 and P;(6,5). We obtain the coordinates of the two points of tangency:

192 7
T1< 25 5) and 7, (0, 5). [l

Review Questions

Write the general equation of a curve of the second order.
What curve is called an ellipse?
What is the eccentricity of an ellipse?
Define directrices of an ellipse.
Tell about the optical property of an ellipse.
What curve is called hyperbola?
What is the eccentricity of a hyperbola?
Define directrices of a hyperbola.
9. Tell about the optical property of a hyperbola.
10. What curve is called parabola?
11. What is the eccentricity of a parabola?
12. How are directrices of a parabola defined.
13. Tell about the optical property of a parabola.
14. Write the equation of a tangent to ellipse, hyperbola and parabola.
15. What curves of the second order are referred to as degenerate ones?

NN LD
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Problems

2 2
11.1. For the ellipse )16 g + yg = 1, compute the eccentricity and write the equation

of directrices.
2 2

11.2. Find the shortest distance from the ellipse 2 + }; = 1 to the line:

(D) x+2y—-5=0;
2)2x+y—-5=0.

11.3. The ellipse x> + 4y> = 5 is given. Find the equation of the line that is

tangent to this ellipse at the point with the coordinatesx = 1,y = —1.
11.4. Find the angle between the tangents drawn from the point (—8, 2) to the
2 2
. X y
11 =1.
ellipse 2 + 12
x2 y2
*11.5. From what points of Cartesian coordinate plane is the ellipse , + i 1
a

seen at a right angle?
11.6. The semiaxes of an equilateral hyperbola are equal: @ = b. Find the

eccentricity of the equilateral hyperbola.

2 y2

2 b2
11.8. Find the distance from the point (4, 0) to the curve y2—2x =0.
11.9. Write the equation of tangent to the parabola y?> = 5x at the point nearest

to the point M (2, 1/2).

11.10. The representation of hyperbola in parametric form (11.13) has a dis-
advantage consisting in that its left and right branches are described by
different expressions with different signs. Find the parametric specification
of hyperbola that does not have the said disadvantage.

x11.11. Assume that it is known that the line Ax + By + C = 0 is tangent to

the ellipse whose focal distance is equal to 2c. Set up the equation of this
ellipse.

11.7. Find the angle between the asymptotes to the hyperbola * 1.
a

2 2
11.12. Find at what points the line —3x +3y — 2 = 0 and the ellipse x2 + y4

intersect.

11.13. At what points do the line x — 3y — 2 4+ 34/3 = 0 and the hyperbola
x2 — y2 = 1 intersect?

11.14. At what points do the line x + y — 54/5 = 0 and the parabola y?> = 6x
intersect?

11.15. The eccentricity of Mercury’s orbit is equal to 0.2; the major semiaxis is
equal to 0.39 astronomical units (a. u.). Compute the greatest and the least
distances of the planet from the Sun.

11.16. The eccentricity of the Earth’s orbit is equal to 0.017; the major semiaxis is
equal to one astronomical unit. What are the greatest and the least distances
from the Earth to the Sun?

=1
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Fig. 11.8 The region y
bounded by the ellipse and
the right branch of the
hyperbola b
A{(mma ym>
*
—a —Q « a X
—b

11.17. Assume that it is known that the eccentricity of the ellipse is ¢ = 1/2. In

11.18.

x11.19.

the canonical system of coordinates, one of its directrices is specified by the
equation x = 12. Compute the distance in this coordinate system from the
point M of the ellipse with the abscissa equal to —1 to the focus unilateral
with this directrix.

Assume that it is known that the eccentricity of the hyperbolais e = 3/2.In
the canonical system of coordinates, one of its directrices is specified by the
equation x = —4. Compute the distance from the point N; of the hyperbola

with the ordinate equal to 9 to the focus unilateral with this directrix.
2 2

Find the area of the regions bounded by the ellipse * + ZZ = 1 and the

22 a4

-y = 1 (see Fig. 11.8, where the said
p

2

right branch of the hyperbola 22

region is colour-highlighted).

Answers and Solutions

11.1 Solution.
The semiaxes of the ellipse are equal to @ = +/18 and » = 3. Compute the
eccentricity of the ellipse:

¢ Na®-1p> J18-9 1
a a  J18 /2

E =

Write the equations of directrices:

a
x==+ or x =16.
£
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11.2 Solution.

(1) Find the equations of two lines tangent to the ellipse and parallel to the line
x 4+ 2y — 5 = 0. For this, write the equation of tangent to the ellipse:
XX Yoy _

2+ —17

a b?

where (xg, yo) is the point of tangency, a? = 4, b? = 3. Thus, the equation of
tangent takes the form:

3x0x 3
— + i
4yo Yo

1
The slope of the line x +2y —5 = O isequal to k = - As is known,
the slopes of parallel lines coincide. Therefore, the following equality is valid:

3 1
— :0x = — 5" Moreover, the point (xo, yo) belongs to the ellipse. As a result,
Yo
we obtain the system of equations:
3x0 _ 1
4yo 2
2 o 2
X0 i Yo _ 1
4 3 '

The set of its solutions has the form {(1,3/2), (-1, —=3/2)}.
We obtain the equations of tangents:

x+2y—2=0, x+2y+4+2=0.

Note that the first of them is located closer to the initial line, since the
following inequality is valid: abs((—2) — (=5)) < abs(2 — (-5)) (see
Problem 7.13).

It only remains to find the distance from the point (1, 3/2) to the line x +
2y =5=0.

Let us use the formula (7.37):

3
abs(Axo + Byo +C) abs(1-1+2- 5 —5) B J5

d = abs(8) = JA2 4 B2 = Ji2 42 5 -

2 2
So, the shortest distance from the ellipse ); + ); = ltothelinex+2y—5=

0 is equal to
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(2) Find the equations of two lines, tangent to the given ellipse and parallel to the
line 2x + y — 5 = 0. Similarly to the previous item of this problem, we obtain
the system of equations relative to the unknown coordinates of the tangency
point xo and yy:

3
_4x° =2,
Yo
%0y
4 3 '
We obtain the set 0fsolutions{< 8 , 3 ),(— 8 ,— 3 )}.Find the
V19 /19 V19 J/19

equation of the tangents:
y=—2x—|—\/19, y=—2x—«/19.

Note that the first of them is closer to the initial line, since the following
inequality is valid: abs(—+/19— (=3)) < abs(+/19— (=5)) (see Problem 7.13).

8 3
The distance from the point , totheline2x + y — 5 = 0 will
P V19" 19) g
be found by the formula (7.37):
abs(2 8 +1 3 5)
g abs(Axo + Byo +C) V19 V19 _5V5-4/95
VA2 + B2 V22 412 5
2 2

As a result, the shortest distance from the ellipse 2 + }; = 1 to the line
1
2x +y—5=0isequal to V5 — 5\/95.

11.3 Solution.
Use the equation of tangent to ellipse (11.4):

XXo0 . YYo
a? + b2~ a
2 29 :
In our case, a® = 5,b~ = ,x9 = 1, yo = —1, and the equation of tangent takes
the form * 147 Oy 4y —5=0
e form =1l,orx—4y—-5=0.
5 5/4 Y

11.4 Solution.
According to the problem statement, through the point (—8, 2) pass both tangents
to the ellipse.
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As is shown in Sect. 11.5 (formula (11.27)), the slopes of the tangents k1 and k»
are computed by the formula

x1y1 £ \/blez + azy% — a%b?

k1o =
' xlz—a2

We obtain k1 = 1/5, ko = —1.
Based on the (7.17), we find the angle between the lines.

k1 — ko 1/5—(=1) 3
Y = arctan — arctan = .
1+ kika 1+ 1/5)(=1) 2

3
Therefore, the angle between the tangents to the ellipse is equal to ¢ = arctan 5

11.5 Solution.

Since the ellipse seen at a right angle from some point M (x, y), then the angle
between the tangents drawn from M to the ellipse is equal to 7 /2. Based on the
formula (11.27) on page 366 the slopes of the tangents k1 and k; are equal to

x1y1 £ \/blez + azy% —a%b?

2 _ 2
X a

kio=

Compute the angle ¢ between the tangents using the equation (7.17):

ang = 17k
T bk
therefore,
ki — ko 2,/b2} + a2y} — a2?
@ = arctan = arctan
1+ kiky x%+yf—a2—b2

It follows from the obtained equation that the angle ¢ = /2, if the denominator of

fraction under the arctangent is equal to zero: x% + y% —a’>—b>=0.
2 2
As aresult, the ellipse  , + p2 = 1 is seen at a right angle from all points of the
a

plane that satisfy the equation
xz~|—y2 =a’+ b’

Such points, as is easy to see, form a circle of radius Va2 + b2
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11.6 Solution. .
The eccentricity of the hyperbolais equalto e = , where c = Vb? + a? is half
a

of the interfocal distance, a, b are semiaxes of the hyperbola.
If a = b, then

b2 1+ g2 24 g2
P VIO Ve,

a a

Thus, we obtain that the eccentricity of the equilateral hyperbola is equal to v/2.

11.7 Solution.
2 2

The asymptotes to the hyperbola x2 - y2
a b

= 1, as is known (see page 361),
b b
are defined by the equations y = £ x. The slopes of these lines are equal to £+
a

Therefore, the tangent of half of the angle o between the asymptotes is equal to

b
tan(/2) = . Let us express, from the obtained relation, the sought angle:
a

o = 2 arctan

Note that for the equilateral hyperbola (see Problem 11.6), the angle between the
asymptotes is equal to 7 /2.

11.8 Solution.
In order to find the distance from the point (xo, yo) to the curve y2 —2x =0,
find the least value of the functions

d1 () =\ (x = 202 + (/1 @) = y0)? and
d(x) =\ = x0? + (S) = yo)2,

where xog = 4, yo = 0, and by fi2(x) = +4/2x are denoted two branches of the
parabola y> — 2x = 0.

First, consider the function d(x): d;(x) = \/ (x —4)2 + 2x. Its derivative is

¥ —

\/ (x —4)2% 4 2x
the solution of the equation d{ (x) = 0, or x — 3 = 0. This is the minimum point.
Therefore, mind(x) = \/(3 —4242.3= V.

Similarly, we find the least value of the function d3(x): minds(x) = V.

As a result, we obtain that the distance from the point (4, 0) to the parabola is
equal to \/ 7.

11.9 Answer:
5x —24/10y + 10 = 0.

equal to dj(x) = . The point suspected of being the extremum is
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11.10 Answer:

a

X = ,
cost

y = btant,

where t € (0, 27).

11.11 Solution.
Denote the tangency point by P (xo, yo). The equation of tangent to ellipse at this
point has the form:

XxXo  YYo _

a? + b b

where a and b are the major and minor semiaxes of the ellipse, respectively. On the
other hand, according to the problem statement, the general equation of line has the
form Ax + By + C = 0, and it can be rewritten as

(- (- 2p =

. . . . X0 A yo B
Comparing the obtained equations, we obtain =—- = — _, therefore,

a? C’ b2 C
the coordinates of the tangency point P are equal to (—Aa2 /C,—Bb*/C ) Itis clear
2
Yo
a? + b2
Moreover, from the definition of focus follows the equality a*> — b?> = ¢?, where
c is the focal parameter. Hence, we obtain the system of equations relative to the

parameters a, b:

2
X0

that the coordinates of the point P satisfy the equation of the ellipse = 1.

1 ( Aa2)2+ 1 ( Bbz)z_1
a? C b2 c/ 7
a2 — b2 =2,
or:
a’A?  b2B?
2T 2 =h
a? — b2 =2

c?— c232)1/2 <c2 - c2A2>1/2

The solution of this system is: a = (
Y Tl agp A2 4 B2
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Thus, the sought equation of ellipse has the form:

A+ B, A2+ B?

2 _
c2_o2p® Tea_apny =1

11.12 Solution. )
Express y from the equation of line: y = x + 3
Substitute y into the equation of ellipse:

x2+14+4 L) o
2 TalgT3 ¥ T ) =50

5 o . _8 _14_ __4 __2
or 27x“ + 12x 32_0,hence,weobtamx1—9,y1— 9,x2_ , V2 = .

So, the intersection points of the line and the ellipse are (8/9,14/9),
(—4/3,-2/3).

11.13 Solution.

Express the variable x: x = 3y + 2 — 3/3.

In order to find the points at which the line and the hyperbola intersect, substitute
the obtained expression for x into the equation of hyperbola:

9y2 +6y(2—3v3)+31 —124/3—y> -1 =0,
or

8y% 4y (12 - 18«/3) £30 - 1243 =0,

53 -6 343 —10
x| = iy =+/3,x = 2.

4 4
3/3—10 53 -6
4 7 4

hence: y; =

), 2, V/3).

Thus, the sought intersection points are (

11.14 Solution.
In order to find the intersection points of the line and the parabola, solve the
system of equations:

x+y—-5J/5=0, N x = —y+ 55,

= y2 46y —30+/5=0,
y? = 6x y? = —6y +30/5

The obtained quadratic equation has the roots

yia=-3%+ \/9 +304/5.
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Substitute the values yj > into the equation of a straight line x + y — 545 =0.We
obtain

Xi2=3F \/9 +30v/5 +5v/5.

Thus, the coordinates of the intersection points are:
Mi(3 =9+ 30v/5+ 55, =3+ /9 + 305),
Mr3 4+ v/9+ 3075+ 5¢/5, =3 — V9 + 305).

11.15 Solution.

According to the first law of Kepler,' all planets of the Solar system move along
an ellipse, in one of the foci of which the Sun is situated [10]. The closest to the
Sun point of the orbit P is referred to as the perihelion, and the farthest from the
Sum point of the orbit A is referred to as the aphelion.

In order to compute these values for the planet Mercury, introduce the notations:
Fi(c, 0) are the coordinates of the Sun, P (a, 0) are the coordinates of the perihelion,
A(—a, 0) are the coordinates of the aphelion and O (0, 0) is the centre of symmetry

of the ellipse. Here, a is the major semiaxis, and c is the focal parameter.
Then:

rq = AF] — the greatest distance from Mercury to the Sun,
rp = PFy — the least distance from Mercury to the Sun,

c= OF].
Geometrically, we obtain
a=rp+ec, N rp=a-—=c,
a=rqg—C; rg =a-+c;
The eccentricity of the ellipse ¢ will be computed by the formula:

Va2 — b2
&= ;
a

where Va2 — b2 = c,

1Johannes Kepler (1571-1630), German mathematician and astronomer.
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Hence,

rp =a—ae,

rg =a -+ as;

rp=a(l —e¢),
ra =a(l+e).

Substitute the numeric values from the problem statement:

rp=039-(1-02) = r, = 0312 (a. u),
ra =039 (140.2) = r, = 0.468 (a. w.).

So, the greatest distance from Mercury to the Sun is equal to 0.468 a.u., the least
distance is equal to 0.312 a.u.

11.16 Solution.

Denote the points Fj(c,0) as the coordinates of the Sun, P(a,0) as the
coordinates of the perihelion, A(—a, 0) as the coordinates of the aphelion, O (0, 0)
as the centre of symmetry of the ellipse. Here, a is the major semiaxis, and c is the
focal parameter of the Earth’s orbit. Then (see previous problem):

rqe = AF],
rp=PF, =
c= O0Fj;

rp=a(l —e),

ra =a(l+e);

where ¢ = 0.017 is the eccentricity of the Earth’s orbit,a = 1 a.u.
Perform the necessary computations:

rp=1-(1-0.017) = r, = 0.983 (a. u.),
ra=1-(140.017) = r, = 1.017 (a. u.).

As aresult we obtain that the greatest distance from the Earth to the Sun is equal to
1.017 a.u., and the least distance is equal to 0.983 a.u.
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11.17 Solution.

The point M has the coordinates (—1, y1) and is situated on the left of Oy-
axis, and the focus is on the right. The sought distance is equal to the length of the
hypotenuse r of the triangle with the vertices Fi(c, 0), M1(—1, y1) and L(—1, 0).

According to the Pythagorean theorem:

r=\/(c~|—1)2~|—y2.

Using the definition of directrix of ellipse x = £ a, we find
€

a
Xg= , = a=E¢&xy,
&

where, according to the problem statement, x; = 12.
Express the focal parameter c of the ellipse:

c=as = szxd.

—1)2
The coordinate y; will be determined using the equation of the ellipse ( 2) +

W
b2

v = :I:b\/az— 1.
a

Since for the ellipse the following relation is valid: b> = a*> — ¢? = a?(1 — &?),
then

yi=+/(1—62)@—1).

Therefore, the length of the hypotenuse F1 M of the triangle F1 LM is equal to

r=\/(c+1)2+y%=\/(ae+1)2+(1—s2)(a2—1)=a+s=e(xd+1).

Substitute here the numeric values from the problem statement, and we obtain the
13
final answer: r = _ .
11.18 Solution.
The sought distance is equal to the length of the hypotenuse of the triangle with
the vertices F>(—c, 0), N1(x1, y1) and L(x1, 0), where, according to the problem
statement, y; = 9. Depending on whether the point Nj(x1, y;) is situated on the



380 11 Curves of the Second Order

right or on the left branch of the hyperbola, we obtain two possible values of r:
r =\/(x1 :I:c)2~|—y12.
According to the definition of directrix of the hyperbolax = + a, we have
€

a = g abs(xg), where x4 = —3.
The parameter ¢ of the hyperbola is equal to
c=as = szabs(xd).

-D? ¥}

5 b2 = 1and ¢ = a? — b?, then
a

Since

2
2= £ +57(") —1) = (a £ ex1)? = &2(abs(xg) £ x1)2,
a

a i
where x| = b\/ yi+b?2 = ) + £2x2. Having substituted the values from
8 —
14

14
the problem statement, we obtain r = 9\/ 5 +6orr = 9\/ s~ 6.

11.19 Solution.

Denote the region bounded by the ellipse and the hyperbola by D. Due to the
properties of symmetry of ellipse and hyperbola, the sought area is expressed as the
doubled area of the region Dy:

S(D) = 2S(Dy).

In Fig. 11.8 the region Dy is marked with the symbol “x”.
The equation of the part of the ellipse lying in the first quadrant has the form
b
yel = ~a?—x2, where0 < x < a.
a

The equation of the part of the right branch of the hyperbola, which is situated

above the abscissa axis, is: yhyp = Vo2 — x2, where x > a.
o

Assume that x is the abscissa of the point M of intersection of the curves ye
and ynyp, which point lies in the first quadrant.

Note that when the condition a > « is satisfied, such a point always exists.
Otherwise, when a < «, the region D is empty, and S(D) = 0.
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So, under the condition a > «, the following equality is valid:

S(Do)=/ yhyp(X)dX+/ Yen(x) dx. (1L.31)

M

Compute the coordinate xj:

2 /3

b
Yell(Xpm) = ynyp(xp) = 4 a? —xy = xy —a

Solution of this equation that satisfies the conditions x > 0, y > 0, has the form:

b’ + B?
Xy = ax .
M a2B? + b2

Substitution of x; into the formula (11.31) for S(Dg) results in:

1 B [a*+a?
S(Do) = 5 ab arctan O{\'/b2 L p2

612—0{2 b2+ﬂ2
—aplnfb a2ﬂ2+a2b2+a a2B? + a2b?

Finally, we obtain the area of the region bounded by the ellipse and the right
branch of the hyperbola:

0, ifa <

a? + a?
ab arctan

S(D) = b2 + ,32

a’ — a? b2+ ,32 .
—afiln b 282 + cxzbz 2B+ o2 , ifa > a.




Chapter 12 )
Elliptic Curves Shethie

Elliptic curve is a plane curve that has no singular points and is defined by an
equation of the form

y?=x*+ax+b, (12.1)

where a and b are real numbers. The requirement of absence of singular points
means that the curve must not have any self-intersection and cusps.! This condition
will be satisfied if and only if the discriminant of the equation

A = —16(4a> +27b%) # 0 (12.2)

is other than zero. Of course, the constant factor 16 does not influence the sign of
the discriminant; this factor is introduced for convenience of investigation of further
and deeper properties of the curve.

The name “elliptic curve” goes back to the problem of computing the length of
the ellipse arc, leading to computation of the definite integral of the form

2o R(x)

dx (12.3)
o Vx3+ax+b

for some rational function R(x) [7, 32]. Morphological similarity of the terms
“ellipse” and “elliptic curve” is due to historic reasons. Let us emphasize that these
terms belong to different mathematical concepts.

! An example of self-intersection see on Fig. 12.6 at page 403. An example of a cusp is shown on
Fig. 12.1e at page 385.
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As a sphere of application of elliptic curves, we should mention the proof of
Fermat’s~ Last Theorem and the discovery of a new and rapidly developing scientific
field about the confidential data transfer methods—elliptic-curve cryptography.
There are other known applications of such curves in mathematics and adjacent
fields, in particular, in number theory [13, 14].

Depending on the sign of the discriminant, the elliptic curve is formed by one or
two connected components:

e if A > 0, then the curve graph consists of two connected components;
e if A < 0, then the curve graph consists of one connected component.

Note If the conditions A = 0 and @ # 0 are satisfied, a point of self-intersection
appears on the curve, and if the equalities a = b = 0 occur, then a cusp appears.

Example 12.1 In Fig.12.1 are shown several elliptic curves for the values of
the parameters a € {—4,0,4},b € {—2, 0, 2}. Note that at a = b = 0 we obtain the
equation y> = x3, for which A = 0, therefore, such a curve does not belong to the
class of elliptic curves. In Fig. 12.1 it is located on the panel e) and is shown by the
dotted line. O

12.1 Operation of Multiplication of the Elliptic Curve Points

Having fixed two points located on an arbitrary elliptic curve I' = {(x,y) €
R?: y2 = x3 + ax + b}, we can deduce a rule for constructing the third point.
Such an operation will be referred to as “addition” of points on an elliptic curve.

In order to perform the operation of addition of points, the Cartesian plane R>
should be expanded by introducing a point at infinity co. As will be clear from
the further discussion, the point co has the properties of a zero element in the set
R? U {00} with the operation of multiplication of points defined on it. Due to this,
the designation O = oo is also used for the point at infinity.

Assume that any elliptic curve passes through the point O. We can say that two
vertical lines intersect at this point.

So, let the following elliptic curve be specified

I ={(x,y) e R?: y> = x> 4 ax + b} U{O}. (12.4)
The main idea of determining the sum A @ B of the two points A = (x4, ya)
and B = (xp, yp) on the elliptic curve consists in computing the coordinates of the

intersection point of the line AB and I':

C'=A®B={(xc,yc): C € ABand C €T} (12.5)

2pierre de Fermat (1601-1665), French mathematician and lawyer.
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Fig. 12.1 Elliptic curves for the values of the parameters a € {—4,0,4}, b € {-2,0,2}.

Rectangular mesh on the panels (a)—(i) has a step equal to 2. The point (0, 0) on panel (e) is
the cusp for the curve y? = x
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and the subsequent reflection of C’ relative to Ox-axis: C’ — C. The point C is
deemed as the sum of the points A and B; the remaining part of this section will be
devoted to the formal definition of such a summation operation.

In this case, we suppose that

. the vertical lines of the form x = const pass through the point at infinity;
. if the line AB is tangent to the curve I', then the tangency point is taken into
account twice.

N —

The point on the elliptic curve, opposite to the point A = (x4, y4), is the point
—A = (x4, —ya), resulting from the reflection of the initial point relative to the
abscissa axis. As is easy to see, A € ' = —A € T due to quadratic dependence of
the algebraic equation that defines I" on the variable y.

A new rule is introduced for the point at infinity: —oo = o0, in other words, the
point oo is deemed opposite to itself.

Let us proceed to the rule of computing the coordinates of the point A & B. For
this, consider four cases:

. addition of a point and O;

. addition of two different points, where A # — B;

. addition of the two opposite points A and —A;

. duplication of a point, i.e. computing the sums of the form A @ A.

AW N =

12.1.1 Addition of a Point and O

Let us define the sum of an arbitrary point A(x4, y4) of the expanded Cartesian
plane and the point O as

AdO=00A=A. (12.6)

This means that addition of the point O does not change the values of the initial
point coordinates. As was already mentioned above, this fact allows deeming the
point at infinity to be the zero element in the set R? U {oo} with the operation of
addition defined on it.

12.1.2 Addition of Two Different Points

In order to compute the sum A @ B on the condition A # —B we should find
the intersection point of the line A B with the specified elliptic curve I'. Denote the
respective intersection point by C’. Then we find the point C = —C’ opposite to C’,
reflecting the point C’ relative to the Ox-axis. This, the coordinates of the point C
and C’ are connected by the relations x¢ = x¢/, yc = —yc'.
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Fig. 12.2 Addition of two
different points A and B on
the elliptic curve

The sum of the points A and B is the point C, constructed in the above manner:
C=Ad®B. 12.7)

In Fig. 12.2 is shown a geometric method of constructing the point A & B.
Solution of the system

(—=yc)? = x} +axc +b,

VB

12.8
(=yc) —ya= (12:5)
XB

— YA
(xc — xa)
— x4

reduces to solving the equation of the third degree with real coefficients. Of course,
the roots of such an arbitrary equation can be found using known Cardano formulae
[41]; however, in this case, we can perform easier computations.

Using Viete’s formulae (see Problem 4.31), we may say that the sought coordi-
nates of the point C are determined by the formulae:

2
rC =X AT (12.9)
yc = —ya+x(xa — xc),
YB — YA

where the designation » = is introduced for the slope of the line AB.

XB — XA
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Fig. 12.3 Addition of two
opposite points A and —A

12.1.3 Addition of Two Opposite Points

Let us proceed to the case when the summands in the sum of the points are opposite
points, for example, A and —A.

Draw a line that passes through two opposite points. As can be seen from the
Fig.12.3, such a line will be positioned vertically, and the third point, which is
common for the elliptic curve and the drawn line, can only be positioned at infinity.
Based on this fact, the sum of the opposite points is defined as A @ (—A) = oo. The
Fig. 12.3 illustrates the formulated rule.

12.1.4 Duplication of a Point

The computation of the sum of the points of the form A @ A, i.e. duplication of a
point, will require the operation of passage to the limit:

AP A= lim A B. (12.10)
B—A

Geometrically it means that we are drawing a line through two different points
A(x4, ya) and B(xp, yp) of the elliptic curve, and the second point lies in the small
neighbourhood of the first one:

lim A®@B= lim A® B. (12.11)
B—A XB—>XA,
YB—> YA
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Fig. 12.4 Duplication of a point A. On the panel (a), the case y4 # 0 is schematically shown; on
the panel (b) the case y4 =0

As is seen from the Fig. 12.4, this case corresponds to drawing a tangent at the
point A to the elliptic curve.

Suppose that the tangent intersects the curve at the point —C. Note that if the
ordinate of the point A is equal to zero, then the said tangent will be positioned
vertically. Based on the previous case described in Sect. 12.1.3, we obtain —C = oo,
AD® A =A@ (—A) = O.For all other values of the ordinate y4 # 0, as a result of
reflection of the point —C relative to the horizontal axis, a point C = A @ A will be
constructed.

Let us write the respective analytical relations:

Xc = w2 —2x4,

(12.12)
yc = —ya+x(xa —xc),
3x/% +a . .
where the value » = ) is equal to the tangent of the slope of the tangent line
YA

relative to the horizontal axis.

Two other cases of point duplication discussed above are illustrated in Fig. 12.4a
and b.

Analysis of the formulated addition procedure leads to the criterion of equality
O of the sum of three points.

Theorem 12.1 A sum of three points is equal to O if and only if they lie on the same
straight line.

Example 12.2 Compute the sum (—2, —1) & (0, 1) of two points on the elliptic
curve defined by the equation y? = x> — 4x + 1.

Solution Denote A = (-2, —1), B = (0, 1) and C = A & B. Verify that the points
A and B lie on the curve y> = x> — 4x + 1.
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Indeed,
A: (=D?>=(=2°—-4-(=2)+1, or1 = 1 is true, (12.13)
B: 1°’=0—4-0+1, orl = 1is true. (12.14)

By definition, in order to compute the sum A @ B we should find the intersection
point of the line AB with the specified elliptic curve, following which we should
reflect the intersection point relative to O x-axis.

Write the equation of the line that passes through two points (see Eq.(7.12) on
page 280):

B— YA
y—yA=y Y (x —x4), (12.15)
XB — XA

where (x4, y4) and (xp, yp) are the coordinates of the initial points.

Having substituted the numeric values of the coordinates into Eq. (12.15), we
arrive at the equation of the line y = x + 1. The line specified by this equation
intersects the elliptic curve y> = x> — 4x + 1 at a point with the abscissa xc, for
which the following equality is valid

(xc +1)* = x} —dxc + 1, (12.16)
or
X3 — x2 —6xc =0. (12.17)
As is easy to see, the obtained cubic equation has the roots
(xc)1=-2, (xc)2=0, (xc)3=3. (12.18)

The first two values satisfy the abscissas of the initial points A and B; the value
xc = 3 1is the abscissa of the intersection point of the line A B and the elliptic curve.
Denote this point as C: x¢r = 3.

Having substituted x¢ into the equation y = x + 1, we obtain yor = 4—the
ordinate of the point C’.

The coordinates of the sought point C = A @ B are equal to

!xc = e (12.19)
yc = —Yc'-
As aresult, xc = 3, yc = —4, therefore, on the curve y2 = x3 —4x + 1 the

following equality is valid

(-=2,-D® 0,1) =3, -4). (12.20)
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Note that the use of the relations (12.9) also leads to the desired result. [l

Example 12.3 Compute the sum (—2,3) @ (3, —3) of two points on the elliptic
curve specified by the equation y* = x3 — 7x + 3.

Solution Verify that the points (—2, 3) and (3, —3) belong to the curve.

The first point: 3% = (—2)> — 7(=2) + 3, or 9 = 9 is true;

the second point: (—3)%> =33 —7-3 43, 0r9 = 9is true.

In order to compute the sum, use the formulae (12.9), into which the values
x4 =—2,v4 = 3,xp =3, yp = —3 should be substituted:

-3-3 6
x = =—_, (12.21)
3—-(=2) 5
= 6\’ (=2) 3—11 (12.22)
= \s =25’ ‘
6 11 9
= -3 — -2 — = — . 12.23
e +<5)< 29 125 (12.23)
So, by algebraic method, we have obtained the equality (—2,3) & (3, —3) =
11 9
, — . O
<25 125)

For the sum of the points of the form C = \AEBAEBAEB---EB%& the

n times
designation C = n A is used.

For n < 0 the point n A is defined as the element opposite to (—n) A.

Multiplication by zero results in a point at infinity O.

Thus, the point n A, which is the sum n of the points A, is defined for all integral
n in accordance with the following rule:

:4€BA€BA®~--€BAJ ifn >0,

n times

A= 12.24
. o, ifn =0, (12.24)
—In|A, itn <0.

Example 12.4 Compute the sum of four points 4(5,11) on the elliptic curve,
defined by the equation y? = x3 — 2x + 6.

Solution Verify that the point (5, 11) belongs to the elliptic curve:
11 =5—2.546, or 121 = 121 is true. (12.25)
Use the equality

405,11 =G, 1)+ G, 1) + (5, 11) + (5, 11) =2(5, 11) +2(5, 11).  (12.26)
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By the duplication formulae (12.12) we obtain

X =

' 2(5, 11) = (489/484, 23835/10648). (12.27)
Applying the duplication formula again and using a program in Python for
computing, we arrive at the final answer:

4(5,11) = (—2160508 643 999/1 099 855 587 600,
— 1767794 172358992751/1 153462548 939624 000).  (12.28)

As is seen from the considered example, the arithmetic operations with the
elliptic curve points are in many cases very labour-intensive and it is almost
impossible to obtain the result without application of computing systems. (]

Theorem 12.2 The operation of addition of the points defined on the elliptic curve
I" on the set R? U {O} has the following properties:

LA®O=0®A=A VAeTl;
2.A®(-A) =0 VAeTl;
3.).A@B=B®A VA, BeTly;

4 A®B)®C=A®(B®C) VA B CeT.

The result of the operation “®” belongs to the same set R* U {O).

In other words, the operation “@” is commutative and associative. The role of
the opposite to A is played by —A; the role of zero (neutral element) is played by
the point O = oo.

12.2 Elliptic Curves with Rational Points

In the previous sections of this chapter, as the universal set was considered a
Cartesian plane completed with a point at infinity co:

U=R>U{O}. (12.29)

Recall that the universal set, by definition, contains the entire set of values that the
variables can take in a certain problem [41]. For cryptography and number theory,
the most significant are the properties of the elliptic curves on the set of points with
the rational coordinates Q? U {oo}, where Q = {p/q: p,q € Z, q # 0} is a set of
rational numbers. As in the case of a standard Cartesian plane, an additional point
oo is introduced, which is considered to be rational.

So, let us fix as the universal set

U = QU {oo}. (12.30)
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The operation of multiplication of points is defined by the same rule as in the
previous section. Formulate this rule in the form of an algorithm.

Algorithm of addition of points on the elliptic curve The sum of the two points
A(x4,ya) and B(xp, yp) on the elliptic curve

E={(x,y) eQ® y*=x’+ax+bU{O} (12.31)

is the point C(xc, yc), whose coordinates are found by the following rule.

1. fA=0,thenC=A®B=B8B.
2.If B=0O,thenC=A® B = A.
3. Ifxao=xpand ys = —yp,then C = Ad B = O.
4. In other cases, the parameter x is computed:
YB — )’A, if A + B,
XB — XA
x = 5 (12.32)
3x4 +
X4 a’ ifA =B,
2ya

and the coordinates of the point C will be equal to

Xc = x?— XA — XB, (12.33)

yc =x(xA —Xxc) — YA (12.34)

Here, the procedure of addition of the points is defined specifically, since it
does not take the result beyond the extended set of rational numbers. Indeed, all
usual arithmetic operation—addition, subtraction, multiplication and division—are
performed in an algorithm on rational operands, which eventually results in rational
numbers. Division by zero in an algorithm cannot take place due to preliminary
processing of the exceptional case B = —A. Therefore, a theorem similar to
theorem 12.2 occurs.

Theorem 12.3 The operation of addition of the points defined on the elliptic curve
E on the set Q% U {O} has the following properties:

.LAGO=0®A=A VAcE;
2.AD(—A) =0 VAcE;
3.A@B=B®A VA BeE;

4. ADB)®C=A®(BaC) YA, B, CckE.

The result of the operation “@” belongs to the same extended set of points with
rational coordinates.

As we can see, addition of rational point on an arbitrary elliptic curve has all the
properties of a regular operation of addition of rational numbers.
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12.3 Implementation of the Addition Algorithm

Let us consider a software implementation of an algorithm of addition of rational
numbers on an elliptic curve. The program’s input data are the coordinates of the
points A and B; the coordinates of the sum A @ B on the set Q? U {0} are entered
into the resulting file.

Listing 12.1

. N

1 class RationalFraction(object) :

2 def init (self, n, d):

3 self.n = n

4 self.d = d

5

6 def eq (self, other):

7 return self.n == other.n and \
8 self.d == other.d

9

10 def  neg (self):

11 return RationalFraction(-self.n, self.d)
12

13

14 class RationalPoint (object) :

15 def init (self, x, y):

16 self.x = x

17 self.y =y

18

19 def eq (self, other):

20 return self.x == other.x and \
21 self.y == other.y

22

23

24 # Denominators of coordinates of the point at

infinity
25 # are equated to zero

26 O = RationalPoint (RationalFraction(1l, 0), \
27 RationalFraction(l, 0))
28

29 # Parameter a of an elliptic curve
30 a = RationalFraction(-4, 1)

31

32

33 def add(pl, p2):

34 if pl.x.d == 0 or pl.y.d == 0:

35 return p2
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36
37
38
39
40
41
49
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

65
66
67
68
69
70
71
72
73
74
75
76
7
78

Implementation of the Addition Algorithm

elif p2.x.d == 0 or p2.y.d == 0:
return pl

elif pl.x == p2.x and pl.y == (-p2.y):
return O

else:
k
c

RationalFraction (0, 0)
RationalPoint (RationalFraction(0, 0),
RationalFraction (0, 0))

if pl == p2:
k.n = pl.y.d = \
(3 * pl.x.n » pl.x.n  a.d + \
a.n x pl.x.d = pl.x.d)
k.d =2 » pl.y.n » pl.x.d = \
pl.x.d = a.d

if k.d < 0:
k.n = -k.n
k.d = -k.d

c.x.n = \
(k.n * k.n » pl.x.d » p2.x.d - \
pl.x.n % k.d = k.d = p2.x.d - \
p2.x.n * k.d * k.d x pl.x.d)

c.x.d = k.d » k.d » pl.x.d * p2.x.d

c.y.n =\
k.n = pl.y.d = \
(pl.x.n » c.x.d - c.x.n » pl.x.d)
\
k.d » pl.x.d * c.x.d » pl.y.n
c.y.d = k.d » pl.x.d » c.x.d = pl.y.d

fraction reduce(c.x)
fraction reduce(c.y)

if ¢.x.d < 0:

c.x.n = -Cc.x.n
c.x.d = -c.x.d
if c.y.d < 0:
c.y.n = -c.y.n
c.y.d = -c.y.d

395
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79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

12 Elliptic Curves

else:
# Points are different

k.n = pl.x.d = p2.x.d » \

(p2.y.n * pl.y.d - pl.y.n * p2.y.d)
k.d = pl.y.d = p2.y.d x \

(p2.x.n * pl.x.d - pl.x.n * p2.x.d)
if k.d < 0:

k.n = -k.n

k.d = -k.d

c.x.n = \
(k.n * k.n » pl.x.d » p2.x.d - \
pl.x.n % k.d = k.d = p2.x.d - \
p2.x.n * k.d * k.d x pl.x.d)
c.x.d = k.d » k.d » pl.x.d * p2.x.d

.n = k.n % pl.y.d = \
(pl.x.n » c.x.d - c.x.n » pl.x.d)
\
k.d » pl.x.d * c.x.d » pl.y.n
.d =k.d * pl.x.d » c.x.d % pl.y.d

c.y

c.y

fraction reduce(c.x)
fraction reduce(c.y)

if ¢.x.d < 0:

c.Xx.n = -c.X.n
c.x.d = -c.x.d
if c.y.d < 0:
c.y.n = -c.y.n
c.y.d = -c.y.d
return c

def gcd(a, b):
r =0

# Euclid’s algorithm

while b != 0:
r=as%hbo

a=>»
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122 b =r
123
124 return a
125
126
127 def fraction reduce(fraction):
128 temp = gcd(fraction.n, fraction.d)
129
130 fraction.n //= temp
131 fraction.d //= temp
132
133
134 pl = RationalPoint(RationalFraction(0, 0), \
135 RationalFraction(0, 0))
136 p2 = RationalPoint(RationalFraction(0, 0), \
137 RationalFraction(0, 0))
138
139 with open(’input.txt’) as file:
140 pl.x.n, pl.x.d, pl.y.n, pl.y.d = \
141 [int (num) for num in next(file) .split ()]
142
143 p2.x.n, p2.x.d, p2.y.n, p2.y.d = \
144 [int (num) for num in next(file) .split ()]
145
146 result = add(pl, p2)
147
148 with open(’output.txt’, ‘w+’) as file:
149 output = ’(%d / %d, %d / %4 )’ % \
150 (result.x.n, result.x.d, \
151 result.y.n, result.y.d)
152
153 file.write (output)
C y

For operations with rational fractions, a class RationalFraction is im-
plemented in the program, which consists of two fields—the numerator and the
denominator of the fraction.

An arbitrary rational point of the plane is characterized by its abscissa and
ordinate. Each of these coordinates is a rational fraction; this is why the de-
scription of the class RationalPoint includes two fields that store the objects
RationalFraction.

Thus, a rational point of the elliptical curve is represented in the program by a
class containing the objects of other classes.
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For example, the point Pj(3, —2) of the Cartesian plane can be written in the

2
form (1, — 1) = RationalPoint (RationalFraction (3, 1), and be

represented in the memory of computer as

The fields are referred to as follows:

e pl.x.n—numerator of the abscissa of the point Py;
* pl.x.d—denominator of the abscissa of the point Py;
e pl.y.n—numerator of the ordinate of the point P;
* pl.y.d—denominator of the ordinate of the point P;.

The fraction’s sign will be the sign of its numerator, while in the intermediary
computations the sign of the denominator will be preserved as positive.

We should separately discuss the issue of representing the point at infinity O. In
this implementation, it is introduced as an object

O = RationalPoint (RationalFraction(l, 0), RationalFraction(1,
0))

i.e. the denominators of its coordinates are equated to zero.

The main procedure that executes the addition of the points is called
add () and it operates as follows. In its code, an algorithm presented on page 393
is directly reflected, and the arithmetic operations on rational fractions are executed
separately for the numerator and for the denominator.

In particular, addition of two fractions is presented in the form:

pl.x.n  p2.x.n pl.x.nxp2.x.d+p2.x.n+xpl.x.d (12.35)
pl.x.d p2.x.d pl.x.d+p2.x.d '

Similarly, subtraction, multiplication and division are implemented in the pro-
gram. Such arithmetic operations may result in a reducible fraction. For example,

the summation 3 + 3 is performed as follows:

2 1 2:3+1-3 9
3+3_ 3.3 =y (12.36)
In this connection, prior to returning the result, the function add () divides the
numerator and the denominator of the fraction by their greatest common divisor,
gcd. For this purpose, an auxiliary function fraction reduce () is called.
Computing of the greatest common divisor of two integers is based on the widely
known Euclid’s” algorithm [32].

3Euclid (E0xeidnc) (about 325 BC-before 265 BC), Ancient Greek mathematician.
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At the final stage, the program outputs a sum of two rational points in the form
(c.x.n / c.x.d, c.y.n / c.y.d )
where c¢.x.n is the numerator of the abscissa of the result, c.x.d is the
denominator of the abscissa of the result, etc.

Review Questions

1. Define elliptic curve.

2. How is the discriminant of the equation of an elliptic curve computed?

3. Explain how one can, by the sign of the discriminant of the elliptic curve,
establish the number of connected components of its graph.

4. Enumerate the properties of the point at infinity O.

5. Explain how the sum of the points A @ B on the elliptic curve is computed.

6. How can one, knowing the coordinates of some point on the elliptic curve, find
the coordinates of the opposite point?

7. Formulate the necessary and sufficient condition of equality O of the sum of
three points on the elliptic curve.

8. Define the sum n of the points on the elliptic curve, where n is an integer.

9. Enumerate the properties of the operation of addition of points on the elliptic
curve.

Problems

12.1. Which of the equations listed below specify the elliptic curves on the
expanded Cartesian plane R? U {O}?

() y2=x2—x+1;

y

(2) y§=x3—|—x+1;

3) Y2=x+1;

) §2=x3;

5) y?=x3+3x+2;

(6) y2=x3—3x~|—2;

(7 y? =x3—15x/27;
2

®) y? =x*+x3.

If the curve belongs to the class of elliptical ones, then compute its
discriminant and construct a graph.

12.2. Draw a graph of the curve S = {(x, y): y> = x> — 12x 4 16} and explain
why it does not belong to the class of elliptic curves.

12.3. Compute the discriminant for each of the following elliptic curves:

(1) y*=x—2x+3;
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x12.4.

12.5.

12.6.

12.7.

12.8.

12.9.

12.10.
12.11.
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2 y=x-x-1;
(3) y* =3 +4x;
@) y*=x3—10x +8.

How many connected components does the graph of them contain?
Prove that the duplication formula for computing of the abscissa of the
point 2A on the curve y? = x3 4 ax + b can be presented in the following
form:

3)6124 +a 2 xi — 2ax/24 — 8bx4 + a?
XoA = —2xp4 = 3 . (12.37)
2ya dxy +4axp +4b

Verify that the points (—2,5), (—1, —5) and (103, 1045) belong to the
elliptic curve y? = x3 — 7x + 19.
Verify that on the curve y? = x3 + 15 the following equality

2(1,4) = (—119/64, —1499/512)

is valid.

Compute the following sums of the points on the elliptic curves on the set
Q2

(1) (=3,3) @ (1, 3) on the curve y> = x> — 7x + 15;

(2) (1,4) @ (1, 4) on the curve y> = x> + x + 14.

Verify the validity of the equalities on the elliptic curve y> = x3 — 7x +
10:

(D (5,10) & (9, 26) = (2, 2);

(2) 5,100 ® (2, =2) = (9, —26);

(3) (5,100 (2,2) = (1/9, 82/27);

4 5,-100 @ (1, -2) = (=2, -4).

Compute the sum of the points

on the curve y? = x3 — 7x + 10.
Perform duplication of the point (5, 12) on the curve y* = x3 + x + 14.
Compute the sum of the points

(1) 2(7, 19) on the curve y> = x> + x + 11;
(2) 3(1,4) on the curve y> = x> + x + 14.
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x12.12. Compute the sum of the points
2(2,4)®2(33,190) & (1,2)

on the curve y? = x3 + 5x — 2.
x12.13. Compute the sum of the points

(6,16) & (-1, -2) & (—2)(9, —28)

on the curve y*> = x> + 5x + 10.
12.14. Write a function that checks whether the rational point P(x, y) belongs to
the elliptic curve y> = x> + ax + b.

Answers and Solutions

12.1 Solution.
Elliptic curve, as is known, is defined by the relation

y2=x3~|—ax+b

for some a, b € R on the condition 4a> 4 27b% # 0 (see page 383). Leaning upon
this definition, we obtain

(1) y?> = x? — x + 1 is not an elliptic curve, since the right side lacks the summand
x3;

(2) y* = x3 4+ x 4+ 1 is an elliptic curve; the respective values of the parameters are
a =1,b =1, the discriminant is A = —16(4a3 + 27b2) = —496;

(3) y* =x + lisnotan elliptic curve, since it lacks the cubic summand x

(4) y* = x3 is not an elliptic curve, since a = 0, b = 0 and the equality 4a> +
27b* = 0 is valid;

(5) ¥? = x? 4+ 3x + 2 satisfies the definition of elliptic curve with the parameters
a = 3 and b = 2, the discriminant is A = —3456;

(6) y2 = x3—3x+2isnotan elliptic curve, sincea = —3,b = 2 and 4a34+27b* =
0;

(7) y* = x3—5x/27 satisfies the definition of elliptic curve,a = —5/27 and b = 0,
A = 8000/19683;

(8) the equation y> = x* + x3 includes a summand of the fourth degree x*,
therefore, the respective curve does not belong to the class of elliptic curves
(Fig. 12.5).

3.
s
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/TN

=3+ +1 yP=a+ 3z +2
Y

y* =3 — 152/27

Fig. 12.5 Elliptic curves to Problem 12.1. The rectangular mesh on the panels (a)—(c) has a step
equal to 2

12.2 Solution.

The graph of the curve S is presented in Fig. 12.6. The curve S is not elliptic,
since the condition of its discriminant’s being other than zero is not valid: A =
—16(4a> + 27b%) = —16(4(—12)3 + 27 - 16%) = 0. The geometric expression of
this fact is the presence on the graph of a self-intersection point with the coordinates
(—2,0).

12.3 Solution.
Using the formula A = —16(4a> + 27b%), we obtain

(1) A = —3376, the graph has one connected component;

(2) A = —368, one connected component;

(3) A = —4096, one connected component;

(4) A =36, 352, the graph consists of two connected components.
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Fig. 12.6 The curve S to
Problem 12.2. The
rectangular mesh has a step
equal to 2. The point (2, 0) is
an intersection point for the
curve y2 = x3 — 12x + 16

y? =% — 122 + 16

12.4 Solution.
3x/% +a

2ya
we arrive at the formula for xp4:

2

9x4 + 6ax2 + a?

XA = A 2A —2.XA
4yA

2
Expanding the expression ) —2x 4 and collecting similar summands,

. 9xi + 6ax/% +a?— 8xAyi
= 4y/23A
. 9xi + 6ax/% +a?— S)CA()Cz +axas +b)
4(x3 + axa + b)?
xi — 2axi — 8bx4 + a?
4x3 + dax + 4b

In algebraic transformations, the equality yi = xz + axa + b was used, valid for
the coordinates of all points of the elliptic curve.
Thus, the algebraic variation of the duplication formula is proved.

12.5 Solution.
Substitute the coordinates of each point into the equation of the curve y?> =
x3—7x 4+ 19:

5% = (=2)° = 7(=2) + 19, or25 = 25;
(=5 = (=1)> = 7(=1) + 19, or 25 = 25;
1045% = 103 — 7(103) + 19, or 1092025 = 1092 025.
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In all three cases we obtain true equalities, this is why the considered points
belong to the elliptic curve y> = x> — 7x + 19.

12.6 Solution.
Use the duplication formula (12.12). Substitute in it the numeric values from the
problem statementa = 0, b = 15, x4 = 1 and y4 = 4. Then we obtain

3.1240\° 3\2 119

Xoq = —2.1= —o=—

2.4 8 64
Y 119\\ = 1499
Y24 = 8 64 )) 7 512

Therefore, the equality 2(1,4) = (—119/64, —1499/512) is valid on the curve
y? =x3+15.

12.7 Answer:

(1) 2, =3);
(2) (=7/4,-21/8).

12.9 Answer: (=2, —4).
12.10 Answer: (1/36, 809/216).
12.11 Answer:

(1) (422/361,25449/6859);
(2) (793/121, —23132/1331).

12.12 Answer: (33, 190).
12.13 Answer: O.

12.14 Solution.

Let us assume that the rational point P(x, y) is represented in the computing
system memory as the object of a class RationalPoint described in Listing
12.1 (lines 14-21 of the program code).

Let us show the implementation of the function is_point () that returns the
value True or False depending on the belonging of the point P(x, y) to the
elliptic curve y? = x> 4 ax + b.

def is_point(p):
# Point at infinity
if p.x.d == 0 and p.y.d == 0:
return True
elif p.x.d == 0 or p.y.d ==
raise ValueError ("Zero denomitator of a coordinate")

# Checking the condition v * y = X * X * X + & * X + b
templ = a.d * b.d * p.X.n * p.X.n * p.xX.n + \
a.n * b.d x p.x.n » p.x.d * p.x.d + \
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a.d * b.n * p.x.d » p.x.d % p.x.d
a.d * b.d * p.x.d » p.x.d * p.x.d
temp2 * p.y.n x p.y.n - templ * p.y.d x p.y.d

temp2
temp3

return temp3 == 0



Appendix A
Basic Operators in Python and C

This book uses the Python language to write algorithms [68, 71]. Of course,
when necessary, all the algorithms presented in the text can be rewritten using
any other programming language. In the present Appendix we provide a table of
correspondences between the basic constructs of Python 3 and their analogues in
the C language (see Table A.1).

Both these languages are high-level programming languages, although the level
of abstraction in Python is considered to be higher compared to the C language [50].
As a rule, this results in slower operation of programs in Python.

One of the important differences between the syntaxes of these two languages
consists in that the commands in the C end with a comma, while in Python it is
not necessary to put a semicolon at the end of the command. Another significant
difference is associated with marking out a block of operators: C uses braces for
this purpose, while Python uses an indent consisting of exactly four spaces.

A new class in Python can be created as follows:

class Point:
def init (self, x, y):
self.x = x
self.y =y

Such a class was used in Chap. 7 for describing a point of the Cartesian plane.
This class contains fields x and y, representing the coordinates of the point. Also,
this class includes a class constructor that is called when creating an object and is
used for initialization of its fields. In order to refer to the fields, the keyword self
can be used, which represents the current class instance automatically transferred as
an argument into each method of this class.

The C language, unlike Python, is not object-oriented, and C uses structures
instead of classes [21, 39].

Let us enumerate some more features of Python reflected in the listings of the
programs.
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A Basic Operators in Python and C

Table A.1 Correspondences between the basic operators in Python and C

Command or
operation

Assignment
Integer variables
Real variables

Logic variables
String variables

Arrays

Comparison of
variables

Logic operations
Arithmetic
division

Integer division
Comments

Conditional
operator

Ternary operator
for loop

while loop

Functions

Exchange of
values of two
variables

Python

X =Y

m, n = 10, -17

v = 0.005

w = -1.4

u = True

v = False

s = "String text"

arr = [1, 2, 3]
arr[2] = 7
==Y
I:y

not A) and (B or C)

m//n
# comment
nen Text of multiline
comment """
if a ==
# Codel
elif a == c:
# Code2
else:
# Code3l3

maxv = a 1if a>=b else b

for i in range(n):

# Code
while a ==

# Code
def sm(a, b):

s =a+b

return s
a, b =Db, a

C
X =Y
int m = 10, n = -17;

float v = 0.005;
double w = -1.4;

u=1;

v = 0;

const charx* s = "String
text";

int arr[3] = {1, 2, 3};
arr([2] = 7;

x == y;

x = y;

(1) && (B || ©);
(double)m/n

m/n

// comment
/* Text of multiline
comment =/

if (a == b) {
// Codel
else if (a == c) {
// Code2
}
else {
// Code3
}
maxv = (a>=b) ? a : b;

for(int 1i=0; i<n; 1i++)
// Code
}

while (a == b) {
// Code
}

int sm(int a, int b) {

int s = a + b;
return s;

int ¢ = a;

a = b;

b = ¢;
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In Python, there is a method for generation of lists (including multidimensional
ones):

 creating a list of n numbers filled with the values from 0 ton - 1:
V=1[1for i in range(n) ]
 creating a two-dimensional list (matrix) filled with zeroes:
A = [[ 0 for j in range(n) 1 \
for 1 in range(n) ]

Similarly to many other languages, Python provides the means for dealing with
exceptions, which are useful for processing error situations. So, in order to generate
an exception, the keyword raise is used:

raise Exception ("Exception message")

In order to process the exception, the construct try-except is used:

try:
a =>5
b =0
c=a/b
except ZeroDivisionError as e:
print (e)

After executing this code area, the following message will be outputted to the
console:
division by zero



Appendix B
Trigonometric Formulae

In the formulae of this Appendix, unless otherwise specified, a, b € Rand k, k' € Z.

sin?a + cos’a = 1; (B.1)
sina T
tana = , a# _ + 7wk (B.2)
cosa 2
cosa
cota= . , a#mnk; (B.3)
sina
2 1 T
1+tan“a = , a# _ +7mk; (B.4)
costa 2
2 1
l+4+cota= , s a #+ wk; (B.5)
sin“a
sin2a = 2sinacosa, cos2a = cos” a — sin’ a; (B.6)
tan? 2tana 7én+71k 7,5”_,_ Y (B.7)
an2a = , a , a wk'; .
1 —tan?a 4 2 2
.24 1 —cosa s a 1+ cosa
sin ) ) cos ) ) (B.8)
sin(a + b) = sina cos b + cosa sin b; (B.9)
sin(a — b) = sina cos b — cosa sin b; (B.10)
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cos(a + b) = cosacosb — sinasinb;

cos(a — b) = cosacosb + sinasinb;

tan(a + b) tana 4+ tanb b +b#n+ X
an(a = , a,b,a K,
1 —tanatanb 2
tana — tanb b4
t —b)= , a,b,a—0>b k;
an(a ) 1+ tanatanb “ “ 7 2 o
. . . sa+b a—>b
sina +sinb = 251n< )cos( ),
2 2
b —-b
sina — sinb = 2003(a+ )sm(a ),
2 2
a+b a—>b
cosa +cosbh = 2005( )cos( ),
2 2
o sa-+b a—>b
cosa — cosb :—231n< )sm( ),
2 2
sin(a £ b) T
tana +tanb = , a,b# _+rk,
cosacosb 2
in(b &+
cota x coth = 31.n( ] a)’ a,b # nk;
sina sin b

1
sina sinb = ) (cos(a — b) — cos(a + b));
1
cosa cosh = 5 (cos(a — b) + cos(a + b));
. I . .
sina cosb = ) (sin(a — b) + sin(a + b)).

(B.11)
(B.12)

(B.13)

(B.14)

(B.15)

(B.16)

(B.17)

(B.18)

(B.19)

(B.20)

(B.21)

(B.22)

(B.23)



Appendix C

The Greek Alphabet
A «a alpha N, v nu
B, 8 beta B, & Xi
Iy gamma 0,0 omicron
A,S delta I, n pi
E ¢ epsilon P,p rho
Z,¢ zeta Y, 0 sigma
H,n eta T, t tau
0,0 theta T, v upsilon
I iota D, ¢ phi
K, x kappa X, x chi
A, A lambda v,y psi
M, mu Qo omega
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A
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modified, 29
Alphabet
Greek, 413
Latin, 1
Altitude of a triangle, 291
Angle between a line and a plane, 325
Angle between lines, 281, 323
adjacent, 281
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Angle between planes, 312
Annihilating polynomial, see Polynomial,
annihilating
Anomaly of eccentricity, 360
Anti-Hermitian matrix, see Matrix, anti-
Hermitian
Applicate, 256
Argand diagram, 174
Argument of a complex number, 175
principal value, 175
Array, 15
two-dimensional, 15
Associativity of addition, 6
Associativity of multiplication, 8
Asymptotes to a hyperbola, 361
Asymptotic complexity, 14, 184
of Gaussian elimination, 137

B

Backward pass, 137

Basic minor, see Minor, basic

Basic minor theorem, see Theorem, basic

minor

Basic operations, 13, 14

Basis expansion of a vector, 257

Basis states, 184

Basis step, 53

Big O notation, 14

Bilinear form, 335
polar, 338
positively definite, 336
properties of linearity, 335
symmetric, 336

Bisector of a triangle, 291
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Bit, 183

Block matrix, 186

Bordering minor method, see Method,
bordering minor

Branch of a hyperbola, 361, 369

C
Canonical equation of a line, 321
Canonical form of a quadratic form, 339
Canonical form of equation, 178
Canonical form of the equation of curve of the
second order, 357
Canonical system of coordinates, see
Coordinate system, canonical
Cardinality, 19
Cauchy-Bunyakovsky inequality, see
Inequality, Cauchy—Bunyakovsky
Cauchy—Schwarz inequality, see Inequality,
Cauchy—Bunyakovsky
Cayley—Hamilton theorem, see Theorem,
Cayley—Hamilton
Central curves, 362
Characteristic equation, 226
Characteristic polynomial, see Polynomial,
characteristic
Circle, 357
class O(g(n)), 14
Coefficients of a linear combination, 61
Coefficients of a system, 123
Coefficients of the straight line equation, 278
Cofactor, 46
Collinearity, 223
Collinear vectors, 255
Column of a matrix, 1
Columns
linearly dependent, 61
linearly independent, 61
Commutativity of addition, 6
Commutator, 9
Complementary minor of the element, 46
Complex number, 173-178
algebraic form, 174
exponential form, 176
imaginary part, 173
purely imaginary, 174
real part, 173
trigonometric form, 174, 175
Components of a vector, 217
Composition of operators, 187
Computational basis states, 184
Condition of belonging of lines to the same
plane, 326

Index

Condition of intersection of lines, 326
Condition of line’s belonging to the plane, 325
Condition of orthogonality of planes, 312
Condition of parallelism of a line and a plane,
325
Condition of parallelism of planes, 312
Condition of parallelism of two lines, 326
Condition of perpendicularity of a line and a
plane, 325

Conjugate of the complex number, 174
Conjunction, 20, 21
Constant term, 357
Controlled NOT, 189
Controlled phase element, 189
Coordinates of a vector, 217
Coordinate system

canonical, 357

Cartesian, 174,256, 277

polar, 174
Coplanar vectors, 264, 311
Corner minor, see Minor, corner
C, programming language, 2, 15
Cramer’s rule, see Method, Cramer
Cross-diagonal, see Secondary diagonal
Cross product, see Vector product
Cryptography, 384
Curves of the second order, 357

degenerate, 363

non-degenerate, 363
Cusp, 384

D
Degree of polynomial, 178
Determinant, 43
of the first order, 45
Laplace expansion, 47
of the n-th order, 45, 46
of the second order, 43
of the third order, 43, 44
Vandermonde, 67
Determinant of a system of vectors, 221
Deviation of a point from a plane, 313
Deviation of a point from line, 285
Diagonalization of a matrix, 230
Diagonal matrix, see Matrix, square, diagonal
Difference of matrices, 6
Difference of vectors, 218
Digraph, see Graph, directed
Dirac matrices, 185, 186
Dirac notation, 183
Directing vector, see Vector, directing
Direction cosines, 310
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Directrix
of an ellipse, 358
of a hyperbola, 361
of a parabola, 362
Disjunction, 21
Distance between the points, 259
Distance from a point to a plane, 313
Distributivity of multiplication with respect to
addition, 8
Dot product, see Scalar product
Duplication formula, see Formula, of
duplication
Duplication of a point, 388

E
Eccentricity
of a hyperbola, 361

Eccentricity of an ellipse, 358

Echelon matrix, see Matrix, echelon

Edge, 19

Eigenvalue, 226

Eigenvector, 226

Element /8, 188

Elementary transformations, 49, 61, 129

Elements of a matrix, 1

Ellipse, 357

Elliptic curve, 383

Endpoints, 19

Endpoints of a segment, 287

Equal complex numbers, 173

Equality of matrices, 4

Equal vectors, 217, 255

Equation of a line that passes through the two
points, 323

Equation of a plane that is orthogonal to the
vector, 307

Equation of a plane that passes through the
three points, 312

Equation of a straight line through two given
points, 280

Equation of curve of the second order, 357

Euclidean space, 224

Euclid’s algorithm, see Algorithm, Euclid’s

Euler’s formula, see Formula, Euler’s for
complex numbers

Euler’s identity for Pauli matrices, 200

Evolution of the quantum system, 184

Expansion of the vector in the basis, 222

Exponential form of a complex number, see
Complex number, exponential form

Exponent of a matrix, 57
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F
Fermat last theorem, see Theorem, Fermat last
Focal distance of an ellipse, 358
Focal parameter of a parabola, 362
Focus
of an ellipse, 357
of a hyperbola, 361
of a parabola, 362
Formula
Cardano, 179
de Moivre’s, 176, 195
of duplication, 400
Euler’s for complex numbers, 176
matrix product inversion, 71
Fortran, programming language, 15
Forward pass, 136
Free unknown, 138
Function
exponential, 176
fractionally rational, 57
time-complexity, 14
trigonometric, 176
Fundamental system of solutions, 138, 139
Fundamental theorem of algebra, see Theorem,
fundamental of algebra

G
Gate, 184, 187
Gaussian elimination, see Method, Gauss
General equation of a plane, 308
complete, 308
incomplete, 308
General equation of a straight line on a plane,
278
Gram-Schmidt process, 224
Graph, 19
directed, 18, 19, 29
undirected, 19
Graph diagram, 19
Graph theory, 19

H

Hadamard element, 188

Hadamard gate, 188

Hermitian conjugate matrix, see Matrix,
Hermitian conjugate

Hermitian matrix, see Matrix, Hermitian

Hesse normal form, see Normal form of the
equation of the line

High-performance computing, 11
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Hoare triple, 13
Hyperbola, 360
equilateral, 369

I
Identity permutation, see Permutation, identity
Identity transformation, 188
Imaginary part of a complex number, see
Complex number, imaginary part
Imaginary unit, 173
Incident vertex and edge, 19
Incomplete gamma function, 69
Inductive step, 53
Inequality
Cauchy—Bunyakovsky, 232
triangle (see Triangle inequality)
Inner product, see Scalar product
Intercept form of the equation of a plane, 309

Intercept form of the equation of a straight line,

283
Inversion, 45, 65

J
Jacobi identity
for commutators, 10
for vectors, 265
Jacobi method, see Method, Jacobi
Java, programming language, 15

K

Known terms, 123

Kronecker—Capelli theorem, see Theorem,
Kronecker—Capelli

Kronecker symbol, 4

L

Lagrange’s identity, 195, 265

Lagrange’s method, see Method, Lagrange’s

Laplace expansion, 47

Law of inertia, 344

Length of a vector, 224

Linear combination of rows, 61

Linear combination of vectors, 218

Linearly dependent system of vectors, 219

Linearly independent system of vectors, 218

Linear term, 357

List, 15

Logarithm of a matrix, 58

Lower triangular matrix, see Matrix, lower
triangular

Index

M
Magnitude of a vector, 255
Main diagonal, 3
Matrix, 1
adjacency, 19
adjugate, 50
anti-Hermitian, 198
of bilinear form, 335
binary, 5
brief record, 1
classical adjoint (see Matrix, adjugate)
cofactor, 50
complex, 2
echelon, 61
functional, 11
Hermitian, 181
Hermitian conjugate, 180
Hilbert, 71
inverse, 50, 126
lower triangular, 4, 51
notations, 2
of quadratic form, 337
reachability, 20, 29
real, 2
rectangular, 2
self-adjoint (see Matrix, Hermitian)
square, 2
antisymmetric, 4
degenerate (see Matrix, square,
singular)
diagonal, 3, 52
identity, 3, 50
nondegenerate (see Matrix, square,
nonsingular)
nonsingular, 50
null (see Matrix, square, zero)
singular, 50
symmetric, 4
unit (see Matrix, square, identity)
zero, 3
transposed, 3, 4
unitary, 182
upper triangular, 4, 51
Matrix algebra, 5
Matrix form of a system, 124
Matrix of a system, 124
augmented, 124, 129
Matrix of a system of vectors, 221
Matrix power theorem, see Theorem, matrix
power
Matrix, skew-Hermitian, see Matrix,
anti-Hermitian
Measurement of state, 184
Median of a triangle, 291
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Method

bordering minor, 64

Cramer, 125

elementary transformations, 61

of elimination of unknowns (see Method,

Gauss)

Gauss, 129

Gauss—Jordan, 150

of an inverse matrix, 126

Jacobi, 343

Lagrange’s, 340

mathematical induction, 21, 53, 195
Minkowski inequality, see Triangle inequality
Minor, 59

basic, 60

corner, 343
Mixed product, see Scalar triple product
Modulus of a complex number, 175
Modulus of a vector, 255

N
n-dimensional space, 218
Normal, see Normal vector
Normal equation of a plane, 310
Normal form of the equation of the line, 284
Normalized vector, 220, 255, 257
Normalizing factor, 285
Normal vector, 278
Norm of a vector, 224

properties, 224
Null vector, see Zero vector
Numbers

complex, 173

ratio, 192

Fibonacci, 67
Number theory, 384
NumPy, library, 18
n-vector, see Vector

(0]
Opposite point, 386
Opposite vector, 218
Optical property

of an ellipse, 359

of hyperbola, 361

of a parabola, 363
Ordinate, 256
Orthogonality, 223, 224, 258
Orthonormality, 224

P
Parallelepiped, 263, 264
Parameter of a line, 321
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Parameter of a parabola, see Focal parameter
of a parabola
Parameter of a segment, 287
Parametric equation of a line, 321
Parametric form of an ellipse, 359
Pascal, programming language, 15
Path, 19
trivial, 19
Pauli element, 188
Pauli matrices, 185
Pencil of planes, 313
Permutation, 45, 65
identity, 45
Phase element, 188
Pivot element, 136
Pivot row, 61
Plane, 277
complex, 174
Point at infinity, 384
Polynomial, 45, 56, 178
annihilating, 230
characteristic, 227
of a matrix, 56
Position vector, 174, 176, 256
Postcondition, 13
Precondition, 13
Predicate, 53
Principle of mathematical induction, see
Method, mathematical induction
Product of a number and a matrix, 6
Product of a number and a vector, 217
Product of complex numbers, 173
Product of matrices, 7
Projection of a point on the line, 256
Projection of a vector on the line, 256
Projection on |0) and |1), 188
Proof of the algorithm correctness, 12
Properties of determinants, 48
Property of identity matrix, 8
Property of zero matrix, 8
Pythagorean theorem, see Theorem,
Pythagorean
Python, programming language, 2, 15, 68, 71,
135

Q
Quadratic form, 337

alternating, 344
degenerate, 338
negatively definite, 344
nondegenerate, 338
positively definite, 344
Quadratic term, 357
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Quantum computer, 183
Quantum-mechanical operator, 186
Quantum system, 183

Qubit, 183

R
Rank, 60, 135
Rank of a quadratic form, 338, 343
Real part of a complex number, see Complex
number, real part
Right-hand side of equations, see Known terms
Root
of equation, 178
n-th of complex number, 176
of unit, 177, 194, 195
Rouché—Capelli theorem, see Theorem,
Kronecker—Capelli
Route, 19
Row of a matrix, 1
Rows
linearly dependent, 61
linearly independent, 61
Roy—Warshall algorithm, see Algorithm,
Warshall

S
Scalar, 1
Scalar product, 223
properties, 223
Scalar triple product, 263
properties, 263
Secondary diagonal, 3
Secular equation, 230
Secular motion, 230
Segment, 287
Self-adjoint matrix, see Matrix, Hermitian
Self-intersection, 384
Semiaxis
ellipse
major, 357
hyperbola
imaginary, 360
real, 360
Sequence
Fibonacci (see Numbers, Fibonacci)
Series, 57
Set
of complex numbers, 173
of real numbers, 173
Signature of a quadratic form, 344
Similarity transformation, 225
Similar matrices, 225

Index

Skew-Hermitian matrix, see Matrix,
anti-Hermitian
Skew lines, 326
Slope-intercept form of the equation of a
straight line, 277
Slope-intercept form of the equation of a
straight line passing through the
given point, 279
Slope of a straight line, 277
Solution of the system of equations, 123
trivial, 138
Space
n-dimensional, 218
one-dimensional, 218
three-dimensional, 218
two-dimensional, 218
Spur, see Trace
Strassen algorithm, see Algorithm, Strassen
Sum of complex numbers, 173
Sum of matrices, 5
Sum of vectors, 217, 255
Sylvester’s criterion, 344
System of linear equations, 123
consistent, 123
determined, 123, 125
homogeneous, 123, 140, 226
inconsistent, 123
non-homogeneous, 123
rectangular, 123
square, 123, 124
undetermined, 123

T
Tangent, 359, 365
to an ellipse, 359
to a hyperbola, 361
to a parabola, 363
Tetrahedron, 264, 315
Theorem
Abel-Ruffini, 178
basic minor, 61
Cayley—Hamilton, 230
Fermat last, 384
fundamental of algebra, 178
Kronecker—Capelli, 129, 220
Laplace, 47
matrix power, 56
Pythagorean, 233
Rouché—Capelli (see Theorem, Kronecker—
Capelli)
Time-complexity function, see Function,
time-complexity
Trace, 11, 31
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of the unit matrix, 11 directing, 321
Transposition, 48 Vector equation of a plane, 307
Triangle inequality, 193, 224 Vector product, 260
Triangle rule, 44 properties, 260
Trigonometric form of a complex number, see Vector triple product, 265

Complex number, trigonometric Vertex, 19
form of an ellipse, 357
Trigonometric formulae, 411 of a hyperbola, 361

of a parabola, 362
Victe formulae, 195

U
Unitary matrix, see Matrix, unitary
Unit vector, 255 w
Upper triangular matrix, see Matrix, upper Warshall algorithm, see Algorithm, Warshall
triangular
V4
v Zero equation, 129

Vector, 1,217,255 Zero vector, 218, 220, 255
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