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Preface

The rapid development of computing places special demands on the training of
young specialists in this field. The complexity of the problems that must be
solved to satisfy the needs of science, technology, industry and the economy also
grows, simultaneously with the rapid growth in the power of modern computer
systems. In this connection, we believe that it is essential that computing specialists
have fundamental knowledge about the development of the related mathematical
frameworks and about how to create methods for solving the above problems.

Algebra and geometry are deemed important areas whose ideas and results are
actively used in the development of information systems, as well as in software
developed for business projects. The basic notions of algebra are numerical matrices
and the methods for working with matrix algorithms. They may be used extensively
in scientific and technical problems and in the game industry. The rapid development
of game technologies, as well as augmented and alternative reality technologies,
means that we must pay special attention to university courses in analytical
geometry and linear algebra, pattern properties in 3D space and fast algorithms for
working with two- and three-dimensional objects.

Another promising area of application for linear algebra algorithms that has seen
rapid development in recent years is Big Data. Analysis of extremely large arrays
requires not only knowledge and use of the known methods, but it also issues the
challenge to develop new approaches and high-performance algorithms.

This textbook is an introduction to linear algebra and analytical geometry for
higher-education students in the natural sciences. It is based on the courses Algebra
and Geometry, Analytical Geometry and Fundamental and Computer Algebra,
which are taught to first-year students of the Faculty of Computer Sciences at
the Voronezh State University. The teaching is meant for theoretical training, as
a supplement to the existing textbooks, for practical and laboratory classes, and also
for self-study. Going forward, the terms “Algebra” and “Linear Algebra” will be
considered equivalent, as well as “Geometry” and “Analytical Geometry”.
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vi Preface

The authors have attempted to lay the material down in the most comprehensible
form while not sacrificing strictness in definitions and theorems. The statements
(theorems, properties) are accompanied with proofs, or references to specialist
literature for advanced study of the materials.

The fundamentals of algebra and geometry are presented in the form most
suitable for future specialists in computing. We have considered the basic algorithms
for working with matrices, vectors and systems of linear equations. The theoretical
material contains solutions of most types of problems and is supplemented with
plenty of analysed examples. The end of an example is designated by the symbol
�. Each chapter ends with problems for self-study. Many of them are provided not
only with full answers but also with detailed solutions. The asterisk sign (∗) marks
the advanced (enhanced complexity) problems.

Apart from the sections traditionally included in algebra and geometry courses,
one of the chapters is devoted to the mathematical fundamentals of the modern
section of cryptography, namely elliptic curve cryptography. The availability of this
chapter will be a connecting link between the mathematical courses and methods
applied in practice by the application software developers.

The section about quantum computing is devoted to one of the examples of the
application of algebra. It demonstrates that the notions of linear algebra are used for
constructing new algorithms, whose computation capacity exceeds the existing ones
considerably.

Let us briefly summarize the content of this textbook. The first four chapters
are devoted to classical divisions of linear algebra; they consider matrices and
determinants, and systems of linear equations; definitions are given for the notion of
vector space and the fundamental solution of a homogeneous system. The next few
chapters introduce the fundamentals of vector algebra and the coordinate method
on a plane and in a 3D space. The following subjects are considered: vectors in
three-dimensional space, the equation of a line on a plane, the equation of a plane
in space and the equation of a line in space. Second-order curves are analysed.
Material on elliptic curves is usually not included in a “traditional” algebra and
geometry course. However, its presence in this book, in our opinion, contributes to a
deeper understanding of the methods of linear algebra and analytical geometry and
provides an example of the implementation of such methods for solving problems
in theoretical and practical cryptography.

We use the Python programming language for illustration of the considered
algorithms. This allows us to familiarize readers with implementation at the initial
stage of study. Python was selected because it is a universal and widely used general-
purpose programming language, suitable for the successful realization of numerical
algorithms; Python is a continuously evolving language; and many of its realizations
are open source. Python has the necessary tools to automatically check for the
errors that might appear in the program code in the process of its creation. The
availability of a great number of additional libraries (such as NumPy, SciPy, pandas)
substantially expands the programmer’s capabilities. Thus, this language is quite
suitable for teaching linear algebra and analytical geometry algorithms.



Preface vii

As the time of writing, the version of Python known as “Python 2” is still being
used in many significant projects and in the literature. However, official support for
Python 2 is diminishing and is scheduled to end. So, we use the latest major version,
“Python 3”, in this book. Note that there are significant differences between Python
2 and Python 3; however, extended support documentation and tools are available
for conversion between the two major versions. Refer to the official Python webpage
(https://www.python.org/) for more details.

The book offers a list of training literature on linear algebra and analytical
geometry, which may be used for a more detailed study on the issues touched upon
in this textbook.

The appendices contain reference information, including basic operators in
Python and C, trigonometric formulae and the Greek alphabet. These reduce the
necessity to address reference literature.

Below you can see the chart of the chapter information dependence in the form of
an oriented graph reflecting the preferable order of covering the academic material.
For instance, after having studied Chaps. 1, 2 and 3, you can move to one of the two
chapters, Chap. 4 or Chap. 6, the contents of which are relatively independent. After
Chap. 9, we think Chaps. 11 and 12 can be mastered in any order.

https://www.python.org/
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Notation

N The set of natural numbers
Z The set of integers
Q The set of rational numbers
R The set of real numbers
C The set of complex numbers
R
n n-dimensional vector space

∅ The empty set
A⇒ B Logical consequence, or implication
A⇔ B Logical equivalence
∀x(P (x)) For all x, the statement P(x) is true
∃x(P (x)) There exists such x that the statement P(x) is true
A and B Conjunction of logical expressionsA and B
A or B Disjunction of logical expressions A and B
A ≡ B Equivalency
{a1, a2, . . . , an} The set consisting of the elements a1, a2, . . . , an
n∑

i=1
ai The sum a1 + a2 + · · · + an

n∏

i=1
ai The product a1a2 . . . an

A = (aij ) Matrix formed by the elements aij
AT Matrix transposed relative to A
I Identity matrix
O Zero matrix
δij Kronecker delta
[A,B] Commutator of the matrices A and B
trA Trace of the matrix A
O(g(n)) Class of functions growing not faster than the function g(n)
G(V,E) G is a graph with vertex set V and edge set E
d(v) Degree of vertex v of a graph
D(V,E) D is a directed graph with vertex set V and edge set E

xv



xvi Notation

d+(v) Out-degree of vertex v in a digraph
d−(v) In-degree of vertex v in a digraph
�x	 Floor function of x, i. e., the greatest integer less than or equal

to the real number x (see definition on page 78)
Mij Additional minor of the matrix element placed at the intersec-

tion of the i-th row and the j -th column
Aij = (−1)i+jMij Cofactor of the element aij
A−1 Inverse of the matrix A
M
i1,i2,...,ik
j1,j2,...,jk

Minor of the k-th order (see page 59)
rkA Rank of the matrix A
eA or expA Exponential of the matrix A
lnA Logarithm of the matrix A
i = √−1 Imaginary unit
z∗ Complex number conjugate of the complex number z
|z| Modulus of the complex number z
arg z Argument of the complex number
ZH Hermitian conjugate matrix
|ψ〉 Quantum state
|0〉, |1〉 Basic quantum states of the qubit
σ1, σ2, σ3 Pauli matrices
x = [x1, . . . , xn]T Vector of the n-dimensional space R

n

0 Zero vector
‖x‖ Euclidean norm of the vector x

Xgen. General solution of a homogeneous system of linear equations
Xspec. Specific solution of a non-homogeneous system of linear

equations
PrL a Projection of the vector a onto the line L (see page 256)
i, j , k Normalized vectors of the Cartesian coordinate system
a ⊥ b Orthogonality of the vectors a and b

(a · b) Scalar or inner product of vectors
a × b Vectorial or outer product of vectors
(a, b, c) Scalar triple product
a×(b×c) Vector triple product
abs(x) Absolute value of the real number x
sgn(x) Sign of the real number x
μ Normalizing factor (see pages 285 and 311)
δ Deviation of a point from a line or a plane
A(x, y) Bilinear form
ω(x) Quadratic form
ε Eccentricity of a curve of the second order
� Elliptic curve with real points
� Elliptic curve with rational points
O Point at infinity of an elliptic curve
A⊕ B The sum of two points A and B on an elliptic curve



Chapter 1
Matrices and Matrix Algorithms

1.1 Matrices and Operations with Them

Matrix of size m× n is a rectangular table of numbers with m rows and n columns.
A matrix is written in the form

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . . . . . . .

am1 am2 . . . amn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (1.1)

Matrices are usually denoted by capital Latin letters, for example, A,B,U, . . .
Numbers aij , included into the matrix, are its elements. An ordered set of

elements ai1, ai2, . . . , ain of the matrix A, having similar first index i, is referred
to as the i-th row of the matrix, while an ordered set of elements a1j , a2j , . . . , amj ,
having similar second index j , is referred to as the j -th column. Thus, the first
index of an arbitrary element aij indicates the row number, while the second index
indicates the column number, at the intersection of which this element is situated.

A brief matrix record is widely used:

A = (aij ), i = 1, 2, . . . ,m; j = 1, 2, . . . , n. (1.2)

The column of n numbers is also called n-vector, or simply vector. So, the 1st
vector represents a single number, or, in other words, scalar.
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2 1 Matrices and Matrix Algorithms

Note Matrices were initially introduced for a compact record of linear equations.
Now, they are used in various divisions of mathematics and physics and their
applications for simpler presentation of various mathematical operations on matrix
elements.

Example 1.1 A point on a computer screen in RGB format is presented in the form
of a 3-vector with components

P =

⎡

⎢
⎢
⎣

pR

pG

pB

⎤

⎥
⎥
⎦ , (1.3)

where pR , pG, pB are real numbers from interval [0, 1], they characterize the inten-
sity of red, green and blue colour components, respectively. Various combinations
of the component values allow obtaining any colour. In particular, vectors

P1 =

⎡

⎢
⎢
⎣

1

0

0

⎤

⎥
⎥
⎦ and P2 =

⎡

⎢
⎢
⎣

0.2

0.2

0.6

⎤

⎥
⎥
⎦ (1.4)

determine red and dark-blue colours, respectively. �
If the conditionm = n is met, then the matrix is called squarematrix of order n.

If the number of rows is not equal to the number of columns, and thus the inequality
m �= n is met, then such a matrix is a rectangular one.

Note For presentation of matrices, the following notations are also used:

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . . . . . . .

am1 am2 . . . amn

⎞

⎟
⎟
⎟
⎟
⎟
⎠

or

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . . . . . . .

am1 am2 . . . amn

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

. (1.5)

The elements of real matrices are real numbers from the set R = (−∞,∞),
while the elements of complex matrices are complex numbers.

Note In a standard mathematical notation, the indices of the elements begin with
one: i, j = 1, 2, . . . In many programming languages, including Python and C,
rows and columns are numbered from zero to m − 1 and n − 1, respectively.
This difference should be paid attention to when realizing matrix algorithms in the
mentioned languages.
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For the matrix A we will build a new matrix B, where we transpose the rows and
the columns:

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

a11 a21 . . . am1

a12 a22 . . . am2

. . . . . . . . . . . . . .

a1n a2n . . . amn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (1.6)

Such a matrix B is called transposed with respect to A and is denoted as AT . As is
easy to see, reapplication of the transposition operation returns to the initial matrix:
(AT )T = A.

Example 1.2 Transposed with respect to the matrix A =
⎡

⎣
5 0 −4

2 −1 3

⎤

⎦ is the matrix

AT =

⎡

⎢
⎢
⎣

5 2

0 −1

−4 3

⎤

⎥
⎥
⎦. �

Let A be a square matrix. Its main diagonal is a set of elements
a11, a22, . . . , ann, having the same indices, and secondary diagonal, or cross-
diagonal, is the set of elements an1, a(n−1)2, . . . , a1n of the matrix.

A square matrix is called diagonal, if all of her elements located outside the main
diagonal are equal to zero:

⎡

⎢
⎢
⎢
⎢
⎢
⎣

d1 0 . . . 0

0 d2 . . . 0

. . . . . . . . . .

0 0 . . . dn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (1.7)

If in a diagonal matrix of form (1.7) for all values i = 1, 2, . . . , n the equalities
di = 1 are true, then the matrix is called identity matrix, or unit matrix, and is
denoted through I , while of all the elements di = 0, then it is called zero matrix,
or null matrix, and is denoted byO:

I =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 . . . 0

0 1 . . . 0

. . . . . . . . .

0 0 . . . 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, O =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 . . . 0

0 0 . . . 0

. . . . . . . . .

0 0 . . . 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (1.8)
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For notation of the elements of an identity matrix, Kronecker1 symbol is used,
defined as follows:

δij =
{

1, if i = j,
0, if i �= j. (1.9)

Thus, in symbolic notations, we have I = (δij ), where i, j = 1, 2 . . . , n.

Note Often, in the notation of Kronecker symbol, the indices are divided by
commas: δi,j .

The matrix A = (aij ) is called upper triangular, if aij = 0 at i > j , i.e. all
the elements, positioned below the main diagonal, are equal to zero. Similarly the
matrixB = (bij ) is called lower triangular, if bij = 0 at i < j , i.e. all the elements
above the main diagonal are equal to 0.

Upper and lower triangular matrices may schematically be denoted as shown in
Fig. 1.1.

Square matrix A = (aij ) is called symmetric, if for all values i, j = 1, 2, . . . , n
elements aij = aji , in other words, all the elements symmetric with respect to the
main diagonal are equal to each other.

Taking into account the notion of transposed matrix, the symmetry condition may
be written in the form of the equality A = AT .

For the antisymmetric matrix, the elements aij = −aji , where i, j =
1, 2, . . . , n.

Let us turn to the notion of equality of matrices. Two matrices A = (aij ) and
B = (bij ) of size m× n are equal to each other if and only if aij = bij for all i and
j . Thus, the property of equality can only be met for the matrices of the same size.

A = , B =

0

0

.

Fig. 1.1 Schematic notation for upper A and lower B triangular matrices. Highlighted is the
position of the elements other than zero

1Leopold Kronecker (1823–1891), German mathematician.
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Example 1.3 Consider two matrices C andD:

C =
⎡

⎣
1 c2

−c2 c4

⎤

⎦ , D =
⎡

⎣
d2 −d
d d2

⎤

⎦ , (1.10)

where c and d are some real numbers.
Equality of matrices C = D is equivalent to the system of equations reflecting

equality of separate elements:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d2 = 1,

c2 = −d,
−c2 = d,

c4 = d2.

(1.11)

Then, the matrices C and D are equal if and only if the equalities c = ±1 and
d = −1 are met. �
Example 1.4 Binary matrix or (0, 1)-matrix is called a matrix, whose elements
take values 0 or 1. Let us calculate how many binary matrices of size m× n exist.

Each element of such a matrix may only take two values. Since the matrix
consisting of m rows and n columns has a total of mn elements, then we obtain
2mn ways to assign values to the elements. Hence, the number of binary matrices of
size m× n is 2mn. �

Consider the basic operations on matrices. Operations on matrices are introduced
using the well-known arithmetic operations on their elements. Addition and multi-
plication of real numbers are naturally transferred to the matrices and form the basic
operations of matrix algebra.

Sum of two matrices A = (aij ) and B = (bij ) of the same size m × n is the
matrix C = (cij ) of the same size, consisting of the elements cij = aij + bij . And,
for the sum of matrices, it is written C = A+ B.

Note, that one may only add square or rectangular matrices of the same size.

Example 1.5 Given two matrices A and B:

A =
⎡

⎣
2 0 −1

1 3 4

⎤

⎦ , B =
⎡

⎣
0 5 3

2 1 4

⎤

⎦ . (1.12)
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Find their sum A + B, having performed the operations of addition of the
respective elements:

A+ B =
⎡

⎣
2 + 0 0 + 5 −1 + 3

1 + 2 3 + 1 4 + 4

⎤

⎦ =
⎡

⎣
2 5 2

3 4 8

⎤

⎦ . (1.13)

�
Product αA of the real number α and the matrix A = (aij ) is the matrix C =

(cij ), consisting of the elements cij = α · aij .

Example 1.6 Assume that the real numbers α = 2, β = −3 are set, and the

matrix A =
⎡

⎣
0 −1 2

−2 3 4

⎤

⎦. Then αA = 2A =
⎡

⎣
0 −2 4

−4 6 8

⎤

⎦, βA = (−3)A =
⎡

⎣
0 3 −6

6 −9 −12

⎤

⎦.

�
Based on the introduced operations, we may make up a difference of matrices

according to the definition: A − B = A + (−1)B. Thus, the matrices difference is
nothing but the sum of the first summand and the second summand, multiplied by
the number (−1).

Note that for antisymmetric matrix A the equality AT = −A is true.

Example 1.7 Find the difference of the matrices defined in Example 1.5:

A− B =
⎡

⎣
2 0 −1

1 3 4

⎤

⎦ −
⎡

⎣
0 5 3

2 1 4

⎤

⎦ =
⎡

⎣
2 0 −1

1 3 4

⎤

⎦ + (−1)

⎡

⎣
0 5 3

2 1 4

⎤

⎦

=
⎡

⎣
2 + (−1)0 0 + (−1)5 −1 + (−1)3

1 + (−1)2 3 + (−1)1 4 + (−1)4

⎤

⎦ =
⎡

⎣
2 −5 −4

−1 2 0

⎤

⎦ .

�
The introduced operations have the following properties that are true for arbitrary

matrices A, B and C and all λ,μ ∈ R:

1. A+ B = B + A (commutativity of addition);
2. (A+ B)+ C = A+ (B + C) (associativity of addition);
3. λ(μA) = (λ · μ)A;
4. λ(A± B) = λA± λB;
5. (λ± μ)A = λA± μA;
6. A+O = O + A = A.
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The primary operation of linear algebra is the product of matrices. It, based on
the two initial matrices, allows constructing a new matrix.

In order to introduce this notion, let us first consider one special case. The product
of a row of n elements by a column of n elements is the element, equal to the sum
of the products of the respective elements of the raw and the column:

[
a1 a2 . . . an

]

⎡

⎢
⎢
⎢
⎢
⎢
⎣

b1

b2
...

bn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= a1b1 + a2b2 + · · · + anbn. (1.14)

Example 1.8 Calculate the product of the row [1, 2, 4, 8, 16] by the column
[16, 8, 4, 2, 1]T :

[
1 2 4 8 16

]

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

16

8

4

2

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 1 · 16 + 2 · 8 + 4 · 4 + 2 · 8 + 1 · 16 = 80. (1.15)

�
Now let us consider the general case of matrices of an arbitrary size.
Product of the matrix A = (aij ) of size m × n and the matrix B = (bij ) of

size n × p is the matrix C = (cij ) of size m× p, whose elements are expressed in
accordance with the rule:

cij =
n∑

k=1

aikbkj . (1.16)

The product of matrices is written as C = A · B or C = AB.
Thus, the element cij of the matrix C = AB is the sum of the products of the

elements of the i-th row of the matrix A by the respective elements of the j -th
column of the matrix B (Fig. 1.2).
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⎡
⎢⎢⎢⎢⎣ai1 ai2 . . . ain

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b1j

b2j

bnj

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣ cij

⎤
⎥⎥⎥⎥⎦i-th

row

j-th
column

i-th
row

j-th
column

...

cij =
n∑

k=1
aikbkj

Fig. 1.2 Multiplication of matrices (aij ) and (bij )

Example 1.9 Execute the operation of multiplication of matrices

⎡

⎣
1 2

−3 4

⎤

⎦ and

⎡

⎣
−3 6

5 −4

⎤

⎦:

⎡

⎣
1 2

−3 4

⎤

⎦

⎡

⎣
−3 6

5 −4

⎤

⎦ =
⎡

⎣
1 · (−3)+ 2 · 5 1 · 6 + 2 · (−4)

(−3) · (−3)+ 4 · 5 (−3) · 6 + 4 · (−4)

⎤

⎦

=
⎡

⎣
7 −2

29 −34

⎤

⎦ . (1.17)

�
Note The definition of the product of matrices introduced above looks less natural
than the definition of the sum. However, exactly this method of introducing the
operation of multiplication allows, in matrix algebra, preserving many properties
typical for the product of real numbers.

The following properties are met:

1. A(B +C) = AB +AC, (B +C)A = BA+CA (distributivity of multiplication
with respect to addition);

2. (AB)C = A(BC) (associativity of multiplication);
3. OA = AO = O (property of zero matrix);
4. IA = AI = A (property of identity matrix).
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In the general case, in the product of matrices, their order is essential, which is
demonstrated by the following example.

Example 1.10 Let A =
⎡

⎣
2 −1

1 0

⎤

⎦ and B =
⎡

⎣
3 0

1 −1

⎤

⎦ .

Then we have

AB =
⎡

⎣
2 −1

1 0

⎤

⎦

⎡

⎣
3 0

1 −1

⎤

⎦ =
⎡

⎣
2 · 3 + (−1) · 1 2 · 0 + (−1) · (−1)

1 · 3 + 0 · 1 1 · 0 + 0 · (−1)

⎤

⎦ =
⎡

⎣
5 1

3 0

⎤

⎦ ,

(1.18)

at the same time, the product of matrices, executed in a different order, is equal to

B A =
⎡

⎣
3 0

1 −1

⎤

⎦

⎡

⎣
2 −1

1 0

⎤

⎦ =
⎡

⎣
3 · 2 + 0 · 1 3 · (−1)+ 0 · 0

1 · 2 + (−1) · 1 1 · (−1)+ (−1) · 0

⎤

⎦ =
⎡

⎣
6 −3

1 −1

⎤

⎦ .

(1.19)
�

So, matrix multiplication is non-commutative, i.e. when the multipliers are
permuted, the result may change.

As it directly follows from the definition of matrix product, they can be multiplied
when and only when the number of rows of the first multiplier—matrixA, coincides
with the number of rows of the second multiplier—matrix B. We should also note
that the existence of the product AB does not imply the existence of the product
BA.

Matrix Commutator and Matrix Trace
Matrices A and B are called commuting (or permutation), if AB = BA. The
commuting matrices are necessarily square and have the same order.

Commutator of two square matrices of the same order is the value

[A,B] = AB − BA. (1.20)

By definition for commuting matrices, the condition [A,B] = O is met.

Example 1.11 Calculate [A,B], if

A =

⎡

⎢
⎢
⎣

−1 2 −2

2 1 −1

−1 −1 −1

⎤

⎥
⎥
⎦ , B =

⎡

⎢
⎢
⎣

1 0 −1

−1 1 1

2 0 0

⎤

⎥
⎥
⎦ . (1.21)
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Solution

AB =

⎡

⎢
⎢
⎣

−1 2 −2

2 1 −1

−1 −1 −1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1 0 −1

−1 1 1

2 0 0

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

−7 2 3

−1 1 −1

−2 −1 0

⎤

⎥
⎥
⎦ , (1.22)

BA =

⎡

⎢
⎢
⎣

1 0 −1

−1 1 1

2 0 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

−1 2 −2

2 1 −1

−1 −1 −1

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

0 3 −1

2 −2 0

−2 4 −4

⎤

⎥
⎥
⎦ , (1.23)

[A,B] = AB − BA =

⎡

⎢
⎢
⎣

−7 −1 4

−3 3 −1

0 −5 4

⎤

⎥
⎥
⎦ . (1.24)

�
Example 1.12 Prove Jacobi2 identity, true for the commutators of any matrices of
size n× n:

[[P,Q], R] + [[Q,R], P ] + [[R,P ],Q] ≡ O. (1.25)

Proof Use the definition of commutator [P,Q] = PQ−QP , then

[[P,Q], R] = [PQ−QP,R] = (PQ −QP)R − R(PQ −QP)
= PQR −QPR − RPQ + RQP. (1.26)

Then, in a similar manner, we will present the remaining summands in the sum:

[[Q,R], P ] = QRP − RQP − PQR + PRQ, (1.27)

[[R,P ],Q] = RPQ − PRQ −QRP +QPR. (1.28)

The sum of the values (1.26), (1.27) and (1.28), as is easy to see after reducing
such summands, is equal to zero. Thus, the Jacobi identity is proved.

�

2Carl Gustav Jacob Jacobi (1804–1851), German mathematician.
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Trace trA of the square matrix A = (aij ), where 1 � i, j � n, is the sum of its
diagonal elements:

trA =
n∑

i=1

aii . (1.29)

Another designation of the matrix A trace is SpA, from a German word “spur”.

Example 1.13 The trace of the identity matrix I of size n × n is equal to its order:
tr I = n. �
Estimate of the Number of Multiplication Operations When Multiplying
Matrices
In order to estimate the working time of the computing algorithms it is necessary to
know the number of the multiplication operations executed in the program. Let us
determine this number for the matrix multiplication operation.

Let both product matrices be square and have the same order n. Then AB
is the matrix n × n. For calculation of all the result elements we will need n2

multiplications of row by column. The multiplication of row by column contains
exactly n multiplications of real numbers. Hence, in order to determine the product
AB we will need n3 real multiplications.

Note There exist non-elementary algorithms that allow multiplying matrices in a
smaller number of operations. Among the most well known of such algorithms is
Strassen3 algorithm. Note that the advantages of using Strassen algorithm and
similar non-elementary methods of matrices multiplication become apparent only
for sufficiently large matrix size values [20].

Modern scientific and technical tasks, game industry projects, and technologies
of augmented and alternative reality require fast execution of matrix operations on
the mass data. This is why such actions with matrices as transposition, multiplication
and others are presently executed using the parallel programming methods. Working
with matrices on high-performance parallel systems has its own peculiarities associ-
ated with the methods of data presentation in the computer memory and the methods
of interprocessor communication. In the works [5, 27, 56] basic algorithms of matrix
algebra are presented, adapted for application on high-performance computing
systems. The examples of implementation of such algorithms are provided in [42].

Note As was noted above, the matrix elements are real and complex numbers. Apart
from this, the elements may also be functions on which algebraic operations can
be performed. In such a case we say about functional matrices. Later on, unless
otherwise specified, only numerical matrices are considered.

3Volker Strassen (born 1936), German mathematician.
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1.2 Concept of Algorithm, Correctness of Algorithms

In the Sect. 1.4 will be shown algorithms for working with matrices in Python
language. This is why, below we will preliminarily consider the concept of
algorithm and algorithm correctness and show how to estimate their efficiency.

Algorithm is an exact prescription defining the computational process leading
from the varying source data to the result sought for (the data is the ordered set of
symbols) [48, 49]. In other words, an algorithm describes a certain computational
procedure with the help of which a computational problem is solved. As a rule,
the algorithm is used for solving some class of problems rather than one certain
problem [16, 69]. The term “algorithm” derives from the name of a medieval
mathematician al-Khwarizmi.4

The concept of algorithm belongs to basic fundamental notions of mathematics.
Many researchers use various definitions of algorithm that differ from each other.
However, all definitions express or imply the following algorithm properties [48,
49].

1. Discreteness. An algorithm must represent a process of problem solving as a
sequential execution of separate steps. Execution of each algorithm step takes
some time, and each operation is only executed wholly and cannot be executed
partly.

2. Elementary character of steps. The method of execution of each command
should be known and simple enough.

3. Determinateness (from Latin dētermināre—determine). Each successive step of
the algorithm operation is uniquely determined. The result should be the same
for the same source data.

4. Directedness. It should be known what to consider as the algorithm operation
result.

5. Mass character. There must be a possibility to apply the algorithm to all
collections of source data from the certain pre-fixed set.

Correctness of Algorithms
Consider the algorithm A that solves a certain computational problem. The pos-
sibility of applying this algorithm in a computer program requires justification of
correct problem solution for all input data, i.e. we should carry out the proof of the
algorithm A correctness. For this, we need to trace all changes of the variables’
values that occur as a result of the algorithm’s operation. From the mathematical
point of view, we are talking about establishing the true values of some predicates
describing the variables.

4al-Khwarizmi (Muh. ammad ibn Mūsā al-Khwārizmı̄) (about 780–about 850), a distinguished
mathematician, astronomer, geographer and philosopher. The term “algebra” derives from the
name of his work containing the general techniques for solving problems reduced to several
algebraic equations [9].
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Assume that P is a predicate true for the input data of the algorithm A, Q is a
predicate taking a true value after completion of A. The introduced predicates are
called precondition and postcondition, respectively.

Proposition {P }A{Q} means the following: “if operation of the algorithm A
starts from the true value of the predicate P , then it will end at the true value of
Q”. We obtain that the proof of correctness of the algorithm A is equivalent to
the proof of trueness of {P }A{Q}. The pre- and postcondition together with the
algorithm itself are referred to as the Hoare5 triple. The Hoare triple describes how
the execution of the given fragment of the computer program changes the state of
computation [59].

Example 1.14 Let us prove the correctness of the algorithm of exchanging the
values of two variables.

Listing 1.1
� �

1 # Exchanging of values of variables a and b
2 temp = a
3 a = b
4 b = temp
� �

Proof Let the variables a and b take the following values: a = a0, b = b0.
Precondition: P = {a = a0, b = b0}, postcondition:Q = {a = b0, b = a0}.
Substitute the values of the variables a and b into the body of the algorithm A,

which will result in the following values: temp = a0, a = b0, b = a0. This is
why the predicate {P }A{Q} takes the true value, and thus the correctness of the
algorithm swap(a,b) is proved. �

1.3 Estimation of Algorithm Efficiency

An important task of the algorithm analysis is the estimation of the number
of operations executed by the algorithm over a certain class of input data. The
exact number of elementary operations does not play any significant role here,
since it depends on the software implementation of the algorithm, the computer’s
architecture and other factors. This is why the algorithm’s performance indicator is
the growth rate of this value with the growth of the input data volume [16, 51].

In order to analyse the algorithm efficiency, it is necessary to estimate the
running time of the computer that solves the set problem, as well as the volume of
memory used. The estimate of the running time of the computing system is usually
obtained by calculating the number of elementary operations performed during
computations (such operations are called basic operations). With the supposition

5Charles Antony Richard Hoare (born 1934), English scientist specializing in computer science.
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that one elementary operation is performed in a strictly defined time, the function
f (n), defined as the number of operations during computations on input data of size
n, is called a time-complexity function [51].

In algorithm analysis, the number of basic operations is estimated, and it is
assumed that execution of each of the listed below operations takes constant and not
depending on n time [52].

1. Binary arithmetic operations (+, −, ∗, /) and operations of comparison of real
numbers (<, �, >, �, =, �=).

2. Logic operations (and, or).
3. Branching operations.
4. Calculation of the values of elementary functions for relatively small values of

their arguments.

During implementation of matrix algorithms, in most cases the basic operation
is considered as the operation of multiplication of two real numbers.

Let us consider the functions f, g : N → (0,∞). Assume that g(n) describes the
time complexity of the known algorithm.

It is said that a function f (n) belongs to the class O(g(n)) (read as “big O of
g”), if the growth rate of f (n) does not exceed the growth rate of g(n). We give a
strict definition: f (n) = O(g(n)), if, for all values of the argument n, starting from
a threshold value n = n0, the inequality f (n) � cg(n) is valid for some positive c:

O(g(n)) = {f (n) : ∃c > 0, n0 ∈ N such that for all n � n0

f (n) � cg(n) is valid}. (1.30)

The notation f (n) ∈ O(g(n)) can be read as “the function g majorizes the
function f ”.

Since O(g(n)) denotes a set of functions growing no faster than the function
g(n), then, in order to indicate that a function belongs to this set, the notation
f (n) ∈ O(g(n)) is used. Another notation is rather common in the literature:
f (n) = O(g(n)), where the equals sign is understood conventionally, namely in
the sense of belonging to the set. The class O(g(n)) are referred also to as the “big
O notation”.

Example 1.15 Prove that the asymptotic estimate 3n3 ∈ O(n4) is true.

Proof According to the definition (1.30) we should prove that there exists a positive
constant c such that starting from some number n0, the inequality 3n3 � cn4 is met,
or (cn− 3)n3 � 0.

Assume that c = 3, then, starting from n0 = 1, the last inequality is true. Then,
3n3 ∈ O(n4). �
Note The notationO(f (t)) is used not only for t → ∞, but may also be generalized
in case of an arbitrary limit value of the argument t → t0. For example, the
expression

f (t) = O(g(t)) at t → t0 (1.31)
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means that the limit of the ration limit of the functions f (t) and g(t) is taken at the
point t = t0:

lim
t→t0

f (t)

g(t)
= const � 0. (1.32)

1.4 Primitive Matrix Operations in Python

In the programs in Python language, the matrices are presented in the form of two-
dimensional arrays [62]. For the arrays in Python, a special term “list” is used. List
is an ordered sequence of numbers or other presentable in the computing system’s
memory objects. Thus, the matrix is specified in the form of a list, whose elements
are lists of the same length. In particular, the matrix

A =

⎡

⎢
⎢
⎣

11 13 15 17

−9 −8 −7 −6

−1 −2 12 14

⎤

⎥
⎥
⎦ (1.33)

in a Python program will be presented as
A=[[11, 13, 15, 17], [-9, -8, -7, -6], [-1, -2, 12,

14]]
As is seen, for formation of a list an enumeration of its elements separated by

commas is used. In order to address the matrix elements, square brackets are used,
for example, A[i, j].

Note that the indices of arrays in Python begin from zero rather than one. For
example, for the matrix (1.33) we have the following equalities:

A[0, 0] = 11
A[2, 1] = -2

Note The agreement about zero starting values of indices is also used in such
programming languages as C and Java [39]. However, in Fortran and Pascal
languages, the indices by default begin from one [12, 74].

Let us show a program code used for inputting the matrix elements from the
console and outputting the matrix to the console (see Listing 1.2).

Listing 1.2
� �

1 def read_matrix_from_console():
2 n = int(input()) # Number of rows
3 m = int(input()) # Number of columns
4 A = []
5

6 for i in range(n):
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7 row = input().split()
8 for j in range(m):
9 row[j] = int(row[j])

10 A.append(row)
11 return A
12

13

14 def print_matrix_to_console(A):
15 for row in A:
16 for elem in row:
17 print(elem, end=’ ’)
18 print()

� �

Example of call of functions read_matrix_from_console() and
print_matrix_to_console():

A = read_matrix_from_console()
print_matrix_to_console(A)

The following functions presented in Listing 1.3 perform standard operations on
matrices: addition, multiplication by a number and transposition.

Listing 1.3
� �

1 def matrix_add(A, B):
2 if len(A) == len(B) and \
3 len(A[0]) == len(B[0]):
4 C = [[0 for j in range(len(A[0]))] \
5 for i in range(len(A))]
6

7 for i in range(len(A)):
8 for j in range(len(A[0])):
9 C[i][j] = A[i][j] + B[i][j]

10

11 return C
12

13

14 def matrix_mult_by_scalar(A, alpha):
15 C = [[0 for j in range(len(A[0]))] \
16 for i in range(len(A))]
17

18 for i in range(len(A)):
19 for j in range(len(A[0])):
20 C[i][j] = alpha * A[i][j]
21

22 return C
23
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24

25 def matrix_subtract(A, B):
26 if len(A) == len(B) and \
27 len(A[0]) == len(B[0]):
28 C = [[0 for j in range(len(A[0]))] \
29 for i in range(len(A))]
30

31 for i in range(len(A)):
32 for j in range(len(A[0])):
33 C[i][j] = A[i][j] - B[i][j]
34

35 return C
36

37

38 def matrix_transpose(A):
39 C = [[0 for j in range(len(A))] \
40 for i in range(len(A[0]))]
41

42 for i in range(len(A)):
43 for j in range(len(A[0])):
44 C[j][i] = A[i][j]
45

46 return C
� �

An important function calculating the product of matrices by formula (1.16) is
presented in Listing 1.4.

Listing 1.4
� �

1 # Multiplication of matrices A and B
2 def matrix_mult(A, B):
3 C = [[0 for j in range(len(B[0]))] \
4 for i in range(len(A))]
5

6 for i in range(len(A)):
7 for j in range(len(B[0])):
8 s = 0
9

10 for k in range(len(B)):
11 s += A[i][k] * B[k][j]
12

13 C[i][j] = s
14

15 return C
� �
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Table 1.1 Matrix functions and NumPy procedures

Name Comment

dot(A,B) The product of matrices A and B

trace(A) Trace of matrix

linalg.inv(A) Inversion of matrix

linalg.det(A) Determinant of matrix

linalg.matrix_power(A, n) Raising matrix A to power n

linalg.eigvals(A) Calculation of eigenvalues of matrix

linalg.eig(A) Solution of problems on eigenvalues and eigenvectors,
the function return all solutions (λ,X) of the system
AX = λX

linalg.solve(A, B) Solution of the system of linear equations AX = B with
vector B on its right side

1.4.1 NumPy Library

For high-performance calculations, the library NumPy with open source code is
widely used [46, 57]. In this package, for presentation of matrices in the memory,
the data type array is introduced. Apart from this, when including NumPy using the
command

from numpy import*
a great number of matrix functions and procedures become available. The most
important ones are listed in Table 1.1.

In particular, transposition of arbitrary rectangular matrices is performed using
the method “.T”:

A=array([[11, 13, 15, 17], [-9, -8, -7, -6], [-1, -2,
12, 14]])

A.T
To the console (more specifically, into the standard output stream) will be sent
A=array([[11, -9, -1],

[13, -8, -2],
[15, -7, 12],
[17, -6, 14]])

1.5 Matrix Algorithms in the Graph Theory

As an example of the algorithm’s operation with matrices, let us consider one of the
important algorithms of the graph theory—Warshall6 algorithm [1, 61], which is
used for calculating the reachability matrix of the specified directed graphD(V,E).

6Stephen Warshall (1935–2006), American researcher in the field of computer sciences.
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First we will recall the basic notions of the graph theory. Everywhere below, the
multiplication operation signs “·” and “×” will be considered as equivalent. In some
cases, when it is clear that we are dealing with multiplication, they may be omitted.

Graph is a pair G = (V , E), where V is the set of vertices, while E is the set
of edges, connecting some pairs of vertices [22, 31, 55, 73]. In directed graphs,
the edges are the ordered pair of vertices, i.e. it is of importance which vertex is the
beginning of the edge and which one is the end. Directed graphs are also referred to
as digraphs.

A drawing where the graph vertex is shown as points and the edges are shown as
segments or arcs is called a graph diagram.

Two vertices u and v of the graph are adjacent, if they are connected by the
edge r = uv. In this case it is said that the vertices u and v are the endpoints of the
edge r . If the vertex v is the endpoint of the edge r , then v and r are considered to
be incident (from Latin incēdere—to distribute).

The number of elements (cardinality) of any set, for example V , is denoted as
|V |.

Adjacency matrix M is a binary matrix of a relation over the set of vertices of
the graphG(V,E), which is specified by its edges. The adjacency matrix as the size
|V | × |V |, and its elements are determined in accordance with the rule

M(i, j) =
{

1, if edge ij ∈ E,
0, if edge ij /∈ E. (1.34)

A path of length k in the graph G is a sequence of vertices v0, v1, . . . , vk such
that ∀i = 1, . . . , k the vertices vi−1 and vi are adjacent. There are also considered
trivial paths of the form vi, vi . For undirected graphs, paths are also called routes.

The length of the path is the number of edges in it, taking into account the
iterations.

Example 1.16 Consider a digraph D(V,E), the set of vertices V and the set of
edges E of which are specified as follows:

V = {a, b, c, d, e}, E = {ab, ae, bc, bd, dc, de, ec}.

The graphD(V,E) is presented in Fig. 1.3.
The adjacency matrixM of the digraphD has the form:

M =

a b c d e

a

b

c

d

e

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 1

0 0 1 1 0

0 0 0 0 0

0 0 1 0 1

0 0 1 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
(1.35)
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Fig. 1.3 The digraph
D(V,E) to the Example 1.3

a

b c d

e

Reachability matrix M∗ of the digraph D(V,E) is a logic closing matrix by
transitivity relation E. The reachability matrix stores the information about the
existence of paths between the digraph vertices: at the intersection of the i-th row
and the j -the column stands 1 when and only when there exists a path from the
vertex vi to vj . M∗ may be calculated by a formula using the logical operation
or [29]

M∗ = M orM2 or . . . orMn, (1.36)

where n is the number of vertices of the directed graph, i.e. n = |V |. Note, that
determining the elements of the matrix M∗ by formula (1.36) is associated with
a considerable volume of calculations, this is why for the digraphs with a great
number of vertices, the Warshall algorithm is used, also known as the algorithm
of Roy7–Warshall [61].

The Warshall algorithm is based on formation of a sequence of auxiliary binary
matrices W(0), W(1), . . . , W(n), where n = |V |. The first matrix is set equal to the
adjacency matrix M of the digraph. The elementsW(k)

ij , where 1 � i, j, k � n, are

calculated by the rule: W(k)
ij = 1, if there exists a path connecting the vertices vi

and vj such that all the inner vertices belong to the set Vk = {v1, v2, . . . , vk}, and

W
(k)
ij = 0 otherwise. Note that the inner vertex of the path P = vi, . . . , vl, . . . , vj

is any vertex vl , 1 � l � n, belonging to P , except the first vi and the last vj . The
resulting matrix W(n) appears to be equal to W(n) = M∗, sinceM∗

ij = 1 when and
only when there exists the path vi, . . . , vj , all inner vertices of which are contained
in V = {v1, v2, . . . , vn}.

The principal moment is that the matrix W(k) can be obtained from W(k−1) as
follows. The path vi, . . . , vj , containing the inner vertices only from the set Vk ,
exists when and only when one of the conditions is fulfilled:

1. there exists a path vi, . . . , vj with inner vertices only from Vk−1 =
{v1, v2, . . . , vk−1};

7Bernard Roy (born 1934), French mathematician.
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2. there are paths v1, . . . , vk and vk, . . . , vj , also containing inner vertices only
from Vk−1.

We obtain two cases: eitherW(k−1)
ij = 1, if vk is included into the set of vertices

allowed at this stage, or W(k−1)
ik = 1 and W(k−1)

kj = 1. Therefore, using the logical
operations or (disjunction) and and (conjunction) we may write

W
(k)
ij = W(k−1)

ij or
(
W
(k−1)
ik andW(k−1)

kj

)
. (1.37)

Let us show a respective algorithm for constructing M∗ by the specified
adjacency matrix M of size n × n, where n > 1. The intermediate matrices W(k),
where 0 � k � n − 1, should not necessarily be stored in memory until the end
of the algorithm’s operation, this is why, in the suggested realization, the elements
W(k−1) are substituted by the elements of the subsequent matrixW(k).

Listing 1.5
� �

1 def Warshall_algorithm(M):
2 n = len(M)
3

4 W = [[0 for j in range(n)] \
5 for i in range(n)]
6

7 for i in range(n):
8 for j in range(n):
9 W[i][j] = M[i][j]

10

11 for k in range(n):
12 for i in range(n):
13 for j in range(n):
14 W[i][j] = W[i][j] or \
15 (W[i][k] and W[k][j])
16

17 return W
� �

Correctness of algorithm WarshallAlgo can be proved by the method of math-
ematical induction (see the description of this method below on page 53) [61].
Solution of the problem for finding M∗ is also investigated in Problem 1.39 and
in [61].

Example 1.17 Let digraph D be specified (Fig. 1.4). Construct the reachability
matrixM∗, using Warshall algorithm.
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Fig. 1.4 Directed graph D
a

d c

b

Solution The matrix W(0) coincides with the adjacency matrix of the digraph and
has the form

W(0) =

a b c d

a

b

c

d

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0

1 0 1 0

0 0 0 0

1 0 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Calculate W(1). If W(0)
ij = 1, then the respective element W(1)

ij is also equal to

1: W(1)
ij = 1. If W(0)

ij = 0, then attention should be paid to the elements of the first
row and the first column, standing at the intersection with the j -th column and the
i-the row: if W(0)

1j = W
(0)
i1 = 1, then W(1)

ij = 1. The condition W(0)
1j = W

(0)
i1 = 1

is fulfilled for the two pairs (i, j), namely for i = j = 2 and i = 4, j = 2.
Then,W(1)

22 = W(1)
42 = 1, and all the rest elementsW(1) coincide with the respective

elements of the matrix W(0). For illustration, in the notation of the matrix we will
highlight in bold and underline the elements W(1) that have changed values at this
step:

W(1) =

a b c d

a

b

c

d

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0

1 1 1 0

0 0 0 0

1 1 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Then we will calculate W(2). Consider the second row and the second column
of the matrixW(1). The elementsW(1) that are positioned in the same row with the



Review Questions 23

elements of W(1)
i2 = 1 from the second column and in the same column with the

elements of W(1)
2j = 1 from the second row, will change their values in W(1) for 1.

Such will be the elements W(1)
11 and W(1)

13 . The rest of the elements W(2) coincide
with the respective elements of the matrixW(1).

W(2) =

a b c d

a

b

c

d

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 0

1 1 1 0

0 0 0 0

1 1 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

At the next step, the vertex c is added to the set of vertices. This does not result
in appearance of new elements with value 1.

W(3) =

a b c d

a

b

c

d

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 0

1 1 1 0

0 0 0 0

1 1 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

At the final step, we obtainW(4) = W(3), and the reachability matrix of digraph
D will have the form

M∗ =

a b c d

a

b

c

d

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 0

1 1 1 0

0 0 0 0

1 1 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

�

Review Questions

1. Define diagonal matrix, upper triangular matrix, lower triangular matrix,
symmetric matrix and binary matrix.

2. How is the matrix transposition operation performed?
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3. How is the Kronecker delta determined?
4. What matrices are called symmetric? antisymmetric?
5. Formulate the definition of product of two matrices of size m× n and n× p.
6. What is the commutator of the matrices A and B?
7. Define trace of a square matrix.
8. What is algorithm?
9. Enumerate the properties of an algorithm.

10. How is the algorithm efficiency estimated?
11. Explain the meaning of the notationO(f (n)).
12. Describe the presentation of matrices in Python.
13. Enumerate the basic matrix functions and the procedures of NumPy library.
14. How are graphs presented in the computer memory?
15. For solution of what problem is the Warshall algorithm used?

Problems

1.1. Calculate 3A+ 2B, where A =
⎡

⎣
2 1 −1

0 1 4

⎤

⎦ , B =
⎡

⎣
−2 1 0

−3 2 2

⎤

⎦.

1.2. Calculate AB, where A =
⎡

⎣
1 −1 0

2 3 4

⎤

⎦ , B =

⎡

⎢
⎢
⎣

1 1

2 −1

3 0

⎤

⎥
⎥
⎦. Find BT AT and

(AB)T .
1.3. Let the matrix A = (aij ) be of size n1 × n2 and the matrix B = (bij ) be of

size n2 × n1. Prove that the following equality is fulfilled:

(AB)T = BT AT , (1.38)

i.e. the transposed product of two matrices is equal to product of the
transposed matrices in reversed order.

1.4. Write the matrices of size 3 × 3, whose elements are determined by the
formulas:

(1) aij = (−1)i+j−1;

(2) bij = i + j + |i − j |
2

;

(3) cij = (i − 2)2 + (j − 2)2;
(4) dij = sin(|i − j |).

Calculate the sum of all elements S of each matrix.
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1.5. Let A = (aij ) be a square matrix of order n � 3. Using the summation
symbol

∑
, write the following values:

(1) the sum of the elements of the third row;
(2) the sum of the elements of the second column;
(3) the sum of squares of the diagonal elements;
(4) the module of the sum of the elements positioned on the secondary

diagonal.

1.6. How to write the sum of the elements of the square matrix positioned above
the main diagonal using the summation sign? How to do this for the elements
positioned below the main diagonal?

1.7. A student carrying out an experiment in a chemical laboratory has acciden-
tally spilled a reagent on an algebra notes page, where antisymmetric matrix
was written. As a result, it was impossible to read some of its elements. If we
denote such elements by symbol “?”, the notation will look as

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 1 −1 ?

? 0 2 2

? ? ? ?

7 ? 0 ?

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Restore the unknown elements and write the original matrix.
1.8. Determine the number of binary matrices of n rows and n columns that are

(1) symmetric and
(2) antisymmetric

relative to the main diagonal.
1.9. Calculate

a)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 1

1 1 2

2 2 3

3 3 4

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎣

−1 −1

2 2

1 1

⎤

⎥
⎥
⎦

⎡

⎣
4

1

⎤

⎦ ; b)

⎡

⎣
1 −2

3 −4

⎤

⎦

3

.

1.10. Consider the binary matrices

Q1 =

⎡

⎢
⎢
⎣

0 1 0

1 0 0

0 0 1

⎤

⎥
⎥
⎦ , Q2 =

⎡

⎢
⎢
⎣

0 0 1

0 1 0

1 0 0

⎤

⎥
⎥
⎦ .

CalculateQ1Q2, Q2Q1,Q2
1 andQ2

2.
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1.11. For what matricesD of the second order the square ofD2 is equal to the zero
matrix?

1.12. Let the matrices L = [−2,−1, 0, 1, 2], M = [0, 2, 4, 6, 8] be specified.
Calculate the products of LMT andMTL.

1.13. The elements of the matrixG = (gij ) are determined in accordance with the
rule

gij =
{

1, if i � j,
0, if i < j.

What are the elements of the matrixG2 equal to?
1.14. At the examination in linear algebra, a student says that multiplication of two

non-zero matrices will necessarily result in a non-zero matrix. Is the student
right?

∗1.15. Let us denote by xi the number of processors produced by some plant starting
from the beginning of the year. In particular, the plant’s operation during the
first month is described by the vector X = [x1, x2, . . . , x31]T . Determine
the matrix D, which should influence the X, in order to obtain the vector
Y = [x2 − x1, x3 − x2, . . . , xn − xn−1]T : Y = D ·X. The vector Y reflects
the daily production capacity gain of the plant.

1.16. Calculate the product of the functional matrices A(ψ)B(θ)A(ϕ), if

A(ϕ) =

⎡

⎢
⎢
⎣

cosϕ sin ϕ 0

− sin ϕ cosϕ 0

0 0 1

⎤

⎥
⎥
⎦ , B(θ) =

⎡

⎢
⎢
⎣

1 0 0

0 cos θ sin θ

0 − sin θ cos θ

⎤

⎥
⎥
⎦ .

1.17. Calculate the commutator [A,B], if

A =

⎡

⎢
⎢
⎣

7 5 3

1 3 2

2 2 7

⎤

⎥
⎥
⎦, B =

⎡

⎢
⎢
⎣

6 2 3

5 2 1

1 1 6

⎤

⎥
⎥
⎦ .

1.18. Calculate the commutator [A,B], if A is an arbitrary matrix, B = I is
identity matrix of the same order as A.

1.19. Consider the matrices

P1 =

⎡

⎢
⎢
⎣

0 −1 0

1 0 0

0 0 0

⎤

⎥
⎥
⎦ , P2 =

⎡

⎢
⎢
⎣

0 0 0

0 0 −1

0 1 0

⎤

⎥
⎥
⎦ , P3 =

⎡

⎢
⎢
⎣

0 0 1

0 0 0

−1 0 0

⎤

⎥
⎥
⎦ . (1.39)

Calculate the commutators [P1, P2], [P2, P3] and [P3, P1].
1.20. Is it true that for any square matricesA, B andC of the same size the equality

[A+ B,C] = [A,C] + [B,C] is fulfilled?
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1.21. Prove that for any matrices A, B and C of the same size, the identity is true

[AB,C] ≡ A[B,C] + [A,C]B. (1.40)

1.22. Is it true that for any square matricesA, B andC of the same size the equality
[A, [B,C]] = [[A,B], C] is fulfilled?

1.23. Given the square matrices A and B of the same order. In what case the
equality (A+ B)2 = A2 + 2AB + B2 is true?

1.24. Is it true that if [A,B] = O and [A,C] = O , then the matrices B and C are
commuting?

1.25. Suppose that the sizes of the matrices A, B and C are equal to n1 × n2,
n2 × n3 and n3 × n4, respectively. In order to calculate the product of ABC,
the multiplication operations can be executed in two ways: (A · B) · C or
A · (B · C). With what relation between the variables n1, n2, n3 and n4 the
calculation using the first method—as (A·B)·C—will require less operations
of multiplication of real numbers in comparison with the second method?

1.26. Prove the correctness of the algorithm of change of values of two variables
without using the auxiliary variable.

Listing 1.6
� �

1 # Exchanging of values of variables a and b
2 # without using the auxiliary variable
3 a = a + b
4 b = a - b
5 a = a - b
� �

1.27. Prove the correctness of the algorithm of addition of square matrices.
Listing 1.7

� �

1 # Addition of matrices A and B
2 def matrix_add(A, B):
3 if len(A) == len(B) and \
4 len(A[0]) == len(B[0]):
5 C = [[0 for j in range(len(A[0]))] \
6 for i in range(len(A))]
7

8 for i in range(len(A)):
9 for j in range(len(A[0])):

10 C[i][j] = A[i][j] + B[i][j]
11

12 return C
� �

1.28. Prove the correctness of the square matrix multiplication algorithm.
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Listing 1.8
� �

1 # Multiplication of matrices A and B
2 def matrix_mult(A, B):
3 C = [[0 for j in range(len(B[0]))] \
4 for i in range(len(A))]
5

6 for i in range(len(A)):
7 for j in range(len(B[0])):
8 s = 0
9

10 for k in range(len(B)):
11 s += A[i][k] * B[k][j]
12

13 C[i][j] = s
14

15 return C
� �

1.29. Prove the correctness of the optimized matrix multiplication algorithm.
Listing 1.9

� �

1 # Optimized multiplication
2 # of matrices a and b
3 def matrix_mult2(A, B):
4 n = len(A)
5

6 C = [[0 for i in range(n)] \
7 for j in range(n)]
8

9 D = [0 for i in range(n)]
10

11 for i in range(n):
12 for j in range(n):
13 s = 0
14

15 for k in range(n):
16 D[k] = B[k][j]
17

18 for k in range(n):
19 s += A[i][k] * D[k]
20

21 C[i][j] = s
22

23 return C
� �
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Note The considered option of matrix multiplication is optimized in such a
manner as to preliminarily select the elements of the column b(k, j) into the
intermediate array d , which may fully be placed in a fast cache memory.

1.30. Determine the number of operations of addition of two numbers executed by
the algorithm matrix_add for the matrices of size N × N .

1.31. Determine the number of operations of addition and multiplication, executed
by the algorithm matrix_mult for the matrices of size N × N .

1.32. Suggest a method to decrease the number of addition operations executed by
the algorithm matrix_mult.

1.33. LetA1,A2 andA3 be numerical matrices of size 50×25, 25×30 and 30×10,
respectively. Determine the minimal number of multiplication operations
required to calculate the product of A1A2A3 by the standard algorithm
matrix_mult, whose realization for square matrices is presented in
Problem 1.28.

1.34. Let A1, A2, A3 and A4 be numerical matrices of size 25 × 10, 10 × 50,
50 × 5 and 5 × 30, respectively. Find the minimal number of multiplication
operations, required for calculation of the product of A1A2A3A4 by the
standard algorithm matrix_mult.

1.35. Let A1, A2, A3 and A4 be numerical matrices of size 100 × 20, 20 × 15,
15×50 and 50×100, respectively. Find the minimal number of multiplication
operations required for calculation of the product of A1A2A3A4 by the
standard algorithm matrix_mult.

∗1.36. Prove that the number of methods for calculation of the product of the
matrices A1A2 . . . Am+1, m � 1, or, in other words, the number of ways
to place brackets in this product, where A1, A2, . . . , Am+1 are numerical
matrices of size n1 × n2, n2 × n3, . . . , nm+1 × nm+2, respectively, is equal to
the Catalan8 number Cm, determined by formula

Cm = 1

m+ 1
C(2m,m) for all m � 1, (1.41)

where C(2m,m) is a binomial coefficient.
1.37. Estimate the number of operations executed by Warshall algorithm for

obtaining the reachability matrix of a digraph.
1.38. Using the Warshall algorithm, calculate the reachability matrix of the digraph

D, presented in Fig. 1.5.
1.39. One of the ways to modify the Warshall algorithm consists in presentation

of the rows of binary matrices as bit strings. In this case, for calculation of
the elements of the matrices W(k) for 1 � i � N , the bitwise operation or
is used. Find the number of operation in the bit strings executed by the given
realization of the Warshall algorithm.

8Eugène Charles Catalan (1814–1894), Belgian mathematician.
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Fig. 1.5 To Problem 1.38

1

2 4

5

3

1.40. Write the analytical expression for the function f (n), represented by the
algorithm:

Listing 1.10
� �

1 def f(n: int):
2 temp = 0
3

4 for i in range(1, n + 1):
5 for j in range(1, n + 1):
6 for k in range(j, n + 1):
7 temp += 1
8

9 return temp
� �

∗1.41. Write the analytical expression for the function g(n), represented by the
algorithm:

Listing 1.11
� �

1 def g(n: int):
2 temp = 0
3

4 for i in range(1, n + 1):
5 for j in range(n, i - 1, -1):
6 for k in range(1, j + 1):
7 temp += 1
8

9 return temp
� �
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∗1.42. Write the analytical expression for the function h(n), represented by the
algorithm:

Listing 1.12
� �

1 def h(n: int):
2 temp = 0
3

4 for i in range(1, n + 1):
5 for j in range(1, i + 1):
6 for k in range(1, j + 1):
7 for l in range(1, k + 1):
8 temp += 1
9

10 return temp
� �

1.43. Calculate the trace of the matrix A = (aij ), where 1 � i, j � n, whose
elements are specified by the formulas:

(1) aij = i + j ;
(2) aij = i − j ;
(3) aij = ln(i2 + j2);
(4) aij = max(i, n− j);
(5) aij = min

(
1

i
,

1

j

)

;

(6) aij = sin(π(i + 2j));

(7) aij = n

2
− (i + j);

(8) aij = i + 1

j
.

1.44. Prove that the trace of the product of the square matrices does not depend on
the order of multipliers: tr (AB) = tr (BA).

Answers and Solutions

1.1 Solution.

We calculate the summands in the sum: 3A =
⎡

⎣
6 3 −3

0 3 12

⎤

⎦, 2B =
⎡

⎣
−4 2 0

−6 4 4

⎤

⎦.

We perform the matrix summation operation: 3A+ 2B =
⎡

⎣
2 5 −3

−6 7 16

⎤

⎦.



32 1 Matrices and Matrix Algorithms

1.2 Solution.
We will calculate the productAB relying on the formula (1.16) on page 7:

A · B =
⎡

⎣
1 −1 0

2 3 4

⎤

⎦

⎡

⎢
⎢
⎣

1 1

2 −1

3 0

⎤

⎥
⎥
⎦

=
⎡

⎣
1 · 1 + (−1) · 2 + 0 · 3 1 · 1 + (−1) · (−1)+ 0 · 0

2 · 1 + 3 · 2 + 4 · 3 2 · 1 + 3 · (−1)+ 4 · 0

⎤

⎦ =
⎡

⎣
−1 2

20 −1

⎤

⎦ .

We execute the matrix transposition operation:

AT =

⎡

⎢
⎢
⎣

1 2

−1 3

0 4

⎤

⎥
⎥
⎦ , B

T =
⎡

⎣
1 2 3

1 −1 0

⎤

⎦ ;

BT · AT =
⎡

⎣
1 · 1 + 2 · (−1)+ 3 · 0 1 · 2 + 2 · 3 + 3 · 4

1 · 1 + (−1) · (−1)+ 0 · 0 1 · 2 + (−1) · 3 + 0 · 4

⎤

⎦

=
⎡

⎣
−1 20

2 −1

⎤

⎦ .

(A · B)T =
⎡

⎣
−1 20

2 −1

⎤

⎦ .

Note that the equality (AB)T = BT AT is fulfilled for any matrices A and B, for
which the productAB is determined.

1.3 Proof.
Based on the definition of the matrix transposition and on the formula (1.16), the

left part of the equality (1.38) consists of elements:

(
(AB)T

)
ij

= (AB)ji =
n1∑

k=1

ajkbki,

where 1 � i � n3, 1 � j � n1.
Further, we represent elements of the right side of Eq. (1.38) in the form

(BT AT )ij =
n2∑

k=1

(BT )ik(A
T )kj =

n2∑

k=1

bkiajk =
n2∑

k=1

ajkbki,

where 1 � i � n3, 1 � j � n1.
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It is proved that for all possible numbers i and j elements of matrices (AB)T and
BT AT coincide. In accordance with the definition of equality of matrices on page 4
we get

(AB)T = BT AT .

1.4 Solution.
Having calculated the matrix elements by the specified formulas, we obtain

(1)

⎡

⎢
⎢
⎣

−1 1 −1

1 −1 1

−1 1 −1

⎤

⎥
⎥
⎦, the sum of all elements S = −1;

(2)

⎡

⎢
⎢
⎣

1 2 3

2 2 3

3 3 3

⎤

⎥
⎥
⎦, S = 22;

(3)

⎡

⎢
⎢
⎣

2 1 2

1 0 1

2 1 2

⎤

⎥
⎥
⎦, S = 12;

(4)

⎡

⎢
⎢
⎣

0 sin 1 sin 2

sin 1 0 sin 1

sin 2 sin 1 0

⎤

⎥
⎥
⎦, S = 4 sin 1 + 2 sin 2.

1.5 Solution.

(1) For the elements of the third row we have i = 3, j = 1, 2, . . . , n. Therefore,

the sum of the elements of the third row is presented in the form
n∑

j=1
a3j .

(2) The elements of the second column may be written as ai2, where i =
1, 2, . . . , n. Then, their sum is equal to

n∑

i=1
ai2.

(3) For the diagonal elements, the indices i and j coincide: aii . The sum of squares

of such elements is
n∑

i=1
a2
ii .

(4) The secondary diagonal is formed by the elements whose sum of indices is
greater by one to the order of the matrix: i+j = n+1. Therefore, j = (n+1)−i,
the module of the sum of these elements is also equal to abs

(
n∑

i=1
ai(n+1−i)

)

.

1.6 Solution.
Let us write the sum of the elements of the square matrix positioned above the

main diagonal. The number of the elements to be summed up in the rows above



34 1 Matrices and Matrix Algorithms

the main diagonal decreases by one as the row number increases. Due to this,
summation of the elements in the i-th row begins with i + 1, then the sum in one

row will be
n∑

j=i+1
aij . Performing the summation operation over all rows, we obtain

n∑

i=1

n∑

j=i+1
aij .

Now let us write the sum of the elements positioned below the main diagonal.
The number of the elements to be summed up below the main diagonal increases by
one as the row number increases. Then, the upper summation threshold should be

equal to i − 1, and the sum for one row is calculated as
i−1∑

j=1
aij . For the sum of the

elements positioned below the main diagonal, we obtain
n∑

i=1

i−1∑

j=1
aij .

1.7 Solution.
By definition of an antisymmetric matrix, AT = −A, then

AT =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 a21 a31 7

1 0 a32 a42

−1 2 a33 0

a14 2 a34 a44

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, −A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 −1 1 −a14

−a21 0 −2 −2

−a31 −a32 −a33 −a34

−7 −a42 0 −a44

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Equating the respective matrix elements, we obtain

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 1 −1 −7

−1 0 2 2

1 −2 0 0

7 −2 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

1.8 Solution.
First of all we should note that the number of the elements on the main diagonal

of the matrix is n, while the number of the elements lying above it is n(n− 1)/2.

(1) The elements of the symmetric matrix lying below the main diagonal are
uniquely determined by the upper triangular part of the matrix; this can be
done by 2n(n−1)/2 methods. There exist 2n methods for selection of diagonal
elements. We obtain that the number of symmetric matrices of n rows and n
columns is equal to 2n(n−1)/2 · 2n = 2n(n+1)/2.

(2) The main diagonal of the antisymmetric matrix is filled with zeros. In order to
determine such a matrix, it is sufficient to specify the elements above the main
diagonal; this can be done by 2n(n−1)/2 methods. Therefore, all in all there exist
2n(n−1)/2 antisymmetric matrices of size n× n.
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1.9 Solution.

a)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 1

1 1 2

2 2 3

3 3 4

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎣

−1 −1

2 2

1 1

⎤

⎥
⎥
⎦

⎡

⎣
4

1

⎤

⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 1

3 3

5 5

7 7

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎣
4

1

⎤

⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

5

15

25

35

⎤

⎥
⎥
⎥
⎥
⎥
⎦

;

b)

⎡

⎣
1 −2

3 −4

⎤

⎦

3

=
⎡

⎣
1 −2

3 −4

⎤

⎦

⎡

⎣
1 −2

3 −4

⎤

⎦

⎡

⎣
1 −2

3 −4

⎤

⎦ =
⎡

⎣
−5 6

−9 10

⎤

⎦

⎡

⎣
1 −2

3 −4

⎤

⎦

=
⎡

⎣
13 −14

21 −22

⎤

⎦ .

1.10 Solution.

Q1Q2 =

⎡

⎢
⎢
⎣

0 1 0

1 0 0

0 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

0 0 1

0 1 0

1 0 0

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

0 1 0

0 0 1

1 0 0

⎤

⎥
⎥
⎦;

Q2Q1 =

⎡

⎢
⎢
⎣

0 0 1

0 1 0

1 0 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

0 1 0

1 0 0

0 0 1

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

0 0 1

1 0 0

0 1 0

⎤

⎥
⎥
⎦;

Q2
1 =

⎡

⎢
⎢
⎣

0 1 0

1 0 0

0 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

0 1 0

1 0 0

0 0 1

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

1 0 0

0 1 0

0 0 1

⎤

⎥
⎥
⎦;

Q2
2 =

⎡

⎢
⎢
⎣

0 0 1

0 1 0

1 0 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

0 0 1

0 1 0

1 0 0

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

1 0 0

0 1 0

0 0 1

⎤

⎥
⎥
⎦.

1.11 Solution.

Let the matrix D have the form

⎡

⎣
a b

c d

⎤

⎦, where a, b, c, d are unknown real

numbers.
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Let us square the D and equate the obtained result to the zero matrix.⎡

⎣
a b

c d

⎤

⎦

⎡

⎣
a b

c d

⎤

⎦ =
⎡

⎣
a2 + bc ab + bd
ac+ dc bc+ d2

⎤

⎦ =
⎡

⎣
0 0

0 0

⎤

⎦ .

Let us write the system of relatively unknown a, b, c, d:⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a2 + bc = 0,

c(a + d) = 0,

b(a + d) = 0,

bc+ d2 = 0.
From the obtained system it follows that the matrix D should have the form⎡

⎣
a b

c −a

⎤

⎦, and the variables a, b and c are bound by the condition a2 + bc = 0.

1.12 Answer:
The size of the matrix L is equal to 1 × 5, the size of the matrix MT is equal to

5 × 1. Therefore, the matrices LMT andMTL have the sizes 1 × 1 (this is a scalar)
and 5 × 5, respectively. Having executed the multiplication operations, we obtain

LMT = [−2,−1, 0, 1, 2]

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

2

4

6

8

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= (−2) · 0 + (−1) · 2 + 0 · 4 + 1 · 6 + 2 · 8 = 20;

MTL =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

2

4

6

8

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[−2,−1, 0, 1, 2] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0

−4 −2 0 2 4

−8 −4 0 4 8

−12 −6 0 6 12

−16 −8 0 8 16

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

1.13 Answer:
Let H = G2, then

hij =
{
i − j + 1, if i � j,

0, if i < j.
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1.14 Solution.

Let A =
⎡

⎣
t 0

0 0

⎤

⎦, B =
⎡

⎣
0 0

t 0

⎤

⎦, where t ∈ R.

As is easy to see, the equality AB = O is fulfilled here, therefore, the product of
two non-zero matrices may be equal to a zero matrix. The student is wrong.

1.16 Solution.

A(ψ)B(θ) =

⎡

⎢
⎢
⎣

cosψ sinψ 0

− sinψ cosψ 0

0 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1 0 0

0 cos θ sin θ

0 − sin θ cos θ

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

cosψ sinψ cos θ sinψ sin θ

− sinψ cosψ cos θ cosψ sin θ

0 − sin θ cos θ

⎤

⎥
⎥
⎦ .

A(ψ)B(θ)A(ϕ)

=

⎡

⎢
⎢
⎢
⎣

cosψ sinψ cos θ sinψ sin θ

− sinψ cosψ cos θ cosψ sin θ

0 − sin θ cos θ

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

cos ϕ sinϕ 0

− sinϕ cos ϕ 0

0 0 1

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

cosψ cos ϕ − sinψ cos θ sinϕ cosψ sinϕ + sinψ cos θ cos ϕ sinψ sin θ

− sinψ cos ϕ − cosψ cos θ sin ϕ − sinψ sin ϕ + cosψ cos θ cos ϕ cosψ sin θ

sin θ sinϕ − sin θ cos ϕ cos θ

⎤

⎥
⎥
⎥
⎦
.

1.17 Solution.

AB =

⎡

⎢
⎢
⎣

7 5 3

1 3 2

2 2 7

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

6 2 3

5 2 1

1 1 6

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

70 27 44

23 10 18

29 15 50

⎤

⎥
⎥
⎦,

BA =

⎡

⎢
⎢
⎣

6 2 3

5 2 1

1 1 6

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

7 5 3

1 3 2

2 2 7

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

50 42 43

39 33 26

20 20 47

⎤

⎥
⎥
⎦,

[A,B] = AB − BA =

⎡

⎢
⎢
⎣

20 −15 1

−16 −23 −8

9 −5 3

⎤

⎥
⎥
⎦.

1.18 Answer: [A, I ] = O .
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1.19 Answer:
[P1, P2] = P3, [P2, P3] = P1 and [P3, P1] = P2.

1.20 Solution.
Yes, the equality [A + B,C] = [A,C] + [B,C] is true for any square matrices

A, B and C of the same size. Simple calculations show that

[(A+B),C] = (A+B)C−C(A+B) = AC−CA+BC−CB = [A,C]+[B,C].

1.21 Proof.
Transform the right side of the equality (1.40), relying on the definition of (1.20):

A[B,C] + [A,C]B = A(BC − CB)+ (AC − CA)B.

Then, remove the brackets and indicate the similar summands, following which use
the definition of the commutator once again:

A[B,C]+ [A,C]B = ABC−ACB+ACB−CAB = ABC−CAB = [AB,C].

Thus the identity (1.40) is proved.

1.22 Solution.
No, the equality [A, [B,C]] = [[A,B], C] is fulfilled not for all A, B and C, as

the following counterexample shows:

A =
⎡

⎣
1 0

0 0

⎤

⎦ , B =
⎡

⎣
0 1

0 0

⎤

⎦ , C =
⎡

⎣
0 0

1 0

⎤

⎦ ,

[A, [B,C]] =
⎡

⎣
0 0

0 0

⎤

⎦ , [[A,B], C] =
⎡

⎣
1 0

0 −1

⎤

⎦ .

Therefore, for the arbitrary matrices [A, [B,C]] �= [[A,B], C].
1.23 Answer: the equality is true in the case AB = BA, i.e. if the matrices are
commuting.

1.24 Solution.
This is not true. The following counterexample can be given to the proposition

from the problem situation:

A =
⎡

⎣
1 0

0 1

⎤

⎦ , B =
⎡

⎣
1 0

0 −1

⎤

⎦ , C =
⎡

⎣
0 1

1 0

⎤

⎦ .
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In this case, the equalities [A,B] = [A,C] = O are fulfilled, while

[B,C] =
⎡

⎣
1 0

0 −1

⎤

⎦

⎡

⎣
0 1

1 0

⎤

⎦ −
⎡

⎣
0 1

1 0

⎤

⎦

⎡

⎣
1 0

0 −1

⎤

⎦ =
⎡

⎣
0 −2

−2 0

⎤

⎦ �= O.

Therefore, the matrices B and C are not necessarily commuting.

1.25 Solution.
Calculate the number of multiplication operations for each of the two methods.

(1) During multiplication of each row of the matrixA by each column of the matrix
B, n2 multiplication operations are performed. Since the number of rows is n1,
and the number of columns is n3, as a result we obtain n1n2n3 operations. The
matrix AB has the size n1 × n3; then for obtaining the matrix ABC from AB
and C we need n1n3n4 operations of multiplication of real numbers. Thus, the
calculation of (AB)C requires n1n3(n2 + n4) multiplication operations.

(2) Reasoning similarly, we obtain n2n4(n1+n3)multiplication operations required
for calculation by the scheme A(BC).

As a result, calculation by the first method—as (AB)C—requires less operations
of multiplication of real numbers when fulfilling the condition n1n3(n2 + n4) <

n2n4(n1 + n3).

1.30 Answer: for calculation of the sum of two matrices A and B we will need N2

additions for determining each of N2 elements A+ B.

1.31 Solution.
Each of N2 elements of the matrix AB is calculated as a scalar product of two

vectors of size N , which, respectively, requires N additions and N multiplications.
The total number of both additions and multiplications appears to be equal to N ·
N2 = N3.

1.32 Solution.
The cycle body by the variable k may be rewritten in the form

C[i][j] = A[i][0] * B[0][j]

for k in range(1, len(B)):
C[i][j] = C[i][j] + A[i][k] * B[k][j]

Then the number of additions reduces to N3 − N2, while the number of
multiplications remains unchanged.

1.33 Solution.
As is known, the number of multiplication operations required to calculate the

product of matrices of size n1 × n2 and n2 × n3 equals to n1n2n3. (Recall that
the product of two matrices is defined if the number of columns of the first one
coincides with the number of rows of the second one.) Due to associativity of
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the multiplication operation, the product A1A2A3 can be calculated in two ways:
(A1A2)A3 and A1(A2A3).

In the first case, we will need 50·25·30+50·30·10 = 52 500 multiplications and
in the second case— 25 · 30 · 10 + 50 · 25 · 10 = 20 000. So, the minimal number of
multiplication operations required to calculate the elements of the matrix A1A2A3
by the standard algorithm equals to 20 000.

Note There exists an efficient algorithm for finding the order of multiplications in
the productA1A2 . . . An, n > 2, with the minimal number of operations [16].

1.34 Answer: 7500.

1.35 Answer: 255,000.

1.37 Solution.
In order to calculate W [i, j ] in the rows with numbers 14–15 (see the algorithm

on page 21), two logical operations are required. Since this row is executed N ×
N ×N = N3 times, where N is the size of the adjacency matrix of the digraph, the
full number of operations for obtainingM∗ equals to 2N3.

1.38 Answer:

M∗ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 1 1 1

0 1 1 1 0

0 1 1 1 0

0 1 1 1 0

0 1 1 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

1.40 Answer: f (N) = N2(N + 1)

2
.

1.41 Answer: g(N) = N(N + 1)(2N + 1)

6
.

1.42 Answer: h(N) = N(N + 1)(N + 2)(N + 3)

24
.

1.43 Answer:

(1) trA = n(n+ 1);
(2) trA = 0;

(3) trA = n ln 2 + 2 ln(n!), where n! =
n∏

i=1
i is factorial of the number n;

(4) trA =
{

3k2, if n = 2k,

3k2 + 3k + 1, if n = 2k + 1,
where k ∈ N;

(5) trA = Hn, whereHn =
n∑

i=1

1

i
is the n-th harmonic number;

(6) trA = 0;
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(7) trA = −1

2
n(n+ 2);

(8) trA = 1

2
n(n+ 1)+Hn, whereHn is harmonic number (see above).

1.44 Proof.
The trueness of the statement tr (AB) = tr (BA) follows from the chain of

equalities:

tr (AB) =
∑

i,j

aij bji =
∑

i,j

bjiaij
i↔j=

∑

i,j

bij aji = tr (BA).



Chapter 2
Matrix Algebra

2.1 Determinant of a Matrix: Determinants of the Second
and Third Order

One of the fundamental notions of linear algebra is the determinant of a square
matrix. Let us begin considering this notion with the determinants of the second
and third order.

We will associate the matrix A =
⎡

⎣
a11 a12

a21 a22

⎤

⎦ of size 2 × 2 with the number

a11a22 − a21a12, (2.1)

which is called the second order determinant of the matrix A and is denoted as

� ≡ detA ≡ |A| ≡
∣
∣
∣
∣
∣
∣

a11 a12

a21 a22

∣
∣
∣
∣
∣
∣
. (2.2)

Example 2.1 If A =
⎡

⎣
3 2

1 5

⎤

⎦, then� =
∣
∣
∣
∣
∣
∣

3 2

1 5

∣
∣
∣
∣
∣
∣
= 3 · 5 − 1 · 2 = 13. �
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Third order determinant of the matrix A of size 3 × 3 is a number obtained by
the following formula:

� ≡ detA ≡ |A| ≡

∣
∣
∣
∣
∣
∣
∣
∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣
∣
∣
∣
∣
∣
∣
∣

= a11a22a33 + a12a23a31 + a13a21a32

−a13a22a31 − a12a21a33 − a11a23a32. (2.3)

The formula (2.3) can be easily remembered with the help of the triangle rule:
the value of the third order determinant is equal to the algebraic sum of six terms,
each being a product of three elements, one from each row and each column of the
matrix A. The sign “+” is taken by the product of the elements lying on the main
diagonal, and two products of the elements forming within the matrix triangles with
bases parallel to the main diagonal. The sign “−” is taken by the products of the
elements lying on the secondary diagonal, and two products of the elements forming
triangles with bases parallel to the secondary diagonal (see Fig. 2.1). Unfortunately,
triangle rule is only applicable to calculation of the determinants of matrices of
size 3 × 3. The next Sect. 2.2 describes what to do with the matrices of greater
size.

Fig. 2.1 The scheme “triangle rule” for calculation of the third order determinant
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Example 2.2

detA = |A| =

∣
∣
∣
∣
∣
∣
∣
∣

4 2 2

−4 −3 1

3 0 3

∣
∣
∣
∣
∣
∣
∣
∣

= 4 · (−3) · 3 + 2 · 1 · 3 + 2 · (−4) · 0

− 2 · (−3) · 3 − 2 · (−4) · 3 − 4 · 1 · 0

= −36 + 6 + 0 + 18 + 24 − 0 = 12.

�
Note that the first order determinant for the matrix A = [a11], consisting of one

element, is equal to the value of this element: det[a11] = a11.

2.2 Determinants of the n-th order: Minors

The determinant of the n-th order, where n � 2, has the form

� =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (2.4)

By analogy with (2.3) it is a polynomial each summand of which is a product of
exactly n elements of the matrix (aij ), and only one multiplier is included into the
product from each row and each column of this matrix.

Now let us turn to strict definitions.
Let the ordered set of indices (k1, k2, . . . , kn) form some permutation of the

numbers 1, 2, . . . , n. For n first natural numbers, as is easy to see, there exist n!
pairwise different permutations.

Inversion in permutation or simply inversion is the pair (k1, k2), where the
greater number stands before the smaller one: k1 > k2.

Example 2.3 In the collection (4, 3, 2, 1) there are six inversions: (4, 3), (4, 2),
(4, 1), (3, 2), (3, 1), (2, 1); there are no other inversions in this collection. �
Note The only permutation that contains no inversion is the identity permutation
(1, 2, . . . , n).
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Determinant of the n-th order of the matrix (aij ) is the sum

detA =
∑

perm

(−1)σ a1k1a2k2 . . . ankn , (2.5)

where summation is performed over all permutations, σ is the number of inversions
in the permutation (k1, k2, . . . , kn). The determinant contains n! terms, half of which
is taken with a positive sign and half with a negative sign.

Example 2.4 Let us expand the definition (2.5) for the case n = 2.

Solution For n = 2 we have 2! = 1 · 2 = 2 permutations, namely k1 = 1, k2 = 2
and k1 = 2, k2 = 1. The sum in detA will consist of two terms: a11a22 and a12a21,
taken with positive and negative signs, respectively:

detA =
∑

perm

(−1)σ a1k1a2k2 = (−1)0a11a22 + (−1)1a12a21. (2.6)

The obtained formula exactly correlates with the definition (2.1), provided in
Sect. 2.1. �

If we remove from the matrix A of the n-th order the i-th row and the j -th
column, then we will obtain the matrix of the (n−1)-th order, whose determinant is
called the complementary minor of the element aij of the matrixA and is denoted
byMij .

The variable Aij = (−1)i+jMij is called the algebraic complement (cofactor)
of the element aij of the matrix A.

Example 2.5 Given the determinant

� =

∣
∣
∣
∣
∣
∣
∣
∣

2 1 −2

3 −1 4

−3 5 0

∣
∣
∣
∣
∣
∣
∣
∣

, (2.7)

then the complementary minors of the elements of the matrix a23 and a31 and their
cofactors are equal to

M23 =
∣
∣
∣
∣
∣
∣

2 1

−3 5

∣
∣
∣
∣
∣
∣
= 10+3 = 13, A23 = (−1)2+3M23 = (−1) ·13 = −13, (2.8)

M31 =
∣
∣
∣
∣
∣
∣

1 −2

−1 4

∣
∣
∣
∣
∣
∣
= 4 − 2 = 2, A31 = (−1)3+1M31 = 2. (2.9)

�



2.2 Determinants of the n-th order: Minors 47

Theorem 2.1 (Laplace1) For the determinant of the matrix A = (aij ) the follow-
ing formulas are true:

detA =
n∑

j=1

aijAij , i = 1, 2, . . . , n, (2.10)

detA =
n∑

i=1

aijAij , j = 1, 2, . . . , n, (2.11)

i.e. the determinant can be expanded over any row or any column, using the
cofactors of the matrix elements.

The formulas (2.10) and (2.11) allow reducing the calculation of the determinant
of the n-th order to calculation of the determinant of the (n − 1)-th order. The
procedure of reduction of order continues until we arrive at the determinants of
the second and third order, which are relatively easy to calculate.

Relations (2.10) and (2.11) are referred to as the Laplace expansions.

Example 2.6 Let us calculate the determinant of the fourth order, expanding it in
the first column:

� =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2 3 −3 4

2 1 −1 2

6 2 1 0

2 3 0 −5

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 2

∣
∣
∣
∣
∣
∣
∣
∣

1 −1 2

2 1 0

3 0 −5

∣
∣
∣
∣
∣
∣
∣
∣

− 2

∣
∣
∣
∣
∣
∣
∣
∣

3 −3 4

2 1 0

3 0 −5

∣
∣
∣
∣
∣
∣
∣
∣

+ 6

∣
∣
∣
∣
∣
∣
∣
∣

3 −3 4

1 −1 2

3 0 −5

∣
∣
∣
∣
∣
∣
∣
∣

− 2

∣
∣
∣
∣
∣
∣
∣
∣

3 −3 4

1 −1 2

2 1 0

∣
∣
∣
∣
∣
∣
∣
∣

= 2(−5 + 0 + 0 − 6 − 0 − 10)

− 2(−15 + 0 + 0 − 12 − 0 − 30)+ 6(15 − 18 + 0 + 12 − 0 − 15)

− 2(0 − 12 + 4 + 8 − 6 − 0) = −42 + 114 − 36 + 12 = 48.

�

1Pierre-Simon, marquis de Laplace (1749–1827), French mathematician, physicist and astronomer.
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2.3 General Properties of Determinants: Elementary
Transformations of a Matrix

Let us enumerate the general properties of determinants [43, 63].

Property 1 During transposition of a matrix, its determinant does not change:

det AT = det A. (2.12)

Property 2 After exchange of two rows (columns) of a matrix, the determinant
changes its sign.

Property 3 The determinant of a matrix with two identical rows (columns) is equal
to zero.

Property 4 The determinant of a matrix with two proportional rows (columns) is
equal to zero.

Property 5 The determinant of a matrix will not change if to all elements of its row
(column) are added the respective elements of another row (column), multiplied by
the same number.

Property 6 The determinant of a product of matrices is equal to the product of
determinants, i.e.

det(A · B) = det A · det B. (2.13)

Property 7 The determinant of a triangular matrix coincides with the product of
the elements standing on the main diagonal.

Property 8 If all the elements of some row (column) of a matrix are multiplied by
the same number, its determinant will be multiplied by this number.

Property 9 If all the elements of the i-th row of a determinant are given as a sum
of two terms aij = uj + vj for j = 1, . . . , n, then the determinant is equal to the
sum of two determinants of the following form:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 a12 . . . a1n

. . . . . . . . . . . . . . . . . . . . . . . . .

u1 + v1 u2 + v2 . . . un + vn
. . . . . . . . . . . . . . . . . . . . . . . . .

an1 an2 . . . ann

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 a12 . . . a1n

. . . . . . . . . . . . . .

u1 u2 . . . un

. . . . . . . . . . . . . .

an1 an2 . . . ann

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 a12 . . . a1n

. . . . . . . . . . . . . .

v1 v2 . . . vn

. . . . . . . . . . . . . .

an1 an2 . . . ann

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

(2.14)

Property 10 If all the elements of some row or column of a matrix are equal to
zero, then its determinant is equal to zero.
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Elementary transformations of a matrix are such transformations that are
associated with Properties 2, 5, 8: exchange of two rows (columns); multiplication
of a row (column) by a non-zero number; addition to one of the matrix row of
another one, multiplied by any non-zero number (the same for the columns).

With the help of the elementary transformations, the matrix may be reduced to a
triangular form, while its determinant may then be easily obtained using Property 7.

Example 2.7 Calculate the determinant

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2 3 −3 4

2 1 −1 2

6 2 1 0

2 3 0 −5

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(2.15)

using the elementary transformations of the matrix corresponding to this determi-
nant.

Solution

(1) We subtract from the second and fourth rows the first row, and from the third
row—the first row multiplied by 3.

As a result we obtain
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2 3 −3 4

2 1 −1 2

6 2 1 0

2 3 0 −5

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2 3 −3 4

0 −2 2 −2

0 −7 10 −12

0 0 3 −9

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

; (2.16)

(2) add to the third row the second row multiplied by −7

2
:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2 3 −3 4

0 −2 2 −2

0 0 3 −5

0 0 3 −9

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

; (2.17)

(3) subtract from the fourth row the third row:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2 3 −3 4

0 −2 2 −2

0 0 3 −5

0 0 0 −4

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (2.18)
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As a result we obtain the determinant of the upper triangular matrix, which is
equal to the product of the elements positioned on the main diagonal:

2 · (−2) · 3 · (−4) = 48. (2.19)

�
Note Note that linear algebra knows alternative methods to find the variable detA,
in particular, the axiomatic definition [63].

2.4 Inverse Matrix

Let A be a square matrix of size n× n, and I is an identity matrix of the same size.
The matrix B is called the inverse of the matrix A, if the following equalities are

fulfilled

A · B = B ·A = I.

The matrix inverse of A is denoted as A−1.
Note that the inverse matrix exists not for every matrix.

Theorem 2.2 If the determinant of the matrix A is equal to zero, i.e. det A = 0,
then the inverse matrix of A−1 does not exist.

A square matrix is referred to as nonsingular (or nondegenerate), if an inverse
matrix is determined for it. Otherwise, A is a singular (degenerate) matrix. It is
known that the matrix inverse of the nonsingular matrix is the only one.

Theorem 2.3 If the determinant of the matrix A = (aij ) is other than zero, i.e.
� = det A �= 0, then the inverse matrix exists:

A−1 = 1

�

(
Aij

)T
, (2.20)

where (Aij ) is a matrix formed by cofactors of the elements aij of the matrix A
(cofactor matrix).

Note A matrix transposed to (Aij ) is called adjugate, or classical adjoint, relative
to the original one [15, 35, 64, 65].

The following statements are true:

1. If the matrix A is invertible, then AT is also invertible, and (AT )−1 = (A−1)T .
2. If the matrices A and B are invertible, then (AB)−1 = B−1 A−1.
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3. The matrix inverse of the upper (lower) triangular matrix is also the upper (lower)
triangular one.

4. If A−1 exists, then det(A−1) = 1

det A
.

Example 2.8 Find the inverse matrix of the matrix:

A =

⎡

⎢
⎢
⎣

2 5 7

6 3 4

5 −2 −3

⎤

⎥
⎥
⎦ . (2.21)

Solution The determinant of the matrix is equal to

detA = 2

∣
∣
∣
∣
∣
∣

3 4

−2 −3

∣
∣
∣
∣
∣
∣
− 5

∣
∣
∣
∣
∣
∣

6 4

5 −3

∣
∣
∣
∣
∣
∣
+ 7

∣
∣
∣
∣
∣
∣

6 3

5 −2

∣
∣
∣
∣
∣
∣

= 2(−9 + 8)− 5(−18 − 20)+ 7(−12 − 15) = −1. (2.22)

Calculate the cofactors:

A11 = (−1)1+1

∣
∣
∣
∣
∣
∣

3 4

−2 −3

∣
∣
∣
∣
∣
∣
= −1, A12 = (−1)1+2

∣
∣
∣
∣
∣
∣

6 4

5 −3

∣
∣
∣
∣
∣
∣
= 38, (2.23)

A13 = (−1)1+3

∣
∣
∣
∣
∣
∣

6 3

5 −2

∣
∣
∣
∣
∣
∣
= −27, A21 = (−1)2+1

∣
∣
∣
∣
∣
∣

5 7

−2 −3

∣
∣
∣
∣
∣
∣
= 1, (2.24)

A22 = (−1)2+2

∣
∣
∣
∣
∣
∣

2 7

5 −3

∣
∣
∣
∣
∣
∣
= −41, A23 = (−1)2+3

∣
∣
∣
∣
∣
∣

2 5

5 −2

∣
∣
∣
∣
∣
∣
= 29, (2.25)

A31 = (−1)3+1

∣
∣
∣
∣
∣
∣

5 7

3 4

∣
∣
∣
∣
∣
∣
= −1, A32 = (−1)3+2

∣
∣
∣
∣
∣
∣

2 7

6 4

∣
∣
∣
∣
∣
∣
= 34, (2.26)

A33 = (−1)3+3

∣
∣
∣
∣
∣
∣

2 5

6 3

∣
∣
∣
∣
∣
∣
= −24. (2.27)
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Write the matrix formed by the cofactors:

⎡

⎢
⎢
⎣

−1 38 −27

1 −41 29

−1 34 −24

⎤

⎥
⎥
⎦ . (2.28)

As a result, the desired inverse matrix will have the form:

A−1 = 1

(−1)

⎡

⎢
⎢
⎣

−1 1 −1

38 −41 34

−27 29 −24

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

1 −1 1

−38 41 −34

27 −29 24

⎤

⎥
⎥
⎦ . (2.29)

�

2.5 Integer Powers of a Matrix

The notion of raising a number to an integer power in matrix algebra is easily
generalized. By definition we have

A0 = I, A1 = A, A2 = AA, A3 = AAA, . . . , (2.30)

and if A is a nondegenerate matrix, then

A−p = (A−1)p = (Ap)−1. (2.31)

For diagonal matrices, their p-th power preserves the property of diagonality:

⎡

⎢
⎢
⎢
⎢
⎢
⎣

d1 0 . . . 0

0 d2 . . . 0

. . . . . . . . . . . .

0 0 . . . dn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

p

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

d
p

1 0 . . . 0

0 d
p

2 . . . 0

. . . . . . . . . . . .

0 0 . . . d
p
n

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(2.32)

for all integer p.
In order to solve the following problems, we will need the mathematical

induction method.
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2.5.1 Mathematical Induction Method

For proving the statements depending on a natural parameter, mathematics widely
uses the mathematical induction method [1, 17, 66] (from Latin inductio—
derivation).

Mathematical Induction Principle Let P(n) be a statement defined for all natural
numbers n, and let the following conditions be fulfilled:

(1) P(1) is true;
(2) ∀k � 1 the logical implication is true P(k)⇒ P(k + 1) .

Then P(n) is true for any natural n.

The proposition 1 is usually referred to as the basis step, and the proposition
2—inductive step.

In order to prove identities by the mathematical induction method, the following
is done. Let the statement P(k) take the true value when the considered identity is
true for some natural number k. Then, two statements are proved:

(1) basis step, i.e. P(1);

(2) inductive step, i.e. P(k) ⇒ P(k + 1) for an arbitrary k � 1.

According to the mathematical induction method, a conclusion is made about
trueness of the considered identity for all natural values of n.

Note that in mathematical logic a statement of the form P(n) is called predicate.

Example 2.9 Using the mathematical induction method, we will prove the state-
ment:

1 + 3 + 5 + · · · + (2n− 1) = n2 for all natural numbers n.

Proof Let P(n) be the predicate “1 + 3 + 5 + · · · + (2n− 1) = n2”.
B a s i s s t e p
For n = 1 we obtain 1 = 12, i. e. P(1) is true.
I n d u c t i v e s t e p
Assume that for n = k the statement 1 + 3 + 5 + · · · + (2k − 1) = k2 is true.

Prove the trueness of P(k + 1):

1 + 3 + 5 + · · · + (2k − 1)+ (2(k + 1)− 1)

= k2 + (2(k + 1)− 1) = k2 + 2k + 1 = (k + 1)2.

Thus, for any natural k the implication P(k) ⇒ P(k + 1) is true. Then, by
the principle of mathematical induction the predicate P(n) has a true value for all
natural n. �
Example 2.10 Relying on the mathematical induction method, prove that n2 + n is
even for all natural n.
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Proof Denote f (n) = n2 + n and P(n)—the predicate “f (n) is divisible by 2”.
B a s i s s t e p
For n = 1 we obtain f (1) = 12 + 1 = 2—even number, this is why P(1) is true.
I n d u c t i v e s t e p
Assume that f (k) is even for natural k � 1. Let us prove that it implies evenness

of f (k + 1):

f (k + 1) = (k + 1)2 + (k + 1) = k2 + 2k + 1 + k + 1

= (k2 + k)+ 2k + 2 = f (k)+ 2(k + 1).

Since in the right side of the obtained relation stands the sum of two even numbers,
then f (k + 1) is divisible by 2.

Note The statement of the example becomes apparent if we represent the expression
k2 + k in the form k2 + k = k(k + 1). Out of two consecutive natural numbers, one
is necessarily even, and their product is divisible by two. �

Example 2.11 Calculate the hundredth power of the matrix A =
⎡

⎣
a c

0 a

⎤

⎦.

Let us find several lower powers of this matrix:

A1 =
⎡

⎣
a c

0 a

⎤

⎦, A2 =
⎡

⎣
a c

0 a

⎤

⎦

⎡

⎣
a c

0 a

⎤

⎦ =
⎡

⎣
a2 2ac

0 a2

⎤

⎦, A3 =
⎡

⎣
a3 3a2c

0 a3

⎤

⎦, . . .

(2.33)

An assumption arises that for all natural values of n the following equality is true:⎡

⎣
a c

0 a

⎤

⎦

n

=
⎡

⎣
an nan−1c

0 an

⎤

⎦.

In order to verify this assumption, let us use the mathematical induction method.
Prove that for all natural n the equality is fulfilled:

An =
⎡

⎣
an nan−1c

0 an

⎤

⎦ . (2.34)

Proof Denote the predicate “An =
⎡

⎣
an nan−1c

0 an

⎤

⎦” through P(n).

B a s i s s t e p
Consider the case n = 1. The equality takes the form A1 = A, which is the true

statement.
I n d u c t i v e s t e p
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Assume that P(k) for some k = 1, 2, . . . takes the true value, i.e. Ak =⎡

⎣
ak kak−1c

0 ak

⎤

⎦. Prove that P(k + 1) is true.

Write the predicate P(k + 1) in the form:

Ak+1 =
⎡

⎣
ak+1 (k + 1)akc

0 ak+1

⎤

⎦ . (2.35)

Let us use the inductive supposition and rewrite the sum Ak+1 as AkA:

Ak+1 =
⎡

⎣
ak kak−1c

0 ak

⎤

⎦

⎡

⎣
a c

0 a

⎤

⎦ =
⎡

⎣
ak · a akc + kak−1c · a

0 ak · a

⎤

⎦ .

After algebraic transformations we obtain

Ak+1 =
⎡

⎣
ak+1 (k + 1)akc

0 ak+1

⎤

⎦ .

This expression coincides with (2.35). Then, for any k = 1, 2, . . . the implication
P(k) ⇒ P(k + 1) is true, and the mathematical induction method has proved that

An =
⎡

⎣
an nan−1c

0 an

⎤

⎦ for all natural n.

Substituting in (2.34) the value n = 100, we finally obtain A100 =⎡

⎣
a100 100a99c

0 a100

⎤

⎦. �

The operation of raising the matrix to power can be executed by a relatively small
number of calculations, if the original matrix is presentable in the form

B = U−1DU, (2.36)

whereD is a diagonal matrix, U is a nonsingular matrix: UU−1 = I . We will carry
of the calculation of Bp = (U−1DU)p relying on the associativity property of the
multiplication operation (see page 8):

Bp = (U−1DU)p = (U−1DU)(U−1DU)(U−1DU) . . . (U−1DU)(U−1DU)
︸ ︷︷ ︸

p times

= U−1D(UU−1)D(UU−1)D(U . . . U−1)D(UU−1)DU

= U−1DIDID . . .DIDU = U−1 (DD . . .D)
︸ ︷︷ ︸

p times

U = U−1DpU. (2.37)
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The rule of raising the matrixB to power is generalized in case of integer negative
p = −abs(p):

B−abs(p) = (U−1BU)−abs(p) = ((U−1BU)−1)abs(p)

= (U−1B−1(U−1)−1)abs(p) = (U−1B−1U)abs(p)

= U−1B−abs(p)U = Bp. (2.38)

Therefore, the above reasoning proves the theorem of raising to an integer power
of matrices B of a special form (2.36).

Theorem 2.4 (Matrix Power Theorem) For an arbitrary matrix B, presentable
in the form B = U−1DU , and the integer number p the following equality is true:

Bp = U−1DpU. (2.39)

Example 2.12 Prove that various integer powers of the matrix commute

Ap1Ap2 = Ap2Ap1 (2.40)

Proof Indeed, based on the properties of the operation of raising to power, we have
Ap1Ap2 = Ap1+p2 = Ap2+p1 = Ap2Ap1 . �

2.6 Functions of Matrices

A matrix may act as an argument of some function. Let us begin with consideration
of a polynomial of a matrix. As is known, a polynomial of degree p in variable x is
the sum f (x) of the form:

f (x) = c0 + c1x + c2x
2 + · · · + cpxp, (2.41)

where ci (i = 0, 1, . . . , p) are arbitrary numerical coefficients.
By the polynomial f (A) of degree p of the matrix A we will understand the

following expression:

f (A) = c0I + c1A+ c2A
2 + · · · + cpAp. (2.42)

As is easy to see, the value of the function f (A) is, in its turn, some matrix as
well. Its elements are expressed by the formulas:

(f (A))ij = c0δij + c1(A)ij + c2(A
2)ij + · · · + cp(Ap)ij . (2.43)
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Using the theorem about the power of a matrix of the special form (2.39), we will
write the relation

f (U−1AU) = U−1f (A)U, (2.44)

which is true for an arbitrary orthogonal matrix U .
Fractionally rational function of a matrix is the value

f1(A)

f2(A)
= f1(A)(f2(A))

−1 = (f2(A))
−1f1(A) (2.45)

if det f2(A) �= 0.
Let us demonstrate the correctness of the introduced definition, i.e. that two

products in (2.45) are always equal to each other. Indeed, having multiplied both
parts of the equality f1(A)(f2(A))

−1 = (f2(A))
−1f1(A) by f2(A) on the right and

then by f2(A) on the left, we obtain

f2(A)f1(A) = f1(A)f2(A). (2.46)

The polynomials f1(A) and f2(A) depend only on the matrix A, and, therefore,

commute. Due to this, the fraction
f1(A)

f2(A)
is defined correctly [53].

2.6.1 Exponent and Logarithm

The infinite sum of the matrices of size m× n of the form

A+ B + C + · · · + Z + · · · (2.47)

is called a series. It is said that the series converges, if for all i = 1, 2, . . . ,m
and j = 1, 2, . . . , n converge the sequences of the respective components of these
matrices [53]:

aij + bij + · · · + tij + · · · (2.48)

By definition, the exponent eA of the square matrix A is set equal to the sum

eA = I + A+ 1

2!A
2 + 1

3!A
3 + · · · + 1

p!A
p + · · · (2.49)

It is known that this series converges for any real square matrix [37]. The matrix I
in the formula (2.49) is taken of the same order as A.
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In a compact form, this sum can be presented as

eA =
∞∑

p=0

Ap

p! . (2.50)

Sometimes, especially when writing formulas with fractions, another notation for
the matrix exponent is used, namely expA.

Example 2.13 Calculate exp

⎡

⎣
1 λ

0 1

⎤

⎦ , where λ ∈ R.

Solution As follows from the formula (2.34) in Example 2.11, for all natural p the

equality is fulfilled

⎡

⎣
1 λ

0 1

⎤

⎦

p

=
⎡

⎣
1 pλ

0 1

⎤

⎦. Denote A =
⎡

⎣
1 λ

0 1

⎤

⎦ .

Using the definition (2.49), we obtain

eA =
∞∑

p=0

Ap

p! =
⎡

⎣
1 0

0 1

⎤

⎦ +
⎡

⎣
1 λ

0 1

⎤

⎦ + 1

2!

⎡

⎣
1 2λ

0 1

⎤

⎦ + 1

3!

⎡

⎣
1 3λ

0 1

⎤

⎦ + . . .

=

⎡

⎢
⎢
⎣

∞∑
p=0

1

p! λ
∞∑
p=0

p

p!
0

∞∑
p=0

1

p!

⎤

⎥
⎥
⎦ =

⎡

⎢
⎣
e λ

∞∑
p=1

1

(p − 1)!
0 e

⎤

⎥
⎦ =

⎡

⎣
e λe

0 e

⎤

⎦ = e
⎡

⎣
1 λ

0 1

⎤

⎦ .

(2.51)

During calculation of the elements of the matrix eA we used the definition of the
number e = 2.71818 . . . (also known as, bases of the natural logarithms), known
from the course the mathematical analysis [76]:

e =
∞∑

p=0

1

p! = 1 + 1

1! + 1

2! + · · · + 1

p! + · · · (2.52)

�
Note The notion of the matrix exponent is widely used in the theory of systems of
differential equations [3].

Logarithm of the square matrix A is the sum

lnA = (A−I)−1

2
(A−I)2+1

3
(A−I)3−· · ·+(−1)p−1 1

p
(A−I)p+· · · , (2.53)
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if this series converges. As in the case with the matrix exponent, the identity matrix
I in the formula (2.53) must have the same order as A. In a compact form, the
sum (2.53) can be presented as follows:

lnA =
∞∑

p=1

(−1)p

p
(A− I)p.

Example 2.14 Calculate ln

⎡

⎣
1 λ

0 1

⎤

⎦ , where λ ∈ R.

Solution We will need the natural powers of the difference of the matrices (A −

I) =
⎡

⎣
0 λ

0 0

⎤

⎦.

Since (A− I)2 =
⎡

⎣
0 λ

0 0

⎤

⎦

⎡

⎣
0 λ

0 0

⎤

⎦ =
⎡

⎣
0 0

0 0

⎤

⎦, then all the summands of the series

in (2.53), except the first one, are in this case equal to the zero matrix. Therefore,

the value lnA is fully defined by the first summand of the series lnA =
⎡

⎣
0 λ

0 0

⎤

⎦. �

Theorem 2.5 For the determinant of an arbitrary matrix A, the formula

detA = exp(tr lnA) (2.54)

is valid.

Note Many examples of using various functions of matrices for solving practical
problems are considered in [34].

2.7 Matrix Rank

Minor of the k-th orderMi1,i2,...,ik
j1,j2,...,jk

of the matrix A of size m× n is the determinant
of the matrix obtained from the elements, standing at the intersection of the
selected rows with numbers i1, i2, . . . , ik and columns with numbers j1, j2, . . . , jk
on condition that 1 � i1 < i2 < · · · < ik � m and 1 � j1 < j2 < · · · < jk � m.

Example 2.15 Given the square matrix

A =

⎡

⎢
⎢
⎣

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤

⎥
⎥
⎦ , (2.55)
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for which the number of rows m and the number of columns n are equal to m =
n = 3.

Then the second order minors of the matrix A have the form

M
1,2
1,2 =

∣
∣
∣
∣
∣
∣

a11 a12

a21 a22

∣
∣
∣
∣
∣
∣
, M

1,2
1,3 =

∣
∣
∣
∣
∣
∣

a11 a13

a21 a23

∣
∣
∣
∣
∣
∣
, (2.56)

M
1,3
1,2 =

∣
∣
∣
∣
∣
∣

a11 a12

a31 a32

∣
∣
∣
∣
∣
∣
, M

1,3
1,3 =

∣
∣
∣
∣
∣
∣

a11 a13

a31 a33

∣
∣
∣
∣
∣
∣

(2.57)

and so on until the minor

M
2,3
2,3 =

∣
∣
∣
∣
∣
∣

a22 a23

a32 a33

∣
∣
∣
∣
∣
∣
. (2.58)

All in all, for the matrix of size 3 × 3 nine second order minors can be formed
(the number of arbitrary order matrix minors see in solution of Problem 2.18). �

The number r is called the rank of the matrix A, if there exists a minor of order
r , other than zero, and all minors of greater order are equal to zero.

Any minor of maximal order r , other than zero, is referred to as basic minor.
For the rank of the matrix A the designation rkA is used.
In the following presentation, we need the concept of linear dependence of the

matrix rows. Let us give k rows of the form

U1 = [u11 u12 . . . u1n],
U2 = [u21 u22 . . . u2n],
. . . . . . . . . . . . . . . . . . . . .

Uk = [uk1 uk2 . . . ukn],

(2.59)

each of which contains n real numbers.
We multiply every element of the first row by real number α1, every element of

the second row multiply by α1, etc. Then we add corresponding elements of rows.
As a result, a new rowW forms

W = α1U1 + α2U2 + · · · + αkuk
= α1[u11 u12 . . . u1n]

+ α2[u21 u22 . . . u2n]
. . . . . . . . . . . . . . . . . . . . . . . .

+ αk[uk1 uk2 . . . ukn].

(2.60)
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The row W is called a linear combination of rows U (i = 1, 2, . . . , k). The
numbers αi , where i = 1, 2, . . . , k, are said to be the coefficients of a linear
combination of rows.

If there is a collection of real numbers α1, α2, . . . , αk , among which at least one
is not equal to zero, such that W is the zero row, then U1, U2, . . . , Uk are called
linearly dependent. Otherwise, these rows are said to be linearly independent.

Similarly, the definition of linear dependence/independence of matrix columns is
introduced.

Example 2.16 The rows U1 = [1 0 −3], U2 = [3 −2 1], U3 = [5 −2 −5] are
linearly dependent, since there is a linear combination of them equal to the zero
row:

2U1 + U2 − U3 = [0 0 0]. (2.61)

�
Theorem 2.6 (Basic Minor Theorem) The number of linearly independent rows
and columns of a matrix is the same and equals to the order of the basic minor. And
the rows (columns), included into the basic minor, are linearly independent, and the
rest are linearly expressed through them.

Note A zero matrix has no linearly independent rows. This is why the rank of the
matrix formed by zero elements will be considered as equal to zero by definition
[36, 47].

The elementary transformations do not change the rank of a matrix.
Recall that the elementary transformations of a matrix are (see Sect. 2.3):

(a) exchange of two rows (columns);
(b) multiplication of a row (column) by a non-zero number;
(c) addition to one of the matrix row of another one, multiplied by any non-zero

number (the same for the columns).

When calculating the rank of the matrix, deletion of a zero row (column) or one
of the two proportional rows (columns) is used, it does not change the rank of the
matrix.

The matrix is referred to as echelon matrix, if each its row begins with a strictly
greater number of zeroes, than the previous row.

One of the basic methods of finding the rank of the matrix is the method of
elementary transformations.

Elementary transformations method allows bringing the matrices to the
echelon form with the help of the following algorithm:

(1) Select the row at the beginning of which stands a non-zero element. This row is
written first and is called the pivot row.
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(2) To all the remaining rows the pivot row is added, multiplied by

− ai1

a11
(2.62)

(here i is the number of the row to which the pivot row is added). As a result, in
all rows except the pivot one the first elements will be equal to zero.

(3) Out of the remaining rows the one is selected whose second element is not equal
to zero. It is written second and is considered to be the pivot one.

(4) To the remaining rows the pivot row is added, multiplied by

− ai2

a22
. (2.63)

As a result in the second column the zero elements have formed, except the first
and the second rows.

This process continues until obtaining the echelon matrix. The number of non-
zero rows in this matrix will be its rank.

Example 2.17 Find the rank of the matrix using the method of elementary transfor-
mations:

A =

⎡

⎢
⎢
⎣

3 5 7

1 2 3

1 3 5

⎤

⎥
⎥
⎦ . (2.64)

The third order minor is the determinant of the matrix:M1,2,3
1,2,3 = det A.

Calculate the determinant of the matrix A by the first column expansion method:

det A = 3 · (−1)1+1

∣
∣
∣
∣
∣
∣

2 3

3 5

∣
∣
∣
∣
∣
∣
+ 1 · (−1)2+1

∣
∣
∣
∣
∣
∣

5 7

3 5

∣
∣
∣
∣
∣
∣
+ 1 · (−1)3+1

∣
∣
∣
∣
∣
∣

5 7

2 3

∣
∣
∣
∣
∣
∣

= 3 · (10 − 9)− 1 · (25 − 21)+ 1 · (15 − 14) = 3 − 4 + 1 = 0.

Consider the second order minor

M
1,2
1,2 =

∣
∣
∣
∣
∣
∣

3 5

1 2

∣
∣
∣
∣
∣
∣
= 1 �= 0. (2.65)

Since it is not equal to zero, then rkA = 2. �
It is often difficult to calculate the matrix rank based on its definition because one

has to search through a great number of minors. As a rule, in order to simplify the
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calculation of the matrix rank, it is reduced to a simpler form using the elementary
transformations (see Sect. 2.3).

So, the rank of the matrix presented in the echelon form is equal to the number
of the non-zero rows.

In what follows, we will use the following designations for the equivalent
transformations:

• A → B—the matrix B is obtained as a result of the elementary transformation
of the matrix A;

• (i) + a(j)—addition to the i-th row of the matrix of the row with number j ,
multiplied by the constant a;

• (i)− a(j)—subtraction from the i-th row of the matrix of the row with number
j , multiplied by the constant a;

• (i)↔ (j)—exchange of two rows.

Similar designations will also be used for operations with columns, and the
column with number j will be denoted by [j ].
Example 2.18 Find the rank of the matrix

⎡

⎢
⎢
⎢
⎢
⎢
⎣

3 −1 3 2 5

5 −3 2 3 4

1 −3 −5 0 −7

7 −5 1 4 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (2.66)

Solution Swap the first and the third rows:

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 −3 −5 0 −7

5 −3 2 3 4

3 −1 3 2 5

7 −5 1 4 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (2.67)

To the second row, add the elements of the first row, multiplied by (−5), to the
third—by (−3) and to the fourth—by (−7). As a result we obtain

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 −3 −5 0 −7

0 12 27 3 39

0 8 18 2 26

0 16 36 4 50

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (2.68)
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Divide the second row by 3, and the third and fourth rows by 2:

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 −3 −5 0 −7

0 4 9 1 13

0 4 9 1 13

0 8 18 2 25

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (2.69)

Then subtract from the third row the second one, and from the fourth row the
doubled second one:

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 −3 −5 0 −7

0 4 9 1 13

0 0 0 0 0

0 0 0 0 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

→(3)↔(4)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 −3 −5 0 −7

0 4 9 1 13

0 0 0 0 −1

0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (2.70)

We have obtained the echelon form of the matrix. The number of non-zero rows
is three and therefore the rank of this matrix is three. �

There is one more method to calculate the matrix rank. It is referred to as the
bordering minor method and consists in the following. For computing the variable
rkA, consecutively compute the minors, passing from the lower order minors to the
higher order minors. If the r-th order minor is already found

M =

⎡

⎢
⎢
⎣

a11 . . . a1r

. . . . . . . . . .

ar1 . . . arr

⎤

⎥
⎥
⎦ , (2.71)

that is other than zero, then it is enough just to compute the minors of the (r + 1)-th
order, bordering the minorM:

⎡

⎢
⎢
⎢
⎢
⎢
⎣

a11 . . . a1r a1t2

. . . . . . . . . . . . . . . .

ar1 . . . arr art2

at11 . . . at1r at1t2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

for all t1, t2 > r. (2.72)

If they all appeared to be equal to zero, we obtain rkA = r .
The bordering minor method is especially convenient for the problems where

functional matrices are present, or the matrices whose elements depend on the
parameters (see, for example, Problem 2.60).
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Review Questions

1. What is a determinant of the second order? of the third order?
2. Formulate the rule of triangle for computing a determinant of the third order.
3. Define the concept of inversion.
4. Write a formula for the determinant of the n-th order.
5. How are the additional minor Mij of the element aij and its cofactor Aij

interconnected?
6. Formulate Laplace theorem.
7. Enumerate the general properties of determinants.
8. What matrix transformations are elementary?
9. What is an inverse matrix?

10. What matrix is called degenerate?
11. What is the method of mathematical induction used for?
12. How are the functions of matrices computed?
13. Define exponential and logarithm of a matrix.
14. Which rows are linear dependent?
15. Formulate the theorem of a basic minor.
16. What is the elementary transformations method based on?
17. Enumerate the methods of finding the matrix rank.

Problems

2.1. Expand the definition (2.5) for the case n = 3.
2.2. Find the number of inversions in the permutation (5, 1, 4, 3, 6, 8, 7, 2).
2.3. How many inversions are there in the permutation (n, n− 1, . . . , 2, 1)?
2.4. Find the number of inversions in each permutation of a collection of 2n

numbers:

(1) (1, 3, 5, 7, . . . , 2n− 1, 2, 4, 6, . . . , 2n);
(2) (2, 4, 6, . . . , 2n, 1, 3, 5, 7, . . . , 2n− 1).

2.5. With what sign does the summand an1an−1,2 . . . a2,n−1a1n appear in the
expression for the determinant (2.5)?

2.6. Compute the third order determinants:

(1)

∣
∣
∣
∣
∣
∣
∣
∣

3 −2 1

−2 1 3

2 0 −2

∣
∣
∣
∣
∣
∣
∣
∣

; (2)

∣
∣
∣
∣
∣
∣
∣
∣

1 2 0

0 1 3

5 0 −1

∣
∣
∣
∣
∣
∣
∣
∣

; (3)

∣
∣
∣
∣
∣
∣
∣
∣

2 0 5

1 3 16

0 −1 10

∣
∣
∣
∣
∣
∣
∣
∣

;
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(4)

∣
∣
∣
∣
∣
∣
∣
∣

2 −1 3

−2 3 2

0 2 5

∣
∣
∣
∣
∣
∣
∣
∣

; (5)

∣
∣
∣
∣
∣
∣
∣
∣

2 1 0

1 0 3

0 5 −1

∣
∣
∣
∣
∣
∣
∣
∣

; (6)

∣
∣
∣
∣
∣
∣
∣
∣

2 0 0

3 3 0

4 4 4

∣
∣
∣
∣
∣
∣
∣
∣

.

2.7. Compute the determinants of the fourth order:

(a)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

−3 0 0 0

2 2 0 0

1 3 −1 0

−1 5 3 5

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

; (b)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2 −1 3 4

0 −1 5 −3

0 0 5 −3

0 0 0 2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

; (c)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2 −1 1 0

0 1 2 −1

3 −1 2 3

3 1 6 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

2.8. Solve the following equation relative to the variable x:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

x 1 1 1

1 x 1 1

1 1 x 1

1 1 1 x

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0.

2.9. Compute the determinant

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 1 1 . . . 1 1

1 2 1 . . . 1 1

1 1 3 . . . 1 1

. . . . . . . . . . . . . .

1 1 1 . . . p 1

1 1 1 . . . 1 p + 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

where p is a natural number.
∗2.10. Compute the determinant of the matrixQ of size n× n, whose elements are

equal to

(a) qij = δi,j+1 + δi+1,j ,
(b) qij = δi,j+1 − δi+1,j

for all 1 � i, j � n. Here δk1,k2 is the Kronecker symbol (see page 4).
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2.11. Fibonacci2 sequence

Fn = 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . . for n = 1, 2, . . .

is determined by the recurrence relation: Fn+2 = Fn + Fn+1 with the initial
conditions F1 = F2 = 1 [28, 70].

Prove that the (n+ 1)-the term of the Fibonacci sequence is equal to the
determinant of the n-th order

Fn+1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0 . . . 0 0

−1 1 1 0 . . . 0 0

0 −1 1 1 . . . 0 0

. . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . 1 0

0 0 0 0 . . . 1 1

0 0 0 0 . . . −1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.73)

∗2.12. TheVandermonde3 determinant is the determinant of size n×n, composed
of the real numbers a1, a2, . . . , an:

Vn =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 1 1 . . . 1

a1 a2 a3 . . . an

a2
1 a2

2 a2
3 . . . a2

n

. . . . . . . . . . . . . . . . . . . . . . . .

an−1
1 an−1

2 an−1
3 . . . an−1

n

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (2.74)

(1) Verify that for n = 2 this determinant is equal to V2 = a2 − a1.
(2) By the mathematical induction method, prove that the Vandermonde

determinant Vn is equal to the product of all the possible differences
aj − ai for 1 � i < j � n:

Vn =
∏

i<j

(aj − ai). (2.75)

2Under the name Fibonacci is known Middle Age mathematician Leonardo Pisano (about 1170—
about 1250).
3Alexandre-Théophile Vandermonde (1735–1796), French mathematician and musician.
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2.13. Let A be a matrix of size n × n, m is an arbitrary natural number. Is it true
that the equality det(mA) = mn det A is fulfilled?

2.14. At the examination in linear algebra, the student says that the determinant
of the sum of two matrices is always equal to the sum of the determinants of
these matrices: det(A+ B) = detA+ detB. Is the student right?

2.15. Is the determinant
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 1 1 1 10000

10000 1 1 1 1

1 1 1 10000 1

1 10000 1 1 1

1 1 10000 1 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(2.76)

a positive number, a negative number or zero?
2.16. Is the determinant

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 10000 3 4 5

5 1 2 3 10000

4 5 1 10000 3

3 4 10000 1 2

10000 3 4 5 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(2.77)

a positive number, a negative number or zero?
2.17. Using Python, compute the determinants in Problems 2.15 and 2.16 and

verify the correctness of the solutions of these problems.
2.18. Find the number of minors of the k-th order in a matrix consisting ofm rows

and n columns.
2.19. How many minors of the k-th order in a matrix of size n× n do not contain

diagonal elements of the original matrix?
∗2.20. What greatest value can take the determinant of a matrix of size 3 × 3,

consisting of the elements +1 and −1?
∗2.21. What greatest value can take the determinant of a matrix of size 3 × 3,

consisting of the elements 0 and 1?
2.22. Will the determinant of the matrix change if its columns are permuted in the

reverse order?
2.23. Computing the determinant of the matrix using Python

In the text file input.txt are successively written in rows the elements
of the integer square matrixA. Using the recursion, compute the determinant
detA. Enter the result into the text file output.txt.
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2.24. Evaluate the number of multiplications executed by the recursive algorithm
for computing the determinant of the matrix of size n × n (see previous
Problem).

∗2.25. Prove that the exact number of multiplications executed by the recursive
algorithm for computing the determinant of the matrix of size n × n (see
Problems 2.23 and 2.24) is equal to

T (n) = en�(n, 1)− n!,

where e is the base of natural logarithms, �(n, x) =
∞∫
x

e−t tn−1dt—

incomplete gamma function
(

for the natural n ∈ N the following equality

is true �(n, x) = (n− 1)! e−x
n−1∑

k=0

xk

k!
)

.

∗2.26. Obtain the asymptotic estimate of the mean value of the number of
inversions A(N) in the array consisting of N elements, for N → ∞.

∗2.27. Prove the validity of the identity

det(I + εB) = 1 + ε trB +O(ε2) for ε → 0, (2.78)

where B is some square matrix, I is an identity matrix of the same size.
∗2.28. Obtain the asymptotic estimate of the variable

det

(
I

(I + εB)p
)

for ε → 0, (2.79)

if B is an arbitrary square matrix, I is the identity matrix of the same size,
p ∈ N.

∗2.29. Assume thatM = G+ εH , where ε is a real number,G is an invertible ma-
trix. Relying upon the equality detA = exp(tr lnA) (see the Theorem 2.5
on page 59), prove that

detM

= detG
(
1 + εtr (G−1H)+ 1

2
ε2(tr2 (G−1H)− tr (G−1H)2)+O(ε3)

)

(2.80)

for ε → 0.
2.30. Assume that the real parameters a, b, c and d are selected, such that the

inequality ad−bc �= 0 is valid. Compute the matrix inverse ofA =
⎡

⎣
a b

c d

⎤

⎦.
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2.31. Find the inverse matrices of the following matrices:

(1)

⎡

⎣
1 2

3 4

⎤

⎦ ; (2)
⎡

⎣
3 4

5 7

⎤

⎦ ;

(3)

⎡

⎢
⎢
⎣

3 −4 5

2 −3 1

3 −5 −1

⎤

⎥
⎥
⎦ ; (4)

⎡

⎢
⎢
⎣

2 7 3

3 9 4

1 5 3

⎤

⎥
⎥
⎦ ; (5)

⎡

⎢
⎢
⎣

1 2 2

2 1 −2

2 −2 1

⎤

⎥
⎥
⎦ .

2.32. Find the inverse matrices of the following matrices:

(1)

⎡

⎣
1 1

0 2

⎤

⎦ ; (2)

⎡

⎢
⎢
⎣

1 1 1

0 2 2

0 0 3

⎤

⎥
⎥
⎦ ; (3)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1

0 2 2 2

0 0 3 3

0 0 0 4

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

2.33. Calculate the commutators [A,A−1] and [A,A−1], if A is an arbitrary
nonsingular matrix.

2.34. For what values of the real parameter λ the matrix does not have the inverse
one?

(1)

⎡

⎢
⎢
⎣

−1 λ λ

λ λ 0

6 4 λ

⎤

⎥
⎥
⎦ ;

(2)

⎡

⎢
⎢
⎣

3 λ λ

λ λ −1

−1 −1 λ

⎤

⎥
⎥
⎦ .

2.35. Compute the matrix inverse of A:

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 α 0 0

0 1 β 0

0 0 1 γ

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

where α, β, γ ∈ R. Does the matrix A−1 exist for all possible values of the
parameters?
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∗2.36. Compute the matrix inverse of Gn of size n× n, where n � 2:

Gn =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 . . . 0 1

0 0 0 . . . 1 0

. . . . . . . . . . . . .

0 1 0 . . . 0 0

1 0 0 . . . 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.81)

2.37. The elements of a Hilbert4 matrix H = (hij ) are set by the rule hij =
1

i + j − 1
, where i, j = 1, 2, . . . , n.

With the help of Python, compute H−1, H · H−1 and H−1 · H for n =
6, 7, 8.

∗2.38. Find the inverse of the following matrix:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 λ λ2 λ3 . . . λn

0 1 λ λ2 . . . λn−1

0 0 1 λ . . . λn−2

. . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where λ is some real number.
2.39. With the help of the mathematical induction method, prove the matrix

product inversion formula

(A1A2 . . . An−1An)
−1 = A−1

n A
−1
n−1 . . . A

−1
2 A

−1
1 . (2.82)

2.40. Solve the matrix equations:

(1)

⎡

⎣
2 1

0 2

⎤

⎦ ·X =
⎡

⎣
−6 4

2 1

⎤

⎦ ;

(2)

⎡

⎢
⎢
⎣

−1 1 1

0 2 2

0 2 3

⎤

⎥
⎥
⎦ ·X =

⎡

⎢
⎢
⎣

−2 1 1

−1 0 2

−1 −2 0

⎤

⎥
⎥
⎦ ;

4David Hilbert (1862–1943), German mathematician.
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(3) X ·

⎡

⎢
⎢
⎣

1 10 −3

−3 6 2

2 6 −3

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

0 −1 2

−1 −2 −2

0 1 10

⎤

⎥
⎥
⎦ ;

(4)

⎡

⎣
2 3

−3 2

⎤

⎦ ·X ·
⎡

⎣
1 7

5 4

⎤

⎦ =
⎡

⎣
1 −1

0 1

⎤

⎦ .

2.41. Assuming that a is an arbitrary real number, raise the matrix of power:

⎡

⎢
⎢
⎣

1 0 0

0 1 0

0 a 1

⎤

⎥
⎥
⎦

256

. (2.83)

∗2.42. Raise the matrix of power:

⎡

⎢
⎢
⎣

1 0 0

g 1 0

h 0 1

⎤

⎥
⎥
⎦

512

, (2.84)

where constants g, h ∈ R.
2.43. Using the mathematical induction method, prove that the n-th power of the

matrix F =
⎡

⎣
0 1

1 1

⎤

⎦ has the form

Fn =
⎡

⎣
Fn−1 Fn

Fn Fn+1

⎤

⎦ (2.85)

for all natural values n > 1, where Fn are the Fibonacci numbers (see
definition in Problem 2.11 on page 67).

2.44. Compute the n-th power of the upper triangular matrix A =

⎡

⎢
⎢
⎣

1 α γ

0 1 β

0 0 1

⎤

⎥
⎥
⎦ ,

where α, β, γ ∈ R.
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2.45. Compute the q-th power of the functional matrix

U(ϕ) =
⎡

⎣
cosϕ sin ϕ

− sinϕ cosϕ

⎤

⎦

for all integer values of q ∈ Z.
2.46. It is known about the matrices A and B that their commutator is the identity

matrix: [A,B] = I . Compute [A,Bq ] for all integer values of the parameter
q ∈ Z.

2.47. Compute the value of the function f (x) = x2 − 3x + 2, if as the argument
is taken the matrix A, where

(1) A =
⎡

⎣
1 0

0 1

⎤

⎦;

(2) A =
⎡

⎣
1 −2

−3 1

⎤

⎦.

2.48. Compute the value of the function g(x) = x3 + x − 3, if as the argument is
taken the matrix A, where

(1) A =

⎡

⎢
⎢
⎣

1 0 0

1 1 0

1 1 1

⎤

⎥
⎥
⎦;

(2) A =

⎡

⎢
⎢
⎣

−2 1 0

3 −1 1

2 1 0

⎤

⎥
⎥
⎦.

2.49. Compute the value of the fractionally rational function g(A), if g(x) =
x3 + x2 − 3x − 5

x3 − 5x − 2
and

(1) A =

⎡

⎢
⎢
⎣

2 0 0

0 −4 0

0 0 1

⎤

⎥
⎥
⎦;

(2) A =

⎡

⎢
⎢
⎣

1 1 0

0 1 0

0 1 1

⎤

⎥
⎥
⎦.
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2.50. Show that the equality

exp

⎡

⎣
0 −1

1 0

⎤

⎦ =
⎡

⎣
cos 1 − sin 1

sin 1 cos 1

⎤

⎦

is valid.
2.51. Find eA for

(1) A =

⎡

⎢
⎢
⎣

1 0 0

0 1 0

0 0 0

⎤

⎥
⎥
⎦;

(2) A =

⎡

⎢
⎢
⎣

0 1 0

0 0 1

0 0 0

⎤

⎥
⎥
⎦.

∗2.52. Find eA for

(1) A =

⎡

⎢
⎢
⎣

1 0 1

0 1 0

0 0 1

⎤

⎥
⎥
⎦;

(2) A =

⎡

⎢
⎢
⎣

1 0 1

1 1 1

0 0 1

⎤

⎥
⎥
⎦.

2.53. For the matrices specified in the previous problem, compute lnA.
∗2.54. Prove that for the commuting matrices the exponential of the sum is equal

to the product of the exponentials of each of the summands:

exp(A+ B) = exp(A) exp(B).

2.55. Prove that exp(tA) = I + tA+O(t2) for t → 0.
2.56. Consider all possible matrices of size 3 × 3 that contain no zero column.

Enumerate pairwise various echelon forms of such matrices.
2.57. Which elementary operations with the elements of the echelon matrix

preserve its echelon form?
2.58. Find the ranks of the matrices:
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(1) A =

⎡

⎢
⎢
⎣

1 2 −4 3 −2

−1 3 −6 −2 4

2 −1 2 5 6

⎤

⎥
⎥
⎦ ; (2) A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

2 −4 3 1 0

1 −2 1 −4 2

0 1 −1 3 1

4 −7 4 −4 5

⎤

⎥
⎥
⎥
⎥
⎥
⎦

;

(3) A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 2 1 3

4 −1 −5 −6

1 −3 −4 −7

2 1 −1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

; (4) A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 2 −4

−1 −4 −5

3 1 7

0 5 −10

2 3 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

;

(5) A =

⎡

⎢
⎢
⎣

3 5 7

1 2 3

1 3 5

⎤

⎥
⎥
⎦ ; (6) A =

⎡

⎢
⎢
⎣

4 3 2 2

0 2 1 1

0 0 3 3

⎤

⎥
⎥
⎦ ;

(7) A =

⎡

⎢
⎢
⎣

1 −1 2 4 3

−2 1 5 2 6

2 −1 4 7 2

⎤

⎥
⎥
⎦ ; (8) A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 3 5 −1

2 −1 −3 4

5 1 −1 7

7 7 9 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

2.59. With the help of the bordering minor method, find the maximum value that
the rank of the matrix� can take

� =

⎡

⎢
⎢
⎣

β − γ 0 γ −β
γ − α −γ 0 α

α − β β −α 0

⎤

⎥
⎥
⎦ ,

if α, β and γ are real constants.
∗2.60. Find the ranks of the following matrices for all possible values of the real

parameter λ:

(a)

⎡

⎢
⎢
⎣

1 λ 0

1 1 0

0 0 1

⎤

⎥
⎥
⎦ ;
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(b)

⎡

⎢
⎢
⎣

1 − λ 0 0

0 2 − λ 0

0 0 3 − λ

⎤

⎥
⎥
⎦ ;

(c)

⎡

⎢
⎢
⎣

1 2 −3

−1 2 − λ 10

−1 0 3 − λ

⎤

⎥
⎥
⎦ ;

(d)

⎡

⎢
⎢
⎣

−λ 1 1

0 1 − λ 1

0 0 2 − λ

⎤

⎥
⎥
⎦ ;

(e)

⎡

⎢
⎢
⎣

1 −6 −5

−1 2 − λ 5

−1 6 1 − λ

⎤

⎥
⎥
⎦ ;

(f)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 − λ 2 0 0

1 2 − λ 0 0

0 0 3 − λ 0

0 0 0 4 − λ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

;

(g)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 − λ 2 0 0

1 1 + λ 0 0

0 0 2 − λ 0

0 0 0 2 + λ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

;

(h)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 + λ 2 0 4

1 1 0 0

0 0 2 + λ −1

1 0 2 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

;

(i)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−λ 1 1 1 . . . 1 1

0 1 − λ 1 1 . . . 1 1

0 0 2 − λ 1 . . . 1 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . (n− 1)− λ 1

0 0 0 0 . . . 0 n− λ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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Answers and Solutions

2.1 Solution.
For n = 3 we have 3! = 1 · 2 · 3 = 6 permutations:

k1 = 1, k2 = 2, k3 = 3; k1 = 1, k2 = 3, k3 = 2; k1 = 2, k2 = 1, k3 = 3;
k1 = 2, k2 = 3, k3 = 1; k1 = 3, k2 = 1, k3 = 2; k1 = 3, k2 = 2, k3 = 1.

Therefore, the sum in detA will consist of 6 terms, half of which is taken with a
positive sign, and another half—with a negative sign:

detA =
∑

perm

(−1)σ a1k1a2k2a3k3

= (−1)0a11a22a33 + (−1)1a11a23a32 + (−1)1a12a21a33

+ (−1)2a12a23a31 + (−1)2a13a21a32 + (−1)3a13a22a31

= a11a22a33 + a12a23a31 + a13a21a32

− a13a22a31 − a12a21a33 − a11a23a32.

The obtained formula, of course, conforms with the definition (2.3).

2.2 Answer: the number of inversions is equal to 10.

2.3 Solution.
The first element of the permutation, equal to n, forms n − 1 inversions paired

with each of the elements n−1, n−2, . . . , 1. The second element of the permutation
n − 1 forms with the remaining elements n − 2 inversions. As is easy to see,
the permutation element, equal to k, where 1 � k � n, forms k − 1 inversions.
Therefore, the total number of inversions in the permutation (n, n − 1, . . . , 2, 1) is

equal to the sum
n∑

k=1
k = n(n− 1)/2.

2.4 Answer:

(1)
n(n− 1)

2
;

(2)
n(n+ 1)

2
.

2.5 Solution.
The summand an1an−1,2 . . . a2,n−1a1n in the formula (2.5) is assigned the sign

(−1)σ = (−1)n(n−1)/2, since the number of inversions in the permutation (n, n −
1, . . . , 2, 1) is equal to σ = n(n− 1)/2 (see Problem 2.3).
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Note. With the help of the function “floor” �x	—the greatest integer, which is
less than or equal to the argument x, i.e. �x	 = max(n ∈ Z, n � x), the answer
can be written in a more compact form: (−1)σ = (−1)�n/2	.

2.6 Solution.

(1) Calculate the determinant, using the rule of triangle for calculation by the
formula (2.3).

∣
∣
∣
∣
∣
∣
∣
∣

3 −2 1

−2 1 3

2 0 −2

∣
∣
∣
∣
∣
∣
∣
∣

= 3 · 1 · (−2)+ (−2) · 3 · 2 + 1 · (−2) · 0

− 1 · 1 · 2 − (−2) · (−2) · (−2)− 3 · 3 · 0 = −12.

(2) Expand the determinant in the first row:

∣
∣
∣
∣
∣
∣
∣
∣

1 2 0

0 1 3

5 0 −1

∣
∣
∣
∣
∣
∣
∣
∣

= 1

∣
∣
∣
∣
∣
∣

1 3

0 −1

∣
∣
∣
∣
∣
∣
− 2

∣
∣
∣
∣
∣
∣

0 3

5 −1

∣
∣
∣
∣
∣
∣
+ 0

∣
∣
∣
∣
∣
∣

0 1

5 0

∣
∣
∣
∣
∣
∣

= 1 · (1 · (−1)− 0 · 3)− 2 · (0 · (−1)− 3 · 5)+ 0 · (0 · 0 − 5 · 1)

= −1 + 30 = 29.

(3) Expand the determinant in the first row:

∣
∣
∣
∣
∣
∣
∣
∣

2 0 5

1 3 16

0 −1 10

∣
∣
∣
∣
∣
∣
∣
∣

= 2 · (3 · 10 − (−1) · 16)− 0 · (1 · 10 − 0 · 16)

+ 5 · ((−1) · 1 − 0 · 3)

= 92 − 5 = 87;

(4) Expand the determinant, for example, in the third row:

∣
∣
∣
∣
∣
∣
∣
∣

2 −1 3

−2 3 2

0 2 5

∣
∣
∣
∣
∣
∣
∣
∣

= 0 · (3 · 3 − (−1) · 2)− 2 · (2 · 2 − (−2) · 3)

+ 5 · (2 · 3 − (−2) · (−1)) = −20 + 20 = 0.
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(5) Expand the determinant in the first row:

∣
∣
∣
∣
∣
∣
∣
∣

2 1 0

1 0 3

0 5 −1

∣
∣
∣
∣
∣
∣
∣
∣

= 2 · (0 · (−1)− 5 · 3)− 1 · (1 · (−1)− 0 · 3)+ 0 · (1 · 5 − 0 · 0)

= −30 + 1 = −29.

(6) The determinant of the lower triangular matrix is calculated as the product of
its diagonal elements:

∣
∣
∣
∣
∣
∣
∣
∣

2 0 0

3 3 0

4 4 4

∣
∣
∣
∣
∣
∣
∣
∣

= 2 · 3 · 4 = 24.

2.7 Solution.

(a) Expand the determinant in the first row:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

−3 0 0 0

2 2 0 0

1 3 −1 0

−1 5 3 5

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= −3 ·

∣
∣
∣
∣
∣
∣
∣
∣

2 0 0

3 −1 0

5 3 5

∣
∣
∣
∣
∣
∣
∣
∣

− 0 ·

∣
∣
∣
∣
∣
∣
∣
∣

2 0 0

1 −1 0

−1 3 5

∣
∣
∣
∣
∣
∣
∣
∣

+ 0 ·

∣
∣
∣
∣
∣
∣
∣
∣

2 2 0

1 3 0

−1 5 5

∣
∣
∣
∣
∣
∣
∣
∣

− 0 ·

∣
∣
∣
∣
∣
∣
∣
∣

2 2 0

1 3 −1

−1 5 3

∣
∣
∣
∣
∣
∣
∣
∣

= −3 · (−10 + 0 + 0 − 0 − 0 − 0)

− 0 + 0 − 0 = 30.

Note that the original matrix is the lower triangular one, hence its determi-
nant can be calculated by a simpler method as the product of diagonal elements:
� = (−3) · 2 · (−1) · 5 = 30.

(b) Expand the determinant in the first column:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2 −1 3 4

0 −1 5 −3

0 0 5 −3

0 0 0 2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 2 ·

∣
∣
∣
∣
∣
∣
∣
∣

−1 5 −3

0 5 −3

0 0 2

∣
∣
∣
∣
∣
∣
∣
∣

− 0 ·

∣
∣
∣
∣
∣
∣
∣
∣

−1 3 4

0 5 −3

0 0 2

∣
∣
∣
∣
∣
∣
∣
∣

+ 0 ·

∣
∣
∣
∣
∣
∣
∣
∣

−1 3 4

−1 5 −3

0 0 2

∣
∣
∣
∣
∣
∣
∣
∣
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− 0 ·

∣
∣
∣
∣
∣
∣
∣
∣

−1 3 4

−1 5 −3

0 5 −3

∣
∣
∣
∣
∣
∣
∣
∣

= 2 · (−10 + 0 + 0 − 0 − 0 − 0)− 0

+ 0 − 0 = −20.

The result can be obtained faster if we note that the matrix is the upper
triangular one. Then� = 2 · (−1) · 5 · 2 = −20.

(c) Expand the determinant in the first row:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2 −1 1 0

0 1 2 −1

3 −1 2 3

3 1 6 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 2 ·

∣
∣
∣
∣
∣
∣
∣
∣

1 2 −1

−1 2 3

1 6 1

∣
∣
∣
∣
∣
∣
∣
∣

− (−1) ·

∣
∣
∣
∣
∣
∣
∣
∣

0 2 −1

3 2 3

3 6 1

∣
∣
∣
∣
∣
∣
∣
∣

+ 1 ·

∣
∣
∣
∣
∣
∣
∣
∣

0 1 −1

3 −1 3

3 1 1

∣
∣
∣
∣
∣
∣
∣
∣

− 0 ·

∣
∣
∣
∣
∣
∣
∣
∣

0 1 2

3 −1 2

3 1 6

∣
∣
∣
∣
∣
∣
∣
∣

= 2 · (2 + 6 + 6 + 2 − 18 + 2)

− (−1) · (0 + 18 − 18 + 6 − 0 − 6)

+ 1 · (0 + 9 − 3 − 3 − 0 − 3)− 0 = 0.

2.8 Solution.
Denote the determinant by � and expand it in the first row. We will expand the

obtained third order determinants in the first row or in the row consisting of ones, if
any:

� = x

∣
∣
∣
∣
∣
∣
∣
∣

x 1 1

1 x 1

1 1 x

∣
∣
∣
∣
∣
∣
∣
∣

−

∣
∣
∣
∣
∣
∣
∣
∣

1 1 1

1 x 1

1 1 x

∣
∣
∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣
∣
∣

1 x 1

1 1 1

1 1 x

∣
∣
∣
∣
∣
∣
∣
∣

−

∣
∣
∣
∣
∣
∣
∣
∣

1 x 1

1 1 x

1 1 1

∣
∣
∣
∣
∣
∣
∣
∣

= x(x(x2 − 1)− (x − 1)+ (1 − x)) − (
(x2 − 1)− (x − 1)+ (1 − x))

+ ( − (x2 − 1)+ (x − 1)− (1 − x)) − (
(x2 − 1)− (x − 1)+ (1 − x))

= x(x3 − 3x + 2)− 3(x2 − 2x + 1) = x(x − 1)(x2 + x − 2)− 3(x − 1)2

= (x − 1)(x3 + x2 − 5x + 3) = (x − 1)3(x + 3).

As a result, the roots of the equation� = 0 are equal to x = 1 and x = −3.
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2.9 Solution.
Apply to the determinant the following equivalent transformations: from each

row, starting with the second one, subtract the first one. As a result we obtain the
determinant of the upper triangular matrix:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 1 1 . . . 1 1

0 1 0 . . . 0 0

0 0 2 . . . 0 0

0 0 0 . . . 0 0

0 0 0 . . . p − 1 0

0 0 0 . . . 0 p

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Such a determinant is equal to the product of the diagonal elements of the matrix:
1 · 1 · 2 . . . (p − 1) · p = p!.
2.10 Solution.

(a) Denote the determinant of the matrixQ by Qn and write it in an explicit form:

Qn =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 1 0 0 . . . 0 0

1 0 1 0 . . . 0 0

0 1 0 1 . . . 0 0

. . . . . . . . . . . . . .

0 0 0 0 . . . 0 1

0 0 0 0 . . . 1 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Let us use the expansion in its first row, following which expand the obtained
the determinant of order (n− 1)× (n− 1) in the first column:

Qn = (−1)1+2 ·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 1 0 . . . 0 0

0 0 1 . . . 0 0

0 1 0 . . . 0 0

. . . . . . . . . . . . .

0 0 0 . . . 0 1

0 0 0 . . . 1 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= (−1)1+2(−1)1+1 ·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 1 . . . 0 0

1 0 . . . 0 0

. . . . . . . . . . . .

0 0 . . . 0 1

0 0 . . . 1 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.
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Note that the problem reduced to computing the variable Qn−2. For the
smallest possible values of the order of the matrix n = 1 and n = 2 we have

Q1 = det[0] = 0, Q2 = det

⎡

⎣
0 1

1 0

⎤

⎦ = −1.

Thus, the recurrence relation is obtained:

{
Qn = −Qn−2,

Q1 = 0, Q2 = −1.

By the mathematical induction method we can show that its solution Qn will
have the form:

Qn =
{
(−1)n/2, if n is even,

0, if n is odd.

(b) Using Laplace’s method, similarly to item (a) we obtain the recurrence relation:

{
Qn = Qn−2,

Q1 = 0, Q2 = 1.

Its solution, as is easy to show with the help of the mathematical induction
method, has the form:

Qn = 1

2

(
1 + (−1)n

)
.

2.11 Solution.
Denote by P(n) the predicate “Fn+1 = D(n)”, where D(n) is the determi-

nant (2.73). Let us use the mathematical induction method.
B a s i s s t e p
For n = 1 and n = 2 we have

F2 =
∣
∣
∣
∣
∣
∣

1 1

−1 1

∣
∣
∣
∣
∣
∣
—true, F3 =

∣
∣
∣
∣
∣
∣
∣
∣

1 1 0

−1 1 1

0 −1 1

∣
∣
∣
∣
∣
∣
∣
∣

—true.

I n d u c t i v e s t e p
Assume the trueness of the statements P(k) for k = 1, 2, . . . .
Prove that this entails the trueness of P(k + 1).



Answers and Solutions 83

Indeed, expanding the determinantD(n+ 1) in the first row, we obtain

Dn+1 = Dn +Dn−1.

According to the inductive suppositionD(n) = Fn+1, D(n − 1) = Fn.
Therefore, we have obtained the true equality Fn+2 = Fn+1 + Fn.
Thus, the mathematical induction method has proved that Fn+1 = D(n) for all

natural n.

2.12 Solution.

(1) According to the definition of (2.74) for n = 2 we have

Vn =
∣
∣
∣
∣
∣
∣

1 1

a1 a2

∣
∣
∣
∣
∣
∣
= a2 − a1.

(2) Let us introduce for consideration the predicate “Vn = ∏

i,j∈[1,n]
i<j

(aj − ai)” and

denote it by P(n).

B a s i s s t e p
The case of the least n = 2 is proved in item (1) of this problem.
I n d u c t i v e s t e p
Let for some natural k � 2 the equality be fulfilled Vk = ∏

i,j∈[1,k]
i<j

(aj − ai).

Prove that Vk+1 = ∏

i,j∈[1,k+1]
i<j

(aj − ai).

Transform Vk+1 as follows: from the (k + 1)-th row subtract the k-th one,
multiplied by a1, then from the k-th one subtract the (k − 1)-th one, also multiplied
by a1 and so until the second row inclusive:

Vk+1 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 1 1 . . . 1

0 a2 − a1 a3 − a1 . . . ak+1 − a1

0 a2
2 − a1a2 a2

3 − a1a3 . . . a2
k+1 − a1ak+1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 ak2 − a1a
k−1
2 ak3 − a1a

k−1
3 . . . akk+1 − a1a

k−1
k+1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

The first column of the obtained determinant is formed by zeroes, except the
element in the upper left corner, equal to one. Using this fact, it is easy to perform
the expansion in the first column. After taking the common multipliers outside the
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sign of determinant, we have

Vk+1 = (a2 − a1)(a3 − a1) . . . (ak+1 − a1)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 1 . . . 1

a2 a3 . . . ak+1

a2
2 a2

3 . . . a2
k+1

. . . . . . . . . . . . . . . . .

ak−1
2 ak−1

3 . . . ak−1
k+1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

As a result we have obtained the determinant Vk , which, according to the
inductive supposition, is equal to the product of all the possible differences aj − ai
for 1 � i < j � k.

Therefore, the mathematical induction method has proved the formula of (2.75).
Note. The Vandermonde matrix, i.e. a matrix of the form

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 1 . . . 1

a1 a2 . . . an

a2
1 a2

2 . . . a2
n

. . . . . . . . . . . . . . . . .

an−1
1 an−1

2 . . . an−1
n

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

is widely met in the theory of approximation of functions by polynomials [11, 58].

2.13 Solution.
In case of multiplication of any row by a real number, the determinant of this

matrix is multiplied by this number. Therefore, as all the elements of the matrix A
are multiplied by m, the determinant is multiplied by the value

m×m× · · · ×m︸ ︷︷ ︸
n times

.

Thus, for all m ∈ N the equality det(mA) = mn det A is fulfilled.

2.14 Solution.
The student is wrong. The determinant of the sum of two matrices is not always

equal to the sum of the determinants of these matrices, which is confirmed by the
following counterexample.

Consider an identity matrix of size n× n. Then the inequality is valid:

det(I + I) �= det I + det I,

since det(I + I) = det(2I) = 2n (see Problem 2.13). At the same time, det I +
det I = 1 + 1 = 2 �= det(I + I).
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2.15 Solution.
The expansion of the determinant by the formula (2.5) contains 5! = 120

summands. One of these summands of the form a15a21a34a42a53 includes all the
five multipliers of value 10000 and is equal to (−1)σ100005 = (−1)σ1020. Here
σ is the number of inversions in the permutation (5, 1, 4, 2, 3). As is easy to see,
σ = 6.

The remaining 5! − 1 = 119 summands include no more than three multipliers
10000 and, therefore, do not exceed 100003 × 1 × 1 = 1012 in absolute magnitude.
Hence it may be concluded that the considered determinant is no less than the
difference 1020 − 119 · 1012 > 0.

As a result, the determinant is positive.

2.16 Solution.
Relying of the reasoning provided in the solution of Problem 2.15, we obtain: the

determinant in this case does not exceed the value

(−1020 + 119 · 4 · 5 · 1012) < 0.

Therefore, this determinant is a negative number.

2.17 Answer:
Computing of determinants with the help of Python provides the following

results:
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 1 1 1 104

104 1 1 1 1

1 1 1 104 1

1 104 1 1 1

1 1 104 1 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 99999990001999850004,

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 104 3 4 5

5 1 2 3 104

4 5 1 104 3

3 4 104 1 2

104 3 4 5 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= −99999909053183731167.

These results, of course, conform with the solution of Problems 2.15 and 2.16.

2.18 Solution.
Recall that in combinatorics the number of combinations of n various elements

of k without iterations is denoted as C(n, k) [1, 60].
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In order to form the minor of the k-th order, one should select k rows and k
columns from the matrix. The rows can be selected by C(m, k) methods, while the
columns—byC(n, k)method. Applying the combinatory rule of product, we obtain,
that all in all we can have C(m, k)C(n, k) minors of the k-th order.

2.19 Answer:
The rows for formation of the minor may be selected using the number of

combinations, by C(n, k) methods. Then the columns should be selected so that
their numbers should not coincide with the numbers of the selected rows. This can
be done in C(n − k, k) ways. In all, according to the combinatory rule of product,
we obtain the answer: C(n, k)C(n− k, k) minors.

2.20 Solution.
Consider the matrix A of size 3 × 3

A =

⎡

⎢
⎢
⎣

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤

⎥
⎥
⎦

and write its determinant in the form

detA = a11a22a33 + a12a23a31 + a13a21a32

− a11a23a32 − a12a21a33 − a13a22a31

= α + β + γ
+ δ + ε + ζ,

where designations α = a11a22a33, β = a12a23a31, . . . , ζ = −a13a22a31 are
introduced. Each of the variables α, β, . . . , ζ takes the values from the set {−1, 1}.

All the six summands of the determinant cannot have the same sign. Indeed, the
product αβγ can be presented in the form of the product of nine elements of the
matrix A:

αβγ =
3∏

i,j=1

aij .

At the same time, there exists the equality δεζ = (−1)3
∏3
i,j=1 aij = −αβγ .

Therefore, among α, β, . . . , ζ there exist negative summands, and detA < 6.
If five terms of the determinant have one sign, and the sixth term has a different

sign, then detA as an even number. Then, detA < 5.
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As is easy to find by direct calculation, the matrix

⎡

⎢
⎢
⎣

−1 1 1

1 −1 1

1 1 −1

⎤

⎥
⎥
⎦

has detA = 4.
Finally we obtain: the greatest value of the determinant of the matrix of size 3×3,

consisting of the elements +1 and −1, is equal to 4.

2.21 Answer: 2.

2.22 Answer: the determinant will be multiplied by (−1)�n/2	.
2.23 Solution.

# The number of multiplications
count = 0

def get_determ(A):
global count

size = len(A)

if size == 1:
return A[0][0]

elif size == 2:
count += 2
return A[0][0] * A[1][1] - A[0][1] * A[1][0]

else:
det = 0

# Expansion over the first row
for col in range(size):

minor = [row[:col] + row[col + 1:] for row in (A[1:])]

det_sign = 1 if col % 2 == 0 else -1
det += det_sign * A[0][col] * get_determ(minor)
count += 1

return det

mas = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
print("det =", get_determ(mas))
print("count =", count)

2.24 Solution.
For the matrix of size n×n, n recursive calls are performed and nmultiplications

are executed of the form aij ×Aij , j = 1, . . . , n. The exit from the recursion will be
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at n = 1; no multiplications are executed in this case. Due to this, the total number
of multiplications satisfies the recurrence relation:

{
T (n) = nT (n− 1)+ n, n > 1,

T (1) = 0.

Solve the obtained relation by the method of substitution, i.e. successively
expressing T (n− 1) by T (n− 2), then T (n− 2) by T (n− 3), and so on:

T (n) = nT (n− 1)+ n
= n[(n− 1)T (n− 2)+ n− 1] + n
= n(n− 1)T (n− 2)+ n(n− 1)+ n
= n(n− 1)[(n− 2)T (n− 3)+ n− 2] + n(n− 1)+ n
= n(n− 1)(n− 2)T (n− 3)+ n(n− 1)(n− 2)+ n(n− 1)+ n.

Similarly continuing this process until T (1) = 0, we obtain

T (n) = n(n− 1)(n− 2) . . .2 · T (1)
+ n(n− 1)(n− 2) . . .2 + n(n− 1)(n− 2) . . .3 + · · · + n(n− 1)+ n

= 0 + n! + n!
2! + · · · + n!

(n− 2)! + n!
(n− 1)!

= n!
[

1 + 1

2! + · · · + 1

(n− 2)! + 1

(n− 1)!
]

= n!
n−1∑

k=1

1

k! .

It is possible to write an analytical expression for T (n) by non-elementary
functions, however, for solution of the posed problem it is enough to evaluate the
asymptotic behaviour of the function T (n).

Note that for n → ∞

lim
n→∞

n−1∑

k=1

1

k! =
∞∑

k=1

1

k! =
∞∑

k=0

1

k! − 1 = e − 1,

where e = 2.71828 . . . is the base of natural logarithms. Hence we obtain the
inequality

n! � n!
n−1∑

k=1

1

k! � (e − 1)n!,

and, finally, T (n) = O(n!).
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2.25 Solution.

According to the result of the previous problem, T (n) = n!
n−1∑

k=1

1

k! .

Let us expand the expression en�(n, 1) − n!, taking into account the definition
of incomplete gamma function:

en�(n, 1)− n! = en · (n− 1)! e−1
n−1∑

k=0

1k

k! − n! = n!
n−1∑

k=0

1

k! − n! = n!
n−1∑

k=1

1

k! ,

which coincides with T (n).

2.26 Solution.
Let us find the total number of inversions S(N) contained in all permutations of

N elements. The relation
S(N)

N ! will be equal to the mean value of the number of

inversionsA(N) in the N-element array.
In order to compute the variable S(N) suppose that some permutation

(ai1, ai2, . . . , ain−1, ain ) contains exactly σ inversions.
Note that in the permutation (ain, ain−1 , . . . , ai2 , ai1) the number of inversions is

N(N − 1)

2
− σ . This means that the total number of inversions in the pair of arrays

(ai1, ai2 , . . . , ain−1, ain ) and (ain , ain−1, . . . , ai2, ai1)

is equal to σ +
(N(N − 1)

2
− σ

)
= N(N − 1)

2
.

Since there exist only N ! permutations of the N-element array, then S(N) =
1

2
N ! × N(N − 1)

2
, and therefore there exists the following estimate of the mean

value of the number of inversions:

A(N) = S(N)

N ! = 1

4
N2 +O(N) for N → ∞.

2.27 Proof.
Denote the elements of the matrix B by bij , 1 � i, j � n. Using the introduced

designation, we can write that the matrix I + εB is formed by the elements (δij +
εbij ).

According to the definition, the variable det(I + εB) is equal to the sum over all
possible permutations:

det(I + εB) =
∑

perm

(−1)σ (δ1i1 + εb1i1)(δ2i2 + εb2i2) . . . (δnin + εbnin).
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Removing the brackets under the summation sign, we obtain

det(I + εB) =
∑

perm

(−1)σ (δ1i1δ2i2 . . . δnin

+ εb1i1δ2i2δ3i3 . . . δnin

+ εb2i2δ1i1δ3i3 . . . δnin

+ εb3i3δ1i1δ2i2 . . . δnin + · · ·
+ εbninδ1i1δ2i2 . . . δ(n−1)in−1

+ ε2(. . . )+ · · · ).

The product δ1i1δ2i2 . . . δnin is equal to one, if i1 = 1, i2 = 2, . . . , in = n, and is
equal to zero in other cases.

Further, the products of the form

εbkik δ1i1δ2i2 . . . δ(k−1)ik−1δ(k+1)ik+1 . . . δnin

reduce to the summands εbkk .
This implies that

det(I + εB) = (−1)σ0
(
1 + εb11 + εb22 + · · · + εbnn +O(ε2)

)
,

where σ0 is the number of inversions in the permutation (i1, i2, . . . , in) =
(1, 2, . . . , n).

It is clear that σ0 = 0.
As a result we obtain

det(I + εB) = (−1)σ0
(

1 + ε
n∑

k=1

bkk +O(ε2)
)

= 1 + ε trB +O(ε2).

2.28 Answer: det

(
I

(I + εB)p
)

= 1 − pε(trB)+O(ε2).

2.29 Proof.
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Represent the matrix M in the form M = G(I + εG−1H). Calculate the
determinant

detM = detG det(I + εG−1H)

= detG exp(tr ln(I + εG−1H)) = detG exp
(

tr
∞∑

k=1

(−1)k−1

k
(εG−1H)k

)

= detG
(
1 + εtr (G−1H)+ 1

2
ε2(tr2 (G−1H)− tr (G−1H)2)+O(ε3)

)
.

Thus, the formula (2.80) is proved.

2.30 Solution.
The determinant of the matrix is equal to det A = ad − bc.
Calculate the cofactors for each of the elements of the matrix A:

A11 = (−1)1+1 · d = d, A12 = (−1)1+2 · c = −c;
A21 = (−1)2+1 · b = −b, A22 = (−1)2+2 · a = a.

Write a matrix of cofactors:
⎡

⎣
d −c

−b a

⎤

⎦ .

Then the sought inverse matrix will have the form:

A−1 = 1

ad − bc

⎡

⎣
d −b
−c a

⎤

⎦ .

2.31 Solution.

(1) Since det A = −2 �= 0, then the inverse matrix exists. Find the cofactors of the
elements of the matrix A:

A11 = 4, A12 = −3,

A21 = −2, A22 = 1.

Therefore, the matrix of cofactors can be written in the form:

⎡

⎣
4 −3

−2 1

⎤

⎦ .
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Transpose the matrix (Aij ):

⎡

⎣
4 −3

−2 1

⎤

⎦

T

=
⎡

⎣
4 −2

−3 1

⎤

⎦ .

For computing A−1, divide the obtained adjoint matrix by the determinant:

A−1 =
⎡

⎣
4 −2

−3 1

⎤

⎦ /(−2) =
⎡

⎣
−2 1

3/2 −1/2

⎤

⎦ .

(2) Since det A = 1 �= 0, then the inverse matrix exists. Find the cofactors of the
elements of the matrix A:

A11 = 7, A12 = −5,

A21 = −4, A22 = 3.

Transpose the matrix (Aij ):

⎡

⎣
7 −5

−4 3

⎤

⎦

T

=
⎡

⎣
7 −4

−5 3

⎤

⎦ .

Therefore, A−1 = 1

det A

⎡

⎣
7 −4

−5 3

⎤

⎦ =
⎡

⎣
7 −4

−5 3

⎤

⎦ .

(3) Compute the determinant by the method of expansion in the first column:

det A = 3

∣
∣
∣
∣
∣
∣

−3 1

−5 −1

∣
∣
∣
∣
∣
∣
− 2

∣
∣
∣
∣
∣
∣

−4 5

−5 −1

∣
∣
∣
∣
∣
∣
+ 3

∣
∣
∣
∣
∣
∣

−4 5

−3 1

∣
∣
∣
∣
∣
∣
= 24 − 58 + 33 = −1 �= 0.

Find the cofactors:

A11 =
∣
∣
∣
∣
∣
∣

−3 1

−5 −1

∣
∣
∣
∣
∣
∣
= 8, A12 = 5, A13 = −1,

A21 = −29, A22 = −18, A23 = 3,

A31 = 11, A32 = 7, A33 = −1.

We will obtain the matrix of cofactors:

⎡

⎢
⎢
⎣

8 5 −1

−29 −18 3

11 7 −1

⎤

⎥
⎥
⎦ .

Perform the transposition operation:

⎡

⎢
⎢
⎣

8 5 −1

−29 −18 3

11 7 −1

⎤

⎥
⎥
⎦

T

=

⎡

⎢
⎢
⎣

8 −29 11

5 −18 7

−1 3 −1

⎤

⎥
⎥
⎦ .
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With the help of division by det A write the inverse matrix:

A−1 = 1

det A

⎡

⎢
⎢
⎣

8 −29 11

5 −18 7

−1 3 −1

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

−8 29 −11

−5 18 −7

1 −3 1

⎤

⎥
⎥
⎦ .

(4) Since det A = −3 �= 0, then A−1 is determined. Find the cofactors Aij :

A11 = 7, A12 = −5, A13 = 6,

A21 = −6, A22 = 3, A23 = −3,

A31 = 1, A32 = 1, A33 = −3.

The inverse matrix is equal to A−1 = 1

det A

⎡

⎢
⎢
⎣

7 −6 1

−5 3 1

6 −3 −3

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎢
⎣

−7

3
2 −1

3
5

3
−1 −1

3
−2 1 1

⎤

⎥
⎥
⎥
⎦
.

(5) Find the determinant: det A = −27 �= 0. The cofactors are equal to

A11 = −3, A12 = −6, A13 = −6,

A21 = −6, A22 = −3, A23 = 6,

A31 = −6, A32 = 6, A33 = −3.

Compute the elements of the inverse matrix:

A−1 = 1

det A

⎡

⎢
⎢
⎣

−3 −6 −6

−6 −3 6

−6 6 −3

⎤

⎥
⎥
⎦ = 1

9

⎡

⎢
⎢
⎣

1 2 2

2 1 −2

2 −2 1

⎤

⎥
⎥
⎦ .



94 2 Matrix Algebra

2.32 Answer:

(1)

⎡

⎢
⎣

1 −1

2

0
1

2

⎤

⎥
⎦ ; (2)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 −1

2
0

0
1

2
−1

3

0 0
1

3

⎤

⎥
⎥
⎥
⎥
⎥
⎦

; (3)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −1

2
0 0

0
1

2
−1

3
0

0 0
1

3
−1

4

0 0 0
1

4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

2.33 Answer: [A,A−1] = [A,A−1] = O .

2.34 Solution.

(1) As is known, the matrix A does not have the inverse one when the condition
det A = 0 is fulfilled.

Calculate the determinant:

∣
∣
∣
∣
∣
∣
∣
∣

−1 λ λ

λ λ 0

6 4 λ

∣
∣
∣
∣
∣
∣
∣
∣

= −λ3 − 3λ2 = −λ2(λ+ 3).

Therefore, the matrix does not have the inverse one for λ ∈ {0,−3}.
(2) The determinant is equal to −λ3 + 3λ2 + λ− 3 = −(λ− 3)(λ− 1)(λ+ 1). The

matrix does not have the inverse one for λ ∈ {−1, 1, 3}.
2.35 Solution.

For finding the inverse matrix, compute the determinant det A.

det A =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 α 0 0

0 1 β 0

0 0 1 γ

0 0 0 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

det A = 1, sinceA is the upper triangular matrix and the determinant is equal to the
product of the diagonal elements.

Find the cofactors:

A11 = 1, A12 = 0, A13 = 0, A14 = 0,

A21 = −α, A22 = 1, A23 = 0, A24 = 0,

A31 = αβ, A32 = −β, A33 = 1, A34 = 0,

A41 = −αβγ, A42 = βγ, A43 = −γ, A44 = 1.
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We perform transposition and obtain the adjoint matrix:

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0

−α 1 0 0

αβ −β 1 0

−αβγ βγ −γ 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

T

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 −α αβ −αβγ
0 1 −β βγ

0 0 1 −γ
0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Since the determinant is equal to one, thenA−1 coincides with the adjoint matrix:

A−1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 −α αβ −αβγ
0 1 −β βγ

0 0 1 −γ
0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

As is shown above, the determinant det A does not depend on the parameters
α, β, γ . Therefore, the matrix A−1 is defined for any values of α, β, γ ∈ R.

2.36 Solution.
The determinant of the matrix Gn = (gij ) is equal to det Gn = (−1)n(n−1)/2,

since non-zero product in the sum of the form (2.5) is equal to g1,ng2,n−1 . . . gn,1 =
1, and the multiplier σ for this product takes the value σ = (−1)n(n−1)/2 (see
Problem 2.5).

Construct the matrix of cofactors of the elements gij , where 1 � i, j � n. The
cofactor of any element equal to zero will be equal to zero. This follows from the
fact that in case of deletion of the non-zero element in the corresponding minor
appears a zero row and a zero column, and, in turn, such a minor is equal to zero.
The minor of any element gi,(n+1)−i , located on the secondary diagonal, will be
equal to det Gn−1 = (−1)(n−1)(n−2)/2, since after deletion of gi,(n+1)−i we will
obtain the matrix Gn−1 of size (n− 1)× (n− 1).

Therefore, cofactors of such elements gi,n−i are equal to

(−1)i+(n+1−i) · det Gn−1 = (−1)n+1 · (−1)(n−1)(n−2)/2

= (−1)n(n−1)/2+2 = (−1)n(n−1)/2.

Thus, the matrix of cofactors is equal to the original Gn, multiplied by
(−1)n(n−1)/2.

As is easy to see, transposition does not change the obtained matrix. The last
step—divide the adjoint matrix by the determinant det Gn = (−1)n(n−1)/2. Finally
we obtain that the matrix inverse of G coincides with it itself: G−1 ≡ G for all
values of n � 2.



96 2 Matrix Algebra

2.37 Solution.
Let us provide a code in Python for solution of the problem.

import numpy as np

def get_Hilbert_matrix(n):
return np.matrix([[ 1 / (i + j - 1)

for j in range(1, n + 1)] for i in range(1, n + 1)])

matrix = get_Hilbert_matrix(6)
inversed = np.linalg.inv(matrix)
hh1 = np.matmul(matrix, inversed)
h1h = np.matmul(inversed, matrix)

print(matrix)
print(inversed)
print(hh1)
print(h1h)

The difference of the elements of the matrices H ·H−1 and H−1 ·H computed
with the help of Python from the identity matrix is ∼ 10−10 for n = 6, ∼ 10−7 for
n = 8 and ∼ 10−8 for n = 7. (Here, the symbol ∼ means equality by the order of
value.)

Thus, Hilbert matrices demonstrate accumulation of machine errors when mak-
ing computations with real numbers [58]. These matrices are very often used for
testing of numerical algorithms.

The matrix H−1 can be found in an explicit form; the analytical representations
for hij are shown in [40]. An interesting peculiarity of this problem is also the fact
that the elements of the inverse matrix are integer numbers.

2.38 Solution.
This matrix is an upper triangular one, and its determinant is equal to the product

of the elements positioned on the main diagonal, i.e. is equal to one.
Construct the matrix of cofactors. The cofactors of all unit elements positioned

on the main diagonal will be equal to one. Upon deleting all zeroes except
those standing on the diagonal below the main one, there appear matrices with
proportional rows, therefore, their minors will be equal to zero. Those zeroes that
are positioned on the diagonal below the main one, as cofactors will have the values
(−λ). The sum i + j for such elements is always odd, since they are positioned
below the main diagonal, and upon their deletion we obtain an upper triangular
matrix with one element λ and other unities on the main diagonal. Upon deletion of
λ of any degree, except zero, we obtain an upper triangular matrix with zeroes and
unities on the main diagonal. Therefore, both the minor and the cofactor are in this
case equal to zero.
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Finally, having executed the transposition operation, we obtain the inverse
matrix:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −λ 0 0 . . . 0

0 1 −λ 0 . . . 0

0 0 1 −λ . . . 0

. . . . . . . . . . . . . . . . .

0 0 0 0 . . . 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

2.39 Solution.
Let us use mathematical induction method.
B a s i s s t e p
For the least natural n = 1 we have

(A1)
−1 = A−1

1 is true.

I n d u c t i v e s t e p
Assume that for n = k the equality

(A1A2 . . . Ak−1Ak)
−1 = A−1

k A
−1
k−1 . . . A

−1
2 A

−1
1

is valid. Then we should prove that for n = k + 1 the following is true:

(A1A2 . . . Ak+1−1Ak+1)
−1 = A−1

k+1A
−1
k+1−1 . . . A

−1
2 A

−1
1 .

Denote the expression for A−1
k . . . A−1

1 by B, Then:

(BAk+1)
−1 = A−1

k+1B
−1 = A−1

k+1(A
−1
k A

−1
k−1 . . . A

−1
1 ).

Therefore, according to the mathematical induction method, ∀n ∈ N the identity

(A1A2 . . . An−1An)
−1 = A−1

n A
−1
n−1 . . . A

−1
2 A

−1
1

is valid.

2.40 Solution.

(1) Find the matrix inverse of the matrix A =
⎡

⎣
2 1

0 2

⎤

⎦.

Its determinant is equal to det A = 4, the matrix of cofactors has the

components

⎡

⎣
2 0

−1 2

⎤

⎦ , inverse of the matrix: A−1 =
⎡

⎣
1/2 −1/4

0 1/2

⎤

⎦ .
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We obtain the matrix X by multiplying A−1 by the matrix B =
⎡

⎣
−6 4

2 1

⎤

⎦:

X =
⎡

⎣
1/2 −1/4

0 1/2

⎤

⎦ ·
⎡

⎣
−6 4

2 1

⎤

⎦ =
⎡

⎣
−7/2 7/4

1 1/2

⎤

⎦ = 1

4

⎡

⎣
−14 7

4 2

⎤

⎦ .

(2) Let us find the matrix inverse of the matrix A =

⎡

⎢
⎢
⎣

−1 1 1

0 2 2

0 2 3

⎤

⎥
⎥
⎦.

The determinant is equal to det A = −2.
The inverse of the matrix A−1:

A−1 =

⎡

⎢
⎢
⎣

−1 1/2 0

0 3/2 −1

0 −1 1

⎤

⎥
⎥
⎦ .

Multiply the matrix inverse of the matrix A by the matrix

B =

⎡

⎢
⎢
⎣

−2 1 1

−1 0 2

−1 −2 0

⎤

⎥
⎥
⎦:

X = A−1B =

⎡

⎢
⎢
⎣

−1 1/2 0

0 3/2 −1

0 −1 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

−2 1 1

−1 0 2

−1 −2 0

⎤

⎥
⎥
⎦ = 1

2

⎡

⎢
⎢
⎣

3 −2 0

−1 4 6

0 −4 −4

⎤

⎥
⎥
⎦ .

(3) We obtain the solution of the equation multiplying both sides of the equation
X · A = B by A−1 on the right.

To do this, find the matrix inverse of the matrix A:

A−1 = 1

10

⎡

⎢
⎢
⎣

−30 12 38

−5 3 7

−30 14 36

⎤

⎥
⎥
⎦ .
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Compute the elements of an unknown matrix X = B ·A−1:

X =

⎡

⎢
⎢
⎣

0 −1 2

−1 −2 −2

0 1 10

⎤

⎥
⎥
⎦ · 1

10

⎡

⎢
⎢
⎣

−30 12 38

−5 3 7

−30 14 36

⎤

⎥
⎥
⎦ = 1

10

⎡

⎢
⎢
⎣

−55 25 65

100 −46 −124

−305 143 367

⎤

⎥
⎥
⎦ .

(4) From the equation A · X · B = C, find the unknown matrix X by the formula
X = A−1 · C · B−1.

We have

A−1 = 1

13

⎡

⎣
2 −3

3 2

⎤

⎦ , B−1 = 1

31

⎡

⎣
−4 7

5 −1

⎤

⎦ .

Consecutively perform multiplications in the following order:

(A−1 · C) · B−1.

Multiply the matrix inverse of the matrix A by the matrix C:

A−1C = 1

13

⎡

⎣
2 −3

3 2

⎤

⎦

⎡

⎣
1 −1

0 1

⎤

⎦ = 1

13

⎡

⎣
2 −5

3 −1

⎤

⎦ .

Finally, multiply the product A−1C by the matrix, inverse of the matrix B:

X = 1

13

⎡

⎣
2 −5

3 −1

⎤

⎦ · 1

31

⎡

⎣
−4 7

5 −1

⎤

⎦ = 1

403

⎡

⎣
−33 19

−17 22

⎤

⎦ .

2.41 Answer:

⎡

⎢
⎢
⎣

1 0 0

0 1 0

0 256a 1

⎤

⎥
⎥
⎦.
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2.42 Solution.
Having calculated the several first powers Ak, namely the second, third, fourth

and fifth powers of the matrix A =

⎡

⎢
⎢
⎣

1 0 0

g 1 1

h 0 1

⎤

⎥
⎥
⎦, we have

A2 =

⎡

⎢
⎢
⎣

1 0 0

2g + h 1 2

2h 0 1

⎤

⎥
⎥
⎦ , A3 =

⎡

⎢
⎢
⎣

1 0 0

3g + 3h 1 3

3h 0 1

⎤

⎥
⎥
⎦ ,

A4 =

⎡

⎢
⎢
⎣

1 0 0

4g + 6h 1 4

4h 0 1

⎤

⎥
⎥
⎦ , A5 =

⎡

⎢
⎢
⎣

1 0 0

5g + 10h 1 5

5h 0 1

⎤

⎥
⎥
⎦ .

Based on the obtained equalities, suppose that for all natural values of n the
identity is fulfilled:

An =

⎡

⎢
⎢
⎣

1 0 0

ng + n(n− 1)h/2 1 n

nh 0 1

⎤

⎥
⎥
⎦

n

,

denote the respective predicate by P(n).
Let us use the mathematical induction method.
B a s i s s t e p

A1 =

⎡

⎢
⎢
⎣

1 0 0

1 · g + 1(1 − 1)h/2 1 1

1 · h 0 1

⎤

⎥
⎥
⎦ = A is true.

I n d u c t i v e s t e p
Assume that for n = k the predicate P(n) takes the true value, Then:

Ak =

⎡

⎢
⎢
⎣

1 0 0

kg + k(k − 1)h/2 1 k

kh 0 1

⎤

⎥
⎥
⎦ .
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Prove that for n = k + 1 the equality is valid:

Ak+1 =

⎡

⎢
⎢
⎣

1 0 0

(k + 1)g + k(k + 1)h/2 1 k + 1

(k + 1)h 0 1

⎤

⎥
⎥
⎦ .

Indeed,

Ak+1 =

⎡

⎢
⎢
⎣

1 0 0

kg + k(k − 1)h/2 1 k

kh 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1 0 0

g 1 1

h 0 1

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

1 0 0

(k + 1)g + k(k + 1)h/2 1 k + 1

(k + 1)h 0 1

⎤

⎥
⎥
⎦ .

Thus, the predicate P(n) is proved for all n ∈ N.
Substituting as the exponent of the matrix the number n = 512, we obtain the

answer: A512 =

⎡

⎢
⎢
⎣

1 0 0

256(2g + 511h) 1 512

512h 0 1

⎤

⎥
⎥
⎦ .

2.43 Solution.

Denote by P(n) the predicate Fn =
⎡

⎣
Fn−1 Fn

Fn Fn+1

⎤

⎦ .

B a s i s s t e p
The basis step is formed by the statement P(2):

⎡

⎣
0 1

1 1

⎤

⎦

⎡

⎣
0 1

1 1

⎤

⎦ =
⎡

⎣
1 1

1 2

⎤

⎦ =
⎡

⎣
F1 F2

F2 F3

⎤

⎦ ,

which corresponds to the formula (2.85).
I n d u c t i v e s t e p
Assume that for n = k the statement is true:

Fk =
⎡

⎣
Fk−1 Fk

Fk Fk+1

⎤

⎦ .
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Compute the matrix Fn for n = k + 1:

Fk+1 =
⎡

⎣
Fk−1 Fk

Fk Fk+1

⎤

⎦

⎡

⎣
0 1

1 1

⎤

⎦ =
⎡

⎣
Fk Fk−1 + Fk
Fk+1 Fk + Fk+1

⎤

⎦ .

According to the definition of the Fibonacci sequence, each element of this
sequence is equal to the sum of two previous ones, and for all k > 1 the identity
Fk−1 + Fk = Fk+1 is valid.

Thus, the predicate P(n) is proved for all natural n > 1.

2.44 Solution.
Let us try to find regularity in the sequence A1, A2, A3, . . . . To do this, raise the

matrix to the second, third and fourth powers:

A2 =

⎡

⎢
⎢
⎣

1 α γ

0 1 β

0 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1 α γ

0 1 β

0 0 1

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

1 2α 2γ + αβ
0 1 2β

0 0 1

⎤

⎥
⎥
⎦ ,

A3 = A2 · A =

⎡

⎢
⎢
⎣

1 2α 2γ + αβ
0 1 2β

0 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1 α γ

0 1 β

0 0 1

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

1 3α 3γ + 3αβ

0 1 3β

0 0 1

⎤

⎥
⎥
⎦ ,

A4 = A3 ·A =

⎡

⎢
⎢
⎣

1 3α 3γ + 3αβ

0 1 3β

0 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1 α γ

0 1 β

0 0 1

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

1 4α 4γ + 6αβ

0 1 4β

0 0 1

⎤

⎥
⎥
⎦ .

Analysis of the sequence of the powersA1, A2, A3, . . . leads to a hypothesis that

An =

⎡

⎢
⎢
⎣

1 nα nγ + n(n− 1)αβ/2

0 1 nβ

0 0 1

⎤

⎥
⎥
⎦ .

Let us prove the truth of this supposition with the help of the mathematical
induction method.

Denote by P(n) the statement “An =

⎡

⎢
⎢
⎣

1 nα nγ + n(n− 1)αβ/2

0 1 nβ

0 0 1

⎤

⎥
⎥
⎦”.

B a s i s s t e p
The truth of the statement P(1) is obvious.
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I n d u c t i v e s t e p
Assume that P(n) is valid for n = k for some k � 1:

Ak =

⎡

⎢
⎢
⎣

1 kα kγ + k(k − 1)αβ/2

0 1 kβ

0 0 1

⎤

⎥
⎥
⎦ .

Prove that P(k)⇒ P(k + 1).

Ak+1 = Ak ·A =

⎡

⎢
⎢
⎣

1 kα kγ + k(k − 1)αβ/2

0 1 kβ

0 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1 α γ

0 1 β

0 0 1

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

1 (k + 1)α (k + 1)γ + k(k + 1)αβ/2

0 1 (k + 1)β

0 0 1

⎤

⎥
⎥
⎦ .

Therefore, P(n) takes the true value for all n � 1. Thus it is proved that

An =

⎡

⎢
⎢
⎣

1 nα nγ + n(n− 1)αβ/2

0 1 nβ

0 0 1

⎤

⎥
⎥
⎦

for all n ∈ N.

2.45 Solution.
Assume that q-th power of the matrix U(ϕ) is determined by the formula:

(U(ϕ))q =
⎡

⎣
cos(qϕ) sin(qϕ)

− sin(qϕ) cos(qϕ)

⎤

⎦ , where q ∈ Z.

Denote this statement by P(q) and prove it first for q ∈ N. Let us apply the
mathematical induction method.

B a s i s s t e p
For n = 1 we have

(U(ϕ))1 =
⎡

⎣
cos(ϕ) sin(ϕ)

− sin(ϕ) cos(ϕ)

⎤

⎦ = U(1 · ϕ) is true.
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I n d u c t i v e s t e p
Assume that P(n) is true for n = k:

(U(ϕ))k =
⎡

⎣
cos(kϕ) sin(kϕ)

− sin(kϕ) cos(kϕ)

⎤

⎦ .

Prove the truth of the statement for n = k + 1.

(U(ϕ))k+1 =
⎡

⎣
cos(kϕ) sin(kϕ)

− sin(kϕ) cos(kϕ)

⎤

⎦

⎡

⎣
cosϕ sin ϕ

− sinϕ cosϕ

⎤

⎦

=
⎡

⎣
cos(kϕ) cosϕ − sin(kϕ) sinϕ cos(kϕ) sinϕ + sin(kϕ) cosϕ

− sin(kϕ) cosϕ − cos(kϕ) sin ϕ − sin(kϕ) sinϕ + cos(kϕ) cosϕ

⎤

⎦

=
⎡

⎣
cos(k + 1)ϕ sin(k + 1)ϕ

− sin(k + 1)ϕ cos(k + 1)ϕ

⎤

⎦ .

Therefore, for q ∈ N there exists the equality:

(U(ϕ))q =
⎡

⎣
cos(qϕ) sin(qϕ)

− sin(qϕ) cos(qϕ)

⎤

⎦ .

Now it only remains for us to prove the truth of this equality for all integer q .
Indeed, (U(ϕ))0 = I = U(0) and for all ϕ ∈ R there exists the inverse matrix

U(ϕ)−1 = U(−ϕ).

Thus, for q = 0, 1, 2, . . . the equality (U(ϕ))−q = U(−qϕ) is valid.
This means that

(U(ϕ))q =
⎡

⎣
cos(qϕ) sin(qϕ)

− sin(qϕ) cos(qϕ)

⎤

⎦ for q ∈ Z.

2.46 Answer:

[A,Bq ] = qBq−1 for all q ∈ Z.
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2.47 Solution.
Consecutively perform the algebraic operations:

(1)

f (A) =
⎡

⎣
1 0

0 1

⎤

⎦

⎡

⎣
1 0

0 1

⎤

⎦ − 3

⎡

⎣
1 0

0 1

⎤

⎦ + 2

⎡

⎣
1 0

0 1

⎤

⎦

=
⎡

⎣
1 0

0 1

⎤

⎦ −
⎡

⎣
3 0

0 3

⎤

⎦ +
⎡

⎣
2 0

0 2

⎤

⎦ =
⎡

⎣
0 0

0 0

⎤

⎦ .

(2)

f (A) =
⎡

⎣
1 −2

−3 1

⎤

⎦

⎡

⎣
1 −2

−3 1

⎤

⎦ − 3

⎡

⎣
1 −2

−3 1

⎤

⎦ + 2

⎡

⎣
1 0

0 1

⎤

⎦ =
⎡

⎣
7 −4

−6 7

⎤

⎦

−
⎡

⎣
3 −6

−9 3

⎤

⎦ +
⎡

⎣
2 0

0 2

⎤

⎦ =
⎡

⎣
6 2

3 6

⎤

⎦ .

2.48 Solution.

(1)

g(A) =

⎡

⎢
⎢
⎣

1 0 0

1 1 0

1 1 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1 0 0

1 1 0

1 1 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1 0 0

1 1 0

1 1 1

⎤

⎥
⎥
⎦ +

⎡

⎢
⎢
⎣

1 0 0

1 1 0

1 1 1

⎤

⎥
⎥
⎦ − 3

⎡

⎢
⎢
⎣

1 0 0

0 1 0

0 0 1

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

1 0 0

3 1 0

6 3 1

⎤

⎥
⎥
⎦ +

⎡

⎢
⎢
⎣

1 0 0

1 1 0

1 1 1

⎤

⎥
⎥
⎦ −

⎡

⎢
⎢
⎣

3 0 0

0 3 0

0 0 3

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

−1 0 0

4 −1 0

7 4 −1

⎤

⎥
⎥
⎦ ;

(2)

g(A) =

⎡

⎢
⎢
⎣

−2 1 0

3 −1 1

2 1 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

−2 1 0

3 −1 1

2 1 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

−2 1 0

3 −1 1

2 1 0

⎤

⎥
⎥
⎦
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+

⎡

⎢
⎢
⎣

−2 1 0

3 −1 1

2 1 0

⎤

⎥
⎥
⎦ − 3

⎡

⎢
⎢
⎣

1 0 0

0 1 0

0 0 1

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

−21 11 −3

27 −13 5

7 −1 1

⎤

⎥
⎥
⎦ +

⎡

⎢
⎢
⎣

−2 1 0

3 −1 1

2 1 0

⎤

⎥
⎥
⎦ −

⎡

⎢
⎢
⎣

3 0 0

0 3 0

0 0 3

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

−26 12 −3

30 −17 6

9 0 −2

⎤

⎥
⎥
⎦ .

2.49 Solution.

(1) The numerator of the fraction is equal to

⎡

⎢
⎢
⎣

1 0 0

0 −41 0

0 0 −6

⎤

⎥
⎥
⎦ .

In turn, the denominator forms the matrix

⎡

⎢
⎢
⎣

−4 0 0

0 −46 0

0 0 −6

⎤

⎥
⎥
⎦ ,

and the matrix that is inverse of it is equal to

⎡

⎢
⎢
⎣

−1/4 0 0

0 −1/46 0

0 0 −1/6

⎤

⎥
⎥
⎦ .

Having performed the multiplication operation, we obtain

g(A) =

⎡

⎢
⎢
⎣

1 0 0

0 −41 0

0 0 −6

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

−1/4 0 0

0 −1/46 0

0 0 −1/6

⎤

⎥
⎥
⎦ = 1/92

⎡

⎢
⎢
⎣

−23 0 0

0 82 0

0 0 92

⎤

⎥
⎥
⎦ .
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(2) The numerator of the fraction is equal to

⎡

⎢
⎢
⎣

−6 2 0

0 −6 0

0 2 −6

⎤

⎥
⎥
⎦ .

The denominator of this fraction is equal to

⎡

⎢
⎢
⎣

−6 −2 0

0 −6 0

0 −2 −6

⎤

⎥
⎥
⎦ .

Let us find the matrix inverse of the denominator:

⎡

⎢
⎢
⎣

−1/6 1/18 0

0 −1/6 0

0 1/18 −1/6

⎤

⎥
⎥
⎦ .

As a result we obtain

g(A) =

⎡

⎢
⎢
⎣

−6 2 0

0 −6 0

0 2 −6

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

−1/6 1/18 0

0 −1/6 0

0 1/18 −1/6

⎤

⎥
⎥
⎦ = 1

3

⎡

⎢
⎢
⎣

3 −2 0

0 3 0

0 −2 3

⎤

⎥
⎥
⎦ .

2.50 Proof.
Let us consider the sequence of integer non-negative powers of the matrix A =⎡

⎣
0 −1

1 0

⎤

⎦:

A0 =
⎡

⎣
1 0

0 1

⎤

⎦ , A1 =
⎡

⎣
0 −1

1 0

⎤

⎦ , A2 =
⎡

⎣
−1 0

0 −1

⎤

⎦ ,

A3 =
⎡

⎣
0 1

−1 0

⎤

⎦ , A4 =
⎡

⎣
1 0

0 1

⎤

⎦ and so on.
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Therefore, the elements of the matrix exp(A) are defined by the sums

(eA)11 = 1 + 0/1! − 1/2! + 0/3! + 1/4! + · · · =
∞∑

k=0

(−1)k

(2k)! = cos 1,

(eA)12 = 0 − 1/1! − 0/2! + 1/3! + 0/4! + · · · =
∞∑

k=0

(−1)k+1

(2k + 1)! = − sin 1,

(eA)21 = 0 + 1/1! + 0/2! − 1/3! + 0/4! + · · · =
∞∑

k=0

(−1)k

(2k + 1)! = sin 1,

(eA)22 = 1 + 0/1! − 1/2! + 0/3! − 1/4! + · · · =
∞∑

k=0

(−1)k

(2k)! = cos 1.

Therefore, there exists the equality

exp(A) =
⎡

⎣
cos 1 − sin 1

sin 1 cos 1

⎤

⎦ .

2.51 Solution.

(1) Compute the lower powers of the matrix A:

A0 =

⎡

⎢
⎢
⎣

1 0 0

0 1 0

0 0 1

⎤

⎥
⎥
⎦ , A1 =

⎡

⎢
⎢
⎣

1 0 0

0 1 0

0 0 0

⎤

⎥
⎥
⎦ , A2 =

⎡

⎢
⎢
⎣

1 0 0

0 1 0

0 0 0

⎤

⎥
⎥
⎦ .

It is clear that ∀n � 1 (An = A). The elements of the matrix exp(A) are
equal to

(eA)11 = (eA)22 = 1 + 1

1! + 1

2! + 1

3! + · · · = e, (eA)33 = 1,

and the remaining elements take zero values.
Therefore,

exp(A) =

⎡

⎢
⎢
⎣

e 0 0

0 e 0

0 0 1

⎤

⎥
⎥
⎦ .
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(2) The lower powers of the matrix are equal to

A0 =

⎡

⎢
⎢
⎣

1 0 0

0 1 0

0 0 1

⎤

⎥
⎥
⎦ , A1 =

⎡

⎢
⎢
⎣

0 1 0

0 0 1

0 0 0

⎤

⎥
⎥
⎦ , A2 =

⎡

⎢
⎢
⎣

0 0 1

0 0 0

0 0 0

⎤

⎥
⎥
⎦ .

As is easy to see, A3 = O , and all the higher natural powers of this matrix
are equal to zero.

Finally we obtain

exp(A) =

⎡

⎢
⎢
⎣

1 1 1/2

0 1 1

0 0 1

⎤

⎥
⎥
⎦ .

2.52 Solution.

(1) By the mathematical induction method, it is easy to prove that An =

⎡

⎢
⎢
⎣

1 0 n

0 1 0

0 0 1

⎤

⎥
⎥
⎦

for all integer non-negative n.

According to the formula (2.49), we have eA =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∞∑
k=0

1

k! 0
∞∑
k=1

k

k!
0

∞∑
k=0

1

k! 0

0 0
∞∑
k=0

1

k!

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The sums defining the diagonal elements converge to Euler’s number e. The

sum (eA)13 =
∞∑
k=1

k

k! =
∞∑
k=1

1

(k − 1)! =
∞∑
k=0

1

k! is also equal to e.

Thus, write the answer:

eA =

⎡

⎢
⎢
⎣

e 0 e

0 e 0

0 0 e

⎤

⎥
⎥
⎦ .

(2) Having computed the arbitrary natural power of the matrix A, we obtain An =
⎡

⎢
⎢
⎣

1 0 n

n 1 n(n+ 1)/2

0 0 1

⎤

⎥
⎥
⎦.

Calculation of the diagonal elements of the exponential and the element
(eA)13 is performed similarly to item (1) of this problem.
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The element positioned at the intersection of the second row and the third

column is defined by the sum (eA)23 =
∞∑
n=1

n(n+ 1)

2n! . Transform this sum to

the form

∞∑

n=1

(n+ 1)

2(n− 1)! =
∞∑

n=1

(n− 1)+ 2

2(n− 1)! = 1

2

∞∑

n=2

1

(n− 2)! +
∞∑

n=1

2

2(n− 1)! .

Therefore, (eA)23 = 3

2
e.

As a result we obtain

eA =

⎡

⎢
⎢
⎢
⎣

e 0 e

e e
3

2
e

0 0 e

⎤

⎥
⎥
⎥
⎦
.

2.53 Solution.

(1) According to the formula (2.53), we have

lnA = (A− I)− 1

2
(A− I)2 + · · · ,

or

ln

⎡

⎢
⎢
⎣

1 0 1

0 1 0

0 0 1

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

0 0 1

0 0 0

0 0 0

⎤

⎥
⎥
⎦ − 1

2

⎡

⎢
⎢
⎣

0 0 1

0 0 0

0 0 0

⎤

⎥
⎥
⎦

2

+ · · · =

⎡

⎢
⎢
⎣

0 0 1

0 0 0

0 0 0

⎤

⎥
⎥
⎦ .

(2) After computing the lower powers of the matrix (A−I)we can write the general
formula for (A− I)n, where n � 1:

(A− I)n =

⎡

⎢
⎢
⎣

0 0 δn1

δn1 0 δn1 + δn2

0 0 0

⎤

⎥
⎥
⎦ ,

where δij is the Kronecker symbol.
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This implies that

ln

⎡

⎢
⎢
⎣

1 0 1

1 1 1

0 0 1

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎢
⎣

0 0 1

1 0
1

2
0 0 0

⎤

⎥
⎥
⎥
⎦
.

2.54 Hint.
Use the formula (2.49) and apply the mathematical induction method.

2.56 Answer:
A square matrix of size 3 × 3 after reducing it to the echelon form with the help

of the elementary transformations can take one of the following forms:

⎡

⎢
⎢
⎣

1 a b

0 1 c

0 0 1

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

1 a b

0 1 c

0 0 0

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

1 a b

0 0 1

0 0 0

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

1 a b

0 0 0

0 0 0

⎤

⎥
⎥
⎦ .

Here, by a, b and c are denoted the arbitrary real numbers.

2.57 Answer:

(1) addition the j -th row to the i-th row for j > i;
(2) addition the j -th column to the i-th column for j < i.

2.58 Solution.

(1) Perform the following elementary transformations: add to the second row the
first one, subtract from the third row the doubled first one, then add to the third
row the second row.

We will obtain the matrix in the echelon form: A →

⎡

⎢
⎢
⎣

1 2 −4 3 −2

0 5 −10 1 2

0 0 0 0 12

⎤

⎥
⎥
⎦, its

rank is equal to rkA = 3.
(2) Subtract from the second row half of the first one, subtract from the fourth row

two first rows, swap the second and the third rows, subtract from the fourth row
the second one, swap the third and the fourth rows and, finally, subtract from
the fourth row half of the third row.

We obtain A→

⎡

⎢
⎢
⎢
⎢
⎢
⎣

2 −4 3 1 0

0 1 −1 3 1

0 0 −1 −9 4

0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, therefore, rkA = 3.



112 2 Matrix Algebra

(3) Let us use the elementary transformation method. Subtract from the second row
the quadruplicated first row, subtract from the third row the first one, subtract
from the fourth row the doubled first row. Then, subtract from the third row the
second one, multiplied by 5/9. Finally, subtract from the fourth row the second
one, divided by 3.

Then we obtain

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 2 1 3

0 −9 −9 −18

0 0 0 0

0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

therefore, rkA = 2.
(4) Swap the first and the second rows, add to the third row the triplicated first

row, add to the fifth row the doubled first row. Then, add to the third row
the second one, multiplied by 11/2. Subtract from the fourth row the second
one, multiplied by 5/2. Add to the fifth row the second one, multiplied by 5/2.
Finally, subtract from the fifth row the third one, multiplied by 2/3.

After the said transformations we obtain A →

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 −4 −5

0 2 −4

0 0 −30

0 0 0

0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, therefore,

the rank of this matrix is equal to three.
(5) Perform the following elementary transformations: subtract from the second

row the first row, multiplied by 1/3. Then, subtract from the third row the
first one, multiplied by 1/3. And finally, subtract from the third row the
quadruplicated second row.

After that we obtain A →

⎡

⎢
⎢
⎣

3 5 7

0 1/3 2/3

0 0 0

⎤

⎥
⎥
⎦, the rank of such a matrix is equal

to two.
(6) The matrix is presented in the echelon form, and, as is easy to see, rkA = 3.
(7) Add to the second row the doubled first row, subtract from the third row the

doubled first row, add to the third row the second row.
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Then we obtain

A →

⎡

⎢
⎢
⎣

1 −1 2 4 3

0 −1 9 10 12

0 0 9 9 8

⎤

⎥
⎥
⎦ ,

and the rank of the matrix A is equal to three.
(8) Subtract from the second row the doubled first row, subtract from the third row

the first one, multiplied by five. Then, subtract from the fourth row the first
one, multiplied by seven. Subtract from the third row the doubled second one
and swap the third and the fourth rows. Finally, subtract from the third row the
doubled second row.

After the said transformations we obtain

A →

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 3 5 −1

0 −7 13 6

0 0 0 −4

0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

therefore, rkA = 3.

2.59 Solution.
Consider the minor of the first orderM1

1 = β − γ . If β �= γ , then the rank of the
matrix� is no less than one.

Then, consider the minor of the second order M1,2
1,2 =

∣
∣
∣
∣
∣
∣

β − γ 0

γ − α −γ

∣
∣
∣
∣
∣
∣
. If the

condition γ �= 0 is fulfilled, then rk� � 2.
Finally, compute the bordering minors of the third order:

M
1,2,3
1,2,3 =

∣
∣
∣
∣
∣
∣
∣
∣

β − γ 0 γ

γ − α −γ 0

α − β β −α

∣
∣
∣
∣
∣
∣
∣
∣

= 0,

M
1,2,3
1,2,4 =

∣
∣
∣
∣
∣
∣
∣
∣

β − γ 0 −β
γ − α −γ α

α − β β 0

∣
∣
∣
∣
∣
∣
∣
∣

= 0.

Therefore, the maximum value that the rank of the matrix � can take is equal to
two.
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Note that with the help of the Kronecker symbol (see page 4) the formula for the
rank of this matrix can be written in the form rk� = 2(1 − δα0δβ0δγ 0).

2.60 Solution.

(a) Use the bordering minor method (see page 64):

M1
1 = 1 �= 0, M

1,2
1,2 =

∣
∣
∣
∣
∣
∣

1 λ

1 1

∣
∣
∣
∣
∣
∣
= 1 − λ.

Then, consider two cases.

(1) If λ = 1, then the matrix is equal to

⎡

⎢
⎢
⎣

1 1 0

1 1 0

0 0 1

⎤

⎥
⎥
⎦ →

(2)−(1)
(2)↔(3)

⎡

⎢
⎢
⎣

1 1 0

0 0 1

0 0 0

⎤

⎥
⎥
⎦. It is clear

that its rank is equal to two.
(2) If λ �= 1, then we compute the bordering minor of the third order (it is the

only one):

M
1,2,3
1,2,3 =

∣
∣
∣
∣
∣
∣
∣
∣

1 λ 0

1 1 0

0 0 1

∣
∣
∣
∣
∣
∣
∣
∣

= 1 − λ �= 0.

Therefore, the rank of the matrix is equal to

{
2, if λ = 1,

3, if λ �= 1.

(b) The lower minorM1
1 = 1 − λ.

Then, consider two cases.

(1) If λ = 1, then the matrix is equal to

⎡

⎢
⎢
⎣

0 0 0

0 1 0

0 0 2

⎤

⎥
⎥
⎦, and its rank, as is easy to see,

is equal to two.
(2) If λ �= 1, then we continue to compute the bordering minors:

M
1,2
1,2 =

∣
∣
∣
∣
∣
∣

1 − λ 0

0 2 − λ

∣
∣
∣
∣
∣
∣
= (1 − λ)(2 − λ).
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If λ = 2, we obtain the matrix

⎡

⎢
⎢
⎣

−1 0 0

0 0 0

0 0 1

⎤

⎥
⎥
⎦, its rank is equal to two.

If λ �= 2, then we need to compute the bordering minor M1,2,3
1,2,3 : M1,2,3

1,2,3 =
(1 − λ)(2 − λ)(3 − λ).

In the case when λ = 3, the matrix is equal to

⎡

⎢
⎢
⎣

−2 0 0

0 −1 0

0 0 0

⎤

⎥
⎥
⎦, its rank is equal

to two. Otherwise, the rank is equal to three.
As a result, we form the answer:

{
2, if λ ∈ {1, 2, 3},
3, otherwise.

(c) SinceM1
1 = 1 �= 0, then the rank of the matrix is no less than one.

Then, consider the minors of the second order:

M
1,2
1,2 =

∣
∣
∣
∣
∣
∣

1 2

−1 2 − λ

∣
∣
∣
∣
∣
∣
= 4 − λ.

This minor is not equal to zero at λ �= 4. For this case, consider the bordering
minor of the third order:

M
1,2,3
1,2,3 =

∣
∣
∣
∣
∣
∣
∣
∣

1 2 −3

−1 2 − λ 10

−1 0 3 − λ

∣
∣
∣
∣
∣
∣
∣
∣

= λ2 − 4λ− 14.

The determinant is equal to zero for λ = 2 ± 3
√

2. For such values of λ the
rank is equal to two; for other values the rank is equal to three.

Now consider the case λ = 4.
Then the non-zero minor of the second order:

M
1,2
2,3 =

∣
∣
∣
∣
∣
∣

2 −3

2 − λ 10

∣
∣
∣
∣
∣
∣
= 14 �= 0.

Then, the rank is no less than two. The third order minor is the only one, but
it is only equal to zero for λ = 2 ± 3

√
2, as is shown above. Then, in this case

the rank is equal to three.
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So, for λ = 2 ± 3
√

2 the rank of the matrix is equal to two, for other λ the
rank of the matrix is equal to three.

(d) There existsM1
2 = 1 �= 0, therefore, the rank of the matrix is no less than one.

Then, consider the minors of the second order:

M
1,2
1,2 =

∣
∣
∣
∣
∣
∣

−λ 1

0 1 − λ

∣
∣
∣
∣
∣
∣
= λ(λ− 1).

This minor is not equal to zero at λ �= 0 and for λ �= 1. For this case, such
for the minor of the third order:

M
1,2,3
1,2,3 =

∣
∣
∣
∣
∣
∣
∣
∣

−λ 1 1

0 1 − λ 1

0 0 2 − λ

∣
∣
∣
∣
∣
∣
∣
∣

= λ(λ− 1)(2 − λ).

λ(λ − 1)(2 − λ) �= 0 for λ �= 2 (since λ �= 1 and λ �= 0). In this case, the
rank is equal to three.

For λ = 2 the rank is equal to two.
Assume that now λ = 0:

⎡

⎢
⎢
⎣

0 1 1

0 1 1

0 0 2

⎤

⎥
⎥
⎦ ,

M
2,3
2,3 =

∣
∣
∣
∣
∣
∣

1 1

0 2

∣
∣
∣
∣
∣
∣
= 2 �= 0.

Then, the rank is more than two.

∣
∣
∣
∣
∣
∣
∣
∣

0 1 1

0 1 1

0 0 2

∣
∣
∣
∣
∣
∣
∣
∣

= 0.

Then, in this case the rank is equal to two.
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Now consider λ = 1:

⎡

⎢
⎢
⎣

−1 1 1

0 0 1

0 0 1

⎤

⎥
⎥
⎦ .

The rank is equal to two, because M1,2
2,3 =

∣
∣
∣
∣
∣
∣

1 1

0 1

∣
∣
∣
∣
∣
∣

= 1 �= 0, and the

determinant of the matrix is equal to zero.
Therefore, the rank is equal to two for λ ∈ {0, 1, 2}, and is equal to three in

other cases.
(e) The minor of the first order is M1

1 = 1 �= 0, therefore, the rank of the matrix
takes the value no less than one.

Let us find the bordering minor of the second order:

M
1,2
1,2 =

∣
∣
∣
∣
∣
∣

1 −6

−1 2 − λ

∣
∣
∣
∣
∣
∣
= −4 − λ.

This minor is not equal to zero if λ �= −4. Let us find the minor of the third
order for such values of λ:

M
1,2,3
1,2,3 =

∣
∣
∣
∣
∣
∣
∣
∣

1 −6 −5

−1 2 − λ 5

−1 6 1 − λ

∣
∣
∣
∣
∣
∣
∣
∣

= λ2 + 8λ+ 16.

This expression may only be equal to zero for λ = −4. Therefore, in this
case the rank is equal to three.

Now consider the case when λ = −4.

⎡

⎢
⎢
⎣

1 −6 −5

−1 6 5

−1 6 5

⎤

⎥
⎥
⎦ .

The rank of the obtained matrix is equal to one.
As a result, the rank is equal to one for λ = −4, and is equal to three for

λ �= −4.



118 2 Matrix Algebra

(f) There existsM2
1 = 1 �= 0, therefore, the rank is no less than one.

Let us find the minors of the second order.

M
1,2
1,2 =

∣
∣
∣
∣
∣
∣

1 − λ 2

1 2 − λ

∣
∣
∣
∣
∣
∣
= λ(λ− 3).

It is not equal to zero if λ �= 0 and λ �= 3. Find for such values of the
parameter λ the bordering minors of the third order.

M
1,2,3
1,2,3 =

∣
∣
∣
∣
∣
∣
∣
∣

1 − λ 2 0

1 2 − λ 0

0 0 3 − λ

∣
∣
∣
∣
∣
∣
∣
∣

= λ(λ− 3)(3 − λ).

The third order minor is non-zero for all considered in this case λ. Let us find
the minor of the fourth order (it is the only one):

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 − λ 2 0 0

1 2 − λ 0 0

0 0 3 − λ 0

0 0 0 4 − λ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= λ(λ− 3)(3 − λ)(4 − λ).

It is equal to zero only for λ = 4. For this case, the rank is equal to three. For
λ �= 4 the rank is equal to four.

Then, consider the value λ = 0:

M
3,4
3,4 =

∣
∣
∣
∣
∣
∣

3 0

0 4

∣
∣
∣
∣
∣
∣
= 12 �= 0,

M
2,3,4
2,3,4 =

∣
∣
∣
∣
∣
∣
∣
∣

3 0 0

0 3 0

0 0 4

∣
∣
∣
∣
∣
∣
∣
∣

= 24 �= 0.

For λ = 0 the determinant of the initial matrix is equal to zero. Then, the
rank is equal to three.
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For λ = 3:

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−2 2 0 0

1 −1 0 0

0 0 0 0

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

There is no minor of the third order that is not equal to zero. Therefore, the
rank is equal to two.

Finally we obtain the rank is equal to two for λ = 3, is equal to three for
λ ∈ {0, 4}, is equal to four in other cases.

(g) There existsM2
1 �= 0, therefore, the rank is no less than one.

Let us find the minors of the second order:

M
1,2
1,2 =

∣
∣
∣
∣
∣
∣

1 − λ 2

1 1 + λ

∣
∣
∣
∣
∣
∣
= −(λ2 + 1) �= 0.

This minor is always other than zero. Consider the bordering minors of the
third order:

∣
∣
∣
∣
∣
∣
∣
∣

1 − λ 2 0

1 1 + λ 0

0 0 2 − λ

∣
∣
∣
∣
∣
∣
∣
∣

= (2 − λ)(−λ2 − 1) = 0 only for λ = 2, but

∣
∣
∣
∣
∣
∣
∣
∣

1 − λ 2 0

1 1 + λ 0

0 0 2 + λ

∣
∣
∣
∣
∣
∣
∣
∣

= (2 + λ)(−λ2 − 1) = 0 only for λ = −2.

This is because the minors of the third order are not simultaneously equal to
zero.

Calculate the determinant of the initial matrix (in other words, find the minor
of the fourth order):

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 − λ 2 0 0

1 1 + λ 0 0

0 0 2 − λ 0

0 0 0 2 + λ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= (2 + λ)(2 − λ)(−λ2 − 1).
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For λ = ±2:
(2 + λ)(2 − λ)(−λ2 − 1) = 0, therefore, the rank is equal to three.
For other λ the rank is equal to four.
So, the rank is equal to three for λ = ±2, and equal to four for λ �= ±2.

(h) There existsM2
1 �= 0, therefore, the rank is no less than one.

Let us find the minors of the second order:

M
1,2
1,2 =

∣
∣
∣
∣
∣
∣

1 + λ 2

1 1

∣
∣
∣
∣
∣
∣
= λ− 1 �= 0 for λ �= 1.

For this case, find the minors of the third order:

M
1,2,3
1,2,4 =

∣
∣
∣
∣
∣
∣
∣
∣

1 + λ 2 4

1 1 0

0 0 −1

∣
∣
∣
∣
∣
∣
∣
∣

= −(λ− 1) �= 0.

Then, the rank is greater than or equal to three. Calculate the determinant of
the initial matrix:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 + λ 2 0 4

1 1 0 0

0 0 2 + λ −1

1 0 2 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= λ2 − λ− 12.

The determinant is equal to zero for λ = 4 or −3. Hence, for such values
of the parameter λ the rank is equal to three. In other cases the rank is equal to
four.

Now consider the case when λ = 1. Let us find the minor of the second
order:

M
2,3
2,3 =

∣
∣
∣
∣
∣
∣

1 0

0 3

∣
∣
∣
∣
∣
∣
= 3 �= 0.

Calculate the minor of the third order:

M
1,2,3
1,2,4 =

∣
∣
∣
∣
∣
∣
∣
∣

2 0 4

1 0 0

0 3 −1

∣
∣
∣
∣
∣
∣
∣
∣

= 12 �= 0.
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Then, the rank of the matrix is no less than three. Now find the determinant
of the initial matrix.

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2 2 0 4

1 1 0 0

0 0 3 −1

1 0 2 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= −12 �= 0.

This implies that in this case the rank is equal to four.
So, the rank is equal to three for λ ∈ {−3, 4}, and is equal to four in other

cases.
(i) The size of the matrix is equal to (n + 1) × (n + 1). As is easy to see, for
λ ∈ {0, 1, . . . , n} the determinant of the matrix takes the value equal to zero.
We should also note that in this case there exists a minor of the order n, other
than zero. For example, for λ = 0:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 − λ 1 1 . . . 1 1

0 2 − λ 1 . . . 1 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . (n− 1)− λ 1

0 0 0 . . . 0 n− λ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

As is known, determinant of the upper triangular matrix is equal to the
product of the diagonal terms of the matrix. Since the condition λ = 0 is
fulfilled, then this product is not equal to zero. Therefore, the rank of the initial
matrix in this case is equal to n. Yet, if the condition λ ∈ {0, 1, . . . , n} is not
fulfilled, then the rank of the initial matrix takes the value equal to n+ 1.

We obtain the final answer: the rank of the matrix is equal to n for λ ∈ {0, 1, . . . , n},
and is equal to n+ 1 for other values of λ.



Chapter 3
Systems of Linear Equations

The system of m linear equations with n unknowns is written as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a11x1 + a12x2 + · · · + a1nxn = b1,

a21x1 + a22x2 + · · · + a2nxn = b2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

am1x1 + am2x2 + · · · + amnxn = bm.

(3.1)

Here, by x1, x2, . . . , xn are denoted unknown numbers, aij and bi are prescribed
numbers, also referred to as coefficients of the system of equations (3.1). Variables
bi are called known terms or right-hand sides of equations.

Solution of the system of equations is such a collection of n numbers, which
when x1, x2, . . . , xn are substituted into the system in place of the unknown, turns
all the equations into identities. The solution is written as a vector [x1, x2, . . . , xn]T .

If bi = 0 for all i = 1, 2, . . . ,m, then the system of equations is called
homogeneous. If at least one of the known terms is bi �= 0, then the system of
equations is called non-homogeneous.

In case when m = n, the system of equations is called square, and when m �= n,
the system is called rectangular.

A system of linear equations is called consistent, if it has at least one solution,
and inconsistent, if there are no solutions [65].

If a consistent system has the only solution, it is called determined. If the
consistent system has at least two different solutions, it is called undetermined.
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A matrix

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . . . . . . .

am1 am2 . . . amn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (3.2)

consisting of coefficients of the unknown aij is called a system matrix.
A matrix

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

a11 a12 . . . a1n | b1

a21 a22 . . . a2n | b2

. . . . . . . . . . . . . . . . | . . .
am1 am2 . . . amn | bm

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (3.3)

into which a column of the constant terms bj is added is called an augmented
system matrix.

If the unknown and constant terms are written in the form of a column (of
matrices of sizes n× 1 and m× 1, respectively):

X =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x1

x2
...

xn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, B =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

b1

b2
...

bm

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (3.4)

then the system of equations (3.1) can be presented in an abridged matrix form:

A ·X = B. (3.5)

3.1 Cramer’s Rule

Consider a square system of n equations with n unknowns:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a11x1 + a12x2 + · · · + a1nxn = b1,

a21x1 + a22x2 + · · · + a2nxn = b2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

an1x1 + an2x2 + · · · + annxn = bn.

(3.6)
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Theorem 3.1 (Cramer’s1 Rule) If the determinant of the matrix A of the sys-
tem (3.6) is other than zero, then the system (3.6) is determined, i.e. it has the unique
solution. This solution can be computed by the formula

xi = �i

�
, i = 1, 2, . . . , n. (3.7)

Here, �i is the determinant of the matrix obtained from the initial matrix A by
replacement of the i-th column with a column of constant terms:

�i =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 . . . a1 i−1 b1 a1 i+1 . . . a1n

a21 . . . a2 i−1 b2 a2 i+1 . . . a2n
...
. . .

...
...

...
. . .

...

an1 . . . an i−1 bn an i+1 . . . ann

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (3.8)

If � = 0 and at least one of the determinants �i is other than zero, then the
system (3.6) has no solutions (i.e. it is inconsistent).

If � = 0, but also �i = 0, then the system (3.6) has infinitely many solutions
(i.e. it is consistent but undetermined) or is inconsistent.

Example 3.1 Solve the system:

⎧
⎨

⎩

5x − 6y = −8,

5x + 6y = 28.
(3.9)

For the given system we have

� =
∣
∣
∣
∣
∣
∣

5 −6

5 6

∣
∣
∣
∣
∣
∣
= 60, �x =

∣
∣
∣
∣
∣
∣

−8 −6

28 6

∣
∣
∣
∣
∣
∣
= 120, �y =

∣
∣
∣
∣
∣
∣

5 −8

5 28

∣
∣
∣
∣
∣
∣
= 180. (3.10)

Thus, according to Cramer’s rule

x = �x

�
= 120

60
= 2, y = �y

�
= 180

60
= 3. (3.11)

�

1Gabriel Cramer (1704–1752) was a Genevan mathematician.
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Example 3.2 Solve the system of linear equations:

⎧
⎪⎪⎨

⎪⎪⎩

2x − y + 3z = 8,

x + y − 2z = 5,

3x − 2y + z = 7.

(3.12)

Solution Compute the determinants required to apply Cramer’s rule:

� =

∣
∣
∣
∣
∣
∣
∣
∣

2 −1 3

1 1 −2

3 −2 1

∣
∣
∣
∣
∣
∣
∣
∣

= −14, �x =

∣
∣
∣
∣
∣
∣
∣
∣

8 −1 3

5 1 −2

7 −2 1

∣
∣
∣
∣
∣
∣
∣
∣

= −56, (3.13)

�y =

∣
∣
∣
∣
∣
∣
∣
∣

2 8 3

1 5 −2

3 7 1

∣
∣
∣
∣
∣
∣
∣
∣

= −42, �z =

∣
∣
∣
∣
∣
∣
∣
∣

2 −1 8

1 1 5

3 −2 7

∣
∣
∣
∣
∣
∣
∣
∣

= −14. (3.14)

Therefore

x = �x

�
= 4, y = �y

�
= 3, z = �z

�
= 1. (3.15)

�

3.2 Inverse Matrix Method

Consider the system of equations (3.6). Write this system in the form A ·X = B in
accordance with (3.5).

Let the matrix A have the inverse one A−1. Multiply both sides of the equality
A ·X = B by A−1 on the left:

A−1 ·A ·X = A−1 · B. (3.16)

Transform the obtained matrix equation. Since the identities A−1 · A ≡ I and
I ·X ≡ X are valid, the solution of the system X can be written in the form

X = A−1 · B. (3.17)

Therefore, if we find the inverse matrix A−1, then the solution of the system can
be obtained as the product of the matrices A−1 and B.
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Example 3.3 Solve the system of equations
⎧
⎪⎪⎨

⎪⎪⎩

−2x + 2y − 3z = −10,

2x − y + 2z = 7,

3x − y + 3z = 10

(3.18)

by the inverse matrix method.

Solution The matrix of the analysed system of equations A has the form:

⎡

⎢
⎢
⎣

−2 2 −3

2 −1 2

3 −1 3

⎤

⎥
⎥
⎦ . (3.19)

We find the inverse matrix using a cofactor matrix. The determinant of the matrix
A is equal to

detA = −2

∣
∣
∣
∣
∣
∣

−1 2

−1 3

∣
∣
∣
∣
∣
∣
− 2

∣
∣
∣
∣
∣
∣

2 2

3 3

∣
∣
∣
∣
∣
∣
− 3

∣
∣
∣
∣
∣
∣

2 −1

3 −1

∣
∣
∣
∣
∣
∣

= (−2)(−3 + 2)− 2(6 − 6)− 3(−2 + 3) = −1. (3.20)

Calculate the cofactors:

A11 = (−1)1+1

∣
∣
∣
∣
∣
∣

−1 2

−1 3

∣
∣
∣
∣
∣
∣
= −1, A12 = (−1)1+2

∣
∣
∣
∣
∣
∣

2 2

3 3

∣
∣
∣
∣
∣
∣
= 0, (3.21)

A13 = (−1)1+3

∣
∣
∣
∣
∣
∣

2 −1

3 −1

∣
∣
∣
∣
∣
∣
= 1, A21 = (−1)2+1

∣
∣
∣
∣
∣
∣

2 −3

−1 3

∣
∣
∣
∣
∣
∣
= −3, (3.22)

A22 = (−1)2+2

∣
∣
∣
∣
∣
∣

−2 −3

3 3

∣
∣
∣
∣
∣
∣
= 3, A23 = (−1)2+3

∣
∣
∣
∣
∣
∣

−2 2

3 −1

∣
∣
∣
∣
∣
∣
= 4, (3.23)

A31 = (−1)3+1

∣
∣
∣
∣
∣
∣

2 −3

−1 2

∣
∣
∣
∣
∣
∣
= 1, A32 = (−1)3+2

∣
∣
∣
∣
∣
∣

−2 −3

2 2

∣
∣
∣
∣
∣
∣
= −2, (3.24)

A33 = (−1)3+3

∣
∣
∣
∣
∣
∣

−2 2

2 −1

∣
∣
∣
∣
∣
∣
= −2. (3.25)
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Write the matrix formed by the cofactors:

⎡

⎢
⎢
⎣

−1 0 1

−3 3 4

1 −2 −2

⎤

⎥
⎥
⎦ . (3.26)

As a result, the desired inverse matrix will have the form:

A−1 = 1

(−1)

⎡

⎢
⎢
⎣

−1 −3 1

0 3 −2

1 4 −2

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

1 3 −1

0 −3 2

−1 −4 2

⎤

⎥
⎥
⎦ . (3.27)

Then, the solution of the system will be found using the matrix multiplication
operation:

⎡

⎢
⎢
⎣

x

y

z

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

1 3 −1

0 −3 2

−1 −4 2

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

−10

7

10

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

−10 + 21 − 10

0 − 21 + 20

10 − 28 + 20

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

1

−1

2

⎤

⎥
⎥
⎦ . (3.28)

�

3.3 Gaussian Elimination

The use of the notion of matrix rank allows obtaining the criterion of consistency of
the system of linear equations.

Consider the system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a11x1 + a12x2 + · · · + a1nxn = b1,

a21x1 + a22x2 + · · · + a2nxn = b2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

am1x1 + am2x2 + · · · + amnxn = bm.

(3.29)
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The augmented matrix of the system of size m× (n+ 1) has the form:

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

a11 a12 . . . a1n | b1

a21 a22 . . . a2n | b2

. . . . . . . . . . . . . . . . | . . .
am1 am2 . . . amn | bm

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (3.30)

The consistency criterion for the system of linear algebraic equations is the
Kronecker–Capelli2 theorem (also referred to as the theorem of Rouché3–Capelli)
[64].

Theorem 3.2 (Kronecker–Capelli Theorem) A system of linear algebraic equa-
tions (3.29) is consistent if and only if the rank of the basic matrix A equals to the
rank of the augmented one, i.e. rk A = rk B = r .

If r = n, then we obtain a square matrix with a non-zero determinant. Its solution
exists and it is unique.

If r < n and the system is consistent, then there exists an infinite set of solutions.
If rk B > rk A, then the system is inconsistent.
In what follows, by zero equations we will understand the equations of the form

0 · x1 + 0 · x2 + · · · + 0 · xn = 0.
Elementary transformations of the system of linear equations are:

1. interchange (swap) of any two equations;
2. multiplying the equation by any non-zero number;
3. adding to the equation another one multiplied by an arbitrary number;
4. dropping the zero equations.

Gaussian4 method or Gaussian elimination consists in transformation of the
augmented matrix B with the help of the elementary transformations to the echelon
form. Such transformations are aimed at obtaining a system of the form:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

b11 · x1 + b12 · x2 + · · · + b1r · xr + · · · + b1n · xn = p1,

b22 · x2 + · · · + b2r · xr + · · · + b2n · xn = p2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

brr · xr + · · · + brn · xn = pr .

(3.31)

Note that for bringing the system of equations to the said form we may need to
change the numbering of the variables.

2Alfredo Capelli (1855–1910), Italian mathematician.
3Eugène Rouché (1832–1910), French mathematician.
4Johann Carl Friedrich Gauß (1777–1855), prominent German mathematician and astronomer.
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The system (3.31) may contain less equations than the initial one due to dropping
of the zero equations of the form:

0 · x1 + 0 · x2 + · · · + 0 · xn = 0. (3.32)

If the transformations result in the equation

0 · x1 + 0 · x2 + · · · + 0 · xn = d �= 0, (3.33)

then the system is inconsistent.
It is obvious that the minorM1,2,...,r

1,2,...,r is a basic minor, assuming that xr+1, . . . , xn
are free unknowns, to which we can assign arbitrary values:

xr+1 = C1, . . . , xn = Cn−r . (3.34)

Rearrange these variables to the right side; then the obtained system necessarily
has a solution relative to the unknowns x1, x2, . . . , xr .

From the last equation we find xr , from the last but one we find xr−1, etc.

Note Gaussian method is sometimes referred to as method of successive elimina-
tion of unknowns.

Example 3.4 Solve the system of equations by Gaussian method:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x1 − 2x2 + x4 = −3,

3x1 − x2 − 2x3 = 1,

2x1 + x2 − 2x3 − x4 = 4,

x1 + 3x2 − 2x3 − 2x4 = 7.

(3.35)

Solution Write the augmented matrix:

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 −2 0 1 | −3

3 −1 −2 0 | 1

2 1 −2 −1 | 4

1 3 −2 −2 | 7

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (3.36)
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Bring the obtained matrix to a triangular form. For this, subtract from the second
row the triplicated first row, from the third row—the doubled first one, and from the
fourth row—the first one:

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 −2 0 1 | −3

0 5 −2 −3 | 10

0 5 −2 −3 | 10

0 5 −2 −3 | 10

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (3.37)

In the next step, subtract from the third and the fourth rows the second one. The
first and the second rows remain unchanged:

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 −2 0 1 | −3

0 5 −2 −3 | 10

0 0 0 0 | 0

0 0 0 0 | 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (3.38)

It is clear that the ranks of the basic and the augmented matrices are equal to two.
The system is consistent and undetermined. As free variables, take x1 and x3. Let
x1 = C1, and x3 = C2. Then we have

⎧
⎨

⎩

−2 · x2 + x4 = −3 − C1,

5 · x2 − 3 · x4 = 10 + 2 · C2.
(3.39)

We are solving this system relative to the variables x2 and x4:

⎧
⎨

⎩

x2 = −1 + 3 · C1 − 2 · C2,

x4 = −5 + 5 · C1 − 4 · C2.
(3.40)

We write the final answer in the form:

X =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x1

x2

x3

x4

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

C1

−1 + 3C1 − 2C2

C2

−5 + 5C1 − 4C2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0

−1

0

−5

⎤

⎥
⎥
⎥
⎥
⎥
⎦

+ C1

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1

3

0

5

⎤

⎥
⎥
⎥
⎥
⎥
⎦

+ C2

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0

−2

1

−4

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (3.41)

�
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Example 3.5 Solve the matrix equation relative to the unknown matrix Y :

⎡

⎣
1 −1

−1 2

⎤

⎦Y

⎡

⎣
1 3

1 3

⎤

⎦ =
⎡

⎣
−2 −6

3 9

⎤

⎦ . (3.42)

Note the degeneracy of one of the multipliers, namely the matrix

⎡

⎣
1 3

1 3

⎤

⎦.

Solution Note that the degeneracy of the matrix

⎡

⎣
1 3

1 3

⎤

⎦ does not allow us to use the

equation solving method with the help of the inverse matrix. In this case, reduce the
problem to the system of linear equations.

Denote the elements of the matrix Y by y1, y2, y3 and y4:

Y =
⎡

⎣
y1 y2

y3 y4

⎤

⎦ . (3.43)

Successively expand the product of the matrices:

⎡

⎣
1 −1

−1 2

⎤

⎦

⎡

⎣
y1 y2

y3 y4

⎤

⎦

⎡

⎣
1 3

1 3

⎤

⎦ =
⎡

⎣
−2 −6

3 9

⎤

⎦ =
⎡

⎣
y1 − y3 y2 − y4

−y1 + 2y3 −y2 + 2y4

⎤

⎦

⎡

⎣
1 3

1 3

⎤

⎦

=
⎡

⎣
y1 + y2 − y3 − y4 3y1 + 3y2 − 3y3 − 3y4

−y1 − y2 + 2y3 + 2y4 −3y1 − 3y2 + 6y3 + 6y4

⎤

⎦ . (3.44)

The obtained matrix is equal to

⎡

⎣
−2 −6

3 9

⎤

⎦.

Equating the respective elements of the matrices, we obtain a non-homogeneous
system of linear equations relative to the unknowns y1, y2, y3 and y4:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

y1 + y2 − y3 − y4 = −2,

3y1 + 3y2 − 3y3 − 3y4 = −6,

−y1 − y2 + 2y3 + 2y4 = 3,

−3y1 − 3y2 + 6y3 + 6y4 = 9.

(3.45)
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Write the augmented matrix of this system:

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 1 −1 −1 | −2

3 3 −3 −3 | −6

−1 −1 2 2 | 3

−3 −3 6 6 | 9

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (3.46)

Subtract from the second row the first row, multiplied by 3; then, subtract from
the fourth row the third row, multiplied by 3:

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 1 −1 −1 | −2

0 0 0 0 | 0

−1 −1 2 2 | 3

0 0 0 0 | 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (3.47)

Then, add to the third row the first row. The zero rows do not influence the
solution, this is why we obtain the following equivalent matrix:

⎡

⎣
1 1 −1 −1 | −2

0 0 1 1 | 1

⎤

⎦ . (3.48)

It corresponds to the system of equations with four unknowns

⎧
⎨

⎩

y1 + y2 − y3 − y4 = −2,

y3 + y4 = 1.
. (3.49)

The ranks of the basic and augmented matrices are equal to two. Therefore, we
conclude that the system (3.49) is consistent and undetermined.

As the independent variables, select, for example y2 and y4:

y2 = C1, y4 = C2, where C1, C2 ∈ R. (3.50)

Having substituted (3.50) into the system (3.49), we obtain

⎧
⎨

⎩

y1 + C1 − y3 − C2 = −2,

y3 + C2 = 1,
(3.51)
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or
⎧
⎨

⎩

y1 = −1 − C1,

y3 = 1 − C2.
(3.52)

Write the coefficients y1–y4 in the form of a column:

⎡

⎢
⎢
⎢
⎢
⎢
⎣

y1

y2

y3

y4

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−1

0

1

0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

+ C1

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−1

1

0

0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

+ C2

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0

0

−1

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (3.53)

As a result, the matrix Y is equal to

Y =
⎡

⎣
−1 − C1 C1

1 − C2 C2

⎤

⎦ , (3.54)

where C1, C2 are arbitrary real numbers.
Thus, the matrix equation (3.42) has the infinite set of solutions, depending on

two real parameters.

Check
By direct substitution of the obtain matrix into (3.42) it is easy to check that Y is

determined correctly:

⎡

⎣
1 −1

−1 2

⎤

⎦

⎡

⎣
−1 − C1 C1

1 − C2 C2

⎤

⎦

⎡

⎣
1 3

1 3

⎤

⎦

=
⎡

⎣
−2 − C1 + C2 C1 − C2

3 + C1 − 2C2 −C1 + 2C2

⎤

⎦

⎡

⎣
1 3

1 3

⎤

⎦ =
⎡

⎣
−2 −6

3 9

⎤

⎦ .

�
Assume that A and B are arbitrary matrices with sizes m × n and n × p,

respectively. Estimate of the rank of the product of the matricesA and B is provided
by the following theorem.

Theorem 3.3 The rank of the matrix product satisfies the inequality

rkAB � min(rkA, rkB). (3.55)
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In other words, the rank cannot increase when the matrices are multiplied [63,
64].

There exist many various methods of solving system of linear equations.
Gaussian method is one of the most frequently used.
Consider realization in Python of Gaussian method of solving system of linear

equations (Listing 3.1).
For definiteness, we will form the solutions for the systems where the number

of equations and unknowns coincides, but the provided algorithm can easily be
transformed for the systems with an arbitrary relation between equations and
unknowns.

Listing 3.1
� �

1 import math
2

3

4 def gaussian_elimination(A, B):
5 m = len(A)
6 n = len(A[0])
7

8 if len(B) != m:
9 raise ValueError

10

11 C = [[A[i][j] if j != n else B[i] \
12 for j in range(n+1)] for i in range(m)]
13

14 # Forward elimination
15 for r in range(min(n, m)):
16 max_row_pos = r
17

18 # Pivoting strategy
19 for i in range(r + 1, m):
20 if abs(C[i][r]) > \
21 abs(C[max_row_pos][r]):
22 max_row_pos = i
23

24 C[r], C[max_row_pos] = \
25 C[max_row_pos], C[r]
26

27 if math.isclose(C[r][r], 0):
28 continue
29

30 for i in range(r + 1, m):
31 factor = C[i][r] / C[r][r]
32
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33 for j in range(r, n + 1):
34 C[i][j] -= factor * C[r][j]
35

36 # Back substitution
37 answer = [0] * n
38

39 for i in range(min(n - 1, m - 1), -1, -1):
40 s = 0.0
41

42 for j in range(i + 1, n):
43 s += C[i][j] * answer[j]
44

45 if not math.isclose(C[i][i], 0):
46 answer[i] = (C[i][n] - s) / C[i][i]
47 elif not math.isclose(C[i][n] - s, 0):
48 return None
49

50 for i in range(n, m):
51 s = 0.0
52

53 for j in range(n):
54 s += C[i][j] * answer[j]
55

56 if not math.isclose(C[i][n] - s, 0):
57 return None
58

59 return answer
� �

Two parameters arrive at the input of the given function: the coefficient matrix
with the unknowns in the system of equations A and the right side matrix B.

The realization of the function consists of three main steps. In the first step, the
matrix C is constructed, which is obtained by attributing the matrix B to the initial
matrix A on the right.

Then, the so-called forward pass is performed with the purpose of bringing the
matrix to the echelon form (that is to the form when each successive row, viewed
from left to right, contains more zeroes than the previous one). This procedure is
performed by applying to the matrix C of a series of elementary transformations
by the following algorithm: successively, starting from the first one, all columns
are scanned. Among the elements of the current column, the one with the greatest
module is found, referred to as the basic or pivot. Then, from each row, a row
is subtracted that contains the pivot and is multiplied by the coefficient equal to
the relation of the row element in the considered column to the pivot. Thus, all
the elements in the column, except the pivot, become equal to zero. The process
is performed until the matrix has a row left that contains only two variables: one
coefficient of the unknown and one value in the right side.
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In the third step, the “backward pass” is performed. The values of all unknowns
are consequently expressed in terms of the already found variables. So, the unique
solution is obtained or it is determined that there are no solutions or the the set of
solutions is infinite. The backward pass starts from the row containing the minimum
number of non-zero coefficients, and continues until all the unknowns are expressed
in terms of the already known ones, or until it is established that there is no unique
solution.

The asymptotic complexity of Gaussian elimination, due to triple loop nesting
by the variables r, i, j, is equal to O(n3), where n is the number of equations in
the system.

Let us give an example (see Listing 3.2) of using the function
gaussian_elimination(A, B) for solving the system of equations whose
matrix of size 100 × 100 has unities on the secondary diagonal and other elements
equal to zero. The column B is equal to [1, 2, 3, 4, . . . , 100].

Listing 3.2
� �

1 size = 100
2

3 A = [[0 for j in range(size)] \
4 for i in range(size)]
5 B = [0 for i in range(size)]
6

7 for i in range(size):
8 for j in range(size):
9 A[i][j] = 1 if j == size - i - 1 else 0

10

11 for i in range(size):
12 B[i] = float(i)
13

14 print(gaussian_elimination(A, B))
� �

3.4 Fundamental System of Solutions of Homogeneous
Systems

Consider a homogeneous system of equations that has the form
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a11x1 + a12x2 + · · · + a1nxn = 0,

a21x1 + a22x2 + · · · + a2nxn = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

am1x1 + am2x2 + · · · + amnxn = 0,

(3.56)

wherem is the number of equations, n is the number of unknowns.
This system can be written in a matrix form:
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A ·X = 0, (3.57)

where A is the system matrix, and by X is denoted the column formed by the
variables:

X =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x1

x2
...

xn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (3.58)

This system necessarily has the solution X = [0, 0, . . . , 0]T , which is called
trivial.

Our purpose is to find all non-trivial solutions, if any.

Theorem 3.4 Let the matrix A of a homogeneous system of equations have the size
m × n and the rank r . If r = n, then the system has only a trivial solution. If
r < n, then there exist exactly n − r linearly independent solutions, referred to as
fundamental system of solutions.

Suppose that we have found the basic minor and it is located in the upper left
corner (otherwise, the order of variables and equations may be changed). Let us
keep only those equations whose coefficients are included into the basic minor, that
is from the first to the r-th. The unknowns from number r + 1 to number n are
referred to as free and rearranged to the right side of the equations:

⎧
⎪⎪⎨

⎪⎪⎩

a11x1 + · · · + a1rxr = −a1r+1xr+1 − · · · − a1nxn,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ar1x1 + · · · + arrxr = −arr+1xr+1 − · · · − arnxn.
(3.59)

Let us introduce for consideration a square matrix

C =

⎡

⎢
⎢
⎢
⎣

a11 . . . a1r
...
. . .

...

ar1 . . . arr

⎤

⎥
⎥
⎥
⎦
, (3.60)

and, according to the property of a basic minor, the following inequality detC �= 0
is valid.
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Denote

Y =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x1

x2
...

xr

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∈ R
r , Z =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

xr+1

xr+2
...

xn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∈ R
n−r . (3.61)

Then, select n − r linearly independent vectors Z1, Z2, . . . , Zn−r . Usually,
collections are taken that form the so-called canonical basis in R

n−r :

Z1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

0

0
...

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Z2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

1

0
...

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, . . . , Zn−r =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

0

0
...

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.62)

Let us call F1 the vector in the right side of the equation for the given Z1, . . . ,
Fn−r—for Zn−r .

In this case, we have the systems of equations in a matrix form:

⎧
⎪⎪⎨

⎪⎪⎩

C · Y1 = F1,

. . . . . . . . . . . . . . . .

C · Yn−r = Fn−r .

(3.63)

According to Cramer’s rule, the solutions Y1, Y2, . . . , Yn−r are uniquely
determined. Then the full solution of the system will consist of the vectors:

X1 =
⎛

⎝
Y1

Z1

⎞

⎠ , . . . , Xn−r =
⎛

⎝
Yn−r
Zn−r

⎞

⎠ , (3.64)

that are linearly independent, since Z1, . . . , Zn−r are linearly independent.
The set of the solutions X1,X2, . . . , Xn−r represents the fundamental system

of solutions (FSS).
If the free unknown is the only one in the system, then we assign a value to it

equal to one. If there are no free unknowns, i.e. r = n, then such a system has only
a trivial solution and therefore there are no fundamental solutions.
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We will denote the general solution of the homogeneous system by Xgen.:

Xgen. = C1X1 + C2X2 + · · · + Cn−rXn−r , (3.65)

where C1, C2, . . . , Cn−r are arbitrary constants.

Example 3.6 Find the fundamental system of solutions for the homogeneous
system of equations

⎧
⎪⎪⎨

⎪⎪⎩

2x1 − 4x2 + 5x3 + 3x4 = 0,

3x1 − 6x2 + 4x3 + 2x4 = 0,

4x1 − 8x2 + 17x3 + 11x4 = 0.

(3.66)

Solution Find the rank of the matrix of the given system

⎡

⎢
⎢
⎣

2 −4 5 3

3 −6 4 2

4 −8 17 11

⎤

⎥
⎥
⎦ , (3.67)

by bringing it to the upper triangular form.
Subtract from the third row the second one. As a result we obtain

⎡

⎢
⎢
⎣

2 −4 5 3

3 −6 4 2

1 −2 13 9

⎤

⎥
⎥
⎦ , (3.68)

permute the first and the third rows:

⎡

⎢
⎢
⎣

1 −2 13 9

3 −6 4 2

2 −4 5 3

⎤

⎥
⎥
⎦ . (3.69)

Subtract from the second row the first row multiplied by 3, and from the third
row—the doubled first row. We have

⎡

⎢
⎢
⎣

1 −2 13 9

0 0 −35 −25

0 0 −21 −15

⎤

⎥
⎥
⎦ . (3.70)
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Divide the second row by (−5), and the third one by (−3):

⎡

⎢
⎢
⎣

1 −2 13 9

0 0 7 5

0 0 7 5

⎤

⎥
⎥
⎦ . (3.71)

Subtract from the third row the second one:

⎡

⎢
⎢
⎣

1 −2 13 9

0 0 7 5

0 0 0 0

⎤

⎥
⎥
⎦ . (3.72)

From this we see that the rank of this matrix is equal to two.
As a basic non-zero minor, take, for example, the minorM1,2

3,4 of the initial matrix:

∣
∣
∣
∣
∣
∣

5 3

4 2

∣
∣
∣
∣
∣
∣
. (3.73)

Then, use the first two equations, whose coefficients are included into the basic
minor. Rearrange to the right side of the equations the summands that are not
included into the basic minor. We obtain

⎧
⎨

⎩

5x3 + 3x4 = 4x2 − 2x1,

4x3 + 2x4 = 6x2 − 3x1.
(3.74)

Set two different values to the free unknowns x1 and x2. The first case:

⎡

⎣
x1

x2

⎤

⎦ =
⎡

⎣
1

0

⎤

⎦ . (3.75)

Substituting these values into the system, we obtain

⎧
⎨

⎩

5x3 + 3x4 = −2,

4x3 + 2x4 = −3.
(3.76)

Solution of this system: x3 = −5

2
and x4 = 7

2
.
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The second case:
⎡

⎣
x1

x2

⎤

⎦ =
⎡

⎣
0

1

⎤

⎦ . (3.77)

Similarly to the first case, we obtain

⎧
⎨

⎩

5x3 + 3x4 = 4,

4x3 + 2x4 = 6.
(3.78)

While x3 = 5 and x4 = −7.
For the fundamental system of solutions we finally have

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x1

x2

x3

x4

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∈

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1

0

−5/2

7/2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0

1

5

−7

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

. (3.79)

The general solution of this homogeneous system may be written as

Xgen. = C1

⎡

⎢
⎢
⎢
⎢
⎢
⎣

2

0

−5

7

⎤

⎥
⎥
⎥
⎥
⎥
⎦

+ C2

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0

1

5

−7

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (3.80)

where C1 and C2 are arbitrary numbers. �

3.5 General Solution of the Non-homogeneous System
of Equations

Consider a non-homogeneous system of equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a11x1 + a12x2 + · · · + a1nxn = b1,

a21x1 + a22x2 + · · · + a2nxn = b2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

am1x1 + am2x2 + · · · + amnxn = bm.

(3.81)
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Theorem 3.5 Let Xgen. be the general solution of the homogeneous system, when
all the values bi are replaced with zeroes, andXspec. is the particular solution of the
non-homogeneous system. Then, X, the general solution of the non-homogeneous
system, is equal to

X = Xgen. + Xspec.. (3.82)

Example 3.7 Solve the system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2x1 + x2 − x3 − 3x4 = 2,

4x1 + x3 − 7x4 = 3,

2x2 − 3x3 + x4 = 1,

2x1 + 3x2 − 4x3 − 2x4 = 3.

(3.83)

Solution Write the augmented system matrix:

⎡

⎢
⎢
⎢
⎢
⎢
⎣

2 1 −1 −3 | 2

4 0 1 −7 | 3

0 2 −3 1 | 1

2 3 −4 −2 | 3

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (3.84)

Find the rank of this matrix, for which purpose subtract from the second row the
doubled first row, and from the fourth row—the first row:

⎡

⎢
⎢
⎢
⎢
⎢
⎣

2 1 −1 −3 | 2

0 −2 3 −1 | −1

0 2 −3 1 | 1

0 2 −3 1 | 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (3.85)

One can see that the last three rows are proportional to each other, and it is enough
to keep one of them:

⎡

⎣
2 1 −1 −3 | 2

0 −2 3 −1 | −1

⎤

⎦ . (3.86)



144 3 Systems of Linear Equations

The rank of the basic and the augmented matrices is equal to two, therefore,
the system is consistent. Find the general solution of the homogeneous system, for
which purpose rearrange x3 and x4 to the right side of the equations. We obtain

⎧
⎨

⎩

2x1 + x2 = x3 + 3x4,

−2x2 = −3x3 + x4.
(3.87)

Select the following values for the independent variables:

⎡

⎣
x3

x4

⎤

⎦ =
⎡

⎣
1

0

⎤

⎦ , (3.88)

in such a case, we obtain the system

⎧
⎨

⎩

2x1 + x2 = 1,

−2x2 = −3,
(3.89)

whence x2 = 3

2
, x1 = −1

4
.

Now, selecting the values

⎡

⎣
x3

x4

⎤

⎦ =
⎡

⎣
0

1

⎤

⎦ , (3.90)

we obtain the system

⎧
⎨

⎩

2x1 + x2 = 3,

−2x2 = 1,
(3.91)

whose solution is x2 = −1

2
and x1 = 7

4
.

Therefore, the general solution of the homogeneous system has the form:

Xgen. = C1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1

4
3

2
1

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ C2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

7

4

−1

2
0

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, where C1, C2 ∈ R. (3.92)
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If we introduce for consideration new constants C′
1 = C1/4, C′

2 = C2/4, then
Xgen. will be written in the form, free from fractions:

Xgen. = C′
1

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−1

6

4

0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

+ C′
2

⎡

⎢
⎢
⎢
⎢
⎢
⎣

7

−2

0

4

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, where C′
1, C

′
2 ∈ R. (3.93)

In order to find the particular solution, return to the augmented matrix (3.86).
The equations for computation of Xspec. have the form:

⎧
⎨

⎩

2x1 + x2 = x3 + 3x4 + 2,

−2x2 = −3x3 + x4 − 1.
(3.94)

Assuming that the values of the independent variables are equal to zero, we find

x1 = 3

4
, x2 = 1

2
, and

Xspec. =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

3

4
1

2
0

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.95)

As a result, the general solution of the non-homogeneous system is equal to

X = Xgen. +Xspec. = C′
1

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−1

6

4

0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

+ C′
2

⎡

⎢
⎢
⎢
⎢
⎢
⎣

7

−2

0

4

⎤

⎥
⎥
⎥
⎥
⎥
⎦

+ 1

4

⎡

⎢
⎢
⎢
⎢
⎢
⎣

3

2

0

0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, where C′
1, C

′
2 ∈ R.

(3.96)
�

Review Questions

1. Define solution of a system of linear equations.
2. What system of equations is called consistent? inconsistent?
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3. When is the system of equations definite? indefinite?
4. Explain how an augmented matrix of a system of linear equations constructed.
5. Describe the methods of solving the systems of linear equations: Gaussian

method, inverse matrix method, Cramer’s method.
6. What is the complexity of the Gaussian method?
7. What solution does any homogeneous system of linear equations have?
8. Define the fundamental system of solutions.
9. How is the general solution of a non-homogeneous system computed?

Problems

3.1. In order to expand a computer laboratory, its chief is planning to purchase
9 workstations and 7 notebooks. If 14 workstations and 9 notebooks are
ordered, the cost of the purchase will grow by 1.5 times. Find how many
times the workstation is more expensive than the notebook.

3.2. Solve the system of linear equations using Cramer’s rule:

(a)

⎧
⎨

⎩

3x − 5y = 13,

2x + 7y = 81;
(b)

⎧
⎪⎪⎨

⎪⎪⎩

2x1 − x2 + 3x3 = 9,

3x1 − 5x2 − x3 = −10,

4x1 − 7x2 + x3 = −7;

(c)

⎧
⎪⎪⎨

⎪⎪⎩

x + 2y + z = 4,

3x − 5y + 3z = 1,

2x + 7y − z = 8;
(d)

⎧
⎪⎪⎨

⎪⎪⎩

2x − 4y + 9z = 28,

7x + 3y − 6z = −1,

7x + 9y − 9z = 5;

(e)

⎧
⎪⎪⎨

⎪⎪⎩

7x + 2y + 3z = 15,

5x − 3y + 2z = 15,

10x − 11y + 5z = 36;
(f )

⎧
⎪⎪⎨

⎪⎪⎩

x + y + z = 36,

2x − 3z = −17,

6x − 5z = 7;

(g)

⎧
⎪⎪⎨

⎪⎪⎩

3x1 + 2x2 + x3 = 5,

x1 + x2 − x3 = 0,

4x1 − x2 + 5x3 = 3.
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3.3. Solve the system of linear equations using Gaussian elimination:

(a)

⎧
⎪⎪⎨

⎪⎪⎩

6x1 + 2x2 + 3x3 = 74,

7x1 + 4x2 = 91,

x1 + x2 + x3 = 18;
(b)

⎧
⎪⎪⎨

⎪⎪⎩

2x1 + 5x2 − 2x3 = −6,

−3x1 − 2x2 + x3 = 0,

3x2 + 2x3 = −8;

(c)

⎧
⎪⎪⎨

⎪⎪⎩

3x1 − x2 + 6x3 = −4,

3x1 − 7x2 = 2,

−4x1 − 4x2 − 3x3 = −10;
(d)

⎧
⎪⎪⎨

⎪⎪⎩

5x1 + 3x2 − 3x3 = 8,

−4x1 − 3x2 − 2x3 = 1,

−2x1 + 3x2 + 6x3 = −29.

3.4. Solve the system of linear equations using Gaussian elimination:

(a)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−2x1 + 7x2 + 4x3 = 32,

2x1 + 8x2 − x3 + 7x4 = 63,

−6x1 + 6x2 + 8x3 − 8x4 = 2,

6x2 − 4x3 + 5x4 = 58;

(b)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−x1 − 2x3 − x4 = −6,

−5x1 − x2 + 6x3 + x4 = 23,

5x1 − 8x2 − 9x3 + 4x4 = 62,

6x1 − 9x2 − 5x3 + x4 = 73;

(c)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

4x1 − 9x3 − x4 = 37,

7x1 − x2 − 5x3 − 5x4 = 36,

8x1 − 5x2 + 4x4 = −38,

x1 − 4x2 + 9x3 − 4x4 = −25;

(d)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−8x1 + x2 − 4x3 − 8x4 = 7,

−7x2 − 6x3 + 7x4 = 56,

−8x1 + 3x2 + 2x3 − 2x4 = −63,

−8x1 − 3x2 − x3 − 4x4 = −6.

∗3.5. Solve the system of linear equations relative to five unknowns:

(a)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

5x1 − 8x2 − 5x3 + 8x4 + 8x5 = −5,

2x2 + 2x3 + x4 − x5 = 8,

−2x1 + 4x2 + 3x3 − 8x4 + 4x5 = −39,

5x1 + 6x2 + 2x3 − 2x4 − 4x5 = 32,

x1 − 2x2 − x3 + 2x4 − 2x5 = 23;

(b)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

6x1 − x2 + 6x3 + 3x4 − 7x5 = 6,

−4x1 − 4x2 + 3x3 − x4 − 8x5 = −30,

−x1 + x2 + 5x4 − x5 = −22,

4x1 + x2 − 3x3 + 3x4 − 5x5 = −3,

8x2 + x4 − x5 = −61.
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∗3.6. Solve the system of linear equations relative to six unknowns:

(a)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−x1 + 2x3 + 5x4 − 2x5 − 4x6 = 4,

−x1 − x2 + x3 − 3x4 + x5 − 4x6 = −46,

−x1 + 5x2 + 4x3 − 2x5 − x6 = −19,

x1 − 2x2 + 4x3 − 2x5 − x6 = −9,

−2x1 − 5x2 + 3x3 − 2x4 − 3x5 = −20,

3x1 + x2 + 3x3 + x6 = 4;

(b)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2x1 − 4x2 − 4x5 + 5x6 = 2,

−x1 + 5x2 + 3x3 + 5x5 = −12,

−2x1 − 5x2 + 5x3 − 3x4 − 5x5 − 3x6 = −7,

−4x1 − 5x2 − 3x3 + 5x4 − 2x5 + 3x6 = 10,

x1 + 3x2 − 5x3 + 4x4 + 3x5 + 2x6 = 8,

−4x1 + x2 − 4x3 + 3x4 + x5 − x6 = 3.

3.7. Find the fourth power polynomial p(x) with real coefficients, for which the
following properties are valid: p(5) = 1 and p(1) = p(2) = p(3) =
p(4) = 0.

3.8. At what values of the parameter λ is the system of equations

⎧
⎪⎪⎨

⎪⎪⎩

x1 + x2 = 1,

λx1 + x2 = 2,

x1 + λx2 = 4.

consistent?
3.9. At what values of the parameter λ does the system of linear equations

⎧
⎪⎪⎨

⎪⎪⎩

x1 + λx2 = 0,

−x1 + x2 − x3 = 5,

−x2 + x3 = −4,

have the unique solution? With these values of λ, find the solution of the
system using Cramer’s rule.
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∗3.10. Solve the matrix equation A ·X · B = C, where

A =

⎡

⎢
⎢
⎣

−3 2 3

−2 1 4

6 1 2

⎤

⎥
⎥
⎦ , B =

⎡

⎣
−1 0

−1 0

⎤

⎦ , C =

⎡

⎢
⎢
⎣

−13 0

−25 0

−33 0

⎤

⎥
⎥
⎦ . (3.97)

Note the degeneracy of one of the multipliers, namely the matrix B.
∗3.11. Solve the matrix equations:

(1)

⎡

⎣
6 2

3 1

⎤

⎦ ·X =
⎡

⎣
−4 4

−2 2

⎤

⎦ ;

(2) X ·
⎡

⎣
15 −5

−3 1

⎤

⎦ =
⎡

⎣
1 −1

−2 1

⎤

⎦ ;

(3) X ·

⎡

⎢
⎢
⎣

6 −1 1

−10 −5 6

0 −20 23

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

6 19 −22

10 5 −6

−6 −19 22

⎤

⎥
⎥
⎦ ;

(4)

⎡

⎢
⎢
⎣

−1 2 5

5 3 −1

7 −1 −11

⎤

⎥
⎥
⎦ ·X =

⎡

⎢
⎢
⎣

−7 8 2

2 7 1

1 −1 1

⎤

⎥
⎥
⎦ .

3.12. A program code is given that processes the one-dimensional array a,
consisting of five elements:

for i in range(len(a)):
temp = a[0]

for j in range(len(a) - 1):
a[j] = -2 * a[j + 1]

a[len(a) - 1] += temp

After executing this program code segment, the array a[] consists of
the following elements: [-32, 32, 32, 32, 16]. Find what values
the elements of the array a[i], where i = 1, . . . , 5, before executing this
segment.

3.13. A program code is given that processes the one-dimensional array a,
consisting of seven elements:

for i in range(len(a)):
temp = a[0]
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for j in range(len(a) - 1):
a[j] = 3 * a[j + 1] - 1

a[len(a) - 2] = -a[len(a) - 2] - temp

After executing this program code segment, the array a[] consists of the
following elements: [365, 608, -769, -499, -409, 107, 5].
Find what values the elements of the array a[i], i = 1, . . . , 7 took before
executing this segment.

3.14. There exists a modification of Gaussian elimination referred to as Gauss–
Jordan5 elimination. In the Gauss–Jordan method, the coefficient matrix
is brought not to a triangular, but to a diagonal form. Write the realization
of this method in Python and compare its asymptotic complexity with the
complexity of the standard Gaussian elimination.

3.15. Find the general solution and the fundamental system of solutions for the
systems of equations:

(1)

⎧
⎪⎪⎨

⎪⎪⎩

x1 − 4x2 + x3 = 0,

x1 + x2 − x3 = 0,

3x1 − 2x2 − x3 = 0;
(2)

⎧
⎪⎪⎨

⎪⎪⎩

2x1 − x2 + 3x3 + x4 = 0,

2x1 − 5x2 − x3 = 0,

4x1 − 7x2 + x3 + 3x4 = 0;

(3)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x1 + 2x2 + 4x3 − 3x4 = 0,

3x1 + 5x2 + 6x3 − 4x4 = 0,

4x1 + 5x2 − 2x3 + 3x4 = 0,

3x1 + 8x2 + 24x3 − 19x4 = 0;

(4)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

3x1 + 5x2 + 2x3 = 0,

4x1 + 7x2 + 5x3 = 0,

x1 + x2 − 4x3 = 0,

2x1 + 9x2 + 6x3 = 0;

(5)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2x1 + 4x2 + 6x3 + x4 = 0,

x1 + 2x2 + 3x3 + x4 = 0,

3x1 + 6x2 + 9x3 − x4 = 0,

x1 + 2x2 + 3x3 + 5x4 = 0;

(6)

⎧
⎪⎪⎨

⎪⎪⎩

x + 2y + 3z = 0,

2x + 3y + 4z = 0,

x + y + z = 0;

(7)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x1 − 2x2 + 3x3 − 4x4 = 0,

2x1 − 4x2 + 5x3 + 7x4 = 0,

6x1 − 12x2 + 17x3 − 9x4 = 0,

7x1 − 14x2 + 19x3 + 17x4 = 0.

5Wilhelm Jordan (1842–1899), German geodesist and mathematician.
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Answers and Solutions

3.1 Solution.
Denote the price of one workstation by x, and of one notebook—by y. Assume

that the cost of 9 workstations and 7 notebooks is a. Then, we obtain a system of
linear equations relative to the unknowns x and y:

⎧
⎨

⎩

9x + 7y = a,

14x + 9y = 3

2
a.

Its solution is x = 3

34
a, y = 1

34
a. Therefore, the workstation is three times more

expensive than the notebook.

3.2 Solution.

(a) The augmented matrix of the system has the form⎡

⎣
3 −5 | 13

2 7 | 81

⎤

⎦.

Compute the required determinants:

� =
∣
∣
∣
∣
∣
∣

3 −5

2 7

∣
∣
∣
∣
∣
∣
= 21 + 10 = 31,

�x =
∣
∣
∣
∣
∣
∣

13 −5

81 7

∣
∣
∣
∣
∣
∣
= 91 + 405 = 496.

Therefore, x = �x

�
= 496

31
= 16.

�y =
∣
∣
∣
∣
∣
∣

3 13

2 81

∣
∣
∣
∣
∣
∣
= 243 − 26 = 217,

y = �y

�
= 217

31
= 7.

(b) The augmented matrix of the system has the form
⎡

⎢
⎢
⎣

2 −1 3 | 9

3 −5 −1 | −10

4 −7 1 | −7

⎤

⎥
⎥
⎦.

� =

∣
∣
∣
∣
∣
∣
∣
∣

2 −1 3

3 −5 −1

4 −7 1

∣
∣
∣
∣
∣
∣
∣
∣

=(1)+3(2)

∣
∣
∣
∣
∣
∣
∣
∣

11 −16 0

3 −5 −1

4 −7 1

∣
∣
∣
∣
∣
∣
∣
∣

= 11 · (−12)+ 16 · 7 = −20,
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�1 =

∣
∣
∣
∣
∣
∣
∣
∣

9 −1 3

−10 −5 −1

−7 −7 1

∣
∣
∣
∣
∣
∣
∣
∣

=(1)+3(2)

∣
∣
∣
∣
∣
∣
∣
∣

−21 −16 0

−10 −5 −1

−7 −7 1

∣
∣
∣
∣
∣
∣
∣
∣

=(3)+(2)

=

∣
∣
∣
∣
∣
∣
∣
∣

−21 −16 0

−10 −5 −1

−17 −12 0

∣
∣
∣
∣
∣
∣
∣
∣

= 252 − 272 = −20,

x1 = �1

�
= −20

−20
= 1,

�2 =

∣
∣
∣
∣
∣
∣
∣
∣

2 9 3

3 −10 −1

4 −7 1

∣
∣
∣
∣
∣
∣
∣
∣

=(1)+3(2)

∣
∣
∣
∣
∣
∣
∣
∣

11 −21 0

3 −10 −1

4 −7 1

∣
∣
∣
∣
∣
∣
∣
∣

=(3)+(2)

=

∣
∣
∣
∣
∣
∣
∣
∣

11 −21 0

3 −10 −1

7 −17 0

∣
∣
∣
∣
∣
∣
∣
∣

= −(−1)(−187 + 147) = −40,

x2 = �2

�
= −40

−20
= 2,

�3 =

∣
∣
∣
∣
∣
∣
∣
∣

2 −1 9

3 −5 −10

4 −7 −7

∣
∣
∣
∣
∣
∣
∣
∣

=[1]+2[2]

∣
∣
∣
∣
∣
∣
∣
∣

0 −1 9

−7 −5 −10

−10 −7 −7

∣
∣
∣
∣
∣
∣
∣
∣

= (49 − 100)+ 9(49 − 50) = −60,

x3 = �3

�
= −60

−20
= 3.

(c) The augmented matrix of the system has the form
⎡

⎢
⎢
⎣

1 2 1 | 4

3 −5 3 | 1

2 7 −1 | 8

⎤

⎥
⎥
⎦.

� =

∣
∣
∣
∣
∣
∣
∣
∣

1 2 1

3 −5 3

2 7 −1

∣
∣
∣
∣
∣
∣
∣
∣

=[1]−[3]

∣
∣
∣
∣
∣
∣
∣
∣

0 2 1

0 −5 3

3 7 −1

∣
∣
∣
∣
∣
∣
∣
∣

= 3 · (6 + 5) = 33,

�x =

∣
∣
∣
∣
∣
∣
∣
∣

4 2 1

1 −5 3

8 7 −1

∣
∣
∣
∣
∣
∣
∣
∣

=(3)−2(1)

∣
∣
∣
∣
∣
∣
∣
∣

4 2 1

1 −5 3

0 3 −3

∣
∣
∣
∣
∣
∣
∣
∣

= 4 · (15 − 9)− (−6 − 3) = 33,

x = �x

�
= 33

33
= 1,
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�y =

∣
∣
∣
∣
∣
∣
∣
∣

1 4 1

3 1 3

2 8 −1

∣
∣
∣
∣
∣
∣
∣
∣

=[2]−4[1]

∣
∣
∣
∣
∣
∣
∣
∣

1 0 1

3 −11 3

2 0 −1

∣
∣
∣
∣
∣
∣
∣
∣

= −11 · (−1 − 2) = 33,

y = �y

�
= 33

33
= 1,

�z =

∣
∣
∣
∣
∣
∣
∣
∣

1 2 4

3 −5 1

2 7 8

∣
∣
∣
∣
∣
∣
∣
∣

=(3)−2(1)

∣
∣
∣
∣
∣
∣
∣
∣

1 2 4

3 −5 1

0 3 0

∣
∣
∣
∣
∣
∣
∣
∣

= −3 · (1 − 12) = 33,

z = �z

�
= 33

33
= 1.

(d) The augmented matrix of the system has the form
⎡

⎢
⎢
⎣

2 −4 9 | 28

7 3 −6 | −1

7 9 −9 | 5

⎤

⎥
⎥
⎦.

� =

∣
∣
∣
∣
∣
∣
∣
∣

2 −4 9

7 3 −6

7 9 −9

∣
∣
∣
∣
∣
∣
∣
∣

=(3)−(2)
∣
∣
∣
∣
∣
∣
∣
∣

2 −4 9

7 3 −6

0 6 −3

∣
∣
∣
∣
∣
∣
∣
∣

= 2(−9 + 36)− 7(12 − 54) = 348,

�x =

∣
∣
∣
∣
∣
∣
∣
∣

28 −4 9

−1 3 −6

5 9 −9

∣
∣
∣
∣
∣
∣
∣
∣

=(1)+(3)
∣
∣
∣
∣
∣
∣
∣
∣

33 5 0

−1 3 −6

5 9 −9

∣
∣
∣
∣
∣
∣
∣
∣

= 6(297 − 25)− 9(99 + 5) = 696,

x = 696

348
= 2,

�y =

∣
∣
∣
∣
∣
∣
∣
∣

2 28 9

7 −1 −6

7 5 −9

∣
∣
∣
∣
∣
∣
∣
∣

=(3)−(2)
∣
∣
∣
∣
∣
∣
∣
∣

2 28 9

7 −1 −6

0 6 −3

∣
∣
∣
∣
∣
∣
∣
∣

= 2(3 + 36)− 7(−84 − 54) = 1044,

y = 1044

348
= 3,

�z =

∣
∣
∣
∣
∣
∣
∣
∣

2 −4 28

7 3 −1

7 9 5

∣
∣
∣
∣
∣
∣
∣
∣

=(3)−(2)
∣
∣
∣
∣
∣
∣
∣
∣

2 −4 28

7 3 −1

0 6 6

∣
∣
∣
∣
∣
∣
∣
∣

= 2(18 + 6)− 7(−24 − 168)= 1392,

z = 1392

348
= 4.
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(e) The augmented matrix of the system has the form
⎡

⎢
⎢
⎣

7 2 3 | 15

5 −3 2 | 15

10 −11 5 | 36

⎤

⎥
⎥
⎦.

� =

∣
∣
∣
∣
∣
∣
∣
∣

7 2 3

5 −3 2

10 −11 5

∣
∣
∣
∣
∣
∣
∣
∣

=(3)−2(2)

∣
∣
∣
∣
∣
∣
∣
∣

7 2 3

5 −3 2

0 −5 1

∣
∣
∣
∣
∣
∣
∣
∣

= 5(14 − 15)+ (−21 − 10) = −36,

�x =

∣
∣
∣
∣
∣
∣
∣
∣

15 2 3

15 −3 2

36 −11 5

∣
∣
∣
∣
∣
∣
∣
∣

=(2)−(1)
∣
∣
∣
∣
∣
∣
∣
∣

15 2 3

0 −5 −1

36 −11 5

∣
∣
∣
∣
∣
∣
∣
∣

= −72,

x = −72

−36
= 2,

�y =

∣
∣
∣
∣
∣
∣
∣
∣

7 15 3

5 15 2

10 36 5

∣
∣
∣
∣
∣
∣
∣
∣

=(2)−(1)
∣
∣
∣
∣
∣
∣
∣
∣

7 15 3

−2 0 −1

10 36 5

∣
∣
∣
∣
∣
∣
∣
∣

= 2(75 − 108)+ (252 − 150) = 36,

y = 36

−36
= −1,

�z =

∣
∣
∣
∣
∣
∣
∣
∣

7 2 15

5 −3 15

10 11 36

∣
∣
∣
∣
∣
∣
∣
∣

= −36,

z = −36

−36
= 1.

(f) The augmented matrix of the system has the form
⎡

⎢
⎢
⎣

1 1 1 | 36

2 0 −3 | −17

6 0 −5 | 7

⎤

⎥
⎥
⎦.

� =

∣
∣
∣
∣
∣
∣
∣
∣

1 1 1

2 0 −3

6 0 −5

∣
∣
∣
∣
∣
∣
∣
∣

= −(−10 + 18) = −8,

�x =

∣
∣
∣
∣
∣
∣
∣
∣

36 1 1

−17 0 −3

7 0 −5

∣
∣
∣
∣
∣
∣
∣
∣

= −(85 + 21) = −106,

x = −106

−8
= 53

4
.
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�y =

∣
∣
∣
∣
∣
∣
∣
∣

1 36 1

2 −17 −3

6 7 −5

∣
∣
∣
∣
∣
∣
∣
∣

=
(3)−3(2)
(2)−2(1)

∣
∣
∣
∣
∣
∣
∣
∣

1 36 1

0 −89 −5

0 58 4

∣
∣
∣
∣
∣
∣
∣
∣

= −356 + 290 = −66,

y = −66

−8
= 33

4
,

�z =

∣
∣
∣
∣
∣
∣
∣
∣

1 1 36

2 0 −17

6 0 7

∣
∣
∣
∣
∣
∣
∣
∣

= −(14 + 17 · 6) = −116,

z = −116

−8
= 29

2
.

(g) The augmented matrix of the system has the form
⎡

⎢
⎢
⎣

3 2 1 | 5

1 1 −1 | 0

4 −1 5 | 3

⎤

⎥
⎥
⎦.

� =

∣
∣
∣
∣
∣
∣
∣
∣

3 2 1

1 1 −1

4 −1 5

∣
∣
∣
∣
∣
∣
∣
∣

=[1]−[2]

∣
∣
∣
∣
∣
∣
∣
∣

1 2 1

0 1 −1

5 −1 4

∣
∣
∣
∣
∣
∣
∣
∣

=[3]+[2]

∣
∣
∣
∣
∣
∣
∣
∣

1 2 3

0 1 0

5 −1 4

∣
∣
∣
∣
∣
∣
∣
∣

= 4 − 15 = −11,

�1 =

∣
∣
∣
∣
∣
∣
∣
∣

5 2 1

0 1 −1

3 −1 5

∣
∣
∣
∣
∣
∣
∣
∣

=[3]+[2]

∣
∣
∣
∣
∣
∣
∣
∣

5 2 3

0 1 0

3 −1 4

∣
∣
∣
∣
∣
∣
∣
∣

= 20 − 9 = 11,

x1 = 11

−11
= −1.

�2 =

∣
∣
∣
∣
∣
∣
∣
∣

3 5 1

1 0 −1

4 3 5

∣
∣
∣
∣
∣
∣
∣
∣

=[1]+[3]

∣
∣
∣
∣
∣
∣
∣
∣

4 5 1

0 0 −1

9 3 5

∣
∣
∣
∣
∣
∣
∣
∣

= 12 − 45 = −33,

x2 = −33

−11
= 3,

�3 =

∣
∣
∣
∣
∣
∣
∣
∣

3 2 5

1 1 0

4 −1 3

∣
∣
∣
∣
∣
∣
∣
∣

=[1]−[2]

∣
∣
∣
∣
∣
∣
∣
∣

1 2 5

0 1 0

5 −1 3

∣
∣
∣
∣
∣
∣
∣
∣

= 3 − 25 = −22,

x3 = −22

−11
= 2.
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3.3 Solution.

(a) Execute the following elementary transformations of the augmented system
matrix:⎡

⎢
⎢
⎣

6 2 3 | 74

7 4 0 | 91

1 1 1 | 18

⎤

⎥
⎥
⎦ →

(1)−6(3)
(2)−7(3)

⎡

⎢
⎢
⎣

0 −4 −3 | −34

0 −3 −7 | −35

1 1 1 | 18

⎤

⎥
⎥
⎦ →−3·(1)

→

⎡

⎢
⎢
⎣

0 12 9 | 102

0 −3 −7 | −35

1 1 1 | 18

⎤

⎥
⎥
⎦ →(1)+4(2)

⎡

⎢
⎢
⎣

0 0 −19 | −38

0 −3 −7 | −35

1 1 1 | 18

⎤

⎥
⎥
⎦.

Hence it follows that x3 = 38

19
= 2,

−3x2 = −35 + 14 = −21, x2 = 7,
x1 = 18 − 2 − 7 = 9.
The final answer is [x1, x2, x3]T = [9, 7, 2]T .

(b) Execute the following elementary transformations of the augmented system
matrix:⎡

⎢
⎢
⎣

2 5 −2 | −6

−3 −2 1 | 0

0 3 2 | −8

⎤

⎥
⎥
⎦ →2·(2)

⎡

⎢
⎢
⎣

2 5 −2 | −6

−6 −4 2 | 0

0 3 2 | −8

⎤

⎥
⎥
⎦ →(2)+3(1)

→

⎡

⎢
⎢
⎣

2 5 −2 | −6

0 11 −4 | −18

0 3 2 | −8

⎤

⎥
⎥
⎦ →11·(3)

⎡

⎢
⎢
⎣

2 5 −2 | −6

0 11 −4 | −18

0 33 22 | −88

⎤

⎥
⎥
⎦ →(3)−3(2)

→

⎡

⎢
⎢
⎣

2 5 −2 | −6

0 11 −4 | −18

0 0 34 | −34

⎤

⎥
⎥
⎦.

Hence it follows that x3 = −34

34
= −1,

11x2 = −18 − 4 = −22, x2 = −2,
2x1 = −6 − 2 + 10 = 2, x1 = 1.
We obtain the answer: [x1, x2, x3]T = [1,−2, 1]T .
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(c) Execute the following elementary transformations of the augmented system
matrix:⎡

⎢
⎢
⎣

3 −1 6 | −4

3 −7 0 | 2

−4 −4 −3 | −10

⎤

⎥
⎥
⎦ →(2)−(1)

⎡

⎢
⎢
⎣

3 −1 6 | −4

0 −6 −6 | 6

−4 −4 −3 | −10

⎤

⎥
⎥
⎦ →4·(1)

→

⎡

⎢
⎢
⎣

12 −4 24 | −16

0 −6 −6 | 6

−4 −4 −3 | −10

⎤

⎥
⎥
⎦ →(1)+3(3)

⎡

⎢
⎢
⎣

0 −16 15 | −46

0 −6 −6 | 6

−4 −4 −3 | −10

⎤

⎥
⎥
⎦ →(2)·8

→

⎡

⎢
⎢
⎣

0 −16 15 | −46

0 −48 −48 | 48

−4 −4 −3 | −10

⎤

⎥
⎥
⎦ →(2)−3(1)

⎡

⎢
⎢
⎣

0 −16 15 | −46

0 0 −93 | 186

−4 −4 −3 | −10

⎤

⎥
⎥
⎦ →

(1)↔(2)
(3)↔(1)

→

⎡

⎢
⎢
⎣

−4 −4 −3 | −10

0 −16 15 | −46

0 0 −93 | 186

⎤

⎥
⎥
⎦.

Hence it follows that x3 = −2,
−16x2 = −46 + 30 = −16, x2 = 1,
−4x1 = −10 − 6 + 4 = −12, x1 = 3.
We obtain the answer: [x1, x2, x3]T = [3, 1,−2]T .

(d) Execute the following elementary transformations of the augmented system
matrix:⎡

⎢
⎢
⎣

5 3 −3 | 8

−4 −3 −2 | 1

−2 3 6 | −29

⎤

⎥
⎥
⎦ →(2)−2(3)

⎡

⎢
⎢
⎣

5 3 −3 | 8

0 −9 −14 | 59

−2 3 6 | −29

⎤

⎥
⎥
⎦ →2·(1)

→

⎡

⎢
⎢
⎣

10 6 −6 | 16

0 −9 −14 | 59

−2 3 6 | −29

⎤

⎥
⎥
⎦ →(1)+5(3)

⎡

⎢
⎢
⎣

0 21 24 | −129

0 −9 −14 | 59

−2 3 6 | −29

⎤

⎥
⎥
⎦ → 1

3 (1)

→

⎡

⎢
⎢
⎣

0 7 8 | −43

0 −9 −14 | 59

−2 3 6 | −29

⎤

⎥
⎥
⎦ →7·(2)=

⎡

⎢
⎢
⎣

0 7 8 | −43

0 −63 −98 | 413

−2 3 6 | −29

⎤

⎥
⎥
⎦ →(2)+9(1)

→

⎡

⎢
⎢
⎣

0 7 8 | −43

0 0 −26 | 26

−2 3 6 | −29

⎤

⎥
⎥
⎦ →

(1)↔(3)
(3)↔(2)

⎡

⎢
⎢
⎣

−2 3 6 | −29

0 7 8 | −43

0 0 −26 | 26

⎤

⎥
⎥
⎦.
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Hence it follows that x3 = −1,
7x2 = −43 + 8 = −35, x2 = −5,
−2x1 = −29 + 6 + 15 = −8, x1 = 4.

We obtain the answer: [x1, x2, x3]T = [4,−5,−1]T .

3.4 Solution.

(a) Execute the following elementary transformations of the augmented system
matrix:⎡

⎢
⎢
⎢
⎢
⎢
⎣

−2 7 4 0 | 32

2 8 −1 7 | 63

−3 3 4 −4 | 1

0 6 −4 5 | 58

⎤

⎥
⎥
⎥
⎥
⎥
⎦

→(1)+(2)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 15 3 7 | 95

2 8 −1 7 | 63

−3 3 4 −4 | 1

0 6 −4 5 | 58

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

2 8 −1 7 | 63

0 15 3 7 | 95

0 6 −4 5 | 58

−3 3 4 −4 | 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

→2(4)+3(1)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

2 8 −1 7 | 63

0 15 3 7 | 95

0 6 −4 5 | 58

0 30 5 13 | 191

⎤

⎥
⎥
⎥
⎥
⎥
⎦

→2·(2)

→

⎡

⎢
⎢
⎢
⎢
⎢
⎣

2 8 −1 7 | 63

0 30 6 14 | 190

0 6 −4 5 | 58

0 30 5 13 | 191

⎤

⎥
⎥
⎥
⎥
⎥
⎦

→
(2)−(4)
(4)−5(3)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

2 8 −1 7 | 63

0 0 1 1 | −1

0 6 −4 5 | 58

0 0 25 −12 | −99

⎤

⎥
⎥
⎥
⎥
⎥
⎦

→(4)−25(2)

→

⎡

⎢
⎢
⎢
⎢
⎢
⎣

2 8 −1 7 | 63

0 6 −4 5 | 58

0 0 1 1 | −1

0 0 0 −37 | −74

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

x4 = −74

−37
= 2,

x3 = −1 − 2 = −3,
6x2 = 58 − 12 − 10 = 36, x2 = 6,
2x1 = 63 − 48 − 3 − 14 = −2, x1 = −1.
Write the answer: [x1, x2, x3, x4]T = [−1, 6,−3, 2]T .
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(b) Execute the following elementary transformations of the augmented system
matrix:⎡

⎢
⎢
⎢
⎢
⎢
⎣

−1 0 −2 −1 | −6

−5 −1 6 1 | 23

5 −8 −9 4 | 62

6 −9 −5 1 | 73

⎤

⎥
⎥
⎥
⎥
⎥
⎦

→(1)·(−1)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 2 1 | 6

−5 −1 6 1 | 23

5 −8 −9 4 | 62

6 −9 −5 1 | 73

⎤

⎥
⎥
⎥
⎥
⎥
⎦

→(3)+(2)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 2 1 | 6

−5 −1 6 1 | 23

0 −9 −3 5 | 85

6 −9 −5 1 | 73

⎤

⎥
⎥
⎥
⎥
⎥
⎦

→
(2)+5(1)
(4)−6(1)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 2 1 | 6

0 −1 16 6 | 53

0 −9 −3 5 | 85

0 −9 −17 −5 | 37

⎤

⎥
⎥
⎥
⎥
⎥
⎦

→(4)−(3)

→

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 2 1 | 6

0 −1 16 6 | 53

0 −9 −3 5 | 85

0 0 −14 −10 | −48

⎤

⎥
⎥
⎥
⎥
⎥
⎦

→−1
2 (4)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 2 1 | 6

0 −1 16 6 | 53

0 −9 −3 5 | 85

0 0 7 5 | 24

⎤

⎥
⎥
⎥
⎥
⎥
⎦

→(3)−9(2)

→

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 2 1 | 6

0 −1 16 6 | 53

0 0 −147 −49 | −392

0 0 7 5 | 24

⎤

⎥
⎥
⎥
⎥
⎥
⎦

→(3)+21(4)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 2 1 | 6

0 −1 16 6 | 53

0 0 0 56 | 112

0 0 7 5 | 24

⎤

⎥
⎥
⎥
⎥
⎥
⎦

→(3)↔(4)

→

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 2 1 | 6

0 −1 16 6 | 53

0 0 7 5 | 24

0 0 0 56 | 112

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

x4 = 112

56
= 2,

7x3 = 24 − 10 = 14, x3 = 2,
−x2 = 53 − 12 − 32, x2 = −9,
x1 = 6 − 2 − 4 = 0.
Write the answer: [x1, x2, x3, x4]T = [0,−9, 2, 2]T .
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(c) Execute the following elementary transformations of the augmented system
matrix:

⎡

⎢
⎢
⎢
⎢
⎢
⎣

4 0 −9 −1 | 37

7 −1 −5 −5 | 36

8 −5 0 4 | −38

1 −4 9 −4 | −25

⎤

⎥
⎥
⎥
⎥
⎥
⎦

→

(1)−4(4)
(2)−7(4)
(3)−8(4)
(1)↔(2)
(1)↔(4)
(3)↔(4)=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 −4 9 −4 | −25

0 16 −45 15 | 137

0 27 −68 23 | 211

0 27 −72 36 | 162

⎤

⎥
⎥
⎥
⎥
⎥
⎦

→ 1
9 ·(4)

→

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 −4 9 −4 | −25

0 16 −45 15 | 137

0 27 −68 23 | 211

0 3 −8 4 | 18

⎤

⎥
⎥
⎥
⎥
⎥
⎦

→(3)−9(4)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 −4 9 −4 | −25

0 16 −45 15 | 137

0 0 4 −13 | 49

0 3 −8 4 | 18

⎤

⎥
⎥
⎥
⎥
⎥
⎦

→3·(2)

→

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 −4 9 −4 | −25

0 48 −135 45 | 411

0 0 4 −13 | 49

0 3 −8 4 | 18

⎤

⎥
⎥
⎥
⎥
⎥
⎦

→(2)−16(4)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 −4 9 −4 | −25

0 0 −7 −19 | 123

0 0 4 −13 | 49

0 3 −8 4 | 18

⎤

⎥
⎥
⎥
⎥
⎥
⎦

→4·(2)

→

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 −4 9 −4 | −25

0 0 −28 −76 | 492

0 0 4 −13 | 49

0 3 −8 4 | 18

⎤

⎥
⎥
⎥
⎥
⎥
⎦

→
(2)+7(3)
(2)↔(4)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 −4 9 −4 | −25

0 3 −8 4 | 18

0 0 4 −13 | 49

0 0 0 −167 | 835

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

x4 = 835

−167
= −5,

4x3 = 49 − 65 = −16, x3 = −4,
3x2 = 18 − 32 + 20 = 6, x2 = 2,
x1 = −25 + 8 + 36 − 20 = −1.
Write the answer: [x1, x2, x3, x4]T = [−1, 2,−4,−5]T .

(d) Execute the following elementary transformations of the augmented system
matrix:⎡

⎢
⎢
⎢
⎢
⎢
⎣

−8 1 −4 −8 | 7

0 −7 −6 7 | 56

−8 3 2 −2 | −63

−8 −3 −1 −4 | −6

⎤

⎥
⎥
⎥
⎥
⎥
⎦

→
(3)−(1)
(4)−(1)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−8 1 −4 −8 | 7

0 −7 −6 7 | 56

0 2 6 6 | −70

0 −4 3 4 | −13

⎤

⎥
⎥
⎥
⎥
⎥
⎦

→
1

2
(3)

→

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−8 1 −4 −8 | 7

0 −7 −6 7 | 56

0 1 3 3 | −35

0 −4 3 4 | −13

⎤

⎥
⎥
⎥
⎥
⎥
⎦

→
(2)+7(3)
(4)+4(3)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−8 1 −4 −8 | 7

0 0 15 28 | −189

0 1 3 3 | −35

0 0 15 16 | −153

⎤

⎥
⎥
⎥
⎥
⎥
⎦

→(4)−(2)
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→

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−8 1 −4 −8 | 7

0 0 15 28 | −189

0 1 3 3 | −35

0 0 0 −12 | 36

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

x4 = 36

−12
= −3,

15x3 = 84 − 189, x3 = −7,
x2 = −35 + 9 + 21 = −5,
−8x1 = 7 − 24 − 28 + 5 = −40, x1 = 5.

Write the answer: [x1, x2, x3, x4]T = [5,−5,−7,−3]T .

3.5 Answer:

(a) [x1, x2, x3, x4, x5]T = [6,−6, 7, 0,−6]T ;
(b) [x1, x2, x3, x4, x5]T = [6,−7,−1,−1, 4]T .

3.6 Answer:

(a) [x1, x2, x3, x4, x5, x6]T = [5, 0,−5, 5,−5, 4]T ;
(b) [x1, x2, x3, x4, x5, x6]T = [1,−2,−2, 0, 1, 0]T .

3.7 Solution.
The fourth power polynomial with real coefficients can be presented in the form:

p(x) = a4x
4 + a3x

3 + a2x
2 + a1x + a0,

where a0, a1, . . . , a4 ∈ R are the unknown coefficients. We obtain system of linear
equations relative to the coefficients ai :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

54a4 + 53a3 + 52a2 + 5a1 + a0 = 1,

14a4 + 13a3 + 12a2 + 1a1 + a0 = 0,

24a4 + 23a3 + 22a2 + 2a1 + a0 = 0,

34a4 + 33a3 + 32a2 + 3a1 + a0 = 0,

44a4 + 43a3 + 42a2 + 4a1 + a0 = 0.

Write the matrix of this system and bring it to the echelon form:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

625 125 25 5 1 | 1

1 1 1 1 1 | 0

16 8 4 2 1 | 0

81 27 9 3 1 | 0

256 64 16 4 1 | 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

→

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 1 | 0

0 8 12 14 15 | 0

0 0 6 9 10 | 0

0 0 0 24 50 | 0

0 0 0 0 1 | 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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we find the values of ai :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

a4 + a3 + a2 + a1 + a0 = 0,

8a3 + 12a2 + 14a1 + 15a0 = 0,

6a2 + 9a1 + 10a0 = 0,

24a1 + 50a0 = 0,

a0 = 1;

⇒

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0 = 1,

a1 = −50

24
,

a2 = 35

24
,

a3 = −10

24
,

a4 = 1

24
.

As a result, the sought-for fourth power polynomial is equal to

p(x) = 1

24
(x4 − 10x3 + 35x2 − 50x + 24).

3.8 Solution.
The system of linear equations is consistent if and only if the rank of the system

matrix is equal to the rank of the augmented system matrix.
Find the rank of the basic matrix:

A =

⎡

⎢
⎢
⎣

1 1

λ 1

1 λ

⎤

⎥
⎥
⎦ .

A →
(2)−λ(1)
(3)−(1)

⎡

⎢
⎢
⎣

1 1

0 1 − λ
0 λ− 1

⎤

⎥
⎥
⎦ → (3)+(2)

⎡

⎢
⎢
⎣

1 1

0 1 − λ
0 0

⎤

⎥
⎥
⎦ .

Therefore,

rkA =
⎧
⎨

⎩

2, if λ �= 1,

1, if λ = 1.
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Compute the rank of the augmented matrix:

(A|B) =

⎡

⎢
⎢
⎣

1 1 | 1

λ 1 | 2

1 λ | 4

⎤

⎥
⎥
⎦ →

(2)−λ(1)
(3)−(1)

⎡

⎢
⎢
⎣

1 1 | 1

0 1 − λ | 2 − λ
0 λ− 1 | 3

⎤

⎥
⎥
⎦ → (2)+(3)

→

⎡

⎢
⎢
⎣

1 1 | 1

0 1 − λ | 2 − λ
0 0 | 5 − λ

⎤

⎥
⎥
⎦ .

Thus,

rk (A|B) =
⎧
⎨

⎩

2, if λ = 5,

3, if λ �= 5.

The condition rkA = rk (A|B) is satisfied at λ = 5. Therefore the system is
consistent at λ = 5.

3.9 Answer:
The system has the unique solution at λ �= 0. For such values of λ the solution of

the system has the form x1 = −1, x2 = λ−1, x3 = λ−1 − 4.

3.10 Solution.
Since the matrix A has the size 3 × 3, and the matrix B has the size 2 × 2, then

the unknown matrix X can be represented in the form:

X =

⎡

⎢
⎢
⎣

a b

c d

e f

⎤

⎥
⎥
⎦ , where a, b, c, d, e, f are some real numbers.

Having substituted this matrix into the equationA·X·B = C, we obtain a system
of linear equations relative to the unknowns a, b, . . . , f :

⎧
⎪⎪⎨

⎪⎪⎩

3a + 3b − 2c − 2d − 3e − 3f = −13,

2a + 2b − c − d − 4e − 4f = −25,

−6a − 6b − c − d − 2e − 2f = −33.
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Bring the augmented system matrix to the echelon form:

M =

⎡

⎢
⎢
⎣

3 3 −2 −2 −3 −3 | −13

2 2 −1 −1 −4 −4 | −25

−6 −6 −1 −1 −2 −2 | −33

⎤

⎥
⎥
⎦ →

→

⎡

⎢
⎢
⎣

3 3 −2 −2 −3 −3 | −13

0 0 1 1 −6 −6 | −49

0 0 0 0 1 1 | 8

⎤

⎥
⎥
⎦ .

As the basic minor we select, for example, M1,2,3
1,3,5 �= 0. Hence, b, d, f are the

independent variables by which the variables a, c, e are expressed:

X =

⎡

⎢
⎢
⎣

3 − b b
−1 − d d

8 − f f

⎤

⎥
⎥
⎦ , where b, d, f ∈ R.

3.11 Answer:

(1) X =
⎡

⎣
a b

−2 − 3a 2 − 3b

⎤

⎦ , where a, b ∈ R;

(2) X ∈ ∅, i.e. there are no solutions;

(3) X = 1

5

⎡

⎢
⎢
⎣

5a 3(a − 1) −a − 4

5d 3d − 5 −d
5g 3(g + 1) 4 − g

⎤

⎥
⎥
⎦ , where a, d, g ∈ R;

(4) X ∈ ∅.

3.12 Solution.
Denote the initial values of the elements of the array a[] by a[1], a[2], . . . ,

a[5]. After executing the program segment code, the array a[] will contain the
following elements:

16a[1]+16a[5],
-8a[1]+16a[2]-8a[5],
4a[1]-8a[2]+16a[3]+4a[5],

-2a[1]+4a[2]-8a[3]+16a[4]-2a[5],
a[1]-2a[2]+4a[3]-8a[4]+17a[5].
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We obtain system of linear equations with five unknowns. Its solution is a[1] =
−4, a[1] = 1, a[1] = 3, a[1] = 3, a[1] = 2. Hence, the initial array has the form
[−4,1,3,3,2].
3.13 Answer: [−14,−5,−2,1,1,1,5].
3.14 Solution.

import math

def gauss_jordan_elimination(A, B):
m = len(A)
n = len(A[0])

if len(B) != m:
raise ValueError

C = [[A[i][j] if j != n else B[i]
for j in range(n+1)] for i in range(m)]

for r in range(n):
max_row_pos = r

# Pivoting strategy
for i in range(r + 1, n):

if abs(C[i][r]) > abs(C[max_row_pos][r]):
max_row_pos = i

C[r], C[max_row_pos] = C[max_row_pos], C[r]

if math.isclose(C[r][r], 0):
continue

for i in range(n):
factor = C[i][r] / C[r][r]

for j in range(n + 1):
if i != r and j != r:

C[i][j] -= factor * C[r][j]

for i in range(n):
if i != r:

C[i][r] = 0.0

for j in range(n + 1):



166 3 Systems of Linear Equations

if j != r:
C[r][j] /= C[r][r]

C[r][r] = 1.0

answer = [0] * n

for i in range(n):
if not math.isclose(C[i][i], 0):

answer[i] = C[i][n] / C[i][i]
elif not math.isclose(C[i][n], 0):

return None

return answer

Let us give an example of a call of the function gauss_jordan_
elimination():

size = 100

A = [[0 for j in range(size)]
for i in range(size)]

B = [0 for i in range(size)]

for i in range(size):
for j in range(size):

A[i][j] = 1 if j == i else 0

for i in range(size):
B[i] = float(i)

print(A)
print(B)

print(gauss_jordan_elimination(A, B))

The asymptotic complexity of the Gauss–Jordan method coincides with the
complexity of Gaussian method and is equal to O(n3), where n is the number of
equations of the initial system of equations [58].
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3.15 Solution.

(1) Denote the system matrix by A and bring it to the upper triangular form.

A =

⎡

⎢
⎢
⎣

1 −4 1

1 1 −1

3 −2 −1

⎤

⎥
⎥
⎦ →

(2)−(1)
(3)−3(1)

⎡

⎢
⎢
⎣

1 −4 1

0 5 −2

0 10 −4

⎤

⎥
⎥
⎦ → (3)−2(2)

⎡

⎢
⎢
⎣

1 −4 1

0 5 −2

0 0 0

⎤

⎥
⎥
⎦ .

The rank of the matrix is equal to two, and the number of variables is equal to
three. This implies that the system will have 3 − 2 = 1 free variables.

Write the resulting equations:

⎧
⎨

⎩

x1 − 4x2 + x3 = 0,

5x2 − 2x3 = 0.

As the independent variable, select x3:

⎧
⎪⎨

⎪⎩

x1 = 3

5
x3,

x2 = 2

5
x3.

As a result we obtain the fundamental system of solutions: {[3, 2, 5]T }.
(2) Write the system matrix A and bring it to the upper triangular form.

A =

⎡

⎢
⎢
⎣

2 −1 3 1

2 −5 −1 0

4 −7 1 3

⎤

⎥
⎥
⎦ →

(2)−(1)
(3)−2(1)

⎡

⎢
⎢
⎣

2 −1 3 1

0 −4 −4 −1

0 −5 −5 1

⎤

⎥
⎥
⎦ →−1(2)

→

⎡

⎢
⎢
⎣

2 −1 3 1

0 4 4 1

0 −5 −5 1

⎤

⎥
⎥
⎦ → 4(3)+5(2)

⎡

⎢
⎢
⎣

2 −1 3 1

0 4 4 1

0 0 0 9

⎤

⎥
⎥
⎦ .

It is clear that the rank of the matrix is rkA = 3, the number of variables is
equal to 4. Therefore, the system will have 4 − 3 = 1 free variables. Write the
resulting equations:

⎧
⎪⎪⎨

⎪⎪⎩

2x1 − x2 + 3x3 + x4 = 0,

4x2 + 4x3 + x4 = 0,

9x4 = 0.
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As the independent variable, select x3:

⎧
⎪⎪⎨

⎪⎪⎩

x1 = −2x3,

x2 = −x3,

x4 = 0.

The fundamental system of solutions is {[−2,−1, 1, 0]T }.
(3) Write the system matrix A and bring it to the upper triangular form.

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 2 4 −3

3 5 6 −4

4 5 −2 3

3 8 24 −19

⎤

⎥
⎥
⎥
⎥
⎥
⎦

→
(4)−(2)
(2)−3(1)
(3)−4(1)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 2 4 −3

0 −1 −6 5

0 −3 −18 15

0 3 18 −15

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Note that the second, third and the fourth rows are proportional:

A→
⎡

⎣
1 2 4 −3

0 −1 −6 5

⎤

⎦ .

The rank of the matrix rkA = 2, the number of variables is 4. Therefore, the
system will have 4 − 2 = 2 free variables. Write the resulting equations:

⎧
⎨

⎩

x1 + 2x2 + 4x3 − 3x4 = 0,

−x2 − 6x3 + 5x4 = 0.

As the independent variables, select x3 and x4:
⎧
⎨

⎩

x1 = 8x3 − 7x4,

x2 = −6x3 + 5x4.

The fundamental system of solutions is {[8,−6, 1, 0]T , [−7, 5, 0, 1]T }.
(4) Write the system matrix A and bring it to the upper triangular form.

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

3 5 2

4 7 5

1 1 −4

2 9 6

⎤

⎥
⎥
⎥
⎥
⎥
⎦

→(1)↔(3)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 1 −4

4 7 5

3 5 2

2 9 6

⎤

⎥
⎥
⎥
⎥
⎥
⎦

→
(2)−4(1)
(3)−3(1)
(4)−2(1)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 1 −4

0 3 21

0 2 14

0 7 14

⎤

⎥
⎥
⎥
⎥
⎥
⎦

→ (4)−(3)
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→

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 1 −4

0 3 21

0 2 14

0 5 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

→ 3(3)−2(2)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 1 −4

0 3 21

0 0 0

0 5 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

The third row entirely consists of zero elements and can be eliminated from the
system matrix.

⎡

⎢
⎢
⎣

1 1 −4

0 3 21

0 5 0

⎤

⎥
⎥
⎦ →(2)↔(3)

⎡

⎢
⎢
⎣

1 1 −4

0 5 0

0 3 21

⎤

⎥
⎥
⎦ → 5(3)−3(2)

⎡

⎢
⎢
⎣

1 1 −4

0 5 0

0 0 105

⎤

⎥
⎥
⎦ .

The rank of the matrix rkA = 3, the number of variables is 3. Therefore, the
system has no free variables. Write the resulting equations:

⎧
⎪⎪⎨

⎪⎪⎩

x1 + x2 − 4x3 = 0,

5x2 = 0,

105x3 = 0.

Therefore

⎧
⎪⎪⎨

⎪⎪⎩

x1 = 0,

x2 = 0,

x3 = 0.

As a result, the system has only the trivial solution: [0, 0, 0]T .
(5) Write the system matrix and bring it to the upper triangular form.

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

2 4 6 1

1 2 3 1

3 6 9 −1

1 2 3 5

⎤

⎥
⎥
⎥
⎥
⎥
⎦

→ (1)−(2)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 2 3 0

1 2 3 1

3 6 9 −1

1 2 3 5

⎤

⎥
⎥
⎥
⎥
⎥
⎦

→
(2)−(1)
(3)−3(1)
(4)−(1)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 2 3 0

0 0 0 1

0 0 0 −1

0 0 0 5

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

The second, third and fourth rows are proportional:

A→
⎡

⎣
1 2 3 0

0 0 0 1

⎤

⎦ .
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The rank of the matrix rkA = 2, the number of variables is equal to four,
therefore, the system will have 4 − 2 = 2 free variables. Write the resulting
equations:

⎧
⎨

⎩

x1 + 2x2 + 3x3 = 0,

x4 = 0.

Therefore
⎧
⎨

⎩

x1 = −2x2 − 3x3,

x4 = 0.

The fundamental system of solutions is {[−2, 1, 0, 0]T , [−3, 0, 1, 0]T }.
(6) Write the matrix A and bring it to the upper triangular form.

A =

⎡

⎢
⎢
⎣

1 2 3

2 3 4

1 1 1

⎤

⎥
⎥
⎦ →

(2)−2(1)
(3)−(1)

⎡

⎢
⎢
⎣

1 2 3

0 −1 −2

0 −1 −2

⎤

⎥
⎥
⎦ .

The second and the third rows are proportional:

A →
⎡

⎣
1 2 3

0 −1 −2

⎤

⎦ .

The rank of the matrix rkA = 2, the number of variables is equal to three.
Therefore, the system will have 3 − 2 = 1 free variables. Write the resulting
equations:

⎧
⎨

⎩

x + 2y + 3z = 0,

−y − 2z = 0.

Therefore
⎧
⎨

⎩

x = z,

y = −2z.

The fundamental system of solutions is {[1,−2, 1]T }.
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(7) Write the system matrix A and bring it to the upper triangular form.
⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 −2 3 −4

2 −4 5 7

6 −12 17 −9

7 −14 19 17

⎤

⎥
⎥
⎥
⎥
⎥
⎦

→
(2)−2(1)
(3)−6(1)
(4)−7(1)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 −2 3 −4

0 0 −1 15

0 0 −1 15

0 0 −2 45

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

The second and the third rows are proportional:

⎡

⎢
⎢
⎣

1 −2 3 −4

0 0 −1 15

0 0 −2 45

⎤

⎥
⎥
⎦ → (3)−2(2)

⎡

⎢
⎢
⎣

1 −2 3 −4

0 0 −1 15

0 0 0 15

⎤

⎥
⎥
⎦ .

The rank of the matrix rkA = 3, the number of variables is equal to four.
Therefore, the system will have 4 − 3 = 1 free variables. Write the resulting
equations:

⎧
⎪⎪⎨

⎪⎪⎩

x1 − 2x2 + 3x3 − 4x4 = 0,

−x3 + 15x4 = 0,

15x4 = 0.

Therefore

⎧
⎪⎪⎨

⎪⎪⎩

x1 = 2x2,

x3 = 0,

x4 = 0.

The fundamental system of solutions has the form {[2, 1, 0, 0]T }.



Chapter 4
Complex Numbers and Matrices

As was already mentioned in Chap. 1, complex numbers may appear as matrix
elements. Moreover, the characteristics of real matrices (such as eigenvalues, see
Chap. 5 “Vector Spaces” on page 226) in some cases appear to be complex. In this
connection, let us discuss the methods of algebra of complex numbers.

Complex number z is an ordered pair of real numbers (a, b), where a, b ∈ R.
The first number a is called the real part of the complex number z = (a, b) and
is denoted by symbol Re z, while the second number of the pair b is called the
imaginary part z and is denoted by Im z [24].

A complex number of the form (a, 0), where the imaginary part is zero, is
identified with the real number a, i.e. (a, 0) ≡ a. This allows considering the set of
all real numbers R as a subset of a set of complex numbers C.

Two complex numbers z1 = (a1, b1) and z2 = (a2, b2) are considered equal if
and only if their real and imaginary parts are pairwise equal: z1 = z2 ⇔ a1 = a2,
b1 = b2.

4.1 Arithmetic Operations with Complex Numbers

On the set C are defined the operations of addition and multiplication of complex
numbers. Sum of complex numbers z1 = (a1, b1) and z2 = (a2, b2) is the complex
number z, equal to z1 +z2 = (a1 + a2, b1 + b2). Product of numbers z1 = (a1, b1)

and z2 = (a2, b2) is such a complex number z = (a, b), that a = a1a2 − b1b2,
b = a1b2 + a2b1.

The pair (0, 1) is of the greatest importance in the operations with complex
numbers; it is denoted by (0, 1) ≡ i and is called imaginary unit. The basic
property of the imaginary unit consists in that i2 = i · i = (0, 1) · (0, 1) = (−1, 0),
or i2 = −1.

© Springer Nature Switzerland AG 2021
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A complex number of the form z = (0, b) is called purely imaginary. Since
(0, b) = (b, 0) · (0, 1), then the purely imaginary number z is presentable in the
form of the product z = bi.

Any complex number can be presented in the form

z = (a, b) = (a, 0)+ (0, b) = (a, 0)+ (b, 0) · (0, 1) = a + ib.

Such a notation is referred to as the algebraic form of a complex number. This
allows considering i as a factor, whose square is equal to −1, and performing oper-
ations with complex numbers in the same manner as with algebraic polynomials, in
intermediate calculations assuming i2 = −1.

Example 4.1 Let z1 = 2 + 5i, z2 = −3 + 2i. Then, the addition of these numbers
will result in a complex number

z1 + z2 = (2 + 5i)+ (−3 + 2i) = (2 − 3)+ (5 + 2)i = −1 + 7i. (4.1)

The product of the numbers z1 and z2 is computed by multiplying the expressions
(2 + 5i) and (−3 + 2i) as polynomials with regard to the equality i2 = −1:

z1z2 = (2 + 5i)(−3 + 2i) = 2(−3)+ 2(2i)− 3(5i)+ (5i)(2i)
= −6 + 4i − 15i + 10i2 = −6 − 10 + (4 − 15)i = −16 − 11i. (4.2)

�
A complex number z∗ = (a,−b) = a − ib is called a conjugate of the complex

number z = (a, b) = a+ ib. There is one more frequent notation of a conjugate—z.
If the coefficients of the polynomial p(z) are real, the equality (p(z))∗ = p(z∗) is
valid.

It is convenient to present the number z = a + ib as the point (x, y) of a plane
with Cartesian coordinates x = a and y = b. Correlate each complex number z
with a point with coordinates (x, y) (and a position vector, connecting the origin
of coordinates with this point). Such a plane is denoted by z© and is referred to
as complex plane (see Fig. 4.1). Note that geometric interpretation of complex
numbers is sometimes referred to as the Argand1 diagram.

Many applications widely use a trigonometric form of the complex number z.
Let us introduce the polar coordinate system so that the pole is at the origin of
Cartesian system (x, y). The axis of the polar system will be directed along the
positive direction of the axis Ox.

1Jean-Robert Argand (1768–1822), French mathematician.
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Fig. 4.1 Representation of
the number z on a complex
plane

x

y

O

z = a+ ib

ϕ

ρ

a = Re z

b = Im z

z

In this case, Cartesian and polar coordinates of an arbitrary point other than the
origin of coordinates are related by the formulae

x = ρ cosϕ, y = ρ sin ϕ,

ρ =
√

x2 + y2, ϕ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

arctan
y

x
, if x > 0;

arctan
y

x
+ π, if x < 0, y � 0;

arctan
y

x
− π, if x < 0, y < 0;

π

2
sign y, if x = 0.

As a result, we obtain a trigonometric form of the number z

z = (x, y) = x + iy = ρ(cosϕ + i sinϕ).

The value ρ is called modulus, and ϕ—argument of the complex number z and
denoted ρ = |z|, ϕ = arg z. It should be noted that the argument ϕ is ambiguously
determined: instead of the value ϕ we can take the value ϕ + 2πk, where k ∈ Z. If
arg z is chosen in such a way that −π < arg z � π , then such a value is called the
principal value of the argument.

For the numbers z1 = ρ1(cosϕ1 + i sin ϕ1) and z2 = ρ2(cosϕ2 + i sin ϕ2),
specified in the trigonometric form,

z1z2 = ρ1ρ2(cos(ϕ1 + ϕ2)+ i sin(ϕ1 + ϕ2)),

z1

z2
= ρ1

ρ2
(cos(ϕ1 − ϕ2)+ i sin(ϕ1 − ϕ2)), ρ2 �= 0.
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x

y

O

z1
z2

z1 + z2

z

x

y

O

z1
z2

z1z2

ϕ1

ϕ2ϕ1 + ϕ2

z

Fig. 4.2 Sum is the panel (a), and product is the panel (b) complex numbers z1 and z2

Geometric illustration of the sum and the product of complex numbers is shown
in Fig. 4.2. For any z1, z2 ∈ C, the position vector of the sum z1 + z2 is equal to
the sum of the position vectors of the summands z1 and z2. The position vector of
the product z1z2 is obtained by rotating the position vector of the number z1 by the
angle of arg z2 counter-clockwise and extending by |z2| times.

Euler’s2 formula relates the exponential function of the imaginary argument
with trigonometric functions of the imaginary part of the argument:

eiϕ = cosϕ + i sin ϕ.

This is why we can introduce one more notation of the complex number, namely,
exponential: z = ρeiϕ . The exponential notation is convenient for operations of
multiplication, division, raising to a power and extraction of root. For example, the
n-th power of the number z can be presented in the form

zn = (ρeiϕ)n = ρneinϕ = ρn(cos nϕ + i sin nϕ)

for all integer values n.
An important consequence of the obtained formula

(cosϕ + i sin ϕ)n = cos nϕ + i sinnϕ

is associated with the name of de Moivre.3

The n-th root of z = ρ(cosϕ + i sin ϕ) can be calculated as

n
√
z ≡ z1/n = [ρ(cos(ϕ + 2πk)+ i sin(ϕ + 2πk))]1/n, k ∈ Z,

2Leonhard Euler (1707–1783), prominent Swiss mathematician.
3Abraham de Moivre (1667–1754), English mathematician of French origin.
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or, after applying Euler’s formula,

n
√
z = ρ1/n

(
cos

(ϕ + 2πk

n

)
+ i sin

(ϕ + 2πk

n

))
, k = 0, 1, . . . , n− 1.

Here we obtain n possible values of the n-th root for k = 0, 1, . . . , n − 1. Other
acceptable k do not result in new values of n

√
z. For example, for k = n the argument

is arg z = ϕ/n + 2π and differs from the case k = 0 by 2π , which corresponds to
the complex number equal to it.

Example 4.2 Denote roots of the equation zn = 1, where n is a natural number, by
ωk , k = 0, . . . , n − 1. Prove that on a complex plane the points corresponding to
the values ωk are located at the vertices of a regular n-gon, inscribed in a unit circle,
whose centre is located at the origin of coordinates [24].

Proof According to the introduced definition,

ωk = (e2πi)k/n = e2πik/n, k = 0, 1, . . . , n− 1. (4.3)

In particular, for n = 4 we have the following values 4
√

1:

ωk = (e2πi)k/4 = eπik/2, k ∈ {0, 1, 2, 3}, (4.4)

or, after computing the complex exponents:

ωk = 1, i, −1, −i. (4.5)

Modulus of the complex number ωk = e2πik/n is equal to one for all values of
the variable k, and the argument is equal to argωk = 2πk/n, k = 0, 1, . . . , n − 1.
Thereby, we can conclude that the n-th roots of one are located on the unit circle
C, and the first root ω0, associated with k = 0, lies in the real axis, and ωk divide
the circle by n arcs of the same length (see the example for the instance n = 9 in
Fig. 4.3). �

Fig. 4.3 Location of the
roots of the n-th power of one
on the unit circle for n = 9

x

y

O 1

z

C
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4.2 Fundamental Theorem of Algebra

Theorem 4.1 (Fundamental Theorem of Algebra) States that any polynomial of
a non-zero degree with complex coefficients has a complex root [43]. This is why
an arbitrary polynomial with real (or complex) coefficients always has some root
z ∈ C.

Each polynomial of degree n

p(z) = cnzn + cn−1z
n−1 + · · · + c0, ci ∈ C for i = 0, 1, . . . , n, cn �= 0,

can uniquely (accurate to the order of cofactors) be expanded into the product

p(z) = cn(z− z1)
m1(z− z2)

m2 . . . (z− zk)mk ,

where zi is a root of the polynomial p(z) with a multiplicity of mi , 1 � i � k.
For polynomials with degree lower than the fifth, we can always find the roots

having expressed them by arithmetic operations or arithmetic roots of an arbi-
trary multiplicity, or radicals. The method for calculating the cubic polynomial’s
roots was suggested by Cardanus4 (see Sect. 4.3 below), of the fourth degree
polynomial—Ferrari.5 However, there are no common methods for finding roots
of polynomials of higher degrees, according to next theorem:

Theorem 4.2 (Abel6–Ruffini7 Theorem) Any arbitrary equation of degree n for
n � 5 is unsolvable in radicals.

4.3 Cardano Formula

In order to determine the roots of the cubic equation

az3 + bz2 + cz+ d = 0, where a, b, c, d ∈ C, (4.6)

proceed as follows. Using the change of the variable z = y − b

3a
the equation is

brought to a canonical form

y3 + py + q = 0, p, q ∈ C. (4.7)

4Hieronymus Cardanus (1501–1576), Italian mathematician and philosopher.
5Lodovico Ferrari (1522–1565), Italian mathematician.
6Niels Henrik Abel (1802–1829), Norwegian mathematician.
7Paolo Ruffini (1765–1822), Italian mathematician.
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By Cardano formula, the roots of the cubic equation y1, y2, y3 in the canonical
form are equal [33]

y1 = α + β, (4.8)

y2 = −α + β
2

+ i√3 · α − β
2

, (4.9)

y3 = −α + β
2

− i√3 · α − β
2

, (4.10)

where

α = 3

√

−q
2

+ √
Q,

β = 3

√

−q
2

− √
Q,

Q =
(p

3

)3 +
(q

2

)2
.

Using these relations, one should for each of the three values of the cube root of
α take that value of the root β, for which the equality αβ = −p/3 is valid.

Example 4.3 Find the roots of the equation z3−5z2+9z−5 = 0, using the Cardano
formula.

Solution Replace the variable z = y + 5

3
. We obtain the cubic equation in the

canonical form

y3 + 2

3
y + 20

27
= 0, (4.11)

here p = 2

3
, q = 20

27
. Further using Cardano formula (4.8)–(4.10):

Q =
(p

3

)3 +
(q

2

)2 = 4

27
,

α, β = 3

√

−10

27
±

√
4

27
= 1

3

3
√

−10 ± 6
√

3.

Let α = 1

3
3
√

6
√

3 − 10, then, in order for the condition αβ = −p/3 to be

satisfied, we choose β = −1

3
3
√

6
√

3 + 10. The roots of the equation will have the
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form

y1 = 1

3

(
3
√

6
√

3 − 10 − 3
√

6
√

3 + 10

)

;

y2 = −1

6

(
3
√

6
√

3 − 10 − 3
√

6
√

3 + 10

)

+ i
√

3

6

(
3
√

6
√

3 − 10 + 3
√

6
√

3 + 10

)

;

y3 = −1

6

(
3
√

6
√

3 − 10 − 3
√

6
√

3 + 10

)

− i
√

3

6

(
3
√

6
√

3 − 10 + 3
√

6
√

3 + 10

)

.

The obtained expressions can be simplified, if we note that the equality 6
√

3 ±
10 = (√3 ± 1)3 is valid. Then

3
√

6
√

3 ± 10 = √
3 ± 1, and

y1 = 1

3

(√
3 − 1 − (√3 + 1)

)
= −2

3
;

y2 = −1

6

(√
3 − 1 − (√3 + 1)

)
+ i

√
3

6

(√
3 − 1 + √

3 + 1
)

= 1

3
+ i;

y3 = −1

6

(√
3 − 1 − (√3 + 1)

)
− i

√
3

6

(√
3 − 1 + √

3 + 1
)

= 1

3
− i.

Returning to the original variable z = y + 5

3
, we obtain z1 = 1, z2 = 2 + i,

z3 = 2 − i. �

4.4 Complex Coefficient Matrices

Among the complex coefficient matrices, classes of Hermitian and unitary matrices
play a special role in algebra and its applications.

4.4.1 Hermitian Matrices

Consider the matrix Z, containing the complex elements Z = (zij ), where i =
1, 2, . . . ,m, j = 1, 2, . . . , n. Hermitian conjugate matrix relative to Z is the
matrix ZH , whose elements are equal to

zHij = z∗ji . (4.12)

In order to obtain Hermitian conjugate matrix, the operations of transposition and
complex conjugation are applied to the initial matrix. The mentioned operations are
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independent and can be executed in any sequence.

Example 4.4 A Hermitian conjugate matrix relative to Z =
⎡

⎣
1 + i 2 + 3i

−1 5 − 4i

⎤

⎦ is the

matrix

ZH =
⎛

⎜
⎝

⎡

⎣
1 + i 2 + 3i

−1 5 − 4i

⎤

⎦

T
⎞

⎟
⎠

∗

=
⎛

⎝

⎡

⎣
1 + i −1

2 + 3i 5 − 4i

⎤

⎦

⎞

⎠

∗
=

⎡

⎣
1 − i −1

2 − 3i 5 + 4i

⎤

⎦ .

(4.13)
�

Note Often, for designation of a Hermitian conjugate matrix, the notations Z† or
Z+ are used.

Let us enumerate the main properties of the Hermitian conjugation operation:

1. IH = I ;
2. (Z1 + Z2)

H = ZH1 + ZH2 ;
3. (λZ)H = λ∗ZH ∀λ ∈ C;
4. (ZH )H = Z;
5. if A−1 exists, then

(
A−1

)H = (
AH

)−1
;

6. detAH = detA∗ = (detA)∗.

Theorem 4.3 If for the complex matrices Z1 and Z2 the product Z1Z2 is deter-
mined, then

(Z1Z2)
H = ZH2 ZH1 . (4.14)

Proof The validity of the theorem follows from the property of the matrix product
transposition (see Problem 1.3):

(Z1Z2)
T = ZT2 ZT1 . (4.15)

With the help of Eq. (4.15) we obtain a chain of equalities

(Z1Z2)
H = ((Z1Z2)

T )∗ = (ZT2 ZT1 )∗ = (ZT2 )∗(ZT1 )∗ = ZH2 ZH1 , (4.16)

which proves the identity (4.14).

Among complex matrices, Hermitian matrices are very widely used. Hermitian
matrix is a square matrix, where ZH = Z. A respective condition for the elements
of such a matrix: ∀i, j (zij = z∗ji). In other words, the Hermitian matrix coincides
with its Hermitian-conjugated.
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Example 4.5 The matrix Z =
⎡

⎣
1 −3 − i

−3 + i 1

⎤

⎦ is Hermitian, as is easy to see.

Let us verify it.

ZH =
⎛

⎜
⎝

⎡

⎣
1 −3 − i

−3 + i 1

⎤

⎦

T
⎞

⎟
⎠

∗

=
⎛

⎝

⎡

⎣
1 −3 + i

−3 − i 1

⎤

⎦

⎞

⎠

∗
=

⎡

⎣
1 −3 − i

−3 + i 1

⎤

⎦ .

(4.17)

Recall that applying the complex conjugation operation to a real number does
not change this number. �
Note Hermitian matrices are also referred to as self-adjoint matrices. The theory of
self-adjoint matrices is widely used in modern physics [44].

4.4.2 Unitary Matrices

A square matrix U with complex elements is called unitary, of the condition
UHU = I is met. The condition of unitarity can be written in other equivalent
forms as follows:

UUH = I or UH = U−1. (4.18)

Example 4.6 Prove that the matrixZ = 1√
2

⎡

⎣
1 1

−i i

⎤

⎦ is unitary. To do this, compute

the product ZHZ:

ZHZ = 1√
2

⎛

⎝

⎡

⎣
1 1

−i i

⎤

⎦

⎞

⎠

H

1√
2

⎡

⎣
1 1

−i i

⎤

⎦ = 1√
2

⎡

⎣
1 i

1 −i

⎤

⎦
1√
2

⎡

⎣
1 1

−i i

⎤

⎦ =
⎡

⎣
1 0

0 1

⎤

⎦ .

(4.19)

Therefore, Z is a unitary matrix. �
Theorem 4.4 The determinant of a unitary matrix is a complex number whose
modulus is equal to one.

Proof See in Problem 4.51.

There is a close connection between unitary and Hermitian matrices: each unitary
matrixA is presented in the formA = exp(iB), whereB is a Hermitian matrix [26].
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4.5 Fundamentals of Quantum Computing

In quantum computers, for implementation of computing, processes of a quantum
nature are used manifested in experiments with objects of the microcosm—
elementary particles, atoms, molecules, molecular clusters, etc. The description
of such processes is based on the application of complex numbers and complex
matrices.

As is well known, the basic notion of classical information theory is bit [18]. A
classical bit takes the values 0 or 1 (and no other).

Qubit (quantum bit) is the smallest element that executes the information storage
function in a quantum computer [6, 54, 75].

Qubit is a quantum system |ψ〉 that allows two states: |0〉 and |1〉 [54]. In
accordance with the so-called bra-ket (bracket) Dirac8 notation, the symbols |0〉
or |1〉 are read as “ket 0” and “ket 1”, respectively. The brackets |. . .〉 show that ψ
is some state of the quantum system.

The fundamental difference between the classical bit and the qubit consists in
that the qubit can be in a state different from |0〉 or |1〉. The arbitrary state of the
qubit is defined by the linear combination of basic states:

|ψ〉 = u |0〉 + v |1〉 , (4.20)

where the complex coefficients u and v satisfy the following condition:

|u|2 + |v|2 = 1. (4.21)

The mathematical description of the basic states reduces to their representation
in matrix form:

|0〉 =
⎡

⎣
1

0

⎤

⎦ , |1〉 =
⎡

⎣
0

1

⎤

⎦ . (4.22)

Based on the presentation (4.22) the arbitrary state of the qubit is written as

|ψ〉 =
⎡

⎣
u

v

⎤

⎦ . (4.23)

8Paul Adrien Maurice Dirac (1902–1984), English physicist.
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A system of two qubits is set by a linear combination of basic states

|00〉 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1

0

0

0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, |01〉 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0

1

0

0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, |10〉 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0

0

1

0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, |11〉 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0

0

0

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (4.24)

Similarly are introduced the states

|00 . . .00〉 , |00 . . .01〉 , . . . , |11 . . .11〉 (4.25)

of several interacting qubits. Such quantum states are called computational basis
states or, for short, basis states.

For changing the state of a quantum system, quantum operations are used referred
to as gates (quantum gate). Thus, the gates perform logical operations with qubits.
Note that the change of the state |ψ〉 in time is also referred to as the evolution of
the quantum system.

An important step of quantum algorithms is the procedure of measurement of
state. When the qubit state is measured, it randomly passes to one of its states: |0〉
or |1〉. Therefore, the complex coefficients u and v from the qubit definition (4.20)
are associated with probability to get the value 0 or 1 when its state is measured.
According to the postulates of quantum theory, the probabilities of passing to the
states |0〉 and |1〉 are equal to |u|2 and |v|2, respectively. In this connection, the
equality (4.21) reflects the probability conservation law. After the measurement, the
qubit passes to the basic state, complying with the classical result of measurement.
Generally speaking, the probabilities of getting the result 0 and 1 are different for
different states of the quantum system.

In other words, the quantum computing is a sequence of simple form operations
with the collection of the interacting qubits. In the final step of the quantum
computing procedure, the state of the quantum system is measured and a conclusion
about the computing result is made. The measurement makes it possible to obtain,
at a macroscopic level, the information about the quantum state. The peculiarity of
the quantum measurements is their irreversibility, which radically differentiates the
quantum computing from the classical one.

A quantum system, formed by N two-level elements, has �(N) = 2N

independent states. The key point of functioning of such a system is the interaction
of separate qubits with each other. The number of states �(N) grows exponentially
with the growth of the quantum system, which allows solving practical problems of a
very high asymptotic complexity (see section “Estimation of Algorithm Efficiency”
on page 13). For example, an efficient quantum algorithm of prime factorization
is known, which is very important for cryptography. As a result, the quantum
algorithms provide exponential or polynomial acceleration in comparison with the
classical solution methods for many problems.
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Unfortunately, no full-function quantum computer has been created yet, although
many of its elements have already been built and studied at the leading world’s
laboratories [72]. The main obstacle to the development of quantum computing
is instability of a system of many qubits. The more qubits are united into an
entangled system, the more effort is required to ensure smallness of the number of
measurement errors. Nevertheless, the history of quantum computer development
demonstrates an enormous potential laid in the uniting of quantum theory and
algorithm theory.

Prior to proceeding to describing the basic quantum operations with qubits, let
us introduce the notion of the Pauli9 matrices and the Dirac matrices.

4.5.1 Pauli Matrices and Dirac Matrices

The matrices σ1, σ2 and σ3

σ1 =
⎡

⎣
0 1

1 0

⎤

⎦ , σ2 =
⎡

⎣
0 −i
i 0

⎤

⎦ , σ3 =
⎡

⎣
1 0

0 −1

⎤

⎦ (4.26)

are called the Pauli matrices. They are widely used in quantum theory for
describing half-integer spin particles, for example, an electron. (Spin is a quantum
property of an elementary particle, intrinsic angular momentum [44]. So, electrons,
protons and neutrino have half-integer spin; spin of photons and gravitons is
integer).

The following properties are valid for the Pauli matrices.

1. The Pauli matrices are Hermitian and unitary:

∀k ∈ {1, 2, 3} σk = σHk = σ−1
k . (4.27)

2. ∀k ∈ {1, 2, 3} the square of the Pauli matrix is equal to the identity matrix:

σ 2
i =

⎡

⎣
1 0

0 1

⎤

⎦ . (4.28)

3. ∀i, j ∈ {1, 2, 3} the equalities are valid

σiσj + σjσi = 2δij

⎡

⎣
1 0

0 1

⎤

⎦ . (4.29)

9Wolfgang Ernst Pauli (1900–1958), Swiss and American physicist.
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Sometimes, in linear algebra and its applications, one has to use matrices split
into rectangular parts or blocks [25, 47]. Consider the rectangular matrixA = (aij ),
where 1 � i � m, 1 � j � n. Let m = m1 +m2, n = n1 + n2.

Let us draw horizontal and vertical lines and split the matrix A into four
rectangular blocks:

A =
B12B11

B21 B22

n2n1

m1

m2

(4.30)

Thus, the matrix A is presented in the form of a block matrix, consisting of the
blocks B11, B12, B21, B22 of sizem1 ×n1,m1 ×n2,m2 ×n1,m2 ×n2, respectively.

As an example of block matrix setting, we provide the definition of the Dirac
matrices. Four Dirac matrices α1, α2, α3, β are part of the equation named after
him [4], for a half-integer spin relativistic particle, and are expressed in terms of the
Pauli matrix σk , k = 1, 2, 3, as follows:

αk =
⎡

⎣
O σk

σk O

⎤

⎦ , β =
⎡

⎣
I O

O −I

⎤

⎦ , (4.31)

whereO is a non-zero matrix of size 2 × 2, I is an identity matrix of the same size.
(Relativistic are the particles whose velocity is close to the light velocity.)

Each of the Dirac matrices has a Hermitian property and a unitary property.
Moreover, for all l,m ∈ {1, 2, 3} the equalities are valid:

αlαm + αmαl = 2δlmI, (4.32)

αlβ + βαl = O. (4.33)

Note that the size of the matrices I and O in formulae (4.32) and (4.33) is equal to
4 × 4.

4.5.2 Basic Operations with Qubits

Consider the basic operations with qubits.
The influence of a quantum gate on the qubit |ψ〉 is exerted by applying a

quantum-mechanical operator, for example, U |ψ〉 [67, 72]. The operators may
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be presented in the form of unitary matrices. In particular, the evolution of a single
qubit is described by a unitary matrix of size 2 × 2.

Successive application of the series of operators U1, U2, . . . , Un to one qubit
is equivalent to the influence of the operator W , whose matrix is a product of the
matrices U1U2 . . . Un [54]:

Un(Un−1(. . . (U2(U1 |ψ〉)) . . . )) = (U1U2 . . . Un) |ψ〉 = W |ψ〉 . (4.34)

Such operator W is called a composition of operators U1, U2,. . . , Un. As a
consequence of non-commutativity of the matrix multiplication operation in the
general case the sequence of applying the quantum gates is of importance.

Example 4.7 Let us show that the application of the operator σ3 (see defini-
tion (4.26)) to the qubit in the state |ψ〉 = u |0〉 + v |1〉 transfers it to the state
|ψ ′〉 = u |0〉 − v |1〉.
Proof Write the qubit |ψ〉 in matrix representation:

|ψ〉 =
⎡

⎣
u

v

⎤

⎦ . (4.35)

Define the action of σ3 on this quantum state:

|ψ ′〉 = σ3

⎡

⎣
u

v

⎤

⎦ =
⎡

⎣
1 0

0 −1

⎤

⎦

⎡

⎣
u

v

⎤

⎦ =
⎡

⎣
u

−v

⎤

⎦ = u
⎡

⎣
1

0

⎤

⎦ − v
⎡

⎣
0

1

⎤

⎦ = u |0〉 − v |1〉 .

(4.36)
�

Graphic representation of quantum operations in the form schemes or diagrams
(quantum circuit) is widely used.

Some quantum-mechanical operator U that transforms a single qubit (one qubit
gate) is represented as follows:

|ψin U |ψout

The sequence of steps of quantum algorithms corresponds to the direction on the
diagram from left to right.

In Table 4.1 the gates are enumerated that transform one qubit, and the matrix
representations of these gates.

Let us show the method of computing a quantum operation matrix based on its
action on the basic vectors.



188 4 Complex Numbers and Matrices

Table 4.1 One qubit operations

Name Designation Matrix

Identity transformation I I =
[

1 0

0 1

]

Pauli element X X σ1 =
[

0 1

1 0

]

Pauli element Y Y σ2 =
[

0 −i
i 0

]

Pauli element Z Z σ3 =
[

1 0

0 −1

]

Hadamard element H
1√
2

[
1 1

1 −1

]

Phase element S

[
1 0

0 i

]

Element π/8 T

[
1 0

0 eiπ/4

]

Measurement Projection on |0〉 and |1〉

Hadamard10 gate transforms the system’s state by the rule:

|0〉 → 1√
2
(|0〉 + |1〉), (4.37)

|1〉 → 1√
2
(|0〉 − |1〉). (4.38)

Therefore, the arbitrary state |ψ〉 will in this case change as follows:

|ψ〉 =
⎡

⎣
u

v

⎤

⎦ = u
⎡

⎣
1

0

⎤

⎦ + v
⎡

⎣
0

1

⎤

⎦ →

→ u
1√
2
(|0〉 + |1〉)+ v 1√

2
(|0〉 − |1〉) = 1√

2

⎡

⎣
1 1

1 −1

⎤

⎦

⎡

⎣
u

v

⎤

⎦ . (4.39)

Thus, the Hadamard element is presented by the matrix
1√
2

⎡

⎣
1 1

1 −1

⎤

⎦.

10Jacques Salomon Hadamard (1865–1963), French mathematician.
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Table 4.2 Two qubits operations

Name Designation Matrix

Exchange ×
×

⎡

⎢
⎢
⎢
⎣

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎤

⎥
⎥
⎥
⎦

Controlled NOT
•

⎡

⎢
⎢
⎢
⎣

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎤

⎥
⎥
⎥
⎦

Controlled phase element •
S

⎡

⎢
⎢
⎢
⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 i

⎤

⎥
⎥
⎥
⎦

Obviously, in order to execute complex algorithms, the qubits must interact with
each other and exchange information. In this connection, of particular importance
are the logical operations that affect two or more qubits. In Table 4.2, the most
important gates are enumerated, that transform the state of two qubits.

Example 4.8 Let us determine how the qubit |ψ〉 is transformed under the action of
two applications of the Hadamard element:

|ψ H H |ψ

Solution As shown above, in matrix representation, the Hadamard element is
described by the matrix

MH = 1√
2

⎡

⎣
1 1

1 −1

⎤

⎦ . (4.40)

Compute the matrix that corresponds to two applications of the Hadamard
element as a matrix product (see formula (4.34)):

MHMH = 1√
2

⎡

⎣
1 1

1 −1

⎤

⎦ · 1√
2

⎡

⎣
1 1

1 −1

⎤

⎦ = 1

2

⎡

⎣
2 0

0 2

⎤

⎦ =
⎡

⎣
1 0

0 1

⎤

⎦ . (4.41)

An identity matrix is obtained, therefore, two applications of the Hadamard
element bring the qubit back to its original state. �
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Example 4.9 Find a matrix representation of the following quantum circuit:

Solution The quantum circuit consists of two elements “controlled NOT”, also
referred to as “CNOT” (Controlled NOT).

The matrix of the element CNOT has the form (see Table 4.2):

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(4.42)

In view of the matrix representation of CNOT, compute how the arbitrary state
|ψ1ψ2〉 = (u1 |0〉 + v1 |1〉)(u2 |0〉 + v2 |1〉) will change after the action of the first
CNOT:

|ψ1ψ2〉 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

u1

v1

u2

v2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

→

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

u1

v1

u2

v2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

u1

v1

v2

u2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (4.43)

This is equivalent to the fact that the states of the computational basis (4.24) are
transformed in accordance with the rule:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

|00〉 → |00〉 ,
|01〉 → |01〉 ,
|10〉 → |11〉 ,
|11〉 → |10〉 .

(4.44)

Note that the next element CNOT takes the input states in the reverse order
relative to the first element. In this case, the basis state transformation rule has the
form:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

|00〉 → |00〉 ,
|01〉 → |11〉 ,
|10〉 → |10〉 ,
|11〉 → |01〉 .

(4.45)
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Therefore, the next step of the quantum system evolution is described by the matrix

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (4.46)

We perform the matrix computations:

⎡

⎢
⎢
⎢
⎢
⎢
⎣

u1

v1

v2

u2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

→

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

u1

v1

v2

u2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

u1

u2

v2

v1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (4.47)

As a result, the original state |ψ1ψ2〉 = [u1, v1, u2, v2]T passes to
[u1, u2, v2, v1]T . The matrix representation of the circuit under analysis can be
written in the form:

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (4.48)

�

Review Questions

1. What is a complex number?
2. Enumerate arithmetic operations on complex numbers.
3. How is the number conjugate of a given complex number found?
4. How can a complex number be presented geometrically?
5. Explain the differences between the following forms of complex numbers:

algebraic, trigonometric and exponential.
6. Write Euler’s formula.
7. How is the root of the n-th order of a complex number found? How many values

does it take?
8. Formulate the fundamental theorem of algebra.
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9. What is Cardano formula used for?
10. What matrices are called Hermitian? unitary?
11. Define the concepts of “bit” and “qubit”.
12. What states are referred to as the computational basis states?
13. What is gate?
14. Explain how the quantum state is measured.
15. Write Pauli and Dirac matrices.
16. Enumerate the basic operations on one qubit.
17. What quantum operations are applied to a system of two qubits?

Problems

4.1. Perform algebraic manipulations and represent the specified complex num-
ber z in the algebraic form z = Re z+ i Im z:

(1) (3 + i)(2 + 5i);
(2) (3 − i)(3 + i);
(3) (1 − i)4 + (1 + i)4;
(4) 2 − i3.

4.2. Perform algebraic manipulations and represent the specified complex num-
ber z in the algebraic form z = Re z+ i Im z:

(1) (2 − i)(−1 + i);
(2) (6 + 5i)(4 − i);
(3) (1 + 3i)2 + (2 − i)2;
(4) i5 − i3.

4.3. Given are the complex numbers z1 = 5 + i, z2 = 4 − i, z3 = −1 + 3i. Find
z1z3 − z2

2.
4.4. Given are the complex numbers z1 = 1 − 2i, z2 = −1 + i, z3 = −i. Find

z1z2(z
3
3 − z3

1).
4.5. Perform the actions:

(1) (1 + 4i)3 + (1 − 4i)3;
(2) (6 − i)4 + (6 + i)4.

4.6. Having performed the division, represent the complex number z = a + ib
c + id ,

where a, b, c, d ∈ R, c �= 0, d �= 0, in algebraic form.
4.7. Simplify the expressions:

(1)
3 + i
3 − i ;

(2)
1 + 3i

1 − 3i
;
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(3)
2 + i2
3 + i3 ;

(4)
i

1 + i + i

1 − i .
4.8. Given are the complex numbers z1 = 2 + i, z2 = z∗1, z3 = z1 + z2. Find

(z1 − z3)(z2 − z3)/z2.
4.9. Given are the complex numbers z1 = 7 + 2i, z2 = −z1, z3 = 2 − z∗1. Find

(z1z2 + z2z3 + z1z3)/z1.
4.10. Find the number conjugate with the number z, if:

(1) z = 1 − 3i

1 + 3i
;

(2) z = 2i + 1

2 + i .
4.11. Find z, if z− 3z∗ = 18 + 4i.
4.12. Find z, if 3z∗ − 7z = 10 − 10i.
4.13. Prove that for arbitrary z1, z2 ∈ C the equalities are valid:

(1) (z1 + z2)
∗ = z∗1 + z∗2;

(2) (z1z2)
∗ = z∗1z∗2.

4.14. Prove that if |z| = 1, then z−1 = z∗.
∗4.15. Prove that for any z1, z2 ∈ C triangle inequalities are valid:

abs
(|z1| − |z2|

)
� |z1 + z2| � |z1| + |z2|.

∗4.16. Calculate the sums:

(1)
10∑

k=1
ik;

(2)
49∑

k=−49
ik.

4.17. Simplify the expression im for arbitrarym ∈ Z.
4.18. Represent the complex number in a trigonometric form:

(1) 2;
(2) 3i;
(3) 4 + 3i;
(4) −i;
(5) −3 − 6i;
(6)

√
2(1 + i);

(7)
√

3(−1 + 3i);

(8)
9 + i
9 − i .
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4.19. Represent the following complex numbers in algebraic form z = Re z +
i Im z:

(1) z = cos
π

3
+ i sin

π

3
;

(2) z = 4
(

cos(−π
2
)+ i sin(−π

2
)
)

;

(3) z =
√

3

cos
3π

4
+ i sin

3π

4

;

(4) z = cos(−π
8
)+ i sin(−π

8
).

4.20. Prove that a complex number of the type u = a + ib
a − ib , where a, b ∈ R, can

be presented in the form of an exponent with purely imaginary index, i. e. in
the form

u = eiδ, δ ∈ R.

4.21. Calculate ii .
4.22. Calculate:

(1)
√

8i;
(2) 6

√
4096.

∗4.23. Prove the validity of the identities for the roots of unity ωk , where 0 � k �
n− 1 [24]:

(1) ωk+n/2 = −ωk for even n and 0 � k � n/2 − 1;

(2)
n−1∑

k=0
ωk = 0 for n > 1;

(3)
n−1∏

k=0
ωk = (−1)n−1 for all natural values n.

∗4.24. Prove the validity of the identities for the roots of unity ωk , where 0 � k �
n− 1, for all natural values n:

(1)
n−1∏

k=0
(z− ωk) = zn − 1;

(2)
n−1∑

k=0
(ωk)

d =
{

0, 1 � d � n− 1;
n, d = n.

∗4.25. Prove the validity of the identities for the n-th roots of unity ωk , where k =
0, 1, . . . , n− 1, for all values n > 2:

(1)
n−2∑

k=0
ωkωk+1 = −ωn−1;
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(2)
n−2∑

k=1

ωk−1ωk+1

ωk
= −(1 + ωn−1);

(3)
n−1∑

k,k′=0
k<k′

ωkωk′ = 0;

(4)
n−1∑

k,k′=0
k<k′

ωkωk′

ωk′−k
= n

1 − ω2
.

∗4.26. Let ωk , where 0 � k � n − 1, are the n-th roots of unity, x is an arbitrary

complex number, and x �= ωk for any k. Calculate the sum
n−1∑

k=0

ωk

x − ωk .

∗4.27. Prove that for natural n ∈ N and α �= 2πk, k ∈ Z, are valid the Lagrange’s11

identities [38]:

(a) cosα + cos 2α + · · · + cosnα = sin(nα/2)

sin (α/2)
cos[(n+ 1)α/2];

(b) sinα + sin 2α + · · · + sin nα = sin(nα/2)

sin (α/2)
sin[(n+ 1)α/2].

4.28. Prove de Moivre’s formula for natural values of the exponent n, using the
mathematical induction method.

∗4.29. Using de Moivre’s formula, express cos 3ϕ and sin 3ϕ in terms of cosϕ and
sin ϕ.

∗4.30. Express cos 4ϕ and sin 4ϕ in terms of cosϕ and sin ϕ.
∗4.31. There exist relations that express polynomial’s coefficients by its roots

(Viète12 formulae). If α1, α2, . . . , αn are roots of the polynomial p(z) =
xn + a1x

n−1 + · · · + an, and each root is taken the number of times
corresponding to its multiplicity, then the following equalities are valid:

α1 + α2 + · · · + αn = −a1,

α1α2 + α2α3 + · · · + α1αn + α2α3 + · · · + αn−1αn = a2,

α1α2α3 + α1α2α4 + · · · + αn−2αn−1αn = −a3,

. . .

α1α2 . . . αn−1 + α1α2αn−2αn + · · · + α2α3 . . . αn = (−1)n−1an−1,

α1α2 . . . αn = (−1)nan.

Prove validity of Viète formulae.

11Joseph-Louis Lagrange (1736–1813), French mathematician, mechanic and astronomer.
12François Viète, seigneur de la Bigotière (1540–1603), French mathematician.
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4.32. Let z1, z2 be the roots of the quadratic trinomial p(z) = z2 +uz+v. Express
the following values by the coefficients u and v:

(1) z2
1 + z2

2;

(2) z−2
1 + z−2

2 .

4.33. Let z1, z2 be the roots of the quadratic trinomial p(z) = z2 +uz+v. Express
the following values by the coefficients u and v:

(1) z4
1 + z4

2;
(2) z−4

1 + z−4
2 .

4.34. Find the sum and the product of all roots for each equation:

(1) z3 + 3z2 + 3z+ 1 = 0;
(2) z4 + 10z2 + 20 = 0.

4.35. Find the sum and the product of all roots for each equation:

(1) z100 − 100z99 + z98 = 0;

(2) z5 + z4 + 1 = 0.

∗4.36. Compute the determinant

� =

∣
∣
∣
∣
∣
∣
∣
∣

z1 z2 z3

z3 z1 z2

z2 z3 z1

∣
∣
∣
∣
∣
∣
∣
∣

,

where z1, z2 and z3 are the roots of the cubic equation z3 + αz+ β = 0 with
complex coefficients α, β ∈ C.

∗4.37. Solve the equation z3 − 3z+ 2 = 0, using the Cardano formula.
∗4.38. Solve the equation 2z3 − 13z2 − 17z+ 70 = 0, using Cardano formula.
4.39. Solve the systems of linear equations using Cramer’s rule:

(a)

⎧
⎪⎪⎨

⎪⎪⎩

(1 + i)x1 + (−2 + 2i)x2 + (1 + i)x3 = 1 − i,
−x1 + (3 − i)x2 + (2 + i)x3 = −7 + 2i,

(−2 − i)x1 + (−1 − i)x3 = 3 − 5i;

(b)

⎧
⎪⎪⎨

⎪⎪⎩

(−2 + 2i)x1 + (2 + i)x2 + (2 + 2i)x3 = 7i,

(−1 + 2i)x1 + (−2 − i)x2 + 2ix3 = −8 + 2i,

(2 + 2i)x1 + 2ix2 + (1 − i)x3 = 2 + 4i;
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(c)

⎧
⎪⎪⎨

⎪⎪⎩

(−1 + i)x3 = 1 − 3i,

(−1 + i)x1 − x2 + (−1 − i)x3 = 3 − 2i,

x1 + (4 + i)x2 + (3 − i)x3 = 4 + 8i;

(d)

⎧
⎪⎪⎨

⎪⎪⎩

(4 + i)x1 − ix2 + 3x3 = −i,
3x1 + 4x2 + (1 − i)x3 = −4 + 9i,

ix1 + 3x2 + x3 = −5 + 6i.

4.40. Solve the systems of linear equations using Gaussian elimination:

(a)

⎧
⎪⎪⎨

⎪⎪⎩

(2 + i)x1 + (1 − i)x2 + (1 − i)x3 = 8i,

(1 − i)x1 + (−1 + i)x2 + ix3 = −2,

−ix1 + (3 + i)x2 + (−1 − i)x3 = 8 + 4i;

(b)

⎧
⎪⎪⎨

⎪⎪⎩

(4 − i)x1 + (4 − i)x2 − ix3 = 2 + 9i,

5x1 + 3x2 − ix3 = 5 + 10i,

2x1 + (2 + i)x2 + (1 + i)x3 = 3 + 5i;

(c)

⎧
⎪⎪⎨

⎪⎪⎩

(1 + 2i)x1 + (3 + 2i)x2 + (−2 + 2i)x3 = 11 + i,
(4 − i)x1 + (−1 + 2i)x2 − x3 = 8 + 3i,

(1 + i)x1 + 2ix2 = 4 + 8i;

(d)

⎧
⎪⎪⎨

⎪⎪⎩

5x1 + (−2 − i)x2 + (−3 − i)x3 = −12 − i,
ix1 + (1 + 2i)x2 + (2 − i)x3 = −3 + i,

2ix2 + x3 = −4 + i.
∗4.41. Solve the systems of linear equations relative to five variables using Gaussian

elimination:

(a)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4 − i)x1 + ix2 + (−1 + i)x3 + (4 + 2i)x4 + (−3 + i)x5 = −5 − 9i,

2x1 − x2 − 3x3 + (2 − i)x4 + (−2 − i)x5 = 3 − 5i,

(1 − i)x1 + (1 − i)x2 + (2 − i)x3 + (−2 − i)x4 + 3x5 = 10 + 11i,

(1 + 2i)x1 − 2x2 + (2 + 2i)x3 − 3x4 + (−2 + i)x5 = −2,

(−3 + 2i)x1 + x2 + (−2 + i)x3 − ix4 + 2ix5 = −11 + 3i;
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(b)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−3x1 + (−3 − i)x2 + (2 − i)x3 + (−2 + i)x4 + ix5 = −2 − i,
−x1 + ix2 + (−3 + 2i)x3 + (1 + i)x4 + (4 + 2i)x5 = 9 + 12i,

2ix1 + (2 − i)x2 + 3x3 + 2x4 + (−2 − i)x5 = −9 − 5i,

(−3 − i)x1 + (−3 − i)x2 + ix3 + (1 + i)x4 + (−1 + i)x5 = 4,

(2 + i)x1 + 2x2 + (1 + i)x3+(3 + 2i)x5 = −3 + 10i.
4.42. Which of the following matrices are Hermitian?

(1)

⎡

⎣
1 2 + 10i

2 − 10i 3

⎤

⎦;

(2)
1√
2

⎡

⎣
1 −1

−2 −2

⎤

⎦;

(3)
1√
6

⎡

⎣
2 + 2i 2i

−2i −2 + 2i

⎤

⎦;

(4)

⎡

⎣
3 −i
−i 3

⎤

⎦;

(5)
1√
10

⎡

⎢
⎢
⎣

1 0 2

0 3 0

2 0 −i

⎤

⎥
⎥
⎦;

(6)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1

1 i −1 −i
1 −1 1 −1

1 −i −1 i

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

4.43. What condition is imposed on the diagonal elements of the Hermitian
matrix?

4.44. Show that if Z1 and Z2 are complex matrices of the same order, then the

matrix
1

2
(Z1Z2 + Z2Z1) is Hermitian.

4.45. Anti-Hermitian or skew-Hermitian matrix is the matrix A, for which the
relationAH = −A is fulfilled. In other words, Hermitian conjugate of such a
matrix results in multiplying all its elements by (−1). Which of the following
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matrices are anti-Hermitian?

(1)
1√
2

⎡

⎣
0 2 + i

−2 + i i

⎤

⎦;

(2)

⎡

⎣
i −2

3 −2i

⎤

⎦;

(3)
1

3

⎡

⎣
2 + i 2i

−2i −2 + i

⎤

⎦;

(4)
1

5

⎡

⎢
⎢
⎣

1 5 0

−5 2i −5

0 5 3i

⎤

⎥
⎥
⎦;

(5)
1

5

⎡

⎢
⎢
⎣

−2i 1 0

−1 0 −3

0 3 2i

⎤

⎥
⎥
⎦;

(6)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

i i i i

i i −i −i
i −i i −i
i −i −i i

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

4.46. What condition is imposed on the diagonal elements of an anti-Hermitian
matrix?

4.47. Which of the following matrices are unitary?

(1)

⎡

⎣
1 2 3

3 2 1

⎤

⎦;

(2)
1√
2

⎡

⎣
1 −i
−i 1

⎤

⎦;

(3)
1

3

⎡

⎣
2 + i 2i

−2i −2 + i

⎤

⎦;

(4)
1√
10

⎡

⎣
3 −i
−i 3

⎤

⎦;
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(5)
1√
10

⎡

⎢
⎢
⎣

1 0 0

0 e2i 0

0 0 e4i

⎤

⎥
⎥
⎦;

(6)
1

2

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1

1 i −1 −i
1 −1 1 −1

1 −i −1 i

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

4.48. What condition must satisfy the complex numbers u1 and u2 and the real

number ϕ, in order for the matrix

⎡

⎣
u1 u2

−eiϕu∗
2 e

iϕu∗
1

⎤

⎦ to be unitary?

4.49. At the examination in linear algebra the student says that for any square
matrix A the equality ln(expA) = A is valid. Is the student right?

∗4.50. Prove the identity det(eA) = etrA, valid for the arbitrary square matrix A
with complex coefficients.

4.51. Prove the Theorem 4.4 (see page 182): the determinant of a unitary matrix is
a complex number, whose modulus is equal to one.

4.52. Compute the commutators of the Pauli matrices [σ1, σ2], [σ2, σ3] and
[σ3, σ1].

4.53. Compute the product of the Pauli matrices σ1σ2σ3.
∗4.54. Prove the generalization of Euler’s identity for Pauli matrices σ1, σ2 and σ3:

exp(iσkϕ) = I cosϕ + iσk sinϕ for k = 1, 2, 3, (4.49)

where I =
⎡

⎣
1 0

0 1

⎤

⎦ is the identity matrix of the second order.

4.55. What is the square of the Dirac matrices β?
4.56. Compute the product of the Dirac matrices α1α2α3β.
4.57. Compute the result of the actions of the quantum circuit

X H S H

on a qubit that is originally in the state |0〉.
4.58. Compute the result of the actions of the quantum circuit

Y H Z T

on a qubit that is originally in the state |1〉.
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4.59. Compute the result of the actions of the quantum circuit

T H S H S

on a qubit that is originally in the state |ψ〉 = u |0〉 + v |1〉, where u, v ∈ C.
4.60. Show that the quantum circuit

transfers the state |ψ1ψ2〉 to the state |ψ2ψ1〉.

Answers and Solutions

4.1 Solution.

(1) Operations with complex numbers should be performed similarly to the respec-
tive operations with algebraic polynomials, using the property i2 = −1:

(3 + i)(2 + 5i) = 3 · 2 + 3 · (5i)+ i · 2 + i · (5i)
= 6 + 15i + 2i + 5i2 = 6 + 17i + 5(−1) = 1 + 17i;

(2) (3 − i)(3 + i) = 32 − i2 = 10;
(3) (1 − i)4 + (1 + i)4 = (1 − 4i + 6i2 − 4i3 + i4)+ (1 + 4i + 6i2 + 4i3 + i4)

= 2
(
1 + 6i2 + (i2)2) = 2

(
1 + 6(−1)+ (−1)2

) = −8;
(4) 2 − i3 = 2 − i · i2 = 2 + i.
4.2 Answer:

(1) −1 + 3i;
(2) 29 + 14i;
(3) −5 + 2i;
(4) 2i.

4.3 Solution.
We perform algebraic transformations, taking into account that i2 = −1:
z1z3 − z2

2 = (5 + i)(−1 + 3i)− (4 − i)2 = 5 · (−1)+ 5 · (3i)+ i · (−1)+ i ·
(3i)− (16 − 8i + i2) = −8 + 14i − 15 + 8i = −23 + 22i.
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4.4 Solution.
We perform algebraic manipulations: z1z2 = 1 + 3i, z3

3 = i, z3
1 = −11 + 2i,

z3
3 − z3

1 = 11 − i. As a result z1z2(z
3
3 − z3

1) = 14 + 32i.

4.5 Solution.

(1) We perform algebraic transformations:

(1 + 4i)3 + (1 − 4i)3

= (1 + 4i + 1 − 4i)((1 + 4i)2 − (1 − 4i)(1 + 4i)+ (1 − 4i)2)

= 2(1 + 8i − 16 − 17 + 1 − 8i − 16) = −47 · 2 = −94.

(2) Use the Newton13 binomial formula:

(a + b)n =
n∑

k=0

C(n, k)an−kbk,

valid for all a, b ∈ C and natural n:

(6 − i)4 + (6 + i)4 = 64 − 4 · 63 · i + 6 · 62 · (−1)− 4 · 6i · (−1) + (−1) · (−1)

+ 64 + 4 · 63 · i + 6 · 62 · (−1)+ 4 · 6i · (−1)+ (−1) · (−1) = 2162.

4.6 Solution.
Denote z1 = a+ ib, z2 = c+ id . The fraction of the form

z1

z2
, where z1, z2 ∈ C,

can be conveniently transformed by multiplying it by 1 ≡ z∗2
z∗2

:

z1

z2
= z1

z2
· 1 = z1

z2
· z

∗
2

z∗2
= z1z

∗
2

z2z
∗
2

= z1z
∗
2

|z2|2 .

This is why the result of the division of two complex numbers z1/z2, where
z2 �= 0, will be the number

z1

z2
= ac+ bd
c2 + d2

+ i bc− ad
c2 + d2

.

13Isaac Newton (1643–1727), English mathematician, physicist, mechanic and astronomer.
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4.7 Solution.
Using the hint offered in the previous problem (i. e. z1/z2 = (z1z

∗
2)/(z2z

∗
2) =

(z1z
∗
2)/|z2|2), we obtain

(1)
3 + i
3 − i = (3 + i)(3 + i)

9 − i2 = 1

5
(4 + 3i);

(2)
1 + 3i

1 − 3i
= (1 + 3i)2

1 − 9i2
= 1

5
(−4 + 3i);

(3)
2 + i2
3 + i3 = 2 − 1

3 + i2 · i = 1

10
(3 + i);

(4)
i

1 + i + i

1 − i = i(1 − i)+ i(1 + i)
(1 + i)(1 − i) = i.

4.8 Solution.
Find z2 and z3: z2 = 2 − i, z3 = (2 + i) + (2 − i) = 4. After this, we obtain

(z1−z3)(z2−z3)/z2 = (2+i−4)(2−i−4)/(2−i) = −(2−i)(−2−i)/(2−i) = 2+i.
4.9 Solution.

Find z1 and z2: z2 = −7 − 2i, z3 = −5 + 2i.
Then, z1z2 = −45−28i, z2z3 = 39−4i, z1z3 = −39+4i, z1z2 +z2z3 +z1z3 =

−45 − 28i.
The final answer is (z1z2 + z2z3 + z1z3)/z1 = −7 − 2i.

4.10 Answer:

(1) z = 1

5
(−4 + 3i);

(2) z = 1

5
(2 − 9i).

4.11 Solution.
Let z = a+ ib, then z−3z∗ = (a+ ib)−3(a− ib)= −2a+4ib. Since complex

numbers are equal if and only if their real and imaginary parts are equal, we obtain

{
−2a = 18,

4b = 4; ⇔
{
a = −9,

b = 1,

whence z = −9 + i.
4.12 Answer: z = −5

2
+ i.

4.13 Proof.
Let z1 = x1 + iy1, z2 = x2 + iy2, where x1, x2, y1, y2 ∈ R.

(1) Express the left side of the equality by x1, x2, y1 and y2:

(z1 + z2)
∗ = [(x1 + x2)+ i(y1 + y2)]∗ = (x1 + x2)− i(y1 + y2).
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Now transform its right side

z∗1 + z∗2 = (x1 − iy1)+ (x2 − iy2) = (x1 + x2)− i(y1 + y2).

Therefore ∀z1, z2 ∈ C (z1 + z2)
∗ = z∗1 + z∗2.

(2) The left side of the equality

(z1z2)
∗ = [(x1 + iy1)(x2 + iy2)]∗ = (x1x2 − y1y2)− i(x1y2 + x2y1).

The right side coincides with the left one:

z∗1z∗2 = (x1 − iy1)(x2 − iy2) = (x1x2 − y1y2)− i(x1y2 + x2y1) = (z1z2)
∗.

4.14 Proof.
Take the number with the modulus equal to one in exponential form: z = eiϕ .

After algebraic transformations

z−1 = (eiϕ)−1 = e−iϕ = (eiϕ)∗ = z∗

we obtain the equality z−1 = z∗.

4.15 Hint.
Use the geometric interpretation of the numbers z1 and z2. The length of a side

of an arbitrary triangle is no greater than the sum of the lengths of the two other
sides, and is no less than the absolute value of their difference.

4.16 Solution.
Use the formula for the geometric progression sum:

n∑

k=1

qk = q + · · · + qn = qn+1 − q
q − 1

.

(1)
10∑

k=1
ik = i11 − i

i − 1
= −i − i
i − 1

= −2i(−i − 1)

(i − 1)(−i − 1)
= −1 + i.

(2)
49∑

k=−49
ik = 1

i49

99∑

k=−99
i(k+49).

In the last sum, replace the summation index k′ = k + 49. Then the sought sum
takes the following form:

49∑

k=−49

ik = i−49
98∑

k′=0

ik
′ = i−48−1 i

99 − 1

i − 1
= −i · i

99 − 1

i − 1

= −i · i
96 · i3 − 1

i − 1
= −i · i

3 − 1

i − 1
= − i

4 − i
i − 1

= 1 − i
i − 1

= 1.
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4.17 Solution.
The imaginary unit has the property i4 = 1. Consider four cases depending on

the remainder of division m by 4:

(1) m = 4k, k ∈ Z,

im = i4k = (i4)k = 1k = 1;

(2) m = 4k + 1, k ∈ Z,

im = i4k+1 = i4k · i = 1 · i = i;

(3) m = 4k + 2, k ∈ Z,

im = i4k+2 = i4k · i2 = i2 = −1;

(4) m = 4k + 3, k ∈ Z,

im = i4k+3 = i4k · i3 = −i.

Thus, we finally obtain

im =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if m = 4k, k ∈ Z;
i, if m = 4k + 1, k ∈ Z;

−1, if m = 4k + 2, k ∈ Z;
−i, if m = 4k + 3, k ∈ Z.

4.18 Solution.

(1) For transition to a trigonometric form of the complex number, we must
determine the modulus ρ = |z| and the argument ϕ = arg z. Using the formulae
for ρ and ϕ, we obtain

ρ =
√

x2 + y2 =
√

22 + 02 = 2,

ϕ = arctan
y

x
+ 2πk = 0 + 2πk = 2πk, k ∈ Z,

this is why the trigonometric form of the number 2 has the form

2(cos(2πk)+ i sin(2πk)), where k ∈ Z.
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(2) ρ = √
0 + 32 = 3, ϕ = π

2
sgn(3) + 2πk = π

2
+ 2πk, therefore 3i =

3
(

cos
(π

2
+ 2πk

)
+ i sin

(π

2
+ 2πk

))
, k ∈ Z.

(3) ρ = √
16 + 9 = 5, ϕ = arctan

(
3

4
+ 2πk

)

,

4 + 3i = 5

(

cos
(

arctan
3

4
+ 2πk

) + i sin
(

arctan
3

4
+ 2πk

)
)

, k ∈ Z.

(4) ρ = 1, ϕ = π

2
sgn(−1)+ 2πk = −π

2
+ 2πk;

−i = cos(π(2k − 1/2))+ i sin(π(2k − 1/2)), k ∈ Z.
(5) ρ = √

9 + 36 = 3
√

5, ϕ = arctan 2 − π + 2πk,
−3 − 6i = 3

√
5(cos(arctan 2 + π(2k − 1))+ i sin(arctan 2 + π(2k − 1))),

k ∈ Z.
(6) ρ = 2, ϕ = π/4 + 2πk,√

2 + √
2i = 2(cos(π/4 + 2πk)+ i sin(π/4 + 2πk)), k ∈ Z.

(7) ρ = √
30, ϕ = arctan(−3)+ π + 2πk,

−√
3+3

√
3i = √

30(cos(π−arctan 3+2πk))+ i sin(π−arctan 3+2πk)),
k ∈ Z.

(8) Multiply the numerator and the denominator of the fraction by the value (9 + i)
and transform the obtained expression:

9 + i
9 − i = (9 + i)(9 + i)

(9 − i)(9 − i) = 80 + 18i

82
= 40

41
− 9

41
i,

ρ =
√(40

41

)2 +
( 9

41

)2 = 1, ϕ = − arctan
9

41
+ 2πk. We finally obtain

9 + i
9 − i = cos

(
2πk − arctan

9

40

)
+ i sin

(
2πk − arctan

9

40

)
, k ∈ Z.

4.19 Solution.

(1) cos
π

3
+ i sin

π

3
= 1

2
+

√
3

2
i;

(2) 4
(

cos
(− π

2

) + i sin
(−π

2

)) = −4i;

(3)

√
3

cos
3π

4
+ i sin

3π

4

= −
√

6

2
i −

√
6

2
;

(4) cos
(−π

8

) + i sin
(−π

8

) =
√

2 + √
2

2
−

√
2 − √

2

2
i.
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4.20 Proof.
Turn to the exponential form of the number u. Let a + ib = ρeiϕ , then a − ib =

ρe−iϕ and

u = a + ib
a − ib = eiϕ

e−iϕ
= eiϕ · eiϕ = e2iϕ.

Therefore u = eiδ, where δ = 2ϕ.

4.21 Solution.
The exponential notation of the imaginary unit has the form i = eiπ/2+2πik,

where k ∈ Z. Having written the imaginary unit in the base in exponential form and
using the identity (ea)b = eab, we obtain

ii = (eiπ/2+2πik)i = ei2(π/2+2πk) = e−π/2+2πk′, where k, k′ ∈ Z.

As is seen from the considered example, the exponential function is a multifunc-
tion on the set of complex numbers C.

4.22 Answer:

(1)
√

8i = ±2(1 + i);
(2) 6

√
4096 ∈ {±4,±2(1 ± i√3),±2(1 ∓ i√3)}.

4.23 Proof.

(1) Transform the exponential notation of the number ωk+n/2:

ωk+n/2 = e 2πi(k+n/2)
n = e 2πik

n eπi = ωkeπi.

Using the equality eπi = −1, we obtain ωk+n/2 = −ωk for even n and k =
0, 1, . . . , n/2 − 1.

(2) The values ωk form a geometric progression, whose denominator is ω1 =
e2πi/n. Using the formula for the geometric progression sum 1 + q + q2 +
· · · + qn = 1 − qn+1

1 − q for |q| < 1, we obtain

n−1∑

k=0

ωk =
n−1∑

k=0

e2πik/n = (e2πi/n)n − 1

e2πi/n − 1
= 0.

(3)

n−1∏

k=0

ωk =
n−1∏

k=0

e2πik/n = e
n−1∑

k=0
2πik/n

= e
(2πi

n−1∑

k=0
k)/n

.
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The sum in the exponent is
n−1∑

k=0
k = n(n− 1)

2
, and therefore,

n−1∏

k=0

ωk = eπi(n−1) = cosπ(n− 1)+ i sinπ(n− 1) = (−1)n−1.

4.26 Answer:
n

xn − 1
.

4.27 Proof.

Consider the sum Z =
n∑

k=1
eiαk. It is easy to see that the following relations are

valid:

cosα + cos 2α + · · · + cosnα = ReZ,
sin α + sin 2α + · · · + sin nα = ImZ .

Calculate Z , using the formula for the geometric progression sum:

Z =
n∑

k=1

eiαk = eiα(n+1) − eiα
eiα − 1

.

Simplify the obtained expression, multiplying the fraction by 1 = e−iα/2

e−iα/2
and

performing simple transformations:

Z = eiα(n+1) − eiα
eiα − 1

· e
−iα/2

e−iα/2
= eiα(n+1/2) − eiα/2

eiα/2 − e−iα/2 .

Denominator of the obtained fraction is eiα/2 − e−iα/2 = 2i sin α/2. Rewrite the
exponents in the numerator, using Euler’s formula:

Z = 1

2i sinα/2

[
cos[(n+ 1/2)α] + i sin[(n+ 1/2)α] − (cosα/2 + i sin α/2)

]

= sin[(n+ 1/2)α] − sin α/2

2 sinα/2
+ cos[(n+ 1/2)α] − cosα/2

2i sinα/2
.

Further, use the known trigonometric formulae (see Appendix B “Trigonometric
Formulae”, formulae (B.16) and (B.18))

sin a − sin b = 2 sin
a − b

2
cos

a + b
2
,

cos a − cos b = −2 sin
a − b

2
sin
a + b

2
.
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We obtain

Z = sin(nα/2)

sin (α/2)
cos[(n+ 1)α/2] + i sin(nα/2)

sin (α/2)
sin[(n+ 1)α/2],

whence directly follow the Lagrange’s identities.

4.28 Proof.
Denote the predicate “(cosϕ+ i sin ϕ)n = cos nϕ+ i sin nϕ” by P(n) and prove

the statement ∀nP(n) by the mathematical induction method.
B a s i s s t e p
For n = 1 we obtain the valid identity (cosϕ + i sinϕ)1 = cosϕ + i sin ϕ,

therefore P(1) is true.
I n d u c t i v e s t e p
Suppose that P(k), k ∈ N is true. Prove the truth of the proposition P(k + 1).

We need to prove that

(cosϕ + i sin ϕ)k+1 = cos (k + 1)ϕ + i sin (k + 1)ϕ.

Consider the expression (cosϕ + i sin ϕ)k+1 and represent it in the form

(cosϕ + i sinϕ)k+1 = (cosϕ + i sin ϕ)k · (cosϕ + i sin ϕ).

According to the inductive supposition, the first factor is

(cosϕ + i sinϕ)k = cos kϕ + i sin kϕ.

Then

(cosϕ + i sin ϕ)k+1 = (cos kϕ + i sin kϕ) · (cosϕ + i sin ϕ).

Open the brackets in the obtained expression, using the known identities for
trigonometric functions, provided in Appendix B, formulae (B.11) and (B.9):

cos(a + b) = cos a cos b − sin a sin b,

sin(a + b) = sin a cos b + cos a sin b,

assuming a = kϕ, b = ϕ. We obtain

(cosϕ + i sin ϕ)k+1 = (cos kϕ cosϕ − sin kϕ sin ϕ)
︸ ︷︷ ︸

cos (k+1)ϕ

+ i (sin kϕ cosϕ + cos kϕ sin ϕ)
︸ ︷︷ ︸

sin (k+1)ϕ

.
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Hence, according to the mathematical induction principle, de Moivre’s formula

(cosϕ + i sin ϕ)n = cos nϕ + i sinnϕ

is valid for all natural values n ∈ N.

4.29 Solution.
Consider a more general case of the problem statement and express cos nϕ and

sin nϕ in terms and cosine and sine of the angle ϕ.
For this, note that in the left side of de Moivre’s formula (4.1) stands an

expression that can be expanded by the Newton binomial formula (see page 192).
Thus, represent the left side in the form:

(cosϕ + i sin ϕ)n =
n∑

j=0

C(n, j)(cosn−j ϕ)(i sin ϕ)j

=
n∑

j=0

ij C(n, j) cosn−j ϕ sinjϕ.

It is convenient to partition the sum into two sums—by even (j = 2k) and odd
(j = 2k + 1) values of j , and introduce a new summation variable k ∈ N:

(cosϕ + i sin ϕ)n

=
�n/2	∑

k=0

i2kC(n, 2k) cosn−2k ϕ sin2k ϕ

+
�(n−1)/2	∑

k=0

i2k+1C(n, 2k + 1) cosn−2k−1 ϕ sin2k+1 ϕ

=
�n/2	∑

k=0

(−1)kC(n, 2k) cosn−2k ϕ sin2k ϕ

+ i
�(n−1)/2	∑

k=0

(−1)kC(n, 2k + 1) cosn−2k−1 ϕ sin2k+1 ϕ.

Now we only have to take advantage of the fact that cos nϕ = Re (cosϕ +
i sin ϕ)n,
sin nϕ = Im (cosϕ+ i sin ϕ)n. We obtain formulae for cosine and sine of a multiple
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argument:

cosnϕ =
�n/2	∑

k=0

(−1)kC(n, 2k) cosn−2k ϕ sin2k ϕ,

sinnϕ =
�(n−1)/2	∑

k=0

(−1)kC(n, 2k + 1) cosn−2k−1 ϕ sin2k+1 ϕ.

For n = 3 the obtained formulae take the form

cos 3ϕ =
1∑

k=0

(−1)kC(3, 2k) cos3−2k ϕ sin2k ϕ = cos3 ϕ − 3 cosϕ sin2 ϕ,

sin 3ϕ =
1∑

k=0

(−1)kC(3, 2k + 1) cos3−2k−1 ϕ sin2k+1 ϕ = 3 cos2 ϕ sin ϕ − sin3 ϕ.

4.30 Answer:

cos 4ϕ =
2∑

k=0

(−1)kC(4, 2k) cos4−2k ϕ sin2k ϕ

= cos4 ϕ − 6 cos2 ϕ sin2 ϕ + sin4 ϕ,

sin 4ϕ =
1∑

k=0

(−1)kC(4, 2k + 1) cos4−2k−1 ϕ sin2k+1 ϕ

= 4 cos3 ϕ sin ϕ − 4 cosϕ sin3 ϕ.

4.31 Hint.
Multiply the brackets in the right side of factorization of the polynomialp(z) and

compare the obtained coefficients at the same powers with the coefficients p(z).

4.32 Solution.

(1) Represent z2
1 + z2

2 in the form

z2
1 + z2

2 = (z1 + z2)
2 − 2z1z2

and express the sum and the product of the roots p(z) by Viète formulae, proved
in the previous problem:

z2
1 + z2

2 = (−u)2 − 2v = u2 − 2v.
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(2)
1

z2
1

+ 1

z2
2

= z2
1 + z2

2

z2
1z

2
2

= u2 − 2v

v2
.

4.33 Answer:

(1) z4
1 + z4

2 = (u2 − 2v)2 − 2v2;

(2)
1

z4
1

+ 1

z4
2

= (u2 − 2v)2 − 2v2

v4 .

4.34 Answer:

(1)
3∑

k=1
zk = −3,

3∏

k=1
zk = −1;

(2)
4∑

k=1
zk = 0,

4∏

k=1
zk = 20.

4.35 Answer:

(1)
4∑

k=1
zk = 100,

4∏

k=1
zk = 0;

(2)
5∑

k=1
zk = −1,

5∏

k=1
zk = −1.

4.36 Solution.
In the determinant, add to the first row the second and the third rows:

� =

∣
∣
∣
∣
∣
∣
∣
∣

z1 + z2 + z3 z1 + z2 + z3 z1 + z2 + z3

z3 z1 z2

z2 z3 z1

∣
∣
∣
∣
∣
∣
∣
∣

.

According to Viète formulae (see Problem 4.31), the sum of all roots of z1 + z2 + z3
is equal to the coefficient of the quadratic term z2, taken with reversed sign. For
the equation z3 + αz + β = 0 we have z1 + z2 + z3 = 0, and, therefore, in the
determinant� the first row entirely consists of zero elements. It is clear that such a
determinant is equal to zero.

4.37 Answer: z1 = −2, z2 = z3 = 1.

4.38 Answer: z1 = 7, z2 = −5

2
, z3 = 2.

4.39 Answer:

(a) [x1, x2, x3]T = [2i,−2, i]T ;
(b) [x1, x2, x3]T = [i, 1, 2 + 2i]T ;
(c) [x1, x2, x3]T = [−3, 3,−2 + i]T ;
(d) [x1, x2, x3]T = [1,−1 + 2i,−2 − i]T .
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4.40 Answer:

(a) [x1, x2, x3]T = [2i, 1 + i,−2 + 2i]T ;
(b) [x1, x2, x3]T = [3 + 2i,−3 + i, 3 − i]T ;
(c) [x1, x2, x3]T = [2, 3 − i,−1 + 2i]T ;
(d) [x1, x2, x3]T = [−2 + 2i, 3i, 2 + i]T .

4.41 Answer:

(a) [x1, x2, x3, x4, x5]T = [2 + i, i,−1 + i,−2, 1 + 2i]T ;
(b) [x1, x2, x3, x4, x5]T = [i,−2,−1 − i, 1 + i, 2 + 2i]T .

4.42 Answer: Hermitian are matrices 1) and 2).

4.43 Answer: diagonal elements of Hermitian matrix are valid.

4.44 Proof.

Introduce the notation W = 1

2
(Z1Z2 + Z2Z1) and find Hermitian conjugate

matrix relative toW :

WH =
(

1

2
(Z1Z2 + Z2Z1)

)H
=1

2
((Z1Z2)

H + (Z2Z1)
H )=1

2
(Z2Z1 +Z1Z2)=W.

It is proved thatW is a Hermitian matrix.

4.45 Answer: anti-Hermitian are matrices (1), (5), (6).

4.46 Answer: diagonal elements of anti-Hermitian matrix are purely imaginary
values.

4.47 Answer: unitary are matrices (2), (3), (4), (6).

4.48 Answer: |u1|2 + |u2|2 = 1, ϕ ∈ R is any real number.

4.49 Solution.
In this case, the student is wrong, since for A = 2πiI , where I is the identity

matrix, we have exp(A) = e2πiI = I , therefore, ln(exp(A)) = O �= A.

4.50 Hint.
For the diagonal matrix det(eA) = eλ1eλ2 . . . eλn = etrA. As for the non-diagonal

matrix, we either diagonalize it, if possible, or, with any predefined accuracy,
approximate it by a sequence of matrices, each being diagonalizable

4.51 Proof.
Let U be an arbitrary unitary matrix. Using property (6) of Hermitian conjugate

on page 181, represent the modulus of the determinant U in the following form:

| detU | = √
(detU)(detU)∗ =

√
(detU)(detUH).
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Since the product of the determinants of matrices is equal to the determinant of their
product, ∀A,B (detA · detB = det(AB)), then

| detU | =
√

det(UUH) = √
det I = 1.

Thus, the modulus of the determinant of the unitary matrix is equal to one.

4.52 Answer: [σ1, σ2] = 2iσ3, [σ2, σ3] = 2iσ1, [σ3, σ1] = 2iσ2.

4.53 Answer: σ1σ2σ3 = iI , where I is the identity matrix of size 2 × 2.

4.55 Answer: β2 = I , where I is an identity matrix of size 4 × 4.

4.56 Answer:

α1α2α3β =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 −i 0

0 0 0 −i
i 0 0 0

0 i 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

4.57 Solution.

The state of the qubit |0〉 is described by the matrix

⎡

⎣
1

0

⎤

⎦. Taking into account

the matrix representation of the quantum elements H , S and X from Table 4.1, we
obtain

|ψ〉 → |ψ ′〉 = 1√
2

⎡

⎣
1 1

1 −1

⎤

⎦

⎡

⎣
1 0

0 i

⎤

⎦ 1√
2

⎡

⎣
1 1

1 −1

⎤

⎦

⎡

⎣
0 1

1 0

⎤

⎦

⎡

⎣
1

0

⎤

⎦ =

⎡

⎢
⎢
⎣

1 − i
2

1 + i
2

⎤

⎥
⎥
⎦ .

Thus, as a result of the quantum circuit’s action on a qubit in the state |ψ〉 = |0〉,
it passes to the state

|ψ ′〉 = 1 − i
2

|0〉 + 1 + i
2

|1〉 .

4.58 Answer: as a result of the quantum circuit’s action on a qubit in the state |ψ〉 =
|1〉, it passes to the state

|ψ ′〉 =
(

− i√
2

)
|0〉 −

(1 − i
2

)
|1〉 .
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4.59 Answer: a qubit in the state |ψ〉 = u |0〉 + v |1〉, passes to the state |ψ ′〉 =
(1

2
(1 + i)u+ 1√

2
v
)

|0〉 +
(1

2
(1 + i)u− 1√

2
v
)

|1〉.



Chapter 5
Vector Spaces

By n-dimensional arithmetic vector, we will mean an ordered set of n real
numbers.

The numbers xi (i = 1, 2, . . . , n) are called coordinates or components of the
vector x. They are written either in the row: x = (x1, x2, . . . , xn), or in the column:

x =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x1

x2
...

xn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (5.1)

For designation of vectors and distinguishing them from scalar values, bold font
is used, for example, a, b, c, etc.1

The vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) are called equal
vectors, if the equalities x1 = y1, x2 = y2, . . . , xn = yn are valid.

Sum of the vectors x and y is the vector

x + y = (x1 + y1, x2 + y2, . . . , xn + yn). (5.2)

Product of the number α and a vector x is the vector

αx = (αx1, αx2, . . . , αxn). (5.3)

1Another designation of vector is also used, when an arrow is placed above its symbol. For

example, using this method, the vectors a and b will be designated as −→
a and

−→
b .
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Difference of the vectors x and y is the vector

x − y = x + (−1)y = (x1 − y1, x2 − y2, . . . , xn − yn). (5.4)

Zero vector, or null vector, is the vector 0 = (0, 0, . . . , 0) that has zero
coordinates. It is obvious that x + 0 = x − 0 = x.

For the vector x ∈ R, by −x denote the vector with the coordinates

(−x1,−x2, . . . ,−xn), (5.5)

such a vector being referred to as opposite relative to x.
From the introduced definitions, it follows that −x = (−1) ·x and x+(−x) = 0.
A set of all arithmetic vectors with the operations of addition and multiplication

introduced on them is called a n-dimensional arithmetic space and denoted by
R
n [30].

Example 5.1 R
1 is a one-dimensional space (line), R2 is a two-dimensional space

(plane) and R
3 is a three-dimensional space. �

5.1 Linear Dependence of Vectors in the Space Rn

Consider a set of vectors x1, x2, . . . , xk ∈ R
n and the real numbers

α1, α2, . . . , αk ∈ R.
The vector x = α1 · x1 + α2 · x2 + · · · + αk · xk is called a linear combination

of vectors x1, x2, . . . , xk .

Example 5.2 Let there be given the vectors

x1 =

⎡

⎢
⎢
⎣

3

−2

−1

⎤

⎥
⎥
⎦ , x2 =

⎡

⎢
⎢
⎣

4

3

0

⎤

⎥
⎥
⎦ , x3 =

⎡

⎢
⎢
⎣

5

3

7

⎤

⎥
⎥
⎦ . (5.6)

Then, the vector x = 2x1 −3x2+x3 =

⎡

⎢
⎢
⎣

−1

−10

5

⎤

⎥
⎥
⎦ is the linear combination of vectors

x1, x2, x3. �
A system of vectors x1, x2, . . . , xk is referred to as linearly independent one,

if from the equality α1 · x1 + α2 · x2 + · · · + αk · xk = 0, it follows that α1 = α2 =
· · · = αk = 0.
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If there exists a set of real numbers α1, α2, . . . , αk , among which at least one is
not equal to zero, then the system of vectors is referred to as linearly dependent
one.

Example 5.3 Given are the vectors x1 = (2,−3) and x2 = (4, 5). Show that they
are linearly independent.

Find the solution of the system of equations

α1

⎡

⎣
2

−3

⎤

⎦ + α2

⎡

⎣
4

5

⎤

⎦ =
⎡

⎣
0

0

⎤

⎦ , (5.7)

⎧
⎨

⎩

α1 · 2 + α2 · 4 = 0,

α1 · (−3)+ α2 · 5 = 0.
(5.8)

Since this system has the unique solution α1 = α2 = 0, the vectors x1 and x2 are
linearly independent. �
Note Assume that the vectors x1, x2, . . . , xk are linearly dependent. Then, at least
one of the coefficients αi is other than zero (for example, α1 �= 0). In this case, we
can write

x1 = −α2

α1
x2 − α3

α1
x3 − · · · − αk

α1
xk. (5.9)

Thus, if the vectors are linearly dependent, then one of them is linearly expressed
in terms of all others [30]. The converse is also true: if one of the vectors of the set is
linearly expressed in terms of the others, then these vectors are linearly dependent.
The last property can be considered as a definition of linear dependence of vectors.

5.2 Basis in the Space Rn

Prior to introducing the concept of basis in the vector space R
n, let us prove the

following theorem.

Theorem 5.1 Any system of n+ 1 vectors in the space Rn is linearly dependent.

Proof Take arbitrary n+ 1 vectors

xi = (x1i, x2i , . . . , xni), (5.10)

where i = 1, 2, . . . , n+ 1.
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Construct their linear combination and equate it to zero vector:

α1 · x1 + α2 · x2 + · · · + αn+1 · xn+1 = 0. (5.11)

Writing this equality in a coordinate-wise manner, we arrive at a system of n
equations with n+ 1 unknowns α1, α2, . . . , αn+1:

⎧
⎪⎪⎨

⎪⎪⎩

α1 · x11 + α2 · x12 + · · · + αn+1 · x1 n+1 = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α1 · xn1 + α2 · xn2 + · · · + αn+1 · xn n+1 = 0.

(5.12)

The matrix of the system (5.12) differs from the respective augmented matrix
only in the zero column, this is why their ranks coincide. Therefore, according to
the Kronecker–Capelli theorem, the system has infinitely many solutions. They nec-
essarily include a non-zero solution. Thus, there exists a non-zero set of coefficients
α1, α2, . . . , αn+1, for which the linear combination of vectors x1, x2, . . . , xn+1 is
equal to a non-zero vector. Therefore, the vectors xi , where 1 � i � n + 1, are
linearly dependent.

Any system of n linearly independent vectors b1, b2, . . . , bn is called a basis of
a vector space.

Consider in the space Rn the system of vectors:

e1 = (1, 0, . . . , 0),
e2 = (0, 1, . . . , 0),
. . . . . . . . . . . . . . . . . .

en = (0, 0, . . . , 1).

(5.13)

These vectors are linearly independent, since from the condition

α1 · e1 + · · · + αn · en = 0 (5.14)

directly follows the system of equalities α1 = α2 = · · · = αn = 0.
The vectors e1, e2, . . . , en are called normalized vectors of the space R

n; they
form the basis in this space.

Conclusion: a linearly independent system of vectors in R
n can have a maximum

of n vectors.
Consider a system of n vectors

xi = (x1i , x2i, . . . , xni), where i = 1, 2, . . . , n. (5.15)
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Construct a matrix of coordinates of the vectors:

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x11 x12 . . . x1n

x21 x22 . . . x2n
...

...
. . .

...

xn1 xn2 . . . xnn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (5.16)

Such a matrix is called a matrix of a system of vectors, and its determinant is
called a determinant of a system of vectors.

Theorem 5.2 In order for a system of n vectors to be the basis, it is necessary and
sufficient that the determinant of the system is other than zero.

Proof Consider an arbitrary system of n vectors

xi = (x1i, x2i , . . . , xni), i = 1, 2, . . . , n. (5.17)

Construct their linear combination and equate it to zero vector:

⎡

⎢
⎢
⎢
⎢
⎢
⎣

α1 · x11 + α2 · x12 + · · · + αn · x1n

α1 · x21 + α2 · x22 + · · · + αn · x2n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α1 · xn1 + α2 · xn2 + · · · + αn · xnn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0

0
...

0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (5.18)

We will obtain a homogeneous system of n equations with n unknowns and a
determinant other than zero. In this case, such a system has only a zero solution, i.e.
αi = 0, where i = 1, 2, . . . , n, and the system of vectors is a basis.

Theorem 5.3 Assume that the vectors x1, x2, . . . , xn form a basis. Then, any
vector y of Rn can be represented, uniquely, in the form of a linear combination
of the vectors xi (i = 1, 2, . . . , n):

y = α1 · x1 + α2 · x2 + · · · + αn · xn. (5.19)

Proof Write the expansion (5.19) in projections:

α1x1 + α2x2 + · · · + αnxn =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

α1 · x11 + α2 · x12 + · · · + αn · x1n

α1 · x21 + α2 · x22 + · · · + αn · x2n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α1 · xn1 + α2 · xn2 + · · · + αn · xnn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

y1

y2
...

yn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

(5.20)
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We have obtained a non-homogeneous system of n equations with n unknowns.
Since the determinant of this system is other than zero, by virtue of Cramer’s rule,
this system has the unique solution.

Note The formula (5.19) is called an expansion of the vector y in the basis xi (i =
1, 2, . . . , n).

Example 5.4 Show that the vectors a = (1, 1, 4), b = (0,−3, 2) and c =
(2, 1,−1) form a basis.

Construct the determinant of the system of vectors and compute it:

∣
∣
∣
∣
∣
∣
∣
∣

1 0 2

1 −3 1

4 2 −1

∣
∣
∣
∣
∣
∣
∣
∣

= 1 · (3 − 2)+ 2 · (2 + 12) = 29. (5.21)

Since the determinant of the system is other than zero, the vectors a, b and c

form a basis.

Example 5.5 Expand the vector d = (6, 5,−14) in the basis (a, b, c) (see previous
example).

Represent the vector d in the form of the expansion:

d = α1 · a + α2 · b + α3 · c. (5.22)

We have

⎡

⎢
⎢
⎣

6

5

−14

⎤

⎥
⎥
⎦ = α1

⎡

⎢
⎢
⎣

1

1

4

⎤

⎥
⎥
⎦ + α2

⎡

⎢
⎢
⎣

0

−3

2

⎤

⎥
⎥
⎦ + α3

⎡

⎢
⎢
⎣

2

1

−1

⎤

⎥
⎥
⎦ . (5.23)

Write this equality in the form of the system of linear equations:

⎧
⎪⎪⎨

⎪⎪⎩

α1 +2α3 = 6,

α1 −3α2 +α3 = 5,

4α1 +2α2 −α3 = −14.

(5.24)

The obtained system has the unique solution α1 = −2, α2 = −1, α3 = 4. Thus,
d = −2a − b + 4c. �
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5.3 Euclidean Vector Space

In an arbitrary n-dimensional vector space, it is possible to introduce a scalar
product (known also as inner product, or dot product)—the rule according to
which the two vectors a, b ∈ R

n are associated with the number (a · b). The scalar
product suggests such analogues of a spatial arrangement of the multidimensional
vectors Rn as orthogonality and collinearity.

By definition, the scalar product of the vectors a = (a1, a2, . . . , an) and b =
(b1, b2, . . . , bn) is computed by the formula:

(a · b) = a1b1 + a2b2 + · · · + anbn. (5.25)

Note that with the help of the summation sign, the variable (a · b) is compactly

written as (a · b) =
n∑

i=1
aibi .

Let us enumerate the properties of a scalar product.
For arbitrary a, a1, a2, b ∈ R

n and α ∈ R, the following equalities are valid:

(1) (a · b) = (b · a) (symmetry);
(2) ((a1 + a2) · b) = (a1 · b)+ (a2 · b) (linearity);
(3) (αa · b) = α(a · b) (linearity);
(4) (a · a) � 0, and (a · a) = 0 ⇔ a = 0 (non-negativity).

Note For the scalar product of the vectors a and b, the designations (a, b), a · b or
ab are also used.

Example 5.6 Let n = 4, and in the coordinate notation, the vectors have the form,
a = (10,−2, 1, 9), b = (0, 3, 4,−2) and c = (−12, 2,−4,−5). Then,

a · b = 10 · 0 + (−2) · 3 + 1 · 4 + 9 · (−2) = −20,

a · c = 10 · (−12)+ (−2) · 2 + 1 · (−4)+ 9 · (−5) = −173,

b · c = 0 · (−12)+ 3 · 2 + 4 · (−4)+ (−2) · (−5) = 0.

�
Example 5.7 Show that if the condition (a · t) = (b · t) is valid for all t ∈ R

n, then
the vectors a and b are equal to each other.

Proof Based on the property of linearity, represent the equality (a · t) = (b · t) in
the equivalent form

(a · t) = (b · t)⇔ ((a − b) · t) = 0. (5.26)

Into the obtained equality, substitute t = a − b. Then, according to the property
of non-negativity, we have (a − b) = 0 or a = b, which is what we set out to
prove. �
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Length, or norm, of a vector is the value ‖a‖ = √
(a · a).

Note the following easily provable properties of the norm, which are valid for
arbitrary vectors a and b of Euclidean space:

(1) ‖a‖ � 0, and ‖a‖ = 0 ⇔ a = 0;
(2) ‖αa‖ = abs(α)‖a‖ for all α ∈ R;
(3) ‖a + b‖ � ‖a‖ + ‖b‖.

The last inequality is referred to as a triangle inequality or Minkowski2

inequality.

Example 5.8 For the vectors a = (0,−1,−1, 3, 1) and b = (5,−3, 0,−2,−1) in
the space R5, we have

‖a‖ = √
(a · a) =

√
0 + (−1)2 + (−1)2 + 32 + 12 = √

12;
‖b‖ = √

(b · b) =
√
(−5)2 + (−3)2 + 02 + (−2)2 + (−1)2 = √

39.

�
Orthogonal are the vectors whose scalar product is equal to zero. Usually, the

orthogonal vectors are designated as a ⊥ b.
A set of vectors, where all vectors are pairwise orthogonal, is naturally called

orthogonal. If in such a set all vectors have a unit norm, then such a set is
orthonormal.

Of course, in an arbitrary basis, the vectors might not possess the property of
pairwise orthogonality, a fortiori orthonormality. Show that there exists a possibility
to construct a new basis from the original one, and in the new basis, all the vectors
will be pairwise orthogonal. Such a procedure is called the Gram3–Schmidt4

process (orthogonalization).
Assume that in a vector Euclidean space with a norm, a basis (p1,p2, . . . ,pn) is

set. The procedure of constructing a new orthonormal basis consists in performing
the following steps.

Successively compute the vectors q1, q2, . . . , qn by the formulae:

t1 = p1, q1 = t1

‖t1‖ ,

t2 = p2 − (p2, q1)q1, q2 = t2

‖t2‖ ,

2Hermann Minkowski (1864–1909), German mathematician.
3Jørgen Pedersen Gram (1850–1916), Danish mathematician.
4Erhardt Schmidt (1876–1959), German mathematician.
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t3 = p3 − (p3, q1)q1 − (p3, q2)q2, q3 = t3

‖t3‖ ,

. . .

tn = pn − (pn, q1)q1 − · · · − (pn, qn−1)qn−1, qn = tn

‖tn‖ .

The obtained basis (q1, q2, . . . , qn) is orthonormal.

5.4 Eigenvalues and Eigenvectors of a Matrix

Two matrices A and A′, bound by the relation

A′ = P−1AP, (5.27)

where P is some invertible matrix, are referred to as similar. In this case, the
designation A′ ∼ A is used.

Note Transition from the matrix A to A′ is called similarity transformation.

Example 5.9 Matrices

⎡

⎣
1 −3

−1 2

⎤

⎦ and

⎡

⎣
−2 1

−9 5

⎤

⎦ are similar, since the following

equality is valid:

⎡

⎣
−2 1

−9 5

⎤

⎦ =
⎡

⎣
1 −1

−2 1

⎤

⎦

−1 ⎡

⎣
1 −3

−1 2

⎤

⎦

⎡

⎣
1 −1

−2 1

⎤

⎦ . (5.28)

Indeed,

⎡

⎣
1 −1

−2 1

⎤

⎦

−1

=
⎡

⎣
−1 −1

−2 −1

⎤

⎦, and the equality (5.28) is easily verified by

a direct multiplication of the matrices. �
Theorem 5.4 (On the Matrix Similarity Properties) The following properties of
similarity are valid:

(1) A ∼ A—reflexivity;
(2) A ∼ B ⇒ B ∼ A—symmetry;
(3) ((A ∼ B) and (B ∼ C))⇒ (A ∼ C)—transitivity.

It follows from the theorem on the matrix similarity properties that the similarity
of matrices is an equivalence relation [1, 41, 53].
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Two similar matrices have equal determinants. Indeed, from the definition
of (5.27), it follows that

|A′| = |P−1AP | = |P−1| |A| |P | = |A|. (5.29)

Note that the equality of the determinants does not at all imply the similarity of
the matrices.

Example 5.10 Find out whether the following matrices are similar:

⎡

⎣
0 1

1 0

⎤

⎦ and

⎡

⎣
1 0

1 1

⎤

⎦.

The determinants of these matrices are equal to −1 and 1, respectively. Therefore,
these matrices do not possess the property of similarity. �

The number λ and the non-zero vector b are referred to as eigenvalue and
eigenvector of the matrix A, respectively, if the following equality is valid:

Ab = λb. (5.30)

The vector b is considered as a column vector. In order to find b and λ, represent
Eq. (5.30) in the following form:

(A− λI)b = 0, (5.31)

where I is an identity matrix.
We have obtained a homogeneous system of linear equations. In order for it to

have a non-zero solution, it is necessary and sufficient that the determinant of the
matrixA−λI is equal to zero. Thus, in order to find λ, we should solve the equation

|A− λI | = 0 (5.32)

or, in an expanded notation

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 − λ a12 . . . a1n

a21 a22 − λ . . . a2n

. . . . . . . . . . . . . . . . . . . . . . . . . . .

an1 an2 . . . ann − λ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0. (5.33)

This equation is referred to as characteristic equation.
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If we expand the determinant, we obtain a polynomial of power n relative to the
variable λ:

p(λ) = (−λ)n + h1(−λ)n−1 + · · · + hn−1(−λ)+ hn, (5.34)

and the following properties are valid:

• the coefficient h1 is equal to the trace of the matrix A: h1 = trA = a11 + a22 +
· · · + ann;

• the constant term hn coincides with the determinant: hn = detA.

The polynomial (5.34) is also referred to as characteristic.
It is known that characteristic polynomials of similar matrices coincide.
According to the fundamental theorem of algebra, the characteristic equa-

tion (5.30) has no more than n solutions. For each solution λ, it is associated with
the eigenvector b.

Note Although the eigenvalue can be equal to zero, the eigenvector, by definition,
is always different from the zero vector.

Example 5.11 Find the eigenvalues and eigenvectors of the matrix

A =

⎡

⎢
⎢
⎣

1 1 3

1 5 1

3 1 1

⎤

⎥
⎥
⎦ . (5.35)

Compute the determinant of the matrix A− λI and equate it to zero:

|A− λI | =

∣
∣
∣
∣
∣
∣
∣
∣

1 − λ 1 3

1 5 − λ 1

3 1 1 − λ

∣
∣
∣
∣
∣
∣
∣
∣

= (1 − λ) · [(5 − λ) · (1 − λ)− 1] − (1 − λ)+ 3 + 3 · [1 − 3 · (5 − λ)]
= (1 − λ) · (λ2 − 6 · λ+ 3)+ 9 · λ− 39 = −λ3 + 7 · λ2 − 36

= −(λ+ 2) · (λ2 − 9 · λ+ 18) = 0.

Solving this equation, we will obtain three roots, λ1 = −2, λ2 = 6 and λ3 = 3.
For each λ, find the eigenvector associated with it.

1. Let λ = −2. Then,

A− λ1I =

⎡

⎢
⎢
⎣

3 1 3

1 7 1

3 1 3

⎤

⎥
⎥
⎦ . (5.36)
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Assuming that b = (x, y, z), we will obtain the system of equations

⎧
⎪⎪⎨

⎪⎪⎩

3x + y + 3z = 0,

x + 7y + z = 0,

3x + y + 3z = 0.

(5.37)

Write the matrix that corresponds to this system:

⎡

⎢
⎢
⎣

3 1 3

1 7 1

3 1 3

⎤

⎥
⎥
⎦ . (5.38)

Add to the third row of this matrix the second one, multiplied by (−1):

⎡

⎢
⎢
⎣

3 1 3

1 7 1

0 0 0

⎤

⎥
⎥
⎦ . (5.39)

Drop the zero row and exchange places of the second and the first rows. Then,
we have

⎡

⎣
1 7 1

3 1 3

⎤

⎦ . (5.40)

Bring the matrix to echelon form; add to the second row the first one,
multiplied by −3. We obtain

⎡

⎣
1 7 1

0 −20 0

⎤

⎦ . (5.41)

Proceed to the equations and write

⎧
⎨

⎩

x +7y +z = 0,

y = 0,
(5.42)

or x + z = 0.
As a free variable, select z. Then, assume that z = 1, and then x = −1.
Thus, b1 = (−1, 0, 1).
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2. For λ = 6, we obtain the system:

⎧
⎪⎪⎨

⎪⎪⎩

−5x + y + 3z = 0,

x − y + z = 0,

3x + y − 5z = 0.

(5.43)

In order to find the vector b2, write the matrix of this system and its
transformations:

⎡

⎢
⎢
⎣

−5 1 3

1 −1 1

3 1 −5

⎤

⎥
⎥
⎦ →

⎡

⎢
⎢
⎣

1 −1 1

−5 1 3

3 1 −5

⎤

⎥
⎥
⎦ →

⎡

⎢
⎢
⎣

1 −1 1

0 −4 8

0 4 −8

⎤

⎥
⎥
⎦ →

⎡

⎣
1 −1 1

0 1 −2

⎤

⎦ .

Proceed to the system of equations:

⎧
⎨

⎩

x − y = −z,
y = 2z.

(5.44)

Assuming that z = 1, we find y = 2 and x = 1.
Thus, b2 = (1, 2, 1).

3. For λ = 3, we have the system:

⎧
⎪⎪⎨

⎪⎪⎩

−2x + y + 3z = 0,

x + 2y + z = 0,

3x + y − 2z = 0.

(5.45)

In order to find the vector b3, we perform similar equivalent transformations:

⎡

⎢
⎢
⎣

−2 1 3

1 2 1

3 1 −2

⎤

⎥
⎥
⎦ →

⎡

⎢
⎢
⎣

1 2 1

−2 1 3

3 1 −2

⎤

⎥
⎥
⎦ →

⎡

⎢
⎢
⎣

1 2 1

0 5 5

0 −5 −5

⎤

⎥
⎥
⎦ →

⎡

⎣
1 2 1

0 1 1

⎤

⎦ .

Proceed to the system of equations:

⎧
⎨

⎩

x + 2y = −z,
y = −z.

(5.46)

Assuming that z = 1, we find y = −1 and x = 1.



230 5 Vector Spaces

Thus, the matrix A has the following eigenvalues and eigenvectors corre-
sponding to them:

λ1 = −2, b1 = (−1, 0, 1), (5.47)

λ2 = 6, b2 = (1, 2, 1), (5.48)

λ3 = 3, b3 = (1,−1, 1). (5.49)

�
Note In physics, the characteristic equation is sometimes referred to as the secular
equation since such equations appeared during the analysis of the motion of the
Solar system’s planets and their satellites over considerable periods of time (referred
to as “secular” motions) [2].

Annihilating polynomial for the matrix A is such polynomial p(x) whose value
of this matrix is equal to the zero matrix: p(A) = O .

Theorem 5.5 (Cayley5–Hamilton6 Theorem) For any square matrix A, the char-
acteristic polynomial is its annihilating polynomial.

Example 5.12 Let us illustrate the Cayley–Hamilton theorem with the help of the

characteristic polynomial of the matrix A =
⎡

⎣
1 −10

−6 5

⎤

⎦.

Indeed, p(λ) = det |A− λI | =
∣
∣
∣
∣
∣
∣

1 − λ −10

−6 5 − λ

∣
∣
∣
∣
∣
∣
= λ2 − 6λ− 55.

Check whether the equality p(A) = O is valid:

p(A) =
⎡

⎣
1 −10

−6 5

⎤

⎦

2

− 6

⎡

⎣
1 −10

−6 5

⎤

⎦ − 55

⎡

⎣
1 0

0 1

⎤

⎦

=
⎡

⎣
61 −60

−36 85

⎤

⎦ +
⎡

⎣
−6 60

36 −30

⎤

⎦ +
⎡

⎣
−55 0

0 −55

⎤

⎦ =
⎡

⎣
0 0

0 0

⎤

⎦ .

Then, p(λ) is the annihilating polynomial for the matrix A. �
Recall that the similar matrices A and B are bound by the relation B = P−1AP

for some nonsingular matrix P . Selecting P composed of the columns equal to the
eigenvectors A (written in random order), we obtain the diagonal matrix B. This is
the point of the procedure of diagonalization of the initial matrix.

5Arthur Cayley (1821–1895), English mathematician.
6William Rowan Hamilton (1805–1865), Irish mathematician and physicist.
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Note that the sufficient condition for the possibility of diagonalization is the
presence of different eigenvalues of the initial matrix, and their number should
coincide with its order.

Review Questions

1. Define n-dimensional arithmetic vector.
2. Enumerate the basic operations of vectors.
3. What is n-dimensional arithmetic space?
4. How is a linear combination of a system of vectors constructed?
5. What system of vectors is referred to as linearly dependent?
6. Define basis of a vector space.
7. Formulate the criterion that an arbitrary system of vectors is the basis.
8. Explain how a scalar product of vectors can be introduced into a vector space.
9. Enumerate the basic properties of a scalar product.

10. How is the norm of a vector found?
11. What is the Gram–Schmidt orthogonalization procedure used for?
12. What two matrices are called similar?
13. Enumerate the properties of similarity of matrices.
14. Define the concepts of “eigenvector” and “eigenvalue” of a matrix.
15. How can one, knowing the elements of the matrix, set up its characteristic

equation?
16. Formulate the Cayley–Hamilton theorem.
17. What is the sufficient condition of diagonalization of a matrix?

Problems

5.1. Find out whether the vectors p, q and r form a basis in a three-dimensional
vector space. If they do, expand the vector x in this basis.

(1) p =

⎡

⎢
⎢
⎣

2

1

0

⎤

⎥
⎥
⎦ , q =

⎡

⎢
⎢
⎣

1

0

1

⎤

⎥
⎥
⎦ , r =

⎡

⎢
⎢
⎣

4

2

1

⎤

⎥
⎥
⎦ , x =

⎡

⎢
⎢
⎣

3

1

3

⎤

⎥
⎥
⎦ . (5.50)

(2) p =

⎡

⎢
⎢
⎣

5

1

0

⎤

⎥
⎥
⎦ , q =

⎡

⎢
⎢
⎣

2

−1

3

⎤

⎥
⎥
⎦ , r =

⎡

⎢
⎢
⎣

1

0

−1

⎤

⎥
⎥
⎦ , x =

⎡

⎢
⎢
⎣

13

2

7

⎤

⎥
⎥
⎦ . (5.51)
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(3) p =

⎡

⎢
⎢
⎣

4

1

1

⎤

⎥
⎥
⎦ , q =

⎡

⎢
⎢
⎣

2

0

−3

⎤

⎥
⎥
⎦ , r =

⎡

⎢
⎢
⎣

−1

2

1

⎤

⎥
⎥
⎦ , x =

⎡

⎢
⎢
⎣

−9

5

5

⎤

⎥
⎥
⎦ . (5.52)

5.2. The vectors e1, e2, e3 and e4 are specified by their coordinates in some basis.
Show that the vectors e1, e2, e3 and e4 themselves form a basis, and find the
coordinates of the vector x in this basis:

e1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1

2

−1

−2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, e2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

2

3

0

−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, e3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1

2

1

4

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, e4 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1

3

−1

0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, x =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

7

14

−1

2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

(5.53)

5.3. Check that the vectors a = (1, 2, 3), b = (−3,−2, 3) and c = (0,−2,−2)
are linearly independent and thus form a basis. Is it orthogonal? Is it
orthonormal? If the answers are negative, then use the Gram–Schmidt
orthogonalization process to construct an orthonormal basis.

5.4. Check that the vectors a = (3,−1, 1, 2), b = (−3, 1, 0,−2), c =
(0,−2, 2,−2) and d = (1, 4, 2,−7) form a basis in R

4. Is it orthogonal?
Is it orthonormal? If the answers are negative, then use the Gram–Schmidt
orthogonalization process to construct an orthonormal basis.

5.5. Prove that the set of vectors {(i, 2− i, 5), (1, 2+ i,−i), (1, i,−1)} is a basis
in the vector space C

3. What are the coordinates of the vectors (1, 0, 0),
(1, 1, 0) and (1, 1, 1) in this basis?

5.6. Assume that the vectors v1 = [a1, a2]T and v2 = [b1, b2]T are linearly
independent. What can you say about the linear dependence or independence
of the vectors w1 = [a1, b1]T and w2 = [a2, b2]T ?

5.7. Prove that the set M = {Mpq} of all matrices with p rows and q columns
with real elements forms a vector space relative to the operations of matrix
addition and matrix multiplication by a number.

5.8. Prove the Cauchy7–Bunyakovsky8 inequality (also referred to as the
Cauchy–Schwarz9 inequality):

For arbitrary vectors x, y ∈ R
n, the following relation is valid:

(x · y)2 � (x · x)(y · y), (5.54)

7Augustin-Louis Cauchy (1789–1857), French mathematician and mechanician.
8Viktor Yakovlevich Bunyakovsky (1804–1889), Russian mathematician and mathematics histo-
rian.
9Karl Hermann Amandus Schwarz (1843–1921), German mathematician.
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and the equality is valid if and only if the vectors x and y differ in the scalar
factor, i.e. are proportional.

5.9. Prove the Pythagorean10 theorem:
If the vectors x, y ∈ R

n are orthogonal, then the equality

‖x + y‖2 = ‖x‖2 + ‖y‖2 (5.55)

is valid.
5.10. Check the validity of the identity

‖x + y‖2 + ‖x − y‖2 ≡ 2(‖x‖2 + ‖y‖2) (5.56)

for arbitrary elements of the n-dimensional vector space R
n. What is the

geometric sense of this identity in the spaces R2 and R
3?

5.11. It is known that the equalities ‖x‖ = 6, ‖x + y‖ = 10 and ‖x − y‖ = 12
are valid. What is the variable ‖x‖?

5.12. Find the maximum number of linearly independent vectors

(1) on the plane;
(2) in the three-dimensional space;
(3) in R

n.

5.13. Check that the system of vectors

[1, 1, 1, . . . , 1]T , [0, 1, 1, . . . , 1]T , [0, 0, 1, . . . , 1]T , . . . , [0, 0, 0, . . . , 1]T

forms a basis in R
n.

5.14. Is the system of vectors

[1, 1, 1, . . . , 1]T , [1, 2, 3, . . . , n]T , [1, 22, 32, . . . , n2]T , . . . ,

[1, 2n−1, 3n−1, . . . , nn−1]T

a basis in R
n?

5.15. Show that the matrices

⎡

⎣
0 0

a 0

⎤

⎦ and

⎡

⎣
0 a

0 0

⎤

⎦ , where a ∈ R, are similar.

5.16. Find whether the matrices A1 and A2 are similar:

(1) A1 =
⎡

⎣
1 −1

0 0

⎤

⎦ and A2 =
⎡

⎣
0 0

1 1

⎤

⎦;

10Pythagoras of Samos, Πυθαγόρας ὁ Σάμιος (about 570 B.C.—about 495 B.C.), Ancient Greek
philosopher and mathematician.
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(2) A1 =

⎡

⎢
⎢
⎣

1 0 0

0 1 0

0 0 0

⎤

⎥
⎥
⎦ and A2 =

⎡

⎢
⎢
⎣

1 0 1

1 0 0

0 1 0

⎤

⎥
⎥
⎦.

5.17. Is it true that the traces of similar matrices coincide?
5.18. Find the eigenvalues and eigenvectors of the matrix A.

(1) A =

⎡

⎢
⎢
⎣

4 −5 2

5 −7 3

6 −9 4

⎤

⎥
⎥
⎦ ; (2) A =

⎡

⎢
⎢
⎣

3 1 0

−4 −1 0

4 −8 −2

⎤

⎥
⎥
⎦ ; (5.57)

(3) A =

⎡

⎢
⎢
⎣

2 −1 2

5 −3 3

−1 0 −2

⎤

⎥
⎥
⎦ ; (4) A =

⎡

⎢
⎢
⎣

0 1 0

−4 4 0

−2 1 2

⎤

⎥
⎥
⎦ ; (5.58)

(5) A =

⎡

⎢
⎢
⎣

1 −3 3

−2 −6 13

−1 −4 8

⎤

⎥
⎥
⎦ . (5.59)

5.19. Diagonalize the matrix, i.e. bring the matrix to diagonal form:

A =

⎡

⎢
⎢
⎣

4 15 −3

8 −3 3

0 −15 7

⎤

⎥
⎥
⎦ .

5.20. Bring the following matrices to diagonal form:

(1)

A =

⎡

⎢
⎢
⎣

4 1 4

6 3 6

−11 −5 −11

⎤

⎥
⎥
⎦ ;

(2)

A =

⎡

⎢
⎢
⎣

−23 −16 −28

58 39 64

−11 −7 −10

⎤

⎥
⎥
⎦ .
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5.21. Bring the matrix that depends on the real parameter a to diagonal form:

A =

⎡

⎢
⎢
⎣

a −1 −1

−1 a 1

1 1 a

⎤

⎥
⎥
⎦ .

∗5.22. Write the characteristic equation for the matrix � of size n× n:

� =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 . . . 0 0

0 0 1 . . . 0 0

. . . . . . . . . . . . .

0 0 0 . . . 0 1

ω 0 0 . . . 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

∗5.23. Using the Cayley–Hamilton theorem, compute the n-th power of the matrix
�, found in the previous problem.

∗5.24. Find the value of the limit:

lim
n→∞

⎡

⎣
1 ϕ/n

−ϕ/n 1

⎤

⎦

n

. (5.60)

5.25. Bring the complex matrix to diagonal form:

Z =

⎡

⎢
⎢
⎣

1 − 2i 2i 2

0 i 0

i −2 0

⎤

⎥
⎥
⎦ .

5.26. It is known that two out of three eigenvalues of the matrix

Y =

⎡

⎢
⎢
⎣

910 1013 + 57i −1013 + 57i

57 − 899i 68 − 1070i 57 + 1013i

−57 − 899i 57 − 1013i 68 + 1070i

⎤

⎥
⎥
⎦

are equal to 11 + 57i and 11 − 57i. Without solving the characteristic
equation, find the third eigenvalue.

5.27. Prove that the eigenvalues of Hermitian operator are real.
∗5.28. Prove that all eigenvalues of the unitary matrix lie in a complex plane, on a

unit circle with the centre at the origin of coordinates.
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5.29. Compute the eigenvalues and eigenvectors of the Pauli matrices σ1, σ2 and
σ3 (see page 185).

Answers and Solutions

5.3 Solution.
Write the matrix A, composed of the coordinates of the vectors a, b and c:

A =

⎡

⎢
⎢
⎣

1 −3 0

2 −2 −2

3 3 −2

⎤

⎥
⎥
⎦ .

Since detA = 16 �= 0, then the vectors are linearly independent and form a
basis. The basis is neither orthogonal, because, for example, (a · b) = 2 �= 0, nor
orthonormal, because ‖a‖ = √

14 �= 1.
In order to construct an orthonormal basis, apply the Gram–Schmidt algorithm:

t1 = a =

⎡

⎢
⎢
⎣

1

2

3

⎤

⎥
⎥
⎦ , q1 = t1

‖t1‖ = 1√
14
(1, 2, 3);

t2 = b − (b · q1)q1

=

⎡

⎢
⎢
⎣

−3

−2

3

⎤

⎥
⎥
⎦ − 1√

14
(1 · (−3)+ 2 · (−2)+ 3 · 3)

1√
14

⎡

⎢
⎢
⎣

1

2

3

⎤

⎥
⎥
⎦ = 2

7

⎡

⎢
⎢
⎣

−11

−8

9

⎤

⎥
⎥
⎦ ,

q2 = t2

‖t2‖ = 1√
266

⎡

⎢
⎢
⎣

−11

−8

9

⎤

⎥
⎥
⎦ ;

t3 = c − (c · q1)q1 − (c · q2)q2

=

⎡

⎢
⎢
⎣

0

−2

−2

⎤

⎥
⎥
⎦ − 1√

14
(0 · 1 − 2 · 2 − 2 · 3)

1√
14

⎡

⎢
⎢
⎣

1

2

3

⎤

⎥
⎥
⎦
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− 1√
266

(0 · (−11)− 2 · (−8)− 2 · 9)
1√
266

⎡

⎢
⎢
⎣

−11

−8

9

⎤

⎥
⎥
⎦ = 4

19

⎡

⎢
⎢
⎣

3

−3

1

⎤

⎥
⎥
⎦ ;

q3 = t3

‖t3‖ = 1√
19

⎡

⎢
⎢
⎣

3

−3

1

⎤

⎥
⎥
⎦ .

As a result, we obtain the orthonormal basis:

q1 = 1√
14

⎡

⎢
⎢
⎣

1

2

3

⎤

⎥
⎥
⎦ , q2 = 1√

266

⎡

⎢
⎢
⎣

−11

−8

9

⎤

⎥
⎥
⎦ , q3 = 1√

19

⎡

⎢
⎢
⎣

3

−3

1

⎤

⎥
⎥
⎦ .

5.4 Solution.
Write the matrix A, composed of the coordinates of the specified vectors:

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

3 −3 0 1

−1 1 −2 4

1 0 2 2

2 −2 −2 −7

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Its determinant is equal to detA = −72 �= 0.
It is clear that rkA = 4; then, according to the basic minor theorem, the vectors

a = (3,−1, 1, 2), b = (−3, 1, 0,−2), c = (0,−2, 2,−2) and d = (1, 4, 2,−7)
form a basis in the arithmetical space R

4.
This basis is neither orthogonal nor orthonormal, because, for example, (a · b) =

−14 �= 0 and (a · a) = 15 �= 1.
In order to construct an orthonormal basis (q1, q2, q3, q4), apply the Gram–

Schmidt algorithm:

t1 = a = (3,−1, 1, 2), q1 = t1

‖t1‖ = 1√
15
(3,−1, 1, 2);

t2 = b − (b · q1)q1

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

3

−1

1

2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 1√
15
((−3) · 3 + 1 · (−1)+ 0 · 1 − 2 · 2)

1√
15

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

3

−1

1

2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 1

15

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−3

1

14

−2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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q2 = t2

‖t2‖ = 1√
210

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−3

1

14

−2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

;

t3 = c − (c · q1)q1 − (c · q2)q2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

−2

2

−2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 0 · q1 − 1

7

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−3

1

14

−2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 1

7

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

3

−15

0

−12

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

q3 = t3

‖t3‖ = 1√
42

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

−5

0

4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

;

t4 = d − (d · q1)q1 − (d · q2)q2 − (d · q3)q3

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

4

2

−7

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 3

124

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

−5

0

−4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 43

210

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−3

1

14

−2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ 13

15

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

3

−1

1

2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

4

4

0

−4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

q4 = t4

‖t4‖ = 1√
3

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

1

0

−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

As a result, enumerate the vectors of the orthonormal basis:

q1 = 1√
15

⎡

⎢
⎢
⎢
⎢
⎢
⎣

3

−1

1

2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, q2 = 1√
210

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−3

1

14

−2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,
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q3 = 1√
42

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1

−5

0

−4

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, q4 = 1

4
√

3

⎡

⎢
⎢
⎢
⎢
⎢
⎣

4

4

0

−4

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

5.5 Solution.
Construct a matrix A of the coordinates of the specified vectors:

A =

⎡

⎢
⎢
⎣

i 1 1

2 − i 2 + i i
5 −i −1

⎤

⎥
⎥
⎦ .

Its determinant is detA = −8 − 6i �= 0, and therefore, the set of vectors forms a
basis in the space C3.

Find the coordinates of the vectors a = (1, 0, 0), b = (1, 1, 0) and c = (1, 1, 1)
in this basis.

The vector a in the basis (e1, e2, e3) has the coordinates (a1, a2, a3) that satisfy
the system of equations, which in matrix notation has the form:

⎡

⎢
⎢
⎣

i 1 1

2 − i 2 + i i
5 −i −1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

a1

a2

a3

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

1

0

0

⎤

⎥
⎥
⎦ .

In order to solve the obtained system, let us use Cramer’s rule, according to

which, for i ∈ {1, 2, 3}, the equalities ai = �i

�
are valid.

� = −8 − 6i,

�1 =

∣
∣
∣
∣
∣
∣
∣
∣

1 1 1

0 2 + i i
0 −i −1

∣
∣
∣
∣
∣
∣
∣
∣

= −3 − i,

�2 =

∣
∣
∣
∣
∣
∣
∣
∣

i 1 1

2 − i 0 i

5 0 −1

∣
∣
∣
∣
∣
∣
∣
∣

= 2 + 4i,
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�3 =

∣
∣
∣
∣
∣
∣
∣
∣

i 1 1

2 − i 2 + i 0

5 −i 0

∣
∣
∣
∣
∣
∣
∣
∣

= −11 − 7i.

Hence, we obtain the following coordinates:

a = (a1, a2, a3),where a1 = −3 − i
−8 − 6i

= 1

10
(3 − i), a2 = − 1

10
(4 + 2i) and

a3 = 1

10
(13 − i).

Write the system of equations for the coordinates of the second vector b:

⎡

⎢
⎢
⎣

i 1 1

2 − i 2 + i i
5 −i −1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

b1

b2

b3

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

1

1

0

⎤

⎥
⎥
⎦ .

�1 =

∣
∣
∣
∣
∣
∣
∣
∣

1 1 1

1 2 + i i
0 −i −1

∣
∣
∣
∣
∣
∣
∣
∣

= −2 − 2i,

�2 =

∣
∣
∣
∣
∣
∣
∣
∣

i 1 1

2 − i 1 i

5 0 −1

∣
∣
∣
∣
∣
∣
∣
∣

= −3 + 3i,

�3 =

∣
∣
∣
∣
∣
∣
∣
∣

i 1 1

2 − i 2 + i 1

5 −i 0

∣
∣
∣
∣
∣
∣
∣
∣

= −7 − 7i.

The values of the coordinates are b1 = 1

25
(7 + i), b2 = 1

50
(3 − 21i) and

b3 = 1

50
(49 + 7i).

Finally, the coordinates of the vector c satisfy the following system of equations
in matrix form:

⎡

⎢
⎢
⎣

i 1 1

2 − i 2 + i i
5 −i −1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

a1

a2

a3

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

1

1

1

⎤

⎥
⎥
⎦ .
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�1 =

∣
∣
∣
∣
∣
∣
∣
∣

1 1 1

1 2 + i i
1 −i −1

∣
∣
∣
∣
∣
∣
∣
∣

= −4 − 2i,

�2 =

∣
∣
∣
∣
∣
∣
∣
∣

i 1 1

2 − i 1 i

5 1 −1

∣
∣
∣
∣
∣
∣
∣
∣

= 2i,

�3 =

∣
∣
∣
∣
∣
∣
∣
∣

i 1 1

2 − i 2 + i 1

5 −i 1

∣
∣
∣
∣
∣
∣
∣
∣

= −10 − 4i.

The coordinates of the vector c are equal to c1 = 1

25
(11−2i), c2 = − 1

25
(3+4i)

and c3 = 1

25
(26 − 7i).

5.6 Solution.
The criterion, i.e. the necessary and sufficient condition of the linear indepen-

dence of the system of vectors v1 and v2 is the determinant being not equal to zero,
which determinant is composed of their coordinates:

∣
∣
∣
∣
∣
∣

a1 b1

a2 b2

∣
∣
∣
∣
∣
∣
�= 0.

As is known, transposition of a matrix does not change its determinant. There-
fore, there exists the inequality

∣
∣
∣
∣
∣
∣

a1 a2

b1 b2

∣
∣
∣
∣
∣
∣
�= 0,

and the vectors w1 = [a1, b1]T and w2 = [a2, b2]T are independent.

5.7 Proof.
Each matrix from the set M can be presented as a numerical sequence of length

p × q . Indeed, for this, it is enough to write the matrix elements row by row into a
vector, or, in other words, into a one-dimensional array of size p × q . Since the
vectors of the same size form an arithmetical space, then the set M = {Mpq}
also forms a vector space relative to the operations of matrix addition and matrix
multiplication by a number.
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5.8 Proof.
Let us introduce for consideration the vector z = x − λy, where λ is some real

number.
Based on the fourth property of scalar product, (z, z) � 0, or

((x − λy) · (x − λy)) = (x · x)− 2λ(x · y)+ λ2(y · y) � 0. (5.61)

This inequality should be valid for any λ ∈ R. Note that the left side of the
inequality (5.61) is a quadratic trinomial. The necessary and sufficient condition of
its non-negativity is non-positivity of the discriminant:

(x · y)2 − (x · x)(y · y) � 0.

The obtained inequality, as it is easy to see, after transferring the summand (x ·
x)(y · y) to the right side, coincides with the Cauchy–Bunyakovsky inequality.

The equals sign will occur if and only if z ≡ 0, i.e. x and y are proportional and
differ in the scalar factor.

5.9 Proof.
From the definition of vector length and the properties of scalar product, follow

the equalities

‖x +y‖2 = ((x +y) · (x +y)) = (x ·x)+ (x ·y)+ (y ·x)+ (y ·y) = ‖x‖2 +‖y‖2.

Thus, the Pythagorean theorem is proved for all orthogonal vectors x, y ∈ R
n.

5.10 Solution.
Transforming the squares of norms in the left side of the identity, we obtain

‖x + y‖2 = ((x + y) · (x + y)) = ‖x‖2 + 2(x · y)+ ‖y‖2, (5.62)

‖x − y‖2 = ((x − y) · (x − y)) = ‖x‖2 − 2(x · y)+ ‖y‖2. (5.63)

From these relations, follow the equality (5.56). The geometric sense of this equality
consists in that the sum of the squares of the parallelogram’s diagonals is equal to
the sum of the squares of the sides.

5.11 Solution.
Express the variable ‖y‖, using the identity (5.56) from the previous problem:

‖y‖ =
√

(‖x + y‖2 + ‖x − y‖2)/2 − ‖x‖2.

Having substituted the numeric data, we obtain ‖y‖ = √
(100 + 144)/2 − 36 =√

86.
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5.12 Answer.

(1) The maximum number of linearly independent vectors equals to 2;
(2) 3;
(3) n.

5.13 Solution.
The matrix of the system of vectors under consideration has a lower triangular

form:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 . . . 0 0

1 1 . . . 0 0

. . . . . . . . . . .

1 1 . . . 1 0

1 1 . . . 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Its determinant is equal to the product of the elements located on the main
diagonal. Therefore, the vectors are linearly independent and form a basis in the
vector space Rn.

5.14 Answer: It is. This is easily seen from the Vandermonde determinant being not
equal to zero in this case (see (2.74) on page 67).

5.15 Solution.
It is easy to verify that the equality is valid:

⎡

⎣
0 a

0 0

⎤

⎦ = P−1

⎡

⎣
0 0

a 0

⎤

⎦P,

where P =
⎡

⎣
0 1

1 0

⎤

⎦. Therefore, by definition of similarity relation (5.27), the

matrices mentioned in the statement of the problem are similar.

5.16 Answer:

(1) Yes, A2 =
⎡

⎣
0 1

−1 0

⎤

⎦

−1

A1

⎡

⎣
0 1

−1 0

⎤

⎦;

(2) No, since the equality of the determinants of these matrices is not fulfilled.

5.17 Solution.
Yes, as follows from Problem 1.44, for any matrices A and the invertible matrix

P , the equality

tr (P−1AP) = tr (AP−1P) = trA

is fulfilled.
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5.18 Solution.

(1) As is known, the eigenvector of the matrix A is such vector u, in which
multiplication ofA by u results in the vector λu, where λ ∈ R is the eigenvalue.

Write an equation of the form Au = λu:

⎡

⎢
⎢
⎣

4 −5 2

5 −7 3

6 −9 4

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

u1

u2

u3

⎤

⎥
⎥
⎦ = λ

⎡

⎢
⎢
⎣

u1

u2

u3

⎤

⎥
⎥
⎦ ,

or in the coordinates of the vector u:
⎧
⎪⎪⎨

⎪⎪⎩

4u1 − 5u2 + 2u3 = λu1,

5u1 − 7u2 + 3u3 = λu2,

6u1 − 9u2 + 4u3 = λu3,

⎧
⎪⎪⎨

⎪⎪⎩

(4 − λ)u1 − 5u2 + 2u3 = 0,

5u1 − (7 + λ)u2 + 3u3 = 0,

6u1 − 9u2 + (4 − λ)u3 = 0.

Note that the eigenvector cannot be zero by definition:

⎡

⎢
⎢
⎣

u1

u2

u3

⎤

⎥
⎥
⎦ �=

⎡

⎢
⎢
⎣

0

0

0

⎤

⎥
⎥
⎦ .

Therefore, the equations are linearly dependent and the determinant of the
system matrix is equal to zero:

∣
∣
∣
∣
∣
∣
∣
∣

(4 − λ) 5u2 2u3

5u1 −(7 + λ)u2 3u3

6u1 −9u2 (4 − λ)u3

∣
∣
∣
∣
∣
∣
∣
∣

= 0.

Having computed the determinant, we obtain the characteristic equation:
λ2 − λ3 = 0.

The eigenvalues are λ1,2 = 0 and λ3 = 1, so zero is an eigenvalue of
multiplicity two.
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Find the respective eigenvectors:
Let λ = 0.

⎧
⎪⎪⎨

⎪⎪⎩

4u1 − 5u2 + 2u3 = 0,

5u1 − 7u2 + 3u3 = 0,

6u1 − 9u2 + 4u3 = 0.

Having solved this system, we obtain

u1 = 0, u2 = 2u1, u3 = 3u1, or

⎡

⎢
⎢
⎣

u1

u2

u3

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

u1

2u1

3u1

⎤

⎥
⎥
⎦ , u1 ∈ R.

The eigenvector is

⎡

⎢
⎢
⎣

1

2

3

⎤

⎥
⎥
⎦.

Let λ = 1.
⎧
⎪⎪⎨

⎪⎪⎩

3u1 − 5u2 + 2u3 = 0,

5u1 − 8u2 + 3u3 = 0,

6u1 − 9u2 + 3u3 = 0.

Having solved this system, we obtain

u1 = u2, 0u2 = 0u2, u3 = u2 or

⎡

⎢
⎢
⎣

u1

u2

u3

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

u2

u2

u2

⎤

⎥
⎥
⎦, u2 ∈ R. The eigenvector

is

⎡

⎢
⎢
⎣

1

1

1

⎤

⎥
⎥
⎦.

(2) By analogy with the solution from the previous item, write an equation of the
form Au = λu. Then, we obtain the characteristic equation:

−(λ+ 2)(λ− 1)2 = 0.

The eigenvalues are equal to λ1 = −2 and λ2,3 = 1.
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Let us find the eigenvectors.
For λ = −2,

⎧
⎪⎪⎨

⎪⎪⎩

5u1 + u2 = 0,

−4u1 + u2 = 0,

4u1 − 8u2 = 0,

u1 = 0, u2 = 0, u3 ∈ R.

The eigenvector is

⎡

⎢
⎢
⎣

0

0

1

⎤

⎥
⎥
⎦.

For λ2,3 = 1,

⎧
⎪⎪⎨

⎪⎪⎩

2u1 + u2 = 0,

−4u1 − 2u2 = 0,

4u1 − 8u2 − 3u3 = 0,

u2 = −2u1, u3 = 20

3
u1,

⎡

⎢
⎢
⎣

u1

u2

u3

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎢
⎣

u1

−2u1
20

3
u1

⎤

⎥
⎥
⎥
⎦
, u1 ∈ R.

The eigenvector is

⎡

⎢
⎢
⎣

3

−6

20

⎤

⎥
⎥
⎦.

(3) The characteristic equation: −λ3 − 3λ2 − 3λ− 1 = 0.
The eigenvalue is multiple of three: λ = −1.

⎧
⎪⎪⎨

⎪⎪⎩

3u1 − u2 + 2u3 = 0,

5u1 − 2u2 + 3u3 = 0,

−u1 − u3 = 0.
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Find non-trivial solutions: u1 = −u3 and u2 = −u3.

The eigenvector is

⎡

⎢
⎢
⎣

−1

−1

1

⎤

⎥
⎥
⎦.

(4) The characteristic equation has the form: −(λ− 2)3 = 0.
The eigenvalue is λ = 2.
Find the eigenvector for λ = 2:

⎧
⎪⎪⎨

⎪⎪⎩

−2u1 + u2 = 0,

−4u1 + 2u2 = 0,

−2u1 + u2 = 0,

then u = c1[1/2, 1, 0]T + c2[0, 0, 1]T .
The eigenvectors: [1, 2, 0]T , [0, 0, 1]T .

(5) The characteristic equation: −λ3 + 3λ2 − 3λ+ 1 = 0.
The eigenvalue λ = 1 is multiple of three.

⎧
⎪⎪⎨

⎪⎪⎩

−3u2 + 3u3 = 0,

−2u1 − 7u2 + 13u3 = 0,

−u1 − 4u2 + 7u3 = 0,

and therefore, u2 = u3 and u1 = 3u3.

⎡

⎢
⎢
⎣

3u3

u3

u3

⎤

⎥
⎥
⎦ , u3 ∈ R.

The eigenvector is

⎡

⎢
⎢
⎣

3

1

1

⎤

⎥
⎥
⎦.

5.19 Solution.
Compose the characteristic equation:

det

⎡

⎢
⎢
⎣

4 − λ 15 −3

8 −3 − λ 3

0 −15 7 − λ

⎤

⎥
⎥
⎦ = 0.
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Find the characteristic polynomial, expanding the determinant in the first column:

p(λ) = (4 − λ)((−3 − λ)(7 − λ)+ 45)− 8(15(7 − λ)− 45),

p(λ) = λ3 − 8λ2 − 80λ+ 384.

Find the eigenvalues: λ1 = 12, λ2 = −8 and λ3 = 4.
Compose the eigenvectors.

(1) For λ1,

⎧
⎪⎪⎨

⎪⎪⎩

−8x1 + 15x2 − 3x3 = 0,

8x1 − 15x2 + 3x3 = 0,

−15x2 − 5x3 = 0

⇒ a1 = c(3, 1,−3).

(2) For λ2,

⎧
⎪⎪⎨

⎪⎪⎩

12x1 + 15x2 − 3x3 = 0,

8x1 + 5x2 + 3x3 = 0,

−15x2 + 15x3 = 0

⇒ a2 = c(−1, 1, 1).

(3) For λ3,

⎧
⎪⎪⎨

⎪⎪⎩

15x2 − 3x3 = 0,

8x1 − 7x2 + 3x3 = 0,

−15x2 + 3x3 = 0

⇒ a3 = c(−1, 1, 5).

Write the transformation matrix and the matrix inverse of it:

P =

⎡

⎢
⎢
⎣

3 −1 −1

1 1 1

−3 1 5

⎤

⎥
⎥
⎦ , P−1 = 1

4

⎡

⎢
⎢
⎣

1 1 0

−2 3 −1

1 0 1

⎤

⎥
⎥
⎦ .

As a result, the diagonalized matrix is equal to

B = P−1AP =

⎡

⎢
⎢
⎣

12 0 0

0 −8 0

0 0 4

⎤

⎥
⎥
⎦ , where P =

⎡

⎢
⎢
⎣

−3 −1 −1

−1 1 1

3 1 5

⎤

⎥
⎥
⎦ .
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5.20 Solution.
(1) The characteristic equation has the form:

|A− λI | =

⎡

⎢
⎢
⎣

4 − λ 1 4

6 3 − λ 6

−11 −5 −11 − λ

⎤

⎥
⎥
⎦ = 0.

Compute the characteristic polynomial:

p(λ) = (4 − λ)((3 − λ)(−11 − λ)+ 30)− (6(−11 − λ)+ 30)

+4(−30 − (3 − λ) · (−11)),

p(λ) = −λ3 − 4λ2 − 3λ.

The eigenvalues are λ1 = −3, λ2 = −1 and λ3 = 0.
Compose the eigenvectors.
For λ1,

⎧
⎪⎪⎨

⎪⎪⎩

7x1 + x2 + 4x3 = 0,

6x1 + 6x2 + 6x3 = 0,

−11x1 − 5x2 − 8x3 = 0

⇒ a1 = c(1, 1,−2).

For λ2,

⎧
⎪⎪⎨

⎪⎪⎩

5x1 + x2 + 4x3 = 0,

6x1 + 4x2 + 6x3 = 0,

−11x1 − 5x2 − 10x3 = 0

⇒ a2 = c(5, 3,−7).

For λ3,

⎧
⎪⎪⎨

⎪⎪⎩

4x1 + x2 + 4x3 = 0,

6x1 + 3x2 + 6x3 = 0,

−11x1 − 5x2 − 11x3 = 0

⇒ a3 = c(−1, 0, 1).

The transformation matrix is P =

⎡

⎢
⎢
⎣

1 5 −1

1 3 0

−2 −7 1

⎤

⎥
⎥
⎦,

the matrix inverse of it has the form P−1 =

⎡

⎢
⎢
⎣

−3 −2 −3

1 1 1

1 3 2

⎤

⎥
⎥
⎦.
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The diagonalized matrix:

B = P−1AP =

⎡

⎢
⎢
⎣

−3 0 0

0 −1 0

0 0 0

⎤

⎥
⎥
⎦ , where P =

⎡

⎢
⎢
⎣

1 5 −1

1 3 0

−2 −7 1

⎤

⎥
⎥
⎦ .

(2) Write the characteristic equation:

A− λI =

⎡

⎢
⎢
⎣

−23 − λ −16 −28

58 39 − λ 64

−11 −7 −10 − λ

⎤

⎥
⎥
⎦ = 0,

p(λ) = (−23 − λ)((39 − λ)(−10 − λ)+ 64 · 7)+ 16(58(−10 − λ)
+11 · 64)− 28(−7 · 58 + 11(39 − λ)),

p(λ) = −λ3 + 6λ2 − 11λ+ 6.

The eigenvalues are λ1 = 3, λ2 = 2 and λ3 = 1.
Compose the eigenvectors.
For λ1,

⎧
⎪⎪⎨

⎪⎪⎩

−26x1 − 16x2 − 28x3 = 0,

58x1 + 36x2 + 64x3 = 0,

−11x1 − 7x2 − 13x3 = 0

⇒ a1 = c(2,−5, 1).

For λ2,

⎧
⎪⎪⎨

⎪⎪⎩

−25x1 − 16x2 − 28x3 = 0,

58x1 + 37x2 + 64x3 = 0,

−11x1 − 7x2 − 12x3 = 0

⇒ a2 = c(4,−8, 1).

For λ3,

⎧
⎪⎪⎨

⎪⎪⎩

−24x1 − 16x2 − 28x3 = 0,

58x1 + 38x2 + 64x3 = 0,

−11x1 − 7x2 − 11x3 = 0

⇒ a3 = c(5,−11, 2).

The transformation matrix is P =

⎡

⎢
⎢
⎣

2 4 5

−5 −8 −11

1 1 2

⎤

⎥
⎥
⎦,
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and the matrix inverse of it is P−1 =

⎡

⎢
⎢
⎣

−5 −3 −4

−1 −1 −3

3 2 4

⎤

⎥
⎥
⎦.

Write the diagonalized matrix:

B = P−1AP =

⎡

⎢
⎢
⎣

3 0 0

0 2 0

0 0 1

⎤

⎥
⎥
⎦ , where P =

⎡

⎢
⎢
⎣

2 4 5

−5 −8 −11

1 1 2

⎤

⎥
⎥
⎦ .

5.21 Answer:
The characteristic polynomial has the form p(λ) = λ3 −3aλ2 +3a2λ−λ+ (a−

a3); its roots are equal to λ1 = a − 1, λ2 = a and λ3 = a + 1.
The diagonalized matrix is equal to

B = P−1AP =

⎡

⎢
⎢
⎣

a + 1 0 0

0 a 0

0 0 a − 1

⎤

⎥
⎥
⎦ , where P =

⎡

⎢
⎢
⎣

−1 1 0

1 −1 −1

0 1 1

⎤

⎥
⎥
⎦ .

5.22 Solution.
Write the left side of the characteristic equation det(�− λI) = 0, expanding the

determinant in the first column:

det(�− λI) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

−λ 1 0 . . . 0 0

0 −λ 1 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . −λ 1

ω 0 0 . . . 0 −λ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

−λ 1 0 . . . 0

0 −λ 1 . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . 1

ω 0 0 . . . −λ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

− (−1)n

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 0 . . . 0 0

−λ 1 . . . 0 0

. . . . . . . . . . . . . . .

0 0 . . . 1 0

0 0 . . . −λ 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= − λ(−λ)n−1 − (−1)nω = (−λ)n − (−1)nω.

As a result, the characteristic equation for the matrix� has the form (−1)n(λn−
ω) = 0 or (λn − ω) = 0.
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5.23 Solution.
According to the Cayley–Hamilton theorem, when the matrix is substituted into

its characteristic equation, an identity is obtained. As is shown in Problem 5.22, the
characteristic equation for� has the form (λn−ω) = 0. Then, the equality is valid:

�n − ωI = O, or �n = ωI,

where, as usual,O is the zero matrix of size n×n and I is the identity matrix of the
same size.

5.24 Solution.

Denote A =
⎡

⎣
1 ϕ/n

−ϕ/n 1

⎤

⎦.

The eigenvalues of this matrix are equal to λ1,2 = 1 ± iϕ/n; the eigenvectors
corresponding to them are equal to [1, i]T and [1,−i]T .

Compute the power of An, having brought the matrix to diagonal form A′ first:

A′ =
⎡

⎣
1 1

i −i

⎤

⎦

−1 ⎡

⎣
1 ϕ/n

−ϕ/n 1

⎤

⎦

⎡

⎣
1 1

i −i

⎤

⎦ =
⎡

⎣
1 + iϕ/n 0

0 1 − iϕ/n

⎤

⎦ ,

and therefore, according to the theorem on the power of a special form matrix on
page 56,

An =
⎡

⎣
1 1

i −i

⎤

⎦ (A′)n
⎡

⎣
1 1

i −i

⎤

⎦

=
⎡

⎣
1 1

i −i

⎤

⎦

−1 ⎡

⎣
(1 + iϕ/n)n 0

0 (1 − iϕ/n)n

⎤

⎦

⎡

⎣
1 1

i −i

⎤

⎦

−1

.

After simple computations, we obtain

An = 1

2

⎡

⎣
(1 + iϕ/n)n + (1 − iϕ/n)n i(−(1 + iϕ/n)n + (1 − iϕ/n)n)
i((1 + iϕ/n)n − (1 − iϕ/n)n) (1 + iϕ/n)n + (1 − iϕ/n)n

⎤

⎦ .

Using the relation known from mathematical analysis [76]

lim
n→∞(1 + t/n)n = et ,
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which is valid for all t ∈ C, perform the limit operation:

lim
n→∞A

n = 1

2

⎡

⎣
eiϕ/n + e−iϕ/n −i(eiϕ/n − e−iϕ/n)

−i(e−iϕ/n − eiϕ/n) eiϕ/n + e−iϕ/n

⎤

⎦ .

Representing the exponent of the imaginary number by Euler’s formula cos z +
i sin z = eiz, we arrive at the final answer:

lim
n→∞

⎡

⎣
1 ϕ/n

−ϕ/n 1

⎤

⎦

n

=
⎡

⎣
cosϕ sinϕ

− sinϕ cosϕ

⎤

⎦ .

5.25 Answer:

Z′ = P−1ZP =

⎡

⎢
⎢
⎣

−2i 0 0

0 i 0

0 0 1

⎤

⎥
⎥
⎦ , where P =

⎡

⎢
⎢
⎣

−2 −2i −i
0 1 − i 0

1 2 1

⎤

⎥
⎥
⎦ .

5.26 Solution.
As is known, the traces of identical matrices coincide (see Problem 5.17).

Therefore, the sum of the eigenvalues of the matrix is equal to the trace of this
matrix:

trY = λ1 + λ2 + λ3 =
3∑

i=1

yii = 910 + (68 − 1070i)+ (68 + 1070i) = 1046,

and the third eigenvalue is equal to

λ3 = 1046 − (λ1 + λ2) = 1046 − ((11 + 57i)+ (11 − 57i)) = 1024.

5.27 Proof.
Let A be an arbitrary Hermitian matrix of size n × n that has the eigenvector b,

which is satisfied by the eigenvalue λ0. This means that the equality is fulfilled

Ab = λ0b. (5.64)

Consider the expression bHAb. It is equal to a real number, since according to
the theorem on Hermitian conjugation of product on page 181,

(bHAb)H = bHAH(bH)H = bHAb. (5.65)
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According to (5.64), the equality is fulfilled

bHAb = λ0b
H b = λ0(|b1|2 + |b2|2 + · · · + |bn|2), (5.66)

where b1, b2, . . . , bn are the components of the vector b.
Comparing (5.65) and (5.66), we obtain that λ0 ∈ R.

5.28 Proof.
Let U be an arbitrary unitary matrix that has the eigenvector b, which is satisfied

by the eigenvalue λ0. This means that the equality is fulfilled

Ub = λ0b. (5.67)

Consider the expression (Ub)H (Ub). By virtue of (5.67), this expression can be
presented in the form:

(Ub)H (Ub) = (λ0b)
H (λ0b) = (λ∗

0b
H)(λ0b) = λ∗

0λ0b
H b = |λ0|2bH b. (5.68)

Note that the transformations used property (3) of the Hermitian conjugate operation
(see page 181).

On the other hand, relying on the theorem on Hermitian conjugation of product
on page 181 and on the property of unitarity of UHU = I , we obtain

(Ub)H (Ub) = (bHUH)(Ub) = bH(UHU)b = bHIb = bH b. (5.69)

Comparing (5.68) and (5.69), we come to the conclusion: |λ0|2 = 1.
Therefore, the complex number λ0 is located on a complex plane, at a distance

of ρ = 1 from the origin of coordinates. The locus of all such points λ0 is the unit
circle with the centre at the origin of coordinates, which is what we set out to prove.

5.29 Answer:

for σ1, λ1,2 = ±1, the eigenvectors are b1,2 = 1√
2

⎡

⎣
1

±1

⎤

⎦;

for σ2, λ1,2 = ±1, the eigenvectors are b1,2 = 1√
2

⎡

⎣
1

±i

⎤

⎦;

for σ3, λ1,2 = ±1, the eigenvectors are b1 =
⎡

⎣
1

0

⎤

⎦ and b2 =
⎡

⎣
0

1

⎤

⎦.



Chapter 6
Vectors in a Three-Dimensional Space

Geometrical vector is a directed segment
−→
AB with the beginning at the pointA and

the end at the point B. Hereinafter, the word “geometrical” in this definition will be
omitted for brevity.

Zero vector, or null vector, is a vector whose beginning and end coincide.
The length of the segment AB is called the modulus or magnitude of the vector−→

AB and is denoted by |−→AB|.
The vectors lying on parallel lines are referred to as collinear.
Unit vector is a vector whose modulus is equal to one.
The vector b is the product of the number α and the vector a, if the following

conditions are met:

(1) |b| = abs(α)|a|;
(2) directions of the vectors a and b coincide if α > 0, and these vectors are

oppositely directed if α < 0.

The product of zero and a is equal to zero vector by definition.

The two vectors
−→
AB and

−→
CD are considered to be equal, and if they are collinear,

they have the same moduli and are unidirectional.
A vector

ε =
−→
AB

|−→AB|
(6.1)

is called the normalized vector of the vector
−→
AB. It is a unit vector whose direction

coincides with that of the vector
−→
AB.

When determining the sum of vectors, the law of parallelogram should be used
(see Fig. 6.1).
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Fig. 6.1 Determine the
vector c as the sums of the
vectors a and b (law of
parallelogram)

a

b

c = a+ b

Let the line L and the point A be specified in the space. Let us draw, through the
point A, the plane π , which is orthogonal to the line L. The point of intersection of
the plane π and the line L is called the projection of the point A on the line L.

Consider the vector
−→
AB and the line L in space. Let A′ and B ′ be projections

of the points A and B on the line L, respectively. Then, the vector
−−→
A′B ′ is called a

projection of the vector
−→
AB on the line L and is denoted by PrL

−→
AB.

The numeric projection of the vector
−→
AB on the line L is equal to the modulus

|−→AB|, multiplied by the cosine of the angle α between the vector
−→
AB and the line L,

i.e. PrL
−→
AB = |−→AB| cosα.

Numeric projections of vectors have the following properties:

PrL (a + b) = PrL a + PrL b, (6.2)

PrL (αa) = αPrL a. (6.3)

6.1 Cartesian Coordinate System

Cartesian1 coordinate system is a system that consists of the reference point O , the
mutually perpendicular axes Ox, Oy, Oz, that intersect at the point O , and a scale
unit segment.

Let A be an arbitrary point in space. The vector
−→
OA is called a position vector

of the point A. The numeric projection of the vector
−→
OA on the axis Ox is denoted

by x and is called an abscissa, on the axis Oy by y and is called an ordinate, and
on the axisOz by z and is called an applicate of the point A [19, 23].

The respective coordinates of the equal vectors coincide.

1René Descartes (1596–1650), French philosopher, mathematician, physicist and physiologist.
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Fig. 6.2 Cartesian
coordinate system

i

x

j y

k

z

A

O

The real numbers x, y, z are coordinates of the point A and the position vector−→
OA, which can be written as A(x, y, z) and

−→
OA = (x, y, z).

Normalized vectors (basis vectors) of Cartesian coordinate system are the unit
vectors i, j , k (see Fig. 6.2). In coordinate representation, they have the following
form: i = (1, 0, 0), j = (0, 1, 0) and k = (0, 0, 1).

An arbitrary vector
−→
AB = (x, y, z) can be represented in the form of a basis

expansion of Cartesian coordinate system:

−→
AB = xi + yj + zk. (6.4)

The linear operations on vectors, i.e. addition of vectors and multiplication of a
vector by a number, are said to be performed component-wise or coordinate-wise.
This means that if a = (ax, ay, az), b = (bx, by, bz) and c ∈ R, then

a + b = (ax + bx, ay + by, az + bz), ca = (cax, cay, caz). (6.5)

With the help of the normalized vectors of the coordinate system, the obtained
equalities can be written as

a+b = (ax+bx)i+(ay+by)j +(az+bz)k, ca = caxi+cayj +cazk. (6.6)

Let us illustrate the use of the introduced definitions by the following example.

Example 6.1 For the vectors v1 = (−2,−1, 7), v2 = (0, 4,−6) and the scalar
t = 3, we have

v1 + v2 = (−2 + 0,−1 + 4, 7 + (−6)) = (−2, 3, 1) = −2i + 3j + k,

tv1 = (3 · (−2), 3 · (−1), 3 · 7) = (−6,−3, 21) = −6i − 3j + 21k.

��
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6.2 Scalar Product of Vectors

Recall (see page 223) that the scalar product of the two vectors a = (xa, ya, za)

and b = (xb, yb, zb) is denoted by a · b and determined through their coordinates as
follows:

a · b = xaxb + yayb + zazb. (6.7)

It is easy to verify that for scalar products of basis vectors the series of equalities
is valid:

i · j = i · k = j · k = 0 and i · i = j · j = k · k = 1. (6.8)

Theorem 6.1 The scalar product of the two vectors a and b is equal to the product
of the moduli of these vectors by the cosine of the angle α between them.

The concepts of projection of a vector on a line and scalar product of vectors are
closely connected. Indeed, since the projection of the vector a on the line, containing
the vector b, is equal to Prb a = |a| cosα and, on the other hand, Pra b = |b| cosα,
then we can write

a · b = |a||b| cosα = |a| Pra b = |b| Prb a. (6.9)

If a ·b = 0, but a �= 0 and b �= 0, then such vectors are referred to as orthogonal,
since the angle between them is equal to π/2. Recall (see page 224) that the notation
of the form a ⊥ b is used to denote orthogonality of vectors.

Example 6.2 Compute the scalar product of the vectors a = (3, 2, 1) and b =
(0, 2, 1).

Solution

a · b = 3 · 0 + 2 · 2 + 1 · 1 = 5. (6.10)

��
The length |a| of the vector a = (xa, ya, za) is computed by the formula:

|a| =
√
x2
a + y2

a + z2
a. (6.11)

Example 6.3 Find the length of the vector a = (5,−3,−1).

Solution The length |a| is equal to
√

52 + (−3)2 + (−1)2 = √
25 + 9 + 1 = √

35.
��
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The distance between the points A(xa, ya, za) and B(xb, yb, zb) is computed by
the formula:

AB =
√

(xa − xb)2 + (ya − yb)2 + (za − zb)2. (6.12)

Example 6.4 Find the distance between the points A(5, 3, 2) and B(0, 3, 2).

Solution

AB =
√
(5 − 0)2 + (3 − 3)2 + (2 − 2)2 = 5. (6.13)

��
Find the angle between two arbitrary vectors of a three-dimensional vector space.
Let the vectors a = (xa, ya, za) and b = (xb, yb, zb) be given. Represent the

scalar product a · b in two ways, namely by the formulae (6.7) and (6.9):

a · b = xaxb + yayb + zazb, (6.14)

a · b = |a||b| cosα. (6.15)

Hence, we can conclude that the cosine of the angle α is equal to

cosα = xaxb + yayb + zazb
√
x2
a + y2

a + z2
a

√
x2
b + y2

b + z2
b

. (6.16)

It is clear that

α = arccos
( xaxb + yayb + zazb
√
x2
a + y2

a + z2
a

√
x2
b + y2

b + z2
b

)
. (6.17)

Example 6.5 Find the angle between the vectors a = (1, 2, 3) and b = (0, 2, 1).
Solution Using the formula (6.17), we obtain

α = arccos
( 1 · 0 + 2 · 2 + 3 · 1√

1 + 4 + 9 · √0 + 4 + 1

)
= arccos

7√
70
. (6.18)

��
Example 6.6 Let two vectors be given: a = (5, 4, 1) and b = (2,−2,−2). Are
these vectors collinear or mutually orthogonal?
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Solution If the vectors are collinear, then there exists such a real number λ that the
condition a = λb is satisfied. Hence, it follows:

xa

xb
= ya

yb
= za

zb
. (6.19)

But since there exist two inequalities
5

2
�= 4

−2
�= 1

−2
, then the vectors a and b are

non-collinear.
In order to check the mutual orthogonality of the vectors, find the scalar product

of a · b:

a · b = 5 · 2 − 4 · 2 − 1 · 2 = 0. (6.20)

Then, the vectors a and b are mutually orthogonal. ��

6.3 Vector Product of Vectors

A vector product, or cross product, of two vectors specified in Cartesian coordi-
nate system as a = (xa, ya, za) and b = (xb, yb, zb) is a vector denoted by a × b,
or [a, b], and determined according to the rule:

a × b =

∣
∣
∣
∣
∣
∣
∣
∣

i j k

xa ya za

xb yb zb

∣
∣
∣
∣
∣
∣
∣
∣

= (ya · zb− za · yb)i + (za · xb− xa · zb)j + (xa · yb− xb · ya)k.

(6.21)

6.3.1 Properties of the Vector Product

For the arbitrary vectors of the three-dimensional vector space R
3, the following

properties are valid.

Property 1

|a × b| = |a||b| sin α, (6.22)

where α is the angle between a and b.

Proof Prove that the equality is valid:

|a × b|2 = |a|2|b|2 sin2 α. (6.23)
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Express |a × b|2 in terms of the coordinates of the initial vectors:

|a × b|2 = (yazb − zayb)2 + (zaxb − xazb)2 + (xayb − xbya)2 = y2
az

2
b

+z2
ay

2
b + z2

ax
2
b + x2

az
2
b + x2

ay
2
b + x2

by
2
a − 2yazbzayb

−2zaxbxazb − 2xaybxbya.

On the other hand, the right side of the equality (6.23) can be represented in the
form:

|a|2|b|2 sin2 α = |a|2|b|2(1 − cos2 α) = (x2
a + y2

a + z2
a)(x

2
b + y2

b + z2
b)

−(xaxb + yayb + zazb)2 = x2
ax

2
b + x2

ay
2
b + x2

az
2
b + y2

ax
2
b + y2

ay
2
b

+y2
az

2
b + z2

ax
2
b

+z2
ay

2
b + z2

az
2
b − x2

ax
2
b − y2

ay
2
b − z2

az
2
b − 2xaxbyayb

−2xaxbzazb − 2yaybzazb

= y2
az

2
b + z2

ay
2
b + z2

ax
2
b + x2

az
2
b + x2

ay
2
b + x2

by
2
a − 2yazbzayb

−2zaxbxazb − 2xaybxbya. (6.24)

From the relation |a × b|2 = |a|2|b|2 sin2 α, we finally arrive at the conclusion
that |a × b| = |a||b| sinα.

Hence, it follows: if a and b are collinear, then a × b = 0 (since sin 0 = 0 and
sinπ = 0).

Property 2 If the vectors a and b are non-collinear, then the vector c = a × b is
orthogonal to each of the vectors a and b.

Proof Expand the scalar product of the vectors with regard to their coordinates:

(a×b) ·a = yazbxa−zaybxa−xazbya+zaxbya+xaybza−yaxbza = 0. (6.25)

Similar to formula (6.25), we obtain that (a × b) · b = 0.
Therefore, the vector c is orthogonal to both the vector a and the vector b.

Property 3

a × b = −b × a. (6.26)

Property 4

a × (b + c) = a × b + a × c, (6.27)

(a + b)× c = a × c + b × c. (6.28)
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Fig. 6.3 To the computation
of the area of the triangle
ABC (Example 6.8)

A
C

B
D

Example 6.7 The vectors a = (3,−1,−2) and b = (1, 2,−1) are given. Find the
coordinates of the vector (2a − b)× (2a + b).

Solution Determine the coordinates of the new vectors: 2a − b = (5,−4,−3) and
2a + b = (7, 0,−5). Then, the sought-for vector will be equal to

∣
∣
∣
∣
∣
∣
∣
∣

i j k

5 −4 −3

7 0 −5

∣
∣
∣
∣
∣
∣
∣
∣

= 20i + 4j + 28k. (6.29)

We obtain the answer: (20, 4, 28). ��
Example 6.8 The points A(1, 2, 0), B(3, 0,−3) and C(5, 2, 6) are given. Compute
the area S�ABC of the triangle ABC (see Fig. 6.3).

The square of the triangle ABC is a half of the square of parallelogram, formed

by the vectors
−→
AB = (2,−2,−3) and

−→
AC = (4, 0, 6). Therefore,

S�ABC = 1

2
SABDC = 1

2
|−→AB × −→

AC|. (6.30)

Then,

−→
AB × −→

AC =

∣
∣
∣
∣
∣
∣
∣
∣

i j k

2 −2 −3

4 0 6

∣
∣
∣
∣
∣
∣
∣
∣

= −12i − 24j + 8k. (6.31)

Hence,

S�ABC = 1

2

√
122 + 242 + 82 = 14. (6.32)
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6.4 Scalar Triple Product

The scalar triple product, or mixed product, of the vectors a, b and c is the
number (a, b, c), resulting from computation of the expression (a × b) · c. First, the
vectors a and b are multiplied vectorially, and then, the resulting vector is multiplied
by c scalarly.

It is easy to verify the formula that expresses the scalar triple product in terms of
their coordinates:

(a, b, c) ≡ ((a × b) · c) = (yazb − zayb)xc + (zaxb − xazb)yc + (xayb − yaxb)zc

=

∣
∣
∣
∣
∣
∣
∣
∣

xa ya za

xb yb zb

xc yc zc

∣
∣
∣
∣
∣
∣
∣
∣

. (6.33)

For designation of the triple scalar product (a × b) · c, the notation (abc) is also
used.

6.4.1 Properties of Scalar Triple Product

Property 1

(a × b) · c = a · (b × c) = (c × a) · b. (6.34)

Property 2

abs((a × b) · c) = Vn, (6.35)

where Vn is the volume of the parallelepiped formed by the vectors a, b and c (see
Fig. 6.4).

Proof By the definition of numeric projection of the vector c on the line, specified
by the vector a × b, the equality is valid:

(a × b) · c = |a × b| Pra×b c, (6.36)

where |a × b| = S the area of the parallelogram lying in the base of the
parallelepiped.

The vector a × b is orthogonal to the base of the parallelepiped, and, therefore,
Pra×b c coincides with the height of the parallelepiped h.
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Fig. 6.4 To the computation
of the volume of the
parallelepiped

A

A′

B

C

B′

C ′D′

D

c

b
a

Thus,

abs((a × b) · c) = S · h, (6.37)

as we set out to prove.

Note Since the tetrahedron ABCA′ forms one-sixth part of the volume of the
parallelepiped, its volume is equal to

VABCA′ = 1

6
Vn = 1

6
abs((a × b) · c). (6.38)

Three vectors are called coplanar if all of them are parallel to the same plane.

Property 3 The vectors a, b and c are coplanar if and only if (a, b, c) = 0.

Example 6.9 Let the vertices of the tetrahedron be given A(2,−1, 1), B(5, 5, 4),
C(3, 2,−1) andD(4, 1, 3). Compute its volume.

Solution Let us make the vectors
−→
AB = (3, 6, 3),

−→
AC = (1, 3,−2) and

−→
AD =

(2, 2, 2). Then, the volume of the tetrahedron ABCD is equal to

VABCD =1

6
abs(

−→
AB × −→

AC) · −→AD) = 1

6
abs det

⎡

⎢
⎢
⎣

3 6 3

1 3 −2

2 2 2

⎤

⎥
⎥
⎦ (6.39)

=1

6
· 3 · 2 · abs det

⎡

⎢
⎢
⎣

1 2 1

1 3 −2

1 1 1

⎤

⎥
⎥
⎦ = abs(−3) = 3. (6.40)

��
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Example 6.10 Find whether the following vectors are coplanar a = (2,−1, 2),
b = (1, 2,−3) and c = (3,−4, 7).

Solution Find the scalar triple product of the given vectors:

(a, b, c) =

∣
∣
∣
∣
∣
∣
∣
∣

2 −1 2

1 2 −3

3 −4 7

∣
∣
∣
∣
∣
∣
∣
∣

= 2 · (14 − 12)+ 1 · (7 + 9)+ 2 · (−4 − 6) = 0. (6.41)

Therefore, the vectors a, b and c are coplanar.

6.5 Vector Triple Product

Having three vectors, for example, a, b and c, apply the vector product operation
first to b and c, and then vectorially multiply a and b × c. As a result, we obtain the
vector triple product a × (b × c).

Theorem 6.2 For arbitrary vectors of a three-dimensional vector space a, b and c,
the identity is valid:

a × (b × c) ≡ b(a · c)− c(a · b). (6.42)

For proof see Problem 6.12.

Note The relation (6.42) is also referred to as Lagrange’s identity.

Consequence. For the operation of vector triple product, the Jacobi identity is
valid:

a × (b × c)+ c × (a × b)+ b × (c × a) ≡ 0. (6.43)

Proof For each of the three summands of the sum, use the expansion (6.42):

a × (b × c) = b(a · c)− c(a · b), (6.44)

b × (c × a) = c(b · a)− a(b · c), (6.45)

c × (a × b) = a(c · b)− b(c · a). (6.46)

Computation of the sum of the three vector products (6.44)–(6.46) after collect-
ing similar summands results in zero. The consequence is proved.
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Review Questions

1. Define geometric vector.
2. What are zero vector and unit vector?
3. What vectors are called collinear?
4. What is the condition of equality of vectors?
5. Formulate the rule of parallelogram for addition of vectors.
6. How is the projection of the vector b onto the vector a determined?
7. What is the Cartesian coordinate system?
8. Enumerate the normalizing vectors of the Cartesian coordinate system. How can

one use them to expand an arbitrary vector in the Cartesian basis?
9. Define scalar product of vectors.

10. What vectors are called orthogonal?
11. How do we find the distance between the two points specified by their Cartesian

coordinates?
12. Define vector product of vectors.
13. Enumerate the properties of a vector product.
14. Define scalar triple product of vectors.
15. Enumerate the properties of a scalar triple product.
16. What three vectors are called coplanar?
17. What is vector triple product?
18. Write Lagrange’s identity for the vector triple product.
19. Write the Jacobi identity.

Problems

6.1. Compute the scalar and vector products of the vectors c1 = 2a − b and
c2 = −a + 3b, if:

(a) a = (−2, 1, 1), b = (3,−2, 4);
(b) a = (2, 1,−2), b = (−1, 0,−2).

6.2. There are given vertices of the triangle ABC. Compute its area and the
cosine of the inner angle at the vertex B:

(a) A(2, 1, 0), B(3, 0, 3), C(2,−3, 7);
(b) A(4,−3, 2), B(−1, 4, 3), C(6, 3,−2).

6.3. Find whether vectors a, b, c are coplanar:

(a) a = (1, 1, 1), b = (2, 3, 0), c = (3,−1,−1);
(b) a = (−1, 0,−2), b = (0, 0,−1), c = (−1, 0, 3).

6.4. Prove that the pointsA(1,−1, 1), B(1, 3, 1), C(4, 3, 1) andD(4,−1, 1) are
vertices of a rectangle. Compute the length of its diagonals.
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6.5. Compute the coordinates of the vector c that is orthogonal to the vectors
a = 2j − k and b = −i + 2j − 3k and forms an obtuse angle with the axis
Oy, if |c| = √

7.
6.6. Find the angle between the vectors a + b and a − b, if a = 3i − j + 2k and

b = i + j − k.
6.7. The vectors a and b form the angle π/3. Find the length of the vector a−2b,

if |a| = 2, |b| = 1.
6.8. For what value of the real parameter d are the vectors a = (12, 2, d) and

b = (−3, 17d,−1) orthogonal?
6.9. For what value of the real parameter � will the vectors of the three-

dimensional Euclidean vector space t1 = a − 10b and t2 = a + �b be
orthogonal, if |a| = 5, |b| = 3, and the angle ϕ between the vectors a and b

is equal to
π

6
?

6.10. For what value of the real parameter � will the vectors of the three-
dimensional Euclidean vector space t1 = 2a + �b and t2 = b − 2a be
orthogonal, if |a| = 1, |b| = 3/2, and the angle ϕ between the vectors a and

b is equal to
2π

3
?

6.11. The vectors a and b have, in Cartesian basis, the coordinates a = (a1, a2, 0)
and b = (b1, b2, 0). Find the sine of the angle between these vectors.

6.12. Prove the theorem on vector triple product (6.42).
6.13. Prove the identities valid for the arbitrary vectors a, b, c and d:

(1) (a × b) · (c × d) ≡ (a · c)(b · d)− (a · d)(b · c);
(2) (a × b)× (c × d) ≡ c(abd)− d(abc);
(3) a × (b × (c × d)) ≡ (b · d)(a × c)− (b · c)(a × d);
(4) (((a × b)× (b × c))((b × c)× (c × a))((c × a)× (a × b))) ≡ (abc)4.

6.14. Prove the identity valid for the arbitrary vectors a, b, c, d , e, f :

(a × b) · ((c × d)× (e × f )) ≡ (abd)(cef )− (abc)(def ).

∗6.15. Simplify the vector expression that depends on the natural parameter n:

f n = (a × · · · × (a × (a × b)) . . . )
︸ ︷︷ ︸

n products

.

6.16. Prove that for p1,p2,p3,p4,p5 ∈ R
3 the equality is fulfilled:

(p1p2p3)(p1p4p5) =
∣
∣
∣
∣
∣
∣

(p1p2p4) (p1p2p5)

(p1p3p4) (p1p3p5)

∣
∣
∣
∣
∣
∣
.
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∗6.17. Solve the system of linear equations, represented in vector form, relative to
the unknown variables x1, x2, x3:

α · x = γ,
α × x + β = 0,

where x = (x1, x2, x3), and the vectors α �= 0, β and the scalar γ do not
depend on x1, x2, x3.

∗6.18. Solve the system of linear equations, represented in vector form, relative to
the unknown variables x1, x2, x3:

α · x = c1,

β · x = c2,

γ · x = c3,

where x = (x1, x2, x3), and the vectors α, β, γ and the constants c1, c2, c3
do not depend on x1, x2, x3 and (α,β, γ ) �= 0.

∗6.19. Solve the system of equations relative to the unknown vectors x and y:

{
π × x + ρ × y = σ ,

ρ × x − π × y = τ ,

where π ,ρ, σ , τ ∈ R
n, and the vectors π and ρ are not equal to the zero

vector simultaneously.

Answers and Solutions

6.1 Solution.

(a) Write the vectors c1 and c2 in coordinate form:

c1 = 2(−2, 1, 1)− (3,−2, 4) = (−7, 4,−2), c2 = −(−2, 1, 1)

+3(3,−2, 4) = (11,−7, 11).

The scalar product is equal to c1 · c2 = −7 · 11 + 4 · (−7)− 2 · 11 = −127.
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The vector product is equal to

c1 × c2 =

∣
∣
∣
∣
∣
∣
∣
∣

i j k

−7 4 −2

11 −7 11

∣
∣
∣
∣
∣
∣
∣
∣

= 30i + 55j + 5k = (30, 55, 5).

(b) Write the vectors c1 and c2: c1 = (5, 2,−2), c2 = (−5,−1,−4).
Their scalar product is equal to c1 ·c2 = 5 ·(−5)+2 ·(−1)−2 ·(−4) = −19.
The vector product:

c1 × c2 =

∣
∣
∣
∣
∣
∣
∣
∣

i j k

5 2 −2

−5 −1 −4

∣
∣
∣
∣
∣
∣
∣
∣

= −10i + 30j + 5k = (−10, 30, 5).

6.2 Solution.

(a) Compute the coordinates of the vectors
−→
BA and

−→
BC:

−→
BA = (2 − 3, 1 − 0, 0 − 3) = (−1, 1,−3),
−→
BC = (2 − 3,−3 − 0, 7 − 3) = (−1,−3, 4).

Then, find the cosine of the angle ϕ at the vertex B:

cosϕ =
−→
BA · −→

BC

|−→BA| · |−→BC|
= −1 · (−1)+ 1 · (−3)+ (−3) · 4

√
(−1)2 + 12 + (−3)2 ·

√
(−1)2 + (−3)2 + 42

= − 14√
286

.

The area can be computed in two ways.
T h e f i r s t m e t h o d
The product of the vectors

−→
BA and

−→
BC is determined as

−→
BA×−→

BC =

∣
∣
∣
∣
∣
∣
∣
∣

i j k

−1 1 −3

−1 −3 4

∣
∣
∣
∣
∣
∣
∣
∣

= (4−9)i−(−4−3)j +(3+1)k = −5i+7j +4k.

Substitute the obtained values of the coordinates into the formula for the area
of the triangle:

S = 1

2
|−→BA× −→

BC| = 1

2

√
(−5)2 + 72 + 42 = 3

2

√
10.
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T h e s e c o n d m e t h o d
According to the fundamental trigonometric identity (see Appendix B,

formula (B.1)), we have

sin ϕ =
√

1 − cos2 ϕ =
√

1 − 142

286
= 3

√
10√

286
.

Substitute the coordinate values into the area formula:

S = 1

2
|−→BA| · |−→BC| · sin ϕ

= 1

2

√
(−1)2 + 12 + (−3)2 ·

√
(−1)2 + (−3)2 + 42 · 3

√
10√

286
= 3

2

√
10.

Obviously, both methods of computing the area of the triangle result in the
same answer:

cosϕ = − 14√
286

, S = 3

2

√
10.

(b) The coordinates of the vectors
−→
BA and

−→
BC are equal to

−→
BA = (5,−7,−1),

−→
BC = (7,−1,−5).

Compute the cosine of the angle ϕ between these vectors:

cosϕ= (
−→
BA · −→BC)

|−→BA| · |−→BC|
= 5 · 7 + (−7) · (−1)+ (−5) · (−1)

√
52 + (−7)2 + (−1)2 · √72 + (−1)2 + (−5)2

= 47

75
.

Then, compute the vector product of
−→
BA and

−→
BC:

−→
BA× −→

BC =

∣
∣
∣
∣
∣
∣
∣
∣

i j k

5 −7 −1

6 −1 −5

∣
∣
∣
∣
∣
∣
∣
∣

= 34i + 18j + 44k.

Substitute the coordinate values into the area formula:

S = 1

2
|−→BA× −→

BC| = 1

2
·
√

342 + 182 + 442 = √
854.
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We finally obtain

cosϕ = 47

75
, S = √

854.

6.3 Solution.

(a) Since the determinant composed of the vector coordinates is not equal to zero:

∣
∣
∣
∣
∣
∣
∣
∣

1 1 1

2 3 0

3 −1 −1

∣
∣
∣
∣
∣
∣
∣
∣

= −12,

then the vectors a, b and c are not coplanar.
(b) The determinant composed of the vector coordinates is equal to zero:

∣
∣
∣
∣
∣
∣
∣
∣

−1 0 −2

0 0 1

−1 0 3

∣
∣
∣
∣
∣
∣
∣
∣

= 0,

and, therefore, these vectors are coplanar.

6.4 Solution.
Note that the points A, B, C and D lie in the same plane, since the applicate of

all these points is equal to z = 1.
Let us prove that these four points are vertices of a parallelogram. We have to

prove that

|−→AB| = |−→CD|, |−→BC| = |−→AD|.

Find the coordinates of the vectors introduced for consideration:

−→
AB = (1 − 1, 3 − (−1), 1 − 1) = (0, 4, 0),
−→
CD = (4 − 4,−1 − 3, 1 − 1) = (0,−4, 0),
−→
BC = (4 − 1, 3 − 3, 1 − 1) = (3, 0, 0),
−→
AD = (4 − 1,−1 − (−1), 1 − 1) = (3, 0, 0).
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Therefore,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

|−→AB| = √
02 + 42 + 02 = 4,

|−→CD| = √
02 + 42 + 02 = 4,

|−→BC| = √
32 + 02 + 02 = 3,

|−→AD| = √
32 + 02 + 02 = 3;

⇒ |−→AB| = |−→CD|,
|−→BC| = |−→AD|.

If one of the parallelogram angles is equal to
π

2
, then all other angles are also equal

to
π

2
.

Show that the scalar product of the vectors
−→
AB and

−→
AD is equal to zero:

−→
AB · −→AD = 0 · 3 + 4 · 0 + 0 · 0 = 0 ⇒ −→

AB ⊥ −→
AD.

Therefore,ABCD is a rectangle. Find its diagonals with the help of the Pythagorean
theorem:

AC =
√
AB2 + BC2 =

√
42 + 32 = 5.

It is clear that AC = BD, since the diagonals of the rectangle are equal.
As a result, we obtain AC = BD = 5.

6.5 Solution.
Let c = (cx, cy, cz), where cx, cy, cz are the unknown coordinates of the vector.

The condition of orthogonality of a and c has the form a · c = 0, or 2cy − cz = 0.
Then, the condition of orthogonality of b and c is b ·c = 0, or −cx+2cy−3cz = 0.
Since |c| = √

7 and the length of the vector is equal to the square root of the

sum of squares of its coordinates,
√
c2
x + c2

y + c2
z = √

7, which can be written as

c2
x + c2

y + c2
z = 7.

We obtain the system of three equations relative to the variables cx , cy , cz:

⎧
⎪⎪⎨

⎪⎪⎩

2cy − cz = 0,

−cx + 2cy − 3cz = 0,

c2
x + c2

y + c2
z = 7.

As the independent variable select cy and express through it two other variables
of the system: cz = 2cy and cx = 2cy − 3cz = 2cy − 3(2cy) = −4cy . Therefore,
c = (−4cy, cy, 2cy) = cy(−4, 1, 2), where cy ∈ R.
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The length of the vector c is equal to |c| = √
7, and, therefore,

abs(cy)
√
(−4)2 + 12 + 22 = √

7, abs(cy) =
√

7√
21

= 1√
3
, and cy = ± 1√

3
.

According to the problem statement, the vector c forms an obtuse angle with the
axis Oy, i.e. cosϕ < 0, where ϕ is the angle between the vectors c and j . Since

cosϕ = c · j

|c||j | = cy√
7
< 0,

cy = − 1√
3

.

We finally obtain c = 1√
3
(4,−1,−2).

6.6 Solution.
Write the vectors a and b in coordinate form:

a = (3,−1, 2),

b = (1, 1,−1).

Then, the sum and the difference of these vectors are

a + b = (3 + 1,−1 + 1, 2 + (−1)) = (4, 0, 1),
a − b = (3 − 1,−1 − 1, 2 − (−1)) = (2,−2, 3).

Use the formula of the cosine of the angle α between the vectors:

cosα = (a · b)

|a| · |b| .

After simple computations, we obtain

cosα = (a + b) · (a − b)

|a + b| · |a − b| = 4 · 2 + 0 · (−2)+ 1 · 3√
42 + 02 + 12 ·

√
22 + (−2)2 + 32

= 11

17
.

Therefore, α = arccos
11

17
.
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6.7 Solution.
Compute |a − 2b|2:

|a−2b|2 = (a−2b) ·(a−2b) = a ·a−4a ·b+4b ·b = |a|2 −4|a||b| cosϕ+4|b|2,

where ϕ = π/3 is the angle between the vectors a and b. Having substituted numeric
values, we obtain |a − 2b|2 = 1, and, therefore, |a − 2b| = 1.

6.8 Solution.
As is known, the necessary and sufficient condition of orthogonality of two

vectors is that their scalar product is equal to zero: a·b = 0. Substitute the coordinate
values from the problem statement:

12 · (−3)+ 2 · 17d − 1 · d = 0,

d = 12

11
.

Therefore, the vectors a and b are orthogonal for the parameter value d = 12

11
.

6.9 Solution.
In order for the vectors to be orthogonal, their scalar product must be equal to

zero: t1 · t2 = 0,

(a − 10b) · (a + �b) = 0,

a · a + �a · b − 10a · b − 10�b · b = 0.

Then, we find � = 10
√

3 − 10

3
√

3 − 36
.

6.10 Solution.
The necessary condition of the vector orthogonality: t1 · t2 = 0, or

(2a + �b) · (b − 2a) = 0,

2ab − 4|a|2 + �|b|2 − 2�ab = 0.

Substitute the numeric values from the problem statement: −3

2
−4+ 9�

4
+ 3�

2
=

0, and, therefore, � = 22

15
.

6.11 Answer: sin ϕ = a1b2 − a2b1
√
a2

1 + b2
1

√
a2

2 + b2
2

.
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6.15 Answer:

f n = (−1)�n/2	an−2

{
a(a × b), if n is odd,

a2b − (a · b)a, if n is even.

6.17 Answer:

x = γ

α2 α + 1

a2 α × β.

6.18 Answer:

x = 1

(α,β, γ )

(
c1(β × γ )+ c2(γ × α)+ c3(α × β)

)
.

6.19 Solution.
Multiply the first equation of the system by the vector ρ scalarly on the right;

multiply the second equation by the vector π scalarly on the right. Subtracting one
equation from the other, we find

x = −π × σ + ρ × τ

π2 + ρ2 + γ1π + γ2ρ,

where γ1, γ2 are real numbers.
Having substituted the obtained expression into the first equation of the system,

we find y:

y = π × τ − ρ × σ

π2 + ρ2 + γ2π − γ1ρ.



Chapter 7
Equation of a Straight Line on a Plane

7.1 Slope-Intercept Form of the Equation of a Straight Line

Consider Cartesian coordinate system on a plane.
Let the straight line L intersect the axis Oy at the point B with the coordinates

(0, b) and forms with the axis Ox the angle α (see Fig. 7.1). For definiteness, we

will assume that the angle α <
π

2
.

On the line, take an arbitrary point A with the coordinates (x, y). Then, from the
pointA, drop a perpendicular to the axisOx, and from the point B, a perpendicular
to the axis Oy. Consider the obtained triangle ABC. It is obvious that BC = x,
AC = y − b, � ABC = α. Since AC = BC tan α, we obtain y − b = x · tan α or
y = tanα · x + b.

Denote the tangent of the angle α by k. The variable k = tanα is referred to as
the slope of the straight line on the plane. As a result, we arrive at the equation of a
straight line of the form:

y = kx + b. (7.1)

It is called the slope-intercept form of the equation of a straight line.

Note For the lines of the form y = const, the slope is equal to zero; for the lines of
the form x = const, the slope is undefined.
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Fig. 7.1 The line L on the
plane xOy

y

x

L

B(0, b)

α

O

C

A(x, y)

Fig. 7.2 Construction of
n—a normal vector to the line

y

x

n

O

7.2 General Equation of a Straight Line

General equation of a straight line on a plane has the form:

Ax + By + C = 0. (7.2)

The real numbers A, B and C are called coefficients of the straight line
equation.

The variables A and B cannot simultaneously be equal to zero, because, in this
case, if C = 0, then all points on the plane will satisfy this equation. However, if
C �= 0, then none of the points on the plain satisfies this equation.

The vector n =
⎡

⎣
A

B

⎤

⎦ is called a normal vector of a line or a normal. The

normal vector is orthogonal to the respective line (see Fig. 7.2).
Let the inequality B �= 0 be valid. In this case, the summand By can be

rearranged to the right, and both parts of the equation can be divided by −B �= 0.
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As a result, we obtain

Ax + C = −By (7.3)

or

− A

B
x − C

B
= y. (7.4)

Let us introduce notations −A
B

= k and −C
B

= b; then, we arrive at the equation

y = kx + b, which is a slope-intercept form of the equation of a straight line
(see Eq. (7.1)).

7.3 Slope-Intercept Form of the Equation of a Straight Line
Through a Given Point

Consider the slope-intercept form of the equation of a straight line:

y = kx + b. (7.5)

Let this straight line pass through a point with the coordinates (x0, y0). Substitute
these coordinates into the equation:

y0 = kx0 + b. (7.6)

Subtract from the Eq. (7.5) the Eq. (7.6). We obtain the sought slope-intercept form
of the equation of a straight line passing through the given point:

(y − y0) = k(x − x0). (7.7)

Example 7.1 Find the slope-intercept form of the equation of a straight line k = 2
through T (1, 5).

Solution Use the formula (7.7). Then, we have

(y − 5) = 2(x − 1), (7.8)

or

y = 2x + 3. (7.9)

��
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7.4 Equation of a Straight Line Through Two Given Points

Find the equation of a straight line through two given points T1(x1, y1) and
T2(x2, y2) subject to the condition that x1 �= x2 and y1 �= y2. For this purpose, write
the equation of a straight line in the form (7.7), assuming that is passes through the
point T1:

y − y1 = k(x − x1). (7.10)

Since this line also passes through the point T2, then we will substitute its
coordinates into the Eq. (7.10):

y2 − y1 = k(x2 − x1). (7.11)

Divide the Eq. (7.10) by Eq. (7.11). We obtain

y − y1

y2 − y1
= x − x1

x2 − x1
. (7.12)

This is the equation of a straight line through two given points.

Note The formula (7.12) is not applicable in the case of equality of the abscissas or
equality of the ordinates of the initial points T1 and T2. If x1 = x2, then the equation
of the line T1T2 has the form x = x1. If the condition y1 = y2 is fulfilled, then the
equation of this line has the form y = y1.

Example 7.2 Find the equation of the line through T1(a, b) and T2(b, a), where
a, b ∈ R, and a �= b.

Solution Use the formula (7.12). Substitute into it the coordinates of the points
x1 = a, y1 = b, x2 = b, y2 = a:

y − b
a − b = x − a

b − a . (7.13)

After simple transformations, we obtain the equation of the straight line:

y − b = −(x − a), (7.14)

x + y − a − b = 0. (7.15)

��
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7.5 Angle Between Two Straight Lines

Consider two straight lines specified by the equations y = k1x+b1 and y = k2x+b2
(see Fig. 7.3).

By the angle α between the lines, we will understand the angle by which one of
these lines should be turned around their intersection point, anticlockwise, until the
first superposition on the other line.

From Fig. 7.3, it is seen that the angle α between the lines is equal to α1 − α2.
And the equalities tanα1 = k1 and tanα2 = k2 are fulfilled. In this case, based
on the formula of tangent of a difference of two arguments (see formula (B.14) in
Appendix B), we can write

tanα = tan(α1 − α2) = tan α1 − tanα2

1 + tanα1 · tan α2
= k1 − k2

1 + k1k2
. (7.16)

Hence,

α = arctan
k1 − k2

1 + k1k2
. (7.17)

Having exchanged places of the parameters k1 and k2, we obtain the tangent of
the adjacent angle ϕ̃ = π − ϕ.

From the obtained formula (7.17) follow two consequences:

(a) The straight lines with the slopes k1 and k2 are orthogonal if the condition 1 +
k1k2 = 0 is fulfilled, which is equivalent to k2 = − 1

k1
.

(b) The straight lines are parallel if k1 = k2.

Consider the straight lines specified by the equations in general form:

A1x + B1y + C1 = 0 and A2x + B2y + C2 = 0. (7.18)

Fig. 7.3 Definition of the
angle α between two straight
lines

y

xO

α

α2 α1
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Then, k1 = −A1

B1
and k2 = −A2

B2
. Therefore,

tanα = A2B1 − A1B2

A1A2 + B1B2
. (7.19)

From (7.19) directly follows that the lines specified by the Eqs. (7.18) are
orthogonal at A1A2 + B1B2 = 0 and parallel at A2B1 − A1B2 = 0.

Example 7.3 A straight line 2x − 5y + 1 = 0 is given. Set up the equation of a
straight line that passes through the point T0(3, 3):

(a) parallel to this line;
(b) perpendicular to this line.

Solution

(a) Find the slope k0 = −A
B

= − 2

(−5)
= 2

5
.

Write the equation of the straight line that passes through the given point
with the specified slope k1 = k0:

y − y0 = k1(x − x0), (7.20)

y − 3 = 2

5
(x − 3). (7.21)

Thus, the sought straight line has the form: 2x − 5y + 9 = 0.

(b) Find the slope of the line that is perpendicular to the given one: k2 = − 1

k0
=

−5

2
.

Write the equation of the straight line that passes through the given point
with the specified slope k2:

y − y0 = k2(x − x0), (7.22)

y − 3 = −5

2
(x − 3). (7.23)

We obtain the equation of the straight line: 5x + 2y − 21 = 0. ��

7.6 Intercept Form of the Equation of a Straight Line

Consider the equation of the line Ax + By + C = 0, where the variables A, B and
C are not equal to zero.
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Fig. 7.4 The line that passes
through the points (a, 0) and
(0, b)

y

x

O

a

b

Let us transform it as follows:

− A

C
x − B

C
y = 1. (7.24)

Let us introduce notations: a = −C
A

and b = −C
B

.

As a result, we obtain the equation:

x

a
+ y

b
= 1, (7.25)

which is the intercept form of the equation of a straight line.
It is obvious that the given line passes through the points with the coordinates

(a, 0) and (0, b). It is shown in Fig. 7.4.
Thus, this line cuts off segments of length abs(a) and abs(b) on the coordinate

axes.

7.7 Normal (Symmetric) Form of the Equation of a Line

Consider an arbitrary straight line L. Let us draw, through the origin of coordinates
O , a line, perpendicular to L, and denote by the letter P the intersection point of
these lines.

On the line OP , take the unit vector n, whose direction coincides with the
direction of the vector

−→
OP .

Assume that p = |−→
OP |, and the angle θ is the angle between the vector n and

the axis Ox (see Fig. 7.5).
Since n is a unit vector, its coordinates are equal to the projections of this vector

on the coordinate axes:

n = (cos θ, sin θ). (7.26)
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Fig. 7.5 To the derivation of
the normal form of the
equation of a line

y

xO

P

θ

n T (x, y)

L

The arbitrary point T (x, y) lies on the considered line L if and only if the

projection of the vector
−→
OT on the axis determined by the vector n is equal to

p:

Prn
−→
OT = p. (7.27)

As is well known,

Prn
−→
OT =

−→
OT · n

|n| = −→
OT · n. (7.28)

Bearing in mind that
−→
OT = (x, y), and the vector n is determined by the

equality (7.26), we obtain the following expression for their scalar product:

−→
OT · n = x cos θ + y sin θ. (7.29)

From the above reasoning, it follows that the point T (x, y) lies on the line L if
and only if the coordinates of this point satisfy the relation:

x cos θ + y sin θ − p = 0. (7.30)

This equation is called the normal form of the equation of the line L or the
Hesse1 normal form.

Let the straight line L be specified by the general equation:

Ax + By + C = 0, (7.31)

where C �= 0.

1 Ludwig Otto Hesse (1811–1874), German mathematician.
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In order to transform the general equation of a line into a normal form, multiply
both sides of the equation by the so-called normalizing factor:

μ = − 1√
A2 + B2

sgn(C), (7.32)

where sgn(C) is the sign of the coefficient C determined by the rule:

sgn(C) =

⎧
⎪⎪⎨

⎪⎪⎩

+1, if C > 0,

0, if C = 0,

−1, if C < 0.

(7.33)

As a result, the new coefficients at x and y (namely, μA and μB) will satisfy the
condition:

(μA)2 + (μB)2 = 1. (7.34)

If we select the angle θ so that cos θ = μA and sin θ = μB, while p =
−abs(μC), then we will obtain the normal form of the equation of a line.

Note If the condition C = 0 is fulfilled, then the line passes through the origin of
coordinates, and the normalizing factor can be taken with an arbitrary sign: μ =
± 1√

A2 + B2
.

Let us introduce the concept of deviation of an arbitrary point T (x, y) from the
given line L. Let the number d denote the distance from the point T to this line.

We will call the number + d the deviation δ of the point T from the line L in
the event when the point T and the origin of coordinatesO lie on the opposite sides
of the line L and the number − d in the event when the points T and O lie on the
same side of L.

Show that the left side of the normal form of the equation of the line is equal to
the deviation of the point T (x, y) from this line.

LetQ be the projection of the point T on the axis determined by the vector n.
The deviation δ of the point T from the line L is equal to PQ.
From Fig. 7.6, it is seen that

δ = PQ = OQ−OP = OQ− p. (7.35)

But OQ = Prn
−→
OT = x cos θ + y sin θ . So,

OQ = x cos θ + y sin θ. (7.36)
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Fig. 7.6 The deviation
δ = PQ of the point T from
the line L

x

y

Q

O

P

n
T (x, y)

L

Correlating the obtained formulae (7.35) and (7.36), we obtain

δ = x cos θ + y sin θ − p. (7.37)

This brings us to the following rule: in order to find the deviation δ of the point
T (x0, y0) from the line L, we should substitute to the left side of the normal form
of the equation of the line the coordinates x0 and y0 of the point T instead of x and
y. The distance from the point T to the line L is equal to the absolute deviation.

Example 7.4 Let us compute the distance from the point T (5, 4) to the line through
A(1,−2) and B(0, 3).

Solution Write the equation of a straight line through the points A and B:

x − 1

−1
= y + 2

5
or 5x + y − 3 = 0. (7.38)

Having multiplied the resulting equality by μ = 1√
26

, we bring the equation to

the normal form:

5x√
26

+ y√
26

− 3√
26

= 0. (7.39)

Then, the distance d from the point T to the line is equal to

d = abs

(
5 · 5√

26
+ 4√

26
− 3√

26

)

= 26√
26

= √
26. (7.40)

��
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7.8 Line Segments

Line segment M1M2 is a part of a straight line between its two points M1(x1, y1)

and M2(x2, y2). The points M1(x1, y1) and M2(x2, y2) are the endpoints of the
segment [8].

A set of points belonging to the segment is specified as follows:

M1M2 = {(x, y) : x = (1 − t)x1 + tx2, y = (1 − t)y1 + ty2, t ∈ [0, 1]}. (7.41)

There exists an equivalent notation ofM1M2:

M1M2 = {(x, y) : x = x1 + (x2 −x1)t, y = y1 + (y2 −y1)t, t ∈ [0, 1]}. (7.42)

The variable 0 � t � 1 in the formulas (7.41) and (7.42) is referred to as the
parameter of the segment.

Example 7.5 Let us write a program in Python that determines, by the segment
endpoint coordinates, in which coordinate quadrants it is located. For example, the
segmentL1L2 that connects the pointsL1(−1,−2) andL2(4, 1), lies in the I, III and
IV quadrants. Another example: the segment that connects the pointsM1(−1,−2)
and M2(−1,−2) entirely belongs to the II quadrant (see Fig. 7.7, which shows the
segments L1L2 andM1M2 with the numbers of each quadrant).

Solution In order to represent a Cartesian plane point in the computer memory,
introduce a class Point, which contains two fields: x and y, the abscissa and

x

y

O

L1

L2

M1

M2

III

III

IV

Fig. 7.7 To the Example 7.5. The segment L1L2 lies in the I, III and IV quadrants, while the
segment M1M2 entirely belongs to the II quadrant
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the ordinate of the point. Thus, the segment is determined by the boundary points;
denote them by P1 and P2.

The main computing work is performed by the functionget_quadrants(p1,
p2). It returns the list that contains the numbers of the quadrants where the segment
P1P2 is located.

The auxiliary function get_quadrant(p) is used to determine the number
of the quadrant to which the only argument belongs, namely the point p. This
function returns an integer number from the set {0, 1, 2, 3, 4}. The variable
get_quadrant(p) is equal to zero if and only if p lies on the Ox or Oy axis
and therefore does not belong to any of the plane quadrants.

Execution of the function get_quadrant(p1, p2) begins with checking
whether the points p1 and p2 lie in the adjacent quadrants, i.e. those that form the
unordered pairs 1–2, 2–3, 3–4, 4–1. During this check, the variables p1_quad and
p2_quad will be assigned the numbers of the quarters to which points p1 and p1
belong, respectively.

Since the numbers of the adjacent quadrants differ by one modulo two, the
False value of the boolean variable

is_adjacent = abs(p1_quad - p2_quad) % 2 == 1
is a sufficient condition of adjacency.

Then, the following operations are executed. If the points p1 and p2 lie in the
adjacent quadrants, then into the final list are written the values p1_quad and
p2_quad, following which the function get_quadrants() terminates.

Otherwise, the equality of the numbers p1_quad and p2_quad is checked. If
it is valid, then the entire segment lies in the quadrant number p1_quad, and the
function get_quadrants() terminates.

The last case of the opposite quadrants remains, i.e. of the pairs 1–3 or 2–4. The
line drawn through the points p1 and p2 intersects the ordinate axis at the point
with the coordinates (0,b), where

b = (p1.y*p2.x - p1.x*p2.y)/(p2.x - p1.x). (7.43)

If p1_quad = 1 or p1_quad = 3, then at b > 0 it is necessary to additionally
write the second quadrant to final list, and the fourth quadrant at b < 0. Otherwise
(in the case p1_quad ∈ {2, 4}) at b > 0, it is necessary to additionally write the
first quadrant to the list, and the third quadrant at b < 0.

Thus, all the possible cases of location of the segment P1P2 relative to the
coordinate axes are exhausted, on the condition that none of the segment endpoints
lies on the coordinate axis.

Listing 7.1 provides the text of the program that determines, by the segment
endpoint coordinates, in which quadrants it is located.
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Listing 7.1
� �

1 class Point:
2 def __init__(self, x, y):
3 self.x = x
4 self.y = y
5

6

7 def get_quadrant(p):
8 if p.x > 0 and p.y > 0:
9 return 1

10 elif p.x < 0 and p.y > 0:
11 return 2
12 elif p.x < 0 and p.y < 0:
13 return 3
14 elif p.x > 0 and p.y < 0:
15 return 4
16 else:
17 return 0
18

19

20 def get_quadrants(p1, p2):
21 p1_quad = get_quadrant(p1)
22 p2_quad = get_quadrant(p2)
23

24 is_adjacent = abs(p1_quad - p2_quad) % 2 == 1
25

26 if is_adjacent:
27 return [p1_quad, p2_quad]
28 elif p1_quad == p2_quad:
29 return [p1_quad]
30 else:
31 b = (p1.y * p2.x - p1.x * p2.y) \
32 / (p2.x - p1.x)
33

34 if b == 0:
35 return [p1_quad, p2_quad]
36 elif p1_quad == 1 or p2_quad == 3:
37 quadrant = 2 if b > 0 else 4
38 return [p1_quad, p2_quad, quadrant]
39 else:
40 quadrant = 1 if b > 0 else 3
41 return [p1_quad, p2_quad, quadrant]

� �
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The most general case is when P1 or P2 can belong to the coordinate axes and
is discussed in Problem 7.30. The solution of this problem includes the function
get_quadrants_general(), which is free from the mentioned constraint.

��

Review Questions

1. How is the slope of a straight line on a plane determined?
2. Write the equation of a straight line with a slope.
3. What is the form of the general equation of a straight line on a plane?
4. What is the normal to the line?
5. What does the equation with a slope for a straight line through a specified point

look like?
6. Write the equation of a straight line through two specified points.
7. How is the angle between two lines computed?
8. Write intercept form of the equation of a straight line.
9. Define the deviation of an arbitrary point from a given line.

10. For solution of what problem is it convenient to use the normal form of the
equation of a line?

11. How can the set of points of the segmentM1M2 be specified with the help of a
parameter?

Problems

7.1. Find the intersection point of the lines 2x− 3y+ 4 = 0 and 4x+ y− 6 = 0.
7.2. The sides of the triangle lie on the lines 5x − y + 12 = 0, x + y + 3 = 0

and 4x + 3y − 6 = 0. Find the coordinates of the vertices of this triangle.
7.3. The coordinates of the vertices of a triangle are (5,−4), (6,−6) and

(−15, 4). Find the equations of its sides.
7.4. Show that the area of a triangle with the vertices (x1, y1), (x2, y2) and

(x3, y3) is equal to

S = 1

2
abs

∣
∣
∣
∣
∣
∣
∣
∣

x1 y1 1

x2 y2 1

x3 y3 1

∣
∣
∣
∣
∣
∣
∣
∣

. (7.44)

7.5. The sides of the triangle lie on the lines x + y + 1 = 0, x + 2y − 3 = 0 and
4x − 3y − 2 = 0. Compute the area of this triangle.
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7.6. Median of a triangle is the segment that connects its vertex with the
midpoint of the opposite side. Set up the equations of the lines on which
the medians of the triangle ABC lie, if A(1, 2), B(4,−3), C(6, 6).

7.7. Compute the distance from the point T (1, 7) to the line throughA(−3,−20)
and B(4, 17).

7.8. Compute the distance from the origin of coordinates to the line given by the

equation
x − x0

x0
+ y − y0

y0
= 0, where x0, y0 are real numbers not equal to

zero.
7.9. One of the sides of the square lies on the line x+ 3y+ 10 = 0. Find the area

of this square if the coordinates of one of its vertices are (−4,−4).
7.10. At what point do the lines specified by the equations x/a + y/b = 1 and

x/b + y/a = 1, where a, b �= 0, intersect?
7.11. Find the angle between the lines 3x + 5y − 10 = 0 and −2x + y + 4 = 0.
7.12. Find the values of the parameters λ andμ at which the lines λx+6y−2 = 0

and 2x + 3y − μ = 0:

(1) have exactly one common point,
(2) coincide,
(3) are parallel.

7.13. Compute the distance between the parallel lines specified by the equations
Ax + By + C = 0 and Ax + By + C′ = 0, where C �= C′.

∗7.14. On what condition do the lines A1x+B1y+C1 = 0, A2x+B2y+C2 = 0,
. . . , Anx + Bny + Cn = 0 intersect at one point?

7.15. The line L passes through the point T (x0, y0) at the angle α the abscissa
axis. Write the equation of the line L∗ that passes through the same point T0
at the angle �α to the line L.

∗7.16. The sides of a triangle are specified by the equation Aix + Biy + Ci = 0,
where i = 1, 2, 3. Find the equation of

(a) median,
(b) altitude,
(c) bisector,

drawn to the third side.
7.17. Compute the area of a triangle intercepted by the line Ax + By + C = 0

from the quadrantal angle.
7.18. Find the equation of the line that passes through the point T (x0, y0) and

intercepts from the quadrantal angle a triangle with an area equal to S. The
variables x0 and y0 are positive.

7.19. Assume that some line passing through the point T (x0, y0) intercepts from
the quadrantal angle a right triangle. What is the least area of this triangle?
The variables x0 and y0 are positive.
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∗7.20. The sides of a triangle are specified by the equation αix + βiy + γi = 0,
where i = 1, 2, 3. Show that the area of this triangle can be calculated by
the formula:

S = 1

2

�2

abs(�1�2�3)
, (7.45)

where � =

∣
∣
∣
∣
∣
∣
∣
∣

α1 β1 γ1

α2 β2 γ2

α3 β3 γ3

∣
∣
∣
∣
∣
∣
∣
∣

, �i are the cofactors of the element γi , i ∈ {1, 2, 3}.

7.21. Prove that the points T1(−2,−8), T2(18, 2) and T3(3,−11/2) lie on the
same line.

7.22. For what values of the real parameter a do the points T1(0, 1), T2(a, 2) and
T3(3, a) lie on the same line?

7.23. The coordinates of a triangle are given: A(1,−1), B(2, 4), C(−8,−1). Set
up the equation of the line that passes through the vertex A parallel to the
side BC.

7.24. The coordinates of a triangle are given: A(−2, 0), B(2, 3), C(−1,−1). Set
up the equation of the line that passes through the vertex B parallel to the
side AC.

7.25. It is known about the pointN that it lies on the ordinate axis, and the distance
from this point to N ′(−2,−5/2) is equal to d = 2

√
2. Find the coordinates

of the point N .
7.26. It is known that the area of the triangle is equal to S = 6 and its two vertices

have the coordinates (1, 1) and (−2,−3). Find the coordinates of the third
vertex of the triangle if this vertex lies on the abscissa axis.

7.27. It is known that the area of the triangle is equal to S = 10 and its two vertices
have the coordinates (−2, 3) and (−7,−1). Find the coordinates of the third
vertex of the triangle if this vertex lies on the ordinate axis.

7.28. Find the projection of the point (2,−13) on the line that passes through the
points (0, 2) and (2,−8).

7.29. Find the projection of the point (a, a) on the line that passes through the
points (1, 2a) and (2, 3a), if a is an arbitrary real number.

7.30. Write a program in Python that determines, by the segment endpoint
coordinates, in which coordinate quadrants it is located. In contrast to the
solution of the Example 7.5 on page 287, consider the full set of possible
cases, including the one when the segment endpoints can belong to the
coordinate axes.
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Answers and Solutions

7.1 Answer: (1, 2).

7.2 Answer: (−5/2,−1/2), (−30/19, 78/19), (15,−18).

7.3 Solution.
Let us use the equation of a straight line through two given points (7.12):

y − y1

y2 − y1
= x − x1

x2 − x1
.

Substituting the coordinates of the points from the problem statement, we obtain the
equation of the triangle sides:

2x + y − 6 = 0, 2x + 5y + 10 = 0, 10x + 21y + 66 = 0.

7.4 Solution.
Denote the triangle vertices (x1, y1), (x2, y2) and (x3, y3) by A1, A2 and A3,

respectively.
As is well known (see page 262), the area of an arbitrary triangle can be

represented as half of the modulus of the vector product
−−−→
A1A2 × −−−→

A1A3:

S = 1

2
|−−−→
A1A2 × −−−→

A1A3| = 1

2

∣
∣
∣
∣
∣
∣

x2 − x1 y2 − y1

x3 − x1 y3 − y1

∣
∣
∣
∣
∣
∣
.

This expression can be rewritten in the equivalent form:

S = 1

2
abs

∣
∣
∣
∣
∣
∣
∣
∣

x1 y1 1

x2 y2 1

x3 y3 1

∣
∣
∣
∣
∣
∣
∣
∣

.

Thus, the formula (7.44) is proved. It implies that the necessary and sufficient
condition of the three points belonging to one line is that the respective third-order
determinant is equal to zero.

7.5 Solution.
Solving the systems of equations:

⎧
⎨

⎩

x + y + 1 = 0,

x + 2y − 3 = 0;

⎧
⎨

⎩

x + y + 1 = 0,

4x − 3y − 2 = 0;

⎧
⎨

⎩

x + 2y − 3 = 0,

4x − 3y − 2 = 0,



294 7 Equation of a Straight Line on a Plane

we find the coordinates of the vertices of the triangle: (−5, 4), (−1/7,−6/7),
(13/11, 10/11).

As is shown in Problem 7.4, the area of an arbitrary triangle A1A2A3, whose
vertices have the coordinates (x1, y1), (x2, y2) and (x3, y3), respectively, is equal to

S = 1

2
abs

∣
∣
∣
∣
∣
∣
∣
∣

x1 y1 1

x2 y2 1

x3 y3 1

∣
∣
∣
∣
∣
∣
∣
∣

.

In our case,

S = 1

2
abs

∣
∣
∣
∣
∣
∣
∣
∣

−5 4 1

−1/7 −6/7 1

13/11 10/11 1

∣
∣
∣
∣
∣
∣
∣
∣

= 1

2
abs

(
1156

77

)

= 578

77
.

Note. See Problem 7.20 for a general solution.

7.6 Solution.
The abscissa and the ordinate of the midpoint of the segment with the endpoints

(x1, y1) and (x2, y2) are determined by the formulae xm = (x1 + x2)/2 and xm =
(y1 + y2)/2, respectively.

Find the midpoints of the sides: (5/2,−1/2), (7/2, 4), (5, 3/2).
Then, we apply the formula (7.12) and obtain the following equations of the

medians of the triangle ABC:

x + 8y − 17 = 0, 14x + y − 53 = 0, 13x − 7y − 36 = 0.

7.7 Solution.
The general equation of a straight line through (−3,−20) and (4, 17) has the

form 37x − 7y − 29 = 0.
We obtain the normal equation of this line. The normalizing multiplier (7.32) is

equal to

μ = − 1√
372 + 72

sgn(−29) = 1√
1418

.

Thus, the equation in normal form is

37√
1418

x − 7√
1418

y − 29√
1418

= 0,
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and the deviation of the point T (1, 7) from the line is equal to

δ = 37√
1418

· 1 − 7√
1418

· 7 − 29√
1418

= − 41√
1418

.

Therefore, the sought distance is equal to
41√
1418

.

7.8 Solution.
Bring the equation of a line to normal form.
The normalizing multiplier is equal to

μ = − 1
√
x2

0 + y2
0

sgn(−2x0y0) = 1
√
x2

0 + y2
0

sgn(x0y0),

and, therefore, the equation of a line can be written in the form:

⎛

⎝ x0
√
x2

0 + y2
0

x + y0
√
x2

0 + y2
0

y − 2
x0y0

√
x2

0 + y2
0

⎞

⎠ sgn(x0y0) = 0.

Compute the deviation from the origin of coordinates (0, 0):

δ = −2
x0y0

√
x2

0 + y2
0

sgn(x0y0).

The distance from the origin of coordinates to the line is equal to the absolute

value of the deviation:
2 abs(x0y0)
√
x2

0 + y2
0

.

7.9 Solution.

The deviation from the point (−4,−4) to the line − 1√
10
x− 3√

10
y− 10√

10
= 0

is equal to δ = −3

√
2

5
.

Hence, the distance from the point to this line is equal to d = 3

√
2

5
; it coincides

with the length of the side of the square.
The area of the square is S = d2 = 18/5.
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7.10 Solution.
The system of equations:

⎧
⎨

⎩

x/a + y/b = 1,

x/b + y/a = 1,

for a, b �= 0 has the unique solution x = y = ab/(a + b).
Therefore, the lines intersect at the point

( ab

a + b ,
ab

a + b
)

.

7.11 Solution.
Take the formula (7.19) in order to find the tangent of the angle between the lines

specified in the general form. Substitute into it the valuesA1 = 3,B1 = 5,A2 = −2
and B2 = 1, and we obtain

tanα = A2B1 − A1B2

A1A2 + B1B2
= 13.

Therefore, the angle between the lines is α = arctan 13.

7.12 Solution.
Consider the system of equations:

⎧
⎨

⎩

λx + 6y = 2,

2x + 3y = μ.

Using the bordering minor method (see page 64), we find the ranks of the system
matrix and the augmented matrix:

rk

⎡

⎣
λ 6

2 3

⎤

⎦ =
{

1, if λ = 4,

2, if λ �= 4;

rk

⎡

⎣
λ 6 2

2 3 μ

⎤

⎦ = rk

⎡

⎣
1 6 2

0 0 μ− 4

⎤

⎦ =
{

1, if μ = 1,

2, if μ �= 1.

Therefore:

(a) at λ �= 4, μ �= 1, the system has the unique solution, and the lines intersect
exactly at one point;

(b) at λ = 4, μ = 1, the system has an infinite set of solutions, and the lines
coincide;

(c) at λ = 4, μ �= 1, the system has no solution, and the lines are parallel.
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7.13 Solution.
Find the deviation of each line from the origin of coordinates:

δ1 = − 1√
A2 + B2

Csgn(C), δ2 = − 1√
A2 + B2

C′sgn
(
C′).

Then, as is easy to see, the distance d between the parallel planes is equal to the
absolute value of the difference of the deviations:

d = abs(δ1 − δ2) = abs

(

− 1√
A2 + B2

Csgn(C)+ 1√
A2 + B2

C′sgn
(
C′)

)

= abs(C′ − C)√
A2 + B2

.

7.14 Answer: the criterion of intersection of n lines at one point is the equality of
the ranks of the two matrices:

⎡

⎢
⎢
⎢
⎢
⎢
⎣

A1 B1

A2 B2

. . . . . . .

An Bn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

and

⎡

⎢
⎢
⎢
⎢
⎢
⎣

A1 B1 C1

A2 B2 C2

. . . . . . . . . . .

An Bn Cn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

7.15 Solution.
The equation of the line L∗ that passes through the point T (x0, y0) has the form

y − y0 = k(x − x0). In this equation, k is the unknown slope.
In order to find the value of k, let us use its property: k = tanα∗, where α∗ is the

angle of inclination of L∗ relative to the abscissa axis.
Since L∗ passes at the angle �α to the line L, then the two options arise: α∗ =

α−�α and α∗ = α+�α. Write these equations in the form of a common equality:

α∗ = α ±�α.

By the formulae of tangent of sum and difference of two angles (B.13) and (B.14)
on page 412, we have

k = tan(α ±�α) = tan α ± tan�α

1 ∓ tan�α tanα
.

We finally obtain the equation of the line L∗:

y − y0 = tanα ± tan�α

1 ∓ tan�α tanα
(x − x0).
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7.16 Answer:

(a) (A1x + B1y + C1)

∣
∣
∣
∣
∣
∣

A2 B2

A3 B3

∣
∣
∣
∣
∣
∣
= (A2x + B2y + C2)

∣
∣
∣
∣
∣
∣

A3 B3

A1 B1

∣
∣
∣
∣
∣
∣
;

(b) (A1x + B1y + C1)(A2A3 + B2B3) = (A2x + B2y + C2)(A1A3 + B1B3);

(c)
A1x + B1y + C1

√
A2

1 + B2
1

= −s A2x + B2y + C2
√
A2

2 + B2
2

,

where s = sgn

⎛

⎝

∣
∣
∣
∣
∣
∣

A1 B1

A3 B3

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

A2 B2

A3 B3

∣
∣
∣
∣
∣
∣

⎞

⎠.

7.17 Solution.
Denote the intersection points of the line Ax + By + C = 0 with the coordinate

axes by P(x0, 0) and Q(0, y0), where x0 = −C
A

, y0 = −C
B

. The coordinates x0

and y0 in the absolute value are equal to the lengths of the cathetuses of the right
triangle POQ lying on the axes Ox and Oy, respectively. The area of this triangle
is equal to the half of the product of the cathetuses:

S = 1

2
x0y0 = 1

2

(

−C
A

)(

−C
B

)

= C2

2AB
.

7.18 Solution.
Write the equation of the line that passes through the point (x0, y0): y − y0 =

k(x − x0), where k <∞ is the slope.
The case k → ∞ does not require separate consideration, since in that case the

line will not intercept the triangle from the quadrantal angle.
Find the coordinates of the points of intersection of the line with the coordinate

axes:
with the axisOx: y = 0, −y0 = k(x∗ − x0), x∗ = x0 − y0

k
, where abs(x∗) is the

length of the cathetus lying on the axisOx;
with the axis Oy: x = 0, y∗ − y0 = −kx0, y∗ = y0 − kx0, where abs(y∗) is the

length of the cathetus lying on the axisOy.
The area of such a triangle is equal to the half of the product of the cathetuses:

S = 1

2
abs(x∗y∗), S = 1

2

(
x0 − y0

k

)
(y0 − kx0) = 1

2
abs

( (y0 − kx0)
2

−k
)
.

Let us express the variable k:
k2x2

0 − 2k(x0y0 − S)+ y2
0 = 0. The solution of this square equation leads to two

possible values of k:

k1,2 = x0y0 − S ± √
S(S − 2x0y0)

x2
0

.
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We obtain the sought equation of the line:

y − y0 =
(
x0y0 − S ± √

S(S − 2x0y0)

x2
0

)

(x − x0).

7.19 Solution.
As is shown in the previous problem, the area of the triangle S depends on the

slope of the line k as follows: S(k) = 1

2
abs

( (y0 − kx0)
2

−k
)

.

For the points T (x0, y0), whose coordinates x0 and y0 are positive, the equality
k < 0 is fulfilled, i.e. in this case the line forms an obtuse angle with the axis Ox.

In order to find the minimal value of the function, let us compute the points at

which the derivative
d S(k)

d k
= y2

0 − k2x2
0

k2 is equal to zero.

The condition k < 0 is satisfied by the value k∗ = −y0

x0
. The point k∗ is the

minimum point, since the second derivative is
d2 S(k∗)
d k

= − 2y2
0

(k∗)3
> 0.

Thus, the least value of the area of the triangle is equal to

Smin = S(k∗) = 2x0y0.

7.20 Solution.
Compute the coordinates of the intersection points of the line pairs. Taking into

account that the area of the triangle is expressed in the form of a half of the modulus
of the vector form of the vectors that from both sides, we obtain

S = β1γ2 − β2γ1

α1β2 − α2β1

(
α2γ3 − α3γ2

α3β2 − α2β3
− α3γ1 − α1γ3

α1β3 − α3β1

)

+ β2γ3 − β3γ2

α2β3 − α3β2

(
α3γ1 − α1γ3

α1β3 − α3β1
− α1γ2 − α2γ1

α2β1 − α1β2

)

+ β3γ1 − β1γ3

α3β1 − α1β3

(
α1γ2 − α2γ1

α2β1 − α1β2
− α2γ3 − α3γ2

α3β2 − α2β3

)

.

Reduce the fractions to a common denominator. After simple but somewhat
cumbersome algebraic transformations, we arrive at the formula:

S = (α1(β2γ3 − β3γ2)+ α2(β3γ1 − β1γ3)+ α3(β1γ2 − β2γ1))
2

(α1β2 − α2β1)(α2β3 − α3β2)(α3β1 − α1β3)
.
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As is easy to see, the obtained expression can be presented as

S = 1

2

�2

abs(�1�2�3)
,

where� =

∣
∣
∣
∣
∣
∣
∣
∣

α1 β1 γ1

α2 β2 γ2

α3 β3 γ3

∣
∣
∣
∣
∣
∣
∣
∣

, �i are the cofactors of the elements γi , i ∈ {1, 2, 3}.

7.21 Solution.
Let us draw a line through the points T1 and T2 (see the formula (7.12)). The

slope of this line is k = 1/2. Then, the line T1T3 has the slope k′ = 1/2. Since
k = k′, then the points T1, T2 and T3 lie on the same line.

7.22 Solution.
T h e f i r s t m e t h o d
Let the equation of the line passing through the three points T1, T2 and T3 have

the form y = kx+b. Having substituted the coordinates of each of these points into
the equation of the line, we obtain the system of relatively unknown variables k and
b: ⎧

⎪⎪⎨

⎪⎪⎩

b = 1,

ak + b = 2,

3k + b = a.

The condition of definiteness of this system (i.e. the uniqueness of its solution)
leads to the square equation a2 − a − 3 = 0.

Therefore, the points T1, T2 and T3 lie on the same line at the two values of the

parameter a: a1 = 1

2
(1 + √

13) and a2 = 1

2
(1 − √

13).

T h e s e c o n d m e t h o d
Let us use the consequence of the formula (7.44) from Problem 7.4: the criterion

of the three points belonging to one line is that the third-order determinant is equal
to zero:

∣
∣
∣
∣
∣
∣
∣
∣

0 1 1

a 2 1

3 a 1

∣
∣
∣
∣
∣
∣
∣
∣

= 0.

The obtained equation has two roots: a1,2 = 1

2
(1 ± √

13).

Note. The necessary and sufficient condition for the three points T1, T2 and T3

to lie on the same line is collinearity of the vectors
−−→
T1T2 and

−−→
T1T3. In view of this,

there exists one more method of solving this problem, which is based on checking

whether the vector product
−−→
T1T2×−−→

T1T3 is equal to zero. Of course, different solution
methods result in the same answer.
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7.23 Solution.
The slope of the sought line coincides with the slope of the lineBC. The equation

of the line BC has the form y = 1

2
x + 3 (see the formula (7.12)). Then, use the

formula (7.10) for the line that passes through a given point:

y − y1 = k(x − x1), (7.46)

where k = 1

2
, x1 = 1, y1 = −1.

Substituting the numeric values, we obtain the equation of the line that passes
through the vertex A parallel to the side BC: x − 2y − 3 = 0.

7.24 Answer: x + y − 5 = 0.

7.25 Solution.
Since the point N lies on the ordinate axis, its coordinates are equal to (0, y),

where y is an unknown value. The distance d between the pointsN and N ′ is equal
to

d =
√

(0 − (−2))2 + (y − (−5/2))2 =
√

4 + (y + 5/2)2.

Thus, we obtain the equation relative to the variable y:

√

(0 − (−2))2 + (y − (−5/2))2 = 2
√

2,

which has the solutions y1 = −1/2 and y2 = −9/2. Therefore, the coordinates of
the point N are equal to (0,−1/2) or (0,−9/2).

7.26 Solution.
By the triangle area formula expressed by the coordinates of its vertices (1, 1),

(−2,−3) and (x, 0) (see (7.44) on page 290), we obtain S = abs(4x − 1).
According to the problem statement, S = 6, hence abs(4x − 1) = 13/4.
Therefore, the coordinates of the vertices of the triangle are equal to (−5/4, 0)

or (7/4, 0).

7.27 Solution.
The coordinates of the third vertex are (0, y).
The area of the triangle is equal to

S = 1

2
abs

∣
∣
∣
∣
∣
∣
∣
∣

−2 3 1

−7 −1 1

0 y 1

∣
∣
∣
∣
∣
∣
∣
∣

= 1

2
abs(23 − 5y) = 10,

hence y = 13/5 or y = 33/5.



302 7 Equation of a Straight Line on a Plane

The coordinates of the third vertex of the triangle are equal to (0, 13/5) or
(0, 33/5).

7.28 Solution.
Let A(0, 2), B(2,−8). The sought projection of the point is K(2,−13).
The projection of the point is the foot of the perpendicular to the line AB. Then,

the orthogonality property for the line AB and the perpendicular from the point K:
k1 · k2 = −1 is fulfilled.

Write the system of equations relative to the coefficients k1 and b1 for the line
AB:⎧

⎨

⎩

2 = b1,

8 = 2k1 + b1,

From this system, we obtain that b1 = 2, k1 = −5. Then, k2 = 1/5.
Substitute k2 into the equation of the line for the perpendicular from the pointK:
−13 = 2 · 1/5 + b2, hence b2 = −67/5.
Compute the coordinates of the point (x0, y0), at which the lines intersect:
1/5x0 − 67/5 = −5x0 + 2, x0 = 77/26, y0 = −333/26.

7.29 Solution.
Let A(1, 2a), B(2, 3a),K(a, a).
Projection of a point is a foot of a perpendicular to the lineAB. Then, the equality

is fulfilled for the line AB and the perpendicular from the pointK: k1 · k2 = −1.
Write the system of equations relative to the coefficients k1 and b1 for the line

AB:⎧
⎨

⎩

2a = k1 + b1,

3a = 2k1 + b1.

From this system, we obtain that b1 = a, k1 = a. Then, k2 = −1/a.
Substitute k2 into the equation of the line for the perpendicular from the pointK:
a = a(−1/a)+ b2, hence b2 = a + 1.
The coordinate of the projection of the pointK satisfies the equation:

ax0+a = −1/ax0+b2, ax0+a = −x0/a+a+1, x0(a+1/a) = 1, x0 = a

a2 + 1
.

Let us express the ordinate of the projection: y0 = − 1

a2 + 1
+a+1 = a+ a

a2 + 1
.

The sought projection has the coordinates

(
a

a2 + 1
, a + a

a2 + 1

)

.

7.30 Solution.
The suggested solution generally repeats the approach discussed in Example 7.5.

Note that in order to study the full set of possible cases of mutual arrangement of
the segment endpoints and the coordinate axes, the integer variable neighbor
is additionally used. It plays an important role for the location of the segment
illustrated in Fig. 7.8. Here, one of the segment endpoints, namely P2, is located
on the coordinate axis, and into the variable neighbor will be written the number
of the quadrant where the segment points from the small neighborhood P2 lie.
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x

y

O

P1

P2

III

III

IV

Fig. 7.8 To Problem 7.30. The segment P1P2 lies in the second and third quadrants,
get_quadrant(p1) = 3, get_quadrant(p2) = 0, neighbor = 2

After performing all checks, into the answer will be written the numbers of the
quadrants within which the segment points fall.

class Point:
def __init__(self, x, y):

self.x = x
self.y = y

def get_quadrant(p):
if p.x > 0 and p.y > 0:

return 1
elif p.x < 0 and p.y > 0:

return 2
elif p.x < 0 and p.y < 0:

return 3
elif p.x > 0 and p.y < 0:

return 4
else:

return 0

def get_quadrants_general(p1, p2):
p1_quad = get_quadrant(p1)
p2_quad = get_quadrant(p2)
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is_adjacent = abs(p1_quad - p2_quad) % 2 == 1

if p1_quad == 0 and p2_quad == 0:
mid = Point((p1.x + p2.x) / 2, (p1.y + p2.y) / 2)
mid_quad = get_quadrant(mid)

return [] if mid_quad == 0 else [mid_quad]
elif p1_quad == 0:

if p1.x * p2.x < 0:
neighbour = 3 - p2_quad \

if p2_quad <= 2 else 7 - p2_quad

return [p2_quad, neighbour]

if p1.y * p2.y < 0:
neighbour = 5 - p2_quad

return [p2_quad, neighbour]

return [p2_quad]
elif p2_quad == 0:

if p1.x * p2.x < 0:
neighbour = 3 - p1_quad if p1_quad <= 2 \

else 7 - p1_quad

return [p1_quad, neighbour]

if p1.y * p2.y < 0:
neighbour = 7 - p1_quad

return [p1_quad, neighbour]

return [p1_quad]
elif is_adjacent:

return [p1_quad, p2_quad]
elif p1_quad == p2_quad:

return [p1_quad]
else:

b = (p1.y * p2.x - p1.x * p2.y) \
/ (p2.x - p1.x)

if b == 0:
return [p1_quad, p2_quad]

elif p1_quad == 1 or p2_quad == 3:
quadrant = 2 if b > 0 else 4
return [p1_quad, p2_quad, quadrant]
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else:
quadrant = 1 if b > 0 else 3
return [p1_quad, p2_quad, quadrant]



Chapter 8
Equation of a Plane in Space

8.1 Equation of a Plane That Is Orthogonal to the Specified
Vector and Passes Through the Specified Point

Assume that it is known that the plane π is orthogonal to the vector n = (A,B,C)

and passes through the point T0(x0, y0, z0). Take an arbitrary point T (x, y, z) on the

plane π . The vector
−−→
T0T belongs to the plane π . From the condition of orthogonality

of the vector n of the plane π follows that the vector

−−→
T0T = (x − x0, y − y0, z− z0) (8.1)

is orthogonal to the vector n.
Relying on the property of the scalar product of orthogonal vectors, we can write

n · −−→
T0T = 0. (8.2)

This equation is called the vector equation of a plane [8].
Rewritten in coordinate form

A(x − x0)+ B(y − y0)+ C(z− z0) = 0, (8.3)

this equation is called the equation of a plane that is orthogonal to the vector
n = (A,B,C) and passes through the point T0(x0, y0, z0).
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8.2 General Equation of a Plane

Equation of the first degree

Ax + By + Cz+D = 0, (8.4)

in which A,B,C andD are arbitrary real constants such that out of the coefficients
A, B and C at least one is other than zero, is referred to as the general equation of
a plane.

A general equation (8.4) is referred to as complete if all its coefficients are other
than zero. If at least one of the mentioned coefficients is equal to zero, the equation
is referred to as incomplete.

Consider the possible types of incomplete equations.

(1) If D = 0, then the equation Ax + By + Cz = 0 determines the plane that
passes through the origin of coordinates.

(2) If A = 0, then the equation By + Cz + D = 0 determines the plane
parallel to the axis Ox, since the normal vector of this plane n = (0, B,C) is
perpendicular to the axisOx.

(3) If B = 0, then the equation Ax + Cz + D = 0 determines the plane, parallel
to the axis Oy, since its normal vector n = (A, 0, C) is perpendicular to the
axis Oy.

(4) If C = 0, then the equation Ax + By + D = 0 determines the plane parallel
to the axis Oz, since for this axis perpendicular is the normal vector with the
coordinates (A,B, 0).

(5) If A = B = 0, then the equation Cz+D = 0 determines the plane parallel to
the coordinate plane xOy.

(6) If A = 0 and C = 0, then the equation By + D = 0 determines the plane,
parallel to the coordinate plane xOz.

(7) If B = 0 and C = 0, then the equation Ax + D = 0 determines the plane,
parallel to the coordinate plane yOz.

(8) IfA = 0, B = 0 andD = 0, then the equation of the planeCz = 0 determines
the coordinate plane xOy.

(9) IfA = 0, C = 0 andD = 0, then the equation of the planeBy = 0 determines
the coordinate plane xOz.

(10) IfB = 0, C = 0 andD = 0, then the equation of the planeAx = 0 determines
the coordinate plane yOz.
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8.3 Intercept Form of the Equation of a Plane

Consider the general equation of the plane Ax + By + Cz+D = 0.
Assume that all the coefficients A, B, C and D are other than zero. Then this

equation can be written in the form:

x

(−D/A) + y

(−D/B) + z

(−D/C) = 1. (8.5)

Let us introduce the notations: a = −D
A

, b = −D
B

, c = −D
C

. Then Eq. (8.5) will

be reduced to the following form:

x

a
+ y

b
+ z

c
= 1. (8.6)

This is the intercept form of the equation of a plane.
In Eq. (8.6) the numbers a, b and c have simple geometric meaning: they are

equal in absolute value to the lengths of the segments (intercepts) that the plane
intercepts on the coordinate axes Ox, Oy and Oz, respectively (see Fig. 8.1). The
plane passes through the points (a, 0, 0), (0, b, 0), (0, 0, c).

z

y

x

c

b

a

Fig. 8.1 The intercepts that are intercepted by the plane on the coordinate axes
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8.4 Normal Equation of a Plane

Consider the plane shown in Fig. 8.2.

Assume that p is the length of the vector
−→
OP ; α, β, γ are the angles between the

unit vector n and the coordinate axes;Q is the arbitrary point on the plane with the
coordinates (x, y, z).

It is obvious that the projection of the vector
−−→
OQ on the direction n is equal to p:

Prn
−−→
OQ = p, (8.7)

Prn
−−→
OQ =

−−→
OQ · n

|n| , |n| = 1. (8.8)

Therefore

−−→
OQ · n = x cosα + y cosβ + z cos γ = p. (8.9)

We have obtained the normal equation of a plane. The variables cosα, cosβ, cos γ
are called the direction cosines of the vector n.

Take the general equation of a plane

Ax + By + Cz+D = 0, (8.10)

whereD �= 0.

Fig. 8.2 To the derivation of
the normal equation of a
plane

z

y

O

x

Q(x, y, z)

Pn
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The normalizing factor is calculated by the formula:

μ = − 1√
A2 + B2 + C2

sgn(D) (8.11)

(cf. the formula (7.32)).
If we multiply (8.10) by the normalizing factor μ, then as a result we obtain the

normal equation of the plane:

μ(Ax + By + Cz +D) = 0. (8.12)

Note If the condition D = 0 is met, then the plane passes through the origin of
coordinates, and the normalizing factor can be taken with an arbitrary sign: μ =
± 1√

A2 + B2 + C2
.

8.5 Equation of a Plane That Passes Through the Specified
Point Parallel to the Two Specified Vectors

Let the plane π be parallel to the vectors a1 = (k1, l1,m1) and a2 = (k2, l2,m2)

and pass through the point T0(x0, y0, z0). Further, let T (x, y, z) be an arbitrary point

on the plane. Then the vectors a1, a2 and
−−→
T0T are coplanar. Therefore,

(
−−→
T0T × a1) · a2 = 0, (8.13)

∣
∣
∣
∣
∣
∣
∣
∣

x − x0 y − y0 z− z0

k1 l1 m1

k2 l2 m2

∣
∣
∣
∣
∣
∣
∣
∣

= 0 (8.14)

or

(x − x0)

∣
∣
∣
∣
∣
∣

l1 m1

l2 m2

∣
∣
∣
∣
∣
∣
− (y − y0)

∣
∣
∣
∣
∣
∣

k1 m1

k2 m2

∣
∣
∣
∣
∣
∣
+ (z− z0)

∣
∣
∣
∣
∣
∣

k1 l1

k2 l2

∣
∣
∣
∣
∣
∣
= 0. (8.15)

After expanding the second order determinants and introducing the appropriate
notation, we obtain the general equation of the plane.
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8.6 Equation of the Plane That Passes Through the Three
Specified Points

Given are the following points: T1(x1, y1, z1), T2(x2, y2, z2) and T3(x3, y3, z3).

Take an arbitrary point T (x, y, z) and construct the vectors
−−→
T1T ,

−−→
T1T2 and

−−→
T1T3.

They are coplanar, therefore

∣
∣
∣
∣
∣
∣
∣
∣

x − x1 y − y1 z− z1

x2 − x1 y2 − y1 z2 − z1

x3 − x1 y3 − y1 z3 − z1

∣
∣
∣
∣
∣
∣
∣
∣

= 0. (8.16)

The obtained equation is the equation of a plane that passes through the three
specified points.

8.7 Angle Between Two Planes

Consider the planes specified by the equations:

A1x + B1y + C1z+D1 = 0, (8.17)

A2x + B2y + C2z+D2 = 0. (8.18)

For the given planes, construct the normal vectors n1 = (A1, B1, C1) and n2 =
(A2, B2, C2). Therefore, the angle ω between the planes will be determined from
the relation:

cosω = n1 · n2

|n1||n2| = A1A2 + B1B2 + C1C2
√
A2

1 + B2
1 + C2

1

√
A2

2 + B2
2 + C2

2

. (8.19)

If n1 · n2 = 0, then the vectors n1 and n2 are orthogonal. Hence,

A1A2 +B1B2 +C1C2 = 0 is the condition of orthogonality of planes. (8.20)

But if the equalities
A1

A2
= B1

B2
= C1

C2
are valid, then the vectors n1 and n2 are

collinear, and this will be the condition of parallelism of planes.
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8.8 Distance from a Point to a Plane

The concept of deviation of the point T0(x0, y0, z0) from the plane Ax + By +
Cz+D = 0 is introduced similarly to the relation (7.37):

δ = −sgn(D)
Ax0 + By0 + Cz0 +D√

A2 + B2 + C2
. (8.21)

The distance d from the point T0 to the plane is determined as the absolute
value of the deviation d = abs(δ).

If the plane is specified in the normal form, then the distance d is determined as

d = abs(cosα · x0 + cosβ · y0 + cos γ · z0 − p), (8.22)

where cosα, cosβ, cos γ are the direction cosines.

8.9 Pencil of Planes

Assume that two planes are specified by the equations:

{
A1x + B1y + C1z+D1 = 0,

A2x + B2y + C2z+D2 = 0.
(8.23)

If these planes are neither parallel nor coincide, then they intersect on some straight
line.

It is obvious that for any real constants λ and μ, the plane determined by the
equation

λ(A1x + B1y + C1z +D1)+ μ(A2x + B2y + C2z+D2) = 0 (8.24)

will also pass through this line, because all the points governed by Eqs. (8.23) satisfy
Eq. (8.24) as well. The same equation specifies all the planes that pass through a
common line.

A collection of planes passing through the same straight line is called the pencil
of planes.

Example 8.1 Find the equation of the plane that passes through the point
T (4,−1, 2) and a straight line that is the intersection of the planes x+3y−z−5 = 0
and −2x + y + z+ 4 = 0.
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Solution Write the equation of the pencil of planes and fit λ and μ so that the
required plane passes through the point T :

λ(x + 3y − z− 5)+ μ(−2x + y + z+ 4) = 0, (8.25)

λ(4 + 3 · (−1)− 2 − 5)+ μ(−2 · 4 + (−1)+ 2 + 4) = 0, (8.26)

− 6λ− 3μ = 0, (8.27)

2λ+ μ = 0. (8.28)

For example, take the values λ = 1 and μ = −2. In this case, we obtain the answer:

(x + 3y − z− 5)+ (−2)(−2x + y + z+ 4) = 0, or (8.29)

5x + y − 3z− 13 = 0. (8.30)

�

Review Questions

1. Write the equation of a plane orthogonal to a specified vector and passing
through a specified point.

2. Define the general equation of a plane?
3. Write the intercept form of the equation of a plane.
4. For solution of what problem is it convenient to use the normal form of the

equation of a plane?
5. How are the directing cosines of the vector a computed?
6. Write the equation of a plane that passes through a specified point parallel to

two specified vectors.
7. Write the equation of a plan that passes through three specified points.
8. How is the angle between two planes computed?
9. Define the deviation of an arbitrary point from a given plane.

10. What is pencil of planes?

Problems

8.1. Set up the equation of the plane that passes through the origin of coordinates,
if it has the normal vector n = (1, 2,−3).

8.2. Set up the equation of the plane that passes through the point T (−1, 0, 2)
and has the normal vector n = (−3,−2, 0).
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8.3. Find the equation of the plane that passes through the points T1(2,−1, 0)
and T2(−5, 1, 1) parallel to the vector a = (0,−1,−7).

8.4. Find the equation of the plane that passes through the point T0(2,−1, 0)
parallel to the vectors a1 = (3, 5,−8) and a2 = (4, 6,−7).

8.5. Find the equation of the plane that passes through the point T0(1/2, 1/2, 1/2)
parallel to the vectors a1 = (0, 1,−1) and a2 = (1, 1, 10).

8.6. Find the lengths of the segments intercepted by the plane 3x+4y+5z−12 =
0 on the coordinate axes.

8.7. What is the distance from the pointA(1, 2, 9) to the plane x+y−2z−17 =
0?

8.8. Does the plane −2x + 2y − z − 1 = 0 intersect the segment P1P2, if the
segment endpoint coordinates are as follows: P1(−5,−5,−5), P2(8, 8, 8)?

8.9. Compute the distance between the parallel planes specified by the equations
Ax + By + Cz+D = 0 and Ax + By + Cz+D′ = 0, where D �= D′.

∗8.10. On what condition do the three planes A1x +B1y + C1z+D1 = 0, A2x +
B2y + C2z+D2 = 0 and A3x + B3y + C3z +D3 = 0 intersect exactly at
one point? Find the coordinates of this point.

8.11. Find the volume of a tetrahedron intercepted by the plane Ax +By +Cz+
D = 0 from the quadrantal angle.

8.12. On the axisOz find the points equidistant from the two planes x − y + z−
10 = 0 and x + y − z+ 8 = 0.

∗8.13. Compute the volume of a tetrahedron whose vertices are located at the points
with the coordinates (x1, y1, z1), (x2, y2, z2), (x3, y3, z3) and (x4, y4, z4).

Answers and Solutions

8.1 Solution.
Use the formula (8.3) that expresses the equation of the plane that passes through

the point A0(x0, y0, z0) perpendicular to the vector n = (n1, n2, n3):

n1(x − x0)+ n2(y − y0)+ n3(z − z0) = 0.

Substitute the coordinates of the pointO(0, 0, 0): (x−0)+2(y−0)−3(z−0)= 0.
Hence, the equation of the sought plane has the form x + 2y − 3z = 0.

8.2 Solution.
Substitute into the formula (8.3) the coordinates of the point T (−1, 0, 2) and the

vector n = (−3,−2, 0); we obtain the equation of the plane:

(−3)(x − (−1))+ (−2)(y − 0)+ 0(z− 2) = 0,

or

3x + 2y + 3 = 0.



316 8 Equation of a Plane in Space

8.3 Solution.
Select an arbitrary point T (x, y, z) on the sought plane. According to the problem

statement, the vectors
−−→
T1T ,

−−→
T1T2 and a are coplanar, therefore, their scalar triple

product is equal to zero:

(
−−→
T1T ,

−−→
T1T2, a) = 0.

Use the formula (6.33):

(
−−→
T1T ,

−−→
T1T2, a) =

∣
∣
∣
∣
∣
∣
∣
∣

x − 2 y + 1 z

−7 2 1

0 −1 7

∣
∣
∣
∣
∣
∣
∣
∣

= −13x − 49y + 7z− 23 = 0.

Then, the equation of the plane that passes through the points T1 and T2 parallel to
the vector a can be presented in the form 13x + 49y − 7z+ 23 = 0.

8.4 Solution.
Consider an arbitrary point T (x, y, z) on the sought plane. The scalar triple

product of (a1, a2,
−−→
T1T ) is equal to zero because of coplanarity of these three

vectors.
Having computed the scalar triple product, we obtain

(a1, a2,
−−→
T0T ) =

∣
∣
∣
∣
∣
∣
∣
∣

3 5 −8

4 6 −7

x − 2 y + 1 z

∣
∣
∣
∣
∣
∣
∣
∣

= 13x − 11y − 2z− 37 = 0.

Hence, the equation of the plane that passes through the point T0 parallel to the
vectors a1 and a2 can be presented in the form 13x − 11y − 2z− 37 = 0.

8.5 Solution.
Using an auxiliary point T with the coordinates T (x, y, z), similarly to the

solution of the previous problem, we obtain

(a1, a2,
−−→
T0T ) = 0,

∣
∣
∣
∣
∣
∣
∣
∣
∣

0 1 −1

1 1 10

x − 1

2
y − 1

2
z− 1

2

∣
∣
∣
∣
∣
∣
∣
∣
∣

= 11x − y − z− 9

2
= 0.

As a result, the equation of the plane that passes through the point T0 parallel to the
vectors a1 and a2 has the form 22x − 2y − 2z− 9 = 0.



Answers and Solutions 317

8.6 Solution.
Assume that the general equation of the planeAx+By+Cz+D = 0 is specified,

and D �= 0. Pass on to the intercept form of the equation of a plane, dividing both
sides of the equation by −D:

−A
D
x − B

D
y − C

D
z = 1.

The variables a = −D
A

, b = −D
B

and c = −D
C

are modulo equal to the lengths

of the segments intercepted by the plane on the coordinate axes Ox, Oy and Oz,
respectively (see the formula (8.6)).

Having substituted the values of the coefficients A = 3, B = 4, C = 5, D =
−12, we obtain a = 4, b = 3, c = 12

5
.

8.7 Solution.
Write the equation of a plane in normal form:

1
√

12 + 12 + (−2)2
(x + y − 2z− 17) = 1√

6
(x + y − 2z− 17) = 0.

Substitute the coordinates of the point from the problem statement into the normal
equation and find the distance from this point to the plane:

d = abs

(
1√
6
(1 + 2 − 18 − 17)

)

= 32√
6
.

8.8 Solution.
The plane divides the space into two parts: −2x+2y−z−1 > 0 and −2x+2y−

z−1 < 0. If two endpoints of the segment are located in different parts of the space,
then it is obvious that the segment intersects the plane. Substitute the coordinates of
the points from the problem statement:

−2 · (−5)+ 2 · (−5)− (−5)− 1 = 4 > 0,

−2 · 8 + 2 · 8 − 8 − 1 = −9 < 0.

Therefore, the points P1 and P2 are situated on the opposite sides of the plane, and
the segment P1P2 intersects the plane −2x + 2y − z − 1 = 0.

8.9 Solution.
Find the deviation of each plane from the origin of coordinates:

δ1 = − 1√
A2 + B2 + C2

Dsgn(D), δ2 = − 1√
A2 + B2 + C2

D′sgn(D′).
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Then the distance d between the parallel planes is equal to the absolute value of
the difference of these deviations:

d = abs(δ1 − δ2)
= abs

(
− 1√

A2 + B2 + C2
Dsgn(D)+ 1√

A2 + B2 + C2
D′sgn(D′)

)

= abs(D′ −D)√
A2 + B2 + C2

.

8.10 Answer:
The condition of three planes intersecting at one point is that the determinant is

other than zero:

�1 =

∣
∣
∣
∣
∣
∣
∣
∣

A1 B1 C1

A2 B2 C2

A3 B3 C3

∣
∣
∣
∣
∣
∣
∣
∣

�= 0.

The coordinates (xP , yP , zP ) of the intersection point of these planes are

xP = − 1

�

∣
∣
∣
∣
∣
∣
∣
∣

D1 B1 C1

D2 B2 C2

D3 B3 C3

∣
∣
∣
∣
∣
∣
∣
∣

, yP = − 1

�

∣
∣
∣
∣
∣
∣
∣
∣

A1 D1 C1

A2 D2 C2

A3 D3 C3

∣
∣
∣
∣
∣
∣
∣
∣

, zP = − 1

�

∣
∣
∣
∣
∣
∣
∣
∣

A1 B1 D1

A2 B2 D2

A3 B3 D3

∣
∣
∣
∣
∣
∣
∣
∣

.

Note that if � = 0 and at least one second order minor of the matrix⎡

⎢
⎢
⎣

A1 B1 C1

A2 B2 C2

A3 B3 C3

⎤

⎥
⎥
⎦ is other than zero, then all planes are parallel to the same line. But

if all the second order minors are zeroes, then the planes have the common line.

8.11 Solution.
Pass on to the intercept form of the equation of a plane:

−A
D
x − B

D
y − C

D
z = 1,

−D
A

= a, −D
B

= b, −D
C

= c,

where a, b and c are modulo equal to the lengths of the segments intercepted on the
coordinate axes by the plane and coinciding with the edges of the tetrahedron. The



Answers and Solutions 319

volume of the tetrahedron Vtetr and the volume of the parallelepiped Vpar are bound
as follows:

Vtetr = 1

6
Vpar, where Vpar = abs(abc).

Substitute the values of a, b and c:

Vtetr = 1

6
abs

(
D3

ABC

)

.

8.12 Solution.
Find the normal equations of the planes:

1√
3
(x − y + z− 10) = 0,

− 1√
3
(x + y − z+ 8) = 0.

The coordinates of the point located on the axis Oz are (0, 0, z0), where z0 ∈ R. In
order to find the distance from this point to the plane, substitute the coordinates into
Eqs. (8.22):

⎧
⎪⎪⎨

⎪⎪⎩

abs(z0 − 10)√
3

= d1,

abs(−z0 + 8)√
3

= d2.

Equate the distances:

abs(z0 − 10) = abs(−z0 + 8)⇒ z0 = 9.

So, the problem statement is satisfied by a point with the coordinates (0, 0, 9).

8.13 Solution.
Denote the vertices of the tetrahedron (xi, yi, zi ) by Ai , respectively (i =

1, 2, 3, 4). The volume of the tetrahedron is one sixth part of the absolute value

of the scalar triple product (
−−−→
A1A2,

−−−→
A1A3,

−−−→
A1A4):

V = 1

6
abs(

−−−→
A1A2,

−−−→
A1A3,

−−−→
A1A4) = 1

6
abs

∣
∣
∣
∣
∣
∣
∣
∣

x2 − x1 y2 − y1 z2 − z1

x3 − x1 y3 − y1 z3 − z1

x4 − x1 y4 − y1 z4 − z1

∣
∣
∣
∣
∣
∣
∣
∣

.
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Note that this expression can be rewritten in equivalent form:

V = 1

6
abs

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

x1 y1 z1 1

x2 y2 z2 1

x3 y3 z3 1

x4 y4 z4 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.



Chapter 9
Equation of a Line in a Space

9.1 Equation of a Line That Passes Through the Specified
Point Parallel to the Specified Vector

Assume that the line L passes through the point T0(x0, y0, z0) parallel to the vector
a = (k, l,m). Take an arbitrary point T (x, y, z) on the line and construct the vector−−→
T0T = (x − x0, y − y0, z − z0), parallel to the line L and collinear with the vector
a. Then, we can write the equation

x − x0

k
= y − y0

l
= z − z0

m
. (9.1)

This relation is referred to as the canonical equation of a line that passes
through the specified point parallel to the specified vector, and the vector
a = (k, l,m) is referred to as the directing vector.

From the canonical equation (9.1), we can easily derive the parametric equation
of such a line:

⎧
⎪⎪⎨

⎪⎪⎩

x − x0 = ku,
y − y0 = lu,
z− z0 = mu,

(9.2)

where u ∈ R is the parameter of the line.

Example 9.1 Let us find the equation of the line that passes through the point
T (3,−1, 0) perpendicular to the plane x − 4y + 7z− 10 = 0.
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Solution The normal vector of the plane n = (1,−4, 7) will in this case coincide
with the directing vector for the line:

x − 3

1
= y + 1

−4
= z

7
. (9.3)

�
Example 9.2 Let us find the canonical equation of the line that is the intersection of
the planes determined by the equations −x − y + z+ 2 = 0 and 2x + 4y − z = 0.

Solution The line is orthogonal to the normal vectors of each of the planes: n1 =
(−1,−1, 1), n2 = (2, 4,−1). Therefore, as the directing vector of the line, we can
take a = n1 × n2.

a =

∣
∣
∣
∣
∣
∣
∣
∣

i j k

−1 −1 1

2 4 −1

∣
∣
∣
∣
∣
∣
∣
∣

= −3i + j − 2k, a = (−3, 1,−2). (9.4)

As the coordinates of the point that lies on the line, we select any solution of the
system

⎧
⎨

⎩

−x − y + z+ 2 = 0,

2x + 4y − z = 0.
(9.5)

Let z = 0, then

⎧
⎨

⎩

−x − y = −2,

2x + 4y = 0,
⇒ x = 4, y = −2. (9.6)

Therefore, the point T (4,−2, 0) lies on the line.
Therefore, the equation of the sought line has the form:

x − 4

−3
= y + 2

1
= z

−2
. (9.7)

�
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9.2 Equation of a Line That Passes Through the Two
Specified Points

Assume that the line L passes through the points T1(x1, y1, z1) and T2(x2, y2, z2).

Then, the vector a = −−→
T1T2 = (x2 −x1, y2 −y1, z2 −z1) is parallel to the line L, and

the equation of a line that passes through the two specified points in canonical
form looks as follows:

x − x1

x2 − x1
= y − y1

y2 − y1
= z− z1

z2 − z1
. (9.8)

Example 9.3 The line that passes through two points with the coordinates
(11, 2,−6) and (13, 0, 7) is represented by the equation:

x − 11

2
= y − 2

−2
= z+ 6

13
. (9.9)

�

9.3 Angle Between Two Lines

Consider two lines

x − x1

k1
= y − y1

l1
= z− z1

m1
, (9.10)

x − x2

k2
= y − y2

l2
= z − z2

m2
. (9.11)

The angle between two lines ω will be equal to the angle formed by the directing
vectors a1 = (k1, l1,m1) and a2 = (k2, l2,m2):

ω = arccos
(a1 · a2)

|a1||a2| = arccos
k1k2 + l1l2 +m1m2

√
k2

1 + l21 +m2
1

√
k2

2 + l22 +m2
2

. (9.12)

Example 9.4 Given are the lines:

x − 4

6
= y + 5

3
= z+ 1

−1
, (9.13)

x − 2

2
= y + 6

1
= z + 2

−1
. (9.14)

Show that these lines are collinear and find the angle between them.
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Solution The necessary and sufficient condition of collinearity of the lines is the

equality to zero of the scalar triple product (a1, a2,
−−→
T1T2), where a1 = (6, 3,−1),

a2 = (2, 1,−1) are the directing vectors of the lines, and the points T1 and T2 have
the coordinates T1(4,−5,−1), T2(2,−6,−2).

Compute (a1, a2,
−−→
T1T2):

(a1, a2,
−−→
T1T2) =

∣
∣
∣
∣
∣
∣
∣
∣

6 3 −1

2 1 −1

−2 −1 −1

∣
∣
∣
∣
∣
∣
∣
∣

= 0. (9.15)

Therefore, the lines are collinear. The angle ω between them is determined from
the condition

cosω = 6 · 2 + 3 · 1 + (−1) · (−1)
√

62 + 32 + (−1)2
√

22 + 12 + (−1)2
= 8√

69
. (9.16)

As a result, we obtain the angle between the two lines

ω = arccos
8√
69
. (9.17)

�

9.4 Angle Between a Line and a Plane

Assume that the line L and the plane π intersect at some point, and assume that the
vectors are given: n = (A,B,C) is the normal vector of plane π , and a = (k, l,m)
is the directing vector (see Fig. 9.1).

Fig. 9.1 The angle α
between a line and a plane

n a

β
α

T

π

L
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If the line and the plane form the angle α, and the vectors n and a for the angle

β, then α + β = π

2
. Then,

cosβ = (n · a)
|n||a| , cosβ = cos

(π

2
− α

)
= sin α, (9.18)

and the angle α between the line and the plane is determined from the condition:

sin α = (n · a)

|n||a| = Ak + Bl + Cm√
A2 + B2 + C2

√
k2 + l2 +m2

. (9.19)

Condition of parallelism of the lineL and the plane π (including the belonging
of L and π):

Ak + Bl + Cm = 0. (9.20)

Condition of perpendicularity of the line L and the plane π :

A

k
= B

l
= C

m
. (9.21)

(Here, the equalities of the form
a

b
= c

d
are understood in terms of ad = bc.)

We obtain the condition of belonging of the line

x − x1

k
= y − y1

l
= z− z1

m
(9.22)

to the plane Ax + By + Cz+D = 0.
For this, it is necessary and sufficient that the point T1(x1, y1, z1) should lie on

the plane, and the vectors n = (A,B,C) and a = (k, l,m) should be perpendicular
to each other. Therefore, the condition of the line’s belonging to the plane consists
in the fulfilment of the equalities:

{
Ax1 + By1 + Cz1 +D = 0,

Ak + Bl + Cm = 0.
(9.23)
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9.5 Condition of Two Lines’ Belonging to a Plane

The two lines:

L1 : x − x1

k1
= y − y1

l1
= z− z1

m1
, passing through the point T1(x1, y1, z1), and

L2 : x − x2

k2
= y − y2

l2
= z− z2

m2
, passing through the point T2(x2, y2, z2),

in space can

1. intersect;
2. be parallel;
3. be skew.

In the first two cases, they lie in the same plane. The two lines that do not intersect
and are not parallel are called skew lines.

The necessary and sufficient condition of belonging of the lines L1 and L2
to the same plane consists in coplanarity of the vectors a1 = (k1, l1,m1), a2 =
(k2, l2,m2) and

−−→
T1T2 = (x2 − x1, y2 − y1, z2 − z1), i.e. the determinant’s equality

to zero must be valid:

∣
∣
∣
∣
∣
∣
∣
∣

x2 − x1 y2 − y1 z2 − z1

k1 l1 m1

k2 l2 m2

∣
∣
∣
∣
∣
∣
∣
∣

= 0. (9.24)

Condition of parallelism of two lines:

k1

k2
= l1

l2
= m1

m2
. (9.25)

For intersection of lines, it is sufficient that at least one of the equalities (9.25)
is violated and the condition (9.24) is valid.

Example 9.5 Find the planes that pass through the line

x − 4

−8
= y − 8

−1
= z+ 1

3
(9.26)

and are orthogonal to the plane −3x + y + z+ 3 = 0.

Solution The directing vector of the given line a = (−8,−1, 3) is the normal
vector to the plane n = (−3, 1, 1).
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Fig. 9.2 To Example 9.5.
Mutual arrangement of the

vectors a and
−−→
T0T

a

T0

T

The point T0(4, 8,−1) belongs to the sought plane since it lies on the line (see
Fig. 9.2).

Write the equation of the plane that passes through the point T and is parallel to

the two vectors a and n (the vectors a, n and
−−→
T0T are coplanar):

∣
∣
∣
∣
∣
∣
∣
∣

x − 4 y − 8 z+ 1

−8 −1 3

−3 1 1

∣
∣
∣
∣
∣
∣
∣
∣

= 0, (9.27)

hence:

− 4(x − 4)− (y − 8)− 11(z+ 1) = 0. (9.28)

Thus, we obtain the sought equation of the plane:

4x + y + 11z− 13 = 0. (9.29)

�
Example 9.6 Find the equation of the plane that passes through the two parallel
lines:

x − U1

k
= y − V1

l
= z−W1

m
,
x − U2

k
= y − V2

l
= z−W2

m
, (9.30)

and at least one of the inequalities is valid: U1 �= U2, V1 �= V2,W1 �= W2.

Solution The sought plane passes through the points T1(U1, V1,W1) and
T2(U2, V2,W2) and is parallel to the directing vector a = (k, l,m). On the other

hand, this plane is parallel to the vector
−−→
T1T2 = (U2 − U1, V2 − V2,W2 −W1).
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Let T (x, y, z) be the current point of the plane.

Write the condition of coplanarity of the vectors
−−→
T1T , a and

−−→
T1T2:

∣
∣
∣
∣
∣
∣
∣
∣

x − U1 y − V1 z −W1

k l m

U2 − U1 V2 − V1 W2 −W1

∣
∣
∣
∣
∣
∣
∣
∣

= 0. (9.31)

The relation (9.31) sets up the equation of the plane that passes through two
parallel lines. �

Review Questions

1. Write the equation of a straight line that passes through a specified point parallel
to a specified vector.

2. What does the equation of a line in space that passes through two specified points
look like?

3. Write the formula for computing an angle between lines in space.
4. How is an angle between a line and a plane computed?
5. Formulate the condition of parallelism of a line and a plane.
6. Write the condition of perpendicularity of a line and a plane.
7. What lines are called skew lines?
8. What is the condition of parallelism of two lines in space?

Problems

9.1. Find the intersection points of the line specified by the equation

{
2x + 4y + z+ 9 = 0,

4x − 6y − 2z+ 1 = 0,

with the coordinate planes.
9.2. Find the equation of the plane that passes through the two parallel lines:

x − 2

2
= y

3
= z− 1

−3
,
x

4
= y + 1

6
= z+ 1

−6
.

9.3. Find the coordinates of the foot of the perpendicular dropped from the point
T (0, 2,−4) onto the plane x + y − z+ 3 = 0.
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9.4. Determine whether the plane 8x − 3z + 11 = 0 and the line
x − 2

2
= y

3
=

z− 1

8
are parallel.

9.5. Determine whether the plane x + 2y − z − 2 = 0 and the line
x − 1

3
=

y + 1

3
= z

−1
are parallel?

9.6. Write the necessary and sufficient condition of perpendicularity of the plane

Ax + By + Cz +D = 0 and the line
x − x0

k
= y − y0

l
= z− z0

m
.

9.7. Prove that the condition of belonging of the line
x − x0

k
= y − y0

l
= z − z0

m
to the plane Ax + By + Cz +D = 0 has the form

{
Ax0 + By0 + Cz0 +D = 0,

Ak + Bl + Cm = 0.
(9.32)

∗9.8. Show that the distance from the point T0(x0, y0, z0) to the line
x − x1

k
=

y − y1

l
= z − z1

m
can be calculated by the formula

d =
√
F 2

1 + F 2
2 + F 2

3

k2 + l2 +m2 ,

where the following designations are introduced

F1 =
∣
∣
∣
∣
∣
∣

l m

y1 − y0 z1 − z0

∣
∣
∣
∣
∣
∣
, F2 =

∣
∣
∣
∣
∣
∣

m k

z1 − z0 x1 − x0

∣
∣
∣
∣
∣
∣
, F3 =

∣
∣
∣
∣
∣
∣

k l

x1 − x0 y1 − y0

∣
∣
∣
∣
∣
∣
.

9.9. Find the acute angle between the lines specified by the equations
x + 1

2
=

y − 9

−5
= z+ 2

2
and

x

3
= y + 1

−6
= z+ 4

3
.

9.10. Find the obtuse angle between the lines
x + 1

−1
= y − 9

−5
= z+ 2

7
and

x − 3

−3
= y − 9

3
= z

5
.

9.11. Find the equation of the plane that passes through the line

x − 10

−7
= y

3
= z + 10

−1
(9.33)
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parallel to the line

x + 1

2
= y + 2

4
= z− 6

8
. (9.34)

∗9.12. Compute the distance between the skew lines
x − x1

k1
= y − y1

l1
= z − z1

m1

and
x − x2

k2
= y − y2

l2
= z− z2

m2
.

Answers and Solutions

9.1 Answer:(
− 29

14
,−17

14
, 0

)
,
(

− 19

8
, 0,−17

4
,
)

,
(

0,−19

2
, 29

)
.

9.2 Answer:
9x − 10y − 4z− 14 = 0.

9.3 Solution.
Write the equation of the line that passes through the point T perpendicular to

the plane:

x

1
= y − 2

1
= z+ 4

−1
. (9.35)

Represent the equation of this line in parametric form:

x = u, y = u+ 2, z = −u− 4, (9.36)

where u ∈ R.
Substitute these coordinates into the equation of the plane:

u+ (u+ 2)− (−u− 4)+ 3 = 0, (9.37)

hence, we obtain u = −3.
Knowing u, find the coordinates of the intersection point of the line and the plane:

x = −3, y = −1, z = −1. (9.38)

So, the intersection point of the perpendicular dropped from the point T onto the
plane has the coordinates (−3,−1,−1).
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9.4 Solution.

The condition of parallelism of the line
x − x0

k
= y − y0

l
= z− z0

m
and the

planeAx+By+Cz+D = 0 reduces to fulfilment of the equalityAk+Bl+Cm = 0
that reflects orthogonality of the directing vector τ = (k, l,m) and the normal to
the plane n = (A,B,C).

According to the problem statement, τ = (2, 3, 8), n = (8, 0,−3).
Since the equality to zero of the scalar product (τ · n) = 0 is valid, then the line

and the plane are parallel.

9.5 Answer: no, the plane x + 2y − z− 2 = 0 and the line
x − 1

3
= y + 1

3
= z

−1
are not parallel.

9.6 Solution.
The normal vector of the plane Ax + By + Cz + D = 0 has the coordinates

(A,B,C). At the same time, the directing vector of the line
x − x0

k
= y − y0

l
=

z− z0

m
is equal to (k, l,m).

In order for the line to be perpendicular to the plane, it is necessary and sufficient
that the normal vector of the plane be collinear with the directing vector of the line:

A

k
= B

l
= C

m
.

9.7 Proof.
Indeed, the first equation (9.32) means that the point (x0, y0, z0), through which

the line passes, belongs to the plane. The second equation reflects the fact of
parallelism of the line and the plane (see Problem 9.4).

9.8 Proof.
From the equation of a line, we find the coordinates of its directing vector s =

(l,m, n). Denote the point (x1, y1, z1) that lies on this line by T1(x1, y1, z1).
It is known from the properties of the vector product that the modulus of the

vector product of vectors is equal to the area of the parallelogram constructed on
these vectors:

S = |−−→T0T1 × s|.

On the other hand, the area of the parallelogram is equal to the product of its side
by the height drawn to this side: S = |s|d .

In our case, the height of the parallelogram is equal to the distance d from the
point to the plane, and its side is equal to the modulus of the directing vector |s|.
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Having equated the expressions for the area, it is easy to obtain a formula of the
distance from the point to the line:

d = |−−→T0T1 × s|
|s| .

Hence, we find

−−→
T0T1 × s =

∣
∣
∣
∣
∣
∣
∣
∣

i j k

x1 − x0 y1 − y0 z1 − z0

k l m

∣
∣
∣
∣
∣
∣
∣
∣

= (m(y1 − y0)− l(z1 − z0))i

+ (k(z1 − z0)−m(x1 − x0))j

+ (l(x1 − x0)− k(y1 − y0))k.

Thus,

|−−→T0T1 × s|

=

√
√
√
√
√

∣
∣
∣
∣
∣
∣

l m

y1 − y0 z1 − z0

∣
∣
∣
∣
∣
∣

2

+
∣
∣
∣
∣
∣
∣

m k

z1 − z0 x1 − x0

∣
∣
∣
∣
∣
∣

2

+
∣
∣
∣
∣
∣
∣

k l

x1 − x0 y1 − y0

∣
∣
∣
∣
∣
∣

2

,

where

|s| =
√
k2 + l2 +m2.

Therefore,

d =

√
√
√
√
√

∣
∣
∣
∣
∣
∣

l m

y1 − y0 z1 − z0

∣
∣
∣
∣
∣
∣

2

+
∣
∣
∣
∣
∣
∣

m k

z1 − z0 x1 − x0

∣
∣
∣
∣
∣
∣

2

+
∣
∣
∣
∣
∣
∣

k l

x1 − x0 y1 − y0

∣
∣
∣
∣
∣
∣

2

√
k2 + l2 +m2

.

9.9 Solution.
The lines are specified in canonical form.
Find the angle α between their directing vectors a = (2,−5, 2) and b =

(3,−6, 3):

cosα = (a · b)
|a| · |b| ;
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cosα = 2 · 3 + (−5) · (−6)+ 2 · 3
√

22 + (−5)2 + 22 ·
√

32 + (−6)2 + 32
= 14

3
√

22
.

The sought angle is α = arccos

(
14

3
√

22

)

.

9.10 Solution.
Find the angle α between the directing vectors a = (−1,−5, 7) and b =

(−3, 3, 5) of the specified lines:

cosα = a · b

|a||b| .

We substitute here the numeric values from the problem statement and obtain

cosα = (−1) · (−3)+ (−5) · 3 + 7 · 5
√
(−1)2 + (−5)2 + 72

√
(−3)2 + 32 + 52

= 23

5
√

129
.

Therefore, the sought angle is π − α = π − arccos

(
23

5
√

129

)

.

9.11 Solution.
The sought plane is parallel to the directing vectors a1 = (−7, 3,−1) and a2 =

(2, 4, 8) and passes through the point T0(10, 0,−10) that lies on the first line. Thus,

the vectors a1, a2 and
−−→
T0T are coplanar.

Expanding the determinant that expresses the scalar triple product (
−−→
T0T , a1, a2),

for example, in the first row, we obtain

∣
∣
∣
∣
∣
∣
∣
∣

x − 10 y z+ 10

−7 3 −1

2 4 8

∣
∣
∣
∣
∣
∣
∣
∣

= 28(x − 10)+ 54y − 34(z+ 10) = 0,

and we finally obtain

14x + 27y − 17z− 310 = 0.

9.12 Solution.
Introduce the designations T1(x1, y1, z1), T2(x2, y2, z2), a1 = (k1, l1,m1), a2 =

(k2, l2,m2).
Consider the parallelogram constructed on the vectors

−−→
T1T2, a1 and a2, and

compute its volume V .
On the one hand, the volume V is equal to the product of the module of the

vector product |a1 × a2| and the height of the parallelogram. On the other hand,

V = abs(
−−→
T1T2, a1, a2).
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Since the sought distance d between the skew lines is equal to the height, then

d = abs(
−−→
T1T2, a1, a2)

|a1 × a2| , or

d =

abs

∣
∣
∣
∣
∣
∣
∣
∣

x2 − x1 y2 − y1 z2 − z1

k1 l1 m1

k2 l2 m2

∣
∣
∣
∣
∣
∣
∣
∣

√
√
√
√
√

∣
∣
∣
∣
∣
∣

k1 l1

k2 l2

∣
∣
∣
∣
∣
∣

2

+
∣
∣
∣
∣
∣
∣

l1 m1

l2 m2

∣
∣
∣
∣
∣
∣

2

+
∣
∣
∣
∣
∣
∣

m1 k1

m2 k2

∣
∣
∣
∣
∣
∣

2
.



Chapter 10
Bilinear and Quadratic Forms

10.1 Bilinear Forms

Assume that in a n-dimensional vector space Ln a basis B = (e1, e2, . . . , en) is
specified. Consider two vectors belonging to the space Ln:

x =
n∑

i=1

xiei , y =
n∑

i=1

yiei , (10.1)

where xi, yi ∈ R for all i = 1, 2, . . . , n.
The linear combination of all possible products of the projection of the vectors x

and y on the basic normalized vectors

n∑

i,j=1

aij xiyj , (10.2)

where aij are arbitrary real numbers, is referred to as the bilinear form of A(x, y)
defined on the basis B. The matrix A = (aij ), where 1 � i, j � n, is called the
matrix of bilinear form. As is easy to see, an arbitrary bilinear form can be written
with the help of the matrix multiplication operation as

A(x, y) = xTA y. (10.3)

The following properties of linearity of the form are fulfilled for each of its
arguments:

∀x, y, z ∈ Ln and ∀α ∈ R

1. A(x + y, z) = A(x, z)+ A(y, z),
2. A(αx, z) = αA(x, z),
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3. A(x, y + z) = A(x, y)+ A(x, z),
4. A(x, αz) = αA(x, z).

A bilinear form is referred to as symmetric, if for any x, y ∈ Ln the condition
A(x, y) = A(y, x) is fulfilled.

A bilinear form is referred to as positively definite, if ∀x ∈ Ln, x �= 0, the
inequality A(x, x) > 0 is fulfilled.

Example 10.1 Consider the vectors x = (x1, x2, x3) and y = (y1, y2, y3) of some
three-dimensional vector space, and the bilinear form A(x, y) = x1y1 + 3x2y2 +
8x3y3, defined on the basis of this space. The matrix A of bilinear form will in this
case have the following diagonal form:

A =

⎡

⎢
⎢
⎣

1 0 0

0 3 0

0 0 8

⎤

⎥
⎥
⎦ . (10.4)

Represent A in matrix notation:

A(x, y) = xT A y = [x1, x2, x3]

⎡

⎢
⎢
⎣

1 0 0

0 3 0

0 0 8

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

y1

y2

y3

⎤

⎥
⎥
⎦

= [x1, 3x2, 8x3]

⎡

⎢
⎢
⎣

y1

y2

y3

⎤

⎥
⎥
⎦ = x1y1 + 3x2y2 + 8x3y3. (10.5)

It is easy to show that it has the properties of symmetry and positive definiteness:

A(x, y) = x1y1 + 3x2y2 + 8x3y3 = y1x1 + 3y2x2 + 8y3x3

= A(y, x)⇒ the form is symmetric; (10.6)

A(x, x) = x2
1 + 3x2

2 + 8x2
3 � 0 for all non-zero vectors x

⇒ A(x, y)is a positively definite form. (10.7)

�
Example 10.2 M(x, y) = x1y1 − x2y2 − x3y3 − x4y4 is a bilinear form on R

4. As
is easy to see, it is symmetric, but not positively definite. Note that this form defines
the space-time metric in the special theory of relativity [45]. �
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10.2 Quadratic Forms

Quadratic form will be referred to as the expression

ω(x) = A(x, x), (10.8)

where A(x, x) is some bilinear form. The name “quadratic form” is associated with
the fulfilment for this expression of the property of the second degree homogeneity
in the argument of the form: ∀α ∈ R the following equation is valid:

ω(αx) = α2ω(x). (10.9)

Example 10.3 In the basis of the bilinear form M(x, y), defined in Example 10.2
on page 336, we can construct the quadratic form

μ(x) = M(x, x) = x2
1 − x2

2 − x2
3 − x2

4 (10.10)

that depends on four variables: x1, x2, x3 and x4. �
If in the n-dimensional vector space Ln the basis is specified and the vector

x = [x1, x2, . . . , xn]T is selected, then

ω(x) = xT A x =
n∑

i,j=1

aij xixj , (10.11)

which allows interpreting the quadratic form as a function specified on the set of all
possible vectors x.

The matrix A = (aij ) is referred to as the matrix of quadratic form ω(x). This
matrix can be deemed symmetric, since the expression of the form aij xixj+ajixj xi ,
due to commutativity of multiplication of real numbers, can always be represented
as

aij xixj + ajixj xi ≡ ãij xixj + ãj ixj xi, (10.12)

where the designation ãij = ãj i = (aij + aji)/2 is introduced.
So, an arbitrary quadratic form in some basis can be specified in matrix form:

xT A x, (10.13)

where x = (x1, x2, . . . , xn) is the column composed of variables, and the matrix
A of quadratic form always allows a notation in symmetric form: aji = aij for all
i, j = 1, . . . , n.
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The symmetric bilinear form A(x, y) is referred to as polar to the quadratic form
ω(x) = A(x, x). For the quadratic form, the formula is valid:

A(x, y) = 1

2

[
ω(x + y)− ω(x)− ω(y)]. (10.14)

Example 10.4 Find the bilinear form polar to ω(x) = x1x2 + x2x3 + x1x3.

Solution According to the definition of polar form (10.14), we obtain

A(x, y) = 1

2

[
(x1 + y1)(x2 + y2)+ (x2 + y2)(x3 + y3)+ (x1 + y1)(x3 + y3)

− (x1x2 + x2x3 + x1x3)− (y1y2 + y2y3 + y1y3)
]
. (10.15)

After algebraic transformations, we find the expression for the sought bilinear form:

A(x, y) = 1

2
(x1y2 + x1y3 + x2y1 + x2y3 + x3y1 + x3y2). (10.16)

�
When passing to a new basis, i.e. during nondegenerate change of the variables

x1, x2, . . . , xn with the change matrix C, the matrix A′ of quadratic form in the new
basis will take the form:

A′ = CT AC. (10.17)

It is known that changing the basis does not result in the change of the rank of
the matrix in quadratic form.

Rank of the matrix in quadratic form is referred to as the rank of quadratic
form. If this matrix has a rank equal to the dimension of the vector space, i.e. the
number of variables n, then the quadratic form is called nondegenerate, and if the
rank is less than n, then it is called degenerate.

Example 10.5 Find the matrix of quadratic form of the three variables:

ω(x) = 3x2
1 + 2x1x2 − 5x1x3 − x2

2 + x2
3 . (10.18)

Solution The diagonal elements aii of the matrix of quadratic form ω(x) are
defined as the coefficients of the quadratic summands x2

i , and the non-diagonal ones
aij , where i �= j , are twice smaller than the respective coefficients of the summands
of the form xixj :

A =

⎡

⎢
⎢
⎣

3 1 −5/2

1 −1 0

−5/2 0 1

⎤

⎥
⎥
⎦ . (10.19)
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Using any of the known methods for computing the rank of the matrix, for
example, the method of bringing to echelon form, we find rkA = 3. Since the
tank of the matrix A is equal to the number of variables, then this quadratic form is
nondegenerate.

In matrix notation, the quadratic form can be represented in the form:

ω(x) = [x1, x2, x3]

⎡

⎢
⎢
⎣

3 1 −5/2

1 −1 0

−5/2 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

x1

x2

x3

⎤

⎥
⎥
⎦ . (10.20)

�

10.3 Bringing the Quadratic Form to the Canonical Form

If, in some basis, the matrix of quadratic form takes diagonal form

� =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ1 0 0 . . . 0 0

0 λ2 0 . . . 0 0

. . . . . . . . . . . . . . . . . . . .

0 0 0 . . . λn−1 0

0 0 0 . . . 0 λn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (10.21)

then, as is easy to see, the quadratic form is formed by a linear combination of
squares of the variables x1, x2, . . . , xn:

ω(x) = λ1x
2
1 + λ2x

2
2 + · · · + λnx2

n. (10.22)

The crossing summands of the form xixj for i �= j are in this case not included into
the expression for ω(x).

Among the coefficients λi , where i = 1, 2, . . . , n, there can be positive numbers,
negative numbers and numbers equal to zero.

Theorem 10.1 For each quadratic form, there exists a basis, in which it has the
canonical form:

ω(x) =
n∑

i=1

λix
2
i . (10.23)

Attention should be paid to the fact that the canonical basis is defined non-
uniquely.
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10.3.1 Lagrange’s Method of Separating Perfect Squares

In applications, we often come across a problem of bringing a quadratic form to a
diagonal form. Several methods have been suggested for solving this problem.

Lagrange’s method of bringing the quadratic form to the canonical form
consists in the following.

Assume that the quadratic form ω(x) =
n∑

i,j=1
aij xixj is given, defined in the

basis of the space Ln.
Depending on the presence in the sum of the summands of the form aiix

2
i ,

consider two cases.

1. At least one of the coefficients att of the quadratic summands is not equal to zero.

The main idea of the method consists in separating the perfect square, uniting all
the summands that contain the variable xt . The obtained perfect square is used as the
basis for change of the variables, excluding the terms linear in xt . If in the form still
remain crossing variables of the form xixj , then we return to the beginning of the
procedure. Otherwise, the form contains only quadratic summands, and the solution
is complete.

As we can see, without loss of generality, we may assume that a11 �= 0.
Consider the first step of Lagrange’s method in more detail.
Denote by S the sum of all summands containing x1:

S = a11x
2
1 + 2a12x1x2 + · · · + 2a1nx1xn, (10.24)

and complete the square of S. We obtain

S = a11

(
x1 + a12

a11
x2 + · · · + a1n

a11
xn

)2 − R, (10.25)

where the expression R does not contain x1 in its notation.
Then, change the variables

⎧
⎨

⎩

x ′
1 = x1 + a12

a11
x2 + · · · + a1n

a11
xn,

x ′
i = xi for i = 2, . . . , n.

(10.26)

Then, the quadratic form in the new basis will take the form:

ω(x) = a11(x
′
1)

2 +
n∑

i,j=2

a′
ij x

′
ix

′
j . (10.27)
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From here on, the same method can be applied to the variables x2, x3 and so on,
to finally exclude all summands of the form xixj for i �= j .

2. All coefficients are aii = 0.

In this case, select aij �= 0 for some i �= j and change the variables:

⎧
⎪⎪⎨

⎪⎪⎩

xi = x ′
i + x ′

j ,

xj = x ′
i − x ′

j ,

xk = x ′
k for k �= i, j.

(10.28)

As a result, each product xixj will be presented in the form of a linear
combination of the quadratic summands xixj = (x ′

i )
2 − (x ′

j )
2, and we will arrive at

the first case.
After step (1) and, when necessary, step (2), bringing of the quadratic form to the

diagonal form will be completed.

Example 10.6 Using Lagrange’s method, bring the following form to the canonical
one

ω(x) = 2x1x2 − 6x1x3 − x2
2 + 5x2

3 . (10.29)

Solution Collect the summands that contain x2:

−x2
2 + 2x1x2

︸ ︷︷ ︸
S

−6x1x3 + 5x2
3 = − (x2

2 − 2x1x2 + x2
1)︸ ︷︷ ︸

perfect square

+ x2
1︸ ︷︷ ︸

−R
− 6x1x3 + 5x2

3

= −(x1 − x2)
2 + x2

1 − 6x1x3 + 5x2
3 . (10.30)

Change the variables:

⎧
⎪⎪⎨

⎪⎪⎩

y1 = x1,

y2 = x1 − x2,

y3 = x3.

(10.31)

As a result, we obtain the form

ω(y) = −y2
2 + y2

1 − 6y1y3 + 5y2
3 . (10.32)

Now collect the summands that contain y1, and complete the square of them

ω(y) = −y2
2 + (y2

1 − 6y1y3 + 9y2
3)− 9y2

3 + 5y2
3

= −y2
2 + (y1 − 3y3)

2 − 4y2
3 . (10.33)
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Perform the second change of the variables:

⎧
⎪⎪⎨

⎪⎪⎩

z1 = y1 − 3y3,

z2 = y2,

z3 = y3.

(10.34)

We finally obtain ω(z) = z2
1 − z2

2 − 4z2
3. �

Example 10.7 Using Lagrange’s method, bring the following form to the canonical
one

ω(x) = x1x2 + x1x3 + x2x3. (10.35)

Solution Since there are no summands of the form x2
i in this expression, we change

the variables
⎧
⎪⎪⎨

⎪⎪⎩

x1 = x ′
1 + x ′

2,

x2 = x ′
1 − x ′

2,

x3 = x ′
3,

(10.36)

as a result of which we obtain

ω(x ′) =
[
(x ′

1)
2 + 2x ′

1x
′
3 + (x ′

3)
2
]

− (x ′
2)

2 − (x ′
3)

2 (10.37)

= (x ′
1 + x ′

3)
2 − (x ′

2)
2 − (x ′

3)
2. (10.38)

The new change

⎧
⎪⎪⎨

⎪⎪⎩

y1 = x ′
1 + x ′

3,

y2 = x ′
2,

y3 = x ′
3

(10.39)

results in the form

ω(y) = y2
1 − y2

2 − y2
3 , (10.40)

where y1 = 1

2
(x1 + x2)+ x3, y2 = 1

2
(x1 − x2), y3 = x3. �
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10.3.2 Jacobi Method

Let the following determinants composed of the elements of the matrix A = (aij )

of the quadratic form ω(x) be other than zero:

�1 = a11, �2 =
∣
∣
∣
∣
∣
∣

a11 a12

a21 a22

∣
∣
∣
∣
∣
∣
, . . . , (10.41)

�n =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (10.42)

Then, there exists the basis B = (e1, e2, . . . , en), in which ω(x) is presented in the
form:

ω(z) = �1

�0
z2

1 + �2

�1
z2

2 + · · · + �n

�n−1
z2
n, (10.43)

where zi , i = 1, 2, . . . , n, denote the coordinates of the vector x in the new basis
B, and for uniformity, we assume that �0 = 1. This is the essence of the Jacobi
method of bringing the quadratic form to the canonical form.

In comparison with Lagrange’s method, the Jacobi method has an advantage that
the transition to the basis B is direct, without any intermediate steps.

The transition from the basis (e1, e2, . . . , en) to the canonical basis
(c1, c2, . . . , cn) is performed by the formulae

ci =
i∑

j=1

ηij ej , i = 1, 2, . . . , n, (10.44)

ηij = (−1)i+j
�i−1,j

�i−1
, (10.45)

where �i−1,j is the minor of the matrix formed by the elements from (aij ) that
are situated at the intersection of the rows numbered k = 1, 2, . . . , i − 1 with the
columns numbered k = 1, 2, . . . , j − 1, j + 1, . . . , i.

Note that the introduced determinants �1, �2, . . . , �n are called the corner
minors of the matrix of quadratic form.

Rank of quadratic form is the number of non-zero coefficients λi �= 0.
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Let us introduce the following designations:

• n+—number of positive coefficients of λi > 0,
• n−—number of negative coefficients of λi < 0,
• n0—number of coefficients equal to zero of λi = 0.

The ordered set of integral non-negative numbers (n+, n−, n0) is called the
signature of quadratic form.

The quadratic form ω(x) is referred to as positively definite, if for any non-zero
x the inequality

ω(x) > 0 (10.46)

is fulfilled, and negatively definite, if ω(x) < 0 is fulfilled.
The quadratic form ω(x) is referred to as alternating, if there exist such x1 and

x2, that the following inequalities occur

ω(x1) > 0, ω(x2) < 0. (10.47)

Sylvester’s1 Criterion For the positive definiteness of the quadratic form ω(x),
it is necessary and sufficient that all the primary minors of its matrix should be
positive: �1 > 0, �2 > 0, . . . , �n > 0.

For the negative definiteness of the quadratic form ω(x), it is necessary and
sufficient that the signs of the corner minors of its matrix should alternate, and
�1 < 0.

The Law of Inertia The number of summands with positive (negative) coefficients
of a quadratic form brought to the canonical form does not depend on the method
used to obtain such a representation.

Review Questions

1. Define bilinear form.
2. Enumerate the property of linearity of bilinear forms.
3. What bilinear forms are called symmetric and positively defined?
4. Define quadratic form.
5. Explain why a matrix of an arbitrary quadratic form can always be deemed to

be symmetric.
6. What bilinear form is called polar to the quadratic form?
7. How is the rank of a quadratic form determined?
8. What is the difference between degenerate and nondegenerate quadratic forms?

1James Joseph Sylvester (1814–1897), English mathematician.
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9. Explain the methods of bringing quadratic forms to diagonal form: Lagrange’s
method and the Jacobi method.

10. How are the corner minors of a matrix of quadratic form determined?
11. Formulate Sylvester’s criterion.
12. What is the law of inertia of quadratic forms?

Problems

10.1. Which of the following functions F(x, y) of the vectors x = (x1, x2) ∈ R
2

and y = (y1, y2) ∈ R
2 are bilinear forms?

(1) F(x, y) = x1y1 + x2y2;
(2) F(x, y) = √

2;
(3) F(x, y) = (x1 − y1)

2 − (x2 − y2)
2;

(4) F(x, y) = 4x2y2.

10.2. Find the bilinear form that is polar to the form:

(1) x2
1 − 2x1x2 + 3x1x3 + 7x2

3;
(2) −2x2

1 + 3x1x3 + x2x3;
(3) 3x1x3 + x2

2 ;
(4) x2

1 + 4x1x2 + 4x1x3 − 4x2
2 − 2x2x3 − x2

3 .

10.3. Bring to the canonical form the quadratic form of three variables:

(1) x2
1 + 2x1x2 + 4x1x3 − 4x2

3;
(2) x1x2 + x1x3 − 6x2x3;
(3) −2x2

1 − 7x1x3;
(4) x2

1 − 4x1x2 + 12x1x3 − x2
2 + 4x2x3 + 3x2

3.

10.4. Bring to the canonical form the quadratic form of four variables:

(1) x2
1 + 2x1x2 + 2x1x3 + 2x1x4 + 3x2

2 + 6x2x3 + 8x2x4 + x2
3 + 2x3x4 + x2

4 ;
(2) x1x2 + x1x4 + x2x3 + x3x4;
(3) −5x2

1 + 2x1x4 + 3x2
2 + x2x3 − 2x2x4 − x2

3 + 2x3x4 + x2
4 ;

(4) x2
1 + x1x2 + x1x3 + x1x4 + x2

2 + x2x3 + x2x4 + x2
3 + x3x4 + x2

4 .

10.5. Which of the following quadratic forms are positively definite, negatively
definite and alternating?

(1) x2
1 + x1x2 + x2

2 ;
(2) x2

1 − 9x1x2 + x2
2 ;

(3) x1x2 + 2x1x4 + 3x2x3 + 4x3x4;
(4) x1x2 + x3x4.
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∗10.6. At what values of the real parameter a is the quadratic form:

ω(x) = ax2
1 + 2x1x2 + (10 − a)x2

2 (10.48)

positively definite and negatively definite?

∗10.7. Show that the form
n∑

i,j=1

xixj

i + j − 1
is positively definite.

Answers and Solutions

10.1 Answer:
The functions from items (1) and (4) are bilinear forms.

10.2 Solution.
Use the formula (10.14) for the polar form:

(1)

A(x, y) = 1

2

[
ω(x + y)− ω(x)− ω(y)]

= 1

2

[
(x1 + y1)

2 − 2(x1 + y1)(x2 + y2)

+ 3(x1 + y1)(x3 + y3)+ 7(x3 + y3)
2

− (x2
1 − 2x1x2 + 3x1x3 + 7x2

3)− (y2
1 − 2y1y2 + 3y1y3 + 7y2

3)
]

= x1y1 − x1y2 + 3

2
x1y3 − x2y1 + 3

2
x3y1 + 7x3y3;

(2)

A(x, y) = 1

2

[ − 2(x1 + y1)
2 + 3(x1 + y1)(x3 + y3)+ (x2 + y2)(x3 + y3)

− (−2x2
1 + 3x1x3 + x2x3)− (−2y2

1 + 3y1y3 + y2y3)
]

= −2x1y1 + 3

2
x1y3 + 1

2
x2y3 + 3

2
x3y1 + 1

2
x3y2;

(3)

A(x, y) = 1

2

[
3(x1 + y1)(x3 + y3)+ (x2 + y2)

2

− (3x1x3 + x2
2)− (3y1y3 + y2

2)
]

= 3

2
x1y3 + x2y2 + 3

2
x3y1;
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(4)

A(x, y) = 1

2

[
(x1 + y1)(x1 + y1)+ 4(x1 + y1)(x2 + y2)

+ 4(x1 + y1)(x3 + y3)

− 4(x2 + y2)
2 − 2(x2 + y2)(x3 + y3)− (x3 + y3)(x3 + y3)

− (x2
1 + 4x1x2 + 4x1x3 − 4x2

2 − 2x2x3 − x2
3)

− (y2
1 + 4y1y2 + 4y1y3 − 4y2

2 − 2y2y3 − y2
3)
]

= x1y1 + 2x1y2 + 2x1y3 + 2x2y1 − x2y3 − 4x2y2

+ 2x3y1 − x3y2 − x3y3.

10.3 Solution.

(1) Transform the expression:

x2
1 + 2x1x2 + 4x1x3 − 4x2

3

= x2
1 + 2x1(x2 + 2x3)+ (x2 + 2x3)

2 − (x2 + 2x3)
2 − 4x2

3

= (x1 + x2 + 2x3)
2 − (x2 + 2x3)

2 − (2x3)
2.

Change the variables:

⎧
⎪⎪⎨

⎪⎪⎩

y1 = x1 + x2 + 2x3,

y2 = x2 + 2x3,

y3 = 2x3.

We obtain the quadratic form in the canonical form:

y2
1 − y2

2 − y2
3 .

(2) Change the variables:

⎧
⎪⎪⎨

⎪⎪⎩

x1 = x ′
1 + x ′

2,

x2 = x ′
1 − x ′

2,

x3 = x ′
3.
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Transform the expression:

x1x2 + x1x3 − 6x2x3

= (x ′
1 + x ′

2)(x
′
1 − x ′

2)+ (x ′
1 + x ′

2)x
′
3 − 6(x ′

1 − x ′
2)x

′
3

= (x ′
1)

2 − (x ′
2)

2 + x ′
1x

′
3 + x ′

2x
′
3 − 6x ′

1x
′
3 + 6x ′

2x
′
3

= (x ′
1)

2 − (x ′
2)

2 − 5x ′
1x

′
3 + 7x ′

2x
′
3

= (x ′
1)

2 − 5x ′
1x

′
3 +

(
5

2
x ′

3

)2

−
(

5

2
x ′

3

)2

+ 7x ′
2x

′
3 − (x ′

2)
2

=
(

x ′
1 − 5

2
x ′

3

)2

+ 7x ′
2x

′
3 − (x ′

2)
2 −

(
5

2
x ′

3

)2

=
(

x ′
1 − 5

2
x ′

3

)2

−
(

x ′
2 − 7

2
x ′

3

)2

−
(

5

2
x ′

3

)2

−
(

7

2
x ′

3

)2

=
(

x ′
1 − 5

2
x ′

3

)2

−
(

x ′
2 − 7

2
x ′

3

)2

+ 6(x ′
3)

2.

Change the variables:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y1 = x ′
1 − 5

2
x ′

3 = 1

2
(x1 + x2 − 5x3),

y2 = x ′
2 − 7

2
x ′

3 = 1

2
(x1 − x2 − 7x3),

y3 = √
6x ′

3.

We obtain the quadratic form in the canonical form:

y2
1 − y2

2 + y2
3 .

(3) Transform the expression:

− 2x2
1 − 7x1x3

= −
(√

2x1

)2 − 7x1x3 −
(

7
√

2

4
x3

)2

+
(

7
√

2

4
x3

)2

=
(√

2x1 + 7
√

2

4
x3

)2

+
(

7
√

2

4
x3

)2

.
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Change the variables:

⎧
⎪⎪⎨

⎪⎪⎩

y1 = √
2x1 + 7

√
2

4
x3,

y2 = 7
√

2

4
x3.

We obtain the quadratic form in the canonical form:

−y2
1 + y2

2 .

(4) Transform the expression:

x2
1 − 4x1x2 + 12x1x3 − x2

2 + 4x2x3 + 3x2
3

= x2
1 − 4x1(x2 − 3x3)+ (2x2 − 6x3)

2

− (2x2 − 6x3)
2 − x2

2 + 4x2x3 + 3x2
3

= (x1 − 2x2 + 6x3)
2 − 4x2

2 + 24x2x3 − 36x2
3 − x2

2 + 4x2x3 + 3x2
3

= (x1 − 2x2 + 6x3)
2 − 5x2

2 + 28x2x3 − 33x2
3

= (x1 − 2x2 + 6x3)
2 −

(√
5x2

)2 + 28x2x3

−
(

14
√

5

5
x3

)2

+
(

14
√

5

5
x3

)2

− 33x2
3

= (x1 − 2x2 + 6x3)
2 −

(√
5x2 − 14

√
5

5
x3

)2

+ 31

5
x2

3 .

Change the variables:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

y1 = x1 − 2x2 + 6x3,

y2 = √
5

(

x2 − 14

5
x3

)

,

y3 =
√

31

5
x3.

We obtain the quadratic form in the canonical form:

y2
1 − y2

2 + y2
3 .
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10.4 Solution.

(1) Transform the expression:

x2
1 + 2x1x2 + 2x1x3 + 2x1x4 + 3x2

2 + 6x2x3 + 8x2x4 + x2
3 + 2x3x4 + x2

4

= x2
1 + 2x1(x2 + x3 + x4)+ (x2 + x3 + x4)

2 − (x2 + x3 + x4)
2

+ 3x2
2 + 6x2x3 + 8x2x4 + x2

3 + 2x3x4 + x2
4

= (x1 + x2 + x3 + x4)
2 − x2

2 − 2x2x3 − 2x2x4 − x2
3 − 2x3x4 − x2

4

+ 3x2
2 + 6x2x3 + 8x2x4 + x2

3 + 2x3x4 + x2
4

= (x1 + x2 + x3 + x4)
2 + 2x2

2 + 4x2x3 + 6x2x4

= (x1 + x2 + x3 + x4)
2 +

(√
2x2

)2 + 2x2(2x3 + 3x4)

+ 1

2
(2x3 + 3x4)

2 − 1

2
(2x3 + 3x4)

2

= (x1 + x2 + x3 + x4)
2 +

(√
2x2 + √

2x3 + 3
√

2

2
x4

)2

−
(√

2x3 + 3
√

2

2
x4

)2

.

Change the variables:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

y1 = x1 + x2 + x3 + x4,

y2 = √
2x2 + √

2x3 + 3
√

2

2
x4,

y3 = √
2x3 + 3

√
2

2
x4.

We obtain the quadratic form in the canonical form:

y2
1 + y2

2 − y2
3 .

(2) Change the variables:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x1 = x ′
1 + x ′

2,

x2 = x ′
1 − x ′

2,

x3 = x ′
3 + x ′

4,

x4 = x ′
3 − x ′

4.
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Transform the expression:

x1x2 + x1x4 + x2x3 + x3x4

= (x ′
1 + x ′

2)(x
′
1 − x ′

2)+ (x ′
1 + x ′

2)(x
′
3 − x ′

4)

+ (x ′
1 − x ′

2)(x
′
3 + x ′

4)+ (x ′
3 + x ′

4)(x
′
3 − x ′

4)

= (x ′
1)

2 − (x ′
2)

2 + 2x ′
1x

′
3 − 2x ′

2x
′
4 + (x ′

3)
2 − (x ′

4)
2

= (x ′
1)

2 + 2x ′
1x

′
3 + (x ′

3)
2 − (x ′

2)
2 − 2x ′

2x
′
4 − (x ′

4)
2

= (x ′
1 + x ′

3)
2 − (x ′

2 + x ′
4)

2.

Change the variables:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y1 = x ′
1 + x ′

3 = 1

2
(x1 + x2 + x3 + x4),

y2 = x ′
2 + x ′

4 = 1

2
(x1 − x2 + x3 − x4).

We obtain the quadratic form in the canonical form:

y2
1 − y2

2 .

(3) Transform the expression:

− 5x2
1 + 2x1x4 + 3x2

2 + x2x3 − 2x2x4 − x2
3 + 2x3x4 + x2

4

= x2
4 + 2x4(x1 − x2 + x3)+ (x1 − x2 + x3)

2

− (x1 − x2 + x3)
2 − 5x2

1 + 3x2
2 + x2x3 − x2

3

= (x1 − x2 + x3 + x4)
2 − 6x2

1 + 2x1x2 + 2x2
2 − 2x1x3 + 3x2x3 − 2x2

3

= (x1 − x2 + x3 + x4)
2 −

(√
6x1

)2 + 2x1(x2 − x3)−
(√

6

6
(x2 − x3)

)2

+
(√

6

6
(x2 − x3)

)2

+ 2x2
2 + 3x2x3 − 2x2

3

= (x1 − x2 + x3 + x4)
2 −

(√
6x1 −

√
6

6
(x2 − x3)

)2

+ 13

6
x2

2 + 8

3
x2x3 − 11

6
x2

3
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= (x1 − x2 + x3 + x4)
2 −

(√
6x1 −

√
6

6
(x2 − x3)

)2

+
(√

13

6
x2

)2

+ 8

3
x2x3 +

(
8
√

78

78
x3

)2

−
(

8
√

78

78
x3

)2

− 11

6
x2

3

= (x1 − x2 + x3 + x4)
2 −

(√
6x1 −

√
6

6
(x2 − x3)

)2

+
(√

13

6
x2 + 8

√
78

78
x3

)2

−
(√

69

26
x3

)2

.

Change the variables:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1 = x1 − x2 + x3 + x4,

y2 = √
6x1 −

√
6

6
(x2 − x3),

y3 =
√

13

6
x2 + 8

√
78

78
x3,

y4 =
√

69

26
x3.

We obtain the quadratic form in the canonical form:

y2
1 − y2

2 + y2
3 − y2

4 .

(4) Transform the expression:

x2
1 + x1x2 + x1x3 + x1x4 + x2

2 + x2x3 + x2x4 + x2
3 + x3x4 + x2

4

= x2
1 + x1(x2 + x3 + x4)+ 1

2
(x2 + x3 + x4)

2 − 1

2
(x2 + x3 + x4)

2

+ x2
2 + x2x3 + x2x4 + x2

3 + x3x4 + x2
4

=
(

x1 + 1

2
(x2 + x3 + x4)

)2

+ 3

4
x2

2 + 1

2
x2x3 + 1

2
x2x4

+ 3

4
x2

3 + 1

2
x3x4 + 3

4
x2

4

=
(

x1 + 1

2
(x2 + x3 + x4)

)2

+
(√

3

2
x2

)2
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+ 1

2
x2(x3 + x4)+

(√
3

6
(x3 + x4)

)2

=
(

x1 + 1

2
(x2 + x3 + x4)

)2

+
(√

3

2
x2 +

√
3

6
(x3 + x4)

)2

+ 2

3
x2

3 + 1

3
x3x4 + 2

3
x2

4

=
(

x1 + 1

2
(x2 + x3 + x4)

)2

+
(√

3

2
x2 +

√
3

6
(x3 + x4)

)2

+
(√

2

3
x3

)2

+ 1

3
x3x4 +

(√
6

12
x4

)2

−
(√

6

12
x4

)2

+ 2

3
x2

4

=
(

x1 + 1

2
(x2 + x3 + x4)

)2

+
(√

3

2
x2 +

√
3

6
(x3 + x4)

)2

+
(√

2

3
x3 +

√
6

12
x4

)2

+
(√

10

4
x4

)2

.

Change the variables:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1 = x1 + 1

2
(x2 + x3 + x4),

y2 =
√

3

2
x2 +

√
3

6
(x3 + x4),

y3 =
√

2

3
x3 +

√
6

12
x4,

y4 =
√

10

4
x4.

We obtain the quadratic form in the canonical form:

y2
1 + y2

2 + y2
3 + y2

4 .

10.5 Solution.

(1) Write the matrix of quadratic form:

⎡

⎢
⎢
⎢
⎣

1
1

2

1

2
1

⎤

⎥
⎥
⎥
⎦
.
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Use Sylvester’s criterion. For this, compute the corner minors:

∣
∣
∣1
∣
∣
∣ = 1 > 0,

∣
∣
∣
∣
∣
∣
∣
∣
∣

1
1

2

1

2
1

∣
∣
∣
∣
∣
∣
∣
∣
∣

= 1 −
(

1

2

)2

> 0.

Therefore, the form is positively definite.
(2) Write the matrix of quadratic form:

⎡

⎢
⎢
⎢
⎣

1 −9

2

−9

2
1

⎤

⎥
⎥
⎥
⎦
.

Use Sylvester’s criterion. For this, compute the corner minors:

∣
∣
∣1
∣
∣
∣ = 1 > 0,

∣
∣
∣
∣
∣
∣
∣
∣
∣

1 −9

2

−9

2
1

∣
∣
∣
∣
∣
∣
∣
∣
∣

= 1 −
(

9

2

)2

< 0.

Therefore, the form is alternating.
(3) Assume that x3 = x4 = 0. In this case, only one non-zero summand x1x2

remains in the quadratic form. It is obvious that this summand can take both
positive and negative values. Therefore, the form is alternating.

(4) Assume that x3 = 0. In this case, only one non-zero summand x1x2 remains
in the quadratic form. It is obvious that this summand can be both positive and
negative. Therefore, the form is alternating.

10.6 Solution.
Write the matrix of quadratic form:

⎡

⎣
a 1

1 10 − a

⎤

⎦ .

Use Sylvester’s criterion. For this, compute the corner minors:

∣
∣
∣a

∣
∣
∣ = a;

∣
∣
∣
∣
∣
∣

a 1

1 10 − a

∣
∣
∣
∣
∣
∣
= a(10 − a)− 1.
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In order for the form to be positively definite, it is necessary and sufficient that both
determinants should be positive:

{
a > 0,

a(10 − a)− 1 > 0; ⇒
{
a > 0,

a2 − 10a + 1 < 0;

⇒
⎧
⎨

⎩

a > 0,

a ∈
(

5 − 2
√

6, 5 + 2
√

6
)
.

In order for the form to be negatively definite, it is necessary and sufficient that
the corner minor of the first order should be negative, and that of the second order
should be positive:

⎧
⎨

⎩

a < 0,

a ∈
(

5 − 2
√

6, 5 + 2
√

6
)
.

This system is inconsistent; therefore, the form cannot be negatively definite at any
values of a.

Consider the cases when the corner minors are equal to zero:

a = 0, ω(x) = 2x1x2 + 10x2
2;

ω(x) can take a negative value, for example, at x1 = −10, x2 = 1;

a = 5 − 2
√

6,

ω(x) =
(

5 − 2
√

6
)
x2

1 + 2x1x2 +
(

5 + 2
√

6
)
x2

2

=
(√

5 − 2
√

6x1

)2

+ 2x1x2 +
(√

5 + 2
√

6x2

)2

=
(√

5 − 2
√

6x1 +
√

5 + 2
√

6x2

)2

.

It is clear that ∀x �= 0 the inequality ω(x) > 0 is fulfilled.
At a = 5 + 2

√
6, the reasoning is similar.

We obtain the final answer: the form is positively definite if and only if a ∈[
5 − 2

√
6, 5 + 2

√
6
]
.
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10.7 Solution.
Transform the expression, having introduced integration by the auxiliary vari-

able t:

n∑

i,j=1

xixj

i + j − 1
=

n∑

i,j=1

1∫

0

xixj t
i+j−2dt =

1∫

0

( n∑

i=1

xit
i−1

)2
dt.

As is easy to see, the expression
( n∑

i=1
xit
i−1

)2
is always greater than zero at the

non-zero values of x1, x2, . . . , xn and t > 0.
The initial quadratic form is positively definite, since it is the integral of the

positively definite form.



Chapter 11
Curves of the Second Order

The general equation of curve of the second order has the form

Ax2 + 2Bxy + Cy2 + 2Dx + 2Ey + F = 0, (11.1)

where the real coefficients A, B, C are not equal to zero simultaneously.
The expression Ax2 + 2Bxy + Cy2 is referred to as the quadratic term of the

equation of this curve, 2Dx+2Ey is referred to as the linear term, and F is referred
to as the constant term.

In the so-called canonical system of coordinates, the equation of curve of the
second order takes the simplest canonical form [8].

Let us consider the classification of curves of the second order based on their
canonical form.

11.1 Ellipse

Ellipse is a curve of the second order that in some Cartesian rectangular system of
coordinates is defined by the equation

x2

a2 + y2

b2 = 1, (11.2)

where a � b > 0. The numbers a and b are referred to as the major and minor
semiaxes of the ellipse, respectively.

The points (±a, 0) and (0,±b) are called the vertices of the ellipse, and (±c, 0),
where c = √

a2 − b2, are its foci. We will denote the foci by F1 and F2. Figure 11.1
schematically shows an ellipse in the canonical system of coordinates.

In case of equality of the constants a = b, the ellipse degenerates into a circle.
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Fig. 11.1 Ellipse
x2

a2 + y2

b2 = 1. The directrices

x = ±a/ε are shown by the
dotted lines

x

y

F1F2

−c c

a−a

b

−b

From the geometrical point of view, the ellipse is a set of points of a plane,
for each of which the sum of distances to two specified points F1 and F2 (foci) is
constant and equal to 2a > F1F2. The focal distance, i.e. the distance between F1
and F2, is equal to 2c.

The non-negative number ε = c/a < 1 defines the degree of “compression” of
the ellipse on the abscissa axis and is referred to as eccentricity. The greater is the
value ε, the more pronounced is the “compression” (see Fig. 11.2). As is easy to see,
the eccentricity of the circle is equal to ε = √

a2 − b2/a = 0. In this connection,
we can say that the ellipse is obtained from the circle through its compression on the
Ox-axis, when the ordinates of all its points decrease in the same proportion b/a.

Theorem 11.1 The distance from an arbitrary point P(x, y), which belongs to the
ellipse, to each focus, is equal to

r1 = PF1 = a − εx, r2 = PF2 = a + εx. (11.3)

The ellipse has two directrices — the straight lines of the form x = ±a/ε. They
are shown in Fig. 11.1 as dotted lines. Directrices are not defined for the circle. The

Fig. 11.2 Ellipses with
different eccentricities: ε = 0
(solid line), ε = 0.7 (dotted
line), ε = 0.9 (dash-and-dot
line)

x

y

a

a
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directrix and the focus that lie on the same side of the axisOy will be considered to
be corresponding to each other.

Theorem 11.2 For any point that belongs to the ellipse, the ratio of its distance to
the focus to its distance to the corresponding directrix is equal to the eccentricity of
the ellipse.

Let us consider the mutual arrangement of the ellipse and the straight line. An
arbitrary straight line either does not intersect the ellipse or intersects it at one or two
points. If there is the only common point, such a straight line is a tangent. Exactly
one tangent passes through any point on the ellipse.

The equation of tangent to the ellipse at the point P0(x0, y0) has the form:

xx0

a2 + yy0

b2 = 1. (11.4)

The ellipse has the following optical property: the light beams originating from
one focus, after mirror reflection from the ellipse, pass through another focus, i.e.
focus on it. This explains the origin of the term “focus” borrowed from optics.

Example 11.1 Let us find the intersection points of the coordinate axes and the

tangent drawn to the ellipse
x2

9
+ y2

4
= 1 at the point with the coordinates

(3/2,
√

3).

Solution Denote the tangency point by P0 and verify that it belongs to the ellipse:

(3/2)2

9
+ (

√
3)2

4
= 1, or 1 = 1 — true. (11.5)

Taking into account that the semiaxes of the ellipse are equal to a = 3 and b = 2,
substitute the coordinates P0(x0, y0) into the equation of tangent (11.4):

(3/2)x

9
+

√
3y

4
= 1. (11.6)

Therefore, the general equation of straight line has the form 2x + 3
√

3y − 12 = 0
(see Fig. 11.3). The intersection points of this line with the coordinate axes are (6, 0)
and (0, 4/

√
3). �

The idea of the ellipse as the compressed circle results in an alternative method
of specifying the ellipse in parametric form.

Transform the coordinates in accordance with the formulae

x ′ = x, y ′ = b

a
y. (11.7)
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x

y

P0

3−3

2

−2

2x + 3
√
3y − 12 = 0

Fig. 11.3 To the Example 11.1 The ellipse
x2

9
+ y2

4
= 1 and the tangent to it at the point

P0(3/2,
√

3)

After such a transformation, the circle x2 + y2 = a2, in the new system of

coordinates, turns into the ellipse
(x ′)2

a2
+ (y

′)2

b2
= 1. As is known, for example, from

the course of mathematical analysis [76], any circle can be specified in parametric
form as

{
x = a cos t,

y = a sin t,
(11.8)

where the real number t takes the values that belong to the interval [0, 2π).
From (11.7) follows that the parametric representation of the ellipse with the

semiaxes a and b will have the form:

{
x = a cos t,

y = b sin t,
where 0 � t < 2π. (11.9)

The parameter t is referred to as the anomaly of eccentricity.

11.2 Hyperbola

Hyperbola is a curve of the second order, which in some Cartesian rectangular
system of coordinates is defined by the equation

x2

a2 − y2

b2 = 1, (11.10)

where a, b > 0 (see Fig. 11.4). The numbers a and b are called real and imaginary
semiaxes of the hyperbola, respectively.
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Unlike the ellipse, which is a connected curve, the hyperbola consists of two
connected components: left and right branches (sheets of the hyperbola).

Vertices of hyperbola are the points (±a, 0). Foci of hyperbola are the points
F1(−c, 0) and F2(c, 0), where c = √

a2 + b2.

A hyperbola has asymptotes y = ±b
a
x that define the run of the curve for

infinitely great values of coordinates.
A hyperbola contains only those points of Cartesian plane, the modulus of the

difference of distances of each of which to the two given points F1 and F2 (foci) is
constant and equal to 2a < F1F2. The focal distance is equal to 2c.

For the hyperbola, a concept of eccentricity ε = c/a > 1 is also introduced.

Theorem 11.3 The distances r1, r2 from an arbitrary point P(x, y) of the hyper-
bola to each focus are equal

r1 = PF1 = abs(a − εx), r2 = PF2 = abs(a + εx). (11.11)

The directrices of the hyperbola are specified in the canonical system of

coordinates by the equations x = a

ε
and x = −a

ε
(see Fig. 11.4, where the

directrices are shown by dotted lines). The directrix and the focus that lie one the
same side of the axisOy will be considered to be corresponding to each other.

Theorem 11.4 For an arbitrary point that lies on the hyperbola, the ratio of its
distance to the focus to the distance to the corresponding directrix is equal to the
eccentricity of the hyperbola.

The equation of tangent to hyperbola at the point P0(x0, y0) has the form:

xx0

a2 − yy0

b2 = 1. (11.12)

Optical property of hyperbola: the light from the source situated at one of
the hyperbola’s foci is reflected by the second branch of the hyperbola so that the
continuations of reflections of the beams intersect at the second focus.

Fig. 11.4 Hyperbola
x2

a2
− y2

b2
= 1. The

asymptotes y = ± b
a
x are

shown by thin solid lines, the

directrices x = ±a
ε

—by

dotted lines x

y

F1F2

−c c

a−a
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Both for the ellipse and the hyperbola, in the canonical system of coordinates,
the origin of coordinatesO(0, 0) is the centre of symmetry of the curve, this is why
the ellipse and the hyperbola belong to the class of central curves.

In conclusion of the section devoted to the hyperbola, we will provide its
representation in parametric form:

{
x = ±a cosh t,

y = b sinh t,
(11.13)

where t ∈ R, cosh x = (ex + e−x)/2 is the hyperbolic cosine, and sinh x = (ex −
e−x)/2 is the hyperbolic sine. In the first equation of this system, the sign “+”
corresponds to the right branch of the hyperbola, and the sign “−” corresponds to
the left branch.

11.3 Parabola

Parabola is the noncentral curve of the second order, defined by the canonical
equation in Cartesian rectangular system of coordinates

y2 = 2px, (11.14)

where p > 0 is the focal parameter of the parabola, or simply the parameter.
The vertex of the parabola is the origin of coordinates (0, 0), the focus is the

point F(p/2, 0). The directrix of the parabola is the straight line specified by the
equation x = −p/2 (see Fig. 11.5).

From the geometrical point of view, the parabola is the set of the points of the
plane, for each of which the distance to the focus F is equal to the distance to the
directrix. The distance from the focus to the directrix is equal to the parameter.

Fig. 11.5 Parabola
y2 = 2px. The directrix
x = −p/2 is shown by a
dotted line

x

y

F

p/2−p/2
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Theorem 11.5 The distance from the point P(x, y) lying on the parabola to its
focus is equal to

r = x + p/2. (11.15)

The parabola is assigned the eccentricity equal to one.
For the parabola, the analogue of theorems 11.2 and 11.4 repeats its geometrical

property, which allows formulating the following generalized statement.

Theorem 11.6 For an arbitrary point that lies on the ellipse, hyperbola or
parabola, the ratio of the distance from this point to the focus to the distance
to the corresponding directrix (to the only directrix in case of parabola) is equal to
the eccentricity of the curve.

The equation of tangent to parabola at the point P0(x0, y0) has the form:

yy0 = p(x + x0). (11.16)

Optical property of parabola: the light beams originating from the focus, after
mirror reflection from the parabola, will be directed parallel to its axis of symmetry.
Note that this property of parabola underlies the arrangement of parabolic mirrors
and parabolic antennas.

11.4 Degenerate Curves

Among the degenerate curves of the second order are the curves whose canonical
form is different from the equation of ellipse, parabola or hyperbola. There exist the
following types of such curves: imaginary ellipse, pair of intersecting lines, pair of
imaginary intersecting lines, pair of parallel lines, pair of imaginary parallel lines
and pair of coincident lines. Thus, nondegenerate curves of the second order are
ellipse, hyperbola and parabola (and they alone).

11.4.1 Imaginary Ellipse

Imaginary ellipse is described in the canonical system of coordinates by the equation

x2

a2 + y2

b2 = −1, (11.17)

where a � b > 0.
Since the sum of squares of real numbers cannot be equal to a negative number,

this curve contains no points. The term “imaginary ellipse” is associated with the
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fact that when changing the variables x ′ = ix, y ′ = iy, where i = √−1, in the new
coordinates we obtain the equation of ellipse (11.2).

11.4.2 Pair of Intersecting Lines

The equation of the form

x2

a2 − y2

b2 = 0 (11.18)

corresponds to the pair of intersecting lines. Their intersection point is the origin of
coordinates.

Having written the Eq. (11.18) in the form

(x

a
− y

b

) (x

a
+ y

b

)
= 0, (11.19)

we conclude that it is satisfied by all points of two lines y = bx/a and y = −bx/a
intersecting at the origin of coordinates.

11.4.3 Pair of Imaginary Intersecting Lines

Pair of imaginary intersecting lines is described by the equation

x2

a2
+ y2

b2
= 0. (11.20)

The sum of squares is equal to zero if and only if each of the summands is equal

to zero:
x

a
= 0 and

y

b
= 0, i. e. x = y = 0. This condition specifies the only point

that coincides with the origin of coordinates.

11.4.4 Pair of Parallel Lines

The equation

x2 − a2 = 0, where a �= 0, (11.21)

defines two parallel vertical lines x = a and x = −a.
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11.4.5 Pair of Imaginary Parallel Lines

The curve of the second order, specified in the canonical system of coordinates by
the equation

x2 + a2 = 0 (11.22)

under condition a �= 0, contains no real points.

11.4.6 Pair of Coincident Lines

And the final type of the general equation of curve of the second order is

x2 = 0. (11.23)

This equation is satisfied by the coordinates of all points lying on the ordinate axis.
As a result, based on the canonical form of curves of the second order, they are

subdivided into nine above classes, the most practically important being ellipse,
hyperbola and parabola.

11.5 Algorithms for Computing the Coordinates of the
Tangent Points of Second Order Curve and the Straight
Line

Consider a nondegenerate curve of the second order, for example, the ellipse
x2

a2 +
y2

b2
= 1, and an arbitrary point of Cartesian plane P1(x1, y1). Let us provide the

algorithm that computes the coordinates of the tangency points of the said curve
and the lines passing through P1 (see Fig. 11.6).

We will begin with deducing the analytical relations for the coordinates of
the sought points. Denote the tangency points by T1(xt1, yt1) and T2(xt2, yt2). In
Chap. 7 “Equation of a Straight Line on a Plane” it is shown that the equation of the
family of lines passing through the set point P(x1, y1) can be written in the form
y − y1 = k(x − x1), where k < ∞ is the slope. The case of a vertical tangent will
be discussed separately.
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Fig. 11.6 Tangents to the

ellipse
x2

a2 + y2

b2 = 1, passing

through a point P1

x

y

T1
T2

P1

a−a

b

−b

It is known that the tangent to the ellipse intersects it exactly at one point (see
page 359). Therefore, the unknown slope k takes such a value that the nonlinear
system of equations

⎧
⎨

⎩

y − y1 = k(x − x1),

x2

a2 + y2

b2 = 1
(11.24)

has a unique solution. Having substituted the first equation of this system into the
second one, we obtain the quadratic equation

(a2k2 + b2)x2 − 2a2k(kx1 − y1)x + a2(kx1 − y1)
2 − a2b2 = 0. (11.25)

The necessary and sufficient condition for the quadratic equation to have the only
root is the discriminant’s equality to zero

D = a4k2(kx1 − y1)
2 + a2

(
a2k2 + b2

) (
b2 − (kx1 − y1)

2
)

= a2b2
(
a2k2 + b2 − (kx1 − y1)

2
)

= 0. (11.26)

Solution of the equationD = 0 relative to the variable k allows writing the values
of the slope:

k =
x1y1 ±

√
b2x2

1 + a2y2
1 − a2b2

x2
1 − a2

. (11.27)

Further, let us consider three cases depending on the mutual arrangement of the
point P1 and the ellipse.
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1. The point P1 lies inside the ellipse, i.e.
x2

1

a2
+ y2

1

b2
< 1. The radical expression

x2
1b

2 + y2
1a

2 − a2b2 in (11.27) is negative, and there are no real k in this case.
Therefore, it is impossible to draw a tangent through the point P1, which is
situated inside the ellipse.

2. The point P1 lies on the ellipse, i.e.
x2

1

a2 + y2
1

b2 = 1. Then the Eq. (11.26) has the

only root k = x1y1

x2
1 − a2

, and P1 is a tangency point.

3. The point P1 lies outside the ellipse,
x2

1

a2 + y2
1

b2 > 1. In this case, there are two

possible values of k that satisfy two tangents. We will find the coordinates of the
tangency points by substituting (11.27) into the Eq. (11.25):

xt1,2 = a2k(kx1 − y1)

b2 + a2k2
, yt1,2 = −b

2(kx1 − y1)

b2 + a2k2
. (11.28)

Now, let us consider a special case when x1 = ±a, and one of the tangents is
vertical (see Fig. 11.7).

In this case, one of the tangency points has the coordinates (a, 0) or (−a, 0), and
the second one is computed based on the equationD = 0, which leads to the condi-

tion k = ±y
2
1 − b2

2ay1
and, consequently, to the coordinates

(
± a b

2 − y2
1

b2 + y2
1

,
2b2y1

b2 + y2
1

)
,

if y1 �= 0, and to the equation x = ±a, if y1 = 0.
As a result, we formulate the algorithm for finding the coordinates of the

tangency points of the straight line and the ellipse.

1. If
x2

1

a2
+ y2

1

b2
< 1, then there are no tangency points.

2. If
x2

1

a2 + y2
1

b2 = 1, then there is the only tangency point (x1, y1).

Fig. 11.7 Tangents to the

ellipse
x2

a2
+ y2

b2
= 1, when

one of the them is vertical

x

y

P1

a−a

b

−b
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3. If x1 = ±a, then there are two tangency points

(x1, 0) and
(
± a b

2 − y2
1

b2 + y2
1

,
2b2y1

b2 + y2
1

)
.

In all other cases, k1 and k2 are calculated by the formulae:

k1 =
x1y1 +

√
b2x2

1 + a2y2
1 − a2b2

x2
1 − a2

, k2 =
x1y1 −

√
b2x2

1 + a2y2
1 − a2b2

x2
1 − a2

,

(11.29)
and the sought tangency points will have the coordinates:

(
a2k1(k1x1 − y1)

b2 + a2k2
1

,−b
2(k1x1 − y1)

b2 + a2k2
1

)

,

(
a2k2(k2x1 − y1)

b2 + a2k2
2

,−b
2(k2x1 − y1)

b2 + a2k2
2

)

.

(11.30)

Example 11.2 Let us apply the above algorithm to the values of the parameters
a = 8, b = 5 and P1(6, 5). We obtain the coordinates of the two points of tangency:

T1

(
192

25
,

7

5

)

and T2(0, 5). �

Review Questions

1. Write the general equation of a curve of the second order.
2. What curve is called an ellipse?
3. What is the eccentricity of an ellipse?
4. Define directrices of an ellipse.
5. Tell about the optical property of an ellipse.
6. What curve is called hyperbola?
7. What is the eccentricity of a hyperbola?
8. Define directrices of a hyperbola.
9. Tell about the optical property of a hyperbola.

10. What curve is called parabola?
11. What is the eccentricity of a parabola?
12. How are directrices of a parabola defined.
13. Tell about the optical property of a parabola.
14. Write the equation of a tangent to ellipse, hyperbola and parabola.
15. What curves of the second order are referred to as degenerate ones?
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Problems

11.1. For the ellipse
x2

18
+y

2

9
= 1, compute the eccentricity and write the equation

of directrices.

11.2. Find the shortest distance from the ellipse
x2

4
+ y2

3
= 1 to the line:

(1) x + 2y − 5 = 0;
(2) 2x + y − 5 = 0.

11.3. The ellipse x2 + 4y2 = 5 is given. Find the equation of the line that is
tangent to this ellipse at the point with the coordinates x = 1, y = −1.

11.4. Find the angle between the tangents drawn from the point (−8, 2) to the

ellipse
x2

24
+ y2

12
= 1.

∗11.5. From what points of Cartesian coordinate plane is the ellipse
x2

a2
+ y2

b2
= 1

seen at a right angle?
11.6. The semiaxes of an equilateral hyperbola are equal: a = b. Find the

eccentricity of the equilateral hyperbola.

11.7. Find the angle between the asymptotes to the hyperbola
x2

a2
− y2

b2
= 1.

11.8. Find the distance from the point (4, 0) to the curve y2 − 2x = 0.
11.9. Write the equation of tangent to the parabola y2 = 5x at the point nearest

to the pointM0(2, 1/2).
11.10. The representation of hyperbola in parametric form (11.13) has a dis-

advantage consisting in that its left and right branches are described by
different expressions with different signs. Find the parametric specification
of hyperbola that does not have the said disadvantage.

∗11.11. Assume that it is known that the line Ax + By + C = 0 is tangent to
the ellipse whose focal distance is equal to 2c. Set up the equation of this
ellipse.

11.12. Find at what points the line −3x+ 3y− 2 = 0 and the ellipse
x2

2
+ y

2

4
= 1

intersect.
11.13. At what points do the line x − 3y − 2 + 3

√
3 = 0 and the hyperbola

x2 − y2 = 1 intersect?
11.14. At what points do the line x + y − 5

√
5 = 0 and the parabola y2 = 6x

intersect?
11.15. The eccentricity of Mercury’s orbit is equal to 0.2; the major semiaxis is

equal to 0.39 astronomical units (a. u.). Compute the greatest and the least
distances of the planet from the Sun.

11.16. The eccentricity of the Earth’s orbit is equal to 0.017; the major semiaxis is
equal to one astronomical unit. What are the greatest and the least distances
from the Earth to the Sun?
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Fig. 11.8 The region
bounded by the ellipse and
the right branch of the
hyperbola

x

y

−a aα−α

M(xm, ym)
∗

b

−b

11.17. Assume that it is known that the eccentricity of the ellipse is ε = 1/2. In
the canonical system of coordinates, one of its directrices is specified by the
equation x = 12. Compute the distance in this coordinate system from the
pointM1 of the ellipse with the abscissa equal to −1 to the focus unilateral
with this directrix.

11.18. Assume that it is known that the eccentricity of the hyperbola is ε = 3/2. In
the canonical system of coordinates, one of its directrices is specified by the
equation x = −4. Compute the distance from the pointN1 of the hyperbola
with the ordinate equal to 9 to the focus unilateral with this directrix.

∗11.19. Find the area of the regions bounded by the ellipse
x2

a2 + y2

b2 = 1 and the

right branch of the hyperbola
x2

α2 − y2

β2 = 1 (see Fig. 11.8, where the said

region is colour-highlighted).

Answers and Solutions

11.1 Solution.
The semiaxes of the ellipse are equal to a = √

18 and b = 3. Compute the
eccentricity of the ellipse:

ε = c

a
=

√
a2 − b2

a
=

√
18 − 9√

18
= 1√

2
.

Write the equations of directrices:

x = ±a
ε

or x = ±6.



Answers and Solutions 371

11.2 Solution.

(1) Find the equations of two lines tangent to the ellipse and parallel to the line
x + 2y − 5 = 0. For this, write the equation of tangent to the ellipse:

x0x

a2 + y0y

b2 = 1,

where (x0, y0) is the point of tangency, a2 = 4, b2 = 3. Thus, the equation of
tangent takes the form:

y = −3x0x

4y0
+ 3

y0
.

The slope of the line x + 2y − 5 = 0 is equal to k = −1

2
. As is known,

the slopes of parallel lines coincide. Therefore, the following equality is valid:

−3x0x

4y0
= −1

2
. Moreover, the point (x0, y0) belongs to the ellipse. As a result,

we obtain the system of equations:

⎧
⎪⎨

⎪⎩

−3x0

4y0
= −1

2
,

x2
0

4
+ y2

0

3
= 1.

The set of its solutions has the form {(1, 3/2) , (−1,−3/2)}.
We obtain the equations of tangents:

x + 2y − 2 = 0, x + 2y + 2 = 0.

Note that the first of them is located closer to the initial line, since the
following inequality is valid: abs((−2) − (−5)) < abs(2 − (−5)) (see
Problem 7.13).

It only remains to find the distance from the point (1, 3/2) to the line x +
2y − 5 = 0.

Let us use the formula (7.37):

d = abs(δ) = abs(Ax0 + By0 + C)√
A2 + B2

=
abs(1 · 1 + 2 · 3

2
− 5)

√
12 + 22

=
√

5

5
.

So, the shortest distance from the ellipse
x2

4
+ y

2

3
= 1 to the line x+2y−5 =

0 is equal to

√
5

5
.
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(2) Find the equations of two lines, tangent to the given ellipse and parallel to the
line 2x + y − 5 = 0. Similarly to the previous item of this problem, we obtain
the system of equations relative to the unknown coordinates of the tangency
point x0 and y0:

⎧
⎪⎨

⎪⎩

−3x0

4y0
= −2,

x2
0

4
+ y2

0

3
= 1.

We obtain the set of solutions

{(
8√
19
,

3√
19

)

,

(

− 8√
19
,− 3√

19

)}

. Find the

equation of the tangents:

y = −2x + √
19, y = −2x − √

19.

Note that the first of them is closer to the initial line, since the following
inequality is valid: abs(−√

19−(−5)) < abs(
√

19−(−5)) (see Problem 7.13).

The distance from the point

(
8√
19
,

3√
19

)

to the line 2x + y − 5 = 0 will

be found by the formula (7.37):

d = abs(Ax0 + By0 + C)√
A2 + B2

=
abs(2 · 8√

19
+ 1 · 3√

19
− 5)

√
22 + 12

= 5
√

5 − √
95

5
.

As a result, the shortest distance from the ellipse
x2

4
+ y2

3
= 1 to the line

2x + y − 5 = 0 is equal to
√

5 − 1

5

√
95.

11.3 Solution.
Use the equation of tangent to ellipse (11.4):

xx0

a2 + yy0

b2 = 1.

In our case, a2 = 5, b2 = 5

4
, x0 = 1, y0 = −1, and the equation of tangent takes

the form
x · 1

5
+ y · (−1)

5/4
= 1, or x − 4y − 5 = 0.

11.4 Solution.
According to the problem statement, through the point (−8, 2) pass both tangents

to the ellipse.
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As is shown in Sect. 11.5 (formula (11.27)), the slopes of the tangents k1 and k2
are computed by the formula

k1,2 =
x1y1 ±

√
b2x2

1 + a2y2
1 − a2b2

x2
1 − a2

.

We obtain k1 = 1/5, k2 = −1.
Based on the (7.17), we find the angle between the lines.

ϕ = arctan
k1 − k2

1 + k1k2
= arctan

1/5 − (−1)

1 + (1/5)(−1)
= 3

2
.

Therefore, the angle between the tangents to the ellipse is equal to ϕ = arctan
3

2
.

11.5 Solution.
Since the ellipse seen at a right angle from some point M(x, y), then the angle

between the tangents drawn from M to the ellipse is equal to π/2. Based on the
formula (11.27) on page 366 the slopes of the tangents k1 and k2 are equal to

k1,2 =
x1y1 ±

√
b2x2

1 + a2y2
1 − a2b2

x2
1 − a2

.

Compute the angle ϕ between the tangents using the equation (7.17):

tanϕ = k1 − k2

1 + k1k2
,

therefore,

ϕ = arctan
k1 − k2

1 + k1k2
= arctan

2
√
b2x2

1 + a2y2
1 − a2b2

x2
1 + y2

1 − a2 − b2
.

It follows from the obtained equation that the angle ϕ = π/2, if the denominator of
fraction under the arctangent is equal to zero: x2

1 + y2
1 − a2 − b2 = 0.

As a result, the ellipse
x2

a2 + y
2

b2 = 1 is seen at a right angle from all points of the

plane that satisfy the equation

x2 + y2 = a2 + b2.

Such points, as is easy to see, form a circle of radius
√
a2 + b2.
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11.6 Solution.
The eccentricity of the hyperbola is equal to ε = c

a
, where c = √

b2 + a2 is half

of the interfocal distance, a, b are semiaxes of the hyperbola.
If a = b, then

ε =
√
b2 + a2

a
=

√
a2 + a2

a
= √

2.

Thus, we obtain that the eccentricity of the equilateral hyperbola is equal to
√

2.

11.7 Solution.

The asymptotes to the hyperbola
x2

a2 − y2

b2 = 1, as is known (see page 361),

are defined by the equations y = ±b
a
x. The slopes of these lines are equal to ±b

a
.

Therefore, the tangent of half of the angle α between the asymptotes is equal to

tan(α/2) = b

a
. Let us express, from the obtained relation, the sought angle:

α = 2 arctan
b

a
.

Note that for the equilateral hyperbola (see Problem 11.6), the angle between the
asymptotes is equal to π/2.

11.8 Solution.
In order to find the distance from the point (x0, y0) to the curve y2 − 2x = 0,

find the least value of the functions

d1(x) =
√

(x − x0)2 + (f1(x)− y0)2 and

d2(x) =
√

(x − x0)2 + (f2(x)− y0)2,

where x0 = 4, y0 = 0, and by f1,2(x) = ±√
2x are denoted two branches of the

parabola y2 − 2x = 0.
First, consider the function d1(x): d1(x) =

√
(x − 4)2 + 2x. Its derivative is

equal to d ′
1(x) = x − 3

√
(x − 4)2 + 2x

. The point suspected of being the extremum is

the solution of the equation d ′
1(x) = 0, or x − 3 = 0. This is the minimum point.

Therefore, min d1(x) = √
(3 − 4)2 + 2 · 3 = √

7.
Similarly, we find the least value of the function d2(x): min d2(x) = √

7.
As a result, we obtain that the distance from the point (4, 0) to the parabola is

equal to
√

7.

11.9 Answer:
5x − 2

√
10y + 10 = 0.
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11.10 Answer:
⎧
⎨

⎩

x = a

cos t
,

y = b tan t,

where t ∈ (0, 2π).
11.11 Solution.

Denote the tangency point by P(x0, y0). The equation of tangent to ellipse at this
point has the form:

xx0

a2
+ yy0

b2
= 1,

where a and b are the major and minor semiaxes of the ellipse, respectively. On the
other hand, according to the problem statement, the general equation of line has the
form Ax + By + C = 0, and it can be rewritten as

(
− A

C

)
x +

(
− B

C

)
y = 1.

Comparing the obtained equations, we obtain
x0

a2
= −A

C
,
y0

b2
= −B

C
, therefore,

the coordinates of the tangency pointP are equal to
(−Aa2/C,−Bb2/C

)
. It is clear

that the coordinates of the point P satisfy the equation of the ellipse
x2

0

a2
+ y2

0

b2
= 1.

Moreover, from the definition of focus follows the equality a2 − b2 = c2, where
c is the focal parameter. Hence, we obtain the system of equations relative to the
parameters a, b:

⎧
⎨

⎩

1

a2

(
− Aa2

C

)2 + 1

b2

(
− Bb2

C

)2 = 1,

a2 − b2 = c2,

or:

⎧
⎨

⎩

a2A2

C2 + b2B2

C2 = 1,

a2 − b2 = c2.

The solution of this system is: a =
(C2 − c2B2

A2 + B2

)1/2
, b =

(C2 − c2A2

A2 + B2

)1/2
.
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Thus, the sought equation of ellipse has the form:

A2 + B2

C2 − c2B2 x
2 + A2 + B2

C2 − c2A2 y
2 = 1.

11.12 Solution.

Express y from the equation of line: y = x + 2

3
.

Substitute y into the equation of ellipse:

x2

2
+ 1

4

(
4

9
+ 4

3
· x + x2

)

= 1,

or 27x2 + 12x − 32 = 0, hence, we obtain x1 = 8

9
, y1 = 14

9
; x2 = −4

3
, y2 = −2

3
.

So, the intersection points of the line and the ellipse are (8/9, 14/9),
(−4/3,−2/3).

11.13 Solution.
Express the variable x: x = 3y + 2 − 3

√
3.

In order to find the points at which the line and the hyperbola intersect, substitute
the obtained expression for x into the equation of hyperbola:

9y2 + 6y(2 − 3
√

3)+ 31 − 12
√

3 − y2 − 1 = 0,

or

8y2 + y
(

12 − 18
√

3
)

+ 30 − 12
√

3 = 0,

hence: y1 = 5
√

3 − 6

4
, x1 = 3

√
3 − 10

4
; y2 = √

3, x2 = 2.

Thus, the sought intersection points are
(3

√
3 − 10

4
,

5
√

3 − 6

4

)
, (2,

√
3).

11.14 Solution.
In order to find the intersection points of the line and the parabola, solve the

system of equations:

⎧
⎨

⎩

x + y − 5
√

5 = 0,

y2 = 6x
⇒

⎧
⎨

⎩

x = −y + 5
√

5,

y2 = −6y + 30
√

5
⇒ y2 + 6y − 30

√
5 = 0,

The obtained quadratic equation has the roots

y1,2 = −3 ±
√

9 + 30
√

5.
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Substitute the values y1,2 into the equation of a straight line x + y − 5
√

5 = 0. We
obtain

x1,2 = 3 ∓
√

9 + 30
√

5 + 5
√

5.

Thus, the coordinates of the intersection points are:

M1(3 −
√

9 + 30
√

5 + 5
√

5,−3 +
√

9 + 30
√

5),
M2(3 +

√
9 + 30

√
5 + 5

√
5,−3 −

√
9 + 30

√
5).

11.15 Solution.
According to the first law of Kepler,1 all planets of the Solar system move along

an ellipse, in one of the foci of which the Sun is situated [10]. The closest to the
Sun point of the orbit P is referred to as the perihelion, and the farthest from the
Sum point of the orbit A is referred to as the aphelion.

In order to compute these values for the planet Mercury, introduce the notations:
F1(c, 0) are the coordinates of the Sun, P(a, 0) are the coordinates of the perihelion,
A(−a, 0) are the coordinates of the aphelion and O(0, 0) is the centre of symmetry
of the ellipse. Here, a is the major semiaxis, and c is the focal parameter.

Then:

ra = AF1 — the greatest distance from Mercury to the Sun,

rp = PF1 — the least distance from Mercury to the Sun,

c = OF1.

Geometrically, we obtain

a = rp + c,
a = ra − c;

⇒ rp = a − c,
ra = a + c;

The eccentricity of the ellipse ε will be computed by the formula:

ε =
√
a2 − b2

a
,

where
√
a2 − b2 = c,

ε = c

a
⇒ c = aε.

1Johannes Kepler (1571–1630), German mathematician and astronomer.
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Hence,

rp = a − aε,
ra = a + aε;

rp = a(1 − ε),
ra = a(1 + ε).

Substitute the numeric values from the problem statement:

rp = 0.39 · (1 − 0.2)⇒ rp = 0.312 (a. u.),

ra = 0.39 · (1 + 0.2)⇒ ra = 0.468 (a. u.).

So, the greatest distance from Mercury to the Sun is equal to 0.468 a.u., the least
distance is equal to 0.312 a.u.

11.16 Solution.
Denote the points F1(c, 0) as the coordinates of the Sun, P(a, 0) as the

coordinates of the perihelion, A(−a, 0) as the coordinates of the aphelion, O(0, 0)
as the centre of symmetry of the ellipse. Here, a is the major semiaxis, and c is the
focal parameter of the Earth’s orbit. Then (see previous problem):

ra = AF1,

rp = PF1,

c = OF1;
⇒

rp = a(1 − ε),
ra = a(1 + ε);

where ε = 0.017 is the eccentricity of the Earth’s orbit, a = 1 a.u.
Perform the necessary computations:

rp = 1 · (1 − 0.017)⇒ rp = 0.983 (a. u.),

ra = 1 · (1 + 0.017)⇒ ra = 1.017 (a. u.).

As a result we obtain that the greatest distance from the Earth to the Sun is equal to
1.017 a.u., and the least distance is equal to 0.983 a.u.
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11.17 Solution.
The point M1 has the coordinates (−1, y1) and is situated on the left of Oy-

axis, and the focus is on the right. The sought distance is equal to the length of the
hypotenuse r of the triangle with the vertices F1(c, 0),M1(−1, y1) and L(−1, 0).

According to the Pythagorean theorem:

r =
√

(c + 1)2 + y2.

Using the definition of directrix of ellipse x = ±a
ε

, we find

xd = a

ε
, ⇒ a = εxd,

where, according to the problem statement, xd = 12.
Express the focal parameter c of the ellipse:

c = aε = ε2xd.

The coordinate y1 will be determined using the equation of the ellipse
(−1)2

a2 +
y2

1

b2 = 1:

y1 = ±b
a

√
a2 − 1.

Since for the ellipse the following relation is valid: b2 = a2 − c2 = a2(1 − ε2),
then

y1 = ±
√
(1 − ε2)(a2 − 1).

Therefore, the length of the hypotenuse F1M1 of the triangle F1LM1 is equal to

r =
√
(c + 1)2 + y2

1 =
√
(aε + 1)2 + (1 − ε2)(a2 − 1) = a + ε = ε(xd + 1).

Substitute here the numeric values from the problem statement, and we obtain the

final answer: r = 13

2
.

11.18 Solution.
The sought distance is equal to the length of the hypotenuse of the triangle with

the vertices F2(−c, 0), N1(x1, y1) and L(x1, 0), where, according to the problem
statement, y1 = 9. Depending on whether the point N1(x1, y1) is situated on the
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right or on the left branch of the hyperbola, we obtain two possible values of r:

r =
√
(x1 ± c)2 + y2

1 .

According to the definition of directrix of the hyperbola x = ±a
ε

, we have

a = ε abs(xd), where xd = −3.

The parameter c of the hyperbola is equal to

c = aε = ε2abs(xd).

Since
(−1)2

a2 − y2
1

b2 = 1 and c2 = a2 − b2, then

r2 = (x1 ± c)2 + b2(x
2
1

a2 − 1
) = (a ± εx1)

2 = ε2(abs(xd)± x1)
2,

where x1 = a

b

√
y2

1 + b2 =
√

y2
1

ε2 − 1
+ ε2x2

d . Having substituted the values from

the problem statement, we obtain r = 9

√
14

5
+ 6 or r = 9

√
14

5
− 6.

11.19 Solution.
Denote the region bounded by the ellipse and the hyperbola by D. Due to the

properties of symmetry of ellipse and hyperbola, the sought area is expressed as the
doubled area of the regionD0:

S(D) = 2S(D0).

In Fig. 11.8 the regionD0 is marked with the symbol “∗”.
The equation of the part of the ellipse lying in the first quadrant has the form

yell = b

a

√
a2 − x2, where 0 < x < a.

The equation of the part of the right branch of the hyperbola, which is situated

above the abscissa axis, is: yhyp = β

α

√
α2 − x2, where x > α.

Assume that xM is the abscissa of the point M of intersection of the curves yell
and yhyp, which point lies in the first quadrant.

Note that when the condition a � α is satisfied, such a point always exists.
Otherwise, when a < α, the regionD is empty, and S(D) = 0.
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So, under the condition a � α, the following equality is valid:

S(D0) =
∫ xM

α

yhyp(x) dx +
∫ a

xM

yell(x) dx. (11.31)

Compute the coordinate xM :

yell(xM) = yhyp(xM) ⇒ b

a

√
a2 − x2

M = β

α

√
x2
M − a2.

Solution of this equation that satisfies the conditions x > 0, y > 0, has the form:

xM = aα
√

b2 + β2

a2β2 + b2α2
.

Substitution of xM into the formula (11.31) for S(D0) results in:

S(D0) = 1

2

⎡

⎣ab arctan
β

α

√
a2 + α2

b2 + β2

−αβ ln

⎛

⎝b

√
a2 − α2

a2β2 + α2b2 + a
√

b2 + β2

a2β2 + α2b2

⎞

⎠

⎤

⎦ .

Finally, we obtain the area of the region bounded by the ellipse and the right
branch of the hyperbola:

S(D) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if a � α,

ab arctan
β

α

√
a2 + α2

b2 + β2 −

− αβ ln

⎛

⎝b

√
a2 − α2

a2β2 + α2b2
+ a

√
b2 + β2

a2β2 + α2b2

⎞

⎠ , if a > α.



Chapter 12
Elliptic Curves

Elliptic curve is a plane curve that has no singular points and is defined by an
equation of the form

y2 = x3 + ax + b, (12.1)

where a and b are real numbers. The requirement of absence of singular points
means that the curve must not have any self-intersection and cusps.1 This condition
will be satisfied if and only if the discriminant of the equation

� = −16(4a3 + 27b2) �= 0 (12.2)

is other than zero. Of course, the constant factor 16 does not influence the sign of
the discriminant; this factor is introduced for convenience of investigation of further
and deeper properties of the curve.

The name “elliptic curve” goes back to the problem of computing the length of
the ellipse arc, leading to computation of the definite integral of the form

∫ x2

x1

R(x)√
x3 + ax + b dx (12.3)

for some rational function R(x) [7, 32]. Morphological similarity of the terms
“ellipse” and “elliptic curve” is due to historic reasons. Let us emphasize that these
terms belong to different mathematical concepts.

1An example of self-intersection see on Fig. 12.6 at page 403. An example of a cusp is shown on
Fig. 12.1e at page 385.
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As a sphere of application of elliptic curves, we should mention the proof of
Fermat’s2 Last Theorem and the discovery of a new and rapidly developing scientific
field about the confidential data transfer methods—elliptic-curve cryptography.
There are other known applications of such curves in mathematics and adjacent
fields, in particular, in number theory [13, 14].

Depending on the sign of the discriminant, the elliptic curve is formed by one or
two connected components:

• if � > 0, then the curve graph consists of two connected components;
• if � < 0, then the curve graph consists of one connected component.

Note If the conditions � = 0 and a �= 0 are satisfied, a point of self-intersection
appears on the curve, and if the equalities a = b = 0 occur, then a cusp appears.

Example 12.1 In Fig. 12.1 are shown several elliptic curves for the values of
the parameters a ∈ {−4, 0, 4}, b ∈ {−2, 0, 2}. Note that at a = b = 0 we obtain the
equation y2 = x3, for which � = 0, therefore, such a curve does not belong to the
class of elliptic curves. In Fig. 12.1 it is located on the panel e) and is shown by the
dotted line. �

12.1 Operation of Multiplication of the Elliptic Curve Points

Having fixed two points located on an arbitrary elliptic curve � = {(x, y) ∈
R

2 : y2 = x3 + ax + b}, we can deduce a rule for constructing the third point.
Such an operation will be referred to as “addition” of points on an elliptic curve.

In order to perform the operation of addition of points, the Cartesian plane R
2

should be expanded by introducing a point at infinity ∞. As will be clear from
the further discussion, the point ∞ has the properties of a zero element in the set
R

2 ∪ {∞} with the operation of multiplication of points defined on it. Due to this,
the designation O ≡ ∞ is also used for the point at infinity.

Assume that any elliptic curve passes through the point O. We can say that two
vertical lines intersect at this point.

So, let the following elliptic curve be specified

� = {(x, y) ∈ R
2 : y2 = x3 + ax + b} ∪ {O}. (12.4)

The main idea of determining the sum A ⊕ B of the two points A = (xA, yA)

and B = (xB, yB) on the elliptic curve consists in computing the coordinates of the
intersection point of the line AB and �:

C′ = A⊕ B = {(xC, yC) : C ∈ AB and C ∈ �} (12.5)

2Pierre de Fermat (1601–1665), French mathematician and lawyer.
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y2 = x3 − 4x − 2
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Fig. 12.1 Elliptic curves for the values of the parameters a ∈ {−4, 0, 4}, b ∈ {−2, 0, 2}.
Rectangular mesh on the panels (a)–(i) has a step equal to 2. The point (0, 0) on panel (e) is
the cusp for the curve y2 = x3
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and the subsequent reflection of C′ relative to Ox-axis: C′ → C. The point C is
deemed as the sum of the points A and B; the remaining part of this section will be
devoted to the formal definition of such a summation operation.

In this case, we suppose that

1. the vertical lines of the form x = const pass through the point at infinity;
2. if the line AB is tangent to the curve �, then the tangency point is taken into

account twice.

The point on the elliptic curve, opposite to the point A = (xA, yA), is the point
−A = (xA,−yA), resulting from the reflection of the initial point relative to the
abscissa axis. As is easy to see, A ∈ � ⇒ −A ∈ � due to quadratic dependence of
the algebraic equation that defines � on the variable y.

A new rule is introduced for the point at infinity: −∞ = ∞, in other words, the
point ∞ is deemed opposite to itself.

Let us proceed to the rule of computing the coordinates of the point A⊕ B. For
this, consider four cases:

1. addition of a point and O;
2. addition of two different points, where A �= −B;
3. addition of the two opposite points A and −A;
4. duplication of a point, i.e. computing the sums of the form A⊕ A.

12.1.1 Addition of a Point andO

Let us define the sum of an arbitrary point A(xA, yA) of the expanded Cartesian
plane and the point O as

A⊕ O = O ⊕ A = A. (12.6)

This means that addition of the point O does not change the values of the initial
point coordinates. As was already mentioned above, this fact allows deeming the
point at infinity to be the zero element in the set R2 ∪ {∞} with the operation of
addition defined on it.

12.1.2 Addition of Two Different Points

In order to compute the sum A ⊕ B on the condition A �= −B we should find
the intersection point of the line AB with the specified elliptic curve �. Denote the
respective intersection point by C′. Then we find the point C = −C′ opposite to C′,
reflecting the point C′ relative to the Ox-axis. This, the coordinates of the point C
and C′ are connected by the relations xC = xC ′ , yC = −yC ′ .
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Fig. 12.2 Addition of two
different points A and B on
the elliptic curve

A

B

−C

C = A ⊕ B

x

y

The sum of the points A and B is the point C, constructed in the above manner:

C = A⊕ B. (12.7)

In Fig. 12.2 is shown a geometric method of constructing the point A⊕ B.
Solution of the system

⎧
⎨

⎩

(−yC)2 = x3
C + axC + b,

(−yC)− yA = yB − yA
xB − xA (xC − xA) (12.8)

reduces to solving the equation of the third degree with real coefficients. Of course,
the roots of such an arbitrary equation can be found using known Cardano formulae
[41]; however, in this case, we can perform easier computations.

Using Viète’s formulae (see Problem 4.31), we may say that the sought coordi-
nates of the point C are determined by the formulae:

{
xC = �2 − xA − xB,
yC = −yA + �(xA − xC),

(12.9)

where the designation � = yB − yA
xB − xA is introduced for the slope of the line AB.
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Fig. 12.3 Addition of two
opposite points A and −A

A

−A

O = A ⊕ (−A)

x

y

12.1.3 Addition of Two Opposite Points

Let us proceed to the case when the summands in the sum of the points are opposite
points, for example,A and −A.

Draw a line that passes through two opposite points. As can be seen from the
Fig. 12.3, such a line will be positioned vertically, and the third point, which is
common for the elliptic curve and the drawn line, can only be positioned at infinity.
Based on this fact, the sum of the opposite points is defined as A⊕ (−A) = ∞. The
Fig. 12.3 illustrates the formulated rule.

12.1.4 Duplication of a Point

The computation of the sum of the points of the form A ⊕ A, i.e. duplication of a
point, will require the operation of passage to the limit:

A⊕ A = lim
B→A

A⊕ B. (12.10)

Geometrically it means that we are drawing a line through two different points
A(xA, yA) and B(xB, yB) of the elliptic curve, and the second point lies in the small
neighbourhood of the first one:

lim
B→A

A⊕ B = lim
xB→xA,
yB→yA

A⊕ B. (12.11)
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a

A

x

y

A ⊕ A

−C
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A

O=A ⊕ A

x

y
))

Fig. 12.4 Duplication of a point A. On the panel (a), the case yA �= 0 is schematically shown; on
the panel (b) the case yA = 0

As is seen from the Fig. 12.4, this case corresponds to drawing a tangent at the
point A to the elliptic curve.

Suppose that the tangent intersects the curve at the point −C. Note that if the
ordinate of the point A is equal to zero, then the said tangent will be positioned
vertically. Based on the previous case described in Sect. 12.1.3, we obtain −C = ∞,
A⊕A = A⊕ (−A) = O. For all other values of the ordinate yA �= 0, as a result of
reflection of the point −C relative to the horizontal axis, a point C = A⊕A will be
constructed.

Let us write the respective analytical relations:

{
xC = �2 − 2xA,

yC = −yA + �(xA − xC),
(12.12)

where the value � = 3x2
A + a
2yA

is equal to the tangent of the slope of the tangent line

relative to the horizontal axis.
Two other cases of point duplication discussed above are illustrated in Fig. 12.4a

and b.
Analysis of the formulated addition procedure leads to the criterion of equality

O of the sum of three points.

Theorem 12.1 A sum of three points is equal to O if and only if they lie on the same
straight line.

Example 12.2 Compute the sum (−2,−1) ⊕ (0, 1) of two points on the elliptic
curve defined by the equation y2 = x3 − 4x + 1.

Solution DenoteA = (−2,−1), B = (0, 1) and C = A⊕B. Verify that the points
A and B lie on the curve y2 = x3 − 4x + 1.
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Indeed,

A : (−1)2 = (−2)3 − 4 · (−2)+ 1, or 1 = 1 is true, (12.13)

B : 12 = 03 − 4 · 0 + 1, or 1 = 1 is true. (12.14)

By definition, in order to compute the sum A⊕B we should find the intersection
point of the line AB with the specified elliptic curve, following which we should
reflect the intersection point relative to Ox-axis.

Write the equation of the line that passes through two points (see Eq. (7.12) on
page 280):

y − yA = yB − yA
xB − xA (x − xA), (12.15)

where (xA, yA) and (xB, yB) are the coordinates of the initial points.
Having substituted the numeric values of the coordinates into Eq. (12.15), we

arrive at the equation of the line y = x + 1. The line specified by this equation
intersects the elliptic curve y2 = x3 − 4x + 1 at a point with the abscissa xC , for
which the following equality is valid

(xC + 1)2 = x3
C − 4xC + 1, (12.16)

or

x3
C − x2

C − 6xC = 0. (12.17)

As is easy to see, the obtained cubic equation has the roots

(xC)1 = −2, (xC)2 = 0, (xC)3 = 3. (12.18)

The first two values satisfy the abscissas of the initial points A and B; the value
xC = 3 is the abscissa of the intersection point of the lineAB and the elliptic curve.
Denote this point as C′: xC ′ = 3.

Having substituted xC ′ into the equation y = x + 1, we obtain yC ′ = 4—the
ordinate of the point C′.

The coordinates of the sought point C = A⊕ B are equal to

{
xC = xC ′,

yC = −yC ′.
(12.19)

As a result, xC = 3, yC = −4, therefore, on the curve y2 = x3 − 4x + 1 the
following equality is valid

(−2,−1)⊕ (0, 1) = (3,−4). (12.20)
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Note that the use of the relations (12.9) also leads to the desired result. �
Example 12.3 Compute the sum (−2, 3) ⊕ (3,−3) of two points on the elliptic
curve specified by the equation y2 = x3 − 7x + 3.

Solution Verify that the points (−2, 3) and (3,−3) belong to the curve.
The first point: 32 = (−2)3 − 7(−2)+ 3, or 9 = 9 is true;
the second point: (−3)2 = 33 − 7 · 3 + 3, or 9 = 9 is true.
In order to compute the sum, use the formulae (12.9), into which the values

xA = −2, yA = 3, xB = 3, yB = −3 should be substituted:

� = −3 − 3

3 − (−2)
= −6

5
, (12.21)

xC =
(

−6

5

)2

− (−2)− 3 = 11

25
, (12.22)

yC = − 3 +
(

−6

5

)(

−2 − 11

25

)

= − 9

125
. (12.23)

So, by algebraic method, we have obtained the equality (−2, 3) ⊕ (3,−3) =(
11

25
,− 9

125

)

. �

For the sum of the points of the form C = A⊕ A⊕ A⊕ · · · ⊕ A︸ ︷︷ ︸
n times

the

designation C = nA is used.
For n < 0 the point nA is defined as the element opposite to (−n)A.
Multiplication by zero results in a point at infinity O.
Thus, the point nA, which is the sum n of the points A, is defined for all integral

n in accordance with the following rule:

nA =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A⊕ A⊕ A⊕ · · · ⊕ A︸ ︷︷ ︸
n times

, if n > 0,

O, if n = 0,

−|n|A, if n < 0.

(12.24)

Example 12.4 Compute the sum of four points 4(5, 11) on the elliptic curve,
defined by the equation y2 = x3 − 2x + 6.

Solution Verify that the point (5, 11) belongs to the elliptic curve:

112 = 53 − 2 · 5 + 6, or 121 = 121 is true. (12.25)

Use the equality

4(5, 11) = (5, 11)+ (5, 11)+ (5, 11)+ (5, 11) = 2(5, 11)+ 2(5, 11). (12.26)
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By the duplication formulae (12.12) we obtain

� = 73

22
, 2(5, 11) = (489/484, 23835/10648). (12.27)

Applying the duplication formula again and using a program in Python for
computing, we arrive at the final answer:

4(5, 11) = (− 2 160 508 643 999/1 099 855 587 600,

− 1 767 794 172 358 992 751/1 153 462 548 939 624 000). (12.28)

As is seen from the considered example, the arithmetic operations with the
elliptic curve points are in many cases very labour-intensive and it is almost
impossible to obtain the result without application of computing systems. �
Theorem 12.2 The operation of addition of the points defined on the elliptic curve
� on the set R2 ∪ {O} has the following properties:

1. A⊕ O = O ⊕ A = A ∀A ∈ �;
2. A⊕ (−A) = O ∀A ∈ �;
3. A⊕ B = B ⊕ A ∀A,B ∈ �;
4. (A⊕ B)⊕ C = A⊕ (B ⊕ C) ∀A,B,C ∈ �.

The result of the operation “⊕” belongs to the same set R2 ∪ {O}.
In other words, the operation “⊕” is commutative and associative. The role of

the opposite to A is played by −A; the role of zero (neutral element) is played by
the point O = ∞.

12.2 Elliptic Curves with Rational Points

In the previous sections of this chapter, as the universal set was considered a
Cartesian plane completed with a point at infinity ∞:

U = R
2 ∪ {O}. (12.29)

Recall that the universal set, by definition, contains the entire set of values that the
variables can take in a certain problem [41]. For cryptography and number theory,
the most significant are the properties of the elliptic curves on the set of points with
the rational coordinates Q2 ∪ {∞}, where Q = {p/q : p, q ∈ Z, q �= 0} is a set of
rational numbers. As in the case of a standard Cartesian plane, an additional point
∞ is introduced, which is considered to be rational.

So, let us fix as the universal set

U = Q
2 ∪ {∞}. (12.30)
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The operation of multiplication of points is defined by the same rule as in the
previous section. Formulate this rule in the form of an algorithm.

Algorithm of addition of points on the elliptic curve The sum of the two points
A(xA, yA) and B(xB, yB) on the elliptic curve

� = {(x, y) ∈ Q
2 : y2 = x3 + ax + b} ∪ {O} (12.31)

is the point C(xC, yC), whose coordinates are found by the following rule.

1. If A = O, then C = A⊕ B = B.
2. If B = O, then C = A⊕ B = A.
3. If xA = xB and yA = −yB , then C = A⊕ B = O.
4. In other cases, the parameter � is computed:

� =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

yB − yA
xB − xA , if A �= B,

3x2
A + a
2yA

, if A = B,
(12.32)

and the coordinates of the point C will be equal to

xC = �2 − xA − xB, (12.33)

yC = �(xA − xC)− yA. (12.34)

Here, the procedure of addition of the points is defined specifically, since it
does not take the result beyond the extended set of rational numbers. Indeed, all
usual arithmetic operation—addition, subtraction, multiplication and division—are
performed in an algorithm on rational operands, which eventually results in rational
numbers. Division by zero in an algorithm cannot take place due to preliminary
processing of the exceptional case B = −A. Therefore, a theorem similar to
theorem 12.2 occurs.

Theorem 12.3 The operation of addition of the points defined on the elliptic curve
� on the set Q2 ∪ {O} has the following properties:

1. A⊕ O = O ⊕ A = A ∀A ∈ �;
2. A⊕ (−A) = O ∀A ∈ �;
3. A⊕ B = B ⊕ A ∀A,B ∈ �;
4. (A⊕ B)⊕ C = A⊕ (B ⊕ C) ∀A,B,C ∈ �.

The result of the operation “⊕” belongs to the same extended set of points with
rational coordinates.

As we can see, addition of rational point on an arbitrary elliptic curve has all the
properties of a regular operation of addition of rational numbers.
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12.3 Implementation of the Addition Algorithm

Let us consider a software implementation of an algorithm of addition of rational
numbers on an elliptic curve. The program’s input data are the coordinates of the
points A and B; the coordinates of the sum A⊕ B on the set Q2 ∪ {O} are entered
into the resulting file.

Listing 12.1
� �

1 class RationalFraction(object):
2 def __init__(self, n, d):
3 self.n = n
4 self.d = d
5

6 def __eq__(self, other):
7 return self.n == other.n and \
8 self.d == other.d
9

10 def __neg__(self):
11 return RationalFraction(-self.n, self.d)
12

13

14 class RationalPoint(object):
15 def __init__(self, x, y):
16 self.x = x
17 self.y = y
18

19 def __eq__(self, other):
20 return self.x == other.x and \
21 self.y == other.y
22

23

24 # Denominators of coordinates of the point at
infinity

25 # are equated to zero
26 O = RationalPoint(RationalFraction(1, 0), \
27 RationalFraction(1, 0))
28

29 # Parameter a of an elliptic curve
30 a = RationalFraction(-4, 1)
31

32

33 def add(p1, p2):
34 if p1.x.d == 0 or p1.y.d == 0:
35 return p2
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36 elif p2.x.d == 0 or p2.y.d == 0:
37 return p1
38 elif p1.x == p2.x and p1.y == (-p2.y):
39 return O
40 else:
41 k = RationalFraction(0, 0)
42 c = RationalPoint(RationalFraction(0, 0), \
43 RationalFraction(0, 0))
44

45 if p1 == p2:
46 k.n = p1.y.d * \
47 (3 * p1.x.n * p1.x.n * a.d + \
48 a.n * p1.x.d * p1.x.d)
49 k.d = 2 * p1.y.n * p1.x.d * \
50 p1.x.d * a.d
51

52 if k.d < 0:
53 k.n = -k.n
54 k.d = -k.d
55

56 c.x.n = \
57 (k.n * k.n * p1.x.d * p2.x.d - \
58 p1.x.n * k.d * k.d * p2.x.d - \
59 p2.x.n * k.d * k.d * p1.x.d)
60 c.x.d = k.d * k.d * p1.x.d * p2.x.d
61

62 c.y.n = \
63 k.n * p1.y.d * \
64 (p1.x.n * c.x.d - c.x.n * p1.x.d) -

\
65 k.d * p1.x.d * c.x.d * p1.y.n
66 c.y.d = k.d * p1.x.d * c.x.d * p1.y.d
67

68 fraction_reduce(c.x)
69 fraction_reduce(c.y)
70

71 if c.x.d < 0:
72 c.x.n = -c.x.n
73 c.x.d = -c.x.d
74

75 if c.y.d < 0:
76 c.y.n = -c.y.n
77 c.y.d = -c.y.d
78



396 12 Elliptic Curves

79 else:
80 # Points are different
81 k.n = p1.x.d * p2.x.d * \
82 (p2.y.n * p1.y.d - p1.y.n * p2.y.d)
83 k.d = p1.y.d * p2.y.d * \
84 (p2.x.n * p1.x.d - p1.x.n * p2.x.d)
85

86 if k.d < 0:
87 k.n = -k.n
88 k.d = -k.d
89

90 c.x.n = \
91 (k.n * k.n * p1.x.d * p2.x.d - \
92 p1.x.n * k.d * k.d * p2.x.d - \
93 p2.x.n * k.d * k.d * p1.x.d)
94 c.x.d = k.d * k.d * p1.x.d * p2.x.d
95

96 c.y.n = k.n * p1.y.d * \
97 (p1.x.n * c.x.d - c.x.n * p1.x.d) -

\
98 k.d * p1.x.d * c.x.d * p1.y.n
99 c.y.d = k.d * p1.x.d * c.x.d * p1.y.d

100

101 fraction_reduce(c.x)
102 fraction_reduce(c.y)
103

104 if c.x.d < 0:
105 c.x.n = -c.x.n
106 c.x.d = -c.x.d
107

108 if c.y.d < 0:
109 c.y.n = -c.y.n
110 c.y.d = -c.y.d
111

112 return c
113

114

115 def gcd(a, b):
116 r = 0
117

118 # Euclid’s algorithm
119 while b != 0:
120 r = a % b
121 a = b
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122 b = r
123

124 return a
125

126

127 def fraction_reduce(fraction):
128 temp = gcd(fraction.n, fraction.d)
129

130 fraction.n //= temp
131 fraction.d //= temp
132

133

134 p1 = RationalPoint(RationalFraction(0, 0), \
135 RationalFraction(0, 0))
136 p2 = RationalPoint(RationalFraction(0, 0), \
137 RationalFraction(0, 0))
138

139 with open(’input.txt’) as file:
140 p1.x.n, p1.x.d, p1.y.n, p1.y.d = \
141 [int(num) for num in next(file).split()]
142

143 p2.x.n, p2.x.d, p2.y.n, p2.y.d = \
144 [int(num) for num in next(file).split()]
145

146 result = add(p1, p2)
147

148 with open(’output.txt’, ’w+’) as file:
149 output = ’(%d / %d, %d / %d )’ % \
150 (result.x.n, result.x.d, \
151 result.y.n, result.y.d)
152

153 file.write(output)
� �

For operations with rational fractions, a class RationalFraction is im-
plemented in the program, which consists of two fields—the numerator and the
denominator of the fraction.

An arbitrary rational point of the plane is characterized by its abscissa and
ordinate. Each of these coordinates is a rational fraction; this is why the de-
scription of the class RationalPoint includes two fields that store the objects
RationalFraction.

Thus, a rational point of the elliptical curve is represented in the program by a
class containing the objects of other classes.
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For example, the point P1(3,−2) of the Cartesian plane can be written in the

form
(3

1
,−2

1

)
= RationalPoint(RationalFraction(3, 1), and be

represented in the memory of computer as
p1 = {{3, 1}, {−2, 1}}.
The fields are referred to as follows:

• p1.x.n—numerator of the abscissa of the point P1;
• p1.x.d—denominator of the abscissa of the point P1;
• p1.y.n—numerator of the ordinate of the point P1;
• p1.y.d—denominator of the ordinate of the point P1.

The fraction’s sign will be the sign of its numerator, while in the intermediary
computations the sign of the denominator will be preserved as positive.

We should separately discuss the issue of representing the point at infinity O. In
this implementation, it is introduced as an object

O = RationalPoint(RationalFraction(1, 0), RationalFraction(1,

0))

i.e. the denominators of its coordinates are equated to zero.
The main procedure that executes the addition of the points is called

add() and it operates as follows. In its code, an algorithm presented on page 393
is directly reflected, and the arithmetic operations on rational fractions are executed
separately for the numerator and for the denominator.

In particular, addition of two fractions is presented in the form:

p1.x.n

p1.x.d
+ p2.x.n

p2.x.d
= p1.x.n*p2.x.d+ p2.x.n*p1.x.d

p1.x.d*p2.x.d
. (12.35)

Similarly, subtraction, multiplication and division are implemented in the pro-
gram. Such arithmetic operations may result in a reducible fraction. For example,

the summation
2

3
+ 1

3
is performed as follows:

2

3
+ 1

3
= 2 · 3 + 1 · 3

3 · 3
= 9

9
. (12.36)

In this connection, prior to returning the result, the function add() divides the
numerator and the denominator of the fraction by their greatest common divisor,
gcd. For this purpose, an auxiliary function fraction_reduce() is called.

Computing of the greatest common divisor of two integers is based on the widely
known Euclid’s3 algorithm [32].

3Euclid (Εὐκλείδης) (about 325 BC–before 265 BC), Ancient Greek mathematician.
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At the final stage, the program outputs a sum of two rational points in the form
( c.x.n / c.x.d, c.y.n / c.y.d )

where c.x.n is the numerator of the abscissa of the result, c.x.d is the
denominator of the abscissa of the result, etc.

Review Questions

1. Define elliptic curve.
2. How is the discriminant of the equation of an elliptic curve computed?
3. Explain how one can, by the sign of the discriminant of the elliptic curve,

establish the number of connected components of its graph.
4. Enumerate the properties of the point at infinity O.
5. Explain how the sum of the points A⊕ B on the elliptic curve is computed.
6. How can one, knowing the coordinates of some point on the elliptic curve, find

the coordinates of the opposite point?
7. Formulate the necessary and sufficient condition of equality O of the sum of

three points on the elliptic curve.
8. Define the sum n of the points on the elliptic curve, where n is an integer.
9. Enumerate the properties of the operation of addition of points on the elliptic

curve.

Problems

12.1. Which of the equations listed below specify the elliptic curves on the
expanded Cartesian plane R2 ∪ {O}?
(1) y2 = x2 − x + 1;
(2) y2 = x3 + x + 1;
(3) y2 = x + 1;
(4) y2 = x3;
(5) y2 = x3 + 3x + 2;
(6) y2 = x3 − 3x + 2;
(7) y2 = x3 − 15x/27;
(8) y2 = x4 + x3.

If the curve belongs to the class of elliptical ones, then compute its
discriminant and construct a graph.

12.2. Draw a graph of the curve S = {(x, y) : y2 = x3 − 12x + 16} and explain
why it does not belong to the class of elliptic curves.

12.3. Compute the discriminant for each of the following elliptic curves:

(1) y2 = x3 − 2x + 3;
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(2) y2 = x3 − x − 1;
(3) y2 = x3 + 4x;
(4) y2 = x3 − 10x + 8.

How many connected components does the graph of them contain?
∗12.4. Prove that the duplication formula for computing of the abscissa of the

point 2A on the curve y2 = x3 + ax + b can be presented in the following
form:

x2A =
(

3x2
A + a
2yA

)2

− 2xA = x4
A − 2ax2

A − 8bxA + a2

4x3
A + 4axA + 4b

. (12.37)

12.5. Verify that the points (−2, 5), (−1,−5) and (103, 1045) belong to the
elliptic curve y2 = x3 − 7x + 19.

12.6. Verify that on the curve y2 = x3 + 15 the following equality

2(1, 4) = (−119/64,−1499/512)

is valid.
12.7. Compute the following sums of the points on the elliptic curves on the set

Q
2:

(1) (−3, 3)⊕ (1, 3) on the curve y2 = x3 − 7x + 15;
(2) (1, 4)⊕ (1, 4) on the curve y2 = x3 + x + 14.

12.8. Verify the validity of the equalities on the elliptic curve y2 = x3 − 7x +
10:

(1) (5, 10)⊕ (9, 26) = (2, 2);
(2) (5, 10)⊕ (2,−2) = (9,−26);
(3) (5, 10)⊕ (2, 2) = (1/9, 82/27);
(4) (5,−10)⊕ (1,−2) = (−2,−4).

12.9. Compute the sum of the points

(−2,−4)⊕ (1, 2)⊕ (2, 2)⊕ (−3, 2)

on the curve y2 = x3 − 7x + 10.
12.10. Perform duplication of the point (5, 12) on the curve y2 = x3 + x + 14.
12.11. Compute the sum of the points

(1) 2(7, 19) on the curve y2 = x3 + x + 11;
(2) 3(1, 4) on the curve y2 = x3 + x + 14.



Answers and Solutions 401

∗12.12. Compute the sum of the points

2(2, 4)⊕ 2(33, 190)⊕ (1, 2)

on the curve y2 = x3 + 5x − 2.
∗12.13. Compute the sum of the points

(6, 16)⊕ (−1,−2)⊕ (−2)(9,−28)

on the curve y2 = x3 + 5x + 10.
12.14. Write a function that checks whether the rational point P(x, y) belongs to

the elliptic curve y2 = x3 + ax + b.

Answers and Solutions

12.1 Solution.
Elliptic curve, as is known, is defined by the relation

y2 = x3 + ax + b

for some a, b ∈ R on the condition 4a3 + 27b2 �= 0 (see page 383). Leaning upon
this definition, we obtain

(1) y2 = x2 − x + 1 is not an elliptic curve, since the right side lacks the summand
x3;

(2) y2 = x3 + x + 1 is an elliptic curve; the respective values of the parameters are
a = 1, b = 1, the discriminant is � = −16(4a3 + 27b2) = −496;

(3) y2 = x + 1 is not an elliptic curve, since it lacks the cubic summand x3;
(4) y2 = x3 is not an elliptic curve, since a = 0, b = 0 and the equality 4a3 +

27b2 = 0 is valid;
(5) y2 = x3 + 3x + 2 satisfies the definition of elliptic curve with the parameters

a = 3 and b = 2, the discriminant is � = −3456;
(6) y2 = x3−3x+2 is not an elliptic curve, since a = −3, b = 2 and 4a3+27b2 =

0;
(7) y2 = x3−5x/27 satisfies the definition of elliptic curve, a = −5/27 and b = 0,

� = 8000/19683;
(8) the equation y2 = x4 + x3 includes a summand of the fourth degree x4,

therefore, the respective curve does not belong to the class of elliptic curves
(Fig. 12.5).
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y2 = x3 + x + 1

a)

x

y

y2 = x3 + 3x + 2

b)

x

y

y2 = x3 − 15x/27

c)

x

y

Fig. 12.5 Elliptic curves to Problem 12.1. The rectangular mesh on the panels (a)–(c) has a step
equal to 2

12.2 Solution.
The graph of the curve S is presented in Fig. 12.6. The curve S is not elliptic,

since the condition of its discriminant’s being other than zero is not valid: � =
−16(4a3 + 27b2) = −16(4(−12)3 + 27 · 162) = 0. The geometric expression of
this fact is the presence on the graph of a self-intersection point with the coordinates
(−2, 0).

12.3 Solution.
Using the formula� = −16(4a3 + 27b2), we obtain

(1) � = −3376, the graph has one connected component;
(2) � = −368, one connected component;
(3) � = −4096, one connected component;
(4) � = 36, 352, the graph consists of two connected components.
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Fig. 12.6 The curve S to
Problem 12.2. The
rectangular mesh has a step
equal to 2. The point (2, 0) is
an intersection point for the
curve y2 = x3 − 12x + 16

y2 = x3 − 12x + 16

x

y

12.4 Solution.

Expanding the expression

(
3x2
A + a
2yA

)2

−2xA and collecting similar summands,

we arrive at the formula for x2A:

x2A =
(

9x4
A + 6ax2

A + a2

4y2
A

)2

− 2xA

= 9x4
A + 6ax2

A + a2 − 8xAy2
A

4y2
A

= 9x4
A + 6ax2

A + a2 − 8xA(x3
A + axA + b)

4(x3
A + axA + b)2

= x4
A − 2ax2

A − 8bxA + a2

4x3
A + 4axA + 4b

.

In algebraic transformations, the equality y2
A = x3

A + axA + b was used, valid for
the coordinates of all points of the elliptic curve.

Thus, the algebraic variation of the duplication formula is proved.

12.5 Solution.
Substitute the coordinates of each point into the equation of the curve y2 =

x3 − 7x + 19:

52 = (−2)3 − 7(−2)+ 19, or 25 = 25;
(−5)2 = (−1)3 − 7(−1)+ 19, or 25 = 25;
10452 = 1033 − 7(103)+ 19, or 1 092 025 = 1 092 025.
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In all three cases we obtain true equalities, this is why the considered points
belong to the elliptic curve y2 = x3 − 7x + 19.

12.6 Solution.
Use the duplication formula (12.12). Substitute in it the numeric values from the

problem statement a = 0, b = 15, xA = 1 and yA = 4. Then we obtain

⎧
⎪⎪⎨

⎪⎪⎩

x2A =
(

3 · 12 + 0

2 · 4

)2

− 2 · 1 =
(

3

8

)2

− 2 = −119

64
,

y2A = −4 + 3

8

(

1 −
(

−119

64

))

= −1499

512
.

Therefore, the equality 2(1, 4) = (−119/64,−1499/512) is valid on the curve
y2 = x3 + 15.

12.7 Answer:

(1) (2,−3);
(2) (−7/4,−21/8).

12.9 Answer: (−2,−4).

12.10 Answer: (1/36, 809/216).

12.11 Answer:

(1) (422/361, 25449/6859);
(2) (793/121,−23132/1331).

12.12 Answer: (33, 190).

12.13 Answer: O.

12.14 Solution.
Let us assume that the rational point P(x, y) is represented in the computing

system memory as the object of a class RationalPoint described in Listing
12.1 (lines 14–21 of the program code).

Let us show the implementation of the function is_point() that returns the
value True or False depending on the belonging of the point P(x, y) to the
elliptic curve y2 = x3 + ax + b.

def is_point(p):
# Point at infinity
if p.x.d == 0 and p.y.d == 0:

return True
elif p.x.d == 0 or p.y.d == 0:

raise ValueError("Zero denomitator of a coordinate")

# Checking the condition y * y = x * x * x + a * x + b
temp1 = a.d * b.d * p.x.n * p.x.n * p.x.n + \

a.n * b.d * p.x.n * p.x.d * p.x.d + \
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a.d * b.n * p.x.d * p.x.d * p.x.d
temp2 = a.d * b.d * p.x.d * p.x.d * p.x.d
temp3 = temp2 * p.y.n * p.y.n - temp1 * p.y.d * p.y.d

return temp3 == 0



Appendix A
Basic Operators in Python and C

This book uses the Python language to write algorithms [68, 71]. Of course,
when necessary, all the algorithms presented in the text can be rewritten using
any other programming language. In the present Appendix we provide a table of
correspondences between the basic constructs of Python 3 and their analogues in
the C language (see Table A.1).

Both these languages are high-level programming languages, although the level
of abstraction in Python is considered to be higher compared to the C language [50].
As a rule, this results in slower operation of programs in Python.

One of the important differences between the syntaxes of these two languages
consists in that the commands in the C end with a comma, while in Python it is
not necessary to put a semicolon at the end of the command. Another significant
difference is associated with marking out a block of operators: C uses braces for
this purpose, while Python uses an indent consisting of exactly four spaces.

A new class in Python can be created as follows:

class Point:
def __init__(self, x, y):

self.x = x
self.y = y

Such a class was used in Chap. 7 for describing a point of the Cartesian plane.
This class contains fields x and y, representing the coordinates of the point. Also,
this class includes a class constructor that is called when creating an object and is
used for initialization of its fields. In order to refer to the fields, the keyword self
can be used, which represents the current class instance automatically transferred as
an argument into each method of this class.

The C language, unlike Python, is not object-oriented, and C uses structures
instead of classes [21, 39].

Let us enumerate some more features of Python reflected in the listings of the
programs.
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Table A.1 Correspondences between the basic operators in Python and C

Command or
operation Python C
Assignment x = y x = y;

Integer variables m, n = 10, -17 int m = 10, n = -17;

Real variables v = 0.005
w = -1.4

float v = 0.005;
double w = -1.4;

Logic variables u = True
v = False

u = 1;
v = 0;

String variables s = "String text" const char* s = "String
text";

Arrays arr = [1, 2, 3] int arr[3] = {1, 2, 3};

arr[2] = 7 arr[2] = 7;

Comparison of
variables

x == y
x != y

x == y;
x != y;

Logic operations (not A) and (B or C) (!A) && (B || C);

Arithmetic
division

m/n (double)m/n

Integer division m//n m/n

Comments # comment
""" Text of multiline
comment """

// comment
/* Text of multiline
comment */

Conditional
operator

if a == b:
# Code1

elif a == c:
# Code2

else:
# Code3

if (a == b) {
// Code1

}
else if (a == c) {

// Code2
}
else {

// Code3
}

Ternary operator maxv = a if a>=b else b maxv = (a>=b) ? a : b;

for loop for i in range(n):
# Code

for(int i=0; i<n; i++) {
// Code

}

while loop while a == b:
# Code

while (a == b) {
// Code

}

Functions def sm(a, b):
s = a + b
return s

int sm(int a, int b) {
int s = a + b;
return s;

}

Exchange of
values of two
variables

a, b = b, a int c = a;
a = b;
b = c;
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In Python, there is a method for generation of lists (including multidimensional
ones):

• creating a list of n numbers filled with the values from 0 to n - 1:
V = [ i for i in range(n) ]

• creating a two-dimensional list (matrix) filled with zeroes:
A = [[ 0 for j in range(n) ] \

for i in range(n) ]

Similarly to many other languages, Python provides the means for dealing with
exceptions, which are useful for processing error situations. So, in order to generate
an exception, the keyword raise is used:

raise Exception("Exception message")
In order to process the exception, the construct try-except is used:

try:
a = 5
b = 0
c = a / b

except ZeroDivisionError as e:
print(e)

After executing this code area, the following message will be outputted to the
console:

division by zero



Appendix B
Trigonometric Formulae

In the formulae of this Appendix, unless otherwise specified, a, b ∈ R and k, k′ ∈ Z.

sin2 a + cos2 a = 1; (B.1)

tan a = sin a

cos a
, a �= π

2
+ πk; (B.2)

cot a = cos a

sin a
, a �= πk; (B.3)

1 + tan2 a = 1

cos2 a
, a �= π

2
+ πk; (B.4)

1 + cot2 a = 1

sin2 a
, a �= πk; (B.5)

sin 2a = 2 sin a cos a, cos 2a = cos2 a − sin2 a; (B.6)

tan 2a = 2 tan a

1 − tan2 a
, a �= π

4
+ πk

2
, a �= π

2
+ πk′; (B.7)

sin2 a

2
= 1 − cos a

2
, cos2 a

2
= 1 + cos a

2
; (B.8)

sin(a + b) = sin a cos b + cos a sin b; (B.9)

sin(a − b) = sin a cos b − cos a sin b; (B.10)
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cos(a + b) = cos a cos b − sin a sin b; (B.11)

cos(a − b) = cos a cos b + sin a sin b; (B.12)

tan(a + b) = tan a + tan b

1 − tan a tan b
, a, b, a + b �= π

2
+ πk; (B.13)

tan(a − b) = tan a − tan b

1 + tan a tan b
, a, b, a − b �= π

2
+ πk; (B.14)

sin a + sin b = 2 sin
(a + b

2

)
cos

(a − b
2

)
; (B.15)

sin a − sin b = 2 cos
(a + b

2

)
sin

(a − b
2

)
; (B.16)

cos a + cos b = 2 cos
(a + b

2

)
cos

(a − b
2

)
; (B.17)

cos a − cos b = −2 sin
(a + b

2

)
sin

(a − b
2

)
; (B.18)

tan a ± tan b = sin(a ± b)
cos a cos b

, a, b �= π

2
+ πk; (B.19)

cot a ± cot b = sin(b ± a)
sin a sin b

, a, b �= πk; (B.20)

sin a sin b = 1

2
(cos(a − b)− cos(a + b)); (B.21)

cos a cos b = 1

2
(cos(a − b)+ cos(a + b)); (B.22)

sin a cos b = 1

2
(sin(a − b)+ sin(a + b)). (B.23)



Appendix C
The Greek Alphabet

A, α alpha N, ν nu

B, β beta �, ξ xi

�, γ gamma O, o omicron

�, δ delta �,π pi

E, ε epsilon P, ρ rho

Z, ζ zeta �, σ sigma

H, η eta T, τ tau

�, θ theta ϒ,υ upsilon

I, ι iota  ,ϕ phi

K, � kappa X, χ chi

�,λ lambda ",ψ psi

M, μ mu �,ω omega
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Numbers
(0, 1)-matrix, see Matrix, binary

A
Abel–Ruffini theorem, see Theorem,

Abel–Ruffini
Abscissa, 256
Algebraic complement, see Cofactor
Algebraic form of a complex number, see

Complex number, algebraic form
Algorithm, 12

of addition of points on the elliptic curve,
393

computing the determinant, 68
Euclid’s, 398
Gram–Schmidt (see Gram–Schmidt

process)
properties, 12

determinateness, 12
directedness, 12
discreteness, 12
elementary character of steps, 12
mass character, 12

Roy–Warshall (see Algorithm, Warshall)
Strassen, 11
Warshall, 18, 20, 29

modified, 29
Alphabet

Greek, 413
Latin, 1

Altitude of a triangle, 291
Angle between a line and a plane, 325
Angle between lines, 281, 323

adjacent, 281

Angle between planes, 312
Annihilating polynomial, see Polynomial,

annihilating
Anomaly of eccentricity, 360
Anti-Hermitian matrix, see Matrix, anti-

Hermitian
Applicate, 256
Argand diagram, 174
Argument of a complex number, 175

principal value, 175
Array, 15

two-dimensional, 15
Associativity of addition, 6
Associativity of multiplication, 8
Asymptotes to a hyperbola, 361
Asymptotic complexity, 14, 184

of Gaussian elimination, 137

B
Backward pass, 137
Basic minor, see Minor, basic
Basic minor theorem, see Theorem, basic

minor
Basic operations, 13, 14
Basis expansion of a vector, 257
Basis states, 184
Basis step, 53
Big O notation, 14
Bilinear form, 335

polar, 338
positively definite, 336
properties of linearity, 335
symmetric, 336

Bisector of a triangle, 291
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Bit, 183
Block matrix, 186
Bordering minor method, see Method,

bordering minor
Branch of a hyperbola, 361, 369

C
Canonical equation of a line, 321
Canonical form of a quadratic form, 339
Canonical form of equation, 178
Canonical form of the equation of curve of the

second order, 357
Canonical system of coordinates, see

Coordinate system, canonical
Cardinality, 19
Cauchy–Bunyakovsky inequality, see

Inequality, Cauchy–Bunyakovsky
Cauchy–Schwarz inequality, see Inequality,

Cauchy–Bunyakovsky
Cayley–Hamilton theorem, see Theorem,

Cayley–Hamilton
Central curves, 362
Characteristic equation, 226
Characteristic polynomial, see Polynomial,

characteristic
Circle, 357
class O(g(n)), 14
Coefficients of a linear combination, 61
Coefficients of a system, 123
Coefficients of the straight line equation, 278
Cofactor, 46
Collinearity, 223
Collinear vectors, 255
Column of a matrix, 1
Columns

linearly dependent, 61
linearly independent, 61

Commutativity of addition, 6
Commutator, 9
Complementary minor of the element, 46
Complex number, 173–178

algebraic form, 174
exponential form, 176
imaginary part, 173
purely imaginary, 174
real part, 173
trigonometric form, 174, 175

Components of a vector, 217
Composition of operators, 187
Computational basis states, 184
Condition of belonging of lines to the same

plane, 326

Condition of intersection of lines, 326
Condition of line’s belonging to the plane, 325
Condition of orthogonality of planes, 312
Condition of parallelism of a line and a plane,

325
Condition of parallelism of planes, 312
Condition of parallelism of two lines, 326
Condition of perpendicularity of a line and a

plane, 325
Conjugate of the complex number, 174
Conjunction, 20, 21
Constant term, 357
Controlled NOT, 189
Controlled phase element, 189
Coordinates of a vector, 217
Coordinate system

canonical, 357
Cartesian, 174, 256, 277
polar, 174

Coplanar vectors, 264, 311
Corner minor, see Minor, corner
C, programming language, 2, 15
Cramer’s rule, see Method, Cramer
Cross-diagonal, see Secondary diagonal
Cross product, see Vector product
Cryptography, 384
Curves of the second order, 357

degenerate, 363
non-degenerate, 363

Cusp, 384

D
Degree of polynomial, 178
Determinant, 43

of the first order, 45
Laplace expansion, 47
of the n-th order, 45, 46
of the second order, 43
of the third order, 43, 44
Vandermonde, 67

Determinant of a system of vectors, 221
Deviation of a point from a plane, 313
Deviation of a point from line, 285
Diagonalization of a matrix, 230
Diagonal matrix, see Matrix, square, diagonal
Difference of matrices, 6
Difference of vectors, 218
Digraph, see Graph, directed
Dirac matrices, 185, 186
Dirac notation, 183
Directing vector, see Vector, directing
Direction cosines, 310
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Directrix
of an ellipse, 358
of a hyperbola, 361
of a parabola, 362

Disjunction, 21
Distance between the points, 259
Distance from a point to a plane, 313
Distributivity of multiplication with respect to

addition, 8
Dot product, see Scalar product
Duplication formula, see Formula, of

duplication
Duplication of a point, 388

E
Eccentricity

of a hyperbola, 361
Eccentricity of an ellipse, 358
Echelon matrix, see Matrix, echelon
Edge, 19
Eigenvalue, 226
Eigenvector, 226
Element π/8, 188
Elementary transformations, 49, 61, 129
Elements of a matrix, 1
Ellipse, 357
Elliptic curve, 383
Endpoints, 19
Endpoints of a segment, 287
Equal complex numbers, 173
Equality of matrices, 4
Equal vectors, 217, 255
Equation of a line that passes through the two

points, 323
Equation of a plane that is orthogonal to the

vector, 307
Equation of a plane that passes through the

three points, 312
Equation of a straight line through two given

points, 280
Equation of curve of the second order, 357
Euclidean space, 224
Euclid’s algorithm, see Algorithm, Euclid’s
Euler’s formula, see Formula, Euler’s for

complex numbers
Euler’s identity for Pauli matrices, 200
Evolution of the quantum system, 184
Expansion of the vector in the basis, 222
Exponential form of a complex number, see

Complex number, exponential form
Exponent of a matrix, 57

F
Fermat last theorem, see Theorem, Fermat last
Focal distance of an ellipse, 358
Focal parameter of a parabola, 362
Focus

of an ellipse, 357
of a hyperbola, 361
of a parabola, 362

Formula
Cardano, 179
de Moivre’s, 176, 195
of duplication, 400
Euler’s for complex numbers, 176
matrix product inversion, 71

Fortran, programming language, 15
Forward pass, 136
Free unknown, 138
Function

exponential, 176
fractionally rational, 57
time-complexity, 14
trigonometric, 176

Fundamental system of solutions, 138, 139
Fundamental theorem of algebra, see Theorem,

fundamental of algebra

G
Gate, 184, 187
Gaussian elimination, see Method, Gauss
General equation of a plane, 308

complete, 308
incomplete, 308

General equation of a straight line on a plane,
278

Gram–Schmidt process, 224
Graph, 19

directed, 18, 19, 29
undirected, 19

Graph diagram, 19
Graph theory, 19

H
Hadamard element, 188
Hadamard gate, 188
Hermitian conjugate matrix, see Matrix,

Hermitian conjugate
Hermitian matrix, see Matrix, Hermitian
Hesse normal form, see Normal form of the

equation of the line
High-performance computing, 11
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Hoare triple, 13
Hyperbola, 360

equilateral, 369

I
Identity permutation, see Permutation, identity
Identity transformation, 188
Imaginary part of a complex number, see

Complex number, imaginary part
Imaginary unit, 173
Incident vertex and edge, 19
Incomplete gamma function, 69
Inductive step, 53
Inequality

Cauchy–Bunyakovsky, 232
triangle (see Triangle inequality)

Inner product, see Scalar product
Intercept form of the equation of a plane, 309
Intercept form of the equation of a straight line,

283
Inversion, 45, 65

J
Jacobi identity

for commutators, 10
for vectors, 265

Jacobi method, see Method, Jacobi
Java, programming language, 15

K
Known terms, 123
Kronecker–Capelli theorem, see Theorem,

Kronecker–Capelli
Kronecker symbol, 4

L
Lagrange’s identity, 195, 265
Lagrange’s method, see Method, Lagrange’s
Laplace expansion, 47
Law of inertia, 344
Length of a vector, 224
Linear combination of rows, 61
Linear combination of vectors, 218
Linearly dependent system of vectors, 219
Linearly independent system of vectors, 218
Linear term, 357
List, 15
Logarithm of a matrix, 58
Lower triangular matrix, see Matrix, lower

triangular

M
Magnitude of a vector, 255
Main diagonal, 3
Matrix, 1

adjacency, 19
adjugate, 50
anti-Hermitian, 198
of bilinear form, 335
binary, 5
brief record, 1
classical adjoint (see Matrix, adjugate)
cofactor, 50
complex, 2
echelon, 61
functional, 11
Hermitian, 181
Hermitian conjugate, 180
Hilbert, 71
inverse, 50, 126
lower triangular, 4, 51
notations, 2
of quadratic form, 337
reachability, 20, 29
real, 2
rectangular, 2
self-adjoint (see Matrix, Hermitian)
square, 2

antisymmetric, 4
degenerate (see Matrix, square,

singular)
diagonal, 3, 52
identity, 3, 50
nondegenerate (see Matrix, square,

nonsingular)
nonsingular, 50
null (see Matrix, square, zero)
singular, 50
symmetric, 4
unit (see Matrix, square, identity)
zero, 3

transposed, 3, 4
unitary, 182
upper triangular, 4, 51

Matrix algebra, 5
Matrix form of a system, 124
Matrix of a system, 124

augmented, 124, 129
Matrix of a system of vectors, 221
Matrix power theorem, see Theorem, matrix

power
Matrix, skew-Hermitian, see Matrix,

anti-Hermitian
Measurement of state, 184
Median of a triangle, 291
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Method
bordering minor, 64
Cramer, 125
elementary transformations, 61
of elimination of unknowns (see Method,

Gauss)
Gauss, 129
Gauss–Jordan, 150
of an inverse matrix, 126
Jacobi, 343
Lagrange’s, 340
mathematical induction, 21, 53, 195

Minkowski inequality, see Triangle inequality
Minor, 59

basic, 60
corner, 343

Mixed product, see Scalar triple product
Modulus of a complex number, 175
Modulus of a vector, 255

N
n-dimensional space, 218
Normal, see Normal vector
Normal equation of a plane, 310
Normal form of the equation of the line, 284
Normalized vector, 220, 255, 257
Normalizing factor, 285
Normal vector, 278
Norm of a vector, 224

properties, 224
Null vector, see Zero vector
Numbers

complex, 173
ratio, 192

Fibonacci, 67
Number theory, 384
NumPy, library, 18
n-vector, see Vector

O
Opposite point, 386
Opposite vector, 218
Optical property

of an ellipse, 359
of hyperbola, 361
of a parabola, 363

Ordinate, 256
Orthogonality, 223, 224, 258
Orthonormality, 224

P
Parallelepiped, 263, 264
Parameter of a line, 321

Parameter of a parabola, see Focal parameter
of a parabola

Parameter of a segment, 287
Parametric equation of a line, 321
Parametric form of an ellipse, 359
Pascal, programming language, 15
Path, 19

trivial, 19
Pauli element, 188
Pauli matrices, 185
Pencil of planes, 313
Permutation, 45, 65

identity, 45
Phase element, 188
Pivot element, 136
Pivot row, 61
Plane, 277

complex, 174
Point at infinity, 384
Polynomial, 45, 56, 178

annihilating, 230
characteristic, 227
of a matrix, 56

Position vector, 174, 176, 256
Postcondition, 13
Precondition, 13
Predicate, 53
Principle of mathematical induction, see

Method, mathematical induction
Product of a number and a matrix, 6
Product of a number and a vector, 217
Product of complex numbers, 173
Product of matrices, 7
Projection of a point on the line, 256
Projection of a vector on the line, 256
Projection on |0〉 and |1〉, 188
Proof of the algorithm correctness, 12
Properties of determinants, 48
Property of identity matrix, 8
Property of zero matrix, 8
Pythagorean theorem, see Theorem,

Pythagorean
Python, programming language, 2, 15, 68, 71,

135

Q
Quadratic form, 337

alternating, 344
degenerate, 338
negatively definite, 344
nondegenerate, 338
positively definite, 344

Quadratic term, 357
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Quantum computer, 183
Quantum-mechanical operator, 186
Quantum system, 183
Qubit, 183

R
Rank, 60, 135
Rank of a quadratic form, 338, 343
Real part of a complex number, see Complex

number, real part
Right-hand side of equations, see Known terms
Root

of equation, 178
n-th of complex number, 176
of unit, 177, 194, 195

Rouché–Capelli theorem, see Theorem,
Kronecker–Capelli

Route, 19
Row of a matrix, 1
Rows

linearly dependent, 61
linearly independent, 61

Roy–Warshall algorithm, see Algorithm,
Warshall

S
Scalar, 1
Scalar product, 223

properties, 223
Scalar triple product, 263

properties, 263
Secondary diagonal, 3
Secular equation, 230
Secular motion, 230
Segment, 287
Self-adjoint matrix, see Matrix, Hermitian
Self-intersection, 384
Semiaxis

ellipse
major, 357

hyperbola
imaginary, 360
real, 360

Sequence
Fibonacci (see Numbers, Fibonacci)

Series, 57
Set

of complex numbers, 173
of real numbers, 173

Signature of a quadratic form, 344
Similarity transformation, 225
Similar matrices, 225

Skew-Hermitian matrix, see Matrix,
anti-Hermitian

Skew lines, 326
Slope-intercept form of the equation of a

straight line, 277
Slope-intercept form of the equation of a

straight line passing through the
given point, 279

Slope of a straight line, 277
Solution of the system of equations, 123

trivial, 138
Space
n-dimensional, 218
one-dimensional, 218
three-dimensional, 218
two-dimensional, 218

Spur, see Trace
Strassen algorithm, see Algorithm, Strassen
Sum of complex numbers, 173
Sum of matrices, 5
Sum of vectors, 217, 255
Sylvester’s criterion, 344
System of linear equations, 123

consistent, 123
determined, 123, 125
homogeneous, 123, 140, 226
inconsistent, 123
non-homogeneous, 123
rectangular, 123
square, 123, 124
undetermined, 123

T
Tangent, 359, 365

to an ellipse, 359
to a hyperbola, 361
to a parabola, 363

Tetrahedron, 264, 315
Theorem

Abel–Ruffini, 178
basic minor, 61
Cayley–Hamilton, 230
Fermat last, 384
fundamental of algebra, 178
Kronecker–Capelli, 129, 220
Laplace, 47
matrix power, 56
Pythagorean, 233
Rouché–Capelli (see Theorem, Kronecker–

Capelli)
Time-complexity function, see Function,

time-complexity
Trace, 11, 31
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of the unit matrix, 11
Transposition, 48
Triangle inequality, 193, 224
Triangle rule, 44
Trigonometric form of a complex number, see

Complex number, trigonometric
form

Trigonometric formulae, 411

U
Unitary matrix, see Matrix, unitary
Unit vector, 255
Upper triangular matrix, see Matrix, upper

triangular

V
Vector, 1, 217, 255

directing, 321
Vector equation of a plane, 307
Vector product, 260

properties, 260
Vector triple product, 265
Vertex, 19

of an ellipse, 357
of a hyperbola, 361
of a parabola, 362

Viète formulae, 195

W
Warshall algorithm, see Algorithm, Warshall

Z
Zero equation, 129
Zero vector, 218, 220, 255
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