

INVENT	YOUR	OWN	COMPUTER	GAMES	WITH
PYTHON

4TH	EDITION

Al	Sweigart

San	Francisco

INVENT	YOUR	OWN	COMPUTER	GAMES	WITH	PYTHON,	4TH	EDITION.
Copyright	©	2017	by	Al	Sweigart.

Some	rights	reserved.	This	work	is	licensed	under	the	Creative	Commons	Attribution-NonCommercial-ShareAlike	3.0
United	 States	License.	To	 view	 a	 copy	 of	 this	 license,	 visit	http://creativecommons.org/licenses/by-nc-sa/3.0/us/	 or	 send	 a
letter	to	Creative	Commons,	PO	Box	1866,	Mountain	View,	CA	94042,	USA.

Printed	in	USA

First	printing

20	19	18	17	16							1	2	3	4	5	6	7	8	9

ISBN-10:	1-59327-795-4
ISBN-13:	978-1-59327-795-6

Publisher:	William	Pollock
Production	Editor:	Laurel	Chun
Cover	Illustration:	Josh	Ellingson
Interior	Design:	Octopod	Studios
Developmental	Editor:	Jan	Cash
Technical	Reviewer:	Ari	Lacenski
Copyeditor:	Rachel	Monaghan
Compositor:	Susan	Glinert	Stevens
Proofreader:	Paula	L.	Fleming
Indexer:	Nancy	Guenther

The	sprite	images	in	Figure	20-1	on	page	302,	from	left	to	right,	were	created	by	fsvieira,	przemek.sz,	LordNeo,	and
Suppercut.	The	grass	sprite	image	in	Figure	20-2	on	page	302	was	created	by	txturs.	These	images	have	been	dedicated
to	the	public	domain	with	a	CC0	1.0	Public	Domain	Dedication.

For	information	on	distribution,	translations,	or	bulk	sales,	please	contact	No	Starch	Press,	Inc.	directly:
No	Starch	Press,	Inc.
245	8th	Street,	San	Francisco,	CA	94103
phone:	1.415.863.9900;	info@nostarch.com
www.nostarch.com

Library	of	Congress	Cataloging-in-Publication	Data

Names:	Sweigart,	Al,	author.
Title:	Invent	your	own	computer	games	with	Python	/	by	Al	Sweigart.
Description:	San	Francisco	:	No	Starch	Press,	Inc.,	[2017]
Identifiers:	LCCN	2016037817	(print)	|	LCCN	2016044807	(ebook)	|	ISBN
						9781593277956	|	ISBN	1593277954	|	ISBN	9781593278113	(epub)	|	ISBN
						159327811X	(epub)	|	ISBN	9781593278120	(mobi)	|	ISBN	1593278128	(mobi)
Subjects:	LCSH:	Computer	games--Programming.	|	Python	(Computer	program
						language)
Classification:	LCC	QA76.76.C672	S785	2017	(print)	|	LCC	QA76.76.C672	(ebook)
						|	DDC	794.8/1526--dc23
LC	record	available	at	https://lccn.loc.gov/2016037817

No	Starch	Press	and	the	No	Starch	Press	 logo	are	registered	trademarks	of	No	Starch	Press,	 Inc.	Other	product	and
company	 names	 mentioned	 herein	 may	 be	 the	 trademarks	 of	 their	 respective	 owners.	 Rather	 than	 use	 a	 trademark
symbol	with	every	occurrence	of	a	 trademarked	name,	we	are	using	 the	names	only	 in	an	editorial	 fashion	and	to	 the
benefit	of	the	trademark	owner,	with	no	intention	of	infringement	of	the	trademark.

http://creativecommons.org/licenses/by-nc-sa/3.0/us/
mailto:info@nostarch.com
http://www.nostarch.com
https://lccn.loc.gov/2016037817

The	information	in	this	book	is	distributed	on	an	“As	Is”	basis,	without	warranty.	While	every	precaution	has	been	taken
in	 the	preparation	of	 this	work,	neither	 the	 author	nor	No	Starch	Press,	 Inc.	 shall	have	 any	 liability	 to	 any	person	or
entity	 with	 respect	 to	 any	 loss	 or	 damage	 caused	 or	 alleged	 to	 be	 caused	 directly	 or	 indirectly	 by	 the	 information
contained	in	it.

To	Caro

About	the	Author
Al	Sweigart	is	a	software	developer,	tech	book	author,	and	hoopy	frood	who	really	knows
where	 his	 towel	 is.	He	 has	written	 several	 programming	 books	 for	 beginners,	 including
Automate	 the	 Boring	 Stuff	with	 Python	 and	Scratch	 Programming	Playground,	 also	 from	No
Starch	 Press.	 His	 books	 are	 freely	 available	 under	 a	 Creative	 Commons	 license	 at	 his
website	https://inventwithpython.com/.

https://inventwithpython.com/

About	the	Technical	Reviewer
Ari	Lacenski	is	a	developer	of	Android	applications	and	Python	software.	She	lives	in	the
Bay	 Area,	 where	 she	writes	 about	 Android	 programming	 at	 http://gradlewhy.ghost.io/	 and
mentors	with	Women	Who	Code.

http://gradlewhy.ghost.io/

BRIEF	CONTENTS

Acknowledgments

Introduction

Chapter	1:	The	Interactive	Shell

Chapter	2:	Writing	Programs

Chapter	3:	Guess	the	Number

Chapter	4:	A	Joke-Telling	Program

Chapter	5:	Dragon	Realm

Chapter	6:	Using	the	Debugger

Chapter	7:	Designing	Hangman	with	Flowcharts

Chapter	8:	Writing	the	Hangman	Code

Chapter	9:	Extending	Hangman

Chapter	10:	Tic-Tac-Toe

Chapter	11:	The	Bagels	Deduction	Game

Chapter	12:	The	Cartesian	Coordinate	System

Chapter	13:	Sonar	Treasure	Hunt

Chapter	14:	Caesar	Cipher

Chapter	15:	The	Reversegam	Game

Chapter	16:	Reversegam	AI	Simulation

Chapter	17:	Creating	Graphics

Chapter	18:	Animating	Graphics

Chapter	19:	Collision	Detection

Chapter	20:	Using	Sounds	and	Images

Chapter	21:	A	Dodger	Game	with	Sounds	and	Images

Index

CONTENTS	IN	DETAIL

ACKNOWLEDGMENTS

INTRODUCTION
Who	Is	This	Book	For?
About	This	Book
How	to	Use	This	Book

Line	Numbers	and	Indentation
Long	Code	Lines

Downloading	and	Installing	Python
Starting	IDLE
Finding	Help	Online

1
THE	INTERACTIVE	SHELL
Some	Simple	Math

Integers	and	Floating-Point	Numbers
Expressions

Evaluating	Expressions
Syntax	Errors
Storing	Values	in	Variables
Summary

2
WRITING	PROGRAMS
String	Values
String	Concatenation
Writing	Programs	in	IDLE’s	File	Editor

Creating	the	Hello	World	Program
Saving	Your	Program
Running	Your	Program

How	the	Hello	World	Program	Works
Comments	for	the	Programmer
Functions:	Mini-Programs	Inside	Programs
The	End	of	the	Program

Naming	Variables
Summary

3
GUESS	THE	NUMBER
Sample	Run	of	Guess	the	Number
Source	Code	for	Guess	the	Number
Importing	the	random	Module
Generating	Random	Numbers	with	the	random.randint()	Function
Welcoming	the	Player
Flow	Control	Statements

Using	Loops	to	Repeat	Code
Grouping	with	Blocks
Looping	with	for	Statements

Getting	the	Player’s	Guess
Converting	Values	with	the	int(),	float(),	and	str()	Functions
The	Boolean	Data	Type

Comparison	Operators
Checking	for	True	or	False	with	Conditions
Experimenting	with	Booleans,	Comparison	Operators,	and	Conditions
The	Difference	Between	=	and	==

if	Statements
Leaving	Loops	Early	with	the	break	Statement
Checking	Whether	the	Player	Won
Checking	Whether	the	Player	Lost
Summary

4
A	JOKE-TELLING	PROGRAM
Sample	Run	of	Jokes
Source	Code	for	Jokes
How	the	Code	Works
Escape	Characters
Single	and	Double	Quotes
The	print()	Function’s	end	Keyword	Parameter
Summary

5
DRAGON	REALM
How	to	Play	Dragon	Realm
Sample	Run	of	Dragon	Realm
Flowchart	for	Dragon	Realm
Source	Code	for	Dragon	Realm
Importing	the	random	and	time	Modules
Functions	in	Dragon	Realm

def	Statements
Calling	a	Function
Where	to	Put	Function	Definitions

Multiline	Strings
How	to	Loop	with	while	Statements
Boolean	Operators

The	and	Operator
The	or	Operator
The	not	Operator
Evaluating	Boolean	Operators

Return	Values
Global	Scope	and	Local	Scope
Function	Parameters
Displaying	the	Game	Results
Deciding	Which	Cave	Has	the	Friendly	Dragon
The	Game	Loop

Calling	the	Functions	in	the	Program
Asking	the	Player	to	Play	Again

Summary

6
USING	THE	DEBUGGER
Types	of	Bugs
The	Debugger

Starting	the	Debugger
Stepping	Through	the	Program	with	the	Debugger

Finding	the	Bug
Setting	Breakpoints
Using	Breakpoints
Summary

7
DESIGNING	HANGMAN	WITH	FLOWCHARTS
How	to	Play	Hangman
Sample	Run	of	Hangman
ASCII	Art
Designing	a	Program	with	a	Flowchart

Creating	the	Flowchart
Branching	from	a	Flowchart	Box
Ending	or	Restarting	the	Game
Guessing	Again
Offering	Feedback	to	the	Player

Summary

8
WRITING	THE	HANGMAN	CODE
Source	Code	for	Hangman
Importing	the	random	Module
Constant	Variables
The	Lists	Data	Type

Accessing	Items	with	Indexes
List	Concatenation
The	in	Operator

Calling	Methods
The	reverse()	and	append()	List	Methods
The	split()	String	Method

Getting	a	Secret	Word	from	the	Word	List
Displaying	the	Board	to	the	Player

The	list()	and	range()	Functions
List	and	String	Slicing
Displaying	the	Secret	Word	with	Blanks

Getting	the	Player’s	Guess
The	lower()	and	upper()	String	Methods
Leaving	the	while	Loop

elif	Statements
Making	Sure	the	Player	Entered	a	Valid	Guess
Asking	the	Player	to	Play	Again
Review	of	the	Hangman	Functions
The	Game	Loop

Calling	the	displayBoard()	Function
Letting	the	Player	Enter	Their	Guess
Checking	Whether	the	Letter	Is	in	the	Secret	Word
Checking	Whether	the	Player	Won
Handling	an	Incorrect	Guess
Checking	Whether	the	Player	Lost
Ending	or	Resetting	the	Game

Summary

9
EXTENDING	HANGMAN
Adding	More	Guesses
The	Dictionary	Data	Type

Getting	the	Size	of	Dictionaries	with	len()
The	Difference	Between	Dictionaries	and	Lists
The	keys()	and	values()	Dictionary	Methods
Using	Dictionaries	of	Words	in	Hangman

Randomly	Choosing	from	a	List
Deleting	Items	from	Lists
Multiple	Assignment
Printing	the	Word	Category	for	the	Player
Summary

10
TIC-TAC-TOE
Sample	Run	of	Tic-Tac-Toe
Source	Code	for	Tic-Tac-Toe
Designing	the	Program

Representing	the	Board	as	Data
Strategizing	with	the	Game	AI

Importing	the	random	Module
Printing	the	Board	on	the	Screen
Letting	the	Player	Choose	X	or	O
Deciding	Who	Goes	First
Placing	a	Mark	on	the	Board

List	References
Using	List	References	in	makeMove()

Checking	Whether	the	Player	Won

Duplicating	the	Board	Data
Checking	Whether	a	Space	on	the	Board	Is	Free
Letting	the	Player	Enter	a	Move
Short-Circuit	Evaluation
Choosing	a	Move	from	a	List	of	Moves
The	None	Value
Creating	the	Computer’s	AI

Checking	Whether	the	Computer	Can	Win	in	One	Move
Checking	Whether	the	Player	Can	Win	in	One	Move
Checking	the	Corner,	Center,	and	Side	Spaces	(in	That	Order)
Checking	Whether	the	Board	Is	Full

The	Game	Loop
Choosing	the	Player’s	Mark	and	Who	Goes	First
Running	the	Player’s	Turn
Running	the	Computer’s	Turn
Asking	the	Player	to	Play	Again

Summary

11
THE	BAGELS	DEDUCTION	GAME
Sample	Run	of	Bagels
Source	Code	for	Bagels
Flowchart	for	Bagels
Importing	random	and	Defining	getSecretNum()
Shuffling	a	Unique	Set	of	Digits

Changing	List	Item	Order	with	the	random.shuffle()	Function
Getting	the	Secret	Number	from	the	Shuffled	Digits

Augmented	Assignment	Operators
Calculating	the	Clues	to	Give
The	sort()	List	Method
The	join()	String	Method
Checking	Whether	a	String	Has	Only	Numbers
Starting	the	Game
String	Interpolation
The	Game	Loop

Getting	the	Player’s	Guess
Getting	the	Clues	for	the	Player’s	Guess
Checking	Whether	the	Player	Won	or	Lost

Asking	the	Player	to	Play	Again
Summary

12
THE	CARTESIAN	COORDINATE	SYSTEM
Grids	and	Cartesian	Coordinates
Negative	Numbers
The	Coordinate	System	of	a	Computer	Screen
Math	Tricks

Trick	1:	A	Minus	Eats	the	Plus	Sign	on	Its	Left
Trick	2:	Two	Minuses	Combine	into	a	Plus
Trick	3:	Two	Numbers	Being	Added	Can	Swap	Places

Absolute	Values	and	the	abs()	Function
Summary

13
SONAR	TREASURE	HUNT
Sample	Run	of	Sonar	Treasure	Hunt
Source	Code	for	Sonar	Treasure	Hunt
Designing	the	Program
Importing	the	random,	sys,	and	math	Modules
Creating	a	New	Game	Board
Drawing	the	Game	Board

Drawing	the	X-Coordinates	Along	the	Top	of	the	Board
Drawing	the	Ocean
Printing	a	Row	in	the	Ocean
Drawing	the	X-Coordinates	Along	the	Bottom	of	the	Board

Creating	the	Random	Treasure	Chests
Determining	Whether	a	Move	Is	Valid
Placing	a	Move	on	the	Board

Finding	the	Closest	Treasure	Chest
Removing	Values	with	the	remove()	List	Method
Getting	the	Player’s	Move

Printing	the	Game	Instructions	for	the	Player
The	Game	Loop

Displaying	the	Game	Status	for	the	Player
Handling	the	Player’s	Move
Finding	a	Sunken	Treasure	Chest

Checking	Whether	the	Player	Won
Checking	Whether	the	Player	Lost
Terminating	the	Program	with	the	sys.exit()	Function

Summary

14
CAESAR	CIPHER
Cryptography	and	Encryption
How	the	Caesar	Cipher	Works
Sample	Run	of	Caesar	Cipher
Source	Code	for	Caesar	Cipher
Setting	the	Maximum	Key	Length
Deciding	to	Encrypt	or	Decrypt	the	Message
Getting	the	Message	from	the	Player
Getting	the	Key	from	the	Player
Encrypting	or	Decrypting	the	Message

Finding	Passed	Strings	with	the	find()	String	Method
Encrypting	or	Decrypting	Each	Letter

Starting	the	Program
The	Brute-Force	Technique
Adding	the	Brute-Force	Mode
Summary

15
THE	REVERSEGAM	GAME
How	to	Play	Reversegam
Sample	Run	of	Reversegam
Source	Code	for	Reversegam
Importing	Modules	and	Setting	Up	Constants
The	Game	Board	Data	Structure

Drawing	the	Board	Data	Structure	on	the	Screen
Creating	a	Fresh	Board	Data	Structure

Checking	Whether	a	Move	Is	Valid
Checking	Each	of	the	Eight	Directions
Finding	Out	Whether	There	Are	Tiles	to	Flip	Over

Checking	for	Valid	Coordinates
Getting	a	List	with	All	Valid	Moves
Calling	the	bool()	Function

Getting	the	Score	of	the	Game	Board
Getting	the	Player’s	Tile	Choice
Determining	Who	Goes	First
Placing	a	Tile	on	the	Board
Copying	the	Board	Data	Structure
Determining	Whether	a	Space	Is	on	a	Corner
Getting	the	Player’s	Move
Getting	the	Computer’s	Move

Strategizing	with	Corner	Moves
Getting	a	List	of	the	Highest-Scoring	Moves

Printing	the	Scores	to	the	Screen
Starting	the	Game

Checking	for	a	Stalemate
Running	the	Player’s	Turn
Running	the	Computer’s	Turn

The	Game	Loop
Asking	the	Player	to	Play	Again
Summary

16
REVERSEGAM	AI	SIMULATION
Making	the	Computer	Play	Against	Itself

Sample	Run	of	Simulation	1
Source	Code	for	Simulation	1
Removing	the	Player	Prompts	and	Adding	a	Computer	Player

Making	the	Computer	Play	Itself	Several	Times
Sample	Run	of	Simulation	2
Source	Code	for	Simulation	2
Keeping	Track	of	Multiple	Games
Commenting	Out	print()	Function	Calls
Using	Percentages	to	Grade	the	AIs

Comparing	Different	AI	Algorithms
Source	Code	for	Simulation	3
How	the	AIs	Work	in	Simulation	3
Comparing	the	AIs

Summary

17

CREATING	GRAPHICS
Installing	pygame
Hello	World	in	pygame
Sample	Run	of	pygame	Hello	World
Source	Code	for	pygame	Hello	World
Importing	the	pygame	Module
Initializing	pygame
Setting	Up	the	pygame	Window

Tuples
Surface	Objects

Setting	Up	Color	Variables
Writing	Text	on	the	pygame	Window

Using	Fonts	to	Style	Text
Rendering	a	Font	Object
Setting	the	Text	Location	with	Rect	Attributes

Filling	a	Surface	Object	with	a	Color
pygame’s	Drawing	Functions

Drawing	a	Polygon
Drawing	a	Line
Drawing	a	Circle
Drawing	an	Ellipse
Drawing	a	Rectangle
Coloring	Pixels

The	blit()	Method	for	Surface	Objects
Drawing	the	Surface	Object	to	the	Screen
Events	and	the	Game	Loop

Getting	Event	Objects
Exiting	the	Program

Summary

18
ANIMATING	GRAPHICS
Sample	Run	of	the	Animation	Program
Source	Code	for	the	Animation	Program
Moving	and	Bouncing	the	Boxes
Setting	Up	the	Constant	Variables

Constant	Variables	for	Direction
Constant	Variables	for	Color

Setting	Up	the	Box	Data	Structures
The	Game	Loop

Handling	When	the	Player	Quits
Moving	Each	Box
Bouncing	a	Box
Drawing	the	Boxes	on	the	Window	in	Their	New	Positions
Drawing	the	Window	on	the	Screen

Summary

19
COLLISION	DETECTION
Sample	Run	of	the	Collision	Detection	Program
Source	Code	for	the	Collision	Detection	Program
Importing	the	Modules
Using	a	Clock	to	Pace	the	Program
Setting	Up	the	Window	and	Data	Structures
Setting	Up	Variables	to	Track	Movement
Handling	Events

Handling	the	KEYDOWN	Event
Handling	the	KEYUP	Event

Teleporting	the	Player
Adding	New	Food	Squares
Moving	the	Player	Around	the	Window

Drawing	the	Player	on	the	Window
Checking	for	Collisions

Drawing	the	Food	Squares	on	the	Window
Summary

20
USING	SOUNDS	AND	IMAGES
Adding	Images	with	Sprites
Sound	and	Image	Files
Sample	Run	of	the	Sprites	and	Sounds	Program
Source	Code	for	the	Sprites	and	Sounds	Program
Setting	Up	the	Window	and	the	Data	Structure

Adding	a	Sprite
Changing	the	Size	of	a	Sprite

Setting	Up	the	Music	and	Sounds

Adding	Sound	Files
Toggling	the	Sound	On	and	Off

Drawing	the	Player	on	the	Window
Checking	for	Collisions
Drawing	the	Cherries	on	the	Window
Summary

21
A	DODGER	GAME	WITH	SOUNDS	AND	IMAGES
Review	of	the	Basic	pygame	Data	Types
Sample	Run	of	Dodger
Source	Code	for	Dodger
Importing	the	Modules
Setting	Up	the	Constant	Variables
Defining	Functions

Ending	and	Pausing	the	Game
Keeping	Track	of	Baddie	Collisions
Drawing	Text	to	the	Window

Initializing	pygame	and	Setting	Up	the	Window
Setting	Up	Font,	Sound,	and	Image	Objects
Displaying	the	Start	Screen
Starting	the	Game
The	Game	Loop

Handling	Keyboard	Events
Handling	Mouse	Movement

Adding	New	Baddies
Moving	the	Player’s	Character	and	the	Baddies
Implementing	the	Cheat	Codes
Removing	the	Baddies
Drawing	the	Window

Drawing	the	Player’s	Score
Drawing	the	Player’s	Character	and	Baddies

Checking	for	Collisions
The	Game	Over	Screen
Modifying	the	Dodger	Game
Summary

INDEX

ACKNOWLEDGMENTS

This	book	would	not	have	been	possible	without	the	exceptional	work	of	the	No	Starch
Press	team.	Thanks	to	my	publisher,	Bill	Pollock;	thanks	to	my	editors,	Laurel	Chun,	Jan
Cash,	and	Tyler	Ortman,	for	their	incredible	help	throughout	the	process;	thanks	to	my
technical	editor	Ari	Lacenski	for	her	thorough	review;	and	thanks	to	Josh	Ellingson	for	yet
another	great	cover.

INTRODUCTION

When	I	first	played	video	games	as	a	kid,	I	was	hooked.	But	I	didn’t	just	want	to	play	video
games,	I	wanted	to	make	them.	I	found	a	book	like	this	one	that	taught	me	how	to	write
my	 first	programs	and	games.	 It	was	 fun	and	easy.	The	 first	games	 I	made	were	 like	 the
ones	in	this	book.	They	weren’t	as	fancy	as	the	Nintendo	games	my	parents	bought	for	me,
but	they	were	games	I	had	made	myself.

Now,	as	an	adult,	 I	 still	have	 fun	programming	and	I	get	paid	 for	 it.	But	even	 if	you
don’t	want	to	become	a	computer	programmer,	programming	is	a	useful	and	fun	skill	to
have.	 It	 trains	 your	 brain	 to	 think	 logically,	 make	 plans,	 and	 reconsider	 your	 ideas
whenever	you	find	mistakes	in	your	code.

Many	 programming	 books	 for	 beginners	 fall	 into	 two	 categories.	The	 first	 category
includes	 books	 that	 don’t	 teach	 programming	 so	much	 as	 “game	 creation	 software”	 or
languages	that	simplify	so	much	that	what	is	taught	is	no	longer	programming.	The	other
category	 consists	 of	 books	 that	 teach	 programming	 like	 a	 mathematics	 textbook—all
principles	and	concepts,	with	 few	real-life	applications	 for	 the	reader.	This	book	 takes	a
different	approach	and	 teaches	you	how	to	program	by	making	video	games.	 I	 show	the
source	 code	 for	 the	 games	 right	 up	 front	 and	 explain	 programming	principles	 from	 the
examples.	This	approach	was	the	key	for	me	when	I	was	learning	to	program.	The	more	I
learned	how	other	people’s	programs	worked,	the	more	ideas	I	had	for	my	own	programs.

All	you’ll	need	is	a	computer,	some	free	software	called	the	Python	interpreter,	and	this
book.	Once	 you	 learn	 how	 to	 create	 the	 games	 in	 this	 book,	 you’ll	 be	 able	 to	 develop
games	on	your	own.

Computers	 are	 incredible	 machines,	 and	 learning	 to	 program	 them	 isn’t	 as	 hard	 as
people	 think.	 A	 computer	 program	 is	 a	 bunch	 of	 instructions	 that	 the	 computer	 can
understand,	 just	 like	a	storybook	 is	a	bunch	of	sentences	 that	 the	reader	can	understand.
To	 instruct	 a	 computer,	 you	write	 a	 program	 in	 a	 language	 the	 computer	 understands.
This	book	will	teach	you	a	programming	language	called	Python.	There	are	many	other
programming	languages	you	can	learn,	like	BASIC,	Java,	JavaScript,	PHP,	and	C++.

When	I	was	a	kid,	I	learned	BASIC,	but	newer	programming	languages	like	Python	are
even	easier	 to	 learn.	Python	 is	 also	used	by	professional	programmers	 in	 their	work	and

when	 programming	 for	 fun.	 Plus	 it’s	 totally	 free	 to	 install	 and	 use—you’ll	 just	 need	 an
internet	connection	to	download	it.

Because	 video	 games	 are	 nothing	 but	 computer	 programs,	 they	 are	 also	made	 up	 of
instructions.	The	games	you’ll	create	from	this	book	seem	simple	compared	to	the	games
for	 Xbox,	 PlayStation,	 or	 Nintendo.	 These	 games	 don’t	 have	 fancy	 graphics	 because
they’re	meant	to	teach	you	coding	basics.	They’re	purposely	simple	so	you	can	focus	on
learning	to	program.	Games	don’t	have	to	be	complicated	to	be	fun!

Who	Is	This	Book	For?
Programming	isn’t	hard,	but	it	 is	hard	to	 find	materials	 that	 teach	you	to	do	 interesting
things	with	programming.	Other	computer	books	go	over	many	topics	most	new	coders
don’t	 need.	 This	 book	 will	 teach	 you	 how	 to	 program	 your	 own	 games;	 you’ll	 learn	 a
useful	skill	and	have	fun	games	to	show	for	it!	This	book	is	for:

•	Complete	beginners	who	want	to	teach	themselves	programming,	even	if	they	have	no
previous	experience.

•	Kids	and	teenagers	who	want	to	learn	programming	by	creating	games.

•	Adults	and	teachers	who	wish	to	teach	others	programming.

•	Anyone,	young	or	old,	who	wants	to	learn	how	to	program	by	learning	a	professional
programming	language.

About	This	Book
In	most	of	the	chapters	in	this	book,	a	single	new	game	project	is	introduced	and	explained.
A	 few	of	 the	 chapters	 cover	 additional	 useful	 topics,	 like	debugging.	New	programming
concepts	are	explained	as	games	make	use	of	them,	and	the	chapters	are	meant	to	be	read	in
order.	Here’s	a	brief	rundown	of	what	you’ll	find	in	each	chapter:

•	Chapter	1:	The	Interactive	Shell	explains	how	Python’s	interactive	shell	can	be	used	to
experiment	with	code	one	line	at	a	time.

•	Chapter	2:	Writing	Programs	covers	how	to	write	complete	programs	in	Python’s	file
editor.

•	In	Chapter	3:	Guess	the	Number,	you’ll	program	the	first	game	in	the	book,	Guess	the
Number,	which	asks	the	player	to	guess	a	secret	number	and	then	provides	hints	as	to
whether	the	guess	is	too	high	or	too	low.

•	In	Chapter	4:	A	Joke-Telling	Program,	you’ll	write	a	simple	program	that	tells	the
user	several	jokes.

•	In	Chapter	5:	Dragon	Realm,	you’ll	program	a	guessing	game	in	which	the	player	must
choose	between	two	caves:	one	has	a	friendly	dragon,	and	the	other	has	a	hungry	dragon.

•	Chapter	6:	Using	the	Debugger	covers	how	to	use	the	debugger	to	fix	problems	in
your	code.

•	Chapter	7:	Designing	Hangman	with	Flowcharts	explains	how	flowcharts	can	be
used	to	plan	longer	programs,	such	as	the	Hangman	game.

•	In	Chapter	8:	Writing	the	Hangman	Code,	you’ll	write	the	Hangman	game,	following
the	flowchart	from	Chapter	7.

•	Chapter	9:	Extending	Hangman	extends	the	Hangman	game	with	new	features	by
making	use	of	Python’s	dictionary	data	type.

•	In	Chapter	10:	Tic-Tac-Toe,	you’ll	learn	how	to	write	a	human-versus-computer	Tic-
Tac-Toe	game	that	uses	artificial	intelligence.

•	In	Chapter	11:	The	Bagels	Deduction	Game,	you’ll	learn	how	to	make	a	deduction
game	called	Bagels	in	which	the	player	must	guess	secret	numbers	based	on	clues.

•	Chapter	12:	The	Cartesian	Coordinate	System	explains	the	Cartesian	coordinate
system,	which	you’ll	use	in	later	games.

•	In	Chapter	13:	Sonar	Treasure	Hunt,	you’ll	learn	how	to	write	a	treasure	hunting
game	in	which	the	player	searches	the	ocean	for	lost	treasure	chests.

•	In	Chapter	14:	Caesar	Cipher,	you’ll	create	a	simple	encryption	program	that	lets	you
write	and	decode	secret	messages.

•	In	Chapter	15:	The	Reversegam	Game,	you’ll	program	an	advanced	human-versus-
computer	Reversi-type	game	that	has	a	nearly	unbeatable	artificial	intelligence
opponent.

•	Chapter	16:	Reversegam	AI	Simulation	expands	on	the	Reversegam	game	in	Chapter
15	to	make	multiple	AIs	that	compete	in	computer-versus-computer	games.

•	Chapter	17:	Creating	Graphics	introduces	Python’s	pygame	module	and	shows	you
how	to	use	it	to	draw	2D	graphics.

•	Chapter	18:	Animating	Graphics	shows	you	how	to	animate	graphics	with	pygame.

•	In	Chapter	19:	Collision	Detection,	you’ll	learn	how	to	detect	when	objects	collide
with	each	other	in	2D	games.

•	In	Chapter	20:	Using	Sounds	and	Images,	you’ll	improve	your	simple	pygame	games
by	adding	sounds	and	images.

•	Chapter	21:	A	Dodger	Game	with	Sounds	and	Images	combines	the	concepts	in
Chapters	17	to	20	to	make	an	animated	game	called	Dodger.

How	to	Use	This	Book

Most	chapters	in	this	book	will	begin	with	a	sample	run	of	the	chapter’s	featured	program.
This	sample	run	shows	you	what	the	program	looks	 like	when	you	run	it.	The	parts	the

user	types	are	shown	in	bold.
I	recommend	that	you	enter	the	code	for	each	program	into	IDLE’s	file	editor	yourself

rather	than	downloading	or	copying	and	pasting	it.	You’ll	remember	more	if	you	take	the
time	to	type	the	code.

Line	Numbers	and	Indentation
When	typing	the	source	code	from	this	book,	do	not	type	the	line	numbers	at	the	start	of
each	line.	For	example,	if	you	saw	the	following	line	of	code,	you	would	not	need	to	type
the	9.	on	the	left	side,	or	the	one	space	immediately	following	it:

9.	number	=	random.randint(1,	20)

You’d	enter	only	this:

number	=	random.randint(1,	20)

Those	numbers	are	 there	 just	 so	 this	book	can	refer	 to	specific	 lines	 in	 the	program.
They	are	not	part	of	the	actual	program’s	source	code.

Aside	from	the	line	numbers,	enter	the	code	exactly	as	it	appears	in	this	book.	Notice
that	some	of	the	lines	of	code	are	indented	by	four	or	eight	(or	more)	spaces.	The	spaces	at
the	 beginning	 of	 the	 line	 change	 how	 Python	 interprets	 instructions,	 so	 they	 are	 very
important	to	include.

Let’s	look	at	an	example.	The	indented	spaces	here	are	marked	with	black	circles	(•)	so
you	can	see	them.

while	guesses	<	10:
••••if	number	==	42:
••••••••print('Hello')

The	first	line	is	not	indented,	the	second	line	is	indented	four	spaces,	and	the	third	line
is	 indented	 eight	 spaces.	Although	 the	 examples	 in	 this	 book	don’t	 have	black	 circles	 to
mark	the	spaces,	each	character	in	IDLE	is	the	same	width,	so	you	can	count	the	number
of	spaces	by	counting	the	number	of	characters	on	the	line	above	or	below.

Long	Code	Lines
Some	code	instructions	are	too	long	to	fit	on	one	line	in	the	book	and	will	wrap	around	to
the	 next	 line.	 But	 the	 line	 will	 fit	 on	 your	 computer	 screen,	 so	 type	 it	 all	 on	 one	 line
without	pressing	ENTER.	You	can	tell	when	a	new	instruction	starts	by	looking	at	the	line
numbers	on	the	left.	This	example	has	only	two	instructions:

1.	print('This	is	the	first	instruction!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
					xxxxxxxxxxxx')
2.	print('This	is	the	second	instruction,	not	the	third	instruction.')

The	 first	 instruction	wraps	around	 to	a	 second	 line	on	 the	page,	but	 the	 second	 line
does	not	have	a	line	number,	so	you	can	see	that	it’s	still	line	1	of	the	code.

Downloading	and	Installing	Python

You’ll	 need	 to	 install	 software	 called	 the	 Python	 interpreter.	 The	 interpreter	 program
understands	 the	 instructions	 you	 write	 in	 Python.	 I’ll	 refer	 to	 the	 Python	 interpreter
software	as	just	Python	from	now	on.

In	 this	 section,	 I’ll	 show	 you	 how	 to	 download	 and	 install	 Python	 3—specifically,
Python	3.4—for	Windows,	OS	X,	or	Ubuntu.	There	are	newer	versions	of	Python	 than
3.4,	but	the	pygame	module,	which	is	used	in	Chapters	17	to	21,	currently	only	supports	up
to	3.4.

It’s	 important	 to	 know	 that	 there	 are	 some	 significant	 differences	 between	Python	2
and	Python	3.	The	programs	in	this	book	use	Python	3,	and	you’ll	get	errors	if	you	try	to
run	them	with	Python	2.	This	is	so	important,	in	fact,	that	I’ve	added	a	cartoon	penguin	to
remind	you	about	it.

On	 Windows,	 download	 the	 Windows	 x86-64	 MSI	 installer	 from
https://www.python.org/downloads/release/python-344/	and	then	double-click	it.	You	may	have
to	 enter	 the	 administrator	 password	 for	 your	 computer.	 Follow	 the	 instructions	 the
installer	displays	on	the	screen	to	install	Python,	as	listed	here:

1.	 Select	Install	for	All	Users	and	then	click	Next.
2.	 Install	to	the	C:\Python34	folder	by	clicking	Next.
3.	 Click	Next	to	skip	the	Customize	Python	section.

On	 OS	 X,	 download	 the	 Mac	 OS	 X	 64-bit/32-bit	 installer	 from
https://www.python.org/downloads/release/python-344/	 and	 then	 double-click	 it.	 Follow	 the
instructions	the	installer	displays	on	the	screen	to	install	Python,	as	listed	here:

https://www.python.org/downloads/release/python-344/
https://www.python.org/downloads/release/python-344/

1.	 If	 you	 get	 the	 warning	 “‘Python.mpkg’	 can’t	 be	 opened	 because	 it	 is	 from	 an
unidentified	 developer,”	 hold	 down	CONTROL	 while	 right-clicking	 the	 Python.mpkg
file	 and	 then	 select	Open	 from	 the	menu	 that	 appears.	 You	may	 have	 to	 enter	 the
administrator	password	for	your	computer.

2.	 Click	Continue	through	the	Welcome	section	and	click	Agree	to	accept	the	license.
3.	 Select	Macintosh	HD	(or	whatever	your	hard	drive	is	named)	and	click	Install.

If	you’re	running	Ubuntu,	you	can	install	Python	from	the	Ubuntu	Software	Center	by
following	these	steps:

1.	 Open	the	Ubuntu	Software	Center.
2.	 Enter	Python	in	the	search	box	in	the	top-right	corner	of	the	window.
3.	 Select	IDLE	(Python	3.4	GUI	64	bit).
4.	 Click	 Install.	 You	 may	 have	 to	 enter	 the	 administrator	 password	 to	 complete	 the

installation.

If	the	above	steps	do	not	work,	you	can	find	alternative	Python	3.4	install	instructions
at	https://www.nostarch.com/inventwithpython/.

Starting	IDLE
IDLE	stands	for	Interactive	DeveLopment	Environment.	IDLE	is	 like	a	word	processor
for	writing	Python	programs.	Starting	IDLE	is	different	on	each	operating	system:

•	On	Windows,	click	the	Start	menu	in	the	lower-left	corner	of	the	screen,	type	IDLE,	and
select	IDLE	(Python	GUI).

•	On	OS	X,	open	Finder	and	click	Applications.	Double-click	Python	3.x	and	then
double-click	the	IDLE	icon.

•	On	Ubuntu	or	other	Linux	distros,	open	a	terminal	window	and	enter	idle3.	You	may
also	be	able	to	click	Applications	at	the	top	of	the	screen.	Then	click	Programming	and
IDLE	3.

The	window	that	appears	when	you	first	run	IDLE	is	the	interactive	shell,	as	shown	in
Figure	1.	You	can	enter	Python	 instructions	 into	 the	 interactive	 shell	at	 the	>>>	 prompt
and	Python	will	perform	them.	After	 the	computer	performs	the	 instructions,	a	new	>>>
prompt	will	wait	for	your	next	instruction.

https://www.nostarch.com/inventwithpython/

Figure	1:	The	IDLE	program’s	interactive	shell

Finding	Help	Online

You	 can	 find	 the	 source	 code	 files	 and	 other	 resources	 for	 this	 book	 at
https://www.nostarch.com/inventwithpython/.	 If	 you	 want	 to	 ask	 programming	 questions
related	 to	 this	 book,	 visit	 https://reddit.com/r/inventwithpython/,	 or	 you	 can	 email	 your
programming	questions	to	me	at	al@inventwithpython.com.

Before	you	ask	any	questions,	make	sure	you	do	the	following:

•	If	you	are	typing	out	a	program	in	this	book	but	are	getting	an	error,	check	for	typos
with	the	online	diff	tool	at	https://www.nostarch.com/inventwithpython#diff	before	asking
your	question.	Copy	and	paste	your	code	into	the	diff	tool	to	find	any	differences
between	the	book’s	code	and	yours.

•	Search	the	web	to	see	whether	someone	else	has	already	asked	(and	answered)	your
question.

Keep	 in	 mind	 that	 the	 better	 you	 phrase	 your	 programming	 questions,	 the	 better
others	will	be	able	to	help	you.	When	asking	programming	questions,	do	the	following:

https://www.nostarch.com/inventwithpython/
https://reddit.com/r/inventwithpython/
mailto:al@inventwithpython.com
https://www.nostarch.com/inventwithpython#diff

•	Explain	what	you	are	trying	to	do	when	you	get	the	error.	This	will	let	your	helper	know
if	you	are	on	the	wrong	path	entirely.

•	Copy	and	paste	the	entire	error	message	and	your	code.

•	Provide	your	operating	system	and	version.

•	Explain	what	you’ve	already	tried	to	do	to	solve	your	problem.	This	tells	people	you’ve
already	put	in	some	work	to	try	to	figure	things	out	on	your	own.

•	Be	polite.	Don’t	demand	help	or	pressure	your	helpers	to	respond	quickly.

Now	 that	 you	 know	 how	 to	 ask	 for	 help,	 you’ll	 be	 learning	 to	 program	 your	 own
computer	games	in	no	time!

1
THE	INTERACTIVE	SHELL

Before	you	can	make	games,	you	need	to	learn	a	few	basic	programming	concepts.	You’ll
start	 in	 this	chapter	by	 learning	how	to	use	Python’s	 interactive	 shell	and	perform	basic
arithmetic.

TOPICS	COVERED	IN	THIS	CHAPTER
•	Operators

•	Integers	and	floating-point	numbers

•	Values

•	Expressions

•	Syntax	errors

•	Storing	values	in	variables

Some	Simple	Math

Start	 IDLE	 by	 following	 the	 steps	 in	 “Starting	 IDLE”	 on	 page	 xxvi.	 First	 you’ll	 use
Python	 to	 solve	 some	 simple	math	 problems.	The	 interactive	 shell	 can	work	 just	 like	 a
calculator.	Type	2	+	2	into	the	interactive	shell	at	the	>>>	prompt	and	press	ENTER.	 (On
some	keyboards,	this	key	is	RETURN.)	Figure	1-1	shows	how	this	math	problem	looks	in	the
interactive	shell—notice	that	it	responds	with	the	number	4.

Figure	1-1:	Entering	2	+	2	into	the	interactive	shell

This	math	problem	 is	 a	 simple	programming	 instruction.	The	plus	 sign	 (+)	 tells	 the
computer	 to	 add	 the	 numbers	 2	 and	 2.	 The	 computer	 does	 this	 and	 responds	 with	 the
number	4	on	the	next	line.	Table	1-1	lists	the	other	math	symbols	available	in	Python.

Table	1-1:	Math	Operators

Operator Operation

+ Addition
- Subtraction
* Multiplication
/ Division

The	minus	sign	(-)	subtracts	numbers,	the	asterisk	(*)	multiplies	numbers,	and	the	slash
(/)	divides	numbers.	When	used	in	this	way,	+,	-,	*,	and	/	are	called	operators.	Operators	tell
Python	what	to	do	with	the	numbers	surrounding	them.

Integers	and	Floating-Point	Numbers
Integers	(or	ints	for	short)	are	whole	numbers	such	as	4,	99,	and	0.	Floating-point	numbers	(or
floats	 for	 short)	 are	 fractions	 or	 numbers	with	 decimal	 points	 like	 3.5,	 42.1,	 and	 5.0.	 In
Python,	5	is	an	integer,	but	5.0	is	a	float.	These	numbers	are	called	values.	 (Later	we	will
learn	about	other	kinds	of	values	besides	numbers.)	 In	the	math	problem	you	entered	 in
the	shell,	2	and	2	are	integer	values.

Expressions
The	math	problem	2	+	2	is	an	example	of	an	expression.	As	Figure	1-2	shows,	expressions

are	made	up	of	values	(the	numbers)	connected	by	operators	(the	math	signs)	that	produce
a	new	value	the	code	can	use.	Computers	can	solve	millions	of	expressions	in	seconds.

Figure	1-2:	An	expression	is	made	up	of	values	and	operators.

Try	entering	some	of	these	expressions	into	the	interactive	shell,	pressing	ENTER	after
each	one:

>>>	2+2+2+2+2
10
>>>	8*6
48
>>>	10-5+6
11
>>>	2		+								2
4

These	expressions	all	look	like	regular	math	equations,	but	notice	all	the	spaces	in	the
2		+								2	example.	In	Python,	you	can	add	any	number	of	spaces	between	values	and
operators.	However,	you	must	always	start	instructions	at	the	beginning	of	the	line	(with
no	spaces)	when	entering	them	into	the	interactive	shell.

Evaluating	Expressions

When	a	computer	solves	the	expression	10	+	5	and	returns	the	value	15,	it	has	evaluated	the
expression.	 Evaluating	 an	 expression	 reduces	 the	 expression	 to	 a	 single	 value,	 just	 like
solving	a	math	problem	reduces	the	problem	to	a	single	number:	the	answer.	For	example,
the	expressions	10	+	5	and	10	+	3	+	2	both	evaluate	to	15.

When	Python	evaluates	an	expression,	it	follows	an	order	of	operations	just	like	you	do
when	you	do	math.	There	are	just	a	few	rules:

•	Parts	of	the	expression	inside	parentheses	are	evaluated	first.

•	Multiplication	and	division	are	done	before	addition	and	subtraction.

•	The	evaluation	is	performed	left	to	right.

The	expression	1	+	2	*	3	+	4	evaluates	to	11,	not	13,	because	2	*	3	is	evaluated	first.	If
the	expression	were	(1	+	2)	*	(3	+	4)	it	would	evaluate	to	21,	because	the	(1	+	2)	and	(3	+
4)	inside	parentheses	are	evaluated	before	multiplication.

Expressions	 can	 be	 of	 any	 size,	 but	 they	will	 always	 evaluate	 to	 a	 single	 value.	Even
single	values	are	expressions.	For	example,	the	expression	15	evaluates	to	the	value	15.	The
expression	8	*	3	/	2	+	2	+	7	-	9	will	evaluate	to	the	value	12.0	 through	the	 following
steps:

Even	though	the	computer	is	performing	all	of	these	steps,	you	don’t	see	them	in	the
interactive	shell.	The	interactive	shell	shows	you	just	the	result:

>>>	8	*	3	/	2	+	2	+	7	-	9
12.0

Notice	 that	 expressions	 with	 the	 /	 division	 operator	 always	 evaluate	 to	 a	 float;	 for
example,	24	/	2	evaluates	to	12.0.	Math	operations	with	even	one	float	value	also	evaluate
to	float	values,	so	12.0	+	2	evaluates	to	14.0.

Syntax	Errors

If	you	enter	5	+	into	the	interactive	shell,	you’ll	get	the	following	error	message:

>>>	5	+
SyntaxError:	invalid	syntax

This	error	happened	because	5	+	isn’t	an	expression.	Expressions	have	values	connected
by	 operators,	 and	 the	 +	 operator	 expects	 a	 value	 before	 and	 after	 it.	 An	 error	 message
appears	when	an	expected	value	is	missing.

SyntaxError	 means	 Python	 doesn’t	 understand	 the	 instruction	 because	 you	 typed	 it
incorrectly.	Computer	programming	isn’t	 just	about	giving	the	computer	instructions	to
follow	but	also	knowing	how	to	give	it	those	instructions	correctly.

Don’t	worry	about	making	mistakes,	though.	Errors	won’t	damage	your	computer.	Just

retype	the	instruction	correctly	into	the	interactive	shell	at	the	next	>>>	prompt.

Storing	Values	in	Variables

When	 an	 expression	 evaluates	 to	 a	 value,	 you	 can	use	 that	 value	 later	 by	 storing	 it	 in	 a
variable.	Think	of	a	variable	as	a	box	that	can	hold	a	value.

An	assignment	statement	will	store	a	value	inside	a	variable.	Type	a	name	for	the	variable,
followed	by	the	equal	sign	(=),	which	is	called	the	assignment	operator,	and	then	the	value	to
store	in	the	variable.	For	example,	enter	the	following	into	the	interactive	shell:

>>>	spam	=	15
>>>

The	spam	variable’s	box	now	stores	the	value	15,	as	shown	in	Figure	1-3.

Figure	1-3:	Variables	are	like	boxes	that	can	hold	values.

When	you	press	ENTER,	you	won’t	see	anything	in	response.	In	Python,	you	know	the
instruction	was	successful	if	no	error	message	appears.	The	>>>	prompt	will	appear	so	you
can	enter	the	next	instruction.

Unlike	expressions,	statements	are	instructions	that	do	not	evaluate	to	any	value.	This	is
why	there’s	no	value	displayed	on	the	next	line	in	the	interactive	shell	after	spam	=	15.	If
you’re	 confused	 about	 which	 instructions	 are	 expressions	 and	 which	 are	 statements,
remember	 that	 expressions	 evaluate	 to	 a	 single	 value.	Any	other	 kind	of	 instruction	 is	 a
statement.

Variables	 store	 values,	 not	 expressions.	 For	 example,	 consider	 the	 expressions	 in	 the
statements	spam	=	10	+	5	and	spam	=	10	+	7	-	2.	They	both	evaluate	to	15.	The	end	result
is	the	same:	both	assignment	statements	store	the	value	15	in	the	variable	spam.

A	good	variable	name	describes	the	data	it	contains.	Imagine	that	you	moved	to	a	new
house	and	labeled	all	of	your	moving	boxes	Stuff.	You’d	never	find	anything!	The	variable
names	spam,	eggs,	and	bacon	are	example	names	used	for	variables	in	this	book.

The	 first	 time	a	 variable	 is	used	 in	 an	 assignment	 statement,	Python	will	 create	 that
variable.	To	check	what	value	is	in	a	variable,	enter	the	variable	name	into	the	interactive
shell:

>>>	spam	=	15
>>>	spam
15

The	expression	spam	evaluates	to	the	value	inside	the	spam	variable:	15.
You	can	also	use	variables	in	expressions.	Try	entering	the	following	in	the	interactive

shell:

>>>	spam	=	15
>>>	spam	+	5
20

You	 set	 the	 value	 of	 the	 variable	 spam	 to	 15,	 so	 typing	 spam	 +	 5	 is	 like	 typing	 the
expression	15	+	5.	Here	are	the	steps	of	spam	+	5	being	evaluated:

You	cannot	use	a	variable	before	an	assignment	statement	creates	it.	If	you	try	to	do	so,
Python	 will	 give	 you	 a	 NameError	 because	 no	 such	 variable	 by	 that	 name	 exists	 yet.
Mistyping	the	variable	name	also	causes	this	error:

>>>	spam	=	15
>>>	spma
Traceback	(most	recent	call	last):
		File	"<pyshell#8>",	line	1,	in	<module>
				spma
NameError:	name	'spma'	is	not	defined

The	error	appeared	because	there’s	a	spam	variable	but	no	spma	variable.
You	 can	 change	 the	 value	 stored	 in	 a	 variable	 by	 entering	 another	 assignment

statement.	For	example,	enter	the	following	into	the	interactive	shell:

>>>	spam	=	15
>>>	spam	+	5
20
>>>	spam	=	3
>>>	spam	+	5
8

When	you	 first	 enter	spam	+	5,	 the	 expression	 evaluates	 to	20	 because	 you	 stored	 15

inside	 spam.	 However,	 when	 you	 enter	 spam	 =	 3,	 the	 value	 15	 in	 the	 variable’s	 box	 is
replaced,	or	overwritten,	with	 the	value	3	 since	 the	 variable	 can	hold	only	one	 value	 at	 a
time.	Because	the	value	of	spam	is	now	3,	when	you	enter	spam	+	5,	the	expression	evaluates
to	8.	Overwriting	is	like	taking	a	value	out	of	the	variable’s	box	to	put	a	new	value	in,	as
shown	in	Figure	1-4.

Figure	1-4:	The	value	15	in	spam	is	overwritten	by	the	value	3.

You	can	even	use	the	value	in	the	spam	variable	to	assign	a	new	value	to	spam:

>>>	spam	=	15
>>>	spam	=	spam	+	5
20

The	assignment	statement	spam	=	spam	+	5	says,	“The	new	value	of	the	spam	 variable
will	be	the	current	value	of	spam	plus	five.”	To	keep	increasing	the	value	in	spam	by	5	several
times,	enter	the	following	into	the	interactive	shell:

>>>	spam	=	15
>>>	spam	=	spam	+	5
>>>	spam	=	spam	+	5
>>>	spam	=	spam	+	5
>>>	spam
30

In	 this	 example,	 you	 assign	 spam	 a	 value	 of	 15	 in	 the	 first	 statement.	 In	 the	 next
statement,	you	add	5	 to	 the	value	of	spam	and	assign	spam	 the	new	value	spam	+	5,	which
evaluates	to	20.	When	you	do	this	three	times,	spam	evaluates	to	30.

So	 far	we’ve	 looked	at	 just	one	variable,	but	you	can	create	as	many	variables	as	you
need	 in	your	programs.	For	example,	 let’s	assign	different	values	 to	 two	variables	named
eggs	and	bacon,	like	so:

>>>	bacon	=	10
>>>	eggs	=	15

Now	 the	 bacon	 variable	 has	 10	 inside	 it,	 and	 the	 eggs	 variable	 has	 15	 inside	 it.	 Each
variable	is	its	own	box	with	its	own	value,	as	shown	in	Figure	1-5.

Figure	1-5:	The	bacon	and	eggs	variables	each	store	values.

Enter	spam	=	bacon	+	eggs	into	the	interactive	shell,	then	check	the	new	value	of	spam:

>>>	bacon	=	10
>>>	eggs	=	15
>>>	spam	=	bacon	+	eggs
>>>	spam
25

The	value	in	spam	is	now	25.	When	you	add	bacon	and	eggs,	you	are	adding	their	values,
which	 are	 10	 and	 15,	 respectively.	 Variables	 contain	 values,	 not	 expressions,	 so	 the	 spam
variable	was	assigned	the	value	25,	not	the	expression	bacon	+	eggs.	After	the	spam	=	bacon
+	eggs	statement	assigns	the	value	25	to	spam,	changing	bacon	or	eggs	will	not	affect	spam.

Summary

In	this	chapter,	you	learned	the	basics	of	writing	Python	instructions.	Because	computers
don’t	have	common	sense	and	only	understand	specific	instructions,	Python	needs	you	to
tell	it	exactly	what	to	do.

Expressions	are	values	(such	as	2	or	5)	combined	with	operators	(such	as	+	or	-).	Python
can	 evaluate	 expressions—that	 is,	 reduce	 the	 expression	 to	 a	 single	 value.	You	 can	 store

values	 inside	of	variables	so	that	your	program	can	remember	those	values	and	use	them
later.

There	 are	 a	 few	other	 types	 of	 operators	 and	 values	 in	Python.	 In	 the	 next	 chapter,
you’ll	go	over	some	more	basic	concepts	and	write	your	first	program.	You’ll	learn	about
working	with	 text	 in	 expressions.	Python	 isn’t	 limited	 to	 just	 numbers;	 it’s	more	 than	 a
calculator!

2
WRITING	PROGRAMS

Now	let’s	see	what	Python	can	do	with	text.	Almost	all	programs	display	text	to	the	user,
and	the	user	enters	text	into	programs	through	the	keyboard.	In	this	chapter,	you’ll	make
your	 first	 program,	 which	 does	 both	 of	 these	 things.	 You’ll	 learn	 how	 to	 store	 text	 in
variables,	combine	text,	and	display	text	on	the	screen.	The	program	you’ll	create	displays
the	greeting	Hello	world!	and	asks	for	the	user’s	name.

TOPICS	COVERED	IN	THIS	CHAPTER
•	Strings

•	String	concatenation

•	Data	types	(such	as	strings	or	integers)

•	Using	the	file	editor	to	write	programs

•	Saving	and	running	programs	in	IDLE

•	Flow	of	execution

•	Comments

•	The	print()	function

•	The	input()	function

•	Case	sensitivity

String	Values

In	Python,	text	values	are	called	strings.	String	values	can	be	used	just	like	integer	or	float

values.	You	can	store	strings	in	variables.	In	code,	string	values	start	and	end	with	a	single
quote,	'.	Enter	this	code	into	the	interactive	shell:

>>>	spam	=	'hello'

The	single	quotes	tell	Python	where	the	string	begins	and	ends.	They	are	not	part	of
the	 string	 value’s	 text.	 Now	 if	 you	 enter	 spam	 into	 the	 interactive	 shell,	 you’ll	 see	 the
contents	 of	 the	 spam	 variable.	Remember,	Python	 evaluates	 variables	 as	 the	 value	 stored
inside	the	variable.	In	this	case,	this	is	the	string	'hello'.

>>>	spam	=	'hello'
>>>	spam
'hello'

Strings	can	have	any	keyboard	character	in	them	and	can	be	as	long	as	you	want.	These
are	all	examples	of	strings:

'hello'
'Hi	there!'
'KITTENS'
'7	apples,	14	oranges,	3	lemons'
'Anything	not	pertaining	to	elephants	is	irrelephant.'
'A	long	time	ago,	in	a	galaxy	far,	far	away...'
'O*&#wY%*&OCfsdYO*&gfC%YO*&%3yc8r2'

String	Concatenation

You	can	 combine	 string	 values	with	operators	 to	make	 expressions,	 just	 as	 you	did	with
integer	 and	 float	 values.	When	 you	 combine	 two	 strings	with	 the	 +	 operator,	 it’s	 called
string	concatenation.	Enter	'Hello'	+	'World!'	into	the	interactive	shell:

>>>	'Hello'	+	'World!'
'HelloWorld!'

The	 expression	 evaluates	 to	 a	 single	 string	 value,	 'HelloWorld!'.	 There	 is	 no	 space
between	the	words	because	 there	was	no	space	 in	either	of	 the	 two	concatenated	strings,
unlike	in	this	example:

>>>	'Hello	'	+	'World!'
'Hello	World!'

The	+	operator	works	differently	on	string	and	integer	values	because	they	are	different
data	types.	All	values	have	a	data	type.	The	data	type	of	the	value	'Hello'	 is	a	string.	The
data	type	of	the	value	5	is	an	integer.	The	data	type	tells	Python	what	operators	should	do
when	evaluating	expressions.	The	+	operator	concatenates	 string	values,	but	adds	 integer
and	float	values.

Writing	Programs	in	IDLE’s	File	Editor

Until	 now,	 you’ve	 been	 typing	 instructions	 into	 IDLE’s	 interactive	 shell	 one	 at	 a	 time.
When	you	write	programs,	though,	you	enter	several	instructions	and	have	them	run	all	at
once,	and	this	is	what	you’ll	do	next.	It’s	time	to	write	your	first	program!

In	addition	to	the	interpreter,	IDLE	has	another	part	called	the	file	editor.	To	open	it,
click	the	File	menu	at	the	top	of	the	interactive	shell.	Then	select	New	Window	if	you	are
using	Windows	or	New	File	if	you	are	using	OS	X.	A	blank	window	will	appear	for	you	to
type	your	program’s	code	into,	as	shown	in	Figure	2-1.

Figure	2-1:	The	file	editor	(left)	and	the	interactive	shell	(right)

The	two	windows	look	similar,	but	just	remember	this:	the	interactive	shell	will	have
the	>>>	prompt,	while	the	file	editor	will	not.

Creating	the	Hello	World	Program
It’s	traditional	for	programmers	to	make	their	first	program	display	Hello	world!	on	the
screen.	You’ll	create	your	own	Hello	World	program	now.

When	you	enter	your	program,	remember	not	to	enter	the	numbers	at	the	beginning
of	each	code	line.	They’re	there	so	this	book	can	refer	to	the	code	by	 line	number.	The

bottom-right	corner	of	the	file	editor	will	tell	you	where	the	blinking	cursor	is	so	you	can
check	which	line	of	code	you	are	on.	Figure	2-2	shows	that	the	cursor	is	on	line	1	(going	up
and	down	the	editor)	and	column	0	(going	left	and	right).

Figure	2-2:	The	bottom-right	of	the	file	editor	tells	you	what	line	the	cursor	is	on.

Enter	the	following	text	into	the	new	file	editor	window.	This	is	the	program’s	source
code.	It	contains	the	instructions	Python	will	follow	when	the	program	is	run.

hello.py

1.	#	This	program	says	hello	and	asks	for	my	name.
2.	print('Hello	world!')
3.	print('What	is	your	name?')
4.	myName	=	input()
5.	print('It	is	good	to	meet	you,	'	+	myName)

IDLE	will	write	different	types	of	instructions	with	different	colors.	After	you’re	done
typing	the	code,	the	window	should	look	like	Figure	2-3.

Figure	2-3:	The	file	editor	will	look	like	this	after	you	enter	your	code.

Check	to	make	sure	your	IDLE	window	looks	the	same.

Saving	Your	Program
Once	you’ve	entered	your	source	code,	save	it	by	clicking	File	 	Save	As.	Or	press	CTRL-S
to	 save	with	 a	 keyboard	 shortcut.	Figure	 2-4	 shows	 the	 Save	As	window	 that	will	 open.
Enter	hello.py	in	the	File	name	text	field	and	then	click	Save.

Figure	2-4:	Saving	the	program

You	should	save	your	programs	often	while	you	write	them.	That	way,	if	the	computer
crashes	or	you	accidentally	exit	from	IDLE,	you	won’t	lose	much	work.

To	load	your	previously	saved	program,	click	File	 	Open.	Select	the	hello.py	file	in	the
window	that	appears	and	click	the	Open	button.	Your	saved	hello.py	program	will	open	in
the	file	editor.

Running	Your	Program
Now	it’s	time	to	run	the	program.	Click	File	 	Run	Module.	Or	just	press	F5	from	the	file
editor	(FN-5	on	OS	X).	Your	program	will	run	in	the	interactive	shell.

Enter	your	name	when	the	program	asks	for	it.	This	will	look	like	Figure	2-5.

Figure	2-5:	The	interactive	shell	after	you	run	hello.py

When	 you	 type	 your	 name	 and	 press	 ENTER,	 the	 program	will	 greet	 you	 by	 name.
Congratulations!	 You	 have	 written	 your	 first	 program	 and	 are	 now	 a	 computer
programmer.	Press	F5	again	to	run	the	program	a	second	time	and	enter	another	name.

If	you	got	an	error,	compare	your	code	to	this	book’s	code	with	the	online	diff	tool	at
https://www.nostarch.com/inventwithpython#diff.	 Copy	 and	 paste	 your	 code	 from	 the	 file
editor	 into	 the	 web	 page	 and	 click	 the	Compare	 button.	 This	 tool	 will	 highlight	 any
differences	between	your	code	and	the	code	in	this	book,	as	shown	in	Figure	2-6.

While	coding,	if	you	get	a	NameError	that	looks	like	the	following,	that	means	you	are
using	Python	2	instead	of	Python	3.

Hello	world!
What	is	your	name?
Albert
Traceback	(most	recent	call	last):
		File	"C:/Python26/test1.py",	line	4,	in	<module>
				myName	=	input()
		File	"<string>",	line	1,	in	<module>
NameError:	name	'Albert'	is	not	defined

To	fix	the	problem,	install	Python	3.4	and	rerun	the	program.	(See	“Downloading	and
Installing	Python”	on	page	xxv.)

https://www.nostarch.com/inventwithpython#diff

Figure	2-6:	Using	the	diff	tool	at	https://www.nostarch.com/inventwithpython#diff

How	the	Hello	World	Program	Works

Each	line	of	code	is	an	instruction	interpreted	by	Python.	These	instructions	make	up	the
program.	 A	 computer	 program’s	 instructions	 are	 like	 the	 steps	 in	 a	 recipe.	 Python
completes	each	instruction	in	order,	beginning	from	the	top	of	the	program	and	moving
downward.

The	 step	 where	 Python	 is	 currently	 working	 in	 the	 program	 is	 called	 the	 execution.
When	 the	 program	 starts,	 the	 execution	 is	 at	 the	 first	 instruction.	 After	 executing	 the
instruction,	Python	moves	down	to	the	next	instruction.

Let’s	look	at	each	line	of	code	to	see	what	it’s	doing.	We’ll	begin	with	line	number	1.

Comments	for	the	Programmer
The	first	line	of	the	Hello	World	program	is	a	comment:

1.	#	This	program	says	hello	and	asks	for	my	name.

https://www.nostarch.com/inventwithpython#diff

Any	 text	 following	 a	 hash	mark	 (#)	 is	 a	 comment.	 Comments	 are	 the	 programmer’s
notes	 about	 what	 the	 code	 does;	 they	 are	 not	 written	 for	 Python	 but	 for	 you,	 the
programmer.	Python	ignores	comments	when	it	runs	a	program.	Programmers	usually	put
a	 comment	 at	 the	 top	 of	 their	 code	 to	 give	 their	 program	 a	 title.	The	 comment	 in	 the
Hello	World	program	tells	you	that	the	program	says	hello	and	asks	for	your	name.

Functions:	Mini-Programs	Inside	Programs
A	 function	 is	 kind	 of	 like	 a	 mini-program	 inside	 your	 program	 that	 contains	 several
instructions	for	Python	to	execute.	The	great	thing	about	functions	is	that	you	only	need
to	 know	 what	 they	 do,	 not	 how	 they	 do	 it.	 Python	 provides	 some	 built-in	 functions
already.	We	use	print()	and	input()	in	the	Hello	World	program.

A	function	call	is	an	instruction	that	tells	Python	to	run	the	code	inside	a	function.	For
example,	your	program	calls	 the	print()	 function	 to	display	a	 string	on	 the	 screen.	The
print()	 function	takes	 the	string	you	type	between	the	parentheses	as	 input	and	displays
that	text	on	the	screen.

The	print()	Function

Lines	2	and	3	of	the	Hello	World	program	are	calls	to	print():

2.	print('Hello	world!')
3.	print('What	is	your	name?')

A	value	between	the	parentheses	in	a	function	call	is	an	argument.	The	argument	on	line
2’s	print()	function	call	is	'Hello	world!',	and	the	argument	on	line	3’s	print()	 function
call	is	'What	is	your	name?'.	This	is	called	passing	the	argument	to	the	function.

The	input()	Function

Line	4	is	an	assignment	statement	with	a	variable,	myName,	and	a	function	call,	input():

4.	myName	=	input()

When	input()	 is	 called,	 the	program	waits	 for	 the	user	 to	enter	 text.	The	 text	 string
that	the	user	enters	becomes	the	value	that	the	function	call	evaluates	to.	Function	calls	can
be	used	in	expressions	anywhere	a	value	can	be	used.

The	value	that	the	function	call	evaluates	to	is	called	the	return	value.	(In	fact,	“the	value
a	function	call	returns”	means	the	same	thing	as	“the	value	a	function	call	evaluates	to.”)	In
this	case,	the	return	value	of	the	input()	function	is	the	string	that	the	user	entered:	their
name.	If	the	user	enters	Albert,	 the	input()	 function	call	evaluates	to	the	string	'Albert'.
The	evaluation	looks	like	this:

This	is	how	the	string	value	'Albert'	gets	stored	in	the	myName	variable.

Expressions	in	Function	Calls

The	last	line	in	the	Hello	World	program	is	another	print()	function	call:

5.	print('It	is	good	to	meet	you,	'	+	myName)

The	expression	'It	 is	 good	 to	 meet	 you,	 '	 +	 myName	 is	 between	 the	 parentheses	 of
print().	 Because	 arguments	 are	 always	 single	 values,	 Python	 will	 first	 evaluate	 this
expression	 and	 then	pass	 that	 value	 as	 the	 argument.	 If	 'Albert'	 is	 stored	 in	 myName,	 the
evaluation	looks	like	this:

This	is	how	the	program	greets	the	user	by	name.

The	End	of	the	Program
Once	 the	 program	 executes	 the	 last	 line,	 it	 terminates	 or	 exits.	 This	means	 the	 program
stops	 running.	 Python	 forgets	 all	 of	 the	 values	 stored	 in	 variables,	 including	 the	 string
stored	in	myName.	If	you	run	the	program	again	and	enter	a	different	name,	the	program	will
think	that	is	your	name:

Hello	world!
What	is	your	name?
Carolyn
It	is	good	to	meet	you,	Carolyn

Remember,	 the	 computer	 does	 exactly	 what	 you	 program	 it	 to	 do.	 Computers	 are
dumb	and	just	follow	the	instructions	you	give	them	exactly.	The	computer	doesn’t	care	if
you	 type	 in	 your	name,	 someone	 else’s	name,	or	 something	 silly.	Type	 in	 anything	you
want.	The	computer	will	treat	it	the	same	way:

Hello	world!
What	is	your	name?
poop

It	is	good	to	meet	you,	poop

Naming	Variables

Giving	variables	descriptive	names	makes	it	easier	to	understand	what	a	program	does.	You
could	have	called	the	myName	variable	abrahamLincoln	or	nAmE,	and	Python	would	have	run
the	 program	 just	 the	 same.	 But	 those	 names	 don’t	 really	 tell	 you	 much	 about	 what
information	the	variable	might	hold.	As	Chapter	1	discussed,	if	you	were	moving	to	a	new
house	and	you	labeled	every	moving	box	Stuff,	that	wouldn’t	be	helpful	at	all!	This	book’s
interactive	shell	examples	use	variable	names	like	spam,	eggs,	and	bacon	because	the	variable
names	 in	these	examples	don’t	matter.	However,	 this	book’s	programs	all	use	descriptive
names,	and	so	should	your	programs.

Variable	names	are	case	sensitive,	which	means	the	same	variable	name	in	a	different	case
is	considered	a	different	variable.	So	spam,	SPAM,	Spam,	and	sPAM	are	four	different	variables	in
Python.	They	 each	 contain	 their	own	 separate	 values.	 It’s	 a	bad	 idea	 to	have	differently
cased	variables	in	your	program.	Use	descriptive	names	for	your	variables	instead.

Variable	 names	 are	 usually	 lowercase.	 If	 there’s	more	 than	 one	word	 in	 the	 variable
name,	 it’s	 a	 good	 idea	 to	 capitalize	 each	word	 after	 the	 first.	 For	 example,	 the	 variable
name	 whatIHadForBreakfastThisMorning	 is	 much	 easier	 to	 read	 than
whatihadforbreakfastthismorning.	Capitalizing	 your	 variables	 this	way	 is	 called	 camel	 case
(because	it	resembles	the	humps	on	a	camel’s	back),	and	it	makes	your	code	more	readable.
Programmers	also	prefer	using	shorter	variable	names	to	make	code	easier	to	understand:
breakfast	 or	 foodThisMorning	 is	 more	 readable	 than	 whatIHadForBreakfastThisMorning.
These	 are	 conventions—optional	 but	 standard	 ways	 of	 doing	 things	 in	 Python
programming.

Summary

Once	you	understand	how	to	use	strings	and	functions,	you	can	start	making	programs	that
interact	 with	 users.	 This	 is	 important	 because	 text	 is	 the	 main	 way	 the	 user	 and	 the
computer	will	communicate	with	each	other.	The	user	enters	text	through	the	keyboard
with	the	input()	 function,	and	the	computer	displays	text	on	the	screen	with	the	print()
function.

Strings	are	just	values	of	a	new	data	type.	All	values	have	a	data	type,	and	the	data	type
of	a	value	affects	how	the	+	operator	functions.

Functions	are	used	to	carry	out	complicated	instructions	in	your	program.	Python	has
many	built-in	functions	that	you’ll	learn	about	in	this	book.	Function	calls	can	be	used	in
expressions	anywhere	a	value	is	used.

The	instruction	or	step	in	your	program	where	Python	is	currently	working	is	called
the	execution.	In	Chapter	3,	you’ll	learn	more	about	making	the	execution	move	in	ways

other	than	just	straight	down	the	program.	Once	you	learn	this,	you’ll	be	ready	to	create
games!

3
GUESS	THE	NUMBER

In	this	chapter,	you’re	going	to	make	a	Guess	the	Number	game.	The	computer	will	think
of	a	secret	number	from	1	to	20	and	ask	the	user	to	guess	it.	After	each	guess,	the	computer
will	 tell	 the	user	whether	 the	number	 is	 too	high	or	 too	 low.	The	user	wins	 if	 they	can
guess	the	number	within	six	tries.

This	is	a	good	game	to	code	because	it	covers	many	programming	concepts	in	a	short
program.	You’ll	 learn	how	to	convert	values	to	different	data	types	and	when	you	would
need	to	do	this.	Since	this	program	is	a	game,	from	now	on	we’ll	call	the	user	the	player.

TOPICS	COVERED	IN	THIS	CHAPTER
•	import	statements

•	Modules

•	The	randint()	function

•	for	statements

•	Blocks

•	The	str(),	int(),	and	float()	functions

•	Booleans

•	Comparison	operators

•	Conditions

•	The	difference	between	=	and	==

•	if	statements

•	break	statements

Sample	Run	of	Guess	the	Number

Here’s	what	 the	Guess	 the	Number	program	looks	 like	 to	 the	player	when	 it’s	 run.	The
player’s	input	is	marked	in	bold.

Hello!	What	is	your	name?
Albert
Well,	Albert,	I	am	thinking	of	a	number	between	1	and	20.
Take	a	guess.
10
Your	guess	is	too	high.
Take	a	guess.
2
Your	guess	is	too	low.
Take	a	guess.
4
Good	job,	Albert!	You	guessed	my	number	in	3	guesses!

Source	Code	for	Guess	the	Number

Open	a	new	file	editor	window	by	clicking	File	 	New	Window.	In	the	blank	window	that
appears,	enter	the	source	code	and	save	it	as	guess.py.	Then	run	the	program	by	pressing	F5.

When	you	enter	this	code	into	the	file	editor,	be	sure	to	pay	attention	to	the	spacing	at	the
front	of	the	lines.	Some	lines	need	to	be	indented	four	or	eight	spaces.

If	 you	get	errors	 after	entering	 this	 code,	 compare	 the	code	you	 typed	 to	 the	book’s
code	with	the	online	diff	tool	at	https://www.nostarch.com/inventwithpython#diff.

guess.py

	1.	#	This	is	a	Guess	the	Number	game.
	2.	import	random
	3.
	4.	guessesTaken	=	0

https://www.nostarch.com/inventwithpython#diff

	5.
	6.	print('Hello!	What	is	your	name?')
	7.	myName	=	input()
	8.
	9.	number	=	random.randint(1,	20)
10.	print('Well,	'	+	myName	+	',	I	am	thinking	of	a	number	between	1	and	20.')
11.
12.	for	guessesTaken	in	range(6):
13.					print('Take	a	guess.')	#	Four	spaces	in	front	of	"print"
14.					guess	=	input()
15.					guess	=	int(guess)
16.
17.					if	guess	<	number:
18.									print('Your	guess	is	too	low.')	#	Eight	spaces	in	front	of	"print"
19.
20.					if	guess	>	number:
21.									print('Your	guess	is	too	high.')
22.
23.					if	guess	==	number:
24.									break
25.
26.	if	guess	==	number:
27.					guessesTaken	=	str(guessesTaken	+	1)
28.					print('Good	job,	'	+	myName	+	'!	You	guessed	my	number	in	'	+
										guessesTaken	+	'	guesses!')
29.
30.	if	guess	!=	number:
31.					number	=	str(number)
32.					print('Nope.	The	number	I	was	thinking	of	was	'	+	number	+	'.')

Importing	the	random	Module

Let’s	take	a	look	at	the	first	two	lines	of	this	program:

1.	#	This	is	a	Guess	the	Number	game.
2.	import	random

The	first	line	is	a	comment,	which	you	saw	in	Chapter	2.	Remember	that	Python	will
ignore	 everything	 after	 the	 #	 character.	 The	 comment	 here	 just	 reminds	 us	 what	 this
program	does.

The	 second	 line	 is	 an	 import	 statement.	 Remember,	 statements	 are	 instructions	 that
perform	some	action	but	don’t	evaluate	to	a	value	like	expressions	do.	You’ve	already	seen
the	assignment	statement,	which	stores	a	value	in	a	variable.

While	Python	includes	many	built-in	functions,	some	functions	are	written	in	separate
programs	called	modules.	You	can	use	these	functions	by	importing	their	modules	into	your
program	with	an	import	statement.

Line	2	imports	the	random	module	so	that	the	program	can	call	the	randint()	function.
This	function	will	come	up	with	a	random	number	for	the	player	to	guess.

Now	 that	you’ve	 imported	 the	random	module,	 you	need	 to	 set	 up	 some	 variables	 to
store	values	your	program	will	use	later.

Line	4	creates	a	new	variable	named	guessesTaken:

4.	guessesTaken	=	0

You’ll	store	the	number	of	guesses	the	player	has	made	in	this	variable.	Since	the	player
hasn’t	made	any	guesses	at	this	point	in	the	program,	store	the	integer	0	here.

6.	print('Hello!	What	is	your	name?')
7.	myName	=	input()

Lines	 6	 and	 7	 are	 the	 same	 as	 the	 lines	 in	 the	Hello	World	 program	 in	Chapter	 2.
Programmers	often	reuse	code	from	other	programs	to	save	themselves	work.

Line	6	is	a	function	call	to	print().	Remember	that	a	function	is	like	a	mini-program
inside	your	program.	When	your	program	calls	a	function,	it	runs	this	mini-program.	The
code	inside	print()	displays	the	string	argument	you	passed	it	on	the	screen.

Line	7	lets	the	player	enter	their	name	and	stores	it	in	the	myName	variable.	Remember,
the	string	might	not	really	be	the	player’s	name;	it’s	just	whatever	string	the	player	types.
Computers	are	dumb	and	follow	their	instructions,	no	matter	what.

Generating	Random	Numbers	with	the	random.randint()	Function

Now	that	your	other	variables	are	set	up,	you	can	use	the	random	module’s	function	to	set
the	computer’s	secret	number:

9.	number	=	random.randint(1,	20)

Line	 9	 calls	 a	 new	 function	 named	 randint()	 and	 stores	 the	 return	 value	 in	 number.
Remember,	function	calls	can	be	part	of	expressions	because	they	evaluate	to	a	value.

The	 randint()	 function	 is	 provided	 by	 the	 random	 module,	 so	 you	must	 call	 it	 with
random.randint()	(don’t	forget	the	period!)	to	tell	Python	that	the	function	randint()	is	in
the	random	module.

randint()	 will	 return	 a	 random	 integer	 between	 (and	 including)	 the	 two	 integer
arguments	 you	 pass	 it.	 Line	 9	 passes	 1	 and	 20,	 separated	 by	 commas,	 between	 the
parentheses	that	follow	the	function	name.	The	random	integer	that	randint()	returns	is
stored	in	a	variable	named	number—this	is	the	secret	number	the	player	is	trying	to	guess.

Just	for	a	moment,	go	back	to	the	interactive	shell	and	enter	import	random	 to	import
the	 random	 module.	 Then	 enter	 random.randint(1,	 20)	 to	 see	 what	 the	 function	 call
evaluates	 to.	 It	will	 return	 an	 integer	 between	1	 and	20.	Repeat	 the	 code	 again,	 and	 the
function	call	will	return	another	integer.	The	randint()	function	returns	a	random	integer
each	 time,	 just	 as	 rolling	 a	die	will	 result	 in	 a	 random	number	 each	 time.	For	 example,
enter	 the	 following	 into	 the	 interactive	 shell.	 The	 results	 you	 get	 when	 you	 call	 the
randint()	function	will	probably	be	different	(it	is	random,	after	all!).

>>>	import	random
>>>	random.randint(1,	20)
12
>>>	random.randint(1,	20)
18
>>>	random.randint(1,	20)
3
>>>	random.randint(1,	20)
18
>>>	random.randint(1,	20)
7

You	can	also	try	different	ranges	of	numbers	by	changing	the	arguments.	For	example,
enter	random.randint(1,	4)	to	get	only	integers	between	1	and	4	(including	both	1	and	4).
Or	try	random.randint(1000,	2000)	to	get	integers	between	1000	and	2000.

Enter	this	code	in	the	interactive	shell	and	see	what	numbers	you	get:

>>>	random.randint(1,	4)
3
>>>	random.randint(1000,	2000)
1294

You	can	change	the	game’s	code	slightly	to	make	the	game	behave	differently.	In	our
original	code,	we	use	an	integer	between	1	and	20:

	9.	number	=	random.randint(1,	20)
10.	print('Well,	'	+	myName	+	',	I	am	thinking	of	a	number	between	1	and	20.')

Try	changing	the	integer	range	to	(1,	100)	instead:

	9.	number	=	random.randint(1,	100)
10.	print('Well,	'	+	myName	+	',	I	am	thinking	of	a	number	between	1	and	100.')

Now	 the	 computer	 will	 think	 of	 an	 integer	 between	 1	 and	 100	 instead	 of	 1	 and	 20.
Changing	 line	 9	 will	 change	 the	 range	 of	 the	 random	 number,	 but	 remember	 to	 also
change	line	10	so	that	the	game	tells	the	player	the	new	range	instead	of	the	old	one.

You	 can	 use	 the	 randint()	 function	 whenever	 you	 want	 to	 add	 randomness	 to	 your
games.	You’ll	use	randomness	in	many	games.	(Think	of	how	many	board	games	use	dice.)

Welcoming	the	Player

After	the	computer	assigns	number	a	random	integer,	it	greets	the	player:

10.	print('Well,	'	+	myName	+	',	I	am	thinking	of	a	number	between	1	and	20.')

On	line	10,	print()	welcomes	the	player	by	name	and	tells	them	that	the	computer	is
thinking	of	a	random	number.

At	first	glance,	it	may	look	like	there’s	more	than	one	string	argument	in	line	10,	but

examine	 the	 line	 carefully.	The	 +	 operators	 between	 the	 three	 strings	 concatenate	 them
into	one	string.	And	that	one	string	is	the	argument	passed	to	print().	If	you	look	closely,
you’ll	see	that	the	commas	are	inside	the	quotes	and	part	of	the	strings	themselves.

Flow	Control	Statements

In	previous	chapters,	the	program	execution	started	at	the	top	instruction	in	the	program
and	moved	straight	down,	executing	each	instruction	in	order.	But	with	the	for,	if,	else,
and	 break	 statements,	 you	 can	 make	 the	 execution	 loop	 or	 skip	 instructions	 based	 on
conditions.	These	kinds	of	statements	are	flow	control	statements,	since	they	change	the	flow
of	the	program	execution	as	it	moves	around	your	program.

Using	Loops	to	Repeat	Code
Line	12	is	a	for	statement,	which	indicates	the	beginning	of	a	for	loop:

12.	for	guessesTaken	in	range(6):

Loops	let	you	execute	code	over	and	over	again.	Line	12	will	repeat	its	code	six	times.	A
for	 statement	 begins	 with	 the	 for	 keyword,	 followed	 by	 a	 new	 variable	 name,	 the	 in
keyword,	a	call	to	the	range()	function	that	specifies	the	number	of	loops	it	should	do,	and
a	colon.	Let’s	go	over	a	few	additional	concepts	so	that	you	can	work	with	loops.

Grouping	with	Blocks
Several	 lines	 of	 code	 can	 be	 grouped	 together	 in	 a	 block.	 Every	 line	 in	 a	 block	 of	 code
begins	with	at	least	the	number	of	spaces	as	the	first	line	in	the	block.	You	can	tell	where	a
block	begins	and	ends	by	looking	at	the	number	of	spaces	at	the	front	of	the	lines.	This	is
the	line’s	indentation.

Python	 programmers	 typically	 use	 four	 additional	 spaces	 of	 indentation	 to	 begin	 a
block.	Any	following	 line	 that’s	 indented	by	that	 same	amount	 is	part	of	 the	block.	The
block	ends	when	there’s	a	line	of	code	with	the	same	indentation	as	before	the	block	started.
There	can	also	be	blocks	within	other	blocks.	Figure	3-1	shows	a	code	diagram	with	the
blocks	outlined	and	numbered.

Figure	3-1:	An	example	of	blocks	and	their	indentation.	The	gray	dots	represent	spaces.

In	Figure	 3-1,	 line	 12	 has	 no	 indentation	 and	 isn’t	 inside	 any	 block.	Line	 13	 has	 an
indentation	of	four	spaces.	Since	this	line	is	 indented	more	than	the	previous	line,	a	new
block	 starts	here.	Every	 line	 following	 this	one	with	 the	 same	amount	of	 indentation	or
more	 is	 considered	 part	 of	 block	 ➊.	 If	 Python	 encounters	 another	 line	 with	 less
indentation	than	the	block’s	first	line,	the	block	has	ended.	Blank	lines	are	ignored.

Line	18	has	an	 indentation	of	eight	 spaces,	which	starts	block	➋.	This	block	 is	 inside
block	➊.	But	the	next	 line,	 line	20,	 is	 indented	only	four	spaces.	Because	the	indentation
has	decreased,	you	know	that	line	18’s	block	➋	has	ended,	and	because	line	20	has	the	same
indentation	as	line	13,	you	know	it’s	in	block	➊.

Line	21	increases	the	indentation	to	eight	spaces	again,	so	another	new	block	within	a
block	has	started:	block	➌.	At	 line	23,	we	exit	block	➌,	 and	at	 line	24	we	enter	 the	 final
block	within	a	block,	block	➍.	Both	block	➊	and	block	➍	end	on	line	24.

Looping	with	for	Statements
The	for	statement	marks	the	beginning	of	a	loop.	Loops	execute	the	same	code	repeatedly.
When	 the	 execution	 reaches	 a	 for	 statement,	 it	 enters	 the	 block	 that	 follows	 the	 for
statement.	After	running	all	the	code	in	this	block,	the	execution	moves	back	to	the	top	of
the	block	to	run	the	code	all	over	again.

Enter	the	following	into	the	interactive	shell:

>>>	for	i	in	range(3):
				print('Hello!	i	is	set	to',	i)

Hello!	i	is	set	to	0
Hello!	i	is	set	to	1
Hello!	i	is	set	to	2

Notice	that	after	you	typed	for	i	in	range(3):	and	pressed	ENTER,	the	interactive	shell
didn’t	show	another	>>>	prompt	because	it	was	expecting	you	to	type	a	block	of	code.	Press
ENTER	again	after	the	last	instruction	to	tell	the	interactive	shell	you	are	done	entering	the
block	 of	 code.	 (This	 applies	 only	when	 you	 are	working	 in	 the	 interactive	 shell.	When
writing	.py	files	in	the	file	editor,	you	don’t	need	to	insert	a	blank	line.)

Let’s	look	at	the	for	loop	on	line	12	of	guess.py:

12.	for	guessesTaken	in	range(6):
13.					print('Take	a	guess.')	#	Four	spaces	in	front	of	"print"
14.					guess	=	input()
15.					guess	=	int(guess)
16.
17.					if	guess	<	number:
18.									print('Your	guess	is	too	low.')	#	Eight	spaces	in	front	of	"print"
19.
20.					if	guess	>	number:
21.									print('Your	guess	is	too	high.')
22.
23.					if	guess	==	number:
24.									break
25.
26.	if	guess	==	number:

In	Guess	the	Number,	the	for	block	begins	at	the	for	statement	on	line	12,	and	the	first
line	after	the	for	block	is	line	26.

A	for	statement	always	has	a	colon	(:)	after	the	condition.	Statements	that	end	with	a
colon	expect	a	new	block	on	the	next	line.	This	is	illustrated	in	Figure	3-2.

Figure	3-2:	The	for	loop’s	flow	of	execution

Figure	3-2	shows	how	the	execution	 flows.	The	execution	will	enter	 the	for	block	at
line	13	and	keep	going	down.	Once	the	program	reaches	the	end	of	the	for	block,	instead
of	going	down	to	the	next	line,	the	execution	loops	back	up	to	the	start	of	the	for	block	at
line	13.	 It	does	 this	 six	 times	because	of	 the	range(6)	 function	call	 in	 the	for	 statement.
Each	time	the	execution	goes	through	the	loop	is	called	an	iteration.

Think	of	the	for	statement	as	saying,	“Execute	the	code	in	the	following	block	a	certain
number	of	times.”

Getting	the	Player’s	Guess

Lines	13	and	14	ask	the	player	to	guess	what	the	secret	number	is	and	let	them	enter	their
guess:

13.					print('Take	a	guess.')	#	Four	spaces	in	front	of	"print"
14.					guess	=	input()

That	number	the	player	enters	is	stored	in	a	variable	named	guess.

Converting	Values	with	the	int(),	float(),	and	str()	Functions

Line	15	calls	a	new	function	called	int():

15.					guess	=	int(guess)

The	int()	function	takes	one	argument	and	returns	the	argument’s	value	as	an	integer.
Enter	the	following	into	the	interactive	shell	to	see	how	the	int()	function	works:

>>>	int('42')
42

The	int('42')	call	will	return	the	integer	value	42.

>>>	3	+	int('2')
5

The	3	+	int('2')	line	shows	an	expression	that	uses	the	return	value	of	int()	as	part	of
an	expression.	It	evaluates	to	the	integer	value	5:

Even	though	you	can	pass	a	string	to	int(),	you	cannot	pass	it	just	any	string.	Passing
'forty-two'	to	int()	will	result	in	an	error:

>>>	int('forty-two')
Traceback	(most	recent	call	last):
		File	"<pyshell#5>",	line	1,	in	<module>
				int('forty-two')
ValueError:	invalid	literal	for	int()	with	base	10:	'forty-two'

The	string	you	pass	to	int()	must	be	made	of	numbers.
In	 Guess	 the	 Number,	 we	 get	 the	 player’s	 number	 using	 the	 input()	 function.

Remember,	the	input()	 function	always	 returns	a	 string	of	 text	 the	player	entered.	 If	 the
player	types	5,	the	input()	function	will	return	the	string	value	'5',	not	the	integer	value	5.
But	we’ll	need	to	compare	the	player’s	number	with	an	integer	later,	and	Python	cannot
use	the	<	and	>	comparison	operators	to	compare	a	string	and	an	integer	value:

>>>	4	<	'5'
Traceback	(most	recent	call	last):
		File	"<pyshell#0>",	line	1,	in	<module>
				4	<	'5'
TypeError:	unorderable	types:	int()	<	str()

Therefore,	we	need	to	convert	the	string	into	an	integer:

14.					guess	=	input()
15.					guess	=	int(guess)

On	 line	 14,	we	 assign	 the	 guess	 variable	 to	 the	 string	 value	 of	whatever	 number	 the
player	typed.	Line	15	overwrites	the	string	value	in	guess	with	the	integer	value	returned
by	 int().	 The	 code	 int(guess)	 returns	 a	 new	 integer	 value	 based	 on	 the	 string	 it	 was
provided,	 and	 guess	 =	 assigns	 that	 new	 value	 to	 guess.	 This	 lets	 the	 code	 later	 in	 the
program	compare	whether	guess	is	greater	than,	less	than,	or	equal	to	the	secret	number	in
the	number	variable.

The	float()	and	str()	 functions	will	 similarly	 return	 float	 and	 string	versions	of	 the
arguments	passed	to	them.	Enter	the	following	into	the	interactive	shell:

>>>	float('42')
42.0
>>>	float(42)
42.0

When	the	string	'42'	or	the	integer	42	is	passed	to	float(),	the	float	42.0	is	returned.
Now	try	using	the	str()	function:

>>>	str(42)
'42'
>>>	str(42.0)
'42.0'

When	the	integer	42	is	passed	to	str(),	the	string	'42'	is	returned.	But	when	the	float
42.0	is	passed	to	str(),	the	string	'42.0'	is	returned.

Using	the	int(),	float(),	and	str()	functions,	you	can	take	a	value	of	one	data	type	and
return	it	as	a	value	of	a	different	data	type.

The	Boolean	Data	Type

Every	value	in	Python	belongs	to	one	data	type.	The	data	types	that	have	been	introduced
so	far	are	 integers,	 floats,	strings,	and	now	Booleans.	The	Boolean	data	 type	has	only	two
values:	True	or	False.	Boolean	values	must	be	entered	with	an	uppercase	T	or	F	and	the	rest
of	the	value’s	name	in	lowercase.

Boolean	values	can	be	stored	in	variables	just	like	the	other	data	types:

>>>	spam	=	True
>>>	eggs	=	False

In	this	example,	you	set	spam	to	True	and	eggs	to	False.	Remember	to	capitalize	the	first
letter.

You	will	use	Boolean	values	(called	bools	for	short)	with	comparison	operators	to	form
conditions.	We’ll	cover	comparison	operators	first	and	then	go	over	conditions.

Comparison	Operators
Comparison	 operators	 compare	 two	 values	 and	 evaluate	 to	 a	 True	 or	 False	 Boolean	 value.
Table	3-1	lists	all	of	the	comparison	operators.

Table	3-1:	Comparison	Operators

Operator Operation

< Less	than
> Greater	than
<= Less	than	or	equal	to
>= Greater	than	or	equal	to
== Equal	to

!= Not	equal	to

You’ve	 already	 read	 about	 the	 +,	 -,	 *,	 and	 /	 math	 operators.	 Like	 any	 operator,
comparison	operators	combine	with	values	to	form	expressions	such	as	guessesTaken	<	6.

Line	17	of	the	Guess	the	Number	program	uses	the	less	than	comparison	operator:

17.					if	guess	<	number:

We’ll	 discuss	 if	 statements	 in	 more	 detail	 shortly;	 for	 now,	 let’s	 just	 look	 at	 the
expression	that	follows	the	if	keyword	(the	guess	<	number	part).	This	expression	contains
two	values	(the	values	in	the	variables	guess	and	number)	connected	by	an	operator	(the	<,	or
less	than,	sign).

Checking	for	True	or	False	with	Conditions
A	condition	is	an	expression	that	combines	two	values	with	a	comparison	operator	(such	as	<
or	>)	and	evaluates	to	a	Boolean	value.	A	condition	is	just	another	name	for	an	expression
that	evaluates	to	True	or	False.	One	place	we	use	conditions	is	in	if	statements.

For	example,	the	condition	guess	<	number	on	line	17	asks,	“Is	the	value	stored	in	guess
less	than	the	value	stored	in	number?”	If	so,	then	the	condition	evaluates	to	True.	If	not,	the
condition	evaluates	to	False.

Say	that	guess	stores	the	integer	10	and	number	stores	the	integer	16.	Because	10	 is	 less
than	16,	this	condition	evaluates	to	the	Boolean	value	of	True.	The	evaluation	would	look
like	this:

Experimenting	with	Booleans,	Comparison	Operators,	and
Conditions
Enter	the	following	expressions	in	the	interactive	shell	to	see	their	Boolean	results:

>>>	0	<	6
True
>>>	6	<	0
False

The	condition	0	<	6	returns	the	Boolean	value	True	because	the	number	0	is	less	than
the	number	6.	But	because	6	isn’t	less	than	0,	the	condition	6	<	0	evaluates	to	False.

Notice	 that	10	<	10	 evaluates	 to	False	 because	 the	 number	 10	 isn’t	 smaller	 than	 the
number	10:

>>>	10	<	10
False

The	values	are	the	same.	If	Alice	were	the	same	height	as	Bob,	you	wouldn’t	say	that
Alice	is	taller	than	Bob	or	that	Alice	is	shorter	than	Bob.	Both	of	those	statements	would
be	false.

Now	enter	these	expressions	into	the	interactive	shell:

>>>	10	==	10
True
>>>	10	==	11
False
>>>	11	==	10
False
>>>	10	!=	10
False

In	this	example,	10	is	equal	to	10,	so	10	==	10	evaluates	to	True.	But	10	is	not	equal	to	11,
so	10	==	11	is	False.	Even	if	the	order	is	flipped,	11	is	still	not	equal	to	10,	so	11	==	10	 is
False.	Finally,	10	is	equal	to	10,	so	10	!=	10	is	False.

You	can	also	evaluate	string	expressions	with	comparison	operators:

>>>	'Hello'	==	'Hello'
True
>>>	'Goodbye'	!=	'Hello'
True
>>>	'Hello'	==	'HELLO'
False

'Hello'	 is	 equal	 to	 'Hello',	 so	 'Hello'	 ==	 'Hello'	 is	 True.	 'Goodbye'	 is	 not	 equal	 to
'Hello',	so	'Goodbye'	!=	'Hello'	is	also	True.

Notice	 that	 the	 last	 line	evaluates	 to	False.	Upper-	 and	 lowercase	 letters	 are	not	 the
same	in	Python,	so	'Hello'	is	not	equal	to	'HELLO'.

String	 and	 integer	 values	 will	 never	 be	 equal	 to	 each	 other.	 For	 example,	 enter	 the
following	into	the	interactive	shell:

>>>	42	==	'Hello'
False
>>>	42	!=	'42'
True

In	the	first	example,	42	is	an	integer	and	'Hello'	is	a	string,	so	the	values	are	not	equal
and	the	expression	evaluates	to	False.	In	the	second	example,	the	string	'42'	is	still	not	an
integer,	so	the	expression	“the	integer	42	is	not	equal	to	the	string	'42'”	evaluates	to	True.

The	Difference	Between	=	and	==
Be	 careful	 not	 to	 confuse	 the	 assignment	 operator,	 =,	 and	 the	 equal	 to	 comparison
operator,	 ==.	 The	 equal	 sign,	 =,	 is	 used	 in	 assignment	 statements	 to	 store	 a	 value	 to	 a
variable,	whereas	the	double	equal	sign,	==,	is	used	in	expressions	to	see	whether	two	values
are	equal.	It’s	easy	to	accidentally	use	one	when	you	mean	to	use	the	other.

It	might	help	to	remember	that	both	the	equal	to	comparison	operator,	==,	and	the	not
equal	to	comparison	operator,	!=,	have	two	characters.

if	Statements

Line	17	is	an	if	statement:

17.					if	guess	<	number:
18.									print('Your	guess	is	too	low.')	#	Eight	spaces	in	front	of	"print"

The	 code	 block	 following	 the	 if	 statement	 will	 run	 if	 the	 if	 statement’s	 condition
evaluates	to	True.	 If	 the	condition	 is	False,	 the	code	 in	the	if	block	 is	 skipped.	Using	if
statements,	you	can	make	the	program	run	certain	code	only	when	you	want	it	to.

Line	17	checks	whether	the	player’s	guess	is	less	than	the	computer’s	secret	number.	If
so,	then	the	execution	moves	inside	the	if	block	on	line	18	and	prints	a	message	telling	the
player	their	guess	was	too	low.

Line	20	checks	whether	the	player’s	guess	is	greater	than	the	secret	number:

20.					if	guess	>	number:
21.									print('Your	guess	is	too	high.')

If	this	condition	is	True,	then	the	print()	function	call	tells	the	player	that	their	guess	is
too	high.

Leaving	Loops	Early	with	the	break	Statement

The	if	statement	on	line	23	checks	whether	the	number	the	player	guessed	is	equal	to	the
secret	number.	If	it	is,	the	program	runs	the	break	statement	on	line	24:

23.					if	guess	==	number:
24.									break

A	break	statement	tells	the	execution	to	jump	immediately	out	of	the	for	block	to	the
first	 line	after	 the	end	of	 the	for	block.	The	break	 statement	 is	 found	only	 inside	 loops,
such	as	in	a	for	block.

Checking	Whether	the	Player	Won

The	for	block	ends	at	the	next	line	of	code	with	no	indentation,	which	is	line	26:

26.	if	guess	==	number:

The	 execution	 leaves	 the	 for	 block	 either	 because	 it	 has	 looped	 six	 times	 (when	 the
player	runs	out	of	guesses)	or	because	the	break	statement	on	line	24	has	executed	(when
the	player	guesses	the	number	correctly).

Line	26	checks	whether	the	player	guessed	correctly.	If	so,	the	execution	enters	the	if
block	at	line	27:

27.					guessesTaken	=	str(guessesTaken	+	1)
28.					print('Good	job,	'	+	myName	+	'!	You	guessed	my	number	in	'	+
										guessesTaken	+	'	guesses!')

Lines	27	and	28	execute	only	if	the	condition	in	the	if	statement	on	line	26	is	True	(that
is,	if	the	player	correctly	guessed	the	computer’s	number).

Line	 27	 calls	 the	 str()	 function,	 which	 returns	 the	 string	 form	 of	 guessesTaken	 +	 1
(since	the	range	function	goes	from	0	to	5	instead	of	1	to	6).	Line	28	concatenates	strings	to
tell	 the	 player	 they	 have	 won	 and	 how	 many	 guesses	 it	 took.	 Only	 string	 values	 can
concatenate	 to	other	 strings.	This	 is	why	 line	27	had	 to	change	guessesTaken	+	1	 to	 the
string	form.	Otherwise,	trying	to	concatenate	a	string	with	an	integer	would	cause	Python
to	display	an	error.

Checking	Whether	the	Player	Lost

If	the	player	runs	out	of	guesses,	the	execution	will	go	to	this	line	of	code:

30.	if	guess	!=	number:

Line	30	uses	the	not	equal	to	comparison	operator	!=	to	check	whether	the	player’s	last
guess	is	not	equal	to	the	secret	number.	If	this	condition	evaluates	to	True,	 the	execution
moves	into	the	if	block	on	line	31.

Lines	31	and	32	are	 inside	the	if	block,	executing	only	 if	 the	condition	on	 line	30	 is
True:

31.					number	=	str(number)
32.					print('Nope.	The	number	I	was	thinking	of	was	'	+	number	+	'.')

In	this	block,	the	program	tells	the	player	what	the	secret	number	was.	This	requires
concatenating	strings,	but	number	stores	an	integer	value.	Line	31	overwrites	number	with	a
string	so	that	it	can	be	concatenated	to	the	'Nope.	The	number	I	was	thinking	of	was	'	and
'.'	strings	on	line	32.

At	 this	 point,	 the	 execution	 has	 reached	 the	 end	 of	 the	 code,	 and	 the	 program
terminates.	Congratulations!	You’ve	just	programmed	your	first	real	game!

You	can	adjust	the	game’s	difficulty	by	changing	the	number	of	guesses	the	player	gets.
To	give	the	player	only	four	guesses,	change	the	code	on	line	12:

12.	for	guessesTaken	in	range(4):

By	passing	4	to	range(),	you	ensure	that	the	code	inside	the	loop	runs	only	four	times
instead	of	six.	This	makes	the	game	much	more	difficult.	To	make	the	game	easier,	pass	a
larger	integer	to	the	range()	function	call.	This	will	cause	the	loop	to	run	a	few	more	times
and	accept	more	guesses	from	the	player.

Summary

Programming	is	just	the	action	of	writing	code	for	programs—that	is,	creating	programs
that	can	be	executed	by	a	computer.

When	you	see	someone	using	a	computer	program	(for	example,	playing	your	Guess
the	Number	game),	all	you	see	is	some	text	appearing	on	the	screen.	The	program	decides
what	text	to	display	on	the	screen	(the	program’s	output)	based	on	its	instructions	and	on
the	text	that	the	player	typed	with	the	keyboard	(the	program’s	input).	A	program	is	just	a
collection	of	instructions	that	act	on	the	user’s	input.

There	are	a	few	kinds	of	instructions:

•	Expressions	are	values	connected	by	operators.	Expressions	are	all	evaluated	down	to	a
single	value.	For	example,	2	+	2	evaluates	to	4	or	'Hello'	+	'	'	+	'World'	evaluates	to
'Hello	World'.	When	expressions	are	next	to	the	if	and	for	keywords,	you	can	also	call
them	conditions.

•	Assignment	statements	store	values	in	variables	so	you	can	remember	the	values	later
in	the	program.

•	The	if,	for,	and	break	statements	are	flow	control	statements	that	can	make	the
execution	skip	instructions,	loop	over	instructions,	or	break	out	of	loops.	Function	calls
also	change	the	flow	of	execution	by	jumping	to	the	instructions	inside	of	a	function.

•	The	print()	and	input()	functions	display	text	on	the	screen	and	get	text	from	the
keyboard.	Instructions	that	deal	with	the	input	and	output	of	the	program	are	called	I/O
(pronounced	eye	oh).

That’s	it—just	those	four	things.	Of	course,	there	are	many	details	to	be	learned	about
those	four	types	of	 instructions.	In	 later	chapters,	you’ll	read	about	more	data	types	and
operators,	 more	 flow	 control	 statements,	 and	 many	 other	 functions	 that	 come	 with
Python.	There	are	also	different	types	of	I/O	beyond	text,	such	as	input	from	the	mouse
and	sound	and	graphics	output.

4
A	JOKE-TELLING	PROGRAM

This	chapter’s	program	tells	a	few	jokes	to	the	user	and	demonstrates	more	advanced	ways
to	use	strings	with	the	print()	function.	Most	of	the	games	in	this	book	will	have	simple
text	for	input	and	output.	The	input	is	typed	on	the	keyboard	by	the	user,	and	the	output
is	the	text	displayed	on	the	screen.

TOPICS	COVERED	IN	THIS	CHAPTER
•	Escape	characters

•	Using	single	quotes	and	double	quotes	for	strings

•	Using	print()’s	end	keyword	parameter	to	skip	newlines

You’ve	 already	 learned	how	 to	display	 simple	 text	 output	with	 the	print()	 function.
Now	let’s	take	a	deeper	look	at	how	strings	and	print()	work	in	Python.

Sample	Run	of	Jokes

Here’s	what	the	user	sees	when	they	run	the	Jokes	program:

What	do	you	get	when	you	cross	a	snowman	with	a	vampire?
Frostbite!

What	do	dentists	call	an	astronaut's	cavity?
A	black	hole!

Knock	knock.
Who's	there?
Interrupting	cow.
Interrupting	cow	wh-MOO!

Source	Code	for	Jokes

Open	a	new	file	editor	window	by	clicking	File	 	New	Window.	In	the	blank	window	that
appears,	enter	the	source	code	and	save	it	as	jokes.py.	Then	run	the	program	by	pressing	F5.

If	 you	get	errors	 after	entering	 this	 code,	 compare	 the	code	you	 typed	 to	 the	book’s
code	with	the	online	diff	tool	at	https://www.nostarch.com/inventwithpython#diff.

jokes.py

	1.	print('What	do	you	get	when	you	cross	a	snowman	with	a	vampire?')
	2.	input()
	3.	print('Frostbite!')
	4.	print()
	5.	print('What	do	dentists	call	an	astronaut\'s	cavity?')
	6.	input()
	7.	print('A	black	hole!')
	8.	print()
	9.	print('Knock	knock.')
10.	input()
11.	print("Who's	there?")
12.	input()
13.	print('Interrupting	cow.')
14.	input()
15.	print('Interrupting	cow	wh',	end='')
16.	print('-MOO!')

How	the	Code	Works

Let’s	start	by	looking	at	the	first	four	lines	of	code:

1.	print('What	do	you	get	when	you	cross	a	snowman	with	a	vampire?')
2.	input()
3.	print('Frostbite!')
4.	print()

https://www.nostarch.com/inventwithpython#diff

Lines	1	and	3	use	the	print()	function	call	to	ask	and	give	the	answer	to	the	first	joke.
You	don’t	want	the	user	to	immediately	read	the	joke’s	punchline,	so	there’s	a	call	to	the
input()	function	after	the	first	print()	instance.	The	user	will	read	the	joke,	press	ENTER,
and	then	read	the	punchline.

The	user	can	still	type	in	a	string	and	press	ENTER,	but	this	returned	string	isn’t	being
stored	in	any	variable.	The	program	will	just	forget	about	it	and	move	to	the	next	line	of
code.

The	last	print()	function	call	doesn’t	have	a	string	argument.	This	tells	the	program	to
just	print	a	blank	line.	Blank	lines	are	useful	to	keep	the	text	from	looking	crowded.

Escape	Characters

Lines	5	to	8	print	the	question	and	answer	to	the	next	joke:

5.	print('What	do	dentists	call	an	astronaut\'s	cavity?')
6.	input()
7.	print('A	black	hole!')
8.	print()

On	 line	 5,	 there’s	 a	 backslash	 right	 before	 the	 single	 quote:	 \'.	 (Note	 that	 \	 is	 a
backslash,	and	/	is	a	forward	slash.)	This	backslash	tells	you	that	the	letter	right	after	it	is
an	escape	character.	An	escape	character	lets	you	print	special	characters	that	are	difficult	or
impossible	 to	 enter	 into	 the	 source	 code,	 such	 as	 the	 single	 quote	 in	 a	 string	 value	 that
begins	and	ends	with	single	quotes.

In	this	case,	if	we	didn’t	include	the	backslash,	the	single	quote	in	astronaut\'s	would
be	interpreted	as	the	end	of	the	string.	But	this	quote	needs	to	be	part	of	 the	string.	The
escaped	single	quote	tells	Python	that	it	should	include	the	single	quote	in	the	string.

But	what	if	you	actually	want	to	display	a	backslash?
Switch	 from	 your	 jokes.py	 program	 to	 the	 interactive	 shell	 and	 enter	 this	 print()

statement:

>>>	print('They	flew	away	in	a	green\teal	helicopter.')
They	flew	away	in	a	green				eal	helicopter.

This	 instruction	didn’t	 print	 a	backslash	because	 the	t	 in	 teal	was	 interpreted	 as	 an
escape	 character	 since	 it	 came	 after	 a	 backslash.	The	 \t	 simulates	 pressing	TAB	 on	 your
keyboard.

This	line	will	give	you	the	correct	output:

>>>	print('They	flew	away	in	a	green\\teal	helicopter.')
They	flew	away	in	a	green\teal	helicopter.

This	way	the	\\	is	a	backslash	character,	and	there	is	no	\t	to	interpret	as	TAB.
Table	 4-1	 is	 a	 list	 of	 some	 escape	 characters	 in	 Python,	 including	 \n,	 which	 is	 the

newline	escape	character	that	you	have	used	before.

Table	4-1:	Escape	Characters

Escape	character What	is	actually	printed

\\ Backslash	(\)
\' Single	quote	(')
\" Double	quote	(")
\n Newline
\t Tab

There	are	a	few	more	escape	characters	in	Python,	but	these	are	the	characters	you	will
most	likely	need	for	creating	games.

Single	and	Double	Quotes

While	we’re	 still	 in	 the	 interactive	 shell,	 let’s	 take	 a	 closer	 look	 at	quotes.	Strings	don’t
always	have	to	be	between	single	quotes	in	Python.	You	can	also	put	them	between	double
quotes.	These	two	lines	print	the	same	thing:

>>>	print('Hello	world')
Hello	world
>>>	print("Hello	world")
Hello	world

But	you	cannot	mix	quotes.	This	line	will	give	you	an	error	because	it	uses	both	quote
types	at	once:

>>>	print('Hello	world")
SyntaxError:	EOL	while	scanning	single-quoted	string

I	 like	to	use	single	quotes	so	I	don’t	have	to	hold	down	SHIFT	 to	 type	them.	They’re
easier	to	type,	and	Python	doesn’t	care	either	way.

Also,	note	that	just	as	you	need	the	\'	to	have	a	single	quote	in	a	string	surrounded	by
single	quotes,	you	need	 the	\"	 to	have	a	double	quote	 in	a	 string	 surrounded	by	double
quotes.	Look	at	this	example:

>>>	print('I	asked	to	borrow	Abe\'s	car	for	a	week.	He	said,	"Sure."')
I	asked	to	borrow	Abe's	car	for	a	week.	He	said,	"Sure."

You	use	single	quotes	to	surround	the	string,	so	you	need	to	add	a	backslash	before	the
single	 quote	 in	 Abe\'s.	 But	 the	 double	 quotes	 in	 "Sure."	 don’t	 need	 backslashes.	 The
Python	interpreter	is	smart	enough	to	know	that	if	a	string	starts	with	one	type	of	quote,
the	other	type	of	quote	doesn’t	mean	the	string	is	ending.

Now	check	out	another	example:

>>>	print("She	said,	\"I	can't	believe	you	let	them	borrow	your	car.\"")
She	said,	"I	can't	believe	you	let	them	borrow	your	car."

The	string	is	surrounded	in	double	quotes,	so	you	need	to	add	backslashes	for	all	of	the
double	quotes	within	the	string.	You	don’t	need	to	escape	the	single	quote	in	can't.

To	summarize,	in	the	single-quote	strings,	you	don’t	need	to	escape	double	quotes	but
do	need	to	escape	single	quotes,	and	in	the	double-quote	strings,	you	don’t	need	to	escape
single	quotes	but	do	need	to	escape	double	quotes.

The	print()	Function’s	end	Keyword	Parameter

Now	let’s	go	back	to	jokes.py	and	take	a	look	at	lines	9	to	16:

	9.	print('Knock	knock.')
10.	input()
11.	print("Who's	there?")
12.	input()
13.	print('Interrupting	cow.')
14.	input()
15.	print('Interrupting	cow	wh',	end='')
16.	print('-MOO!')

Did	you	notice	the	second	argument	in	line	15’s	print()	function?	Normally,	print()
adds	 a	 newline	 character	 to	 the	 end	 of	 the	 string	 it	 prints.	This	 is	why	 a	 blank	 print()
function	will	just	print	a	newline.	But	print()	can	optionally	have	a	second	parameter:	end.

Remember	 that	 an	 argument	 is	 the	 value	passed	 in	 a	 function	 call.	The	blank	 string
passed	 to	 print()	 is	 called	 a	 keyword	 argument.	 The	 end	 in	 end=''	 is	 called	 a	 keyword
parameter.	To	pass	 a	 keyword	 argument	 to	 this	 keyword	parameter,	 you	must	 type	end=
before	it.

When	we	run	this	section	of	code,	the	output	is

Knock	knock.
Who's	there?
Interrupting	cow.
Interrupting	cow	wh-MOO!

Because	we	passed	a	blank	string	to	the	end	parameter,	the	print()	function	will	add	a
blank	string	instead	of	adding	a	newline.	This	is	why	'-MOO!'	appears	next	to	the	previous
line,	 instead	 of	 on	 its	 own	 line.	 There	 was	 no	 newline	 after	 the	 'Interrupting	 cow	 wh'
string	was	printed.

Summary

This	 chapter	 explores	 the	 different	 ways	 you	 can	 use	 the	 print()	 function.	 Escape

characters	are	used	for	characters	that	are	difficult	to	type	into	the	code	with	the	keyboard.
If	you	want	to	use	special	characters	in	a	string,	you	must	use	a	backslash	escape	character,
\,	followed	by	another	letter	for	the	special	character.	For	example,	\n	would	be	a	newline.
If	your	special	character	is	a	backslash	itself,	you	use	\\.

The	print()	function	automatically	appends	a	newline	character	to	the	end	of	a	string.
Most	 of	 the	 time,	 this	 is	 a	 helpful	 shortcut.	 But	 sometimes	 you	 don’t	 want	 a	 newline
character.	 To	 change	 this,	 you	 can	 pass	 a	 blank	 string	 as	 the	 keyword	 argument	 for
print()’s	 end	 keyword	 parameter.	 For	 example,	 to	 print	 spam	 to	 the	 screen	 without	 a
newline	character,	you	would	call	print('spam',	end='').

5
DRAGON	REALM

The	 game	 you	 will	 create	 in	 this	 chapter	 is	 called	 Dragon	 Realm.	 The	 player	 decides
between	two	caves,	which	hold	either	treasure	or	certain	doom.

How	to	Play	Dragon	Realm

In	this	game,	the	player	is	in	a	land	full	of	dragons.	The	dragons	all	live	in	caves	with	their
large	piles	of	collected	treasure.	Some	dragons	are	friendly	and	share	their	treasure.	Other
dragons	 are	 hungry	 and	 eat	 anyone	 who	 enters	 their	 cave.	 The	 player	 approaches	 two
caves,	one	with	a	friendly	dragon	and	the	other	with	a	hungry	dragon,	but	doesn’t	know
which	dragon	is	in	which	cave.	The	player	must	choose	between	the	two.

TOPICS	COVERED	IN	THIS	CHAPTER
•	Flowcharts

•	Creating	your	own	functions	with	the	def	keyword

•	Multiline	strings

•	while	statements

•	The	and,	or,	and	not	Boolean	operators

•	Truth	tables

•	The	return	keyword

•	Global	and	local	variable	scope

•	Parameters	and	arguments

•	The	sleep()	function

Sample	Run	of	Dragon	Realm

Here’s	what	the	Dragon	Realm	game	looks	like	when	it’s	run.	The	player’s	input	is	in	bold.

You	are	in	a	land	full	of	dragons.	In	front	of	you,
you	see	two	caves.	In	one	cave,	the	dragon	is	friendly
and	will	share	his	treasure	with	you.	The	other	dragon
is	greedy	and	hungry,	and	will	eat	you	on	sight.
Which	cave	will	you	go	into?	(1	or	2)
1
You	approach	the	cave...
It	is	dark	and	spooky...
A	large	dragon	jumps	out	in	front	of	you!	He	opens	his	jaws	and...
Gobbles	you	down	in	one	bite!
Do	you	want	to	play	again?	(yes	or	no)
no

Flowchart	for	Dragon	Realm

It	often	helps	to	write	down	everything	you	want	your	game	or	program	to	do	before	you
start	writing	code.	When	you	do	this,	you	are	designing	the	program.

For	example,	it	may	help	to	draw	a	flowchart.	A	flowchart	is	a	diagram	that	shows	every
possible	action	that	can	happen	in	the	game	and	which	actions	are	connected.	Figure	5-1	is
a	flowchart	for	Dragon	Realm.

To	see	what	happens	in	the	game,	put	your	finger	on	the	START	box.	Then	follow	one
arrow	 from	 that	 box	 to	 another	 box.	 Your	 finger	 is	 like	 the	 program	 execution.	 The
program	terminates	when	your	finger	lands	on	the	END	box.

Figure	5-1:	Flowchart	for	the	Dragon	Realm	game

When	you	get	 to	 the	“Check	 for	 friendly	or	hungry	dragon”	box,	you	can	go	 to	 the
“Player	wins”	box	or	the	“Player	loses”	box.	At	this	branching	point,	the	program	can	go
in	different	directions.	Either	way,	both	paths	will	eventually	end	up	at	the	“Ask	to	play
again”	box.

Source	Code	for	Dragon	Realm

Open	a	new	file	editor	window	by	clicking	File	 	New	Window.	Enter	 the	 source	 code
and	save	it	as	dragon.py.	Then	run	the	program	by	pressing	F5.	If	you	get	errors,	compare
the	 code	 you	 typed	 to	 the	 book’s	 code	 with	 the	 online	 diff	 tool	 at
https://www.nostarch.com/inventwithpython#diff.

https://www.nostarch.com/inventwithpython#diff

dragon.py

	1.	import	random
	2.	import	time
	3.
	4.	def	displayIntro():
	5.					print('''You	are	in	a	land	full	of	dragons.	In	front	of	you,
	6.	you	see	two	caves.	In	one	cave,	the	dragon	is	friendly
	7.	and	will	share	his	treasure	with	you.	The	other	dragon
	8.	is	greedy	and	hungry,	and	will	eat	you	on	sight.''')
	9.	print()
10.
11.	def	chooseCave():
12.					cave	=	''
13.					while	cave	!=	'1'	and	cave	!=	'2':
14.									print('Which	cave	will	you	go	into?	(1	or	2)')
15.									cave	=	input()
16.
17.					return	cave
18.
19.	def	checkCave(chosenCave):
20.					print('You	approach	the	cave...')
21.					time.sleep(2)
22.					print('It	is	dark	and	spooky...')
23.					time.sleep(2)
24.					print('A	large	dragon	jumps	out	in	front	of	you!	He	opens	his	jaws
										and...')
25.					print()
26.					time.sleep(2)
27.
28.					friendlyCave	=	random.randint(1,	2)
29.
30.					if	chosenCave	==	str(friendlyCave):
31.									print('Gives	you	his	treasure!')
32.					else:
33.									print('Gobbles	you	down	in	one	bite!')
34.
35.	playAgain	=	'yes'
36.	while	playAgain	==	'yes'	or	playAgain	==	'y':
37.					displayIntro()
38.					caveNumber	=	chooseCave()

39.					checkCave(caveNumber)
40.
41.					print('Do	you	want	to	play	again?	(yes	or	no)')
42.					playAgain	=	input()

Let’s	look	at	the	source	code	in	more	detail.

Importing	the	random	and	time	Modules

This	program	imports	two	modules:

1.	import	random
2.	import	time

The	random	module	provides	 the	randint()	 function,	which	we	used	 in	 the	Guess	 the
Number	 game	 from	Chapter	 3.	 Line	 2	 imports	 the	 time	 module,	 which	 contains	 time-
related	functions.

Functions	in	Dragon	Realm

Functions	let	you	run	the	same	code	multiple	times	without	having	to	copy	and	paste	that
code	over	and	over	again.	Instead,	you	put	that	code	inside	a	function	and	call	the	function
whenever	 you	 need	 to.	 Because	 you	 write	 the	 code	 only	 once	 in	 the	 function,	 if	 the
function’s	code	has	a	mistake,	you	only	have	to	change	it	in	one	place	in	the	program.

You’ve	already	used	a	few	functions,	like	print(),	input(),	randint(),	str(),	and	int().
Your	programs	have	called	these	functions	to	execute	the	code	inside	them.	In	the	Dragon
Realm	game,	you’ll	write	your	own	functions	using	def	statements.

def	Statements
Line	4	is	a	def	statement:

4.	def	displayIntro():
5.					print('''You	are	in	a	land	full	of	dragons.	In	front	of	you,
6.	you	see	two	caves.	In	one	cave,	the	dragon	is	friendly
7.	and	will	share	his	treasure	with	you.	The	other	dragon
8.	is	greedy	and	hungry,	and	will	eat	you	on	sight.''')
9.					print()

The	def	 statement	defines	 a	new	 function	 (in	 this	 case,	 the	displayIntro()	 function),
which	you	can	call	later	in	the	program.

Figure	5-2	 shows	 the	parts	 of	 a	def	 statement.	 It	 has	 the	 def	 keyword	 followed	 by	 a
function	name	with	parentheses,	and	then	a	colon	(:).	The	block	after	the	def	statement	is
called	the	def	block.

Figure	5-2:	Parts	of	a	def	statement

Calling	a	Function
When	 you	 define	 a	 function,	 you	 specify	 the	 instructions	 for	 it	 to	 run	 in	 the	 following
block.	When	you	call	a	function,	the	code	inside	the	def	block	executes.	Unless	you	call	the
function,	the	instructions	in	the	def	block	will	not	execute.

In	other	words,	when	the	execution	reaches	a	def	statement,	it	skips	down	to	the	first
line	after	the	def	block.	But	when	a	 function	 is	called,	 the	execution	moves	 inside	of	 the
function	to	the	first	line	of	the	def	block.

For	example,	look	at	the	call	to	the	displayIntro()	function	on	line	37:

37.					displayIntro()

Calling	this	function	runs	the	print()	call,	which	displays	the	“You	are	in	a	land	full	of
dragons	...”	introduction.

Where	to	Put	Function	Definitions
A	function’s	def	statement	and	def	block	must	come	before	you	call	the	function,	just	as	you
must	assign	a	value	to	a	variable	before	you	use	that	variable.	If	you	put	the	function	call
before	 the	 function	 definition,	 you’ll	 get	 an	 error.	 Let’s	 look	 at	 a	 short	 program	 as	 an
example.	Open	a	new	file	editor	window,	enter	this	code,	save	it	as	example.py,	and	run	it:

sayGoodbye()

def	sayGoodbye():
				print('Goodbye!')

If	you	try	to	run	this	program,	Python	will	give	you	an	error	message	that	looks	like
this:

Traceback	(most	recent	call	last):
		File	"C:/Users/Al/AppData/Local/Programs/Python/Python36/example.py",
				line	1,	in	<module>
				sayGoodbye()
NameError:	name	'sayGoodbye'	is	not	defined

To	fix	this	error,	move	the	function	definition	before	the	function	call:

def	sayGoodbye():
				print('Goodbye!')

sayGoodbye()

Now,	the	function	is	defined	before	it	is	called,	so	Python	will	know	what	sayGoodbye()
should	 do.	 Otherwise,	 Python	 won’t	 have	 the	 instructions	 for	 sayGoodbye()	 when	 it	 is
called	and	so	won’t	be	able	to	run	it.

Multiline	Strings

So	far,	all	of	the	strings	in	our	print()	function	calls	have	been	on	one	line	and	have	had
one	quote	character	at	the	start	and	end.	However,	if	you	use	three	quotes	at	the	start	and
end	of	a	string,	then	it	can	go	across	several	lines.	These	are	multiline	strings.

Enter	the	following	into	the	interactive	shell	to	see	how	multiline	strings	work:

>>>	fizz	=	'''Dear	Alice,
I	will	return	to	Carol's	house	at	the	end	of	the	month.
Your	friend,
Bob'''
>>>	print(fizz)
Dear	Alice,
I	will	return	to	Carol's	house	at	the	end	of	the	month.
Your	friend,
Bob

Note	the	line	breaks	in	the	printed	string.	In	a	multiline	string,	the	newline	characters
are	included	as	part	of	the	string.	You	don’t	have	to	use	the	\n	escape	character	or	escape
quotes	 as	 long	 as	 you	don’t	use	 three	quotes	 together.	These	 line	breaks	make	 the	 code
easier	to	read	when	large	amounts	of	text	are	involved.

How	to	Loop	with	while	Statements

Line	11	defines	another	function	called	chooseCave():

11.	def	chooseCave():

This	function’s	code	asks	the	player	which	cave	they	want	to	go	in,	either	1	or	2.	We’ll
need	to	use	a	while	statement	to	ask	the	player	to	choose	a	cave,	which	marks	the	start	of	a
new	kind	of	loop:	a	while	loop.

Unlike	a	for	loop,	which	loops	a	specific	number	of	times,	a	while	loop	repeats	as	long
as	a	certain	condition	is	True.	When	the	execution	reaches	a	while	statement,	 it	evaluates
the	condition	next	to	the	while	keyword.	If	the	condition	evaluates	to	True,	 the	execution
moves	 inside	 the	 following	 block,	 called	 the	 while	 block.	 If	 the	 condition	 evaluates	 to
False,	the	execution	moves	past	the	while	block.

You	can	think	of	a	while	statement	as	being	almost	the	same	as	an	if	statement.	The
program	execution	enters	the	blocks	of	both	statements	if	their	condition	is	True.	But	when
the	 condition	 reaches	 the	 end	 of	 the	 block	 in	 a	 while	 loop,	 it	moves	 back	 to	 the	 while
statement	to	recheck	the	condition.

Look	at	the	def	block	for	chooseCave()	to	see	a	while	loop	in	action:

12.					cave	=	''
13.					while	cave	!=	'1'	and	cave	!=	'2':

Line	12	creates	a	new	variable	called	cave	and	stores	a	blank	string	in	it.	Then	a	while
loop	begins	on	line	13.	The	chooseCave()	function	needs	to	make	sure	the	player	entered	1
or	2	and	not	something	else.	A	loop	here	keeps	asking	the	player	which	cave	they	choose
until	they	enter	one	of	these	two	valid	responses.	This	is	called	input	validation.

The	condition	also	contains	a	new	operator	you	haven’t	seen	before:	and.	Just	as	-	and	*
are	mathematical	operators,	and	==	and	!=	are	comparison	operators,	the	and	operator	is	a
Boolean	operator.	Let’s	take	a	closer	look	at	Boolean	operators.

Boolean	Operators

Boolean	 logic	deals	with	 things	 that	are	either	 true	or	 false.	Boolean	operators	compare
values	and	evaluate	to	a	single	Boolean	value.

Think	of	the	sentence	“Cats	have	whiskers	and	dogs	have	tails.”	“Cats	have	whiskers”	is
true,	and	“dogs	have	tails”	is	also	true,	so	the	entire	sentence	“Cats	have	whiskers	and	dogs
have	tails”	is	true.

But	the	sentence	“Cats	have	whiskers	and	dogs	have	wings”	would	be	false.	Even	though
“cats	have	whiskers”	is	true,	dogs	don’t	have	wings,	so	“dogs	have	wings”	is	false.	In	Boolean
logic,	things	can	only	be	entirely	true	or	entirely	false.	Because	of	the	word	and,	the	entire
sentence	 is	 true	only	 if	both	parts	 are	 true.	 If	one	or	both	parts	are	 false,	 then	 the	entire
sentence	is	false.

The	and	Operator
The	 and	 operator	 in	 Python	 also	 requires	 the	 whole	 Boolean	 expression	 to	 be	 True	 or
False.	If	the	Boolean	values	on	both	sides	of	the	and	keyword	are	True,	then	the	expression
evaluates	 to	 True.	 If	 either	 or	 both	 of	 the	Boolean	 values	 are	 False,	 then	 the	 expression
evaluates	to	False.

Enter	the	following	expressions	with	the	and	operator	into	the	interactive	shell:

>>>	True	and	True
True
>>>	True	and	False
False
>>>	False	and	True
False

>>>	False	and	False
False
>>>	spam	=	'Hello'
>>>	10	<	20	and	spam	==	'Hello'
True

The	 and	 operator	 can	 be	 used	 to	 evaluate	 any	 two	 Boolean	 expressions.	 In	 the	 last
example,	10	<	20	evaluates	to	True	and	spam	==	'Hello'	also	evaluates	to	True,	so	the	two
Boolean	expressions	joined	by	the	and	operator	evaluate	as	True.

If	you	ever	forget	how	a	Boolean	operator	works,	you	can	look	at	its	truth	table,	which
shows	 how	 every	 combination	 of	 Boolean	 values	 evaluates.	 Table	 5-1	 shows	 every
combination	for	the	and	operator.

Table	5-1:	The	and	Operator’s	Truth	Table

A	and	B Evaluates	to

True	and	True True

True	and	False False

False	and	True False

False	and	False False

The	or	Operator
The	or	operator	is	similar	to	the	and	operator,	except	it	evaluates	to	True	if	either	of	the	two
Boolean	values	is	True.	The	only	time	the	or	operator	evaluates	 to	False	 is	 if	both	 of	 the
Boolean	values	are	False.

Now	enter	the	following	into	the	interactive	shell:

>>>	True	or	True
True
>>>	True	or	False
True
>>>	False	or	True
True
>>>	False	or	False
False
>>>	10	>	20	or	20	>	10
True

In	 the	 last	 example,	 10	 is	 not	 greater	 than	 20	 but	 20	 is	 greater	 than	 10,	 so	 the	 first
expression	 evaluates	 to	 False	 and	 the	 second	 expression	 evaluates	 to	 True.	 Because	 the
second	expression	is	True,	this	whole	expression	evaluates	as	True.

The	or	operator’s	truth	table	is	shown	in	Table	5-2.

Table	5-2:	The	or	Operator’s	Truth	Table

A	or	B Evaluates	to

True	or	True True

True	or	False True

False	or	True True

False	or	False False

The	not	Operator
Instead	 of	 combining	 two	 values,	 the	 not	 operator	 works	 on	 only	 one	 value.	 The	 not
operator	evaluates	to	the	opposite	Boolean	value:	True	expressions	evaluate	to	False,	 and
False	expressions	evaluate	to	True.

Enter	the	following	into	the	interactive	shell:

>>>	not	True
False
>>>	not	False
True
>>>	not	('black'	==	'white')
True

The	not	operator	can	also	be	used	on	any	Boolean	expression.	In	the	last	example,	the
expression	'black'	==	'white'	evaluates	to	False.	This	is	why	not	('black'	==	'white')	 is
True.

The	not	operator’s	truth	table	is	shown	in	Table	5-3.

Table	5-3:	The	not	Operator’s	Truth	Table

not	A Evaluates	to

not	True False

not	False True

Evaluating	Boolean	Operators
Look	at	line	13	of	the	Dragon	Realm	game	again:

13.					while	cave	!=	'1'	and	cave	!=	'2':

The	condition	has	two	parts	connected	by	the	and	Boolean	operator.	The	condition	is
True	only	if	both	parts	are	True.

The	first	time	the	while	statement’s	condition	is	checked,	cave	is	set	to	the	blank	string,
''.	The	blank	string	is	not	equal	to	the	string	'1',	so	the	left	side	evaluates	to	True.	The
blank	string	is	also	not	equal	to	the	string	'2',	so	the	right	side	evaluates	to	True.

So	the	condition	then	turns	into	True	and	True.	Because	both	values	are	True,	the	whole
condition	evaluates	 to	True,	 so	 the	program	execution	enters	 the	while	 block,	where	 the
program	will	attempt	to	assign	a	nonblank	value	for	cave.

Line	14	asks	the	player	to	choose	a	cave:

13.					while	cave	!=	'1'	and	cave	!=	'2':
14.									print('Which	cave	will	you	go	into?	(1	or	2)')
15.									cave	=	input()

Line	15	lets	the	player	type	their	response	and	press	ENTER.	This	response	is	stored	in
cave.	After	this	code	is	executed,	the	execution	loops	back	to	the	top	of	the	while	statement
and	rechecks	the	condition	at	line	13.

If	 the	player	entered	1	or	2,	 then	cave	will	be	either	'1'	or	'2'	 (since	input()	 always
returns	strings).	This	makes	the	condition	False,	and	the	program	execution	will	continue
past	the	while	loop.	For	example,	if	the	user	entered	'1',	 then	the	evaluation	would	look
like	this:

But	if	the	player	entered	3	or	4	or	HELLO,	that	response	would	be	invalid.	The	condition
would	then	be	True	and	would	enter	the	while	block	to	ask	the	player	again.	The	program
keeps	asking	the	player	which	cave	they	choose	until	they	enter	1	or	2.	This	guarantees	that
once	the	execution	moves	on,	the	cave	variable	contains	a	valid	response.

Return	Values

Line	17	has	something	new	called	a	return	statement:

17.					return	cave

A	 return	 statement	 appears	 only	 inside	 def	 blocks	 where	 a	 function—in	 this	 case,
chooseCave()—is	defined.	Remember	how	the	input()	function	returns	a	string	value	that
the	player	entered?	The	chooseCave()	function	will	also	return	a	value.	Line	17	returns	the
string	that	is	stored	in	cave,	either	'1'	or	'2'.

Once	the	return	statement	executes,	the	program	execution	jumps	immediately	out	of
the	def	block	(just	as	the	break	statement	makes	the	execution	jump	out	of	a	while	block).

The	program	execution	moves	back	to	the	 line	with	the	 function	call.	The	function	call
itself	will	evaluate	to	the	function’s	return	value.

Skip	down	to	line	38	for	a	moment	where	the	chooseCave()	function	is	called:

38.					caveNumber	=	chooseCave()

On	line	38,	when	the	program	calls	 the	 function	chooseCave(),	which	was	defined	on
line	 11,	 the	 function	 call	 evaluates	 to	 the	 string	 inside	 of	 cave,	 which	 is	 then	 stored	 in
caveNumber.	The	 while	 loop	 inside	 chooseCave()	 guarantees	 that	 chooseCave()	 will	 return
only	either	'1'	or	'2'	 as	 its	 return	 value.	 So	caveNumber	 can	have	only	 one	of	 these	 two
values.

Global	Scope	and	Local	Scope

There	is	something	special	about	variables	that	are	created	inside	functions,	like	the	cave
variable	in	the	chooseCave()	function	on	line	12:

12.					cave	=	''

A	 local	 scope	 is	 created	 whenever	 a	 function	 is	 called.	 Any	 variables	 assigned	 in	 this
function	exist	within	 the	 local	 scope.	Think	of	a	 scope	 as	 a	 container	 for	variables.	What
makes	variables	in	local	scopes	special	is	that	they	are	forgotten	when	the	function	returns
and	they	will	be	re-created	if	the	function	is	called	again.	The	value	of	a	local	variable	isn’t
remembered	between	function	calls.

Variables	 that	are	assigned	outside	of	 functions	exist	 in	 the	global	 scope.	There	 is	only
one	 global	 scope,	 and	 it	 is	 created	 when	 your	 program	 begins.	 When	 your	 program
terminates,	the	global	scope	is	destroyed,	and	all	its	variables	are	forgotten.	Otherwise,	the
next	time	you	ran	your	program,	the	variables	would	remember	their	values	from	the	last
time	you	ran	it.

A	variable	that	exists	in	a	local	scope	is	called	a	local	variable,	while	a	variable	that	exists
in	the	global	scope	is	called	a	global	variable.	A	variable	must	be	one	or	the	other;	it	cannot
be	both	local	and	global.

The	variable	cave	is	created	inside	the	chooseCave()	function.	This	means	it	is	created
in	the	chooseCave()	 function’s	 local	scope.	It	will	be	forgotten	when	chooseCave()	returns
and	will	be	re-created	if	chooseCave()	is	called	a	second	time.

Local	 and	 global	 variables	 can	 have	 the	 same	 name,	 but	 they	 are	 different	 variables
because	they	are	in	different	scopes.	Let’s	write	a	new	program	to	illustrate	these	concepts:

			def	bacon():

➊					spam	=	99						#	Creates	a	local	variable	named	spam
➋					print(spam)				#	Prints	99

➌	spam	=	42						#	Creates	a	global	variable	named	spam

➍	print(spam)				#	Prints	42
➎	bacon()								#	Calls	the	bacon()	function	and	prints	99
➏	print(spam)				#	Prints	42

We	first	make	a	function	called	bacon().	In	bacon(),	we	create	a	variable	called	spam	and
assign	it	99	➊.	At	➋,	we	call	print()	to	print	this	local	spam	variable,	which	is	99.	At	➌,	a
global	variable	called	spam	is	also	declared	and	set	to	42.	This	variable	is	global	because	it	is
outside	of	all	functions.	When	the	global	spam	variable	is	passed	to	print()	at	➍,	 it	prints
42.	When	 the	bacon()	 function	 is	 called	 at	➎,	➊	 and	➋	 are	 executed,	 and	 the	 local	 spam
variable	is	created,	set,	and	then	printed.	So	calling	bacon()	prints	the	value	99.	After	the
bacon()	function	call	returns,	the	local	spam	variable	is	forgotten.	If	we	print	spam	at	➏,	we
are	printing	the	global	variable,	so	the	output	there	is	42.

When	run,	this	code	will	output	the	following:

42
99
42

Where	 a	 variable	 is	 created	 determines	what	 scope	 it	 is	 in.	Keep	 this	 in	mind	when
writing	your	programs.

Function	Parameters

The	next	function	defined	in	the	Dragon	Realm	program	is	named	checkCave().

19.	def	checkCave(chosenCave):

Notice	the	text	chosenCave	between	the	parentheses.	This	is	a	parameter:	a	local	variable
that	 is	used	by	the	function’s	code.	When	the	function	is	called,	the	call’s	arguments	are
the	values	assigned	to	the	parameters.

Let’s	go	back	to	the	interactive	shell	for	a	moment.	Remember	that	for	some	function
calls,	 like	 str()	 or	 randint(),	 you	 would	 pass	 one	 or	 more	 arguments	 between	 the
parentheses:

>>>	str(5)
'5'
>>>	random.randint(1,	20)
14
>>>	len('Hello')
5

This	 example	 includes	 a	 Python	 function	 you	 haven’t	 seen	 yet:	 len().	 The	 len()
function	returns	an	integer	indicating	how	many	characters	are	in	the	string	passed	to	it.	In
this	case,	it	tells	us	that	the	string	'Hello'	has	5	characters.

You	will	also	pass	an	argument	when	you	call	checkCave().	This	argument	is	stored	in	a

new	variable	named	chosenCave,	which	is	checkCave()’s	parameter.
Here	 is	 a	 short	 program	 that	 demonstrates	 defining	 a	 function	 (sayHello)	 with	 a

parameter	(name):

def	sayHello(name):
				print('Hello,	'	+	name	+	'.	Your	name	has	'	+	str(len(name))	+
						'	letters.')
sayHello('Alice')
sayHello('Bob')
spam	=	'Carol'
sayHello(spam)

When	 you	 call	 sayHello()	 with	 an	 argument	 in	 the	 parentheses,	 the	 argument	 is
assigned	to	the	name	parameter,	and	the	code	in	the	function	is	executed.	There’s	just	one
line	of	code	in	the	sayHello()	function,	which	is	a	print()	function	call.	Inside	the	print()
function	call	are	some	strings	and	the	name	variable,	along	with	a	call	to	the	len()	function.
Here,	len()	is	used	to	count	the	number	of	characters	in	name.	If	you	run	the	program,	the
output	looks	like	this:

Hello,	Alice.	Your	name	has	5	letters.
Hello,	Bob.	Your	name	has	3	letters.
Hello,	Carol.	Your	name	has	5	letters.

For	each	call	to	sayHello(),	a	greeting	and	the	length	of	the	name	argument	are	printed.
Notice	 that	because	 the	 string	'Carol'	 is	 assigned	 to	 the	spam	 variable,	 sayHello(spam)	 is
equivalent	to	sayHello('Carol').

Displaying	the	Game	Results

Let’s	go	back	to	the	Dragon	Realm	game’s	source	code:

20.					print('You	approach	the	cave...')
21.					time.sleep(2)

The	time	module	has	a	function	called	sleep()	that	pauses	the	program.	Line	21	passes
the	integer	value	2	so	that	time.sleep()	will	pause	the	program	for	2	seconds.

22.					print('It	is	dark	and	spooky...')
23.					time.sleep(2)

Here	 the	 code	 prints	 some	more	 text	 and	 waits	 for	 another	 2	 seconds.	 These	 short
pauses	add	suspense	to	the	game	instead	of	displaying	the	text	all	at	once.	In	Chapter	4’s
Jokes	program,	you	called	the	input()	 function	 to	pause	until	 the	player	pressed	ENTER.
Here,	the	player	doesn’t	have	to	do	anything	except	wait	a	couple	of	seconds.

24.					print('A	large	dragon	jumps	out	in	front	of	you!	He	opens	his	jaws
										and...')
25.					print()

26.					time.sleep(2)

With	 the	 suspense	 building,	 our	 program	 will	 next	 determine	 which	 cave	 has	 the
friendly	dragon.

Deciding	Which	Cave	Has	the	Friendly	Dragon

Line	28	calls	the	randint()	function,	which	will	randomly	return	either	1	or	2.

28.					friendlyCave	=	random.randint(1,	2)

This	 integer	 value	 is	 stored	 in	 friendlyCave	 and	 indicates	 the	 cave	with	 the	 friendly
dragon.

30.					if	chosenCave	==	str(friendlyCave):
31.									print('Gives	you	his	treasure!')

Line	30	checks	whether	the	player’s	chosen	cave	in	the	chosenCave	variable	('1'	or	'2')
is	equal	to	the	friendly	dragon	cave.

But	the	value	in	friendlyCave	is	an	integer	because	randint()	returns	integers.	You	can’t
compare	 strings	 and	 integers	with	 the	 ==	 sign,	 because	 they	will	never	 be	 equal	 to	 each
other:	'1'	is	not	equal	to	1,	and	'2'	is	not	equal	to	2.

So	 friendlyCave	 is	 passed	 to	 the	 str()	 function,	 which	 returns	 the	 string	 value	 of
friendlyCave.	 Now	 the	 values	 will	 have	 the	 same	 data	 type	 and	 can	 be	 meaningfully
compared	 to	 each	 other.	We	 could	 have	 also	 converted	 chosenCave	 to	 an	 integer	 value
instead.	Then	line	30	would	have	looked	like	this:

				if	int(chosenCave)	==	friendlyCave:

If	chosenCave	is	equal	to	friendlyCave,	the	condition	evaluates	to	True,	and	line	31	tells
the	player	they	have	won	the	treasure.

Now	we	 have	 to	 add	 some	 code	 to	 run	 if	 the	 condition	 is	 false.	 Line	 32	 is	 an	 else
statement:

32.					else:
33.									print('Gobbles	you	down	in	one	bite!')

An	else	statement	can	come	only	after	an	if	block.	The	else	block	executes	if	the	if
statement’s	 condition	 is	 False.	 Think	 of	 this	 as	 the	 program’s	 way	 of	 saying,	 “If	 this
condition	is	true,	then	execute	the	if	block	or	else	execute	the	else	block.”

In	 this	 case,	 the	 else	 statement	 runs	 when	 chosenCave	 is	 not	 equal	 to	 friendlyCave.
Then,	the	print()	function	call	on	line	33	is	run,	telling	the	player	that	they’ve	been	eaten
by	the	dragon.

The	Game	Loop

The	first	part	of	the	program	defines	several	functions	but	doesn’t	run	the	code	inside	of
them.	Line	35	is	where	the	main	part	of	the	program	begins	because	it	is	the	first	line	that
runs:

35.	playAgain	=	'yes'
36.	while	playAgain	==	'yes'	or	playAgain	==	'y':

This	line	is	where	the	main	part	of	the	program	begins.	The	previous	def	 statements
merely	defined	the	functions.	They	didn’t	run	the	code	inside	of	those	functions.

Lines	35	and	36	are	setting	up	a	loop	that	contains	the	rest	of	the	game	code.	At	the	end
of	the	game,	the	player	can	tell	the	program	whether	they	want	to	play	again.	If	they	do,
the	execution	enters	the	while	loop	to	run	the	entire	game	all	over	again.	If	they	don’t,	the
while	 statement’s	condition	will	be	False,	 and	the	execution	will	move	 to	 the	end	of	 the
program	and	terminate.

The	 first	 time	 the	 execution	 comes	 to	 this	 while	 statement,	 line	 35	 will	 have	 just
assigned	'yes'	to	the	playAgain	variable.	That	means	the	condition	will	be	True	at	the	start
of	the	program.	This	guarantees	that	the	execution	enters	the	loop	at	least	once.

Calling	the	Functions	in	the	Program
Line	37	calls	the	displayIntro()	function:

37.					displayIntro()

This	 isn’t	 a	 Python	 function—it	 is	 the	 function	 that	 you	 defined	 earlier	 on	 line	 4.
When	 this	 function	 is	 called,	 the	 program	 execution	 jumps	 to	 the	 first	 line	 in	 the
displayIntro()	function	on	line	5.	When	all	the	lines	in	the	function	have	been	executed,
the	execution	jumps	back	to	line	37	and	continues	moving	down.

Line	38	also	calls	a	function	that	you	defined:

38.					caveNumber	=	chooseCave()

Remember	that	the	chooseCave()	function	lets	the	player	choose	the	cave	they	want	to
enter.	When	line	17’s	return	cave	executes,	the	program	execution	jumps	back	to	line	38.
The	chooseCave()	 call	 then	 evaluates	 to	 the	 return	 value,	which	will	 be	 an	 integer	 value
representing	 the	 cave	 the	 player	 chose	 to	 enter.	 This	 return	 value	 is	 stored	 in	 a	 new
variable	named	caveNumber.

Then	the	program	execution	moves	on	to	line	39:

39.					checkCave(caveNumber)

Line	39	calls	the	checkCave()	function,	passing	the	value	in	caveNumber	as	an	argument.

Not	only	does	the	execution	jump	to	line	20,	but	the	value	in	caveNumber	is	copied	to	the
parameter	chosenCave	inside	the	checkCave()	function.	This	is	the	function	that	will	display
either	'Gives	you	his	treasure!'	or	'Gobbles	you	down	in	one	bite!'	 depending	on	 the
cave	the	player	chooses	to	enter.

Asking	the	Player	to	Play	Again
Whether	the	player	won	or	lost,	they	are	asked	if	they	want	to	play	again.

41.					print('Do	you	want	to	play	again?	(yes	or	no)')
42.					playAgain	=	input()

The	variable	playAgain	stores	what	the	player	types.	Line	42	is	the	last	line	of	the	while
block,	so	the	program	jumps	back	to	line	36	to	check	the	while	loop’s	condition:	playAgain
==	'yes'	or	playAgain	==	'y'.

If	the	player	enters	the	string	'yes'	or	'y',	then	the	execution	enters	the	loop	again	at
line	37.

If	 the	 player	 enters	 'no'	 or	 'n'	 or	 something	 silly	 like	 'Abraham	 Lincoln',	 then	 the
condition	is	False,	and	the	program	execution	continues	to	the	line	after	the	while	block.
But	since	there	aren’t	any	lines	after	the	while	block,	the	program	terminates.

One	thing	to	note:	the	string	'YES'	is	not	equal	to	the	string	'yes'	since	the	computer
does	not	consider	upper-	and	 lowercase	 letters	 the	same.	 If	 the	player	entered	the	string
'YES',	 then	 the	 while	 statement’s	 condition	 would	 evaluate	 to	 False	 and	 the	 program
would	 still	 terminate.	 Later,	 the	 Hangman	 program	 will	 show	 you	 how	 to	 avoid	 this
problem.	(See	“The	lower()	and	upper()	String	Methods”	on	page	101.)

You’ve	just	completed	your	second	game!	In	Dragon	Realm,	you	used	a	lot	of	what	you
learned	 in	 the	Guess	 the	Number	 game	 and	 picked	 up	 a	 few	 new	 tricks.	 If	 you	 didn’t
understand	 some	 of	 the	 concepts	 in	 this	 program,	 go	 over	 each	 line	 of	 the	 source	 code
again	and	try	changing	the	code	to	see	how	the	program	changes.

In	Chapter	 6,	 you	 won’t	 create	 another	 game.	 Instead,	 you	 will	 learn	 how	 to	 use	 a
feature	of	IDLE	called	the	debugger.

Summary

In	the	Dragon	Realm	game,	you	created	your	own	functions.	A	function	is	a	mini-program
within	your	program.	The	code	 inside	the	 function	runs	when	the	function	 is	called.	By
breaking	up	your	code	into	functions,	you	can	organize	your	code	into	shorter	and	easier-
to-understand	sections.

Arguments	are	values	copied	to	the	function’s	parameters	when	the	function	is	called.
The	function	call	itself	evaluates	to	the	return	value.

You	also	learned	about	variable	scopes.	Variables	created	inside	of	a	function	exist	 in
the	 local	 scope,	 and	 variables	 created	 outside	 of	 all	 functions	 exist	 in	 the	 global	 scope.

Code	in	the	global	scope	cannot	make	use	of	local	variables.	If	a	local	variable	has	the	same
name	as	a	global	variable,	Python	considers	it	a	separate	variable.	Assigning	new	values	to
the	local	variable	won’t	change	the	value	in	the	global	variable.

Variable	scopes	might	seem	complicated,	but	they	are	useful	for	organizing	functions
as	separate	pieces	of	code	from	the	rest	of	the	program.	Because	each	function	has	its	own
local	 scope,	 you	 can	 be	 sure	 that	 the	 code	 in	 one	 function	 won’t	 cause	 bugs	 in	 other
functions.

Almost	every	program	has	functions	because	they	are	so	useful.	By	understanding	how
functions	work,	you	can	save	yourself	a	lot	of	typing	and	make	bugs	easier	to	fix.

6
USING	THE	DEBUGGER

If	you	enter	the	wrong	code,	the	computer	won’t	give	you	the	right	program.	A	computer
program	will	always	do	what	you	tell	it	to,	but	what	you	tell	it	to	do	might	not	be	what
you	 actually	want	 it	 to	 do.	These	 errors	 are	 bugs	 in	 a	 computer	 program.	 Bugs	 happen
when	the	programmer	has	not	carefully	thought	about	exactly	what	the	program	is	doing.

TOPICS	COVERED	IN	THIS	CHAPTER
•	Three	types	of	errors

•	IDLE’s	debugger

•	The	Go	and	Quit	buttons

•	Stepping	into,	over,	and	out

•	Breakpoints

Types	of	Bugs
There	are	three	types	of	bugs	that	can	happen	in	your	program:

Syntax	errors	This	type	of	bug	comes	from	typos.	When	the	Python	interpreter	sees	a
syntax	error,	it’s	because	your	code	isn’t	written	in	proper	Python	language.	A	Python
program	with	even	a	single	syntax	error	won’t	run.

Runtime	 errors	 These	 are	 bugs	 that	 happen	 while	 the	 program	 is	 running.	 The
program	will	work	 up	 until	 it	 reaches	 the	 line	 of	 code	with	 the	 error,	 and	 then	 the
program	 will	 terminate	 with	 an	 error	 message	 (this	 is	 called	 crashing).	 The	 Python
interpreter	will	 display	 a	 traceback:	 an	 error	message	 showing	 the	 line	 containing	 the

problem.

Semantic	errors	These	bugs—which	are	the	trickiest	to	fix—don’t	crash	the	program,
but	they	prevent	the	program	from	doing	what	the	programmer	intended	it	to	do.	For
example,	 if	 the	 programmer	wants	 the	 variable	 total	 to	 be	 the	 sum	 of	 the	 values	 in
variables	a,	b,	and	c	but	writes	total	=	a	*	b	*	c,	then	the	value	in	total	will	be	wrong.
This	could	crash	the	program	later	on,	but	it	won’t	be	immediately	obvious	where	the
semantic	bug	happened.

Finding	bugs	in	a	program	can	be	hard,	if	you	even	notice	them	at	all!	When	running
your	program,	you	might	discover	that	sometimes	functions	are	not	called	when	they	are
supposed	to	be,	or	maybe	they	are	called	too	many	times.	You	might	code	the	condition
for	a	while	loop	incorrectly,	so	that	it	loops	the	wrong	number	of	times.	You	might	write	a
loop	that	never	exits,	a	semantic	error	known	as	an	infinite	loop.	To	stop	a	program	stuck	in
an	infinite	loop,	you	can	press	CTRL-C	in	the	interactive	shell.

In	fact,	create	an	infinite	loop	by	entering	this	code	in	the	interactive	shell	(remember
to	press	ENTER	 twice	 to	 let	 the	 interactive	 shell	 know	you	 are	 done	 typing	 in	 the	while
block):

>>>	while	True:
								print('Press	Ctrl-C	to	stop	this	infinite	loop!!!')

Now	press	and	hold	down	CTRL-C	to	stop	the	program.	The	interactive	shell	will	look
like	this:

Press	Ctrl-C	to	stop	this	infinite	loop!!!
Press	Ctrl-C	to	stop	this	infinite	loop!!!
Press	Ctrl-C	to	stop	this	infinite	loop!!!
Press	Ctrl-C	to	stop	this	infinite	loop!!!
Press	Ctrl-C	to	stop	this	infinite	loop!!!
Traceback	(most	recent	call	last):
		File	"<pyshell#1>",	line	2,	in	<module>
				print('Press	Ctrl-C	to	stop	this	infinite	loop!!!')
		File	"C:\Program	Files\Python	3.5\lib\idlelib\PyShell.py",	line	1347,	in
write
				return	self.shell.write(s,	self.tags)
KeyboardInterrupt

The	 while	 loop	 is	 always	 True,	 so	 the	 program	will	 continue	 printing	 the	 same	 line
forever	 until	 it	 is	 stopped	 by	 the	 user.	 In	 this	 example,	 we	 pressed	CTRL-C	 to	 stop	 the
infinite	loop	after	the	while	loop	had	executed	five	times.

The	Debugger

It	 can	 be	 hard	 to	 figure	 out	 the	 source	 of	 a	 bug	 because	 the	 lines	 of	 code	 are	 executed
quickly	and	the	values	in	variables	change	so	often.	A	debugger	 is	a	program	that	 lets	you
step	 through	your	 code	one	 line	 at	 a	 time	 in	 the	 same	order	 that	Python	executes	 each

instruction.	The	debugger	also	shows	you	what	values	are	stored	in	variables	at	each	step.

Starting	the	Debugger
In	 IDLE,	 open	 the	 Dragon	 Realm	 game	 you	 made	 in	 Chapter	 5.	 After	 opening	 the
dragon.py	file,	click	the	interactive	shell	and	then	click	Debug	 	Debugger	 to	display	the
Debug	Control	window	(Figure	6-1).

When	the	debugger	is	run,	the	Debug	Control	window	will	look	like	Figure	6-2.	Make
sure	to	select	the	Stack,	Locals,	Source,	and	Globals	checkboxes.

Now	when	 you	 run	 the	Dragon	Realm	 game	 by	 pressing	 F5,	 IDLE’s	 debugger	will
activate.	 This	 is	 called	 running	 a	 program	 under	 a	 debugger.	 When	 you	 run	 a	 Python
program	under	the	debugger,	the	program	will	stop	before	it	executes	the	first	instruction.
If	 you	 click	 the	 file	 editor’s	 title	 bar	 (and	 you’ve	 selected	 the	 Source	 checkbox	 in	 the
Debug	Control	window),	the	first	instruction	is	highlighted	in	gray.	The	Debug	Control
window	shows	the	execution	is	on	line	1,	which	is	the	import	random	line.

Figure	6-1:	The	Debug	Control	window

Figure	6-2:	Running	the	Dragon	Realm	game	under	the	debugger

Stepping	Through	the	Program	with	the	Debugger
The	 debugger	 lets	 you	 execute	 one	 instruction	 at	 a	 time;	 this	 process	 is	 called	 stepping.
Execute	 a	 single	 instruction	 now	 by	 clicking	 the	 Step	 button	 in	 the	 Debug	 Control
window.	 Python	 will	 execute	 the	 import	 random	 instruction,	 and	 then	 stop	 before	 it
executes	the	next	instruction.	The	Debug	Control	window	shows	you	what	line	is	about	to
be	executed	when	you	click	the	Step	button,	so	the	execution	should	now	be	on	line	2,	the
import	time	line.	Click	the	Quit	button	to	terminate	the	program	for	now.

Here’s	a	summary	of	what	happens	when	you	click	the	Step	button	as	you	run	Dragon

Realm	under	a	debugger.	Press	F5	to	start	running	Dragon	Realm	again	and	then	follow
these	instructions:

1.	 Click	the	Step	button	twice	to	run	the	two	import	lines.
2.	 Click	the	Step	button	three	more	times	to	execute	the	three	def	statements.
3.	 Click	the	Step	button	again	to	define	the	playAgain	variable.
4.	 Click	Go	to	run	the	rest	of	the	program	or	click	Quit	to	terminate	the	program.

The	debugger	skipped	line	3	because	it’s	a	blank	line.	Notice	you	can	only	step	forward
with	the	debugger;	you	can’t	go	backward.

Globals	Area

The	 Globals	 area	 in	 the	 Debug	 Control	 window	 is	 where	 all	 the	 global	 variables	 are
displayed.	Remember,	global	variables	are	variables	created	outside	of	any	functions	(that
is,	in	the	global	scope).

The	text	next	to	the	function	names	in	the	Globals	area	looks	like	"<function	checkCave
at	0x012859B0>".	The	module	names	also	have	confusing-looking	text	next	to	them,	like	"
<module	'random'	from	'C:\\Python31\\lib\\random.pyc'>".	You	don’t	need	to	know	what
this	text	means	to	debug	your	programs.	Just	seeing	whether	the	functions	and	modules	are
in	the	Globals	area	will	tell	you	whether	a	function	has	been	defined	or	a	module	has	been
imported.

You	can	also	ignore	the	__builtins__,	__doc__,	__name__,	and	other	similar	lines	in	the
Globals	area.	(Those	are	variables	that	appear	in	every	Python	program.)

In	 the	 Dragon	 Realm	 program,	 the	 three	 def	 statements,	 which	 execute	 and	 define
functions,	 will	 appear	 in	 the	 Globals	 area	 of	 the	 Debug	 Control	 window.	 When	 the
playAgain	variable	is	created,	it	will	also	show	up	in	the	Globals	area.	Next	to	the	variable
name	will	be	the	string	'yes'.	The	debugger	lets	you	see	the	values	of	all	the	variables	in
the	program	as	the	program	runs.	This	is	useful	for	fixing	bugs.

Locals	Area

In	 addition	 to	 the	Globals	 area,	 there	 is	 a	Locals	 area,	 which	 shows	 you	 the	 local	 scope
variables	and	their	values.	The	Locals	area	will	contain	variables	only	when	the	program
execution	 is	 inside	of	 a	 function.	When	 the	execution	 is	 in	 the	global	 scope,	 this	 area	 is
blank.

The	Go	and	Quit	Buttons

If	you	get	tired	of	clicking	the	Step	button	repeatedly	and	just	want	the	program	to	run
normally,	click	the	Go	button	at	the	top	of	the	Debug	Control	window.	This	will	tell	the

program	to	run	normally	instead	of	stepping.
To	 terminate	 the	 program	 entirely,	 click	 the	Quit	 button	 at	 the	 top	 of	 the	Debug

Control	 window.	The	 program	will	 exit	 immediately.	This	 is	 helpful	 if	 you	must	 start
debugging	again	from	the	beginning	of	the	program.

Stepping	Into,	Over,	and	Out

Start	the	Dragon	Realm	program	with	the	debugger.	Keep	stepping	until	the	debugger	is
at	 line	37.	As	 shown	 in	Figure	6-3,	 this	 is	 the	 line	with	displayIntro().	When	 you	 click
Step	again,	 the	debugger	will	 jump	into	this	 function	call	and	appear	on	 line	5,	 the	 first
line	in	the	displayIntro()	function.	This	kind	of	stepping,	which	is	what	you’ve	been	doing
so	far,	is	called	stepping	into.

When	the	execution	is	paused	at	line	5,	you’ll	want	to	stop	stepping.	If	you	clicked	Step
once	more,	the	debugger	would	step	into	the	print()	function.	The	print()	function	is	one
of	 Python’s	 built-in	 functions,	 so	 it	 isn’t	 useful	 to	 step	 through	 with	 the	 debugger.
Python’s	 own	 functions—such	 as	 print(),	 input(),	 str(),	 and	 randint()—have	 been
carefully	 checked	 for	 errors.	You	 can	 assume	 they’re	not	 the	parts	 causing	bugs	 in	 your
program.

You	don’t	want	to	waste	time	stepping	through	the	internals	of	the	print()	 function.
So,	instead	of	clicking	Step	to	step	into	the	print()	function’s	code,	click	Over.	This	will
step	over	the	code	inside	the	print()	function.	The	code	inside	print()	will	be	executed	at
normal	speed,	and	then	the	debugger	will	pause	once	the	execution	returns	from	print().

Stepping	over	is	a	convenient	way	to	skip	stepping	through	code	inside	a	function.	The
debugger	will	now	be	paused	at	line	38,	caveNumber	=	chooseCave().

Click	Step	 again	 to	 step	 into	 the	 chooseCave()	 function.	 Keep	 stepping	 through	 the
code	until	line	15,	the	input()	call.	The	program	will	wait	until	you	type	a	response	into
the	interactive	shell,	just	like	when	you	run	the	program	normally.	If	you	try	clicking	the
Step	 button	 now,	 nothing	 will	 happen	 because	 the	 program	 is	 waiting	 for	 a	 keyboard
response.

Figure	6-3:	Keep	stepping	until	you	reach	line	37.

Click	back	to	the	interactive	shell	and	type	which	cave	you	want	to	enter.	The	blinking
cursor	must	be	on	the	bottom	line	in	the	interactive	shell	before	you	can	type.	Otherwise,
the	text	you	type	will	not	appear.

Once	you	press	ENTER,	the	debugger	will	continue	to	step	through	lines	of	code	again.
Next,	click	the	Out	button	on	the	Debug	Control	window.	This	 is	called	 stepping	out

because	 it	 will	 cause	 the	 debugger	 to	 step	 over	 as	 many	 lines	 as	 it	 needs	 to	 until	 the
execution	has	returned	from	the	function	it	is	in.	After	it	jumps	out,	the	execution	will	be

on	the	line	after	the	one	that	called	the	function.
If	you	are	not	inside	a	function,	clicking	Out	will	cause	the	debugger	to	execute	all	the

remaining	lines	in	the	program.	This	is	the	same	behavior	that	happens	when	you	click	the
Go	button.

Here’s	a	recap	of	what	each	button	does:

Go	 Executes	 the	 rest	 of	 the	 code	 as	 normal,	 or	 until	 it	 reaches	 a	 breakpoint	 (see
“Setting	Breakpoints”	on	page	73).

Step	Executes	one	 instruction	or	one	step.	If	 the	 line	 is	a	 function	call,	 the	debugger
will	step	into	the	function.

Over	Executes	one	instruction	or	one	step.	If	the	line	is	a	function	call,	the	debugger
won’t	step	into	the	function	but	instead	will	step	over	the	call.

Out	Keeps	stepping	over	lines	of	code	until	the	debugger	leaves	the	function	it	was	in
when	Out	was	clicked.	This	steps	out	of	the	function.

Quit	Immediately	terminates	the	program.

Now	that	we	know	how	to	use	the	debugger,	let’s	try	finding	bugs	in	some	programs.

Finding	the	Bug

The	debugger	can	help	you	find	the	cause	of	bugs	in	your	program.	As	an	example,	here	is
a	small	program	with	a	bug.	The	program	comes	up	with	a	random	addition	problem	for
the	user	 to	 solve.	 In	 the	 interactive	 shell,	 click	File	 	New	Window	 to	 open	 a	 new	 file
editor	window.	Enter	this	program	into	that	window	and	save	it	as	buggy.py.

buggy.py

1.	import	random
2.	number1	=	random.randint(1,	10)
3.	number2	=	random.randint(1,	10)
4.	print('What	is	'	+	str(number1)	+	'	+	'	+	str(number2)	+	'?')
5.	answer	=	input()
6.	if	answer	==	number1	+	number2:
7.					print('Correct!')
8.	else:
9.					print('Nope!	The	answer	is	'	+	str(number1	+	number2))

Type	the	program	exactly	as	it	is	shown,	even	if	you	can	already	tell	what	the	bug	is.
Then	run	the	program	by	pressing	F5.	Here’s	what	 it	might	 look	like	when	you	run	the
program:

What	is	5	+	1?
6
Nope!	The	answer	is	6

That’s	a	bug!	The	program	doesn’t	crash,	but	it’s	not	working	correctly.	The	program
says	the	user	is	wrong	even	if	they	enter	the	correct	answer.

Running	the	program	under	a	debugger	will	help	find	the	bug’s	cause.	At	the	top	of	the
interactive	shell,	click	Debug	 	Debugger	 to	display	the	Debug	Control	window.	(Make
sure	you’ve	checked	the	Stack,	Source,	Locals,	and	Globals	checkboxes.)	Then	press	F5	in
the	file	editor	to	run	the	program.	This	time	it	will	run	under	the	debugger.

The	debugger	starts	at	the	import	random	line:

1.	import	random

Nothing	special	happens	here,	so	just	click	Step	to	execute	it.	You	will	see	the	random
module	added	to	the	Globals	area.

Click	Step	again	to	run	line	2:

2.	number1	=	random.randint(1,	10)

A	new	file	editor	window	will	appear	with	the	random.py	file.	You	have	stepped	inside
the	 randint()	 function	 inside	 the	 random	module.	 You	 know	Python’s	 built-in	 functions
won’t	be	the	source	of	your	bugs,	so	click	Out	 to	step	out	of	the	randint()	 function	and
back	to	your	program.	Then	close	the	random.py	 file’s	window.	Next	time,	you	can	click
Over	to	step	over	the	randint()	function	instead	of	stepping	into	it.

Line	3	is	also	a	randint()	function	call:

3.	number2	=	random.randint(1,	10)

Skip	stepping	into	this	code	by	clicking	Over.
Line	4	is	a	print()	call	to	show	the	player	the	random	numbers:

4.	print('What	is	'	+	str(number1)	+	'	+	'	+	str(number2)	+	'?')

You	know	what	numbers	the	program	will	print	even	before	it	prints	them!	Just	look	at
the	 Globals	 area	 of	 the	 Debug	 Control	 window.	 You	 can	 see	 the	 number1	 and	 number2
variables,	and	next	to	them	are	the	integer	values	stored	in	those	variables.

The	 number1	 variable	 has	 the	 value	 4	 and	 the	 number2	 variable	 has	 the	 value	 8.	 (Your
random	numbers	will	probably	be	different.)	When	you	click	Step,	the	str()	function	will
concatenate	the	string	version	of	these	integers,	and	the	program	will	display	the	string	in
the	print()	call	with	these	values.	When	I	ran	the	debugger,	it	looked	like	Figure	6-4.

Click	Step	from	line	5	to	execute	input().

5.	answer	=	input()

The	 debugger	 waits	 until	 the	 player	 enters	 a	 response	 into	 the	 program.	 Enter	 the
correct	answer	(in	my	case,	12)	in	the	interactive	shell.	The	debugger	will	resume	and	move
down	to	line	6:

6.	if	answer	==	number1	+	number2:
7.					print('Correct!')

Line	6	is	an	if	statement.	The	condition	is	that	the	value	in	answer	must	match	the	sum
of	number1	 and	number2.	 If	 the	condition	 is	True,	 the	debugger	will	move	 to	 line	7.	 If	 the
condition	is	False,	the	debugger	will	move	to	line	9.	Click	Step	one	more	time	to	find	out
where	it	goes.

8.	else:
9.					print('Nope!	The	answer	is	'	+	str(number1	+	number2))

Figure	6-4:	number1	is	set	to	4,	and	number2	is	set	to	8.

The	debugger	 is	now	on	 line	9!	What	happened?	The	condition	 in	 the	if	 statement
must	 have	 been	 False.	 Look	 at	 the	 values	 for	 number1,	 number2,	 and	 answer.	 Notice	 that
number1	and	number2	are	integers,	so	their	sum	would	have	also	been	an	integer.	But	answer
is	a	string.

That	means	that	answer	==	number1	+	number2	would	have	evaluated	to	'12'	==	12.	A
string	 value	 and	 an	 integer	 value	 will	 never	 be	 equal	 to	 each	 other,	 so	 the	 condition
evaluated	to	False.

That	 is	 the	 bug	 in	 the	 program:	 the	 code	 uses	 answer	 when	 it	 should	 have	 used
int(answer).	 Change	 line	 6	 to	 int(answer)	 ==	 number1	 +	 number2	 and	 run	 the	 program
again.

What	is	2	+	3?
5
Correct!

Now	the	program	works	correctly.	Run	it	one	more	time	and	enter	a	wrong	answer	on
purpose.	 You’ve	 now	 debugged	 this	 program!	 Remember,	 the	 computer	 will	 run	 your
programs	exactly	as	you	type	them,	even	if	what	you	type	isn’t	what	you	intend.

Setting	Breakpoints

Stepping	through	the	code	one	line	at	a	time	might	still	be	too	slow.	Often	you’ll	want	the
program	to	run	at	normal	speed	until	it	reaches	a	certain	line.	You	can	set	a	breakpoint	on	a
line	when	you	want	the	debugger	to	take	control	once	the	execution	reaches	that	 line.	If
you	think	there’s	a	problem	with	your	code	on,	say,	line	17,	just	set	a	breakpoint	on	that
line	(or	maybe	a	few	lines	before	that).

When	the	execution	reaches	that	line,	the	program	will	break	into	the	debugger.	Then
you	can	step	through	lines	to	see	what	is	happening.	Clicking	Go	will	execute	the	program
normally	until	it	reaches	another	breakpoint	or	the	end	of	the	program.

To	set	a	breakpoint	on	Windows,	right-click	the	line	in	the	file	editor	and	select	Set
Breakpoint	from	the	menu	that	appears.	On	OS	X,	CTRL-click	to	get	to	a	menu	and	select
Set	Breakpoint.	You	 can	 set	 breakpoints	 on	 as	many	 lines	 as	 you	want.	The	 file	 editor
highlights	 each	 breakpoint	 line	 in	 yellow.	 Figure	 6-5	 shows	 an	 example	 of	 what	 a
breakpoint	looks	like.

Figure	6-5:	The	file	editor	with	two	breakpoints	set

To	remove	the	breakpoint,	click	the	line	and	select	Clear	Breakpoint	from	the	menu
that	appears.

Using	Breakpoints

Next	we’ll	look	at	a	program	that	calls	random.randint(0,	1)	to	simulate	coin	flips.	If	the
function	returns	the	integer	1,	that	will	be	heads,	and	if	it	returns	the	integer	0,	that	will	be
tails.	The	flips	variable	will	track	how	many	coin	flips	have	been	done.	The	heads	variable
will	track	how	many	came	up	heads.

The	program	will	do	coin	flips	1,000	times.	This	would	take	a	person	over	an	hour	to
do,	but	 the	computer	can	do	 it	 in	one	 second!	There’s	no	bug	 in	 this	program,	but	 the
debugger	will	let	us	look	at	the	state	of	the	program	while	it’s	running.	Enter	the	following
code	into	the	file	editor	and	save	it	as	coinFlips.py.	If	you	get	errors	after	entering	this	code,
compare	 the	 code	 you	 typed	 to	 the	 book’s	 code	 with	 the	 online	 diff	 tool	 at
https://www.nostarch.com/inventwithpython#diff.

coinFlips.py

	1.	import	random
	2.	print('I	will	flip	a	coin	1000	times.	Guess	how	many	times	it	will	come	up
						heads.	(Press	enter	to	begin)')
	3.	input()
	4.	flips	=	0
	5.	heads	=	0
	6.	while	flips	<	1000:
	7.					if	random.randint(0,	1)	==	1:

https://www.nostarch.com/inventwithpython#diff

	8.									heads	=	heads	+	1
	9.					flips	=	flips	+	1
10.
11.					if	flips	==	900:
12.									print('900	flips	and	there	have	been	'	+	str(heads)	+	'	heads.')
13.					if	flips	==	100:
14.									print('At	100	tosses,	heads	has	come	up	'	+	str(heads)	+	'	times
														so	far.')
15.					if	flips	==	500:
16.									print('Halfway	done,	and	heads	has	come	up	'	+	str(heads)	+
														'	times.')
17.
18.	print()
19.	print('Out	of	1000	coin	tosses,	heads	came	up	'	+	str(heads)	+	'	times!')
20.	print('Were	you	close?')

The	program	runs	pretty	fast.	It	spends	more	time	waiting	for	the	user	to	press	ENTER

than	doing	the	coin	flips.	Let’s	say	you	wanted	to	see	it	do	coin	flips	one	by	one.	On	the
interactive	 shell’s	 window,	 click	Debug	 	Debugger	 to	 bring	 up	 the	 Debug	 Control
window.	Then	press	F5	to	run	the	program.

The	 program	 starts	 in	 the	 debugger	 on	 line	 1.	 Press	Step	 three	 times	 in	 the	Debug
Control	window	to	execute	the	first	three	lines	(that	is,	lines	1,	2,	and	3).	You’ll	notice	the
buttons	become	disabled	because	input()	was	called	and	the	interactive	shell	is	waiting	for
the	user	to	type	something.	Click	the	interactive	shell	and	press	ENTER.	 (Be	sure	to	click
beneath	 the	 text	 in	 the	 interactive	 shell;	 otherwise,	 IDLE	 might	 not	 receive	 your
keystrokes.)

You	can	click	Step	a	few	more	times,	but	you’ll	find	that	it	would	take	quite	a	while	to
get	through	the	entire	program.	Instead,	set	a	breakpoint	on	lines	12,	14,	and	16	so	that	the
debugger	breaks	in	when	flips	 is	equal	 to	900,	100,	and	500,	 respectively.	The	 file	editor
will	highlight	these	lines	as	shown	in	Figure	6-6.

Figure	6-6:	Three	breakpoints	set	in	coinflips.py

After	 setting	 the	breakpoints,	 click	Go	 in	 the	Debug	Control	window.	The	program

will	run	at	normal	speed	until	it	reaches	the	next	breakpoint.	When	flip	is	set	to	100,	 the
condition	 for	 the	 if	 statement	 on	 line	 13	 is	 True.	 This	 causes	 line	 14	 (where	 there’s	 a
breakpoint	 set)	 to	 execute,	which	 tells	 the	debugger	 to	 stop	 the	program	and	 take	over.
Look	at	the	Globals	area	of	the	Debug	Control	window	to	see	what	the	values	of	flips	and
heads	are.

Click	Go	again	and	the	program	will	continue	until	it	reaches	the	next	breakpoint	on
line	16.	Again,	see	how	the	values	in	flips	and	heads	have	changed.

Click	Go	again	to	continue	the	execution	until	the	next	breakpoint	is	reached,	which	is
on	line	12.

Summary

Writing	programs	is	only	the	first	part	of	programming.	The	next	part	is	making	sure	the
code	you	wrote	actually	works.	Debuggers	let	you	step	through	the	code	one	line	at	a	time.
You	can	examine	which	lines	execute	in	what	order	and	what	values	the	variables	contain.
When	 stepping	 through	 line	 by	 line	 is	 too	 slow,	 you	 can	 set	 breakpoints	 to	 stop	 the
debugger	only	at	the	lines	you	want.

Using	the	debugger	is	a	great	way	to	understand	what	a	program	is	doing.	While	this
book	provides	explanations	of	all	 the	game	code	we	use,	 the	debugger	can	help	you	find
out	more	on	your	own.

7
DESIGNING	HANGMAN	WITH	FLOWCHARTS

In	this	chapter,	you’ll	design	a	Hangman	game.	This	game	is	more	complicated	than	our
previous	games	but	also	more	fun.	Because	the	game	is	advanced,	we’ll	first	carefully	plan	it
out	by	creating	a	flowchart	in	this	chapter.	In	Chapter	8,	we’ll	actually	write	the	code	for
Hangman.

TOPICS	COVERED	IN	THIS	CHAPTER
•	ASCII	art

•	Designing	a	program	with	flowcharts

How	to	Play	Hangman

Hangman	is	a	game	for	two	people	in	which	one	player	thinks	of	a	word	and	then	draws	a
blank	line	on	the	page	for	each	letter	 in	the	word.	The	second	player	then	tries	to	guess
letters	that	might	be	in	the	word.

If	the	second	player	guesses	the	letter	correctly,	the	first	player	writes	the	letter	in	the
proper	blank.	But	 if	 the	second	player	guesses	 incorrectly,	 the	 first	player	draws	a	single
body	part	 of	 a	 hanging	man.	The	 second	player	has	 to	 guess	 all	 the	 letters	 in	 the	word
before	the	hanging	man	is	completely	drawn	to	win	the	game.

Sample	Run	of	Hangman

Here	 is	 an	 example	of	what	 the	player	might	 see	when	 they	 run	 the	Hangman	program
you’ll	write	in	Chapter	8.	The	text	the	player	enters	is	in	bold.

H	A	N	G	M	A	N
		+---+
						|
						|
						|
					===
Missed	letters:
_	_	_
Guess	a	letter.
a
		+---+
						|
						|
						|
					===
Missed	letters:
_	a	_
Guess	a	letter.
o
		+---+
		O			|
						|
						|
					===
Missed	letters:	o
_	a	_
Guess	a	letter.
r
		+---+
		O			|
		|			|
						|
					===
Missed	letters:	or
_	a	_
Guess	a	letter.
t
		+---+
		O			|
		|			|
						|
					===
Missed	letters:	or
_	a	t
Guess	a	letter.
a
You	have	already	guessed	that	letter.	Choose	again.
Guess	a	letter.
c
Yes!	The	secret	word	is	"cat"!	You	have	won!
Do	you	want	to	play	again?	(yes	or	no)
no

ASCII	Art

The	graphics	 for	Hangman	 are	 keyboard	 characters	 printed	on	 the	 screen.	This	 type	of

graphic	 is	 called	ASCII	art	 (pronounced	 ask-ee),	which	was	 a	 sort	 of	 precursor	 to	 emoji.
Here	is	a	cat	drawn	in	ASCII	art:

The	pictures	for	the	Hangman	game	will	look	like	this	ASCII	art:

		+---+				+---+				+---+				+---+				+---+				+---+				+---+
						|				O			|				O			|				O			|				O			|				O			|				O			| | | | | |
						|								|				|			|			/|			|			/|\		|			/|\		|			/|\		|
						|								|								|								|								|			/				|			/	\		|
					===						===						===						===						===						===						===

Designing	a	Program	with	a	Flowchart

This	 game	 is	 a	 bit	 more	 complicated	 than	 the	 ones	 you’ve	 seen	 so	 far,	 so	 let’s	 take	 a
moment	to	think	about	how	it’s	put	together.	First	you’ll	create	a	flowchart	(like	the	one
in	Figure	5-1	on	page	47	for	the	Dragon	Realm	game)	to	help	visualize	what	this	program
will	do.

As	discussed	in	Chapter	5,	a	flowchart	is	a	diagram	that	shows	a	series	of	steps	as	boxes
connected	with	arrows.	Each	box	represents	a	step,	and	the	arrows	show	the	possible	next
steps.	Put	your	finger	on	the	START	box	of	the	flowchart	and	trace	through	the	program
by	following	the	arrows	to	other	boxes	until	you	get	to	the	END	box.	You	can	only	move
from	one	box	to	another	in	the	direction	of	the	arrow.	You	can	never	go	backward	unless
there’s	an	arrow	going	back,	like	in	the	“Player	already	guessed	this	letter”	box.

Figure	7-1	is	a	complete	flowchart	for	Hangman.

Figure	7-1:	The	complete	flowchart	for	the	Hangman	game

Of	course,	you	don’t	have	to	make	a	flowchart;	you	could	just	start	writing	code.	But
often	once	you	start	programming,	you’ll	think	of	things	that	must	be	added	or	changed.
You	may	end	up	having	to	delete	a	lot	of	your	code,	which	would	be	a	waste	of	effort.	To
avoid	this,	it’s	best	to	plan	how	the	program	will	work	before	you	start	writing	it.

Creating	the	Flowchart
Your	flowcharts	don’t	have	to	look	like	the	one	in	Figure	7-1.	As	long	as	you	understand
your	flowchart,	it	will	be	helpful	when	you	start	coding.	You	can	begin	making	a	flowchart
with	just	a	START	and	an	END	box,	as	shown	in	Figure	7-2.

Now	think	about	what	happens	when	you	play	Hangman.	First,	the	computer	thinks	of

a	 secret	 word.	Then	 the	 player	 guesses	 letters.	 Add	 boxes	 for	 these	 events,	 as	 shown	 in
Figure	7-3.	The	new	boxes	in	each	flowchart	have	a	dashed	outline.

Figure	7-2:	Begin	your	flowchart	with	a	START	and	an	END	box.

Figure	7-3:	Draw	the	first	two	steps	of	Hangman	as	boxes	with	descriptions.

But	the	game	doesn’t	end	after	the	player	guesses	a	letter.	The	program	needs	to	check
whether	that	letter	is	in	the	secret	word.

Branching	from	a	Flowchart	Box
There	 are	 two	 possibilities:	 the	 letter	 is	 either	 in	 the	word	 or	 not.	 You’ll	 add	 two	 new
boxes	to	the	flowchart,	one	for	each	case.	This	creates	a	branch	in	the	flowchart,	as	shown
in	Figure	7-4.

Figure	7-4:	The	branch	has	two	arrows	going	to	separate	boxes.

If	the	letter	 is	 in	the	secret	word,	check	whether	the	player	has	guessed	all	the	letters
and	won	the	game.	If	the	letter	isn’t	in	the	secret	word,	check	whether	the	hanging	man	is
complete	and	the	player	has	lost.	Add	boxes	for	those	cases	too.

The	flowchart	now	looks	like	Figure	7-5.

Figure	7-5:	After	the	branch,	the	steps	continue	on	their	separate	paths.

You	don’t	need	an	arrow	from	the	“Letter	is	in	secret	word”	box	to	the	“Player	ran	out
of	 guesses	 and	 loses”	box,	 because	 it’s	 impossible	 for	 the	player	 to	 lose	 if	 they	have	 just
guessed	 correctly.	 It’s	 also	 impossible	 for	 the	 player	 to	 win	 if	 they	 have	 just	 guessed
incorrectly,	so	you	don’t	need	to	draw	an	arrow	for	that	either.

Ending	or	Restarting	the	Game
Once	 the	player	has	won	or	 lost,	 ask	 them	 if	 they	want	 to	play	 again	with	 a	new	 secret
word.	If	the	player	doesn’t	want	to	play	again,	the	program	ends;	otherwise,	the	program
continues	and	thinks	up	a	new	secret	word.	This	is	shown	in	Figure	7-6.

Figure	7-6:	The	flowchart	branches	after	asking	the	player	to	play	again.

Guessing	Again
The	flowchart	 looks	mostly	complete	now,	but	we’re	still	missing	a	 few	things.	For	one,
the	player	doesn’t	guess	a	letter	just	once;	they	keep	guessing	letters	until	they	win	or	lose.
Draw	two	new	arrows,	as	shown	in	Figure	7-7.

What	if	the	player	guesses	the	same	letter	again?	Rather	than	counting	this	letter	again,
allow	them	to	guess	a	different	letter.	This	new	box	is	shown	in	Figure	7-8.

Figure	7-7:	The	dashed	arrows	show	the	player	can	guess	again.

Figure	7-8:	Add	a	step	in	case	the	player	guesses	a	letter	they	already	guessed.

If	the	player	guesses	the	same	letter	twice,	the	flowchart	leads	back	to	the	“Ask	player	to
guess	a	letter”	box.

Offering	Feedback	to	the	Player
The	player	needs	to	know	how	they’re	doing	in	the	game.	The	program	should	show	them
the	 hanging	man	 drawing	 and	 the	 secret	 word	 (with	 blanks	 for	 the	 letters	 they	 haven’t
guessed	yet).	These	visuals	will	 let	 them	see	how	close	 they	are	 to	winning	or	 losing	the
game.

This	 information	 is	 updated	 every	 time	 the	 player	 guesses	 a	 letter.	 Add	 a	 “Show
drawing	and	blanks	to	player”	box	to	the	flowchart	between	the	“Come	up	with	a	secret
word”	box	and	the	“Ask	player	to	guess	a	letter”	box,	as	shown	in	Figure	7-9.

Figure	7-9:	Add	a	“Show	drawing	and	blanks	to	player”	box	to	give	the	player	feedback.

That	looks	good!	This	flowchart	completely	maps	out	the	order	of	everything	that	can
happen	 in	 the	Hangman	game.	When	you	design	your	own	games,	a	 flowchart	can	help
you	remember	everything	you	need	to	code.

Summary

It	may	seem	like	a	lot	of	work	to	sketch	out	a	flowchart	about	the	program	first.	After	all,
people	want	to	play	games,	not	look	at	flowcharts!	But	it	is	much	easier	to	make	changes
and	identify	problems	by	thinking	about	how	the	program	works	before	writing	 the	code
for	it.

If	you	jump	in	to	write	the	code	first,	you	may	discover	problems	that	require	you	to
change	 the	 code	 you’ve	 already	 written,	 wasting	 time	 and	 effort.	 And	 every	 time	 you
change	 your	 code,	 you	 risk	 creating	new	bugs	 by	 changing	 too	 little	 or	 too	much.	 It	 is
much	more	efficient	 to	know	what	you	want	 to	build	before	you	build	 it.	Now	 that	we
have	a	flowchart,	let’s	create	the	Hangman	program	in	Chapter	8!

8
WRITING	THE	HANGMAN	CODE

This	 chapter’s	 game	 introduces	many	new	 concepts,	 but	 don’t	worry:	 you’ll	 experiment
with	 them	 in	 the	 interactive	 shell	 before	 actually	 programming	 the	 game.	 You’ll	 learn
about	methods,	which	are	functions	attached	to	values.	You’ll	also	learn	about	a	new	data
type	called	a	list.	Once	you	understand	these	concepts,	it	will	be	much	easier	to	program
Hangman.

TOPICS	COVERED	IN	THIS	CHAPTER
•	Lists

•	The	in	operator

•	Methods

•	The	split(),	lower(),	upper(),	startswith(),	and	endswith()	string	methods

•	elif	statements

Source	Code	for	Hangman

This	chapter’s	game	is	a	bit	longer	than	the	previous	games,	but	much	of	it	is	the	ASCII	art
for	 the	 hanging	 man	 pictures.	 Enter	 the	 following	 into	 the	 file	 editor	 and	 save	 it	 as
hangman.py.	 If	 you	 get	 errors	 after	 entering	 the	 following	 code,	 compare	 the	 code	 you
typed	 to	 the	 book’s	 code	 with	 the	 online	 diff	 tool	 at
https://www.nostarch.com/inventwithpython#diff.

https://www.nostarch.com/inventwithpython#diff

hangman.py

		1.	import	random
		2.	HANGMAN_PICS	=	['''
		3.			+---+
		4.							|
		5.							|
		6.							|
		7.						===''',	'''
		8.			+---+
		9.			O			|
	10.							|
	11.							|
	12.						===''',	'''
	13.			+---+
	14.			O			|
	15.			|			|
	16.							|
	17.						===''',	'''
	18.			+---+
	19.			O			|
	20.		/|			|
	21.							|
	22.						===''',	'''
	23.			+---+
	24.			O			|
	25.		/|\		|
	26.							|
	27.						===''',	'''
	28.			+---+
	29.			O			|
	30.		/|\		|
	31.		/				|
	32.						===''',	'''
	33.			+---+
	34.			O			|
	35.		/|\		|
	36.		/	\		|
	37.						===''']
	38.	words	=	'ant	baboon	badger	bat	bear	beaver	camel	cat	clam	cobra	cougar
							coyote	crow	deer	dog	donkey	duck	eagle	ferret	fox	frog	goat	goose	hawk

							lion	lizard	llama	mole	monkey	moose	mouse	mule	newt	otter	owl	panda
							parrot	pigeon	python	rabbit	ram	rat	raven	rhino	salmon	seal	shark	sheep
							skunk	sloth	snake	spider	stork	swan	tiger	toad	trout	turkey	turtle
							weasel	whale	wolf	wombat	zebra'.split()
	39.
	40.	def	getRandomWord(wordList):
	41.					#	This	function	returns	a	random	string	from	the	passed	list	of
											strings.
	42.					wordIndex	=	random.randint(0,	len(wordList)	-	1)
	43.					return	wordList[wordIndex]
	44.
	45.	def	displayBoard(missedLetters,	correctLetters,	secretWord):
	46.					print(HANGMAN_PICS[len(missedLetters)])
	47.					print()
	48.
	49.					print('Missed	letters:',	end='	')
	50.					for	letter	in	missedLetters:
	51.									print(letter,	end='	')
	52.					print()
	53.
	54.					blanks	=	'_'	*	len(secretWord)
	55.
	56.					for	i	in	range(len(secretWord)):	#	Replace	blanks	with	correctly
											guessed	letters.
	57.									if	secretWord[i]	in	correctLetters:
	58.													blanks	=	blanks[:i]	+	secretWord[i]	+	blanks[i+1:]
	59.
	60.					for	letter	in	blanks:	#	Show	the	secret	word	with	spaces	in	between
											each	letter.
	61.									print(letter,	end='	')
	62.					print()
	63.
	64.	def	getGuess(alreadyGuessed):
	65.					#	Returns	the	letter	the	player	entered.	This	function	makes	sure	the
											player	entered	a	single	letter	and	not	something	else.
	66.					while	True:
	67.									print('Guess	a	letter.')
	68.									guess	=	input()
	69.									guess	=	guess.lower()
	70.									if	len(guess)	!=	1:
	71.													print('Please	enter	a	single	letter.')
72.									elif	guess	in	alreadyGuessed:
	73.													print('You	have	already	guessed	that	letter.	Choose	again.')
	74.									elif	guess	not	in	'abcdefghijklmnopqrstuvwxyz':
	75.													print('Please	enter	a	LETTER.')
	76.									else:
	77.													return	guess
	78.
	79.	def	playAgain():
	80.					#	This	function	returns	True	if	the	player	wants	to	play	again;
											otherwise,	it	returns	False.
	81.					print('Do	you	want	to	play	again?	(yes	or	no)')
	82.					return	input().lower().startswith('y')
	83.
	84.
	85.	print('H	A	N	G	M	A	N')
	86.	missedLetters	=	''
	87.	correctLetters	=	''
	88.	secretWord	=	getRandomWord(words)
	89.	gameIsDone	=	False

	90.
	91.	while	True:
	92.					displayBoard(missedLetters,	correctLetters,	secretWord)
	93.
	94.					#	Let	the	player	enter	a	letter.
	95.					guess	=	getGuess(missedLetters	+	correctLetters)
	96.
	97.					if	guess	in	secretWord:
	98.									correctLetters	=	correctLetters	+	guess
	99.
100.									#	Check	if	the	player	has	won.
101.									foundAllLetters	=	True
102.									for	i	in	range(len(secretWord)):
103.													if	secretWord[i]	not	in	correctLetters:
104.																	foundAllLetters	=	False
105.																	break
106.									if	foundAllLetters:
107.													print('Yes!	The	secret	word	is	"'	+	secretWord	+
																			'"!	You	have	won!')
108.													gameIsDone	=	True
109.					else:
110.									missedLetters	=	missedLetters	+	guess
111.
112.									#	Check	if	player	has	guessed	too	many	times	and	lost.
113.									if	len(missedLetters)	==	len(HANGMAN_PICS)	-	1:
114.													displayBoard(missedLetters,	correctLetters,	secretWord)
115.													print('You	have	run	out	of	guesses!\nAfter	'	+
																			str(len(missedLetters))	+	'	missed	guesses	and	'	+
																			str(len(correctLetters))	+	'	correct	guesses,
																			the	word	was	"'	+	secretWord	+	'"')
116.													gameIsDone	=	True
117.
118.					#	Ask	the	player	if	they	want	to	play	again	(but	only	if	the	game	is
											done).
119.					if	gameIsDone:
120.									if	playAgain():
121.													missedLetters	=	''
122.													correctLetters	=	''
123.													gameIsDone	=	False
124.													secretWord	=	getRandomWord(words)
125.									else:
126.													break

Importing	the	random	Module

The	Hangman	program	randomly	selects	a	secret	word	for	the	player	to	guess	from	a	list
of	words.	The	random	module	will	provide	this	ability,	so	line	1	imports	it.

1.	import	random

But	the	HANGMAN_PICS	variable	on	line	2	looks	a	little	different	from	the	variables	we’ve
seen	 so	 far.	 In	order	 to	understand	what	 this	 code	means,	we	need	 to	 learn	 about	 a	 few
more	concepts.

Constant	Variables

Lines	2	to	37	are	one	long	assignment	statement	for	the	HANGMAN_PICS	variable.

2.	HANGMAN_PICS	=	['''
3.			+---+
4.							|
5.							|
6.							|
7.						===''',	'''
--snip--
37.					===''']

The	HANGMAN_PICS	variable’s	name	is	in	all	uppercase	letters.	This	is	the	programming
convention	for	constant	variables.	Constants	are	variables	meant	 to	have	values	 that	never
change	 from	 their	 first	 assignment	 statement.	 Although	 you	 can	 change	 the	 value	 in
HANGMAN_PICS	 just	 as	you	can	 for	any	other	variable,	 the	all-uppercase	name	reminds	you
not	to	do	so.

As	with	all	conventions,	you	don’t	have	to	follow	this	one.	But	doing	so	makes	it	easier
for	other	programmers	to	read	your	code.	They’ll	know	that	HANGMAN_PICS	will	always	have
the	value	it	was	assigned	from	lines	2	to	37.

The	Lists	Data	Type

HANGMAN_PICS	contains	several	multiline	strings.	It	can	do	this	because	it’s	a	list.	Lists	have	a
list	value	that	can	contain	several	other	values.	Enter	this	into	the	interactive	shell:

>>>	animals	=	['aardvark',	'anteater',	'antelope',	'albert']
>>>	animals
['aardvark',	'anteater',	'antelope',	'albert']

The	 list	 value	 in	 animals	 contains	 four	 values.	 List	 values	 begin	 with	 a	 left	 square
bracket,	[,	and	end	with	a	right	square	bracket,].	This	is	like	how	strings	begin	and	end	in
quotation	marks.

Commas	 separate	 the	 individual	 values	 inside	 of	 a	 list.	 These	 values	 are	 also	 called
items.	Each	item	in	HANGMAN_PICS	is	a	multiline	string.

Lists	let	you	store	several	values	without	using	a	variable	for	each	one.	Without	lists,
the	code	would	look	like	this:

>>>	animals1	=	'aardvark'
>>>	animals2	=	'anteater'
>>>	animals3	=	'antelope'
>>>	animals4	=	'albert'

This	code	would	be	hard	to	manage	if	you	had	hundreds	or	thousands	of	strings.	But	a
list	can	easily	contain	any	number	of	values.

Accessing	Items	with	Indexes
You	can	access	an	item	inside	a	list	by	adding	square	brackets	to	the	end	of	the	list	variable
with	 a	number	between	 them.	The	number	between	 the	 square	brackets	 is	 the	 index.	 In
Python,	the	 index	of	the	first	 item	in	a	 list	 is	0.	The	second	item	is	at	 index	1,	 the	 third
item	is	at	index	2,	and	so	on.	Because	the	indexes	begin	at	0	and	not	1,	we	say	that	Python
lists	are	zero	indexed.

While	 we’re	 still	 in	 the	 interactive	 shell	 and	 working	 with	 the	 animals	 list,	 enter
animals[0],	animals[1],	animals[2],	and	animals[3]	to	see	how	they	evaluate:

>>>	animals[0]
'aardvark'
>>>	animals[1]
'anteater'
>>>	animals[2]
'antelope'
>>>	animals[3]
'albert'

Notice	that	the	first	value	in	the	list,	'aardvark',	 is	stored	in	index	0	and	not	index	1.
Each	item	in	the	list	is	numbered	in	order	starting	from	0.

Using	the	square	brackets,	you	can	treat	items	in	the	list	just	like	any	other	value.	For
example,	enter	animals[0]	+	animals[2]	into	the	interactive	shell:

>>>	animals[0]	+	animals[2]
'aardvarkantelope'

Both	variables	at	indexes	0	and	2	of	animals	are	strings,	so	the	values	are	concatenated.
The	evaluation	looks	like	this:

Out-of-Range	Indexes	and	IndexError

If	you	try	accessing	an	index	that	is	too	high	to	be	in	the	list,	you’ll	get	an	IndexError	that
will	 crash	 your	 program.	To	 see	 an	 example	 of	 this	 error,	 enter	 the	 following	 into	 the
interactive	shell:

>>>	animals	=	['aardvark',	'anteater',	'antelope',	'albert']
>>>	animals[9999]
Traceback	(most	recent	call	last):
		File	"",	line	1,	in
				animals[9999]
IndexError:	list	index	out	of	range

Because	there	is	no	value	at	index	9999,	you	get	an	error.

Changing	List	Items	with	Index	Assignment

You	 can	 also	 change	 the	 value	 of	 an	 item	 in	 a	 list	 using	 index	 assignment.	 Enter	 the
following	into	the	interactive	shell:

>>>	animals	=	['aardvark',	'anteater',	'antelope',	'albert']
>>>	animals[1]	=	'ANTEATER'
>>>	animals
['aardvark',	'ANTEATER',	'antelope',	'albert']

The	new	 'ANTEATER'	 string	 overwrites	 the	 second	 item	 in	 the	 animals	 list.	 So	 typing
animals[1]	by	itself	evaluates	to	the	list’s	current	second	item,	but	using	it	on	the	left	side
of	an	assignment	operator	assigns	a	new	value	to	the	list’s	second	item.

List	Concatenation
You	can	 join	 several	 lists	 into	one	 list	using	 the	+	operator,	 just	 as	 you	can	with	 strings.
Doing	 so	 is	 called	 list	 concatenation.	 To	 see	 this	 in	 action,	 enter	 the	 following	 into	 the
interactive	shell:

>>>	[1,	2,	3,	4]	+	['apples',	'oranges']	+	['Alice',	'Bob']
[1,	2,	3,	4,	'apples',	'oranges',	'Alice',	'Bob']

['apples']	 +	 ['oranges']	 will	 evaluate	 to	 ['apples',	 'oranges'].	 But	 ['apples']	 +

'oranges'	will	 result	 in	an	error.	You	can’t	add	a	 list	value	and	a	 string	value	with	 the	+
operator.	If	you	want	to	add	values	to	the	end	of	a	list	without	using	list	concatenation,	use
the	append()	method	 (described	 in	 “The	 reverse()	 and	 append()	List	Methods”	 on	 page
95).

The	in	Operator
The	in	operator	can	tell	you	whether	a	value	is	in	a	list	or	not.	Expressions	that	use	the	in
operator	return	a	Boolean	value:	True	if	the	value	is	in	the	list	and	False	if	it	isn’t.	Enter	the
following	into	the	interactive	shell:

>>>	animals	=	['aardvark',	'anteater',	'antelope',	'albert']
>>>	'antelope'	in	animals
True
>>>	'ant'	in	animals

False

The	expression	'antelope'	in	animals	returns	True	because	the	string	'antelope'	is	one
of	the	values	in	the	animals	list.	It	is	located	at	index	2.	But	when	you	enter	the	expression
'ant'	in	animals,	it	returns	False	because	the	string	'ant'	doesn’t	exist	in	the	list.

The	in	operator	also	works	for	strings,	checking	whether	one	string	exists	in	another.
Enter	the	following	into	the	interactive	shell:

>>>	'hello'	in	'Alice	said	hello	to	Bob.'
True

Storing	a	list	of	multiline	strings	in	the	HANGMAN_PICS	variable	covered	a	lot	of	concepts.
For	example,	you	saw	that	 lists	are	useful	for	storing	multiple	values	in	a	single	variable.
You	also	learned	some	techniques	for	working	with	lists,	such	as	index	assignment	and	list
concatenation.	Methods	are	another	new	concept	you’ll	learn	how	to	use	in	the	Hangman
game;	we’ll	explore	them	next.

Calling	Methods

A	method	is	a	function	attached	to	a	value.	To	call	a	method,	you	must	attach	it	to	a	specific
value	using	a	period.	Python	has	many	useful	methods,	and	we’ll	use	some	of	them	in	the
Hangman	program.

But	first,	let’s	look	at	some	list	and	string	methods.

The	reverse()	and	append()	List	Methods
The	 list	 data	 type	 has	 a	 couple	 of	 methods	 you’ll	 probably	 use	 a	 lot:	 reverse()	 and
append().	The	reverse()	method	will	reverse	the	order	of	the	items	in	the	list.	Try	entering
spam	=	[1,	2,	3,	4,	5,	6,	'meow',	'woof'],	and	then	spam.reverse()	 to	reverse	 the	 list.
Then	enter	spam	to	view	the	contents	of	the	variable.

>>>	spam	=	[1,	2,	3,	4,	5,	6,	'meow',	'woof']
>>>	spam.reverse()
>>>	spam
['woof',	'meow',	6,	5,	4,	3,	2,	1]

The	most	common	list	method	you’ll	use	is	append().	This	method	will	add	the	value
you	 pass	 as	 an	 argument	 to	 the	 end	 of	 the	 list.	 Try	 entering	 the	 following	 into	 the
interactive	shell:

>>>	eggs	=	[]
>>>	eggs.append('hovercraft')
>>>	eggs
['hovercraft']
>>>	eggs.append('eels')
>>>	eggs
['hovercraft',	'eels']

These	methods	do	change	the	lists	they	are	called	on.	They	don’t	return	a	new	list.	We
say	that	these	methods	change	the	list	in	place.

The	split()	String	Method
The	 string	data	 type	has	 a	split()	method,	which	 returns	 a	 list	 of	 strings	made	 from	 a
string	that	has	been	split.	Try	using	the	split()	method	by	entering	the	following	into	the
interactive	shell:

>>>	sentence	=	input()
My	very	energetic	mother	just	served	us	nachos.
>>>	sentence.split()
['My',	'very',	'energetic',	'mother',	'just',	'served',	'us',	'nachos.']

The	result	is	a	list	of	eight	strings,	one	string	for	each	word	in	the	original	string.	The
splitting	occurs	wherever	there	is	a	space	in	the	string.	The	spaces	are	not	included	in	any
of	the	items	in	the	list.

Line	38	of	 the	Hangman	program	also	uses	 the	split()	method,	 as	 shown	next.	The
code	is	long,	but	it’s	really	just	a	simple	assignment	statement	that	has	one	long	string	of
words	 separated	 by	 spaces,	with	 a	 split()	method	 call	 at	 the	 end.	The	 split()	 method
evaluates	to	a	list	with	each	word	in	the	string	as	a	single	list	item.

38.	words	=	'ant	baboon	badger	bat	bear	beaver	camel	cat	clam	cobra	cougar
						coyote	crow	deer	dog	donkey	duck	eagle	ferret	fox	frog	goat	goose	hawk
						lion	lizard	llama	mole	monkey	moose	mouse	mule	newt	otter	owl	panda
						parrot	pigeon	python	rabbit	ram	rat	raven	rhino	salmon	seal	shark	sheep
						skunk	sloth	snake	spider	stork	swan	tiger	toad	trout	turkey	turtle
						weasel	whale	wolf	wombat	zebra'.split()

It’s	easier	to	write	this	program	using	split().	If	you	created	a	list	to	begin	with,	you
would	have	to	type	['ant',	'baboon',	'badger',	and	so	on,	with	quotes	and	commas	for
every	word.

You	can	also	 add	your	own	words	 to	 the	 string	on	 line	38	or	 remove	 any	you	don’t
want	to	be	in	the	game.	Just	make	sure	that	spaces	separate	the	words.

Getting	a	Secret	Word	from	the	Word	List

Line	40	defines	the	getRandomWord()	function.	A	list	argument	will	be	passed	for	its	wordList
parameter.	This	function	will	return	a	single	secret	word	from	the	list	in	wordList.

40.	def	getRandomWord(wordList):
41.					#	This	function	returns	a	random	string	from	the	passed	list	of
										strings.
42.					wordIndex	=	random.randint(0,	len(wordList)	-	1)
43.					return	wordList[wordIndex]

In	 line	 42,	we	 store	 a	 random	 index	 for	 this	 list	 in	 the	 wordIndex	 variable	 by	 calling
randint()	with	two	arguments.	The	first	argument	is	0	(for	the	first	possible	index),	and	the
second	is	the	value	that	the	expression	len(wordList)	-	1	evaluates	to	(for	the	last	possible
index	in	a	wordList).

Remember	that	list	indexes	start	at	0,	not	1.	If	you	have	a	list	of	three	items,	the	index	of
the	first	item	is	0,	the	index	of	the	second	item	is	1,	and	the	index	of	the	third	item	is	2.	The
length	 of	 this	 list	 is	 3,	 but	 index	 3	 would	 be	 after	 the	 last	 index.	 This	 is	 why	 line	 42
subtracts	1	from	the	length	of	wordList.	The	code	on	line	42	will	work	no	matter	what	the
size	of	wordList	is.	Now	you	can	add	or	remove	strings	in	wordList	if	you	like.

The	wordIndex	variable	will	be	set	to	a	random	index	for	the	list	passed	as	the	wordList
parameter.	Line	43	will	return	the	element	in	wordList	at	the	integer	stored	in	wordIndex.

Let’s	 pretend	 ['apple',	 'orange',	 grape']	 was	 passed	 as	 the	 argument	 to
getRandomWord()	and	that	randint(0,	2)	returned	the	integer	2.	That	would	mean	that	line
43	would	evaluate	to	return	wordList[2],	and	then	evaluate	to	return	'grape'.	This	is	how
getRandomWord()	returns	a	random	string	in	wordList.

So	 the	 input	 to	 getRandomWord()	 is	 a	 list	 of	 strings,	 and	 the	 return	 value	 output	 is	 a
randomly	selected	string	from	that	list.	In	the	Hangman	game,	this	is	how	a	secret	word	is
selected	for	the	player	to	guess.

Displaying	the	Board	to	the	Player

Next,	 you	 need	 a	 function	 to	 print	 the	 Hangman	 board	 on	 the	 screen.	 It	 should	 also
display	how	many	letters	the	player	has	correctly	(and	incorrectly)	guessed.

45.	def	displayBoard(missedLetters,	correctLetters,	secretWord):
46.					print(HANGMAN_PICS[len(missedLetters)])
47.					print()

This	 code	 defines	 a	 new	 function	 named	 displayBoard().	 This	 function	 has	 three
parameters:

missedLetters	A	 string	of	 the	 letters	 the	player	has	guessed	 that	 are	not	 in	 the	 secret
word

correctLetters	A	string	of	the	letters	the	player	has	guessed	that	are	in	the	secret	word

secretWord	A	string	of	the	secret	word	that	the	player	is	trying	to	guess

The	first	print()	function	call	will	display	the	board.	The	global	variable	HANGMAN_PICS
has	a	list	of	strings	for	each	possible	board.	(Remember	that	global	variables	can	be	read
from	 inside	a	 function.)	HANGMAN_PICS[0]	 shows	an	empty	gallows,	HANGMAN_PICS[1]	 shows
the	 head	 (when	 the	 player	misses	 one	 letter),	 HANGMAN_PICS[2]	 shows	 the	 head	 and	 body
(when	the	player	misses	two	letters),	and	so	on	until	HANGMAN_PICS[6],	which	shows	the	full
hanging	man.

The	 number	 of	 letters	 in	 missedLetters	 will	 reflect	 how	many	 incorrect	 guesses	 the
player	has	made.	Call	len(missedLetters)	 to	find	out	this	number.	So,	 if	missedLetters	 is
'aetr',	 then	 len('aetr')	 will	 return	 4.	 Printing	 HANGMAN_PICS[4]	 will	 display	 the
appropriate	 hanging	 man	 picture	 for	 four	 misses.	 This	 is	 what
HANGMAN_PICS[len(missedLetters)]	on	line	46	evaluates	to.

Line	49	prints	the	string	'Missed	letters:'	with	a	space	character	at	the	end	instead	of
a	newline:

49.					print('Missed	letters:',	end='	')
50.					for	letter	in	missedLetters:
51.									print(letter,	end='	')
52.					print()

The	for	loop	on	line	50	will	iterate	over	each	character	in	the	string	missedLetters	and
print	 it	on	the	screen.	Remember	 that	end='	'	will	 replace	 the	newline	character	 that	 is
printed	after	 the	string	with	a	single	space	character.	For	example,	 if	missedLetters	were
'ajtw',	this	for	loop	would	display	a	j	t	w.

The	rest	of	the	displayBoard()	function	(lines	54	to	62)	displays	the	missed	letters	and
creates	the	string	of	the	secret	word	with	all	of	the	not-yet-guessed	letters	as	blanks.	It	does
this	using	the	range()	function	and	list	slicing.

The	list()	and	range()	Functions
When	called	with	one	argument,	range()	will	return	a	range	object	of	integers	from	0	up	to
(but	not	 including)	the	argument.	This	range	object	 is	used	 in	for	 loops	but	can	also	be
converted	 to	 the	 more	 familiar	 list	 data	 type	 with	 the	 list()	 function.	 Enter
list(range(10))	into	the	interactive	shell:

>>>	list(range(10))
[0,	1,	2,	3,	4,	5,	6,	7,	8,	9]
>>>	list('Hello')
['H',	'e',	'l',	'l',	'o']

The	list()	 function	 is	 similar	 to	 the	str()	 or	 int()	 functions.	 It	 takes	 the	 value	 it’s
passed	 and	 returns	 a	 list.	 It’s	 easy	 to	 generate	 huge	 lists	 with	 the	 range()	 function.	 For
example,	enter	list(range(10000))	into	the	interactive	shell:

>>>	list(range(10000))
[0,	1,	2,	3,	4,	5,	6,	7,	8,	9,	10,	11,	12,	13,	14,	15,...
						--snip--
...9989,	9990,	9991,	9992,	9993,	9994,	9995,	9996,	9997,	9998,	9999]

The	 list	 is	 so	huge,	 it	won’t	 even	 fit	 onto	 the	 screen.	But	 you	 can	 store	 the	 list	 in	 a
variable:

>>>	spam	=	list(range(10000))

If	you	pass	two	integer	arguments	to	range(),	the	range	object	it	returns	is	from	the	first
integer	 argument	 up	 to	 (but	 not	 including)	 the	 second	 integer	 argument.	 Next	 enter
list(range(10,	20))	into	the	interactive	shell	as	follows:

>>>	list(range(10,	20))
[10,	11,	12,	13,	14,	15,	16,	17,	18,	19]

As	you	can	see,	our	list	only	goes	up	to	19	and	does	not	include	20.

List	and	String	Slicing
List	 slicing	 creates	 a	 new	 list	 value	 using	 a	 subset	 of	 another	 list’s	 items.	To	 slice	 a	 list,
specify	two	indexes	(the	beginning	and	end)	with	a	colon	in	the	square	brackets	after	the
list	name.	For	example,	enter	the	following	into	the	interactive	shell:

>>>	spam	=	['apples',	'bananas',	'carrots',	'dates']
>>>	spam[1:3]
['bananas',	'carrots']

The	expression	spam[1:3]	evaluates	to	a	list	with	items	in	spam	from	index	1	up	to	(but
not	including)	index	3.

If	you	leave	out	the	first	 index,	Python	will	automatically	think	you	want	index	0	 for
the	first	index:

>>>	spam	=	['apples',	'bananas',	'carrots',	'dates']
>>>	spam[:2]
['apples',	'bananas']

If	you	leave	out	the	second	index,	Python	will	automatically	think	you	want	the	rest	of
the	list:

>>>	spam	=	['apples',	'bananas',	'carrots',	'dates']
>>>	spam[2:]
['carrots',	'dates']

You	 can	 also	 use	 slices	 with	 strings	 in	 the	 same	 way	 you	 use	 them	 with	 lists.	 Each
character	 in	the	string	is	 like	an	item	in	the	list.	Enter	the	following	into	the	interactive
shell:

>>>	myName	=	'Zophie	the	Fat	Cat'
>>>	myName[4:12]
'ie	the	F'
>>>	myName[:10]
'Zophie	the'
>>>	myName[7:]
'the	Fat	Cat'

The	next	part	of	the	Hangman	code	uses	slicing.

Displaying	the	Secret	Word	with	Blanks
Now	you	want	 to	print	 the	 secret	word,	but	with	blank	 lines	 for	 the	 letters	 that	haven’t
been	guessed.	You	can	use	the	underscore	character	(_)	 for	this.	First	create	a	string	with
nothing	but	one	underscore	for	each	letter	in	the	secret	word.	Then	replace	the	blanks	for
each	letter	in	correctLetters.

So	if	the	secret	word	were	'otter',	then	the	blanked-out	string	would	be	'_____'	 (five
underscores).	 If	 correctLetters	 were	 the	 string	 'rt',	 you	 would	 change	 the	 string	 to
'_tt_r'.	Lines	54	to	58	are	the	part	of	the	code	that	does	that:

54.					blanks	=	'_'	*	len(secretWord)
55.
56.					for	i	in	range(len(secretWord)):	#	Replace	blanks	with	correctly
										guessed	letters.
57.									if	secretWord[i]	in	correctLetters:
58.													blanks	=	blanks[:i]	+	secretWord[i]	+	blanks[i+1:]

Line	 54	 creates	 the	 blanks	 variable	 full	 of	 underscores	 using	 string	 replication.
Remember	that	the	*	operator	can	be	used	on	a	string	and	an	integer,	so	the	expression	'_'
*	5	evaluates	to	'_____'.	This	will	ensure	that	blanks	has	the	same	number	of	underscores
as	secretWord	has	letters.

Line	 56	 has	 a	 for	 loop	 that	 goes	 through	 each	 letter	 in	 secretWord	 and	 replaces	 the
underscore	with	the	actual	letter	if	it	exists	in	correctLetters.

Let’s	 take	 another	 look	 at	 the	 previous	 example,	 where	 the	 value	 of	 secretWord	 is
'otter'	 and	 the	 value	 in	 correctLetters	 is	 'tr'.	 You	 would	 want	 the	 string	 '_tt_r'
displayed	to	the	player.	Let’s	figure	out	how	to	create	this	string.

Line	 56’s	 len(secretWord)	 call	 would	 return	 5.	 The	 range(len(secretWord))	 call
becomes	range(5),	which	makes	the	for	loop	iterate	over	0,	1,	2,	3,	and	4.

Because	the	value	of	i	will	take	on	each	value	in	[0,	1,	2,	3,	4],	the	code	in	the	for
loop	looks	like	this:

if	secretWord[0]	in	correctLetters:
				blanks	=	blanks[:0]	+	secretWord[0]	+	blanks[1:]

if	secretWord[1]	in	correctLetters:
				blanks	=	blanks[:1]	+	secretWord[1]	+	blanks[2:]
--snip--

We’re	showing	only	the	first	two	iterations	of	the	for	loop,	but	starting	with	0,	i	will
take	the	value	of	each	number	in	the	range.	In	the	first	iteration,	i	takes	the	value	0,	so	the
if	statement	checks	whether	the	letter	 in	secretWord	at	 index	0	 is	 in	correctLetters.	The
loop	does	this	for	every	letter	in	the	secretWord,	one	letter	at	a	time.

If	you	are	confused	about	the	value	of	something	like	secretWord[0]	or	blanks[3:],	look
at	Figure	8-1.	It	shows	the	value	of	the	secretWord	and	blanks	variables	and	the	index	for
each	letter	in	the	string.

Figure	8-1:	The	indexes	of	the	blanks	and	secretWord	strings

If	you	replace	the	list	slices	and	the	list	indexes	with	the	values	they	represent,	the	loop
code	looks	like	this:

if	'o'	in	'tr':	#	False
				blanks	=	''	+	'o'	+	'____'	#	This	line	is	skipped.
--snip--
if	'r'	in	'tr':	#	True
				blanks	=	'_tt_'	+	'r'	+	''	#	This	line	is	executed.

#	blanks	now	has	the	value	'_tt_r'.

The	 preceding	 code	 examples	 all	 do	 the	 same	 thing	 when	 secretWord	 is	 'otter'	 and
correctLetters	is	'tr'.	The	next	few	lines	of	code	print	the	new	value	of	blanks	with	spaces
between	each	letter:

60.					for	letter	in	blanks:	#	Show	the	secret	word	with	spaces	in	between
										each	letter.
61.									print(letter,	end='	')
62.					print()

Notice	 that	 the	 for	 loop	 on	 line	 60	 doesn’t	 call	 the	 range()	 function.	 Instead	 of
iterating	on	the	range	object	this	function	call	would	return,	it	iterates	on	the	string	value
in	the	blanks	variable.	On	each	iteration,	the	letter	variable	takes	on	a	new	character	from
the	'otter'	string	in	blanks.

The	printed	output	after	the	spaces	are	added	would	be	'_	t	t	_	r'.

Getting	the	Player’s	Guess

The	getGuess()	function	will	be	called	so	that	the	player	can	enter	a	letter	to	guess.	The
function	returns	the	letter	the	player	guessed	as	a	string.	Further,	getGuess()	will	make	sure
that	the	player	types	a	valid	letter	before	it	returns	from	the	function.

64.	def	getGuess(alreadyGuessed):
65.					#	Returns	the	letter	the	player	entered.	This	function	makes	sure	the
										player	entered	a	single	letter	and	not	something	else.

A	 string	 of	 the	 letters	 the	 player	 has	 guessed	 is	 passed	 as	 the	 argument	 for	 the
alreadyGuessed	parameter.	Then	the	getGuess()	 function	asks	the	player	to	guess	a	single
letter.	This	 single	 letter	will	 be	 getGuess()’s	 return	 value.	Now,	 because	 Python	 is	 case
sensitive,	we	need	to	make	sure	the	player’s	guess	is	a	lowercase	letter	so	we	can	check	it
against	the	secret	word.	That’s	where	the	lower()	method	comes	in.

The	lower()	and	upper()	String	Methods
Enter	'Hello	world!'.lower()	 into	 the	 interactive	 shell	 to	 see	 an	 example	of	 the	lower()
method:

>>>	'Hello	world!'.lower()
'hello	world!'

The	lower()	method	returns	a	string	with	all	the	characters	in	lowercase.	There	is	also
an	upper()	method	for	strings,	which	returns	a	string	with	all	the	characters	in	uppercase.
Try	it	out	by	entering	'Hello	world!'.upper()	into	the	interactive	shell:

>>>	'Hello	world!'.upper()
'HELLO	WORLD!'

Because	the	upper()	method	returns	a	string,	you	can	also	call	a	method	on	that	string.
Now	enter	this	into	the	interactive	shell:

>>>	'Hello	world!'.upper().lower()
'hello	world!'

'Hello	 world!'.upper()	 evaluates	 to	 the	 string	 'HELLO	 WORLD!',	 and	 then	 the	 string’s
lower()	method	is	called.	This	returns	the	string	'hello	world!',	which	is	the	final	value	in
the	evaluation:

The	 order	 is	 important.	 'Hello	 world!'.lower().upper()	 isn’t	 the	 same	 as	 'Hello
world!'.upper().lower():

>>>	'Hello	world!'.lower().upper()
'HELLO	WORLD!'

That	evaluation	looks	like	this:

If	a	string	is	stored	in	a	variable,	you	can	also	call	a	string	method	on	that	variable:

>>>	spam	=	'Hello	world!'
>>>	spam.upper()
'HELLO	WORLD!'

This	code	does	not	change	the	value	in	spam.	The	spam	variable	will	still	contain	'Hello
world!'.

Going	 back	 to	 the	Hangman	 program,	we	 use	 lower()	 when	we	 ask	 for	 the	 player’s
guess:

66.					while	True:
67.									print('Guess	a	letter.')
68.									guess	=	input()
69.									guess	=	guess.lower()

Now,	even	if	 the	player	enters	an	uppercase	 letter	as	a	guess,	 the	getGuess()	 function
will	return	a	lowercase	letter.

Leaving	the	while	Loop
Line	66’s	while	loop	will	keep	asking	the	player	for	a	letter	until	they	enter	a	single	letter
that	hasn’t	been	guessed	previously.

The	 condition	 for	 the	 while	 loop	 is	 simply	 the	Boolean	 value	 True.	That	means	 the
only	way	the	execution	will	ever	leave	this	 loop	is	by	executing	a	break	statement,	which
leaves	 the	 loop,	 or	 a	 return	 statement,	 which	 leaves	 not	 just	 the	 loop	 but	 the	 entire
function.

The	code	inside	the	loop	asks	the	player	to	enter	a	letter,	which	is	stored	in	the	variable
guess.	If	the	player	entered	an	uppercase	letter,	it	would	be	overwritten	with	a	lowercase
letter	on	line	69.

elif	Statements

The	next	part	 of	 the	Hangman	program	uses	elif	 statements.	You	 can	 think	of	elif	 or
“else-if”	statements	as	saying,	“If	this	is	true,	do	this.	Or	else	if	this	next	condition	is	true,
do	that.	Or	else	if	none	of	them	is	true,	do	this	last	thing.”	Take	a	look	at	the	following
code:

if	catName	==	'Fuzzball':
				print('Your	cat	is	fuzzy.')
elif	catName	==	'Spots':
				print('Your	cat	is	spotted.')
else:
				print('Your	cat	is	not	fuzzy	or	spotted.')

If	 the	 catName	 variable	 is	 equal	 to	 the	 string	 'Fuzzball',	 then	 the	 if	 statement’s
condition	 is	True	 and	 the	if	 block	 tells	 the	user	 that	 their	 cat	 is	 fuzzy.	However,	 if	 this
condition	 is	 False,	 then	 Python	 tries	 the	 elif	 statement’s	 condition	 next.	 If	 catName	 is
'Spots',	then	the	string	'Your	cat	is	spotted.'	is	printed	to	the	screen.	If	both	are	False,
then	the	code	tells	the	user	their	cat	isn’t	fuzzy	or	spotted.

You	can	have	as	many	elif	statements	as	you	want:

if	catName	==	'Fuzzball':
				print('Your	cat	is	fuzzy.')
elif	catName	==	'Spots':
				print('Your	cat	is	spotted.')
elif	catName	==	'Chubs':
				print('Your	cat	is	chubby.')
elif	catName	==	'Puff':
				print('Your	cat	is	puffy.')
else:
				print('Your	cat	is	neither	fuzzy	nor	spotted	nor	chubby	nor	puffy.')

When	one	of	the	elif	conditions	is	True,	 its	code	is	executed,	and	then	the	execution
jumps	to	the	first	line	past	the	else	block.	So	one,	and	only	one,	of	the	blocks	in	the	if-elif-
else	 statements	will	be	executed.	You	can	also	 leave	off	 the	else	block	 if	you	don’t	need
one	and	just	have	if-elif	statements.

Making	Sure	the	Player	Entered	a	Valid	Guess

The	guess	variable	contains	the	player’s	letter	guess.	The	program	needs	to	make	sure	they
entered	a	valid	guess:	one,	and	only	one,	letter	that	has	not	yet	been	guessed.	If	they	didn’t,
the	execution	will	loop	back	and	ask	them	for	a	letter	again.

70.									if	len(guess)	!=	1:
71.													print('Please	enter	a	single	letter.')
72.									elif	guess	in	alreadyGuessed:
73.													print('You	have	already	guessed	that	letter.	Choose	again.')
74.									elif	guess	not	in	'abcdefghijklmnopqrstuvwxyz':
75.													print('Please	enter	a	LETTER.')
76.									else:
77.													return	guess

Line	70’s	condition	checks	whether	guess	is	not	one	character	long,	line	72’s	condition
checks	 whether	 guess	 already	 exists	 inside	 the	 alreadyGuessed	 variable,	 and	 line	 74’s
condition	checks	whether	guess	 is	not	a	letter	in	the	standard	English	alphabet.	If	any	of
these	conditions	are	True,	the	game	prompts	the	player	to	enter	a	new	guess.

If	 all	 of	 these	 conditions	 are	 False,	 then	 the	 else	 statement’s	 block	 executes,	 and
getGuess()	returns	the	value	in	guess	on	line	77.

Remember,	only	one	of	the	blocks	in	an	if-elif-else	statement	will	be	executed.

Asking	the	Player	to	Play	Again

The	playAgain()	function	has	just	a	print()	function	call	and	a	return	statement:

79.	def	playAgain():
80.					#	This	function	returns	True	if	the	player	wants	to	play	again;
										otherwise,	it	returns	False.
81.					print('Do	you	want	to	play	again?	(yes	or	no)')
82.					return	input().lower().startswith('y')

The	return	 statement	has	an	expression	 that	 looks	complicated,	but	you	can	break	 it
down.	Here’s	a	step-by-step	look	at	how	Python	evaluates	this	expression	if	the	user	enters
YES:

The	point	of	 the	playAgain()	 function	 is	 to	 let	 the	player	enter	yes	or	no	 to	 tell	 the
program	 if	 they	want	 to	play	another	 round	of	Hangman.	The	player	 should	be	able	 to
type	YES,	yes,	Y,	or	anything	else	that	begins	with	a	y	in	order	to	mean	“yes.”	If	the	player
enters	YES,	then	the	return	value	of	input()	is	the	string	'YES'.	And	'YES'.lower()	returns
the	lowercase	version	of	the	attached	string.	So	the	return	value	of	'YES'.lower()	is	'yes'.

But	there’s	the	second	method	call,	startswith('y').	This	function	returns	True	 if	the
associated	string	begins	with	the	string	parameter	between	the	parentheses	and	False	 if	 it
doesn’t.	The	return	value	of	'yes'.startswith('y')	is	True.

That’s	 it—you	 evaluated	 this	 expression!	 It	 lets	 the	 player	 enter	 a	 response,	 sets	 the
response	in	lowercase,	checks	whether	it	begins	with	the	letter	y,	and	then	returns	True	if	it
does	and	False	if	it	doesn’t.

On	a	side	note,	there’s	also	an	endswith(someString)	string	method	that	will	return	True
if	the	string	ends	with	the	string	in	someString	and	False	if	it	doesn’t.	endswith()	is	sort	of
like	the	opposite	of	startswith().

Review	of	the	Hangman	Functions
That’s	all	the	functions	we’re	creating	for	this	game!	Let’s	review	them:

getRandomWord(wordList)	Takes	a	list	of	strings	passed	to	it	and	returns	one	string	from
it.	That	is	how	a	word	is	chosen	for	the	player	to	guess.

displayBoard(missedLetters,	 correctLetters,	 secretWord)	 Shows	 the	 current	 state	 of
the	board,	including	how	much	of	the	secret	word	the	player	has	guessed	so	far	and	the
wrong	letters	the	player	has	guessed.	This	function	needs	three	parameters	passed	to	it
to	work	correctly.	correctLetters	and	missedLetters	are	strings	made	up	of	the	letters
that	 the	 player	 has	 guessed	 that	 are	 in	 and	not	 in	 the	 secret	word,	 respectively.	And
secretWord	is	the	secret	word	the	player	is	trying	to	guess.	This	function	has	no	return
value.

getGuess(alreadyGuessed)	Takes	 a	 string	of	 letters	 the	player	has	 already	guessed	and
will	 keep	 asking	 the	 player	 for	 a	 letter	 that	 isn’t	 in	 alreadyGuessed.	 This	 function
returns	the	string	of	the	valid	letter	the	player	guessed.

playAgain()	Asks	if	the	player	wants	to	play	another	round	of	Hangman.	This	function
returns	True	if	the	player	does,	False	if	they	don’t.

After	 the	 functions,	 the	 code	 for	 the	 main	 part	 of	 the	 program	 begins	 at	 line	 85.
Everything	 up	 to	 this	 point	 has	 been	 just	 function	 definitions	 and	 a	 large	 assignment
statement	for	HANGMAN_PICS.

The	Game	Loop

The	main	 part	 of	 the	Hangman	 program	 displays	 the	 name	 of	 the	 game,	 sets	 up	 some
variables,	 and	 executes	 a	 while	 loop.	 This	 section	 walks	 through	 the	 remainder	 of	 the
program	step	by	step.

85.	print('H	A	N	G	M	A	N')
86.	missedLetters	=	''
87.	correctLetters	=	''
88.	secretWord	=	getRandomWord(words)
89.	gameIsDone	=	False

Line	85	is	the	first	print()	call	that	executes	when	the	game	is	run.	It	displays	the	title
of	 the	 game.	 Next,	 blank	 strings	 are	 assigned	 to	 the	 variables	 missedLetters	 and
correctLetters	since	the	player	hasn’t	guessed	any	missed	or	correct	letters	yet.

The	 getRandomWord(words)	 call	 at	 line	 88	 will	 evaluate	 to	 a	 randomly	 selected	 word
from	the	words	list.

Line	89	sets	gameIsDone	to	False.	The	code	will	set	gameIsDone	to	True	when	it	wants	to
signal	that	the	game	is	over	and	ask	the	player	whether	they	want	to	play	again.

Calling	the	displayBoard()	Function
The	 remainder	 of	 the	 program	 consists	 of	 a	 while	 loop.	The	 loop’s	 condition	 is	 always
True,	which	means	it	will	loop	forever	until	it	encounters	a	break	statement.	(This	happens
later	on	line	126.)

91.	while	True:
92.					displayBoard(missedLetters,	correctLetters,	secretWord)

Line	92	calls	the	displayBoard()	function,	passing	it	the	three	variables	set	on	lines	86,
87,	and	88.	Based	on	how	many	 letters	 the	player	has	correctly	guessed	and	missed,	 this
function	displays	the	appropriate	Hangman	board	to	the	player.

Letting	the	Player	Enter	Their	Guess
Next	the	getGuess()	function	is	called	so	the	player	can	enter	their	guess.

94.					#	Let	the	player	enter	a	letter.
95.					guess	=	getGuess(missedLetters	+	correctLetters)

The	getGuess()	function	requires	an	alreadyGuessed	parameter	so	it	can	check	whether
the	player	enters	a	 letter	they’ve	already	guessed.	Line	95	concatenates	the	strings	 in	the
missedLetters	 and	correctLetters	 variables	 and	passes	 the	 result	 as	 the	 argument	 for	 the
alreadyGuessed	parameter.

Checking	Whether	the	Letter	Is	in	the	Secret	Word
If	the	guess	string	exists	in	secretWord,	then	this	code	concatenates	guess	to	the	end	of	the
correctLetters	string:

97.					if	guess	in	secretWord:
98.									correctLetters	=	correctLetters	+	guess

This	string	will	be	the	new	value	of	correctLetters.

Checking	Whether	the	Player	Won
How	 does	 the	 program	 know	 whether	 the	 player	 has	 guessed	 every	 letter	 in	 the	 secret
word?	 Well,	 correctLetters	 has	 each	 letter	 that	 the	 player	 correctly	 guessed,	 and
secretWord	is	the	secret	word	itself.	But	you	can’t	simply	check	whether	correctLetters	==
secretWord.	If	secretWord	were	the	string	'otter'	and	correctLetters	were	the	string	'orte',
then	correctLetters	==	secretWord	would	be	False	even	though	the	player	has	guessed	each
letter	in	the	secret	word.

The	 only	 way	 you	 can	 be	 sure	 the	 player	 has	 won	 is	 to	 iterate	 over	 each	 letter	 in
secretWord	and	see	if	 it	exists	 in	correctLetters.	 If,	and	only	 if,	every	 letter	 in	secretWord
exists	in	correctLetters	has	the	player	won.

100.									#	Check	if	the	player	has	won.
101.									foundAllLetters	=	True
102.									for	i	in	range(len(secretWord)):
103.													if	secretWord[i]	not	in	correctLetters:
104.																	foundAllLetters	=	False
105.																	break

If	you	find	a	letter	in	secretWord	that	doesn’t	exist	in	correctLetters,	you	know	that	the
player	has	not	guessed	all	the	letters.	The	new	variable	foundAllLetters	is	set	to	True	on	line
101	before	the	loop	begins.	The	loop	starts	out	assuming	that	all	the	letters	in	the	secret
word	 have	 been	 found.	 But	 the	 loop’s	 code	 on	 line	 104	will	 change	 foundAllLetters	 to
False	the	first	time	it	finds	a	letter	in	secretWord	that	isn’t	in	correctLetters.

If	all	the	letters	in	the	secret	word	have	been	found,	the	player	is	told	they	have	won,
and	gameIsDone	is	set	to	True:

106.									if	foundAllLetters:
107.													print('Yes!	The	secret	word	is	"'	+	secretWord	+
																			'"!	You	have	won!')
108.													gameIsDone	=	True

Handling	an	Incorrect	Guess
Line	109	is	the	start	of	the	else	block.

109.					else:
110.									missedLetters	=	missedLetters	+	guess

Remember,	 the	code	 in	 this	block	will	execute	 if	 the	condition	was	False.	But	which
condition?	To	 find	out,	 point	 your	 finger	 at	 the	 start	 of	 the	else	 keyword	 and	move	 it
straight	up.	You’ll	see	that	the	else	keyword’s	indentation	is	the	same	as	the	if	keyword’s
indentation	on	line	97:

97.					if	guess	in	secretWord:
--snip--
109.					else:
110.									missedLetters	=	missedLetters	+	guess

So	 if	 the	 condition	 on	 line	 97	 (guess	 in	 secretWord)	were	 False,	 then	 the	 execution
would	move	into	this	else	block.

Wrongly	guessed	letters	are	concatenated	to	the	missedLetters	string	on	line	110.	This
is	like	what	line	98	did	for	letters	the	player	guessed	correctly.

Checking	Whether	the	Player	Lost
Each	 time	 the	 player	 guesses	 incorrectly,	 the	 code	 concatenates	 the	wrong	 letter	 to	 the
string	in	missedLetters.	So	the	length	of	missedLetters—or,	in	code,	len(missedLetters)—
is	also	the	number	of	wrong	guesses.

112.									#	Check	if	player	has	guessed	too	many	times	and	lost.
113.									if	len(missedLetters)	==	len(HANGMAN_PICS)	-	1:
114.													displayBoard(missedLetters,	correctLetters,	secretWord)
115.													print('You	have	run	out	of	guesses!\nAfter	'	+
																			str(len(missedLetters))	+	'	missed	guesses	and	'	+
																			str(len(correctLetters))	+	'	correct	guesses,
																			the	word	was	"'	+	secretWord	+	'"')
116.													gameIsDone	=	True

The	 HANGMAN_PICS	 list	 has	 seven	 ASCII	 art	 strings.	 So	 when	 the	 length	 of	 the
missedLetters	string	is	equal	to	len(HANGMAN_PICS)	-	1	(that	is,	6),	the	player	has	run	out	of
guesses.	You	know	 the	player	has	 lost	because	 the	hanging	man	picture	will	be	 finished.
Remember,	HANGMAN_PICS[0]	is	the	first	item	in	the	list,	and	HANGMAN_PICS[6]	is	the	last	one.

Line	115	prints	the	secret	word,	and	line	116	sets	the	gameIsDone	variable	to	True.

118.					#	Ask	the	player	if	they	want	to	play	again	(but	only	if	the	game	is
											done).
119.					if	gameIsDone:
120.									if	playAgain():
121.													missedLetters	=	''
122.													correctLetters	=	''
123.													gameIsDone	=	False
124.													secretWord	=	getRandomWord(words)

Ending	or	Resetting	the	Game
Whether	the	player	won	or	lost	after	guessing	their	letter,	the	game	should	ask	the	player	if
they	want	 to	play	again.	The	playAgain()	 function	handles	getting	 a	 yes	or	no	 from	 the
player,	so	it	is	called	on	line	120.

If	 the	player	does	want	 to	play	again,	 the	values	 in	missedLetters	 and	correctLetters
must	be	reset	to	blank	strings,	gameIsDone	reset	to	False,	and	a	new	secret	word	stored	in
secretWord.	This	way,	when	the	execution	loops	back	to	the	beginning	of	the	while	loop	on
line	91,	the	board	will	be	reset	to	a	fresh	game.

If	the	player	didn’t	enter	something	that	began	with	y	when	asked	whether	they	wanted
to	play	again,	then	line	120’s	condition	would	be	False,	and	the	else	block	would	execute:

125.									else:
126.													break

The	break	statement	causes	the	execution	to	jump	to	the	first	instruction	after	the	loop.
But	because	there	are	no	more	instructions	after	the	loop,	the	program	terminates.

Summary

Hangman	has	been	our	most	advanced	game	yet,	and	you’ve	learned	several	new	concepts
while	making	it.	As	your	games	get	more	and	more	complex,	it’s	a	good	idea	to	sketch	out
a	flowchart	of	what	should	happen	in	your	program.

Lists	 are	 values	 that	 can	 contain	 other	 values.	Methods	 are	 functions	 attached	 to	 a
value.	Lists	have	an	append()	method.	Strings	have	lower(),	upper(),	split(),	startswith(),
and	endswith()	methods.	You’ll	learn	about	many	more	data	types	and	methods	in	the	rest
of	this	book.

The	elif	 statement	 lets	you	add	an	“or	else-if”	 clause	 to	 the	middle	of	your	if-else
statements.

9
EXTENDING	HANGMAN

Now	that	you’ve	created	a	basic	Hangman	game,	let’s	look	at	some	ways	you	can	extend	it
with	new	features.	In	this	chapter,	you’ll	add	multiple	word	sets	for	the	computer	to	draw
from	and	the	ability	to	change	the	game’s	difficulty	level.

TOPICS	COVERED	IN	THIS	CHAPTER
•	The	dictionary	data	type

•	Key-value	pairs

•	The	keys()	and	values()	dictionary	methods

•	Multiple	variable	assignment

Adding	More	Guesses

After	you’ve	played	Hangman	a	few	times,	you	might	think	that	six	guesses	isn’t	enough	for
the	 player	 to	 get	many	 of	 the	words.	You	 can	 easily	 give	 them	more	 guesses	 by	 adding
more	multiline	strings	to	the	HANGMAN_PICS	list.

Save	your	hangman.py	program	as	hangman2.py.	Then	add	the	following	instructions	on
line	37	and	after	to	extend	the	list	that	contains	the	hanging	man	ASCII	art:

37.							===''',	'''
38.				+---+
39.			[O			|
40.			/|\		|
41.			/	\		|
42.							===''',	'''
43.				+---+
44.			[O]		|

45.			/|\		|
46.			/	\		|
47.							===''']

This	code	adds	two	new	multiline	strings	to	the	HANGMAN_PICS	list,	one	with	the	hanging
man’s	left	ear	drawn,	and	the	other	with	both	ears	drawn.	Because	the	program	will	tell	the
player	 they	have	 lost	based	on	len(missedLetters)	 ==	 len(HANGMAN_PICS)	 -	 1,	 this	 is	 the
only	change	you	need	to	make.	The	rest	of	the	program	works	with	the	new	HANGMAN_PICS
list	just	fine.

The	Dictionary	Data	Type

In	the	first	version	of	the	Hangman	program,	we	used	an	animal	word	list,	but	you	could
change	the	list	of	words	on	line	48.	Instead	of	animals,	you	could	have	colors:

48.	words	=	'red	orange	yellow	green	blue	indigo	violet	white	black	brown'
						.split()

Or	shapes:

48.	words	=	'square	triangle	rectangle	circle	ellipse	rhombus	trapezoid
						chevron	pentagon	hexagon	septagon	octagon'.split()

Or	fruits:

48.	words	=	'apple	orange	lemon	lime	pear	watermelon	grape	grapefruit	cherry
						banana	cantaloupe	mango	strawberry	tomato'.split()

With	some	modification,	you	can	even	change	the	code	so	that	the	Hangman	game	uses
sets	of	words,	 such	as	 animals,	 colors,	 shapes,	or	 fruits.	The	program	can	 tell	 the	player
which	set	the	secret	word	is	from.

To	make	this	change,	you’ll	need	a	new	data	type	called	a	dictionary.	A	dictionary	is	a
collection	of	values	like	a	list.	But	instead	of	accessing	the	items	in	the	dictionary	with	an
integer	index,	you	can	access	them	with	an	index	of	any	data	type.	For	dictionaries,	these
indexes	are	called	keys.

Dictionaries	use	{	and	}	(curly	brackets)	instead	of	[and]	(square	brackets).	Enter	the
following	into	the	interactive	shell:

>>>	spam	=	{'hello':'Hello	there,	how	are	you?',	4:'bacon',	'eggs':9999	}

The	values	between	the	curly	brackets	are	key-value	pairs.	The	keys	are	on	the	left	of	the
colon	and	the	key’s	values	are	on	the	right.	You	can	access	the	values	like	items	in	lists	by
using	the	key.	To	see	an	example,	enter	the	following	into	the	interactive	shell:

>>>	spam	=	{'hello':'Hello	there,	how	are	you?',	4:'bacon',	'eggs':9999}
>>>	spam['hello']
'Hello	there,	how	are	you?'

>>>	spam[4]
'bacon'
>>>	spam['eggs']
9999

Instead	of	putting	an	integer	between	the	square	brackets,	you	can	use,	say,	a	string	key.
In	the	spam	dictionary,	I	used	both	the	integer	4	and	the	string	'eggs'	as	keys.

Getting	the	Size	of	Dictionaries	with	len()
You	 can	get	 the	number	of	 key-value	pairs	 in	 a	dictionary	with	 the	len()	 function.	 For
example,	enter	the	following	into	the	interactive	shell:

>>>	stuff	=	{'hello':'Hello	there,	how	are	you?',	4:'bacon',	'spam':9999}
>>>	len(stuff)
3

The	 len()	 function	 will	 return	 an	 integer	 value	 for	 the	 number	 of	 key-value	 pairs,
which	in	this	case	is	3.

The	Difference	Between	Dictionaries	and	Lists
One	difference	between	dictionaries	and	lists	is	that	dictionaries	can	have	keys	of	any	data
type,	 as	 you’ve	 seen.	But	 remember,	 because	0	 and	'0'	 are	 different	 values,	 they	will	 be
different	keys.	Enter	this	into	the	interactive	shell:

>>>	spam	=	{'0':'a	string',	0:'an	integer'}
>>>	spam[0]
'an	integer'
>>>	spam['0']
'a	string'

You	can	also	loop	over	both	lists	and	the	keys	in	dictionaries	using	a	for	loop.	To	see
how	this	works,	enter	the	following	into	the	interactive	shell:

>>>	favorites	=	{'fruit':'apples',	'animal':'cats',	'number':42}
>>>	for	k	in	favorites:
								print(k)
fruit
number
animal
>>>	for	k	in	favorites:
								print(favorites[k])
apples
42
cats

The	keys	and	values	may	have	printed	in	a	different	order	for	you	because,	unlike	lists,
dictionaries	are	unordered.	The	first	item	in	a	list	named	listStuff	would	be	listStuff[0].
But	there’s	no	first	item	in	a	dictionary,	because	dictionaries	do	not	have	any	sort	of	order.

In	 this	 code,	 Python	 just	 chooses	 an	 order	 based	 on	 how	 it	 stores	 the	 dictionary	 in
memory,	which	is	not	guaranteed	to	always	be	the	same.

Enter	the	following	into	the	interactive	shell:

>>>	favorites1	=	{'fruit':'apples',	'number':42,	'animal':'cats'}
>>>	favorites2	=	{'animal':'cats',	'number':42,	'fruit':'apples'}
>>>	favorites1	==	favorites2
True

The	 expression	 favorites1	 ==	 favorites2	 evaluates	 to	 True	 because	 dictionaries	 are
unordered	and	considered	equal	if	they	have	the	same	key-value	pairs	in	them.	Meanwhile,
lists	are	ordered,	so	two	lists	with	the	same	values	in	a	different	order	are	not	equal	to	each
other.	To	see	the	difference,	enter	this	into	the	interactive	shell:

>>>	listFavs1	=	['apples',	'cats',	42]
>>>	listFavs2	=	['cats',	42,	'apples']
>>>	listFavs1	==	listFavs2
False

The	expression	listFavs1	==	listFavs2	evaluates	to	False	because	the	lists’	contents	are
ordered	differently.

The	keys()	and	values()	Dictionary	Methods
Dictionaries	have	two	useful	methods,	keys()	and	values().	These	will	return	values	of	a
type	called	dict_keys	and	dict_values,	respectively.	Much	like	range	objects,	list	forms	of
those	data	types	are	returned	by	list().

Enter	the	following	into	the	interactive	shell:

>>>	favorites	=	{'fruit':'apples',	'animal':'cats',	'number':42}
>>>	list(favorites.keys())
['fruit',	'number',	'animal']
>>>	list(favorites.values())
['apples',	42,	'cats']

Using	list()	with	the	keys()	or	values()	methods,	you	can	get	a	list	of	just	the	keys	or
just	the	values	of	a	dictionary.

Using	Dictionaries	of	Words	in	Hangman
Let’s	change	the	code	in	the	new	Hangman	game	to	support	different	sets	of	secret	words.
First,	replace	the	value	assigned	to	words	with	a	dictionary	whose	keys	are	strings	and	values
are	lists	of	strings.	The	string	method	split()	will	 return	a	 list	of	strings	with	one	word
each.

48.	words	=	{'Colors':'red	orange	yellow	green	blue	indigo	violet	white	black
						brown'.split(),
49.	'Shapes':'square	triangle	rectangle	circle	ellipse	rhombus	trapezoid

						chevron	pentagon	hexagon	septagon	octagon'.split(),
50.	'Fruits':'apple	orange	lemon	lime	pear	watermelon	grape	grapefruit	cherry
						banana	cantaloupe	mango	strawberry	tomato'.split(),
51.	'Animals':'bat	bear	beaver	cat	cougar	crab	deer	dog	donkey	duck	eagle
						fish	frog	goat	leech	lion	lizard	monkey	moose	mouse	otter	owl	panda
						python	rabbit	rat	shark	sheep	skunk	squid	tiger	turkey	turtle	weasel
						whale	wolf	wombat	zebra'.split()}

Lines	48	to	51	are	still	just	one	assignment	statement.	The	instruction	doesn’t	end	until
the	final	curly	bracket	on	line	51.

Randomly	Choosing	from	a	List

The	choice()	 function	 in	 the	random	module	 takes	a	 list	argument	and	returns	a	 random
value	from	it.	This	is	similar	to	what	the	previous	getRandomWord()	function	did.	You’ll	use
choice()	in	the	new	version	of	the	getRandomWord()	function.

To	see	how	the	choice()	function	works,	enter	the	following	into	the	interactive	shell:

>>>	import	random
>>>	random.choice(['cat',	'dog',	'mouse'])
'mouse'
>>>	random.choice(['cat',	'dog',	'mouse'])
'cat'

Just	 as	 the	 randint()	 function	 returns	 a	 random	 integer	 each	 time,	 the	 choice()
function	returns	a	random	value	from	the	list.

Change	the	getRandomWord()	function	so	that	its	parameter	will	be	a	dictionary	of	lists
of	strings,	instead	of	just	a	list	of	strings.	Here	is	what	the	function	originally	looked	like:

40.	def	getRandomWord(wordList):
41.					#	This	function	returns	a	random	string	from	the	passed	list	of
										strings.
42.					wordIndex	=	random.randint(0,	len(wordList)	-	1)
43.					return	wordList[wordIndex]

Change	the	code	in	this	function	so	that	it	looks	like	this:

53.	def	getRandomWord(wordDict):
54.					#	This	function	returns	a	random	string	from	the	passed	dictionary	of
										lists	of	strings	and	its	key.
55.					#	First,	randomly	select	a	key	from	the	dictionary:
56.					wordKey	=	random.choice(list(wordDict.keys()))
57.
58.					#	Second,	randomly	select	a	word	from	the	key's	list	in	the
										dictionary:
59.					wordIndex	=	random.randint(0,	len(wordDict[wordKey])	-	1)
60.
61.					return	[wordDict[wordKey][wordIndex],	wordKey]

We’ve	changed	the	name	of	the	wordList	parameter	to	wordDict	to	be	more	descriptive.
Now	instead	of	choosing	a	random	word	from	a	list	of	strings,	first	the	function	chooses	a

random	key	in	the	wordDict	dictionary	by	calling	random.choice().	And	instead	of	returning
the	string	wordList[wordIndex],	the	function	returns	a	list	with	two	items.	The	first	item	is
wordDict[wordKey][wordIndex].	The	second	item	is	wordKey.

The	wordDict[wordKey][wordIndex]	expression	on	line	61	may	look	complicated,	but	it’s
just	an	expression	you	can	evaluate	one	step	at	a	time	like	anything	else.	First,	imagine	that
wordKey	has	the	value	'Fruits'	and	wordIndex	has	the	value	5.	Here	is	how	wordDict[wordKey]
[wordIndex]	would	evaluate:

In	this	case,	the	item	in	the	list	this	function	returns	would	be	the	string	'watermelon'.
(Remember	that	indexes	start	at	0,	so	[5]	refers	to	the	sixth	item	in	the	list,	not	the	fifth.)

Because	the	getRandomWord()	function	now	returns	a	list	of	two	items	instead	of	a	string,
secretWord	will	 be	 assigned	 a	 list,	 not	 a	 string.	You	 can	 assign	 these	 two	 items	 into	 two
separate	variables	using	multiple	assignment,	which	we’ll	cover	in	“Multiple	Assignment”
on	page	118.

Deleting	Items	from	Lists

A	del	statement	will	delete	an	item	at	a	certain	index	from	a	list.	Because	del	is	a	statement,
not	a	function	or	an	operator,	it	doesn’t	have	parentheses	or	evaluate	to	a	return	value.	To
try	it	out,	enter	the	following	into	the	interactive	shell:

>>>	animals	=	['aardvark',	'anteater',	'antelope',	'albert']
>>>	del	animals[1]
>>>	animals
['aardvark',	'antelope',	'albert']

Notice	that	when	you	deleted	the	item	at	index	1,	the	item	that	used	to	be	at	index	2
became	the	new	value	at	index	1;	the	item	that	used	to	be	at	index	3	became	the	new	value

at	index	2;	and	so	on.	Everything	above	the	deleted	item	moved	down	one	index.
You	can	type	del	animals[1]	again	and	again	to	keep	deleting	items	from	the	list:

>>>	animals	=	['aardvark',	'anteater',	'antelope',	'albert']
>>>	del	animals[1]
>>>	animals
['aardvark',	'antelope',	'albert']
>>>	del	animals[1]
>>>	animals
['aardvark',	'albert']
>>>	del	animals[1]
>>>	animals
['aardvark']

The	 length	of	 the	HANGMAN_PICS	 list	 is	 also	 the	number	of	 guesses	 the	player	 gets.	By
deleting	strings	from	this	 list,	you	can	reduce	the	number	of	guesses	and	make	the	game
harder.

Add	the	following	lines	of	code	to	your	program	between	the	lines	print('H	A	N	G	M	A
N')	and	missedLetters	=	'':

103.	print('H	A	N	G	M	A	N')
104.
105.	difficulty	=	''
106.	while	difficulty	not	in	'EMH':
107.					print('Enter	difficulty:	E	-	Easy,	M	-	Medium,	H	-	Hard')
108.					difficulty	=	input().upper()
109.	if	difficulty	==	'M':
110.					del	HANGMAN_PICS[8]
111.					del	HANGMAN_PICS[7]
112.	if	difficulty	==	'H':
113.					del	HANGMAN_PICS[8]
114.					del	HANGMAN_PICS[7]
115.					del	HANGMAN_PICS[5]
116.					del	HANGMAN_PICS[3]
117.
118.	missedLetters	=	''

This	code	deletes	items	from	the	HANGMAN_PICS	list,	making	it	shorter	depending	on	the
difficulty	level	selected.	As	the	difficulty	level	 increases,	more	items	are	deleted	from	the
HANGMAN_PICS	 list,	 resulting	 in	 fewer	guesses.	The	 rest	of	 the	code	 in	 the	Hangman	game
uses	the	length	of	this	list	to	tell	when	the	player	has	run	out	of	guesses.

Multiple	Assignment

Multiple	assignment	 is	 a	 shortcut	 to	 assign	multiple	 variables	 in	one	 line	of	 code.	To	use
multiple	 assignment,	 separate	 your	 variables	 with	 commas	 and	 assign	 them	 to	 a	 list	 of
values.	For	example,	enter	the	following	into	the	interactive	shell:

>>>	spam,	eggs,	ham	=	['apples',	'cats',	42]
>>>	spam
'apples'

>>>	eggs
'cats'
>>>	ham
42

The	preceding	example	is	equivalent	to	the	following	assignment	statements:

>>>	spam	=	['apples',	'cats',	42][0]
>>>	eggs	=	['apples',	'cats',	42][1]
>>>	ham	=	['apples',	'cats',	42][2]

You	 must	 put	 the	 same	 number	 of	 variables	 on	 the	 left	 side	 of	 the	 =	 assignment
operator	as	there	are	items	in	the	list	on	the	right	side.	Python	will	automatically	assign
the	value	of	 the	 first	 item	 in	 the	 list	 to	 the	 first	 variable,	 the	 second	 item’s	 value	 to	 the
second	variable,	and	so	on.	If	you	don’t	have	the	same	number	of	variables	and	items,	the
Python	interpreter	will	give	you	an	error,	like	so:

>>>	spam,	eggs,	ham,	bacon	=	['apples',	'cats',	42,	10,	'hello']
Traceback	(most	recent	call	last):
		File	"<pyshell#8>",	line	1,	in	<module>
				spam,	eggs,	ham,	bacon	=	['apples',	'cats',	42,	10,	'hello']
ValueError:	too	many	values	to	unpack

>>>	spam,	eggs,	ham,	bacon	=	['apples',	'cats']
Traceback	(most	recent	call	last):
		File	"<pyshell#9>",	line	1,	in	<module>
				spam,	eggs,	ham,	bacon	=	['apples',	'cats']
ValueError:	need	more	than	2	values	to	unpack

Change	 lines	120	and	157	of	 the	Hangman	code	to	use	multiple	assignment	with	 the
return	value	of	getRandomWord():

119.	correctLetters	=	''
120.	secretWord,	secretSet	=	getRandomWord(words)
121.	gameIsDone	=	False
--snip--
156.													gameIsDone	=	False
157.													secretWord,	secretSet	=	getRandomWord(words)
158.									else:
159.													break

Line	120	assigns	the	two	returned	values	from	getRandomWord(words)	to	secretWord	and
secretSet.	Line	157	does	this	again	if	the	player	chooses	to	play	another	game.

Printing	the	Word	Category	for	the	Player

The	last	change	you’ll	make	is	to	tell	the	player	which	set	of	words	they’re	trying	to	guess.
This	way,	the	player	will	know	if	the	secret	word	is	an	animal,	color,	shape,	or	fruit.	Here
is	the	original	code:

91.	while	True:

92.					displayBoard(missedLetters,	correctLetters,	secretWord)

In	your	new	version	of	Hangman,	add	line	124	so	your	program	looks	like	this:

123.	while	True:
124.					print('The	secret	word	is	in	the	set:	'	+	secretSet)
125.					displayBoard(missedLetters,	correctLetters,	secretWord)

Now	you’re	done	with	the	changes	to	the	Hangman	program.	Instead	of	 just	a	single
list	of	strings,	the	secret	word	is	chosen	from	many	different	lists	of	strings.	The	program
also	 tells	 the	 player	 which	 set	 of	 words	 the	 secret	 word	 is	 from.	 Try	 playing	 this	 new
version.	You	can	easily	change	the	words	dictionary	starting	on	line	48	to	include	more	sets
of	words.

Summary

We’re	done	with	Hangman!	You	 learned	 some	new	 concepts	when	 you	 added	 the	 extra
features	 in	 this	 chapter.	 Even	 after	 you’ve	 finished	writing	 a	 game,	 you	 can	 always	 add
more	features	as	you	learn	more	about	Python	programming.

Dictionaries	are	similar	to	lists	except	that	they	can	use	any	type	of	value	for	an	index,
not	 just	 integers.	 The	 indexes	 in	 dictionaries	 are	 called	 keys.	 Multiple	 assignment	 is	 a
shortcut	to	assign	multiple	variables	the	values	in	a	list.

Hangman	was	fairly	advanced	compared	to	the	previous	games	in	this	book.	But	at	this
point,	 you	 know	 most	 of	 the	 basic	 concepts	 in	 writing	 programs:	 variables,	 loops,
functions,	and	data	types	such	as	lists	and	dictionaries.	The	later	programs	in	this	book	will
still	be	a	challenge	to	master,	but	you’ve	finished	the	steepest	part	of	the	climb!

10
TIC-TAC-TOE

This	 chapter	 features	 a	Tic-Tac-Toe	 game.	Tic-Tac-Toe	 is	 normally	 played	with	 two
people.	One	player	is	X	and	the	other	player	is	O.	Players	take	turns	placing	their	X	or	O.
If	a	player	gets	three	of	their	marks	on	the	board	in	a	row,	column,	or	diagonal,	they	win.
When	the	board	fills	up	with	neither	player	winning,	the	game	ends	in	a	draw.

This	chapter	doesn’t	 introduce	many	new	programming	concepts.	The	user	will	play
against	a	simple	artificial	intelligence,	which	we	will	write	using	our	existing	programming
knowledge.	 An	 artificial	 intelligence	 (AI)	 is	 a	 computer	 program	 that	 can	 intelligently
respond	to	the	player’s	moves.	The	AI	that	plays	Tic-Tac-Toe	isn’t	complicated;	it’s	really
just	a	few	lines	of	code.

Let’s	get	 started	by	 looking	at	a	 sample	run	of	 the	program.	The	player	makes	 their
move	by	entering	the	number	of	the	space	they	want	to	take.	To	help	us	remember	which
index	in	the	list	is	for	which	space,	we’ll	number	the	board	like	a	keyboard’s	number	pad,
as	shown	in	Figure	10-1.

Figure	10-1:	The	board	is	numbered	like	the	keyboard’s	number	pad.

TOPICS	COVERED	IN	THIS	CHAPTER
•	Artificial	intelligence

•	List	references

•	Short-circuit	evaluation

•	The	None	value

Sample	Run	of	Tic-Tac-Toe

Here’s	what	the	user	sees	when	they	run	the	Tic-Tac-Toe	program.	The	text	the	player
enters	is	in	bold.

Welcome	to	Tic-Tac-Toe!
Do	you	want	to	be	X	or	O?
X
The	computer	will	go	first.
O|	|
-+-+-
	|	|
-+-+-
	|	|
What	is	your	next	move?	(1-9)
3
O|	|
-+-+-
	|	|
-+-+-
O|	|X

What	is	your	next	move?	(1-9)
4
O|	|O
-+-+-
X|	|
-+-+-
O|	|X
What	is	your	next	move?	(1-9)
5
O|O|O
-+-+-
X|X|
-+-+-
O|	|X
The	computer	has	beaten	you!	You	lose.
Do	you	want	to	play	again?	(yes	or	no)
no

Source	Code	for	Tic-Tac-Toe

In	a	new	file,	enter	the	following	source	code	and	save	it	as	tictactoe.py.	Then	run	the	game
by	pressing	F5.	If	you	get	errors,	compare	the	code	you	typed	to	the	book’s	code	with	the
online	diff	tool	at	https://www.nostarch.com/inventwithpython#diff.

tictactoe.py

		1.	#	Tic-Tac-Toe
		2.
		3.	import	random
		4.
		5.	def	drawBoard(board):
		6.					#	This	function	prints	out	the	board	that	it	was	passed.
		7.
		8.					#	"board"	is	a	list	of	10	strings	representing	the	board	(ignore
											index	0).
		9.					print(board[7]	+	'|'	+	board[8]	+	'|'	+	board[9])
	10.					print('-+-+-')
	11.					print(board[4]	+	'|'	+	board[5]	+	'|'	+	board[6])
	12.					print('-+-+-')
	13.					print(board[1]	+	'|'	+	board[2]	+	'|'	+	board[3])
	14.
	15.	def	inputPlayerLetter():
	16.					#	Lets	the	player	type	which	letter	they	want	to	be.
	17.					#	Returns	a	list	with	the	player's	letter	as	the	first	item	and	the
											computer's	letter	as	the	second.
	18.					letter	=	''
	19.					while	not	(letter	==	'X'	or	letter	==	'O'):
	20.									print('Do	you	want	to	be	X	or	O?')
	21.									letter	=	input().upper()
	22.
23.					#	The	first	element	in	the	list	is	the	player's	letter;	the	second	is
											the	computer's	letter.
	24.					if	letter	==	'X':
	25.									return	['X',	'O']
	26.					else:
	27.									return	['O',	'X']
	28.
	29.	def	whoGoesFirst():
	30.					#	Randomly	choose	which	player	goes	first.
	31.					if	random.randint(0,	1)	==	0:

https://www.nostarch.com/inventwithpython#diff

	32.									return	'computer'
	33.					else:
	34.									return	'player'
	35.
	36.	def	makeMove(board,	letter,	move):
	37.					board[move]	=	letter
	38.
	39.	def	isWinner(bo,	le):
	40.					#	Given	a	board	and	a	player's	letter,	this	function	returns	True	if
											that	player	has	won.
	41.					#	We	use	"bo"	instead	of	"board"	and	"le"	instead	of	"letter"	so	we
											don't	have	to	type	as	much.
	42.					return	((bo[7]	==	le	and	bo[8]	==	le	and	bo[9]	==	le)	or	#	Across	the
											top
	43.					(bo[4]	==	le	and	bo[5]	==	le	and	bo[6]	==	le)	or	#	Across	the	middle
	44.					(bo[1]	==	le	and	bo[2]	==	le	and	bo[3]	==	le)	or	#	Across	the	bottom
	45.					(bo[7]	==	le	and	bo[4]	==	le	and	bo[1]	==	le)	or	#	Down	the	left	side
	46.					(bo[8]	==	le	and	bo[5]	==	le	and	bo[2]	==	le)	or	#	Down	the	middle
	47.					(bo[9]	==	le	and	bo[6]	==	le	and	bo[3]	==	le)	or	#	Down	the	right
											side
	48.					(bo[7]	==	le	and	bo[5]	==	le	and	bo[3]	==	le)	or	#	Diagonal
	49.					(bo[9]	==	le	and	bo[5]	==	le	and	bo[1]	==	le))	#	Diagonal
	50.
	51.	def	getBoardCopy(board):
	52.					#	Make	a	copy	of	the	board	list	and	return	it.
	53.					boardCopy	=	[]
	54.					for	i	in	board:
	55.									boardCopy.append(i)
	56.					return	boardCopy
	57.
	58.	def	isSpaceFree(board,	move):
	59.					#	Return	True	if	the	passed	move	is	free	on	the	passed	board.
	60.					return	board[move]	==	'	'
	61.
	62.	def	getPlayerMove(board):
	63.					#	Let	the	player	enter	their	move.
	64.					move	=	'	'
	65.					while	move	not	in	'1	2	3	4	5	6	7	8	9'.split()	or	not
											isSpaceFree(board,	int(move)):
	66.									print('What	is	your	next	move?	(1-9)')
	67.									move	=	input()
	68.					return	int(move)
	69.
	70.	def	chooseRandomMoveFromList(board,	movesList):
	71.					#	Returns	a	valid	move	from	the	passed	list	on	the	passed	board.
72.					#	Returns	None	if	there	is	no	valid	move.
	73.					possibleMoves	=	[]
	74.					for	i	in	movesList:
	75.									if	isSpaceFree(board,	i):
	76.													possibleMoves.append(i)
	77.
	78.					if	len(possibleMoves)	!=	0:
	79.									return	random.choice(possibleMoves)
	80.					else:
	81.									return	None
	82.
	83.	def	getComputerMove(board,	computerLetter):
	84.					#	Given	a	board	and	the	computer's	letter,	determine	where	to	move
											and	return	that	move.
	85.					if	computerLetter	==	'X':

	86.									playerLetter	=	'O'
	87.					else:
	88.									playerLetter	=	'X'
	89.
	90.					#	Here	is	the	algorithm	for	our	Tic-Tac-Toe	AI:
	91.					#	First,	check	if	we	can	win	in	the	next	move.
	92.					for	i	in	range(1,	10):
	93.									boardCopy	=	getBoardCopy(board)
	94.									if	isSpaceFree(boardCopy,	i):
	95.													makeMove(boardCopy,	computerLetter,	i)
	96.													if	isWinner(boardCopy,	computerLetter):
	97.																	return	i
	98.
	99.					#	Check	if	the	player	could	win	on	their	next	move	and	block	them.
100.					for	i	in	range(1,	10):
101.									boardCopy	=	getBoardCopy(board)
102.									if	isSpaceFree(boardCopy,	i):
103.													makeMove(boardCopy,	playerLetter,	i)
104.													if	isWinner(boardCopy,	playerLetter):
105.																	return	i
106.
107.					#	Try	to	take	one	of	the	corners,	if	they	are	free.
108.					move	=	chooseRandomMoveFromList(board,	[1,	3,	7,	9])
109.					if	move	!=	None:
110.									return	move
111.
112.					#	Try	to	take	the	center,	if	it	is	free.
113.					if	isSpaceFree(board,	5):
114.									return	5
115.
116.					#	Move	on	one	of	the	sides.
117.					return	chooseRandomMoveFromList(board,	[2,	4,	6,	8])
118.
119.	def	isBoardFull(board):
120.					#	Return	True	if	every	space	on	the	board	has	been	taken.	Otherwise,
											return	False.
121.					for	i	in	range(1,	10):
122.									if	isSpaceFree(board,	i):
123.													return	False
124.					return	True
125.
126.
127.	print('Welcome	to	Tic-Tac-Toe!')
128.
129.	while	True:
130.					#	Reset	the	board.
131.					theBoard	=	['	']	*	10
132.					playerLetter,	computerLetter	=	inputPlayerLetter()
133.					turn	=	whoGoesFirst()
134.					print('The	'	+	turn	+	'	will	go	first.')
135.					gameIsPlaying	=	True
136.
137.					while	gameIsPlaying:
138.									if	turn	==	'player':
139.													#	Player's	turn
140.													drawBoard(theBoard)
141.													move	=	getPlayerMove(theBoard)
142.													makeMove(theBoard,	playerLetter,	move)
143.
144.													if	isWinner(theBoard,	playerLetter):

145.																	drawBoard(theBoard)
146.																	print('Hooray!	You	have	won	the	game!')
147.																	gameIsPlaying	=	False
148.													else:
149.																	if	isBoardFull(theBoard):
150.																					drawBoard(theBoard)
151.																					print('The	game	is	a	tie!')
152.																					break
153.																	else:
154.																					turn	=	'computer'
155.
156.									else:
157.													#	Computer's	turn
158.													move	=	getComputerMove(theBoard,	computerLetter)
159.													makeMove(theBoard,	computerLetter,	move)
160.
161.													if	isWinner(theBoard,	computerLetter):
162.																	drawBoard(theBoard)
163.																	print('The	computer	has	beaten	you!	You	lose.')
164.																	gameIsPlaying	=	False
165.													else:
166.																	if	isBoardFull(theBoard):
167.																					drawBoard(theBoard)
168.																					print('The	game	is	a	tie!')
169.																					break
170.																	else:
171.																					turn	=	'player'
172.
173.					print('Do	you	want	to	play	again?	(yes	or	no)')
174.					if	not	input().lower().startswith('y'):
175.									break

Designing	the	Program

Figure	10-2	shows	a	flowchart	of	the	Tic-Tac-Toe	program.	The	program	starts	by	asking
the	 player	 to	 choose	 their	 letter,	X	 or	O.	Who	 takes	 the	 first	 turn	 is	 randomly	 chosen.
Then	the	player	and	computer	take	turns	making	moves.

Figure	10-2:	Flowchart	for	Tic-Tac-Toe

The	boxes	on	the	left	side	of	the	flowchart	show	what	happens	during	the	player’s	turn,
and	the	ones	on	the	right	side	show	what	happens	during	the	computer’s	 turn.	After	 the
player	or	computer	makes	a	move,	the	program	checks	whether	they	won	or	caused	a	tie,
and	then	the	game	switches	 turns.	After	 the	game	 is	over,	 the	program	asks	 the	player	 if
they	want	to	play	again.

Representing	the	Board	as	Data
First,	you	must	figure	out	how	to	represent	the	board	as	data	in	a	variable.	On	paper,	the
Tic-Tac-Toe	board	is	drawn	as	a	pair	of	horizontal	lines	and	a	pair	of	vertical	lines,	with
an	X,	O,	or	empty	space	in	each	of	the	nine	spaces.

In	the	program,	the	Tic-Tac-Toe	board	is	represented	as	a	list	of	strings	like	the	ASCII
art	of	Hangman.	Each	string	represents	one	of	the	nine	spaces	on	the	board.	The	strings

are	either	'X'	for	the	X	player,	'O'	for	the	O	player,	or	a	single	space	'	'	for	a	blank	space.
Remember	that	we’re	laying	out	our	board	like	a	number	pad	on	a	keyboard.	So	if	a	list

with	10	strings	was	stored	in	a	variable	named	board,	then	board[7]	would	be	the	top-left
space	on	the	board,	board[8]	would	be	the	top-middle	space,	board[9]	would	be	the	top-
right	space,	and	so	on.	The	program	ignores	the	string	at	 index	0	 in	 the	 list.	The	player
will	enter	a	number	from	1	to	9	to	tell	the	game	which	space	they	want	to	move	on.

Strategizing	with	the	Game	AI
The	AI	needs	to	be	able	to	look	at	the	board	and	decide	which	types	of	spaces	it	will	move
on.	To	be	clear,	we	will	 label	 three	 types	of	 spaces	on	 the	Tic-Tac-Toe	board:	corners,
sides,	and	the	center.	The	chart	in	Figure	10-3	shows	what	each	space	is.

The	 AI’s	 strategy	 for	 playing	 Tic-Tac-Toe	 will	 follow	 a	 simple	 algorithm—a	 finite
series	 of	 instructions	 to	 compute	 a	 result.	 A	 single	 program	 can	 make	 use	 of	 several
different	algorithms.	An	algorithm	can	be	represented	with	a	flowchart.	The	Tic-Tac-Toe
AI’s	algorithm	will	compute	the	best	move	to	make,	as	shown	in	Figure	10-4.

Figure	10-3:	Locations	of	the	side,	corner,	and	center	spaces

Figure	10-4:	The	boxes	represent	the	five	steps	of	the	“Get	computer’s	move”	algorithm.	The	arrows	pointing	to
the	left	go	to	the	“Check	if	computer	won”	box.

The	AI’s	algorithm	has	the	following	steps:

1.	 See	if	there’s	a	move	the	computer	can	make	that	will	win	the	game.	If	there	is,	make
that	move.	Otherwise,	go	to	step	2.

2.	 See	 if	 there’s	 a	move	 the	 player	 can	make	 that	will	 cause	 the	 computer	 to	 lose	 the
game.	If	there	is,	move	there	to	block	the	player.	Otherwise,	go	to	step	3.

3.	 Check	if	any	of	the	corner	spaces	(spaces	1,	3,	7,	or	9)	are	free.	If	so,	move	there.	If	no
corner	space	is	free,	go	to	step	4.

4.	 Check	if	the	center	is	free.	If	so,	move	there.	If	it	isn’t,	go	to	step	5.
5.	 Move	on	any	of	the	side	spaces	(spaces	2,	4,	6,	or	8).	There	are	no	more	steps	because

the	side	spaces	are	all	that’s	left	if	the	execution	reaches	step	5.

This	all	takes	place	in	the	Get	computer’s	move	box	on	the	flowchart	in	Figure	10-2.
You	could	add	this	information	to	the	flowchart	with	the	boxes	in	Figure	10-4.

This	 algorithm	 is	 implemented	 in	 getComputerMove()	 and	 the	 other	 functions	 that
getComputerMove()	calls.

Importing	the	random	Module

The	 first	 couple	 of	 lines	 are	 made	 up	 of	 a	 comment	 and	 a	 line	 importing	 the	 random
module	so	that	you	can	call	the	randint()	function	later	on:

1.	#	Tic-Tac-Toe
2.
3.	import	random

You’ve	 seen	 both	 these	 concepts	 before,	 so	 let’s	 move	 on	 to	 the	 next	 part	 of	 the
program.

Printing	the	Board	on	the	Screen

In	the	next	part	of	the	code,	we	define	a	function	to	draw	the	board:

	5.	def	drawBoard(board):
	6.					#	This	function	prints	out	the	board	that	it	was	passed.
	7.
	8.					#	"board"	is	a	list	of	10	strings	representing	the	board	(ignore
										index	0).
	9.					print(board[7]	+	'|'	+	board[8]	+	'|'	+	board[9])
10.					print('-+-+-')
11.					print(board[4]	+	'|'	+	board[5]	+	'|'	+	board[6])
12.					print('-+-+-')
13.					print(board[1]	+	'|'	+	board[2]	+	'|'	+	board[3])

The	drawBoard()	 function	prints	the	game	board	represented	by	the	board	 parameter.
Remember	that	the	board	is	represented	as	a	list	of	10	strings,	where	the	string	at	index	1	is
the	 mark	 on	 space	 1	 on	 the	 Tic-Tac-Toe	 board,	 and	 so	 on.	 The	 string	 at	 index	 0	 is
ignored.	Many	of	the	game’s	functions	work	by	passing	a	list	of	10	strings	as	the	board.

Be	 sure	 to	 get	 the	 spacing	 right	 in	 the	 strings;	 otherwise,	 the	 board	will	 look	 funny
when	printed	on	the	screen.	Here	are	some	example	calls	(with	an	argument	for	board)	to
drawBoard()	and	what	the	function	would	print.

>>>	drawBoard(['	',	'	',	'	',	'	',	'X',	'O',	'	',	'X',	'	',	'O'])
X|	|
-+-+-
X|O|
-+-+-
	|	|
>>>	drawBoard(['	',	'	',	'	',	'	',	'	',	'	',	'	',	'	',	'	',	'	'])
	|	|
-+-+-
	|	|
-+-+-
	|	|

The	program	takes	each	string	and	places	it	on	the	board	in	number	order	according	to
the	keyboard	number	pad	from	Figure	10-1,	so	the	first	three	strings	are	the	bottom	row	of
the	board,	the	next	three	strings	are	the	middle,	and	the	last	three	strings	are	the	top.

Letting	the	Player	Choose	X	or	O

Next,	we’ll	define	a	function	to	assign	X	or	O	to	the	player:

15.	def	inputPlayerLetter():
16.					#	Lets	the	player	enter	which	letter	they	want	to	be.

17.					#	Returns	a	list	with	the	player's	letter	as	the	first	item	and	the
										computer's	letter	as	the	second.
18.					letter	=	''
19.					while	not	(letter	==	'X'	or	letter	==	'O'):
20.									print('Do	you	want	to	be	X	or	O?')
21.									letter	=	input().upper()

The	 inputPlayerLetter()	 function	 asks	whether	 the	 player	wants	 to	 be	X	 or	O.	 The
while	 loop’s	 condition	 contains	 parentheses,	 which	 means	 the	 expression	 inside	 the
parentheses	 is	 evaluated	 first.	 If	 the	letter	 variable	was	 set	 to	'X',	 the	 expression	would
evaluate	like	this:

If	 letter	 has	 the	 value	 'X'	 or	 'O',	 then	 the	 loop’s	 condition	 is	 False	 and	 lets	 the
program	execution	continue	past	the	while	block.	If	the	condition	is	True,	the	program	will
keep	 asking	 the	 player	 to	 choose	 a	 letter	 until	 the	 player	 enters	 an	 X	 or	O.	 Line	 21
automatically	changes	the	string	returned	by	the	call	to	input()	to	uppercase	letters	with
the	upper()	string	method.

The	next	function	returns	a	list	with	two	items:

23.					#	The	first	element	in	the	list	is	the	player's	letter;	the	second	is
										the	computer's	letter.
24.					if	letter	==	'X':
25.									return	['X',	'O']
26.					else:
27.									return	['O',	'X']

The	 first	 item	 (the	 string	 at	 index	 0)	 is	 the	 player’s	 letter,	 and	 the	 second	 item	 (the
string	 at	 index	 1)	 is	 the	 computer’s	 letter.	 The	 if	 and	 else	 statements	 choose	 the
appropriate	list	to	return.

Deciding	Who	Goes	First

Next	we	create	a	function	that	uses	randint()	 to	choose	whether	the	player	or	computer
plays	first:

29.	def	whoGoesFirst():
30.					#	Randomly	choose	which	player	goes	first.
31.					if	random.randint(0,	1)	==	0:
32.									return	'computer'
33.					else:
34.									return	'player'

The	 whoGoesFirst()	 function	 does	 a	 virtual	 coin	 flip	 to	 determine	 whether	 the
computer	or	the	player	goes	first.	The	coin	flip	is	done	with	a	call	to	random.randint(0,	1).
There	is	a	50	percent	chance	the	function	returns	0	and	a	50	percent	chance	the	function
returns	1.	 If	 this	 function	call	 returns	a	0,	 the	whoGoesFirst()	 function	 returns	 the	 string
'computer'.	Otherwise,	 the	 function	 returns	 the	 string	'player'.	The	 code	 that	 calls	 this
function	will	use	the	return	value	to	determine	who	will	make	the	first	move	of	the	game.

Placing	a	Mark	on	the	Board

The	makeMove()	function	is	simple:

36.	def	makeMove(board,	letter,	move):
37.					board[move]	=	letter

The	parameters	are	board,	letter,	and	move.	The	variable	board	is	the	list	with	10	strings
that	represents	the	state	of	the	board.	The	variable	letter	is	the	player’s	letter	(either	'X'
or	'O').	The	variable	move	is	the	place	on	the	board	where	that	player	wants	to	go	(which	is
an	integer	from	1	to	9).

But	wait—in	line	37,	this	code	seems	to	change	one	of	the	items	in	the	board	list	to	the
value	 in	 letter.	 Because	 this	 code	 is	 in	 a	 function,	 though,	 the	 board	 parameter	 will	 be
forgotten	when	the	function	returns.	So	shouldn’t	the	change	to	board	be	forgotten	as	well?

Actually,	this	isn’t	the	case,	because	lists	are	special	when	you	pass	them	as	arguments
to	 functions.	You	are	actually	passing	a	reference	 to	 the	 list,	not	 the	 list	 itself.	Let’s	 learn
about	the	difference	between	lists	and	references	to	lists.

List	References
Enter	the	following	into	the	interactive	shell:

>>>	spam	=	42
>>>	cheese	=	spam
>>>	spam	=	100
>>>	spam
100

>>>	cheese
42

These	results	make	sense	from	what	you	know	so	far.	You	assign	42	to	the	spam	variable,
then	assign	the	value	in	spam	to	the	variable	cheese.	When	you	later	overwrite	spam	to	100,
this	doesn’t	affect	the	value	in	cheese.	This	is	because	spam	and	cheese	are	different	variables
that	store	different	values.

But	 lists	 don’t	work	 this	way.	When	 you	 assign	 a	 list	 to	 a	 variable,	 you	 are	 actually
assigning	a	 list	 reference	 to	 the	variable.	A	reference	 is	a	value	 that	points	 to	 the	 location
where	 some	 bit	 of	 data	 is	 stored.	 Let’s	 look	 at	 some	 code	 that	 will	make	 this	 easier	 to
understand.	Enter	this	into	the	interactive	shell:

➊	>>>	spam	=	[0,	1,	2,	3,	4,	5]
➋	>>>	cheese	=	spam
➌	>>>	cheese[1]	=	'Hello!'
			>>>	spam
			[0,	'Hello!',	2,	3,	4,	5]
			>>>	cheese
			[0,	'Hello!',	2,	3,	4,	5]

The	code	only	changed	the	cheese	list,	but	it	seems	that	both	the	cheese	and	spam	 lists
have	 changed.	 This	 is	 because	 the	 spam	 variable	 doesn’t	 contain	 the	 list	 value	 itself	 but
rather	a	reference	to	the	list,	as	shown	in	Figure	10-5.	The	list	itself	is	not	contained	in	any
variable	but	rather	exists	outside	of	them.

Figure	10-5:	The	spam	list	created	at	➊.	Variables	don’t	store	lists	but	rather	references	to	lists.

Notice	that	cheese	=	spam	copies	the	list	reference	in	spam	to	cheese	➋,	instead	of	copying
the	list	value	itself.	Now	both	spam	and	cheese	store	a	reference	that	refers	to	the	same	list
value.	But	there	is	only	one	list	because	the	list	itself	wasn’t	copied.	Figure	10-6	shows	this
copying.

Figure	10-6:	The	spam	and	cheese	variables	store	two	references	to	the	same	list.

So	the	cheese[1]	=	'Hello!'	line	at	➌	changes	the	same	list	that	spam	refers	to.	This	is
why	spam	returns	the	same	list	value	that	cheese	does.	They	both	have	references	that	refer
to	the	same	list,	as	shown	in	Figure	10-7.

Figure	10-7:	Changing	the	list	changes	all	variables	with	references	to	that	list.

If	 you	want	 spam	 and	 cheese	 to	 store	 two	 different	 lists,	 you	 have	 to	 create	 two	 lists
instead	of	copying	a	reference:

>>>	spam	=	[0,	1,	2,	3,	4,	5]
>>>	cheese	=	[0,	1,	2,	3,	4,	5]

In	the	preceding	example,	spam	and	cheese	store	two	different	lists	(even	though	these
lists	are	identical	in	content).	Now	if	you	modify	one	of	the	lists,	it	won’t	affect	the	other
because	spam	and	cheese	have	references	to	two	different	lists:

>>>	spam	=	[0,	1,	2,	3,	4,	5]
>>>	cheese	=	[0,	1,	2,	3,	4,	5]
>>>	cheese[1]	=	'Hello!'
>>>	spam
[0,	1,	2,	3,	4,	5]
>>>	cheese
[0,	'Hello!',	2,	3,	4,	5]

Figure	10-8	shows	how	the	variables	and	list	values	are	set	up	in	this	example.
Dictionaries	work	the	same	way.	Variables	don’t	store	dictionaries;	they	store	references

to	dictionaries.

Figure	10-8:	The	spam	and	cheese	variables	now	each	store	references	to	two	different	lists.

Using	List	References	in	makeMove()
Let’s	go	back	to	the	makeMove()	function:

36.	def	makeMove(board,	letter,	move):
37.					board[move]	=	letter

When	 a	 list	 value	 is	 passed	 for	 the	 board	 parameter,	 the	 function’s	 local	 variable	 is
really	a	copy	of	the	reference	to	the	list,	not	a	copy	of	the	list	itself.	So	any	changes	to	board
in	this	function	will	also	be	made	to	the	original	list.	Even	though	board	is	a	local	variable,

the	makeMove()	function	modifies	the	original	list.
The	letter	 and	 move	 parameters	 are	 copies	 of	 the	 string	 and	 integer	 values	 that	 you

pass.	 Since	 they	 are	 copies	 of	 values,	 if	 you	modify	 letter	 or	 move	 in	 this	 function,	 the
original	variables	you	used	when	you	called	makeMove()	aren’t	modified.

Checking	Whether	the	Player	Won

Lines	42	to	49	in	the	isWinner()	function	are	actually	one	long	return	statement:

39.	def	isWinner(bo,	le):
40.					#	Given	a	board	and	a	player's	letter,	this	function	returns	True	if
										that	player	has	won.
41.					#	We	use	"bo"	instead	of	"board"	and	"le"	instead	of	"letter"	so	we
										don't	have	to	type	as	much.
42.					return	((bo[7]	==	le	and	bo[8]	==	le	and	bo[9]	==	le)	or	#	Across	the
										top
43.					(bo[4]	==	le	and	bo[5]	==	le	and	bo[6]	==	le)	or	#	Across	the	middle
44.					(bo[1]	==	le	and	bo[2]	==	le	and	bo[3]	==	le)	or	#	Across	the	bottom
45.					(bo[7]	==	le	and	bo[4]	==	le	and	bo[1]	==	le)	or	#	Down	the	left	side
46.					(bo[8]	==	le	and	bo[5]	==	le	and	bo[2]	==	le)	or	#	Down	the	middle
47.					(bo[9]	==	le	and	bo[6]	==	le	and	bo[3]	==	le)	or	#	Down	the	right
										side
48.					(bo[7]	==	le	and	bo[5]	==	le	and	bo[3]	==	le)	or	#	Diagonal
49.					(bo[9]	==	le	and	bo[5]	==	le	and	bo[1]	==	le))	#	Diagonal

The	bo	and	le	names	are	shortcuts	for	the	board	and	letter	parameters.	These	shorter
names	mean	you	have	less	to	type	in	this	function.	Remember,	Python	doesn’t	care	what
you	name	your	variables.

There	are	eight	possible	ways	to	win	at	Tic-Tac-Toe:	you	can	have	a	 line	across	the
top,	middle,	or	bottom	rows;	you	can	have	a	line	down	the	left,	middle,	or	right	columns;
or	you	can	have	a	line	across	either	of	the	two	diagonals.

Each	line	of	the	condition	checks	whether	the	three	spaces	for	a	given	line	are	equal	to
the	letter	provided	(combined	with	the	and	operator).	You	combine	each	line	using	the	or
operator	 to	 check	 for	 the	eight	different	ways	 to	win.	This	means	only	one	of	 the	eight
ways	must	be	True	 in	order	for	us	to	say	that	the	player	who	owns	the	letter	 in	le	 is	 the
winner.

Let’s	pretend	that	le	is	'O'	and	bo	is	['	',	'O',	'O',	'O',	'	',	'X',	'	',	'X',	'	',	'
'].	The	board	would	look	like	this:

X|	|
-+-+-
	|X|
-+-+-
O|O|O

Here	is	how	the	expression	after	the	return	keyword	on	 line	42	would	evaluate.	First
Python	replaces	the	variables	bo	and	le	with	the	values	in	each	variable:

return	(('X'	==	'O'	and	'	'	==	'O'	and	'	'	==	'O')	or
('	'	==	'O'	and	'X'	==	'O'	and	'	'	==	'O')	or
('O'	==	'O'	and	'O'	==	'O'	and	'O'	==	'O')	or
('X'	==	'O'	and	'	'	==	'O'	and	'O'	==	'O')	or
('	'	==	'O'	and	'X'	==	'O'	and	'O'	==	'O')	or
('	'	==	'O'	and	'	'	==	'O'	and	'O'	==	'O')	or
('X'	==	'O'	and	'X'	==	'O'	and	'O'	==	'O')	or
('	'	==	'O'	and	'X'	==	'O'	and	'O'	==	'O'))

Next,	 Python	 evaluates	 all	 those	 ==	 comparisons	 inside	 the	 parentheses	 to	 Boolean
values:

return	((False	and	False	and	False)	or
(False	and	False	and	False)	or
(True	and	True	and	True)	or
(False	and	False	and	True)	or
(False	and	False	and	True)	or
(False	and	False	and	True)	or
(False	and	False	and	True)	or
(False	and	False	and	True))

Then	the	Python	interpreter	evaluates	all	the	expressions	inside	the	parentheses:

return	((False)	or
(False)	or
(True)	or
(False)	or
(False)	or
(False)	or
(False)	or
(False))

Since	now	there’s	only	one	value	inside	each	of	the	inner	parentheses,	you	can	get	rid	of
them:

return	(False	or
False	or
True	or
False	or
False	or
False	or
False	or
False)

Now	Python	evaluates	the	expression	connected	by	all	those	or	operators:

return	(True)

Once	again,	get	rid	of	the	parentheses,	and	you	are	left	with	one	value:

return	True

So	given	those	values	for	bo	and	le,	the	expression	would	evaluate	to	True.	This	is	how

the	program	can	tell	if	one	of	the	players	has	won	the	game.

Duplicating	the	Board	Data

The	getBoardCopy()	function	allows	you	to	easily	make	a	copy	of	a	given	10-string	list	that
represents	a	Tic-Tac-Toe	board	in	the	game.

51.	def	getBoardCopy(board):
52.					#	Make	a	copy	of	the	board	list	and	return	it.
53.					boardCopy	=	[]
54.					for	i	in	board:
55.									boardCopy.append(i)
56.					return	boardCopy

When	 the	 AI	 algorithm	 is	 planning	 its	 moves,	 it	 will	 sometimes	 need	 to	 make
modifications	 to	 a	 temporary	 copy	 of	 the	 board	without	 changing	 the	 actual	 board.	 In
those	cases,	we	call	this	function	to	make	a	copy	of	the	board’s	list.	The	new	list	is	created
on	line	53.

Right	now,	the	list	stored	in	boardCopy	 is	 just	an	empty	list.	The	for	 loop	will	 iterate
over	the	board	parameter,	appending	a	copy	of	the	string	values	in	the	actual	board	to	the
duplicate	board.	After	the	getBoardCopy()	function	builds	up	a	copy	of	the	actual	board,	it
returns	a	reference	to	this	new	board	in	boardCopy,	not	to	the	original	one	in	board.

Checking	Whether	a	Space	on	the	Board	Is	Free

Given	 a	 Tic-Tac-Toe	 board	 and	 a	 possible	 move,	 the	 simple	 isSpaceFree()	 function
returns	whether	that	move	is	available	or	not:

58.	def	isSpaceFree(board,	move):
59.					#	Return	True	if	the	passed	move	is	free	on	the	passed	board.
60.					return	board[move]	==	'	'

Remember	that	free	spaces	in	the	board	lists	are	marked	as	a	single-space	string.	If	the
item	at	the	space’s	index	is	not	equal	to	'	',	then	the	space	is	taken.

Letting	the	Player	Enter	a	Move

The	getPlayerMove()	function	asks	the	player	to	enter	the	number	for	the	space	they	want
to	move	on:

62.	def	getPlayerMove(board):
63.					#	Let	the	player	enter	their	move.
64.					move	=	'	'
65.					while	move	not	in	'1	2	3	4	5	6	7	8	9'.split()	or	not
										isSpaceFree(board,	int(move)):
66.									print('What	is	your	next	move?	(1-9)')

67.									move	=	input()
68.					return	int(move)

The	condition	on	line	65	is	True	if	either	of	the	expressions	on	the	left	or	right	side	of
the	 or	 operator	 is	 True.	 The	 loop	 makes	 sure	 the	 execution	 doesn’t	 continue	 until	 the
player	has	entered	an	integer	between	1	and	9.	It	also	checks	that	the	space	entered	isn’t
already	 taken,	 given	 the	 Tic-Tac-Toe	 board	 passed	 to	 the	 function	 for	 the	 board
parameter.	The	 two	 lines	of	 code	 inside	 the	while	 loop	 simply	 ask	 the	player	 to	 enter	 a
number	from	1	to	9.

The	expression	on	the	left	side	checks	whether	the	player’s	move	is	equal	to	'1',	'2',
'3',	and	so	on	up	to	'9'	by	creating	a	list	with	these	strings	(with	the	split()	method)	and
checking	 whether	 move	 is	 in	 this	 list.	 In	 this	 expression,	 '1	 2	 3	 4	 5	 6	 7	 8	 9'.split()
evaluates	to	['1',	'2',	'3',	'4',	'5',	'6',	'7',	'8',	'9'],	but	 the	former	 is	easier	 to
type.

The	expression	on	the	right	side	checks	whether	the	move	the	player	entered	is	a	free
space	on	the	board	by	calling	isSpaceFree().	Remember	that	isSpaceFree()	returns	True	 if
the	move	you	pass	is	available	on	the	board.	Note	that	isSpaceFree()	expects	an	integer	for
move,	so	the	int()	function	returns	an	integer	form	of	move.

The	not	operators	are	added	to	both	sides	so	that	the	condition	is	True	when	either	of
these	requirements	is	unfulfilled.	This	causes	the	loop	to	ask	the	player	again	and	again	for
a	number	until	they	enter	a	proper	move.

Finally,	line	68	returns	the	integer	form	of	whatever	move	the	player	entered.	input()
returns	strings,	so	the	int()	function	is	called	to	return	an	integer	form	of	the	string.

Short-Circuit	Evaluation

You	may	have	noticed	there’s	a	possible	problem	in	the	getPlayerMove()	function.	What	if
the	player	entered	'Z'	or	some	other	noninteger	string?	The	expression	move	not	in	'1	2	3
4	 5	 6	 7	 8	 9'.split()	 on	 the	 left	 side	 of	 or	 would	 return	 False	 as	 expected,	 and	 then
Python	would	evaluate	the	expression	on	the	right	side	of	the	or	operator.

But	calling	int('Z')	would	cause	Python	to	give	an	error,	because	the	int()	 function
can	take	only	strings	of	number	characters	like	'9'	or	'0',	not	strings	like	'Z'.

To	see	an	example	of	this	kind	of	error,	enter	the	following	into	the	interactive	shell:

>>>	int('42')
42
>>>	int('Z')
Traceback	(most	recent	call	last):
		File	"<pyshell#3>",	line	1,	in	<module>
				int('Z')
ValueError:	invalid	literal	for	int()	with	base	10:	'Z'

But	when	you	play	 the	Tic-Tac-Toe	game	and	 try	 entering	'Z'	 for	 your	move,	 this
error	doesn’t	happen.	This	is	because	the	while	loop’s	condition	is	being	short-circuited.

Short-circuiting	means	that	an	expression	evaluates	only	part	of	the	way,	since	the	rest	of
the	expression	doesn’t	change	what	the	expression	evaluates	to.	Here’s	a	short	program	that
gives	a	good	example	of	short-circuiting.	Enter	the	following	into	the	interactive	shell:

>>>	def	ReturnsTrue():
								print('ReturnsTrue()	was	called.')
								return	True
>>>	def	ReturnsFalse():
								print('ReturnsFalse()	was	called.')
								return	False
>>>	ReturnsTrue()
ReturnsTrue()	was	called.
True
>>>	ReturnsFalse()
ReturnsFalse()	was	called.
False

When	 ReturnsTrue()	 is	 called,	 it	 prints	 'ReturnsTrue()	 was	 called.'	 and	 then	 also
displays	the	return	value	of	ReturnsTrue().	The	same	goes	for	ReturnsFalse().

Now	enter	the	following	into	the	interactive	shell:

>>>	ReturnsFalse()	or	ReturnsTrue()
ReturnsFalse()	was	called.
ReturnsTrue()	was	called.
True
>>>	ReturnsTrue()	or	ReturnsFalse()
ReturnsTrue()	was	called.
True

The	first	part	makes	sense:	the	expression	ReturnsFalse()	or	ReturnsTrue()	calls	both
of	the	functions,	so	you	see	both	of	the	printed	messages.

But	 the	 second	 expression	 only	 shows	 'ReturnsTrue()	 was	 called.',	 not
'ReturnsFalse()	 was	 called.'.	 This	 is	 because	 Python	 didn’t	 call	 ReturnsFalse()	 at	 all.
Since	the	left	side	of	the	or	operator	is	True,	it	doesn’t	matter	what	ReturnsFalse()	returns,
so	Python	doesn’t	bother	calling	it.	The	evaluation	was	short-circuited.

The	 same	applies	 for	 the	and	 operator.	Now	enter	 the	 following	 into	 the	 interactive
shell:

>>>	ReturnsTrue()	and	ReturnsTrue()
ReturnsTrue()	was	called.
ReturnsTrue()	was	called.
True
>>>	ReturnsFalse()	and	ReturnsFalse()
ReturnsFalse()	was	called.
False

Again,	if	the	left	side	of	the	and	operator	is	False,	then	the	entire	expression	is	False.	It
doesn’t	matter	whether	 the	 right	 side	 of	 and	 is	 True	 or	 False,	 so	 Python	 doesn’t	 bother
evaluating	it.	Both	False	and	True	and	False	and	False	evaluate	to	False,	so	Python	short-
circuits	the	evaluation.

Let’s	return	to	lines	65	to	68	of	the	Tic-Tac-Toe	program:

65.					while	move	not	in	'1	2	3	4	5	6	7	8	9'.split()	or	not
										isSpaceFree(board,	int(move)):
66.									print('What	is	your	next	move?	(1-9)')
67.									move	=	input()
68.					return	int(move)

Since	the	part	of	the	condition	on	the	left	side	of	the	or	operator	(move	not	in	'1	2	3	4
5	 6	 7	 8	 9'.split())	 evaluates	 to	 True,	 the	 Python	 interpreter	 knows	 that	 the	 entire
expression	will	evaluate	to	True.	It	doesn’t	matter	if	the	expression	on	the	right	side	of	or
evaluates	to	True	or	False,	because	only	one	value	on	either	side	of	the	or	operator	needs	to
be	True	for	the	whole	expression	to	be	True.

So	Python	stops	checking	the	rest	of	the	expression	and	doesn’t	even	bother	evaluating
the	not	isSpaceFree(board,	int(move))	part.	This	means	the	int()	 and	 the	isSpaceFree()
functions	are	never	called	as	long	as	move	not	in	'1	2	3	4	5	6	7	8	9'.split()	is	True.

This	works	out	well	for	the	program,	because	if	the	right	side	of	the	condition	is	True,
then	 move	 isn’t	 a	 string	 of	 a	 single-digit	 number.	That	would	 cause	 int()	 to	 give	 us	 an
error.	But	if	move	not	in	'1	2	3	4	5	6	7	8	9'.split()	evaluates	to	True,	Python	 short-
circuits	not	isSpaceFree(board,	int(move))	and	int(move)	is	not	called.

Choosing	a	Move	from	a	List	of	Moves

Now	let’s	look	at	the	chooseRandomMoveFromList()	function,	which	is	useful	for	the	AI	code
later	in	the	program:

70.	def	chooseRandomMoveFromList(board,	movesList):
71.					#	Returns	a	valid	move	from	the	passed	list	on	the	passed	board.
72.					#	Returns	None	if	there	is	no	valid	move.
73.					possibleMoves	=	[]
74.					for	i	in	movesList:
75.									if	isSpaceFree(board,	i):
76.													possibleMoves.append(i)

Remember	that	the	board	parameter	is	a	list	of	strings	that	represents	a	Tic-Tac-Toe
board.	The	second	parameter,	movesList,	is	a	list	of	integers	of	possible	spaces	from	which
to	 choose.	 For	 example,	 if	 movesList	 is	 [1,	 3,	 7,	 9],	 that	 means
chooseRandomMoveFromList()	should	return	the	integer	for	one	of	the	corner	spaces.

However,	 chooseRandomMoveFromList()	 first	 checks	 that	 the	 space	 is	 valid	 to	 make	 a
move	 on.	 The	 possibleMoves	 list	 starts	 as	 a	 blank	 list.	 The	 for	 loop	 then	 iterates	 over
movesList.	The	moves	that	cause	isSpaceFree()	to	return	True	are	added	to	possibleMoves
with	the	append()	method.

At	this	point,	the	possibleMoves	list	has	all	of	the	moves	that	were	in	movesList	that	are
also	free	spaces.	The	program	then	checks	whether	the	list	is	empty:

78.					if	len(possibleMoves)	!=	0:

79.									return	random.choice(possibleMoves)
80.					else:
81.									return	None

If	the	list	isn’t	empty,	then	there’s	at	least	one	possible	move	that	can	be	made	on	the
board.

But	this	list	could	be	empty.	For	example,	if	movesList	was	[1,	3,	7,	9]	but	the	board
represented	 by	 the	 board	 parameter	 had	 all	 the	 corner	 spaces	 already	 taken,	 the
possibleMoves	 list	 would	 be	 [].	 In	 that	 case,	 len(possibleMoves)	 evaluates	 to	 0,	 and	 the
function	returns	the	value	None.

The	None	Value

The	 None	 value	 represents	 the	 lack	 of	 a	 value.	 None	 is	 the	 only	 value	 of	 the	 data	 type
NoneType.	You	might	use	the	None	value	when	you	need	a	value	that	means	“does	not	exist”
or	“none	of	the	above.”

For	example,	say	you	had	a	variable	named	quizAnswer	that	holds	the	user’s	answer	to
some	 true/false	 pop	 quiz	 question.	The	 variable	 could	 hold	 True	 or	 False	 for	 the	 user’s
answer.	But	if	the	user	didn’t	answer	the	question,	you	wouldn’t	want	to	set	quizAnswer	 to
True	or	False,	because	then	it	would	look	like	the	user	answered	the	question.	Instead,	you
could	set	quizAnswer	to	None	if	the	user	skipped	the	question.

As	a	side	note,	None	is	not	displayed	in	the	interactive	shell	like	other	values	are:

>>>	2	+	2
4
>>>	'This	is	a	string	value.'
'This	is	a	string	value.'
>>>	None
>>>

The	values	of	the	first	two	expressions	are	printed	as	output	on	the	next	line,	but	None
has	no	value,	so	it	is	not	printed.

Functions	 that	 don’t	 seem	 to	 return	 anything	 actually	 return	 the	 None	 value.	 For
example,	print()	returns	None:

>>>	spam	=	print('Hello	world!')
Hello	world!
>>>	spam	==	None
True

Here	 we	 assigned	 print('Hello	 world!')	 to	 spam.	 The	 print()	 function,	 like	 all
functions,	 has	 a	 return	 value.	 Even	 though	 print()	 prints	 an	 output,	 the	 function	 call
returns	None.	IDLE	doesn’t	show	None	in	the	interactive	shell,	but	you	can	tell	spam	is	set	to
None	because	spam	==	None	evaluates	as	True.

Creating	the	Computer’s	AI

The	getComputerMove()	function	contains	the	AI’s	code:

83.	def	getComputerMove(board,	computerLetter):
84.					#	Given	a	board	and	the	computer's	letter,	determine	where	to	move
										and	return	that	move.
85.					if	computerLetter	==	'X':
86.									playerLetter	=	'O'
87.					else:
88.									playerLetter	=	'X'

The	 first	 argument	 is	 a	 Tic-Tac-Toe	 board	 for	 the	 board	 parameter.	 The	 second
argument	 is	 the	 letter	 the	 computer	 uses—either	 'X'	 or	 'O'	 in	 the	 computerLetter
parameter.	 The	 first	 few	 lines	 simply	 assign	 the	 other	 letter	 to	 a	 variable	 named
playerLetter.	This	way,	the	same	code	can	be	used	whether	the	computer	is	X	or	O.

Remember	how	the	Tic-Tac-Toe	AI	algorithm	works:

1.	 See	if	there’s	a	move	the	computer	can	make	that	will	win	the	game.	If	there	is,	take
that	move.	Otherwise,	go	to	step	2.

2.	 See	 if	 there’s	 a	move	 the	 player	 can	make	 that	will	 cause	 the	 computer	 to	 lose	 the
game.	If	there	is,	the	computer	should	move	there	to	block	the	player.	Otherwise,	go
to	step	3.

3.	 Check	if	any	of	the	corners	(spaces	1,	3,	7,	or	9)	are	free.	If	no	corner	space	is	free,	go
to	step	4.

4.	 Check	if	the	center	is	free.	If	so,	move	there.	If	it	isn’t,	go	to	step	5.
5.	 Move	on	any	of	the	sides	(spaces	2,	4,	6,	or	8).	There	are	no	more	steps,	because	the

side	spaces	are	the	only	spaces	left	if	the	execution	has	reached	this	step.

The	 function	will	 return	 an	 integer	 from	 1	 to	 9	 representing	 the	 computer’s	 move.
Let’s	walk	through	how	each	of	these	steps	is	implemented	in	the	code.

Checking	Whether	the	Computer	Can	Win	in	One	Move
Before	 anything	 else,	 if	 the	 computer	 can	 win	 in	 the	 next	 move,	 it	 should	 make	 that
winning	move	immediately.

90.					#	Here	is	the	algorithm	for	our	Tic-Tac-Toe	AI:
91.					#	First,	check	if	we	can	win	in	the	next	move.
92.					for	i	in	range(1,	10):
93.									boardCopy	=	getBoardCopy(board)
94.									if	isSpaceFree(boardCopy,	i):
95.													makeMove(boardCopy,	computerLetter,	i)
96.													if	isWinner(boardCopy,	computerLetter):
97.																	return	i

The	for	loop	that	starts	on	line	92	iterates	over	every	possible	move	from	1	to	9.	The

code	inside	the	loop	simulates	what	would	happen	if	the	computer	made	that	move.
The	 first	 line	 in	 the	 loop	 (line	 93)	 makes	 a	 copy	 of	 the	 board	 list.	 This	 is	 so	 the

simulated	move	inside	the	loop	doesn’t	modify	the	real	Tic-Tac-Toe	board	stored	in	the
board	variable.	The	getBoardCopy()	returns	an	identical	but	separate	board	list	value.

Line	94	checks	whether	the	space	is	free	and,	if	so,	simulates	making	the	move	on	the
copy	of	the	board.	If	this	move	results	in	the	computer	winning,	the	function	returns	that
move’s	integer.

If	 none	 of	 the	 spaces	 results	 in	 winning,	 the	 loop	 ends,	 and	 the	 program	 execution
continues	to	line	100.

Checking	Whether	the	Player	Can	Win	in	One	Move
Next,	the	code	will	simulate	the	human	player	moving	on	each	of	the	spaces:

	99.					#	Check	if	the	player	could	win	on	their	next	move	and	block	them.
100.					for	i	in	range(1,	10):
101.									boardCopy	=	getBoardCopy(board)
102.									if	isSpaceFree(boardCopy,	i):
103.													makeMove(boardCopy,	playerLetter,	i)
104.													if	isWinner(boardCopy,	playerLetter):
105.																	return	i

The	code	is	similar	to	the	loop	on	line	92	except	the	player’s	letter	is	put	on	the	board
copy.	 If	 the	isWinner()	 function	 shows	 that	 the	player	would	win	with	a	move,	 then	 the
computer	will	return	that	same	move	to	block	this	from	happening.

If	 the	 human	 player	 cannot	 win	 in	 one	 more	 move,	 the	 for	 loop	 finishes,	 and	 the
execution	continues	to	line	108.

Checking	the	Corner,	Center,	and	Side	Spaces	(in	That	Order)
If	the	computer	can’t	make	a	winning	move	and	doesn’t	need	to	block	the	player’s	move,	it
will	move	to	a	corner,	center,	or	side	space,	depending	on	the	spaces	available.

The	computer	first	tries	to	move	to	one	of	the	corner	spaces:

107.					#	Try	to	take	one	of	the	corners,	if	they	are	free.
108.					move	=	chooseRandomMoveFromList(board,	[1,	3,	7,	9])
109.					if	move	!=	None:
110.									return	move

The	call	to	the	chooseRandomMoveFromList()	function	with	the	list	[1,	3,	7,	9]	ensures
that	the	function	returns	the	integer	for	one	of	the	corner	spaces:	1,	3,	7,	or	9.

If	all	the	corner	spaces	are	taken,	the	chooseRandomMoveFromList()	function	returns	None,
and	the	execution	moves	on	to	line	113:

112.					#	Try	to	take	the	center,	if	it	is	free.
113.					if	isSpaceFree(board,	5):

114.									return	5

If	none	of	the	corners	is	available,	line	114	moves	on	the	center	space	if	it	is	free.	If	the
center	space	isn’t	free,	the	execution	moves	on	to	line	117:

116.					#	Move	on	one	of	the	sides.
117.					return	chooseRandomMoveFromList(board,	[2,	4,	6,	8])

This	code	also	makes	a	call	to	chooseRandomMoveFromList(),	except	you	pass	it	a	list	of
the	side	spaces:[2,	4,	6,	8].	This	function	won’t	return	None	because	the	side	spaces	are
the	only	spaces	that	can	possibly	be	left.	This	ends	the	getComputerMove()	function	and	the
AI	algorithm.

Checking	Whether	the	Board	Is	Full
The	last	function	is	isBoardFull():

119.	def	isBoardFull(board):
120.					#	Return	True	if	every	space	on	the	board	has	been	taken.	Otherwise,
											return	False.
121.					for	i	in	range(1,	10):
122.									if	isSpaceFree(board,	i):
123.													return	False
124.					return	True

This	function	returns	True	if	the	10-string	list	in	the	board	argument	it	was	passed	has
an	'X'	or	'O'	 in	 every	 index	 (except	 for	 index	0,	which	 is	 ignored).	The	for	 loop	 lets	us
check	indexes	1	 through	9	on	the	board	 list.	As	soon	as	 it	 finds	a	 free	space	on	the	board
(that	is,	when	isSpaceFree(board,	i)	returns	True),	 the	isBoardFull()	 function	will	return
False.

If	 the	execution	manages	 to	go	through	every	 iteration	of	 the	 loop,	 then	none	of	 the
spaces	is	free.	Line	124	will	then	execute	return	True.

The	Game	Loop

Line	127	 is	 the	 first	 line	 that	 isn’t	 inside	of	 a	 function,	 so	 it’s	 the	 first	 line	of	 code	 that
executes	when	you	run	this	program.

127.	print('Welcome	to	Tic-Tac-Toe!')

This	 line	 greets	 the	 player	 before	 the	 game	 starts.	The	 program	 then	 enters	 a	 while
loop	at	line	129:

129.	while	True:
130.					#	Reset	the	board.
131.					theBoard	=	['	']	*	10

The	while	 loop	keeps	looping	until	the	execution	encounters	a	break	 statement.	Line
131	sets	up	the	main	Tic-Tac-Toe	board	in	a	variable	named	theBoard.	The	board	starts
empty,	which	we	represent	with	a	list	of	10	single	space	strings.	Rather	than	type	out	this
full	list,	line	131	uses	list	replication.	It’s	shorter	to	type	['	']	*	10	than	['	',	'	',	'	',	'
',	'	',	'	',	'	',	'	',	'	',	'	'].

Choosing	the	Player’s	Mark	and	Who	Goes	First
Next,	the	inputPlayerLetter()	function	lets	the	player	enter	whether	they	want	to	be	the	X
or	O:

132.					playerLetter,	computerLetter	=	inputPlayerLetter()

The	 function	 returns	 a	 two-string	 list,	 either	 ['X',	 'O']	 or	 ['O',	 'X'].	 We	 use
multiple	 assignment	 to	 set	 playerLetter	 to	 the	 first	 item	 in	 the	 returned	 list	 and
computerLetter	to	the	second.

From	 there,	 the	 whoGoesFirst()	 function	 randomly	 decides	who	 goes	 first,	 returning
either	the	string	'player'	or	the	string	'computer',	and	then	line	134	tells	the	player	who
will	go	first:

133.					turn	=	whoGoesFirst()
134.					print('The	'	+	turn	+	'	will	go	first.')
135.					gameIsPlaying	=	True

The	gameIsPlaying	variable	keeps	track	of	whether	the	game	is	still	being	played	or	if
someone	has	won	or	tied.

Running	the	Player’s	Turn
Line	137’s	loop	will	keep	going	back	and	forth	between	the	code	for	the	player’s	turn	and
the	computer’s	turn,	as	long	as	gameIsPlaying	is	set	to	True:

137.					while	gameIsPlaying:
138.									if	turn	==	'player':
139.													#	Player's	turn
140.													drawBoard(theBoard)
141.													move	=	getPlayerMove(theBoard)
142.													makeMove(theBoard,	playerLetter,	move)

The	 turn	 variable	 was	 originally	 set	 to	 either	 'player'	 or	 'computer'	 by	 the
whoGoesFirst()	call	on	line	133.	If	turn	equals	'computer',	then	line	138’s	condition	is	False,
and	the	execution	jumps	to	line	156.

But	 if	 line	 138	 evaluates	 to	 True,	 line	 140	 calls	 drawBoard()	 and	 passes	 the	 theBoard
variable	 to	 print	 the	 Tic-Tac-Toe	 board	 on	 the	 screen.	 Then	 getPlayerMove()	 lets	 the
player	enter	their	move	(and	also	makes	sure	it	is	a	valid	move).	The	makeMove()	 function
adds	the	player’s	X	or	O	to	theBoard.

Now	that	the	player	has	made	their	move,	the	program	should	check	whether	they	have
won	the	game:

144.													if	isWinner(theBoard,	playerLetter):
145.																	drawBoard(theBoard)
146.																	print('Hooray!	You	have	won	the	game!')
147.																	gameIsPlaying	=	False

If	the	isWinner()	function	returns	True,	the	if	block’s	code	displays	the	winning	board
and	prints	a	message	telling	the	player	they	have	won.	The	gameIsPlaying	variable	is	also
set	to	False	so	that	the	execution	doesn’t	continue	on	to	the	computer’s	turn.

If	 the	 player	 didn’t	win	with	 their	 last	move,	maybe	 their	move	 filled	 up	 the	 entire
board	and	tied	the	game.	The	program	checks	that	condition	next	with	an	else	statement:

148.													else:
149.																	if	isBoardFull(theBoard):
150.																					drawBoard(theBoard)
151.																					print('The	game	is	a	tie!')
152.																					break

In	this	else	block,	the	isBoardFull()	function	returns	True	if	there	are	no	more	moves
to	make.	In	that	case,	the	if	block	starting	at	line	149	displays	the	tied	board	and	tells	the
player	a	tie	has	occurred.	The	execution	then	breaks	out	of	the	while	 loop	and	 jumps	to
line	173.

If	the	player	hasn’t	won	or	tied	the	game,	the	program	enters	another	else	statement:

153.													else:
154.																	turn	=	'computer'

Line	154	sets	the	turn	variable	to	'computer'	so	that	the	program	will	execute	the	code
for	the	computer’s	turn	on	the	next	iteration.

Running	the	Computer’s	Turn
If	 the	 turn	 variable	 wasn’t	 'player'	 for	 the	 condition	 on	 line	 138,	 then	 it	 must	 be	 the
computer’s	turn.	The	code	in	this	else	block	is	similar	to	the	code	for	the	player’s	turn:

156.									else:
157.													#	Computer's	turn
158.													move	=	getComputerMove(theBoard,	computerLetter)
159.													makeMove(theBoard,	computerLetter,	move)
160.
161.													if	isWinner(theBoard,	computerLetter):
162.																	drawBoard(theBoard)
163.																	print('The	computer	has	beaten	you!	You	lose.')
164.																	gameIsPlaying	=	False
165.									else:
166.													if	isBoardFull(theBoard):
167.																	drawBoard(theBoard)
168.																	print('The	game	is	a	tie!')

169.																	break
170.													else:
171.																	turn	=	'player'

Lines	157	to	171	are	almost	identical	to	the	code	for	the	player’s	turn	on	lines	139	to
154.	 The	 only	 difference	 is	 that	 this	 code	 uses	 the	 computer’s	 letter	 and	 calls
getComputerMove().

If	the	game	isn’t	won	or	tied,	line	171	sets	turn	to	the	player’s	turn.	There	are	no	more
lines	of	code	inside	the	while	loop,	so	the	execution	jumps	back	to	the	while	statement	on
line	137.

Asking	the	Player	to	Play	Again
Finally,	the	program	asks	the	player	if	they	want	to	play	another	game:

173.					print('Do	you	want	to	play	again?	(yes	or	no)')
174.					if	not	input().lower().startswith('y'):
175.									break

Lines	173	to	175	are	executed	immediately	after	the	while	block	 started	by	 the	while
statement	on	 line	137.	gameIsPlaying	 is	 set	 to	False	when	 the	game	has	ended,	 so	at	 this
point	the	game	asks	the	player	if	they	want	to	play	again.

The	not	input().lower().startswith('y')	 expression	will	 be	True	 if	 the	 player	 enters
anything	 that	 doesn’t	 start	 with	 a	 'y'.	 In	 that	 case,	 the	 break	 statement	 executes.	 That
breaks	the	execution	out	of	the	while	loop	that	was	started	on	line	129.	But	since	there	are
no	more	lines	of	code	after	that	while	block,	the	program	terminates	and	the	game	ends.

Summary

Creating	a	program	with	AI	comes	down	to	carefully	considering	all	the	possible	situations
the	AI	can	encounter	and	how	it	should	respond	in	each	of	those	situations.	The	Tic-Tac-
Toe	AI	is	simple	because	not	as	many	moves	are	possible	in	Tic-Tac-Toe	as	in	a	game	like
chess	or	checkers.

Our	computer	AI	checks	for	any	possible	winning	moves.	Otherwise,	it	checks	whether
it	must	block	the	player’s	move.	Then	the	AI	simply	chooses	any	available	corner	space,
then	the	center	space,	then	the	side	spaces.	This	is	a	simple	algorithm	for	the	computer	to
follow.

The	 key	 to	 implementing	 our	 AI	 is	 to	make	 copies	 of	 the	 board	 data	 and	 simulate
moves	on	the	copy.	That	way,	the	AI	code	can	see	whether	a	move	results	in	a	win	or	loss.
Then	the	AI	can	make	that	move	on	the	real	board.	This	type	of	simulation	is	effective	at
predicting	what	is	or	isn’t	a	good	move.

11
THE	BAGELS	DEDUCTION	GAME

Bagels	is	a	deduction	game	in	which	the	player	tries	to	guess	a	random	three-digit	number
(with	no	repeating	digits)	generated	by	the	computer.	After	each	guess,	the	computer	gives
the	player	three	types	of	clues:

Bagels	None	of	the	three	digits	guessed	is	in	the	secret	number.

Pico	One	of	the	digits	is	in	the	secret	number,	but	the	guess	has	the	digit	in	the	wrong
place.

Fermi	The	guess	has	a	correct	digit	in	the	correct	place.

The	computer	can	give	multiple	 clues,	which	are	 sorted	 in	alphabetical	order.	 If	 the
secret	number	is	456	and	the	player’s	guess	 is	546,	the	clues	would	be	“fermi	pico	pico.”
The	“fermi”	is	from	the	6	and	“pico	pico”	are	from	the	4	and	5.

In	this	chapter,	you’ll	learn	a	few	new	methods	and	functions	that	come	with	Python.
You’ll	 also	 learn	about	augmented	assignment	operators	and	string	 interpolation.	While
they	don’t	 let	 you	do	 anything	you	 couldn’t	 do	before,	 they	 are	nice	 shortcuts	 to	make
coding	easier.

TOPICS	COVERED	IN	THIS	CHAPTER
•	The	random.shuffle()	function

•	Augmented	assignment	operators,	+=,	-=,	*=,	/=

•	The	sort()	list	method

•	The	join()	string	method

•	String	interpolation

•	The	conversion	specifier	%s

•	Nested	loops

Sample	Run	of	Bagels

Here’s	what	the	user	sees	when	they	run	the	Bagels	program.	The	text	the	player	enters	is
shown	in	bold.

I	am	thinking	of	a	3-digit	number.	Try	to	guess	what	it	is.
The	clues	I	give	are...
When	I	say:				That	means:
		Bagels							None	of	the	digits	is	correct.
		Pico									One	digit	is	correct	but	in	the	wrong	position.
		Fermi								One	digit	is	correct	and	in	the	right	position.
I	have	thought	up	a	number.	You	have	10	guesses	to	get	it.
Guess	#1:
123
Fermi
Guess	#2:
453
Pico
Guess	#3:
425
Fermi
Guess	#4:
326
Bagels
Guess	#5:
489
Bagels
Guess	#6:
075
Fermi	Fermi
Guess	#7:
015
Fermi	Pico
Guess	#8:
175
You	got	it!
Do	you	want	to	play	again?	(yes	or	no)
no

Source	Code	for	Bagels

In	a	new	file,	enter	the	following	source	code	and	save	it	as	bagels.py.	Then	run	the	game	by
pressing	F5.	 If	 you	get	 errors,	 compare	 the	 code	you	 typed	 to	 the	book’s	 code	with	 the
online	diff	tool	at	https://www.nostarch.com/inventwithpython#diff.

https://www.nostarch.com/inventwithpython#diff

bagels.py

	1.	import	random
	2.
	3.	NUM_DIGITS	=	3
	4.	MAX_GUESS	=	10
	5.
	6.	def	getSecretNum():
	7.					#	Returns	a	string	of	unique	random	digits	that	is	NUM_DIGITS	long.
	8.					numbers	=	list(range(10))
	9.					random.shuffle(numbers)
10.					secretNum	=	''
11.					for	i	in	range(NUM_DIGITS):
12.									secretNum	+=	str(numbers[i])
13.					return	secretNum
14.
15.	def	getClues(guess,	secretNum):
16.					#	Returns	a	string	with	the	Pico,	Fermi,	&	Bagels	clues	to	the	user.
17.					if	guess	==	secretNum:
18.									return	'You	got	it!'
19.
20.					clues	=	[]
21.					for	i	in	range(len(guess)):
22.									if	guess[i]	==	secretNum[i]:
23.													clues.append('Fermi')
24.									elif	guess[i]	in	secretNum:
25.													clues.append('Pico')
26.					if	len(clues)	==	0:
27.									return	'Bagels'
28.
29.					clues.sort()
30.					return	'	'.join(clues)
31.
32.	def	isOnlyDigits(num):
33.					#	Returns	True	if	num	is	a	string	of	only	digits.	Otherwise,	returns
										False.
34.					if	num	==	'':
35.									return	False
36.
37.					for	i	in	num:
38.									if	i	not	in	'0	1	2	3	4	5	6	7	8	9'.split():

39.													return	False
40.
41.					return	True
42.
43.
44.	print('I	am	thinking	of	a	%s-digit	number.	Try	to	guess	what	it	is.'	%
						(NUM_DIGITS))
45.	print('The	clues	I	give	are...')
46.	print('When	I	say:				That	means:')
47.	print('	Bagels								None	of	the	digits	is	correct.')
48.	print('	Pico										One	digit	is	correct	but	in	the	wrong	position.')
49.	print('	Fermi									One	digit	is	correct	and	in	the	right	position.')
50.
51.	while	True:
52.					secretNum	=	getSecretNum()
53.					print('I	have	thought	up	a	number.	You	have	%s	guesses	to	get	it.'	%
										(MAX_GUESS))
54.
55.					guessesTaken	=	1
56.					while	guessesTaken	<=	MAX_GUESS:
57.									guess	=	''
58.									while	len(guess)	!=	NUM_DIGITS	or	not	isOnlyDigits(guess):
59.													print('Guess	#%s:	'	%	(guessesTaken))
60.													guess	=	input()
61.
62.									print(getClues(guess,	secretNum))
63.									guessesTaken	+=	1
64.
65.									if	guess	==	secretNum:
66.													break
67.									if	guessesTaken	>	MAX_GUESS:
68.													print('You	ran	out	of	guesses.	The	answer	was	%s.'	%
																		(secretNum))
69.
70.					print('Do	you	want	to	play	again?	(yes	or	no)')
71.					if	not	input().lower().startswith('y'):
72.									break

Flowchart	for	Bagels

The	flowchart	in	Figure	11-1	describes	what	happens	in	this	game	and	the	order	in	which
each	step	can	happen.

The	flowchart	for	Bagels	is	pretty	simple.	The	computer	generates	a	secret	number,	the
player	tries	to	guess	that	number,	and	the	computer	gives	the	player	clues	based	on	their
guess.	This	 happens	 over	 and	 over	 again	 until	 the	 player	 either	wins	 or	 loses.	After	 the
game	finishes,	whether	the	player	won	or	not,	the	computer	asks	the	player	whether	they
want	to	play	again.

Figure	11-1:	Flowchart	for	the	Bagels	game

Importing	random	and	Defining	getSecretNum()

At	 the	 start	 of	 the	 program,	 we’ll	 import	 the	 random	 module	 and	 set	 up	 some	 global
variables.	Then	we’ll	define	a	function	named	getSecretNum().

1.	import	random
2.
3.	NUM_DIGITS	=	3
4.	MAX_GUESS	=	10
5.
6.	def	getSecretNum():
7.					#	Returns	a	string	of	unique	random	digits	that	is	NUM_DIGITS	long.

Instead	 of	 using	 the	 integer	 3	 for	 the	 number	 of	 digits	 in	 the	 answer,	 we	 use	 the
constant	variable	NUM_DIGITS.	The	same	goes	for	the	number	of	guesses	the	player	gets;	we
use	the	constant	variable	MAX_GUESS	instead	of	the	integer	10.	Now	it	will	be	easy	to	change
the	number	of	guesses	or	secret	number	digits.	Just	change	the	values	at	line	3	or	4,	and	the
rest	of	the	program	will	still	work	without	any	more	changes.

The	 getSecretNum()	 function	 generates	 a	 secret	 number	 that	 contains	 only	 unique
digits.	The	Bagels	game	is	much	more	fun	if	you	don’t	have	duplicate	digits	in	the	secret
number,	such	as	'244'	or	'333'.	We’ll	use	some	new	Python	functions	to	make	this	happen
in	getSecretNum().

Shuffling	a	Unique	Set	of	Digits

The	first	two	lines	of	getSecretNum()	shuffle	a	set	of	nonrepeating	numbers:

8.					numbers	=	list(range(10))
9.					random.shuffle(numbers)

Line	8’s	list(range(10))	evaluates	to	[0,	1,	2,	3,	4,	5,	6,	7,	8,	9],	so	the	numbers
variable	contains	a	list	of	all	10	digits.

Changing	List	Item	Order	with	the	random.shuffle()	Function
The	random.shuffle()	 function	randomly	changes	 the	order	of	a	 list’s	 items	 (in	 this	case,
the	list	of	digits).	This	function	doesn’t	return	a	value	but	rather	modifies	the	list	you	pass
it	in	place.	This	is	similar	to	the	way	the	makeMove()	function	in	Chapter	10’s	Tic-Tac-Toe
game	modified	 the	 list	 it	was	 passed	 in	 place,	 rather	 than	 returning	 a	 new	 list	with	 the
change.	This	is	why	you	do	not	write	code	like	numbers	=	random.shuffle(numbers).

Try	experimenting	with	the	shuffle()	function	by	entering	the	following	code	into	the
interactive	shell:

>>>	import	random
>>>	spam	=	list(range(10))
>>>	print(spam)
[0,	1,	2,	3,	4,	5,	6,	7,	8,	9]
>>>	random.shuffle(spam)
>>>	print(spam)
[3,	0,	5,	9,	6,	8,	2,	4,	1,	7]
>>>	random.shuffle(spam)
>>>	print(spam)
[9,	8,	3,	5,	4,	7,	1,	2,	0,	6]

Each	 time	 random.shuffle()	 is	 called	 on	 spam,	 the	 items	 in	 the	 spam	 list	 are	 shuffled.
You’ll	see	how	we	use	the	shuffle()	function	to	make	a	secret	number	next.

Getting	the	Secret	Number	from	the	Shuffled	Digits
The	 secret	 number	 will	 be	 a	 string	 of	 the	 first	 NUM_DIGITS	 digits	 of	 the	 shuffled	 list	 of
integers:

10.					secretNum	=	''
11.					for	i	in	range(NUM_DIGITS):
12.									secretNum	+=	str(numbers[i])
13.					return	secretNum

The	 secretNum	 variable	 starts	 out	 as	 a	 blank	 string.	The	 for	 loop	 on	 line	 11	 iterates
NUM_DIGITS	number	of	times.	On	each	iteration	through	the	loop,	the	integer	at	index	i	 is
pulled	 from	 the	 shuffled	 list,	 converted	 to	 a	 string,	 and	 concatenated	 to	 the	 end	 of
secretNum.

For	example,	if	numbers	refers	to	the	list	[9,	8,	3,	5,	4,	7,	1,	2,	0,	6],	then	on	the
first	 iteration,	 numbers[0]	 (that	 is,	 9)	 will	 be	 passed	 to	 str();	 this	 returns	 '9',	 which	 is
concatenated	 to	 the	 end	 of	 secretNum.	 On	 the	 second	 iteration,	 the	 same	 happens	 with
numbers[1]	(that	is,	8),	and	on	the	third	iteration	the	same	happens	with	numbers[2]	(that	is,
3).	The	final	value	of	secretNum	that	is	returned	is	'983'.

Notice	that	secretNum	in	this	function	contains	a	string,	not	an	integer.	This	may	seem
odd,	 but	 remember	 that	 you	 cannot	 concatenate	 integers.	 The	 expression	 9	 +	 8	 +	 3

evaluates	to	20,	but	what	you	want	is	'9'	+	'8'	+	'3',	which	evaluates	to	'983'.

Augmented	Assignment	Operators

The	+=	operator	on	line	12	is	one	of	the	augmented	assignment	operators.	Normally,	 if	you
want	to	add	or	concatenate	a	value	to	a	variable,	you	use	code	that	looks	like	this:

>>>	spam	=	42
>>>	spam	=	spam	+	10
>>>	spam
52
>>>	eggs	=	'Hello	'
>>>	eggs	=	eggs	+	'world!'
>>>	eggs
'Hello	world!'

The	 augmented	 assignment	 operators	 are	 shortcuts	 that	 free	 you	 from	 retyping	 the
variable	name.	The	following	code	does	the	same	thing	as	the	previous	code:

>>>	spam	=	42
>>>	spam	+=	10							#	The	same	as	spam	=	spam	+	10
>>>	spam
52
>>>	eggs	=	'Hello	'
>>>	eggs	+=	'world!'	#	The	same	as	eggs	=	eggs	+	'world!'
>>>	eggs
'Hello	world!'

There	are	other	augmented	assignment	operators	as	well.	Enter	the	following	into	the
interactive	shell:

>>>	spam	=	42
>>>	spam	-=	2
>>>	spam
40

The	statement	spam	–=	2	is	the	same	as	the	statement	spam	=	spam	–	2,	so	the	expression
evaluates	to	spam	=	42	–	2	and	then	to	spam	=	40.

There	are	augmented	assignment	operators	for	multiplication	and	division,	too:

>>>	spam	*=	3
>>>	spam

120
>>>	spam	/=	10
>>>	spam
12.0

The	statement	spam	*=	3	is	the	same	as	spam	=	spam	*	3.	So,	since	spam	was	set	equal	to
40	 earlier,	 the	 full	 expression	 would	 be	 spam	 =	 40	 *	 3,	 which	 evaluates	 to	 120.	 The
expression	spam	/=	10	 is	the	same	as	spam	=	spam	/	10,	and	spam	=	120	/	10	evaluates	to
12.0.	Notice	that	spam	becomes	a	floating	point	number	after	it’s	divided.

Calculating	the	Clues	to	Give

The	getClues()	function	will	return	a	string	with	fermi,	pico,	and	bagels	clues	depending
on	the	guess	and	secretNum	parameters.

15.	def	getClues(guess,	secretNum):
16.					#	Returns	a	string	with	the	Pico,	Fermi,	&	Bagels	clues	to	the	user.
17.					if	guess	==	secretNum:
18.									return	'You	got	it!'
19.
20.					clues	=	[]
21.					for	i	in	range(len(guess)):
22.									if	guess[i]	==	secretNum[i]:
23.													clues.append('Fermi')
24.									elif	guess[i]	in	secretNum:
25.													clues.append('Pico')

The	most	obvious	step	is	to	check	whether	the	guess	is	the	same	as	the	secret	number,
which	we	do	in	line	17.	In	that	case,	line	18	returns	'You	got	it!'.

If	the	guess	isn’t	the	same	as	the	secret	number,	the	program	must	figure	out	what	clues
to	give	the	player.	The	list	 in	clues	will	 start	empty	and	have	'Fermi'	and	'Pico'	 strings
added	as	needed.

The	program	does	this	by	looping	through	each	possible	index	in	guess	and	secretNum.
The	 strings	 in	both	 variables	will	 be	 the	 same	 length,	 so	 line	 21	 could	have	used	 either
len(guess)	or	len(secretNum)	and	worked	the	same.	As	the	value	of	i	changes	from	0	to	1	to
2,	and	so	on,	line	22	checks	whether	the	first,	second,	third,	and	so	on	character	of	guess	is
the	same	as	the	character	in	the	corresponding	index	of	secretNum.	If	so,	 line	23	adds	the
string	'Fermi'	to	clues.

Otherwise,	 line	 24	 checks	 whether	 the	 number	 at	 the	 ith	 position	 in	 guess	 exists
anywhere	in	secretNum.	If	so,	you	know	that	the	number	is	somewhere	in	the	secret	number
but	not	in	the	same	position.	In	that	case,	line	25	then	adds	'Pico'	to	clues.

If	the	clues	list	is	empty	after	the	loop,	then	you	know	that	there	are	no	correct	digits
at	all	in	guess:

26.					if	len(clues)	==	0:
27.									return	'Bagels'

In	this	case,	line	27	returns	the	string	'Bagels'	as	the	only	clue.

The	sort()	List	Method

Lists	have	a	method	named	sort()	that	arranges	the	list	items	in	alphabetical	or	numerical
order.	When	the	sort()	method	is	called,	it	doesn’t	return	a	sorted	list	but	rather	sorts	the
list	in	place.	This	is	just	like	how	the	shuffle()	method	works.

You	would	never	want	to	use	return	spam.sort()	because	that	would	return	the	value
None.	Instead	you	want	a	separate	line,	spam.sort(),	and	then	the	line	return	spam.

Enter	the	following	into	the	interactive	shell:

>>>	spam	=	['cat',	'dog',	'bat',	'anteater']
>>>	spam.sort()
>>>	spam
['anteater',	'bat',	'cat',	'dog']
>>>	spam	=	[9,	8,	3,	5.5,	5,	7,	1,	2.1,	0,	6]
>>>	spam.sort()
>>>	spam
[0,	1,	2.1,	3,	5,	5.5,	6,	7,	8,	9]

When	we	sort	a	list	of	strings,	the	strings	are	returned	in	alphabetical	order,	but	when
we	sort	a	list	of	numbers,	the	numbers	are	returned	in	numerical	order.

On	line	29,	we	use	sort()	on	clues:

29.					clues.sort()

The	 reason	 you	 want	 to	 sort	 the	 clue	 list	 alphabetically	 is	 to	 get	 rid	 of	 extra
information	that	would	help	the	player	guess	the	secret	number	more	easily.	If	clues	was
['Pico',	'Fermi',	'Pico'],	that	would	tell	the	player	that	the	center	digit	of	the	guess	is	in
the	correct	position.	Since	the	other	two	clues	are	both	Pico,	the	player	would	know	that
all	they	have	to	do	to	get	the	secret	number	is	swap	the	first	and	third	digits.

If	 the	 clues	 are	 always	 sorted	 in	 alphabetical	 order,	 the	 player	 can’t	 be	 sure	 which
number	the	Fermi	clue	refers	to.	This	makes	the	game	harder	and	more	fun	to	play.

The	join()	String	Method

The	join()	string	method	returns	a	list	of	strings	as	a	single	string	joined	together.

30.					return	'	'.join(clues)

The	string	that	the	method	is	called	on	(on	line	30,	this	is	a	single	space,	'	')	appears
between	each	string	in	the	list.	To	see	an	example,	enter	the	following	into	the	interactive
shell:

>>>	'	'.join(['My',	'name',	'is',	'Zophie'])

'My	name	is	Zophie'
>>>	',	'.join(['Life',	'the	Universe',	'and	Everything'])
'Life,	the	Universe,	and	Everything'

So	the	string	that	is	returned	on	line	30	is	each	string	in	clue	combined	with	a	single
space	 between	 each	 string.	The	 join()	 string	method	 is	 sort	 of	 like	 the	 opposite	 of	 the
split()	string	method.	While	split()	returns	a	list	from	a	split-up	string,	join()	returns	a
string	from	a	combined	list.

Checking	Whether	a	String	Has	Only	Numbers

The	isOnlyDigits()	function	helps	determine	whether	the	player	entered	a	valid	guess:

32.	def	isOnlyDigits(num):
33.					#	Returns	True	if	num	is	a	string	of	only	digits.	Otherwise,	returns
										False.
34.					if	num	==	'':
35.									return	False

Line	34	first	checks	whether	num	is	the	blank	string	and,	if	so,	returns	False.
The	for	loop	then	iterates	over	each	character	in	the	string	num:

37.					for	i	in	num:
38.									if	i	not	in	'0	1	2	3	4	5	6	7	8	9'.split():
39.													return	False
40.
41.					return	True

The	value	of	i	will	have	a	single	character	on	each	iteration.	Inside	the	for	block,	the
code	checks	whether	i	exists	in	the	list	returned	by	'0	1	2	3	4	5	6	7	8	9'.split().	 (The
return	value	from	split()	is	equivalent	to	['0',	'1',	'2',	'3',	'4',	'5',	'6',	'7',	'8',
'9'].)	If	i	doesn’t	exist	 in	 that	 list,	 you	know	there’s	 a	nondigit	 character	 in	num.	 In	 that
case,	line	39	returns	False.

But	if	the	execution	continues	past	the	for	loop,	then	you	know	that	every	character	in
num	is	a	digit.	In	that	case,	line	41	returns	True.

Starting	the	Game

After	all	of	the	function	definitions,	line	44	is	the	actual	start	of	the	program:

44.	print('I	am	thinking	of	a	%s-digit	number.	Try	to	guess	what	it	is.'	%
						(NUM_DIGITS))
45.	print('The	clues	I	give	are...')
46.	print('When	I	say:				That	means:')
47.	print('		Bagels							None	of	the	digits	is	correct.')
48.	print('		Pico									One	digit	is	correct	but	in	the	wrong	position.')
49.	print('		Fermi								One	digit	is	correct	and	in	the	right	position.')

The	 print()	 function	 calls	 tell	 the	 player	 the	 rules	 of	 the	 game	 and	 what	 the	 pico,
fermi,	and	bagels	clues	mean.	Line	44’s	print()	call	has	%	(NUM_DIGITS)	added	to	the	end
and	%s	inside	the	string.	This	is	a	technique	known	as	string	interpolation.

String	Interpolation

String	interpolation,	also	known	as	string	formatting,	is	a	coding	shortcut.	Normally,	if	you
want	 to	 use	 the	 string	 values	 inside	 variables	 in	 another	 string,	 you	 have	 to	 use	 the	 +
concatenation	operator:

>>>	name	=	'Alice'
>>>	event	=	'party'
>>>	location	=	'the	pool'
>>>	day	=	'Saturday'
>>>	time	=	'6:00pm'
>>>	print('Hello,	'	+	name	+	'.	Will	you	go	to	the	'	+	event	+	'	at	'	+
location	+	'	this	'	+	day	+	'	at	'	+	time	+	'?')
Hello,	Alice.	Will	you	go	to	the	party	at	the	pool	this	Saturday	at	6:00pm?

As	 you	 can	 see,	 it	 can	 be	 time-consuming	 to	 type	 a	 line	 that	 concatenates	 several
strings.	Instead,	you	can	use	string	 interpolation,	which	 lets	you	put	placeholders	 like	%s
into	 the	string.	These	placeholders	are	called	 conversion	specifiers.	Once	you’ve	put	 in	 the
conversion	specifiers,	you	can	put	all	the	variable	names	at	the	end	of	the	string.	Each	%s	is
replaced	 with	 a	 variable	 at	 the	 end	 of	 the	 line,	 in	 the	 order	 in	 which	 you	 entered	 the
variable.	For	example,	the	following	code	does	the	same	thing	as	the	previous	code:

>>>	name	=	'Alice'
>>>	event	=	'party'
>>>	location	=	'the	pool'
>>>	day	=	'Saturday'
>>>	time	=	'6:00pm'
>>>	print('Hello,	%s.	Will	you	go	to	the	%s	at	%s	this	%s	at	%s?'	%	(name,
event,	location,	day,	time))
Hello,	Alice.	Will	you	go	to	the	party	at	the	pool	this	Saturday	at	6:00pm?

Notice	that	the	first	variable	name	is	used	for	the	first	%s,	 the	second	variable	for	the
second	%s,	and	so	on.	You	must	have	the	same	number	of	%s	conversion	specifiers	as	you
have	variables.

Another	 benefit	 of	 using	 string	 interpolation	 instead	 of	 string	 concatenation	 is	 that
interpolation	 works	 with	 any	 data	 type,	 not	 just	 strings.	 All	 values	 are	 automatically
converted	to	the	string	data	type.	If	you	concatenated	an	integer	to	a	string,	you’d	get	this
error:

>>>	spam	=	42
>>>	print('Spam	==	'	+	spam)
Traceback	(most	recent	call	last):
		File	"<stdin>",	line	1,	in	<module>
TypeError:	Can't	convert	'int'	object	to	str	implicitly

String	concatenation	can	only	combine	two	strings,	but	spam	is	an	integer.	You	would
have	to	remember	to	put	str(spam)	instead	of	spam.

Now	enter	this	into	the	interactive	shell:

>>>	spam	=	42
>>>	print('Spam	is	%s'	%	(spam))
Spam	is	42

With	string	interpolation,	this	conversion	to	strings	is	done	for	you.

The	Game	Loop

Line	51	is	an	infinite	while	loop	that	has	a	condition	of	True,	so	it	will	loop	forever	until	a
break	statement	is	executed:

51.	while	True:
52.					secretNum	=	getSecretNum()
53.					print('I	have	thought	up	a	number.	You	have	%s	guesses	to	get	it.'	%
										(MAX_GUESS))
54.
55.					guessesTaken	=	1
56.					while	guessesTaken	<=	MAX_GUESS:

Inside	 the	 infinite	 loop,	 you	 get	 a	 secret	 number	 from	 the	 getSecretNum()	 function.
This	secret	number	is	assigned	to	secretNum.	Remember,	the	value	in	secretNum	is	a	string,
not	an	integer.

Line	 53	 tells	 the	 player	 how	 many	 digits	 are	 in	 the	 secret	 number	 by	 using	 string
interpolation	instead	of	string	concatenation.	Line	55	sets	the	variable	guessesTaken	to	1	to
mark	this	is	as	the	first	guess.	Then	line	56	has	a	new	while	loop	that	loops	as	long	as	the
player	has	guesses	left.	In	code,	this	is	when	guessesTaken	is	less	than	or	equal	to	MAX_GUESS.

Notice	that	the	while	loop	on	line	56	is	inside	another	while	 loop	that	started	on	line
51.	These	loops	inside	loops	are	called	nested	loops.	Any	break	or	continue	statements,	such
as	the	break	statement	on	line	66,	will	only	break	or	continue	out	of	the	innermost	loop,
not	any	of	the	outer	loops.

Getting	the	Player’s	Guess
The	guess	variable	holds	the	player’s	guess	returned	from	input().	The	code	keeps	looping
and	asking	the	player	for	a	guess	until	they	enter	a	valid	guess:

57.									guess	=	''
58.									while	len(guess)	!=	NUM_DIGITS	or	not	isOnlyDigits(guess):
59.													print('Guess	#%s:	'	%	(guessesTaken))
60.													guess	=	input()

A	valid	guess	has	only	digits	and	the	same	number	of	digits	as	the	secret	number.	The

while	loop	that	starts	on	line	58	checks	for	the	validity	of	the	guess.
The	guess	variable	is	set	to	the	blank	string	on	line	57,	so	the	while	loop’s	condition	on

line	58	is	False	the	first	time	it	is	checked,	ensuring	the	execution	enters	the	loop	starting
on	line	59.

Getting	the	Clues	for	the	Player’s	Guess
After	execution	gets	past	the	while	loop	that	started	on	line	58,	guess	contains	a	valid	guess.
Now	the	program	passes	guess	and	secretNum	to	the	getClues()	function:

62.									print(getClues(guess,	secretNum))
63.									guessesTaken	+=	1

It	 returns	a	 string	of	 the	clues,	which	are	displayed	to	 the	player	on	 line	62.	Line	63
increments	guessesTaken	using	the	augmented	assignment	operator	for	addition.

Checking	Whether	the	Player	Won	or	Lost
Now	we	figure	out	if	the	player	won	or	lost	the	game:

65.									if	guess	==	secretNum:
66.													break
67.									if	guessesTaken	>	MAX_GUESS:
68.													print('You	ran	out	of	guesses.	The	answer	was	%s.'	%
																		(secretNum))

If	 guess	 is	 the	 same	 value	 as	 secretNum,	 the	 player	 has	 correctly	 guessed	 the	 secret
number,	and	line	66	breaks	out	of	the	while	loop	that	was	started	on	line	56.	If	not,	then
execution	continues	 to	 line	67,	where	 the	program	checks	whether	 the	player	ran	out	of
guesses.

If	the	player	still	has	more	guesses,	execution	jumps	back	to	the	while	loop	on	line	56,
where	 it	 lets	 the	 player	 have	 another	 guess.	 If	 the	 player	 runs	 out	 of	 guesses	 (or	 the
program	breaks	out	of	the	loop	with	the	break	statement	on	line	66),	execution	proceeds
past	the	loop	and	to	line	70.

Asking	the	Player	to	Play	Again
Line	70	asks	the	player	whether	they	want	to	play	again:

70.					print('Do	you	want	to	play	again?	(yes	or	no)')
71.					if	not	input().lower().startswith('y'):
72.									break

The	player’s	response	is	returned	by	input(),	has	the	lower()	method	called	on	it,	and
then	the	startswith()	method	called	on	that	to	check	if	the	player’s	response	begins	with	a
y.	 If	 it	 doesn’t,	 the	 program	breaks	 out	 of	 the	 while	 loop	 that	 started	 on	 line	 51.	 Since

there’s	no	more	code	after	this	loop,	the	program	terminates.
If	the	response	does	begin	with	y,	the	program	does	not	execute	the	break	statement	and

execution	jumps	back	to	line	51.	The	program	then	generates	a	new	secret	number	so	the
player	can	play	a	new	game.

Summary

Bagels	 is	a	simple	game	to	program	but	can	be	difficult	 to	win.	But	 if	you	keep	playing,
you’ll	eventually	discover	better	ways	to	guess	using	the	clues	the	game	gives	you.	This	is
much	like	how	you’ll	get	better	at	programming	the	more	you	keep	at	it.

This	 chapter	 introduced	 a	 few	 new	 functions	 and	 methods—shuffle(),	 sort(),	 and
join()—along	with	a	couple	of	handy	shortcuts.	Augmented	assignment	operators	require
less	typing	when	you	want	to	change	a	variable’s	relative	value;	for	example,	spam	=	spam	+
1	can	be	shortened	to	spam	+=	1.	With	string	interpolation,	you	can	make	your	code	much
more	readable	by	placing	%s	(called	a	conversion	specifier)	 inside	the	string	instead	of	using
many	string	concatenation	operations.

In	 Chapter	 12,	 we	 won’t	 be	 doing	 any	 programming,	 but	 the	 concepts—Cartesian
coordinates	and	negative	numbers—will	be	necessary	for	the	games	in	the	later	chapters	of
the	 book.	 These	 math	 concepts	 are	 used	 not	 only	 in	 the	 Sonar	 Treasure	 Hunt,
Reversegam,	and	Dodger	games	we	will	be	making	but	also	in	many	other	games.	Even	if
you	already	know	about	these	concepts,	give	Chapter	12	a	brief	read	to	refresh	yourself.

12
THE	CARTESIAN	COORDINATE	SYSTEM

This	chapter	goes	over	some	simple	mathematical	concepts	you	will	use	in	the	rest	of	this
book.	 In	 two-dimensional	 (2D)	games,	 the	graphics	on	the	screen	can	move	 left	or	right
and	up	or	down.	These	games	need	a	way	to	translate	a	place	on	the	screen	into	integers
the	program	can	deal	with.

This	 is	 where	 the	 Cartesian	 coordinate	 system	 comes	 in.	 Coordinates	 are	 numbers	 that
represent	a	specific	point	on	the	screen.	These	numbers	can	be	stored	as	integers	in	your
program’s	variables.

TOPICS	COVERED	IN	THIS	CHAPTER
•	Cartesian	coordinate	systems

•	The	x-axis	and	y-axis

•	Negative	numbers

•	Pixels

•	The	commutative	property	of	addition

•	Absolute	values	and	the	abs()	function

Grids	and	Cartesian	Coordinates

A	 common	way	 to	 refer	 to	 specific	 places	 on	 a	 chessboard	 is	 by	marking	 each	 row	 and
column	with	letters	and	numbers.	Figure	12-1	shows	a	chessboard	that	has	each	row	and
column	marked.

Figure	12-1:	A	sample	chessboard	with	a	black	knight	at	(a,	4)	and	a	white	knight	at	(e,	6)

A	coordinate	for	a	space	on	the	chessboard	is	a	combination	of	a	row	and	a	column.	In
chess,	the	knight	piece	looks	like	a	horse	head.	The	white	knight	in	Figure	12-1	is	located
at	the	point	(e,	6)	since	it	is	in	column	e	and	row	6,	and	the	black	knight	is	located	at	point
(a,	4)	because	it	is	in	column	a	and	row	4.

You	can	think	of	a	chessboard	as	a	Cartesian	coordinate	system.	By	using	a	row	label
and	column	label,	you	can	give	a	coordinate	that	is	for	one—and	only	one—space	on	the
board.	If	you’ve	learned	about	Cartesian	coordinate	systems	in	math	class,	you	may	know
that	 numbers	 are	 used	 for	 both	 the	 rows	 and	 columns.	 A	 chessboard	 using	 numerical
coordinates	would	look	like	Figure	12-2.

The	 numbers	 going	 left	 and	 right	 along	 the	 columns	 are	 part	 of	 the	 x-axis.	 The
numbers	going	up	and	down	along	the	rows	are	part	of	the	y-axis.	Coordinates	are	always
described	with	the	x-coordinate	first,	followed	by	the	y-coordinate.	In	Figure	12-2,	the	x-
coordinate	for	the	white	knight	is	5	and	the	y-coordinate	is	6,	so	the	white	knight	is	located
at	 the	 coordinates	 (5,	 6)	 and	 not	 (6,	 5).	 Similarly,	 the	 black	 knight	 is	 located	 at	 the
coordinate	(1,	4),	not	(4,	1),	since	the	black	knight’s	x-coordinate	is	1	and	its	y-coordinate	is
4.

Figure	12-2:	The	same	chessboard	but	with	numeric	coordinates	for	both	rows	and	columns

Notice	 that	 for	 the	 black	 knight	 to	 move	 to	 the	 white	 knight’s	 position,	 the	 black
knight	must	move	two	spaces	up	and	four	spaces	to	the	right.	But	you	don’t	need	to	look	at
the	board	to	figure	this	out.	If	you	know	the	white	knight	is	located	at	(5,	6)	and	the	black
knight	is	located	at	(1,	4),	you	can	use	subtraction	to	figure	out	this	information.

Subtract	the	black	knight’s	x-coordinate	from	the	white	knight’s	x-coordinate:	5	–	1	=
4.	The	black	knight	has	to	move	along	the	x-axis	by	four	spaces.	Now	subtract	the	black
knight’s	y-coordinate	from	the	white	knight’s	y-coordinate:	6	–	4	=	2.	The	black	knight	has
to	move	along	the	y-axis	by	two	spaces.

By	 doing	 some	math	with	 the	 coordinate	 numbers,	 you	 can	 figure	 out	 the	 distances
between	two	coordinates.

Negative	Numbers

Cartesian	coordinates	also	use	negative	numbers—numbers	that	are	less	than	zero.	A	minus
sign	in	front	of	a	number	shows	it	is	negative:	–1	is	less	than	0.	And	–2	is	less	than	–1.	But	0
itself	isn’t	positive	or	negative.	In	Figure	12-3,	you	can	see	the	positive	numbers	increasing
to	the	right	and	the	negative	numbers	decreasing	to	the	left	on	a	number	line.

Figure	12-3:	A	number	line	with	positive	and	negative	numbers

The	 number	 line	 is	 useful	 to	 see	 subtraction	 and	 addition.	 You	 can	 think	 of	 the

expression	5	+	3	as	the	white	knight	starting	at	position	5	and	moving	3	spaces	to	the	right.
As	you	can	see	in	Figure	12-4,	the	white	knight	ends	up	at	position	8.	This	makes	sense,
because	5	+	3	is	8.

Figure	12-4:	Moving	the	white	knight	to	the	right	adds	to	the	coordinate.

You	subtract	by	moving	the	white	knight	to	the	left.	So	if	the	expression	is	5	–	6,	the
white	knight	starts	at	position	5	and	moves	6	spaces	to	the	left,	as	shown	in	Figure	12-5.

Figure	12-5:	Moving	the	white	knight	to	the	left	subtracts	from	the	coordinate.

The	white	knight	ends	up	at	position	–1.	That	means	5	–	6	equals	–1.
If	 you	 add	 or	 subtract	 a	 negative	 number,	 the	 white	 knight	 moves	 in	 the	 opposite

direction	 than	 it	 does	with	 positive	 numbers.	 If	 you	 add	 a	 negative	 number,	 the	 knight
moves	 to	 the	 left.	 If	 you	 subtract	 a	negative	number,	 the	knight	moves	 to	 the	right.	The
expression	–1	–	(–4)	would	be	equal	to	3,	as	shown	in	Figure	12-6.	Notice	that	–1	–	(–4)	has
the	same	answer	as	–1	+	4.

Figure	12-6:	The	knight	starts	at	–6	and	moves	to	the	right	by	4	spaces.

You	can	think	of	the	x-axis	as	a	number	line.	Add	another	number	line	going	up	and
down	 for	 the	 y-axis.	 If	 you	 put	 these	 two	 number	 lines	 together,	 you	 have	 a	 Cartesian
coordinate	system	like	the	one	in	Figure	12-7.

Adding	a	positive	number	(or	subtracting	a	negative	number)	would	move	the	knight
up	on	the	y-axis	or	to	the	right	on	the	x-axis,	and	subtracting	a	positive	number	(or	adding
a	negative	number)	would	move	the	knight	down	on	the	y-axis	or	to	the	left	on	the	x-axis.

The	(0,	0)	coordinate	at	the	center	is	called	the	origin.	You	may	have	used	a	coordinate
system	like	this	 in	your	math	class.	As	you’re	about	to	see,	coordinate	systems	 like	these
have	a	lot	of	little	tricks	you	can	use	to	make	figuring	out	coordinates	easier.

Figure	12-7:	Putting	two	number	lines	together	creates	a	Cartesian	coordinate	system.

The	Coordinate	System	of	a	Computer	Screen

Your	computer	screen	is	made	up	of	pixels,	the	smallest	dot	of	color	a	screen	can	show.	It’s
common	for	computer	screens	to	use	a	coordinate	system	that	has	the	origin	(0,	0)	at	the
top-left	corner	and	that	increases	going	down	and	to	the	right.	You	can	see	this	in	Figure
12-8,	which	 shows	 a	 laptop	with	 a	 screen	 resolution	 that	 is	 1,920	 pixels	wide	 and	 1,080
pixels	tall.

There	are	no	negative	coordinates.	Most	computer	graphics	use	this	coordinate	system
for	pixels	on	 the	 screen,	and	you	will	use	 it	 in	 this	book’s	games.	For	programming,	 it’s
important	 to	 know	 how	 coordinate	 systems	work—both	 the	 kind	 used	 for	mathematics
and	the	kind	used	for	computer	screens.

Figure	12-8:	The	Cartesian	coordinate	system	on	a	computer	screen

Math	Tricks

Subtracting	and	adding	negative	numbers	is	easy	when	you	have	a	number	line	in	front	of
you.	It	can	also	be	easy	without	a	number	line.	Here	are	three	tricks	to	help	you	add	and
subtract	negative	numbers	by	yourself.

Trick	1:	A	Minus	Eats	the	Plus	Sign	on	Its	Left
When	you	see	a	minus	sign	with	a	plus	sign	on	the	left,	you	can	replace	the	plus	sign	with	a
minus	sign.	Imagine	the	minus	sign	“eating”	the	plus	sign	to	its	left.	The	answer	is	still	the
same,	because	adding	a	negative	value	is	the	same	as	subtracting	a	positive	value.	So	4	+	–2
and	4	–	2	both	evaluate	to	2,	as	you	can	see	here:

Trick	2:	Two	Minuses	Combine	into	a	Plus
When	you	see	 the	 two	minus	signs	next	 to	each	other	without	a	number	between	them,
they	 can	 combine	 into	 a	 plus	 sign.	 The	 answer	 is	 still	 the	 same,	 because	 subtracting	 a
negative	value	is	the	same	as	adding	a	positive	value:

Trick	3:	Two	Numbers	Being	Added	Can	Swap	Places
You	can	always	swap	the	numbers	in	addition.	This	is	the	commutative	property	of	addition.
That	means	that	doing	a	swap	like	6	+	4	to	4	+	6	will	not	change	the	answer,	as	you	can	see
when	you	count	the	boxes	in	Figure	12-9.

Figure	12-9:	The	commutative	property	of	addition	lets	you	swap	numbers.

Say	you	are	adding	a	negative	number	and	a	positive	number,	like	–6	+	8.	Because	you
are	adding	numbers,	you	can	swap	the	order	of	the	numbers	without	changing	the	answer.
This	means	–6	+	8	is	the	same	as	8	+	–6.	Then	when	you	look	at	8	+	–6,	you	see	that	the
minus	sign	can	eat	the	plus	sign	to	its	left,	and	the	problem	becomes	8	–	6	=	2,	as	you	can
see	here:

You’ve	rearranged	the	problem	so	that	it’s	easier	to	solve	without	using	a	calculator	or
computer.

Absolute	Values	and	the	abs()	Function

A	number’s	absolute	value	 is	the	number	without	the	minus	sign	in	front	of	 it.	Therefore,

positive	numbers	do	not	change,	but	negative	numbers	become	positive.	For	example,	the
absolute	value	of	–4	is	4.	The	absolute	value	of	–7	is	7.	The	absolute	value	of	5	(which	is
already	positive)	is	just	5.

You	can	figure	out	the	distance	between	two	objects	by	subtracting	their	positions	and
taking	the	absolute	value	of	the	difference.	Imagine	that	the	white	knight	is	at	position	4
and	the	black	knight	is	at	position	–2.	The	distance	would	be	6,	since	4	–	–2	is	6,	and	the
absolute	value	of	6	is	6.

It	 works	 no	matter	 what	 the	 order	 of	 the	 numbers	 is.	 For	 example,	 –2	 –	 4	 (that	 is,
negative	two	minus	four)	is	–6,	and	the	absolute	value	of	–6	is	also	6.

Python’s	abs()	 function	returns	 the	absolute	value	of	an	 integer.	Enter	 the	 following
into	the	interactive	shell:

>>>	abs(-5)
5
>>>	abs(42)
42
>>>	abs(-10.5)
10.5

The	 absolute	 value	 of	 -5	 is	 5.	 The	 absolute	 value	 of	 a	 positive	 number	 is	 just	 the
number,	 so	 the	absolute	value	of	42	 is	42.	Even	numbers	with	decimals	have	an	absolute
value,	so	the	absolute	value	of	-10.5	is	10.5.

Summary

Most	 programming	 doesn’t	 require	 understanding	 a	 lot	 of	math.	Up	 until	 this	 chapter,
we’ve	been	getting	by	with	simple	addition	and	multiplication.

Cartesian	coordinate	systems	are	needed	to	describe	where	a	certain	position	is	located
in	 a	 two-dimensional	 area.	Coordinates	 have	 two	numbers:	 the	 x-coordinate	 and	 the	 y-
coordinate.	 The	 x-axis	 runs	 left	 and	 right,	 and	 the	 y-axis	 runs	 up	 and	 down.	 On	 a
computer	 screen,	 the	origin	 is	 in	 the	 top-left	 corner	 and	 the	 coordinates	 increase	going
right	and	downward.

The	 three	math	 tricks	 you	 learned	 in	 this	 chapter	make	 it	 easy	 to	 add	 positive	 and
negative	integers.	The	first	trick	is	that	a	minus	sign	will	eat	the	plus	sign	on	its	left.	The
second	trick	is	that	two	minuses	next	to	each	other	will	combine	into	a	plus	sign.	The	third
trick	is	that	you	can	swap	the	position	of	the	numbers	you	are	adding.

The	 rest	 of	 the	 games	 in	 this	 book	 use	 these	 concepts	 because	 they	 have	 two-
dimensional	 areas	 in	 them.	 All	 graphical	 games	 require	 understanding	 how	 Cartesian
coordinates	work.

13
SONAR	TREASURE	HUNT

The	Sonar	Treasure	Hunt	game	 in	 this	chapter	 is	 the	 first	 to	make	use	of	 the	Cartesian
coordinate	 system	 that	 you	 learned	 about	 in	 Chapter	 12.	 This	 game	 also	 uses	 data
structures,	which	is	just	a	fancy	way	of	saying	it	has	list	values	that	contain	other	lists	and
similar	 complex	 variables.	As	 the	 games	 you	program	become	more	 complicated,	 you’ll
need	to	organize	your	data	into	data	structures.

In	this	chapter’s	game,	the	player	drops	sonar	devices	at	various	places	in	the	ocean	to
locate	sunken	treasure	chests.	Sonar	 is	a	technology	that	ships	use	to	locate	objects	under
the	 sea.	The	 sonar	devices	 in	 this	game	 tell	 the	player	how	 far	 away	 the	closest	 treasure
chest	 is,	but	not	in	what	direction.	But	by	placing	multiple	sonar	devices,	the	player	can
figure	out	the	location	of	the	treasure	chest.

TOPICS	COVERED	IN	THIS	CHAPTER
•	Data	structures

•	The	Pythagorean	theorem

•	The	remove()	list	method

•	The	isdigit()	string	method

•	The	sys.exit()	function

There	are	3	chests	 to	collect,	and	the	player	has	only	20	sonar	devices	 to	use	 to	 find
them.	Imagine	that	you	couldn’t	see	the	treasure	chest	in	Figure	13-1.	Because	each	sonar
device	 can	 find	 only	 the	 distance	 from	 the	 chest,	 not	 the	 chest’s	 direction,	 the	 treasure
could	be	anywhere	on	the	ring	around	the	sonar	device.

Figure	13-1:	The	sonar	device’s	ring	touches	the	(hidden)	treasure	chest.

But	multiple	sonar	devices	working	together	can	narrow	down	the	chest’s	 location	to
the	exact	coordinates	where	the	rings	intersect	(see	Figure	13-2).

Figure	13-2:	Combining	multiple	rings	shows	where	treasure	chests	could	be	hidden.

Sample	Run	of	Sonar	Treasure	Hunt

Here’s	what	the	user	sees	when	they	run	the	Sonar	Treasure	Hunt	program.	The	text	the
player	enters	is	shown	in	bold.

S	O	N	A	R	!

Would	you	like	to	view	the	instructions?	(yes/no)
no
													1									2									3									4									5
			012345678901234567890123456789012345678901234567890123456789

	0	~`~``~``~``~`~`~```~`~``````~```~`~~~`~~```~~`~~~~~`~~`~~~~`	0
	1	~~~~~`~~~~~````~``~~```~``~`~`~`~``~~```~~~`~`~```~~~~`~`~~`	1
	2	```~````~``~`~`~~~``~~`````~~``~``~``~~```~~``~~`~~~````~~`~	2
	3	`````~~``````~`~~~~~```~~``~~~`~`~~~~~~`````~`~```~~~``~``~`	3
	4	~~~`~~~`~`~~~``~~~`~`~``~~~~``~~~~``~~~~`~`~``~~```~``~~`~`~	4
	5	`~``~````~`~`~~``~~~~``````~```~~~~````````~``~~~`~~``~~````	5
	6	~`~```~~`~~```~````````~~```~```~~~~``~~~`~`~~`~``~~~`~~`~``	6
	7	~`~~~```~``~```~`~```~~~~~~~`~~`~`~~~~``~```~~~`~```~``~``~`	7

	8	`~``~~`~`~~`~~`~~``~```~````~`~```~``~````~~~````~~``~~``~~`	8
	9	~`~``~~````~~```~`~~```~~`~``~`~~``~`~`~~~~`~`~~`~`~```~~```	9
10	`~~~~~~`~``~``~~~``~``~~~~`~``~```~`~~``~~~~~~``````~~`~``~~	10
11	~``~~~````~`~~`~~~`~~~``~``````~`~``~~~~`````~~~``````~`~`~~	11
12	~~~~~``~`~````~```~`~`~`~~`~~`~``~~~~~~~`~~```~~``~~`~~~~```	12
13	`~~```~~````````~~~`~~~```~~~~~~~~`~~``~~`~```~`~~````~~~``~	13
14	```~``~`~`~``~```~`~``~`~``~~```~`~~~``~~``~```~`~~`~``````~	14

			012345678901234567890123456789012345678901234567890123456789
													1									2									3									4									5
You	have	20	sonar	device(s)	left.	3	treasure	chest(s)	remaining.
Where	do	you	want	to	drop	the	next	sonar	device?	(0-59	0-14)	(or	type	quit)
25	5
													1									2									3									4									5
			012345678901234567890123456789012345678901234567890123456789

	0	~`~``~``~``~`~`~```~`~``````~```~`~~~`~~```~~`~~~~~`~~`~~~~`	0
	1	~~~~~`~~~~~````~``~~```~``~`~`~`~``~~```~~~`~`~```~~~~`~`~~`	1
	2	```~````~``~`~`~~~``~~`````~~``~``~``~~```~~``~~`~~~````~~`~	2
	3	`````~~``````~`~~~~~```~~``~~~`~`~~~~~~`````~`~```~~~``~``~`	3
	4	~~~`~~~`~`~~~``~~~`~`~``~~~~``~~~~``~~~~`~`~``~~```~``~~`~`~	4
	5	`~``~````~`~`~~``~~~~````5`~```~~~~````````~``~~~`~~``~~````	5
	6	~`~```~~`~~```~````````~~```~```~~~~``~~~`~`~~`~``~~~`~~`~``	6
	7	~`~~~```~``~```~`~```~~~~~~~`~~`~`~~~~``~```~~~`~```~``~``~`	7
	8	`~``~~`~`~~`~~`~~``~```~````~`~```~``~````~~~````~~``~~``~~`	8
	9	~`~``~~````~~```~`~~```~~`~``~`~~``~`~`~~~~`~`~~`~`~```~~```	9
10	`~~~~~~`~``~``~~~``~``~~~~`~``~```~`~~``~~~~~~``````~~`~``~~	10
11	~``~~~````~`~~`~~~`~~~``~``````~`~``~~~~`````~~~``````~`~`~~	11
12	~~~~~``~`~````~```~`~`~`~~`~~`~``~~~~~~~`~~```~~``~~`~~~~```	12
13	`~~```~~````````~~~`~~~```~~~~~~~~`~~``~~`~```~`~~````~~~``~	13
14	```~``~`~`~``~```~`~``~`~``~~```~`~~~``~~``~```~`~~`~``````~	14

			012345678901234567890123456789012345678901234567890123456789
													1									2									3									4									5
Treasure	detected	at	a	distance	of	5	from	the	sonar	device.
You	have	19	sonar	device(s)	left.	3	treasure	chest(s)	remaining.
Where	do	you	want	to	drop	the	next	sonar	device?	(0-59	0-14)	(or	type	quit)
30	5
													1									2									3									4									5
			012345678901234567890123456789012345678901234567890123456789

	0	~`~``~``~``~`~`~```~`~``````~```~`~~~`~~```~~`~~~~~`~~`~~~~`	0
	1	~~~~~`~~~~~````~``~~```~``~`~`~`~``~~```~~~`~`~```~~~~`~`~~`	1
	2	```~````~``~`~`~~~``~~`````~~``~``~``~~```~~``~~`~~~````~~`~	2
	3	`````~~``````~`~~~~~```~~``~~~`~`~~~~~~`````~`~```~~~``~``~`	3
	4	~~~`~~~`~`~~~``~~~`~`~``~~~~``~~~~``~~~~`~`~``~~```~``~~`~`~	4
	5	`~``~````~`~`~~``~~~~````5`~``3~~~~````````~``~~~`~~``~~````	5
	6	~`~```~~`~~```~````````~~```~```~~~~``~~~`~`~~`~``~~~`~~`~``	6
	7	~`~~~```~``~```~`~```~~~~~~~`~~`~`~~~~``~```~~~`~```~``~``~`	7
	8	`~``~~`~`~~`~~`~~``~```~````~`~```~``~````~~~````~~``~~``~~`	8
	9	~`~``~~````~~```~`~~```~~`~``~`~~``~`~`~~~~`~`~~`~`~```~~```	9
10	`~~~~~~`~``~``~~~``~``~~~~`~``~```~`~~``~~~~~~``````~~`~``~~	10
11	~``~~~````~`~~`~~~`~~~``~``````~`~``~~~~`````~~~``````~`~`~~	11
12	~~~~~``~`~````~```~`~`~`~~`~~`~``~~~~~~~`~~```~~``~~`~~~~```	12
13	`~~```~~````````~~~`~~~```~~~~~~~~`~~``~~`~```~`~~````~~~``~	13
14	```~``~`~`~``~```~`~``~`~``~~```~`~~~``~~``~```~`~~`~``````~	14

			012345678901234567890123456789012345678901234567890123456789
													1									2									3									4									5
Treasure	detected	at	a	distance	of	3	from	the	sonar	device.

You	have	18	sonar	device(s)	left.	3	treasure	chest(s)	remaining.
Where	do	you	want	to	drop	the	next	sonar	device?	(0-59	0-14)	(or	type	quit)
25	10
													1									2									3									4									5
			012345678901234567890123456789012345678901234567890123456789

	0	~`~``~``~``~`~`~```~`~``````~```~`~~~`~~```~~`~~~~~`~~`~~~~`	0
	1	~~~~~`~~~~~````~``~~```~``~`~`~`~``~~```~~~`~`~```~~~~`~`~~`	1
	2	```~````~``~`~`~~~``~~`````~~``~``~``~~```~~``~~`~~~````~~`~	2
	3	`````~~``````~`~~~~~```~~``~~~`~`~~~~~~`````~`~```~~~``~``~`	3
	4	~~~`~~~`~`~~~``~~~`~`~``~~~~``~~~~``~~~~`~`~``~~```~``~~`~`~	4
	5	`~``~````~`~`~~``~~~~````5`~``3~~~~````````~``~~~`~~``~~````	5
	6	~`~```~~`~~```~````````~~```~```~~~~``~~~`~`~~`~``~~~`~~`~``	6
	7	~`~~~```~``~```~`~```~~~~~~~`~~`~`~~~~``~```~~~`~```~``~``~`	7
	8	`~``~~`~`~~`~~`~~``~```~````~`~```~``~````~~~````~~``~~``~~`	8
	9	~`~``~~````~~```~`~~```~~`~``~`~~``~`~`~~~~`~`~~`~`~```~~```	9
10	`~~~~~~`~``~``~~~``~``~~~4`~``~```~`~~``~~~~~~``````~~`~``~~	10
11	~``~~~````~`~~`~~~`~~~``~``````~`~``~~~~`````~~~``````~`~`~~	11
12	~~~~~``~`~````~```~`~`~`~~`~~`~``~~~~~~~`~~```~~``~~`~~~~```	12
13	`~~```~~````````~~~`~~~```~~~~~~~~`~~``~~`~```~`~~````~~~``~	13
14	```~``~`~`~``~```~`~``~`~``~~```~`~~~``~~``~```~`~~`~``````~	14

			012345678901234567890123456789012345678901234567890123456789
													1									2									3									4									5
Treasure	detected	at	a	distance	of	4	from	the	sonar	device.
You	have	17	sonar	device(s)	left.	3	treasure	chest(s)	remaining.
Where	do	you	want	to	drop	the	next	sonar	device?	(0-59	0-14)	(or	type	quit)
29	8
													1									2									3									4									5
			012345678901234567890123456789012345678901234567890123456789
	0	~`~``~``~``~`~`~```~`~``````~```~`~~~`~~```~~`~~~~~`~~`~~~~`	0
	1	~~~~~`~~~~~````~``~~```~``~`~`~`~``~~```~~~`~`~```~~~~`~`~~`	1
	2	```~````~``~`~`~~~``~~`````~~``~``~``~~```~~``~~`~~~````~~`~	2
	3	`````~~``````~`~~~~~```~~``~~~`~`~~~~~~`````~`~```~~~``~``~`	3
	4	~~~`~~~`~`~~~``~~~`~`~``~~~~``~~~~``~~~~`~`~``~~```~``~~`~`~	4
	5	`~``~````~`~`~~``~~~~````X`~``X~~~~````````~``~~~`~~``~~````	5
	6	~`~```~~`~~```~````````~~```~```~~~~``~~~`~`~~`~``~~~`~~`~``	6
	7	~`~~~```~``~```~`~```~~~~~~~`~~`~`~~~~``~```~~~`~```~``~``~`	7
	8	`~``~~`~`~~`~~`~~``~```~````~X~```~``~````~~~````~~``~~``~~`	8
	9	~`~``~~````~~```~`~~```~~`~``~`~~``~`~`~~~~`~`~~`~`~```~~```	9
10	`~~~~~~`~``~``~~~``~``~~~X`~``~```~`~~``~~~~~~``````~~`~``~~	10
11	~``~~~````~`~~`~~~`~~~``~``````~`~``~~~~`````~~~``````~`~`~~	11
12	~~~~~``~`~````~```~`~`~`~~`~~`~``~~~~~~~`~~```~~``~~`~~~~```	12
13	`~~```~~````````~~~`~~~```~~~~~~~~`~~``~~`~```~`~~````~~~``~	13
14	```~``~`~`~``~```~`~``~`~``~~```~`~~~``~~``~```~`~~`~``````~	14

			012345678901234567890123456789012345678901234567890123456789
													1									2									3									4									5
You	have	found	a	sunken	treasure	chest!
You	have	16	sonar	device(s)	left.	2	treasure	chest(s)	remaining.
Where	do	you	want	to	drop	the	next	sonar	device?	(0-59	0-14)	(or	type	quit)
--snip--

Source	Code	for	Sonar	Treasure	Hunt

Enter	the	following	source	code	in	a	new	file	and	save	the	file	as	sonar.py.	Then	run	it	by
pressing	F5	 (or	FN-F5	on	OS	X).	 If	 you	get	errors	 after	entering	 this	 code,	 compare	 the

code	 you	 typed	 to	 the	 book’s	 code	 with	 the	 online	 diff	 tool	 at
https://www.nostarch.com/inventwithpython#diff.

sonar.py

		1.	#	Sonar	Treasure	Hunt
		2.
		3.	import	random
		4.	import	sys
		5.	import	math
		6.
		7.	def	getNewBoard():
		8.					#	Create	a	new	60x15	board	data	structure.
		9.					board	=	[]
	10.					for	x	in	range(60):	#	The	main	list	is	a	list	of	60	lists.
	11.									board.append([])
	12.									for	y	in	range(15):	#	Each	list	in	the	main	list	has
															15	single-character	strings.
13.													#	Use	different	characters	for	the	ocean	to	make	it	more
																			readable.
	14.													if	random.randint(0,	1)	==	0:
	15.																	board[x].append('~')
	16.													else:
	17.																	board[x].append('`')
	18.					return	board
	19.
	20.	def	drawBoard(board):
	21.					#	Draw	the	board	data	structure.
	22.					tensDigitsLine	=	'				'	#	Initial	space	for	the	numbers	down	the	left
											side	of	the	board
	23.					for	i	in	range(1,	6):
	24.									tensDigitsLine	+=	('	'	*	9)	+	str(i)
	25.
	26.					#	Print	the	numbers	across	the	top	of	the	board.
	27.					print(tensDigitsLine)
	28.					print('			'	+	('0123456789'	*	6))
	29.					print()
	30.
	31.					#	Print	each	of	the	15	rows.
	32.					for	row	in	range(15):

https://www.nostarch.com/inventwithpython#diff

	33.									#	Single-digit	numbers	need	to	be	padded	with	an	extra	space.
	34.									if	row	<	10:
	35.													extraSpace	=	'	'
	36.									else:
	37.													extraSpace	=	''
	38.
	39.									#	Create	the	string	for	this	row	on	the	board.
	40.									boardRow	=	''
	41.									for	column	in	range(60):
	42.													boardRow	+=	board[column][row]
	43.
	44.									print('%s%s	%s	%s'	%	(extraSpace,	row,	boardRow,	row))
	45.
	46.					#	Print	the	numbers	across	the	bottom	of	the	board.
	47.					print()
	48.					print('	'	+	('0123456789'	*	6))
	49.					print(tensDigitsLine)
	50.
	51.	def	getRandomChests(numChests):
	52.					#	Create	a	list	of	chest	data	structures	(two-item	lists	of	x,	y	int
											coordinates).
	53.					chests	=	[]
	54.					while	len(chests)	<	numChests:
	55.									newChest	=	[random.randint(0,	59),	random.randint(0,	14)]
	56.									if	newChest	not	in	chests:	#	Make	sure	a	chest	is	not	already
															here.
	57.													chests.append(newChest)
	58.					return	chests
	59.
	60.	def	isOnBoard(x,	y):
	61.					#	Return	True	if	the	coordinates	are	on	the	board;	otherwise,	return
											False.
	62.					return	x	>=	0	and	x	<=	59	and	y	>=	0	and	y	<=	14
63.
	64.	def	makeMove(board,	chests,	x,	y):
	65.					#	Change	the	board	data	structure	with	a	sonar	device	character.
											Remove	treasure	chests	from	the	chests	list	as	they	are	found.
	66.					#	Return	False	if	this	is	an	invalid	move.
	67.					#	Otherwise,	return	the	string	of	the	result	of	this	move.
	68.					smallestDistance	=	100	#	Any	chest	will	be	closer	than	100.
	69.					for	cx,	cy	in	chests:
	70.									distance	=	math.sqrt((cx	-	x)	*	(cx	-	x)	+	(cy	-	y)	*	(cy	-	y))
	71.
	72.									if	distance	<	smallestDistance:	#	We	want	the	closest	treasure
															chest.
	73.													smallestDistance	=	distance
	74.
	75.					smallestDistance	=	round(smallestDistance)
	76.
	77.					if	smallestDistance	==	0:
	78.									#	xy	is	directly	on	a	treasure	chest!
	79.									chests.remove([x,	y])
	80.									return	'You	have	found	a	sunken	treasure	chest!'
	81.					else:
	82.									if	smallestDistance	<	10:
	83.													board[x][y]	=	str(smallestDistance)
	84.													return	'Treasure	detected	at	a	distance	of	%s	from	the	sonar
																			device.'	%	(smallestDistance)
	85.									else:
	86.													board[x][y]	=	'X'

	87.													return	'Sonar	did	not	detect	anything.	All	treasure	chests
																			out	of	range.'
	88.
	89.	def	enterPlayerMove(previousMoves):
	90.					#	Let	the	player	enter	their	move.	Return	a	two-item	list	of	int
											xy	coordinates.
	91.					print('Where	do	you	want	to	drop	the	next	sonar	device?	(0-59	0-14)
											(or	type	quit)')
	92.					while	True:
	93.									move	=	input()
	94.									if	move.lower()	==	'quit':
	95.													print('Thanks	for	playing!')
	96.													sys.exit()
	97.
	98.									move	=	move.split()
	99.									if	len(move)	==	2	and	move[0].isdigit()	and	move[1].isdigit()	and
															isOnBoard(int(move[0]),	int(move[1])):
100.													if	[int(move[0]),	int(move[1])]	in	previousMoves:
101.																	print('You	already	moved	there.')
102.																	continue
103.													return	[int(move[0]),	int(move[1])]
104.
105.									print('Enter	a	number	from	0	to	59,	a	space,	then	a	number	from
															0	to	14.')
106.
107.	def	showInstructions():
108.					print('''Instructions:
109.	You	are	the	captain	of	the	Simon,	a	treasure-hunting	ship.	Your	current
							mission
110.	is	to	use	sonar	devices	to	find	three	sunken	treasure	chests	at	the
							bottom	of
111.	the	ocean.	But	you	only	have	cheap	sonar	that	finds	distance,	not
							direction.
112.
113.	Enter	the	coordinates	to	drop	a	sonar	device.	The	ocean	map	will	be
							marked	with
114.	how	far	away	the	nearest	chest	is,	or	an	X	if	it	is	beyond	the	sonar
							device's
115.	range.	For	example,	the	C	marks	are	where	chests	are.	The	sonar	device
							shows	a
116.	3	because	the	closest	chest	is	3	spaces	away.
117.
118.																					1									2									3
119.											012345678901234567890123456789012
120.
121.									0	~~~~`~```~`~``~~~``~`~~``~~~``~`~	0
122.									1	~`~`~``~~`~```~~~```~~`~`~~~`~~~~	1
123.									2	`~`C``3`~~~~`C`~~~~`````~~``~~~``	2
124.									3	````````~~~`````~~~`~`````~`~``~`	3
125.									4	~`~~~~`~~`~~`C`~``~~`~~~`~```~``~	4
126.
127.											012345678901234567890123456789012
128.																					1									2									3
129.	(In	the	real	game,	the	chests	are	not	visible	in	the	ocean.)
130.
131.	Press	enter	to	continue...''')
132.					input()
133.
134.					print('''When	you	drop	a	sonar	device	directly	on	a	chest,	you
											retrieve	it	and	the	other

135.	sonar	devices	update	to	show	how	far	away	the	next	nearest	chest	is.	The
							chests
136.	are	beyond	the	range	of	the	sonar	device	on	the	left,	so	it	shows	an	X.
137.
138.																					1									2									3
139.											012345678901234567890123456789012
140.
141.									0	~~~~`~```~`~``~~~``~`~~``~~~``~`~	0
142.									1	~`~`~``~~`~```~~~```~~`~`~~~`~~~~	1
143.									2	`~`X``7`~~~~`C`~~~~`````~~``~~~``	2
144.									3	````````~~~`````~~~`~`````~`~``~`	3
145.									4	~`~~~~`~~`~~`C`~``~~`~~~`~```~``~	4
146.
147.											012345678901234567890123456789012
148.																					1									2									3
149.
150.	The	treasure	chests	don't	move	around.	Sonar	devices	can	detect	treasure
							chests
151.	up	to	a	distance	of	9	spaces.	Try	to	collect	all	3	chests	before	running
							out	of
152.	sonar	devices.	Good	luck!
153.
154.	Press	enter	to	continue...''')
155.					input()
156.
157.
158.
159.	print('S	O	N	A	R	!')
160.	print()
161.	print('Would	you	like	to	view	the	instructions?	(yes/no)')
162.	if	input().lower().startswith('y'):
163.					showInstructions()
164.
165.	while	True:
166.					#	Game	setup
167.					sonarDevices	=	20
168.					theBoard	=	getNewBoard()
169.					theChests	=	getRandomChests(3)
170.					drawBoard(theBoard)
171.					previousMoves	=	[]
172.
173.					while	sonarDevices	>	0:
174.									#	Show	sonar	device	and	chest	statuses.
175.									print('You	have	%s	sonar	device(s)	left.	%s	treasure	chest(s)
															remaining.'	%	(sonarDevices,	len(theChests)))
176.
177.									x,	y	=	enterPlayerMove(previousMoves)
178.									previousMoves.append([x,	y])	#	We	must	track	all	moves	so	that
															sonar	devices	can	be	updated.
179.
180.									moveResult	=	makeMove(theBoard,	theChests,	x,	y)
181.									if	moveResult	==	False:
182.													continue
183.									else:
184.													if	moveResult	==	'You	have	found	a	sunken	treasure	chest!':
185.																	#	Update	all	the	sonar	devices	currently	on	the	map.
186.																	for	x,	y	in	previousMoves:
187.																					makeMove(theBoard,	theChests,	x,	y)
188.													drawBoard(theBoard)
189.													print(moveResult)

190.
191.									if	len(theChests)	==	0:
192.													print('You	have	found	all	the	sunken	treasure	chests!
																			Congratulations	and	good	game!')
193.													break
194.
195.									sonarDevices	-=	1
196.
197.					if	sonarDevices	==	0:
198.									print('We\'ve	run	out	of	sonar	devices!	Now	we	have	to	turn	the
															ship	around	and	head')
199.									print('for	home	with	treasure	chests	still	out	there!	Game
															over.')
200.									print('				The	remaining	chests	were	here:')
201.									for	x,	y	in	theChests:
202.													print('				%s,	%s'	%	(x,	y))
203.
204.					print('Do	you	want	to	play	again?	(yes	or	no)')
205.					if	not	input().lower().startswith('y'):
206.									sys.exit()

Designing	the	Program

Before	 trying	 to	understand	the	source	code,	play	 the	game	a	 few	times	 to	 learn	what	 is
going	 on.	 The	 Sonar	 Treasure	 Hunt	 game	 uses	 lists	 of	 lists	 and	 other	 complicated
variables,	 called	data	structures.	Data	 structures	 store	 arrangements	of	 values	 to	 represent
something.	For	example,	in	Chapter	10,	a	Tic-Tac-Toe	board	data	structure	was	a	list	of
strings.	The	string	represented	an	X,	an	O,	or	an	empty	space,	and	the	index	of	the	string	in
the	 list	 represented	 the	 space	 on	 the	 board.	 The	 Sonar	 Treasure	Hunt	 game	 will	 have
similar	data	structures	for	the	locations	of	treasure	chests	and	sonar	devices.

Importing	the	random,	sys,	and	math	Modules

At	the	start	of	the	program,	we	import	the	random,	sys,	and	math	modules:

1.	#	Sonar	Treasure	Hunt
2.
3.	import	random
4.	import	sys
5.	import	math

The	 sys	 module	 contains	 the	 exit()	 function,	 which	 terminates	 the	 program
immediately.	None	of	the	lines	of	code	after	the	sys.exit()	call	will	run;	the	program	just
stops	as	though	it	has	reached	the	end.	This	function	is	used	later	in	the	program.

The	math	module	contains	the	sqrt()	function,	which	is	used	to	find	the	square	root	of
a	number.	The	math	behind	square	roots	is	explained	the	“Finding	the	Closest	Treasure
Chest”	on	page	186.

Creating	a	New	Game	Board

The	 start	 of	 each	 new	 game	 requires	 a	 new	 board	 data	 structure,	 which	 is	 created	 by
getNewBoard().	The	Sonar	Treasure	Hunt	game	board	is	an	ASCII	art	ocean	with	x-	and	y-
coordinates	around	it.

When	 we	 use	 the	 board	 data	 structure,	 we	 want	 to	 be	 able	 to	 access	 its	 coordinate
system	in	the	same	way	we	access	Cartesian	coordinates.	To	do	that,	we’ll	use	a	list	of	lists
to	call	each	coordinate	on	the	board	like	this:	board[x][y].	The	x-coordinate	comes	before
the	y-coordinate—to	get	 the	 string	 at	 coordinate	 (26,	12),	 you	access	board[26][12],	 not
board[12][26].

7.	def	getNewBoard():
	8.					#	Create	a	new	60x15	board	data	structure.
	9.					board	=	[]
10.					for	x	in	range(60):	#	The	main	list	is	a	list	of	60	lists.
11.									board.append([])
12.									for	y	in	range(15):	#	Each	list	in	the	main	list	has
														15	single-character	strings.
13.													#	Use	different	characters	for	the	ocean	to	make	it	more
																		readable.
14.											if	random.randint(0,	1)	==	0:
15.															board[x].append('~')
16.											else:
17.															board[x].append('`')

The	 board	 data	 structure	 is	 a	 list	 of	 lists	 of	 strings.	 The	 first	 list	 represents	 the	 x-
coordinate.	Since	the	game’s	board	is	60	characters	across,	this	first	list	needs	to	contain	60
lists.	At	line	10,	we	create	a	for	loop	that	will	append	60	blank	lists	to	it.

But	board	is	more	than	just	a	list	of	60	blank	lists.	Each	of	the	60	lists	represents	an	x-
coordinate	of	 the	game	board.	There	are	15	 rows	 in	 the	board,	 so	each	of	 these	60	 lists
must	contain	15	strings.	Line	12	is	another	for	 loop	that	adds	15	single-character	strings
that	represent	the	ocean.

The	ocean	will	be	a	bunch	of	randomly	chosen	'~'	and	'`'	strings.	The	tilde	(~)	and
backtick	(`)	characters—located	next	to	the	1	key	on	your	keyboard—will	be	used	for	the
ocean	waves.	To	determine	which	character	 to	use,	 lines	14	to	17	apply	this	 logic:	 if	 the
return	value	of	random.randint()	is	0,	add	the	'~'	string;	otherwise,	add	the	'`'	string.	This
will	give	the	ocean	a	random,	choppy	look.

For	a	smaller	example,	if	board	were	set	to	[['~',	'~',	'`'],	[['~',	'~',	'`'],	[['~',
'~',	'`'],	['~',	'`',	'`'],	['`',	'~',	'`']]	then	the	board	it	drew	would	look	like	this:

~~~~`
~~~`~
`````

Finally,	the	function	returns	the	value	in	the	board	variable	on	line	18:

18.					return	board



Drawing	the	Game	Board

Next	we’ll	define	 the	drawBoard()	method	 that	we	call	whenever	we	actually	draw	a	new
board:

20.	def	drawBoard(board):

The	full	game	board	with	coordinates	along	the	edges	looks	like	this:

													1									2									3									4									5
			012345678901234567890123456789012345678901234567890123456789
	0	~~~`~``~~~``~~~~``~`~`~`~`~~`~~~`~~`~``````~~`~``~`~~```~`~`	0
	1	`~`~````~~``~`~```~```~```~`~~~``~~`~~~``````~`~``~~``~~`~~`	1
	2	```~~~~`~`~~```~~~``~````~~`~`~~`~`~`~```~~`~``~~`~`~~~~~~`~	2
	3	~~~~`~~~``~```~``~~`~`~~`~`~~``~````~`~````~```~`~`~`~`````~	3
	4	~```~~~~~`~~````~~~~```~~~`~`~`~````~`~~`~`~~``~~`~``~`~``~~	4
	5	`~```~`~`~~`~~~```~~``~``````~~``~`~`~~~~`~~``~~~~~~`~```~~`	5
	6	``~~`~~`~``~`````~````~~``~`~~~~`~~```~~~``~`~`~~``~~~```~~~	6
	7	``~``~~~~~~```~`~```~~~``~`~``~`~~~~~~```````~~~`~~`~~`~~`~~	7
	8	~~`~`~~```~``~~``~~~``~~`~`~~`~`~```~```~~~```~~~~~~`~`~~~~`	8
	9	```~``~`~~~`~~```~``~``~~~```~````~```~`~~`~~~~~`~``~~~~~```	9
10	`~~~~```~`~````~`~`~~``~`~~~~`~``~``~```~~```````~`~``~`````	10
11	~~`~`~~`~``~`~~~````````````````~~`````~`~~``~`~~~~`~~~`~~`~	11
12	~~`~~~~```~~~`````~~``~`~`~~``````~`~~``~```````~~``~~~`~~`~	12
13	`~``````~~``~`~~~```~~~~```~~`~`~~~`~```````~~`~```~``~`~~~~	13
14	~~~``~```~`````~~`~`~``~~`~``~`~~`~`~``~`~``~~``~`~``~```~~~	14
			012345678901234567890123456789012345678901234567890123456789
													1									2									3									4									5

The	drawing	in	the	drawBoard()	function	has	four	steps:

1.	 Create	a	string	variable	of	 the	 line	with	1,	2,	3,	4,	and	5	spaced	out	with	wide	gaps.
These	numbers	mark	the	coordinates	for	10,	20,	30,	40,	and	50	on	the	x-axis.

2.	 Use	that	string	to	display	the	x-axis	coordinates	along	the	top	of	the	screen.
3.	 Print	 each	 row	of	 the	ocean	 along	with	 the	 y-axis	 coordinates	 on	both	 sides	 of	 the

screen.
4.	 Print	the	x-axis	again	at	the	bottom.	Having	coordinates	on	all	sides	makes	it	easier	to

see	where	to	place	a	sonar	device.

Drawing	the	X-Coordinates	Along	the	Top	of	the	Board
The	first	part	of	drawBoard()	prints	the	x-axis	at	the	top	of	the	board.	Because	we	want	each
part	of	the	board	to	be	even,	each	coordinate	label	can	take	up	only	one	character	space.
When	the	coordinate	numbering	reaches	10,	there	are	two	digits	for	each	number,	so	we
put	the	digits	 in	the	tens	place	on	a	separate	line,	as	shown	in	Figure	13-3.	The	x-axis	 is
organized	so	that	 the	 first	 line	shows	the	tens-place	digits	and	the	second	 line	shows	the
onesplace	digits.



Figure	13-3:	The	spacing	used	for	printing	the	top	of	the	game	board

Lines	22	to	24	create	the	string	for	the	first	line	of	the	board,	which	is	the	tens-place
part	of	the	x-axis:

21.					#	Draw	the	board	data	structure.
22.					tensDigitsLine	=	'				'	#	Initial	space	for	the	numbers	down	the	left
										side	of	the	board
23.					for	i	in	range(1,	6):
24.									tensDigitsLine	+=	('	'	*	9)	+	str(i)

The	numbers	marking	the	tens	position	on	the	first	line	all	have	9	spaces	between	them,
and	there	are	13	spaces	in	front	of	the	1.	Lines	22	to	24	create	a	string	with	this	line	and
store	it	in	a	variable	named	tensDigitsLine:

26.					#	Print	the	numbers	across	the	top	of	the	board.
27.					print(tensDigitsLine)
28.					print('			'	+	('0123456789'	*	6))
29.					print()

To	print	the	numbers	across	the	top	of	the	game	board,	first	print	the	contents	of	the
tensDigitsLine	variable.	Then,	on	the	next	line,	print	three	spaces	(so	that	this	row	lines	up
correctly),	and	then	print	the	string	'0123456789'	six	times:	('0123456789'	*	6).

Drawing	the	Ocean
Lines	32	to	44	print	each	row	of	the	ocean	waves,	including	the	numbers	down	the	sides	to
label	the	y-axis:

31.					#	Print	each	of	the	15	rows.
32.					for	row	in	range(15):
33.									#	Single-digit	numbers	need	to	be	padded	with	an	extra	space.
34.									if	row	<	10:
35.													extraSpace	=	'	'
36.									else:
37.													extraSpace	=	''

The	for	 loop	prints	 rows	0	 to	14,	 along	with	 the	 row	numbers	on	either	 side	of	 the
board.

But	we	have	 the	 same	problem	 that	we	had	with	 the	 x-axis.	Numbers	with	only	one
digit	(such	as	0,	1,	2,	and	so	on)	take	up	only	one	space	when	printed,	but	numbers	with
two	 digits	 (such	 as	 10,	 11,	 and	 12)	 take	 up	 two	 spaces.	 The	 rows	 won’t	 line	 up	 if	 the
coordinates	have	different	sizes.	The	board	would	look	like	this:

8	~~`~`~~```~``~~``~~~``~~`~`~~`~`~```~```~~~```~~~~~~`~`~~~~`	8



9	```~``~`~~~`~~```~``~``~~~```~````~```~`~~`~~~~~`~``~~~~~```	9
10	`~~~~```~`~````~`~`~~``~`~~~~`~``~``~```~~```````~`~``~`````	10
11	~~`~`~~`~``~`~~~````````````````~~`````~`~~``~`~~~~`~~~`~~`~	11

The	solution	is	easy:	add	a	space	in	front	of	all	the	single-digit	numbers.	Lines	34	to	37
set	the	variable	extraSpace	to	either	a	space	or	an	empty	string.	The	extraSpace	variable	is
always	printed,	but	it	has	a	space	character	only	for	single-digit	row	numbers.	Otherwise,
it	is	an	empty	string.	This	way,	all	of	the	rows	will	line	up	when	you	print	them.

Printing	a	Row	in	the	Ocean
The	board	parameter	is	a	data	structure	for	the	entire	ocean’s	waves.	Lines	39	to	44	read
the	board	variable	and	print	a	single	row:

39.					#	Create	the	string	for	this	row	on	the	board.
40.					boardRow	=	''
41.					for	column	in	range(60):
42.									boardRow	+=	board[column][row]
43.
44.					print('%s%s	%s	%s'	%	(extraSpace,	row,	boardRow,	row))

At	line	40,	boardRow	starts	as	a	blank	string.	The	for	loop	on	line	32	sets	the	row	variable
for	the	current	row	of	ocean	waves	to	print.	Inside	this	loop	on	line	41	is	another	for	loop
that	 iterates	 over	 each	 column	of	 the	 current	 row.	We	make	 boardRow	 by	 concatenating
board[column][row]	in	this	loop,	which	means	concatenating	board[0][row],	board[1][row],
board[2][row],	 and	 so	 on	 up	 to	 board[59][row].	 This	 is	 because	 the	 row	 contains	 60
characters,	from	index	0	to	index	59.

The	 for	 loop	 on	 line	 41	 iterates	 over	 integers	 0	 to	 59.	 On	 each	 iteration,	 the	 next
character	in	the	board	data	structure	is	copied	to	the	end	of	boardRow.	By	the	time	the	loop
is	done,	boardRow	has	the	row’s	complete	ASCII	art	waves.	The	string	in	boardRow	 is	 then
printed	along	with	the	row	numbers	on	line	44.

Drawing	the	X-Coordinates	Along	the	Bottom	of	the	Board
Lines	46	to	49	are	similar	to	lines	26	to	29:

46.					#	Print	the	numbers	across	the	bottom	of	the	board.
47.					print()
48.					print('			'	+	('0123456789'	*	6))
49.					print(tensDigitsLine)

These	lines	print	the	x-coordinates	at	the	bottom	of	the	board.

Creating	the	Random	Treasure	Chests

The	game	randomly	decides	where	the	hidden	treasure	chests	are.	The	treasure	chests	are



represented	as	a	list	of	lists	of	two	integers.	These	two	integers	are	the	x-	and	y-coordinates
of	a	single	chest.	For	example,	if	the	chest	data	structure	were	[[2,	2],	[2,	4],	[10,	0]],
then	this	would	mean	there	were	three	treasure	chests,	one	at	(2,	2),	another	at	(2,	4),	and	a
third	at	(10,	0).

The	 getRandomChests()	 function	 creates	 a	 certain	 number	 of	 chest	 data	 structures	 at
randomly	assigned	coordinates:

51.	def	getRandomChests(numChests):
52.					#	Create	a	list	of	chest	data	structures	(two-item	lists	of	x,	y	int
										coordinates).
53.					chests	=	[]
54.					while	len(chests)	<	numChests:
55.									newChest	=	[random.randint(0,	59),	random.randint(0,	14)]
56.									if	newChest	not	in	chests:	#	Make	sure	a	chest	is	not	already
														here.
57.													chests.append(newChest)
58.					return	chests

The	numChests	parameter	tells	the	function	how	many	treasure	chests	to	generate.	Line
54’s	 while	 loop	 will	 iterate	 until	 all	 of	 the	 chests	 have	 been	 assigned	 coordinates.	 Two
random	 integers	 are	 selected	 for	 the	 coordinates	 on	 line	 55.	 The	 x-coordinate	 can	 be
anywhere	 from	 0	 to	 59,	 and	 the	 y-coordinate	 can	 be	 anywhere	 from	 0	 to	 14.	 The
[random.randint(0,	59),	random.randint(0,	14)]	expression	will	evaluate	to	a	list	value	like
[2,	2]	or	[2,	4]	or	[10,	0].	If	these	coordinates	do	not	already	exist	in	the	chests	list,	they
are	appended	to	chests	on	line	57.

Determining	Whether	a	Move	Is	Valid

When	 the	 player	 enters	 the	 x-	 and	 y-coordinates	 for	 where	 they	 want	 to	 drop	 a	 sonar
device,	we	need	to	make	sure	that	the	numbers	are	valid.	As	mentioned	before,	there	are
two	conditions	for	a	move	to	be	valid:	the	x-coordinate	must	be	between	0	and	59,	and	the
y-coordinate	must	be	between	0	and	14.

The	isOnBoard()	function	uses	a	simple	expression	with	and	operators	to	combine	these
conditions	into	one	expression	and	to	ensure	that	each	part	of	the	expression	is	True:

60.	def	isOnBoard(x,	y):
61.					#	Return	True	if	the	coordinates	are	on	the	board;	otherwise,	return
										False.
62.					return	x	>=	0	and	x	<=	59	and	y	>=	0	and	y	<=	14

Because	we	are	using	the	and	Boolean	operator,	if	even	one	of	the	coordinates	is	invalid,
then	the	entire	expression	evaluates	to	False.

Placing	a	Move	on	the	Board

In	 the	Sonar	Treasure	Hunt	game,	 the	game	board	 is	updated	 to	display	a	number	 that



represents	 each	 sonar	 device’s	 distance	 to	 the	 closest	 treasure	 chest.	 So	when	 the	 player
makes	a	move	by	giving	the	program	an	x-	and	y-coordinate,	the	board	changes	based	on
the	positions	of	the	treasure	chests.

64.	def	makeMove(board,	chests,	x,	y):
65.					#	Change	the	board	data	structure	with	a	sonar	device	character.
										Remove	treasure	chests	from	the	chests	list	as	they	are	found.
66.					#	Return	False	if	this	is	an	invalid	move.
67.					#	Otherwise,	return	the	string	of	the	result	of	this	move.

The	 makeMove()	 function	 takes	 four	 parameters:	 the	 game	board’s	 data	 structure,	 the
treasure	 chest’s	 data	 structure,	 the	 x-coordinate,	 and	 the	 y-coordinate.	 The	 makeMove()
function	will	return	a	string	value	describing	what	happened	in	response	to	the	move:

•	If	the	coordinates	land	directly	on	a	treasure	chest,	makeMove()	returns	'You	have	found	a
sunken	treasure	chest!'.

•	If	the	coordinates	are	within	a	distance	of	9	or	less	of	a	chest,	makeMove()	returns
'Treasure	detected	at	a	distance	of	%s	from	the	sonar	device.'	(where	%s	is	replaced
with	the	integer	distance).

•	Otherwise,	makeMove()	will	return	'Sonar	did	not	detect	anything.	All	treasure	chests
out	of	range.'.

Given	the	coordinates	of	where	the	player	wants	to	drop	the	sonar	device	and	a	list	of
x-	 and	y-coordinates	 for	 the	 treasure	 chests,	 you’ll	need	an	algorithm	 to	 find	out	which
treasure	chest	is	closest.

Finding	the	Closest	Treasure	Chest
Lines	68	to	75	are	an	algorithm	to	determine	which	treasure	chest	is	closest	to	the	sonar
device.

68.					smallestDistance	=	100	#	Any	chest	will	be	closer	than	100.
69.					for	cx,	cy	in	chests:
70.									distance	=	math.sqrt((cx	-	x)	*	(cx	-	x)	+	(cy	-	y)	*	(cy	-	y))
71.
72.									if	distance	<	smallestDistance:	#	We	want	the	closest	treasure
														chest.
73.													smallestDistance	=	distance

The	 x	 and	 y	 parameters	 are	 integers	 (say,	 3	 and	 5),	 and	 together	 they	 represent	 the
location	on	the	game	board	where	the	player	guessed.	The	chests	variable	will	have	a	value
such	as	[[5,	0],	[0,	2],	[4,	2]],	which	represents	the	locations	of	three	treasure	chests.
Figure	13-4	illustrates	this	value.

To	 find	 the	distance	between	 the	 sonar	device	and	a	 treasure	chest,	we’ll	need	 to	do
some	math	 to	 find	 the	 distance	 between	 two	 x-	 and	 y-coordinates.	Let’s	 say	we	 place	 a
sonar	device	at	(3,	5)	and	want	to	find	the	distance	to	the	treasure	chest	at	(4,	2).



Figure	13-4:	The	treasure	chests	represented	by	[[5,	0],	[0,	2],	[4,	2]]

To	find	the	distance	between	two	sets	of	x-	and	y-coordinates,	we’ll	use	the	Pythagorean
theorem.	This	theorem	applies	to	right	triangles—triangles	where	one	corner	is	90	degrees,
the	same	kind	of	corner	you	find	in	a	rectangle.	The	Pythagorean	theorem	says	that	the
diagonal	 side	 of	 the	 triangle	 can	 be	 calculated	 from	 the	 lengths	 of	 the	 horizontal	 and
vertical	sides.	Figure	13-5	shows	a	right	triangle	drawn	between	the	sonar	device	at	(3,	5)
and	the	treasure	chest	at	(4,	2).

Figure	13-5:	The	board	with	a	right	triangle	drawn	over	the	sonar	device	and	a	treasure	chest

The	Pythagorean	theorem	is	a2	+	b2	=	c2,	in	which	a	is	the	length	of	the	horizontal	side,
b	 is	 the	 length	of	 the	vertical	 side,	and	 c	 is	 the	 length	of	 the	diagonal	 side,	or	hypotenuse.
These	lengths	are	squared,	which	means	that	number	is	multiplied	by	itself.	“Unsquaring”	a
number	is	called	finding	the	number’s	square	root,	as	we’ll	have	to	do	to	get	c	from	c2.

Let’s	use	the	Pythagorean	theorem	to	find	the	distance	between	the	sonar	device	at	(3,
5)	and	chest	at	(4,	2):



1.	 To	find	a,	subtract	the	second	x-coordinate,	4,	from	the	first	x-coordinate,	3:	3	–	4	=	–
1.

2.	 To	find	a2,	multiply	a	by	a:	–1	×	–1	=	1.	(A	negative	number	times	a	negative	number	is
always	a	positive	number.)

3.	 To	find	b,	subtract	the	second	y-coordinate,	2,	from	the	first	y-coordinate,	5:	5	–	2	=	3.
4.	 To	find	b2,	multiply	b	by	b:	3	×	3	=	9.
5.	 To	find	c2,	add	a2	and	b2:	1	+	9	=	10.
6.	 To	get	c	from	c2,	you	need	to	find	the	square	root	of	c2.

The	math	module	that	we	imported	on	line	5	has	a	square	root	function	named	sqrt().
Enter	the	following	into	the	interactive	shell:

>>>	import	math
>>>	math.sqrt(10)
3.1622776601683795
>>>	3.1622776601683795	*	3.1622776601683795
10.000000000000002

Notice	that	multiplying	a	square	root	by	itself	produces	the	square	number.	(The	extra
2	at	the	end	of	the	10	is	from	an	unavoidable	slight	imprecision	in	the	sqrt()	function.)

By	passing	c2	 to	sqrt(),	we	can	 tell	 that	 the	 sonar	device	 is	3.16	units	 away	 from	 the
treasure	chest.	The	game	will	round	this	down	to	3.

Let’s	look	at	lines	68	to	70	again:

68.					smallestDistance	=	100	#	Any	chest	will	be	closer	than	100.
69.					for	cx,	cy	in	chests:
70.									distance	=	math.sqrt((cx	-	x)	*	(cx	-	x)	+	(cy	-	y)	*	(cy	-	y))

The	code	inside	line	69’s	for	 loop	calculates	the	distance	of	each	chest.	Line	68	gives
smallestDistance	the	impossibly	long	distance	of	100	at	the	beginning	of	the	loop	so	that	at
least	one	of	the	treasure	chests	you	find	will	be	put	into	smallestDistance	in	line	73.	Since
cx	–	x	represents	the	horizontal	distance	a	between	the	chest	and	sonar	device,	(cx	-	x)	*
(cx	-	x)	is	the	a2	of	our	Pythagorean	theorem	calculation.	It	is	added	to	(cy	-	y)	*	(cy	-
y),	the	b2.	This	sum	is	c2	and	is	passed	to	sqrt()	to	get	the	distance	between	the	chest	and
sonar	device.

We	want	to	find	the	distance	between	the	sonar	device	and	the	closest	chest,	so	if	this
distance	is	less	than	the	smallest	distance,	it	is	saved	as	the	new	smallest	distance	on	line	73:

72.									if	distance	<	smallestDistance:	#	We	want	the	closest	treasure
														chest.
73.													smallestDistance	=	distance

By	 the	 time	 the	 for	 loop	 has	 finished,	 you	 know	 that	 smallestDistance	 holds	 the
shortest	distance	between	the	sonar	device	and	all	of	the	treasure	chests	in	the	game.



Removing	Values	with	the	remove()	List	Method
The	remove()	 list	method	removes	the	first	occurrence	of	a	value	matching	the	passed-in
argument.	For	example,	enter	the	following	into	the	interactive	shell:

>>>	x	=	[42,	5,	10,	42,	15,	42]
>>>	x.remove(10)
>>>	x
[42,	5,	42,	15,	42]

The	10	value	has	been	removed	from	the	x	list.
Now	enter	the	following	into	the	interactive	shell:

>>>	x	=	[42,	5,	10,	42,	15,	42]
>>>	x.remove(42)
>>>	x
[5,	10,	42,	15,	42]

Notice	that	only	the	first	42	value	was	removed	and	the	second	and	third	ones	are	still
there.	The	remove()	method	removes	the	first,	and	only	the	first,	occurrence	of	the	value
you	pass	it.

If	you	try	to	remove	a	value	that	isn’t	in	the	list,	you’ll	get	an	error:

>>>	x	=	[5,	42]
>>>	x.remove(10)
Traceback	(most	recent	call	last):
		File	"<stdin>",	line	1,	in	<module>
ValueError:	list.remove(x):	x	not	in	list

Like	the	append()	method,	the	remove()	method	is	called	on	a	list	and	does	not	return	a
list.	You	want	to	use	code	like	x.remove(42),	not	x	=	x.remove(42).

Let’s	go	back	to	finding	the	distances	between	sonar	devices	and	treasure	chests	in	the
game.	The	only	time	that	smallestDistance	is	equal	to	0	is	when	the	sonar	device’s	x-	and
y-coordinates	 are	 the	 same	 as	 a	 treasure	 chest’s	 x-	 and	 y-coordinates.	 This	 means	 the
player	has	correctly	guessed	the	location	of	a	treasure	chest.

77.					if	smallestDistance	==	0:
78.									#	xy	is	directly	on	a	treasure	chest!
79.									chests.remove([x,	y])
80.									return	'You	have	found	a	sunken	treasure	chest!'

When	this	happens,	the	program	removes	this	chest’s	two-integer	list	from	the	chests
data	structure	with	the	remove()	list	method.	Then	the	function	returns	'You	have	found	a
sunken	treasure	chest!'.

But	if	smallestDistance	is	not	0,	the	player	didn’t	guess	an	exact	location	of	a	treasure
chest,	and	the	else	block	starting	on	line	81	executes:

81.					else:
82.									if	smallestDistance	<	10:



83.													board[x][y]	=	str(smallestDistance)
84.													return	'Treasure	detected	at	a	distance	of	%s	from	the	sonar
																		device.'	%	(smallestDistance)
85.									else:
86.													board[x][y]	=	'X'
87.													return	'Sonar	did	not	detect	anything.	All	treasure	chests
																		out	of	range.'

If	the	sonar	device’s	distance	to	a	treasure	chest	is	less	than	10,	line	83	marks	the	board
with	the	string	version	of	smallestDistance.	If	not,	the	board	is	marked	with	an	'X'.	This
way,	the	player	knows	how	close	each	sonar	device	is	to	a	treasure	chest.	If	the	player	sees	a
0,	they	know	they’re	way	off.

Getting	the	Player’s	Move
The	 enterPlayerMove()	 function	 collects	 the	 x-	 and	 y-coordinates	 of	 the	 player’s	 next
move:

89.	def	enterPlayerMove(previousMoves):
90.					#	Let	the	player	enter	their	move.	Return	a	two-item	list	of	int
										xy	coordinates.
91.					print('Where	do	you	want	to	drop	the	next	sonar	device?	(0-59	0-14)
										(or	type	quit)')
92.					while	True:
93.									move	=	input()
94.									if	move.lower()	==	'quit':
95.													print('Thanks	for	playing!')
96.													sys.exit()

The	 previousMoves	 parameter	 is	 a	 list	 of	 two-integer	 lists	 of	 the	 previous	 places	 the
player	put	a	sonar	device.	This	information	will	be	used	so	that	the	player	cannot	place	a
sonar	device	somewhere	they	have	already	put	one.

The	 while	 loop	 will	 keep	 asking	 the	 player	 for	 their	 next	 move	 until	 they	 enter
coordinates	for	a	place	that	doesn’t	already	have	a	sonar	device.	The	player	can	also	enter
'quit'	to	quit	the	game.	In	that	case,	line	96	calls	the	sys.exit()	function	to	terminate	the
program	immediately.

Assuming	 the	 player	 has	 not	 entered	 'quit',	 the	 code	 checks	 that	 the	 input	 is	 two
integers	separated	by	a	space.	Line	98	calls	the	split()	method	on	move	as	the	new	value	of
move:

	98.									move	=	move.split()
	99.									if	len(move)	==	2	and	move[0].isdigit()	and	move[1].isdigit()	and
															isOnBoard(int(move[0]),	int(move[1])):
100.													if	[int(move[0]),	int(move[1])]	in	previousMoves:
101.																	print('You	already	moved	there.')
102.																	continue
103.													return	[int(move[0]),	int(move[1])]
104.
105.									print('Enter	a	number	from	0	to	59,	a	space,	then	a	number	from
															0	to	14.')



If	the	player	typed	in	a	value	like	'1	2	3',	then	the	list	returned	by	split()	would	be
['1',	'2',	'3'].	 In	 that	 case,	 the	 expression	len(move)	 ==	 2	would	 be	 False	 (the	 list	 in
move	 should	 be	 only	 two	 numbers	 because	 it	 represents	 a	 coordinate),	 and	 the	 entire
expression	 would	 evaluate	 immediately	 to	 False.	 Python	 doesn’t	 check	 the	 rest	 of	 the
expression	because	of	short-circuiting	(which	was	described	in	“Short-Circuit	Evaluation”
on	page	139).

If	the	list’s	length	is	2,	then	the	two	values	will	be	at	indexes	move[0]	and	move[1].	To
check	whether	those	values	are	numeric	digits	(like	'2'	or	'17'),	you	could	use	a	function
like	isOnlyDigits()	from	“Checking	Whether	a	String	Has	Only	Numbers”	on	page	158.
But	Python	already	has	a	method	that	does	this.

The	 string	 method	 isdigit()	 returns	 True	 if	 the	 string	 consists	 solely	 of	 numbers.
Otherwise,	it	returns	False.	Enter	the	following	into	the	interactive	shell:

>>>	'42'.isdigit()
True
>>>	'forty'.isdigit()
False
>>>	''.isdigit()
False
>>>	'hello'.isdigit()
False
>>>	x	=	'10'
>>>	x.isdigit()
True

Both	move[0].isdigit()	and	move[1].isdigit()	must	be	True	for	the	whole	condition	to
be	 True.	 The	 final	 part	 of	 line	 99’s	 condition	 calls	 the	 isOnBoard()	 function	 to	 check
whether	the	x-	and	y-coordinates	exist	on	the	board.

If	 the	 entire	 condition	 is	 True,	 line	 100	 checks	 whether	 the	 move	 exists	 in	 the
previousMoves	list.	If	it	does,	then	line	102’s	continue	statement	causes	the	execution	to	go
back	to	the	start	of	the	while	loop	at	line	92	and	then	ask	for	the	player’s	move	again.	If	it
doesn’t,	line	103	returns	a	two-integer	list	of	the	x-	and	y-coordinates.

Printing	the	Game	Instructions	for	the	Player

The	showInstructions()	function	is	a	couple	of	print()	calls	that	print	multiline	strings:

107.	def	showInstructions():
108.					print('''Instructions:
109.	You	are	the	captain	of	the	Simon,	a	treasure-hunting	ship.	Your	current
							mission
--snip--
154.	Press	enter	to	continue...''')
155.					input()

The	input()	function	gives	the	player	a	chance	to	press	ENTER	before	printing	the	next
string.	This	 is	because	the	IDLE	window	can	show	only	so	much	text	at	a	 time,	and	we



don’t	want	the	player	to	have	to	scroll	up	to	read	the	beginning	of	the	text.	After	the	player
presses	ENTER,	the	function	returns	to	the	line	that	called	the	function.

The	Game	Loop

Now	that	we’ve	entered	all	the	functions	that	our	game	will	call,	let’s	enter	the	main	part
of	 the	game.	The	 first	 thing	 the	player	 sees	 after	 running	 the	program	 is	 the	game	 title
printed	by	 line	159.	This	 is	 the	main	part	of	 the	program,	which	begins	by	offering	 the
player	instructions	and	then	setting	up	the	variables	the	game	will	use.

159.	print('S	O	N	A	R	!')
160.	print()
161.	print('Would	you	like	to	view	the	instructions?	(yes/no)')
162.	if	input().lower().startswith('y'):
163.	showInstructions()
164.
165.	while	True:
166.					#	Game	setup
167.					sonarDevices	=	20
168.					theBoard	=	getNewBoard()
169.					theChests	=	getRandomChests(3)
170.					drawBoard(theBoard)
171.					previousMoves	=	[]

The	 expression	 input().lower().startswith('y')	 lets	 the	 player	 request	 the
instructions,	and	it	evaluates	to	True	if	the	player	enters	a	string	that	begins	with	'y'	or	'Y'.
For	example:

If	this	condition	is	True,	showInstructions()	is	called	on	line	163.	Otherwise,	the	game
begins.

Several	variables	are	set	up	on	lines	167	to	171;	these	are	described	in	Table	13-1.

Table	13-1:	Variables	Used	in	the	Main	Game	Loop

Variable Description

sonarDevices The	number	of	sonar	devices	(and	turns)	the	player	has	left.
theBoard



The	board	data	structure	used	for	this	game.
theChests The	list	of	chest	data	structures.	getRandomChests()	returns	a	list	of	three

treasure	chests	at	random	places	on	the	board.
previousMoves A	list	of	all	the	x	and	y	moves	the	player	has	made	in	the	game.

We’re	 going	 to	 use	 these	 variables	 soon,	 so	 make	 sure	 to	 review	 their	 descriptions
before	moving	on!

Displaying	the	Game	Status	for	the	Player
Line	173’s	while	loop	executes	as	long	as	the	player	has	sonar	devices	remaining	and	prints
a	message	telling	them	how	many	sonar	devices	and	treasure	chests	are	left:

173.					while	sonarDevices	>	0:
174.									#	Show	sonar	device	and	chest	statuses.
175.									print('You	have	%s	sonar	device(s)	left.	%s	treasure	chest(s)
															remaining.'	%	(sonarDevices,	len(theChests)))

After	printing	how	many	devices	are	left,	the	while	loop	continues	to	execute.

Handling	the	Player’s	Move
Line	177	is	still	part	of	the	while	loop	and	uses	multiple	assignment	to	assign	the	x	and	y
variables	 to	 the	 two-item	 list	 representing	 the	 player’s	 move	 coordinates	 returned	 by
enterPlayerMove().	We’ll	pass	in	previousMoves	so	that	enterPlayerMove()’s	code	can	ensure
the	player	doesn’t	repeat	a	previous	move.

177.									x,	y	=	enterPlayerMove(previousMoves)
178.									previousMoves.append([x,	y])	#	We	must	track	all	moves	so	that
															sonar	devices	can	be	updated.
179.
180.									moveResult	=	makeMove(theBoard,	theChests,	x,	y)
181.									if	moveResult	==	False:
182.													continue

The	 x	 and	 y	 variables	 are	 then	 appended	 to	 the	 end	 of	 the	 previousMoves	 list.	 The
previousMoves	variable	 is	a	 list	of	x-	and	y-coordinates	of	each	move	the	player	makes	 in
this	game.	This	list	is	used	later	in	the	program	on	lines	177	and	186.

The	x,	y,	theBoard,	and	theChests	variables	are	all	passed	to	the	makeMove()	 function	at
line	180.	This	function	makes	the	necessary	modifications	to	place	a	sonar	device	on	the
board.

If	makeMove()	returns	False,	then	there	was	a	problem	with	the	x	and	y	values	passed	to
it.	The	continue	statement	sends	the	execution	back	to	the	start	of	the	while	loop	on	line
173	to	ask	the	player	for	x-	and	y-coordinates	again.



Finding	a	Sunken	Treasure	Chest
If	makeMove()	 doesn’t	 return	 False,	 it	 returns	 a	 string	 of	 the	 results	 of	 that	move.	 If	 this
string	 is	 'You	 have	 found	 a	 sunken	 treasure	 chest!',	 then	 all	 the	 sonar	 devices	 on	 the
board	should	update	to	detect	the	next	closest	treasure	chest	on	the	board:

183.									else:
184.													if	moveResult	==	'You	have	found	a	sunken	treasure	chest!':
185.																	#	Update	all	the	sonar	devices	currently	on	the	map.
186.																	for	x,	y	in	previousMoves:
187.																					makeMove(theBoard,	theChests,	x,	y)
188.																	drawBoard(theBoard)
189.																	print(moveResult)

The	x-	and	y-coordinates	of	all	the	sonar	devices	are	in	previousMoves.	By	iterating	over
previousMoves	on	line	186,	you	can	pass	all	of	these	x-	and	y-coordinates	to	the	makeMove()
function	again	to	redraw	the	values	on	the	board.	Because	the	program	doesn’t	print	any
new	text	here,	the	player	doesn’t	realize	the	program	is	redoing	all	of	the	previous	moves.
It	just	appears	that	the	board	updates	itself.

Checking	Whether	the	Player	Won
Remember	 that	 the	 makeMove()	 function	modifies	 the	 theChests	 list	 you	 sent	 it.	 Because
theChests	 is	a	 list,	any	changes	made	to	 it	 inside	the	function	will	persist	after	execution
returns	 from	the	 function.	The	makeMove()	 function	 removes	 items	 from	theChests	when
treasure	chests	 are	 found,	 so	eventually	 (if	 the	player	keeps	guessing	correctly)	 all	of	 the
treasure	chests	will	have	been	removed.	(Remember,	by	“treasure	chest”	we	mean	the	two-
item	lists	of	the	x-	and	y-coordinates	inside	the	theChests	list.)

191.									if	len(theChests)	==	0:
192.													print('You	have	found	all	the	sunken	treasure	chests!
																			Congratulations	and	good	game!')
193.													break

When	 all	 the	 treasure	 chests	 have	 been	 found	 on	 the	 board	 and	 removed	 from
theChests,	the	theChests	list	will	have	a	length	of	0.	When	that	happens,	the	code	displays	a
congratulatory	message	to	the	player	and	then	executes	a	break	statement	to	break	out	of
this	while	loop.	Execution	will	then	move	to	line	197,	the	first	line	after	the	while	block.

Checking	Whether	the	Player	Lost
Line	195	is	the	last	line	of	the	while	loop	that	started	on	line	173.

195.									sonarDevices	-=	1

The	 program	 decrements	 the	 sonarDevices	 variable	 because	 the	 player	 has	 used	 one
sonar	device.	If	the	player	keeps	missing	the	treasure	chests,	eventually	sonarDevices	will	be



reduced	to	0.	After	this	line,	execution	jumps	back	up	to	line	173	so	it	can	reevaluate	the
while	statement’s	condition	(which	is	sonarDevices	>	0).

If	 sonarDevices	 is	 0,	 then	 the	 condition	 will	 be	 False	 and	 execution	 will	 continue
outside	the	while	block	on	line	197.	But	until	then,	the	condition	will	remain	True	and	the
player	can	keep	making	guesses:

197.					if	sonarDevices	==	0:
198.									print('We\'ve	run	out	of	sonar	devices!	Now	we	have	to	turn	the
															ship	around	and	head')
199.									print('for	home	with	treasure	chests	still	out	there!	Game
															over.')
200.									print('				The	remaining	chests	were	here:')
201.									for	x,	y	in	theChests:
202.													print('	%s,	%s'	%	(x,	y))

Line	197	is	the	first	line	outside	the	while	loop.	When	the	execution	reaches	this	point,
the	game	is	over.	If	sonarDevices	is	0,	you	know	the	player	ran	out	of	sonar	devices	before
finding	all	the	chests	and	lost.

Lines	 198	 to	 200	will	 tell	 the	 player	 they’ve	 lost.	The	 for	 loop	 on	 line	 201	 will	 go
through	the	treasure	chests	remaining	in	theChests	and	display	their	location	so	the	player
can	see	where	the	treasure	chests	were	lurking.

Terminating	the	Program	with	the	sys.exit()	Function
Win	or	lose,	the	program	lets	the	player	decide	whether	they	want	to	keep	playing.	If	the
player	does	not	enter	'yes'	or	'Y'	or	enters	some	other	string	that	doesn’t	begin	with	the
letter	 y,	 then	 not	 input().lower().startswith('y')	 evaluates	 to	 True	 and	 the	 sys.exit()
function	is	executed.	This	causes	the	program	to	terminate.

204.					print('Do	you	want	to	play	again?	(yes	or	no)')
205.					if	not	input().lower().startswith('y'):
206.									sys.exit()

Otherwise,	execution	jumps	back	to	the	beginning	of	the	while	loop	on	line	165	and	a
new	game	begins.

Summary

Remember	how	our	Tic-Tac-Toe	game	numbered	the	spaces	on	the	Tic-Tac-Toe	board
1	through	9?	This	sort	of	coordinate	system	might	have	been	okay	for	a	board	with	fewer
than	 10	 spaces.	 But	 the	 Sonar	 Treasure	 Hunt	 board	 has	 900	 spaces!	 The	 Cartesian
coordinate	 system	 we	 learned	 about	 in	 Chapter	 12	 really	 makes	 all	 these	 spaces
manageable,	especially	when	our	game	needs	to	find	the	distance	between	two	points	on
the	board.

Locations	in	games	that	use	a	Cartesian	coordinate	system	can	be	stored	in	a	list	of	lists



in	which	the	first	index	is	the	x-coordinate	and	the	second	index	is	the	y-coordinate.	This
makes	it	easy	to	access	a	coordinate	using	board[x][y].

These	data	structures	(such	as	the	ones	used	for	the	ocean	and	treasure	chest	locations)
make	it	possible	to	represent	complex	concepts	as	data,	and	your	game	programs	become
mostly	about	modifying	these	data	structures.

In	the	next	chapter,	we’ll	represent	letters	as	numbers.	By	representing	text	as	numbers,
we	can	perform	math	operations	on	them	to	encrypt	or	decrypt	secret	messages.



14
CAESAR	CIPHER

The	program	in	this	chapter	 isn’t	really	a	game,	but	 it	 is	 fun	nevertheless.	The	program
will	convert	normal	English	into	a	secret	code.	It	can	also	convert	secret	codes	back	into
regular	 English.	 Only	 someone	 who	 knows	 the	 key	 to	 the	 secret	 codes	 will	 be	 able	 to
understand	the	messages.

Because	this	program	manipulates	text	to	convert	 it	 into	secret	messages,	you’ll	 learn
several	 new	 functions	 and	 methods	 for	 manipulating	 strings.	 You’ll	 also	 learn	 how
programs	can	do	math	with	text	strings	just	as	they	can	with	numbers.

TOPICS	COVERED	IN	THIS	CHAPTER
•	Cryptography	and	ciphers

•	Ciphertext,	plaintext,	keys,	and	symbols

•	Encrypting	and	decrypting

•	The	Caesar	cipher

•	The	find()	string	method

•	Cryptanalysis

•	The	brute-force	technique

Cryptography	and	Encryption

The	 science	 of	 writing	 secret	 codes	 is	 called	 cryptography.	 For	 thousands	 of	 years,
cryptography	 has	 made	 it	 possible	 to	 send	 secret	 messages	 that	 only	 the	 sender	 and
recipient	could	read,	even	if	someone	captured	the	messenger	and	read	the	coded	message.



A	secret	code	system	is	called	a	cipher.	The	cipher	used	by	the	program	in	this	chapter	is
called	the	Caesar	cipher.

In	cryptography,	we	call	the	message	that	we	want	to	keep	secret	the	plaintext.	Let’s	say
we	have	a	plaintext	message	that	looks	like	this:

There	is	a	clue	behind	the	bookshelf.

Converting	 the	 plaintext	 into	 the	 encoded	message	 is	 called	 encrypting	 the	 plaintext.
The	plaintext	is	encrypted	into	the	ciphertext.	The	ciphertext	looks	like	random	letters,	so
we	can’t	understand	what	the	original	plaintext	was	just	by	looking	at	the	ciphertext.	Here
is	the	previous	example	encrypted	into	ciphertext:

aolyl	pz	h	jsBl	ilopuk	Aol	ivvrzolsm.

If	you	know	the	cipher	used	to	encrypt	the	message,	you	can	decrypt	the	ciphertext	back
to	the	plaintext.	(Decryption	is	the	opposite	of	encryption.)

Many	ciphers	use	keys,	which	are	secret	values	that	let	you	decrypt	ciphertext	that	was
encrypted	with	a	 specific	cipher.	Think	of	 the	cipher	as	being	 like	a	door	 lock.	You	can
only	unlock	it	with	a	particular	key.

If	you’re	interested	in	writing	cryptography	programs,	you	can	read	my	book	Hacking
Secret	Ciphers	with	Python.	It’s	free	to	download	from	http://inventwithpython.com/hacking/.

How	the	Caesar	Cipher	Works

The	Caesar	cipher	was	one	of	the	earliest	ciphers	ever	invented.	In	this	cipher,	you	encrypt
a	 message	 by	 replacing	 each	 letter	 in	 it	 with	 a	 “shifted”	 letter.	 In	 cryptography,	 the
encrypted	letters	are	called	symbols	because	they	can	be	letters,	numbers,	or	any	other	signs.
If	you	shift	the	letter	A	by	one	space,	you	get	the	letter	B.	If	you	shift	the	letter	A	by	two
spaces,	you	get	the	letter	C.	Figure	14-1	shows	some	letters	shifted	by	three	spaces.

Figure	14-1:	A	Caesar	cipher	shifting	letters	by	three	spaces.	Here,	B	becomes	E.

To	get	each	shifted	letter,	draw	a	row	of	boxes	with	each	letter	of	the	alphabet.	Then
draw	a	second	row	of	boxes	under	it,	but	start	your	letters	a	certain	number	of	spaces	over.
When	you	get	 to	the	end	of	 the	plaintext	alphabet,	wrap	back	around	to	A.	Figure	 14-2
shows	an	example	with	the	letters	shifted	by	three	spaces.

http://inventwithpython.com/hacking/


Figure	14-2:	The	entire	alphabet	shifted	by	three	spaces

The	number	of	spaces	you	shift	your	letters	(between	1	and	26)	is	the	key	in	the	Caesar
cipher.	Unless	you	know	the	key	(the	number	used	to	encrypt	the	message),	you	won’t	be
able	to	decrypt	the	secret	code.	The	example	in	Figure	14-2	shows	the	letter	translations
for	the	key	3.

NOTE

While	there	are	26	possible	keys,	encrypting	your	message	with	26	will	result	 in	a	ciphertext
that	is	exactly	the	same	as	the	plaintext!

If	you	encrypt	the	plaintext	word	HOWDY	with	a	key	of	3,	then:

•	The	letter	H	becomes	K.

•	The	letter	O	becomes	R.

•	The	letter	W	becomes	Z.

•	The	letter	D	becomes	G.

•	The	letter	Y	becomes	B.

So,	the	ciphertext	of	HOWDY	with	the	key	3	becomes	KRZGB.	To	decrypt	KRZGB
with	the	key	3,	we	go	from	the	bottom	boxes	back	to	the	top.

If	you	would	 like	 to	 include	 lowercase	 letters	as	distinct	 from	uppercase	 letters,	 then
add	 another	 26	 boxes	 to	 the	 ones	 you	 already	have	 and	 fill	 them	with	 the	 26	 lowercase
letters.	Now	with	a	key	of	3,	the	letter	Y	becomes	b,	as	shown	in	Figure	14-3.

Figure	14-3:	The	entire	alphabet,	now	including	lowercase	letters,	shifted	by	three	spaces

The	cipher	works	the	same	way	as	it	did	with	just	uppercase	letters.	In	fact,	if	you	want
to	use	letters	from	another	language’s	alphabet,	you	can	write	boxes	with	those	letters	to
create	your	cipher.



Sample	Run	of	Caesar	Cipher

Here	is	a	sample	run	of	the	Caesar	Cipher	program	encrypting	a	message:

Do	you	wish	to	encrypt	or	decrypt	a	message?
encrypt
Enter	your	message:
The	sky	above	the	port	was	the	color	of	television,	tuned	to	a	dead	channel.
Enter	the	key	number	(1-52)
13
Your	translated	text	is:
gur	FxL	noBIr	Gur	CBEG	JnF	Gur	pByBE	Bs	GryrIvFvBA,	GHArq	GB	n	qrnq	punAAry.

Now	run	the	program	and	decrypt	the	text	that	you	just	encrypted:

Do	you	wish	to	encrypt	or	decrypt	a	message?
decrypt
Enter	your	message:
gur	FxL	noBIr	Gur	CBEG	JnF	Gur	pByBE	Bs	GryrIvFvBA,	GHArq	GB	n	qrnq	punAAry.
Enter	the	key	number	(1-52)
13
Your	translated	text	is:
The	sky	above	the	port	was	the	color	of	television,	tuned	to	a	dead	channel.

If	you	do	not	decrypt	with	the	correct	key,	the	text	will	not	decrypt	properly:

Do	you	wish	to	encrypt	or	decrypt	a	message?
decrypt
Enter	your	message:
gur	FxL	noBIr	Gur	CBEG	JnF	Gur	pByBE	Bs	GryrIvFvBA,	GHArq	GB	n	qrnq	punAAry.
Enter	the	key	number	(1-52)
15
Your	translated	text	is:
Rfc	qiw	YZmtc	rfc	nmpr	uYq	rfc	amjmp	md	rcjctgqgml,	rslcb	rm	Y	bcYb	afYllcj.

Source	Code	for	Caesar	Cipher

Enter	this	source	code	for	the	Caesar	Cipher	program	and	then	save	the	file	as	cipher.py.
If	 you	get	errors	 after	entering	 this	 code,	 compare	 the	code	you	 typed	 to	 the	book’s

code	with	the	online	diff	tool	at	https://www.nostarch.com/inventwithpython#diff.

https://www.nostarch.com/inventwithpython#diff


cipher.py

	1.	#	Caesar	Cipher
	2.	SYMBOLS	=	'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
	3.	MAX_KEY_SIZE	=	len(SYMBOLS)
	4.
	5.	def	getMode():
	6.					while	True:
	7.									print('Do	you	wish	to	encrypt	or	decrypt	a	message?')
	8.									mode	=	input().lower()
	9.									if	mode	in	['encrypt',	'e',	'decrypt',	'd']:
10.													return	mode
11.									else:
12.													print('Enter	either	"encrypt"	or	"e"	or	"decrypt"	or	"d".')
13.
14.	def	getMessage():
15.					print('Enter	your	message:')
16.					return	input()
17.
18.	def	getKey():
19.					key	=	0
20.					while	True:
21.									print('Enter	the	key	number	(1-%s)'	%	(MAX_KEY_SIZE))
22.									key	=	int(input())
23.									if	(key	>=	1	and	key	<=	MAX_KEY_SIZE):
24.													return	key
25.
26.	def	getTranslatedMessage(mode,	message,	key):
27.					if	mode[0]	==	'd':
28.									key	=	-key
29.					translated	=	''
30.
31.					for	symbol	in	message:
32.									symbolIndex	=	SYMBOLS.find(symbol)
33.									if	symbolIndex	==	-1:	#	Symbol	not	found	in	SYMBOLS.
34.													#	Just	add	this	symbol	without	any	change.
35.													translated	+=	symbol
36.									else:
37.													#	Encrypt	or	decrypt.
38.													symbolIndex	+=	key
39.



40.													if	symbolIndex	>=	len(SYMBOLS):
41.																	symbolIndex	-=	len(SYMBOLS)
42.													elif	symbolIndex	<	0:
43.																	symbolIndex	+=	len(SYMBOLS)
44.
45.													translated	+=	SYMBOLS[symbolIndex]
46.					return	translated
47.
48.	mode	=	getMode()
49.	message	=	getMessage()
50.	key	=	getKey()
51.	print('Your	translated	text	is:')
52.	print(getTranslatedMessage(mode,	message,	key))

Setting	the	Maximum	Key	Length

The	 encryption	 and	 decryption	 processes	 are	 the	 reverse	 of	 each	 other,	 but	 they	 share
much	of	the	same	code.	Let’s	look	at	how	each	line	works:

1.	#	Caesar	Cipher
2.	SYMBOLS	=	'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
3.	MAX_KEY_SIZE	=	len(SYMBOLS)

MAX_KEY_SIZE	is	a	constant	that	stores	the	length	of	SYMBOLS	(52).	This	constant	reminds
us	that	in	this	program,	the	key	used	in	the	cipher	should	always	be	between	1	and	52.

Deciding	to	Encrypt	or	Decrypt	the	Message

The	 getMode()	 function	 lets	 the	 user	 decide	 whether	 they	 want	 to	 use	 the	 program’s
encryption	or	decryption	mode:

	5.	def	getMode():
	6.					while	True:
	7.									print('Do	you	wish	to	encrypt	or	decrypt	a	message?')
	8.									mode	=	input().lower()
	9.									if	mode	in	['encrypt',	'e',	'decrypt',	'd']:
10.													return	mode
11.									else:
12.													print('Enter	either	"encrypt"	or	"e"	or	"decrypt"	or	"d".')

Line	8	calls	input()	to	let	the	user	enter	the	mode	they	want.	The	lower()	method	is
then	called	on	this	string	to	return	a	 lowercase	version	of	the	string.	The	value	returned
from	input().lower()	 is	 stored	 in	mode.	The	if	 statement’s	 condition	checks	whether	 the
string	stored	in	mode	exists	in	the	['encrypt',	'e',	'decrypt',	'd']	list.

This	function	will	return	the	string	in	mode	as	 long	as	mode	 is	equal	 to	'encrypt',	 'e',
'decrypt',	 or	 'd'.	 Therefore,	 getMode()	 will	 return	 the	 string	 mode.	 If	 the	 user	 types
something	that	is	not	'encrypt',	'e',	'decrypt',	or	'd',	 then	the	while	 loop	will	ask	them
again.



Getting	the	Message	from	the	Player

The	getMessage()	 function	 simply	gets	 the	message	 to	 encrypt	or	decrypt	 from	 the	user
and	returns	it:

14.	def	getMessage():
15.					print('Enter	your	message:')
16.					return	input()

The	call	 for	input()	 is	combined	with	return	 so	 that	we	use	only	one	 line	 instead	of
two.

Getting	the	Key	from	the	Player

The	getKey()	function	lets	the	player	enter	the	key	they	will	use	to	encrypt	or	decrypt	the
message:

18.	def	getKey():
19.					key	=	0
20.					while	True:
21.									print('Enter	the	key	number	(1-%s)'	%	(MAX_KEY_SIZE))
22.									key	=	int(input())
23.									if	(key	>=	1	and	key	<=	MAX_KEY_SIZE):
24.													return	key

The	while	loop	ensures	that	the	function	keeps	looping	until	the	user	enters	a	valid	key.
A	valid	key	here	is	one	between	the	integer	values	1	and	52	(remember	that	MAX_KEY_SIZE	is
52	 because	 there	 are	 52	 characters	 in	 the	 SYMBOLS	 variable).	The	 getKey()	 function	 then
returns	 this	 key.	 Line	 22	 sets	 key	 to	 the	 integer	 version	 of	 what	 the	 user	 entered,	 so
getKey()	returns	an	integer.

Encrypting	or	Decrypting	the	Message

The	getTranslatedMessage()	function	does	the	actual	encrypting	and	decrypting:

26.	def	getTranslatedMessage(mode,	message,	key):
27.					if	mode[0]	==	'd':
28.									key	=	-key
29.					translated	=	''

It	has	three	parameters:

mode	This	sets	the	function	to	encryption	mode	or	decryption	mode.

message	This	is	the	plaintext	(or	ciphertext)	to	be	encrypted	(or	decrypted).

key	This	is	the	key	that	is	used	in	this	cipher.



Line	27	checks	whether	the	first	letter	in	the	mode	variable	is	the	string	'd'.	If	so,	then
the	 program	 is	 in	 decryption	 mode.	 The	 only	 difference	 between	 decryption	 and
encryption	mode	is	that	in	decryption	mode,	the	key	is	set	to	the	negative	version	of	itself.
For	example,	 if	key	 is	 the	 integer	22,	 then	decryption	mode	 sets	 it	 to	-22.	The	 reason	 is
explained	in	“Encrypting	or	Decrypting	Each	Letter”	on	page	205.

The	translated	 variable	will	 contain	 the	 string	of	 the	 result:	 either	 the	 ciphertext	 (if
you	are	encrypting)	or	the	plaintext	(if	you	are	decrypting).	It	starts	as	a	blank	string	and
has	encrypted	or	decrypted	characters	concatenated	to	the	end	of	 it.	Before	we	can	start
concatenating	 the	 characters	 to	translated,	 however,	we	need	 to	 encrypt	 or	 decrypt	 the
text,	which	we’ll	do	in	the	rest	of	getTranslatedMessage().

Finding	Passed	Strings	with	the	find()	String	Method
In	order	 to	 shift	 the	 letters	around	 to	do	 the	encryption	or	decryption,	we	 first	need	 to
convert	them	into	numbers.	The	number	for	each	letter	in	the	SYMBOLS	string	will	be	the
index	where	it	appears.	Since	the	letter	A	is	at	SYMBOLS[0],	the	number	0	will	represent	the
capital	A.	If	we	wanted	to	encrypt	this	with	the	key	3,	we	would	simply	use	0	+	3	to	get	the
index	of	the	encrypted	letter:	SYMBOLS[3]	or	'D'.

We’ll	use	the	find()	string	method,	which	finds	the	first	occurrence	of	a	passed	string
in	the	string	on	which	the	method	is	called.	Enter	the	following	in	the	interactive	shell:

>>>	'Hello	world!'.find('H')
0
>>>	'Hello	world!'.find('o')
4
>>>	'Hello	world!'.find('ell')
1

'Hello	 world!'.find('H')	 returns	 0	 because	 the	 'H'	 is	 found	 at	 the	 first	 index	 of	 the
string	 'Hello	 world!'.	 Remember,	 indexes	 start	 at	 0,	 not	 1.	 The	 code	 'Hello

world!'.find('o')	returns	4	because	the	lowercase	'o'	is	first	found	at	the	end	of	'Hello'.
The	find()	method	stops	looking	after	the	first	occurrence,	so	the	second	'o'	 in	'world'
doesn’t	matter.	You	can	also	find	strings	with	more	than	one	character.	The	string	'ell'	is
found	starting	at	index	1.

If	the	passed	string	cannot	be	found,	the	find()	method	returns	-1:

>>>	'Hello	world!'.find('xyz')
-1

Let’s	go	back	to	the	Caesar	Cipher	program.	Line	31	is	a	for	loop	that	iterates	on	each
character	in	the	message	string:

31.					for	symbol	in	message:
32.									symbolIndex	=	SYMBOLS.find(symbol)
33.									if	symbolIndex	==	-1:	#	Symbol	not	found	in	SYMBOLS.
34.													#	Just	add	this	symbol	without	any	change.



35.													translated	+=	symbol

The	find()	method	is	used	on	line	32	to	get	the	index	of	the	string	in	symbol.	If	find()
returns	-1,	 the	 character	 in	symbol	will	 just	 be	 added	 to	translated	without	 any	 change.
This	 means	 that	 any	 characters	 that	 aren’t	 part	 of	 the	 alphabet,	 such	 as	 commas	 and
periods,	won’t	be	changed.

Encrypting	or	Decrypting	Each	Letter
Once	you’ve	found	a	letter’s	index	number,	adding	the	key	to	the	number	will	perform	the
shift	and	give	you	the	index	for	the	encrypted	letter.

Line	38	does	this	addition	to	get	the	encrypted	(or	decrypted)	letter.

37.													#	Encrypt	or	decrypt.
38.													symbolIndex	+=	key

Remember	 that	on	 line	28,	we	made	 the	 integer	 in	key	 negative	 for	decryption.	The
code	that	adds	the	key	will	now	subtract	it,	since	adding	a	negative	number	is	the	same	as
subtraction.

However,	 if	 this	 addition	 (or	 subtraction,	 if	key	 is	 negative)	 causes	symbolIndex	 to	 go
past	the	last	index	of	SYMBOLS,	we’ll	need	to	wrap	around	to	the	beginning	of	the	list	at	0.
This	is	handled	by	the	if	statement	starting	at	line	40:

40.													if	symbolIndex	>=	len(SYMBOLS):
41.																	symbolIndex	-=	len(SYMBOLS)
42.													elif	symbolIndex	<	0:
43.																	symbolIndex	+=	len(SYMBOLS)
44.
45.													translated	+=	SYMBOLS[symbolIndex]

Line	40	checks	whether	symbolIndex	has	gone	past	the	last	index	by	comparing	it	to	the
length	 of	 the	 SYMBOLS	 string.	 If	 it	 has,	 line	 41	 subtracts	 the	 length	 of	 SYMBOLS	 from
symbolIndex.	 If	symbolIndex	 is	 now	negative,	 then	 the	 index	needs	 to	wrap	 around	 to	 the
other	side	of	the	SYMBOLS	string.	Line	42	checks	whether	the	value	of	symbolIndex	is	negative
after	adding	the	decryption	key.	If	so,	line	43	adds	the	length	of	SYMBOLS	to	symbolIndex.

The	 symbolIndex	 variable	 now	 contains	 the	 index	 of	 the	 correctly	 encrypted	 or
decrypted	symbol.	SYMBOLS[symbolIndex]	will	point	to	the	character	for	this	index,	and	this
character	is	added	to	the	end	of	translated	on	line	45.

The	execution	 loops	back	 to	 line	31	 to	 repeat	 this	 for	 the	next	 character	 in	message.
Once	 the	 loop	 is	 done,	 the	 function	 returns	 the	 encrypted	 (or	 decrypted)	 string	 in
translated	on	line	46:

46.					return	translated

The	last	line	in	the	getTranslatedMessage()	function	returns	the	translated	string.



Starting	the	Program

The	 start	 of	 the	program	calls	 each	of	 the	 three	 functions	defined	previously	 to	get	 the
mode,	message,	and	key	from	the	user:

48.	mode	=	getMode()
49.	message	=	getMessage()
50.	key	=	getKey()
51.	print('Your	translated	text	is:')
52.	print(getTranslatedMessage(mode,	message,	key))

These	 three	 values	 are	 passed	 to	 getTranslatedMessage(),	 whose	 return	 value	 (the
translated	string)	is	printed	to	the	user.

EXPANDING	THE	SYMBOLS

If	you	want	to	encrypt	numbers,	spaces,	and	punctuation	marks,	just	add	them	to	the
SYMBOLS	 string	on	 line	2.	For	example,	 you	could	have	your	cipher	program	encrypt
numbers,	spaces,	and	punctuation	marks	by	changing	line	2	to	the	following:

2.	SYMBOLS	=	'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz	123
					4567890!@#$%^&*()'

Note	that	the	SYMBOLS	string	has	a	space	character	after	the	lowercase	z.
If	you	wanted,	you	could	add	even	more	characters	to	this	list.	And	you	don’t	need

to	change	the	rest	of	your	program,	since	all	the	lines	of	code	that	need	the	character
list	just	use	the	SYMBOLS	constant.

Just	make	sure	that	each	character	appears	only	once	in	the	string.	Also,	you’ll	need
to	decrypt	your	message	with	the	same	SYMBOLS	string	that	it	was	encrypted	with.

The	Brute-Force	Technique

That’s	 the	 entire	Caesar	 cipher.	However,	while	 this	 cipher	may	 fool	 some	people	who
don’t	understand	cryptography,	it	won’t	keep	a	message	secret	from	someone	who	knows
cryptanalysis.	While	cryptography	is	the	science	of	making	codes,	cryptanalysis	is	the	science
of	breaking	codes.

The	whole	point	of	cryptography	is	to	make	sure	that	if	someone	else	gets	their	hands
on	the	encrypted	message,	they	cannot	figure	out	the	original	text.	Let’s	pretend	we	are	the
code	breaker	and	all	we	have	is	this	encrypted	text:

LwCjBA	uiG	vwB	jm	xtmiAivB,	jCB	kmzBiqvBG	qA	ijACzl.

Brute-forcing	is	the	technique	of	trying	every	possible	key	until	you	find	the	correct	one.



Because	 there	 are	 only	 52	 possible	 keys,	 it	 would	 be	 easy	 for	 a	 cryptanalyst	 to	 write	 a
hacking	program	that	decrypts	with	every	possible	key.	Then	they	could	look	for	the	key
that	decrypts	to	plain	English.	Let’s	add	a	brute-force	feature	to	the	program.

Adding	the	Brute-Force	Mode

First,	 change	 lines	 7,	 9,	 and	 12—which	 are	 in	 the	 getMode()	 function—to	 look	 like	 the
following	(the	changes	are	in	bold):

	5.	def	getMode():
	6.					while	True:
	7.									print('Do	you	wish	to	encrypt	or	decrypt	or	brute-force	a
														message?')
	8.									mode	=	input().lower()
	9.									if	mode	in	['encrypt',	'e',	'decrypt',	'd',	'brute',	'b']:
10.													return	mode
11.									else:
12.													print('Enter	either	"encrypt"	or	"e"	or	"decrypt"	or	"d"	or
																		"brute"	or	"b".')

This	code	will	let	the	user	select	brute	force	as	a	mode.
Next,	make	the	following	changes	to	the	main	part	of	the	program:

48.	mode	=	getMode()
49.	message	=	getMessage()
50.	if	mode[0]	!=	'b':
51.					key	=	getKey()
52.	print('Your	translated	text	is:')
53.	if	mode[0]	!=	'b':
54.					print(getTranslatedMessage(mode,	message,	key))
55.	else:
56.					for	key	in	range(1,	MAX_KEY_SIZE	+	1):
57.									print(key,	getTranslatedMessage('decrypt',	message,	key))

If	 the	 user	 is	 not	 in	 brute-force	 mode,	 they	 are	 asked	 for	 a	 key,	 the	 original
getTranslatedMessage()	call	is	made,	and	the	translated	string	is	printed.

However,	 if	 the	 user	 is	 in	 brute-force	 mode,	 then	 the	 getTranslatedMessage()	 loop
iterates	 from	1	 all	 the	way	up	 to	MAX_KEY_SIZE	 (which	 is	52).	Remember	 that	 the	range()
function	returns	a	list	of	integers	up	to,	but	not	including,	the	second	parameter,	which	is
why	we	 add	+	1.	The	program	will	 then	print	 every	possible	 translation	of	 the	message
(including	the	key	number	used	in	the	translation).	Here	is	a	sample	run	of	this	modified
program:

Do	you	wish	to	encrypt	or	decrypt	or	brute-force	a	message?
brute
Enter	your	message:
LwCjBA	uiG	vwB	jm	xtmiAivB,	jCB	kmzBiqvBG	qA	ijACzl.
Your	translated	text	is:
1	KvBiAz	thF	uvA	il	wslhzhuA,	iBA	jlyAhpuAF	pz	hizByk.
2	JuAhzy	sgE	tuz	hk	vrkgygtz,	hAz	ikxzgotzE	oy	ghyAxj.



3	Itzgyx	rfD	sty	gj	uqjfxfsy,	gzy	hjwyfnsyD	nx	fgxzwi.
4	Hsyfxw	qeC	rsx	fi	tpiewerx,	fyx	givxemrxC	mw	efwyvh.
5	Grxewv	pdB	qrw	eh	sohdvdqw,	exw	fhuwdlqwB	lv	devxug.
6	Fqwdvu	ocA	pqv	dg	rngcucpv,	dwv	egtvckpvA	ku	cduwtf.
7	Epvcut	nbz	opu	cf	qmfbtbou,	cvu	dfsubjouz	jt	bctvse.
8	Doubts	may	not	be	pleasant,	but	certainty	is	absurd.
9	Cntasr	lZx	mns	ad	okdZrZms,	ats	bdqsZhmsx	hr	Zartqc.
10	BmsZrq	kYw	lmr	Zc	njcYqYlr,	Zsr	acprYglrw	gq	YZqspb.
11	AlrYqp	jXv	klq	Yb	mibXpXkq,	Yrq	ZboqXfkqv	fp	XYproa.
12	zkqXpo	iWu	jkp	Xa	lhaWoWjp,	Xqp	YanpWejpu	eo	WXoqnZ.
--snip--

After	 looking	 over	 each	 row,	 you	 can	 see	 that	 the	 eighth	message	 isn’t	 nonsense	 but
plain	English!	The	cryptanalyst	 can	deduce	 that	 the	original	key	 for	 this	 encrypted	 text
must	have	been	8.	This	brute-force	method	would	have	been	difficult	 to	do	back	 in	 the
days	 of	 Julius	 Caesar	 and	 the	 Roman	 Empire,	 but	 today	 we	 have	 computers	 that	 can
quickly	go	through	millions	or	even	billions	of	keys	in	a	short	time.

Summary

Computers	are	good	at	doing	math.	When	we	create	a	system	to	translate	some	piece	of
information	into	numbers	(as	we	do	with	text	and	ordinals	or	with	space	and	coordinate
systems),	 computer	programs	 can	process	 these	numbers	 quickly	 and	 efficiently.	A	 large
part	of	writing	a	program	 is	 figuring	out	how	to	represent	 the	 information	you	want	 to
manipulate	as	values	that	Python	can	understand.

While	 our	Caesar	Cipher	 program	 can	 encrypt	messages	 that	 will	 keep	 them	 secret
from	people	who	have	to	figure	them	out	with	pencil	and	paper,	the	program	won’t	keep
them	secret	 from	people	who	know	how	 to	get	 computers	 to	process	 information.	 (Our
brute-force	mode	proves	this.)

In	Chapter	15,	we’ll	create	Reversegam	(also	known	as	Reversi	or	Othello).	The	AI	that
plays	this	game	is	much	more	advanced	than	the	AI	that	played	Tic-Tac-Toe	in	Chapter
10.	In	fact,	it’s	so	good	that	most	of	the	time	you	won’t	be	able	to	beat	it!



15
THE	REVERSEGAM	GAME

In	this	chapter,	we’ll	make	Reversegam,	also	known	as	Reversi	or	Othello.	This	two-player
board	game	is	played	on	a	grid,	so	we’ll	use	a	Cartesian	coordinate	system	with	x-	and	y-
coordinates.	Our	version	of	the	game	will	have	a	computer	AI	that	is	more	advanced	than
our	Tic-Tac-Toe	AI	from	Chapter	10.	In	fact,	this	AI	is	so	good	that	it	will	probably	beat
you	almost	every	time	you	play.	(I	lose	whenever	I	play	against	it!)

TOPICS	COVERED	IN	THIS	CHAPTER
•	How	to	play	Reversegam

•	The	bool()	function

•	Simulating	moves	on	a	Reversegam	board

•	Programming	a	Reversegam	AI

How	to	Play	Reversegam

Reversegam	has	an	8×8	board	and	tiles	that	are	black	on	one	side	and	white	on	the	other
(our	game	will	use	Os	and	Xs	instead).	The	starting	board	looks	like	Figure	15-1.



Figure	15-1:	The	starting	Reversegam	board	has	two	white	tiles	and	two	black	tiles.

Two	 players	 take	 turns	 placing	 tiles	 of	 their	 chosen	 color—black	 or	 white—on	 the
board.	When	 a	 player	 places	 a	 tile	 on	 the	 board,	 any	 of	 the	 opponent’s	 tiles	 that	 are
between	 the	 new	 tile	 and	 the	 other	 tiles	 of	 the	 player’s	 color	 are	 flipped.	 For	 example,
when	the	white	player	places	a	new	white	tile	on	space	(5,	6),	as	in	Figure	15-2,	the	black
tile	at	(5,	5)	is	between	two	white	tiles,	so	it	will	flip	to	white,	as	in	Figure	15-3.	The	goal	of
the	game	is	to	end	with	more	tiles	of	your	color	than	your	opponent’s	color.

Figure	15-2:	White	places	a	new	tile.



Figure	15-3:	White’s	move	has	caused	one	of	black’s	tiles	to	flip.

Black	could	make	a	similar	move	next,	placing	a	black	tile	on	(4,	6),	which	would	flip
the	white	tile	at	(4,	5).	This	results	in	a	board	that	looks	like	Figure	15-4.

Figure	15-4:	Black	has	placed	a	new	tile,	flipping	one	of	white’s	tiles.

Tiles	in	all	directions	are	flipped	as	long	as	they	are	between	the	player’s	new	tile	and
an	existing	tile	of	that	color.	In	Figure	15-5,	white	places	a	tile	at	(3,	6)	and	flips	black	tiles
in	two	directions	(marked	by	the	lines).	The	result	is	shown	in	Figure	15-6.



Each	player	can	quickly	flip	many	tiles	on	the	board	in	one	or	two	moves.	Players	must
always	make	a	move	that	flips	at	least	one	tile.	The	game	ends	when	either	a	player	can’t
make	a	move	or	the	board	is	completely	full.	The	player	with	the	most	tiles	of	their	color
wins.

Figure	15-5:	White’s	second	move	at	(3,	6)	will	flip	two	of	black’s	tiles.

Figure	15-6:	The	board	after	white’s	second	move.

The	AI	we	make	for	this	game	will	look	for	any	corner	moves	on	the	board	it	can	take.



If	there	are	no	corner	moves	available,	the	computer	will	select	the	move	that	claims	the
most	tiles.

Sample	Run	of	Reversegam

Here’s	what	the	user	sees	when	they	run	the	Reversegam	program.	The	text	entered	by	the
player	is	bold.

Welcome	to	Reversegam!
Do	you	want	to	be	X	or	O?
x
The	player	will	go	first.
		12345678
	+--------+
1|								|1
2|								|2
3|								|3
4|			XO			|4
5|			OX			|5
6|								|6
7|								|7
8|								|8
	+--------+
		12345678
You:	2	points.	Computer:	2	points.
Enter	your	move,	"quit"	to	end	the	game,	or	"hints"	to	toggle	hints.
53
		12345678
	+--------+
1|								|1
2|								|2
3|				X			|3
4|			XX			|4
5|			OX			|5
6|								|6
7|								|7
8|								|8
	+--------+
		12345678
You:	4	points.	Computer:	1	points.
Press	Enter	to	see	the	computer's	move.

--snip--

		12345678
	+--------+
1|OOOOOOOO|1
2|OXXXOOOO|2
3|OXOOOOOO|3
4|OXXOXXOX|4
5|OXXOOXOX|5
6|OXXXXOOX|6
7|OOXXOOOO|7
8|OOXOOOOO|8
	+--------+
		12345678



X	scored	21	points.	O	scored	43	points.
You	lost.	The	computer	beat	you	by	22	points.
Do	you	want	to	play	again?	(yes	or	no)
no

As	you	can	see,	the	AI	was	pretty	good	at	beating	me,	43	to	21.	To	help	the	player	out,
we’ll	program	the	game	to	provide	hints.	The	player	can	type	hints	as	their	move,	which
will	toggle	the	hints	mode	on	and	off.	When	hints	mode	is	on,	all	the	possible	moves	the
player	can	make	will	show	up	on	the	board	as	periods	(.),	like	this:

		12345678
	+--------+
1|								|1
2|			.				|2
3|		XO.			|3
4|			XOX		|4
5|			OOO		|5
6|			.	.		|6
7|								|7
8|								|8
	+--------+
		12345678

As	you	can	see,	the	player	can	move	on	(4,	2),	(5,	3),	(4,	6),	or	(6,	6)	based	on	the	hints
shown	on	this	board.

Source	Code	for	Reversegam

Reversegam	is	a	mammoth	program	compared	to	our	previous	games.	It’s	nearly	300	lines
long!	But	don’t	worry:	many	of	these	are	comments	or	blank	lines	to	space	out	the	code
and	make	it	more	readable.

As	 with	 our	 other	 programs,	 we’ll	 first	 create	 several	 functions	 to	 carry	 out
Reversegam-related	tasks	that	the	main	section	will	call.	Roughly	the	first	250	lines	of	code



are	 for	 these	 helper	 functions,	 and	 the	 last	 30	 lines	 of	 code	 implement	 the	Reversegam
game	itself.

If	you	get	errors	after	entering	this	code,	compare	your	code	to	the	book’s	code	with
the	online	diff	tool	at	https://www.nostarch.com/inventwithpython#diff.

reversegam.py

		1.	#	Reversegam:	a	clone	of	Othello/Reversi
		2.	import	random
		3.	import	sys
		4.	WIDTH	=	8	#	Board	is	8	spaces	wide.
		5.	HEIGHT	=	8	#	Board	is	8	spaces	tall.
		6.	def	drawBoard(board):
		7.					#	Print	the	board	passed	to	this	function.	Return	None.
		8.					print('		12345678')
		9.					print('	+--------+')
	10.					for	y	in	range(HEIGHT):
	11.									print('%s|'	%	(y+1),	end='')
	12.									for	x	in	range(WIDTH):
	13.													print(board[x][y],	end='')
	14.									print('|%s'	%	(y+1))
	15.					print('	+--------+')
	16.					print('		12345678')
	17.
	18.	def	getNewBoard():
	19.					#	Create	a	brand-new,	blank	board	data	structure.
	20.					board	=	[]
	21.					for	i	in	range(WIDTH):
	22.									board.append(['	',	'	',	'	',	'	',	'	',	'	',	'	',	'	'])
	23.					return	board
	24.
	25.	def	isValidMove(board,	tile,	xstart,	ystart):
	26.					#	Return	False	if	the	player's	move	on	space	xstart,	ystart	is
											invalid.
	27.					#	If	it	is	a	valid	move,	return	a	list	of	spaces	that	would	become
											the	player's	if	they	made	a	move	here.
	28.					if	board[xstart][ystart]	!=	'	'	or	not	isOnBoard(xstart,	ystart):
	29.									return	False
30.
	31.					if	tile	==	'X':
	32.									otherTile	=	'O'
	33.					else:
	34.									otherTile	=	'X'
	35.
	36.					tilesToFlip	=	[]
	37.					for	xdirection,	ydirection	in	[[0,	1],	[1,	1],	[1,	0],	[1,	-1],
											[0,	-1],	[-1,	-1],	[-1,	0],	[-1,	1]]:
	38.									x,	y	=	xstart,	ystart
	39.									x	+=	xdirection	#	First	step	in	the	x	direction
	40.									y	+=	ydirection	#	First	step	in	the	y	direction
	41.									while	isOnBoard(x,	y)	and	board[x][y]	==	otherTile:
	42.													#	Keep	moving	in	this	x	&	y	direction.
	43.													x	+=	xdirection
	44.													y	+=	ydirection
	45.													if	isOnBoard(x,	y)	and	board[x][y]	==	tile:
	46.																	#	There	are	pieces	to	flip	over.	Go	in	the	reverse
																							direction	until	we	reach	the	original	space,	noting	all
																							the	tiles	along	the	way.

https://www.nostarch.com/inventwithpython#diff


	47.													while	True:
	48.																	x	-=	xdirection
	49.																	y	-=	ydirection
	50.																	if	x	==	xstart	and	y	==	ystart:
	51.																					break
	52.																	tilesToFlip.append([x,	y])
	53.
	54.					if	len(tilesToFlip)	==	0:	#	If	no	tiles	were	flipped,	this	is	not	a
											valid	move.
	55.									return	False
	56.					return	tilesToFlip
	57.
	58.	def	isOnBoard(x,	y):
	59.					#	Return	True	if	the	coordinates	are	located	on	the	board.
	60.					return	x	>=	0	and	x	<=	WIDTH	-	1	and	y	>=	0	and	y	<=	HEIGHT	-	1
	61.
	62.	def	getBoardWithValidMoves(board,	tile):
	63.					#	Return	a	new	board	with	periods	marking	the	valid	moves	the	player
											can	make.
	64.					boardCopy	=	getBoardCopy(board)
	65.
	66.					for	x,	y	in	getValidMoves(boardCopy,	tile):
	67.									boardCopy[x][y]	=	'.'
	68.					return	boardCopy
	69.
	70.	def	getValidMoves(board,	tile):
	71.					#	Return	a	list	of	[x,y]	lists	of	valid	moves	for	the	given	player
											on	the	given	board.
	72.					validMoves	=	[]
	73.					for	x	in	range(WIDTH):
	74.									for	y	in	range(HEIGHT):
	75.													if	isValidMove(board,	tile,	x,	y)	!=	False:
	76.																	validMoves.append([x,	y])
	77.					return	validMoves
	78.
79.	def	getScoreOfBoard(board):
	80.					#	Determine	the	score	by	counting	the	tiles.	Return	a	dictionary
											with	keys	'X'	and	'O'.
	81.					xscore	=	0
	82.					oscore	=	0
	83.					for	x	in	range(WIDTH):
	84.									for	y	in	range(HEIGHT):
	85.													if	board[x][y]	==	'X':
	86.																	xscore	+=	1
	87.													if	board[x][y]	==	'O':
	88.																	oscore	+=	1
	89.					return	{'X':xscore,	'O':oscore}
	90.
	91.	def	enterPlayerTile():
	92.					#	Let	the	player	enter	which	tile	they	want	to	be.
	93.					#	Return	a	list	with	the	player's	tile	as	the	first	item	and	the
											computer's	tile	as	the	second.
	94.					tile	=	''
	95.					while	not	(tile	==	'X'	or	tile	==	'O'):
	96.									print('Do	you	want	to	be	X	or	O?')
	97.									tile	=	input().upper()
	98.
	99.					#	The	first	element	in	the	list	is	the	player's	tile,	and	the	second
											is	the	computer's	tile.
100.					if	tile	==	'X':



101.									return	['X',	'O']
102.					else:
103.									return	['O',	'X']
104.
105.	def	whoGoesFirst():
106.					#	Randomly	choose	who	goes	first.
107.					if	random.randint(0,	1)	==	0:
108.									return	'computer'
109.					else:
110.									return	'player'
111.
112.	def	makeMove(board,	tile,	xstart,	ystart):
113.					#	Place	the	tile	on	the	board	at	xstart,	ystart	and	flip	any	of	the
											opponent's	pieces.
114.					#	Return	False	if	this	is	an	invalid	move;	True	if	it	is	valid.
115.					tilesToFlip	=	isValidMove(board,	tile,	xstart,	ystart)
116.
117.					if	tilesToFlip	==	False:
118.									return	False
119.
120.					board[xstart][ystart]	=	tile
121.					for	x,	y	in	tilesToFlip:
122.									board[x][y]	=	tile
123.					return	True
124.
125.	def	getBoardCopy(board):
126.					#	Make	a	duplicate	of	the	board	list	and	return	it.
127.					boardCopy	=	getNewBoard()
128.
129.					for	x	in	range(WIDTH):
130.									for	y	in	range(HEIGHT):
131.													boardCopy[x][y]	=	board[x][y]
132.
133.					return	boardCopy
134.
135.	def	isOnCorner(x,	y):
136.					#	Return	True	if	the	position	is	in	one	of	the	four	corners.
137.					return	(x	==	0	or	x	==	WIDTH	-	1)	and	(y	==	0	or	y	==	HEIGHT	-	1)
138.
139.	def	getPlayerMove(board,	playerTile):
140.					#	Let	the	player	enter	their	move.
141.					#	Return	the	move	as	[x,	y]	(or	return	the	strings	'hints'	or
											'quit').
142.					DIGITS1TO8	=	'1	2	3	4	5	6	7	8'.split()
143.					while	True:
144.									print('Enter	your	move,	"quit"	to	end	the	game,	or	"hints"	to
															toggle	hints.')
145.									move	=	input().lower()
146.									if	move	==	'quit'	or	move	==	'hints':
147.													return	move
148.
149.									if	len(move)	==	2	and	move[0]	in	DIGITS1TO8	and	move[1]	in
															DIGITS1TO8:
150.													x	=	int(move[0])	-	1
151.													y	=	int(move[1])	-	1
152.													if	isValidMove(board,	playerTile,	x,	y)	==	False:
153.																	continue
154.													else:
155.																	break
156.									else:



157.													print('That	is	not	a	valid	move.	Enter	the	column	(1-8)	and
																			then	the	row	(1-8).')
158.													print('For	example,	81	will	move	on	the	top-right	corner.')
159.
160.					return	[x,	y]
161.
162.	def	getComputerMove(board,	computerTile):
163.					#	Given	a	board	and	the	computer's	tile,	determine	where	to
164.					#	move	and	return	that	move	as	an	[x,	y]	list.
165.					possibleMoves	=	getValidMoves(board,	computerTile)
166.					random.shuffle(possibleMoves)	#	Randomize	the	order	of	the	moves.
167.
168.					#	Always	go	for	a	corner	if	available.
169.					for	x,	y	in	possibleMoves:
170.									if	isOnCorner(x,	y):
171.													return	[x,	y]
172.
173.					#	Find	the	highest-scoring	move	possible.
174.					bestScore	=	-1
175.					for	x,	y	in	possibleMoves:
176.									boardCopy	=	getBoardCopy(board)
177.									makeMove(boardCopy,	computerTile,	x,	y)
178.									score	=	getScoreOfBoard(boardCopy)[computerTile]
179.									if	score	>	bestScore:
180.													bestMove	=	[x,	y]
181.													bestScore	=	score
182.					return	bestMove
183.
184.	def	printScore(board,	playerTile,	computerTile):
185.					scores	=	getScoreOfBoard(board)
186.					print('You:	%s	points.	Computer:	%s	points.'	%	(scores[playerTile],
											scores[computerTile]))
187.
188.	def	playGame(playerTile,	computerTile):
189.					showHints	=	False
190.					turn	=	whoGoesFirst()
191.					print('The	'	+	turn	+	'	will	go	first.')
192.
193.					#	Clear	the	board	and	place	starting	pieces.
194.					board	=	getNewBoard()
195.					board[3][3]	=	'X'
196.					board[3][4]	=	'O'
197.					board[4][3]	=	'O'
198.					board[4][4]	=	'X'
199.
200.					while	True:
201.									playerValidMoves	=	getValidMoves(board,	playerTile)
202.									computerValidMoves	=	getValidMoves(board,	computerTile)
203.
204.									if	playerValidMoves	==	[]	and	computerValidMoves	==	[]:
205.													return	board	#	No	one	can	move,	so	end	the	game.
206.
207.									elif	turn	==	'player':	#	Player's	turn
208.													if	playerValidMoves	!=	[]:
209.																	if	showHints:
210.																					validMovesBoard	=	getBoardWithValidMoves(board,
																											playerTile)
211.																					drawBoard(validMovesBoard)
212.																	else:
213.																					drawBoard(board)



214.																	printScore(board,	playerTile,	computerTile)
215.
216.																	move	=	getPlayerMove(board,	playerTile)
217.																	if	move	==	'quit':
218.																					print('Thanks	for	playing!')
219.																					sys.exit()	#	Terminate	the	program.
220.																	elif	move	==	'hints':
221.																					showHints	=	not	showHints
222.																					continue
223.																	else:
224.																					makeMove(board,	playerTile,	move[0],	move[1])
225.													turn	=	'computer'
226.
227.									elif	turn	==	'computer':	#	Computer's	turn
228.													if	computerValidMoves	!=	[]:
229.																	drawBoard(board)
230.																	printScore(board,	playerTile,	computerTile)
231.
232.																	input('Press	Enter	to	see	the	computer\'s	move.')
233.																	move	=	getComputerMove(board,	computerTile)
234.																	makeMove(board,	computerTile,	move[0],	move[1])
235.													turn	=	'player'
236.
237.
238.
239.	print('Welcome	to	Reversegam!')
240.
241.	playerTile,	computerTile	=	enterPlayerTile()
242.
243.	while	True:
244.					finalBoard	=	playGame(playerTile,	computerTile)
245.
246.					#	Display	the	final	score.
247.					drawBoard(finalBoard)
248.					scores	=	getScoreOfBoard(finalBoard)
249.					print('X	scored	%s	points.	O	scored	%s	points.'	%	(scores['X'],
											scores['O']))
250.					if	scores[playerTile]	>	scores[computerTile]:
251.									print('You	beat	the	computer	by	%s	points!	Congratulations!'	%
															(scores[playerTile]	-	scores[computerTile]))
252.					elif	scores[playerTile]	<	scores[computerTile]:
253.									print('You	lost.	The	computer	beat	you	by	%s	points.'	%
															(scores[computerTile]	-	scores[playerTile]))
254.					else:
255.									print('The	game	was	a	tie!')
256.
257.					print('Do	you	want	to	play	again?	(yes	or	no)')
258.					if	not	input().lower().startswith('y'):
259.									break

Importing	Modules	and	Setting	Up	Constants

As	with	our	other	games,	we	begin	this	program	by	importing	modules:

1.	#	Reversegam:	a	clone	of	Othello/Reversi
2.	import	random
3.	import	sys



4.	WIDTH	=	8		#	Board	is	8	spaces	wide.
5.	HEIGHT	=	8	#	Board	is	8	spaces	tall.

Line	 2	 imports	 the	 random	 module	 for	 its	 randint()	 and	 choice()	 functions.	 Line	 3
imports	the	sys	module	for	its	exit()	function.

Lines	4	and	5	set	two	constants,	WIDTH	and	HEIGHT,	which	are	used	to	set	up	the	game
board.

The	Game	Board	Data	Structure

Let’s	figure	out	the	board’s	data	structure.	This	data	structure	is	a	list	of	lists,	just	like	the
one	in	Chapter	13’s	Sonar	Treasure	Hunt	game.	The	list	of	lists	is	created	so	that	board[x]
[y]	 will	 represent	 the	 character	 on	 the	 space	 located	 at	 position	 x	 on	 the	 x-axis	 (going
left/right)	and	position	y	on	the	y-axis	(going	up/down).

This	 character	can	either	be	a	'	'	 (a	 space	 representing	an	empty	position),	 a	'.'	 (a
period	representing	a	possible	move	in	hints	mode),	or	an	'X'	or	'O'	 (letters	representing
tiles).	Whenever	you	see	a	parameter	named	board,	it	is	meant	to	be	this	kind	of	list-of-lists
data	structure.

It	 is	 important	 to	 note	 that	while	 the	 x-	 and	 y-coordinates	 for	 the	 game	 board	will
range	from	1	to	8,	the	indexes	of	the	list	data	structure	will	range	from	0	to	7.	Our	code
will	need	to	make	slight	adjustments	to	account	for	this.

Drawing	the	Board	Data	Structure	on	the	Screen
The	board	data	structure	is	just	a	Python	list	value,	but	we	need	a	nicer	way	to	present	it
on	the	screen.	The	drawBoard()	function	takes	a	board	data	structure	and	displays	it	on	the
screen	so	the	player	knows	where	tiles	are	placed:

	6.	def	drawBoard(board):
	7.					#	Print	the	board	passed	to	this	function.	Return	None.
	8.					print('		12345678')
	9.					print('	+--------+')
10.					for	y	in	range(HEIGHT):
11.									print('%s|'	%	(y+1),	end='')
12.									for	x	in	range(WIDTH):
13.													print(board[x][y],	end='')
14.									print('|%s'	%	(y+1))
15.					print('	+--------+')
16.					print('		12345678')

The	drawBoard()	function	prints	the	current	game	board	based	on	the	data	structure	in
board.

Line	8	is	the	first	print()	function	call	executed	for	each	board,	and	it	prints	the	labels
for	the	x-axis	along	the	top	of	the	board.	Line	9	prints	the	top	horizontal	line	of	the	board.
The	for	loop	on	line	10	will	loop	eight	times,	once	for	each	row.	Line	11	prints	the	label



for	the	y-axis	on	the	left	side	of	the	board,	and	it	has	an	end=''	keyword	argument	to	print
nothing	instead	of	a	new	line.

This	 is	 so	 that	 another	 loop	on	 line	 12	 (which	 also	 loops	 eight	 times,	 once	 for	 each
column	in	the	row)	prints	each	position	along	with	an	X,	O,	.,	or	blank	space	depending	on
what’s	 stored	 in	board[x][y].	Line	13’s	print()	 function	 call	 inside	 this	 loop	 also	has	 an
end=''	keyword	argument	so	that	the	newline	character	is	not	printed.	That	will	produce	a
single	 line	on	the	screen	that	 looks	 like	'1|XXXXXXXX|1'	 (if	 each	of	 the	board[x][y]	 values
were	an	'X').

After	the	inner	loop	is	done,	the	print()	function	calls	on	lines	15	and	16	to	print	the
bottom	horizontal	line	and	x-axis	labels.

When	the	for	loop	on	line	13	prints	the	row	eight	times,	it	forms	the	entire	board:

		12345678
	+--------+
1|XXXXXXXX|1
2|XXXXXXXX|2
3|XXXXXXXX|3
4|XXXXXXXX|4
5|XXXXXXXX|5
6|XXXXXXXX|6
7|XXXXXXXX|7
8|XXXXXXXX|8
	+--------+
		12345678

Of	course,	instead	of	X,	some	of	the	spaces	on	the	board	will	be	the	other	player’s	mark
(O),	a	period	(.)	if	hints	mode	is	turned	on,	or	a	space	for	empty	positions.

Creating	a	Fresh	Board	Data	Structure
The	drawBoard()	function	will	display	a	board	data	structure	on	the	screen,	but	we	need	a
way	to	create	these	board	data	structures	as	well.	The	getNewBoard()	function	returns	a	list
of	eight	lists,	with	each	list	containing	eight	'	'	strings	that	will	represent	a	blank	board
with	no	moves:

18.	def	getNewBoard():
19.					#	Create	a	brand-new,	blank	board	data	structure.
20.					board	=	[]
21.					for	i	in	range(WIDTH):
22.									board.append(['	',	'	',	'	',	'	',	'	',	'	',	'	',	'	'])
23.					return	board

Line	20	creates	the	list	that	contains	the	inner	lists.	The	for	loop	adds	eight	inner	lists
inside	this	list.	These	inner	lists	have	eight	strings	to	represent	eight	empty	spaces	on	the
board.	 Together,	 this	 code	 creates	 a	 board	 with	 64	 empty	 spaces—a	 blank	 Reversegam
board.



Checking	Whether	a	Move	Is	Valid

Given	 the	 board’s	 data	 structure,	 the	 player’s	 tile,	 and	 the	 x-	 and	 y-coordinates	 for	 the
player’s	move,	the	isValidMove()	function	should	return	True	if	the	Reversegam	game	rules
allow	a	move	on	those	coordinates,	and	False	if	they	don’t.	For	a	move	to	be	valid,	it	must
be	on	the	board	and	also	flip	at	least	one	of	the	opponent’s	tiles.

This	function	uses	several	x-	and	y-coordinates	on	the	board,	so	the	xstart	and	ystart
variables	keep	track	of	the	x-	and	y-coordinates	of	the	original	move.

25.	def	isValidMove(board,	tile,	xstart,	ystart):
26.					#	Return	False	if	the	player's	move	on	space	xstart,	ystart	is
										invalid.
27.					#	If	it	is	a	valid	move,	return	a	list	of	spaces	that	would	become
										the	player's	if	they	made	a	move	here.
28.					if	board[xstart][ystart]	!=	'	'	or	not	isOnBoard(xstart,	ystart):
29.									return	False
30.
31.					if	tile	==	'X':
32.									otherTile	=	'O'
33.					else:
34.									otherTile	=	'X'
35.
36.					tilesToFlip	=	[]

Line	28	checks	whether	the	x-	and	y-coordinates	are	on	the	game	board	and	whether
the	space	is	empty	using	the	isOnBoard()	function	(which	we’ll	define	later	in	the	program).
This	 function	makes	 sure	both	 the	x-	 and	y-coordinates	 are	between	0	 and	 the	WIDTH	 or
HEIGHT	of	the	board	minus	1.

The	player’s	tile	(either	the	human	player	or	the	computer	player)	is	in	tile,	but	this
function	will	need	to	know	the	opponent’s	tile.	If	the	player’s	tile	is	X,	then	obviously	the
opponent’s	tile	is	O,	and	vice	versa.	We	use	the	if-else	statement	on	lines	31	to	34	for	this.

Finally,	if	the	given	x-	and	y-coordinate	is	a	valid	move,	isValidMove()	returns	a	list	of
all	 the	opponent’s	 tiles	 that	would	be	flipped	by	this	move.	We	create	a	new	empty	 list,
tilesToFlip,	that	we’ll	use	to	store	all	the	tile	coordinates.

Checking	Each	of	the	Eight	Directions
In	 order	 for	 a	move	 to	 be	 valid,	 it	 needs	 to	 flip	 at	 least	 one	 of	 the	 opponent’s	 tiles	 by
sandwiching	 the	 current	player’s	new	 tile	with	one	of	 the	player’s	old	 tiles.	That	means
that	the	new	tile	must	be	next	to	one	of	the	opponent’s	tiles.

The	for	loop	on	line	37	iterates	through	a	list	of	lists	that	represents	the	directions	the
program	will	check	for	an	opponent’s	tile:

37.					for	xdirection,	ydirection	in	[[0,	1],	[1,	1],	[1,	0],	[1,	-1],
										[0,	-1],	[-1,	-1],	[-1,	0],	[-1,	1]]:

The	game	board	is	a	Cartesian	coordinate	system	with	x-	and	y-directions.	There	are



eight	directions	to	check:	up,	down,	left,	right,	and	the	four	diagonal	directions.	Each	of
the	eight	two-item	lists	in	the	list	on	line	37	is	used	for	checking	one	of	these	directions.
The	program	checks	 a	 direction	by	 adding	 the	 first	 value	 in	 the	 two-item	 list	 to	 the	 x-
coordinate	and	the	second	value	to	the	y-coordinate.

Because	 the	 x-coordinates	 increase	 as	 you	 go	 to	 the	 right,	 you	 can	 check	 the	 right
direction	by	adding	1	to	the	x-coordinate.	So	the	[1,	0]	list	adds	1	to	the	x-coordinate	and
0	 to	 the	 y-coordinate.	Checking	 the	 left	 direction	 is	 the	opposite:	 you	would	 subtract	1
(that	is,	add	-1)	from	the	x-coordinate.

But	 to	 check	diagonally,	 you	need	 to	 add	 to	or	 subtract	 from	both	 coordinates.	For
example,	adding	1	to	the	x-coordinate	and	adding	-1	 to	the	y-coordinate	would	result	 in
checking	the	up-right	diagonal	direction.

Figure	 15-7	 shows	 a	 diagram	 to	 make	 it	 easier	 to	 remember	 which	 two-item	 list
represents	which	direction.

Figure	15-7:	Each	two-item	list	represents	one	of	the	eight	directions.

The	 for	 loop	 at	 line	 37	 iterates	 through	 each	 of	 the	 two-item	 lists	 so	 that	 each
direction	is	checked.	Inside	the	for	loop,	the	x	and	y	variables	are	set	to	the	same	values	as
xstart	and	ystart,	respectively,	using	multiple	assignment	at	line	38.	The	xdirection	and
ydirection	variables	are	set	to	the	values	in	one	of	the	two-item	lists	and	change	the	x	and	y
variables	according	to	the	direction	being	checked	in	that	iteration	of	the	for	loop:

37.					for	xdirection,	ydirection	in	[[0,	1],	[1,	1],	[1,	0],	[1,	-1],
										[0,	-1],	[-1,	-1],	[-1,	0],	[-1,	1]]:
38.									x,	y	=	xstart,	ystart
39.									x	+=	xdirection	#	First	step	in	the	x	direction
40.									y	+=	ydirection	#	First	step	in	the	y	direction

The	xstart	and	ystart	variables	will	stay	the	same	so	that	the	program	can	remember
which	space	it	originally	started	from.

Remember,	for	a	move	to	be	valid,	it	must	be	both	on	the	board	and	next	to	one	of	the
other	player’s	tiles.	(Otherwise,	there	aren’t	any	of	the	opponent’s	tiles	to	flip,	and	a	move
must	 flip	over	at	 least	one	 tile	 to	be	valid.)	Line	41	checks	 this	 condition,	 and	 if	 it	 isn’t



True,	the	execution	goes	back	to	the	for	statement	to	check	the	next	direction.

41.									while	isOnBoard(x,	y)	and	board[x][y]	==	otherTile:
42.													#	Keep	moving	in	this	x	&	y	direction.
43.													x	+=	xdirection
44.													y	+=	ydirection

But	if	 the	first	space	checked	does	have	the	opponent’s	tile,	 then	the	program	should
check	for	more	of	the	opponent’s	tiles	in	that	direction	until	it	reaches	one	of	the	player’s
tiles	 or	 the	 end	 of	 the	 board.	 The	 next	 tile	 in	 the	 same	 direction	 is	 checked	 by	 using
xdirection	 and	 ydirection	 again	 to	make	 x	 and	 y	 the	 next	 coordinates	 to	 check.	 So	 the
program	changes	x	and	y	on	lines	43	and	44.

Finding	Out	Whether	There	Are	Tiles	to	Flip	Over
Next,	we	check	whether	there	are	adjacent	tiles	that	can	be	flipped	over.

45.													if	isOnBoard(x,	y)	and	board[x][y]	==	tile:
46.																	#	There	are	pieces	to	flip	over.	Go	in	the	reverse
																						direction	until	we	reach	the	original	space,	noting	all
																						the	tiles	along	the	way.
47.																	while	True:
48.																					x	-=	xdirection
49.																					y	-=	ydirection
50.																					if	x	==	xstart	and	y	==	ystart:
51.																									break
52.																					tilesToFlip.append([x,	y])

The	if	 statement	on	 line	45	checks	whether	a	coordinate	 is	occupied	by	 the	player’s
own	tile.	This	tile	will	mark	the	end	of	the	sandwich	made	by	the	player’s	tiles	surrounding
the	opponent’s	tiles.	We	also	need	to	record	the	coordinates	of	all	of	the	opponent’s	tiles
that	should	be	flipped.

The	while	loop	moves	x	and	y	in	reverse	on	lines	48	and	49.	Until	x	and	y	are	back	to
the	original	xstart	and	ystart	position,	xdirection	 and	ydirection	 are	 subtracted	 from	x
and	y,	and	each	x	and	y	position	 is	appended	to	the	tilesToFlip	 list.	When	x	and	y	 have
reached	the	xstart	and	ystart	position,	line	51	breaks	the	execution	out	of	the	loop.	Since
the	original	xstart	and	ystart	position	is	an	empty	space	(we	ensured	this	was	the	case	on
lines	28	and	29),	the	condition	for	line	41’s	while	loop	will	be	False.	The	program	moves
on	to	line	37,	and	the	for	loop	checks	the	next	direction.

The	for	loop	does	this	in	all	eight	directions.	After	that	loop	is	done,	the	tilesToFlip
list	will	contain	the	x-	and	y-coordinates	of	all	our	opponent’s	tiles	that	would	be	flipped	if
the	 player	 moved	 on	 xstart,	 ystart.	 Remember,	 the	 isValidMove()	 function	 is	 only
checking	whether	the	original	move	was	valid;	it	doesn’t	actually	permanently	change	the
data	structure	of	the	game	board.

If	none	of	 the	eight	directions	ended	up	 flipping	at	 least	one	of	 the	opponent’s	 tiles,
then	tilesToFlip	will	be	an	empty	list:



54.					if	len(tilesToFlip)	==	0:	#	If	no	tiles	were	flipped,	this	is	not	a
										valid	move.
55.									return	False
56.					return	tilesToFlip

This	 is	 a	 sign	 that	 this	 move	 is	 not	 valid	 and	 isValidMove()	 should	 return	 False.
Otherwise,	isValidMove()	returns	tilesToFlip.

Checking	for	Valid	Coordinates

The	 isOnBoard()	 function	 is	 called	 from	 isValidMove().	 It	 does	 a	 simple	 check	 to	 see
whether	given	x-	and	y-coordinates	are	on	the	board.	For	example,	an	x-coordinate	of	4
and	a	y-coordinate	of	9999	would	not	be	on	the	board	since	y-coordinates	only	go	up	to	7,
which	is	equal	to	WIDTH	-	1	or	HEIGHT	-	1.

58.	def	isOnBoard(x,	y):
59.					#	Return	True	if	the	coordinates	are	located	on	the	board.
60.					return	x	>=	0	and	x	<=	WIDTH	-	1	and	y	>=	0	and	y	<=	HEIGHT	-	1

Calling	 this	 function	 is	 shorthand	 for	 the	Boolean	 expression	 on	 line	 72	 that	 checks
whether	both	x	and	y	are	between	0	and	the	WIDTH	or	HEIGHT	subtracted	by	1,	which	is	7.

Getting	a	List	with	All	Valid	Moves
Now	let’s	create	a	hints	mode	that	displays	a	board	with	all	possible	moves	marked	on	it.
The	 getBoardWithValidMoves()	 function	 returns	 a	 game	 board	 data	 structure	 that	 has
periods	(.)	for	all	spaces	that	are	valid	moves:

62.	def	getBoardWithValidMoves(board,	tile):
63.					#	Return	a	new	board	with	periods	marking	the	valid	moves	the	player
										can	make.
64.					boardCopy	=	getBoardCopy(board)
65.
66.					for	x,	y	in	getValidMoves(boardCopy,	tile):
67.									boardCopy[x][y]	=	'.'
68.					return	boardCopy

This	function	creates	a	duplicate	game	board	data	structure	called	boardCopy	 (returned
by	 getBoardCopy()	 on	 line	 64)	 instead	 of	 modifying	 the	 one	 passed	 to	 it	 in	 the	 board
parameter.	Line	66	calls	getValidMoves()	to	get	a	list	of	x-	and	y-coordinates	with	all	the
legal	moves	the	player	could	make.	The	board	copy	is	marked	with	periods	in	those	spaces
and	returned.

The	getValidMoves()	 function	returns	a	list	of	two-item	lists.	The	two-item	lists	hold
the	 x-	 and	 y-coordinates	 for	 all	 valid	moves	 of	 the	 tile	 given	 to	 it	 for	 the	 board	 data
structure	in	the	board	parameter:

70.	def	getValidMoves(board,	tile):



71.					#	Return	a	list	of	[x,y]	lists	of	valid	moves	for	the	given	player
										on	the	given	board.
72.					validMoves	=	[]
73.					for	x	in	range(WIDTH):
74.									for	y	in	range(HEIGHT):
75.													if	isValidMove(board,	tile,	x,	y)	!=	False:
76.																	validMoves.append([x,	y])
77.					return	validMoves

This	function	uses	nested	loops	(on	lines	73	and	74)	to	check	every	xand	y-coordinate
(all	 64	 of	 them)	 by	 calling	 isValidMove()	 on	 that	 space	 and	 checking	whether	 it	 returns
False	 or	 a	 list	 of	 possible	moves	 (in	which	 case	 the	move	 is	 valid).	Each	 valid	 x-	 and	y-
coordinate	is	appended	to	the	list	in	validMoves.

Calling	the	bool()	Function
You	may	have	noticed	that	the	program	checks	whether	isValidMove()	on	line	75	returns
False	even	though	this	function	returns	a	list.	To	understand	how	this	works,	you	need	to
learn	a	bit	more	about	Booleans	and	the	bool()	function.

The	bool()	function	is	similar	to	the	int()	and	str()	functions.	It	returns	the	Boolean
value	form	of	the	value	passed	to	it.

Most	data	 types	have	one	value	 that	 is	 considered	 the	False	 value	 for	 that	data	 type.
Every	other	value	is	considered	True.	For	example,	the	integer	0,	the	floating-point	number
0.0,	an	empty	string,	an	empty	list,	and	an	empty	dictionary	are	all	considered	to	be	False
when	used	as	the	condition	for	an	if	or	loop	statement.	All	other	values	are	True.	Enter	the
following	into	the	interactive	shell:

>>>	bool(0)
False
>>>	bool(0.0)
False
>>>	bool('')
False
>>>	bool([])
False
>>>	bool({})
False
>>>	bool(1)
True
>>>	bool('Hello')
True
>>>	bool([1,	2,	3,	4,	5])
True
>>>	bool({'spam':'cheese',	'fizz':'buzz'})
True

Conditions	are	automatically	interpreted	as	Boolean	values.	This	is	why	the	condition
on	 line	 75	 works	 correctly.	 The	 call	 to	 the	 isValidMove()	 function	 either	 returns	 the
Boolean	value	False	or	a	nonempty	list.

If	you	imagine	that	the	entire	condition	is	placed	inside	a	call	to	bool(),	then	line	75’s



condition	 False	 becomes	 bool(False)	 (which,	 of	 course,	 evaluates	 to	 False).	 And	 a
condition	of	a	nonempty	list	placed	as	the	parameter	to	bool()	will	return	True.

Getting	the	Score	of	the	Game	Board

The	 getScoreOfBoard()	 function	 uses	 nested	 for	 loops	 to	 check	 all	 64	 positions	 on	 the
board	and	see	which	player’s	tile	(if	any)	is	on	them:

79.	def	getScoreOfBoard(board):
80.					#	Determine	the	score	by	counting	the	tiles.	Return	a	dictionary
										with	keys	'X'	and	'O'.
81.					xscore	=	0
82.					oscore	=	0
83.					for	x	in	range(WIDTH):
84.									for	y	in	range(HEIGHT):
85.													if	board[x][y]	==	'X':
86.																	xscore	+=	1
87.													if	board[x][y]	==	'O':
88.																	oscore	+=	1
89.					return	{'X':xscore,	'O':oscore}

For	 each	 X	 tile,	 the	 code	 increments	 xscore	 on	 line	 86.	 For	 each	 O	 tile,	 the	 code
increments	oscore	on	line	88.	The	function	then	returns	xscore	and	oscore	in	a	dictionary.

Getting	the	Player’s	Tile	Choice

The	enterPlayerTile()	function	asks	the	player	which	tile	they	want	to	be,	either	X	or	O:

91.	def	enterPlayerTile():
92.					#	Let	the	player	enter	which	tile	they	want	to	be.
93.					#	Return	a	list	with	the	player's	tile	as	the	first	item	and	the
										computer's	tile	as	the	second.
94.					tile	=	''
95.					while	not	(tile	==	'X'	or	tile	==	'O'):
96.									print('Do	you	want	to	be	X	or	O?')
97.									tile	=	input().upper()
98.
99.					#	The	first	element	in	the	list	is	the	player's	tile,	and	the	second
										is	the	computer's	tile.
100.					if	tile	==	'X':
101.									return	['X',	'O']
102.					else:
103.									return	['O',	'X']

The	 for	 loop	 will	 keep	 looping	 until	 the	 player	 enters	 X	 or	 O	 in	 either	 upper-	 or
lowercase.	The	enterPlayerTile()	function	then	returns	a	two-item	list,	where	the	player’s
tile	 choice	 is	 the	 first	 item	 and	 the	 computer’s	 tile	 is	 the	 second.	 Later,	 line	 241	 calls
enterPlayerTile()	 and	 uses	multiple	 assignment	 to	 put	 these	 two	 returned	 items	 in	 two
variables.



Determining	Who	Goes	First

The	whoGoesFirst()	function	randomly	selects	who	goes	first	and	returns	either	the	string
'computer'	or	the	string	'player':

105.	def	whoGoesFirst():
106.					#	Randomly	choose	who	goes	first.
107.					if	random.randint(0,	1)	==	0:
108.									return	'computer'
109.					else:
110.									return	'player'

Placing	a	Tile	on	the	Board

The	makeMove()	function	is	called	when	a	player	wants	to	place	a	tile	on	the	board	and	flip
the	other	tiles	according	to	the	rules	of	Reversegam:

112.	def	makeMove(board,	tile,	xstart,	ystart):
113.					#	Place	the	tile	on	the	board	at	xstart,	ystart	and	flip	any	of	the
											opponent's	pieces.
114.					#	Return	False	if	this	is	an	invalid	move;	True	if	it	is	valid.
115.					tilesToFlip	=	isValidMove(board,	tile,	xstart,	ystart)

This	function	modifies	in	place	the	board	data	structure	that	is	passed.	Changes	made
to	the	board	variable	(because	it	is	a	list	reference)	will	be	made	to	the	global	scope.

Most	of	the	work	is	done	by	isValidMove()	on	line	115,	which	returns	a	list	of	x-	and	y-
coordinates	 (in	a	 two-item	list)	of	 tiles	 that	need	to	be	 flipped.	Remember,	 if	 the	xstart
and	 ystart	 arguments	 point	 to	 an	 invalid	 move,	 isValidMove()	 will	 return	 the	 Boolean
value	False,	which	is	checked	for	by	line	117:

117.					if	tilesToFlip	==	False:
118.									return	False
119.
120.					board[xstart][ystart]	=	tile
121.					for	x,	y	in	tilesToFlip:
122.									board[x][y]	=	tile
123.					return	True

If	 the	 return	 value	 of	 isValidMove()	 (now	 stored	 in	 tilesToFlip)	 is	 False,	 then
makeMove()	will	also	return	False	on	line	118.

Otherwise,	isValidMove()	returns	a	list	of	spaces	on	the	board	to	put	down	the	tiles	(the
'X'	or	'O'	string	in	tile).	Line	120	sets	the	space	that	the	player	has	moved	on.	Line	121
for	loop	sets	all	the	tiles	that	are	in	tilesToFlip.

Copying	the	Board	Data	Structure

The	getBoardCopy()	 function	is	different	from	getNewBoard().	The	getNewBoard()	 function



creates	a	blank	game	board	data	structure	that	has	only	empty	spaces	and	the	four	starting
tiles.	getBoardCopy()	creates	a	blank	game	board	data	structure	but	then	copies	all	of	the
positions	 in	 the	 board	 parameter	 with	 a	 nested	 loop.	 The	 AI	 uses	 the	 getBoardCopy()
function	so	it	can	make	changes	to	the	game	board	copy	without	changing	the	real	game
board.	This	technique	was	also	used	by	the	Tic-Tac-Toe	program	in	Chapter	10.

125.	def	getBoardCopy(board):
126.					#	Make	a	duplicate	of	the	board	list	and	return	it.
127.					boardCopy	=	getNewBoard()
128.
129.					for	x	in	range(WIDTH):
130.									for	y	in	range(HEIGHT):
131.													boardCopy[x][y]	=	board[x][y]
132.
133.					return	boardCopy

A	call	to	getNewBoard()	sets	up	boardCopy	as	a	fresh	game	board	data	structure.	Then	the
two	 nested	 for	 loops	 copy	 each	 of	 the	 64	 tiles	 from	 board	 to	 the	 duplicate	 board	 data
structure	in	boardCopy.

Determining	Whether	a	Space	Is	on	a	Corner

The	 isOnCorner()	 function	 returns	 True	 if	 the	 coordinates	 are	 on	 a	 corner	 space	 at
coordinates	(0,	0),	(7,	0),	(0,	7),	or	(7,	7):

135.	def	isOnCorner(x,	y):
136.					#	Return	True	if	the	position	is	in	one	of	the	four	corners.
137.					return	(x	==	0	or	x	==	WIDTH	-	1)	and	(y	==	0	or	y	==	HEIGHT	-	1)

Otherwise,	isOnCorner()	returns	False.	We’ll	use	this	function	later	for	the	AI.

Getting	the	Player’s	Move

The	getPlayerMove()	function	is	called	to	let	the	player	enter	the	coordinates	of	their	next
move	(and	check	whether	the	move	is	valid).	The	player	can	also	enter	hints	to	turn	hints
mode	on	(if	it	is	off)	or	off	(if	it	is	on).	Finally,	the	player	can	enter	quit	to	quit	the	game.

139.	def	getPlayerMove(board,	playerTile):
140.					#	Let	the	player	enter	their	move.
141.					#	Return	the	move	as	[x,	y]	(or	return	the	strings	'hints'	or
											'quit').
142.					DIGITS1TO8	=	'1	2	3	4	5	6	7	8'.split()

The	DIGITS1TO8	constant	variable	is	the	list	['1',	'2',	'3',	'4',	'5',	'6',	'7',	'8'].
The	 getPlayerMove()	 function	 uses	 DIGITS1TO8	 a	 couple	 times,	 and	 this	 constant	 is	more
readable	than	the	 full	 list	value.	You	can’t	use	the	isdigit()	method	because	 that	would
allow	0	and	9	to	be	entered,	which	are	not	valid	coordinates	on	the	8×8	board.



The	while	loop	keeps	looping	until	the	player	types	in	a	valid	move:

143.					while	True:
144.									print('Enter	your	move,	"quit"	to	end	the	game,	or	"hints"	to
															toggle	hints.')
145.									move	=	input().lower()
146.									if	move	==	'quit'	or	move	==	'hints':
147.													return	move

Line	146	checks	whether	the	player	wants	to	quit	or	toggle	hints	mode,	and	line	147
returns	 the	 string	 'quit'	 or	 'hints',	 respectively.	 The	 lower()	 method	 is	 called	 on	 the
string	returned	by	input()	so	the	player	can	type	HINTS	or	Quit	and	still	have	the	command
understood.

The	code	that	called	getPlayerMove()	will	handle	what	to	do	if	the	player	wants	to	quit
or	toggle	hints	mode.	If	the	player	enters	coordinates	to	move	on,	the	if	statement	on	line
149	checks	whether	the	move	is	valid:

149.									if	len(move)	==	2	and	move[0]	in	DIGITS1TO8	and	move[1]	in
															DIGITS1TO8:
150.													x	=	int(move[0])	-	1
151.													y	=	int(move[1])	-	1
152.													if	isValidMove(board,	playerTile,	x,	y)	==	False:
153.																	continue
154.													else:
155.																	break

The	game	expects	that	the	player	has	entered	the	x-	and	y-coordinates	of	their	move	as
two	numbers	without	 anything	between	 them.	Line	 149	 first	 checks	 that	 the	 size	 of	 the
string	the	player	typed	in	is	2.	After	that,	it	also	checks	that	both	move[0]	(the	first	character
in	 the	 string)	 and	 move[1]	 (the	 second	 character	 in	 the	 string)	 are	 strings	 that	 exist	 in
DIGITS1TO8.

Remember	that	 the	game	board	data	structures	have	 indexes	 from	0	to	7,	not	1	to	8.
The	 code	 prints	 1	 to	 8	 when	 the	 board	 is	 displayed	 in	 drawBoard()	 because
nonprogrammers	are	used	to	numbers	beginning	at	1	instead	of	0.	So	to	convert	the	strings
in	move[0]	and	move[1]	to	integers,	lines	150	and	151	subtract	1	from	x	and	y.

Even	if	the	player	has	entered	a	correct	move,	the	code	needs	to	check	that	the	move	is
allowed	by	the	rules	of	Reversegam.	This	is	done	by	the	isValidMove()	function,	which	is
passed	the	game	board	data	structure,	the	player’s	tile,	and	the	x-	and	y-coordinates	of	the
move.

If	 isValidMove()	 returns	 False,	 line	 153	 continue	 statement	 executes.	 The	 execution
then	goes	 back	 to	 the	 beginning	of	 the	while	 loop	 and	 asks	 the	 player	 for	 a	 valid	move
again.	Otherwise,	the	player	did	enter	a	valid	move,	and	the	execution	needs	to	break	out
of	the	while	loop.

If	 the	 if	 statement’s	 condition	 on	 line	 149	was	 False,	 then	 the	 player	 didn’t	 enter	 a
valid	move.	Lines	157	and	158	instruct	them	on	how	to	correctly	enter	moves:



156.									else:
157.													print('That	is	not	a	valid	move.	Enter	the	column	(1-8)	and
																			then	the	row	(1-8).')
158.													print('For	example,	81	will	move	on	the	top-right	corner.')

Afterward,	the	execution	moves	back	to	the	while	 statement	on	 line	143,	because	 line
158	is	not	only	the	last	line	in	the	else	block	but	also	the	last	line	in	the	while	block.	The
while	loop	will	keep	looping	until	the	player	enters	a	valid	move.	If	the	player	enters	x-	and
y-coordinates,	line	160	will	execute:

160.					return	[x,	y]

Finally,	if	line	160	executes,	getPlayerMove()	returns	a	two-item	list	with	the	x-	and	y-
coordinates	of	the	player’s	valid	move.

Getting	the	Computer’s	Move

The	getComputerMove()	function	is	where	the	AI	algorithm	is	implemented:

162.	def	getComputerMove(board,	computerTile):
163.					#	Given	a	board	and	the	computer's	tile,	determine	where	to
164.					#	move	and	return	that	move	as	an	[x,	y]	list.
165.					possibleMoves	=	getValidMoves(board,	computerTile)

Normally	you	use	the	results	from	getValidMoves()	for	hints	mode,	which	will	print	.
on	 the	 board	 to	 show	 the	 player	 all	 the	 potential	 moves	 they	 can	 make.	 But	 if
getValidMoves()	is	called	with	the	computer	AI’s	tile	(in	computerTile),	it	will	also	find	all
the	possible	moves	that	the	computer	can	make.	The	AI	will	select	the	best	move	from	this
list.

First,	 the	 random.shuffle()	 function	 will	 randomize	 the	 order	 of	 moves	 in	 the
possibleMoves	list:

166.					random.shuffle(possibleMoves)	#	Randomize	the	order	of	the	moves.

We	want	to	shuffle	the	possibleMoves	list	because	it	will	make	the	AI	less	predictable;
otherwise,	the	player	could	just	memorize	the	moves	needed	to	win	because	the	computer’s
responses	would	always	be	the	same.	Let’s	look	at	the	algorithm.

Strategizing	with	Corner	Moves
Corner	moves	 are	 a	 good	 idea	 in	Reversegam	 because	 once	 a	 tile	 has	 been	 placed	 on	 a
corner,	it	can	never	be	flipped	over.	Line	169	loops	through	every	move	in	possibleMoves.
If	any	of	them	is	on	the	corner,	the	program	will	return	that	space	as	the	computer’s	move:

168.					#	Always	go	for	a	corner	if	available.
169.					for	x,	y	in	possibleMoves:



170.									if	isOnCorner(x,	y):
171.													return	[x,	y]

Since	possibleMoves	is	a	list	of	two-item	lists,	we’ll	use	multiple	assignment	in	the	for
loop	to	set	x	and	y.	If	possibleMoves	contains	multiple	corner	moves,	the	first	one	is	always
used.	But	since	possibleMoves	was	shuffled	on	line	166,	which	corner	move	is	first	in	the	list
is	random.

Getting	a	List	of	the	Highest-Scoring	Moves
If	 there	 are	 no	 corner	moves,	 the	 program	will	 loop	 through	 the	 entire	 list	 of	 possible
moves	and	find	out	which	results	in	the	highest	score.	Then	bestMove	is	set	to	the	highest-
scoring	move	the	code	has	found	so	far,	and	bestScore	is	set	to	the	best	move’s	score.	This
is	repeated	until	the	highest-scoring	possible	move	is	found.

173.					#	Find	the	highest-scoring	move	possible.
174.					bestScore	=	-1
175.					for	x,	y	in	possibleMoves:
176.									boardCopy	=	getBoardCopy(board)
177.									makeMove(boardCopy,	computerTile,	x,	y)
178.									score	=	getScoreOfBoard(boardCopy)[computerTile]
179.									if	score	>	bestScore:
180.													bestMove	=	[x,	y]
181.													bestScore	=	score
182.					return	bestMove

Line	174	first	sets	bestScore	to	-1	so	that	the	first	move	the	code	checks	will	be	set	to
the	 first	 bestMove.	 This	 guarantees	 that	 bestMove	 is	 set	 to	 one	 of	 the	 moves	 from
possibleMoves	when	it	returns.

On	line	175,	the	for	loop	sets	x	and	y	to	every	move	in	possibleMoves.	Before	simulating
a	move,	 line	176	makes	a	duplicate	game	board	data	structure	by	calling	getBoardCopy().
You’ll	want	a	copy	you	can	modify	without	changing	the	real	game	board	data	structure
stored	in	the	board	variable.

Then	line	177	calls	makeMove(),	passing	the	duplicate	board	(stored	in	boardCopy)	instead
of	 the	real	board.	This	will	 simulate	what	would	happen	on	 the	real	board	 if	 that	move
were	made.	The	makeMove()	 function	will	handle	placing	the	computer’s	tile	and	flipping
the	player’s	tiles	on	the	duplicate	board.

Line	178	calls	getScoreOfBoard()	with	the	duplicate	board,	which	returns	a	dictionary
where	the	keys	are	'X'	and	'O',	and	the	values	are	the	scores.	When	the	code	in	the	loop
finds	a	move	that	scores	higher	than	bestScore,	 lines	179	to	181	will	store	that	move	and
score	 as	 the	 new	 values	 in	 bestMove	 and	 bestScore.	 After	 possibleMoves	 has	 been	 fully
iterated	through,	bestMove	is	returned.

For	 example,	 say	 that	 getScoreOfBoard()	 returns	 the	 dictionary	 {'X':22,	 'O':8}	 and
computerTile	 is	 'X'.	 Then	 getScoreOfBoard(boardCopy)[computerTile]	 would	 evaluate	 to
{'X':22,	 'O':8}['X'],	 which	 would	 then	 evaluate	 to	 22.	 If	 22	 is	 larger	 than	 bestScore,
bestScore	is	set	to	22,	and	bestMove	is	set	to	the	current	x	and	y	values.



By	 the	 time	 this	 for	 loop	 is	 finished,	 you	 can	 be	 sure	 that	 bestScore	 is	 the	 highest
possible	score	a	move	can	get,	and	that	move	is	stored	in	bestMove.

Even	though	the	code	always	chooses	the	first	in	the	list	of	these	tied	moves,	the	choice
appears	random	because	the	 list	order	was	shuffled	on	line	166.	This	ensures	that	the	AI
won’t	be	predictable	when	there’s	more	than	one	best	move.

Printing	the	Scores	to	the	Screen

The	showPoints()	function	calls	the	getScoreOfBoard()	function	and	then	prints	the	player’s
and	computer’s	scores:

184.	def	printScore(board,	playerTile,	computerTile):
185.					scores	=	getScoreOfBoard(board)
186.					print('You:	%s	points.	Computer:	%s	points.'	%	(scores[playerTile],
											scores[computerTile]))

Remember	that	getScoreOfBoard()	 returns	a	dictionary	with	the	keys	'X'	and	'O'	 and
values	of	the	scores	for	the	X	and	O	players.

That’s	all	the	functions	for	the	Reversegam	game.	The	code	in	the	playGame()	function
implements	the	actual	game	and	calls	these	functions	as	needed.

Starting	the	Game

The	playGame()	function	calls	the	previous	functions	we’ve	written	to	play	a	single	game:

188.	def	playGame(playerTile,	computerTile):
189.					showHints	=	False
190.					turn	=	whoGoesFirst()
191.					print('The	'	+	turn	+	'	will	go	first.')
192.
193.					#	Clear	the	board	and	place	starting	pieces.
194.					board	=	getNewBoard()
195.					board[3][3]	=	'X'
196.					board[3][4]	=	'O'
197.					board[4][3]	=	'O'
198.					board[4][4]	=	'X'

The	playGame()	 function	 is	passed	'X'	or	'O'	 strings	 for	playerTile	 and	 computerTile.
The	 player	 to	 go	 first	 is	 determined	 by	 line	 190.	The	 turn	 variable	 contains	 the	 string
'computer'	or	'player'	 to	keep	 track	of	whose	 turn	 it	 is.	Line	194	creates	 a	blank	board
data	structure,	while	lines	195	to	198	set	up	the	initial	four	tiles	on	the	board.	The	game	is
now	ready	to	begin.

Checking	for	a	Stalemate
Before	getting	the	player’s	or	computer’s	turn,	we	need	to	check	whether	it	is	even	possible



for	either	of	them	to	move.	If	not,	then	the	game	is	at	a	stalemate	and	should	end.	(If	only
one	side	has	no	valid	moves,	the	turn	skips	to	the	other	player.)

200.					while	True:
201.									playerValidMoves	=	getValidMoves(board,	playerTile)
202.									computerValidMoves	=	getValidMoves(board,	computerTile)
203.
204.									if	playerValidMoves	==	[]	and	computerValidMoves	==	[]:
205.													return	board	#	No	one	can	move,	so	end	the	game.

Line	200	is	the	main	loop	for	running	the	player’s	and	computer’s	turns.	As	long	as	this
loop	keeps	looping,	the	game	will	continue.	But	before	running	these	turns,	lines	201	and
202	check	whether	either	side	can	make	a	move	by	getting	a	list	of	valid	moves.	If	both	of
these	lists	are	empty,	then	neither	player	can	make	a	move.	Line	205	exits	the	playGame()
function	by	returning	the	final	board,	ending	the	game.

Running	the	Player’s	Turn
If	the	game	is	not	in	a	stalemate,	the	program	determines	whether	it	is	the	player’s	turn	by
checking	whether	turn	is	set	to	the	string	'player':

207.									elif	turn	==	'player':	#	Player's	turn
208.													if	playerValidMoves	!=	[]:
209.																	if	showHints:
210.																					validMovesBoard	=	getBoardWithValidMoves(board,
																											playerTile)
211.																					drawBoard(validMovesBoard)
212.																	else:
213.																					drawBoard(board)
214.																	printScore(board,	playerTile,	computerTile)

Line	207	begins	an	elif	block	containing	the	code	that	runs	 if	 it	 is	 the	player’s	 turn.
(The	elif	block	that	starts	on	line	227	contains	the	code	for	the	computer’s	turn.)

All	of	this	code	will	run	only	if	the	player	has	a	valid	move,	which	line	208	determines
by	checking	 that	playerValidMoves	 is	not	 empty.	We	display	 the	board	on	 the	 screen	by
calling	drawBoard()	on	line	211	or	213.

If	 hints	mode	 is	 on	 (that	 is,	 showHints	 is	 True),	 then	 the	 board	 data	 structure	 should
display	 .	 on	 every	 valid	 space	 the	 player	 could	 move,	 which	 is	 accomplished	 with	 the
getBoardWithValidMoves()	function.	It	is	passed	a	game	board	data	structure	and	returns	a
copy	that	also	contains	periods	(.).	Line	211	passes	this	board	to	the	drawBoard()	function.

If	hints	mode	is	off,	then	line	213	passes	board	to	drawBoard()	instead.
After	printing	the	game	board	to	the	player,	you	also	want	to	print	the	current	score	by

calling	printScore()	on	line	214.
Next,	the	player	needs	to	enter	their	move.	The	getPlayerMove()	function	handles	this,

and	its	return	value	is	a	two-item	list	of	the	x-	and	y-coordinates	of	the	player’s	move:

216.																	move	=	getPlayerMove(board,	playerTile)



When	we	defined	getPlayerMove(),	we	already	made	sure	that	the	player’s	move	is	valid.
The	getPlayerMove()	function	may	have	returned	the	strings	'quit'	or	'hints'	 instead

of	a	move	on	the	board.	Lines	217	to	222	handle	these	cases:

217.																	if	move	==	'quit':
218.																					print('Thanks	for	playing!')
219.																					sys.exit()	#	Terminate	the	program.
220.																	elif	move	==	'hints':
221.																					showHints	=	not	showHints
222.																					continue
223.																	else:
224.																					makeMove(board,	playerTile,	move[0],	move[1])
225.													turn	=	'computer'

If	the	player	entered	quit	for	their	move,	then	getPlayerMove()	would	return	the	string
'quit'.	In	that	case,	line	219	calls	sys.exit()	to	terminate	the	program.

If	the	player	entered	hints	for	their	move,	then	getPlayerMove()	would	return	the	string
'hints'.	In	that	case,	you	want	to	turn	hints	mode	on	(if	it	was	off)	or	off	(if	it	was	on).

The	showHints	=	not	showHints	assignment	statement	on	line	221	handles	both	of	these
cases,	 because	 not	 False	 evaluates	 to	 True	 and	 not	 True	 evaluates	 to	 False.	 Then	 the
continue	statement	moves	the	execution	to	the	start	of	the	loop	(turn	has	not	changed,	so	it
will	still	be	the	player’s	turn).

Otherwise,	 if	the	player	didn’t	quit	or	toggle	hints	mode,	line	224	calls	makeMove()	 to
make	the	player’s	move	on	the	board.

Finally,	line	225	sets	turn	to	'computer'.	The	flow	of	execution	skips	the	else	block	and
reaches	the	end	of	the	while	block,	so	execution	jumps	back	to	the	while	statement	on	line
200.	This	time,	however,	it	will	be	the	computer’s	turn.

Running	the	Computer’s	Turn
If	the	turn	variable	contains	the	string	'computer',	 then	the	code	for	the	computer’s	turn
will	run.	It	is	similar	to	the	code	for	the	player’s	turn,	with	a	few	changes:

227.									elif	turn	==	'computer':	#	Computer's	turn
228.													if	computerValidMoves	!=	[]:
229.																	drawBoard(board)
230.																	printScore(board,	playerTile,	computerTile)
231.
232.																	input('Press	Enter	to	see	the	computer\'s	move.')
233.																	move	=	getComputerMove(board,	computerTile)
234.																	makeMove(board,	computerTile,	move[0],	move[1])

After	printing	 the	board	with	drawBoard(),	 the	program	also	prints	 the	 current	 score
with	a	call	to	showPoints()	on	line	230.

Line	232	calls	input()	to	pause	the	script	so	the	player	can	look	at	the	board.	This	is
much	like	how	input()	was	used	to	pause	the	Jokes	program	in	Chapter	4.	Instead	of	using
a	 print()	 call	 to	 print	 a	 string	 before	 a	 call	 to	 input(),	 you	 can	 do	 the	 same	 thing	 by



passing	the	string	to	print	to	input().
After	 the	 player	 has	 looked	 at	 the	 board	 and	 pressed	 ENTER,	 line	 233	 calls

getComputerMove()	 to	 get	 the	 x-	 and	 y-coordinates	 of	 the	 computer’s	 next	 move.	 These
coordinates	are	stored	in	variables	x	and	y	using	multiple	assignment.

Finally,	x	and	y,	along	with	the	game	board	data	structure	and	the	computer’s	tile,	are
passed	 to	 the	makeMove()	 function.	This	places	 the	computer’s	 tile	on	 the	game	board	 in
board	 to	 reflect	 the	 computer’s	 move.	 Line	 233	 call	 to	 getComputerMove()	 got	 the
computer’s	move	 (and	 stored	 it	 in	variables	x	and	y).	The	call	 to	makeMove()	 on	 line	234
makes	the	move	on	the	board.

Next,	line	235	sets	the	turn	variable	to	'player':

235.													turn	=	'player'

There	is	no	more	code	in	the	while	block	after	line	235,	so	the	execution	loops	back	to
the	while	statement	on	line	200.

The	Game	Loop

That’s	all	the	functions	we’ll	make	for	Reversegam.	Starting	at	line	239,	the	main	part	of
the	program	runs	a	game	by	calling	playGame(),	but	it	also	displays	the	final	score	and	asks
the	player	whether	they	want	to	play	again:

239.	print('Welcome	to	Reversegam!')
240.
241.	playerTile,	computerTile	=	enterPlayerTile()

The	program	starts	by	welcoming	the	player	on	line	239	and	asking	them	whether	they
want	 to	 be	X	 or	O.	 Line	 241	 uses	 the	 multiple	 assignment	 trick	 to	 set	 playerTile	 and
computerTile	to	the	two	values	returned	by	enterPlayerTile().

The	while	loop	on	line	243	runs	each	game:

243.	while	True:
244.					finalBoard	=	playGame(playerTile,	computerTile)
245.
246.					#	Display	the	final	score.
247.					drawBoard(finalBoard)
248.					scores	=	getScoreOfBoard(finalBoard)
249.					print('X	scored	%s	points.	O	scored	%s	points.'	%	(scores['X'],
											scores['O']))
250.					if	scores[playerTile]	>	scores[computerTile]:
251.									print('You	beat	the	computer	by	%s	points!	Congratulations!'	%
															(scores[playerTile]	-	scores[computerTile]))
252.					elif	scores[playerTile]	<	scores[computerTile]:
253.									print('You	lost.	The	computer	beat	you	by	%s	points.'	%
															(scores[computerTile]	-	scores[playerTile]))
254.					else:
255.									print('The	game	was	a	tie!')



It	 begins	 by	 calling	 playGame().	This	 function	 call	 does	 not	 return	 until	 the	 game	 is
finished.	 The	 board	 data	 structure	 returned	 by	 playGame()	 will	 be	 passed	 to
getScoreOfBoard()	 to	 count	 the	 X	 and	 O	 tiles	 to	 determine	 the	 final	 score.	 Line	 249
displays	this	final	score.

If	 there	are	more	of	 the	player’s	 tiles	 than	the	computer’s,	 line	251	congratulates	 the
player	for	winning.	If	the	computer	won,	line	253	tells	the	player	that	they	lost.	Otherwise,
line	255	tells	the	player	the	game	was	a	tie.

Asking	the	Player	to	Play	Again

After	the	game	is	finished,	the	player	is	asked	whether	they	want	to	play	again:

257.					print('Do	you	want	to	play	again?	(yes	or	no)')
258.					if	not	input().lower().startswith('y'):
259.									break

If	the	player	does	not	type	a	reply	that	begins	with	the	letter	y,	such	as	yes	or	YES	or	Y,
then	the	condition	on	line	258	evaluates	to	True,	and	line	259	breaks	out	of	the	while	loop
that	started	on	line	243,	which	ends	the	game.	Otherwise,	this	while	loop	naturally	loops,
and	playGame()	is	called	again	to	begin	the	next	game.

Summary

The	Reversegam	AI	may	 seem	almost	unbeatable,	but	 this	 isn’t	because	 the	computer	 is
smarter	than	we	are;	 it’s	 just	much	faster!	The	strategy	 it	 follows	 is	simple:	move	on	the
corner	if	you	can,	and	otherwise	make	the	move	that	will	flip	over	the	most	tiles.	A	human
could	 do	 that,	 but	 it	would	 be	 time-consuming	 to	 figure	 out	 how	many	 tiles	would	 be
flipped	for	every	possible	valid	move.	For	the	computer,	calculating	this	number	is	simple.

This	game	is	similar	to	Sonar	Treasure	Hunt	because	it	makes	use	of	a	grid	for	a	board.
It	is	also	like	the	Tic-Tac-Toe	game	because	there’s	an	AI	that	plans	out	the	best	move	for
the	computer	 to	make.	This	chapter	 introduced	only	one	new	concept:	 that	empty	 lists,
blank	strings,	and	the	integer	0	all	evaluate	to	False	 in	the	context	of	a	condition.	Other
than	that,	this	game	used	programming	concepts	you	already	knew!

In	Chapter	16,	you’ll	learn	how	to	make	AIs	play	computer	games	against	each	other.



16
REVERSEGAM	AI	SIMULATION

The	Reversegam	AI	 algorithm	 from	Chapter	 15	 is	 simple,	 but	 it	 beats	me	 almost	 every
time	I	play	it.	Because	the	computer	can	process	 instructions	quickly,	 it	can	easily	check
each	possible	position	on	the	board	and	select	the	highest-scoring	move.	It	would	take	me
a	long	time	to	find	the	best	move	this	way.

The	Reversegam	program	had	 two	 functions,	getPlayerMove()	 and	getComputerMove(),
which	 both	 returned	 the	 move	 selected	 as	 a	 two-item	 list	 in	 the	 format	 [x,	 y].	 Both
functions	also	had	the	same	parameters,	the	game	board	data	structure	and	one	type	of	tile,
but	the	returned	moves	came	from	different	sources—either	the	player	or	the	Reversegam
algorithm.

What	 happens	 when	 we	 replace	 the	 call	 to	 getPlayerMove()	 with	 a	 call	 to
getComputerMove()?	Then	the	player	never	has	to	enter	a	move;	it	is	decided	for	them.	The
computer	is	playing	against	itself!

In	 this	 chapter,	we’ll	make	 three	new	programs	 in	which	 the	 computer	plays	 against
itself,	each	based	on	the	Reversegam	program	in	Chapter	15:

•	Simulation	1:	AISim1.py	will	make	changes	to	reversegam.py.

•	Simulation	2:	AISim2.py	will	make	changes	to	AISim1.py.

•	Simulation	3:	AISim3.py	will	make	changes	to	AISim2.py.

The	small	changes	from	one	program	to	the	next	will	show	you	how	to	turn	a	“player
versus	computer”	game	into	a	“computer	versus	computer”	simulation.	The	final	program,
AISim3.py,	shares	most	of	its	code	with	reversegam.py	but	serves	quite	a	different	purpose.
The	simulation	doesn’t	let	us	play	Reversegam	but	teaches	us	more	about	the	game	itself.

You	 can	 either	 type	 in	 these	 changes	 yourself	 or	 download	 them	 from	 the	 book’s
website	at	https://www.nostarch.com/inventwithpython/.

https://www.nostarch.com/inventwithpython/


TOPICS	COVERED	IN	THIS	CHAPTER
•	Simulations

•	Percentages

•	Integer	division

•	The	round()	function

•	Computer-versus-computer	games

Making	the	Computer	Play	Against	Itself

Our	AISim1.py	program	will	have	a	few	simple	changes	so	that	the	computer	plays	against
itself.	 Both	 the	 getPlayerMove()	 and	 getComputerMove()	 functions	 take	 a	 board	 data
structure	 and	 the	 player’s	 tile,	 and	 then	 return	 the	 move	 to	 make.	 This	 is	 why
getComputerMove()	 can	 replace	 getPlayerMove()	 and	 the	 program	 still	 works.	 In	 the
AISim1.py	 program,	 the	 getComputerMove()	 function	 is	 being	 called	 for	 both	 the	 X	 and	 O
players.

We	 also	make	 the	 program	 stop	 printing	 the	 game	 board	 for	moves	 that	 are	made.
Since	a	human	can’t	read	the	game	boards	as	fast	as	a	computer	makes	moves,	it	isn’t	useful
to	print	every	move,	so	we	just	print	the	final	board	at	the	end	of	the	game.

These	are	just	minimal	changes	to	the	program,	so	it	will	still	say	things	like	The	player
will	go	first.	even	though	the	computer	is	playing	as	both	the	computer	and	the	player.

Sample	Run	of	Simulation	1
Here’s	what	the	user	sees	when	they	run	the	AISim1.py	program.	The	text	entered	by	the
player	is	bold.

Welcome	to	Reversegam!
The	computer	will	go	first.
		12345678
	+--------+
1|XXXXXXXX|1
2|OXXXXXXX|2
3|XOXXOXXX|3
4|XXOOXOOX|4
5|XXOOXXXX|5
6|XXOXOXXX|6
7|XXXOXOXX|7
8|XXXXXXXX|8
	+--------+
		12345678
X	scored	51	points.	O	scored	13	points.
You	beat	the	computer	by	38	points!	Congratulations!
Do	you	want	to	play	again?	(yes	or	no)



no

Source	Code	for	Simulation	1
Save	the	old	reversegam.py	file	as	AISim1.py	as	follows:

1.	 Select	File	 	Save	As.
2.	 Save	 this	 file	 as	 AISim1.py	 so	 that	 you	 can	 make	 changes	 without	 affecting

reversegam.py.	(At	this	point,	reversegam.py	and	AISim1.py	still	have	the	same	code.)
3.	 Make	 changes	 to	AISim1.py	 and	 save	 that	 file	 to	 keep	 any	 changes.	 (AISim1.py	 will

have	the	new	changes,	and	reversegam.py	will	have	the	original,	unchanged	code.)

This	process	will	create	a	copy	of	our	Reversegam	source	code	as	a	new	file	that	you
can	make	changes	to,	while	leaving	the	original	Reversegam	game	the	same	(you	may	want
to	play	it	again	to	test	it).	For	example,	change	line	216	in	AISim1.py	to	the	following	(the
change	is	in	bold):

216.																	move	=	getComputerMove(board,	playerTile)

Now	run	the	program.	Notice	that	the	game	still	asks	whether	you	want	to	be	X	or	O,
but	it	won’t	ask	you	to	enter	any	moves.	When	you	replace	the	getPlayerMove()	 function
with	the	getComputerMove()	function,	you	no	longer	call	any	code	that	takes	this	input	from
the	player.	The	player	still	presses	ENTER	after	the	original	computer’s	moves	(because	of
the	input('Press	Enter	to	see	the	computer\'s	move.')	on	line	232),	but	the	game	plays
itself!

Let’s	make	some	other	changes	to	AISim1.py.	Change	the	following	bolded	lines.	The
changes	 start	 at	 line	 209.	Most	 of	 these	 changes	 are	 simply	 commenting	 out	 code,	 which
means	turning	the	code	into	a	comment	so	it	won’t	run.

If	you	get	errors	after	typing	in	this	code,	compare	the	code	you	typed	to	the	book’s



code	with	the	online	diff	tool	at	https://www.nostarch.com/inventwithpython#diff.

AISim1.py

207.									elif	turn	==	'player':	#	Player's	turn
208.													if	playerValidMoves	!=	[]:
209.																	#if	showHints:
210.																	#				validMovesBoard	=	getBoardWithValidMoves(board,
																												playerTile)
211.																	#				drawBoard(validMovesBoard)
212.																	#else:
213.																	#				drawBoard(board)
214.																	#printScore(board,	playerTile,	computerTile)
215.
216.																	move	=	getComputerMove(board,	playerTile)
217.																	#if	move	==	'quit':
218.																	#				print('Thanks	for	playing!')
219.																	#				sys.exit()	#	Terminate	the	program.
220.																	#elif	move	==	'hints':
221.																	#				showHints	=	not	showHints
222.																	#				continue
223.																	#else:
224.																	makeMove(board,	playerTile,	move[0],	move[1])
225.													turn	=	'computer'
226.
227.									elif	turn	==	'computer':	#	Computer's	turn
228.													if	computerValidMoves	!=	[]:
229.																	#drawBoard(board)
230.																	#printScore(board,	playerTile,	computerTile)
231.
232.																	#input('Press	Enter	to	see	the	computer\'s	move.')
233.																	move	=	getComputerMove(board,	computerTile)
234.																	makeMove(board,	computerTile,	move[0],	move[1])
235.													turn	=	'player'
236.
237.
238.
239.	print('Welcome	to	Reversegam!')
240.
241.	playerTile,	computerTile	=	['X',	'O']	#enterPlayerTile()

Removing	the	Player	Prompts	and	Adding	a	Computer	Player
As	 you	 can	 seen,	 the	AISim1.py	 program	 is	mostly	 the	 same	 as	 the	 original	Reversegam
program,	 except	 we’ve	 replaced	 the	 call	 to	 getPlayerMove()	 with	 a	 call	 to
getComputerMove().	We’ve	also	made	some	changes	to	the	text	that	is	printed	to	the	screen
so	that	the	game	easier	to	follow.	When	you	run	the	program,	the	entire	game	is	played	in
less	than	a	second!

Again,	most	 of	 the	 changes	 are	 simply	 commenting	out	 code.	 Since	 the	 computer	 is
playing	 against	 itself,	 the	 program	 no	 longer	 needs	 to	 run	 code	 to	 get	moves	 from	 the
player	or	display	the	state	of	the	board.	All	of	this	is	skipped	so	that	the	board	is	displayed
only	at	the	very	end	of	the	game.	We	comment	out	code	instead	of	deleting	it	because	it’s
easier	to	restore	the	code	by	uncommenting	it	if	we	need	to	reuse	the	code	later.

https://www.nostarch.com/inventwithpython#diff


We	commented	out	lines	209	to	214	because	we	don’t	need	to	draw	a	game	board	for
the	player	since	they	won’t	be	playing	the	game.	We	also	commented	out	lines	217	to	223
because	we	don’t	need	to	check	whether	the	player	enters	quit	or	toggles	the	hints	mode.
But	we	need	to	de-indent	line	224	by	four	spaces	since	it	was	in	the	else	block	that	we	just
commented	out.	Lines	229	to	232	also	draw	the	game	board	for	the	player,	so	we	comment
out	those	lines,	too.

The	only	new	code	is	on	lines	216	and	241.	In	 line	216,	we	 just	substitute	the	call	 to
getPlayerMove()	with	getComputerMove(),	as	discussed	earlier.	On	line	241,	instead	of	asking
the	player	whether	they	want	to	be	X	or	O,	we	simply	always	assign	'X'	to	playerTile	and
'O'	to	computerTile.	(Both	of	these	players	will	be	played	by	the	computer,	though,	so	you
can	rename	playerTile	to	computerTile2	or	secondComputerTile	if	you	want.)	Now	that	we
have	the	computer	playing	against	itself,	we	can	keep	modifying	our	program	to	make	it	do
more	interesting	things.

Making	the	Computer	Play	Itself	Several	Times

If	 we	 created	 a	 new	 algorithm,	 we	 could	 set	 it	 against	 the	 AI	 implemented	 in
getComputerMove()	and	see	which	one	is	better.	Before	we	do	so,	however,	we	need	a	way	to
evaluate	the	players.	We	can’t	evaluate	which	AI	is	better	based	on	only	one	game,	so	we
should	have	the	AIs	play	against	each	other	more	than	once.	To	do	that,	we’ll	make	some
changes	to	the	source	code.	Follow	these	steps	to	make	AISim2.py:

1.	 Select	File	 	Save	As.
2.	 Save	this	file	as	AISim2.py	so	that	you	can	make	changes	without	affecting	AISim1.py.

(At	this	point,	AISim1.py	and	AISim2.py	still	have	the	same	code.)

Sample	Run	of	Simulation	2
Here’s	what	the	user	sees	when	they	run	the	AISim2.py	program.

Welcome	to	Reversegam!
#1:	X	scored	45	points.	O	scored	19	points.
#2:	X	scored	38	points.	O	scored	26	points.
#3:	X	scored	20	points.	O	scored	44	points.
#4:	X	scored	24	points.	O	scored	40	points.
#5:	X	scored	8	points.	O	scored	56	points.
--snip--
#249:	X	scored	24	points.	O	scored	40	points.
#250:	X	scored	43	points.	O	scored	21	points.
X	wins:	119	(47.6%)
O	wins:	127	(50.8%)
Ties:			4	(1.6%)

Because	 the	 algorithms	 include	 randomness,	 your	 run	 won’t	 have	 exactly	 the	 same
numbers.



Source	Code	for	Simulation	2
Change	the	code	in	AISim2.py	to	match	the	following.	Make	sure	that	you	change	the	code
line	by	line	in	number	order.	If	you	get	errors	after	typing	in	this	code,	compare	the	code
you	 typed	 to	 the	 book’s	 code	 with	 the	 online	 diff	 tool	 at
https://www.nostarch.com/inventwithpython#diff.

AISim2.py

235.													turn	=	'player'
236.
237.	NUM_GAMES	=	250
238.	xWins	=	oWins	=	ties	=	0
239.	print('Welcome	to	Reversegam!')
240.
241.	playerTile,	computerTile	=	['X',	'O']	#enterPlayerTile()
242.
243.	for	i	in	range(NUM_GAMES):	#while	True:
244.					finalBoard	=	playGame(playerTile,	computerTile)
245.
246.					#	Display	the	final	score.
247.					#drawBoard(finalBoard)
248.					scores	=	getScoreOfBoard(finalBoard)
249.					print('#%s:	X	scored	%s	points.	O	scored	%s	points.'	%	(i	+	1,
											scores['X'],	scores['O']))
250.					if	scores[playerTile]	>	scores[computerTile]:
251.									xWins	+=	1	#print('You	beat	the	computer	by	%s	points!
															Congratulations!'	%	(scores[playerTile]	-
															scores[computerTile]))
252.					elif	scores[playerTile]	<	scores[computerTile]:
253.									oWins	+=	1	#print('You	lost.	The	computer	beat	you	by	%s	points.'
															%	(scores[computerTile]	-	scores[playerTile]))
254.					else:
255.									ties	+=	1	#print('The	game	was	a	tie!')
256.
257.					#print('Do	you	want	to	play	again?	(yes	or	no)')
258.					#if	not	input().lower().startswith('y'):
259.					#				break
260.
261.	print('X	wins:	%s	(%s%%)'	%	(xWins,	round(xWins	/	NUM_GAMES	*	100,	1)))
262.	print('O	wins:	%s	(%s%%)'	%	(oWins,	round(oWins	/	NUM_GAMES	*	100,	1)))
263.	print('Ties:			%s	(%s%%)'	%	(ties,	round(ties	/	NUM_GAMES	*	100,	1)))

If	 this	 is	 confusing,	 you	 can	 always	 download	 the	AISim2.py	 source	 code	 from	 the
book’s	website	at	https://www.nostarch.com/inventwithpython/.

Keeping	Track	of	Multiple	Games
The	main	information	we	want	from	the	simulation	is	how	many	wins	for	X,	wins	for	O,
and	ties	there	are	over	a	certain	number	of	games.	These	can	be	tracked	in	four	variables,
which	are	created	on	lines	237	and	238.

237.	NUM_GAMES	=	250
238.	xWins	=	oWins	=	ties	=	0

https://www.nostarch.com/inventwithpython#diff
https://www.nostarch.com/inventwithpython/


The	constant	NUM_GAMES	determines	how	many	games	 the	computer	will	play.	You’ve
added	the	variables	xWins,	oWins,	and	ties	to	keep	track	of	when	X	wins,	when	O	wins,	and
when	they	tie.	You	can	chain	the	assignment	statement	together	to	set	ties	equal	to	0	and
oWins	equal	to	ties,	then	xWins	equal	to	oWins.	This	sets	all	three	variables	to	0.

NUM_GAMES	is	used	in	a	for	loop	that	replaces	the	game	loop	on	line	243:

243.	for	i	in	range(NUM_GAMES):	#while	True:

The	for	loop	runs	the	game	the	number	of	times	in	NUM_GAMES.	This	replaces	the	while
loop	that	used	to	loop	until	the	player	said	they	didn’t	want	to	play	another	game.

At	line	250,	an	if	statement	compares	the	score	of	the	two	players,	and	lines	251	to	255
in	the	if-elif-else	blocks	increment	the	xWins,	oWins,	and	ties	variables	at	the	end	of	each
game	before	looping	back	to	start	a	new	game:

250.					if	scores[playerTile]	>	scores[computerTile]:
251.									xWins	+=	1	#print('You	beat	the	computer	by	%s	points!
															Congratulations!'	%	(scores[playerTile]	-
															scores[computerTile]))
252.					elif	scores[playerTile]	<	scores[computerTile]:
253.									oWins	+=	1	#print('You	lost.	The	computer	beat	you	by	%s	points.'
															%	(scores[computerTile]	-	scores[playerTile]))
254.					else:
255.									ties	+=	1	#print('The	game	was	a	tie!')

We	comment	out	the	messages	originally	printed	in	the	block	so	now	only	a	one-line
summary	of	the	scores	prints	for	each	game.	We’ll	use	the	xWins,	oWins,	and	ties	variables
later	in	the	code	to	analyze	how	the	computer	performed	against	itself.

Commenting	Out	print()	Function	Calls
You	also	commented	out	lines	247	and	257	to	259.	By	doing	that,	you	took	out	most	of	the
print()	function	calls	from	the	program,	as	well	as	the	calls	to	drawBoard().	We	don’t	need
to	see	each	of	the	games	since	there	are	so	many	being	played.	The	program	still	runs	every
game	in	its	entirety	using	the	AI	we	coded,	but	only	the	resulting	scores	are	shown.	After
running	all	the	games,	the	program	shows	how	many	games	each	side	won,	and	lines	251	to
253	print	some	information	about	the	game	runs.

Printing	things	to	the	screen	slows	the	computer	down,	but	now	that	you’ve	removed
that	code,	the	computer	can	run	an	entire	game	of	Reversegam	in	about	a	second	or	two.
Each	time	the	program	printed	out	one	of	those	lines	with	the	final	score,	it	ran	through
an	entire	game	(checking	about	50	or	60	moves	individually	to	choose	the	one	that	gets	the
most	points).	Now	that	the	computer	doesn’t	have	to	do	as	much	work,	it	can	run	much
faster.

The	numbers	that	the	program	prints	at	the	end	are	statistics—numbers	that	are	used	to
summarize	how	the	games	were	played.	In	this	case,	we	showed	the	resulting	scores	of	each
game	played	and	the	percentages	of	wins	and	ties	for	the	tiles.



Using	Percentages	to	Grade	the	AIs
Percentages	are	a	portion	of	a	total	amount.	The	percentages	of	a	whole	can	range	from	0
percent	to	100	percent.	If	you	had	100	percent	of	a	pie,	you	would	have	the	entire	pie;	if
you	had	0	percent	of	a	pie,	you	wouldn’t	have	any	pie	at	all;	and	if	you	had	50	percent	of
the	pie,	you	would	have	half	of	it.

We	can	calculate	percentages	with	division.	To	get	a	percentage,	divide	the	part	you
have	 by	 the	 total	 and	 then	multiply	 that	 by	 100.	 For	 example,	 if	X	 won	 50	 out	 of	 100
games,	you	would	calculate	the	expression	50	/	100,	which	evaluates	to	0.5.	Multiply	this
by	100	to	get	the	percentage	(in	this	case,	50	percent).

If	X	won	100	out	of	200	games,	 you	would	 calculate	 the	percentage	with	100	 /	 200,
which	also	evaluates	to	0.5.	When	you	multiply	0.5	by	100	to	get	the	percentage,	you	get
50	 percent.	 Winning	 100	 out	 of	 200	 games	 is	 the	 same	 percentage	 (that	 is,	 the	 same
portion)	as	winning	50	out	of	100	games.

In	lines	261	to	263,	we	use	percentages	to	print	information	about	the	outcomes	of	the
games:

261.	print('X	wins:	%s	(%s%%)'	%	(xWins,	round(xWins	/	NUM_GAMES	*	100,	1)))
262.	print('O	wins:	%s	(%s%%)'	%	(oWins,	round(oWins	/	NUM_GAMES	*	100,	1)))
263.	print('Ties:			%s	(%s%%)'	%	(ties,	round(ties	/	NUM_GAMES	*	100,	1)))

Each	print()	statement	has	a	label	that	tells	the	user	whether	the	data	being	printed	is
for	X	wins,	O	wins,	or	ties.	We	use	string	interpolation	to	insert	the	number	of	games	won
or	 tied	 and	 then	 insert	 the	 calculated	 percentage	 the	 wins	 or	 ties	make	 up	 of	 the	 total
games,	but	you	can	see	that	we’re	not	simply	dividing	the	xWins,	oWins,	or	ties	by	the	total
games	and	multiplying	by	100.	This	is	because	we	want	to	print	only	one	decimal	place	for
each	percentage,	which	we	can’t	do	with	normal	division.

Division	Evaluates	to	a	Floating-Point	Number

When	you	use	the	division	operator	(/),	the	expression	will	always	evaluate	to	a	floating-
point	number.	For	example,	the	expression	10	/	2	evaluates	to	the	floating-point	value	5.0,
not	to	the	integer	value	5.

This	 is	 important	 to	 remember,	 because	 adding	 an	 integer	 to	 a	 floating-point	 value
with	 the	 +	 addition	 operator	 will	 also	 always	 evaluate	 to	 a	 floating-point	 value.	 For
example,	3	+	4.0	evaluates	to	the	floating-point	value	7.0,	not	to	the	integer	7.

Enter	the	following	code	into	the	interactive	shell:

>>>	spam	=	100	/	4
>>>	spam
25.0
>>>	spam	=	spam	+	20
>>>	spam
45.0



In	the	example,	the	data	type	of	the	value	stored	in	spam	is	always	a	floating-point	value.
You	can	pass	the	floating-point	value	to	the	int()	function,	which	returns	an	integer	form
of	the	floating-point	value.	But	this	will	always	round	the	floating-point	value	down.	For
example,	 the	expressions	int(4.0),	int(4.2),	 and	int(4.9)	 all	 evaluate	 to	4,	not	5.	 But	 in
AISim2.py,	we	need	to	round	each	percentage	to	the	tenths	place.	Since	we	can’t	just	divide
to	do	this,	we	need	to	use	the	round()	function.

The	round()	Function

The	round()	function	rounds	a	floating-point	number	to	the	nearest	integer	number.	Enter
the	following	into	the	interactive	shell:

>>>	round(10.0)
10
>>>	round(10.2)
10
>>>	round(8.7)
9
>>>	round(3.4999)
3
>>>	round(2.5422,	2)
2.54

The	 round()	 function	 also	 has	 an	 optional	 second	 parameter,	 where	 you	 can	 specify
what	 place	 you	 want	 to	 round	 the	 number	 to.	 This	 will	 make	 the	 rounded	 number	 a
floating-point	number	rather	than	an	 integer.	For	example,	 the	expression	round(2.5422,
2)	 evaluates	 to	 2.54	 and	 round(2.5422,	 3)	 evaluates	 to	 2.542.	 In	 lines	 261	 to	 263	 of
AISim2.py,	we	use	this	round()	with	a	parameter	of	1	to	find	the	fraction	of	games	won	or
tied	by	X	and	O	up	to	one	decimal	place,	which	gives	us	accurate	percentages.

Comparing	Different	AI	Algorithms

With	just	a	few	changes,	we	can	make	the	computer	play	hundreds	of	games	against	itself.
Right	 now,	 each	 player	 wins	 about	 half	 of	 the	 games,	 since	 both	 run	 exactly	 the	 same
algorithm	for	moves.	But	if	we	add	different	algorithms,	we	can	see	whether	a	different	AI
will	win	more	games.

Let’s	add	some	new	functions	with	new	algorithms.	But	first,	in	AISim2.py	select	File	
Save	As	to	save	this	new	file	as	AISim3.py.

We’ll	 rename	 the	 getComputerMove()	 function	 to	 getCornerBestMove(),	 since	 this
algorithm	tries	to	move	on	corners	first	and	then	chooses	the	move	that	flips	the	most	tiles.
We’ll	call	this	strategy	the	corner-best	algorithm.	We’ll	also	add	several	other	functions	that
implement	different	strategies,	including	a	worst-move	algorithm	that	gets	the	worst-scoring
move;	 a	 random-move	 algorithm	 that	 gets	 any	 valid	move;	 and	 a	 corner-side-best	 algorithm,
which	works	 the	 same	 as	 the	 corner-best	AI	 except	 that	 it	 looks	 for	 a	 side	move	 after	 a
corner	move	and	before	taking	the	highest-scoring	move.



In	 AISim3.py,	 the	 call	 to	 getComputerMove()	 on	 line	 257	 will	 be	 changed	 to
getCornerBestMove(),	and	line	274’s	getComputerMove()	will	become	getWorstMove(),	which	is
the	 function	we’ll	write	 for	 the	worst-move	 algorithm.	This	way,	we’ll	 have	 the	 regular
corner-best	algorithm	go	against	an	algorithm	that	purposefully	picks	the	move	that	will
flip	the	fewest	tiles.

Source	Code	for	Simulation	3
As	you	enter	 the	 source	 code	of	AISim3.py	 into	your	 renamed	copy	of	AISim2.py,	make
sure	to	write	your	code	line	by	line	in	number	order	so	that	the	line	numbers	match.	If	you
get	errors	after	typing	in	this	code,	compare	the	code	you	typed	to	the	book’s	code	with
the	online	diff	tool	at	https://www.nostarch.com/inventwithpython#diff.

AISim3.py

162.	def	getCornerBestMove(board,	computerTile):
--snip--
184.	def	getWorstMove(board,	tile):
185.					#	Return	the	move	that	flips	the	least	number	of	tiles.
186.					possibleMoves	=	getValidMoves(board,	tile)
187.					random.shuffle(possibleMoves)	#	Randomize	the	order	of	the	moves.
188.
189.					#	Find	the	lowest-scoring	move	possible.
190.					worstScore	=	64
191.					for	x,	y	in	possibleMoves:
192.									boardCopy	=	getBoardCopy(board)
193.									makeMove(boardCopy,	tile,	x,	y)
194.									score	=	getScoreOfBoard(boardCopy)[tile]
195.									if	score	<	worstScore:
196.													worstMove	=	[x,	y]
197.													worstScore	=	score
198.
199.					return	worstMove
200.
201.	def	getRandomMove(board,	tile):
202.					possibleMoves	=	getValidMoves(board,	tile)
203.					return	random.choice(possibleMoves)
204.
205.	def	isOnSide(x,	y):
206.					return	x	==	0	or	x	==	WIDTH	-	1	or	y	==	0	or	y	==	HEIGHT	-	1
207.
208.	def	getCornerSideBestMove(board,	tile):
209.					#	Return	a	corner	move,	a	side	move,	or	the	best	move.
210.					possibleMoves	=	getValidMoves(board,	tile)
211.					random.shuffle(possibleMoves)	#	Randomize	the	order	of	the	moves.
212.
213.					#	Always	go	for	a	corner	if	available.
214.					for	x,	y	in	possibleMoves:
215.									if	isOnCorner(x,	y):
216.													return	[x,	y]
217.
218.					#	If	there	is	no	corner	move	to	make,	return	a	side	move.
219.					for	x,	y	in	possibleMoves:
220.									if	isOnSide(x,	y):
221.													return	[x,	y]

https://www.nostarch.com/inventwithpython#diff


222.
223.					return	getCornerBestMove(board,	tile)	#	Do	what	the	normal	AI
											would	do.
224.
225.	def	printScore(board,	playerTile,	computerTile):
--snip--
257.																	move	=	getCornerBestMove(board,	playerTile)
--snip--
274.																	move	=	getWorstMove(board,	computerTile)

Running	AISim3.py	 results	 in	 the	 same	 kind	of	 output	 as	AISim2.py,	 except	 different
algorithms	will	be	playing	the	games.

How	the	AIs	Work	in	Simulation	3
The	 functions	 getCornerBestMove(),	 getWorstMove(),	 getRandomMove(),	 and
getCornerSideBestMove()	are	similar	to	one	another	but	use	slightly	different	strategies	to
play	 games.	 One	 of	 them	 uses	 the	 new	 isOnSide()	 function.	 This	 is	 similar	 to	 our
isOnCorner()	 function,	 but	 it	 checks	 for	 the	 spaces	 along	 the	 side	 of	 the	 board	 before
selecting	the	highest-scoring	move.

The	Corner-Best	AI

We	already	have	the	code	for	an	AI	that	chooses	to	move	on	a	corner	and	then	chooses	the
best	move	possible,	since	that’s	what	getComputerMove()	does.	We	can	just	change	the	name
of	 getComputerMove()	 to	 something	more	 descriptive,	 so	 change	 line	 162	 to	 rename	 our
function	to	getCornerBestMove():

162.	def	getCornerBestMove(board,	computerTile):

Since	getComputerMove()	 no	 longer	 exists,	we	need	 to	update	 the	 code	on	 line	257	 to
getCornerBestMove():

257.																	move	=	getCornerBestMove(board,	playerTile)

That’s	all	the	work	we	need	to	do	for	this	AI,	so	let’s	move	on.

The	Worst-Move	AI

The	worst-move	AI	just	finds	the	move	with	the	fewest-scoring	points	and	returns	that.	Its
code	 is	 a	 lot	 like	 the	 code	 we	 used	 to	 find	 the	 highest-scoring	 move	 in	 our	 original
getComputerMove()	algorithm:

184.	def	getWorstMove(board,	tile):
185.					#	Return	the	move	that	flips	the	least	number	of	tiles.
186.					possibleMoves	=	getValidMoves(board,	tile)
187.					random.shuffle(possibleMoves)	#	Randomize	the	order	of	the	moves.
188.



189.					#	Find	the	lowest-scoring	move	possible.
190.					worstScore	=	64
191.					for	x,	y	in	possibleMoves:
192.									boardCopy	=	getBoardCopy(board)
193.									makeMove(boardCopy,	tile,	x,	y)
194.									score	=	getScoreOfBoard(boardCopy)[tile]
195.									if	score	<	worstScore:
196.													worstMove	=	[x,	y]
197.													worstScore	=	score
198.
199.					return	worstMove

The	algorithm	for	getWorstMove()	starts	out	the	same	for	lines	186	and	187,	but	then	it
makes	 a	 departure	 at	 line	 190.	We	 set	 up	 a	 variable	 to	 hold	 the	 worstScore	 instead	 of
bestScore	and	set	it	to	64,	because	that	is	the	total	number	of	positions	on	the	board	and
the	most	points	that	could	be	scored	if	the	entire	board	were	filled.	Lines	191	to	194	are
the	same	as	the	original	algorithm,	but	then	line	195	checks	whether	the	score	is	less	than
worstScore	instead	of	whether	the	score	is	higher.	If	score	is	less,	then	worstMove	is	replaced
with	the	move	on	the	board	the	algorithm	is	currently	testing,	and	worstScore	is	updated,
too.	Then	the	function	returns	worstMove.

Finally,	line	274’s	getComputerMove()	needs	to	be	changed	to	getWorstMove():

274.													move	=	getWorstMove(board,	computerTile)

When	this	is	done	and	you	run	the	program,	getCornerBestMove()	and	getWorstMove()
will	play	against	each	other.

The	Random-Move	AI

The	random-move	AI	 just	 finds	all	 the	valid	possible	moves	and	 then	chooses	a	 random
one.

201.	def	getRandomMove(board,	tile):
202.					possibleMoves	=	getValidMoves(board,	tile)
203.					return	random.choice(possibleMoves)

It	uses	getValidMoves(),	just	as	all	the	other	AIs	do,	and	then	uses	choice()	to	return	one
of	the	possible	moves	in	the	returned	list.

Checking	for	Side	Moves

Before	we	get	into	the	algorithms,	let’s	look	at	one	new	helper	function	we’ve	added.	The
isOnSide()	helper	function	is	like	the	isOnCorner()	function,	except	that	it	checks	whether	a
move	is	on	the	sides	of	a	board:

205.	def	isOnSide(x,	y):
206.					return	x	==	0	or	x	==	WIDTH	-	1	or	y	==	0	or	y	==	HEIGHT	-	1



It	 has	 one	 Boolean	 expression	 that	 checks	 whether	 the	 x	 value	 or	 y	 value	 of	 the
coordinate	arguments	passed	to	it	is	equal	to	0	or	7.	Any	coordinate	with	a	0	or	a	7	in	it	is
at	the	edge	of	the	board.

We’ll	use	this	function	next	in	the	corner-side-best	AI.

The	Corner-Side-Best	AI

The	corner-side-best	AI	works	a	lot	like	the	corner-best	AI,	so	we	can	reuse	some	of	the
code	we’ve	already	entered.	We	define	this	AI	in	the	function	getCornerSideBestMove():

208.	def	getCornerSideBestMove(board,	tile):
209.					#	Return	a	corner	move,	a	side	move,	or	the	best	move.
210.					possibleMoves	=	getValidMoves(board,	tile)
211.					random.shuffle(possibleMoves)	#	Randomize	the	order	of	the	moves.
212.
213.					#	Always	go	for	a	corner	if	available.
214.					for	x,	y	in	possibleMoves:
215.									if	isOnCorner(x,	y):
216.													return	[x,	y]
217.
218.					#	If	there	is	no	corner	move	to	make,	return	a	side	move.
219.					for	x,	y	in	possibleMoves:
220.									if	isOnSide(x,	y):
221.													return	[x,	y]
222.
223.					return	getCornerBestMove(board,	tile)	#	Do	what	the	normal	AI
											would	do.

Lines	 210	 and	 211	 are	 the	 same	 as	 in	 our	 corner-best	 AI,	 and	 lines	 214	 to	 216	 are
identical	to	our	algorithm	to	check	for	a	corner	move	in	our	original	getComputerMove()	AI.
If	 there’s	 no	 corner	 move,	 then	 lines	 219	 to	 221	 check	 for	 a	 side	 move	 by	 using	 the
isOnSide()	 helper	 function.	 Once	 all	 corner	 and	 side	 moves	 have	 been	 checked	 for
availability,	if	there’s	still	no	move,	then	we	reuse	our	getCornerBestMove()	function.	Since
there	were	no	corner	moves	earlier	and	there	still	won’t	be	any	when	the	code	reaches	the
getCornerBestMove()	function,	this	function	will	just	look	for	the	highest-scoring	move	to
make	and	return	that.

Table	16-1	reviews	the	new	algorithms	we’ve	made.

Table	16-1:	Functions	Used	for	the	Reversegam	AIs

Function Description

getCornerBestMove() Take	a	corner	move	if	available.	If	there’s	no	corner,	find	the
highest-scoring	move.

getCornerSideBestMove() Take	a	corner	move	if	available.	If	there’s	no	corner,	take	a	space
on	the	side.	If	no	sides	are	available,	use	the	regular
getCornerBestMove()	algorithm.

getRandomMove() Randomly	choose	a	valid	move	to	make.



getWorstMove() Take	the	position	that	will	result	in	the	fewest	tiles	being
flipped.

Now	that	we	have	our	algorithms,	we	can	pit	them	against	each	other.

Comparing	the	AIs
We’ve	written	our	program	 so	 that	 the	 corner-best	AI	plays	 against	 the	worst-move	AI.
We	can	run	the	program	to	simulate	how	well	the	AIs	do	against	each	other	and	analyze
the	results	with	the	printed	statistics.

In	addition	to	these	two	AIs,	we’ve	made	some	others	that	we	don’t	call	on.	These	AIs
exist	in	the	code	but	aren’t	being	used,	so	if	we	want	to	see	how	they	fare	in	a	match,	we’ll
need	to	edit	the	code	to	call	on	them.	Since	we	already	have	one	comparison	set	up,	let’s
see	how	the	worst-move	AI	does	against	the	corner-best	AI.

Worst-Move	AI	vs.	Corner-Best	AI

Run	 the	 program	 to	 pit	 the	 getCornerBestMove()	 function	 against	 the	 getWorstMove()
function.	Unsurprisingly,	the	strategy	of	flipping	the	fewest	tiles	each	turn	will	lose	most
games:

X	wins:	206	(82.4%)
O	wins:	41	(16.4%)
Ties:			3	(1.2%)

What	is	surprising	is	that	sometimes	the	worst-move	strategy	does	work!	Rather	than
winning	100	percent	of	the	time,	the	algorithm	in	the	getCornerBestMove()	 function	wins
only	about	80	percent	of	the	time.	About	1	in	5	times,	it	loses!

This	 is	 the	 power	 of	 running	 simulation	 programs:	 you	 can	 find	 novel	 insights	 that
would	 take	much	 longer	 for	you	 to	realize	 if	you	were	 just	playing	games	on	your	own.
The	computer	is	much	faster!

Random-Move	AI	vs.	Corner-Best	AI

Let’s	 try	 a	 different	 strategy.	 Change	 the	 getWorstMove()	 call	 on	 line	 274	 to
getRandomMove():

274.																	move	=	getRandomMove(board,	computerTile)

When	you	run	the	program	now,	it	will	look	something	like	this:

Welcome	to	Reversegam!
#1:	X	scored	32	points.	O	scored	32	points.
#2:	X	scored	44	points.	O	scored	20	points.
#3:	X	scored	31	points.	O	scored	33	points.



#4:	X	scored	45	points.	O	scored	19	points.
#5:	X	scored	49	points.	O	scored	15	points.
--snip--
#249:	X	scored	20	points.	O	scored	44	points.
#250:	X	scored	38	points.	O	scored	26	points.
X	wins:	195	(78.0%)
O	wins:	48	(19.2%)
Ties:			7	(2.8%)

The	 random-move	 algorithm	 getRandomMove()	 did	 slightly	 better	 against	 the	 corner-
best	 algorithm	 than	 did	 the	 worst-move	 algorithm.	 This	 makes	 sense	 because	 making
intelligent	 choices	 is	 usually	 better	 than	 just	 choosing	 moves	 at	 random,	 but	 making
random	choices	is	slightly	better	than	purposefully	choosing	the	worst	move.

Corner-Side-Best	AI	vs.	Corner-Best	AI

Picking	a	corner	space	if	it’s	available	is	a	good	idea,	because	a	tile	on	the	corner	can	never
be	flipped.	Putting	a	tile	on	the	side	spaces	seems	like	it	might	also	be	a	good	idea,	since
there	 are	 fewer	 ways	 it	 can	 be	 surrounded	 and	 flipped.	 But	 does	 this	 benefit	 outweigh
passing	 up	moves	 that	 would	 flip	 more	 tiles?	 Let’s	 find	 out	 by	 pitting	 the	 corner-best
algorithm	against	the	corner-side-best	algorithm.

Change	the	algorithm	on	line	274	to	use	getCornerSideBestMove():

274.																	move	=	getCornerSideBestMove(board,	computerTile)

Then	run	the	program	again:

Welcome	to	Reversegam!
#1:	X	scored	27	points.	O	scored	37	points.
#2:	X	scored	39	points.	O	scored	25	points.
#3:	X	scored	41	points.	O	scored	23	points.
--snip--
#249:	X	scored	48	points.	O	scored	16	points.
#250:	X	scored	38	points.	O	scored	26	points.
X	wins:	152	(60.8%)
O	wins:	89	(35.6%)
Ties:			9	(3.6%)

Wow!	That’s	unexpected.	It	seems	that	choosing	the	side	spaces	over	a	space	that	flips
more	 tiles	 is	 a	 bad	 strategy.	The	 benefit	 of	 the	 side	 space	 doesn’t	 outweigh	 the	 cost	 of
flipping	 fewer	 of	 the	 opponent’s	 tiles.	 Can	 we	 be	 sure	 of	 these	 results?	 Let’s	 run	 the
program	again,	but	this	time	play	1,000	games	by	changing	line	278	to	NUM_GAMES	=	1000	in
AISim3.py.	The	program	may	now	take	a	 few	minutes	 for	your	computer	to	run—but	 it
would	take	weeks	for	you	to	do	this	by	hand!

You’ll	 see	 that	 the	more	 accurate	 statistics	 from	 the	 1,000-games	 run	 are	 about	 the
same	as	the	statistics	from	the	250-games	run.	It	seems	that	choosing	the	move	that	flips
the	most	tiles	is	a	better	idea	than	choosing	a	side	to	move	on.

We’ve	just	used	programming	to	find	out	which	game	strategy	works	the	best.	When



you	hear	about	 scientists	using	computer	models,	 this	 is	what	 they’re	doing.	They	use	a
simulation	to	re-create	some	real-world	process,	and	then	do	tests	in	the	simulation	to	find
out	more	about	the	real	world.

Summary

This	chapter	didn’t	cover	a	new	game,	but	it	modeled	various	strategies	for	Reversegam.	If
we	thought	that	taking	side	moves	in	Reversegam	was	a	good	idea,	we	would	have	to	spend
weeks,	even	months,	carefully	playing	games	of	Reversegam	by	hand	and	writing	down	the
results	to	test	this	idea.	But	if	we	know	how	to	program	a	computer	to	play	Reversegam,
then	we	can	have	 it	 try	different	 strategies	 for	us.	 If	you	 think	about	 it,	 the	computer	 is
executing	millions	of	lines	of	our	Python	program	in	seconds!	Your	experiments	with	the
simulations	of	Reversegam	can	help	you	learn	more	about	playing	it	in	real	life.

In	fact,	this	chapter	would	make	a	good	science	fair	project.	You	could	research	which
set	 of	moves	 leads	 to	 the	most	wins	 against	 other	 sets	 of	moves,	 and	 you	 could	make	 a
hypothesis	about	which	is	the	best	strategy.	After	running	several	simulations,	you	could
determine	 which	 strategy	 works	 best.	With	 programming,	 you	 can	make	 a	 science	 fair
project	 out	 of	 a	 simulation	 of	 any	 board	 game!	 And	 it’s	 all	 because	 you	 know	 how	 to
instruct	 the	 computer	 to	do	 it,	 step	by	 step,	 line	by	 line.	You	can	 speak	 the	 computer’s
language	and	get	it	to	do	large	amounts	of	data	processing	and	number	crunching	for	you.

That’s	all	for	the	text-based	games	in	this	book.	Games	that	use	only	text	can	be	fun,
even	though	they’re	simple.	But	most	modern	games	use	graphics,	sound,	and	animation	to
make	 them	more	 exciting.	 In	 the	 rest	 of	 the	 chapters	 in	 this	 book,	 you’ll	 learn	 how	 to
create	games	with	graphics	by	using	a	Python	module	called	pygame.



17
CREATING	GRAPHICS

So	far,	all	of	our	games	have	used	only	text.	Text	is	displayed	on	the	screen	as	output,	and
the	player	enters	text	as	input.	Just	using	text	makes	programming	easy	to	learn.	But	in	this
chapter,	we’ll	make	some	more	exciting	programs	with	advanced	graphics	using	the	pygame
module.

Chapters	 17,	 18,	 19,	 and	 20	 will	 teach	 you	 how	 to	 use	 pygame	 to	 make	 games	 with
graphics,	animations,	mouse	 input,	and	sound.	 In	 these	chapters,	we’ll	write	 source	code
for	 simple	 programs	 that	 demonstrate	 pygame	 concepts.	 Then	 in	 Chapter	 21,	 we’ll	 put
together	all	the	concepts	we	learned	to	create	a	game.

TOPICS	COVERED	IN	THIS	CHAPTER
•	Installing	pygame

•	Colors	and	fonts	in	pygame

•	Aliased	and	anti-aliased	graphics

•	Attributes

•	The	pygame.font.Font,	pygame.Surface,	pygame.Rect,	and	pygame.PixelArray	data	types

•	Constructor	functions

•	pygame’s	drawing	functions

•	The	blit()	method	for	surface	objects

•	Events

Installing	pygame



The	pygame	module	helps	developers	create	games	by	making	it	easier	to	draw	graphics	on
your	computer	screen	or	add	music	to	programs.	The	module	doesn’t	come	with	Python,
but	 like	 Python,	 it’s	 free	 to	 download.	 Download	 pygame	 at
https://www.nostarch.com/inventwithpython/,	 and	 follow	 the	 instructions	 for	 your	 operating
system.

After	 the	 installer	 file	 finishes	downloading,	open	 it	and	 follow	the	 instructions	until
pygame	has	finished	installing.	To	check	that	it	installed	correctly,	enter	the	following	into
the	interactive	shell:

>>>	import	pygame

If	 nothing	 appears	 after	 you	 press	 ENTER,	 then	 you	 know	 pygame	 was	 successfully
installed.	 If	 the	error	ImportError:	No	module	named	pygame	 appears,	 try	 to	 install	pygame
again	(and	make	sure	you	typed	import	pygame	correctly).

NOTE

When	writing	your	Python	programs,	don’t	save	your	file	as	pygame.py.	If	you	do,	the	import
pygame	line	will	import	your	file	instead	of	the	real	pygame	module,	and	none	of	your	code	will
work.

Hello	World	in	pygame

First,	 we’ll	 make	 a	 new	 pygame	 Hello	World	 program	 like	 the	 one	 you	 created	 at	 the
beginning	of	 the	book.	This	 time,	you’ll	use	pygame	 to	make	“Hello	world!”	 appear	 in	 a
graphical	window	instead	of	as	text.	We’ll	just	use	pygame	to	draw	some	shapes	and	lines	on
the	window	 in	 this	chapter,	but	you’ll	use	 these	 skills	 to	make	your	 first	animated	game
soon.

The	pygame	module	doesn’t	work	well	with	the	interactive	shell,	so	you	can	only	write
programs	using	pygame	 in	a	file	editor;	you	can’t	send	instructions	one	at	a	time	through
the	interactive	shell.

Also,	pygame	programs	don’t	use	the	print()	or	input()	functions.	There	is	no	text	input
or	 output.	 Instead,	 pygame	 displays	 output	 by	 drawing	 graphics	 and	 text	 in	 a	 separate
window.	Input	to	pygame	comes	from	the	keyboard	and	the	mouse	through	events,	which	are
covered	in	“Events	and	the	Game	Loop”	on	page	270.

Sample	Run	of	pygame	Hello	World

When	you	 run	 the	graphical	Hello	World	program,	you	 should	 see	 a	new	window	 that
looks	like	Figure	17-1.

https://www.nostarch.com/inventwithpython/


Figure	17-1:	The	pygame	Hello	World	program

The	 nice	 thing	 about	 using	 a	 window	 instead	 of	 a	 console	 is	 that	 text	 can	 appear
anywhere	 in	 the	window,	not	 just	after	 the	previous	 text	you	have	printed.	The	 text	can
also	be	any	color	and	size.	The	window	is	 like	a	canvas,	and	you	can	draw	whatever	you
like	on	it.

Source	Code	for	pygame	Hello	World

Enter	the	following	code	into	the	file	editor	and	save	it	as	pygameHelloWorld.py.	If	you	get
errors	after	typing	in	this	code,	compare	the	code	you	typed	to	the	book’s	code	with	the
online	diff	tool	at	https://www.nostarch.com/inventwithpython#diff.

https://www.nostarch.com/inventwithpython#diff


pygame	HelloWorld.py

	1.	import	pygame,	sys
	2.	from	pygame.locals	import	*
	3.
	4.	#	Set	up	pygame.
	5.	pygame.init()
	6.
	7.	#	Set	up	the	window.
	8.	windowSurface	=	pygame.display.set_mode((500,	400),	0,	32)
	9.	pygame.display.set_caption('Hello	world!')
10.
11.	#	Set	up	the	colors.
12.	BLACK	=	(0,	0,	0)
13.	WHITE	=	(255,	255,	255)
14.	RED	=	(255,	0,	0)
15.	GREEN	=	(0,	255,	0)
16.	BLUE	=	(0,	0,	255)
17.
18.	#	Set	up	the	fonts.
19.	basicFont	=	pygame.font.SysFont(None,	48)
20.
21.	#	Set	up	the	text.
22.	text	=	basicFont.render('Hello	world!',	True,	WHITE,	BLUE)
23.	textRect	=	text.get_rect()
24.	textRect.centerx	=	windowSurface.get_rect().centerx
25.	textRect.centery	=	windowSurface.get_rect().centery
26.
27.	#	Draw	the	white	background	onto	the	surface.
28.	windowSurface.fill(WHITE)
29.
30.	#	Draw	a	green	polygon	onto	the	surface.
31.	pygame.draw.polygon(windowSurface,	GREEN,	((146,	0),	(291,	106),
						(236,	277),	(56,	277),	(0,	106)))
32.
33.	#	Draw	some	blue	lines	onto	the	surface.
34.	pygame.draw.line(windowSurface,	BLUE,	(60,	60),	(120,	60),	4)
35.	pygame.draw.line(windowSurface,	BLUE,	(120,	60),	(60,	120))
36.	pygame.draw.line(windowSurface,	BLUE,	(60,	120),	(120,	120),	4)
37.
38.	#	Draw	a	blue	circle	onto	the	surface.



39.	pygame.draw.circle(windowSurface,	BLUE,	(300,	50),	20,	0)
40.
41.	#	Draw	a	red	ellipse	onto	the	surface.
42.	pygame.draw.ellipse(windowSurface,	RED,	(300,	250,	40,	80),	1)
43.
44.	#	Draw	the	text's	background	rectangle	onto	the	surface.
45.	pygame.draw.rect(windowSurface,	RED,	(textRect.left	-	20,
						textRect.top	-	20,	textRect.width	+	40,	textRect.height	+	40))
46.
47.	#	Get	a	pixel	array	of	the	surface.
48.	pixArray	=	pygame.PixelArray(windowSurface)
49.	pixArray[480][380]	=	BLACK
50.	del	pixArray
51.
52.	#	Draw	the	text	onto	the	surface.
53.	windowSurface.blit(text,	textRect)
54.
55.	#	Draw	the	window	onto	the	screen.
56.	pygame.display.update()
57.
58.	#	Run	the	game	loop.
59.	while	True:
60.					for	event	in	pygame.event.get():
61.									if	event.type	==	QUIT:
62.													pygame.quit()
63.													sys.exit()

Importing	the	pygame	Module

Let’s	go	over	each	of	these	lines	of	code	and	find	out	what	they	do.
First,	 you	 need	 to	 import	 the	 pygame	module	 so	 you	 can	 call	 its	 functions.	 You	 can

import	several	modules	on	the	same	 line	by	separating	the	module	names	with	commas.
Line	1	imports	both	the	pygame	and	sys	modules:

1.	import	pygame,	sys
2.	from	pygame.locals	import	*

The	 second	 line	 imports	 the	 pygame.locals	 module.	 This	 module	 contains	 many
constant	 variables	 that	 you’ll	 use	 with	 pygame,	 such	 as	 QUIT,	 which	 helps	 you	 quit	 the
program,	and	K_ESCAPE,	which	represents	the	ESC	key.

Line	 2	 also	 lets	 you	 use	 the	 pygames.locals	 module	 without	 having	 to	 type
pygames.locals.	 in	 front	 of	 every	method,	 constant,	 or	 anything	 else	 you	 call	 from	 the
module.

If	you	have	from	sys	import	*	 instead	of	import	sys	 in	your	program,	you	could	call
exit()	instead	of	sys.exit()	 in	your	code.	But	most	of	the	time	it’s	better	to	use	the	full
function	name	so	you	know	which	module	the	function	is	in.

Initializing	pygame



All	pygame	programs	must	call	pygame.init()	after	importing	the	pygame	module	but	before
calling	any	other	pygame	functions:

4.	#	Set	up	pygame.
5.	pygame.init()

This	initializes	pygame	so	it’s	ready	to	use.	You	don’t	need	to	know	what	init()	does;
you	just	need	to	remember	to	call	it	before	using	any	other	pygame	functions.

Setting	Up	the	pygame	Window

Line	8	creates	a	graphical	user	interface	(GUI)	window	by	calling	the	set_mode()	method	in
the	pygame.display	module.	 (The	display	module	 is	 a	module	 inside	 the	pygame	module.
Even	the	pygame	module	has	its	own	modules!)

7.	#	Set	up	the	window.
8.	windowSurface	=	pygame.display.set_mode((500,	400),	0,	32)
9.	pygame.display.set_caption('Hello	world!')

These	methods	help	 set	up	a	window	for	pygame	 to	 run	 in.	As	 in	 the	Sonar	Treasure
Hunt	 game,	 windows	 use	 a	 coordinate	 system,	 but	 the	 window’s	 coordinate	 system	 is
organized	in	pixels.

A	pixel	 is	 the	 tiniest	dot	on	your	computer	 screen.	A	 single	pixel	on	your	 screen	can
light	up	in	any	color.	All	the	pixels	on	your	screen	work	together	to	display	the	pictures
you	see.	We’ll	create	a	window	500	pixels	wide	and	400	pixels	tall	by	using	a	tuple.

Tuples
Tuple	 values	 are	 similar	 to	 lists,	 except	 they	 use	 parentheses	 instead	 of	 square	 brackets.
Also,	 like	 strings,	 tuples	 can’t	 be	 modified.	 For	 example,	 enter	 the	 following	 into	 the
interactive	shell:

			>>>	spam	=	('Life',	'Universe',	'Everything',	42)

➊	>>>	spam[0]
			'Life'
			>>>	spam[3]
			42

➋	>>>	spam[1:3]
			('Universe',	'Everything')

➌	>>>	spam[3]	=	'Hello'
➍	Traceback	(most	recent	call	last):
					File	"<stdin>",	line	1,	in	<module>
			TypeError:	'tuple'	object	does	not	support	item	assignment

As	you	can	 see	 from	the	example,	 if	you	want	 to	get	 just	one	 item	of	a	 tuple	➊	or	 a
range	of	items	➋,	you	still	use	square	brackets	as	you	would	with	a	list.	However,	if	you	try



to	change	the	item	at	index	3	to	the	string	'Hello'	➌,	Python	will	raise	an	error	➍.
We’ll	 use	 tuples	 to	 set	 up	 pygame	 windows.	 There	 are	 three	 parameters	 to	 the

pygame.display.set_mode()	method.	The	first	 is	a	tuple	of	two	integers	for	the	width	and
height	of	the	window,	in	pixels.	To	set	up	a	500-	by	400-pixel	window,	you	use	the	tuple
(500,	 400)	 for	 the	 first	 argument	 to	 set_mode().	 The	 second	 and	 third	 parameters	 are
advanced	 options	 that	 are	 beyond	 the	 scope	 of	 this	 book.	 Just	 pass	 0	 and	 32	 for	 them,
respectively.

Surface	Objects
The	set_mode()	 function	returns	a	pygame.Surface	object	(which	we’ll	call	Surface	objects
for	 short).	Object	 is	 just	 another	 name	 for	 a	 value	 of	 a	 data	 type	 that	 has	methods.	 For
example,	 strings	 are	 objects	 in	 Python	 because	 they	 have	 data	 (the	 string	 itself)	 and
methods	(such	as	lower()	and	split()).	The	Surface	object	represents	the	window.

Variables	 store	 references	 to	 objects	 just	 as	 they	 store	 references	 for	 lists	 and
dictionaries	(see	“List	References”	on	page	132).

The	 set_caption()	 method	 on	 line	 9	 just	 sets	 the	 window’s	 caption	 to	 read	 'Hello
World!'.	The	caption	is	in	the	top	left	of	the	window.

Setting	Up	Color	Variables

There	 are	 three	 primary	 colors	 of	 light	 for	 pixels:	 red,	 green,	 and	 blue.	 By	 combining
different	amounts	of	these	three	colors	(which	is	what	your	computer	screen	does),	you	can
form	any	other	color.	In	pygame,	colors	are	represented	by	tuples	of	three	integers.	These
are	called	RGB	color	values,	and	we’ll	use	them	in	our	program	to	assign	colors	to	pixels.
Since	we	don’t	want	to	rewrite	a	three-number	tuple	every	time	we	want	to	use	a	specific
color	in	our	program,	we’ll	make	constants	to	hold	tuples	that	are	named	after	the	color
the	tuple	represents:

11.	#	Set	up	the	colors.
12.	BLACK	=	(0,	0,	0)
13.	WHITE	=	(255,	255,	255)
14.	RED	=	(255,	0,	0)
15.	GREEN	=	(0,	255,	0)
16.	BLUE	=	(0,	0,	255)

The	first	value	in	the	tuple	determines	how	much	red	is	in	the	color.	A	value	of	0	means
there’s	no	red	in	the	color,	and	a	value	of	255	means	there’s	a	maximum	amount	of	red	in
the	 color.	 The	 second	 value	 is	 for	 green,	 and	 the	 third	 value	 is	 for	 blue.	 These	 three
integers	form	an	RGB	tuple.

For	 example,	 the	 tuple	 (0,	 0,	 0)	 has	 no	 red,	 green,	 or	 blue.	The	 resulting	 color	 is
completely	black,	as	in	line	12.	The	tuple	(255,	255,	255)	has	a	maximum	amount	of	red,
green,	and	blue,	resulting	in	white,	as	in	line	13.



We’ll	also	use	red,	green,	and	blue,	which	are	assigned	in	lines	14	to	16.	The	tuple	(255,
0,	0)	represents	the	maximum	amount	of	red	but	no	green	or	blue,	so	the	resulting	color	is
red.	Similarly,	(0,	255,	0)	is	green	and	(0,	0,	255)	is	blue.

You	can	mix	the	amount	of	red,	green,	and	blue	to	get	any	shade	of	any	color.	Table
17-1	 has	 some	 common	 colors	 and	 their	 RGB	 values.	 The	 web	 page
https://www.nostarch.com/inventwithpython/	lists	several	more	tuple	values	for	different	colors.

Table	17-1:	Colors	and	Their	RGB	Values

Color RGB	value

Black (0,	0,	0)

Blue (0,	0,	255)

Gray (128,	128,	128)

Green (0,	128,	0)

Lime (0,	255,	0)

Purple (128,	0,	128)

Red (255,	0,	0)

Teal (0,	128,	128)

White (255,	255,	255)

Yellow (255,	255,	0)

We’ll	just	use	the	five	colors	we’ve	already	defined,	but	in	your	programs,	you	can	use
any	of	these	colors	or	even	make	up	different	colors.

Writing	Text	on	the	pygame	Window

Writing	text	on	a	window	is	a	little	different	from	just	using	print(),	as	we’ve	done	in	our
text-based	games.	In	order	to	write	text	on	a	window,	we	need	to	do	some	setup	first.

Using	Fonts	to	Style	Text
A	font	is	a	complete	set	of	letters,	numbers,	symbols,	and	characters	drawn	in	a	single	style.
We’ll	use	fonts	anytime	we	need	to	print	text	on	a	pygame	window.	Figure	17-2	shows	the
same	sentence	printed	in	different	fonts.

https://www.nostarch.com/inventwithpython/


Figure	17-2:	Examples	of	different	fonts

In	our	earlier	games,	we	only	told	Python	to	print	text.	The	color,	size,	and	font	that
were	used	to	display	this	text	were	completely	determined	by	your	operating	system.	The
Python	program	couldn’t	change	the	font.	However,	pygame	can	draw	text	in	any	font	on
your	computer.

Line	19	creates	a	pygame.font.Font	object	(called	a	Font	object	for	short)	by	calling	the
pygame.font.SysFont()	function	with	two	parameters:

18.	#	Set	up	the	fonts.
19.	basicFont	=	pygame.font.SysFont(None,	48)

The	 first	 parameter	 is	 the	name	of	 the	 font,	 but	we’ll	 pass	 the	None	 value	 to	 use	 the
default	 system	 font.	The	 second	parameter	 is	 the	 size	of	 the	 font	 (which	 is	measured	 in
units	 called	 points).	We’ll	 draw	 'Hello	 world!'	 on	 the	window	 in	 the	 default	 font	 at	 48
points.	Generating	an	image	of	letters	for	text	like	“Hello	world!”	is	called	rendering.

Rendering	a	Font	Object
The	Font	object	that	you’ve	stored	in	the	basicFont	variable	has	a	method	called	render().
This	method	will	return	a	Surface	object	with	the	text	drawn	on	it.	The	first	parameter	to
render()	is	the	string	of	the	text	to	draw.	The	second	parameter	is	a	Boolean	for	whether
or	not	to	anti-alias	the	font.	Anti-aliasing	blurs	your	text	slightly	to	make	it	look	smoother.
Figure	17-3	shows	what	a	line	looks	like	with	and	without	anti-aliasing.



Figure	17-3:	An	enlarged	view	of	an	aliased	line	and	an	anti-aliased	line

On	line	22,	we	pass	True	to	use	anti-aliasing:

21.	#	Set	up	the	text.
22.	text	=	basicFont.render('Hello	world!',	True,	WHITE,	BLUE)

The	third	and	fourth	parameters	in	line	22	are	both	RGB	tuples.	The	third	parameter
is	 the	 color	 the	 text	 will	 be	 rendered	 in	 (white,	 in	 this	 case),	 and	 the	 fourth	 is	 the
background	color	behind	the	text	(blue).	We	assign	the	Font	object	to	the	variable	text.

Once	we’ve	set	up	the	Font	object,	we	need	to	place	it	in	a	location	on	the	window.

Setting	the	Text	Location	with	Rect	Attributes
The	pygame.Rect	data	type	(called	Rect	for	short)	represents	rectangular	areas	of	a	certain
size	and	location.	This	is	what	we	use	to	set	the	location	of	objects	on	a	window.

To	 create	 a	 new	 Rect	 object,	 you	 call	 the	 function	 pygame.Rect().	 Notice	 that	 the
pygame.Rect()	 function	 has	 the	 same	 name	 as	 the	 pygame.Rect	 data	 type.	 Functions	 that
have	the	same	name	as	their	data	type	and	create	objects	or	values	of	their	data	type	are
called	constructor	functions.	The	parameters	for	the	pygame.Rect()	 function	are	 integers	 for
the	x-	and	y-coordinates	of	 the	 top-left	corner,	 followed	by	 the	width	and	height,	all	 in
pixels.	 The	 function	 name	 with	 the	 parameters	 looks	 like	 this:	 pygame.Rect(left,	 top,

width,	height).
When	we	created	the	Font	object,	a	Rect	object	was	already	made	for	it,	so	all	we	need

to	do	now	is	retrieve	it.	To	do	that,	we	use	the	get_rect()	method	on	text	and	assign	the
Rect	to	textRect:

23.	textRect	=	text.get_rect()
24.	textRect.centerx	=	windowSurface.get_rect().centerx
25.	textRect.centery	=	windowSurface.get_rect().centery

Just	as	methods	are	functions	that	are	associated	with	an	object,	attributes	are	variables
that	are	associated	with	an	object.	The	Rect	data	type	has	many	attributes	that	describe	the
rectangle	they	represent.	In	order	to	set	the	location	of	textRect	on	the	window,	we	need



to	 assign	 its	 center	 x	 and	 y	 values	 to	 pixel	 coordinates	 on	 the	window.	 Since	 each	 Rect
object	already	has	attributes	that	store	the	x-	and	y-coordinates	of	the	Rect’s	center,	called
centerx	and	centery,	respectively,	all	we	need	to	do	is	assign	those	coordinates	values.

We	 want	 to	 put	 textRect	 in	 the	 center	 of	 the	 window,	 so	 we	 need	 to	 get	 the
windowSurface	 Rect,	 get	 its	 centerx	 and	 centery	 attributes,	 and	 then	 assign	 those	 to	 the
centerx	and	centery	attributes	of	textRect.	We	do	that	in	lines	24	and	25.

There	are	many	other	Rect	attributes	that	we	can	use.	Table	17-2	is	a	list	of	attributes
of	a	Rect	object	named	myRect.

Table	17-2:	Rect	Attributes

pygame.Rect

attribute
Description

myRect.left Integer	value	of	the	x-coordinate	of	the	left	side	of	the	rectangle
myRect.right Integer	value	of	the	x-coordinate	of	the	right	side	of	the	rectangle
myRect.top Integer	value	of	the	y-coordinate	of	the	top	side	of	the	rectangle
myRect.bottom Integer	value	of	the	y-coordinate	of	the	bottom	side	of	the

rectangle
myRect.centerx Integer	value	of	the	x-coordinate	of	the	center	of	the	rectangle
myRect.centery Integer	value	of	the	y-coordinate	of	the	center	of	the	rectangle
myRect.width Integer	value	of	the	width	of	the	rectangle
myRect.height Integer	value	of	the	height	of	the	rectangle
myRect.size A	tuple	of	two	integers:	(width,	height)
myRect.topleft A	tuple	of	two	integers:	(left,	top)
myRect.topright A	tuple	of	two	integers:	(right,	top)
myRect.bottomleft A	tuple	of	two	integers:	(left,	bottom)
myRect.bottomright A	tuple	of	two	integers:	(right,	bottom)
myRect.midleft A	tuple	of	two	integers:	(left,	centery)
myRect.midright A	tuple	of	two	integers:	(right,	centery)
myRect.midtop A	tuple	of	two	integers:	(centerx,	top)
myRect.midbottom A	tuple	of	two	integers:	(centerx,	bottom)

The	great	thing	about	Rect	objects	is	that	if	you	modify	any	of	these	attributes,	all	the
other	 attributes	will	 automatically	modify	 themselves,	 too.	For	 example,	 if	 you	 create	 a
Rect	 object	 that	 is	 20	 pixels	 wide	 and	 20	 pixels	 tall	 and	 has	 the	 top-left	 corner	 at	 the
coordinates	(30,	40),	then	the	x-coordinate	of	the	right	side	will	automatically	be	set	to	50



(because	20	+	30	=	50).
Or	if	you	instead	change	the	left	attribute	with	the	line	myRect.left	=	100,	then	pygame

will	automatically	change	the	right	attribute	to	120	(because	20	+	100	=	120).	Every	other
attribute	for	that	Rect	object	is	also	updated.

MORE	ABOUT	METHODS,	MODULES,	AND	DATA	TYPES

Inside	the	pygame	module	are	the	font	and	surface	modules,	and	inside	those	modules
are	the	Font	and	Surface	data	types.	The	pygame	programmers	began	the	modules	with
a	 lowercase	 letter	 and	 the	 data	 types	 with	 an	 uppercase	 letter	 to	 make	 it	 easier	 to
distinguish	the	data	types	and	the	modules.

Notice	 that	both	 the	Font	 object	 (stored	 in	 the	text	 variable	on	 line	23)	 and	 the
Surface	object	(stored	in	the	windowSurface	variable	on	line	24)	have	a	method	called
get_rect().	 Technically,	 these	 are	 two	 different	 methods,	 but	 the	 programmers	 of
pygame	 gave	 them	 the	 same	 name	 because	 they	 both	 do	 the	 same	 thing:	 return	 Rect
objects	that	represent	the	size	and	position	of	the	Font	or	Surface	object.

Filling	a	Surface	Object	with	a	Color

For	our	program,	we	want	to	fill	the	entire	surface	stored	in	windowSurface	with	the	color
white.	The	fill()	function	will	completely	cover	the	surface	with	the	color	you	pass	as	the
parameter.	(Remember,	the	WHITE	variable	was	set	to	the	value	(255,	255,	255)	on	line	13.)

27.	#	Draw	the	white	background	onto	the	surface.
28.	windowSurface.fill(WHITE)

Note	that	in	pygame,	the	window	on	the	screen	won’t	change	when	you	call	the	fill()
method	or	any	of	the	other	drawing	functions.	Rather,	these	will	change	the	Surface	object,
and	 you	 have	 to	 render	 the	 new	 Surface	 object	 to	 the	 screen	 with	 the
pygame.display.update()	function	to	see	changes.

This	is	because	modifying	the	Surface	object	in	the	computer’s	memory	is	much	faster
than	modifying	the	image	on	the	screen.	It	is	much	more	efficient	to	draw	onto	the	screen
once	after	all	of	the	drawing	functions	have	been	drawn	to	the	Surface	object.

pygame’s	Drawing	Functions

So	far,	we’ve	learned	how	to	fill	a	pygame	window	with	a	color	and	add	text,	but	pygame	also
has	functions	that	let	you	draw	shapes	and	lines.	Each	shape	has	its	own	function,	and	you
can	combine	these	shapes	into	different	pictures	for	your	graphical	game.



Drawing	a	Polygon
The	pygame.draw.polygon()	function	can	draw	any	polygon	shape	you	give	it.	A	polygon	is	a
multisided	shape	with	sides	that	are	straight	lines.	Circles	and	ellipses	are	not	polygons,	so
we	need	to	use	different	functions	for	those	shapes.

The	function’s	arguments,	in	order,	are	as	follows:

1.	 The	Surface	object	to	draw	the	polygon	on.
2.	 The	color	of	the	polygon.
3.	 A	 tuple	 of	 tuples	 that	 represents	 the	 x-	 and	 y-coordinates	 of	 the	 points	 to	 draw	 in

order.	The	 last	 tuple	will	 automatically	 connect	 to	 the	 first	 tuple	 to	 complete	 the
shape.

4.	 Optionally,	an	integer	for	the	width	of	the	polygon	lines.	Without	this,	the	polygon
will	be	filled	in.

On	line	31,	we	draw	a	green	polygon	onto	our	white	Surface	object.

30.	#	Draw	a	green	polygon	onto	the	surface.
31.	pygame.draw.polygon(windowSurface,	GREEN,	((146,	0),	(291,	106),
						(236,	277),	(56,	277),	(0,	106)))

We	want	our	polygon	 to	be	 filled,	 so	we	don’t	give	 the	 last	optional	 integer	 for	 line
widths.	Figure	17-4	shows	some	examples	of	polygons.

Figure	17-4:	Examples	of	polygons

Drawing	a	Line
The	pygame.draw.line()	function	just	draws	a	line	from	one	point	on	the	screen	to	another
point.	The	parameters	for	pygame.draw.line(),	in	order,	are	as	follows:

1.	 The	Surface	object	to	draw	the	line	on.



2.	 The	color	of	the	line.
3.	 A	tuple	of	two	integers	for	the	x-	and	y-coordinates	of	one	end	of	the	line.
4.	 A	tuple	of	two	integers	for	the	x-	and	y-coordinates	of	the	other	end	of	the	line.
5.	 Optionally,	an	integer	for	the	width	of	the	line	in	pixels.

In	lines	34	to	36,	we	call	pygame.draw.line()	three	times:

33.	#	Draw	some	blue	lines	onto	the	surface.
34.	pygame.draw.line(windowSurface,	BLUE,	(60,	60),	(120,	60),	4)
35.	pygame.draw.line(windowSurface,	BLUE,	(120,	60),	(60,	120))
36.	pygame.draw.line(windowSurface,	BLUE,	(60,	120),	(120,	120),	4)

If	you	don’t	specify	the	width	parameter,	it	will	take	on	the	default	value	of	1.	In	lines	34
and	 36,	 we	 pass	 4	 for	 the	 width,	 so	 the	 lines	 will	 be	 4	 pixels	 thick.	 The	 three
pygame.draw.line()	calls	on	lines	34,	35,	and	36	draw	the	blue	Z	on	the	Surface	object.

Drawing	a	Circle
The	 pygame.draw.circle()	 function	 draws	 circles	 on	 Surface	 objects.	 Its	 parameters,	 in
order,	are	as	follows:

1.	 The	Surface	object	to	draw	the	circle	on.
2.	 The	color	of	the	circle.
3.	 A	tuple	of	two	integers	for	the	x-	and	y-coordinates	of	the	center	of	the	circle.
4.	 An	integer	for	the	radius	(that	is,	the	size)	of	the	circle.
5.	 Optionally,	an	integer	for	the	width	of	the	line.	A	width	of	0	means	that	the	circle	will

be	filled	in.

Line	39	draws	a	blue	circle	on	the	Surface	object:

38.	#	Draw	a	blue	circle	onto	the	surface.
39.	pygame.draw.circle(windowSurface,	BLUE,	(300,	50),	20,	0)

This	circle’s	center	is	at	an	x-coordinate	of	300	and	y-coordinate	of	50.	The	radius	of
the	circle	is	20	pixels,	and	it	is	filled	in	with	blue.

Drawing	an	Ellipse
The	 pygame.draw.ellipse()	 function	 is	 similar	 to	 the	 pygame.draw.circle()	 function,	 but
instead	 it	 draws	 an	 ellipse,	 which	 is	 like	 a	 squished	 circle.	 The	 pygame.draw.ellipse()
function’s	parameters,	in	order,	are	as	follows:

1.	 The	Surface	object	to	draw	the	ellipse	on.
2.	 The	color	of	the	ellipse.



3.	 A	tuple	of	four	integers	for	the	left	and	top	corner	of	the	ellipse’s	Rect	object	and	the
width	and	height	of	the	ellipse.

4.	 Optionally,	an	 integer	 for	the	width	of	 the	 line.	A	width	of	0	means	 that	 the	ellipse
will	be	filled	in.

Line	42	draws	a	red	ellipse	on	the	Surface	object:

41.	#	Draw	a	red	ellipse	onto	the	surface.
42.	pygame.draw.ellipse(windowSurface,	RED,	(300,	250,	40,	80),	1)

The	ellipse’s	top-left	corner	is	at	an	x-coordinate	of	300	and	y-coordinate	of	250.	The
shape	is	40	pixels	wide	and	80	pixels	tall.	The	ellipse’s	outline	is	1pixel	wide.

Drawing	a	Rectangle
The	pygame.draw.rect()	function	will	draw	a	rectangle.	The	pygame.draw.rect()	function’s
parameters,	in	order,	are	as	follows:

1.	 The	Surface	object	to	draw	the	rectangle	on.
2.	 The	color	of	the	rectangle.
3.	 A	 tuple	of	 four	 integers	 for	 the	 x-	 and	y-coordinates	of	 the	 top-left	 corner	 and	 the

width	 and	 height	 of	 the	 rectangle.	 Instead	 of	 a	 tuple	 of	 four	 integers	 for	 the	 third
parameter,	you	can	also	pass	a	Rect	object.

In	 the	Hello	World	program,	we	want	 the	 rectangle	we	draw	 to	be	 visible	 20	pixels
around	all	 the	 sides	of	text.	Remember,	 in	 line	23	we	created	a	textRect	 to	 contain	our
text.	 On	 line	 45	 we	 set	 the	 left	 and	 top	 points	 of	 the	 rectangle	 as	 the	 left	 and	 top	 of
textRect	minus	20	(we	subtract	because	coordinates	decrease	as	you	go	left	and	up):

44.	#	Draw	the	text's	background	rectangle	onto	the	surface.
45.	pygame.draw.rect(windowSurface,	RED,	(textRect.left	-	20,
						textRect.top	-	20,	textRect.width	+	40,	textRect.height	+	40))

The	width	and	height	of	the	rectangle	are	equal	to	the	width	and	height	of	the	textRect
plus	40.	We	use	40	and	not	20	because	the	left	and	top	were	moved	back	20	pixels,	so	you
need	to	make	up	for	that	space.

Coloring	Pixels
Line	 48	 creates	 a	 pygame.PixelArray	 object	 (called	 a	 PixelArray	 object	 for	 short).	 The
PixelArray	 object	 is	 a	 list	 of	 lists	 of	 color	 tuples	 that	 represents	 the	 Surface	 object	 you
passed	it.

The	PixelArray	object	gives	you	a	high	per-pixel	level	of	control,	so	it’s	a	good	choice	if
you	need	 to	draw	very	detailed	or	 customized	 images	 to	 the	 screen	 instead	of	 just	 large



shapes.
We’ll	use	a	PixelArray	to	color	one	pixel	on	windowSurface	black.	You	can	see	this	pixel

on	the	bottom	right	of	the	window	when	you	run	pygame	Hello	World.
Line	 48	 passes	 windowSurface	 to	 the	 pygame.PixelArray()	 call,	 so	 assigning	 BLACK	 to

pixArray[480][380]	on	line	49	will	make	the	pixel	at	the	coordinates	(480,	380)	black:

47.	#	Get	a	pixel	array	of	the	surface.
48.	pixArray	=	pygame.PixelArray(windowSurface)
49.	pixArray[480][380]	=	BLACK

The	 pygame	 module	 will	 automatically	 modify	 the	 windowSurface	 object	 with	 this
change.

The	first	index	in	the	PixelArray	object	is	for	the	x-coordinate.	The	second	index	is	for
the	 y-coordinate.	 PixelArray	 objects	 make	 it	 easy	 to	 set	 individual	 pixels	 on	 a	 Surface
object	to	a	specific	color.

Every	time	you	create	a	PixelArray	object	from	a	Surface	object,	that	Surface	object	is
locked.	That	means	no	blit()	method	calls	(described	next)	can	be	made	on	that	Surface
object.	To	unlock	the	Surface	object,	you	must	delete	the	PixelArray	object	with	the	del
operator:

50.	del	pixArray

If	you	forget	to	do	so,	you’ll	get	an	error	message	that	says	pygame.error:	Surfaces	must
not	be	locked	during	blit.

The	blit()	Method	for	Surface	Objects

The	 blit()	 method	 will	 draw	 the	 contents	 of	 one	 Surface	 object	 onto	 another	 Surface
object.	All	text	objects	created	by	the	render()	method	exist	on	their	own	Surface	object.
The	pygame	drawing	methods	can	all	specify	the	Surface	object	to	draw	a	shape	or	a	line	on,
but	 our	 text	was	 stored	 into	 the	text	 variable	 rather	 than	drawn	onto	windowSurface.	 In
order	to	draw	text	on	the	Surface	we	want	it	to	appear	on,	we	must	use	the	blit()	method:

52.	#	Draw	the	text	onto	the	surface.
53.	windowSurface.blit(text,	textRect)

Line	53	draws	the	'Hello	world!'	Surface	object	 in	the	text	variable	(defined	on	line
22)	onto	the	Surface	object	stored	in	the	windowSurface	variable.

The	 second	 parameter	 to	 blit()	 specifies	 where	 on	 windowSurface	 the	 text	 surface
should	be	drawn.	The	Rect	object	you	got	from	calling	text.get_rect()	on	line	23	is	passed
for	this	parameter.

Drawing	the	Surface	Object	to	the	Screen



Since	 in	 pygame	 nothing	 is	 actually	 drawn	 to	 the	 screen	 until	 the	 function
pygame.display.update()	 is	 called,	 we	 call	 it	 on	 line	 56	 to	 display	 our	 updated	 Surface
object:

55.	#	Draw	the	window	onto	the	screen.
56.	pygame.display.update()

To	 save	memory,	 you	don’t	want	 to	 update	 to	 the	 screen	 after	 every	 single	 drawing
function;	instead,	you	want	to	update	the	screen	only	once,	after	all	the	drawing	functions
have	been	called.

Events	and	the	Game	Loop

In	our	previous	games,	all	of	the	programs	would	print	everything	immediately	until	they
reached	an	input()	function	call.	At	that	point,	the	program	would	stop	and	wait	for	the
user	to	type	something	in	and	press	ENTER.	But	pygame	programs	are	constantly	 running
through	 a	 game	 loop,	 which	 executes	 every	 line	 of	 code	 in	 the	 loop	 about	 100	 times	 a
second.

The	game	loop	constantly	checks	for	new	events,	updates	the	state	of	the	window,	and
draws	the	window	on	the	screen.	Events	are	generated	by	pygame	whenever	the	user	presses	a
key,	clicks	or	moves	the	mouse,	or	performs	some	other	action	recognized	by	the	program
that	 should	 make	 something	 happen	 in	 the	 game.	 An	 Event	 is	 an	 object	 of	 the
pygame.event.Event	data	type.

Line	59	is	the	start	of	the	game	loop:

58.	#	Run	the	game	loop.
59.	while	True:

The	condition	for	the	while	statement	is	set	to	True	so	that	it	loops	forever.	The	only
time	the	loop	will	exit	is	if	an	event	causes	the	program	to	terminate.

Getting	Event	Objects
The	 function	 pygame.event.get()	 checks	 for	 any	 new	 pygame.event.Event	 objects	 (called
Event	objects	for	short)	that	have	been	generated	since	the	last	call	to	pygame.event.get().
These	events	are	returned	as	a	list	of	Event	objects,	which	the	program	will	then	execute	to
perform	 some	action	 in	 response	 to	 the	 event.	All	Event	 objects	have	 an	 attribute	 called
type,	which	tell	us	the	type	of	the	event.	In	this	chapter,	we	only	need	to	use	the	QUIT	event
type,	which	tells	us	when	the	user	quits	the	program:

60.					for	event	in	pygame.event.get():
61.									if	event.type	==	QUIT:

In	 line	60,	we	use	a	for	 loop	 to	 iterate	over	each	Event	object	 in	 the	 list	 returned	by



pygame.event.get().	If	the	type	attribute	of	the	event	is	equal	to	the	constant	variable	QUIT
—which	was	in	the	pygame.locals	module	we	imported	at	the	start	of	the	program—then
you	know	the	QUIT	event	has	been	generated.

The	 pygame	 module	 generates	 the	 QUIT	 event	 when	 the	 user	 closes	 the	 program’s
window	or	when	the	computer	shuts	down	and	tries	to	terminate	all	the	running	programs.
Next,	we’ll	tell	the	program	what	to	do	when	it	detects	the	QUIT	event.

Exiting	the	Program
If	 the	 QUIT	 event	 has	 been	 generated,	 the	 program	 will	 call	 both	 pygame.quit()	 and
sys.exit():

62.													pygame.quit()
63.													sys.exit()

The	pygame.quit()	function	is	sort	of	the	opposite	of	init().	You	need	to	call	it	before
exiting	your	program.	If	you	forget,	you	may	cause	IDLE	to	hang	after	your	program	has
ended.	Lines	62	and	63	quit	pygame	and	end	the	program.

Summary

In	this	chapter,	we’ve	covered	many	new	topics	that	will	let	us	do	a	lot	more	than	we	could
with	our	previous	games.	Instead	of	just	working	with	text	by	calling	print()	and	input(),	a
pygame	program	has	a	blank	window—created	by	pygame.display.set_mode()—that	we	can
draw	on.	pygame’s	drawing	 functions	 let	you	draw	shapes	 in	many	colors	 in	 this	window.
You	 can	 create	 text	 of	 various	 sizes	 as	 well.	 These	 drawings	 can	 be	 at	 any	 x-	 and	 y-
coordinate	inside	the	window,	unlike	the	text	created	by	print().

Even	 though	 the	code	 is	more	complicated,	pygame	 programs	 can	be	much	more	 fun
than	text	games.	Next,	let’s	learn	how	to	create	games	with	animated	graphics.



18
ANIMATING	GRAPHICS

Now	that	you’ve	learned	some	pygame	 skills,	we’ll	write	a	program	to	animate	boxes	that
bounce	 around	 a	 window.	 The	 boxes	 are	 different	 colors	 and	 sizes	 and	 move	 only	 in
diagonal	directions.	To	animate	the	boxes,	we’ll	move	them	a	few	pixels	on	each	iteration
through	 the	 game	 loop.	 This	 will	 make	 it	 look	 like	 the	 boxes	 are	 moving	 around	 the
screen.

TOPICS	COVERED	IN	THIS	CHAPTER
•	Animating	objects	with	the	game	loop

•	Changing	the	direction	of	an	object

Sample	Run	of	the	Animation	Program

When	 you	 run	 the	 Animation	 program,	 it	 will	 look	 something	 like	 Figure	 18-1.	 The
blocks	will	be	bouncing	off	the	edges	of	the	window.



Figure	18-1:	A	screenshot	of	the	Animation	program

Source	Code	for	the	Animation	Program

Enter	 the	 following	 program	 into	 the	 file	 editor	 and	 save	 it	 as	 animation.py.	 If	 you	 get
errors	after	typing	in	this	code,	compare	the	code	you	typed	to	the	book’s	code	with	the
online	diff	tool	at	https://www.nostarch.com/inventwithpython#diff.

animation.py

https://www.nostarch.com/inventwithpython#diff


	1.	import	pygame,	sys,	time
	2.	from	pygame.locals	import	*
	3.
	4.	#	Set	up	pygame.
	5.	pygame.init()
	6.
	7.	#	Set	up	the	window.
	8.	WINDOWWIDTH	=	400
	9.	WINDOWHEIGHT	=	400
10.	windowSurface	=	pygame.display.set_mode((WINDOWWIDTH,	WINDOWHEIGHT),
						0,	32)
11.	pygame.display.set_caption('Animation')
12.
13.	#	Set	up	direction	variables.
14.	DOWNLEFT	=	'downleft'
15.	DOWNRIGHT	=	'downright'
16.	UPLEFT	=	'upleft'
17.	UPRIGHT	=	'upright'
18.
19.	MOVESPEED	=	4
20.
21.	#	Set	up	the	colors.
22.	WHITE	=	(255,	255,	255)
23.	RED	=	(255,	0,	0)
24.	GREEN	=	(0,	255,	0)
25.	BLUE	=	(0,	0,	255)
26.
27.	#	Set	up	the	box	data	structure.
28.	b1	=	{'rect':pygame.Rect(300,	80,	50,	100),	'color':RED,	'dir':UPRIGHT}
29.	b2	=	{'rect':pygame.Rect(200,	200,	20,	20),	'color':GREEN,	'dir':UPLEFT}
30.	b3	=	{'rect':pygame.Rect(100,	150,	60,	60),	'color':BLUE,	'dir':DOWNLEFT}
31.	boxes	=	[b1,	b2,	b3]
32.
33.	#	Run	the	game	loop.
34.	while	True:
35.					#	Check	for	the	QUIT	event.
36.					for	event	in	pygame.event.get():
37.									if	event.type	==	QUIT:
38.													pygame.quit()
39.													sys.exit()
40.
41.					#	Draw	the	white	background	onto	the	surface.
42.					windowSurface.fill(WHITE)
43.
44.					for	b	in	boxes:
45.									#	Move	the	box	data	structure.
46.									if	b['dir']	==	DOWNLEFT:
47.													b['rect'].left	-=	MOVESPEED
48.													b['rect'].top	+=	MOVESPEED
49.									if	b['dir']	==	DOWNRIGHT:
50.													b['rect'].left	+=	MOVESPEED
51.													b['rect'].top	+=	MOVESPEED
52.									if	b['dir']	==	UPLEFT:
53.													b['rect'].left	-=	MOVESPEED
54.													b['rect'].top	-=	MOVESPEED
55.									if	b['dir']	==	UPRIGHT:
56.													b['rect'].left	+=	MOVESPEED
57.													b['rect'].top	-=	MOVESPEED
58.



59.									#	Check	whether	the	box	has	moved	out	of	the	window.
60.									if	b['rect'].top	<	0:
61.													#	The	box	has	moved	past	the	top.
62.													if	b['dir']	==	UPLEFT:
63.																	b['dir']	=	DOWNLEFT
64.													if	b['dir']	==	UPRIGHT:
65.																	b['dir']	=	DOWNRIGHT

66.									if	b['rect'].bottom	>	WINDOWHEIGHT:
67.													#	The	box	has	moved	past	the	bottom.
68.													if	b['dir']	==	DOWNLEFT:
69.																	b['dir']	=	UPLEFT
70.													if	b['dir']	==	DOWNRIGHT:
71.																	b['dir']	=	UPRIGHT
72.									if	b['rect'].left	<	0:
73.													#	The	box	has	moved	past	the	left	side.
74.													if	b['dir']	==	DOWNLEFT:
75.																	b['dir']	=	DOWNRIGHT
76.													if	b['dir']	==	UPLEFT:
77.																	b['dir']	=	UPRIGHT
78.									if	b['rect'].right	>	WINDOWWIDTH:
79.													#	The	box	has	moved	past	the	right	side.
80.													if	b['dir']	==	DOWNRIGHT:
81.																	b['dir']	=	DOWNLEFT
82.													if	b['dir']	==	UPRIGHT:
83.																	b['dir']	=	UPLEFT
84.
85.									#	Draw	the	box	onto	the	surface.
86.									pygame.draw.rect(windowSurface,	b['color'],	b['rect'])
87.
88.					#	Draw	the	window	onto	the	screen.
89.					pygame.display.update()
90.					time.sleep(0.02)

Moving	and	Bouncing	the	Boxes

In	this	program,	we’ll	have	three	boxes	of	different	colors	moving	around	and	bouncing	off
the	walls	of	a	window.	In	the	next	chapters,	we’ll	use	this	program	as	a	base	to	make	a	game
in	which	we	control	one	of	the	boxes.	To	do	this,	first	we	need	to	consider	how	we	want
the	boxes	to	move.

Each	box	will	move	in	one	of	four	diagonal	directions.	When	a	box	hits	the	side	of	the
window,	it	should	bounce	off	and	move	in	a	new	diagonal	direction.	The	boxes	will	bounce
as	shown	in	Figure	18-2.



Figure	18-2:	How	boxes	will	bounce

The	 new	 direction	 that	 a	 box	moves	 after	 it	 bounces	 depends	 on	 two	 things:	 which
direction	it	was	moving	before	the	bounce	and	which	wall	it	bounced	off.	There	are	eight
possible	ways	a	box	can	bounce:	two	different	ways	for	each	of	the	four	walls.	For	example,
if	a	box	is	moving	down	and	right	and	then	bounces	off	the	bottom	edge	of	the	window,	we
want	the	box’s	new	direction	to	be	up	and	right.

We	can	use	a	Rect	object	to	represent	the	position	and	size	of	the	box,	a	tuple	of	three
integers	 to	represent	 the	color	of	 the	box,	and	an	 integer	 to	represent	which	of	 the	 four
diagonal	directions	the	box	is	currently	moving	in.

The	game	loop	will	adjust	the	x-	and	y-position	of	the	box	in	the	Rect	object	and	draw
all	 the	 boxes	 on	 the	 screen	 at	 their	 current	 position	 on	 each	 iteration.	 As	 the	 program
execution	iterates	over	the	loop,	the	boxes	will	gradually	move	across	the	screen	so	that	it
looks	like	they’re	smoothly	moving	and	bouncing	around.

Setting	Up	the	Constant	Variables

Lines	1	to	5	are	just	setting	up	our	modules	and	initializing	pygame	as	we	did	in	Chapter	17:

	1.	import	pygame,	sys,	time
	2.	from	pygame.locals	import	*
	3.
	4.	#	Set	up	pygame.
	5.	pygame.init()
	6.
	7.	#	Set	up	the	window.
	8.	WINDOWWIDTH	=	400
	9.	WINDOWHEIGHT	=	400
10.	windowSurface	=	pygame.display.set_mode((WINDOWWIDTH,	WINDOWHEIGHT),
						0,	32)
11.	pygame.display.set_caption('Animation')

At	lines	8	and	9,	we	define	the	two	constants	for	the	window	width	and	height,	and	then
in	line	10,	we	use	those	constants	to	set	up	windowSurface,	which	will	represent	our	pygame



window.	Line	11	uses	set_caption()	to	set	the	window’s	caption	to	'Animation'.
In	this	program,	you’ll	 see	that	 the	size	of	 the	window’s	width	and	height	 is	used	for

more	than	just	the	call	to	set_mode().	We’ll	use	constant	variables	so	that	if	you	ever	want
to	change	the	size	of	the	window,	you	only	have	to	change	lines	8	and	9.	Since	the	window
width	 and	height	 never	 change	 during	 the	 program’s	 execution,	 constant	 variables	 are	 a
good	idea.

Constant	Variables	for	Direction
We’ll	use	constant	variables	for	each	of	the	four	directions	the	boxes	can	move	in:

13.	#	Set	up	direction	variables.
14.	DOWNLEFT	=	'downleft'
15.	DOWNRIGHT	=	'downright'
16.	UPLEFT	=	'upleft'
17.	UPRIGHT	=	'upright'

You	 could	 have	 used	 any	 value	 you	 wanted	 for	 these	 directions	 instead	 of	 using	 a
constant	variable.	For	example,	you	could	use	the	string	'downleft'	directly	 to	represent
the	down	and	left	diagonal	direction	and	retype	the	string	every	time	you	need	to	specify
that	direction.	However,	if	you	ever	mistyped	the	'downleft'	string,	you’d	end	up	with	a
bug	 that	 would	 cause	 your	 program	 to	 behave	 strangely,	 even	 though	 the	 program
wouldn’t	crash.

If	 you	 use	 constant	 variables	 instead	 and	 accidentally	 mistype	 the	 variable	 name,
Python	will	notice	that	there’s	no	variable	with	that	name	and	crash	the	program	with	an
error.	 This	 would	 still	 be	 a	 pretty	 bad	 bug,	 but	 at	 least	 you	 would	 know	 about	 it
immediately	and	could	fix	it.

We	also	create	a	constant	variable	to	determine	how	fast	the	boxes	should	move:

19.	MOVESPEED	=	4

The	value	4	in	the	constant	variable	MOVESPEED	tells	the	program	how	many	pixels	each
box	should	move	on	each	iteration	through	the	game	loop.

Constant	Variables	for	Color
Lines	22	to	25	set	up	constant	variables	for	the	colors.	Remember,	pygame	uses	a	tuple	of
three	 integer	 values	 for	 the	 amounts	 of	 red,	 green,	 and	blue,	 called	 an	RGB	value.	The
integers	range	from	0	to	255.

21.	#	Set	up	the	colors.
22.	WHITE	=	(255,	255,	255)
23.	RED	=	(255,	0,	0)
24.	GREEN	=	(0,	255,	0)
25.	BLUE	=	(0,	0,	255)



Constant	variables	are	used	for	readability,	just	as	in	the	pygame	Hello	World	program.

Setting	Up	the	Box	Data	Structures

Next	we’ll	 define	 the	 boxes.	To	make	 things	 simple,	we’ll	 set	 up	 a	 dictionary	 as	 a	 data
structure	(see	“The	Dictionary	Data	Type”	on	page	112)	 to	 represent	 each	moving	box.
The	dictionary	will	have	the	keys	'rect'	 (with	a	Rect	object	 for	a	value),	'color'	 (with	a
tuple	of	three	integers	for	a	value),	and	'dir'	(with	one	of	the	direction	constant	variables
for	 a	 value).	We’ll	 set	 up	 just	 three	 boxes	 for	 now,	 but	 you	 can	 set	 up	more	 boxes	 by
defining	more	data	structures.	The	animation	code	we’ll	use	later	can	be	used	to	animate
as	many	boxes	as	you	define	when	you	set	up	your	data	structures.

The	variable	b1	will	store	one	of	these	box	data	structures:

27.	#	Set	up	the	box	data	structure.
28.	b1	=	{'rect':pygame.Rect(300,	80,	50,	100),	'color':RED,	'dir':UPRIGHT}

This	box’s	top-left	corner	is	located	at	an	x-coordinate	of	300	and	a	y-coordinate	of	80.
It	has	a	width	of	50	pixels	and	a	height	of	100	pixels.	Its	color	is	RED,	and	its	initial	direction
is	UPRIGHT.

Lines	 29	 and	 30	 create	 two	more	 similar	 data	 structures	 for	 boxes	 that	 are	 different
sizes,	positions,	colors,	and	directions:

29.	b2	=	{'rect':pygame.Rect(200,	200,	20,	20),	'color':GREEN,	'dir':UPLEFT}
30.	b3	=	{'rect':pygame.Rect(100,	150,	60,	60),	'color':BLUE,	'dir':DOWNLEFT}
31.	boxes	=	[b1,	b2,	b3]

If	you	needed	to	retrieve	a	box	or	value	from	the	list,	you	could	do	so	using	indexes	and
keys.	 Entering	 boxes[0]	 would	 access	 the	 dictionary	 data	 structure	 in	 b1.	 If	 we	 entered
boxes[0]['color'],	 that	 would	 access	 the	 'color'	 key	 in	 b1,	 so	 the	 expression	 boxes[0]
['color']	would	evaluate	to	(255,	0,	0).	You	can	refer	to	any	of	the	values	in	any	of	the
box	data	structures	by	starting	with	boxes.	The	three	dictionaries,	b1,	b2,	and	b3,	are	then
stored	in	a	list	in	the	boxes	variable.

The	Game	Loop

The	game	loop	handles	animating	the	moving	boxes.	Animations	work	by	drawing	a	series
of	pictures	with	slight	differences	that	are	shown	one	right	after	another.	In	our	animation,
the	pictures	will	 be	of	 the	moving	boxes	 and	 the	 slight	differences	will	 be	 in	 each	box’s
position.	Each	box	will	move	by	4	pixels	 in	each	picture.	The	pictures	are	shown	so	fast
that	the	boxes	will	look	like	they	are	moving	smoothly	across	the	screen.	If	a	box	hits	the
side	 of	 the	 window,	 then	 the	 game	 loop	 will	 make	 the	 box	 bounce	 by	 changing	 its
direction.

Now	that	we	know	a	little	bit	about	how	the	game	loop	will	work,	let’s	code	it!



Handling	When	the	Player	Quits
When	the	player	quits	by	closing	the	window,	we	need	to	stop	the	program	in	the	same
way	we	did	the	pygame	Hello	World	program.	We	need	to	do	this	in	the	game	loop	so	that
our	program	is	constantly	checking	whether	there	has	been	a	QUIT	event.	Line	34	starts	the
loop,	and	lines	36	to	39	handle	quitting:

33.	#	Run	the	game	loop.
34.	while	True:
35.					#	Check	for	the	QUIT	event.
36.					for	event	in	pygame.event.get():
37.									if	event.type	==	QUIT:
38.													pygame.quit()
39.													sys.exit()

After	 that,	we	want	 to	make	 sure	 that	windowSurface	 is	 ready	 to	 be	drawn	on.	Later,
we’ll	draw	each	box	on	windowSurface	with	the	rect()	method.	On	each	iteration	through
the	game	loop,	the	code	redraws	the	entire	window	with	new	boxes	that	are	located	a	few
pixels	 over	 each	 time.	When	we	do	 that,	we’re	not	 redrawing	 the	whole	Surface	 object;
instead,	we’re	just	adding	a	drawing	of	the	Rect	object	to	windowSurface.	But	when	the	game
loop	iterates	to	draw	all	the	Rect	objects	again,	it	redraws	every	Rect	and	doesn’t	erase	the
old	Rect	drawing.	If	we	just	let	the	game	loop	keep	drawing	Rect	objects	on	the	screen,	we’ll
end	up	with	a	trail	of	Rect	objects	instead	of	a	smooth	animation.	To	avoid	that,	we	need
to	clear	the	window	for	every	iteration	of	the	game	loop.

In	 order	 to	 do	 that,	 line	 42	 fills	 the	 entire	 Surface	 with	 white	 so	 that	 anything
previously	drawn	on	it	is	erased:

41.					#	Draw	the	white	background	onto	the	surface.
42.					windowSurface.fill(WHITE)

Without	 calling	 windowSurface.fill(WHITE)	 to	 white	 out	 the	 entire	 window	 before
drawing	the	rectangles	in	their	new	position,	you	would	have	a	trail	of	Rect	objects.	If	you
want	to	try	it	out	and	see	what	happens,	you	can	comment	out	line	42	by	putting	a	#	at	the
beginning	of	the	line.

Once	windowSurface	is	filled,	we	can	start	drawing	all	of	our	Rect	objects.

Moving	Each	Box
In	order	to	update	the	position	of	each	box,	we	need	to	iterate	over	the	boxes	list	inside	the
game	loop:

44.					for	b	in	boxes:

Inside	the	for	loop,	you’ll	refer	to	the	current	box	as	b	to	make	the	code	easier	to	type.
We	need	to	change	each	box	depending	on	the	direction	it	is	already	moving,	so	we’ll	use
if	statements	to	figure	out	the	box’s	direction	by	checking	the	dir	key	inside	the	box	data



structure.	 Then	 we’ll	 change	 the	 box’s	 position	 depending	 on	 the	 direction	 the	 box	 is
moving.

45.									#	Move	the	box	data	structure.
46.									if	b['dir']	==	DOWNLEFT:
47.													b['rect'].left	-=	MOVESPEED
48.													b['rect'].top	+=	MOVESPEED
49.									if	b['dir']	==	DOWNRIGHT:
50.													b['rect'].left	+=	MOVESPEED
51.													b['rect'].top	+=	MOVESPEED
52.									if	b['dir']	==	UPLEFT:
53.													b['rect'].left	-=	MOVESPEED
54.													b['rect'].top	-=	MOVESPEED
55.									if	b['dir']	==	UPRIGHT:
56.													b['rect'].left	+=	MOVESPEED
57.													b['rect'].top	-=	MOVESPEED

The	new	value	to	set	the	left	and	top	attributes	of	each	box	to	depends	on	the	box’s
direction.	 If	 the	 direction	 is	 either	 DOWNLEFT	 or	 DOWNRIGHT,	 you	 want	 to	 increase	 the	 top
attribute.	If	the	direction	is	UPLEFT	or	UPRIGHT,	you	want	to	decrease	the	top	attribute.

If	the	box’s	direction	is	DOWNRIGHT	or	UPRIGHT,	you	want	to	increase	the	left	attribute.	If
the	direction	is	DOWNLEFT	or	UPLEFT,	you	want	to	decrease	the	left	attribute.

The	 value	 of	 these	 attributes	will	 increase	 or	 decrease	 by	 the	 amount	 of	 the	 integer
stored	 in	 MOVESPEED,	 which	 stores	 how	 many	 pixels	 the	 boxes	 move	 on	 each	 iteration
through	the	game	loop.	We	set	MOVESPEED	on	line	19.

For	example,	if	b['dir']	is	set	to	'downleft',	b['rect'].left	to	40,	and	b['rect'].top	to
100,	then	the	condition	on	line	46	will	be	True.	If	MOVESPEED	is	set	to	4,	then	lines	47	and	48
will	change	the	Rect	object	so	that	b['rect'].left	is	36	and	b['rect'].top	is	104.	Changing
the	Rect	value	then	causes	the	drawing	code	on	line	86	to	draw	the	rectangle	slightly	down
and	to	the	left	of	its	previous	position.

Bouncing	a	Box
After	lines	44	to	57	have	moved	the	box,	we	need	to	check	whether	the	box	has	gone	past
the	edge	of	the	window.	If	it	has,	you	want	to	bounce	the	box.	In	the	code,	this	means	the
for	 loop	 will	 set	 a	 new	 value	 for	 the	 box’s	 'dir'	 key.	 The	 box	 will	 move	 in	 the	 new
direction	 on	 the	 next	 iteration	 of	 the	 game	 loop.	 This	 makes	 it	 look	 like	 the	 box	 has
bounced	off	the	side	of	the	window.

In	the	if	statement	on	line	60,	we	determine	that	the	box	has	moved	past	the	top	edge
of	the	window	if	the	top	attribute	of	the	box’s	Rect	object	is	less	than	0:

59.									#	Check	whether	the	box	has	moved	out	of	the	window.
60.									if	b['rect'].top	<	0:
61.													#	The	box	has	moved	past	the	top.
62.													if	b['dir']	==	UPLEFT:
63.																	b['dir']	=	DOWNLEFT
64.													if	b['dir']	==	UPRIGHT:
65.																	b['dir']	=	DOWNRIGHT



In	 that	 case,	 the	 direction	 will	 be	 changed	 based	 on	 which	 direction	 the	 box	 was
moving.	 If	 the	box	was	moving	UPLEFT,	 then	 it	will	now	move	DOWNLEFT;	 if	 it	was	moving
UPRIGHT,	it	will	now	move	DOWNRIGHT.

Lines	66	to	71	handle	the	situation	in	which	the	box	has	moved	past	the	bottom	edge	of
the	window:

66.									if	b['rect'].bottom	>	WINDOWHEIGHT:
67.													#	The	box	has	moved	past	the	bottom.
68.													if	b['dir']	==	DOWNLEFT:
69.																	b['dir']	=	UPLEFT
70.													if	b['dir']	==	DOWNRIGHT:
71.																	b['dir']	=	UPRIGHT

These	lines	check	whether	the	bottom	attribute	(not	the	top	attribute)	is	greater	than	the
value	in	WINDOWHEIGHT.	Remember	that	the	y-coordinates	start	at	0	at	the	top	of	the	window
and	increase	to	WINDOWHEIGHT	at	the	bottom.

Lines	72	to	83	handle	the	behavior	of	the	boxes	when	they	bounce	off	the	sides:

72.									if	b['rect'].left	<	0:
73.													#	The	box	has	moved	past	the	left	side.
74.													if	b['dir']	==	DOWNLEFT:
75.																	b['dir']	=	DOWNRIGHT
76.													if	b['dir']	==	UPLEFT:
77.																	b['dir']	=	UPRIGHT
78.									if	b['rect'].right	>	WINDOWWIDTH:
79.													#	The	box	has	moved	past	the	right	side.
80.													if	b['dir']	==	DOWNRIGHT:
81.																	b['dir']	=	DOWNLEFT
82.													if	b['dir']	==	UPRIGHT:
83.																	b['dir']	=	UPLEFT

Lines	78	to	83	are	similar	to	lines	72	to	77	but	check	whether	the	right	side	of	the	box
has	moved	past	 the	window’s	 right	 edge.	Remember,	 the	 x-coordinates	 start	 at	0	 on	 the
window’s	left	edge	and	increase	to	WINDOWWIDTH	on	the	window’s	right	edge.

Drawing	the	Boxes	on	the	Window	in	Their	New	Positions
Every	time	the	boxes	move,	we	need	to	draw	them	in	their	new	positions	on	windowSurface
by	calling	the	pygame.draw.rect()	function:

85.									#	Draw	the	box	onto	the	surface.
86.									pygame.draw.rect(windowSurface,	b['color'],	b['rect'])

You	need	to	pass	windowSurface	to	the	function	because	it	is	the	Surface	object	to	draw
the	rectangle	on.	Pass	b['color']	to	the	function	because	it	is	the	rectangle’s	color.	Finally,
pass	b['rect']	because	it	 is	the	Rect	object	with	the	position	and	size	of	 the	rectangle	to
draw.

Line	86	is	the	last	line	of	the	for	loop.



Drawing	the	Window	on	the	Screen
After	 the	 for	 loop,	 each	 box	 in	 the	 boxes	 list	 will	 be	 drawn,	 so	 you	 need	 to	 call
pygame.display.update()	to	draw	windowSurface	on	the	screen:

88.					#	Draw	the	window	onto	the	screen.
89.					pygame.display.update()
90.					time.sleep(0.02)

The	computer	can	move,	bounce,	and	draw	the	boxes	so	fast	that	if	the	program	ran	at
full	speed,	all	the	boxes	would	look	like	a	blur.	In	order	to	make	the	program	run	slowly
enough	 that	 we	 can	 see	 the	 boxes,	 we	 need	 to	 add	 time.sleep(0.02).	 You	 can	 try
commenting	out	the	time.sleep(0.02)	 line	and	running	the	program	to	see	what	it	 looks
like.	The	call	to	time.sleep()	will	pause	the	program	for	0.02	seconds,	or	20	milliseconds,
between	each	movement	of	the	boxes.

After	this	line,	execution	returns	to	the	start	of	the	game	loop	and	begins	the	process	all
over	again.	This	way,	the	boxes	are	constantly	moving	a	little,	bouncing	off	the	walls,	and
being	drawn	on	the	screen	in	their	new	positions.

Summary

This	chapter	has	presented	a	whole	new	way	of	creating	computer	programs.	The	previous
chapters’	 programs	 would	 stop	 and	 wait	 for	 the	 player	 to	 enter	 text.	 However,	 in	 our
Animation	program,	the	program	constantly	updates	the	data	structures	without	waiting
for	input	from	the	player.

Remember	that	we	had	data	structures	that	would	represent	the	state	of	the	board	in
our	Hangman	and	Tic-Tac-Toe	games.	These	data	structures	were	passed	to	a	drawBoard()
function	 to	 be	 displayed	 on	 the	 screen.	 Our	 Animation	 program	 is	 similar.	 The	 boxes
variable	holds	a	 list	of	data	structures	representing	boxes	 to	be	drawn	to	 the	screen,	and
these	are	drawn	inside	the	game	loop.

But	without	calls	to	input(),	how	do	we	get	input	from	the	player?	In	Chapter	19,	we’ll
cover	how	programs	know	when	the	player	presses	keys	on	the	keyboard.	We’ll	also	learn
about	a	new	concept	called	collision	detection.



19
COLLISION	DETECTION

Collision	detection	involves	figuring	out	when	two	things	on	the	screen	have	touched	(that	is,
collided	with)	each	other.	Collision	detection	is	really	useful	for	games.	For	example,	if	the
player	touches	an	enemy,	they	may	lose	health.	Or	if	the	player	touches	a	coin,	they	should
automatically	 pick	 it	 up.	 Collision	 detection	 can	 help	 determine	 whether	 the	 game
character	is	standing	on	solid	ground	or	there’s	nothing	but	empty	air	beneath	them.

In	 our	 games,	 collision	 detection	 will	 determine	 whether	 two	 rectangles	 are
overlapping	each	other.	This	chapter’s	example	program	will	 cover	 this	basic	 technique.
We’ll	also	look	at	how	our	pygame	programs	can	accept	input	from	the	player	through	the
keyboard	and	the	mouse.	It’s	a	bit	more	complicated	than	calling	the	input()	function,	as
we	did	 for	our	 text	programs.	But	using	 the	keyboard	 is	much	more	 interactive	 in	GUI
programs,	and	using	the	mouse	isn’t	even	possible	in	our	text	games.	These	two	concepts
will	make	your	games	more	exciting!

TOPICS	COVERED	IN	THIS	CHAPTER
•	Clock	objects

•	Keyboard	input	in	pygame

•	Mouse	input	in	pygame

•	Collision	detection

•	Not	modifying	a	list	while	iterating	over	it

Sample	Run	of	the	Collision	Detection	Program

In	this	program,	the	player	uses	the	keyboard’s	arrow	keys	to	move	a	black	box	around	the



screen.	 Smaller	 green	 squares,	 which	 represent	 food,	 appear	 on	 the	 screen,	 and	 the	 box
“eats”	them	as	it	touches	them.	The	player	can	click	anywhere	in	the	window	to	create	new
food	squares.	In	addition,	ESC	quits	the	program,	and	the	X	key	teleports	the	player	to	a
random	place	on	the	screen.

Figure	19-1	shows	what	the	program	will	look	like	once	finished.

Figure	19-1:	A	screenshot	of	the	pygame	Collision	Detection	program

Source	Code	for	the	Collision	Detection	Program

Start	a	new	file,	enter	the	following	code,	and	then	save	it	as	collisionDetection.py.	If	you	get
errors	after	typing	in	this	code,	compare	the	code	you	typed	to	the	book’s	code	with	the
online	diff	tool	at	https://www.nostarch.com/inventwithpython#diff.

https://www.nostarch.com/inventwithpython#diff


collision	Detection.py

		1.	import	pygame,	sys,	random
		2.	from	pygame.locals	import	*
		3.
		4.	#	Set	up	pygame.
		5.	pygame.init()
		6.	mainClock	=	pygame.time.Clock()
		7.
		8.	#	Set	up	the	window.
		9.	WINDOWWIDTH	=	400
	10.	WINDOWHEIGHT	=	400
	11.	windowSurface	=	pygame.display.set_mode((WINDOWWIDTH,	WINDOWHEIGHT),
							0,	32)
	12.	pygame.display.set_caption('Collision	Detection')
	13.
	14.	#	Set	up	the	colors.
	15.	BLACK	=	(0,	0,	0)
	16.	GREEN	=	(0,	255,	0)
	17.	WHITE	=	(255,	255,	255)
	18.
	19.	#	Set	up	the	player	and	food	data	structures.
	20.	foodCounter	=	0
	21.	NEWFOOD	=	40
	22.	FOODSIZE	=	20
	23.	player	=	pygame.Rect(300,	100,	50,	50)
	24.	foods	=	[]
	25.	for	i	in	range(20):
	26.					foods.append(pygame.Rect(random.randint(0,	WINDOWWIDTH	-	FOODSIZE),
											random.randint(0,	WINDOWHEIGHT	-	FOODSIZE),	FOODSIZE,	FOODSIZE))
	27.
	28.	#	Set	up	movement	variables.
	29.	moveLeft	=	False
	30.	moveRight	=	False
	31.	moveUp	=	False
	32.	moveDown	=	False
	33.
	34.	MOVESPEED	=	6
	35.
	36.
	37.	#	Run	the	game	loop.



	38.	while	True:
	39.					#	Check	for	events.
	40.					for	event	in	pygame.event.get():
	41.									if	event.type	==	QUIT:
42.													pygame.quit()
	43.													sys.exit()
	44.									if	event.type	==	KEYDOWN:
	45.													#	Change	the	keyboard	variables.
	46.													if	event.key	==	K_LEFT	or	event.key	==	K_a:
	47.																	moveRight	=	False
	48.																	moveLeft	=	True
	49.													if	event.key	==	K_RIGHT	or	event.key	==	K_d:
	50.																	moveLeft	=	False
	51.																	moveRight	=	True
	52.													if	event.key	==	K_UP	or	event.key	==	K_w:
	53.																	moveDown	=	False
	54.																	moveUp	=	True
	55.													if	event.key	==	K_DOWN	or	event.key	==	K_s:
	56.																	moveUp	=	False
	57.																	moveDown	=	True
	58.									if	event.type	==	KEYUP:
	59.													if	event.key	==	K_ESCAPE:
	60.																	pygame.quit()
	61.																	sys.exit()
	62.													if	event.key	==	K_LEFT	or	event.key	==	K_a:
	63.																	moveLeft	=	False
	64.													if	event.key	==	K_RIGHT	or	event.key	==	K_d:
	65.																	moveRight	=	False
	66.													if	event.key	==	K_UP	or	event.key	==	K_w:
	67.																	moveUp	=	False
	68.													if	event.key	==	K_DOWN	or	event.key	==	K_s:
	69.																	moveDown	=	False
	70.													if	event.key	==	K_x:
	71.																	player.top	=	random.randint(0,	WINDOWHEIGHT	-
																							player.height)
	72.																	player.left	=	random.randint(0,	WINDOWWIDTH	-
																							player.width)
	73.
	74.									if	event.type	==	MOUSEBUTTONUP:
	75.													foods.append(pygame.Rect(event.pos[0],	event.pos[1],
																			FOODSIZE,	FOODSIZE))
	76.
	77.					foodCounter	+=	1
	78.					if	foodCounter	>=	NEWFOOD:
	79.									#	Add	new	food.
	80.									foodCounter	=	0
	81.									foods.append(pygame.Rect(random.randint(0,	WINDOWWIDTH	-
															FOODSIZE),	random.randint(0,	WINDOWHEIGHT	-	FOODSIZE),
															FOODSIZE,	FOODSIZE))
	82.
	83.					#	Draw	the	white	background	onto	the	surface.
	84.					windowSurface.fill(WHITE)
	85.
	86.					#	Move	the	player.
	87.					if	moveDown	and	player.bottom	<	WINDOWHEIGHT:
	88.									player.top	+=	MOVESPEED
	89.					if	moveUp	and	player.top	>	0:
	90.									player.top	-=	MOVESPEED
91.					if	moveLeft	and	player.left	>	0:
	92.									player.left	-=	MOVESPEED



	93.					if	moveRight	and	player.right	<	WINDOWWIDTH:
	94.									player.right	+=	MOVESPEED
	95.
	96.					#	Draw	the	player	onto	the	surface.
	97.					pygame.draw.rect(windowSurface,	BLACK,	player)
	98.
	99.					#	Check	whether	the	player	has	intersected	with	any	food	squares.
100.					for	food	in	foods[:]:
101.									if	player.colliderect(food):
102.													foods.remove(food)
103.
104.					#	Draw	the	food.
105.					for	i	in	range(len(foods)):
106.									pygame.draw.rect(windowSurface,	GREEN,	foods[i])
107.
108.					#	Draw	the	window	onto	the	screen.
109.					pygame.display.update()
110.					mainClock.tick(40)

Importing	the	Modules

The	 pygame	 Collision	 Detection	 program	 imports	 the	 same	 modules	 as	 the	 Animation
program	in	Chapter	18,	plus	the	random	module:

		1.	import	pygame,	sys,	random
		2.	from	pygame.locals	import	*

Using	a	Clock	to	Pace	the	Program

Lines	5	to	17	mostly	do	the	same	things	that	the	Animation	program	did:	they	initialize
pygame,	set	WINDOWHEIGHT	and	WINDOWWIDTH,	and	assign	the	color	and	direction	constants.

However,	line	6	is	new:

		6.	mainClock	=	pygame.time.Clock()

In	the	Animation	program,	a	call	to	time.sleep(0.02)	slowed	down	the	program	so	that
it	 wouldn’t	 run	 too	 fast.	 While	 this	 call	 will	 always	 pause	 for	 0.02	 seconds	 on	 all
computers,	the	speed	of	the	rest	of	the	program	depends	on	how	fast	the	computer	is.	If	we
want	 this	 program	 to	 run	 at	 the	 same	 speed	 on	 any	 computer,	we	 need	 a	 function	 that
pauses	longer	on	fast	computers	and	shorter	on	slow	computers.

A	pygame.time.Clock	object	can	pause	an	appropriate	amount	of	time	on	any	computer.
Line	 110	 calls	 mainClock.tick(40)	 inside	 the	 game	 loop.	 This	 call	 to	 the	 Clock	 object’s
tick()	method	waits	enough	time	so	that	it	runs	at	about	40	iterations	a	second,	no	matter
what	the	computer’s	speed	is.	This	ensures	that	the	game	never	runs	faster	than	you	expect.
A	call	to	tick()	should	appear	only	once	in	the	game	loop.



Setting	Up	the	Window	and	Data	Structures

Lines	19	to	22	set	up	a	few	variables	for	the	food	squares	that	appear	on	the	screen:

19.	#	Set	up	the	player	and	food	data	structures.
20.	foodCounter	=	0
21.	NEWFOOD	=	40
22.	FOODSIZE	=	20

The	 foodCounter	 variable	will	 start	 at	 the	 value	 0,	 NEWFOOD	 at	 40,	 and	 FOODSIZE	 at	 20.
We’ll	see	how	these	are	used	later	when	we	create	the	food.

Line	23	sets	up	a	pygame.Rect	object	for	the	player’s	location:

23.	player	=	pygame.Rect(300,	100,	50,	50)

The	player	variable	has	a	pygame.Rect	object	that	represents	the	box’s	size	and	position.
The	 player’s	 box	will	move	 like	 the	 boxes	 did	 in	 the	Animation	 program	 (see	 “Moving
Each	Box”	on	page	280),	but	in	this	program,	the	player	can	control	where	the	box	moves.

Next,	we	set	up	some	code	to	keep	track	of	the	food	squares:

24.	foods	=	[]
25.	for	i	in	range(20):
26.					foods.append(pygame.Rect(random.randint(0,	WINDOWWIDTH	-	FOODSIZE),
										random.randint(0,	WINDOWHEIGHT	-	FOODSIZE),	FOODSIZE,	FOODSIZE))

The	program	will	keep	track	of	every	food	square	with	a	list	of	Rect	objects	 in	foods.
Lines	25	and	26	create	20	food	squares	randomly	placed	around	the	screen.	You	can	use	the
random.randint()	function	to	come	up	with	random	x-	and	y-coordinates.

On	line	26,	the	program	calls	the	pygame.Rect()	constructor	function	to	return	a	new
pygame.Rect	object.	It	will	represent	the	position	and	size	of	a	new	food	square.	The	first
two	parameters	for	pygame.Rect()	are	the	x-	and	y-coordinates	of	the	top-left	corner.	You
want	the	random	coordinate	to	be	between	0	and	the	size	of	the	window	minus	the	size	of
the	food	square.	If	you	set	the	random	coordinate	between	0	and	the	size	of	the	window,
then	the	food	square	might	be	pushed	outside	of	the	window	altogether,	as	in	Figure	19-2.

The	third	and	fourth	parameters	for	pygame.Rect()	are	the	width	and	height	of	the	food
square.	Both	the	width	and	height	are	the	values	in	the	FOODSIZE	constant.



Figure	19-2:	For	a	100×100	square	in	a	400×400	window,	setting	the	top-left	edge	at	400	would	place	the
rectangle	outside	of	the	window.	To	be	inside,	the	left	edge	should	be	set	at	300	instead.

The	third	and	fourth	parameters	for	pygame.Rect()	are	the	width	and	height	of	the	food
square.	Both	the	width	and	height	are	the	values	in	the	FOODSIZE	constant.

Setting	Up	Variables	to	Track	Movement

Starting	at	line	29,	the	code	sets	up	some	variables	that	track	the	movement	of	the	player’s
box	for	each	direction	the	box	can	move:

28.	#	Set	up	movement	variables.
29.	moveLeft	=	False
30.	moveRight	=	False
31.	moveUp	=	False
32.	moveDown	=	False

The	 four	 variables	 have	 Boolean	 values	 to	 keep	 track	 of	 which	 arrow	 key	 is	 being
pressed	and	are	initially	set	to	False.	For	example,	when	the	player	presses	the	left	arrow
key	on	their	keyboard	to	move	the	box,	moveLeft	is	set	to	True.	When	they	let	go	of	the	key,
moveLeft	is	set	back	to	False.

Lines	34	to	43	are	nearly	identical	to	code	in	the	previous	pygame	programs.	These	lines
handle	the	start	of	the	game	loop	and	what	to	do	when	the	player	quits	the	program.	We’ll
skip	the	explanation	for	this	code	since	we	covered	it	in	the	previous	chapter.

Handling	Events
The	 pygame	 module	 can	 generate	 events	 in	 response	 to	 user	 input	 from	 the	 mouse	 or



keyboard.	The	following	are	the	events	that	can	be	returned	by	pygame.event.get():

QUIT	Generated	when	the	player	closes	the	window.

KEYDOWN	Generated	when	the	player	presses	a	key.	Has	a	key	attribute	 that	 tells	which
key	was	 pressed.	Also	has	 a	mod	 attribute	 that	 tells	whether	 the	 SHIFT,	CTRL,	ALT,	 or
other	keys	were	held	down	when	this	key	was	pressed.

KEYUP	Generated	when	 the	 player	 releases	 a	 key.	Has	 key	 and	 mod	 attributes	 that	 are
similar	to	those	for	KEYDOWN.

MOUSEMOTION	 Generated	 whenever	 the	 mouse	 moves	 over	 the	 window.	 Has	 a	 pos
attribute	(short	for	position)	that	returns	a	tuple	(x,	y)	for	the	coordinates	of	where	the
mouse	 is	 in	 the	window.	The	rel	 attribute	 also	 returns	 an	(x,	 y)	 tuple,	 but	 it	 gives
relative	coordinates	since	the	last	MOUSEMOTION	event.	For	example,	if	the	mouse	moves
left	by	4	pixels	from	(200,	200)	to	(196,	200),	then	rel	will	be	the	tuple	value	(-4,	0).
The	button	attribute	returns	a	tuple	of	three	integers.	The	first	integer	in	the	tuple	is
for	 the	 left	mouse	button,	 the	 second	 integer	 is	 for	 the	middle	mouse	button	 (if	one
exists),	and	the	third	integer	is	for	the	right	mouse	button.	These	integers	will	be	0	 if
they	are	not	being	pressed	when	the	mouse	is	moved	and	1	if	they	are	pressed.

MOUSEBUTTONDOWN	Generated	when	a	mouse	button	is	pressed	in	the	window.	This	event
has	a	pos	attribute,	which	is	an	(x,	y)	tuple	for	the	coordinates	of	where	the	mouse	was
positioned	when	the	button	was	pressed.	There	is	also	a	button	attribute,	which	 is	an
integer	from	1	to	5	that	tells	which	mouse	button	was	pressed,	as	explained	in	Table	19-
1.

MOUSEBUTTONUP	 Generated	 when	 the	 mouse	 button	 is	 released.	 This	 has	 the	 same
attributes	as	MOUSEBUTTONDOWN.

When	 the	 MOUSEBUTTONDOWN	 event	 is	 generated,	 it	 has	 a	 button	 attribute.	 The	 button
attribute	 is	 a	 value	 that	 is	 associated	with	 the	 different	 types	 of	 buttons	 a	mouse	might
have.	For	 instance,	 the	 left	button	has	 the	value	1,	 and	 the	 right	button	has	 the	value	3.
Table	19-1	lists	all	of	the	button	attributes	for	mouse	events,	but	note	that	a	mouse	might
not	have	all	the	button	values	listed	here.

Table	19-1:	The	button	Attribute	Values

Value	of	button Mouse	button

1 Left	button

2 Middle	button

3 Right	button

4 Scroll	wheel	moved	up

5 Scroll	wheel	moved	down



We’ll	use	 these	events	 to	 let	 the	player	control	 the	box	with	KEYDOWN	events	and	with
mouse	button	clicks.

Handling	the	KEYDOWN	Event
The	code	 to	handle	 the	keypress	 and	key	 release	events	 starts	on	 line	44;	 it	 includes	 the
KEYDOWN	event	type:

44.									if	event.type	==	KEYDOWN:

If	 the	 event	 type	 is	 KEYDOWN,	 then	 the	 Event	 object	 has	 a	 key	 attribute	 that	 indicates
which	key	was	pressed.	When	the	player	presses	an	arrow	key	or	a	WASD	key	(pronounced
wazz-dee,	 these	keys	 are	 in	 the	 same	 layout	 as	 the	 arrow	keys	but	on	 the	 left	 side	of	 the
keyboard),	then	we	want	the	box	to	move.	We’ll	use	if	statements	to	check	the	pressed	key
in	order	to	tell	which	direction	the	box	should	move.

Line	 46	 compares	 this	 key	 attribute	 to	 K_LEFT	 and	 K_a,	 which	 are	 the	 pygame.locals
constants	 that	 represent	 the	 left	 arrow	 key	 on	 the	 keyboard	 and	 the	 A	 in	 WASD,
respectively.	Lines	46	to	57	check	for	each	of	the	arrow	and	WASD	keys:

45.													#	Change	the	keyboard	variables.
46.													if	event.key	==	K_LEFT	or	event.key	==	K_a:
47.																	moveRight	=	False
48.																	moveLeft	=	True
49.													if	event.key	==	K_RIGHT	or	event.key	==	K_d:
50.																	moveLeft	=	False
51.																	moveRight	=	True
52.													if	event.key	==	K_UP	or	event.key	==	K_w:
53.																	moveDown	=	False
54.																	moveUp	=	True
55.													if	event.key	==	K_DOWN	or	event.key	==	K_s:
56.																	moveUp	=	False
57.																	moveDown	=	True

When	 one	 of	 these	 keys	 is	 pressed,	 the	 code	 tells	 Python	 to	 set	 the	 corresponding
movement	 variable	 to	 True.	 Python	will	 also	 set	 the	movement	 variable	 of	 the	 opposite
direction	to	False.

For	example,	 the	program	executes	 lines	47	and	48	when	the	 left	arrow	key	has	been
pressed.	In	this	case,	Python	will	set	moveLeft	to	True	and	moveRight	to	False	(even	though
moveRight	might	already	be	False,	Python	will	set	it	to	False	again	just	to	be	sure).

On	line	46,	event.key	can	either	be	equal	to	K_LEFT	or	K_a.	The	value	in	event.key	is	set
to	the	same	value	as	K_LEFT	if	the	left	arrow	key	is	pressed	or	the	same	value	as	K_a	if	the	A
key	is	pressed.

By	executing	the	code	on	lines	47	and	48	if	the	keystroke	is	either	K_LEFT	or	K_a,	you
make	the	left	arrow	key	and	the	A	key	do	the	same	thing.	The	W,	A,	S,	and	D	keys	are	used
as	 alternates	 for	 changing	 the	movement	 variables,	 letting	 the	player	 use	 their	 left	 hand
instead	of	their	right	if	they	prefer.	You	can	see	an	illustration	of	both	sets	of	keys	in	Figure



19-3.

Figure	19-3:	The	WASD	keys	can	be	programmed	to	do	the	same	thing	as	the	arrow	keys.

The	constants	for	letter	and	number	keys	are	easy	to	figure	out:	the	A	key’s	constant	is
K_a,	 the	B	key’s	 constant	 is	K_b,	 and	 so	on.	The	3	 key’s	 constant	 is	K_3.	Table	 19-2	 lists
commonly	used	constant	variables	for	the	other	keyboard	keys.

Table	19-2:	Constant	Variables	for	Keyboard	Keys

pygame	constant	variable Keyboard	key

K_LEFT Left	arrow
K_RIGHT Right	arrow
K_UP Up	arrow
K_DOWN Down	arrow
K_ESCAPE ESC

K_BACKSPACE Backspace
K_TAB TAB

K_RETURN RETURN	or	ENTER

K_SPACE Spacebar
K_DELETE DEL

K_LSHIFT Left	SHIFT

K_RSHIFT Right	SHIFT

K_LCTRL Left	CTRL

K_RCTRL Right	CTRL

K_LALT Left	ALT

K_RALT Right	ALT

K_HOME HOME

K_END END

K_PAGEUP PGUP

K_PAGEDOWN PGDN

K_F1



F1
K_F2 F2
K_F3 F3
K_F4 F4
K_F5 F5
K_F6 F6
K_F7 F7
K_F8 F8
K_F9 F9
K_F10 F10
K_F11 F11
K_F12 F12

Handling	the	KEYUP	Event
When	the	player	releases	the	key	that	they	were	pressing,	a	KEYUP	event	is	generated:

58.									if	event.type	==	KEYUP:

If	the	key	that	the	player	released	was	ESC,	then	Python	should	terminate	the	program.
Remember,	 in	 pygame	 you	 must	 call	 the	 pygame.quit()	 function	 before	 calling	 the
sys.exit()	function,	which	we	do	in	lines	59	to	61:

59.													if	event.key	==	K_ESCAPE:
60.																	pygame.quit()
61.																	sys.exit()

Lines	62	to	69	set	a	movement	variable	to	False	if	that	direction’s	key	was	released:

62.													if	event.key	==	K_LEFT	or	event.key	==	K_a:
63.																	moveLeft	=	False
64.													if	event.key	==	K_RIGHT	or	event.key	==	K_d:
65.																	moveRight	=	False
66.													if	event.key	==	K_UP	or	event.key	==	K_w:
67.																	moveUp	=	False
68.													if	event.key	==	K_DOWN	or	event.key	==	K_s:
69.																	moveDown	=	False

Setting	 the	 movement	 variable	 to	 False	 through	 a	 KEYUP	 event	 makes	 the	 box	 stop
moving.



Teleporting	the	Player

You	can	also	add	teleportation	to	the	game.	If	the	player	presses	the	X	key,	lines	71	and	72
set	the	position	of	the	player’s	box	to	a	random	place	on	the	window:

70.													if	event.key	==	K_x:
71.																	player.top	=	random.randint(0,	WINDOWHEIGHT	-
																						player.height)
72.																	player.left	=	random.randint(0,	WINDOWWIDTH	-
																						player.width)

Line	70	checks	whether	the	player	pressed	the	X	key.	Then,	 line	71	sets	a	random	x-
coordinate	to	teleport	the	player	to	between	0	and	the	window’s	height	minus	the	player
rectangle’s	height.	Line	72	executes	 similar	 code,	but	 for	 the	y-coordinate.	This	 enables
the	player	 to	 teleport	 around	 the	window	by	pushing	 the	X	key,	 but	 they	 can’t	 control
where	they	will	teleport—it’s	completely	random.

Adding	New	Food	Squares

There	are	two	ways	the	player	can	add	new	food	squares	to	the	screen.	They	can	click	a
spot	in	the	window	where	they	want	the	new	food	square	to	appear,	or	they	can	wait	until
the	game	loop	has	iterated	NEWFOOD	number	of	times,	in	which	case	a	new	food	square	will
be	randomly	generated	on	the	window.

We’ll	look	at	how	food	is	added	through	the	player’s	mouse	input	first:

74.									if	event.type	==	MOUSEBUTTONUP:
75.													foods.append(pygame.Rect(event.pos[0],	event.pos[1],
																		FOODSIZE,	FOODSIZE))

Mouse	 input	 is	 handled	 by	 events	 just	 like	 keyboard	 input.	The	 MOUSEBUTTONUP	 event
occurs	when	the	player	releases	the	mouse	button	after	clicking	it.

On	line	75,	the	x-coordinate	is	stored	in	event.pos[0],	and	the	y-coordinate	is	stored	in
event.pos[1].	Line	75	creates	a	new	Rect	object	to	represent	a	new	food	square	and	places	it
where	the	MOUSEBUTTONUP	event	occurred.	By	adding	a	new	Rect	object	to	the	foods	list,	the
code	displays	a	new	food	square	on	the	screen.

In	 addition	 to	 being	 added	 manually	 at	 the	 player’s	 discretion,	 food	 squares	 are
generated	automatically	through	the	code	on	lines	77	to	81:

77.					foodCounter	+=	1
78.					if	foodCounter	>=	NEWFOOD:
79.									#	Add	new	food.
80.									foodCounter	=	0
81.									foods.append(pygame.Rect(random.randint(0,	WINDOWWIDTH	-
														FOODSIZE),	random.randint(0,	WINDOWHEIGHT	-	FOODSIZE),
														FOODSIZE,	FOODSIZE))



The	variable	foodCounter	keeps	track	of	how	often	food	should	be	added.	Each	time	the
game	loop	iterates,	foodCounter	is	incremented	by	1	on	line	77.

Once	foodCounter	is	greater	than	or	equal	to	the	constant	NEWFOOD,	foodCounter	 is	reset
and	a	new	food	square	is	generated	by	line	81.	You	can	change	the	rate	at	which	new	food
squares	are	added	by	adjusting	NEWFOOD	back	on	line	21.

Line	84	just	fills	the	window	surface	with	white,	which	we	covered	in	“Handling	When
the	 Player	 Quits”	 on	 page	 279,	 so	 we’ll	 move	 on	 to	 discussing	 how	 the	 player	 moves
around	the	screen.

Moving	the	Player	Around	the	Window

We’ve	 set	 the	movement	 variables	 (moveDown,	moveUp,	 moveLeft,	 and	 moveRight)	 to	 True	 or
False	depending	on	what	keys	the	player	has	pressed.	Now	we	need	to	move	the	player’s
box,	 which	 is	 represented	 by	 the	 pygame.Rect	 object	 stored	 in	 player.	We’ll	 do	 this	 by
adjusting	the	x-	and	y-coordinates	of	player.

86.					#	Move	the	player.
87.					if	moveDown	and	player.bottom	<	WINDOWHEIGHT:
88.									player.top	+=	MOVESPEED
89.					if	moveUp	and	player.top	>	0:
90.									player.top	-=	MOVESPEED
91.					if	moveLeft	and	player.left	>	0:
92.									player.left	-=	MOVESPEED
93.					if	moveRight	and	player.right	<	WINDOWWIDTH:
94.									player.right	+=	MOVESPEED

If	moveDown	 is	 set	 to	True	 (and	 the	bottom	of	 the	player’s	box	 isn’t	below	 the	bottom
edge	of	the	window),	then	line	88	moves	the	player’s	box	down	by	adding	MOVESPEED	to	the
player’s	 current	 top	 attribute.	 Lines	 89	 to	 94	 do	 the	 same	 thing	 for	 the	 other	 three
directions.

Drawing	the	Player	on	the	Window
Line	97	draws	the	player’s	box	on	the	window:

96.					#	Draw	the	player	onto	the	surface.
97.					pygame.draw.rect(windowSurface,	BLACK,	player)

After	the	box	is	moved,	line	97	draws	it	in	its	new	position.	The	windowSurface	passed
for	 the	 first	parameter	 tells	Python	which	Surface	 object	 to	draw	 the	 rectangle	on.	The
BLACK	variable,	which	has	(0,	0,	0)	stored	in	it,	tells	Python	to	draw	a	black	rectangle.	The
Rect	object	stored	in	the	player	variable	tells	Python	the	position	and	size	of	the	rectangle
to	draw.

Checking	for	Collisions



Before	drawing	the	food	squares,	the	program	needs	to	check	whether	the	player’s	box	has
overlapped	with	any	of	the	squares.	If	it	has,	then	that	square	needs	to	be	removed	from	the
foods	list.	This	way,	Python	won’t	draw	any	food	squares	that	the	box	has	already	eaten.

We’ll	use	 the	collision	detection	method	 that	all	Rect	objects	have,	colliderect(),	 in
line	101:

	99.					#	Check	whether	the	player	has	intersected	with	any	food	squares.
100.					for	food	in	foods[:]:
101.									if	player.colliderect(food):
102.													foods.remove(food)

On	each	iteration	through	the	for	loop,	the	current	food	square	from	the	foods	(plural)
list	 is	 placed	 in	 the	 variable	 food	 (singular).	 The	 colliderect()	 method	 for	 pygame.Rect
objects	is	passed	the	player	rectangle’s	pygame.Rect	object	as	an	argument	and	returns	True
if	 the	 two	 rectangles	 collide	 and	 False	 if	 they	 do	 not.	 If	 True,	 line	 102	 removes	 the
overlapping	food	square	from	the	foods	list.

DON’T	CHANGE	A	LIST	WHILE	ITERATING	OVER	IT

Notice	that	this	for	loop	is	slightly	different	from	any	other	for	loop	we’ve	seen.	If	you
look	carefully	at	line	100,	it	isn’t	iterating	over	foods	but	actually	over	foods[:].

Remember	how	slices	work.	foods[:2]	evaluates	to	a	copy	of	the	list	with	the	items
from	the	start	and	up	to	(but	not	including)	the	item	at	index	2.	foods[:]	will	give	you
a	copy	of	the	list	with	the	items	from	the	start	to	the	end.	Basically,	foods[:]	creates	a
new	list	with	a	copy	of	all	the	items	in	foods.	This	is	a	shorter	way	to	copy	a	list	than,
say,	what	the	getBoardCopy()	function	did	in	Chapter	10’s	Tic-Tac-Toe	game.

You	can’t	add	or	remove	 items	 from	a	 list	while	you’re	 iterating	over	 it.	Python
can	lose	track	of	what	the	next	value	of	the	food	variable	should	be	 if	 the	size	of	the
foods	list	is	always	changing.	Think	of	how	difficult	it	would	be	to	count	the	number
of	jelly	beans	in	a	jar	while	someone	was	adding	or	removing	jelly	beans.

But	 if	you	iterate	over	a	copy	of	the	 list	 (and	the	copy	never	changes),	adding	or
removing	items	from	the	original	list	won’t	be	a	problem.

Drawing	the	Food	Squares	on	the	Window

The	code	on	lines	105	and	106	is	similar	to	the	code	we	used	to	draw	the	black	box	for	the
player:

104.					#	Draw	the	food.
105.					for	i	in	range(len(foods)):
106.									pygame.draw.rect(windowSurface,	GREEN,	foods[i])



Line	105	loops	through	each	food	square	in	the	foods	list,	and	line	106	draws	the	food
square	onto	windowSurface.

Now	 that	 the	 player	 and	 food	 squares	 are	 on	 the	 screen,	 the	window	 is	 ready	 to	 be
updated,	so	we	call	the	update()	method	on	line	109	and	finish	the	program	by	calling	the
tick()	method	on	the	Clock	object	we	created	earlier:

108.					#	Draw	the	window	onto	the	screen.
109.					pygame.display.update()
110.					mainClock.tick(40)

The	program	will	continue	through	the	game	loop	and	keep	updating	until	the	player
quits.

Summary

This	chapter	introduced	the	concept	of	collision	detection.	Detecting	collisions	between
two	 rectangles	 is	 so	 common	 in	 graphical	 games	 that	 pygame	 provides	 its	 own	 collision
detection	method	named	colliderect()	for	pygame.Rect	objects.

The	 first	 several	games	 in	 this	book	were	 text	based.	The	program’s	output	was	 text
printed	 to	 the	 screen,	 and	 the	 input	was	 text	 typed	 by	 the	 player	 on	 the	 keyboard.	But
graphical	programs	can	also	accept	keyboard	and	mouse	inputs.

Furthermore,	these	programs	can	respond	to	single	keystrokes	when	the	player	presses
or	 releases	 a	 single	key.	The	player	doesn’t	have	 to	 type	 in	 an	entire	 response	and	press
ENTER.	This	allows	for	immediate	feedback	and	much	more	interactive	games.

This	interactive	program	is	fun,	but	let’s	move	beyond	drawing	rectangles.	In	Chapter
20,	you’ll	learn	how	to	load	images	and	play	sound	effects	with	pygame.



20
USING	SOUNDS	AND	IMAGES

In	Chapters	18	and	19,	you	learned	how	to	make	GUI	programs	that	have	graphics	and	can
accept	input	from	the	keyboard	and	mouse.	You	also	learned	how	to	draw	different	shapes.
In	this	chapter,	you’ll	learn	how	to	add	sounds,	music,	and	images	to	your	games.

TOPICS	COVERED	IN	THIS	CHAPTER
•	Sound	and	image	files

•	Drawing	and	rescaling	sprites

•	Adding	music	and	sounds

•	Toggling	sound	on	and	off

Adding	Images	with	Sprites

A	sprite	is	a	single	two-dimensional	image	that	is	used	as	part	of	the	graphics	on	a	screen.
Figure	20-1	shows	some	example	sprites.



Figure	20-1:	Some	examples	of	sprites

The	 sprite	 images	 are	 drawn	on	 top	 of	 a	 background.	You	 can	 flip	 the	 sprite	 image
horizontally	 so	 that	 it	 is	 facing	 the	other	way.	You	can	also	draw	 the	 same	 sprite	 image
multiple	times	on	the	same	window,	and	you	can	resize	sprites	to	be	larger	or	smaller	than
the	original	sprite	image.	The	background	image	can	be	considered	one	large	sprite,	too.
Figure	20-2	shows	sprites	being	used	together.

Figure	20-2:	A	complete	scene,	with	sprites	drawn	on	top	of	a	background

The	next	program	will	demonstrate	how	to	play	sounds	and	draw	sprites	using	pygame.

Sound	and	Image	Files

Sprites	are	stored	in	image	files	on	your	computer.	There	are	several	image	formats	that
pygame	can	use.	To	tell	what	format	an	image	file	uses,	look	at	the	end	of	the	filename	(after
the	 last	 period).	This	 is	 called	 the	 file	extension.	 For	 example,	 the	 file	player.png	 is	 in	 the
PNG	format.	The	image	formats	pygame	supports	include	BMP,	PNG,	JPG,	and	GIF.

You	can	download	images	from	your	web	browser.	On	most	web	browsers,	you	do	so



by	right-clicking	the	image	in	the	web	page	and	selecting	Save	from	the	menu	that	appears.
Remember	where	on	the	hard	drive	you	saved	the	image	file,	because	you’ll	need	to	copy
the	downloaded	image	file	into	the	same	folder	as	your	Python	program’s	.py	file.	You	can
also	create	your	own	images	with	a	drawing	program	like	Microsoft	Paint	or	Tux	Paint.

The	 sound	 file	 formats	 that	 pygame	 supports	 are	 MIDI,	 WAV,	 and	 MP3.	 You	 can
download	sound	effects	 from	the	 internet	 just	as	you	can	 image	 files,	but	 the	sound	files
must	be	in	one	of	these	three	formats.	If	your	computer	has	a	microphone,	you	can	also
record	sounds	and	make	your	own	WAV	files	to	use	in	your	games.

Sample	Run	of	the	Sprites	and	Sounds	Program

This	chapter’s	program	is	the	same	as	the	Collision	Detection	program	from	Chapter	19.
However,	 in	 this	 program	we’ll	 use	 sprites	 instead	of	 plain-looking	 squares.	We’ll	 use	 a
sprite	of	a	person	to	represent	the	player	instead	of	the	black	box	and	a	sprite	of	cherries
instead	of	the	green	food	squares.	We’ll	also	play	background	music,	and	we’ll	add	a	sound
effect	when	the	player	sprite	eats	one	of	the	cherries.

In	this	game,	the	player	sprite	will	eat	cherry	sprites	and,	as	it	eats	the	cherries,	it	will
grow.	When	you	run	the	program,	the	game	will	look	like	Figure	20-3.

Figure	20-3:	A	screenshot	of	the	Sprites	and	Sounds	game

Source	Code	for	the	Sprites	and	Sounds	Program



Start	a	new	file,	enter	the	following	code,	and	then	save	it	as	spritesAndSounds.py.	You	can
download	the	image	and	sound	files	we’ll	use	in	this	program	from	this	book’s	website	at
https://www.nostarch.com/inventwithpython/.	 Place	 these	 files	 in	 the	 same	 folder	 as	 the
spritesAndSounds.py	program.

If	you	get	errors	 after	entering	 this	 code,	 compare	 the	code	you	 typed	 to	 the	book’s
code	with	the	online	diff	tool	at	https://www.nostarch.com/inventwithpython#diff.

spritesAnd	Sounds.py

		1.	import	pygame,	sys,	time,	random
		2.	from	pygame.locals	import	*
		3.
		4.	#	Set	up	pygame.
		5.	pygame.init()
		6.	mainClock	=	pygame.time.Clock()
		7.
		8.	#	Set	up	the	window.
		9.	WINDOWWIDTH	=	400
	10.	WINDOWHEIGHT	=	400
	11.	windowSurface	=	pygame.display.set_mode((WINDOWWIDTH,	WINDOWHEIGHT),
							0,	32)
	12.	pygame.display.set_caption('Sprites	and	Sounds')
	13.
	14.	#	Set	up	the	colors.
	15.	WHITE	=	(255,	255,	255)
	16.
	17.	#	Set	up	the	block	data	structure.
	18.	player	=	pygame.Rect(300,	100,	40,	40)
	19.	playerImage	=	pygame.image.load('player.png')
	20.	playerStretchedImage	=	pygame.transform.scale(playerImage,	(40,	40))
	21.	foodImage	=	pygame.image.load('cherry.png')
	22.	foods	=	[]
	23.	for	i	in	range(20):
	24.					foods.append(pygame.Rect(random.randint(0,	WINDOWWIDTH	-	20),
											random.randint(0,	WINDOWHEIGHT	-	20),	20,	20))
	25.
	26.	foodCounter	=	0
	27.	NEWFOOD	=	40

https://www.nostarch.com/inventwithpython/
https://www.nostarch.com/inventwithpython#diff


	28.
	29.	#	Set	up	keyboard	variables.
	30.	moveLeft	=	False
	31.	moveRight	=	False
	32.	moveUp	=	False
	33.	moveDown	=	False
	34.
	35.	MOVESPEED	=	6
	36.
37.	#	Set	up	the	music.
	38.	pickUpSound	=	pygame.mixer.Sound('pickup.wav')
	39.	pygame.mixer.music.load('background.mid')
	40.	pygame.mixer.music.play(-1,	0.0)
	41.	musicPlaying	=	True
	42.
	43.	#	Run	the	game	loop.
	44.	while	True:
	45.					#	Check	for	the	QUIT	event.
	46.					for	event	in	pygame.event.get():
	47.									if	event.type	==	QUIT:
	48.													pygame.quit()
	49.													sys.exit()
	50.									if	event.type	==	KEYDOWN:
	51.													#	Change	the	keyboard	variables.
	52.													if	event.key	==	K_LEFT	or	event.key	==	K_a:
	53.																	moveRight	=	False
	54.																	moveLeft	=	True
	55.													if	event.key	==	K_RIGHT	or	event.key	==	K_d:
	56.																	moveLeft	=	False
	57.																	moveRight	=	True
	58.													if	event.key	==	K_UP	or	event.key	==	K_w:
	59.																	moveDown	=	False
	60.																	moveUp	=	True
	61.													if	event.key	==	K_DOWN	or	event.key	==	K_s:
	62.																	moveUp	=	False
	63.																	moveDown	=	True
	64.									if	event.type	==	KEYUP:
	65.													if	event.key	==	K_ESCAPE:
	66.																	pygame.quit()
	67.																	sys.exit()
	68.													if	event.key	==	K_LEFT	or	event.key	==	K_a:
	69.																	moveLeft	=	False
	70.													if	event.key	==	K_RIGHT	or	event.key	==	K_d:
	71.																	moveRight	=	False
	72.													if	event.key	==	K_UP	or	event.key	==	K_w:
	73.																	moveUp	=	False
	74.													if	event.key	==	K_DOWN	or	event.key	==	K_s:
	75.																	moveDown	=	False
	76.													if	event.key	==	K_x:
	77.																	player.top	=	random.randint(0,	WINDOWHEIGHT	-
																							player.height)
	78.																	player.left	=	random.randint(0,	WINDOWWIDTH	-
																							player.width)
	79.													if	event.key	==	K_m:
	80.																	if	musicPlaying:
	81.																					pygame.mixer.music.stop()
	82.																	else:
	83.																					pygame.mixer.music.play(-1,	0.0)
	84.																	musicPlaying	=	not	musicPlaying
	85.



	86.									if	event.type	==	MOUSEBUTTONUP:
	87.													foods.append(pygame.Rect(event.pos[0]	-	10,
																			event.pos[1]	-	10,	20,	20))
	88.
89.					foodCounter	+=	1
	90.					if	foodCounter	>=	NEWFOOD:
	91.									#	Add	new	food.
	92.									foodCounter	=	0
	93.									foods.append(pygame.Rect(random.randint(0,	WINDOWWIDTH	-	20),
															random.randint(0,	WINDOWHEIGHT	-	20),	20,	20))
	94.
	95.					#	Draw	the	white	background	onto	the	surface.
	96.					windowSurface.fill(WHITE)
	97.
	98.					#	Move	the	player.
	99.					if	moveDown	and	player.bottom	<	WINDOWHEIGHT:
100.									player.top	+=	MOVESPEED
101.					if	moveUp	and	player.top	>	0:
102.									player.top	-=	MOVESPEED
103.					if	moveLeft	and	player.left	>	0:
104.									player.left	-=	MOVESPEED
105.					if	moveRight	and	player.right	<	WINDOWWIDTH:
106.									player.right	+=	MOVESPEED
107.
108.
109.					#	Draw	the	block	onto	the	surface.
110.					windowSurface.blit(playerStretchedImage,	player)
111.
112.					#	Check	whether	the	block	has	intersected	with	any	food	squares.
113.					for	food	in	foods[:]:
114.									if	player.colliderect(food):
115.													foods.remove(food)
116.													player	=	pygame.Rect(player.left,	player.top,
																			player.width	+	2,	player.height	+	2)
117.													playerStretchedImage	=	pygame.transform.scale(playerImage,
																			(player.width,	player.height))
118.													if	musicPlaying:
119.																	pickUpSound.play()
120.
121.					#	Draw	the	food.
122.					for	food	in	foods:
123.									windowSurface.blit(foodImage,	food)
124.
125.					#	Draw	the	window	onto	the	screen.
126.					pygame.display.update()
127.					mainClock.tick(40)

Setting	Up	the	Window	and	the	Data	Structure

Most	 of	 the	 code	 in	 this	 program	 is	 the	 same	 as	 the	 Collision	 Detection	 program	 in
Chapter	19.	We’ll	focus	only	on	the	parts	that	add	sprites	and	sounds.	First,	on	line	12	let’s
set	the	caption	of	the	title	bar	to	a	string	that	describes	this	program:

12.	pygame.display.set_caption('Sprites	and	Sounds')



In	order	 to	 set	 the	 caption,	 you	need	 to	pass	 the	 string	'Sprites	 and	 Sounds'	 to	 the
pygame.display.set_caption()	function.

Adding	a	Sprite
Now	that	we	have	the	caption	set	up,	we	need	the	actual	sprites.	We’ll	use	three	variables
to	represent	the	player,	unlike	the	previous	programs	that	used	just	one.

17.	#	Set	up	the	block	data	structure.
18.	player	=	pygame.Rect(300,	100,	40,	40)
19.	playerImage	=	pygame.image.load('player.png')
20.	playerStretchedImage	=	pygame.transform.scale(playerImage,	(40,	40))
21.	foodImage	=	pygame.image.load('cherry.png')

The	player	variable	on	line	18	will	store	a	Rect	object	that	keeps	track	of	the	location
and	 size	 of	 the	 player.	 The	 player	 variable	 doesn’t	 contain	 the	 player’s	 image.	 At	 the
beginning	of	the	program,	the	top-left	corner	of	the	player	is	located	at	(300,	100),	and	the
player	has	an	initial	height	and	width	of	40	pixels.

The	 second	 variable	 that	 represents	 the	 player	 is	 playerImage	 on	 line	 19.	 The
pygame.image.load()	function	is	passed	a	string	of	the	filename	of	the	image	to	load.	The
return	value	is	a	Surface	object	that	has	the	graphics	in	the	image	file	drawn	on	its	surface.
We	store	this	Surface	object	inside	playerImage.

Changing	the	Size	of	a	Sprite
On	 line	 20,	 we’ll	 use	 a	 new	 function	 in	 the	 pygame.transform	 module.	 The
pygame.transform.scale()	 function	can	shrink	or	enlarge	a	sprite.	The	first	argument	 is	a
Surface	object	with	 the	 image	drawn	on	 it.	The	 second	argument	 is	 a	 tuple	 for	 the	new
width	 and	 height	 of	 the	 image	 in	 the	 first	 argument.	 The	 scale()	 function	 returns	 a
Surface	object	with	the	image	drawn	at	a	new	size.	In	this	chapter’s	program,	we’ll	make
the	player	sprite	stretch	larger	as	 it	eats	more	cherries.	We’ll	store	the	original	 image	in
the	playerImage	variable	but	the	stretched	image	in	the	playerStretchedImage	variable.

On	line	21,	we	call	load()	again	to	create	a	Surface	object	with	the	cherry	image	drawn
on	 it.	 Be	 sure	 you	 have	 the	 player.png	 and	 cherry.png	 files	 in	 the	 same	 folder	 as	 the
spritesAndSounds.py	file;	otherwise,	pygame	won’t	be	able	to	find	them	and	will	give	an	error.

Setting	Up	the	Music	and	Sounds

Next	you	need	to	 load	the	sound	files.	There	are	two	modules	 for	sound	in	pygame.	The
pygame.mixer	 module	 can	 play	 short	 sound	 effects	 during	 the	 game.	 The
pygame.mixer.music	module	can	play	background	music.

Adding	Sound	Files



Call	the	pygame.mixer.Sound()	 constructor	 function	 to	create	a	pygame.mixer.Sound	 object
(called	a	Sound	object	for	short).	This	object	has	a	play()	method	that	will	play	the	sound
effect	when	called.

37.	#	Set	up	the	music.
38.	pickUpSound	=	pygame.mixer.Sound('pickup.wav')
39.	pygame.mixer.music.load('background.mid')
40.	pygame.mixer.music.play(-1,	0.0)
41.	musicPlaying	=	True

Line	39	calls	pygame.mixer.music.load()	to	load	the	background	music,	and	line	40	calls
pygame.mixer.music.play()	 to	 start	playing	 it.	The	 first	parameter	 tells	pygame	how	many
times	to	play	the	background	music	after	the	first	time	we	play	it.	So	passing	5	would	cause
pygame	to	play	the	background	music	six	times.	Here	we	pass	the	parameter	-1,	which	is	a
special	value	that	makes	the	background	music	repeat	forever.

The	second	parameter	to	play()	is	the	point	in	the	sound	file	to	start	playing.	Passing
0.0	will	play	the	background	music	starting	from	the	beginning.	Passing	2.5	would	 start
the	background	music	2.5	seconds	from	the	beginning.

Finally,	the	musicPlaying	variable	has	a	Boolean	value	that	tells	the	program	whether	it
should	play	the	background	music	and	sound	effects	or	not.	It’s	nice	to	give	the	player	the
option	to	run	the	program	without	the	sound	playing.

Toggling	the	Sound	On	and	Off
The	M	key	will	turn	the	background	music	on	or	off.	If	musicPlaying	is	set	to	True,	then	the
background	 music	 is	 currently	 playing,	 and	 we	 should	 stop	 it	 by	 calling
pygame.mixer.music.stop().	If	musicPlaying	is	set	to	False,	then	the	background	music	isn’t
currently	playing,	and	we	should	start	it	by	calling	play().	Lines	79	to	84	use	if	statements
to	do	this:

79.													if	event.key	==	K_m:
80.																	if	musicPlaying:
81.																					pygame.mixer.music.stop()
82.																	else:
83.																					pygame.mixer.music.play(-1,	0.0)
84.																	musicPlaying	=	not	musicPlaying

Whether	 the	 music	 is	 playing	 or	 not,	 we	 want	 to	 toggle	 the	 value	 in	 musicPlaying.
Toggling	a	Boolean	value	means	to	set	a	value	to	the	opposite	of	its	current	value.	The	line
musicPlaying	=	not	musicPlaying	sets	the	variable	to	False	if	it	is	currently	True	or	sets	it	to
True	if	it	is	currently	False.	Think	of	toggling	as	what	happens	when	you	flip	a	light	switch
on	or	off:	toggling	the	light	switch	sets	it	to	the	opposite	setting.

Drawing	the	Player	on	the	Window



Remember	 that	 the	 value	 stored	 in	 playerStretchedImage	 is	 a	 Surface	 object.	 Line	 110
draws	 the	 sprite	 of	 the	 player	 onto	 the	 window’s	 Surface	 object	 (which	 is	 stored	 in
windowSurface)	using	blit():

109.					#	Draw	the	block	onto	the	surface.
110.					windowSurface.blit(playerStretchedImage,	player)

The	second	parameter	to	the	blit()	method	is	a	Rect	object	that	specifies	where	on	the
Surface	 object	 the	 sprite	 should	 be	 drawn.	The	 program	 uses	 the	 Rect	 object	 stored	 in
player,	which	keeps	track	of	the	player’s	position	in	the	window.

Checking	for	Collisions

This	code	is	similar	to	the	code	in	the	previous	programs,	but	there	are	a	couple	of	new
lines:

114.									if	player.colliderect(food):
115.													foods.remove(food)
116.													player	=	pygame.Rect(player.left,	player.top,
																			player.width	+	2,	player.height	+	2)
117.													playerStretchedImage	=	pygame.transform.scale(playerImage,
																			(player.width,	player.height))
118.													if	musicPlaying:
119.																	pickUpSound.play()

When	the	player	sprite	eats	one	of	the	cherries,	its	size	increases	by	two	pixels	in	height
and	width.	On	line	116,	a	new	Rect	object	that	is	two	pixels	larger	than	the	old	Rect	object
will	be	assigned	as	the	new	value	of	player.

While	the	Rect	object	represents	the	position	and	size	of	the	player,	the	image	of	the
player	 is	 stored	 in	a	playerStretchedImage	 as	 a	Surface	 object.	On	 line	117,	 the	program
creates	a	new	stretched	image	by	calling	scale().

Stretching	 an	 image	 often	 distorts	 it	 a	 little.	 If	 you	 keep	 restretching	 an	 already
stretched	image,	the	distortions	add	up	quickly.	But	by	stretching	the	original	image	to	a
new	 size	 each	 time—by	 passing	 playerImage,	 not	 playerStretchedImage,	 as	 the	 first
argument	for	scale()—you	distort	the	image	only	once.

Finally,	line	119	calls	the	play()	method	on	the	Sound	object	stored	in	the	pickUpSound
variable.	But	it	does	this	only	if	musicPlaying	is	set	to	True	(which	means	that	the	sound	is
turned	on).

Drawing	the	Cherries	on	the	Window

In	 the	 previous	 programs,	 you	 called	 the	 pygame.draw.rect()	 function	 to	 draw	 a	 green
square	for	each	Rect	object	stored	in	the	foods	list.	In	this	program,	however,	you	want	to
draw	the	cherry	sprites	instead.	Call	the	blit()	method	and	pass	the	Surface	object	stored



in	foodImage,	which	has	the	cherries	image	drawn	on	it:

121.					#	Draw	the	food.
122.					for	food	in	foods:
123.									windowSurface.blit(foodImage,	food)

The	food	variable,	which	contains	each	of	 the	Rect	objects	 in	foods	 on	each	 iteration
through	the	for	loop,	tells	the	blit()	method	where	to	draw	the	foodImage.

Summary

You’ve	 added	 images	 and	 sound	 to	 your	 game.	 The	 images,	 called	 sprites,	 look	 much
better	than	the	simple	drawn	shapes	used	in	the	previous	programs.	Sprites	can	be	scaled
(that	is,	stretched)	to	a	larger	or	smaller	size,	so	we	can	display	sprites	at	any	size	we	want.
The	game	presented	in	this	chapter	also	has	a	background	and	plays	sound	effects.

Now	 that	we	know	how	 to	 create	 a	window,	display	 sprites,	 draw	primitives,	 collect
keyboard	and	mouse	input,	play	sounds,	and	implement	collision	detection,	we’re	ready	to
create	a	graphical	game	in	pygame.	Chapter	21	brings	all	of	these	elements	together	for	our
most	advanced	game	yet.



21
A	DODGER	GAME	WITH	SOUNDS	AND	IMAGES

The	previous	four	chapters	went	over	the	pygame	module	and	demonstrated	how	to	use	its
many	features.	In	this	chapter,	we’ll	use	that	knowledge	to	create	a	graphical	game	called
Dodger.

TOPICS	COVERED	IN	THIS	CHAPTER
•	The	pygame.FULLSCREEN	flag

•	The	move_ip()	Rect	method

•	Implementing	cheat	codes

•	Modifying	the	Dodger	game

In	 the	Dodger	 game,	 the	 player	 controls	 a	 sprite	 (the	 player’s	 character)	 who	must
dodge	a	whole	bunch	of	baddies	that	fall	from	the	top	of	the	screen.	The	longer	the	player
can	keep	dodging	the	baddies,	the	higher	their	score	will	get.

Just	for	fun,	we’ll	also	add	some	cheat	modes	to	this	game.	If	the	player	holds	down	the
X	key,	every	baddie’s	speed	is	reduced	to	a	super	slow	rate.	If	the	player	holds	down	the	Z
key,	the	baddies	will	reverse	their	direction	and	travel	up	the	screen	instead	of	down.

Review	of	the	Basic	pygame	Data	Types

Before	we	start	making	Dodger,	let’s	review	some	of	the	basic	data	types	used	in	pygame:

pygame.Rect

Rect	 objects	 represent	 a	 rectangular	 space’s	 location	 and	 size.	 The	 location	 is
determined	 by	 the	 Rect	 object’s	 topleft	 attribute	 (or	 the	 topright,	 bottomleft,	 and



bottomright	attributes).	These	corner	attributes	are	a	tuple	of	integers	for	the	x-	and	y-
coordinates.	 The	 size	 is	 determined	 by	 the	 width	 and	 height	 attributes,	 which	 are
integers	indicating	how	many	pixels	long	or	high	the	rectangle	is.	Rect	objects	have	a
colliderect()	method	that	checks	whether	they	are	colliding	with	another	Rect	object.

pygame.Surface

Surface	objects	 are	areas	of	 colored	pixels.	A	Surface	 object	 represents	 a	 rectangular
image,	while	 a	Rect	 object	 represents	 only	 a	 rectangular	 space	 and	 location.	Surface
objects	have	 a	blit()	method	 that	 is	 used	 to	 draw	 the	 image	 on	 one	 Surface	 object
onto	 another	 Surface	 object.	 The	 Surface	 object	 returned	 by	 the
pygame.display.set_mode()	function	is	special	because	anything	drawn	on	that	Surface
object	is	displayed	on	the	user’s	screen	when	pygame.display.update()	is	called.

pygame.event.Event

The	 pygame.event	 module	 generates	 Event	 objects	 whenever	 the	 user	 provides
keyboard,	mouse,	 or	 other	 input.	The	 pygame.event.get()	 function	 returns	 a	 list	 of
these	Event	objects.	You	can	determine	the	type	of	the	Event	object	by	checking	its	type
attribute.	 QUIT,	 KEYDOWN,	 and	 MOUSEBUTTONUP	 are	 examples	 of	 some	 event	 types.	 (See
“Handling	Events”	on	page	292	for	a	complete	list	of	all	the	event	types.)

pygame.font.Font

The	pygame.font	module	uses	 the	Font	data	 type,	which	 represents	 the	 typeface	used
for	text	in	pygame.	The	arguments	to	pass	to	pygame.font.	SysFont()	are	a	string	of	the
font	name	(it’s	common	to	pass	None	for	the	font	name	to	get	the	default	system	font)
and	an	integer	of	the	font	size.

pygame.time.Clock

The	 Clock	 object	 in	 the	 pygame.time	module	 is	 helpful	 for	 keeping	 our	 games	 from
running	faster	than	the	player	can	see.	The	Clock	object	has	a	tick()	method,	which
can	be	passed	the	number	of	frames	per	second	(FPS)	we	want	the	game	to	run.	The
higher	the	FPS,	the	faster	the	game	runs.

Sample	Run	of	Dodger

When	you	run	this	program,	the	game	will	look	like	Figure	21-1.



Figure	21-1:	A	screenshot	of	the	Dodger	game

Source	Code	for	Dodger

Enter	the	following	code	in	a	new	file	and	save	it	as	dodger.py.	You	can	download	the	code,
image,	and	sound	files	from	https://www.nostarch.com/inventwithpython/.	Place	the	image	and
sound	files	in	the	same	folder	as	dodger.py.

https://www.nostarch.com/inventwithpython/


If	 you	get	errors	 after	entering	 this	 code,	 compare	 the	code	you	 typed	 to	 the	book’s
code	with	the	online	diff	tool	at	https://www.nostarch.com/inventwithpython#diff.

dodger.py

		1.	import	pygame,	random,	sys
		2.	from	pygame.locals	import	*
		3.
		4.	WINDOWWIDTH	=	600
		5.	WINDOWHEIGHT	=	600
		6.	TEXTCOLOR	=	(0,	0,	0)
		7.	BACKGROUNDCOLOR	=	(255,	255,	255)
		8.	FPS	=	60
		9.	BADDIEMINSIZE	=	10
	10.	BADDIEMAXSIZE	=	40
	11.	BADDIEMINSPEED	=	1
	12.	BADDIEMAXSPEED	=	8
	13.	ADDNEWBADDIERATE	=	6
	14.	PLAYERMOVERATE	=	5
	15.
	16.	def	terminate():
	17.					pygame.quit()
	18.					sys.exit()
	19.
	20.	def	waitForPlayerToPressKey():
	21.					while	True:
	22.									for	event	in	pygame.event.get():
	23.													if	event.type	==	QUIT:
	24.																	terminate()
	25.													if	event.type	==	KEYDOWN:
	26.																	if	event.key	==	K_ESCAPE:	#	Pressing	ESC	quits.
	27.																					terminate()
	28.																	return
	29.
	30.	def	playerHasHitBaddie(playerRect,	baddies):
	31.					for	b	in	baddies:
	32.									if	playerRect.colliderect(b['rect']):
	33.													return	True
	34.					return	False
	35.
	36.	def	drawText(text,	font,	surface,	x,	y):
	37.					textobj	=	font.render(text,	1,	TEXTCOLOR)
	38.					textrect	=	textobj.get_rect()
	39.					textrect.topleft	=	(x,	y)
	40.					surface.blit(textobj,	textrect)
	41.
	42.	#	Set	up	pygame,	the	window,	and	the	mouse	cursor.
	43.	pygame.init()
	44.	mainClock	=	pygame.time.Clock()
	45.	windowSurface	=	pygame.display.set_mode((WINDOWWIDTH,	WINDOWHEIGHT))
	46.	pygame.display.set_caption('Dodger')
	47.	pygame.mouse.set_visible(False)
	48.
	49.	#	Set	up	the	fonts.
	50.	font	=	pygame.font.SysFont(None,	48)
	51.
	52.	#	Set	up	sounds.
	53.	gameOverSound	=	pygame.mixer.Sound('gameover.wav')
	54.	pygame.mixer.music.load('background.mid')

https://www.nostarch.com/inventwithpython#diff


55.
	56.	#	Set	up	images.
	57.	playerImage	=	pygame.image.load('player.png')
	58.	playerRect	=	playerImage.get_rect()
	59.	baddieImage	=	pygame.image.load('baddie.png')
	60.
	61.	#	Show	the	"Start"	screen.
	62.	windowSurface.fill(BACKGROUNDCOLOR)
	63.	drawText('Dodger',	font,	windowSurface,	(WINDOWWIDTH	/	3),
							(WINDOWHEIGHT	/	3))
	64.	drawText('Press	a	key	to	start.',	font,	windowSurface,
							(WINDOWWIDTH	/	3)	-	30,	(WINDOWHEIGHT	/	3)	+	50)
	65.	pygame.display.update()
	66.	waitForPlayerToPressKey()
	67.
	68.	topScore	=	0
	69.	while	True:
	70.					#	Set	up	the	start	of	the	game.
	71.					baddies	=	[]
	72.					score	=	0
	73.					playerRect.topleft	=	(WINDOWWIDTH	/	2,	WINDOWHEIGHT	-	50)
	74.					moveLeft	=	moveRight	=	moveUp	=	moveDown	=	False
	75.					reverseCheat	=	slowCheat	=	False
	76.					baddieAddCounter	=	0
	77.					pygame.mixer.music.play(-1,	0.0)
	78.
	79.					while	True:	#	The	game	loop	runs	while	the	game	part	is	playing.
	80.									score	+=	1	#	Increase	score.
	81.
	82.									for	event	in	pygame.event.get():
	83.													if	event.type	==	QUIT:
	84.																	terminate()
	85.
	86.													if	event.type	==	KEYDOWN:
	87.																	if	event.key	==	K_z:
	88.																					reverseCheat	=	True
	89.																	if	event.key	==	K_x:
	90.																					slowCheat	=	True
	91.																	if	event.key	==	K_LEFT	or	event.key	==	K_a:
	92.																					moveRight	=	False
	93.																					moveLeft	=	True
	94.																	if	event.key	==	K_RIGHT	or	event.key	==	K_d:
	95.																					moveLeft	=	False
	96.																					moveRight	=	True
	97.																	if	event.key	==	K_UP	or	event.key	==	K_w:
	98.																					moveDown	=	False
	99.																					moveUp	=	True
100.																	if	event.key	==	K_DOWN	or	event.key	==	K_s:
101.																					moveUp	=	False
102.																					moveDown	=	True
103.
104.													if	event.type	==	KEYUP:
105.																	if	event.key	==	K_z:
106.																					reverseCheat	=	False
107.																					score	=	0
108.																	if	event.key	==	K_x:
109.																					slowCheat	=	False
110.																					score	=	0
111.																	if	event.key	==	K_ESCAPE:
112.																					terminate()



113.
114.																	if	event.key	==	K_LEFT	or	event.key	==	K_a:
115.																					moveLeft	=	False
116.																	if	event.key	==	K_RIGHT	or	event.key	==	K_d:
117.																					moveRight	=	False
118.																	if	event.key	==	K_UP	or	event.key	==	K_w:
119.																					moveUp	=	False
120.																	if	event.key	==	K_DOWN	or	event.key	==	K_s:
121.																					moveDown	=	False
122.
123.													if	event.type	==	MOUSEMOTION:
124.																	#	If	the	mouse	moves,	move	the	player	to	the	cursor.
125.																	playerRect.centerx	=	event.pos[0]
126.																	playerRect.centery	=	event.pos[1]
127.									#	Add	new	baddies	at	the	top	of	the	screen,	if	needed.
128.									if	not	reverseCheat	and	not	slowCheat:
129.													baddieAddCounter	+=	1
130.									if	baddieAddCounter	==	ADDNEWBADDIERATE:
131.													baddieAddCounter	=	0
132.													baddieSize	=	random.randint(BADDIEMINSIZE,	BADDIEMAXSIZE)
133.													newBaddie	=	{'rect':	pygame.Rect(random.randint(0,
																																WINDOWWIDTH	-	baddieSize),	0	-	baddieSize,
																																baddieSize,	baddieSize),
134.																										'speed':	random.randint(BADDIEMINSPEED,
																																BADDIEMAXSPEED),
135.																										'surface':pygame.transform.scale(baddieImage,
																																(baddieSize,	baddieSize)),
136.																									}
137.
138.													baddies.append(newBaddie)
139.
140.									#	Move	the	player	around.
141.									if	moveLeft	and	playerRect.left	>	0:
142.													playerRect.move_ip(-1	*	PLAYERMOVERATE,	0)
143.									if	moveRight	and	playerRect.right	<	WINDOWWIDTH:
144.													playerRect.move_ip(PLAYERMOVERATE,	0)
145.									if	moveUp	and	playerRect.top	>	0:
146.													playerRect.move_ip(0,	-1	*	PLAYERMOVERATE)
147.									if	moveDown	and	playerRect.bottom	<	WINDOWHEIGHT:
148.													playerRect.move_ip(0,	PLAYERMOVERATE)
149.
150.									#	Move	the	baddies	down.
151.									for	b	in	baddies:
152.													if	not	reverseCheat	and	not	slowCheat:
153.																	b['rect'].move_ip(0,	b['speed'])
154.													elif	reverseCheat:
155.																	b['rect'].move_ip(0,	-5)
156.													elif	slowCheat:
157.																	b['rect'].move_ip(0,	1)
158.
159.									#	Delete	baddies	that	have	fallen	past	the	bottom.
160.									for	b	in	baddies[:]:
161.													if	b['rect'].top	>	WINDOWHEIGHT:
162.																	baddies.remove(b)
163.
164.									#	Draw	the	game	world	on	the	window.
165.									windowSurface.fill(BACKGROUNDCOLOR)
166.
167.									#	Draw	the	score	and	top	score.
168.									drawText('Score:	%s'	%	(score),	font,	windowSurface,	10,	0)



169.									drawText('Top	Score:	%s'	%	(topScore),	font,	windowSurface,
															10,	40)
170.
171.									#	Draw	the	player's	rectangle.
172.									windowSurface.blit(playerImage,	playerRect)
173.
174.									#	Draw	each	baddie.
175.									for	b	in	baddies:
176.													windowSurface.blit(b['surface'],	b['rect'])
177.
178.									pygame.display.update()
179.
180.									#	Check	if	any	of	the	baddies	have	hit	the	player.
181.									if	playerHasHitBaddie(playerRect,	baddies):
182.													if	score	>	topScore:
183.																	topScore	=	score	#	Set	new	top	score.
184.													break
185.
186.									mainClock.tick(FPS)
187.
188.					#	Stop	the	game	and	show	the	"Game	Over"	screen.
189.					pygame.mixer.music.stop()
190.					gameOverSound.play()
191.
192.					drawText('GAME	OVER',	font,	windowSurface,	(WINDOWWIDTH	/	3),
											(WINDOWHEIGHT	/	3))
193.					drawText('Press	a	key	to	play	again.',	font,	windowSurface,
											(WINDOWWIDTH	/	3)	-	80,	(WINDOWHEIGHT	/	3)	+	50)
194.					pygame.display.update()
195.					waitForPlayerToPressKey()
196.
197.					gameOverSound.stop()

Importing	the	Modules

The	Dodger	game	imports	the	same	modules	as	did	the	previous	pygame	programs:	pygame,
random,	sys,	and	pygame.locals.

1.	import	pygame,	random,	sys
2.	from	pygame.locals	import	*

The	pygame.locals	module	contains	several	constant	variables	that	pygame	uses,	such	as
the	event	types	(QUIT,	KEYDOWN,	and	so	on)	and	keyboard	keys	(K_ESCAPE,	K_LEFT,	and	so	on).
By	using	the	from	pygame.locals	import	*	syntax,	you	can	just	use	QUIT	in	the	source	code
instead	of	pygame.locals.QUIT.

Setting	Up	the	Constant	Variables

Lines	 4	 to	 7	 set	 up	 constants	 for	 the	 window	 dimensions,	 the	 text	 color,	 and	 the
background	color:

4.	WINDOWWIDTH	=	600



5.	WINDOWHEIGHT	=	600
6.	TEXTCOLOR	=	(0,	0,	0)
7.	BACKGROUNDCOLOR	=	(255,	255,	255)

We	use	constant	variables	because	they	are	much	more	descriptive	than	if	we	had	typed
out	 the	 values.	 For	 example,	 the	 line	 windowSurface.fill(BACKGROUNDCOLOR)	 is	 more
understandable	than	windowSurface.fill((255,	255,	255)).

You	 can	 easily	 change	 the	 game	 by	 changing	 the	 constant	 variables.	 By	 changing
WINDOWWIDTH	on	line	4,	you	automatically	change	the	code	everywhere	WINDOWWIDTH	is	used.	If
you	had	used	the	value	600	instead,	you	would	have	to	change	each	occurrence	of	600	in	the
code.	It’s	easier	to	change	the	value	in	the	constant	once.

On	line	8,	you	set	the	constant	for	the	FPS,	the	number	of	frames	per	second	you	want
the	game	to	run:

8.	FPS	=	60

A	frame	is	a	screen	that’s	drawn	for	a	single	iteration	through	the	game	loop.	You	pass
FPS	 to	 the	mainClock.tick()	method	on	 line	186	so	 that	 the	 function	knows	how	 long	 to
pause	the	program.	Here	FPS	is	set	to	60,	but	you	can	change	FPS	to	a	higher	value	to	have
the	game	run	faster	or	to	a	lower	value	to	slow	it	down.

Lines	9	to	13	set	some	more	constant	variables	for	the	falling	baddies:

	9.	BADDIEMINSIZE	=	10
10.	BADDIEMAXSIZE	=	40
11.	BADDIEMINSPEED	=	1
12.	BADDIEMAXSPEED	=	8
13.	ADDNEWBADDIERATE	=	6

The	width	and	height	of	the	baddies	will	be	between	BADDIEMINSIZE	and	BADDIEMAXSIZE.
The	 rate	 at	which	 the	 baddies	 fall	 down	 the	 screen	will	 be	 between	 BADDIEMINSPEED	 and
BADDIEMAXSPEED	pixels	per	iteration	through	the	game	loop.	And	a	new	baddie	will	be	added
to	the	top	of	the	window	every	ADDNEWBADDIERATE	iterations	through	the	game	loop.

Finally,	the	PLAYERMOVERATE	stores	the	number	of	pixels	the	player’s	character	moves	in
the	window	on	each	iteration	through	the	game	loop	(if	the	character	is	moving):

14.	PLAYERMOVERATE	=	5

By	increasing	this	number,	you	can	increase	the	speed	at	which	the	character	moves.

Defining	Functions

There	 are	 several	 functions	 you’ll	 create	 for	 this	 game.	 The	 terminate()	 and
waitForPlayerToPressKey()	 functions	 will	 end	 and	 pause	 the	 game,	 respectively,	 the
playerHasHitBaddie()	 function	 will	 track	 the	 player’s	 collisions	 with	 baddies,	 and	 the
drawText()	function	will	draw	the	score	and	other	text	to	the	screen.



Ending	and	Pausing	the	Game
The	pygame	module	 requires	 that	you	call	both	pygame.quit()	 and	sys.exit()	 to	 end	 the
game.	Lines	16	to	18	put	them	both	into	a	function	called	terminate().

16.	def	terminate():
17.					pygame.quit()
18.					sys.exit()

Now	you	only	need	to	call	terminate()	instead	of	both	pygame.quit()	and	sys.exit().
Sometimes	you’ll	want	to	pause	the	program	until	the	player	presses	a	key,	such	as	at

the	very	start	of	the	game	when	the	Dodger	title	text	appears	or	at	the	end	when	Game	Over
shows.	Lines	20	to	24	create	a	new	function	called	waitForPlayerToPressKey():

20.	def	waitForPlayerToPressKey():
21.					while	True:
22.									for	event	in	pygame.event.get():
23.													if	event.type	==	QUIT:
24.																	terminate()

Inside	 this	 function,	 there’s	 an	 infinite	 loop	 that	breaks	only	when	a	KEYDOWN	 or	 QUIT
event	is	received.	At	the	start	of	the	loop,	pygame.event.get()	returns	a	list	of	Event	objects
to	check	out.

If	the	player	has	closed	the	window	while	the	program	is	waiting	for	the	player	to	press
a	key,	pygame	will	generate	a	QUIT	event,	which	you	check	for	in	line	23	with	event.type.	If
the	player	has	quit,	Python	calls	the	terminate()	function	on	line	24.

If	the	game	receives	a	KEYDOWN	event,	it	should	first	check	whether	ESC	was	pressed:

25.													if	event.type	==	KEYDOWN:
26.																	if	event.key	==	K_ESCAPE:	#	Pressing	ESC	quits.
27.																					terminate()
28.																	return

If	 the	player	pressed	ESC,	 the	program	should	 terminate.	 If	 that	wasn’t	 the	case,	 then
execution	will	skip	the	if	block	on	line	27	and	go	straight	to	the	return	statement,	which
exits	the	waitForPlayerToPressKey()	function.

If	a	QUIT	or	KEYDOWN	event	isn’t	generated,	the	code	keeps	looping.	Since	the	loop	does
nothing,	this	will	make	it	look	like	the	game	has	frozen	until	the	player	presses	a	key.

Keeping	Track	of	Baddie	Collisions
The	playerHasHitBaddie()	 function	will	 return	True	 if	 the	player’s	 character	has	 collided
with	one	of	the	baddies:

30.	def	playerHasHitBaddie(playerRect,	baddies):
31.					for	b	in	baddies:
32.									if	playerRect.colliderect(b['rect']):
33.													return	True



34.					return	False

The	 baddies	 parameter	 is	 a	 list	 of	 baddie	 dictionary	 data	 structures.	 Each	 of	 these
dictionaries	has	a	'rect'	key,	and	the	value	for	that	key	is	a	Rect	object	that	represents	the
baddie’s	size	and	location.

playerRect	is	also	a	Rect	object.	Rect	objects	have	a	method	named	colliderect()	 that
returns	 True	 if	 the	 Rect	 object	 has	 collided	 with	 the	 Rect	 object	 that	 is	 passed	 to	 it.
Otherwise,	colliderect()	returns	False.

The	for	loop	on	line	31	iterates	through	each	baddie	dictionary	in	the	baddies	 list.	If
any	of	these	baddies	collides	with	the	player’s	character,	then	playerHasHitBaddie()	returns
True.	 If	 the	 code	manages	 to	 iterate	 through	 all	 the	 baddies	 in	 the	 baddies	 list	 without
detecting	a	collision,	playerHasHitBaddie()	returns	False.

Drawing	Text	to	the	Window
Drawing	text	on	the	window	involves	a	 few	steps,	which	we	accomplish	with	drawText().
This	way,	there’s	only	one	function	to	call	when	we	want	to	display	the	player’s	score	or
the	Game	Over	text	on	the	screen.

36.	def	drawText(text,	font,	surface,	x,	y):
37.					textobj	=	font.render(text,	1,	TEXTCOLOR)
38.					textrect	=	textobj.get_rect()
39.					textrect.topleft	=	(x,	y)
40.					surface.blit(textobj,	textrect)

First,	the	render()	method	call	on	line	37	creates	a	Surface	object	that	renders	the	text
in	a	specific	font.

Next,	you	need	to	know	the	size	and	location	of	the	Surface	object.	You	can	get	a	Rect
object	with	this	information	using	the	get_rect()	Surface	method.

The	Rect	object	returned	from	get_rect()	on	line	38	has	a	copy	of	the	width	and	height
information	 from	the	Surface	object.	Line	39	changes	 the	 location	of	 the	Rect	object	by
setting	a	new	tuple	value	for	its	topleft	attribute.

Finally,	 line	40	draws	the	Surface	object	of	 the	rendered	text	onto	the	Surface	 object
that	was	passed	to	the	drawText()	function.	Displaying	text	in	pygame	takes	a	few	more	steps
than	 simply	calling	 the	print()	 function.	But	 if	 you	put	 this	 code	 into	a	 single	 function
named	drawText(),	then	you	only	need	to	call	this	function	to	display	text	on	the	screen.

Initializing	pygame	and	Setting	Up	the	Window

Now	that	 the	 constant	 variables	 and	 functions	 are	 finished,	we’ll	 start	 calling	 the	pygame
functions	that	set	up	the	window	and	clock:

42.	#	Set	up	pygame,	the	window,	and	the	mouse	cursor.
43.	pygame.init()



44.	mainClock	=	pygame.time.Clock()

Line	 43	 sets	 up	 pygame	 by	 calling	 the	 pygame.init()	 function.	 Line	 44	 creates	 a
pygame.time.Clock()	object	and	stores	it	in	the	mainClock	variable.	This	object	will	help	us
keep	the	program	from	running	too	fast.

Line	45	creates	a	new	Surface	object	that	is	used	for	the	window	display:

45.	windowSurface	=	pygame.display.set_mode((WINDOWWIDTH,	WINDOWHEIGHT))

Notice	 that	 there’s	 only	 one	 argument	 passed	 to	 pygame.display.set_mode():	 a	 tuple.
The	arguments	 for	pygame.display.set_mode()	 are	not	 two	 integers	but	one	 tuple	of	 two
integers.	You	can	specify	the	width	and	height	of	this	Surface	object	(and	the	window)	by
passing	a	tuple	with	the	WINDOWWIDTH	and	WINDOWHEIGHT	constant	variables.

The	 pygame.display.set_mode()	 function	 has	 a	 second,	 optional	 parameter.	 You	 can
pass	the	pygame.FULLSCREEN	constant	to	make	the	window	fill	the	entire	screen.	Look	at	this
modification	to	line	45:

45.	windowSurface	=	pygame.display.set_mode((WINDOWWIDTH,	WINDOWHEIGHT),
						pygame.FULLSCREEN)

The	parameters	WINDOWWIDTH	 and	WINDOWHEIGHT	 are	 still	passed	 for	 the	window’s	width
and	 height,	 but	 the	 image	 will	 be	 stretched	 larger	 to	 fit	 the	 screen.	 Try	 running	 the
program	with	and	without	fullscreen	mode.

Line	46	sets	the	caption	of	the	window	to	the	string	'Dodger':

46.	pygame.display.set_caption('Dodger')

This	caption	will	appear	in	the	title	bar	at	the	top	of	the	window.
In	Dodger,	 the	mouse	cursor	shouldn’t	be	visible.	You	want	 the	mouse	 to	be	able	 to

move	the	player’s	character	around	the	screen,	but	the	mouse	cursor	would	get	in	the	way
of	the	character’s	image.	We	can	make	the	mouse	invisible	with	just	one	line	of	code:

47.	pygame.mouse.set_visible(False)

Calling	pygame.mouse.set_visible(False)	tells	pygame	to	make	the	cursor	invisible.

Setting	Up	Font,	Sound,	and	Image	Objects

Since	we	 are	 displaying	 text	 on	 the	 screen	 in	 this	 program,	we	 need	 to	 give	 the	 pygame
module	 a	 Font	 object	 to	 use	 for	 the	 text.	 Line	 50	 creates	 a	 Font	 object	 by	 calling
pygame.font.SysFont():

49.	#	Set	up	the	fonts.
50.	font	=	pygame.font.SysFont(None,	48)



Passing	None	uses	the	default	font.	Passing	48	gives	the	font	a	size	of	48	points.
Next,	we’ll	create	the	Sound	objects	and	set	up	the	background	music:

52.	#	Set	up	sounds.
53.	gameOverSound	=	pygame.mixer.Sound('gameover.wav')
54.	pygame.mixer.music.load('background.mid')

The	pygame.mixer.Sound()	constructor	function	creates	a	new	Sound	object	and	stores	a
reference	to	this	object	in	the	gameOverSound	variable.	In	your	own	games,	you	can	create	as
many	Sound	objects	as	you	like,	each	with	a	different	sound	file.

The	pygame.mixer.music.load()	function	loads	a	sound	file	to	play	for	the	background
music.	This	function	doesn’t	return	any	objects,	and	only	one	background	sound	file	can
be	loaded	at	a	time.	The	background	music	will	play	constantly	during	the	game,	but	Sound
objects	will	play	only	when	the	player	loses	the	game	by	running	into	a	baddie.

You	can	use	any	WAV	or	MIDI	file	for	this	game.	Some	sound	files	are	available	from
this	book’s	website	at	https://www.nostarch.com/inventwithpython/.	You	can	also	use	your	own
sound	files	for	this	game,	as	long	as	you	name	the	files	gameover.wav	and	background.mid	or
change	the	strings	used	on	lines	53	and	54	to	match	the	filename	you	want.

Next	you’ll	load	the	image	files	to	be	used	for	the	player’s	character	and	the	baddies:

56.	#	Set	up	images.
57.	playerImage	=	pygame.image.load('player.png')
58.	playerRect	=	playerImage.get_rect()
59.	baddieImage	=	pygame.image.load('baddie.png')

The	 image	 for	 the	 character	 is	 stored	 in	 player.png,	 and	 the	 image	 for	 the	 baddies	 is
stored	 in	baddie.png.	All	 the	 baddies	 look	 the	 same,	 so	 you	need	only	 one	 image	 file	 for
them.	 You	 can	 download	 these	 images	 from	 this	 book’s	 website	 at
https://www.nostarch.com/inventwithpython/.

Displaying	the	Start	Screen

When	the	game	first	starts,	Python	should	display	the	Dodger	title	on	the	screen.	You	also
want	to	tell	the	player	that	they	can	start	the	game	by	pushing	any	key.	This	screen	appears
so	that	the	player	has	time	to	get	ready	to	start	playing	after	running	the	program.

On	lines	63	and	64,	we	write	code	to	call	the	drawText()	function:

61.	#	Show	the	"Start"	screen.
62.	windowSurface.fill(BACKGROUNDCOLOR)
63.	drawText('Dodger',	font,	windowSurface,	(WINDOWWIDTH	/	3),
						(WINDOWHEIGHT	/	3))
64.	drawText('Press	a	key	to	start.',	font,	windowSurface,
						(WINDOWWIDTH	/	3)	-	30,	(WINDOWHEIGHT	/	3)	+	50)
65.	pygame.display.update()
66.	waitForPlayerToPressKey()

https://www.nostarch.com/inventwithpython/
https://www.nostarch.com/inventwithpython/


We	pass	this	function	five	arguments:

1.	 The	string	of	the	text	you	want	to	appear
2.	 The	font	in	which	you	want	the	string	to	appear
3.	 The	Surface	object	onto	which	the	text	will	be	rendered
4.	 The	x-coordinate	on	the	Surface	object	at	which	to	draw	the	text
5.	 The	y-coordinate	on	the	Surface	object	at	which	to	draw	the	text

This	may	seem	like	a	lot	of	arguments	to	pass	for	a	function	call,	but	keep	in	mind	that
this	 function	 call	 replaces	 five	 lines	 of	 code	 each	 time	 you	 call	 it.	 This	 shortens	 the
program	and	makes	it	easier	to	find	bugs	since	there’s	less	code	to	check.

The	 waitForPlayerToPressKey()	 function	 pauses	 the	 game	 by	 looping	 until	 a	 KEYDOWN
event	is	generated.	Then	the	execution	breaks	out	of	the	loop	and	the	program	continues
to	run.

Starting	the	Game

With	all	the	functions	now	defined,	we	can	start	writing	the	main	game	code.	Lines	68	and
on	will	call	the	functions	that	we	defined	earlier.	The	value	in	the	topScore	variable	starts
at	0	when	the	program	first	runs.	Whenever	the	player	loses	and	has	a	score	larger	than	the
current	top	score,	the	top	score	is	replaced	with	this	larger	score.

68.	topScore	=	0
69.	while	True:

The	infinite	loop	started	on	line	69	is	technically	not	the	game	loop.	The	game	loop
handles	events	and	drawing	the	window	while	the	game	is	running.	Instead,	this	while	loop
iterates	each	time	the	player	starts	a	new	game.	When	the	player	loses	and	the	game	resets,
the	program’s	execution	loops	back	to	line	69.

At	the	beginning,	you	also	want	to	set	baddies	to	an	empty	list:

70.					#	Set	up	the	start	of	the	game.
71.					baddies	=	[]
72.					score	=	0

The	baddies	variable	is	a	list	of	dictionary	objects	with	the	following	keys:

'rect'	The	Rect	object	that	describes	where	and	what	size	the	baddie	is.

'speed'	How	fast	 the	baddie	 falls	down	the	 screen.	This	 integer	represents	pixels	per
iteration	through	the	game	loop.

'surface'	The	Surface	object	that	has	the	scaled	baddie	image	drawn	on	it.	This	is	the
Surface	that	is	drawn	to	the	Surface	object	returned	by	pygame.display.set_mode().



Line	72	resets	the	player’s	score	to	0.
The	starting	location	of	the	player	is	in	the	center	of	the	screen	and	50	pixels	up	from

the	bottom,	which	is	set	by	line	73:

73.					playerRect.topleft	=	(WINDOWWIDTH	/	2,	WINDOWHEIGHT	-	50)

The	first	item	in	line	73’s	tuple	is	the	x-coordinate	of	the	left	edge,	and	the	second	item
is	the	y-coordinate	of	the	top	edge.

Next	we	set	up	variables	for	the	player	movements	and	the	cheats:

74.					moveLeft	=	moveRight	=	moveUp	=	moveDown	=	False
75.					reverseCheat	=	slowCheat	=	False
76.					baddieAddCounter	=	0

The	movement	variables	moveLeft,	moveRight,	moveUp,	and	moveDown	are	set	to	False.	The
reverseCheat	 and	slowCheat	 variables	 are	 also	 set	 to	False.	They	will	 be	 set	 to	True	 only
when	the	player	enables	these	cheats	by	holding	down	the	Z	and	X	keys,	respectively.

The	 baddieAddCounter	 variable	 is	 a	 counter	 to	 tell	 the	 program	 when	 to	 add	 a	 new
baddie	at	the	top	of	the	screen.	The	value	in	baddieAddCounter	increments	by	1	each	time
the	game	loop	iterates.	(This	is	similar	to	the	code	in	“Adding	New	Food	Squares”	on	page
295.)

When	baddieAddCounter	is	equal	to	ADDNEWBADDIERATE,	then	baddieAddCounter	resets	to	0
and	a	new	baddie	is	added	to	the	top	of	the	screen.	(This	check	is	done	later	on	line	130.)

The	 background	 music	 starts	 playing	 on	 line	 77	 with	 a	 call	 to	 the
pygame.mixer.music.play()	function:

77.					pygame.mixer.music.play(-1,	0.0)

Because	 the	 first	 argument	 is	 -1,	 pygame	 repeats	 the	 music	 endlessly.	 The	 second
argument	is	a	float	that	says	how	many	seconds	into	the	music	you	want	it	to	start	playing.
Passing	0.0	means	the	music	starts	playing	from	the	beginning.

The	Game	Loop

The	 game	 loop’s	 code	 constantly	 updates	 the	 state	 of	 the	 game	world	 by	 changing	 the
position	of	the	player	and	baddies,	handling	events	generated	by	pygame,	and	drawing	the
game	world	on	the	screen.	All	of	this	happens	several	dozen	times	a	second,	which	makes
the	game	run	in	real	time.

Line	79	is	the	start	of	the	main	game	loop:

79.					while	True:	#	The	game	loop	runs	while	the	game	part	is	playing.
80.									score	+=	1	#	Increase	score.

Line	80	increases	the	player’s	score	on	each	iteration	of	the	game	loop.	The	longer	the



player	 can	 go	without	 losing,	 the	 higher	 their	 score.	The	 loop	will	 exit	 only	 when	 the
player	either	loses	the	game	or	quits	the	program.

Handling	Keyboard	Events
There	 are	 four	 types	 of	 events	 the	 program	 will	 handle:	 QUIT,	 KEYDOWN,	 KEYUP,	 and
MOUSEMOTION.

Line	82	is	the	start	of	the	event-handling	code:

82.									for	event	in	pygame.event.get():
83.													if	event.type	==	QUIT:
84.																	terminate()

It	 calls	 pygame.event.get(),	 which	 returns	 a	 list	 of	 Event	 objects.	 Each	 Event	 object
represents	an	event	that	has	happened	since	the	last	call	to	pygame.event.get().	The	code
checks	the	type	attribute	of	the	Event	object	to	see	what	type	of	event	it	is,	and	then	handles
it	accordingly.

If	the	type	attribute	of	 the	Event	object	 is	equal	 to	QUIT,	 then	 the	user	has	closed	 the
program.	The	QUIT	constant	variable	was	imported	from	the	pygame.locals	module.

If	the	event’s	type	is	KEYDOWN,	the	player	has	pressed	a	key:

86.													if	event.type	==	KEYDOWN:
87.																	if	event.key	==	K_z:
88.																					reverseCheat	=	True
89.																	if	event.key	==	K_x:
90.																					slowCheat	=	True

Line	87	checks	whether	the	event	describes	the	Z	key	being	pressed	with	event.key	==
K_z.	If	this	condition	is	True,	Python	sets	the	reverseCheat	variable	to	True	 to	activate	the
reverse	cheat.	Similarly,	line	89	checks	whether	the	X	key	has	been	pressed	to	activate	the
slow	cheat.

Lines	91	to	102	check	whether	the	event	was	generated	by	the	player	pressing	one	of	the
arrow	or	WASD	keys.	This	code	 is	similar	to	the	keyboard-related	code	 in	the	previous
chapters.

If	the	event’s	type	is	KEYUP,	the	player	has	released	a	key:

104.													if	event.type	==	KEYUP:
105.																	if	event.key	==	K_z:
106.																					reverseCheat	=	False
107.																					score	=	0
108.																	if	event.key	==	K_x:
109.																					slowCheat	=	False
110.																					score	=	0

Line	105	checks	whether	 the	player	has	 released	 the	Z	key,	which	will	deactivate	 the
reverse	cheat.	In	that	case,	line	106	sets	reverseCheat	to	False,	and	line	107	resets	the	score
to	0.	The	score	reset	is	to	discourage	the	player	from	using	the	cheats.



Lines	108	to	110	do	the	same	thing	for	the	X	key	and	the	slow	cheat.	When	the	X	key	is
released,	slowCheat	is	set	to	False,	and	the	player’s	score	is	reset	to	0.

At	any	time	during	the	game,	the	player	can	press	ESC	to	quit:

111.																	if	event.key	==	K_ESCAPE:
112.																					terminate()

Line	111	determines	whether	the	key	that	was	released	was	ESC	by	checking	event.key
==	K_ESCAPE.	If	so,	line	112	calls	the	terminate()	function	to	exit	the	program.

Lines	114	to	121	check	whether	the	player	has	stopped	holding	down	one	of	the	arrow
or	WASD	keys.	In	that	case,	the	code	sets	the	corresponding	movement	variable	to	False.
This	is	similar	to	the	movement	code	in	Chapter	19’s	and	Chapter	20’s	programs.

Handling	Mouse	Movement
Now	that	you’ve	handled	the	keyboard	events,	let’s	handle	any	mouse	events	that	may	have
been	generated.	The	Dodger	game	doesn’t	do	anything	if	the	player	has	clicked	a	mouse
button,	but	it	does	respond	when	the	player	moves	the	mouse.	This	gives	the	player	two
ways	of	controlling	the	character	in	the	game:	the	keyboard	or	the	mouse.

The	MOUSEMOTION	event	is	generated	whenever	the	mouse	is	moved:

123.													if	event.type	==	MOUSEMOTION:
124.																	#	If	the	mouse	moves,	move	the	player	to	the	cursor.
125.																	playerRect.centerx	=	event.pos[0]
126.																	playerRect.centery	=	event.pos[1]

Event	objects	with	a	type	 set	 to	MOUSEMOTION	 also	have	an	attribute	named	pos	 for	 the
position	of	the	mouse	event.	The	pos	attribute	stores	a	tuple	of	the	x-	and	y-coordinates	of
where	 the	 mouse	 cursor	 moved	 in	 the	 window.	 If	 the	 event’s	 type	 is	 MOUSEMOTION,	 the
player’s	character	moves	to	the	position	of	the	mouse	cursor.

Lines	125	and	126	set	the	center	x-	and	y-coordinate	of	the	player’s	character	to	the	x-
and	y-coordinates	of	the	mouse	cursor.

Adding	New	Baddies

On	each	iteration	of	the	game	loop,	the	code	increments	the	baddieAddCounter	variable	by
one:

127.									#	Add	new	baddies	at	the	top	of	the	screen,	if	needed.
128.									if	not	reverseCheat	and	not	slowCheat:
129.													baddieAddCounter	+=	1

This	 happens	 only	 if	 the	 cheats	 are	 not	 enabled.	 Remember	 that	 reverseCheat	 and
slowCheat	 are	 set	 to	True	 as	 long	as	 the	Z	and	X	keys	 are	being	held	down,	 respectively.
While	 the	 Z	 and	 X	 keys	 are	 being	 held	 down,	 baddieAddCounter	 isn’t	 incremented.



Therefore,	no	new	baddies	will	appear	at	the	top	of	the	screen.
When	 the	 baddieAddCounter	 reaches	 the	 value	 in	 ADDNEWBADDIERATE,	 it’s	 time	 to	 add	 a

new	baddie	to	the	top	of	the	screen.	First,	baddieAddCounter	is	reset	to	0:

130.									if	baddieAddCounter	==	ADDNEWBADDIERATE:
131.													baddieAddCounter	=	0
132.													baddieSize	=	random.randint(BADDIEMINSIZE,	BADDIEMAXSIZE)
133.													newBaddie	=	{'rect':	pygame.Rect(random.randint(0,
																																WINDOWWIDTH	-	baddieSize),	0	-	baddieSize,
																																baddieSize,	baddieSize),
134.																									'speed':	random.randint(BADDIEMINSPEED,
																																BADDIEMAXSPEED),
135.																									'surface':pygame.transform.scale(baddieImage,
																																(baddieSize,	baddieSize)),
136.																									}

Line	132	generates	a	 size	 for	 the	baddie	 in	pixels.	The	 size	will	be	a	 random	 integer
between	BADDIEMINSIZE	and	BADDIEMAXSIZE,	which	are	constants	set	to	10	and	40	on	lines	9
and	10,	respectively.

Line	133	is	where	a	new	baddie	data	structure	is	created.	Remember,	the	data	structure
for	baddies	is	simply	a	dictionary	with	keys	'rect',	'speed',	and	'surface'.	The	'rect'	key
holds	a	reference	to	a	Rect	object	that	stores	the	location	and	size	of	the	baddie.	The	call	to
the	pygame.Rect()	 constructor	 function	has	 four	 parameters:	 the	 x-coordinate	 of	 the	 top
edge	of	the	area,	the	y-coordinate	of	the	left	edge	of	the	area,	the	width	in	pixels,	and	the
height	in	pixels.

The	baddie	needs	 to	appear	at	a	 random	point	along	 the	 top	of	 the	window,	 so	pass
random.randint(0,	WINDOWWIDTH	-	baddieSize)	 for	the	x-coordinate	of	the	left	edge	of	the
baddie.	The	reason	you	pass	WINDOWWIDTH	-	baddieSize	instead	of	WINDOWWIDTH	is	that	if	the
left	edge	of	the	baddie	is	too	far	to	the	right,	then	part	of	the	baddie	will	be	off	the	edge	of
the	window	and	not	visible	onscreen.

The	bottom	edge	of	the	baddie	should	be	just	above	the	top	edge	of	the	window.	The
y-coordinate	of	the	top	edge	of	the	window	is	0.	To	put	the	baddie’s	bottom	edge	there,	set
the	top	edge	to	0	-	baddieSize.

The	 baddie’s	 width	 and	 height	 should	 be	 the	 same	 (the	 image	 is	 a	 square),	 so	 pass
baddieSize	for	the	third	and	fourth	arguments.

The	speed	at	which	the	baddie	moves	down	the	screen	is	set	in	the	'speed'	key.	Set	it	to
a	random	integer	between	BADDIEMINSPEED	and	BADDIEMAXSPEED.

Line	138	will	then	add	the	newly	created	baddie	data	structure	to	the	list	of	baddie	data
structures:

138.													baddies.append(newBaddie)

The	program	uses	 this	 list	 to	 check	whether	 the	 player	has	 collided	with	 any	of	 the
baddies	and	to	determine	where	to	draw	baddies	on	the	window.



Moving	the	Player’s	Character	and	the	Baddies

The	four	movement	variables	moveLeft,	moveRight,	moveUp,	and	moveDown	are	set	to	True	and
False	when	pygame	generates	the	KEYDOWN	and	KEYUP	events,	respectively.

If	 the	 player’s	 character	 is	moving	 left	 and	 the	 left	 edge	 of	 the	 player’s	 character	 is
greater	than	0	(which	is	the	left	edge	of	the	window),	then	playerRect	should	move	to	the
left:

140.									#	Move	the	player	around.
141.									if	moveLeft	and	playerRect.left	>	0:
142.													playerRect.move_ip(-1	*	PLAYERMOVERATE,	0)

The	 move_ip()	 method	 will	 move	 the	 location	 of	 the	 Rect	 object	 horizontally	 or
vertically	by	a	number	of	pixels.	The	 first	 argument	 to	move_ip()	 is	how	many	pixels	 to
move	 the	 Rect	 object	 to	 the	 right	 (to	move	 it	 to	 the	 left,	 pass	 a	 negative	 integer).	 The
second	argument	is	how	many	pixels	to	move	the	Rect	object	down	(to	move	it	up,	pass	a
negative	integer).	For	example,	playerRect.move_ip(10,	20)	would	move	the	Rect	object	10
pixels	 to	 the	right	and	20	pixels	down	and	playerRect.move_ip(-5,	-15)	would	move	 the
Rect	object	5	pixels	to	the	left	and	15	pixels	up.

The	ip	at	the	end	of	move_ip()	stands	for	“in	place.”	This	is	because	the	method	changes
the	Rect	object	 itself,	rather	than	returning	a	new	Rect	object	with	the	changes.	There	 is
also	a	move()	method,	which	doesn’t	change	the	Rect	object	but	instead	creates	and	returns
a	new	Rect	object	in	the	new	location.

You’ll	always	move	the	playerRect	object	by	the	number	of	pixels	in	PLAYERMOVERATE.	To
get	 the	 negative	 form	of	 an	 integer,	multiply	 it	 by	 -1.	On	 line	 142,	 since	 5	 is	 stored	 in
PLAYERMOVERATE,	 the	 expression	 -1	 *	 PLAYERMOVERATE	 evaluates	 to	 -5.	 Therefore,	 calling
playerRect.move_ip(-1	*	PLAYERMOVERATE,	0)	will	 change	 the	 location	of	playerRect	 by	 5
pixels	to	the	left	of	its	current	location.

Lines	143	to	148	do	the	same	thing	for	the	other	three	directions:	right,	up,	and	down.

143.									if	moveRight	and	playerRect.right	<	WINDOWWIDTH:
144.													playerRect.move_ip(PLAYERMOVERATE,	0)
145.									if	moveUp	and	playerRect.top	>	0:
146.													playerRect.move_ip(0,	-1	*	PLAYERMOVERATE)
147.									if	moveDown	and	playerRect.bottom	<	WINDOWHEIGHT:
148.													playerRect.move_ip(0,	PLAYERMOVERATE)

Each	of	the	three	if	statements	in	lines	143	to	148	checks	that	its	movement	variable	is
set	to	True	and	that	the	edge	of	the	Rect	object	of	the	player	is	inside	the	window.	Then	it
calls	move_ip()	to	move	the	Rect	object.

Now	 the	 code	 loops	 through	 each	 baddie	 data	 structure	 in	 the	 baddies	 list	 to	move
them	down	a	little:

150.									#	Move	the	baddies	down.
151.									for	b	in	baddies:
152.													if	not	reverseCheat	and	not	slowCheat:



153.																	b['rect'].move_ip(0,	b['speed'])

If	 neither	 of	 the	 cheats	 has	 been	 activated,	 then	 the	 baddie’s	 location	moves	 down	 a
number	of	pixels	equal	to	its	speed	(stored	in	the	'speed'	key).

Implementing	the	Cheat	Codes

If	the	reverse	cheat	is	activated,	then	the	baddie	should	move	up	by	5	pixels:

154.													elif	reverseCheat:
155.																	b['rect'].move_ip(0,	-5)

Passing	-5	for	the	second	argument	to	move_ip()	will	move	the	Rect	object	upward	by	5
pixels.

If	the	slow	cheat	has	been	activated,	then	the	baddie	should	still	move	downward,	but	at
the	slow	speed	of	1	pixel	per	iteration	through	the	game	loop:

156.													elif	slowCheat:
157.																	b['rect'].move_ip(0,	1)

The	baddie’s	normal	speed	(again,	this	is	stored	in	the	'speed'	key	of	the	baddie’s	data
structure)	is	ignored	when	the	slow	cheat	is	activated.

Removing	the	Baddies

Any	baddies	that	fall	below	the	bottom	edge	of	the	window	should	be	removed	from	the
baddies	 list.	Remember	 that	 you	 shouldn’t	 add	or	 remove	 list	 items	while	 also	 iterating
through	 the	 list.	 Instead	 of	 iterating	 through	 the	 baddies	 list	 with	 the	 for	 loop,	 iterate
through	a	copy	of	the	baddies	list.	To	make	this	copy,	use	the	blank	slicing	operator	[:]:

159.									#	Delete	baddies	that	have	fallen	past	the	bottom.
160.									for	b	in	baddies[:]:

The	 for	 loop	 on	 line	 160	 uses	 the	 variable	 b	 for	 the	 current	 item	 in	 the	 iteration
through	 baddies[:].	 If	 the	 baddie	 is	 below	 the	 bottom	 edge	 of	 the	 window,	 we	 should
remove	it,	which	we	do	on	line	162:

161.													if	b['rect'].top	>	WINDOWHEIGHT:
162.																	baddies.remove(b)

The	b	 dictionary	 is	 the	 current	 baddie	 data	 structure	 from	 the	 baddies[:]	 list.	Each
baddie	data	structure	in	the	list	is	a	dictionary	with	a	'rect'	key,	which	stores	a	Rect	object.
So	b['rect']	is	the	Rect	object	for	the	baddie.	Finally,	the	top	attribute	is	the	y-coordinate
of	the	top	edge	of	the	rectangular	area.	Remember	that	the	y-coordinates	increase	going
down.	So	b['rect'].top	>	WINDOWHEIGHT	will	check	whether	the	top	edge	of	the	baddie	is



below	 the	 bottom	 of	 the	 window.	 If	 this	 condition	 is	 True,	 then	 line	 162	 removes	 the
baddie	data	structure	from	the	baddies	list.

Drawing	the	Window

After	 all	 the	 data	 structures	 have	 been	 updated,	 the	 game	world	 should	 be	 drawn	using
pygame’s	image	functions.	Because	the	game	loop	is	executed	several	times	a	second,	when
the	baddies	and	player	are	drawn	in	new	positions,	they	look	like	they’re	moving	smoothly.

Before	anything	else	is	drawn,	line	165	fills	the	entire	screen	to	erase	anything	drawn	on
it	previously:

164.									#	Draw	the	game	world	on	the	window.
165.									windowSurface.fill(BACKGROUNDCOLOR)

Remember	 that	 the	 Surface	 object	 in	 windowSurface	 is	 special	 because	 it	 is	 the	 one
returned	by	pygame.display.set_mode().	Therefore,	anything	drawn	on	that	Surface	object
will	appear	on	the	screen	after	pygame.display.update()	is	called.

Drawing	the	Player’s	Score
Lines	168	and	169	render	the	text	for	the	current	score	and	top	score	to	the	top-left	corner
of	the	window.

167.									#	Draw	the	score	and	top	score.
168.									drawText('Score:	%s'	%	(score),	font,	windowSurface,	10,	0)
169.									drawText('Top	Score:	%s'	%	(topScore),	font,	windowSurface,
															10,	40)

The	'Score:	%s'	%	(score)	expression	uses	 string	 interpolation	 to	 insert	 the	value	 in
the	score	variable	into	the	string.	This	string,	the	Font	object	stored	in	the	font	variable,
the	 Surface	 object	 to	 draw	 the	 text	 on,	 and	 the	 x-	 and	 y-coordinates	 of	 where	 the	 text
should	be	placed	are	passed	 to	 the	drawText()	method,	which	will	handle	 the	call	 to	 the
render()	and	blit()	methods.

For	the	top	score,	do	the	same	thing.	Pass	40	for	the	y-coordinate	instead	of	0	so	that
the	top	score’s	text	appears	beneath	the	current	score’s	text.

Drawing	the	Player’s	Character	and	Baddies
Information	 about	 the	 player	 is	 kept	 in	 two	 different	 variables.	 playerImage	 is	 a	 Surface
object	 that	 contains	 all	 the	 colored	 pixels	 that	 make	 up	 the	 player	 character’s	 image.
playerRect	is	a	Rect	object	that	stores	the	size	and	location	of	the	player’s	character.

The	 blit()	 method	 draws	 the	 player	 character’s	 image	 (in	 playerImage)	 on
windowSurface	at	the	location	in	playerRect:



171.									#	Draw	the	player's	rectangle.
172.									windowSurface.blit(playerImage,	playerRect)

Line	175’s	for	loop	draws	every	baddie	on	the	windowSurface	object:

174.									#	Draw	each	baddie.
175.									for	b	in	baddies:
176.													windowSurface.blit(b['surface'],	b['rect'])

Each	 item	 in	 the	 baddies	 list	 is	 a	 dictionary.	The	 dictionaries’	 'surface'	 and	 'rect'
keys	contain	the	Surface	object	with	the	baddie	image	and	the	Rect	object	with	the	position
and	size	information,	respectively.

Now	that	everything	has	been	drawn	to	windowSurface,	we	need	to	update	the	screen	so
the	player	can	see	what’s	there:

178.									pygame.display.update()

Draw	this	Surface	object	to	the	screen	by	calling	update().

Checking	for	Collisions

Line	 181	 checks	 whether	 the	 player	 has	 collided	 with	 any	 baddies	 by	 calling
playerHasHitBaddie().	This	function	will	return	True	 if	the	player’s	character	has	collided
with	any	of	the	baddies	in	the	baddies	list.	Otherwise,	the	function	returns	False.

180.									#	Check	if	any	of	the	baddies	have	hit	the	player.
181.									if	playerHasHitBaddie(playerRect,	baddies):
182.													if	score	>	topScore:
183.																	topScore	=	score	#	Set	new	top	score.
184.													break

If	the	player’s	character	has	hit	a	baddie	and	if	the	current	score	is	higher	than	the	top
score,	then	lines	182	and	183	update	the	top	score.	The	program’s	execution	breaks	out	of
the	game	loop	at	line	184	and	moves	to	line	189,	ending	the	game.

To	keep	the	computer	from	running	through	the	game	loop	as	fast	as	possible	(which
would	be	much	too	fast	for	the	player	to	keep	up	with),	call	mainClock.tick()	to	pause	the
game	very	briefly:

186.									mainClock.tick(FPS)

This	pause	will	be	long	enough	to	ensure	that	about	40	(the	value	stored	inside	the	FPS
variable)	iterations	through	the	game	loop	occur	each	second.

The	Game	Over	Screen

When	the	player	loses,	the	game	stops	playing	the	background	music	and	plays	the	“game



over”	sound	effect:

188.					#	Stop	the	game	and	show	the	"Game	Over"	screen.
189.					pygame.mixer.music.stop()
190.					gameOverSound.play()

Line	 189	 calls	 the	 stop()	 function	 in	 the	 pygame.mixer.music	 module	 to	 stop	 the
background	 music.	 Line	 190	 calls	 the	 play()	 method	 on	 the	 Sound	 object	 stored	 in
gameOverSound.

Then	lines	192	and	193	call	the	drawText()	function	to	draw	the	“game	over”	text	to	the
windowSurface	object:

192.					drawText('GAME	OVER',	font,	windowSurface,	(WINDOWWIDTH	/	3),
											(WINDOWHEIGHT	/	3))
193.					drawText('Press	a	key	to	play	again.',	font,	windowSurface,
											(WINDOWWIDTH	/	3)	-	80,	(WINDOWHEIGHT	/	3)	+	50)
194.					pygame.display.update()
195.					waitForPlayerToPressKey()

Line	194	calls	update()	to	draw	this	Surface	object	to	the	screen.	After	displaying	this
text,	the	game	stops	until	the	player	presses	a	key	by	calling	the	waitForPlayerToPressKey()
function.

After	 the	 player	 presses	 a	 key,	 the	 program	 execution	 returns	 from	 the
waitForPlayerToPressKey()	 call	 on	 line	 195.	Depending	 on	 how	 long	 the	 player	 takes	 to
press	 a	key,	 the	 “game	over”	 sound	effect	may	or	may	not	 still	be	playing.	To	 stop	 this
sound	effect	before	a	new	game	starts,	line	197	calls	gameOverSound.stop():

197.					gameOverSound.stop()

That’s	it	for	our	graphical	game!

Modifying	the	Dodger	Game

You	may	 find	 that	 the	 game	 is	 too	 easy	 or	 too	 hard.	 Fortunately,	 the	 game	 is	 easy	 to
modify	because	we	took	the	time	to	use	constant	variables	 instead	of	entering	the	values
directly.	Now	all	we	need	to	do	to	change	the	game	is	modify	the	values	set	in	the	constant
variables.

For	example,	if	you	want	the	game	to	run	slower	in	general,	change	the	FPS	variable	on
line	 8	 to	 a	 smaller	 value,	 such	 as	 20.	 This	 will	 make	 both	 the	 baddies	 and	 the	 player’s
character	move	slower,	since	the	game	loop	will	be	executed	only	20	times	a	second	instead
of	40.

If	 you	 just	 want	 to	 slow	 down	 the	 baddies	 and	 not	 the	 player,	 then	 change
BADDIEMAXSPEED	to	a	smaller	value,	such	as	4.	This	will	make	all	the	baddies	move	between	1
(the	value	in	BADDIEMINSPEED)	and	4	pixels	per	iteration	through	the	game	loop,	instead	of
between	1	and	8.



If	you	want	the	game	to	have	fewer	but	larger	baddies	instead	of	many	smaller	baddies,
then	 increase	ADDNEWBADDIERATE	 to	12,	BADDIEMINSIZE	 to	40,	 and	 BADDIEMAXSIZE	 to	 80.	Now
baddies	 are	 being	 added	 every	 12	 iterations	 through	 the	 game	 loop	 instead	 of	 every	 6
iterations,	so	there	will	be	half	as	many	baddies	as	before.	But	to	keep	the	game	interesting,
the	baddies	are	much	larger.

Keeping	 the	 basic	 game	 the	 same,	 you	 can	modify	 any	 of	 the	 constant	 variables	 to
dramatically	 affect	 how	 the	 game	 plays.	 Keep	 trying	 out	 new	 values	 for	 the	 constant
variables	until	you	find	the	set	of	values	you	like	best.

Summary

Unlike	our	 text-based	games,	Dodger	 really	 looks	 like	 a	modern	computer	game.	 It	has
graphics	and	music	and	uses	the	mouse.	While	pygame	provides	functions	and	data	types	as
building	blocks,	it’s	you	the	programmer	who	puts	them	together	to	create	fun,	interactive
games.

And	you	can	do	all	of	this	because	you	know	how	to	instruct	the	computer	to	do	it,	step
by	step,	line	by	line.	By	speaking	the	computer’s	language,	you	can	get	it	to	do	the	number
crunching	and	drawing	for	you.	This	is	a	useful	skill,	and	I	hope	you’ll	continue	to	learn
more	about	Python	programming.	(And	there’s	still	much	more	to	learn!)

Now	get	going	and	invent	your	own	games.	Good	luck!



INDEX

Symbols
+	(addition),	2,	13

augmented	assignment,	155
commutative	property	of,	169

\	(backslash),	for	escape	characters,	41–42
:	(colon),	in	for	statements,	28–29
{}	(curly	brackets),	for	dictionaries,	113
/	(division),	2,	4,	246–247

augmented	assignment,	156
"	(double	quotes),	42–43
=	(equal	sign),	as	assignment	operator,	5,	34
==	(equal	to)	operator,	32,	34
>	(greater	than)	operator,	30,	32
>=	(greater	than	or	equal	to)	operator,	32
#	(hash	mark),	for	comments,	18,	23
<	(less	than)	operator,	30,	32
<=	(less	than	or	equal	to)	operator,	32
*	(multiplication),	2

augmented	assignment,	156
!=	(not	equal	to)	operator,	32,	36
()	(parentheses),	and	order	of	operation,	4
>>>	prompt,	5,	14
'	(single	quotes),	42–43
[]	(square	brackets),	for	indexes,	92
-	(subtraction),	2

augmented	assignment,	155

A
abs()	function,	170
absolute	value	of	number,	170
addition(+),	2,	13

augmented	assignment,	155



commutative	property	of,	169
AI.	See	artificial	intelligence	(AI)
AISim1.py	program

adding	computer	player,	242–243
comparing	algorithms,	247–254
computer	playing	against	itself,	240–247
sample	run,	240–241
source	code,	241–242

AISim2.py	program
keeping	track	of	multiple	games,	245
sample	run,	243–244
source	code,	244

AISim3.py	program
how	AI	works	in,	249–252
source	code,	248–249

algorithms,	128
alphabetic	order,	sort()	method	for,	157–158
and	operator,	52–53

short-circuiting	evaluation,	140
Animation	program

box	data	structure	setup,	278–279
constant	variables,	277–278
moving	and	bouncing	boxes,	276–277,	280–282
running	game	loop,	279–283
sample	run,	274
source	code,	274–276

anti-aliasing,	263
append()	method,	95
arguments,	18
arrow	keys	on	keyboard,	293,	294
artificial	intelligence	(AI),	121,	209

for	Reversegam,	232–233
comparing	algorithms,	247–254
computer	playing	against	itself,	240–247

for	Tic-Tac-Toe
creating,	142–145



strategizing,	128–129
ASCII	art,	79,	108
assignment	(=)	operator,	5,	34
attributes,	264
augmented	assignment	operators,	155–156

B
background	color,	for	text,	263
background	music,	322,	325

repeating	forever,	308
backslash	(\),	for	escape	characters,	41–42
Bagels	Deduction	game

checking	for	win	or	loss,	161–162
checking	string	for	only	numbers,	158–159
clues,	149

calculating,	156–157
getting,	161

flowchart	for,	152–153
getting	player’s	guess,	161
join()	method,	158
playing	again,	162
sample	run,	150–151
secret	number,	creating,	160–161
shuffling	unique	set	of	digits,	154–155
source	code,	151–152
starting	game,	159

blank	line,	printing,	41
blit()	method,	269–270,	331
blocks	of	code,	grouping	with,	27
BMP	file	format,	302
bool()	function,	227
Boolean	data	type,	31

comparison	operators	and,	33–34
conditions	for	checking,	32
in	Tic-Tac-Toe	evaluation,	136–137

Boolean	operators,	52–55



break	statement,	35,	37,	109,	161
breakpoints	in	debugger,	73–75
brute-force	technique,	for	ciphers,	206–208
bugs,	63

finding,	70–72
types,	64–65

button	attribute,	for	MOUSEBUTTONDOWN	event,	292

C
Caesar	Cipher	program

brute-force	technique,	206–208
encryption	or	decryption,	202–205
getting	key	from	player,	203
getting	message	from	player,	203
how	it	works,	199–200
sample	run,	200–201
setting	maximum	key	length,	202
source	code,	201–202
starting	program,	206

calling
functions,	49–50,	60–61
methods,	94–96

camel	case,	20
captions,	for	windows,	261
Cartesian	coordinate	system,	163,	209

grids	and,	164–165
math	tricks,	168–169
negative	numbers	in,	166–167

case	sensitivity,	61
of	variable	names,	20

centerx	attribute,	of	Rect	object,	264
centery	attribute,	of	Rect	object,	264
cheat	modes,	312
chessboard,	coordinates,	164–165
choice()	function,	random	module,	115–117
cipher,	198



circle()	function,	pygame.draw	module,	268
clearing	window,	for	animation	iteration,	280
Clock()	function,	289–290
Clock	object,	313
code.	See	source	code
coin	flips,	program	simulating,	73–75
colliderect()	function,	297,	320
Collision	Detection	program

adding	food	squares,	295–296
checking	for	collisions,	297
clock	to	pace	program,	289–290
drawing	food	squares,	298
drawing	player	on	screen,	297
event	handling,	292–295
moving	player	around	screen,	296–297
sample	run,	286
source	code,	287–289
teleporting	player,	295
variables	for	tracking	movement,	291
window	and	data	structures	setup,	290–291

colon	(:),	in	for	statements,	28–29
color

filling	surface	object	with,	266
of	pixels,	269–270
RGB	values,	in	pygame,	261–262
of	text,	263

commenting	out	code,	242
comments,	17–18
commutative	property	of	addition,	169
comparison	operators,	32,	33–34
computer

vs.	computer	AI	simulation,	240
screen	coordinate	system,	167–168

concatenation
of	lists,	94
of	strings,	13,	26,	159



conditions,	33–34
constant	variables,	91

for	keyboard	keys,	294
constructor	functions,	264
continue	statement,	161
conversion	specifiers,	159–160
coordinate	system

Cartesian.	See	Cartesian	coordinate	system
of	computer	screen,	167–168

coordinates,	163
corner-best	algorithm,	248,	249

vs.	corner-side-best	algorithm,	253–254
vs.	random-move	algorithm,	252–253
vs.	worst-move	algorithm,	252

corner-side-best	algorithm,	248,	251–252
vs.	corner-best	algorithm,	253–254

crashing	programs,	64
cryptanalysis,	206
cryptography,	198
cursor,	in	file	editor,	14

D
data	structures,	180

for	boxes	in	Animation	program,	278–279
for	collision	detection,	290–291
copying	in	Reversegam,	229–230
for	ocean	waves	in	Sonar	Treasure	Hunt,	184
for	Sprites	and	Sounds	program,	306–307
for	Tic-Tac-Toe	board,	127–128

data	types,	13
Boolean,	31–34

dictionary,	112–115
integers,	2–3,	30–31
lists,	92–94
pygame.Rect,	264–265
strings.	See	strings



debugger
breakpoints,	73–75
finding	bugs,	70–72
running	game	under,	66
starting,	65
stepping	through	program	with,	67–70

decryption,	198
in	Caesar	Cipher,	202–205

def	block,	49,	50
return	statement	inside,	55

def	statement,	49,	50
deleting	items	in	list,	117–118
del	statement,	117
dictionary	data	type,	112–113

evaluating	with	choice()	function,	115–117
keys()	and	values()	methods,	114–115
vs.	lists,	113–114
variables	storing	references	to,	134

diff	tool,	16–17
division	(/),	2,	4,	246–247

augmented	assignment,	156
Dodger	game

baddies
adding,	327–328
drawing,	331–332
moving,	328–329
removing,	330
tracking	collisions,	320

cheat	modes,	implementing,	329–330
collision	detection,	332
constant	variables,	318–319
drawing	character,	331–332
drawing	text	to	window,	320–321
drawing	window,	330–332
ending	and	pausing,	319–320
functions,	319–321



game	loop,	324,	325–327
game	over	screen,	332–333
importing	modules,	317–318
modifying,	333
moving	character,	328–329
rendering	text	for	score,	331
sample	run,	313
source	code,	313–317
starting	game,	324–325

double	quotes	("),	42–43
Dragon	Realm

asking	to	play	again,	61
Boolean	operators	evaluation,	54
checking	caves,	59
displaying	results,	58–59
flowchart	for,	46–47
functions,	49–50
getting	player’s	input,	54–55
how	to	play,	45
importing	random	and	time	modules,	48
return	statement,	55–56
running	under	debugger,	66
sample	run,	46
source	code,	47–48
start	of	program,	60

E
elif	statements,	103
ellipse()	function,	pygame.draw	module,	268
else	statement,	59,	103
encryption,	198

in	Caesar	Cipher,	202–205
end	keyword	parameter,	for	print()	function,	43–44
end	of	programs,	19
end=''	statements,	97
endswith()	method,	105



equal	sign	(=),	as	assignment	operator,	5,	34
equal	to	(==)	operator,	32,	34
error	messages,	64

ImportError,	256
IndexError,	93
NameError,	6,	16
syntax	errors,	4–5
ValueError,	139

errors.	See	bugs
ESC	key,	for	terminating	program,	295,	326
escape	characters,	41–42
evaluation,	short-circuit,	139–141
event	handling,	292–295,	325–326
Event	object,	271,	312
events,	270–271
execution	of	program,	17
exit()	function,	sys	module,	180
exiting	program,	19,	271
expressions,	3,	36

evaluating,	3–4
in	function	calls,	19
function	calls	in,	18

F
False	Boolean	value,	31

for	data	types,	227
while	keyword	and,	51

file	editor,	13–16
file	extensions,	for	images,	302
fill()	function,	266
find()	method,	204–205
float()	function,	29–31
floating-point	numbers,	2–3,	4

from	division	(/),	246–247
rounding,	247

flow	control	statements,	26



elif	statements,	103
if	statement,	34,	37

break	statement	and,	35
else	statement	after,	59

for	statement,	26,	28–29,	37
while	statement,	51–52,	60

flowcharts
for	Bagels	Deduction	game,	152–153
benefits,	86
for	Hangman	design,	80–85
for	Tic-Tac-Toe	design,	127

Font	object,	312,	322
rendering,	263

fonts,	262–263
for	statement,	26,	28–29,	37
frame,	318
functions,	18–19,	24.	See	also	names	of	individual	functions

calling,	18,	49–50
def	statements,	49,	50
parameters,	57–58

G
game	loop,	270–271

for	Dodger	game,	325–327
for	Reversegam	game,	237–238
for	Animation	program,	279–283

games.	See	names	of	individual	games
get_rect()	method,	264,	321
GIF	file	format,	302
global	scope,	56–57
global	variables,	67
graphical	user	interface	(GUI)	window,	260
graphics.	See	also	pygame	module

ASCII	art	for	Hangman,	79
downloading	from	web	browsers,	303
sprites	for	adding,	302



Guess	the	Number	game,	21
checking	for	loss,	35–36
checking	for	win,	35
converting	values,	29–31
flow	control	statements,	26–29
generating	random	numbers,	24–26
getting	player’s	guess,	29
importing	random	module,	23–24
sample	run,	22
source	code,	22–23
for	statement,	28–29
welcoming	player,	26

H
Hacking	Secret	Ciphers	with	Python,	198
Hangman	game

ASCII	art,	79
asking	to	play	again,	104–105
checking	for	loss,	108
checking	for	win,	107
confirming	entry	of	valid	guess,	104
dictionaries	of	words	in,	115
displaying	board	to	player,	97–101,	106
displaying	secret	word	with	blanks,	99–101
elif	statements,	103
ending	or	restarting,	83,	108–109
extending

adding	more	guesses,	112
dictionary	data	type,	112–115
evaluating	dictionary	of	lists,	115–117
printing	word	category,	119

feedback	to	player,	85
flowcharts	for	design,	80–85
getting	player’s	guess,	101–103
getting	secret	word	from	list,	96
how	to	play,	78



incorrect	guesses,	107–108
main	program,	105–109
printing	word	category	for	player,	119
review	of	functions,	105
sample	run,	78–79
source	code,	88–91

hash	mark	(#),	for	comments,	18,	23
Hello	World	program

creating,	14–15
how	it	works,	17–19
in	pygame,	256–259.	See	also	pygame	module

hypotenuse,	187

I
IDLE

file	editor,	13–14
interactive	shell,	1–9,	13
starting,	xxvi

if	statement,	34,	37
break	statement	and,	35
else	statement	after,	59

image	files,	302–303
images.	See	graphics
import	statement,	24
ImportError,	256
importing	modules,	24
in	operator,	94
indentation	of	code,	27
IndexError,	93
indexes

for	accessing	list	items,	92–93
value	after	deleting	item	in	list,	117

infinite	loop,	64,	160–161
input,	37,	39

validation,	52
input()	function,	18–19



installing
pygame,	256
Python,	xxv–xxvi

int()	function,	29–31,	139
integers,	2–3

converting	strings	to,	30–31
interactive	shell,	1–9,	13
items	in	lists

accessing	with	indexes,	92–93
changing	with	index	assignment,	93
deleting,	117–118

iteration,	29

J
join()	method,	158
Jokes	program

end	keyword,	43–44
escape	characters,	41–42
how	it	works,	41
sample	run,	40
source	code,	40

JPG	file	format,	302

K
key-value	pairs,	in	dictionaries,	113
keyboard

event	handling,	325–326
user	input	with,	292–295

KEYDOWN	event,	292,	293–294
keys

for	ciphers,	198
for	dictionaries,	113

keys()	method,	114–115
KEYUP	event,	292,	294–295



L
len()	function,	57,	113
line	breaks,	in	printed	string,	51
line()	function,	pygame.draw	module,	267
line	numbers,	xxiv
list()	function,	98
lists

accessing	items	with	indexes,	92–93
changing	item	order,	154
concatenation,	94
vs.	dictionaries,	113–114
and	in	operator,	94
iterating	and	changes,	298
methods,	95
references,	132–135
slicing,	98–99
sort()	method	for,	157–158

load()	function,	307
loading	previously	saved	program,	15
local	scope,	56–57
loops,	26

break	statement	to	leave,	35
nested,	161
with	while	statements,	51–52

lower()	method,	101–102
lowercase,	displaying	characters	as,	101–102

M
mainClock.tick()	function,	289–290,	332
math

expressions,	3–4
integers	and	floats,	2–3
operators,	2
syntax	errors,	4–5
tricks,	168–169



math	module,	180
methods,	calling,	94–96
MIDI	file	format,	303,	322
modules,	importing,	24
mouse

handling	events,	292–293,	327
making	invisible,	322

MOUSEBUTTONDOWN	event,	292
MOUSEBUTTONUP	event,	292,	296
MOUSEMOTION	event,	292,	325,	327
move()	method,	329
move_ip()	method,	329
MP3	file	format,	303
multiline	strings,	50–51
multiple	assignment,	118–119
multiplication	(*),	2

augmented	assignment,	156
music

background,	322,	325
repeating	forever,	308

setup,	307–308

N
NameError,	6,	16
names,	for	variables,	20
nested	loops,	161,	226
newline	(\n),	42,	43
None	value,	142
not	equal	to	(!=)	operator,	32,	36
not	operator,	53–54
numbers.	See	also	math

absolute	value	of,	170
negative,	in	Cartesian	coordinate	system,	166–167
sort()	method	for	ordering,	157–158



O
objects,	261
operators

Boolean,	52–55
comparison,	32,	33–34
math,	2

or	operator,	53
order	of	operations,	3–4
origin,	in	Cartesian	coordinate	system,	167
Othello.	See	Reversegam	game
output,	37,	39

P
parameters,	for	functions,	57–58
parentheses	[()],	and	order	of	operation,	4
pausing	program,	283,	319–320
percentages,	246–247
PixelArray	object,	269
pixels,	167,	260

coloring,	269–270
plaintext,	198
play()	method,	pygame.mixer.music	module,	309
PNG	file	format,	302
points,	fonts,	263
polygon()	function,	pygame.draw	module,	266–267
print()	function,	18,	37

end	keyword	parameter,	43–44
programs.	See	also	names	of	individual	programs	and	games

end	of,	19
running,	16
saving,	15
writing,	13–15

pygame	module
drawing	functions

circle,	268



ellipse,	268
line,	267
polygon,	266–267
rectangle,	268–269

events	and	game	loop,	270–271
exiting	programs,	271
filling	surface	object	with	color,	266
Hello	World	program,	256–257

sample	run,	257
source	code,	257–259

importing	module,	259
initializing,	259,	321–322
installing,	256
RGB	color	values,	261–262
window	setup,	260–261

pygame.display	module
set_caption()	function,	261,	277
set_mode()	function,	260,	261,	321
update()	function,	266,	270,	282

pygame.draw	module
circle()	function,	268
ellipse()	function,	268
line()	function,	267
polygon()	function,	266–267
rect()	function,	268–269

pygame.event	module
Event	object,	271,	312
get()	function,	271,	292,	312

pygame.font	module
Font	object,	312,	263
SysFont()	function,	263,	322

pygame.image.load()	function,	307
pygame.init()	function,	259,	321
pygame.locals	module,	318
pygame.mixer	module,	307

Sound()	function,	308



pygame.mixer.music	module,	307,	332
load()	function,	308,	322
play()	function,	308,	325
stop()	function,	308

pygame.quit()	function,	271,	295
pygame.Rect	data	type,	264–265
pygame.Rect()	function,	264,	290,	328
pygame.Surface	object,	261,	312.	See	also	Surface	object
pygame.time	module

Clock()	function,	289–290
Clock	object,	298,	313,	321

pygame.transform	module,	307
scale()	function,	309

Pythagorean	theorem,	187–188
Python,	installing,	xxv–xxvi

Q
QUIT	event,	271,	292
quotation	marks,	for	strings,	12,	42–43

R
random	module

choice()	function,	115–117
importing,	23–24
randint()	function,	24–26
shuffle()	function,	154–155,	232

random-move	algorithm,	248,	250
vs.	corner-best	algorithm,	252–253

range()	function,	26,	98
rect()	function,	268–269
Rect	object,	309,	312

colliderect()	function,	320
references,	to	lists,	132–135
remove()	method,	189–190
render()	method,	Font	object,	263,	321



rendering	fonts,	263
return	statement,	55–56
return	value,	18
reverse()	method,	95
Reversegam	game

AI	simulation
comparing	AI	algorithms,	247–254
computer	playing	against	itself,	240–247

checking	for	valid	coordinates,	225–227
checking	for	valid	move

checking	eight	directions,	223–224
determining	tiles	to	flip,	224–225

constants,	220
corner	moves	strategy,	232
data	structures

copying,	229–230
creating	fresh	board,	222
drawing	on	screen,	221–222

determining	if	space	is	corner,	230
determining	who	goes	first,	228–229
game	loop,	237–238
getting	computer’s	move,	232–233
getting	list	with	all	valid	moves,	226
getting	player’s	move,	230–232
getting	player’s	tile	choice,	228
getting	score,	227–228
hints,	214,	226
how	to	play,	210–213
importing	modules,	220
listing	highest-scoring	moves,	233
placing	tile,	229
playing	again,	238
printing	scores	to	screen,	234
running	computer’s	turn,	236–237
sample	run,	213–215
source	code,	215–220



starting	game,	234–237
Reversi.	See	Reversegam	game
RGB	color	values,	261
right	triangle,	Pythagorean	theorem	and,	187–188
round()	function,	247
running	programs,	16
runtime	errors,	64

S
saving	programs,	15
scale()	function,	pygame.transform	module,	307,	309
scope,	global	and	local,	56–57
semantic	errors,	64
set_caption()	function,	pygame.display	module,	261,	277
set_mode()	function,	pygame.display	module,	260,	261,	321
short-circuit	evaluation,	139–141
shuffle()	function,	random	module,	154–155,	232
shuffling	unique	set	of	digits,	154–155
simulation

AI.	See	Reversegam,	AI	similation
of	coin	flips,	73–75

single	quotes	('),	42–43
sleep()	function,	time	module,	58,	283
slicing

lists,	98–99
operator	for,	330

sonar,	171
Sonar	Treasure	Hunt	game

checking	for	player	loss,	195
checking	for	player	win,	194
creating	game	board,	180–181
creating	random	treasure	chests,	184–185
design,	180
determining	if	move	is	valid,	185
displaying	game	status	for	player,	193
drawing	game	board,	181–184



drawing	ocean,	183–184
finding	closest	treasure	chest,	186–189
finding	sunken	treasure	chest,	194
getting	player’s	move,	190–191,	193–194
guessing	location,	189
placing	move	on	board,	185–191
printing	game	instructions,	191–192
quitting,	190
removing	values	from	lists,	189–190
sample	run,	173–175
source	code,	175–178
starting	game,	192–195
termination	of	program,	195
variables,	193

sort()	method,	for	lists,	157–158
sound	file	formats,	303
Sound()	function,	pygame.mixer	module,	308
Sound	object,	322
sounds

adding,	308
for	game	over,	332
setup,	307–308
toggling	on	and	off,	308

source	code,	14
AISim1.py	program,	241–242
AISim2.py	program,	244
AISim3.py	program,	248–249
Animation	program,	274–276
Bagels	Deduction	game,	151–152
Caesar	Cipher	program,	201–202
Collision	Detection	program,	287–289
Dodger	game,	313–317
Dragon	Realm	game,	47–48
Guess	the	Number	game,	22–23
Hangman	game,	88–91
Jokes	program,	40



reusing,	24
Reversegam	game,	215–220
Sonar	Treasure	Hunt	game,	175–178
spaces	in,	xxiv–xxv,	23
Sprites	and	Sounds	game,	304–306
Tic-Tac-Toe	game,	123–126

spaces
in	source	code,	xxiv–xxv,	23
between	values	and	operators,	3

special	characters,	printing,	42
split()	method,	95–96,	190–191
sprites,	302

adding,	307
size	changes,	307,	309

Sprites	and	Sounds	game
checking	for	collision	with	cherries,	309
drawing	player	on	window,	309
sample	run,	303
source	code,	304–306
window	and	data	structures	setup,	306–307

sqrt()	function,	math	module,	180,	188
square	brackets	([]),	for	indexes,	92
square	root,	187
startswith()	method,	105
statements,	5.	See	also	flow	control	statements

continue,	161
def,	49,	50
del,	117
end='',	97
for,	26,	28–29,	37
import,	24

statistics,	246
stepping	through	program	with	debugger,	65,	67–70

into	code,	68
out,	69

stop()	function,	pygame.mixer.music	module,	332



str()	function,	31,	35
strings,	12

checking	for	only	numbers,	158–159
comparison	operators	and,	33–34
concatenation,	13,	26
converting	to	integer,	30–31
finding,	204–205
interpolation,	159–160
line	breaks	in,	51
multiline,	50–51
quotes	for,	42–43
split()	method,	95–96

subtraction	(-),	2
augmented	assignment,	155

Surface	object,	261,	312
creating,	307
drawing	on	screen,	270
filling	with	color,	266

syntax	errors,	64
in	math	expressions,	4–5

sys	module,	180

T
TAB	key	(\t),	42
terminating	program,	19

ESC	key	for,	295,	326
text.	See	also	strings

drawing	to	window,	320–321
entry	by	user,	18
fonts	for,	262–263
setting	location,	264–265

Tic-Tac-Toe	game
arguments,	143
artificial	intelligence	for,	128–129
checking	for	full	board,	145
checking	corner,	center,	and	side	spaces,	144–145



checking	for	computer	move	to	win,	143–144
checking	for	free	space	on	board,	138
checking	for	win,	135–137

in	one	move,	144
choosing	move	from	list,	141–142
choosing	player’s	mark,	146
deciding	who	goes	first,	131
design	with	flowcharts,	127–129
duplicating	board	data,	137–138
letting	player	choose	X	or	O,	130–131
placing	mark	on	board,	131–135
player	move,	138–139
playing	again,	148
printing	board	on	screen,	129–130
running	computer’s	turn,	147–148
running	player’s	turn,	146–147
sample	run,	122–123
source	code,	123–126
starting	game,	145–146

tick()	method,	of	Clock	object,	289–290,	298,	313,	332
time	module

importing,	48
sleep()	function,	58,	283

traceback,	64
True	Boolean	value,	31

for	data	types,	227
while	keyword	and,	51

truth	table
for	not	operator,	54
for	and	operator,	52–53
for	or	operator,	53

tuples,	260
for	RGB	colors,	261

typing	errors,	6

U



update()	method,	pygame.display	module,	266,	270,	282
upper()	method,	101–102
uppercase,	displaying	characters	as,	101–102
users

input()	function,	18–19
input	with	mouse	and	keyboard,	292–295

V
ValueError,	139
values,	3

assigning	new	to	variable,	7
converting	data	type,	29–31
storing	in	variables,	5–8

values()	method,	114–115
variables

assigning	multiple,	118–119
constant,	91
names	for,	20
overwriting,	7
for	references	to	dictionaries,	134
scope,	56–57,	67,	68
storing	list	in,	98
storing	strings	in,	102
storing	values	in,	5–8

W
WASD	keys,	293,	294
WAV	file	format,	303,	322
while	statement,	51–52,	60

infinite	loop,	160–161
leaving	block,	103

windowSurface	object
blit()	method,	269–270,	331
centerx	and	centery	attributes,	264

worst-move	algorithm,	248,	250



vs.	corner-best	algorithm,	252
writing	programs,	13–15

X
x-axis,	165,	167
x-coordinates,	165

for	PixelArray	object,	269

Y
y-axis,	165,	167
y-coordinates,	165

for	PixelArray	object,	269

Z
zero-based	indexes,	92,	96



RESOURCES

Visit	 https://www.nostarch.com/inventwithpython/	 for	 resources,	 errata,	 and	 more
information.

More	no-nonsense	books	from	 	NO	STARCH	PRESS

SCRATCH	PROGRAMMING	PLAYGROUND
Learn	to	Program	by	Making	Cool	Games
by	AL	SWEIGART
SEPTEMBER	2016,	288	PP.,	$24.95
ISBN	978-1-59327-762-8
full	color

AUTOMATE	THE	BORING	STUFF	WITH	PYTHON
Practical	Programming	for	Total	Beginners
by	AL	SWEIGART
APRIL	2015,	504	PP.,	$29.95

https://www.nostarch.com/inventwithpython/


ISBN	978-1-59327-599-0

THE	LINUX	COMMAND	LINE
A	Complete	Introduction
by	WILLIAM	E.	SHOTTS,	JR.
JANUARY	2012,	480	PP.,	$39.95
ISBN	978-1-59327-389-7

LEARN	TO	PROGRAM	WITH	MINECRAFT
Transform	Your	World	with	the	Power	of	Python
by	CRAIG	RICHARDSON
DECEMBER	2015,	320	PP.,	$29.95
ISBN	978-1-59327-670-6
full	color



THE	BOOK	OF	R
A	First	Course	in	Programming	and	Statistics
by	TILMAN	M.	DAVIES
JULY	2016,	832	PP.,	$49.95
ISBN	978-1-59327-651-5

PYTHON	PLAYGROUND
Geeky	Projects	for	the	Curious	Programmer
by	MAHESH	VENKITACHALAM
OCTOBER	2015,	352	PP.,	$29.95
ISBN	978-1-59327-604-1

1.800.420.7240	OR	1.415.863.9900	|	SALES@NOSTARCH.COM	|	WWW.NOSTARCH.COM

mailto:SALES@NOSTARCH.COM
http://WWW.NOSTARCH.COM




DON’T	JUST	PLAY	GAMES—MAKE	THEM!

Invent	Your	Own	Computer	Games	with	Python	will	teach	you	how	to	make	computer	games
using	 the	 popular	 Python	 programming	 language—even	 if	 you’ve	 never	 programmed
before!

Begin	by	building	classic	games	like	Hangman,	Guess	the	Number,	and	Tic-Tac-Toe,	and
then	work	your	way	up	to	more	advanced	games,	like	a	text-based	treasure-hunting	game
and	an	animated	collision-dodging	game	with	 sound	effects.	Along	 the	way,	 you’ll	 learn
key	programming	and	math	concepts	that	will	help	you	take	your	game	programming	to
the	next	level.

Learn	how	to:

•	Combine	loops,	variables,	and	flow	control	statements	into	real	working	programs

•	Choose	the	right	data	structures	for	the	job,	such	as	lists,	dictionaries,	and	tuples

•	Add	graphics	and	animation	to	your	games	with	the	pygame	module

•	Handle	keyboard	and	mouse	input

•	Program	simple	artificial	intelligence	so	you	can	play	against	the	computer

•	Use	cryptography	to	convert	text	messages	into	secret	code

•	Debug	your	programs	and	find	common	errors

As	 you	 work	 through	 each	 game,	 you’ll	 build	 a	 solid	 foundation	 in	 Python	 and	 an
understanding	of	computer	science	fundamentals.

What	new	game	will	you	create	with	the	power	of	Python?

ABOUT	THE	AUTHOR



Al	 Sweigart	 is	 a	 software	 developer	 who	 teaches	 programming	 to	 kids	 and	 adults.	 His
programming	tutorials	can	be	found	at	https://inventwithpython.com/.	He	is	the	best-selling
author	of	Automate	the	Boring	Stuff	with	Python	and	Scratch	Programming	Playground.

COVERS	PYTHON	3.X

THE	FINEST	IN	GEEK	ENTERTAINMENT™
www.nostarch.com

“I	LIE	FLAT.”
This	book	uses	a	durable	binding	that	won’t	snap	shut.

https://inventwithpython.com/
http://www.nostarch.com

	Title Page
	Copyright Page
	About the Author
	About the Technical Reviewer
	Brief Contents
	Contents in Detail
	Acknowledgments
	Introduction
	Who Is This Book For?
	About This Book
	How to Use This Book
	Line Numbers and Indentation
	Long Code Lines

	Downloading and Installing Python
	Starting IDLE
	Finding Help Online

	Chapter 1: The Interactive Shell
	Some Simple Math
	Integers and Floating-Point Numbers
	Expressions

	Evaluating Expressions
	Syntax Errors
	Storing Values in Variables
	Summary

	Chapter 2: Writing Programs
	String Values
	String Concatenation
	Writing Programs in IDLE’s File Editor
	Creating the Hello World Program
	Saving Your Program
	Running Your Program

	How the Hello World Program Works
	Comments for the Programmer
	Functions: Mini-Programs Inside Programs
	The End of the Program

	Naming Variables
	Summary

	Chapter 3: Guess the Number
	Sample Run of Guess the Number
	Source Code for Guess the Number
	Importing the random Module
	Generating Random Numbers with the random.randint() Function
	Welcoming the Player
	Flow Control Statements
	Using Loops to Repeat Code
	Grouping with Blocks
	Looping with for Statements

	Getting the Player’s Guess
	Converting Values with the int(), float(), and str() Functions
	The Boolean Data Type
	Comparison Operators
	Checking for True or False with Conditions
	Experimenting with Booleans, Comparison Operators, and Conditions
	The Difference Between = and ==

	if Statements
	Leaving Loops Early with the break Statement
	Checking Whether the Player Won
	Checking Whether the Player Lost
	Summary

	Chapter 4: A Joke-Telling Program
	Sample Run of Jokes
	Source Code for Jokes
	How the Code Works
	Escape Characters
	Single and Double Quotes
	The print() Function’s end Keyword Parameter
	Summary

	Chapter 5: Dragon Realm
	How to Play Dragon Realm
	Sample Run of Dragon Realm
	Flowchart for Dragon Realm
	Source Code for Dragon Realm
	Importing the random and time Modules
	Functions in Dragon Realm
	def Statements
	Calling a Function
	Where to Put Function Definitions

	Multiline Strings
	How to Loop with while Statements
	Boolean Operators
	The and Operator
	The or Operator
	The not Operator
	Evaluating Boolean Operators

	Return Values
	Global Scope and Local Scope
	Function Parameters
	Displaying the Game Results
	Deciding Which Cave Has the Friendly Dragon
	The Game Loop
	Calling the Functions in the Program
	Asking the Player to Play Again

	Summary

	Chapter 6: Using the Debugger
	Types of Bugs
	The Debugger
	Starting the Debugger
	Stepping Through the Program with the Debugger

	Finding the Bug
	Setting Breakpoints
	Using Breakpoints
	Summary

	Chapter 7: Designing Hangman with Flowcharts
	How to Play Hangman
	Sample Run of Hangman
	ASCII Art
	Designing a Program with a Flowchart
	Creating the Flowchart
	Branching from a Flowchart Box
	Ending or Restarting the Game
	Guessing Again
	Offering Feedback to the Player

	Summary

	Chapter 8: Writing the Hangman Code
	Source Code for Hangman
	Importing the random Module
	Constant Variables
	The Lists Data Type
	Accessing Items with Indexes
	List Concatenation
	The in Operator

	Calling Methods
	The reverse() and append() List Methods
	The split() String Method

	Getting a Secret Word from the Word List
	Displaying the Board to the Player
	The list() and range() Functions
	List and String Slicing
	Displaying the Secret Word with Blanks

	Getting the Player’s Guess
	The lower() and upper() String Methods
	Leaving the while Loop

	elif Statements
	Making Sure the Player Entered a Valid Guess
	Asking the Player to Play Again
	Review of the Hangman Functions
	The Game Loop
	Calling the displayBoard() Function
	Letting the Player Enter Their Guess
	Checking Whether the Letter Is in the Secret Word
	Checking Whether the Player Won
	Handling an Incorrect Guess
	Checking Whether the Player Lost
	Ending or Resetting the Game

	Summary

	Chapter 9: Extending Hangman
	Adding More Guesses
	The Dictionary Data Type
	Getting the Size of Dictionaries with len()
	The Difference Between Dictionaries and Lists
	The keys() and values() Dictionary Methods
	Using Dictionaries of Words in Hangman

	Randomly Choosing from a List
	Deleting Items from Lists
	Multiple Assignment
	Printing the Word Category for the Player
	Summary

	Chapter 10: Tic-Tac-Toe
	Sample Run of Tic-Tac-Toe
	Source Code for Tic-Tac-Toe
	Designing the Program
	Representing the Board as Data
	Strategizing with the Game AI

	Importing the random Module
	Printing the Board on the Screen
	Letting the Player Choose X or O
	Deciding Who Goes First
	Placing a Mark on the Board
	List References
	Using List References in makeMove()

	Checking Whether the Player Won
	Duplicating the Board Data
	Checking Whether a Space on the Board Is Free
	Letting the Player Enter a Move
	Short-Circuit Evaluation
	Choosing a Move from a List of Moves
	The None Value
	Creating the Computer’s AI
	Checking Whether the Computer Can Win in One Move
	Checking Whether the Player Can Win in One Move
	Checking the Corner, Center, and Side Spaces (in That Order)
	Checking Whether the Board Is Full

	The Game Loop
	Choosing the Player’s Mark and Who Goes First
	Running the Player’s Turn
	Running the Computer’s Turn
	Asking the Player to Play Again

	Summary

	Chapter 11: The Bagels Deduction Game
	Sample Run of Bagels
	Source Code for Bagels
	Flowchart for Bagels
	Importing random and Defining getSecretNum()
	Shuffling a Unique Set of Digits
	Changing List Item Order with the random.shuffle() Function
	Getting the Secret Number from the Shuffled Digits

	Augmented Assignment Operators
	Calculating the Clues to Give
	The sort() List Method
	The join() String Method
	Checking Whether a String Has Only Numbers
	Starting the Game
	String Interpolation
	The Game Loop
	Getting the Player’s Guess
	Getting the Clues for the Player’s Guess
	Checking Whether the Player Won or Lost
	Asking the Player to Play Again

	Summary

	Chapter 12: The Cartesian Coordinate System
	Grids and Cartesian Coordinates
	Negative Numbers
	The Coordinate System of a Computer Screen
	Math Tricks
	Trick 1: A Minus Eats the Plus Sign on Its Left
	Trick 2: Two Minuses Combine into a Plus
	Trick 3: Two Numbers Being Added Can Swap Places

	Absolute Values and the abs() Function
	Summary

	Chapter 13: Sonar Treasure Hunt
	Sample Run of Sonar Treasure Hunt
	Source Code for Sonar Treasure Hunt
	Designing the Program
	Importing the random, sys, and math Modules
	Creating a New Game Board
	Drawing the Game Board
	Drawing the X-Coordinates Along the Top of the Board
	Drawing the Ocean
	Printing a Row in the Ocean
	Drawing the X-Coordinates Along the Bottom of the Board

	Creating the Random Treasure Chests
	Determining Whether a Move Is Valid
	Placing a Move on the Board
	Finding the Closest Treasure Chest
	Removing Values with the remove() List Method
	Getting the Player’s Move

	Printing the Game Instructions for the Player
	The Game Loop
	Displaying the Game Status for the Player
	Handling the Player’s Move
	Finding a Sunken Treasure Chest
	Checking Whether the Player Won
	Checking Whether the Player Lost
	Terminating the Program with the sys.exit() Function

	Summary

	Chapter 14: Caesar Cipher
	Cryptography and Encryption
	How the Caesar Cipher Works
	Sample Run of Caesar Cipher
	Source Code for Caesar Cipher
	Setting the Maximum Key Length
	Deciding to Encrypt or Decrypt the Message
	Getting the Message from the Player
	Getting the Key from the Player
	Encrypting or Decrypting the Message
	Finding Passed Strings with the find() String Method
	Encrypting or Decrypting Each Letter

	Starting the Program
	The Brute-Force Technique
	Adding the Brute-Force Mode
	Summary

	Chapter 15: The Reversegam Game
	How to Play Reversegam
	Sample Run of Reversegam
	Source Code for Reversegam
	Importing Modules and Setting Up Constants
	The Game Board Data Structure
	Drawing the Board Data Structure on the Screen
	Creating a Fresh Board Data Structure

	Checking Whether a Move Is Valid
	Checking Each of the Eight Directions
	Finding Out Whether There Are Tiles to Flip Over

	Checking for Valid Coordinates
	Getting a List with All Valid Moves
	Calling the bool() Function

	Getting the Score of the Game Board
	Getting the Player’s Tile Choice
	Determining Who Goes First
	Placing a Tile on the Board
	Copying the Board Data Structure
	Determining Whether a Space Is on a Corner
	Getting the Player’s Move
	Getting the Computer’s Move
	Strategizing with Corner Moves
	Getting a List of the Highest-Scoring Moves

	Printing the Scores to the Screen
	Starting the Game
	Checking for a Stalemate
	Running the Player’s Turn
	Running the Computer’s Turn

	The Game Loop
	Asking the Player to Play Again
	Summary

	Chapter 16: Reversegam AI Simulation
	Making the Computer Play Against Itself
	Sample Run of Simulation 1
	Source Code for Simulation 1
	Removing the Player Prompts and Adding a Computer Player

	Making the Computer Play Itself Several Times
	Sample Run of Simulation 2
	Source Code for Simulation 2
	Keeping Track of Multiple Games
	Commenting Out print() Function Calls
	Using Percentages to Grade the AIs

	Comparing Different AI Algorithms
	Source Code for Simulation 3
	How the AIs Work in Simulation 3
	Comparing the AIs

	Summary

	Chapter 17: Creating Graphics
	Installing pygame
	Hello World in pygame
	Sample Run of pygame Hello World
	Source Code for pygame Hello World
	Importing the pygame Module
	Initializing pygame
	Setting Up the pygame Window
	Tuples
	Surface Objects

	Setting Up Color Variables
	Writing Text on the pygame Window
	Using Fonts to Style Text
	Rendering a Font Object
	Setting the Text Location with Rect Attributes

	Filling a Surface Object with a Color
	pygame’s Drawing Functions
	Drawing a Polygon
	Drawing a Line
	Drawing a Circle
	Drawing an Ellipse
	Drawing a Rectangle
	Coloring Pixels

	The blit() Method for Surface Objects
	Drawing the Surface Object to the Screen
	Events and the Game Loop
	Getting Event Objects
	Exiting the Program

	Summary

	Chapter 18: Animating Graphics
	Sample Run of the Animation Program
	Source Code for the Animation Program
	Moving and Bouncing the Boxes
	Setting Up the Constant Variables
	Constant Variables for Direction
	Constant Variables for Color

	Setting Up the Box Data Structures
	The Game Loop
	Handling When the Player Quits
	Moving Each Box
	Bouncing a Box
	Drawing the Boxes on the Window in Their New Positions
	Drawing the Window on the Screen

	Summary

	Chapter 19: Collision Detection
	Sample Run of the Collision Detection Program
	Source Code for the Collision Detection Program
	Importing the Modules
	Using a Clock to Pace the Program
	Setting Up the Window and Data Structures
	Setting Up Variables to Track Movement
	Handling Events
	Handling the KEYDOWN Event
	Handling the KEYUP Event

	Teleporting the Player
	Adding New Food Squares
	Moving the Player Around the Window
	Drawing the Player on the Window
	Checking for Collisions

	Drawing the Food Squares on the Window
	Summary

	Chapter 20: Using Sounds and Images
	Adding Images with Sprites
	Sound and Image Files
	Sample Run of the Sprites and Sounds Program
	Source Code for the Sprites and Sounds Program
	Setting Up the Window and the Data Structure
	Adding a Sprite
	Changing the Size of a Sprite

	Setting Up the Music and Sounds
	Adding Sound Files
	Toggling the Sound On and Off

	Drawing the Player on the Window
	Checking for Collisions
	Drawing the Cherries on the Window
	Summary

	Chapter 21: A Dodger Game with Sounds and Images
	Review of the Basic pygame Data Types
	Sample Run of Dodger
	Source Code for Dodger
	Importing the Modules
	Setting Up the Constant Variables
	Defining Functions
	Ending and Pausing the Game
	Keeping Track of Baddie Collisions
	Drawing Text to the Window

	Initializing pygame and Setting Up the Window
	Setting Up Font, Sound, and Image Objects
	Displaying the Start Screen
	Starting the Game
	The Game Loop
	Handling Keyboard Events
	Handling Mouse Movement

	Adding New Baddies
	Moving the Player’s Character and the Baddies
	Implementing the Cheat Codes
	Removing the Baddies
	Drawing the Window
	Drawing the Player’s Score
	Drawing the Player’s Character and Baddies

	Checking for Collisions
	The Game Over Screen
	Modifying the Dodger Game
	Summary

	Index
	Resources
	The Electronic Frontier Foundation (EFF)
	Don’t Just Play Games—Make Them!

