INVENT oy
YOUR OWN
COMPUTER GAMES
WITH PYTHON




INVENT YOUR OWN COMPUTER GAMES WITH

PYTHON
4TH EDITION

Al Sweigart

¢

no starch
press

San Francisco



INVENT YOUR OWN COMPUTER GAMES WITH PYTHON, 4TH EDITION.
Copyright © 2017 by Al Sweigart.

Some rights reserved. This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0

United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Printed in USA
First printing
20191817 16 123456789

ISBN-10: 1-59327-795-4
ISBN-13:978-1-59327-795-6

Publisher: William Pollock
Production Editor: Laurel Chun
Cover Illustration: Josh Ellingson
Interior Design: Octopod Studios
Developmental Editor: Jan Cash
Technical Reviewer: Ari Lacenski
Copyeditor: Rachel Monaghan
Compositor: Susan Glinert Stevens
Proofreader: Paula L. Fleming
Indexer: Nancy Guenther

The sprite images in Figure 20-1 on page 302, from left to right, were created by fsvieira, przemek.sz, LordNeo, and
Suppercut. The grass sprite image in Figure 20-2 on page 302 was created by txturs. These images have been dedicated
to the public domain with a CC0 1.0 Public Domain Dedication.

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:
No Starch Press, Inc.

245 8th Street, San Francisco, CA 94103

phone: 1.415.863.9900; info@nostarch.com

www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Names: Sweigart, Al, author.
Title: Invent your own computer games with Python / by Al Sweigart.

Description: San Francisco : No Starch Press, Inc., [2017]

Identifiers: LCCN 2016037817 (print) | LCCN 2016044807 (ebook) | ISBN
9781593277956 | ISBN 1593277954 | ISBN 9781593278113 (epub) | ISBN
159327811X (epub) | ISBN 9781593278120 (mobi) | ISBN 1593278128 (mobi)

Subjects: LCSH: Computer games--Programming. | Python (Computer program
language)

Classification: LCC QA76.76.C672 S785 2017 (print) | LCC QA76.76.C672 (ebook)
| DDC 794.8/1526--dc23
LC record available at https://lccn.loc.gov/2016037817

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and
company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark
symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.


http://creativecommons.org/licenses/by-nc-sa/3.0/us/
mailto:info@nostarch.com
http://www.nostarch.com
https://lccn.loc.gov/2016037817

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been taken
in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any person or

entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the information
contained in it.



To Caro



About the Author

Al Sweigart is a software developer, tech book author, and hoopy frood who really knows
where his towel is. He has written several programming books for beginners, including
Automate the Boring Stuff with Python and Scratch Programming Playground, also from No
Starch Press. His books are freely available under a Creative Commons license at his
website https://inventwithpython.com/.


https://inventwithpython.com/

Abhout the Technical Reviewer

Ari Lacenski is a developer of Android applications and Python software. She lives in the
Bay Area, where she writes about Android programming at http://gradlewhy.ghost.io/ and
mentors with Women Who Code.


http://gradlewhy.ghost.io/

BRIEF CONTENTS

Acknowledgments

Introduction

Chapter 1: The Interactive Shell

Chapter 2: Writing Programs

Chapter 3: Guess the Number

Chapter 4: A Joke-Telling Program

Chapter 5: Dragon Realm

Chapter 6: Using the Debugger

Chapter 7: Designing Hangman with Flowcharts
Chapter 8: Writing the Hangman Code
Chapter 9: Extending Hangman

Chapter 10: Tic-Tac-Toe

Chapter 11: The Bagels Deduction Game
Chapter 12: The Cartesian Coordinate System
Chapter 13: Sonar Treasure Hunt

Chapter 14: Caesar Cipher

Chapter 15: The Reversegam Game

Chapter 16: Reversegam Al Simulation
Chapter 17: Creating Graphics

Chapter 18: Animating Graphics

Chapter 19: Collision Detection

Chapter 20: Using Sounds and Images
Chapter 21: A Dodger Game with Sounds and Images
Index



CONTENTS IN DETAIL

ACKNOWLEDGMENTS

INTRODUCTION
Who Is This Book For?
About This Book
How to Use This Book
Line Numbers and Indentation
Long Code Lines
Downloading and Installing Python
Starting IDLE
Finding Help Online

1
THE INTERACTIVE SHELL

Some Simple Math
Integers and Floating-Point Numbers
Expressions

Evaluating Expressions

Syntax Errors

Storing Values in Variables

Summary

2

WRITING PROGRAMS

String Values

String Concatenation

Writing Programs in IDLE’s File Editor
Creating the Hello World Program
Saving Your Program
Running Your Program

How the Hello World Program Works
Comments for the Programmer

Functions: Mini-Programs Inside Programs
The End of the Program



Naming Variables
Summary

3
GUESS THE NUMBER

Sample Run of Guess the Number
Source Code for Guess the Number
Importing the random Module
Generating Random Numbers with the random.randint() Function
Welcoming the Player
Flow Control Statements
Using Loops to Repeat Code
Grouping with Blocks
Looping with for Statements
Getting the Player’s Guess
Converting Values with the int(), float(), and str() Functions
The Boolean Data Type
Comparison Operators
Checking for T'rue or False with Conditions
Experimenting with Booleans, Comparison Operators, and Conditions
The Difference Between = and ==
if Statements
Leaving Loops Early with the break Statement
Checking Whether the Player Won
Checking Whether the Player Lost

Summary

4

A JOKE-TELLING PROGRAM

Sample Run of Jokes

Source Code for Jokes

How the Code Works

Escape Characters

Single and Double Quotes

The print() Function’s end Keyword Parameter
Summary



5

DRAGON REALM

How to Play Dragon Realm
Sample Run of Dragon Realm
Flowchart for Dragon Realm
Source Code for Dragon Realm
Importing the random and time Modules
Functions in Dragon Realm
def Statements
Calling a Function
Where to Put Function Definitions
Multiline Strings
How to Loop with while Statements
Boolean Operators
"The and Operator
The or Operator
The not Operator
Evaluating Boolean Operators
Return Values
Global Scope and Local Scope
Function Parameters
Displaying the Game Results
Deciding Which Cave Has the Friendly Dragon
The Game Loop
Calling the Functions in the Program
Asking the Player to Play Again
Summary

6
USING THE DEBUGGER
Types of Bugs
The Debugger
Starting the Debugger
Stepping Through the Program with the Debugger
Finding the Bug
Setting Breakpoints
Using Breakpoints
Summary



7
DESIGNING HANGMAN WITH FLOWCHARTS

How to Play Hangman

Sample Run of Hangman

ASCII Art

Designing a Program with a Flowchart
Creating the Flowchart
Branching from a Flowchart Box
Ending or Restarting the Game
Guessing Again
Offering Feedback to the Player

Summary

8
WRITING THE HANGMAN CODE

Source Code for Hangman
Importing the random Module
Constant Variables
The Lists Data Type
Accessing Items with Indexes
List Concatenation
"The in Operator
Calling Methods
"The reverse() and append() List Methods
The split() String Method
Getting a Secret Word from the Word List
Displaying the Board to the Player
The list() and range() Functions
List and String Slicing
Displaying the Secret Word with Blanks
Getting the Player’s Guess
"The lower() and upper() String Methods
Leaving the while Loop
elif Statements
Making Sure the Player Entered a Valid Guess
Asking the Player to Play Again
Review of the Hangman Functions

The Game Loop



Calling the displayBoard() Function
Letting the Player Enter Their Guess

Checking Whether the Letter Is in the Secret Word

Checking Whether the Player Won

Handling an Incorrect Guess

Checking Whether the Player Lost

Ending or Resetting the Game
Summary

9

EXTENDING HANGMAN

Adding More Guesses

The Dictionary Data Type
Getting the Size of Dictionaries with len()
The Difference Between Dictionaries and Lists
The keys() and values() Dictionary Methods
Using Dictionaries of Words in Hangman

Randomly Choosing from a List

Deleting Items from Lists

Multiple Assignment

Printing the Word Category for the Player

Summary

10
TIC-TAC-TOE
Sample Run of Tic-Tac-Toe
Source Code for Tic-Tac-Toe
Designing the Program
Representing the Board as Data
Strategizing with the Game Al
Importing the random Module
Printing the Board on the Screen
Letting the Player Choose X or O
Deciding Who Goes First
Placing a Mark on the Board
List References

Using List References in makeMove()
Checking Whether the Player Won



Duplicating the Board Data

Checking Whether a Space on the Board Is Free

Letting the Player Enter a Move

Short-Circuit Evaluation

Choosing a Move from a List of Moves

The None Value

Creating the Computer’s Al
Checking Whether the Computer Can Win in One Move
Checking Whether the Player Can Win in One Move
Checking the Corner, Center, and Side Spaces (in That Order)
Checking Whether the Board Is Full

The Game Loop
Choosing the Player’s Mark and Who Goes First
Running the Player’s Turn
Running the Computer’s Turn
Asking the Player to Play Again

Summary

11
THE BAGELS DEDUCTION GAME

Sample Run of Bagels
Source Code for Bagels
Flowchart for Bagels
Importing random and Defining getSecretNum()
Shuffling a Unique Set of Digits
Changing List Item Order with the random.shuffle() Function
Getting the Secret Number from the Shuffled Digits
Augmented Assignment Operators
Calculating the Clues to Give
"The sort() List Method
The join() String Method
Checking Whether a String Has Only Numbers
Starting the Game
String Interpolation
The Game Loop
Getting the Player’s Guess
Getting the Clues for the Player’s Guess
Checking Whether the Player Won or Lost



Asking the Player to Play Again
Summary

12
THE CARTESIAN COORDINATE SYSTEM

Grids and Cartesian Coordinates
Negative Numbers
The Coordinate System of a Computer Screen
Math Tricks
Trick 1: A Minus Eats the Plus Sign on Its Left
Trick 2: Two Minuses Combine into a Plus
Trick 3: Two Numbers Being Added Can Swap Places
Absolute Values and the abs() Function
Summary

13
SONAR TREASURE HUNT

Sample Run of Sonar Treasure Hunt
Source Code for Sonar T'reasure Hunt
Designing the Program
Importing the random, sys, and math Modules
Creating a New Game Board
Drawing the Game Board
Drawing the X-Coordinates Along the Top of the Board
Drawing the Ocean
Printing a Row in the Ocean
Drawing the X-Coordinates Along the Bottom of the Board
Creating the Random Treasure Chests
Determining Whether a Move Is Valid
Placing a Move on the Board
Finding the Closest Treasure Chest
Removing Values with the remove() List Method
Getting the Player’s Move
Printing the Game Instructions for the Player
The Game Loop
Displaying the Game Status for the Player
Handling the Player’s Move
Finding a Sunken Treasure Chest



Checking Whether the Player Won

Checking Whether the Player Lost

Terminating the Program with the sys.exit() Function
Summary

14

CAESAR CIPHER

Cryptography and Encryption

How the Caesar Cipher Works

Sample Run of Caesar Cipher

Source Code for Caesar Cipher

Setting the Maximum Key Length

Deciding to Encrypt or Decrypt the Message

Getting the Message from the Player

Getting the Key from the Player

Encrypting or Decrypting the Message
Finding Passed Strings with the find() String Method
Encrypting or Decrypting Each Letter

Starting the Program

The Brute-Force Technique

Adding the Brute-Force Mode

Summary

15
THE REVERSEGAM GAME

How to Play Reversegam
Sample Run of Reversegam
Source Code for Reversegam
Importing Modules and Setting Up Constants
The Game Board Data Structure
Drawing the Board Data Structure on the Screen
Creating a Fresh Board Data Structure
Checking Whether a Move Is Valid
Checking Each of the Eight Directions
Finding Out Whether There Are Tiles to Flip Over
Checking for Valid Coordinates
Getting a List with All Valid Moves
Calling the bool() Function



Getting the Score of the Game Board
Getting the Player’s Tile Choice
Determining Who Goes First
Placing a Tile on the Board
Copying the Board Data Structure
Determining Whether a Space Is on a Corner
Getting the Player’s Move
Getting the Computer’s Move
Strategizing with Corner Moves
Getting a List of the Highest-Scoring Moves
Printing the Scores to the Screen
Starting the Game
Checking for a Stalemate
Running the Player’s Turn
Running the Computer’s Turn
The Game Loop
Asking the Player to Play Again
Summary

16

REVERSEGAM AI SIMULATION

Making the Computer Play Against Itself
Sample Run of Simulation 1
Source Code for Simulation 1

Removing the Player Prompts and Adding a Computer Player

Making the Computer Play Itself Several Times
Sample Run of Simulation 2
Source Code for Simulation 2
Keeping Track of Multiple Games
Commenting Out print() Function Calls
Using Percentages to Grade the Als
Comparing Different Al Algorithms
Source Code for Simulation 3
How the Als Work in Simulation 3
Comparing the Als
Summary

17



CREATING GRAPHICS

Installing pygame
Hello World in pygame
Sample Run of pygame Hello World
Source Code for pygame Hello World
Importing the pygame Module
Initializing pygame
Setting Up the pygame Window
Tuples
Surface Objects
Setting Up Color Variables
Writing Text on the pygame Window
Using Fonts to Style Text
Rendering a Font Object
Setting the Text Location with Rect Attributes
Filling a Surface Object with a Color
pygame’s Drawing Functions
Drawing a Polygon
Drawing a Line
Drawing a Circle
Drawing an Ellipse
Drawing a Rectangle
Coloring Pixels
"The blit() Method for Surface Objects
Drawing the Surface Object to the Screen
Events and the Game Loop
Getting Event Objects
Exiting the Program
Summary

18
ANIMATING GRAPHICS

Sample Run of the Animation Program

Source Code for the Animation Program

Moving and Bouncing the Boxes

Setting Up the Constant Variables
Constant Variables for Direction
Constant Variables for Color



Setting Up the Box Data Structures
The Game Loop
Handling When the Player Quits
Moving Each Box
Bouncing a Box
Drawing the Boxes on the Window in Their New Positions
Drawing the Window on the Screen
Summary

19
COLLISION DETECTION

Sample Run of the Collision Detection Program
Source Code for the Collision Detection Program
Importing the Modules
Using a Clock to Pace the Program
Setting Up the Window and Data Structures
Setting Up Variables to Track Movement
Handling Events
Handling the KEYDOWN Event
Handling the KEYUP Event
Teleporting the Player
Adding New Food Squares
Moving the Player Around the Window
Drawing the Player on the Window
Checking for Collisions
Drawing the Food Squares on the Window
Summary

20

USING SOUNDS AND IMAGES

Adding Images with Sprites
Sound and Image Files
Sample Run of the Sprites and Sounds Program
Source Code for the Sprites and Sounds Program
Setting Up the Window and the Data Structure
Adding a Sprite
Changing the Size of a Sprite
Setting Up the Music and Sounds



Adding Sound Files

Toggling the Sound On and Off
Drawing the Player on the Window
Checking for Collisions
Drawing the Cherries on the Window
Summary

21
A DODGER GAME WITH SOUNDS AND IMAGES

Review of the Basic pygame Data Types
Sample Run of Dodger
Source Code for Dodger
Importing the Modules
Setting Up the Constant Variables
Defining Functions
Ending and Pausing the Game
Keeping Track of Baddie Collisions
Drawing Text to the Window
Initializing pygame and Setting Up the Window
Setting Up Font, Sound, and Image Objects
Displaying the Start Screen
Starting the Game
The Game Loop
Handling Keyboard Events
Handling Mouse Movement
Adding New Baddies
Moving the Player’s Character and the Baddies
Implementing the Cheat Codes
Removing the Baddies
Drawing the Window
Drawing the Player’s Score
Drawing the Player’s Character and Baddies
Checking for Collisions
The Game Over Screen
Modifying the Dodger Game

Summary

INDEX



ACKNOWLEDGMENTS

"This book would not have been possible without the exceptional work of the No Starch
Press team. Thanks to my publisher, Bill Pollock; thanks to my editors, Laurel Chun, Jan
Cash, and Tyler Ortman, for their incredible help throughout the process; thanks to my
technical editor Ari Lacenski for her thorough review; and thanks to Josh Ellingson for yet
another great cover.



INTRODUCTION

When I first played video games as a kid, I was hooked. But I didn’t just want to play video
games, I wanted to make them. I found a book like this one that taught me how to write
my first programs and games. It was fun and easy. The first games I made were like the
ones in this book. They weren’t as fancy as the Nintendo games my parents bought for me,
but they were games I had made myself.

Now, as an adult, I still have fun programming and I get paid for it. But even if you
don’t want to become a computer programmer, programming is a useful and fun skill to
have. It trains your brain to think logically, make plans, and reconsider your ideas
whenever you find mistakes in your code.

Many programming books for beginners fall into two categories. The first category
includes books that don’t teach programming so much as “game creation software” or
languages that simplify so much that what is taught is no longer programming. The other
category consists of books that teach programming like a mathematics textbook—all
principles and concepts, with few real-life applications for the reader. This book takes a
different approach and teaches you how to program by making video games. I show the
source code for the games right up front and explain programming principles from the
examples. This approach was the key for me when I was learning to program. The more I
learned how other people’s programs worked, the more ideas I had for my own programs.

All you’ll need is a computer, some free software called the Python interpreter, and this
book. Once you learn how to create the games in this book, you’ll be able to develop
games on your own.

Computers are incredible machines, and learning to program them isn’t as hard as
people think. A computer program is a bunch of instructions that the computer can
understand, just like a storybook is a bunch of sentences that the reader can understand.
To instruct a computer, you write a program in a language the computer understands.
This book will teach you a programming language called Python. There are many other
programming languages you can learn, like BASIC, Java, JavaScript, PHP, and C++.

When I was a kid, I learned BASIC, but newer programming languages like Python are
even easier to learn. Python is also used by professional programmers in their work and



when programming for fun. Plus it’s totally free to install and use—you’ll just need an
internet connection to download it.

Because video games are nothing but computer programs, they are also made up of
instructions. The games you’ll create from this book seem simple compared to the games
for Xbox, PlayStation, or Nintendo. These games don’t have fancy graphics because
they’re meant to teach you coding basics. They’re purposely simple so you can focus on
learning to program. Games don’t have to be complicated to be fun!

Who Is This Book For?

Programming isn’t hard, but it 7s hard to find materials that teach you to do interesting
things with programming. Other computer books go over many topics most new coders
don’t need. This book will teach you how to program your own games; you’ll learn a
useful skill and have fun games to show for it! This book is for:

* Complete beginners who want to teach themselves programming, even if they have no
previous experience.

* Kids and teenagers who want to learn programming by creating games.

® Adults and teachers who wish to teach others programming.

* Anyone, young or old, who wants to learn how to program by learning a professional
programming language.

About This Book

In most of the chapters in this book, a single new game project is introduced and explained.
A few of the chapters cover additional useful topics, like debugging. New programming
concepts are explained as games make use of them, and the chapters are meant to be read in
order. Here’s a brief randown of what you’ll find in each chapter:

* Chapter 1: The Interactive Shell explains how Python’s interactive shell can be used to
experiment with code one line at a time.

* Chapter 2: Writing Programs covers how to write complete programs in Python’s file
editor.

* In Chapter 3: Guess the Number, you’ll program the first game in the book, Guess the
Number, which asks the player to guess a secret number and then provides hints as to
whether the guess is too high or too low.

* In Chapter 4: A Joke-Telling Program, you’ll write a simple program that tells the
user several jokes.

* In Chapter 5: Dragon Realm, you’ll program a guessing game in which the player must
choose between two caves: one has a friendly dragon, and the other has a hungry dragon.



* Chapter 6: Using the Debugger covers how to use the debugger to fix problems in
your code.

* Chapter 7: Designing Hangman with Flowcharts explains how flowcharts can be
used to plan longer programs, such as the Hangman game.

* In Chapter 8: Writing the Hangman Code, you’ll write the Hangman game, following
the flowchart from Chapter 7.

* Chapter 9: Extending Hangman extends the Hangman game with new features by
making use of Python’s dictionary data type.

* In Chapter 10: Tic-Tac-Toe, you’ll learn how to write a human-versus-computer Tic-
Tac-Toe game that uses artificial intelligence.

* In Chapter 11: The Bagels Deduction Game, you’ll learn how to make a deduction
game called Bagels in which the player must guess secret numbers based on clues.

* Chapter 12: The Cartesian Coordinate System explains the Cartesian coordinate
system, which you’ll use in later games.

* In Chapter 13: Sonar Treasure Hunt, you’ll learn how to write a treasure hunting
game in which the player searches the ocean for lost treasure chests.

* In Chapter 14: Caesar Cipher, you'll create a simple encryption program that lets you
write and decode secret messages.

* In Chapter 15: The Reversegam Game, you’ll program an advanced human-versus-
computer Reversi-type game that has a nearly unbeatable artificial intelligence
opponent.

* Chapter 16: Reversegam Al Simulation expands on the Reversegam game in Chapter
15 to make multiple Als that compete in computer-versus-computer games.

* Chapter 17: Creating Graphics introduces Python’s pygane module and shows you
how to use it to draw 2D graphics.

* Chapter 18: Animating Graphics shows you how to animate graphics with pygame.

* In Chapter 19: Collision Detection, you’ll learn how to detect when objects collide
with each other in 2D games.

* In Chapter 20: Using Sounds and Images, you’ll improve your simple pygame games
by adding sounds and images.

* Chapter 21: A Dodger Game with Sounds and Images combines the concepts in
Chapters 17 to 20 to make an animated game called Dodger.

How to Use This Book

Most chapters in this book will begin with a sample run of the chapter’s featured program.
This sample run shows you what the program looks like when you run it. The parts the



user types are shown in bold.

I recommend that you enter the code for each program into IDLE’s file editor yourselt
rather than downloading or copying and pasting it. You’ll remember more if you take the
time to type the code.

Line Numbers and Indentation

When typing the source code from this book, do not type the line numbers at the start of
each line. For example, if you saw the following line of code, you would not need to type
the 9. on the left side, or the one space immediately following it:

9. number = random.randint (1, 20)

You’d enter only this:

number = random.randint (1, 20)

Those numbers are there just so this book can refer to specific lines in the program.
They are not part of the actual program’s source code.

Aside from the line numbers, enter the code exactly as it appears in this book. Notice
that some of the lines of code are indented by four or eight (or more) spaces. The spaces at
the beginning of the line change how Python interprets instructions, so they are very
important to include.

Let’s look at an example. The indented spaces here are marked with black circles (®) so
you can see them.

while guesses < 10:
eeeeif number == 42:
........print('HellO')

The first line is not indented, the second line is indented four spaces, and the third line
is indented eight spaces. Although the examples in this book don’t have black circles to
mark the spaces, each character in IDLE is the same width, so you can count the number
of spaces by counting the number of characters on the line above or below.

Long Code Lines

Some code instructions are too long to fit on one line in the book and will wrap around to
the next line. But the line will fit on your computer screen, so type it all on one line
without pressing ENTER. You can tell when a new instruction starts by looking at the line
numbers on the left. This example has only two instructions:

1. print('This is the first instruction!XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXKXXXXX
KXXXKXKXKXKXXKXKX ")
2. print('This is the second instruction, not the third instruction.')




The first instruction wraps around to a second line on the page, but the second line
does not have a line number, so you can see that it’s still line 1 of the code.

Downloading and Installing Python

You’ll need to install software called the Python interpreter. The interpreter program
understands the instructions you write in Python. I'll refer to the Python interpreter
software as just Python from now on.

In this section, I'll show you how to download and install Python 3—specifically,
Python 3.4—for Windows, OS X, or Ubuntu. There are newer versions of Python than
3.4, but the pygame module, which is used in Chapters 17 to 21, currently only supports up
to 3.4.

It’s important to know that there are some significant differences between Python 2
and Python 3. The programs in this book use Python 3, and you’ll get errors if you try to
run them with Python 2. This is so important, in fact, that I've added a cartoon penguin to
remind you about it.

MAKE SURE YOU'RE
USING PYTHON 3,
NOT PYTHON 2!

On Windows, download the Windows x86-64 MSI installer from
https://www.python.org/downloads/release/python-344/ and then double-click it. You may have
to enter the administrator password for your computer. Follow the instructions the
installer displays on the screen to install Python, as listed here:

1. Select Install for All Users and then click Next.
2. Install to the C:\Python34 folder by clicking Next.
3. Click Next to skip the Customize Python section.

On OS X, download the Mac OS X 64-bit/32-bit installer from
https://www.python.org/downloads/release/python-344/ and then double-click it. Follow the
instructions the installer displays on the screen to install Python, as listed here:


https://www.python.org/downloads/release/python-344/
https://www.python.org/downloads/release/python-344/

1. If you get the warning “‘Python.mpkg’ can’t be opened because it is from an
unidentified developer,” hold down CONTROL while right-clicking the Python.mpkg
file and then select Open from the menu that appears. You may have to enter the
administrator password for your computer.

2. Click Continue through the Welcome section and click Agree to accept the license.

3. Select Macintosh HD (or whatever your hard drive is named) and click Install.

If you’re running Ubuntu, you can install Python from the Ubuntu Software Center by
following these steps:

Open the Ubuntu Software Center.

1.

2. Enter pytnon in the search box in the top-right corner of the window.
3. Select IDLE (Python 3.4 GUI 64 bit).
4.

Click Install. You may have to enter the administrator password to complete the
installation.

If the above steps do not work, you can find alternative Python 3.4 install instructions
at htps://www.nostarch.com/inventwithpython/.

Starting IDLE

IDLE stands for Interactive DeveLopment Environment. IDLE is like a word processor
for writing Python programs. Starting IDLE is different on each operating system:

* On Windows, click the Start menu in the lower-left corner of the screen, type roLg, and

select IDLE (Python GUI).

* On OS X, open Finder and click Applications. Double-click Python 3.x and then
double-click the IDLE icon.

* On Ubuntu or other Linux distros, open a terminal window and enter iaie3. You may

also be able to click Applications at the top of the screen. Then click Programming and
IDLE 3.

The window that appears when you first run IDLE is the interactive shell, as shown in
Figure 1. You can enter Python instructions into the interactive shell at the >>> prompt
and Python will perform them. After the computer performs the instructions, a new >>>
prompt will wait for your next instruction.


https://www.nostarch.com/inventwithpython/

File Edit Shell Debug Options Window Help

Python 3.4.4 {v3.4.4:737efcadf5a6, Dec 20 2015, 20:20:57) [MSC v.1600 64 bit (AM =
DE4)] on win32

| Type "copyright™, "credits™ or "license(}™ for more information.

>l

lnc3 Col:4

L

Figure 1: The IDLE program'’s interactive shell

Finding Help Online

You can find the source code files and other resources for this book at
https://www.nostarch.com/inventwithpython/. If you want to ask programming questions
related to this book, visit hitps://reddit.com/v/inventwithpython/, or you can email your
programming questions to me at a/@inventwithpython.com.

Before you ask any questions, make sure you do the following:

* [fyou are typing out a program in this book but are getting an error, check for typos
with the online diff tool at https://www.nostarch.com/inventwithpython#diff before asking
your question. Copy and paste your code into the diff tool to find any differences
between the book’s code and yours.

* Search the web to see whether someone else has already asked (and answered) your
question.

Keep in mind that the better you phrase your programming questions, the better
others will be able to help you. When asking programming questions, do the following:


https://www.nostarch.com/inventwithpython/
https://reddit.com/r/inventwithpython/
mailto:al@inventwithpython.com
https://www.nostarch.com/inventwithpython#diff

* Explain what you are trying to do when you get the error. This will let your helper know
if you are on the wrong path entirely.

* Copy and paste the entire error message and your code.
* Provide your operating system and version.

* Explain what you’ve already tried to do to solve your problem. This tells people you’ve
already put in some work to try to figure things out on your own.

* Be polite. Don’t demand help or pressure your helpers to respond quickly.

Now that you know how to ask for help, you’ll be learning to program your own
computer games in no time!



1
THE INTERACTIVE SHELL

Before you can make games, you need to learn a few basic programming concepts. You'll
start in this chapter by learning how to use Python’s interactive shell and perform basic
arithmetic.

( )

TOPICS COVERED IN THIS CHAPTER

* Operators

* Integers and floating-point numbers
* Values

* Expressions

* Syntax errors

* Storing values in variables

Some Simple Math

Start IDLE by following the steps in “Starting IDLE” on page xxvi. First you’ll use
Python to solve some simple math problems. The interactive shell can work just like a
calculator. Type 2 + 2 into the interactive shell at the >>> prompt and press ENTER. (On
some keyboards, this key is RETURN.) Figure 1-1 shows how this math problem looks in the
interactive shell—notice that it responds with the number 4.



: <& Python 3.4.4 Shell i) ﬂrﬂ
File Edit Shell Debug Options Window Help

Python 3. 4_4 (vi_4 _4:737efcadfbab, Dec 20 2015, 20:20:57) [MSC v.1600 &4 bit (AM
DG4)] on win32

Type "copyright®, "credits®™ or "license ()" for more information.

>>> 2 + 2

&L

>

Figure 1-1: Entering 2 + 2 into the interactive shell

This math problem is a simple programming instruction. The plus sign (+) tells the
computer to add the numbers 2 and 2. The computer does this and responds with the
number 4 on the next line. Table 1-1 lists the other math symbols available in Python.

Table 1-1: Math Operators

Operator Operation

+ Addition

- Subtraction

* Multiplication
/ Division

"The minus sign (-) subtracts numbers, the asterisk (x) multiplies numbers, and the slash
(1) divides numbers. When used in this way, +, -, *, and / are called operators. Operators tell
Python what to do with the numbers surrounding them.

Integers and Floating-Point Numbers

Integers (or ints for short) are whole numbers such as 4, 99, and o. Floating-point numbers (or
floats for short) are fractions or numbers with decimal points like 3.5, 42.1, and 5.0. In
Python, 5 is an integer, but 5.0 is a float. These numbers are called values. (Later we will
learn about other kinds of values besides numbers.) In the math problem you entered in
the shell, 2 and 2 are integer values.

Expressions

The math problem 2 + 2 is an example of an expression. As Figure 1-2 shows, expressions



are made up of values (the numbers) connected by operators (the math signs) that produce
a new value the code can use. Computers can solve millions of expressions in seconds.

Operator

'

Value—s= ) 4 ) -<a— Value

I_I_I

Expression

Figure 1-2: An expression is made up of values and operators.

Try entering some of these expressions into the interactive shell, pressing ENTER after
each one:

>>> 242+2+2+2

10

>>> 8%6

48

>>> 10-5+6

11

>>> 2+ 2
4

These expressions all look like regular math equations, but notice all the spaces in the
2+ 2 example. In Python, you can add any number of spaces between values and
operators. However, you must always start instructions at the beginning of the line (with
no spaces) when entering them into the interactive shell.

Evaluating Expressions

When a computer solves the expression 10 + 5 and returns the value 15, it has evaluated the
expression. Evaluating an expression reduces the expression to a single value, just like
solving a math problem reduces the problem to a single number: the answer. For example,
the expressions 10 + 5and 10 + 3 + 2 both evaluate to 15.

When Python evaluates an expression, it follows an order of operations just like you do
when you do math. There are just a few rules:
* Parts of the expression inside parentheses are evaluated first.
® Multiplication and division are done before addition and subtraction.
* The evaluation is performed left to right.
The expression 1 + 2 * 3 + 4 evaluates to 11, not 13, because 2 * 3 is evaluated first. If

the expression were (1 + 2) * (3 + 4) it would evaluate to 21, because the (1 + 2) and (3 +
4) inside parentheses are evaluated before multiplication.



Expressions can be of any size, but they will always evaluate to a single value. Even
single values are expressions. For example, the expression 15 evaluates to the value 15. The
expression 8 * 3 / 2 + 2 + 7 - 9 will evaluate to the value 12.0 through the following
steps:

83/ 2+ 2+ 7

=

24/ 2+2+7-9

ak

12.0 + 2 + 7

1

4.0+ 7 - 9
21.0 - 9

1

12.0

Even though the computer is performing all of these steps, you don’t see them in the
interactive shell. The interactive shell shows you just the result:

|
o

|
o

>> 8 * 3 / 2 + 2 + 7 -9
12.0

Notice that expressions with the , division operator always evaluate to a float; for
example, 24 / 2 evaluates to 12.0. Math operations with even one float value also evaluate
to float values, so 12.0 + 2 evaluates to 14.0.

Syntax Errors

If you enter 5 + into the interactive shell, you’ll get the following error message:

>>> 5 +
SyntaxError: invalid syntax

This error happened because 5 + isn’t an expression. Expressions have values connected
by operators, and the + operator expects a value before and after it. An error message
appears when an expected value is missing.

syntaxError means Python doesn’t understand the instruction because you typed it
incorrectly. Computer programming isn’t just about giving the computer instructions to
follow but also knowing how to give it those instructions correctly.

Don’t worry about making mistakes, though. Errors won’t damage your computer. Just



retype the instruction correctly into the interactive shell at the next >>> prompt.

Storing Values in Variables

When an expression evaluates to a value, you can use that value later by storing it in a
variable. Think of a variable as a box that can hold a value.

An assignment statement will store a value inside a variable. Type a name for the variable,
followed by the equal sign (=), which is called the assignment operator, and then the value to
store in the variable. For example, enter the following into the interactive shell:

>>> spam = 15
>>>

The span variable’s box now stores the value 15, as shown in Figure 1-3.

15

\

Figure 1-3: Variables are like boxes that can hold values.

When you press ENTER, you won’t see anything in response. In Python, you know the
instruction was successful if no error message appears. The >>> prompt will appear so you
can enter the next instruction.

Unlike expressions, statements are instructions that do not evaluate to any value. This is
why there’s no value displayed on the next line in the interactive shell after spam = 15. It
you're confused about which instructions are expressions and which are statements,
remember that expressions evaluate to a single value. Any other kind of instruction is a
statement.

Variables store values, not expressions. For example, consider the expressions in the
statements spam = 10 + 5and spam = 10 + 7 - 2. They both evaluate to 15. The end result
is the same: both assignment statements store the value 15 in the variable spam.

A good variable name describes the data it contains. Imagine that you moved to a new
house and labeled all of your moving boxes Szuff. You’d never find anything! The variable
names spam, eggs, and bacon are example names used for variables in this book.



The first time a variable is used in an assignment statement, Python will create that
variable. To check what value is in a variable, enter the variable name into the interactive

shell:

>>> spam = 15
>>> spam
15

"The expression span evaluates to the value inside the spam variable: 15.
You can also use variables in expressions. T'ry entering the following in the interactive

shell:

>>> spam = 15
>>> spam + 5
20

You set the value of the variable spam to 15, so typing spam + 5 is like typing the
expression 15 + 5. Here are the steps of span + 5 being evaluated:

spam + 5

o

15 + 5

2

20

You cannot use a variable before an assignment statement creates it. If you try to do so,
Python will give you a NameError because no such variable by that name exists yet.
Mistyping the variable name also causes this error:

>>> gpam = 15
>>> spma
Traceback (most recent call last):
File "<pyshell#8>", line 1, in <module>
spma
NameError: name 'spma' 1is not defined

The error appeared because there’s a span variable but no spma variable.

You can change the value stored in a variable by entering another assignment
statement. For example, enter the following into the interactive shell:

>>> spam 15
>>> spam + 5

20

>>> gpam = 3

>>> spam + 5

When you first enter spam + 5, the expression evaluates to 20 because you stored 15



inside spam. However, when you enter spam = 3, the value 15 in the variable’s box is
replaced, or overwritten, with the value 3 since the variable can hold only one value at a
time. Because the value of spam is now 3, when you enter spam + 5, the expression evaluates

to 8. Overwriting is like taking a value out of the variable’s box to put a new value in, as
shown in Figure 1-4.

\

Figure 1-4: The value 15 in spam Is overwritten by the value 3.

You can even use the value in the spam variable to assign a new value to spam:

15
spam + 5

>>> spam
>>> spam
20

The assignment statement spam = spam + 5 says, “I'he new value of the spam variable
will be the current value of spam plus five.” To keep increasing the value in span by 5 several
times, enter the following into the interactive shell:

>>> gpam = 15

>>> spam spam + 5
>>> spam spam + 5
>>> spam = spam + 5
>>> spam

30

In this example, you assign spam a value of 15 in the first statement. In the next
statement, you add 5 to the value of spam and assign spam the new value spam + 5, which
evaluates to 20. When you do this three times, span evaluates to 30.



So far we’ve looked at just one variable, but you can create as many variables as you

need in your programs. For example, let’s assign different values to two variables named
eggs and bacon, hke SO:

>>> bacon = 10
>>> eggs = 15

Now the bacon variable has 10 inside it, and the eggs variable has 15 inside it. Each
variable is its own box with its own value, as shown in Figure 1-5.

.l'r---_'_""‘---._

10

€ggs \
\

Figure 1-5: The bacon and eggs variables each store values.

Enter spam = bacon + eggs into the interactive shell, then check the new value of span:

>>> bacon = 10

>>> eggs 15

>>> spam bacon + eggs
>>> spam

25

"The value in spam is now 25. When you add bacon and eggs, you are adding their values,
which are 10 and 15, respectively. Variables contain values, not expressions, so the spam
variable was assigned the value 25, not the expression bacon + eggs. After the spam = bacon
+ eggs statement assigns the value 25 to spam, changing bacon or eggs will not affect spam.

Summary

In this chapter, you learned the basics of writing Python instructions. Because computers
don’t have common sense and only understand specific instructions, Python needs you to
tell it exactly what to do.

Expressions are values (such as 2 or 5) combined with operators (such as + or -). Python
can evaluate expressions—that is, reduce the expression to a single value. You can store



values inside of variables so that your program can remember those values and use them
later.

There are a few other types of operators and values in Python. In the next chapter,
you’ll go over some more basic concepts and write your first program. You’ll learn about

working with text in expressions. Python isn’t limited to just numbers; it’s more than a
calculator!



2
WRITING PROGRAMS

Now let’s see what Python can do with text. Almost all programs display text to the user,
and the user enters text into programs through the keyboard. In this chapter, you’ll make
your first program, which does both of these things. You’ll learn how to store text in
variables, combine text, and display text on the screen. The program you’ll create displays
the greeting Hello world! and asks for the user’s name.

( )

TOPICS COVERED IN THIS CHAPTER
® Strings
* String concatenation
* Data types (such as strings or integers)
* Using the file editor to write programs
* Saving and running programs in IDLE
* Flow of execution
* Comments
® The print () function
® The input () function

* Case sensitivity

String Values

In Python, text values are called strings. String values can be used just like integer or float



values. You can store strings in variables. In code, string values start and end with a single
quote, '. Enter this code into the interactive shell:

>>> gspam = 'hello'

The single quotes tell Python where the string begins and ends. They are not part of
the string value’s text. Now if you enter spam into the interactive shell, you’ll see the
contents of the spam variable. Remember, Python evaluates variables as the value stored
inside the variable. In this case, this is the string 'helio'.

>>> spam = 'hello'
>>> spam
'hello’

Strings can have any keyboard character in them and can be as long as you want. These
are all examples of strings:

'hello’

'Hi there!'

'KITTENS'

'7 apples, 14 oranges, 3 lemons'

'Anything not pertaining to elephants is irrelephant.'
'A long time ago, in a galaxy far, far away...'
'O*&HWYS*&0CEsdYO*&gfC3YO*&%3yc8r2 !

String Concatenation

You can combine string values with operators to make expressions, just as you did with
integer and float values. When you combine two strings with the + operator, it’s called
string concatenation. Enter 'sello' + 'world!' into the interactive shell:

>>> 'Hello' + 'World!'
'HelloWorld!'"

The expression evaluates to a single string value, 'Helloworid:'. There is no space
between the words because there was no space in either of the two concatenated strings,
unlike in this example:

>>> 'Hello ' + 'World!'
'Hello World!'

"The + operator works differently on string and integer values because they are different
data types. All values have a data type. The data type of the value 'Hel1o' is a string. The
data type of the value 5 is an integer. The data type tells Python what operators should do
when evaluating expressions. The + operator concatenates string values, but adds integer
and float values.



Writing Programs in IDLE’s File Editor

Until now, you’ve been typing instructions into IDLE’s interactive shell one at a time.
When you write programs, though, you enter several instructions and have them run all at
once, and this is what you’ll do next. It’s time to write your first program!

In addition to the interpreter, IDLE has another part called the file editor. To open it,
click the File menu at the top of the interactive shell. Then select New Window if you are
using Windows or New File if you are using OS X. A blank window will appear for you to
type your program’s code into, as shown in Figure 2-1.

AT S ==
Fite Bo  hprmar (o s # - i Sl [reres

el Dty Clpots o

Figure 2-1: The file editor (left) and the interactive shell (right)

The two windows look similar, but just remember this: the interactive shell will have
the >>> prompt, while the file editor will not.

Creating the Hello World Program

It’s traditional for programmers to make their first program display se1lo worid: on the
screen. You'll create your own Hello World program now.

MAKE SURE YOU'RE
USING PYTHON 3,
NOT PYTHON 2!

When you enter your program, remember not to enter the numbers at the beginning
of each code line. They’re there so this book can refer to the code by line number. The



bottom-right corner of the file editor will tell you where the blinking cursor is so you can
check which line of code you are on. Figure 2-2 shows that the cursor is on line 1 (going up
and down the editor) and column 0 (going left and right).

Ln: 1 Col: 0

Figure 2-2: The bottom-right of the file editor tells you what line the cursor is on.

Enter the following text into the new file editor window. This is the program’s source
code. It contains the instructions Python will follow when the program is run.

hello.py

1. # This program says hello and asks for my name.
2. print('Hello world!")

3. print('What is your name?')

4. myName = input()

5. print('It is good to meet you, ' + myName)

IDLE will write different types of instructions with different colors. After you’re done
typing the code, the window should look like Figure 2-3.

& hello.py - C:/Python34/hello.py (3.4.4) = |
File Edit Format Run Options Window Help
This program says hello and asks for my name. _J

™
print {"Hello world!")

print ("What is your name?')

myName = input ()

print ("It is good to meet you, ' + myName)

=

L& Col: 0

- —— = g

Figure 2-3: The file editor will look like this after you enter your code.

Check to make sure your IDLE window looks the same.



Saving Your Program

Once you’ve entered your source code, save it by clicking File » Save As. Or press CTRL-S
to save with a keyboard shortcut. Figure 2-4 shows the Save As window that will open.
Enter hello.py in the File name text field and then click Save.

& Save As ——
Save in | § Pyihon34 ﬂ i ol
= Name = Date Type i
R *‘: K _ pycache__ 5/28/2014 1:51 PM File folder | |
t
= B Dus 4/22/2016 4:05 PM File folder |
! R Doc 44222016 4:05 PM File folder Ei
Deskiop k. foofolder 7/31/2014 7:29 PM File folder | |
== L. include 3/19/2014 12:29 AM File folder |
— | K Lib 3/19/2014 12:29 AM File folder
Libraries L libs 4/22/2016 4:05 PM File folder
A k. man 11/22/2014 1:01 PM File folder
i ) Scons 3/19/2014 12:29 AM File folder
= L. selenium 8/19/2016 347 PM File folder
‘k k. share 5/10/2014 12:30 PM File folder
MNetwork & tcl 4/22/2016 4:05 PM File folder
| | | Tanle ANt s AN NDkA Ciln FAald e o
| ‘| 1 P
File nams: |he|l0.py| :J Save
Save as type: |P',fthnn files (".py.”.pyw) Li Cancel

Figure 2-4: Saving the program

You should save your programs often while you write them. That way, if the computer
crashes or you accidentally exit from IDLE, you won’t lose much work.

To load your previously saved program, click File » Open. Select the hello.py file in the
window that appears and click the Open button. Your saved hello.py program will open in
the file editor.

Running Your Program

Now it’s time to run the program. Click File » Run Module. Or just press F5 from the file
editor (FN-5 on OS X). Your program will run in the interactive shell.

Enter your name when the program asks for it. This will look like Figure 2-5.



| 4 Python 3.4.4 Shell — | [0 S

File Edit Shell Debug Options Window Help
Python 3.4.4 (v3.4.4:737efcadf5aé, Dec 20 2015, 20:20:57) [MSC v.1600 64 bit (AM = |
De4)] on win32

Type "copyright™, "credits™ or "license ()" for more information.

et

========= — = RESTART: C:\Python3d\hello.py === = == =
Hello world

What is your name?

Albert

It 1s good to meet you, Albert

0 S

Ln: 9 Col: 4

Figure 2-5: The interactive shell after you run hello.py

When you type your name and press ENTER, the program will greet you by name.
Congratulations! You have written your first program and are now a computer
programmer. Press F5 again to run the program a second time and enter another name.

If you got an error, compare your code to this book’s code with the online diff tool at
https://www.nostarch.com/inventwithpython#diff. Copy and paste your code from the file
editor into the web page and click the Compare button. This tool will highlight any
differences between your code and the code in this book, as shown in Figure 2-6.

While coding, if you get a nameerror that looks like the following, that means you are
using Python 2 instead of Python 3.

Hello world!
What is your name?
Albert
Traceback (most recent call last):
File "C:/Python26/testl.py", line 4, in <module>
myName = input ()
File "<string>", line 1, in <module>
NameError: name 'Albert' is not defined

To fix the problem, install Python 3.4 and rerun the program. (See “Downloading and
Installing Python” on page xxv.)


https://www.nostarch.com/inventwithpython#diff

Diff Tool

Select program:

AlSim1 py

AlSim2 py

AlSim3. py
animation. py
bagels.py

cipher. py
collisionDetection. py
dodger.py

dragon. pry

favorite. py

UESS. pry
hangman_py
hello.py

jokes. py
pyoameHelloWorld py
pycamelnput. py

Copy and paste your code here:

# This
print( "Hello world!")
print( 'What is your name?’
myMame = input()

primt(

-

The Book's Program

‘It is good to meet you, '

program says hello and asks for my name.

+ myhame )

Your Program

The diff tool can help you find typos in your code by showing you the differences between your program and the programs in the book.

sdifflib

Figure 2-6: Using the diff tool at https://www.nostarch.com/inventwithpython#diff

How the Hello World Program Works

Each line of code is an instruction interpreted by Python. These instructions make up the
program. A computer program’s instructions are like the steps in a recipe. Python
completes each instruction in order, beginning from the top of the program and moving

downward.

The step where Python is currently working in the program is called the execution.
When the program starts, the execution is at the first instruction. After executing the

instruction, Python moves down to the next instruction.

Let’s look at each line of code to see what it’s doing. We’ll begin with line number 1.

Comments for the Programmer
"The first line of the Hello World program is a comment:

1. # This program says hello and asks for my name.



https://www.nostarch.com/inventwithpython#diff

Any text following a hash mark (#) is a comment. Comments are the programmer’s
notes about what the code does; they are not written for Python but for you, the
programmer. Python ignores comments when it runs a program. Programmers usually put
a comment at the top of their code to give their program a title. The comment in the
Hello World program tells you that the program says hello and asks for your name.

Functions: Mini-Programs Inside Programs

A function is kind of like a mini-program inside your program that contains several
instructions for Python to execute. The great thing about functions is that you only need
to know what they do, not how they do it. Python provides some built-in functions
already. We use print () and input () in the Hello World program.

A function call is an instruction that tells Python to run the code inside a function. For
example, your program calls the print () function to display a string on the screen. The
print () function takes the string you type between the parentheses as input and displays
that text on the screen.

The print() Function

Lines 2 and 3 of the Hello World program are calls to print ():

2. print('Hello world!")
3. print('What is your name?')

A value between the parentheses in a function call is an argument. The argument on line
2’s print () function call is '#Hello worid:', and the argument on line 3’s print () function
call is 'what is your name?'. Thisis called passing the argument to the function.

The input() Function

Line 4 is an assignment statement with a variable, nyname, and a function call, input ():

4. myName = input ()

When input () is called, the program waits for the user to enter text. The text string
that the user enters becomes the value that the function call evaluates to. Function calls can
be used in expressions anywhere a value can be used.

The value that the function call evaluates to is called the return value. (In fact, “the value
a function call returns” means the same thing as “the value a function call evaluates to.”) In
this case, the return value of the input () function is the string that the user entered: their
name. If the user enters alvert, the input () function call evaluates to the string 'albert:.
The evaluation looks like this:



myName = input()

myName = 'Albert’

"This is how the string value 'aivert' gets stored in the myname variable.

Expressions in Function Calls

The last line in the Hello World program is another print () function call:

5. print('It is good to meet you, ' + myName)

The expression '1t is good to meet you, ' + myName 1S between the parentheses of
print (). Because arguments are always single values, Python will first evaluate this
expression and then pass that value as the argument. If 'albert' is stored in myName, the
evaluation looks like this:

print('It is good to meet you, ' + myName)
print('It is good to meet you, ' + 'Albert’)

print('It is good to meet you, Albert')

"This is how the program greets the user by name.

The End of the Program

Once the program executes the last line, it terminates or exits. This means the program
stops running. Python forgets all of the values stored in variables, including the string

stored in myName. If you run the program again and enter a different name, the program will
think that is your name:

Hello world!

What is your name?

Carolyn

It is good to meet you, Carolyn

Remember, the computer does exactly what you program it to do. Computers are
dumb and just follow the instructions you give them exactly. The computer doesn’t care if

you type in your name, someone else’s name, or something silly. Type in anything you
want. The computer will treat it the same way:

Hello world!
What is your name?
Poop



It is good to meet you, poop

Naming Variables

Giving variables descriptive names makes it easier to understand what a program does. You
could have called the myName variable abrahamiincoln or name, and Python would have run
the program just the same. But those names don’t really tell you much about what
information the variable might hold. As Chapter 1 discussed, if you were moving to a new
house and you labeled every moving box Stuff, that wouldn’t be helpful at all! This book’s
interactive shell examples use variable names like spam, eggs, and bacon because the variable
names in these examples don’t matter. However, this book’s programs all use descriptive
names, and so should your programs.

Variable names are case sensitive, which means the same variable name in a different case
is considered a different variable. So spam, spau, spam, and spau are four different variables in
Python. They each contain their own separate values. It’s a bad idea to have differently
cased variables in your program. Use descriptive names for your variables instead.

Variable names are usually lowercase. If there’s more than one word in the variable
name, it’s a good idea to capitalize each word after the first. For example, the variable
name  whatIHadForBreakfastThisMorning 1S much  easier to read  than
whatihadforbreakfastthismorning. Capitalizing your variables this way is called camel case
(because it resembles the humps on a camel’s back), and it makes your code more readable.
Programmers also prefer using shorter variable names to make code easier to understand:
breakfast Or foodThisMorning is more readable than whatIHadForBreakfastThisMorning.
These are conventions—optional but standard ways of doing things in Python
programming.

Summary

Once you understand how to use strings and functions, you can start making programs that
interact with users. This is important because text is the main way the user and the
computer will communicate with each other. The user enters text through the keyboard
with the input () function, and the computer displays text on the screen with the print ()
function.

Strings are just values of a new data type. All values have a data type, and the data type
of a value affects how the + operator functions.

Functions are used to carry out complicated instructions in your program. Python has
many built-in functions that you’ll learn about in this book. Function calls can be used in
expressions anywhere a value is used.

The instruction or step in your program where Python is currently working is called
the execution. In Chapter 3, you’ll learn more about making the execution move in ways



other than just straight down the program. Once you learn this, you’ll be ready to create
games!



3
GUESS THE NUMBER

In this chapter, you’re going to make a Guess the Number game. The computer will think
of a secret number from 1 to 20 and ask the user to guess it. After each guess, the computer
will tell the user whether the number is too high or too low. The user wins if they can
guess the number within six tries.

"This is a good game to code because it covers many programming concepts in a short
program. You'll learn how to convert values to different data types and when you would
need to do this. Since this program is a game, from now on we’ll call the user the player.

( )

TOPICS COVERED IN THIS CHAPTER
® import statements
* Modules
® The randint () function
® for statements
* Blocks
® The str(), int (), and float () functions
* Booleans
* Comparison operators
* Conditions
* The difference between = and ==
® if statements

® break Statements




Sample Run of Guess the Number

Here’s what the Guess the Number program looks like to the player when it’s run. The
player’s input is marked in bold.

Hello! What is your name?

Albert

Well, Albert, I am thinking of a number between 1 and 20.
Take a guess.

10

Your guess is too high.

Take a guess.

2

Your guess is too low.

Take a guess.

4

Good job, Albert! You guessed my number in 3 guesses!

Source Code for Guess the Number

Open a new file editor window by clicking File » New Window. In the blank window that
appears, enter the source code and save it as guess.py. Then run the program by pressing F5.

MAKE SURE YOU'RE
USING PYTHON 3,
NOT PYTHON 2!

When you enter this code into the file editor, be sure to pay attention to the spacing at the
front of the lines. Some lines need to be indented four or eight spaces.

If you get errors after entering this code, compare the code you typed to the book’s
code with the online diff tool at https://www.nostarch.com/inventwithpython#diff.

guess.py
1. # This is a Guess the Number game.
2. import random
3.
4. guessesTaken = 0


https://www.nostarch.com/inventwithpython#diff

5

6. print('Hello! What is your name?')
7. myName = input ()
8

9. number = random.randint (1, 20)

10. print('Well, ' + myName + ', I am thinking of a number between 1 and 20.')

11.

12. for guessesTaken in range(6) :

13. print ('Take a guess.') # Four spaces in front of "print"

14. guess = input ()

15. guess = int (guess)

16

17. if guess < number:

18. print ('Your guess is too low.') # Eight spaces in front of "print"

19.

20. if guess > number:

21. print ('Your guess is too high.')

22.

23. if guess == number:

24. break

25.

26. if guess == number:

27. guessesTaken = str(guessesTaken + 1)

28. print ('Good job, ' + myName + '! You guessed my number in ' +
guessesTaken + ' guesses!')

29.

30. if guess != number:

31. number = str (number)

32. print ('Nope. The number I was thinking of was ' + number + '.')

Importing the random Module

Let’s take a look at the first two lines of this program:

1. # This is a Guess the Number game.
2. import random

The first line is a comment, which you saw in Chapter 2. Remember that Python will
ignore everything after the # character. The comment here just reminds us what this
program does.

The second line is an import statement. Remember, statements are instructions that
perform some action but don’t evaluate to a value like expressions do. You’ve already seen
the assignment statement, which stores a value in a variable.

While Python includes many built-in functions, some functions are written in separate
programs called 7zodules. You can use these functions by importing their modules into your
program with an import statement.

Line 2 imports the random module so that the program can call the randint () function.
"This function will come up with a random number for the player to guess.

Now that you’ve imported the random module, you need to set up some variables to
store values your program will use later.



Line 4 creates a new variable named guessesTaken:

4. guessesTaken = 0

You’ll store the number of guesses the player has made in this variable. Since the player
hasn’t made any guesses at this point in the program, store the integer o here.

6. print('Hello! What is your name?')
7. myName = input ()

Lines 6 and 7 are the same as the lines in the Hello World program in Chapter 2.
Programmers often reuse code from other programs to save themselves work.

Line 6 is a function call to print (). Remember that a function is like a mini-program
inside your program. When your program calls a function, it runs this mini-program. The
code inside print () displays the string argument you passed it on the screen.

Line 7 lets the player enter their name and stores it in the myName variable. Remember,
the string might not really be the player’s name; it’s just whatever string the player types.
Computers are dumb and follow their instructions, no matter what.

Generating Random Numbers with the random.randint() Function

Now that your other variables are set up, you can use the random module’s function to set
the computer’s secret number:

9. number = random.randint (1, 20)

Line 9 calls a new function named randint() and stores the return value in number.
Remember, function calls can be part of expressions because they evaluate to a value.

The randint () function is provided by the random module, so you must call it with
randon.randint () (don’t forget the period!) to tell Python that the function randint() is in
the random module.

randint () Will return a random integer between (and including) the two integer
arguments you pass it. Line 9 passes 1 and 20, separated by commas, between the
parentheses that follow the function name. The random integer that randint () returns is
stored in a variable named number—this is the secret number the player is trying to guess.

Just for a moment, go back to the interactive shell and enter import random to import
the random module. Then enter random.randint(1, 20) to see what the function call
evaluates to. It will return an integer between 1 and 20. Repeat the code again, and the
function call will return another integer. The randint () function returns a random integer
each time, just as rolling a die will result in a random number each time. For example,
enter the following into the interactive shell. The results you get when you call the
randint () function will probably be different (it is random, after all!).



>>> import random

>>> random.randint (1, 20)
12

>>> random.randint (1, 20)
18

>>> random.randint (1, 20)

>>> random.randint (1, 20)
18
>>> random.randint (1, 20)

You can also try different ranges of numbers by changing the arguments. For example,
enter random.randint (1, 4) to get only integers between 1 and 4 (including both 1 and 4).
Or try random.randint (1000, 2000) to get integers between 1000 and 2000.

Enter this code in the interactive shell and see what numbers you get:

>>> random.randint (1, 4)

3

>>> random.randint (1000, 2000)
1294

You can change the game’s code slightly to make the game behave differently. In our
original code, we use an integer between 1 and 20:

9. number = random.randint(1l, 20)
10. print('Well, ' + myName + ', I am thinking of a number between 1 and 20.')

Try changing the integer range to (1, 100) instead:

9. number = random.randint(l, 100)
10. print('Well, ' + myName + ', I am thinking of a number between 1 and 100.')

Now the computer will think of an integer between 1 and 100 instead of 1 and 20.
Changing line 9 will change the range of the random number, but remember to also
change line 10 so that the game tells the player the new range instead of the old one.

You can use the randint () function whenever you want to add randomness to your
games. You’'ll use randomness in many games. (Think of how many board games use dice.)

Welcoming the Player

After the computer assigns number a random integer, it greets the player:

10. print('Well, ' + myName + ', I am thinking of a number between 1 and 20.')

On line 10, print () welcomes the player by name and tells them that the computer is
thinking of a random number.

At first glance, it may look like there’s more than one string argument in line 10, but



examine the line carefully. The + operators between the three strings concatenate them
into one string. And that one string is the argument passed to print (). If you look closely,
you'll see that the commas are inside the quotes and part of the strings themselves.

Flow Control Statements

In previous chapters, the program execution started at the top instruction in the program
and moved straight down, executing each instruction in order. But with the for, if, else,
and break statements, you can make the execution loop or skip instructions based on
conditions. These kinds of statements are flow control statements, since they change the flow
of the program execution as it moves around your program.

Using Loops to Repeat Code

Line 12 is a for statement, which indicates the beginning of a for loop:

12. for guessesTaken in range(6) :

Loops let you execute code over and over again. Line 12 will repeat its code six times. A
for statement begins with the for keyword, followed by a new variable name, the in
keyword, a call to the range () function that specifies the number of loops it should do, and
a colon. Let’s go over a few additional concepts so that you can work with loops.

Grouping with Blocks

Several lines of code can be grouped together in a block. Every line in a block of code
begins with at least the number of spaces as the first line in the block. You can tell where a
block begins and ends by looking at the number of spaces at the front of the lines. This is
the line’s indentation.

Python programmers typically use four additional spaces of indentation to begin a
block. Any following line that’s indented by that same amount is part of the block. The
block ends when there’s a line of code with the same indentation as before the block started.
There can also be blocks within other blocks. Figure 3-1 shows a code diagram with the
blocks outlined and numbered.



12. for guessesTaken in range(6):

o 13. eeseprint('Take a guess.')
14, eeesguess = input()

15. eeseguess = int(guess)

16.

17. eeeeif guess < number:

@]18. eecescseprint('Your guess is too low.')
19.
20. eeeeif guess > number:

©|21. eececccoprint('Your guess is too high."')
22.
23. eeeeif guess == number:

©]24. sessssssbreak
25.

26. if guess == number:

Figure 3-1: An example of blocks and their indentation. The gray dots represent spaces.

In Figure 3-1, line 12 has no indentation and isn’t inside any block. Line 13 has an
indentation of four spaces. Since this line is indented more than the previous line, a new
block starts here. Every line following this one with the same amount of indentation or

more is considered part of block @. If Python encounters another line with less
indentation than the block’s first line, the block has ended. Blank lines are ignored.

Line 18 has an indentation of eight spaces, which starts block @. This block is inside
block @. But the next line, line 20, is indented only four spaces. Because the indentation
has decreased, you know that line 18’s block @ has ended, and because line 20 has the same
indentation as line 13, you know it’s in block @.

Line 21 increases the indentation to eight spaces again, so another new block within a
block has started: block ©. At line 23, we exit block ©, and at line 24 we enter the final
block within a block, block @. Both block @ and block ® end on line 24.

Looping with for Statements

The for statement marks the beginning of a loop. Loops execute the same code repeatedly.
When the execution reaches a for statement, it enters the block that follows the for
statement. After running all the code in this block, the execution moves back to the top of
the block to run the code all over again.

Enter the following into the interactive shell:

>>> for i in range(3):
print ('Hello! i is set to', i)



Hello! i is set to O
Hello! i is set to 1
Hello! i 1is set to 2

Notice that after you typed for i in range(3): and pressed ENTER, the interactive shell

didn’t show another >>> prompt because it was expecting you to type a block of code. Press
ENTER again after the last instruction to tell the interactive shell you are done entering the
block of code. (This applies only when you are working in the interactive shell. When

writing .py files in the file editor, you don’t need to insert a blank line.)
Let’s look at the for loop on line 12 of guess.py:

12. for guessesTaken in range(6) :

13. print ('Take a guess.') # Four spaces in front of "print"
14. guess = input ()

15. guess = int(guess)

16.

17. if guess < number:

18. print ('Your guess is too low.') # Eight spaces in front of "print"
19.

20. if guess > number:

21. print ('Your guess is too high.')

22.

23. if guess == number:

24. break

25.

26. if guess == number:

In Guess the Number, the for block begins at the for statement on line 12, and the first

line after the for block is line 26.

A for statement always has a colon (:) after the condition. Statements that end with a

colon expect a new block on the next line. This is illustrated in Figure 3-2.

12. for guessesTaken in range(6):

13. print('Take a guess.') # Four spaces in front of "print" =&

14. guess = input()

1 guess = int(guess)

16.

17 if guess < number:

18. print('Your guess is too low.') # Eight spaces in front of "print"
19.

20. if guess > number:

21 print('Your guess is too high.")

22.

ii a B;:Z:k-- UROET: The execution loops six times.
25.

26. if guess == number:



Figure 3-2: The for loop’s flow of execution

Figure 3-2 shows how the execution flows. The execution will enter the for block at
line 13 and keep going down. Once the program reaches the end of the for block, instead
of going down to the next line, the execution loops back up to the start of the for block at
line 13. It does this six times because of the range(6) function call in the for statement.
Each time the execution goes through the loop is called an steration.

Think of the for statement as saying, “Execute the code in the following block a certain
number of times.”

Getting the Player’s Guess

Lines 13 and 14 ask the player to guess what the secret number is and let them enter their
guess:

13. print ('Take a guess.') # Four spaces in front of "print"
14. guess = input ()

That number the player enters is stored in a variable named guess.

Converting Values with the int(), float(), and str() Functions

Line 15 calls a new function called int ():

15. guess = int (guess)

The int () function takes one argument and returns the argument’s value as an integer.
Enter the following into the interactive shell to see how the int () function works:

>>> int('42"')
42

The int('42") call will return the integer value 42.

>>> 3 + int('2"')
5

The 3 + int('2') line shows an expression that uses the return value of int () as part of
an expression. It evaluates to the integer value s:



3 + int('z')'
L

Y
L____r

5

Even though you can pass a string to int (), you cannot pass it just any string. Passing
'forty-two' to int () will result in an error:

>>> int('forty-two')
Traceback (most recent call last):
File "<pyshell#5>", line 1, in <module>
int ('forty-two')
ValueError: invalid literal for int() with base 10: 'forty-two'

The string you pass to int () must be made of numbers.

In Guess the Number, we get the player’s number using the input() function.
Remember, the input () function always returns a s#ring of text the player entered. If the
player types 5, the input () function will return the string value ‘s, not the integer value s.
But we'll need to compare the player’s number with an integer later, and Python cannot
use the < and > comparison operators to compare a string and an integer value:

>>> 4 < '5!
Traceback (most recent call last):
File "<pyshell#0>", line 1, in <module>
4 < '5
TypeError: unorderable types: int() < str()

Therefore, we need to convert the string into an integer:

14. guess = input ()
15. guess = int (guess)

On line 14, we assign the guess variable to the string value of whatever number the
player typed. Line 15 overwrites the string value in guess with the integer value returned
by int(). The code int(guess) returns a new integer value based on the string it was
provided, and guess = assigns that new value to guess. This lets the code later in the
program compare whether guess is greater than, less than, or equal to the secret number in
the number variable.

The ficat() and str() functions will similarly return float and string versions of the
arguments passed to them. Enter the following into the interactive shell:

>>> float('42"')
42.0

>>> float (42)
42.0




When the string '42' or the integer 42 is passed to ficat (), the float 42.0 is returned.

Now try using the str() function:

>>> str(42)
l42|

>>> str(42.0)
'42.0"

When the integer 42 is passed to str (), the string 42" is returned. But when the float
42.0 1s passed to str (), the string '42.0" is returned.

Using the int (), float (), and str () functions, you can take a value of one data type and
return it as a value of a different data type.

The Boolean Data Type

Every value in Python belongs to one data type. The data types that have been introduced
so far are integers, floats, strings, and now Booleans. The Boolean data type has only two
values: True or ralse. Boolean values must be entered with an uppercase T or r and the rest
of the value’s name in lowercase.

Boolean values can be stored in variables just like the other data types:

True
False

>>> spam
>>> eggs

In this example, you set span to True and eggs to False. Remember to capitalize the first
letter.

You will use Boolean values (called bools for short) with comparison operators to form
conditions. We’ll cover comparison operators first and then go over conditions.

Comparison Operators

Comparison operators compare two values and evaluate to a True or ralse Boolean value.
Table 3-1 lists all of the comparison operators.

Table 3-1: Comparison Operators

Operator Operation

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

== Equal to



= Not equal to

You've already read about the +, -, *, and / math operators. Like any operator,
comparison operators combine with values to form expressions such as guessestaken < 6.

Line 17 of the Guess the Number program uses the less than comparison operator:

17. if guess < number:

We'll discuss if statements in more detail shortly; for now, let’s just look at the
expression that follows the if keyword (the guess < numver part). This expression contains
two values (the values in the variables guess and number) connected by an operator (the <, or

less than, sign).

Checking for True or False with Conditions

A condition is an expression that combines two values with a comparison operator (such as <
or >) and evaluates to a Boolean value. A condition is just another name for an expression
that evaluates to True or ralse. One place we use conditions is in i f statements.

For example, the condition guess < number on line 17 asks, “Is the value stored in guess
less than the value stored in number?” If so, then the condition evaluates to True. If not, the
condition evaluates to ralse.

Say that guess stores the integer 10 and number stores the integer 16. Because 10 is less
than 16, this condition evaluates to the Boolean value of true. The evaluation would look

like this:

guess < number
| |

g

10 < 16

o

True

Experimenting with Booleans, Comparison Operators, and
Conditions

Enter the following expressions in the interactive shell to see their Boolean results:

>>> 0 < 6
True
>>> 6 < 0
False

The condition 0 < & returns the Boolean value true because the number o is less than
the number 6. But because 6 isn’t less than o, the condition 6 < o evaluates to False.



Notice that 10 < 10 evaluates to rFaise because the number 10 isn’t smaller than the
number 10:

>>> 10 < 10
False

The values are the same. If Alice were the same height as Bob, you wouldn’t say that
Alice is taller than Bob or that Alice is shorter than Bob. Both of those statements would
be false.

Now enter these expressions into the interactive shell:

>>> 10 == 10
True
>>> 10 == 11
False
>>> 11 == 10
False
>>> 10 != 10
False
In this example, 10 is equal to 10, s0 10 == 10 evaluates to True. But 10 is not equal to 11,
S0 10 == 11 is False. Even if the order is flipped, 11 is still not equal to 10, so 11 == 10 is
ralse. Finally, 10 is equal to 10,50 10 1= 10 1S False.

You can also evaluate string expressions with comparison operators:

>>> 'Hello' == 'Hello'
True
>>> 'Goodbye' != 'Hello'
True
>>> 'Hello' == 'HELLO'
False
'Hello' 1S equal to 'Hello', SO 'Hello' == 'Hello' IS True. 'Goodbye' is not equal to
'Hello', SO 'Goodbye' != 'Hello' 1S also True.

Notice that the last line evaluates to raise. Upper- and lowercase letters are not the
same in Python, so '#e110' is not equal to '#ELLO".

String and integer values will never be equal to each other. For example, enter the
following into the interactive shell:

>>> 42 == 'Hello'
False

>>> 42 1= '42"
True

In the first example, 42 is an integer and 'rello' is a string, so the values are not equal
and the expression evaluates to ralse. In the second example, the string 42" is still not an
integer, so the expression “the integer 42 is not equal to the string '42'” evaluates to True.



The Difference Between = and ==

Be careful not to confuse the assignment operator, =, and the equal to comparison
operator, ==. The equal sign, =, is used in assignment statements to store a value to a
variable, whereas the double equal sign, ==, is used in expressions to see whether two values
are equal. It’s easy to accidentally use one when you mean to use the other.

It might help to remember that both the equal to comparison operator, ==, and the not
equal to comparison operator, =, have two characters.

if Statements

Line 17 is an if statement:

17. if guess < number:
18. print ('Your guess is too low.') # Eight spaces in front of "print"

The code block following the if statement will run if the if statement’s condition
evaluates to true. If the condition is ralse, the code in the it block is skipped. Using it
statements, you can make the program run certain code only when you want it to.

Line 17 checks whether the player’s guess is less than the computer’s secret number. It
so, then the execution moves inside the if block on line 18 and prints a message telling the
player their guess was too low.

Line 20 checks whether the player’s guess is greater than the secret number:

20. if guess > number:
21. print ('Your guess is too high.')

If this condition is True, then the print () function call tells the player that their guess is
too high.

Leaving Loops Early with the break Statement

The if statement on line 23 checks whether the number the player guessed is equal to the
secret number. If it is, the program runs the break statement on line 24:

23. if guess == number:
24 . break

A preak statement tells the execution to jump immediately out of the for block to the
first line after the end of the for block. The break statement is found only inside loops,
such asin a for block.

Checking Whether the Player Won



The for block ends at the next line of code with no indentation, which is line 26:

26. if guess == number:

The execution leaves the for block either because it has looped six times (when the
player runs out of guesses) or because the break statement on line 24 has executed (when
the player guesses the number correctly).

Line 26 checks whether the player guessed correctly. If so, the execution enters the if
block at line 27:

27. guessesTaken = str(guessesTaken + 1)
28. print ('Good job, ' + myName + '! You guessed my number in ' +
guessesTaken + ' guesses!')

Lines 27 and 28 execute only if the condition in the if statement on line 26 is True (that
is, if the player correctly guessed the computer’s number).

Line 27 calls the str() function, which returns the string form of guessestaken + 1
(since the range function goes from 0 to 5 instead of 1 to 6). Line 28 concatenates strings to
tell the player they have won and how many guesses it took. Only string values can
concatenate to other strings. This is why line 27 had to change guessestaken + 1 to the
string form. Otherwise, trying to concatenate a string with an integer would cause Python
to display an error.

Checking Whether the Player Lost

If the player runs out of guesses, the execution will go to this line of code:

30. if guess != number:

Line 30 uses the not equal to comparison operator = to check whether the player’s last
guess is not equal to the secret number. If this condition evaluates to True, the execution
moves into the if block on line 31.

Lines 31 and 32 are inside the it block, executing only if the condition on line 30 is

True:

31. number = str (number)
32. print ('Nope. The number I was thinking of was ' + number + '.')

In this block, the program tells the player what the secret number was. This requires
concatenating strings, but number stores an integer value. Line 31 overwrites number with a
string so that it can be concatenated to the 'Nope. The number I was thinking of was ' and
'+ strings on line 32.

At this point, the execution has reached the end of the code, and the program
terminates. Congratulations! You’ve just programmed your first real game!



You can adjust the game’s difficulty by changing the number of guesses the player gets.
To give the player only four guesses, change the code on line 12:

12. for guessesTaken in range(4):

By passing 4 to range(), you ensure that the code inside the loop runs only four times
instead of six. This makes the game much more difficult. To make the game easier, pass a
larger integer to the range () function call. This will cause the loop to run a few more times
and accept more guesses from the player.

Summary

Programming is just the action of writing code for programs—that is, creating programs
that can be executed by a computer.

When you see someone using a computer program (for example, playing your Guess
the Number game), all you see is some text appearing on the screen. The program decides
what text to display on the screen (the program’s oupur) based on its instructions and on
the text that the player typed with the keyboard (the program’s input). A program is just a
collection of instructions that act on the user’s input.

There are a few kinds of instructions:

* Expressions are values connected by operators. Expressions are all evaluated down to a
single value. For example, 2 + 2 evaluatesto 4 or 'Hello' + ' ' + 'world' evaluates to
'Hello world'. When expressions are next to the if and for keywords, you can also call
them conditions.

* Assignment statements store values in variables so you can remember the values later
in the program.

® The if, for, and break statements are flow control statements that can make the
execution skip instructions, loop over instructions, or break out of loops. Function calls
also change the flow of execution by jumping to the instructions inside of a function.

* The print () and input () functions display text on the screen and get text from the
keyboard. Instructions that deal with the inpur and ouzpur of the program are called 1/0
(pronounced eye 0b).

That’s it—just those four things. Of course, there are many details to be learned about
those four types of instructions. In later chapters, you’ll read about more data types and
operators, more flow control statements, and many other functions that come with
Python. There are also different types of I/O beyond text, such as input from the mouse
and sound and graphics output.



4
A JOKE-TELLING PROGRAM

This chapter’s program tells a few jokes to the user and demonstrates more advanced ways
to use strings with the print () function. Most of the games in this book will have simple
text for input and output. The input is typed on the keyboard by the user, and the output
is the text displayed on the screen.

( )

TOPICS COVERED IN THIS CHAPTER

* Escape characters
* Using single quotes and double quotes for strings

* Using print ()’s end keyword parameter to skip newlines

\ J/

You’ve already learned how to display simple text output with the print () function.
Now let’s take a deeper look at how strings and print () work in Python.

Sample Run of Jokes

Here’s what the user sees when they run the Jokes program:

What do you get when you cross a snowman with a vampire?
Frostbite!

What do dentists call an astronaut's cavity?
A black hole!

Knock knock.

Who's there?
Interrupting cow.
Interrupting cow wh-MOO!




Source Code for Jokes

Open a new file editor window by clicking File » New Window. In the blank window that
appears, enter the source code and save it as jokes.py. Then run the program by pressing F5.

MAKE SURE YOU'RE
USING PYTHON 3,
NOT PYTHON 2!

If you get errors after entering this code, compare the code you typed to the book’s
code with the online diff tool at https://www.nostarch.com/inventwithpython#diff.

jokes.py
1. print('What do you get when you cross a snowman with a vampire?')
2. input ()
3. print('Frostbite!"')
4. print()
5. print('What do dentists call an astronaut\'s cavity?')
6. input ()
7. print ('A black hole!")
8. print ()
9. print ('Knock knock.')
10. input ()
11. print("Who's there?")
12. input ()
13. print('Interrupting cow. ')
14. input ()
15. print('Interrupting cow wh', end='")
16. print('-MOO!")

How the Code Works

Let’s start by looking at the first four lines of code:

1. print('What do you get when you cross a snowman with a vampire?')
2. input ()

3. print('Frostbite!"')

4. print()



https://www.nostarch.com/inventwithpython#diff

Lines 1 and 3 use the print () function call to ask and give the answer to the first joke.
You don’t want the user to immediately read the joke’s punchline, so there’s a call to the
input () function after the first print () instance. The user will read the joke, press ENTER,
and then read the punchline.

"The user can still type in a string and press ENTER, but this returned string isn’t being
stored in any variable. The program will just forget about it and move to the next line of
code.

The last print () function call doesn’t have a string argument. This tells the program to
just print a blank line. Blank lines are useful to keep the text from looking crowded.

Escape Characters

Lines 5 to 8 print the question and answer to the next joke:

5. print('What do dentists call an astronaut\'s cavity?')
6. input ()

7. print('A black hole!")

8. print ()

On line 5, there’s a backslash right before the single quote: \'. (Note that \ is a
backslash, and / is a forward slash.) This backslash tells you that the letter right after it is
an escape character. An escape character lets you print special characters that are difficult or
impossible to enter into the source code, such as the single quote in a string value that
begins and ends with single quotes.

In this case, if we didn’t include the backslash, the single quote in astronaut\'s would
be interpreted as the end of the string. But this quote needs to be part of the string. The
escaped single quote tells Python that it should include the single quote in the string.

But what if you actually want to display a backslash?

Switch from your jokes.py program to the interactive shell and enter this print()
statement:

>>> print ('They flew away in a green\teal helicopter.')
They flew away in a green eal helicopter.

This instruction didn’t print a backslash because the t in teal was interpreted as an
escape character since it came after a backslash. The \t simulates pressing TAB on your
keyboard.

"This line will give you the correct output:

>>> print ('They flew away in a green\\teal helicopter.')
They flew away in a green\teal helicopter.

"This way the \\ is a backslash character, and there is no \t to interpret as TAB.
Table 4-1 is a list of some escape characters in Python, including \n, which is the



newline escape character that you have used before.

Table 4-1: Escape Characters

Escape character What is actually printed

\\ Backslash (\)

\' Single quote ()
\ Double quote (*)
\n Newline

\t Tab

There are a few more escape characters in Python, but these are the characters you will
most likely need for creating games.

Single and Double Quotes

While we're still in the interactive shell, let’s take a closer look at quotes. Strings don’t
always have to be between single quotes in Python. You can also put them between double
quotes. These two lines print the same thing:

>>> print ('Hello world')
Hello world
>>> print ("Hello world")
Hello world

But you cannot mix quotes. This line will give you an error because it uses both quote
types at once:

>>> print('Hello world")
SyntaxError: EOL while scanning single-quoted string

I like to use single quotes so I don’t have to hold down SHIFT to type them. They’re
easier to type, and Python doesn’t care either way.

Also, note that just as you need the \' to have a single quote in a string surrounded by
single quotes, you need the \» to have a double quote in a string surrounded by double
quotes. Look at this example:

>>> print('I asked to borrow Abe\'s car for a week. He said, "Sure."')
I asked to borrow Abe's car for a week. He said, "Sure."

You use single quotes to surround the string, so you need to add a backslash before the
single quote in abe\'s. But the double quotes in "sure." don’t need backslashes. The
Python interpreter is smart enough to know that if a string starts with one type of quote,
the other type of quote doesn’t mean the string is ending.



Now check out another example:

>>> print ("She said, \"I can't believe you let them borrow your car.\"")
She said, "I can't believe you let them borrow your car."

"The string is surrounded in double quotes, so you need to add backslashes for all of the
double quotes within the string. You don’t need to escape the single quote in can't.

To summarize, in the single-quote strings, you don’t need to escape double quotes but
do need to escape single quotes, and in the double-quote strings, you don’t need to escape
single quotes but do need to escape double quotes.

The print() Function’s end Keyword Parameter

Now let’s go back to jokes.py and take a look at lines 9 to 16:

9. print ('Knock knock.')

10. input ()

11. print("Who's there?")

12. input ()

13. print('Interrupting cow. ')

14. input()

15. print('Interrupting cow wh', end='")
16. print('-MOO!")

Did you notice the second argument in line 15’s print () function? Normally, print ()
adds a newline character to the end of the string it prints. This is why a blank print ()
function will just print a newline. But print () can optionally have a second parameter: ena.

Remember that an argument is the value passed in a function call. The blank string
passed to print() is called a keyword argument. The end in end='' is called a keyword
parameter. 'To pass a keyword argument to this keyword parameter, you must type end-=
before it.

When we run this section of code, the output is

Knock knock.

Who's there?
Interrupting cow.
Interrupting cow wh-MOO!

Because we passed a blank string to the ena parameter, the print () function will add a
blank string instead of adding a newline. This is why '-moo! ' appears next to the previous
line, instead of on its own line. There was no newline after the 'interrupting cow wh'

string was printed.

Summary

This chapter explores the different ways you can use the print() function. Escape



characters are used for characters that are difficult to type into the code with the keyboard.
If you want to use special characters in a string, you must use a backslash escape character,
\, followed by another letter for the special character. For example, \n would be a newline.
If your special character is a backslash itself, you use \\.

The print () function automatically appends a newline character to the end of a string.
Most of the time, this is a helpful shortcut. But sometimes you don’t want a newline
character. To change this, you can pass a blank string as the keyword argument for
print ()’s end keyword parameter. For example, to print spam to the screen without a
newline character, you would call print ('spam', end='").



3]
DRAGON REALM

The game you will create in this chapter is called Dragon Realm. The player decides
between two caves, which hold either treasure or certain doom.

How to Play Dragon Realm

In this game, the player is in a land full of dragons. The dragons all live in caves with their
large piles of collected treasure. Some dragons are friendly and share their treasure. Other
dragons are hungry and eat anyone who enters their cave. The player approaches two
caves, one with a friendly dragon and the other with a hungry dragon, but doesn’t know
which dragon is in which cave. The player must choose between the two.

( )

TOPICS COVERED IN THIS CHAPTER

* Flowcharts

* Creating your own functions with the gef keyword
® Multiline strings

® while statements

® The ang, or, and not Boolean operators

* Truth tables

® The return keyword

* Global and local variable scope

* Parameters and arguments

® The sieep() function




Sample Run of Dragon Realm

Here’s what the Dragon Realm game looks like when it’s run. The player’s input is in bold.

You are in a land full of dragons. In front of you,
you see two caves. In one cave, the dragon is friendly
and will share his treasure with you. The other dragon
is greedy and hungry, and will eat you on sight.

Which cave will you go into? (1 or 2)

1

You approach the cave...

It is dark and spooky...

A large dragon jumps out in front of you! He opens his jaws and...
Gobbles you down in one bite!

Do you want to play again? (yes or no)

no

Flowchart for Dragon Realm

It often helps to write down everything you want your game or program to do before you
start writing code. When you do this, you are designing the program.

For example, it may help to draw a flowchart. A flowchart is a diagram that shows every
possible action that can happen in the game and which actions are connected. Figure 5-1 is
a flowchart for Dragon Realm.

To see what happens in the game, put your finger on the START box. Then follow one
arrow from that box to another box. Your finger is like the program execution. The
program terminates when your finger lands on the END box.



START

l

Show introduction |<+—

l

Player chooses
a cave

l

Check for friendly
or hungry dragon

/ N

Player wins Player loses

N /

Ask to play again

l

END

Figure 5-1: Flowchart for the Dragon Realm game

When you get to the “Check for friendly or hungry dragon” box, you can go to the
“Player wins” box or the “Player loses” box. At this branching point, the program can go
in different directions. Either way, both paths will eventually end up at the “Ask to play
again” box.

Source Code for Dragon Realm

Open a new file editor window by clicking File » New Window. Enter the source code
and save it as dragon.py. Then run the program by pressing F5. If you get errors, compare
the code you typed to the book’s code with the online diff tool at
https://www.nostarch.com/inventwithpython#diff.


https://www.nostarch.com/inventwithpython#diff

MAKE SURE YOU'RE
USING PYTHON 3,
NOT PYTHON 2!

dragon.py
1. import random
2. import time
3.
4. def displayIntro():
5. print ('''You are in a land full of dragons. In front of you,
6. you see two caves. In one cave, the dragon is friendly
7. and will share his treasure with you. The other dragon
8. is greedy and hungry, and will eat you on sight.''")
9. print()

10.

11. def chooseCave():

12. cave = "'

13. while cave != 'l' and cave != '2':

14. print ('Which cave will you go into? (1 or 2)"')

15 cave = input()

16

17. return cave

18.

19. def checkCave (chosenCave) :

20. print ('You approach the cave...')

21. time.sleep(2)

22. print ('It is dark and spooky...')

23. time.sleep(2)

24 . print ('A large dragon jumps out in front of you! He opens his jaws

and...")

25. print ()

26. time.sleep(2)

27.

28. friendlyCave = random.randint(l, 2)

29.

30. if chosenCave == str(friendlyCave) :

31. print ('Gives you his treasure!')

32. else:

33. print ('Gobbles you down in one bite!')

34.

35. playAgain = 'yes'

36. while playAgain == 'yes' or playAgain == 'y':

37. displayIntro/()

38. caveNumber = chooseCave()



39. checkCave (caveNumber)

40.
41. print ('Do you want to play again? (yes or no)')
42. playAgain = input()

Let’s look at the source code in more detail.

Importing the random and time Modules

"This program imports two modules:

1. import random
2. import time

The random module provides the randint () function, which we used in the Guess the
Number game from Chapter 3. Line 2 imports the time module, which contains time-
related functions.

Functions in Dragon Realm

Functions let you run the same code multiple times without having to copy and paste that
code over and over again. Instead, you put that code inside a function and call the function
whenever you need to. Because you write the code only once in the function, if the
function’s code has a mistake, you only have to change it in one place in the program.

You’ve already used a few functions, like print (), input (), randint (), str(), and int ().
Your programs have called these functions to execute the code inside them. In the Dragon
Realm game, you’ll write your own functions using def statements.

def Statements

Line 4 is a def statement:

. def displayIntro():
print ('''You are in a land full of dragons. In front of you,
. you see two caves. In one cave, the dragon is friendly
. and will share his treasure with you. The other dragon
is greedy and hungry, and will eat you on sight.''")
print ()

O 0 J O Ul i

The def statement defines a new function (in this case, the displaytntro() function),
which you can call later in the program.

Figure 5-2 shows the parts of a def statement. It has the def keyword followed by a
function name with parentheses, and then a colon (:). The block after the def statement is

called the aef block.



def keyword Parentheses

g Y

def displayIntro():

i i

Function name Colon
Figure 5-2: Parts of a def statement

Calling a Function

When you define a function, you specify the instructions for it to run in the following
block. When you ¢/l a function, the code inside the daet block executes. Unless you call the
function, the instructions in the def block will not execute.

In other words, when the execution reaches a gef statement, it skips down to the first
line after the aef block. But when a function is called, the execution moves inside of the
function to the first line of the def block.

For example, look at the call to the displayintro() function on line 37:

37. displayIntro/()

Calling this function runs the print () call, which displays the “You are in a land full of
dragons ...” introduction.

Where to Put Function Definitions

A function’s gef statement and def block must come before you call the function, just as you
must assign a value to a variable before you use that variable. If you put the function call
before the function definition, you’ll get an error. Let’s look at a short program as an
example. Open a new file editor window, enter this code, save it as examzple.py, and run it:

sayGoodbye ()

def sayGoodbye() :
print ('Goodbye! ")

If you try to run this program, Python will give you an error message that looks like
this:

Traceback (most recent call last):
File "C:/Users/Al/AppData/Local/Programs/Python/Python36/example.py",
line 1, in <module>
sayGoodbye ()
NameError: name 'sayGoodbye' 1is not defined

T'o fix this error, move the function definition before the function call:



def sayGoodbye() :
print ('Goodbye! ')

sayGoodbye ()

Now, the function is defined before it is called, so Python will know what sayGoodbye ()
should do. Otherwise, Python won’t have the instructions for sayGoodbye() when it is
called and so won’t be able to run it.

Multiline Strings

So far, all of the strings in our print () function calls have been on one line and have had
one quote character at the start and end. However, if you use three quotes at the start and
end of a string, then it can go across several lines. These are multiline strings.

Enter the following into the interactive shell to see how multiline strings work:

>>> fizz = '''Dear Alice,

I will return to Carol's house at the end of the month.
Your friend,

Bobl | I |

>>> print (fizz)

Dear Alice,

I will return to Carol's house at the end of the month.
Your friend,

Bob

Note the line breaks in the printed string. In a multiline string, the newline characters
are included as part of the string. You don’t have to use the \n escape character or escape
quotes as long as you don’t use three quotes together. These line breaks make the code
easier to read when large amounts of text are involved.

How to Loop with while Statements

Line 11 defines another function called choosecave():

11. def chooseCavel() :

"This function’s code asks the player which cave they want to go in, either 1 or 2. We'll
need to use a while statement to ask the player to choose a cave, which marks the start of a
new kind of loop: a while loop.

Unlike a for loop, which loops a specific number of times, a while loop repeats as long
as a certain condition is True. When the execution reaches a while statement, it evaluates
the condition next to the while keyword. If the condition evaluates to True, the execution
moves inside the following block, called the whiie block. If the condition evaluates to
False, the execution moves past the while block.



You can think of a while statement as being almost the same as an if statement. The
program execution enters the blocks of both statements if their condition is True. But when
the condition reaches the end of the block in a whiile loop, it moves back to the while
statement to recheck the condition.

Look at the det block for choosecave () to see a while loop in action:

12. cave = "'
13. while cave != '1l' and cave != '2':

Line 12 creates a new variable called cave and stores a blank string in it. Then a while
loop begins on line 13. The choosecave () function needs to make sure the player entered 1
or 2 and not something else. A loop here keeps asking the player which cave they choose
until they enter one of these two valid responses. This is called input validation.

"The condition also contains a new operator you haven’t seen before: and. Just as - and *
are mathematical operators, and == and := are comparison operators, the and operator is a
Boolean operator. Let’s take a closer look at Boolean operators.

Boolean Operators

Boolean logic deals with things that are either true or false. Boolean operators compare
values and evaluate to a single Boolean value.

Think of the sentence “Cats have whiskers and dogs have tails.” “Cats have whiskers” is
true, and “dogs have tails” is also true, so the entire sentence “Cats have whiskers and dogs
have tails” is true.

But the sentence “Cats have whiskers and dogs have wings” would be false. Even though
“cats have whiskers” is true, dogs don’t have wings, so “dogs have wings” is false. In Boolean
logic, things can only be entirely true or entirely false. Because of the word and, the entire
sentence is true only if both parts are true. If one or both parts are false, then the entire
sentence is false.

The and Operator

The ana operator in Python also requires the whole Boolean expression to be true or
ralse. If the Boolean values on both sides of the ana keyword are True, then the expression
evaluates to true. If either or both of the Boolean values are raise, then the expression
evaluates to False.

Enter the following expressions with the and operator into the interactive shell:

>>> True and True
True
>>> True and False
False
>>> False and True
False



>>> False and False

False

>>> gpam = 'Hello'

>>> 10 < 20 and spam == 'Hello'
True

The ana operator can be used to evaluate any two Boolean expressions. In the last
example, 10 < 20 evaluates to True and spam == 'Hello' also evaluates to True, so the two
Boolean expressions joined by the and operator evaluate as True.

If you ever forget how a Boolean operator works, you can look at its truth table, which
shows how every combination of Boolean values evaluates. Table 5-1 shows every
combination for the and operator.

Table 5-1: The and Operator’s Truth Table

A ana B Evaluates to

True and True True
True and False False
False and True False

False and False False

The or Operator

The or operator is similar to the ana operator, except it evaluates to True if either of the two
Boolean values is True. The only time the or operator evaluates to raise is if both of the
Boolean values are ralse.

Now enter the following into the interactive shell:

>>> True or True

True

>>> True or False
True

>>> False or True
True

>>> False or False
False

>>> 10 > 20 or 20 > 10
True

In the last example, 10 is not greater than 20 but 20 is greater than 10, so the first
expression evaluates to ralse and the second expression evaluates to true. Because the
second expression is True, this whole expression evaluates as True.

The or operator’s truth table is shown in Table 5-2.

Table 5-2: The or Operator’s Truth Table

AorB Evaluates to

True or True True



True or False True
False or True True

False or False False

The not Operator

Instead of combining two values, the not operator works on only one value. The not
operator evaluates to the opposite Boolean value: True expressions evaluate to ralse, and
False expressions evaluate to True.

Enter the following into the interactive shell:

>>> not True

False

>>> not False

True

>>> not ('black' == 'white')
True

The not operator can also be used on any Boolean expression. In the last example, the
expression 'black' == 'white' evaluates to ralse. This is why not ('black' == 'white') is
True.

The not operator’s truth table is shown in Table 5-3.

Table 5-3: The not Operator’s Truth Table

not A Evaluates to

not True False

not False True

Evaluating Boolean Operators
Look at line 13 of the Dragon Realm game again:

13. while cave != 'l' and cave != '2':

The condition has two parts connected by the ana Boolean operator. The condition is
true only if both parts are True.

The first time the while statement’s condition is checked, cave is set to the blank string,

. The blank string is not equal to the string '1', so the left side evaluates to true. The

blank string is also not equal to the string '2+, so the right side evaluates to True.

So the condition then turns into True and True. Because both values are True, the whole
condition evaluates to True, so the program execution enters the while block, where the
program will attempt to assign a nonblank value for cave.

Line 14 asks the player to choose a cave:



13. while cave != 'l' and cave != '2':
14. print ('Which cave will you go into? (1 or 2)"')
15. cave = input ()

Line 15 lets the player type their response and press ENTER. This response is stored in
cave. After this code is executed, the execution loops back to the top of the while statement
and rechecks the condition at line 13.

If the player entered 1 or 2, then cave will be either '1' or '2' (since input() always
returns strings). This makes the condition raise, and the program execution will continue
past the while loop. For example, if the user entered '1', then the evaluation would look

like this:

while cave != "1' and cave != '2’
L__r

while ;1' = '1: and cave = "2’
!

while False and cave != '"2'

L__t

while False and '1' != "2':

L_____I__J

while false and TrueI '
while False

But if the player entered 3 or 4 or xELLO, that response would be invalid. The condition
would then be true and would enter the while block to ask the player again. The program
keeps asking the player which cave they choose until they enter 1 or 2. This guarantees that
once the execution moves on, the cave variable contains a valid response.

Return Values

Line 17 has something new called a return statement:

17. return cave

A return statement appears only inside def blocks where a function—in this case,
choosecave ()—is defined. Remember how the input () function returns a string value that
the player entered? The choosecave () function will also return a value. Line 17 returns the
string that is stored in cave, either '1' or '2".

Once the return statement executes, the program execution jumps immediately out of
the aef block (just as the break statement makes the execution jump out of a while block).



The program execution moves back to the line with the function call. The function call
itself will evaluate to the function’s return value.

Skip down to line 38 for a moment where the choosecave () function is called:

38. caveNumber = chooseCave()

On line 38, when the program calls the function choosecave (), which was defined on
line 11, the function call evaluates to the string inside of cave, which is then stored in
caveNumber. 1 he while h)OF)inSﬂie chooseCave () guarantees that choosecave () will return
only either '1' or '2' as its return value. So cavenumber can have only one of these two
values.

Global Scope and Local Scope

There is something special about variables that are created inside functions, like the cave
variable in the choosecave () function on line 12:

12. cave = "'

A Jocal scope is created whenever a function is called. Any variables assigned in this
function exist within the local scope. Think of a scope as a container for variables. What
makes variables in local scopes special is that they are forgotten when the function returns
and they will be re-created if the function is called again. The value of a local variable isn’t
remembered between function calls.

Variables that are assigned outside of functions exist in the global scope. There is only
one global scope, and it is created when your program begins. When your program
terminates, the global scope is destroyed, and all its variables are forgotten. Otherwise, the
next time you ran your program, the variables would remember their values from the last
time you ran it.

A variable that exists in a local scope is called a local variable, while a variable that exists
in the global scope is called a global variable. A variable must be one or the other; it cannot

be both local and global.

The variable cave is created inside the choosecave () function. This means it is created
in the choosecave () function’s local scope. It will be forgotten when choosecave() returns
and will be re-created if choosecave () is called a second time.

Local and global variables can have the same name, but they are different variables
because they are in different scopes. Let’s write a new program to illustrate these concepts:

def bacon():
(1] spam = 99 # Creates a local variable named spam
(2] print (spam) # Prints 99

©® spam = 42 # Creates a global variable named spam



O print (spam) # Prints 42
O bacon() # Calls the bacon() function and prints 99
® print (spam) # Prints 42

We first make a function called bacon (). In bacon (), we create a variable called spam and

assign it 99 @. At @, we call print () to print this local spam variable, which is 99. At ©, a
global variable called spam is also declared and set to 42. This variable is global because it is

outside of all functions. When the global span variable is passed to print() at @, it prints

42. When the bacon() function is called at @, @ and @ are executed, and the local spam
variable is created, set, and then printed. So calling vacon() prints the value 99. After the

bacon () function call returns, the local spam variable is forgotten. If we print spam at @, we
are printing the global variable, so the output there is 42.

When run, this code will output the following:

42
99
42

Where a variable is created determines what scope it is in. Keep this in mind when
Writing your programs.

Function Parameters

The next function defined in the Dragon Realm program is named checkcave ().

19. def checkCave (chosenCave) :

Notice the text chosencave between the parentheses. This is a parameter: a local variable
that is used by the function’s code. When the function is called, the call’s arguments are
the values assigned to the parameters.

Let’s go back to the interactive shell for a moment. Remember that for some function
calls, like str() or randint(), you would pass one or more arguments between the
parentheses:

>>> str(5)

|5l

>>> random.randint (1, 20)
14

>>> len('Hello')

This example includes a Python function you haven’t seen yet: 1en(). The 1en()
function returns an integer indicating how many characters are in the string passed to it. In
this case, it tells us that the string '#e110' has s characters.

You will also pass an argument when you call checkcave (). This argument is stored in a



new variable named chosencave, which is checkcave ()’s parameter.

Here is a short program that demonstrates defining a function (sayhello) with a
parameter (name):

def sayHello (name) :
print ('Hello, ' + name + '. Your name has ' + str(len(name)) +
' letters.')
sayHello('Alice"')
sayHello ('Bob')
spam = 'Carol'
sayHello (spam)

When you call sayrello() with an argument in the parentheses, the argument is
assigned to the name parameter, and the code in the function is executed. There’s just one
line of code in the sayHe110() function, which is a print () function call. Inside the print ()
function call are some strings and the name variable, along with a call to the 1en() function.
Here, 1en() is used to count the number of characters in name. If you run the program, the
output looks like this:

Hello, Alice. Your name has 5 letters.
Hello, Bob. Your name has 3 letters.
Hello, Carol. Your name has 5 letters.

For each call to saynel1o(), a greeting and the length of the name argument are printed.
Notice that because the string 'caro1' is assigned to the spam variable, saytello (spam) is
equivalent to saytello('carol).

Displaying the Game Results

Let’s go back to the Dragon Realm game’s source code:

20. print ('You approach the cave...')
21. time.sleep(2)

The time module has a function called sieep() that pauses the program. Line 21 passes
the integer value 2 so that time.sleep () will pause the program for 2 seconds.

22. print ('It is dark and spooky...')
23. time.sleep(2)

Here the code prints some more text and waits for another 2 seconds. These short
pauses add suspense to the game instead of displaying the text all at once. In Chapter 4’s
Jokes program, you called the input () function to pause until the player pressed ENTER.
Here, the player doesn’t have to do anything except wait a couple of seconds.

24 . print ('A large dragon jumps out in front of you! He opens his jaws
and...")
25. print ()



26. time.sleep(2)

With the suspense building, our program will next determine which cave has the
friendly dragon.

Deciding Which Cave Has the Friendly Dragon

Line 28 calls the randint () function, which will randomly return either 1 or 2.

28. friendlyCave = random.randint(l, 2)

This integer value is stored in friendlycave and indicates the cave with the friendly
dragon.

30. if chosenCave == str(friendlyCave) :
31. print ('Gives you his treasure!')

Line 30 checks whether the player’s chosen cave in the chosencave variable (r1' or '2+)
is equal to the friendly dragon cave.

But the value in friendlycave is an integer because randint () returns integers. You can’t
compare strings and integers with the == sign, because they will never be equal to each
other: '1' is not equal to 1, and '2' is not equal to 2.

So friendlycave is passed to the str() function, which returns the string value of
friendlycave. Now the values will have the same data type and can be meaningfully

compared to each other. We could have also converted chosencave to an integer value
instead. Then line 30 would have looked like this:

if int (chosenCave) == friendlyCave:

If chosencave is equal to friendlycave, the condition evaluates to True, and line 31 tells
the player they have won the treasure.

Now we have to add some code to run if the condition is false. LLine 32 is an else
statement:

32. else:
33. print ('Gobbles you down in one bite!"')

An else statement can come only after an if block. The eise block executes if the it
statement’s condition is ralse. Think of this as the program’s way of saying, “If this
condition is true, then execute the if block or else execute the e1se block.”

In this case, the else statement runs when chosencave is not equal to friendlycave.
Then, the print () function call on line 33 is run, telling the player that they’ve been eaten
by the dragon.



The Game Loop

The first part of the program defines several functions but doesn’t run the code inside of
them. Line 35 is where the main part of the program begins because it is the first line that
runs:

35. playAgain = 'yes'
36. while playAgain == 'yes' or playAgain == 'y':

"This line is where the main part of the program begins. The previous def statements
merely defined the functions. They didn’t run the code inside of those functions.

Lines 35 and 36 are setting up a loop that contains the rest of the game code. At the end
of the game, the player can tell the program whether they want to play again. If they do,
the execution enters the while loop to run the entire game all over again. If they don’t, the
while statement’s condition will be raise, and the execution will move to the end of the
program and terminate.

The first time the execution comes to this while statement, line 35 will have just
assigned 'yes' to the playagain variable. That means the condition will be True at the start
of the program. This guarantees that the execution enters the loop at least once.

Calling the Functions in the Program

Line 37 calls the aisplayintro () function:

37. displayIntro()

This isn’t a Python function—it is the function that you defined earlier on line 4.
When this function is called, the program execution jumps to the first line in the
displayIntro () function on line 5. When all the lines in the function have been executed,
the execution jumps back to line 37 and continues moving down.

Line 38 also calls a function that you defined:

38. caveNumber = chooseCave()

Remember that the choosecave () function lets the player choose the cave they want to
enter. When line 17’s return cave executes, the program execution jumps back to line 38.
The choosecave () call then evaluates to the return value, which will be an integer value
representing the cave the player chose to enter. This return value is stored in a new
variable named caveNumber.

Then the program execution moves on to line 39:

39. checkCave (caveNumber)

Line 39 calls the checkcave () function, passing the value in cavenumber as an argument.



Not only does the execution jump to line 20, but the value in cavenumber is copied to the
parameter chosencave inside the checkcave () function. This is the function that will display
either 'cives you his treasure!' Or 'Gobbles you down in one bite!' depending'orlthe
cave the player chooses to enter.

Asking the Player to Play Again

Whether the player won or lost, they are asked if they want to play again.

41. print ('Do you want to play again? (yes or no)')
42. playAgain = input()

"The variable p1layagain stores what the player types. Line 42 is the last line of the while
block, so the program jumps back to line 36 to check the wniie loop’s condition: playagain
== 'yes' or playAgain == 'y'.

If the player enters the string 'ves' or 'y', then the execution enters the loop again at
line 37.

If the player enters 'no' or 'n' or something silly like 'abraham Lincoln', then the
condition is False, and the program execution continues to the line after the while block.
But since there aren’t any lines after the while block, the program terminates.

One thing to note: the string 'ves' is not equal to the string 'ves' since the computer
does not consider upper- and lowercase letters the same. If the player entered the string
'ves', then the while statement’s condition would evaluate to raise and the program
would still terminate. Later, the Hangman program will show you how to avoid this
problem. (See “The 1ower () and upper () String Methods” on page 101.)

You’ve just completed your second game! In Dragon Realm, you used a lot of what you
learned in the Guess the Number game and picked up a few new tricks. If you didn’t
understand some of the concepts in this program, go over each line of the source code
again and try changing the code to see how the program changes.

In Chapter 6, you won’t create another game. Instead, you will learn how to use a
feature of IDLE called the debugger.

Summary

In the Dragon Realm game, you created your own functions. A function is a mini-program
within your program. The code inside the function runs when the function is called. By
breaking up your code into functions, you can organize your code into shorter and easier-
to-understand sections.

Arguments are values copied to the function’s parameters when the function is called.
The function call itself evaluates to the return value.

You also learned about variable scopes. Variables created inside of a function exist in
the local scope, and variables created outside of all functions exist in the global scope.



Code in the global scope cannot make use of local variables. If a local variable has the same
name as a global variable, Python considers it a separate variable. Assigning new values to
the local variable won’t change the value in the global variable.

Variable scopes might seem complicated, but they are useful for organizing functions
as separate pieces of code from the rest of the program. Because each function has its own
local scope, you can be sure that the code in one function won’t cause bugs in other
functions.

Almost every program has functions because they are so useful. By understanding how
functions work, you can save yourself a lot of typing and make bugs easier to fix.



6
USING THE DEBUGGER

If you enter the wrong code, the computer won’t give you the right program. A computer
program will always do what you tell it to, but what you tell it to do might not be what
you actually want it to do. These errors are bugs in a computer program. Bugs happen
when the programmer has not carefully thought about exactly what the program is doing.

TOPICS COVERED IN THIS CHAPTER
* Three types of errors
* IDLE’s debugger
¢ The Go and Quit buttons
* Stepping into, over, and out
* Breakpoints

Types of Bugs

There are three types of bugs that can happen in your program:

Syntax errors This type of bug comes from typos. When the Python interpreter sees a
syntax error, it’s because your code isn’t written in proper Python language. A Python
program with even a single syntax error won’t run.

Runtime errors These are bugs that happen while the program is running. The
program will work up until it reaches the line of code with the error, and then the
program will terminate with an error message (this is called cushing). The Python
interpreter will display a #raceback: an error message showing the line containing the



problem.

Semantic errors These bugs—which are the trickiest to fix—don’t crash the program,
but they prevent the program from doing what the programmer intended it to do. For
example, if the programmer wants the variable total to be the sum of the values in
variables a, b, and ¢ but writes total = a * b * ¢, then the value in total will be wrong.
This could crash the program later on, but it won’t be immediately obvious where the
semantic bug happened.

Finding bugs in a program can be hard, if you even notice them at all! When running
your program, you might discover that sometimes functions are not called when they are
supposed to be, or maybe they are called too many times. You might code the condition
for a while loop incorrectly, so that it loops the wrong number of times. You might write a
loop that never exits, a semantic error known as an infinite Joop. T'o stop a program stuck in
an infinite loop, you can press CTRL-C in the interactive shell.

In fact, create an infinite loop by entering this code in the interactive shell (remember

to press ENTER twice to let the interactive shell know you are done typing in the while
block):

>>> while True:
print ('Press Ctrl-C to stop this infinite loop!!!')

Now press and hold down CTRL-C to stop the program. The interactive shell will look
like this:

Press Ctrl-C to stop this infinite loop!!!
Press Ctrl-C to stop this infinite loop!!!
Press Ctrl-C to stop this infinite loop!!!
Press Ctrl-C to stop this infinite loop!!!
Press Ctrl-C to stop this infinite loop!!!
Traceback (most recent call last):
File "<pyshell#l>", line 2, in <module>
print ('Press Ctrl-C to stop this infinite loop!!!")
File "C:\Program Files\Python 3.5\1ib\idlelib\PyShell.py", line 1347, in
write
return self.shell.write(s, self.tags)
KeyboardInterrupt

The while loop is always True, so the program will continue printing the same line
forever until it is stopped by the user. In this example, we pressed CTRL-C to stop the
infinite loop after the while loop had executed five times.

The Debugger

It can be hard to figure out the source of a bug because the lines of code are executed
quickly and the values in variables change so often. A debugger is a program that lets you
step through your code one line at a time in the same order that Python executes each



instruction. The debugger also shows you what values are stored in variables at each step.

Starting the Debugger

In IDLE, open the Dragon Realm game you made in Chapter 5. After opening the
dragon.py file, click the interactive shell and then click Debug » Debugger to display the
Debug Control window (Figure 6-1).

When the debugger is run, the Debug Control window will look like Figure 6-2. Make
sure to select the Stack, Locals, Source, and Globals checkboxes.

Now when you run the Dragon Realm game by pressing F5, IDLE’s debugger will
activate. This is called running a program under a debugger. When you run a Python
program under the debugger, the program will stop before it executes the first instruction.
If you click the file editor’s title bar (and you’ve selected the Source checkbox in the
Debug Control window), the first instruction is highlighted in gray. The Debug Control
window shows the execution is on line 1, which is the import random line.

. :.?.l Debug Contral I =0y X
W Stack W Source
Go | Step | Over 'fZ'-_lt‘C_';l".
¥ Locals ¥ Globals
(None)
Locals
Mone J
Globals
None J

Figure 6-1: The Debug Control window



| & *Python 3.4.4 Shell* (=@l X

File Edit Shell Debug Options Window Help _
Python 3.4.4 (v3.4.4:737efcadf5a6, Dec 20 2015, 20:20:57) [MSC v.1600 64 bit = |

(AMDE4)] on win32
b B [

|| Type "copyriy =
s & Debug Control

[DEBUG OH]
>3

| ¥ Stack F Source

Go ‘ Step ‘ Over Out‘ Quit

'I¥ Locals ¥ Globals

dragon.py:1: <module>()

"‘bdb’.run(), line 431: exec(cmd, globals, locals) el

>' main '.<module>(), line 1: import random

| Locals
None :J

| Globals
_ builtins  <module "builtins’ (built-in)> i
Ao None i

Figure 6-2: Running the Dragon Realm game under the debugger

Stepping Through the Program with the Debugger

The debugger lets you execute one instruction at a time; this process is called stepping.
Execute a single instruction now by clicking the Step button in the Debug Control
window. Python will execute the import random instruction, and then stop before it
executes the next instruction. The Debug Control window shows you what line is about to
be executed when you click the Step button, so the execution should now be on line 2, the
import time line. Click the Quit button to terminate the program for now.

Here’s a summary of what happens when you click the Step button as you run Dragon



Realm under a debugger. Press F5 to start running Dragon Realm again and then follow
these instructions:

1. Click the Step button twice to run the two import lines.

2. Click the Step button three more times to execute the three dgef statements.

3. Click the Step button again to define the playagain variable.

4. Click Go to run the rest of the program or click Quit to terminate the program.

The debugger skipped line 3 because it’s a blank line. Notice you can only step forward
with the debugger; you can’t go backward.

Globals Area

The Globals area in the Debug Control window is where all the global variables are
displayed. Remember, global variables are variables created outside of any functions (that
is, in the global scope).

The text next to the function names in the Globals area looks like "<function checkcave
at 0x01285980>". T'he module names also have confusing-looking text next to them, like -
<module 'random' from 'C:\\Python31\\lib\\random.pyc'>". You don’t need to know what
this text means to debug your programs. Just seeing whether the functions and modules are
in the Globals area will tell you whether a function has been defined or a module has been
imported.

You can also ignore the _ builtins_ , _doc_, _name_, and other similar lines in the
Globals area. (Those are variables that appear in every Python program.)

In the Dragon Realm program, the three def statements, which execute and define
functions, will appear in the Globals area of the Debug Control window. When the
playAgain variable is created, it will also show up in the Globals area. Next to the variable
name will be the string 'ves'. The debugger lets you see the values of all the variables in
the program as the program runs. This is useful for fixing bugs.

Locals Area

In addition to the Globals area, there is a Locals area, which shows you the local scope
variables and their values. The Locals area will contain variables only when the program
execution is inside of a function. When the execution is in the global scope, this area is

blank.

The Go and Quit Buttons

If you get tired of clicking the Step button repeatedly and just want the program to run
normally, click the Go button at the top of the Debug Control window. This will tell the



program to run normally instead of stepping.

To terminate the program entirely, click the Quit button at the top of the Debug
Control window. The program will exit immediately. This is helpful if you must start
debugging again from the beginning of the program.

Stepping Into, Over, and Out

Start the Dragon Realm program with the debugger. Keep stepping until the debugger is
at line 37. As shown in Figure 6-3, this is the line with displayintro(). When you click
Step again, the debugger will jump into this function call and appear on line 5, the first
line in the displayintro() function. This kind of stepping, which is what you’ve been doing
so far, is called stepping into.

When the execution is paused at line 5, you’ll want to stop stepping. If you clicked Step
once more, the debugger would step into the print () function. The print () function is one
of Python’s built-in functions, so it isn’t useful to step through with the debugger.
Python’s own functions—such as print(), input(), str(), and randint()—have been
carefully checked for errors. You can assume they’re not the parts causing bugs in your
program.

You don’t want to waste time stepping through the internals of the print () function.
So, instead of clicking Step to step into the print () function’s code, click Over. This will
step over the code inside the print () function. The code inside print () will be executed at
normal speed, and then the debugger will pause once the execution returns from print ().

Stepping over is a convenient way to skip stepping through code inside a function. The
debugger will now be paused at line 38, caveNumber = chooseCave().

Click Step again to step into the choosecave() function. Keep stepping through the
code until line 15, the input () call. The program will wait until you type a response into
the interactive shell, just like when you run the program normally. If you try clicking the
Step button now, nothing will happen because the program is waiting for a keyboard
response.



I}dragﬂn.py CA\nostarchinvent\dragon.py (3.4.4) oAl 3% |
File Edit Format Run Options Window Help

lef displayIntro(): - “
print{'''You are 3} }Debug Control =1E
you see twn caves. In

and will share his tr€ | ¥ Stack ¥ Source
is greedy and hungry, Go | Step | Over | Out | Quit
print () W Locals # Globals

Hsnnbiieids dragon.py:37: <module>()

cave = '°

while cave != "1"{4 ' " P .
LFint O aitin g hdh.ruﬂ, line 431.exec|[md, glnals, locals) Al
R IRt e | > __main_'.<module>{), line 37: displaylntrof)

return cave

def checlkCave (chosenCqd
print('You approaf
time.sleep(2)
print('It is dark
time.sleepi)
print('A large drqg
printi()
Lime.sleep(2)

BE

Locals :
friendlycCave = rar iNDI‘IE ;I
if chosencave — § :J
print('Gives Globals
else:
print {'Gobbld _builtins_ <module "builtins' (built-in)>

EARLY

... T : L _dnr
playAgain = 'yes
while playAgain == 'yes' or playAgain == 'y':

caveNumber = chooseCave ()
checkCave (caveNumber)

print('Do you want to play again? (yes or no) ')
playAgain = input () L
&

Ln:4 Col: 0

Figure 6-3: Keep stepping until you reach line 37.

Click back to the interactive shell and type which cave you want to enter. The blinking
cursor must be on the bottom line in the interactive shell before you can type. Otherwise,
the text you type will not appear.

Once you press ENTER, the debugger will continue to step through lines of code again.

Next, click the Out button on the Debug Control window. This is called stepping out
because it will cause the debugger to step over as many lines as it needs to until the
execution has returned from the function it is in. After it jumps out, the execution will be



on the line after the one that called the function.

If you are not inside a function, clicking Out will cause the debugger to execute all the

remaining lines in the program. This is the same behavior that happens when you click the
Go button.

Here’s a recap of what each button does:

Go Executes the rest of the code as normal, or until it reaches a breakpoint (see
“Setting Breakpoints” on page 73).

Step Executes one instruction or one step. If the line is a function call, the debugger
will step into the function.

Over Executes one instruction or one step. If the line is a function call, the debugger
won’t step into the function but instead will szep over the call.

Out Keeps stepping over lines of code until the debugger leaves the function it was in
when Out was clicked. This szeps out of the function.

Quit Immediately terminates the program.

Now that we know how to use the debugger, let’s try finding bugs in some programs.

Finding the Bug

The debugger can help you find the cause of bugs in your program. As an example, here is
a small program with a bug. The program comes up with a random addition problem for
the user to solve. In the interactive shell, click File » New Window to open a new file
editor window. Enter this program into that window and save it as buggy.py.

buggy.py

1. import random

2. numberl = random.randint(1l, 10)

3. number2 = random.randint(1l, 10)

4. print('What is ' + str (numberl) + ' + ' + str(number2) + '?')
5. answer = input()

6. 1f answer == numberl + number2:

7. print ('Correct!')

8. else:

9. print ('Nope! The answer 1s ' + str (numberl + number2))

Type the program exactly as it is shown, even if you can already tell what the bug is.

Then run the program by pressing F5. Here’s what it might look like when you run the
program:

What is 5 + 1°?

6

Nope! The answer is 6




That’s a bug! The program doesn’t crash, but it’s not working correctly. The program
says the user is wrong even if they enter the correct answer.

Running the program under a debugger will help find the bug’s cause. At the top of the
interactive shell, click Debug » Debugger to display the Debug Control window. (Make
sure you've checked the Stack, Source, Locals, and Globals checkboxes.) Then press F5 in
the file editor to run the program. This time it will run under the debugger.

The debugger starts at the import random line:

1. import random

Nothing special happens here, so just click Step to execute it. You will see the random
module added to the Globals area.

Click Step again to run line 2:

2. numberl = random.randint (1, 10)

A new file editor window will appear with the random.py file. You have stepped inside
the randint () function inside the random module. You know Python’s built-in functions
won’t be the source of your bugs, so click Out to step out of the randint () function and
back to your program. Then close the random.py file’s window. Next time, you can click
Over to step over the randint () function instead of stepping into it.

Line 3 is also a randint () function call:

3. number?2 = random.randint (1, 10)

Skip stepping into this code by clicking Over.

Line 4isa print () call to show the player the random numbers:

4. print('What is ' + str (numberl) + ' + ' + str(number2) + '?')

You know what numbers the program will print even before it prints them! Just look at
the Globals area of the Debug Control window. You can see the numberi and number2
variables, and next to them are the integer values stored in those variables.

The number1 variable has the value 4 and the number2 variable has the value s. (Your
random numbers will probably be different.) When you click Step, the str () function will
concatenate the string version of these integers, and the program will display the string in
the print () call with these values. When I ran the debugger, it looked like Figure 6-4.

Click Step from line 5 to execute input ().

5. answer = input/()

The debugger waits until the player enters a response into the program. Enter the
correct answer (in my case, 12) in the interactive shell. The debugger will resume and move
down to line 6:



6. 1f answer == numberl + number2:
7. print ('Correct!"')

Line 6 is an if statement. The condition is that the value in answer must match the sum
of number1 and number2. If the condition is True, the debugger will move to line 7. If the
condition is rFalse, the debugger will move to line 9. Click Step one more time to find out
where it goes.

8. else:
9. print ('Nope! The answer 1s ' + str(numberl + number2))

¥ Stack # Source

Go | Stepl Overl Outl Quit
v Locals W Globals

buggy.py:4: <module=()

'bdb’.run(), line 431: execicmd, globals, locals) ﬂ

>"__main_".<module>{}, line 4: print{'What is ' + strfnumberl) + ' + " + str{number?} + 77

Locals
None =
Globals
_builtins_ <module "builtins’ (built-in)= -
_doc_ Mone
_file__ 'C./nostarchinvent/bugay.py’

_loader _  <«class "_frozen_importlib.Builtinlmporter' =
_name__ _main_

__package__ Nones

_ 5pec_ Nons
numberl 4
number?2 8

random <module ‘random’ from 'C\\..thon2&\\\lib\\\\random.py = =

Figure 6-4: numberl is set to 4, and number?2 is set to 8.



The debugger is now on line 9! What happened? The condition in the if statement
must have been raise. Look at the values for numberi, number2, and answer. Notice that
numberl and numper2 are integers, so their sum would have also been an integer. But answer
1s a string.

That means that answer == numberl + number2 would have evaluated to '12+ == 12. A
string value and an integer value will never be equal to each other, so the condition
evaluated to ralse.

That is the bug in the program: the code uses answer when it should have used
int (answer). Change line 6 to int (answer) == numberl + number2 and run the program
again.

What is 2 + 3°?
5
Correct!

Now the program works correctly. Run it one more time and enter a wrong answer on
purpose. You've now debugged this program! Remember, the computer will run your
programs exactly as you type them, even if what you type isn’t what you intend.

Setting Breakpoints

Stepping through the code one line at a time might still be too slow. Often you’ll want the
program to run at normal speed until it reaches a certain line. You can set a breakpoint on a
line when you want the debugger to take control once the execution reaches that line. If
you think there’s a problem with your code on, say, line 17, just set a breakpoint on that
line (or maybe a few lines before that).

When the execution reaches that line, the program will break into the debugger. Then
you can step through lines to see what is happening. Clicking Go will execute the program
normally until it reaches another breakpoint or the end of the program.

To set a breakpoint on Windows, right-click the line in the file editor and select Set
Breakpoint from the menu that appears. On OS X, CTRL-click to get to a menu and select
Set Breakpoint. You can set breakpoints on as many lines as you want. The file editor
highlights each breakpoint line in yellow. Figure 6-5 shows an example of what a
breakpoint looks like.



.-;-ﬁdragnn.py CA\nostarchinvent\dragon.py (3.4.4) = [ [E

File Edit Format Run Options Window Help
I randam =
import time

def displayIntrol():

! print{"'''You are in a land full of dragons. In front of you.,
I'yﬁn sege LWO Ccaves. n one cave, the ﬂPa@WH TF?E”HZy
lland will share his treasure with vou. The other dragon
is greedy and hungry, and will eat you on sight.""")

print()

chooseCave():

cave = '’

cave != '1' and cave != "2':
print{*which cave will you go into? (1 or 2)')

cave = input()

Ieilurn cave

-

Ln: 15 Col: 17

Figure 6-5: The file editor with two breakpoints set

To remove the breakpoint, click the line and select Clear Breakpoint from the menu
that appears.

Using Breakpoints

Next we’ll look at a program that calls random.randint (0, 1) to simulate coin flips. If the
function returns the integer 1, that will be heads, and if it returns the integer o, that will be
tails. The f1ips variable will track how many coin flips have been done. The nheadas variable
will track how many came up heads.

The program will do coin flips 1,000 times. This would take a person over an hour to
do, but the computer can do it in one second! There’s no bug in this program, but the
debugger will let us look at the state of the program while it’s running. Enter the following
code into the file editor and save it as coinFlips.py. If you get errors after entering this code,
compare the code you typed to the book’s code with the online diff tool at
https://www.nostarch.com/inventwithpython#diff.

coinFlips.py

1. import random
2. print('I will flip a coin 1000 times. Guess how many times it will come up

heads. (Press enter to begin) ')
3. input()
4. flips = 0
5. heads = 0
6. while flips < 1000:
7. if random.randint (0, 1) == 1:


https://www.nostarch.com/inventwithpython#diff

8. heads = heads + 1

9. flips = flips + 1

10.

11. if flips == 900:

12. print ('900 flips and there have been ' + str(heads) + ' heads.')

13. if flips == 100:

14. print ('At 100 tosses, heads has come up ' + str(heads) + ' times
so far.')

15. if flips == 500:

16. print ('Halfway done, and heads has come up ' + str(heads) +
' times."')

17.

18. print()

19. print('Out of 1000 coin tosses, heads came up ' + str(heads) + ' times!')
20. print('Were you close?')

The program runs pretty fast. It spends more time waiting for the user to press ENTER
than doing the coin flips. Let’s say you wanted to see it do coin flips one by one. On the
interactive shell’s window, click Debug » Debugger to bring up the Debug Control
window. Then press F5 to run the program.

The program starts in the debugger on line 1. Press Step three times in the Debug
Control window to execute the first three lines (that is, lines 1, 2, and 3). You’ll notice the
buttons become disabled because input () was called and the interactive shell is waiting for
the user to type something. Click the interactive shell and press ENTER. (Be sure to click
beneath the text in the interactive shell; otherwise, IDLE might not receive your
keystrokes.)

You can click Step a few more times, but you’ll find that it would take quite a while to
get through the entire program. Instead, set a breakpoint on lines 12, 14, and 16 so that the
debugger breaks in when f1ips is equal to 900, 100, and 500, respectively. The file editor
will highlight these lines as shown in Figure 6-6.

& coinFlips.py - C:\nostarchinvent\coinFlips.py (3.4.4) — | ] ﬁ
File Edit Format Run Options Window Help
flips = flips + 1 -:J
1f flips == 900:
print {"900 flips and there have been " + str(heads) + ' heads.')
flips == 100:
print ("At 100 tosses, heads has come up " + str{heads) + " times so far.
flips == 500:
print ('Halfway dome, and heads has come up ' + str(heads) + ' times.')
print{) L]
print {('Out of 1000 coin tosses, heads came up " + str(heads) + " times!') T
Ln: 16 Col: 23

Figure 6-6: Three breakpoints set in coinflips.py

After setting the breakpoints, click Go in the Debug Control window. The program



will run at normal speed until it reaches the next breakpoint. When f1ip is set to 100, the
condition for the if statement on line 13 is True. This causes line 14 (where there’s a
breakpoint set) to execute, which tells the debugger to stop the program and take over.
Look at the Globals area of the Debug Control window to see what the values of f1ips and
heads are.

Click Go again and the program will continue until it reaches the next breakpoint on
line 16. Again, see how the values in £1ips and heads have changed.

Click Go again to continue the execution until the next breakpoint is reached, which is
on line 12.

Summary

Wiriting programs is only the first part of programming. The next part is making sure the
code you wrote actually works. Debuggers let you step through the code one line at a time.
You can examine which lines execute in what order and what values the variables contain.
When stepping through line by line is too slow, you can set breakpoints to stop the
debugger only at the lines you want.

Using the debugger is a great way to understand what a program is doing. While this
book provides explanations of all the game code we use, the debugger can help you find
out more on your own.



1
DESIGNING HANGMAN WITH FLOWCHARTS

In this chapter, you’ll design a Hangman game. This game is more complicated than our
previous games but also more fun. Because the game is advanced, we’ll first carefully plan it
out by creating a flowchart in this chapter. In Chapter 8, we’ll actually write the code for
Hangman.

( )

TOPICS COVERED IN THIS CHAPTER
* ASCII art

* Designing a program with flowcharts

How to Play Hangman

Hangman is a game for two people in which one player thinks of a word and then draws a
blank line on the page for each letter in the word. The second player then tries to guess
letters that might be in the word.

If the second player guesses the letter correctly, the first player writes the letter in the
proper blank. But if the second player guesses incorrectly, the first player draws a single
body part of a hanging man. The second player has to guess all the letters in the word
before the hanging man is completely drawn to win the game.

Sample Run of Hangman

Here is an example of what the player might see when they run the Hangman program
you’ll write in Chapter 8. The text the player enters is in bold.



HANGMAN
+-——+

Missed letters:

Guess a letter.

Missed letters:

a
Guess a letter.
o

+———t

0

Missed letters: o

a
Guess a letter.
r

+———t

0

Missed letters: or

a
Guess a letter.
t

+———t

0

Missed letters: or

_a t

Guess a letter.

a

You have already guessed that letter. Choose again.

Guess a letter.

c

Yes! The secret word is "cat"! You have won!
Do you want to play again? (yes or no)

no

ASCII Art

The graphics for Hangman are keyboard characters printed on the screen. This type of



graphic is called ASCII art (pronounced ask-ee), which was a sort of precursor to emoji.
Here is a cat drawn in ASCII art:

_/Xxx XX XXX XX\
I XXXXXXX XX XX XX \_
7 XX XX\
/ X X\
A N \_
| & Nt \_ Vi \
|/ \ z \
/ ]| z |
_| \__ | XXX|
£ - x|
/] | /]
|\ e \_/ / / XX /
\ \_ - [ /
\ \ / /
\ /

Designing a Program with a Flowchart

This game is a bit more complicated than the ones you've seen so far, so let’s take a
moment to think about how it’s put together. First you’ll create a flowchart (like the one

in Figure 5-1 on page 47 for the Dragon Realm game) to help visualize what this program
will do.

As discussed in Chapter 5, a flowchart is a diagram that shows a series of steps as boxes
connected with arrows. Each box represents a step, and the arrows show the possible next
steps. Put your finger on the START box of the flowchart and trace through the program
by following the arrows to other boxes until you get to the END box. You can only move
from one box to another in the direction of the arrow. You can never go backward unless
there’s an arrow going back, like in the “Player already guessed this letter” box.

Figure 7-1 is a complete flowchart for Hangman.



START

Y

Come up with
a secret word

l

Show drawing and
blanks to player

l

Ask player to »| Player already
guess a lefter guessed this letter

>

/

Letter is in Lefter is not in
secret word secret word
Player guessed Player ran out of
all letters and wins guesses and loses

N

N

Ask player to
play again

l

END

Figure 7-1: The complete flowchart for the Hangman game

Of course, you don’t have to make a flowchart; you could just start writing code. But
often once you start programming, you’ll think of things that must be added or changed.
You may end up having to delete a lot of your code, which would be a waste of effort. To
avoid this, it’s best to plan how the program will work before you start writing it.

Creating the Flowchart

Your flowcharts don’t have to look like the one in Figure 7-1. As long as you understand
your flowchart, it will be helpful when you start coding. You can begin making a flowchart
with just a START and an END box, as shown in Figure 7-2.

Now think about what happens when you play Hangman. First, the computer thinks of



a secret word. Then the player guesses letters. Add boxes for these events, as shown in
Figure 7-3. The new boxes in each flowchart have a dashed outline.

START

END

Figure 7-2: Begin your flowchart with a START and an END box.

START

S

| Come up with |
a secret word

P o Yo o ouy
Ask player to
| guess a letter |
ey e e el
END

Figure 7-3: Draw the first two steps of Hangman as boxes with descriptions.

But the game doesn’t end after the player guesses a letter. The program needs to check
whether that letter is in the secret word.

Branching from a Flowchart Box

There are two possibilities: the letter is either in the word or not. You’ll add two new
boxes to the flowchart, one for each case. This creates a branch in the flowchart, as shown
in Figure 7-4.



START

:

Come up with
a secret word

l

Ask player to
guess a letter

gl g ol o

Lefter is in | | Lefter is not in |
secret word secret word
r—,

END

Figure 7-4: The branch has two arrows going to separate boxes.

If the letter is in the secret word, check whether the player has guessed all the letters
and won the game. If the letter isn’t in the secret word, check whether the hanging man is
complete and the player has lost. Add boxes for those cases too.

"The flowchart now looks like Figure 7-5.



START

:

Come up with
a secret word

:

Ask player to
guess a letter

pa AN

Letter is in Letter is not in
secret word secret word
= —‘Z— o = B\— —
| Player guessed | | Player ran out of |
all letters and wins guesses and loses
=
END

Figure 7-5: After the branch, the steps continue on their separate paths.

You don’t need an arrow from the “Letter is in secret word” box to the “Player ran out
of guesses and loses” box, because it’s impossible for the player to lose if they have just
guessed correctly. It’s also impossible for the player to win if they have just guessed
incorrectly, so you don’t need to draw an arrow for that either.

Ending or Restarting the Game

Once the player has won or lost, ask them if they want to play again with a new secret
word. If the player doesn’t want to play again, the program ends; otherwise, the program
continues and thinks up a new secret word. This is shown in Figure 7-6.



START

l

Come up with
a secret word

l

Ask player to
guess a letter

/ N

Letter is in
secret word

Letter is not in
secret word

/

N\

Player guessed
all letters and wins

Player ran out of
guesses and loses

ol

| Ask player to |,

play again :
 — _l_ — =)

Figure 7-6: The flowchart branches after asking the player to play again.

Guessing Again
The flowchart looks mostly complete now, but we’re still missing a few things. For one,
the player doesn’t guess a letter just once; they keep guessing letters until they win or lose.
Draw two new arrows, as shown in Figure 7-7.

What if the player guesses the same letter again? Rather than counting this letter again,
allow them to guess a different letter. This new box is shown in Figure 7-8.



START

l

Come up with

a secret word

l

Ask player to
guess a letter

-t - o

A

b ———y

/

Letter is in
secret word

Letter is not in
secret word

/

N

Player guessed
all letters and wins

Player ran out of
guesses and loses

N\

/

Ask player to
play again

l

END

Figure 7-7: The dashed arrows show the player can guess again.



START

1

Come up with
a secret word

l

Ask player to
guess a letter

r— — — —

—_—F=

Player already
«— guessed this letter

s

N

Player guessed
all letters and wins

Player ran out of
guesses and loses

N

s/

Pl
/ \:_ L — — — —
Letter is in Letter is not in
secret word secret word

Ask player to
play again

Y
END

Figure 7-8: Add a step in case the player guesses a letter they already guessed.

If the player guesses the same letter twice, the flowchart leads back to the “Ask player to
guess a letter” box.

Offering Feedback to the Player

"The player needs to know how they’re doing in the game. The program should show them
the hanging man drawing and the secret word (with blanks for the letters they haven’t
guessed yet). These visuals will let them see how close they are to winning or losing the
game.

This information is updated every time the player guesses a letter. Add a “Show
drawing and blanks to player” box to the flowchart between the “Come up with a secret
word” box and the “Ask player to guess a letter” box, as shown in Figure 7-9.



START

l

Come up with
a secret word

-}

I'__l__'l
— g

Show drawing and |
blanks to player

=

Ask player to »| Player already
guess a letter guessed this letter

/ N

Letter is in Letter is not in
secret word secret word
Player guessed Player ran out of
all letters and wins guesses and loses

N /

Ask player to
play again

l

END

Figure 7-9: Add a “Show drawing and blanks to player” box to give the player feedback.

"That looks good! This flowchart completely maps out the order of everything that can
happen in the Hangman game. When you design your own games, a flowchart can help
you remember everything you need to code.



Summary

It may seem like a lot of work to sketch out a flowchart about the program first. After all,
people want to play games, not look at flowcharts! But it is much easier to make changes
and identify problems by thinking about how the program works before writing the code
for it.

If you jump in to write the code first, you may discover problems that require you to
change the code you’ve already written, wasting time and effort. And every time you
change your code, you risk creating new bugs by changing too little or too much. It is
much more efficient to know what you want to build before you build it. Now that we
have a flowchart, let’s create the Hangman program in Chapter 8!



8
WRITING THE HANGMAN CODE

"This chapter’s game introduces many new concepts, but don’t worry: you’ll experiment
with them in the interactive shell before actually programming the game. You'll learn
about methods, which are functions attached to values. You’ll also learn about a new data
type called a /ist. Once you understand these concepts, it will be much easier to program

Hangman.

( )

TOPICS COVERED IN THIS CHAPTER

® Lists

* The in operator

® Methods

® The sp1it(), lower (), upper (), startswith(), and endswith () string methods

® c1if statements

Source Code for Hangman

"This chapter’s game is a bit longer than the previous games, but much of it is the ASCII art
for the hanging man pictures. Enter the following into the file editor and save it as
hangman.py. If you get errors after entering the following code, compare the code you
typed to  the book’s code  with  the online diff tool at
https://www.nostarch.com/inventwithpython#diff.


https://www.nostarch.com/inventwithpython#diff

MAKE SURE YOU'RE
USING PYTHON 3,
NOT PYTHON 2!

hangman.py

1. import random

2. HANGMAN_PICS = ['''
3. +-——+

4. |

5. |

6. |

7. ===''', '
8. +-——+

9. 0 |
10. |
11. |
12. ===''', '
13. +-——+
14 0 |
15. | |
16. |
17. ===''', '
18. +-——+

19 0 |
20. /| |
21. |
22. ===''', "
23. +-——+
24 0 |
25. /[N
26. |
27. ===''', "
28. +-——+
29. 0 |
30, /N
31.  / |
32. ===''', '
33. +-——+
34 0 |
35, /[N
36. / \ |
37. ==='"'"]
38. words = 'ant baboon badger bat bear beaver camel cat clam cobra cougar

coyote crow deer dog donkey duck eagle ferret fox frog goat goose hawk



39.
40.
41.

42.
43.
44.
45.
46.
47 .
48.
49.
50.
51.
52.
53.
54.
55.
56.

57.
58.
59.
60.

61.
62.
63.
64.
65.

66.
67.
68.
69.
70.
71.

72.

73.
74.
75.
76.
77.
78.
79.
80.

81.
82.
83.
84.
85.
86.
87.
88.
89.

lion lizard llama mole monkey moose mouse mule newt otter owl panda
parrot pigeon python rabbit ram rat raven rhino salmon seal shark sheep
skunk sloth snake spider stork swan tiger toad trout turkey turtle
weasel whale wolf wombat zebra'.split()

def getRandomWord (wordList) :
# This function returns a random string from the passed list of
strings.
wordIndex = random.randint (0, len(wordList) - 1)
return wordList [wordIndex]

def displayBoard (missedLetters, correctLetters, secretWord):
print (HANGMAN_PICS[len (missedLetters)])
print ()

print ('Missed letters:', end=' ')
for letter in missedLetters:
print (letter, end=' ')

print ()
blanks = '_' * len(secretWord)
for i in range(len(secretWord)): # Replace blanks with correctly

guessed letters.
if secretWord[i] in correctLetters:
blanks = blanks[:i] + secretWord[i] + blanks[i+1:]

for letter in blanks: # Show the secret word with spaces in between
each letter.
print (letter, end=' ')
print ()

def getGuess (alreadyGuessed) :
# Returns the letter the player entered. This function makes sure the
player entered a single letter and not something else.
while True:
print ('Guess a letter.')

guess = input ()
guess = guess.lower ()
if len(guess) != 1:

print ('Please enter a single letter.')
elif guess in alreadyGuessed:

print ('You have already guessed that letter. Choose again.')
elif guess not in 'abcdefghijklmnopgrstuvwxyz' :

print ('Please enter a LETTER.')
else:

return guess

def playAgain() :
# This function returns True if the player wants to play again;
otherwise, it returns False.
print ('Do you want to play again? (yes or no)')
return input().lower () .startswith('y")

print ('"H ANGMAN')
missedLetters = "'

correctLetters = ''

secretWord = getRandomWord (words)
gameIsDone = False



90.
91. while True:

92. displayBoard (missedLetters, correctLetters, secretWord)

93.

94 . # Let the player enter a letter.

95. guess = getGuess (missedLetters + correctLetters)

96.

97. if guess in secretWord:

98. correctLetters = correctLetters + guess

99.

100. # Check if the player has won.

101. foundAllLetters = True

102. for i in range(len(secretWord)) :

103. if secretWord[i] not in correctLetters:

104. foundAllLetters = False

105. break

106. if foundAllLetters:

107. print ('Yes! The secret word is "' + secretWord +
'"1 You have won!"')

108. gameIsDone = True

1009. else:

110. missedLetters = missedLetters + guess

111.

112. # Check if player has guessed too many times and lost.

113. if len(missedLetters) == len (HANGMAN_PICS) - 1:

114. displayBoard (missedLetters, correctLetters, secretWord)

115. print ('You have run out of guesses!\nAfter ' +
str(len(missedLetters)) + ' missed guesses and ' +
str(len(correctLetters)) + ' correct guesses,
the word was "' + secretWord + '"')

116. gameIsDone = True

117.

118. # Ask the player if they want to play again (but only if the game is

done) .

119. if gameIsDone:

120. if playAgain():

121. missedLetters = '

122. correctLetters = "'

123. gameIsDone = False

124. secretWord = getRandomWord (words)

125. else:

126. break

Importing the random Module

The Hangman program randomly selects a secret word for the player to guess from a list
of words. The random module will provide this ability, so line 1 imports it.

1. import random

But the saneman_p1cs variable on line 2 looks a little different from the variables we’ve
seen so far. In order to understand what this code means, we need to learn about a few
more concepts.



Constant Variables

Lines 2 to 37 are one long assignment statement for the naneMan_p1cs variable.

2. HANGMAN_PICS = [''"'
3. +-==t

4. |

5 |

6 |

7. ===''',
--snip--

37. ==='""]

The naneman_pics variable’s name is in all uppercase letters. This is the programming
convention for constant variables. Constants are variables meant to have values that never
change from their first assignment statement. Although you can change the value in
HANGMAN_PICS just as you can for any other variable, the all-uppercase name reminds you
not to do so.

As with all conventions, you don’t have to follow this one. But doing so makes it easier
for other programmers to read your code. They’ll know that saneuan_rrcs will always have
the value it was assigned from lines 2 to 37.

The Lists Data Type

HANGMAN_PICs contains several multiline strings. It can do this because it’s a list. Lists have a
list value that can contain several other values. Enter this into the interactive shell:

>>> animals = ['aardvark', 'anteater', 'antelope', 'albert']
>>> animals
['aardvark', 'anteater', 'antelope', 'albert']

The list value in animals contains four values. List values begin with a left square
bracket, [, and end with a right square bracket, 1. This is like how strings begin and end in
quotation marks.

Commas separate the individual values inside of a list. These values are also called
items. Each item in HaneMan_pics is a multiline string.

Lists let you store several values without using a variable for each one. Without lists,
the code would look like this:

>>> animalsl = 'aardvark'
>>> animals2 = 'anteater'
>>> animals3 = 'antelope'
>>> animals4 = 'albert'

"This code would be hard to manage if you had hundreds or thousands of strings. But a
list can easily contain any number of values.



Accessing Items with Indexes

You can access an item inside a list by adding square brackets to the end of the list variable
with a number between them. The number between the square brackets is the index. In
Python, the index of the first item in a list is 0. The second item is at index 1, the third
item is at index 2, and so on. Because the indexes begin at 0 and not 1, we say that Python
lists are zero indexed.

While we're still in the interactive shell and working with the animals list, enter
animals[0], animals[1], animals[2], and animals[3] to see how they evaluate:

>>> animals[0]
'aardvark'

>>> animals[1]
'anteater'

>>> animals[2]
'antelope'

>>> animals[3]
'albert'

Notice that the first value in the list, 'aardvark', is stored in index o and not index 1.
Each item in the list is numbered in order starting from o.

Using the square brackets, you can treat items in the list just like any other value. For
example, enter animals[0] + animals[2] into the interactive shell:

>>> animals[0] + animals[2]
'aardvarkantelope'

Both variables at indexes 0 and 2 of animals are strings, so the values are concatenated.
The evaluation looks like this:

animals[0] + animals[2]
L ]

'aardvark' + animals|[2]
L |

;

‘aardvark’' + 'antelnpe:

'aardvarkantelope’

Out-of-Range Indexes and IndexError

If you try accessing an index that is too high to be in the list, you’ll get an 1ndexerror that
will crash your program. To see an example of this error, enter the following into the
interactive shell:



>>> animals = ['aardvark', 'anteater', 'antelope', 'albert']
>>> animals[9999]
Traceback (most recent call last):
File """, line 1, 1in
animals[9999]
IndexError: list index out of range

Because there is no value at index 9999, you get an error.

Changing List ltems with Index Assignment

You can also change the value of an item in a list using index assignment. Enter the
following into the interactive shell:

>>> animals = ['aardvark', 'anteater', 'antelope', 'albert']
>>> animals[l] = 'ANTEATER'

>>> animals

['aardvark', 'ANTEATER', 'antelope', 'albert']

The new 'anteater' string overwrites the second item in the animals list. So typing
animals[1] by itself evaluates to the list’s current second item, but using it on the left side
of an assignment operator assigns a new value to the list’s second item.

List Concatenation

You can join several lists into one list using the + operator, just as you can with strings.
Doing so is called /st concatenation. To see this in action, enter the following into the
interactive shell:

>>> [1, 2, 3, 4] + ['apples', 'oranges'] + ['Alice', 'Bob']
(1, 2, 3, 4, ‘'apples', ‘'oranges', 'Alice', 'Bob']

['apples'] + ['oranges'] will evaluate to ['apples', ‘'oranges']. But ['apples'] +
'oranges’ Will result in an error. You can’t add a list value and a string value with the +
operator. If you want to add values to the end of a list without using list concatenation, use
the append() method (described in “The reverse() and append() List Methods” on page
95).

The in Operator

The in operator can tell you whether a value is in a list or not. Expressions that use the in
operator return a Boolean value: rrue if the value is in the list and ra1se if it isn’t. Enter the
following into the interactive shell:

>>> animals = ['aardvark', 'anteater', 'antelope', 'albert']
>>> 'antelope' in animals
True

>>> 'ant' in animals



False

The expression 'antelope' in animals returns True because the string 'antelope' 1S One
of the values in the anima1s list. It is located at index 2. But when you enter the expression
'ant’ in animals, it returns ralse because the string 'ant' doesn’t exist in the list.

The in operator also works for strings, checking whether one string exists in another.
Enter the following into the interactive shell:

>>> 'hello' in 'Alice said hello to Bob.'
True

Storing a list of multiline strings in the saneuan_p1cs variable covered a lot of concepts.
For example, you saw that lists are useful for storing multiple values in a single variable.
You also learned some techniques for working with lists, such as index assignment and list
concatenation. Methods are another new concept you’ll learn how to use in the Hangman
game; we'll explore them next.

Calling Methods

A method is a function attached to a value. To call a method, you must attach it to a specific
value using a period. Python has many useful methods, and we’ll use some of them in the
Hangman program.

But first, let’s look at some list and string methods.

The reverse() and append() List Methods

The list data type has a couple of methods you’ll probably use a lot: reverse() and
append (). The reverse () method will reverse the order of the items in the list. Try entering
spam = [1, 2, 3, 4, 5, 6, 'meow', 'woof'l], and,then.spam.reverse()tO reverse the list.
Then enter span to view the contents of the variable.

>>> gpam = [1, 2, 3, 4, 5, 6, 'meow', 'woof'l]
>>> gpam.reverse()

>>> spam

['woof', 'meow', 6, 5, 4, 3, 2, 1]

The most common list method you’ll use is append (). This method will add the value

you pass as an argument to the end of the list. Try entering the following into the
interactive shell:

>>> eggs = []

>>> eggs.append('hovercraft')
>>> eggs

[ '"hovercraft']

>>> eggs.append('eels')

>>> eggs

[ 'hovercraft', 'eels']



These methods do change the lists they are called on. They don’t return a new list. We
say that these methods change the list i place.

The split() String Method

The string data type has a sp1it() method, which returns a list of strings made from a

string that has been split. T'ry using the sp1it () method by entering the following into the
interactive shell:

>>> gentence = input()
My very energetic mother just served us nachos.
>>> gentence.split()

['My', 'very', 'energetic', 'mother', 'just', 'served', 'us', 'mnachos.']

The result is a list of eight strings, one string for each word in the original string. The
splitting occurs wherever there is a space in the string. The spaces are not included in any
of the items in the list.

Line 38 of the Hangman program also uses the sp1it() method, as shown next. The
code is long, but it’s really just a simple assignment statement that has one long string of
words separated by spaces, with a sp1it() method call at the end. The sp1it() method
evaluates to a list with each word in the string as a single list item.

38. words = 'ant baboon badger bat bear beaver camel cat clam cobra cougar
coyote crow deer dog donkey duck eagle ferret fox frog goat goose hawk
lion lizard llama mole monkey moose mouse mule newt otter owl panda
parrot pigeon python rabbit ram rat raven rhino salmon seal shark sheep
skunk sloth snake spider stork swan tiger toad trout turkey turtle
weasel whale wolf wombat zebra'.split()

It’s easier to write this program using split (). If you created a list to begin with, you

would have to type ['ant', ‘'baboon', ‘'badger', and so on, with quotes and commas for
every word.

You can also add your own words to the string on line 38 or remove any you don’t
want to be in the game. Just make sure that spaces separate the words.

Getting a Secret Word from the Word List

ine efines the getrandomwora () function. A list argument will be passed for 1ts worarist
Line 40 defines th function. A list argument will be passed for it
parameter. This function will return a single secret word from the list in wordrist.

40. def getRandomWord (wordList) :

41. # This function returns a random string from the passed list of
strings.
42 . wordIndex = random.randint (0, len(wordList) - 1)

43, return wordList [wordIndex]




In line 42, we store a random index for this list in the wordindex variable by calling
randint () with two arguments. The first argument is o (for the first possible index), and the
second is the value that the expression len(wordrist) - 1 evaluates to (for the last possible
index in a wordList).

Remember that list indexes start at o, not 1. If you have a list of three items, the index of
the first item is o, the index of the second item is 1, and the index of the third item is 2. The
length of this list is 3, but index 3 would be after the last index. This is why line 42
subtracts 1 from the length of woravist. The code on line 42 will work no matter what the
size of wordrist is. Now you can add or remove strings in wordrist if you like.

"The wordindex variable will be set to a random index for the list passed as the wordvist
parameter. Line 43 will return the element in wordrist at the integer stored in wordrndex.

Let’s pretend ['apple', ‘'orange', grape'] was passed as the argument to
getRandomword () and that randint (0, 2) returned the integer 2. That would mean that line
43 would evaluate to return wordrList [21, and then evaluate to return 'grape'. This is how
getRandomiord () returns a random string in wordList.

So the input to getrandomword() is a list of strings, and the return value output is a
randomly selected string from that list. In the Hangman game, this is how a secret word is
selected for the player to guess.

Displaying the Board to the Player

Next, you need a function to print the Hangman board on the screen. It should also
display how many letters the player has correctly (and incorrectly) guessed.

45. def displayBoard(missedLetters, correctlLetters, secretWord):
46. print (HANGMAN_PICS[len (missedLetters)])
47 . print ()

This code defines a new function named displayBoard(). This function has three
parameters:

missedLetters A string of the letters the player has guessed that are not in the secret
word

correctLetters A string of the letters the player has guessed that are in the secret word

secretWord A string of the secret word that the player is trying to guess

The first print () function call will display the board. The global variable naneuan_pzcs
has a list of strings for each possible board. (Remember that global variables can be read
from inside a function.) vaneMan_pics{o] shows an empty gallows, nancman_picsi1] shows
the head (when the player misses one letter), naneman_prcsi21 shows the head and body
(when the player misses two letters), and so on until sancuan_r1cs(6], which shows the full
hanging man.



The number of letters in missedretters will reflect how many incorrect guesses the
player has made. Call 1en(missedretters) to find out this number. SO, if missedLetters is
'aetr', then len('aetr') will return 4. Printing nancwan_picsi4] will display the
appropriate  hanging man  picture for four misses. This is = what
HANGMAN_PICS[len(missedLetters)](Hllhleéksevaluatesto.

Line 49 prints the string 'missed letters:' with a space character at the end instead of
a newline:

49. print ('Missed letters:', end=' ')
50. for letter in missedLetters:

51. print (letter, end=' ')

52. print ()

The for loop on line 50 will iterate over each character in the string missedretters and
print it on the screen. Remember that ena=' + will replace the newline character that is
printed after the string with a single space character. For example, if nissedretters were
'ajtw', this for loop would display a j t w.

The rest of the daisplayBoara() function (lines 54 to 62) displays the missed letters and
creates the string of the secret word with all of the not-yet-guessed letters as blanks. It does
this using the range () function and list slicing.

The list() and range() Functions

When called with one argument, range () will return a range object of integers from o up to
(but not including) the argument. This range object is used in for loops but can also be
converted to the more familiar list data type with the 1ist() function. Enter
list (range(10)) into the interactive shell:

>>> list(range(10))

(o, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list('Hello')

['H', 'e', '1', '1l', 'o']

The 1ist() function is similar to the str() or int() functions. It takes the value it’s
passed and returns a list. It’s easy to generate huge lists with the range() function. For
example, enter 1ist (range(10000)) into the interactive shell:

>>> list (range(10000))
(o, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,...
--snip--
...9989, 9990, 9991, 9992, 9993, 9994, 9995, 9996, 9997, 9998, 9999]

The list is so huge, it won’t even fit onto the screen. But you can store the list in a
variable:

>>> spam = list(range(10000))




If you pass two integer arguments to range (), the range object it returns is from the first
integer argument up to (but not including) the second integer argument. Next enter
list (range (10, 20)) into the interactive shell as follows:

>>> list (range (10, 20))
(o, 11, 12, 13, 14, 15, 16, 17, 18, 19]

As you can see, our list only goes up to 19 and does not include 20.

List and String Slicing

List slicing creates a new list value using a subset of another list’s items. To slice a list,
specify two indexes (the beginning and end) with a colon in the square brackets after the
list name. For example, enter the following into the interactive shell:

>>> gpam = ['apples', 'bananas', 'carrots', 'dates']
>>> gpam[1l:3]
[ 'bananas', 'carrots']

The expression spam[1:3] evaluates to a list with items in span from index 1 up to (but
not including) index 3.

If you leave out the first index, Python will automatically think you want index o for
the first index:

>>> gpam = ['apples', 'bananas', 'carrots', 'dates']
>>> gpam[:2]
['apples', 'bananas']

If you leave out the second index, Python will automatically think you want the rest of
the list:

>>> gpam = ['apples', 'bananas', 'carrots', 'dates']
>>> gpam[2:]
['carrots', 'dates']

You can also use slices with strings in the same way you use them with lists. Each
character in the string is like an item in the list. Enter the following into the interactive

shell:

>>> myName = 'Zophie the Fat Cat'
>>> myName[4:12]

'ie the F'

>>> myName[:10]

'Zophie the'

>>> myName[7:]

'the Fat Cat'

The next part of the Hangman code uses slicing.



Displaying the Secret Word with Blanks

Now you want to print the secret word, but with blank lines for the letters that haven’t
been guessed. You can use the underscore character () for this. First create a string with
nothing but one underscore for each letter in the secret word. Then replace the blanks for
each letter in correctrLetters.

So if the secret word were 'otter', then the blanked-out string would be '+ (five
underscores). If correctretters were the string 'rt', you would change the string to
'_tt_r'. Lines 54 to 58 are the part of the code that does that:

54 . blanks = ' ' * len(secretWord)

55.

56. for i in range(len(secretWord)): # Replace blanks with correctly
guessed letters.

57. if secretWord[i] in correctlLetters:

58. blanks = blanks[:i] + secretWord[i] + blanks[i+1:]

Line 54 creates the blanks variable full of underscores using string replication.
Remember that the * operator can be used on a string and an integer, so the expression '_-
+ 5 evaluates to . This will ensure that blanks has the same number of underscores

as secretword has letters.

Line 56 has a for loop that goes through each letter in secretwora and replaces the
underscore with the actual letter if it exists in correctLetters.

Let’s take another look at the previous example, where the value of secretwora is
otter' and the value in correctLetters is 'tr'. You would want the strhlg 'ttt r'
displayed to the player. Let’s figure out how to create this string.

Line 56’s len (secretWord) call WOllld return s. The range (len (secretWord) ) call
becomes range (5), which makes the for loop iterate over o, 1, 2, 3, and 4.

Because the value of i will take on each value in [0, 1, 2, 3, 41, the code in the for

loop looks like this:

if secretWord[0] in correctLetters:
blanks = blanks[:0] + secretWord[0] + blanks[1l:]

if secretWord[l] in correctLetters:
blanks = blanks[:1] + secretWord[l] + blanks[2:]

--snip--

We're showing only the first two iterations of the for loop, but starting with o, i will
take the value of each number in the range. In the first iteration, i takes the value o, so the
if statement checks whether the letter in secretword at index 0 is in correctLetters. The
loop does this for every letter in the secretword, one letter at a time.

If you are confused about the value of something like secretworao] or blanks(3:1, look
at Figure 8-1. It shows the value of the secretwora and blanks variables and the index for
each letter in the string.



blanks

o|ltl|tl|lel|lTr

secrethord

0 1 2 3 4

Figure 8-1: The indexes of the blanks and secretWord strings

If you replace the list slices and the list indexes with the values they represent, the loop
code looks like this:

if 'o' in 'tr': # False

blanks = "' + 'o' + ' " # This line is skipped.
--snip--
if 'r' in 'tr': # True

blanks = ' _tt_ " + 'r' 4+ '' # This line is executed.

# blanks now has the value '_tt_r'.

The preceding code examples all do the same thing when secretword is 'otter' and
correctLetters 1S 'tr'. The next few lines of code print the new value of bianks with spaces
between each letter:

60. for letter in blanks: # Show the secret word with spaces in between
each letter.

61. print (letter, end=' ')

62. print ()

Notice that the for loop on line 60 doesn’t call the range() function. Instead of
iterating on the range object this function call would return, it iterates on the string value
in the blanks variable. On each iteration, the 1etter variable takes on a new character from
the otter' string in blanks.

"The printed output after the spaces are added would be '_ t ¢ _ .

Getting the Player’s Guess

The getcuess () function will be called so that the player can enter a letter to guess. The
function returns the letter the player guessed as a string. Further, getcuess () will make sure
that the player types a valid letter before it returns from the function.

64. def getGuess(alreadyGuessed) :
65. # Returns the letter the player entered. This function makes sure the
player entered a single letter and not something else.




A string of the letters the player has guessed is passed as the argument for the
alreadyGuessed parameter. Then the getcuess() function asks the player to guess a single
letter. This single letter will be getcuess()’s return value. Now, because Python is case
sensitive, we need to make sure the player’s guess is a lowercase letter so we can check it
against the secret word. That’s where the 1ower () method comes in.

The lower() and upper() String Methods

Enter 'Hello world!'.lower() into the interactive shell to see an example of the lower()
method:

>>> 'Hello world!'.lower ()
'hello world!'

The 10ower () method returns a string with all the characters in lowercase. There is also
an upper () method for strings, which returns a string with all the characters in uppercase.
Try it out by entering 'Hello world!'.upper() into the interactive shell:

>>> 'Hello world!' .upper()
'"HELLO WORLD!

Because the upper () method returns a string, you can also call a method on that string.
Now enter this into the interactive shell:

>>> 'Hello world!'.upper () .lower ()
'hello world!'

'Hello world!" .upper () evaluates to the string '#erro wornp!', and then the string’s
lower () method is called. This returns the string 'hello worid: ', which is the final value in
the evaluation:

'‘Hello world!'.upper().lower()
L ]

"HELLO HDRLD!'.lower(l
L

"hello world!"
The order is important. 'Hello world!'.lower().upper() isn’t the same as 'Hello

world! ' .upper().lower():

>>> 'Hello world!'.lower () .upper()
'HELLO WORLD!'

That evaluation looks like this:



'Hello world!'.lower(%.upper{}

"hello world!".upper()
L ]

"HELLO WORLD!'
If a string is stored in a variable, you can also call a string method on that variable:

>>> spam = 'Hello world!'
>>> spam.upper ()
'"HELLO WORLD!'

"This code does not change the value in spam. The span variable will still contain 'zel1o
world!"'.

Going back to the Hangman program, we use 1ower () when we ask for the player’s
guess:

66. while True:

67 . print ('Guess a letter.')
68. guess = input ()

69. guess = guess.lower ()

Now, even if the player enters an uppercase letter as a guess, the getcuess () function
will return a lowercase letter.

Leaving the while Loop

Line 66’s while loop will keep asking the player for a letter until they enter a single letter
that hasn’t been guessed previously.

The condition for the wnile loop is simply the Boolean value true. That means the
only way the execution will ever leave this loop is by executing a break statement, which
leaves the loop, or a return statement, which leaves not just the loop but the entire
function.

The code inside the loop asks the player to enter a letter, which is stored in the variable
guess. If the player entered an uppercase letter, it would be overwritten with a lowercase
letter on line 69.

elif Statements

The next part of the Hangman program uses elif statements. You can think of e1if or
“else-if” statements as saying, “If this is true, do this. Or else if this next condition is true,
do that. Or else if none of them is true, do this last thing.” Take a look at the following
code:



if catName == 'Fuzzball':
print ('Your cat is fuzzy.')
elif catName == 'Spots':
print ('Your cat is spotted.')
else:
print ('Your cat is not fuzzy or spotted.')

If the catwame variable is equal to the string 'rFuzzball', then the if statement’s
condition is True and the if block tells the user that their cat is fuzzy. However, if this
condition is ralse, then Python tries the e1if statement’s condition next. If catName is
'Spots', then the string 'vour cat is spotted.' is printed to the screen. If both are ralse,
then the code tells the user their cat isn’t fuzzy or spotted.

You can have as many e1if statements as you want:

if catName == 'Fuzzball':
print ('Your cat is fuzzy.')
elif catName == 'Spots':
print ('Your cat is spotted.')
elif catName == 'Chubs':
print ('Your cat is chubby.')
elif catName == 'Puff':
print ('Your cat is puffy.')
else:
print ('Your cat is neither fuzzy nor spotted nor chubby nor puffy.')

When one of the e1if conditions is True, its code is executed, and then the execution
jumps to the first line past the e1se block. So one, and only one, of the blocks in the if-e1if-
else statements will be executed. You can also leave off the e1se block if you don’t need
one and just have if-e1if statements.

Making Sure the Player Entered a Valid Guess

"The guess variable contains the player’s letter guess. The program needs to make sure they
entered a valid guess: one, and only one, letter that has not yet been guessed. If they didn’t,
the execution will loop back and ask them for a letter again.

70. if len(guess) != 1:

71. print ('Please enter a single letter.')

72. elif guess in alreadyGuessed:

73. print ('You have already guessed that letter. Choose again.')
74 . elif guess not in 'abcdefghijklmnopgrstuvwxyz' :

75. print ('Please enter a LETTER.')

76. else:

77. return guess

Line 70’s condition checks whether guess is not one character long, line 72’s condition
checks whether guess already exists inside the alreadycuesseda variable, and line 74’s
condition checks whether guess is not a letter in the standard English alphabet. If any of
these conditions are True, the game prompts the player to enter a new guess.



If all of these conditions are ralse, then the else statement’s block executes, and
getGuess () returns the value in guess ON line 77.

Remember, only one of the blocks in an i f-e1if-else statement will be executed.

Asking the Player to Play Again

The playagain() function has just a print () function call and a return statement:

79. def playAgain():

80. # This function returns True if the player wants to play again;
otherwise, it returns False.

81. print ('Do you want to play again? (yes or no)')

82. return input().lower () .startswith('y")

The return statement has an expression that looks complicated, but you can break it
down. Here’s a step-by-step look at how Python evaluates this expression if the user enters
YES:

input().lower().startswith('y")

'"YES'.lower().startswith('y")
i ]

'yes'.startswith('y")
| ]

'

True

The point of the playagain() function is to let the player enter yes or no to tell the
program if they want to play another round of Hangman. The player should be able to
type YES, ves, v, or anything else that begins with a v in order to mean “yes.” If the player
enters ves, then the return value of input () is the string 'ves'. And 'veEs'.lower () returns
the lowercase version of the attached string. So the return value of 'vEs' .1ower () is 'ves'.

But there’s the second method call, startswith('y'). This function returns true if the
associated string begins with the string parameter between the parentheses and ralse if it
doesn’t. The return value of 'yes' .startswith('y') IS True.

That’s it—you evaluated this expression! It lets the player enter a response, sets the
response in lowercase, checks whether it begins with the letter y, and then returns true if it
does and raise if it doesn’t.

On a side note, there’s also an endswith (somestring) string method that will return True
if the string ends with the string in somestring and ralse if it doesn’t. endswith() is sort of
like the opposite of startswith().



Review of the Hangman Functions

"That’s all the functions we’re creating for this game! Let’s review them:

getRandomWord (wordList) [ akes a list of strings passed to it and returns one string from
it. That is how a word is chosen for the player to guess.

displayBoard(missedLetters, correctLetters, secretWord) Shows the current state of
the board, including how much of the secret word the player has guessed so far and the
wrong letters the player has guessed. This function needs three parameters passed to it
to work correctly. correctLetters and missedretters are strings made up of the letters
that the player has guessed that are in and not in the secret word, respectively. And
secretuord 1s the secret word the player is trying to guess. This function has no return
value.

getGuess (alreadyGuessed) | akes a string of letters the player has already guessed and
will keep asking the player for a letter that isn’t in alreadycGuessed. This function
returns the string of the valid letter the player guessed.

playagain() Asks if the player wants to play another round of Hangman. This function
returns true if the player does, Faise if they don’t.

After the functions, the code for the main part of the program begins at line 85.

Everything up to this point has been just function definitions and a large assignment
statement for HANGMAN_PICS.

The Game Loop

The main part of the Hangman program displays the name of the game, sets up some
variables, and executes a while loop. This section walks through the remainder of the

program step by step.

85. print('H ANGMA N')

86. missedLetters = "'

87. correctLetters = "'

88. secretWord = getRandomWord (words)
89. gameIsDone = False

of

Line 85 is the first print () call that executes when the game is run. It displays the title
the game. Next, blank strings are assigned to the variables missedretters and

correctLetters since the player hasn’t guessed any missed or correct letters yet.

The getrandomword (words) call at line 88 will evaluate to a randomly selected word

from the wordas list.

Line 89 sets gameIsDone to False. The code will set gameIsDone tO True when it wants to

signal that the game is over and ask the player whether they want to play again.



Calling the displayBoard() Function

The remainder of the program consists of a while loop. The loop’s condition is always
True, which means it will loop forever until it encounters a break statement. (This happens
later on line 126.)

91. while True:
92. displayBoard (missedLetters, correctLetters, secretWord)

Line 92 calls the daisplayBoard() function, passing it the three variables set on lines 86,
87, and 88. Based on how many letters the player has correctly guessed and missed, this
function displays the appropriate Hangman board to the player.

Letting the Player Enter Their Guess

Next the getcuess () function is called so the player can enter their guess.

94. # Let the player enter a letter.
95. guess = getGuess (missedLetters + correctLetters)

The getcuess () function requires an alreadyGuessed parameter so it can check whether
the player enters a letter they’ve already guessed. Line 95 concatenates the strings in the
missedLetters and correctLetters variables and passes the result as the argument for the
alreadyGuessed parameter.

Checking Whether the Letter Is in the Secret Word

If the guess string exists in secretword, then this code concatenates guess to the end of the
correctLettersStrhlg:

97. if guess in secretWord:
98. correctLetters = correctLetters + guess

This string will be the new value of correctLetters.

Checking Whether the Player Won

How does the program know whether the player has guessed every letter in the secret
word? Well, correctretters has each letter that the player correctly guessed, and
secretuord 1s the secret word itself. But you can’t simply check whether correctretters ==
secretWord. If secretword were the string 'otter' and correctLetters were the string 'orte',
then correctLetters == secretword would be False even thOllgh the player has guessed each
letter in the secret word.

The only way you can be sure the player has won is to iterate over each letter in
secretWord and see if it exists in correctLetters. If, and only if, every letter in secretword
exists in correctLetters has the player won.



100. # Check if the player has won.

101. foundAllLetters = True

102. for i in range(len(secretWord)) :

103. if secretWord[i] not in correctLetters:
104. foundAllLetters = False

105. break

Ifyou find a letter in secretword that doesn’t exist in correctLetters, YyOU know that the
player has mot guessed all the letters. The new variable foundalivretters is set to True on line
101 before the loop begins. The loop starts out assuming that all the letters in the secret
word have been found. But the loop’s code on line 104 will change foundallretters to
False the first time it finds a letter in secretword that isn’t in correctLetters.

If all the letters in the secret word have been found, the player is told they have won,
an(lgameIsDoneiSSCttO'True:

106. if foundAllLetters:

107. print ('Yes! The secret word is "' + secretWord +
'"!1 You have won!"')

108. gameIsDone = True

Handling an Incorrect Guess
Line 109 is the start of the e1se block.

109. else:
110. missedLetters = missedLetters + guess

Remember, the code in this block will execute if the condition was False. But which
condition? To find out, point your finger at the start of the eise keyword and move it
straight up. You’ll see that the e1se keyword’s indentation is the same as the it keyword’s
indentation on line 97:

97. if guess in secretWord:

--snip--

1009. else:

110. missedLetters = missedLetters + guess

So if the condition on line 97 (guess in secretword) were ralse, then the execution
would move into this e1se block.

Wrongly guessed letters are concatenated to the nissedretters string on line 110. This
is like what line 98 did for letters the player guessed correctly.

Checking Whether the Player Lost

Each time the player guesses incorrectly, the code concatenates the wrong letter to the
SUingﬁIlmissedLetters.SO dlelength.OfndssedLetters——Or,in.COde,len(missedLetters)——
is also the number of wrong guesses.




112. # Check if player has guessed too many times and lost.

113. if len(missedLetters) == len (HANGMAN PICS) - 1:

114. displayBoard (missedLetters, correctLetters, secretWord)

115. print ('You have run out of guesses!\nAfter ' +
str(len(missedLetters)) + ' missed guesses and ' +
str(len(correctLetters)) + ' correct guesses,
the word was "' + secretWord + '"')

116. gameIsDone = True

The wsanewan_pics list has seven ASCII art strings. So when the length of the
nissedLetters string is equal to len(maneMan_pics) - 1 (that is, 6), the player has run out of
guesses. You know the player has lost because the hanging man picture will be finished.
Remember, saneman_prcsio] is the first item in the list, and saneMan_p1cs(6] is the last one.

Line 115 prints the secret word, and line 116 sets the gamerspone variable to True.

118. # Ask the player if they want to play again (but only if the game is
done) .

119. if gameIsDone:

120. if playAgain():

121. missedLetters = '

122. correctLetters = ''

123. gameIsDone = False

124. secretWord = getRandomWord (words)

Ending or Resetting the Game

Whether the player won or lost after guessing their letter, the game should ask the player it
they want to play again. The playagain() function handles getting a yes or no from the
player, so it is called on line 120.

If the player does want U)IﬂaY'agaﬂl,the‘VahJeSin.missedLetters and correctLetters
must be reset to blank strings, ganerspone reset to ralse, and a new secret word stored in
secretword. ['his way, when the execution loops back to the beginning of the while loop on
line 91, the board will be reset to a fresh game.

If the player didn’t enter something that began with y when asked whether they wanted
to play again, then line 120’s condition would be ra1se, and the e1se block would execute:

125. else:
126. break

"The break statement causes the execution to jump to the first instruction after the loop.
But because there are no more instructions after the loop, the program terminates.

Summary

Hangman has been our most advanced game yet, and you’ve learned several new concepts
while making it. As your games get more and more complex, it’s a good idea to sketch out
a flowchart of what should happen in your program.



Lists are values that can contain other values. Methods are functions attached to a
value. Lists have an append () method. Strings have 1ower (), upper (), split(), startswith(),
and endswith () methods. You’ll learn about many more data types and methods in the rest

of this book.

The e1if statement lets you add an “or else-if” clause to the middle of your if-eise
statements.



9
EXTENDING HANGMAN

Now that you’ve created a basic Hangman game, let’s look at some ways you can extend it
with new features. In this chapter, you’ll add multiple word sets for the computer to draw
from and the ability to change the game’s difficulty level.

( )

TOPICS COVERED IN THIS CHAPTER
* The dictionary data type

* Key-value pairs
® The xeys () and values () dictionary methods

® Multiple variable assignment

Adding More Guesses

After you’ve played Hangman a few times, you might think that six guesses isn’t enough for
the player to get many of the words. You can easily give them more guesses by adding
more multiline strings to the sancuan_p1cs list.

Save your hangman.py program as hangman2.py. Then add the following instructions on
line 37 and after to extend the list that contains the hanging man ASCII art:

37. ===
38. +-——+
39. [O |
40. AR
41. /N |
42. ==
43 . +-——+
44 . [o1 |



45. /N
46. /N
47. ==

"This code adds two new multiline strings to the naneman_rp1cs list, one with the hanging
man’s left ear drawn, and the other with both ears drawn. Because the program will tell the
player they have lost based on 1en(missedretters) == len(uaneMan_pics) - 1, this is the
only change you need to make. The rest of the program works with the new sancuan_p1cs
list just fine.

The Dictionary Data Type

In the first version of the Hangman program, we used an animal word list, but you could
change the list of words on line 48. Instead of animals, you could have colors:

48. words = 'red orange yellow green blue indigo violet white black brown'
.split ()

Or shapes:

48. words = 'square triangle rectangle circle ellipse rhombus trapezoid
chevron pentagon hexagon septagon octagon'.split()

Or fruits:

48. words = 'apple orange lemon lime pear watermelon grape grapefruit cherry
banana cantaloupe mango strawberry tomato'.split()

With some modification, you can even change the code so that the Hangman game uses
sets of words, such as animals, colors, shapes, or fruits. The program can tell the player
which set the secret word is from.

To make this change, you’ll need a new data type called a dictionary. A dictionary is a
collection of values like a list. But instead of accessing the items in the dictionary with an
integer index, you can access them with an index of any data type. For dictionaries, these
indexes are called keys.

Dictionaries use ¢ and 3 (curly brackets) instead of [ and 1 (square brackets). Enter the
following into the interactive shell:

>>> gpam = {'hello':'Hello there, how are you?', 4:'bacon', 'eggs':9999 }

"The values between the curly brackets are key-value pairs. The keys are on the left of the
colon and the key’s values are on the right. You can access the values like items in lists by
using the key. To see an example, enter the following into the interactive shell:

>>> gpam = {'hello':'Hello there, how are you?', 4:'bacon', 'eggs':9999}
>>> gpam['hello']
'Hello there, how are you?'



>>> spam[4]
'bacon'’

>>> spam['eggs']
9999

Instead of putting an integer between the square brackets, you can use, say, a string key.
In the span dictionary, I used both the integer 4 and the string 'eggs' as keys.

Getting the Size of Dictionaries with len()

You can get the number of key-value pairs in a dictionary with the 1en() function. For
example, enter the following into the interactive shell:

>>> gstuff = {'hello':'Hello there, how are you?', 4:'bacon', 'spam':9999}
>>> len(stuff)
3

The 1en() function will return an integer value for the number of key-value pairs,
which in this case is 3.

The Difference Between Dictionaries and Lists

One difference between dictionaries and lists is that dictionaries can have keys of any data
type, as you've seen. But remember, because o and ‘o' are different values, they will be
different keys. Enter this into the interactive shell:

>>> gpam = {'0':'a string', 0:'an integer'}
>>> spam[0]

'an integer'

>>> spam['0']

'a string'

You can also loop over both lists and the keys in dictionaries using a for loop. To see
how this works, enter the following into the interactive shell:

>>> favorites = {'fruit':'apples', 'animal':'cats', 'number’':42}

>>> for k in favorites:
print (k)

fruit

number

animal

>>> for k in favorites:
print (favorites[k])

apples

42

cats

The keys and values may have printed in a different order for you because, unlike lists,
dictionaries are unordered. The first item in a list named 1iststuff would be 1iststuff(o].
But there’s no first item in a dictionary, because dictionaries do not have any sort of order.



In this code, Python just chooses an order based on how it stores the dictionary in
memory, which is not guaranteed to always be the same.

Enter the following into the interactive shell:

>>> favoritesl
>>> favorites2
>>> favoritesl
True

{'fruit':'apples', 'number':42, 'animal':'cats'}
{'animal':'cats', 'number':42, 'fruit':'apples'}
= favorites2

The expression favoritesl == favorites2 evaluates to True because dictionaries are
unordered and considered equal if they have the same key-value pairs in them. Meanwhile,
lists are ordered, so two lists with the same values in a different order are not equal to each
other. To see the difference, enter this into the interactive shell:

>>> listFavsl
>>> listFavs2
>>> listFavsl
False

['apples', 'cats', 42]
['cats', 42, 'apples']
= listFavs2

The expression 1istrFavsl == listFavs2 evaluates to ralse because the lists’ contents are
ordered differently.

The keys() and values() Dictionary Methods

Dictionaries have two useful methods, xeys () and values(). These will return values of a

type called dgict_xeys and dict_values, respectively. Much like range objects, list forms of
those data types are returned by 1ist ().

Enter the following into the interactive shell:

>>> favorites = {'fruit':'apples', 'animal':'cats', 'number':42}
>>> list(favorites.keys())
['fruit', 'number', 'animal']

>>> list (favorites.values())
['apples', 42, 'cats']

Using 1ist () with the keys () or values() methods, you can get a list of just the keys or
just the values of a dictionary.

Using Dictionaries of Words in Hangman

Let’s change the code in the new Hangman game to support different sets of secret words.
First, replace the value assigned to woras with a dictionary whose keys are strings and values

are lists of strings. The string method sp1it() will return a list of strings with one word
each.

48. words = {'Colors':'red orange yellow green blue indigo violet white black
brown'.split (),

49. 'Shapes':'square triangle rectangle circle ellipse rhombus trapezoid



chevron pentagon hexagon septagon octagon'.split(),

50. 'Fruits':'apple orange lemon lime pear watermelon grape grapefruit cherry
banana cantaloupe mango strawberry tomato'.split(),

51. 'Animals':'bat bear beaver cat cougar crab deer dog donkey duck eagle
fish frog goat leech lion lizard monkey moose mouse otter owl panda
python rabbit rat shark sheep skunk squid tiger turkey turtle weasel
whale wolf wombat zebra'.split()}

Lines 48 to 51 are still just one assignment statement. The instruction doesn’t end until
the final curly bracket on line 51.

Randomly Choosing from a List

The choice() function in the random module takes a list argument and returns a random
value from it. This is similar to what the previous getrandomword () function did. You’ll use
choice () in the new version of the getrandomword () function.

To see how the choice () function works, enter the following into the interactive shell:

>>> import random

>>> random.choice(['cat', 'dog', 'mouse'l])
'mouse’

>>> random.choice(['cat', 'dog', 'mouse'l])
'cat'

Just as the randint() function returns a random integer each time, the choice()
function returns a random value from the list.

Change the getrandomiora() function so that its parameter will be a dictionary of lists
of strings, instead of just a list of strings. Here is what the function originally looked like:

40. def getRandomWord (wordList) :

41. # This function returns a random string from the passed list of
strings.

42 . wordIndex = random.randint (0, len(wordList) - 1)

43. return wordList [wordIndex]

Change the code in this function so that it looks like this:

53. def getRandomWord (wordDict) :

54. # This function returns a random string from the passed dictionary of
lists of strings and its key.

55. # First, randomly select a key from the dictionary:

56. wordKey = random.choice(list (wordDict.keys()))

57.

58. # Second, randomly select a word from the key's list in the
dictionary:

59. wordIndex = random.randint (0, len(wordDict[wordKey]) - 1)

60.

61. return [wordDict [wordKey] [wordIndex], wordKey]

We've changed the name of the wordrList parameter to wordnict to be more descriptive.
Now instead of choosing a random word from a list of strings, first the function chooses a



random key in the wordpict dictionary by calling randon.choice (). And instead of returning
the string wordrist [wordindex], the function returns a list with two items. The first item is
wordDict[wordKey][wordIndex].rITuisecorniitenlinNordKey.

"The wordpict [wordkey] [wordindex] expression on line 61 may look complicated, but it’s
just an expression you can evaluate one step at a time like anything else. First, imagine that
wordkey has the value 'Fruits' and wordindex has the value 5. Here is how wordpict [wordrey]
[wordindex] would evaluate:

wordDict[wordKey ] [wordIndex]
[

'

wordDict[ 'Fruits'][wordIndex]
1

'

['apple’, ‘orange', 'lemon’, 'lime', 'pear’', 'watermelon’, 'grape', 'grapefruit’,
‘cherry’, 'banana’, ‘'cantaloupe’, 'mango’, ‘strawberry’, 'tomato'][wordIndex]
L |

['apple', 'orange', 'lemon’, 'lime', 'pear', 'watermelon', 'grape', 'grapefruit’,

‘cherry', 'banana‘', 'cantaloupe', 'mango', 'strawberry’', 'tomato'][5]
L [ ]

'

‘'watermelon’

In this case, the item in the list this function returns would be the string 'watermelon'.
(Remember that indexes start at o, so [5] refers to the sixth item in the list, not the fifth.)

Because the getrandommord () function now returns a list of two items instead of a string,
secretword will be assigned a list, not a string. You can assign these two items into two
separate variables using multiple assignment, which we’ll cover in “Multiple Assignment”
on page 118.

Deleting Items from Lists

A ge1 statement will delete an item at a certain index from a list. Because ge1 is a statement,
not a function or an operator, it doesn’t have parentheses or evaluate to a return value. To
try it out, enter the following into the interactive shell:

>>> animals = ['aardvark', 'anteater', 'antelope', 'albert']
>>> del animals[1]

>>> animals

['aardvark', 'antelope', 'albert']

Notice that when you deleted the item at index 1, the item that used to be at index 2
became the new value at index 1; the item that used to be at index 3 became the new value



at index 2; and so on. Everything above the deleted item moved down one index.
You can type del animals[1] again and again to keep deleting items from the list:

>>> animals = ['aardvark', 'anteater', 'antelope', 'albert']
>>> del animals[1]

>>> animals

['aardvark', 'antelope', 'albert']

>>> del animals[1]

>>> animals

['aardvark', 'albert']

>>> del animals[1]

>>> animals

[ 'aardvark']

The length of the maneman_pics list is also the number of guesses the player gets. By
deleting strings from this list, you can reduce the number of guesses and make the game

harder.

Add the following lines of code to your program between the lines print ('t A N ¢ ¥ &
N') and missedLetters = ' ':

103. print ('H A NGMAN'")

104.

105. difficulty = "'

106. while difficulty not in 'EMH':

107. print ('Enter difficulty: E - Easy, M - Medium, H - Hard')
108. difficulty = input () .upper|()
109. if difficulty == 'M':

110. del HANGMAN_PICSI[8]

111. del HANGMAN_PICSI[7]

112. if difficulty == 'H':

113. del HANGMAN_PICSI[8]

114. del HANGMAN_PICSI[7]

115. del HANGMAN_PICSI[5]

116. del HANGMAN_PICSI[3]

117.

118. missedLetters = "'

This code deletes items from the zaneman_p1cs list, making it shorter depending on the
difficulty level selected. As the difficulty level increases, more items are deleted from the
HaneMan_pics list, resulting in fewer guesses. The rest of the code in the Hangman game
uses the length of this list to tell when the player has run out of guesses.

Multiple Assignment

Multiple assignment is a shortcut to assign multiple variables in one line of code. To use
multiple assignment, separate your variables with commas and assign them to a list of
values. For example, enter the following into the interactive shell:

>>> gpam, eggs, ham = ['apples', 'cats', 42]
>>> spam
'apples'



>>> eggs
'cats'
>>> ham
42

The preceding example is equivalent to the following assignment statements:

>>> spam ['apples', 'cats', 42][0]
>>> eggs ['apples', 'cats', 42]1[1]
>>> ham = ['apples', 'cats', 42][2]

You must put the same number of variables on the left side of the = assignment
operator as there are items in the list on the right side. Python will automatically assign
the value of the first item in the list to the first variable, the second item’s value to the
second variable, and so on. If you don’t have the same number of variables and items, the
Python interpreter will give you an error, like so:

>>> gpam, eggs, ham, bacon = ['apples', 'cats', 42, 10, 'hello’']
Traceback (most recent call last):
File "<pyshell#8>", line 1, in <module>
spam, eggs, ham, bacon = ['apples', 'cats', 42, 10, 'hello']
ValueError: too many values to unpack

>>> gpam, eggs, ham, bacon = ['apples', 'cats']
Traceback (most recent call last):
File "<pyshell#9>", line 1, in <module>
spam, eggs, ham, bacon = ['apples', 'cats']
ValueError: need more than 2 values to unpack

Change lines 120 and 157 of the Hangman code to use multiple assignment with the
return value of getRandomWord () :

119. correctLetters = "'
120. secretWord, secretSet = getRandomWord (words)
121. gameIsDone = False

--snip--

156. gameIsDone = False

157. secretWord, secretSet = getRandomWord (words)
158. else:

159. break

Line 120 assigns the two returned values from getRandomWord (words) tO secretWord and
secretset. Line 157 does this again if the player chooses to play another game.

Printing the Word Category for the Player

The last change you’ll make is to tell the player which set of words they’re trying to guess.
This way, the player will know if the secret word is an animal, color, shape, or fruit. Here
is the original code:

91. while True:



92. displayBoard (missedLetters, correctLetters, secretWord)

In your new version of Hangman, add line 124 so your program looks like this:

123. while True:
124. print ('The secret word is in the set: ' + secretSet)
125. displayBoard (missedLetters, correctLetters, secretWord)

Now you’re done with the changes to the Hangman program. Instead of just a single
list of strings, the secret word is chosen from many different lists of strings. The program
also tells the player which set of words the secret word is from. Try playing this new
version. You can easily change the words dictionary starting on line 48 to include more sets
of words.

Summary

We’re done with Hangman! You learned some new concepts when you added the extra
features in this chapter. Even after you've finished writing a game, you can always add
more features as you learn more about Python programming.

Dictionaries are similar to lists except that they can use any type of value for an index,
not just integers. The indexes in dictionaries are called keys. Multiple assignment is a
shortcut to assign multiple variables the values in a list.

Hangman was fairly advanced compared to the previous games in this book. But at this
point, you know most of the basic concepts in writing programs: variables, loops,
functions, and data types such as lists and dictionaries. The later programs in this book will
still be a challenge to master, but you’ve finished the steepest part of the climb!



10
TIC-TAC-TOE

-
i

This chapter features a Tic-Tac-Toe game. Tic-Tac-Toe is normally played with two
people. One player is X and the other player is O. Players take turns placing their X or O.
If a player gets three of their marks on the board in a row, column, or diagonal, they win.
When the board fills up with neither player winning, the game ends in a draw.

This chapter doesn’t introduce many new programming concepts. The user will play
against a simple artificial intelligence, which we will write using our existing programming
knowledge. An artificial intelligence (AI) is a computer program that can intelligently
respond to the player’s moves. The Al that plays Tic-Tac-Toe isn’t complicated; it’s really
just a few lines of code.

Let’s get started by looking at a sample run of the program. The player makes their
move by entering the number of the space they want to take. To help us remember which
index in the list is for which space, we’ll number the board like a keyboard’s number pad,
as shown in Figure 10-1.

End J.Pgnn
1 {23 &= .

Figure 10-1: The board is numbered like the keyboard’s number pad.



TOPICS COVERED IN THIS CHAPTER

* Artificial intelligence
e | ist references
e Short-circuit evaluation

¢ The None value

Sample Run of Tic-Tac-Toe

Here’s what the user sees when they run the Tic-Tac-Toe program. The text the player
enters is in bold.

Welcome to Tic-Tac-Toe!
Do you want to be X or 02
X
The computer will go first.
of |

||

||
What is your next move? (1-9)
3
o| |

||
o] |x

What is your next move? (1-9)

4

o] |o

4

x| |

4

o] |x

What is your next move? (1-9)

5

olo|o

4

X|X]|

4

o] |x

The computer has beaten you! You lose.
Do you want to play again? (yes or no)
no

Source Code for Tic-Tac-Toe



In a new file, enter the following source code and save it as tictactoe.py. Then run the game
by pressing F5. If you get errors, compare the code you typed to the book’s code with the
online diff tool at https://www.nostarch.com/inventwithpython#diff.

MAKE SURE YOU'RE
USING PYTHON 3,
NOT PYTHON 2!

tictactoe.py
1. # Tic-Tac-Toe
2.
3. import random
4.
5. def drawBoard (board) :
6. # This function prints out the board that it was passed.
7.
8. # "board" is a list of 10 strings representing the board (ignore
index 0).
9. print (board[7] + '|' + board[8] + '|' + board[9])
10. print ('—-+-+-")
11. print (board[4] + '|' + board[5] + '|' + board[6])
12. print ('—-+-+-")
13. print (board[1] + '|' + board[2] + '|' + board[3])
14.
15. def inputPlayerLetter():
16. # Lets the player type which letter they want to be.
17. # Returns a list with the player's letter as the first item and the
computer's letter as the second.
18. letter = !
19. while not (letter == 'X' or letter == '0O'):
20. print ('Do you want to be X or 07?')
21. letter = input () .upper ()
22.
23. # The first element in the list is the player's letter; the second is
the computer's letter.
24. if letter == 'X':
25. return ['X', '0O']
26. else:
27. return ['O', 'X']
28.
29. def whoGoesFirst () :
30. # Randomly choose which player goes first.

31. i1f random.randint (0, 1) == 0:


https://www.nostarch.com/inventwithpython#diff

32.
33.
34.
35.
36.
37.
38.
39.
40.

41.

42.

43.
44.
45.
46.
47 .

48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.

66.
67.
68.
69.
70.
71.

72.

73.
74 .
75.
76.
77 .
78.
79.
80.
81.
82.
83.
84.

85.

return
else:

'computer'

return 'player’

def makeMove (board,

board[move] =

def isWinner (bo,

letter,
letter

le):

move) :

# Given a board and a player's letter,
that player has won.

this function returns True 1f

def

def

def

def

def

# We use "bo" instead of "board" and "le" instead of "letter" so we
don't have to type as much.

return ((bo[7] == le and bo[8] == le and bo[9] == le) or # Across the
top

(bo[4] == le and bo[5] == le and bo[6] == le) or # Across the middle

(bo[1l] == le and bo[2] == le and bo[3] == le) or # Across the bottom

(bo[7] == le and bo[4] == le and bo[l] == le) or # Down the left side

(bo[8] == le and bo[5] == le and bo[2] == le) or # Down the middle

(bo[9] == le and bo[6] == le and bo[3] == le) or # Down the right
side

(bo[7] == le and bo[5] == le and bo[3] == le) or # Diagonal

(bo[9] == le and bo[5] == le and bo[l] == le)) # Diagonal

getBoardCopy (board) :
# Make a copy of the board list and return it.
boardCopy = []
for i in board:
boardCopy.append (i)
return boardCopy

isSpaceFree (board, move) :
# Return True if the passed move is free on the passed board.
return board[move] == ' '

getPlayerMove (board) :

# Let the player enter their move.

move = "' !

while move not in 'l 2 3 4 5 6 7 8 9'.split()

isSpaceFree (board, int (move)):

print ('What is your next move?
move = input ()

return int (move)

or not

(1-9)")

chooseRandomMoveFromList (board, movesList):
# Returns a valid move from the passed list on the passed board.
# Returns None if there is no valid move.
possibleMoves = []
for i in movesList:
if isSpaceFree (board, i):
possibleMoves.append (i)

if len(possibleMoves) != 0:

return random.choice (possibleMoves)
else:

return None

getComputerMove (board, computerLetter):

# Given a board and the computer's letter,
and return that move.

if computerLetter == 'X':

determine where to move



86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.

121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.

def

playerLetter 'O
else:

playerLetter

'S

# Here is the algorithm for our Tic-Tac-Toe AI:
# First, check if we can win in the next move.
for i in range(1l, 10):
boardCopy = getBoardCopy (board)
if isSpaceFree (boardCopy, 1i):
makeMove (boardCopy, computerLetter, i)
if isWinner (boardCopy, computerLetter) :
return 1

# Check if the player could win on their next move and block them.

for i in range(1l, 10):
boardCopy = getBoardCopy (board)
if isSpaceFree (boardCopy, 1i):
makeMove (boardCopy, playerLetter, 1)
if isWinner (boardCopy, playerLetter):
return 1

# Try to take one of the corners, if they are free.
move = chooseRandomMoveFromList (board, [1, 3, 7, 91)
if move != None:

return move

# Try to take the center, if it is free.
if isSpaceFree (board, 5):

return 5

# Move on one of the sides.
return chooseRandomMoveFromList (board, [2, 4, 6, 8])

isBoardFull (board) :

# Return True if every space on the board has been taken.

return False.
for i in range(l, 10):
if isSpaceFree (board, i):
return False
return True

print ('Welcome to Tic-Tac-Toe!')

while True:

# Reset the board.

theBoard = [' '] * 10

playerLetter, computerLetter = inputPlayerLetter ()
turn = whoGoesFirst ()

print ('The ' + turn + ' will go first.')
gameIsPlaying = True

while gameIsPlaying:
if turn == 'player':
# Player's turn
drawBoard (theBoard)
move = getPlayerMove (theBoard)
makeMove (theBoard, playerLetter, move)

if isWinner (theBoard, playerLetter):

Otherwise,



145. drawBoard (theBoard)

146. print ('Hooray! You have won the game!')
147. gameIsPlaying = False

148. else:

149. if isBoardFull (theBoard) :

150. drawBoard (theBoard)

151. print ('The game is a tie!')

152. break

153. else:

154. turn = 'computer'

155.

156. else:

157. # Computer's turn

158. move = getComputerMove (theBoard, computerLetter)
159. makeMove (theBoard, computerLetter, move)
160.

161. if isWinner (theBoard, computerLetter):

162. drawBoard (theBoard)

163. print ('The computer has beaten you! You lose.')
164. gameIsPlaying = False

165. else:

166. if isBoardFull (theBoard) :

167. drawBoard (theBoard)

168. print ('The game is a tie!')

169. break

170. else:

171. turn = 'player'

172.

173. print ('Do you want to play again? (yes or no)')
174. if not input().lower () .startswith('y"'):

175. break

Designing the Program

Figure 10-2 shows a flowchart of the Tic-Tac-Toe program. The program starts by asking
the player to choose their letter, X or O. Who takes the first turn is randomly chosen.
Then the player and computer take turns making moves.



l

START

Ask for Decide who
player’s letter goes first
|
Player’s Turn Computer’s Turn
Show the board [e———
i :

Get player’s »| Get computer’s
move move
Check if Check if
player won computer won
Check for tie Check for tie
y v
Ask player to
—— : I E—
play again
END

Figure 10-2: Flowchart for Tic-Tac-Toe

The boxes on the left side of the flowchart show what happens during the player’s turn,
and the ones on the right side show what happens during the computer’s turn. After the
player or computer makes a move, the program checks whether they won or caused a tie,
and then the game switches turns. After the game is over, the program asks the player if
they want to play again.

Representing the Board as Data

First, you must figure out how to represent the board as data in a variable. On paper, the
Tic-Tac-Toe board is drawn as a pair of horizontal lines and a pair of vertical lines, with
an X, O, or empty space in each of the nine spaces.

In the program, the Tic-Tac-Toe board is represented as a list of strings like the ASCII
art of Hangman. Each string represents one of the nine spaces on the board. The strings



are either 'x' for the X player, ‘o' for the O player, or a single space ' ' for a blank space.

Remember that we’re laying out our board like a number pad on a keyboard. So if a list
with 10 strings was stored in a variable named board, then boarar71 would be the top-left
space on the board, poardars; would be the top-middle space, voarar9] would be the top-
right space, and so on. The program ignores the string at index o in the list. The player
will enter a number from 1 to 9 to tell the game which space they want to move on.

Strategizing with the Game Al

The Al needs to be able to look at the board and decide which types of spaces it will move
on. To be clear, we will label three types of spaces on the Tic-Tac-Toe board: corners,
sides, and the center. The chart in Figure 10-3 shows what each space is.

The Al’s strategy for playing Tic-Tac-Toe will follow a simple algorithm—a finite
series of instructions to compute a result. A single program can make use of several
different algorithms. An algorithm can be represented with a flowchart. The Tic-Tac-Toe
AT’s algorithm will compute the best move to make, as shown in Figure 10-4.

Corner Side Corner

Side Center Side

Corner Side Corner

Figure 10-3: Locations of the side, corner, and center spaces



:

1. Make winning move.
—

2. Block player’s winning move.
-—1

3. Move on corner.
-— *

4. Move on center.
-— *

5. Move on side.

Figure 10-4: The boxes represent the five steps of the “Get computer’'s move” algorithm. The arrows pointing to
the left go to the “Check if computer won” box.

"The AT’s algorithm has the following steps:

1. See if there’s a move the computer can make that will win the game. If there is, make
that move. Otherwise, go to step 2.

2. See if there’s a move the player can make that will cause the computer to lose the
game. If there is, move there to block the player. Otherwise, go to step 3.

3. Check if any of the corner spaces (spaces 1, 3, 7, or 9) are free. If so, move there. If no
corner space is free, go to step 4.

4. Check if the center is free. If so, move there. If it isn’t, go to step 5.

5. Move on any of the side spaces (spaces 2, 4, 6, or 8). There are no more steps because
the side spaces are all that’s left if the execution reaches step 5.

"This all takes place in the Get computer’s move box on the flowchart in Figure 10-2.
You could add this information to the flowchart with the boxes in Figure 10-4.

This algorithm is implemented in getcomputermove() and the other functions that
getComputerMove () caHs.

Importing the random Module

The first couple of lines are made up of a comment and a line importing the random
module so that you can call the randint () function later on:

1. # Tic-Tac-Toe
2.

3. import random




You've seen both these concepts before, so let’s move on to the next part of the
program.

Printing the Board on the Screen

In the next part of the code, we define a function to draw the board:

5. def drawBoard (board) :

6 # This function prints out the board that it was passed.

7.

8 # "board" is a list of 10 strings representing the board (ignore
index 0).

9. print (board[7] + '|' + board[8] + '|' + board[9])

10. print ('—-+-+-")

11. print (board[4] + '|' + board[5] + '|' + board[6])

12. print ('—-+-+-")

13. print (board[1] + '|' + board[2] + '|' + board[3])

The arawsoard() function prints the game board represented by the voara parameter.
Remember that the board is represented as a list of 10 strings, where the string at index 1 is
the mark on space 1 on the Tic-Tac-Toe board, and so on. The string at index o is
ignored. Many of the game’s functions work by passing a list of 10 strings as the board.

Be sure to get the spacing right in the strings; otherwise, the board will look funny
when printed on the screen. Here are some example calls (with an argument for board) to
drawBoard () and what the function would print.

>>> drawBoard([' ', ' ', ' ', 'V v, 'xv, Q', v v, xr, v 1 _10'])
x| |
x|o|
>>> draWBoard([' I' 1 I' 1 l' 1 l' 1 |’ 1 |’ 1 l’ 1 |’ 1 l’ 1 I])

"The program takes each string and places it on the board in number order according to
the keyboard number pad from Figure 10-1, so the first three strings are the bottom row of
the board, the next three strings are the middle, and the last three strings are the top.

Letting the Player Choose X or 0

Next, we’ll define a function to assign X or O to the player:

15. def inputPlayerLetter():
1l6. # Lets the player enter which letter they want to be.



17. # Returns a list with the player's letter as the first item and the
computer's letter as the second.

18. letter = "

19. while not (letter == 'X' or letter == '0O'):
20. print ('Do you want to be X or 07?')

21. letter = input () .upper ()

The inputplayerretter() function asks whether the player wants to be X or O. The
while loop’s condition contains parentheses, which means the expression inside the
parentheses is evaluated first. If the 1etter variable was set to 'x', the expression would
evaluate like this:

not (letter == 'X' or letter == '0')

(
not ('X' == 'X' or 'X' == '0'")

not (True or False)
L |

'

not (True)

ol

not True

s

False

If 1etter has the value 'x' or 'o', then the loop’s condition is ralse and lets the
program execution continue past the while block. If the condition is True, the program will
keep asking the player to choose a letter until the player enters an X or O. Line 21
automatically changes the string returned by the call to input () to uppercase letters with
the upper () string method.

The next function returns a list with two items:

23. # The first element in the list is the player's letter; the second is
the computer's letter.

24. if letter == 'X':

25. return ['X', '0O']

26. else:

27. return ['O', 'X']

The first item (the string at index o) is the player’s letter, and the second item (the
string at index 1) is the computer’s letter. The if and else statements choose the
appropriate list to return.



Deciding Who Goes First

Next we create a function that uses randint () to choose whether the player or computer
plays first:

29. def whoGoesFirst () :

30. # Randomly choose which player goes first.
31. if random.randint (0, 1) == 0:

32. return 'computer'

33. else:

34. return 'player’

The whoGoesrirst() function does a virtual coin flip to determine whether the
computer or the player goes first. The coin flip is done with a call to randon.randint (0, 1).
There is a 50 percent chance the function returns o and a 50 percent chance the function
returns 1. If this function call returns a o, the whocoesrirst () function returns the string
'computer'. Otherwise, the function returns the string 'player'. The code that calls this
function will use the return value to determine who will make the first move of the game.

Placing a Mark on the Board

The makeMove () function is simple:

36. def makeMove (board, letter, move):
37. board[move] = letter

The parameters are board, letter, and move. The variable poara is the list with 10 strings
that represents the state of the board. The variable 1etter is the player’s letter (either 'x-
or '0'). The variable nove is the place on the board where that player wants to go (which is
an integer from 1 to 9).

But wait—in line 37, this code seems to change one of the items in the boara list to the
value in letter. Because this code is in a function, though, the voara parameter will be
forgotten when the function returns. So shouldn’t the change to board be forgotten as well?

Actually, this isn’t the case, because lists are special when you pass them as arguments
to functions. You are actually passing a reference to the list, not the list itself. Let’s learn
about the difference between lists and references to lists.

List References

Enter the following into the interactive shell:

>>> gpam = 42

>>> cheese = spam
>>> spam = 100
>>> spam

100



>>> cheese
42

These results make sense from what you know so far. You assign 42 to the span variable,
then assign the value in spam to the variable cheese. When you later overwrite spam to 100,
this doesn’t affect the value in cheese. This is because spam and cheese are different variables
that store different values.

But lists don’t work this way. When you assign a list to a variable, you are actually
assigning a list reference to the variable. A reference is a value that points to the location
where some bit of data is stored. Let’s look at some code that will make this easier to
understand. Enter this into the interactive shell:

Q@ >>> spam = [0, 1, 2, 3, 4, 5]
® >>> cheese = spam
©® >>> cheese[l] = 'Hello!'
>>> spam
[0, 'Hello!', 2, 3, 4, 5]
>>> cheese
[0, 'Hello!', 2, 3, 4, 5]

The code only changed the cheese list, but it seems that both the cheese and span lists
have changed. This is because the spam variable doesn’t contain the list value itself but
rather a reference to the list, as shown in Figure 10-5. The list itself is not contained in any
variable but rather exists outside of them.

® spam = [0, 1, 2, 3, 4, 5]

‘ (a list value)

[0, 1, 2, 3, 4, 5]

Reference

\

Figure 10-5: The spam list created at @. Variables don’t store lists but rather references to lists.

Notice that cheese = spam copies the /ist reference in span to cheese @, instead of copying
the list value itself. Now both spam and cheese store a reference that refers to the same list
value. But there is only one list because the list itself wasn’t copied. Figure 10-6 shows this

copying.



@ cheese = spam

‘ (a list value)

T

[0, 1, 2, 3, 4, 5]

—

Ra@

7

Figure 10-6: The spam and cheese variables store two references to the same list.

Reference

So the cheese[1] = 'Hello!' line at ® changes the same list that span refers to. This is
why spam returns the same list value that cheese does. They both have references that refer
to the same list, as shown in Figure 10-7.

* (a list value)

[0, 'Hello®, 2, 3, 4, 5]

Reference

Reference

Figure 10-7: Changing the list changes all variables with references to that list.

If you want spam and cheese to store two different lists, you have to create two lists
instead of copying a reference:



>>> gpam = [0, 1, 2, 3, 4, 5]
>>> cheese = [0, 1, 2, 3, 4, 5]

In the preceding example, spam and cheese store two different lists (even though these
lists are identical in content). Now if you modify one of the lists, it won’t affect the other
because spam and cheese have references to two different lists:

>>> spam = [0, 1, 2, 3, 4, 5]
>>> cheese = [0, 1, 2, 3, 4, 5]
>>> cheese[l] = 'Hello!'

>>> spam

(0, 1, 2, 3, 4, 5]

>>> cheese

[0, 'Hello!', 2, 3, 4, 5]

Figure 10-8 shows how the variables and list values are set up in this example.

Dictionaries work the same way. Variables don’t store dictionaries; they store references
to dictionaries.

‘ (a list value)

f e

[0, 1, 2, 3, 4, 5]

Reference

} (a list value)

[0, 'Hello', 2, 3, 4, 5]

Figure 10-8: The spam and cheese variables now each store references to two different lists.

Using List References in makeMove()

Let’s go back to the makemove () function:

36. def makeMove (board, letter, move):
37. board[move] = letter

When a list value is passed for the voara parameter, the function’s local variable is
really a copy of the reference to the list, not a copy of the list itself. So any changes to voara
in this function will also be made to the original list. Even though voara is a local variable,



the makemove () function modifies the original list.

The 1etter and move parameters are copies of the string and integer values that you
pass. Since they are copies of values, if you modify letter or move in this function, the
original variables you used when you called makemove () aren’t modified.

Checking Whether the Player Won

Lines 42 to 49 in the iswinner () function are actually one long return statement:

39. def isWinner (bo, le):

40. # Given a board and a player's letter, this function returns True if
that player has won.

41. # We use "bo" instead of "board" and "le" instead of "letter" so we
don't have to type as much.

42 . return ((bo[7] == le and bo[8] == le and bo[9] == le) or # Across the
top

43 . (bo[4] == le and bo[5] == le and bo[6] == le) or # Across the middle

44 . (bo[1l] == le and bo[2] == le and bo[3] == le) or # Across the bottom

45. (bo[7] == le and bo[4] == le and bo[l] == le) or # Down the left side

46. (bo[8] == le and bo[5] == le and bo[2] == le) or # Down the middle

47 . (bo[9] == le and bo[6] == le and bo[3] == le) or # Down the right
side

48. (bo[7] == le and bo[5] == le and bo[3] == le) or # Diagonal

49. (bo[9] == le and bo[5] == le and bo[l] == le)) # Diagonal

The vo and 1e names are shortcuts for the board and 1etter parameters. These shorter
names mean you have less to type in this function. Remember, Python doesn’t care what
you name your variables.

There are eight possible ways to win at Tic-Tac-Toe: you can have a line across the
top, middle, or bottom rows; you can have a line down the left, middle, or right columns;
or you can have a line across either of the two diagonals.

Each line of the condition checks whether the three spaces for a given line are equal to
the letter provided (combined with the ana operator). You combine each line using the or
operator to check for the eight different ways to win. This means only one of the eight
ways must be True in order for us to say that the player who owns the letter in 1e is the
winner.

Let’s pretend that 1eis 'or and bois [+ *, o', '0', '0', ' *, 'x', ' ', 'K, o,

1. The board would look like this:

x| |
| %]
olo|o

Here is how the expression after the return keyword on line 42 would evaluate. First
Python replaces the variables bo and 1e with the values in each variable:



(" ' == '0" and 'X' == 'O' and ' ' == '0O') or
('O' == '0'" and '0O' == 'O' and '0O' == '0O') or
('X'" == '0" and ' ' == 'O'" and '0O' == '0O') or
(" ' == '0" and 'X' == 'O' and 'O' == '0O') or
("' == '0" and ' ' == 'O'" and '0O' == '0O') or
('X'" == '0'" and 'X' == 'O' and 'O' == '0O') or
(* ' == '0"'" and 'X' == '0' and 'O' == '0'))

Next, Python evaluates all those == comparisons inside the parentheses to Boolean
values:

return ((False and False and False) or
(False and False and False) or
(True and True and True) or

(False and False and True) or
(False and False and True
(
(
(

) or
False and False and True) or
False and False and True) or
)

False and False and True

Then the Python interpreter evaluates all the expressions inside the parentheses:

return ((False) or
False) or
True) or

(

(

(False) or
(False) or
(False) or
(False) or
(False))

Since now there’s only one value inside each of the inner parentheses, you can get rid of
them:

return (False or
False or

True or

False or

False or

False or

False or

False)

Now Python evaluates the expression connected by all those or operators:

return (True)

Once again, get rid of the parentheses, and you are left with one value:

return True

So given those values for vo and 1e, the expression would evaluate to true. This is how



the program can tell if one of the players has won the game.

Duplicating the Board Data

"The getBoardcopy () function allows you to easily make a copy of a given 10-string list that
represents a Tic-Tac-Toe board in the game.

51. def getBoardCopy (board) :

52. # Make a copy of the board list and return it.
53. boardCopy = []

54. for i in board:

55. boardCopy.append (i)

56. return boardCopy

When the Al algorithm is planning its moves, it will sometimes need to make
modifications to a temporary copy of the board without changing the actual board. In

those cases, we call this function to make a copy of the board’s list. The new list is created
on line 53.

Right now, the list stored in boardcopy is just an empty list. The for loop will iterate
over the board parameter, appending a copy of the string values in the actual board to the
duplicate board. After the getBoardcopy () function builds up a copy of the actual board, it
returns a reference to this new board in boardcopy, not to the original one in boarad.

Checking Whether a Space on the Board Is Free

Given a Tic-Tac-Toe board and a possible move, the simple isspacerree() function
returns whether that move is available or not:

58. def isSpaceFree(board, move) :

59. # Return True if the passed move is free on the passed board.
60. return board[move] == ' '

Remember that free spaces in the board lists are marked as a single-space string. If the
item at the space’s index is not equal to ' ', then the space is taken.

Letting the Player Enter a Move

The getpriayermove () function asks the player to enter the number for the space they want
to move on:

62. def getPlayerMove (board) :

63. # Let the player enter their move.
64 . move = ' '
65. while move not in '1 2 3 4 5 6 7 8 9'.split() or not

isSpaceFree (board, int (move)):
66. print ('What is your next move? (1-9)')



67. move = input ()
68. return int (move)

The condition on line 65 is True if either of the expressions on the left or right side of
the or operator is true. The loop makes sure the execution doesn’t continue until the
player has entered an integer between 1 and 9. It also checks that the space entered isn’t
already taken, given the Tic-Tac-Toe board passed to the function for the boara
parameter. The two lines of code inside the while loop simply ask the player to enter a
number from 1 to 9.

The expression on the left side checks whether the player’s move is equal to 1+, 2",
'3+, and so on up to '9' by creating a list with these strings (with the sp1it () method) and
checking whether move is in this list. In this expression, '1 2 3 4 5 6 7 8 9'.split()
evaluates to '1', '2', '3', 4, '5', 6", 7', 8, '9'], but the former is easier to
type.

The expression on the right side checks whether the move the player entered is a free
Space on the board by calling isSpaceFree (). Remember that isSpaceFree () returns True if
the move you pass is available on the board. Note that isspacerree() expects an integer for
move, SO the int () function returns an integer form of move.

The not operators are added to both sides so that the condition is true when either of
these requirements is unfulfilled. This causes the loop to ask the player again and again for
a number until they enter a proper move.

Finally, line 68 returns the integer form of whatever move the player entered. input ()
returns strings, so the int () function is called to return an integer form of the string.

Short-Circuit Evaluation

You may have noticed there’s a possible problem in the getpiayermove () function. What it
the player entered 'z' or some other noninteger string? The expression move not in '1 2 3
4 5 6 7 8 9 .split() on the left side of or would return raise as expected, and then
Python would evaluate the expression on the right side of the or operator.

But calling int('z') would cause Python to give an error, because the int () function
can take only strings of number characters like "9+ or '0, not strings like 'z'.

To see an example of this kind of error, enter the following into the interactive shell:

>>> int('42')
42
>>> int('Z2")
Traceback (most recent call last):
File "<pyshell#3>", line 1, in <module>
int('z")
ValueError: invalid literal for int() with base 10: 'Z’

But when you play the Tic-Tac-Toe game and try entering 'z' for your move, this
error doesn’t happen. This is because the wnhile loop’s condition is being short-circuited.



Short-circuiting means that an expression evaluates only part of the way, since the rest of
the expression doesn’t change what the expression evaluates to. Here’s a short program that
gives a good example of short-circuiting. Enter the following into the interactive shell:

>>> def ReturnsTrue():
print ('ReturnsTrue() was called.')
return True

>>> def ReturnsFalse():
print ( 'ReturnsFalse() was called.')
return False

>>> ReturnsTrue ()

ReturnsTrue () was called.

True

>>> ReturnsFalse()

ReturnsFalse() was called.

False

When returnsTrue() is caHecL it prints 'ReturnsTrue() was called.' and then also
displays the return value of returnstrue (). The same goes for rReturnsralse().

Now enter the following into the interactive shell:

>>> ReturnsFalse() or ReturnsTrue()
ReturnsFalse() was called.
ReturnsTrue () was called.

True

>>> ReturnsTrue() or ReturnsFalse()
ReturnsTrue () was called.

True

The first part makes sense: the expression rReturnsFalse() or ReturnsTrue() calls both
of the functions, so you see both of the printed messages.

But the second expression only shows 'ReturnsTrue() was called.', not
'ReturnsFalse() was called.'. L'his is becaUSC:PythOD.didnﬁ:ca”.ReturnsFalse() at all.
Since the left side of the or operator is True, it doesn’t matter what returnsralse () returns,
so Python doesn’t bother calling it. The evaluation was short-circuited.

The same applies for the ana operator. Now enter the following into the interactive

shell:

>>> ReturnsTrue() and ReturnsTrue()
ReturnsTrue () was called.
ReturnsTrue () was called.

True

>>> ReturnsFalse() and ReturnsFalse()
ReturnsFalse() was called.

False

Again, if the left side of the and operator is ralse, then the entire expression is ralse. It
doesn’t matter whether the right side of and is True or raise, so Python doesn’t bother
evaluating it. Both False and True and False and False evaluate to False, SO Python short-
circuits the evaluation.



Let’s return to lines 65 to 68 of the Tic-Tac-Toe program:

65. while move not in 'l 2 3 4 5 6 7 8 9'.split() or not
isSpaceFree (board, int (move)):

66. print ('What is your next move? (1-9)')

67. move = input ()

68. return int (move)

Since the part of the condition on the left side of the or operator (move not in '1 2 3 4
5 6 7 8 9'.split()) evaluates to True, the Python interpreter knows that the entire
expression will evaluate to True. It doesn’t matter if the expression on the right side of or
evaluates to True or False, because only one value on either side of the or operator needs to
be True for the whole expression to be rrue.

So Python stops checking the rest of the expression and doesn’t even bother evaluating
the not isSpaceFree (board, int (move)) part.thjsrneans the int () and the isSpaceFree ()
functions are never called as long asmove not in '1 23 4 5 6 7 8 9'.split() IS True.

This works out well for the program, because if the right side of the condition is True,
then move isn’t a string of a single-digit number. That would cause int() to give us an
error. But if move not in '1 2 3 4 5 6 7 8 9'.split() evaluates to True, Python short-
circuits not isSpaceFree (board, int(move))armlint(move)iSINDtCﬂHed.

Choosing a Move from a List of Moves

Now let’s look at the chooserandomMoveFromList () function, which is useful for the Al code
later in the program:

70. def chooseRandomMoveFromList (board, movesList) :

71. # Returns a valid move from the passed list on the passed board.
72. # Returns None if there is no valid move.

73. possibleMoves = []

74 . for i in movesList:

75. if isSpaceFree(board, 1i):

76. possibleMoves.append (i)

Remember that the voara parameter is a list of strings that represents a Tic-Tac-Toe
board. The second parameter, movesList, is a list of integers of possible spaces from which
to choose. For example, if movesrist is (1, 3, 7, 9], that means
chooseRandomMoveFromList () should return the integer for one of the corner spaces.

However, chooserandomMoveFromuist () first checks that the space is valid to make a
move on. The possiblemoves list starts as a blank list. The for loop then iterates over
movesList. | he moves that cause isSpaceFree () tO return True are added to possibleMoves
with the append () method.

At this point, the possibleMoves list has all of the moves that were in novesrist that are
also free spaces. The program then checks whether the list is empty:

78. if len(possibleMoves) != 0:



79. return random.choice (possibleMoves)
80. else:
81. return None

If the list isn’t empty, then there’s at least one possible move that can be made on the

board.

But this list could be empty. For example, if movesrist was 11, 3, 7, 91 but the board
represented by the boara parameter had all the corner spaces already taken, the
possibleMoves list would be [1. In that case, len (possibleMoves) evaluates to 0, and the
function returns the value none.

The None Value

The wone value represents the lack of a value. wone is the only value of the data type
NoneType. You might use the none value when you need a value that means “does not exist”
or “none of the above.”

For example, say you had a variable named quizanswer that holds the user’s answer to
some true/false pop quiz question. The variable could hold True or raise for the user’s
answer. But if the user didn’t answer the question, you wouldn’t want to set quizanswer to
True O False, because then it would look like the user answered the question. Instead, you
could set quizanswer to none if the user skipped the question.

As a side note, none is not displayed in the interactive shell like other values are:

>>> 2 + 2

4

>>> 'This is a string value.'
'This is a string value.'

>>> None

>>>

"The values of the first two expressions are printed as output on the next line, but none
has no value, so it is not printed.

Functions that don’t seem to return anything actually return the wone value. For
example, print () returns None:

>>> gpam = print('Hello world!')
Hello world!

>>> gpam == None

True

Here we assigned print('Hello world!') to spam. The print() function, like all
functions, has a return value. Even though print() prints an output, the function call
returns None. IDLE doesn’t show none in the interactive shell, but you can tell spam is set to
None because spam == None evaluates as True.



Creating the Computer’s Al

The getcomputermove () function contains the Al’s code:

83.
84.

85.
86.
87.
88.

def getComputerMove (board, computerLetter):
# Given a board and the computer's letter, determine where to move
and return that move.

if computerLetter == 'X':
playerLetter = 'O’
else:
playerLetter = 'X'

The first argument is a Tic-Tac-Toe board for the boara parameter. The second

argument is the letter the computer uses—either 'x' or ‘o' in the computerLetter
parameter. The first few lines simply assign the other letter to a variable named
playerLetter. ©'his way, the same code can be used whether the computer is X or O.

Remember how the Tic-Tac-Toe Al algorithm works:

1. See if there’s a move the computer can make that will win the game. If there is, take

that move. Otherwise, go to step 2.

See if there’s a move the player can make that will cause the computer to lose the
game. If there is, the computer should move there to block the player. Otherwise, go
to step 3.

Check if any of the corners (spaces 1, 3, 7, or 9) are free. If no corner space is free, go
to step 4.

4. Check if the center is free. If so, move there. If it isn’t, go to step 5.

Move on any of the sides (spaces 2, 4, 6, or 8). There are no more steps, because the
side spaces are the only spaces left if the execution has reached this step.

The function will return an integer from 1 to 9 representing the computer’s move.

Let’s walk through how each of these steps is implemented in the code.

Checking Whether the Computer Can Win in One Move

Before anything else, if the computer can win in the next move, it should make that
winning move immediately.

90.
91.
92.
93.
94.
95.
96.
97.

# Here is the algorithm for our Tic-Tac-Toe AI:
# First, check if we can win in the next move.
for i in range(l, 10):
boardCopy = getBoardCopy (board)
if isSpaceFree (boardCopy, 1i):
makeMove (boardCopy, computerLetter, i)
if isWinner (boardCopy, computerLetter):
return i

The for loop that starts on line 92 iterates over every possible move from 1 to 9. The



code inside the loop simulates what would happen if the computer made that move.

The first line in the loop (line 93) makes a copy of the voara list. This is so the
simulated move inside the loop doesn’t modify the real Tic-Tac-Toe board stored in the
board variable. The getBoardcopy () returns an identical but separate board list value.

Line 94 checks whether the space is free and, if so, simulates making the move on the
copy of the board. If this move results in the computer winning, the function returns that
move’s integer.

If none of the spaces results in winning, the loop ends, and the program execution
continues to line 100.

Checking Whether the Player Can Win in One Move

Next, the code will simulate the human player moving on each of the spaces:

99. # Check if the player could win on their next move and block them.
100. for i in range(l, 10):

101. boardCopy = getBoardCopy (board)

102. if isSpaceFree (boardCopy, 1i):

103. makeMove (boardCopy, playerLetter, i)

104. if isWinner (boardCopy, playerLetter):

105. return i

"The code is similar to the loop on line 92 except the player’s letter is put on the board
copy. If the iswinner () function shows that the player would win with a move, then the
computer will return that same move to block this from happening.

If the human player cannot win in one more move, the for loop finishes, and the
execution continues to line 108.

Checking the Corner, Center, and Side Spaces (in That Order)

If the computer can’t make a winning move and doesn’t need to block the player’s move, it
will move to a corner, center, or side space, depending on the spaces available.

The computer first tries to move to one of the corner spaces:

107. # Try to take one of the corners, if they are free.
108. move = chooseRandomMoveFromList (board, [1, 3, 7, 91)
109. if move != None:
110. return move

The call to the chooserRandomMoveFromList () function with the list 11, 3, 7, 9] ensures
that the function returns the integer for one of the corner spaces: 1, 3, 7, or 9.

If all the corner spaces are taken, the chooserandomMoverromuist () function returns None,
and the execution moves on to line 113:

112. # Try to take the center, if it is free.
113. if isSpaceFree(board, 5):



114. return 5

If none of the corners is available, line 114 moves on the center space if it is free. If the
center space isn’t free, the execution moves on to line 117:

116. # Move on one of the sides.
117. return chooseRandomMoveFromList (board, [2, 4, 6, 81])

"This code also makes a call to chooserandomMoveFromList (), except you pass it a list of
the side spaces:12, 4, 6, 81. This function won’t return nNone because the side spaces are
the only spaces that can possibly be left. This ends the getcomputermove () function and the
Al algorithm.

Checking Whether the Board Is Full

The last function is isBoardrFull ():

119. def isBoardFull (board) :

120. # Return True if every space on the board has been taken. Otherwise,
return False.

121. for i in range(l, 10):

122. if isSpaceFree(board, 1i):

123. return False

124. return True

"This function returns True if the 10-string list in the boara argument it was passed has
an 'x' or 'o' in every index (except for index o, which is ignored). The for loop lets us
check indexes 1 through 9 on the boara list. As soon as it finds a free space on the board
(thatiS,VVhen.isSpaceFree(board, i) returns True),the isBoardFull () function will return
False.

If the execution manages to go through every iteration of the loop, then none of the
spaces is free. Line 124 will then execute return True.

The Game Loop

Line 127 is the first line that isn’t inside of a function, so it’s the first line of code that
executes when you run this program.

127. print('Welcome to Tic-Tac-Toe!')

This line greets the player before the game starts. The program then enters a wnile
loop at line 129:

129. while True:
130. # Reset the board.
131. theBoard = [' '] * 10




The while loop keeps looping until the execution encounters a break statement. Line
131 sets up the main Tic-Tac-Toe board in a variable named thesoard. The board starts
empty, which we represent with a list of 10 single space strings. Rather than type out this
full list, line 131 uses list replication. It’s shorter to type 1+ *1 * 10than ¢ +, + +, + +,

1 1 1 1 1 1 1 1 1 1 1 1 1 ]
’ ’ ’ ’ ’ ’

Choosing the Player’'s Mark and Who Goes First

Next, the inputplayerretter () function lets the player enter whether they want to be the X

or O:

132. playerLetter, computerLetter = inputPlayerLetter ()

The function returns a two-string list, either ['x', '0'] or ['0o', 'x']. We use
multiple assignment to set playerLetter to the first item in the returned list and
computerLetter tO the second.

From there, the whocoesrFirst () function randomly decides who goes first, returning
either the string 'player' or the string 'computer', and then line 134 tells the player who
will go first:

133. turn = whoGoesFirst ()
134. print ('The ' + turn + ' will go first.')
135. gameIsPlaying = True

The gamersriaying variable keeps track of whether the game is still being played or if
someone has won or tied.

Running the Player’s Turn

Line 137’s loop will keep going back and forth between the code for the player’s turn and
the computer’s turn, as long as ganeIsplaying is set to True:

137. while gameIsPlaying:

138. if turn == 'player':

139. # Player's turn

140. drawBoard (theBoard)

141. move = getPlayerMove (theBoard)

142. makeMove (theBoard, playerLetter, move)

The turn variable was originally set to either 'player' or ‘'computer' by the
whoGoesFirst () call online 133. If turn equals 'computer', then line 138’s condition is False,
and the execution jumps to line 156.

But if line 138 evaluates to true, line 140 calls araweoarda() and passes the thesoard
variable to print the Tic-Tac-Toe board on the screen. Then getplayermove() lets the
player enter their move (and also makes sure it is a valid move). The nakemove () function
adds the player’s X or O to thepoard.



Now that the player has made their move, the program should check whether they have
won the game:

144. if isWinner (theBoard, playerLetter):

145. drawBoard (theBoard)

146. print ('Hooray! You have won the game!')
147. gameIsPlaying = False

If the iswinner () function returns True, the if block’s code displays the winning board
and prints a message telling the player they have won. The gamersriaying variable is also
set to False so that the execution doesn’t continue on to the computer’s turn.

If the player didn’t win with their last move, maybe their move filled up the entire
board and tied the game. The program checks that condition next with an e1se statement:

148. else:

149. if isBoardFull (theBoard) :

150. drawBoard (theBoard)

151. print ('The game is a tie!')
152. break

In this e1se block, the isBoardrull() function returns true if there are no more moves
to make. In that case, the if block starting at line 149 displays the tied board and tells the

player a tie has occurred. The execution then breaks out of the wnile loop and jumps to
line 173.

If the player hasn’t won or tied the game, the program enters another eise statement:

153. else:
154. turn = 'computer'

Line 154 sets the turn variable to 'computer' so that the program will execute the code
for the computer’s turn on the next iteration.

Running the Computer’s Turn

If the turn variable wasn’t 'player' for the condition on line 138, then it must be the
computer’s turn. The code in this e1se block is similar to the code for the player’s turn:

156. else:

157. # Computer's turn

158. move = getComputerMove (theBoard, computerLetter)
159. makeMove (theBoard, computerLetter, move)

160.

161. if isWinner (theBoard, computerLetter) :

162. drawBoard (theBoard)

163. print ('The computer has beaten you! You lose.')
164. gameIsPlaying = False

165. else:

166. if isBoardFull (theBoard) :

167. drawBoard (theBoard)

168. print ('The game is a tie!')



169. break
170. else:
171. turn = 'player'

Lines 157 to 171 are almost identical to the code for the player’s turn on lines 139 to
154. The only difference is that this code uses the computer’s letter and calls

getComputerMove ().

If the game isn’t won or tied, line 171 sets turn to the player’s turn. There are no more
lines of code inside the while loop, so the execution jumps back to the while statement on
line 137.

Asking the Player to Play Again

Finally, the program asks the player if they want to play another game:

173. print ('Do you want to play again? (yes or no)')
174. if not input().lower().startswith('y"'):
175. break

Lines 173 to 175 are executed immediately after the while block started by the while
statement on line 137. ganeIsPlaying is set to ralse when the game has ended, so at this
point the game asks the player if they want to play again.

The not input().lower().startswith('y') expression will be true if the player enters
anything that doesn’t start with a 'y'. In that case, the break statement executes. That
breaks the execution out of the while loop that was started on line 129. But since there are
no more lines of code after that while block, the program terminates and the game ends.

Summary

Creating a program with Al comes down to carefully considering all the possible situations
the Al can encounter and how it should respond in each of those situations. The Tic-Tac-
Toe Al is simple because not as many moves are possible in Tic-Tac-Toe as in a game like
chess or checkers.

Our computer Al checks for any possible winning moves. Otherwise, it checks whether
it must block the player’s move. Then the Al simply chooses any available corner space,
then the center space, then the side spaces. This is a simple algorithm for the computer to
follow.

The key to implementing our Al is to make copies of the board data and simulate
moves on the copy. That way, the Al code can see whether a move results in a win or loss.
Then the Al can make that move on the real board. This type of simulation is effective at
predicting what is or isn’t a good move.



11
THE BAGELS DEDUCTION GAME

Bagels is a deduction game in which the player tries to guess a random three-digit number
(with no repeating digits) generated by the computer. After each guess, the computer gives
the player three types of clues:

Bagels None of the three digits guessed is in the secret number.

Pico One of the digits is in the secret number, but the guess has the digit in the wrong
place.

Fermi The guess has a correct digit in the correct place.

The computer can give multiple clues, which are sorted in alphabetical order. If the
secret number is 456 and the player’s guess is 546, the clues would be “fermi pico pico.”
The “fermi” is from the 6 and “pico pico” are from the 4 and 5.

In this chapter, you’ll learn a few new methods and functions that come with Python.
You’ll also learn about augmented assignment operators and string interpolation. While
they don’t let you do anything you couldn’t do before, they are nice shortcuts to make
coding easier.

( )

TOPICS COVERED IN THIS CHAPTER

® The random.shuffle() function

* Augmented assignment operators, +=, -=, *=, /=
® The sort () list method

® The join() string method

* String interpolation

* The conversion specifier s



L * Nested loops J

Sample Run of Bagels

Here’s what the user sees when they run the Bagels program. The text the player enters is
shown in bold.

I am thinking of a 3-digit number. Try to guess what it is.
The clues I give are...

When I say: That means:
Bagels None of the digits is correct.
Pico One digit is correct but in the wrong position.
Fermi One digit is correct and in the right position.
I have thought up a number. You have 10 guesses to get it.
Guess #1:
123
Fermi
Guess #2:
453
Pico
Guess #3:
425
Fermi
Guess #4:
326
Bagels
Guess #5:
489
Bagels
Guess #6:
075
Fermi Fermi
Guess #7:
015
Fermi Pico
Guess #8:
175

You got it!
Do you want to play again? (yes or no)
no

Source Code for Bagels

In a new file, enter the following source code and save it as bagels.py. Then run the game by
pressing FS5. If you get errors, compare the code you typed to the book’s code with the
online diff tool at https://www.nostarch.com/inventwithpython#diff.


https://www.nostarch.com/inventwithpython#diff

MAKE SURE YOU'RE

USING PYTHON 3,

NOT PYTHON 2!

bagels.py
1. import random
2.
3. NUM_DIGITS = 3
4. MAX_ GUESS = 10
5.
6. def getSecretNum() :
7. # Returns a string of unique random digits that is NUM_DIGITS long.
8. numbers = list(range(10))
9. random.shuffle (numbers)
10. secretNum = ''
11. for i in range (NUM_DIGITS) :
12. secretNum += str (numbers[i])
13. return secretNum
14.
15. def getClues(guess, secretNum) :
16 # Returns a string with the Pico, Fermi, & Bagels clues to the user.
17. if guess == secretNum:
18. return 'You got it!'
19.
20. clues = []
21. for i in range(len(guess)):
22. if guess[i] == secretNum[i]:
23. clues.append('Fermi')
24 . elif guess[i] in secretNum:
25 clues.append('Pico')
26 if len(clues) == 0:
27. return 'Bagels'
28.
29. clues.sort ()
30. return ' '.join(clues)
31.
32. def isOnlyDigits (num) :
33. # Returns True if num is a string of only digits. Otherwise, returns
False.
34. if num == '':
35. return False
36.
37. for i in num:
38. if 1 not in '0 1 2 3 4 5 6 7 8 9'.split():



39.
40.
41.
42.
43.
44 .

45.
46.
47 .
48.
49.
50.
51.
52.
53.

54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.

69.
70.
71.
72.

return False
return True
print ('I am thinking of a %s-digit number. Try to guess what it is.' %

(NUM_DIGITS))
print ('The clues I give are...')

print ('When I say: That means:')

print (' Bagels None of the digits is correct.')

print (' Pico One digit is correct but in the wrong position.')
print (' Fermi One digit is correct and in the right position.')

while True:
secretNum = getSecretNum/()
print ('I have thought up a number. You have %s guesses to get it.' %
(MAX_GUESS) )

guessesTaken = 1
while guessesTaken <= MAX_GUESS:

guess = "'

while len(guess) != NUM_DIGITS or not isOnlyDigits (guess):
print ('Guess #%s: ' % (guessesTaken))
guess = input ()

print (getClues (guess, secretNum))
guessesTaken += 1

if guess == secretNum:
break
if guessesTaken > MAX_GUESS:
print ('You ran out of guesses. The answer was %s.' %
(secretNum) )

print ('Do you want to play again? (yes or no)')
if not input().lower () .startswith('y"'):
break

Flowchart for Bagels

The flowchart in Figure 11-1 describes what happens in this game and the order in which

each step can happen.

"The flowchart for Bagels is pretty simple. The computer generates a secret number, the
player tries to guess that number, and the computer gives the player clues based on their
guess. This happens over and over again until the player either wins or loses. After the
game finishes, whether the player won or not, the computer asks the player whether they

want to play again.



START

&

Generate Ask to
secret number play again

: t

See if player has Player has
run out of guesses lost

;

Get player’s Player has
guess won

;

Tell player END f+——
clues

;

Increment
guess count

Figure 11-1: Flowchart for the Bagels game

Importing random and Defining getSecretNum()

At the start of the program, we’ll import the random module and set up some global
variables. Then we’ll define a function named getsecretnum().

import random

1

2.

3. NUM_DIGITS = 3
4. MAX GUESS = 10
5
6
7

. def getSecretNum() :
# Returns a string of unique random digits that is NUM_DIGITS long.

Instead of using the integer 3 for the number of digits in the answer, we use the
constant variable nuv_prcrTs. The same goes for the number of guesses the player gets; we
use the constant variable uax_cuess instead of the integer 10. Now it will be easy to change
the number of guesses or secret number digits. Just change the values at line 3 or 4, and the
rest of the program will still work without any more changes.

The getsecretnum() function generates a secret number that contains only unique
digits. The Bagels game is much more fun if you don’t have duplicate digits in the secret
number, such as '244" or '333'. We’ll use some new Python functions to make this happen
hlgetSecretNum().



Shuffling a Unique Set of Digits

The first two lines of getsecretnum() shuffle a set of nonrepeating numbers:

8. numbers = list(range(10))
9. random. shuffle (numbers)

Line 8’s 1ist (range(10)) evaluates to (o, 1, 2, 3, 4, 5, 6, 7, 8, 91, so the numbers
variable contains a list of all 10 digits.

Changing List Item Order with the random.shuffle() Function

The random.shutfle() function randomly changes the order of a list’s items (in this case,
the list of digits). This function doesn’t return a value but rather modifies the list you pass
it in place. 'This is similar to the way the makemove () function in Chapter 10’s Tic-Tac-Toe
game modified the list it was passed in place, rather than returning a new list with the
change. "This is Why you do not write code like numbers = random.shuffle (numbers).

Try experimenting with the shuffie() function by entering the following code into the
interactive shell:

>>> import random

>>> gpam = list(range(10))

>>> print (spam)

(o, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> random.shuffle (spam)

>>> print (spam)

(3, 0, 5, 9, 6, 8, 2, 4, 1, 7]
>>> random.shuffle (spam)

>>> print (spam)

(9, 8, 3, 5, 4, 7, 1, 2, 0, 6]

Each time random.shuffle() is called on spam, the items in the spam list are shuffled.
You’ll see how we use the shuffie() function to make a secret number next.

Getting the Secret Number from the Shuffled Digits

The secret number will be a string of the first num_prcrrs digits of the shuffled list of
Integers:

10. secretNum = "'

11. for i in range (NUM_DIGITS) :

12. secretNum += str (numbers[i])
13. return secretNum

The secretnum variable starts out as a blank string. The for loop on line 11 iterates
nuM_p1ciTs number of times. On each iteration through the loop, the integer at index i is
pulled from the shuffled list, converted to a string, and concatenated to the end of

secretNum.



For example, if numbers refers to the list (9, 8, 3, 5, 4, 7, 1, 2, 0, 6], then on the
first iteration, numbers(o] (that is, 9) will be passed to str(); this returns '9', which is
concatenated to the end of secretnum. On the second iteration, the same happens with
numbers[1] (that is, 8), and on the third iteration the same happens with numbers (27 (that is,
3). The final value of secretnum that is returned is 983 .

Notice that secretnum in this function contains a string, not an integer. This may seem
odd, but remember that you cannot concatenate integers. The expression 9 + 8 + 3
evaluates to 20, but what you wantis '9* + 8' + '3+, which evaluates to '983".

Augmented Assignment Operators

The += operator on line 12 is one of the augmented assignment operators. Normally, if you
want to add or concatenate a value to a variable, you use code that looks like this:

42
spam + 10

>>> spam
>>> spam
>>> spam

52

>>> eggs = 'Hello '

>>> eggs = eggs + 'world!'
>>> eggs

'Hello world!'

The augmented assignment operators are shortcuts that free you from retyping the
variable name. The following code does the same thing as the previous code:

>>> spam = 42

>>> spam += 10 # The same as spam = spam + 10

>>> spam

52

>>> eggs = 'Hello '

>>> eggs += 'world!' # The same as eggs = eggs + 'world!'
>>> eggs

'Hello world!'

There are other augmented assignment operators as well. Enter the following into the
interactive shell:

>>> gpam = 42
>>> spam -= 2
>>> spam

40

The statement spam -= 2 is the same as the statement spam = spam - 2, so the expression
evaluates to spam = 42 - 2 and then to spam = 40.

There are augmented assignment operators for multiplication and division, too:

>>> spam *= 3
>>> spam



120

>>> gpam /= 10
>>> spam

12.0

The statement span *= 3 is the same as spam = spam * 3. So, since spam was set equal to
a0 earlier, the full expression would be spam = 40 * 3, which evaluates to 120. The
expression spam /= 10 is the same as spam = spam / 10, and spam = 120 / 10 evaluates to
12.0. Notice that spam becomes a floating point number after it’s divided.

Calculating the Clues to Give

The getclues () function will return a string with fermi, pico, and bagels clues depending
on the guess and secretNum parameters.

15. def getClues(guess, secretNum) :

16. # Returns a string with the Pico, Fermi, & Bagels clues to the user.
17. if guess == secretNum:

18. return 'You got it!'

19.

20. clues = []

21. for i in range(len(guess)):

22. if guess[i] == secretNum[i]:

23. clues.append('Fermi')

24 . elif guess[i] in secretNum:

25. clues.append('Pico')

"The most obvious step is to check whether the guess is the same as the secret number,
which we do in line 17. In that case, line 18 returns 'vou got it:'.

If the guess isn’t the same as the secret number, the program must figure out what clues
to give the player. The list in cilues will start empty and have 'Ferni' and 'pico' strings

added as needed.

The program does this by looping through each possible index in guess and secretyun.
The strings in both variables will be the same length, so line 21 could have used either
len(guess) OF len(secretNum) and worked the same. As the value of i changes from o to 1 to
2, and so on, line 22 checks whether the first, second, third, and so on character of guess is
the same as the character in the corresponding index of secretnum. If so, line 23 adds the
strhng 'Fermi' tO clues.

Otherwise, line 24 checks whether the number at the ith position in guess exists
anywhere in secretnun. If so, you know that the number is somewhere in the secret number
but not in the same position. In that case, line 25 then adds 'pico’ to clues.

If the c1ues list is empty after the loop, then you know that there are no correct digits
at all in guess:

26. if len(clues) == 0:
27. return 'Bagels'




In this case, line 27 returns the string 'Bagels' as the only clue.

The sort() List Method

Lists have a method named sort () that arranges the list items in alphabetical or numerical
order. When the sort () method is called, it doesn’t return a sorted list but rather sorts the
list in place. This is just like how the shuffie () method works.

You would never want to use return spam.sort () because that would return the value
None. Instead you want a separate line, span.sort (), and then the line return spam.

Enter the following into the interactive shell:

>>> gpam = ['cat', 'dog', 'bat', 'anteater']
>>> gpam.sort ()

>>> spam

['anteater', 'bat', 'cat', 'dog']

>>> gpam = [9, 8, 3, 5.5, 5, 7, 1, 2.1, 0, 6]
>>> gpam.sort ()

>>> spam

(o0, 1, 2.1, 3, 5, 5.5, 6, 7, 8, 9]

When we sort a list of strings, the strings are returned in alphabetical order, but when
we sort a list of numbers, the numbers are returned in numerical order.

On line 29, We uS€ sort () ON clues:

29. clues.sort ()

The reason you want to sort the ciue list alphabetically is to get rid of extra
information that would help the player guess the secret number more easily. If clues was
['Pico', 'Fermi', 'Pico’], that would tell the player that the center digit of the guess is in
the correct position. Since the other two clues are both rico, the player would know that
all they have to do to get the secret number is swap the first and third digits.

If the clues are always sorted in alphabetical order, the player can’t be sure which
number the rermi clue refers to. This makes the game harder and more fun to play.

The join() String Method

The join() string method returns a list of strings as a single string joined together.

30. return ' '.join(clues)

The string that the method is called on (on line 30, this is a single space, * ') appears
between each string in the list. To see an example, enter the following into the interactive

shell:

>>> ' ',join(['My', 'mame', 'is', 'Zophie'])



'My name is Zophie'
>>> ', '.,join(['Life', 'the Universe', 'and Everything'])
'Life, the Universe, and Everything'

So the string that is returned on line 30 is each string in clue combined with a single
space between each string. The join() string method is sort of like the opposite of the
split () string method. While sp1it () returns a list from a split-up string, join() returns a
string from a combined list.

Checking Whether a String Has Only Numbers

The isonlypigits () function helps determine whether the player entered a valid guess:

32. def isOnlyDigits (num) :

33. # Returns True if num is a string of only digits. Otherwise, returns
False.

34. if num == '':

35. return False

Line 34 first checks whether nun is the blank string and, if so, returns raise.
The for loop then iterates over each character in the string num:

37. for i in num:

38. if i not in '0 1 2 3 45 6 7 8 9'.split():
39. return False

40.

41. return True

The value of i will have a single character on each iteration. Inside the for block, the
code checks whether i exists in the list returned by ‘0 1 2 3 4 5 6 7 8 9'.sp1it(). (The
return value from spiit () is equivalent to ('o*, '1+, "2+, '3', '4', '5', 6", 7', '8,
'9+1.) If i doesn’t exist in that list, you know there’s a nondigit character in nun. In that
case, line 39 returns rFalse.

But if the execution continues past the for loop, then you know that every character in
num 1s a digit. In that case, line 41 returns rrue.

Starting the Game

After all of the function definitions, line 44 is the actual start of the program:

44 . print('I am thinking of a %s-digit number. Try to guess what it is.' %
(NUM_DIGITS))
45. print ('The clues I give are...')
46. print('When I say: That means:')
47. print (' Bagels None of the digits is correct.')
48. print (' Pico One digit is correct but in the wrong position.')
(

49. print (' Fermi One digit is correct and in the right position.')




The print () function calls tell the player the rules of the game and what the pico,
fermi, and bagels clues mean. Line 44’s print () call has ¢ (vuv_prcrrs) added to the end
and ss inside the string. This is a technique known as string interpolation.

String Interpolation

String interpolation, also known as string formatting, is a coding shortcut. Normally, if you
want to use the string values inside variables in another string, you have to use the +
concatenation operator:

>>> name = 'Alice'

>>> event = 'party'

>>> location = 'the pool’

>>> day = 'Saturday'’

>>> time = '6:00pm’

>>> print('Hello, ' + name + '. Will you go to the ' + event + ' at ' +

location + ' this ' + day + ' at ' + time + '?")
Hello, Alice. Will you go to the party at the pool this Saturday at 6:00pm?

As you can see, it can be time-consuming to type a line that concatenates several
strings. Instead, you can use string interpolation, which lets you put placeholders like ss
into the string. These placeholders are called conversion specifiers. Once you’ve put in the
conversion specifiers, you can put all the variable names at the end of the string. Each s is
replaced with a variable at the end of the line, in the order in which you entered the
variable. For example, the following code does the same thing as the previous code:

>>> name = 'Alice'

>>> event = 'party'

>>> location = 'the pool’
>>> day = 'Saturday'’

>>> time = '6:00pm’

>>> print ('Hello, %s. Will you go to the %s at %s this %s at %s?' % (name,
event, location, day, time))
Hello, Alice. Will you go to the party at the pool this Saturday at 6:00pm?

Notice that the first variable name is used for the first ¢s, the second variable for the
second s, and so on. You must have the same number of ¢s conversion specifiers as you
have variables.

Another benefit of using string interpolation instead of string concatenation is that
interpolation works with any data type, not just strings. All values are automatically
converted to the string data type. If you concatenated an integer to a string, you’d get this
error:

>>> spam = 42

>>> print('Spam == ' + spam)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: Can't convert 'int' object to str implicitly




String concatenation can only combine two strings, but spam is an integer. You would
have to remember to put str (spam) instead of span.

Now enter this into the interactive shell:

>>> spam = 42
>>> print('Spam is %s' % (spam))
Spam is 42

With string interpolation, this conversion to strings is done for you.

The Game Loop

Line 51 is an infinite while loop that has a condition of True, so it will loop forever until a
break Statement is executed:

51. while True:

52. secretNum = getSecretNum/()

53. print ('I have thought up a number. You have %s guesses to get it.' %
(MAX_GUESS) )

54.

55. guessesTaken = 1

56. while guessesTaken <= MAX_GUESS:

Inside the infinite loop, you get a secret number from the getsecretnum() function.
This secret number is assigned to secretnum. Remember, the value in secretyum is a string,
not an integer.

Line 53 tells the player how many digits are in the secret number by using string
interpolation instead of string concatenation. Line 55 sets the variable guessestaken to 1 to
mark this is as the first guess. Then line 56 has a new while loop that loops as long as the
player has guesses left. In code, this is when guessesTaken is less than or equal to max_cuess.

Notice that the while loop on line 56 is inside another while loop that started on line
51. These loops inside loops are called nested loops. Any break or continue statements, such

as the preak statement on line 66, will only break or continue out of the innermost loop,
not any of the outer loops.

Getting the Player’s Guess

The guess variable holds the player’s guess returned from input (). The code keeps looping
and asking the player for a guess until they enter a valid guess:

57. guess = '

58. while len(guess) != NUM_DIGITS or not isOnlyDigits(guess):
59. print ('Guess #%s: ' % (guessesTaken))

60. guess = input ()

A valid guess has only digits and the same number of digits as the secret number. The



while loop that starts on line 58 checks for the validity of the guess.

"The guess variable is set to the blank string on line 57, so the while loop’s condition on
line 58 is raise the first time it is checked, ensuring the execution enters the loop starting
on line 59.

Getting the Clues for the Player’s Guess

After execution gets past the while loop that started on line 58, guess contains a valid guess.
Now the program passes guess and secretum to the getclues () function:

62. print (getClues (guess, secretNum))
63. guessesTaken += 1

It returns a string of the clues, which are displayed to the player on line 62. Line 63
increments guessesTaken using the augmented assignment operator for addition.

Checking Whether the Player Won or Lost

Now we figure out if the player won or lost the game:

65. if guess == secretNum:

66 . break

67. if guessesTaken > MAX_GUESS:

68. print ('You ran out of guesses. The answer was %s.' %
(secretNum) )

If guess is the same value as secretnum, the player has correctly guessed the secret
number, and line 66 breaks out of the while loop that was started on line 56. If not, then
execution continues to line 67, where the program checks whether the player ran out of
guesses.

If the player still has more guesses, execution jumps back to the while loop on line 56,
where it lets the player have another guess. If the player runs out of guesses (or the
program breaks out of the loop with the break statement on line 66), execution proceeds
past the loop and to line 70.

Asking the Player to Play Again

Line 70 asks the player whether they want to play again:

70. print ('Do you want to play again? (yes or no)')
71. if not input().lower().startswith('y"'):
72. break

The player’s response is returned by input (), has the 1ower () method called on it, and
then the startswith() method called on that to check if the player’s response begins with a
y. If it doesn’t, the program breaks out of the while loop that started on line 51. Since



there’s no more code after this loop, the program terminates.

If the response does begin with y, the program does not execute the break statement and
execution jumps back to line 51. The program then generates a new secret number so the
player can play a new game.

Summary

Bagels is a simple game to program but can be difficult to win. But if you keep playing,
you'll eventually discover better ways to guess using the clues the game gives you. This is
much like how you’ll get better at programming the more you keep at it.

"This chapter introduced a few new functions and methods—shuffie(), sort(), and
join()—along with a couple of handy shortcuts. Augmented assignment operators require
less typing when you want to change a variable’s relative value; for example, span = spam +
1 can be shortened to spam += 1. With string interpolation, you can make your code much
more readable by placing s (called a conversion specifier) inside the string instead of using
many string concatenation operations.

In Chapter 12, we won’t be doing any programming, but the concepts—Cartesian
coordinates and negative numbers—will be necessary for the games in the later chapters of
the book. These math concepts are used not only in the Sonar Treasure Hunt,
Reversegam, and Dodger games we will be making but also in many other games. Even if
you already know about these concepts, give Chapter 12 a brief read to refresh yourself.



12
THE CARTESIAN COORDINATE SYSTEM

"This chapter goes over some simple mathematical concepts you will use in the rest of this
book. In two-dimensional (2D) games, the graphics on the screen can move left or right
and up or down. These games need a way to translate a place on the screen into integers
the program can deal with.

This is where the Cartesian coordinate system comes in. Coordinates are numbers that
represent a specific point on the screen. These numbers can be stored as integers in your
program’s variables.

( )

TOPICS COVERED IN THIS CHAPTER

* Cartesian coordinate systems

* The x-axis and y-axis

* Negative numbers

* Pixels

* The commutative property of addition

¢ Absolute values and the abs () function

Grids and Cartesian Coordinates

A common way to refer to specific places on a chessboard is by marking each row and
column with letters and numbers. Figure 12-1 shows a chessboard that has each row and
column marked.



abcdeft gh

%)

y-axis

A

— N Wk O O ] @
— N W A Ohvr NN @

abcdeft gh

X-axis
Figure 12-1: A sample chessboard with a black knight at (a, 4) and a white knight at (e, 6)

A coordinate for a space on the chessboard is a combination of a row and a column. In
chess, the knight piece looks like a horse head. The white knight in Figure 12-1 is located
at the point (e, 6) since it is in column e and row 6, and the black knight is located at point
(a, 4) because it is in column a and row 4.

You can think of a chessboard as a Cartesian coordinate system. By using a row label
and column label, you can give a coordinate that is for one—and only one—space on the
board. If you’ve learned about Cartesian coordinate systems in math class, you may know
that numbers are used for both the rows and columns. A chessboard using numerical
coordinates would look like Figure 12-2.

The numbers going left and right along the columns are part of the x-axis. The
numbers going up and down along the rows are part of the y-axis. Coordinates are always
described with the x-coordinate first, followed by the y-coordinate. In Figure 12-2, the x-
coordinate for the white knight is 5 and the y-coordinate is 6, so the white knight is located
at the coordinates (5, 6) and not (6, 5). Similarly, the black knight is located at the
coordinate (1, 4), not (4, 1), since the black knight’s x-coordinate is 1 and its y-coordinate is

4.



1 2 3 45 67 8

&\

y-axis
— N WA OO N ®
— N WA OO N ®

1 2 3 45 67 8

X-axis
Figure 12-2: The same chessboard but with numeric coordinates for both rows and columns

Notice that for the black knight to move to the white knight’s position, the black
knight must move two spaces up and four spaces to the right. But you don’t need to look at
the board to figure this out. If you know the white knight is located at (5, 6) and the black
knight is located at (1, 4), you can use subtraction to figure out this information.

Subtract the black knight’s x-coordinate from the white knight’s x-coordinate: 5 — 1 =
4. 'The black knight has to move along the x-axis by four spaces. Now subtract the black
knight’s y-coordinate from the white knight’s y-coordinate: 6 — 4 = 2. The black knight has
to move along the y-axis by two spaces.

By doing some math with the coordinate numbers, you can figure out the distances
between two coordinates.

Negative Numbers

Cartesian coordinates also use negative numbers—numbers that are less than zero. A minus
sign in front of a number shows it is negative: —1 is less than 0. And -2 is less than —1. But 0
itself isn’t positive or negative. In Figure 12-3, you can see the positive numbers increasing
to the right and the negative numbers decreasing to the left on a number line.

|
1
O 12 3 45 6 7 89

(negative) (positive)

Figure 12-3: A number line with positive and negative numbers

The number line is useful to see subtraction and addition. You can think of the



expression 5 + 3 as the white knight starting at position 5 and moving 3 spaces to the right.
As you can see in Figure 12-4, the white knight ends up at position 8. This makes sense,
because 5 + 3 is 8.

S+3=8
AR
-ttt
O 1 2 3 45 6 7 89
(negative) (positive)
9 P

Figure 12-4: Moving the white knight to the right adds to the coordinate.

You subtract by moving the white knight to the left. So if the expression is 5 — 6, the
white knight starts at position 5 and moves 6 spaces to the left, as shown in Figure 12-5.

S-6=-1
VYV S
-ttt ———————
O 1 2 3 45 6 7 89
(negative) (positive)

Figure 12-5: Moving the white knight to the left subtracts from the coordinate.

The white knight ends up at position —1. That means 5 — 6 equals 1.

If you add or subtract a negative number, the white knight moves in the opposite
direction than it does with positive numbers. If you add a negative number, the knight
moves to the /eft. If you subtract a negative number, the knight moves to the 7ighz. The
expression —1 — (—4) would be equal to 3, as shown in Figure 12-6. Notice that -1 — (—4) has
the same answer as -1 + 4.

T |4)=3
DAYV YY)
-ttt
O 1 2 3 45 6 7 89
(negative) (positive)

Figure 12-6: The knight starts at —6 and moves to the right by 4 spaces.

You can think of the x-axis as a number line. Add another number line going up and
down for the y-axis. If you put these two number lines together, you have a Cartesian
coordinate system like the one in Figure 12-7.



Adding a positive number (or subtracting a negative number) would move the knight
up on the y-axis or to the right on the x-axis, and subtracting a positive number (or adding
a negative number) would move the knight down on the y-axis or to the left on the x-axis.

The (0, 0) coordinate at the center is called the o7igin. You may have used a coordinate

system like this in your math class. As you’re about to see, coordinate systems like these
have a lot of little tricks you can use to make figuring out coordinates easier.

..........

H
[(1S5los T 1

Figure 12-7: Putting two number lines together creates a Cartesian coordinate system.

The Coordinate System of a Computer Screen

Your computer screen is made up of pivels, the smallest dot of color a screen can show. It’s
common for computer screens to use a coordinate system that has the origin (0, 0) at the
top-left corner and that increases going down and to the right. You can see this in Figure
12-8, which shows a laptop with a screen resolution that is 1,920 pixels wide and 1,080
pixels tall.

There are no negative coordinates. Most computer graphics use this coordinate system
for pixels on the screen, and you will use it in this book’s games. For programming, it’s
important to know how coordinate systems work—both the kind used for mathematics
and the kind used for computer screens.



X increases

(0, 0) (1919, 0)

y increases

(0, 1079) (1919, 1079)

Figure 12-8: The Cartesian coordinate system on a computer screen

Math Tricks

Subtracting and adding negative numbers is easy when you have a number line in front of
you. It can also be easy without a number line. Here are three tricks to help you add and
subtract negative numbers by yourself.

Trick 1: A Minus Eats the Plus Sign on Its Left

When you see a minus sign with a plus sign on the left, you can replace the plus sign with a
minus sign. Imagine the minus sign “eating” the plus sign to its left. The answer is still the
same, because adding a negative value is the same as subtracting a positive value. So 4 + -2
and 4 — 2 both evaluate to 2, as you can see here:

B
o

+ —

I
I
(%)

1

Trick 2: Two Minuses Combine into a Plus

When you see the two minus signs next to each other without a number between them,
they can combine into a plus sign. The answer is still the same, because subtracting a
negative value is the same as adding a positive value:



4-=-2

-

4+ 2

_

6

Trick 3: Two Numbers Being Added Can Swap Places

You can always swap the numbers in addition. This is the commutative property of addition.
That means that doing a swap like 6 + 4 to 4 + 6 will not change the answer, as you can see
when you count the boxes in Figure 12-9.

6+4=10
0 -+

4+6=10
15 5 e 5 5 R 15 5 M S S I

Figure 12-9: The commutative property of addition lets you swap numbers.

Say you are adding a negative number and a positive number, like -6 + 8. Because you
are adding numbers, you can swap the order of the numbers without changing the answer.
"This means —6 + 8 is the same as 8 + —6. Then when you look at 8 + —6, you see that the
minus sign can eat the plus sign to its left, and the problem becomes 8 — 6 = 2, as you can
see here:

I # Swap the order of the addition.

8+-6
I # The minus sign eats the plus sign on its left.
8-6

—

2

You’ve rearranged the problem so that it’s easier to solve without using a calculator or
computer.

Absolute Values and the abs() Function

A number’s absolute value is the number without the minus sign in front of it. Therefore,



positive numbers do not change, but negative numbers become positive. For example, the
absolute value of —4 is 4. The absolute value of —7 is 7. The absolute value of 5 (which is
already positive) is just 5.

You can figure out the distance between two objects by subtracting their positions and
taking the absolute value of the difference. Imagine that the white knight is at position 4
and the black knight is at position —2. The distance would be 6, since 4 — -2 is 6, and the
absolute value of 6 is 6.

It works no matter what the order of the numbers is. For example, -2 — 4 (that is,
negative two minus four) is —6, and the absolute value of —6 is also 6.

Python’s abs () function returns the absolute value of an integer. Enter the following
into the interactive shell:

>>> abs(-5)

5

>>> abs(42)

42

>>> abs(-10.5)
10.5

The absolute value of -5 is 5. The absolute value of a positive number is just the
number, so the absolute value of 42 is 42. Even numbers with decimals have an absolute
value, so the absolute value of -10.5is 10.5.

Summary

Most programming doesn’t require understanding a lot of math. Up until this chapter,
we've been getting by with simple addition and multiplication.

Cartesian coordinate systems are needed to describe where a certain position is located
in a two-dimensional area. Coordinates have two numbers: the x-coordinate and the y-
coordinate. The x-axis runs left and right, and the y-axis runs up and down. On a
computer screen, the origin is in the top-left corner and the coordinates increase going
right and downward.

The three math tricks you learned in this chapter make it easy to add positive and
negative integers. The first trick is that a minus sign will eat the plus sign on its left. The
second trick is that two minuses next to each other will combine into a plus sign. The third
trick is that you can swap the position of the numbers you are adding.

The rest of the games in this book use these concepts because they have two-
dimensional areas in them. All graphical games require understanding how Cartesian
coordinates work.



13
SONAR TREASURE HUNT

The Sonar Treasure Hunt game in this chapter is the first to make use of the Cartesian
coordinate system that you learned about in Chapter 12. This game also uses data
structures, which is just a fancy way of saying it has list values that contain other lists and
similar complex variables. As the games you program become more complicated, you'll
need to organize your data into data structures.

In this chapter’s game, the player drops sonar devices at various places in the ocean to
locate sunken treasure chests. Sonar is a technology that ships use to locate objects under
the sea. The sonar devices in this game tell the player how far away the closest treasure
chest is, but not in what direction. But by placing multiple sonar devices, the player can
figure out the location of the treasure chest.

( )

TOPICS COVERED IN THIS CHAPTER

® Data structures

* The Pythagorean theorem

® The remove () list method

® The isaigit () string method

® The sys.exit () function

\ J/

There are 3 chests to collect, and the player has only 20 sonar devices to use to find
them. Imagine that you couldn’t see the treasure chest in Figure 13-1. Because each sonar
device can find only the distance from the chest, not the chest’s direction, the treasure
could be anywhere on the ring around the sonar device.



Figure 13-1: The sonar device’s ring touches the (hidden) treasure chest.

But multiple sonar devices working together can narrow down the chest’s location to
the exact coordinates where the rings intersect (see Figure 13-2).

Figure 13-2: Combining multiple rings shows where treasure chests could be hidden.

Sample Run of Sonar Treasure Hunt

Here’s what the user sees when they run the Sonar Treasure Hunt program. The text the
player enters is shown in bold.

S ONAR!

Would you like to view the instructions? (yes/no)
no
1 2 3 4 5
012345678901234567890123456789012345678901234567890123456789

I
14
14
14
14
14
1§
1§
14
14
1§
14
14
1§
1§
1§
14
14
14
1§
14
14
14
1§
14
14
1§
1§
1§
1§
/
/
’ 14
;
/
;
1§
1§
1§
/
1§
<N oo W



9 N AN AN ANRNIEN N ANERNIEN N AN N AN N N N N IR \\\9
10\ N AN AN AN AN N AN AN NN T Y Y MR N ANEN lO
ll AN AN N N N AN N N NN N N N N T Y VAN N N ll
12 AN N AN ARNIEN N N N N N AN N ANIENEN ANEN N IR 12
13\ RN N N N T R NN N ARNEEN N AN N ANIENEN N AN AN 13
14 ANRNIEN AN N N AN ANRNIEN N AN N AN ARNEEN N AN AN IR N NN N N 14

012345678901234567890123456789012345678901234567890123456789
1 2 3 4 5
You have 20 sonar device(s) left. 3 treasure chest(s) remaining.
Where do you want to drop the next sonar device? (0-59 0-14) (or type quit)
25 5
1 2 3 4 5
012345678901234567890123456789012345678901234567890123456789

s
’
’
s
’
’
’
’
’
s
’
’
’
s
’
’
s
’
’
s
s
’
s
s
’
s
s
s
s
s

’
s
s
s
s
s
s
s
s
s
s
s
s
s
s
ul
s
’
s
s
4
P
P
P
P
P
P
P
P
P
P
’
P
P
P
’
P
O Jo Ul WN

N AN AN AURNIEN N ANERNIEN N AN N AN N N N N IR \\\9
10\ N AN AN AN AN N AN AN NN T Y Y MR N ANEN lO
ll AN AN N AN N N NN N N N N T Y VAN N N ll
12 AN N AN ARNIEN N N N AN N ANIENEN ANEN N IR 12
13\ RN N N N T MR NN N ARNIEN N AN N ANIENEN N AN AN 13
14 ANRNIEN AN N N AN ANRNIEN N AN N AN ARNIEN N AN AN ANIENEN A N N N NN 14

012345678901234567890123456789012345678901234567890123456789
1 2 3 4 5
Treasure detected at a distance of 5 from the sonar device.
You have 19 sonar device(s) left. 3 treasure chest(s) remaining.
Where do you want to drop the next sonar device? (0-59 0-14) (or type quit)
30 5
1 2 3 4 5
012345678901234567890123456789012345678901234567890123456789

o
l
t
t
t
l
t
t
t
t
l
t

/
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
(@]

’
s
s
s
s
s
s
s
s
s
s
s
s
s
s
w
s
’
s
w
l
l
l
t
4
P
P
P
P
P
P
P
P
P
P
’
P
P
P
’
P
O J o Ul WP

10\ N AN AN AN AN N AN AN NN T Y Y MR N ANEN lO
ll AN AN N AN N N N NN N RN N N T Y WA N N ll
12 AN N AN ARNIEN N N N AN N ANIENEN ANEN N IR 12
13\ AN N N T VR VNN N ARNIEN N AN N ANIENEN N AN AN 13
14 ANRNIEN AN N N AN ANRNIEN N AN N AN ARNEEN N AN AN ANIENEN A N N N NN 14

012345678901234567890123456789012345678901234567890123456789
1 2 3 4 5
Treasure detected at a distance of 3 from the sonar device.



You have 18 sonar device(s) left. 3 treasure chest(s) remaining.
Where do you want to drop the next sonar device? (0-59 0-14) (or type quit)
25 10
1 2 3 4 5
012345678901234567890123456789012345678901234567890123456789

s
’
’
’
’
’
’
’
’
’
’
s
’
’
’
’
s
’
’
’
’
’
s
s
s
s
’
’
s
’

s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
wul
s
’
s
w
l
l
l
t
P
P
P
P
P
P
P
P
P
P
P
’
P
P
P
’
P
O J o Ul WP

012345678901234567890123456789012345678901234567890123456789
1 2 3 4 5
Treasure detected at a distance of 4 from the sonar device.
You have 17 sonar device(s) left. 3 treasure chest(s) remaining.
Where do you want to drop the next sonar device? (0-59 0-14) (or type quit)
29 8
1 2 3 4 5
012345678901234567890123456789012345678901234567890123456789

0 N AN AN AN AN AN ARNERN A N N N NN ARNERN AN AURNIRN

l
t
t
t
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
(@]

p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

b
P
p
p

>
l
l
l
t
y
p
p
p
y
y
p
y
y
p
y
y
y
y
p
p
p
0 10Ul I WN R

012345678901234567890123456789012345678901234567890123456789
1 2 3 4 5
You have found a sunken treasure chest!
You have 16 sonar device(s) left. 2 treasure chest(s) remaining.
Where do you want to drop the next sonar device? (0-59 0-14) (or type quit)
--snip--

Source Code for Sonar Treasure Hunt

Enter the following source code in a new file and save the file as sonar.py. Then run it by
pressing F5 (or FN-F5 on OS X). If you get errors after entering this code, compare the



code you typed to the book’s code the online diff tool at
https://www.nostarch.com/inventwithpython#diff.
MAKE SURE YOURE
USING PYTHON 3,
NOT PYTHON 2!
sonar.py
1. # Sonar Treasure Hunt
2
3. import random
4. import sys
5. import math
6
7. def getNewBoard() :
8. # Create a new 60x15 board data structure.
9. board = []
10. for x in range(60): # The main list is a list of 60 lists.
11. board.append ([])
12. for v in range(1l5): # Each list in the main list has
15 single-character strings.
13. # Use different characters for the ocean to make it more
readable.
14. if random.randint (0, 1) == 0:
15. board[x] .append('~")
16. else:
17. board[x] .append (' ")
18. return board
19.
20. def drawBoard (board) :
21. # Draw the board data structure.
22. tensDigitsLine = " # Initial space for the numbers down the left
side of the board
23. for i in range(l, 6):
24 . tensDigitsLine += (' ' * 9) + str(i)
25.
26. # Print the numbers across the top of the board.
27. print (tensDigitsLine)
28. print (' "+ ('0123456789"' * 6))
29. print ()
30.
31. # Print each of the 15 rows.

32. for row in range(15):


https://www.nostarch.com/inventwithpython#diff

33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47 .
48.
49.
50.
51.
52.

53.
54.
55.
56.

57.
58.
59.
60.
61.

62.

63.

64.
65.

66.
67.
68.
69.
70.
71.
72.

73.
74.
75.
76.
77 .
78.
79.
80.
81.
82.
83.
84.

85.
86.

def

def

# Single-digit numbers need to be padded with an extra space.
if row < 10:

extraSpace bt
else:

extraSpace "

# Create the string for this row on the board.
boardRow = '
for column in range(60) :

boardRow += board[column] [row]

oP
oe

print ('%s%s %$s %s' % (extraSpace, row, boardRow, row))
# Print the numbers across the bottom of the board.
print ()

print (' ' + ('0123456789' * 6))

print (tensDigitsLine)

getRandomChests (numChests) :
# Create a list of chest data structures (two-item lists of x, y int
coordinates) .

chests = []
while len(chests) < numChests:
newChest = [random.randint (0, 59), random.randint (0, 14)]
if newChest not in chests: # Make sure a chest is not already
here.

chests.append (newChest)
return chests

isOnBoard(x, Vy):

# Return True if the coordinates are on the board; otherwise, return

False.
return x >= 0 and x <= 59 and y >= 0 and y <= 14

def makeMove (board, chests, x, v):

# Change the board data structure with a sonar device character.
Remove treasure chests from the chests list as they are found.
# Return False if this is an invalid move.
# Otherwise, return the string of the result of this move.
smallestDistance = 100 # Any chest will be closer than 100.
for ¢x, cy in chests:
distance = math.sgrt((cx - x) * (cx - x) + (cy - y) * (cy - vy))

if distance < smallestDistance: # We want the closest treasure
chest.
smallestDistance = distance

smallestDistance = round(smallestDistance)

if smallestDistance == 0:
# xy 1s directly on a treasure chest!
chests.remove ([x, v])
return 'You have found a sunken treasure chest!'
else:
if smallestDistance < 10:
board[x] [y] = str(smallestDistance)

return 'Treasure detected at a distance of %s from the sonar

Q

device.' % (smallestDistance)
else:
board[x] [y] = 'X'



87.

88.
89.
90.

91.

92.
93.
94.
95.
96.
97.
98.
99.

100.
101.
102.
103.
104.
105.

106.
107.
108.
109.

110.

111.

112.
113.

114.

115.

116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.

return 'Sonar did not detect anything. All treasure chests
out of range.'

def enterPlayerMove (previousMoves) :
# Let the player enter their move. Return a two-item list of int
Xy coordinates.
print ('Where do you want to drop the next sonar device? (0-59 0-14)
(or type quit) ')
while True:

move = input ()

if move.lower () == 'quit':
print ('Thanks for playing!')
sys.exit ()

move = move.split()
if len(move) == 2 and move[0].isdigit() and move[l].isdigit() and
isOnBoard (int (move[0]), int (movel[l])):
if [int(move[0]), int(move[l])] in previousMoves:
print ('You already moved there.')
continue
return [int (move[0]), int (movel[l])]

print ('Enter a number from 0 to 59, a space, then a number from
0 to 14.")

def showInstructions():
print ('''Instructions:

You are the captain of the Simon, a treasure-hunting ship. Your current
mission

is to use sonar devices to find three sunken treasure chests at the
bottom of

the ocean. But you only have cheap sonar that finds distance, not
direction.

Enter the coordinates to drop a sonar device. The ocean map will be
marked with

how far away the nearest chest is, or an X if it is beyond the sonar
device's

range. For example, the C marks are where chests are. The sonar device
shows a

3 because the closest chest is 3 spaces away.

1 2 3
012345678901234567890123456789012

O N ANRNEEN N AN AN N AN AN \"'O
l N N AN N ANRNEEN ARNIEN N ~~~~~1
2\ \C\\3\ \C\ \\\\\ AN \\2
3 \\\\\\\\\\\\\\\\\\ N N 3
4 N \C\ AN N N ANIENEN AN 4

012345678901234567890123456789012
1 2 3
(In the real game, the chests are not visible in the ocean.)

Press enter to continue...''')
input ()

print ('''When you drop a sonar device directly on a chest, you
retrieve it and the other



135.

136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.

151.

152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.

176.
177.
178.

179.
180.
181.
182.
183.
184.
185.
186.
187.
188.
189.

sonar devices update to show how far away the next nearest chest is.

chests

The

are beyond the range of the sonar device on the left, so it shows an X.

1 2 3
012345678901234567890123456789012

0 A NN NN N N e
R R . e 1
5 Sty U L L

SED Slir APV ) PO A
O S U ot 3
7 N SN

012345678901234567890123456789012
1 2 3

The treasure chests don't move around. Sonar devices can detect treasure

chests

up to a distance of 9 spaces. Try to collect all 3 chests before running

out of
sonar devices. Good luck!

Press enter to continue...''')
input ()

print ('S O N A R !")
print ()
print ('Would you like to view the instructions? (yes/no)')
if input() .lower () .startswith('y'):
showInstructions ()

while True:
# Game setup
sonarDevices = 20
theBoard = getNewBoard ()
theChests = getRandomChests (3)
drawBoard (theBoard)
previousMoves = []

while sonarDevices > 0:
# Show sonar device and chest statuses.

print ('You have %s sonar device(s) left. %s treasure chest(s)

[

remaining.' % (sonarDevices, len(theChests)))

X, y = enterPlayerMove (previousMoves)

previousMoves.append([x, v]) # We must track all moves so that

sonar devices can be updated.

moveResult = makeMove (theBoard, theChests, x, V)
if moveResult == False:

continue
else:

if moveResult == 'You have found a sunken treasure chest!':

# Update all the sonar devices currently on the map.

for x, y in previousMoves:
makeMove (theBoard, theChests, x, Vv)
drawBoard (theBoard)
print (moveResult)



190.

191. if len(theChests) ==
192. print ('You have found all the sunken treasure chests!
Congratulations and good game! ')

193. break

194.

195. sonarDevices -= 1

196.

197. if sonarDevices == 0:

198. print ('We\'ve run out of sonar devices! Now we have to turn the
ship around and head')

199. print ('for home with treasure chests still out there! Game
over. ')

200. print (' The remaining chests were here:')

201. for x, yv in theChests:

202. print (' %s, %s' % (x, vy))

203.

204 . print ('Do you want to play again? (yes or no)')

205. if not input().lower () .startswith('y'):

206. sys.exit ()

Designing the Program

Before trying to understand the source code, play the game a few times to learn what is
going on. The Sonar Treasure Hunt game uses lists of lists and other complicated
variables, called data structures. Data structures store arrangements of values to represent
something. For example, in Chapter 10, a Tic-Tac-Toe board data structure was a list of
strings. The string represented an X, an O, or an empty space, and the index of the string in
the list represented the space on the board. The Sonar Treasure Hunt game will have
similar data structures for the locations of treasure chests and sonar devices.

Importing the random, sys, and math Modules

At the start of the program, we import the randon, sys, and nath modules:

# Sonar Treasure Hunt

import sys

1

2.

3. import random
4

5. import math

The sys module contains the exit() function, which terminates the program
immediately. None of the lines of code after the sys.exit () call will run; the program just
stops as though it has reached the end. This function is used later in the program.

"The math module contains the sqgrt () function, which is used to find the square root of
a number. The math behind square roots is explained the “Finding the Closest Treasure
Chest” on page 186.



Creating a New Game Board

The start of each new game requires a new board data structure, which is created by
getNewBoard (). 'he Sonar Treasure Hunt game board is an ASCII art ocean with x- and y-
coordinates around it.

When we use the board data structure, we want to be able to access its coordinate
system in the same way we access Cartesian coordinates. To do that, we’ll use a list of lists
to call each coordinate on the board like this: voara(x] [y]. The x-coordinate comes before
the y-coordinate—to get the string at coordinate (26, 12), you access board[26][12], not
board[12] [26].

7. def getNewBoard() :

8. # Create a new 60x15 board data structure.

9. board = T[]

10. for x in range(60): # The main list is a list of 60 lists.

11. board.append([])

12. for v in range(1l5): # Each list in the main list has

15 single-character strings.

13. # Use different characters for the ocean to make it more
readable.

14. if random.randint (0, 1) == 0:

15. board[x] .append('~")

16. else:

17. board[x] .append (' ")

The voara data structure is a list of lists of strings. The first list represents the x-
coordinate. Since the game’s board is 60 characters across, this first list needs to contain 60
lists. At line 10, we create a for loop that will append 60 blank lists to it.

But poard is more than just a list of 60 blank lists. Each of the 60 lists represents an x-
coordinate of the game board. There are 15 rows in the board, so each of these 60 lists
must contain 15 strings. Line 12 is another for loop that adds 15 single-character strings
that represent the ocean.

"The ocean will be a bunch of randomly chosen '~ and ' strings. The tilde (~) and
backtick (*) characters—located next to the 1 key on your keyboard—will be used for the
ocean waves. To determine which character to use, lines 14 to 17 apply this logic: if the
return value of random.randint () is 0, add the '~ string; otherwise, add the '~ string. This
will give the ocean a random, choppy look.

For a smaller example, if boara were set to (['~', '~', *>'], [['~', '~', '], [['~",
'~t, 0], [r~r, v, 1, 1, '~ ) then the board it drew would look like this:

\\\\\

Finally, the function returns the value in the voara variable on line 18:

18. return board




Drawing the Game Board

Next we’ll define the drawsoara() method that we call whenever we actually draw a new

board:

20. def drawBoard (board) :

"The full game board with coordinates along the edges looks like this:

1 2 3 4 5
012345678901234567890123456789012345678901234567890123456789
0 e e N NN N N N N e N N e NN N NN
1 e R - - N NN NS U SN
5 N~ L e e e N N NN N NN N NN D
3 e - NN N NN~ N T T N SR NN -3
A N e e e N N NN NN NN g
5 - NN~ N s T T T T L 5
6 N NN naaan - e N e N e NN NN N NN LN g
. NN e NN N NN N N e e N e 7
8 et en R T T T U T T N N St g
9 NN N~ R R R S T T S g
10 “emmm e T U T U T S NN N 10
11 mmad NNt IAA IR N BREEEE N N e 11
12 e mn s NN NN naaaans N Nh_aaaaaans N N2 12
13 St NN N NN NSNS NN aaaaaas e NN NN Nl 13
L4 S NN e N N N N NN N LN N NN N NN LN N NN N 1
012345678901234567890123456789012345678901234567890123456789

1 2 3 4 5

The drawing in the drawsoard () function has four steps:

1. Create a string variable of the line with 1, 2, 3, 4, and 5 spaced out with wide gaps.
These numbers mark the coordinates for 10, 20, 30, 40, and 50 on the x-axis.

2. Use that string to display the x-axis coordinates along the top of the screen.

3. Print each row of the ocean along with the y-axis coordinates on both sides of the
screen.

4. Print the x-axis again at the bottom. Having coordinates on all sides makes it easier to
see where to place a sonar device.

Drawing the X-Coordinates Along the Top of the Board

"The first part of drawsoard () prints the x-axis at the top of the board. Because we want each
part of the board to be even, each coordinate label can take up only one character space.
When the coordinate numbering reaches 10, there are two digits for each number, so we
put the digits in the tens place on a separate line, as shown in Figure 13-3. The x-axis is
organized so that the first line shows the tens-place digits and the second line shows the
onesplace digits.



1 2 3
0123456789012345678901234567890123456789

U Far™ ™ N ™ N me™ N ™ g™ mp™ Y Y g™ m™ R R ™ ™ rurare ™ rane U

Figure 13-3: The spacing used for printing the top of the game board

Lines 22 to 24 create the string for the first line of the board, which is the tens-place
part of the x-axis:

21. # Draw the board data structure.

22. tensDigitsLine = ' # Initial space for the numbers down the left
side of the board

23. for i in range(l, 6):

24. tensDigitsLine += (' ' * 9) + str(i)

The numbers marking the tens position on the first line all have 9 spaces between them,
and there are 13 spaces in front of the 1. Lines 22 to 24 create a string with this line and
store it in a variable named tenspigitsLine:

26. # Print the numbers across the top of the board.
27. print (tensDigitsLine)

28. print (' "+ ('0123456789' * 6))

29. print ()

To print the numbers across the top of the game board, first print the contents of the
tensDigitsLine variable. Then, on the next line, print three spaces (so that this row lines up
correctly), and then print the string ‘0123456789 six times: ('0123456789" * 6).

Drawing the Ocean

Lines 32 to 44 print each row of the ocean waves, including the numbers down the sides to
label the y-axis:

31. # Print each of the 15 rows.

32. for row in range(15):

33. # Single-digit numbers need to be padded with an extra space.
34. if row < 10:

35. extraSpace = ' '

36. else:

37. extraSpace = ''

The for loop prints rows 0 to 14, along with the row numbers on either side of the

board.

But we have the same problem that we had with the x-axis. Numbers with only one
digit (such as 0, 1, 2, and so on) take up only one space when printed, but numbers with
two digits (such as 10, 11, and 12) take up two spaces. The rows won’t line up if the
coordinates have different sizes. The board would look like this:

8 N N N AN AN AN AN AN 8



10 A N N N N N Y W W VL N N N U U VR U N U NN lO

ll AN R N N Y N N N N N N N N N N N N N N W N N NN N N ll

The solution is easy: add a space in front of all the single-digit numbers. Lines 34 to 37
set the variable extraspace to either a space or an empty string. The extraspace variable is
always printed, but it has a space character only for single-digit row numbers. Otherwise,
it is an empty string. This way, all of the rows will line up when you print them.

Printing a Row in the Ocean

The poara parameter is a data structure for the entire ocean’s waves. Lines 39 to 44 read
the boara variable and print a single row:

39. # Create the string for this row on the board.

40. boardRow = '

41. for column in range(60) :

42. boardRow += board[column] [row]

43,

44 . print ('%s%s %$s %s' % (extraSpace, row, boardRow, row))

At line 40, voardrow starts as a blank string. The for loop on line 32 sets the row variable
for the current row of ocean waves to print. Inside this loop on line 41 is another for loop
that iterates over each column of the current row. We make poardrow by concatenating
board[column] [row] in this loop, which means concatenating board(0] [row], board[1] [row],
board[2] [row], and SO on up to board[(59][row]. This is because the row contains 60
characters, from index o to index 59.

The for loop on line 41 iterates over integers o to 59. On each iteration, the next
character in the board data structure is copied to the end of boardarow. By the time the loop
is done, boardrow has the row’s complete ASCII art waves. The string in boardrow is then
printed along with the row numbers on line 44.

Drawing the X-Coordinates Along the Bottom of the Board

Lines 46 to 49 are similar to lines 26 to 29:

46. # Print the numbers across the bottom of the board.
47. print ()

48. print (' '+ ('0123456789' * 6))

49. print (tensDigitsLine)

These lines print the x-coordinates at the bottom of the board.

Creating the Random Treasure Chests

The game randomly decides where the hidden treasure chests are. The treasure chests are



represented as a list of lists of two integers. These two integers are the x- and y-coordinates
of a single chest. For example, if the chest data structure were (12, 21, (2, 4], [10, 011,
then this would mean there were three treasure chests, one at (2, 2), another at (2, 4), and a
third at (10, 0).

The getrRandomchests () function creates a certain number of chest data structures at
randomly assigned coordinates:

51. def getRandomChests (numChests) :

52. # Create a list of chest data structures (two-item lists of x, y int
coordinates) .

53. chests = []

54. while len(chests) < numChests:

55. newChest = [random.randint (0, 59), random.randint (0, 14)]

56. if newChest not in chests: # Make sure a chest is not already
here.

57. chests.append (newChest)

58. return chests

The nunchests parameter tells the function how many treasure chests to generate. Line
54’s while loop will iterate until all of the chests have been assigned coordinates. Two
random integers are selected for the coordinates on line 55. The x-coordinate can be
anywhere from 0 to 59, and the y-coordinate can be anywhere from 0 to 14. The
[random.randint (0, 59), random.randint (0, 14)]expresﬁ(nlvvﬂlevaluatetozlhstvalue]jke
[2, 21 0r [2, 4] or [10, o].If these coordinates do not already exist in the chests list, they
are appended to chests on line 57.

Determining Whether a Move Is Valid

When the player enters the x- and y-coordinates for where they want to drop a sonar
device, we need to make sure that the numbers are valid. As mentioned before, there are
two conditions for a move to be valid: the x-coordinate must be between 0 and 59, and the
y-coordinate must be between 0 and 14.

The isoneoard() function uses a simple expression with and operators to combine these
conditions into one expression and to ensure that each part of the expression is True:

60. def isOnBoard(x, Vy):

61. # Return True if the coordinates are on the board; otherwise, return
False.
62. return x >= 0 and x <= 59 and y >= 0 and y <= 14

Because we are using the ana Boolean operator, if even one of the coordinates is invalid,
then the entire expression evaluates to ralse.

Placing a Move on the Board

In the Sonar Treasure Hunt game, the game board is updated to display a number that



represents each sonar device’s distance to the closest treasure chest. So when the player
makes a move by giving the program an x- and y-coordinate, the board changes based on
the positions of the treasure chests.

64. def makeMove (board, chests, x, vy):

65. # Change the board data structure with a sonar device character.
Remove treasure chests from the chests list as they are found.

66 . # Return False if this is an invalid move.

67. # Otherwise, return the string of the result of this move.

The naxemove () function takes four parameters: the game board’s data structure, the
treasure chest’s data structure, the x-coordinate, and the y-coordinate. The makemove ()
function will return a string value describing what happened in response to the move:

* If the coordinates land directly on a treasure chest, makeMove () returns 'vou have found a

sunken treasure chest!'.

* If the coordinates are within a distance of 9 or less of a chest, makeMove () returns
'Treasure detected at a distance of %s from the sonar device.' 6Vheref%sisreplaced
with the integer distance).

‘()ther“dse,makeMove()Vvﬂlreturn.'Sonar did not detect anything. All treasure chests

out of range.'.

Given the coordinates of where the player wants to drop the sonar device and a list of
x- and y-coordinates for the treasure chests, you’ll need an algorithm to find out which
treasure chest is closest.

Finding the Closest Treasure Chest

Lines 68 to 75 are an algorithm to determine which treasure chest is closest to the sonar
device.

68. smallestDistance = 100 # Any chest will be closer than 100.

69. for cx, cy in chests:

70. distance = math.sgrt((cx - x) * (cx - x) + (cy - y) * (cy - Vy))

71.

72. if distance < smallestDistance: # We want the closest treasure
chest.

73. smallestDistance = distance

The x and vy parameters are integers (say, 3 and s5), and together they represent the
location on the game board where the player guessed. The chests variable will have a value
such as (15, 01, [0, 21, [4, 211, which represents the locations of three treasure chests.
Figure 13-4 illustrates this value.

To find the distance between the sonar device and a treasure chest, we’ll need to do
some math to find the distance between two x- and y-coordinates. Let’s say we place a
sonar device at (3, 5) and want to find the distance to the treasure chest at (4, 2).



b
il

o b B WM

Figure 13-4: The treasure chests represented by [[5, 0], [0, 2], [4, 2]]

To find the distance between two sets of x- and y-coordinates, we’ll use the Pythagorean
theorem. "T'his theorem applies to 7ight triangles—triangles where one corner is 90 degrees,
the same kind of corner you find in a rectangle. The Pythagorean theorem says that the
diagonal side of the triangle can be calculated from the lengths of the horizontal and
vertical sides. Figure 13-5 shows a right triangle drawn between the sonar device at (3, 5)
and the treasure chest at (4, 2).

o 1 2 3 4 5 6 7

B
(2]
"l-.._-
o

1"
6

Figure 13-5: The board with a right triangle drawn over the sonar device and a treasure chest

The Pythagorean theorem is 4° + b* = ¢, in which 4 is the length of the horizontal side,
b is the length of the vertical side, and ¢ is the length of the diagonal side, or hypotenuse.
These lengths are squared, which means that number is multiplied by itself. “Unsquaring” a
number is called finding the number’s sguare root, as we’ll have to do to get ¢ from .

Let’s use the Pythagorean theorem to find the distance between the sonar device at (3,
5) and chest at (4, 2):



1. To find 4, subtract the second x-coordinate, 4, from the first x-coordinate, 3: 3 —4 = —
1.

2. To find #%, multiply 2 by 2: -1 x -1 = 1. (A negative number times a negative number is
always a positive number.)

To find b, subtract the second y-coordinate, 2, from the first y-coordinate, 5: 5 — 2 = 3.
To find %, multiply & by #: 3 x 3 =9.

To find &, add #? and #%: 1 + 9 = 10.

To get ¢ from ¢, you need to find the square root of 2.

AN ey

"The math module that we imported on line 5 has a square root function named sqrt ().
Enter the following into the interactive shell:

>>> import math

>>> math.sqgrt (10)

3.1622776601683795

>>> 3.1622776601683795 * 3.1622776601683795
10.000000000000002

Notice that multiplying a square root by itself produces the square number. (The extra
2 at the end of the 10 is from an unavoidable slight imprecision in the sqrt () function.)

By passing ¢ to sqrt (), we can tell that the sonar device is 3.16 units away from the
treasure chest. The game will round this down to 3.

Let’s look at lines 68 to 70 again:

68. smallestDistance = 100 # Any chest will be closer than 100.
69. for cx, cy in chests:
70. distance = math.sgrt((cx - x) * (cx - x) + (cy - y) * (cy - vy))

The code inside line 69’s for loop calculates the distance of each chest. Line 68 gives
smallestDistance the impossibly long distance of 100 at the beginning of the loop so that at
least one of the treasure chests you find will be put into smalilestpistance in line 73. Since
cx - x represents the horizontal distance # between the chest and sonar device, (cx - x) *

(cx - x) is the 4° of our Pythagorean theorem calculation. It is added to (cy - v) * (cy -

v), the #?. This sum is ¢ and is passed to sqrt () to get the distance between the chest and
sonar device.

We want to find the distance between the sonar device and the closest chest, so if this
distance is less than the smallest distance, it is saved as the new smallest distance on line 73:

72. if distance < smallestDistance: # We want the closest treasure
chest.
73. smallestDistance = distance

By the time the for loop has finished, you know that smallestpistance holds the
shortest distance between the sonar device and all of the treasure chests in the game.



Removing Values with the remove() List Method

The remove() list method removes the first occurrence of a value matching the passed-in
argument. For example, enter the following into the interactive shell:

>>> x = [42, 5, 10, 42, 15, 42]
>>> x.remove (10)
>>> X

(42, 5, 42, 15, 42]

The 10 value has been removed from the x list.
Now enter the following into the interactive shell:

>>> x = [42, 5, 10, 42, 15, 42]
>>> x.remove (42)
>>> X

[5, 10, 42, 15, 42]

Notice that only the first 42 value was removed and the second and third ones are still
there. The remove () method removes the first, and only the first, occurrence of the value
you pass it.

If you try to remove a value that isn’t in the list, you’ll get an error:

>>> x = [5, 42]
>>> x.remove(1l0)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: list.remove(x): X not in list

Like the append () method, the remove () method is called on a list and does not return a
list. You want to use code like x.remove (42), not x = x.remove (42).

Let’s go back to finding the distances between sonar devices and treasure chests in the
game. The only time that smallestpistance is equal to o is when the sonar device’s x- and
y-coordinates are the same as a treasure chest’s x- and y-coordinates. This means the
player has correctly guessed the location of a treasure chest.

77. if smallestDistance == 0:

78. # xy 1s directly on a treasure chest!

79. chests.remove ([x, y])

80. return 'You have found a sunken treasure chest!'

When this happens, the program removes this chest’s two-integer list from the chests
data structure with the remove () list method. Then the function returns 'vou have found a

sunken treasure chest!'.

But if smallestbistance is not o, the player didn’t guess an exact location of a treasure
chest, and the e1se block starting on line 81 executes:

81. else:
82. if smallestDistance < 10:



83. board[x] [y] = str(smallestDistance)
84 . return 'Treasure detected at a distance of %s from the sonar

[

device.' % (smallestDistance)

85. else:
86. board[x] [y] = 'X!'
87. return 'Sonar did not detect anything. All treasure chests

out of range.'

If the sonar device’s distance to a treasure chest is less than 10, line 83 marks the board
with the string version of smallestpistance. If not, the board is marked with an 'x'. This
way, the player knows how close each sonar device is to a treasure chest. If the player sees a
0, they know they’re way off.

Getting the Player’'s Move

The enterplayervove() function collects the x- and y-coordinates of the player’s next
move:

89. def enterPlayerMove (previousMoves) :

90. # Let the player enter their move. Return a two-item list of int
xy coordinates.

91. print ('Where do you want to drop the next sonar device? (0-59 0-14)
(or type quit) ')

92. while True:

93. move = input ()

94. if move.lower() == 'quit':

95. print (' Thanks for playing!')

96. sys.exit ()

The previousMoves parameter is a list of two-integer lists of the previous places the
player put a sonar device. This information will be used so that the player cannot place a
sonar device somewhere they have already put one.

The while loop will keep asking the player for their next move until they enter
coordinates for a place that doesn’t already have a sonar device. The player can also enter
'quit’ to quit the game. In that case, line 96 calls the sys.exit () function to terminate the
program immediately.

Assuming the player has not entered 'quit', the code checks that the input is two
integers separated by a space. Line 98 calls the sp1it () method on move as the new value of

move:
98. move = move.split ()
99. if len(move) == 2 and move[0].isdigit() and move[l].isdigit() and
isOnBoard (int (move[0]), int(movel[ll]l)):
100. if [int (move[0]), int(movel[l])] in previousMoves:
101. print ('You already moved there.')
102. continue
103. return [int (move[0]), int (movel[l])]
104.
105. print ('Enter a number from 0 to 59, a space, then a number from

0 to 14.")




If the player typed in a value like "1 2 3, then the list returned by sp1it () would be
(1, +2', +3'1. In that case, the expression len(move) == 2 would be raise (the list in
move should be only two numbers because it represents a coordinate), and the entire
expression would evaluate immediately to raise. Python doesn’t check the rest of the
expression because of short-circuiting (which was described in “Short-Circuit Evaluation”
on page 139).

If the list’s length is 2, then the two values will be at indexes move[01 and mover11. To
check whether those values are numeric digits (like '2' or '17'), you could use a function
like isonlypigits() from “Checking Whether a String Has Only Numbers” on page 158.
But Python already has a method that does this.

The string method isdigit() returns True if the string consists solely of numbers.
Otherwise, it returns ralse. Enter the following into the interactive shell:

>>> '42'.isdigit ()

True

>>> 'forty'.isdigit ()
False

>>> '' . isdigit ()
False

>>> 'hello'.isdigit ()
False

>>> x = '10"

>>> x.isdigit ()

True

Both move (0] .isdigit () and move[1].isdigit () must be True for the whole condition to
be True. The final part of line 99’s condition calls the isonBoara() function to check
whether the x- and y-coordinates exist on the board.

If the entire condition is True, line 100 checks whether the move exists in the
previoustoves list. If it does, then line 102’s continue statement causes the execution to go
back to the start of the while loop at line 92 and then ask for the player’s move again. If it
doesn’t, line 103 returns a two-integer list of the x- and y-coordinates.

Printing the Game Instructions for the Player

The showinstructions () function is a couple of print () calls that print multiline strings:

107. def showInstructions():

108. print ('''Instructions:

109. You are the captain of the Simon, a treasure-hunting ship. Your current
mission

--snip--

154. Press enter to continue...''')

155. input ()

The input () function gives the player a chance to press ENTER before printing the next
string. "T'his is because the IDLE window can show only so much text at a time, and we



don’t want the player to have to scroll up to read the beginning of the text. After the player
presses ENTER, the function returns to the line that called the function.

The Game Loop

Now that we’ve entered all the functions that our game will call, let’s enter the main part
of the game. The first thing the player sees after running the program is the game title
printed by line 159. This is the main part of the program, which begins by offering the
player instructions and then setting up the variables the game will use.

159. print ('S O N A R !'")

160. print ()

161. print('Would you like to view the instructions? (yes/no)')
162. if input() .lower () .startswith('y"'):

163. showInstructions()

164.

165. while True:

166. # Game setup

167. sonarDevices = 20

168. theBoard = getNewBoard()

169. theChests = getRandomChests (3)
170. drawBoard (theBoard)

171. previousMoves = []

The expression input().lower().startswith('y') lets the player request the
instructions, and it evaluates to True if the player enters a string that begins with 'y or 'v'.
For example:

input().lower().startswith('y")

i

'Y'.lower().startswith('y")

M

'y'.startswith('y")
]

'

True

If this condition is True, showInstructions () is called on line 163. Otherwise, the game
begins.

Several variables are set up on lines 167 to 171; these are described in Table 13-1.

Table 13-1: Variables Used in the Main Game Loop

Variable Description

sonarDevices 'The number of sonar devices (and turns) the player has left.

theBoard



The board data structure used for this game.

theChests The list of chest data structures. getrandomchests () returns a list of three
treasure chests at random places on the board.

previousMoves A ist of all the x and y moves the player has made in the game.

We're going to use these variables soon, so make sure to review their descriptions
before moving on!

Displaying the Game Status for the Player

Line 173’s while loop executes as long as the player has sonar devices remaining and prints
a message telling them how many sonar devices and treasure chests are left:

173. while sonarDevices > 0:

174. # Show sonar device and chest statuses.

175. print ('You have %s sonar device(s) left. %s treasure chest(s)
remaining.' % (sonarDevices, len(theChests)))

After printing how many devices are left, the while loop continues to execute.

Handling the Player’s Move

Line 177 is still part of the while loop and uses multiple assignment to assign the x and v
variables to the two-item list representing the player’s move coordinates returned by
enterPlayerMove().‘A]eql:paSSin,previousMoves SO that enterPlayerMove()’S(ﬂ)de can ensurce
the player doesn’t repeat a previous move.

177. X, Yy = enterPlayerMove (previousMoves)

178. previousMoves.append([x, v]) # We must track all moves so that
sonar devices can be updated.

179.

180. moveResult = makeMove (theBoard, theChests, x, V)

181. if moveResult == False:

182. continue

The x and vy variables are then appended to the end of the previousmoves list. The
previousMoves variable is a list of x- and y-coordinates of each move the player makes in
this game. This list is used later in the program on lines 177 and 186.

The x, v, theBoard, and thechests variables are all passed to the maxemove () function at
line 180. This function makes the necessary modifications to place a sonar device on the

board.

If makeMove () returns ralse, then there was a problem with the x and y values passed to
it. The continue statement sends the execution back to the start of the while loop on line
173 to ask the player for x- and y-coordinates again.



Finding a Sunken Treasure Chest

If makemove () doesn’t return ralse, it returns a string of the results of that move. If this
SUing'ﬁ;‘You have found a sunken treasure chest!',then.au.the sonar devices on the
board should update to detect the next closest treasure chest on the board:

183. else:

184. if moveResult == 'You have found a sunken treasure chest!':
185. # Update all the sonar devices currently on the map.
186. for x, y in previousMoves:

187. makeMove (theBoard, theChests, x, V)

188. drawBoard (theBoard)

189. print (moveResult)

The x- and y-coordinates of all the sonar devices are in previoustoves. By iterating over
previousMoves on line 186, you can pass all of these x- and y-coordinates to the makemove ()
function again to redraw the values on the board. Because the program doesn’t print any
new text here, the player doesn’t realize the program is redoing all of the previous moves.
It just appears that the board updates itself.

Checking Whether the Player Won

Remember that the makevove () function modifies the thechests list you sent it. Because
theChests 1s a list, any changes made to it inside the function will persist after execution
returns from the function. The makeMove () function removes items from thechests when
treasure chests are found, so eventually (if the player keeps guessing correctly) all of the
treasure chests will have been removed. (Remember, by “treasure chest” we mean the two-
item lists of the x- and y-coordinates inside the thechests list.)

191. if len(theChests) == 0:

192. print ('You have found all the sunken treasure chests!
Congratulations and good game!')

193. break

When all the treasure chests have been found on the board and removed from
theChests, the thechests list will have a length of 0. When that happens, the code displays a
congratulatory message to the player and then executes a break statement to break out of
this while loop. Execution will then move to line 197, the first line after the whi1e block.

Checking Whether the Player Lost

Line 195 is the last line of the while loop that started on line 173.

195. sonarDevices -= 1

The program decrements the sonarbevices variable because the player has used one
sonar device. If the player keeps missing the treasure chests, eventually sonarpevices will be



reduced to o. After this line, execution jumps back up to line 173 so it can reevaluate the
while statement’s condition (which is sonarpevices > 0).

If sonarpevices is 0, then the condition will be ralse and execution will continue
outside the while block on line 197. But until then, the condition will remain True and the
player can keep making guesses:

197. if sonarDevices == 0:

198. print ('We\'ve run out of sonar devices! Now we have to turn the
ship around and head')

199. print (' for home with treasure chests still out there! Game
over.')

200. print (' The remaining chests were here:')

201. for x, y in theChests:

202. print (' %s, %s' % (x, vy))

Line 197 is the first line outside the while loop. When the execution reaches this point,
the game is over. If sonarbevices is 0, you know the player ran out of sonar devices before
finding all the chests and lost.

Lines 198 to 200 will tell the player they’ve lost. The for loop on line 201 will go

through the treasure chests remaining in thechests and display their location so the player
can see where the treasure chests were lurking.

Terminating the Program with the sys.exit() Function

Win or lose, the program lets the player decide whether they want to keep playing. If the
player does not enter 'yes' or 'v' or enters some other string that doesn’t begin with the
knier_y,then,not input () .lower () .startswith('y") evaluates to True and the sys.exit ()
function is executed. This causes the program to terminate.

204 . print ('Do you want to play again? (yes or no)')
205. if not input().lower().startswith('y"'):
206. sys.exit ()

Otherwise, execution jumps back to the beginning of the while loop on line 165 and a
new game begins.

Summary

Remember how our Tic-Tac-Toe game numbered the spaces on the Tic-Tac-Toe board
1 through 9? This sort of coordinate system might have been okay for a board with fewer
than 10 spaces. But the Sonar Treasure Hunt board has 900 spaces! The Cartesian
coordinate system we learned about in Chapter 12 really makes all these spaces
manageable, especially when our game needs to find the distance between two points on

the board.

Locations in games that use a Cartesian coordinate system can be stored in a list of lists



in which the first index is the x-coordinate and the second index is the y-coordinate. This
makes it easy to access a coordinate using board[x] [y].

These data structures (such as the ones used for the ocean and treasure chest locations)
make it possible to represent complex concepts as data, and your game programs become
mostly about modifying these data structures.

In the next chapter, we’ll represent letters as numbers. By representing text as numbers,
we can perform math operations on them to encrypt or decrypt secret messages.



14
CAESAR CIPHER

The program in this chapter isn’t really a game, but it is fun nevertheless. The program
will convert normal English into a secret code. It can also convert secret codes back into
regular English. Only someone who knows the key to the secret codes will be able to
understand the messages.

Because this program manipulates text to convert it into secret messages, you’ll learn
several new functions and methods for manipulating strings. You’ll also learn how
programs can do math with text strings just as they can with numbers.

( )

TOPICS COVERED IN THIS CHAPTER
* Cryptography and ciphers
* Ciphertext, plaintext, keys, and symbols
* Encrypting and decrypting
* The Caesar cipher
® The find() string method
* Cryptanalysis

* The brute-force technique

Cryptography and Encryption

The science of writing secret codes is called cryptography. For thousands of years,
cryptography has made it possible to send secret messages that only the sender and
recipient could read, even if someone captured the messenger and read the coded message.



A secret code system is called a cipher. The cipher used by the program in this chapter is
called the Caesar cipher.

In cryptography, we call the message that we want to keep secret the plaintext. Let’s say
we have a plaintext message that looks like this:

There i1s a clue behind the bookshelf.

Converting the plaintext into the encoded message is called encrypting the plaintext.
The plaintext is encrypted into the ciphertext. The ciphertext looks like random letters, so
we can’t understand what the original plaintext was just by looking at the ciphertext. Here
is the previous example encrypted into ciphertext:

aolyl pz h jsBl ilopuk Aol ivvrzolsm.

If you know the cipher used to encrypt the message, you can decrypt the ciphertext back
to the plaintext. (Decryption is the opposite of encryption.)

Many ciphers use keys, which are secret values that let you decrypt ciphertext that was
encrypted with a specific cipher. Think of the cipher as being like a door lock. You can
only unlock it with a particular key.

If you’re interested in writing cryptography programs, you can read my book Hacking
Secret Ciphers with Python. It’s free to download from hetp://inventwithpython.com/backing/.

How the Caesar Cipher Works

The Caesar cipher was one of the earliest ciphers ever invented. In this cipher, you encrypt
a message by replacing each letter in it with a “shifted” letter. In cryptography, the
encrypted letters are called symbols because they can be letters, numbers, or any other signs.
If you shift the letter A by one space, you get the letter B. If you shift the letter A by two
spaces, you get the letter C. Figure 14-1 shows some letters shifted by three spaces.

AX|Y|Z|A|B|C|D|E|F|G]...

N

JAIB|IC|DIE|F|GIH|IT]|J]. ..
Figure 14-1: A Caesar cipher shifting letters by three spaces. Here, B becomes E.

To get each shifted letter, draw a row of boxes with each letter of the alphabet. Then
draw a second row of boxes under it, but start your letters a certain number of spaces over.
When you get to the end of the plaintext alphabet, wrap back around to A. Figure 14-2
shows an example with the letters shifted by three spaces.


http://inventwithpython.com/hacking/

AIB|CID|E|F|GIH|T|J|IK|L{M[N[O|P|QIR|S|T|U|VIWIX|Y|Z

DIE|JF[GIH|I|J|K|]L|MIN|O|P|Q|R|S|TJU|VIW|X|Y|Z|A|B|C
Figure 14-2: The entire alphabet shifted by three spaces

The number of spaces you shift your letters (between 1 and 26) is the key in the Caesar
cipher. Unless you know the key (the number used to encrypt the message), you won’t be
able to decrypt the secret code. The example in Figure 14-2 shows the letter translations
for the key 3.

While there are 26 possible keys, encrypting your message with 26 will result in a ciphertext
that is exactly the same as the plaintext!

If you encrypt the plaintext word HOWDY with a key of 3, then:

* The letter H becomes K.
* The letter O becomes R.
® The letter W becomes Z.
* The letter D becomes G.
* The letter Y becomes B.

So, the ciphertext of HOWDY with the key 3 becomes KRZGB. To decrypt KRZGB
with the key 3, we go from the bottom boxes back to the top.

If you would like to include lowercase letters as distinct from uppercase letters, then
add another 26 boxes to the ones you already have and fill them with the 26 lowercase
letters. Now with a key of 3, the letter Y becomes b, as shown in Figure 14-3.

JUIVIWIX|Y|Z|a|b]|c|d
AX|Y|Z]a|b|c|d|e]|f]|g

Figure 14-3: The entire alphabet, now including lowercase letters, shifted by three spaces

"The cipher works the same way as it did with just uppercase letters. In fact, if you want
to use letters from another language’s alphabet, you can write boxes with those letters to
create your cipher.



Sample Run of Caesar Cipher

Here is a sample run of the Caesar Cipher program encrypting a message:

Do you wish to encrypt or decrypt a message?

encrypt

Enter your message:

The sky above the port was the color of television, tuned to a dead channel.
Enter the key number (1-52)

13

Your translated text is:

gur FxXL noBIr Gur CBEG JnF Gur pByBE Bs GryrIvFvBA, GHArg GB n grng punAAry.

Now run the program and decrypt the text that you just encrypted:

Do you wish to encrypt or decrypt a message?

decrypt

Enter your message:

gur FxXL noBIr Gur CBEG JnF Gur pBYBE Bs GryrIvFvBA, GHArq GB n grng punAAry.
Enter the key number (1-52)

13

Your translated text is:

The sky above the port was the color of television, tuned to a dead channel.

If you do not decrypt with the correct key, the text will not decrypt properly:

Do you wish to encrypt or decrypt a message?

decrypt

Enter your message:

gur FxXL noBIr Gur CBEG JnF Gur pBYBE Bs GryrIvFvBA, GHArq GB n grng punAAry.
Enter the key number (1-52)

15

Your translated text is:

Rfc giw YZmtc rfc nmpr uYqg rfc amjmp md rcjctgggml, rslcb rm Y bcYb afyvyllcj.

Source Code for Caesar Cipher

Enter this source code for the Caesar Cipher program and then save the file as cipher.py.

If you get errors after entering this code, compare the code you typed to the book’s
code with the online diff tool at hetps://www.nostarch.com/inventwithpython#diff.


https://www.nostarch.com/inventwithpython#diff

MAKE SURE YOU'RE
USING PYTHON 3,
NOT PYTHON 2!

cipher.py
1. # Caesar Cipher
2. SYMBOLS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz'
3. MAX_KEY_SIZE = len (SYMBOLS)
4.
5. def getMode() :
6 while True:
7 print ('Do you wish to encrypt or decrypt a message?')
8. mode = input () .lower ()
9. if mode in ['encrypt', 'e', 'decrypt', 'd'l:
10. return mode
11. else:
12. print ('Enter either "encrypt" or "e" or "decrypt" or "d".')
13.
14. def getMessage():
15. print ('Enter your message:')
16. return input ()
17.
18. def getKey():
19. key = 0
20. while True:
21. print ('Enter the key number (1-%s)' $ (MAX_KEY_ SIZE))
22. key = int (input())
23. if (key >= 1 and key <= MAX_KEY_SIZE):
24 . return key
25.
26. def getTranslatedMessage (mode, message, key):
27. if mode[0] == 'd':
28. key = -key
29. translated = "'
30.
31. for symbol in message:
32. symbolIndex = SYMBOLS.find (symbol)
33. if symbolIndex == -1: # Symbol not found in SYMBOLS.
34. # Just add this symbol without any change.
35. translated += symbol
36. else:
37. # Encrypt or decrypt.
38. symbolIndex += key

39.



40. if symbolIndex >= len (SYMBOLS) :

41. symbolIndex -= len (SYMBOLS)
42. elif symbolIndex < O:

43, symbolIndex += len (SYMBOLS)
44 .

45. translated += SYMBOLS[symbolIndex]
46. return translated

47 .

48 . mode = getMode ()

49. message = getMessage()

50. key = getKey()

51. print('Your translated text is:')

52. print (getTranslatedMessage (mode, message, key))

Setting the Maximum Key Length

The encryption and decryption processes are the reverse of each other, but they share
much of the same code. Let’s look at how each line works:

1. # Caesar Cipher
2. SYMBOLS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz'
3. MAX _KEY_SIZE = len(SYMBOLS)

MAX_KEY_SIZE 1s a constant that stores the length of svmeovs (52). This constant reminds
us that in this program, the key used in the cipher should always be between 1 and 52.

Deciding to Encrypt or Decrypt the Message

The getmoge() function lets the user decide whether they want to use the program’s
encryption or decryption mode:

5. def getMode() :

6 while True:

7. print ('Do you wish to encrypt or decrypt a message?')

8. mode = input () .lower ()

9. if mode in ['encrypt', 'e', 'decrypt', 'd'l:

10. return mode

11. else:

12. print ('Enter either "encrypt" or "e" or "decrypt" or "d".')

Line 8 calls input () to let the user enter the mode they want. The 1ower () method is
then called on this string to return a lowercase version of the string. The value returned
from input().lower () is stored in mode. The if statement’s condition checks whether the
string stored in mode exists in the ['encrypt', 'e', 'decrypt', 'd'] list.

"This function will return the string in mode as long as mode is equal to 'encrypt', ‘e,
'decrypt’, or 'd'. Therefore, getmode() will return the string moge. If the user types
something that is not 'encrypt', 'e', 'decrypt’, or 'd', then the while loop will ask them
again.



Getting the Message from the Player

The getmessage () function simply gets the message to encrypt or decrypt from the user
and returns it:

14. def getMessage():
15. print ('Enter your message:')
16. return input ()

The call for input () is combined with return so that we use only one line instead of
two.

Getting the Key from the Player

The getrey () function lets the player enter the key they will use to encrypt or decrypt the
message:

18. def getKey():

19. key = 0

20. while True:

21. print ('Enter the key number (1-%s)' % (MAX_KEY_ SIZE))
22. key = int (input())

23. if (key >= 1 and key <= MAX_KEY_SIZE):

24. return key

The while loop ensures that the function keeps looping until the user enters a valid key.
A valid key here is one between the integer values 1 and 52 (remember that vax_xey_s1zE is
52 because there are 52 characters in the symBoLs variable). The getkey() function then
returns this key. Line 22 sets key to the integer version of what the user entered, so
getKey () returns an integer.

Encrypting or Decrypting the Message

The getrranslateamessage () function does the actual encrypting and decrypting:

26. def getTranslatedMessage (mode, message, key):

27. if mode[0] == 'd':
28. key = -key
29. translated =

It has three parameters:

mode ['his sets the function to encryption mode or decryption mode.
message | his is the plaintext (or ciphertext) to be encrypted (or decrypted).
xey [his is the key that is used in this cipher.



Line 27 checks whether the first letter in the mode variable is the string 'a'. If so, then
the program is in decryption mode. The only difference between decryption and
encryption mode is that in decryption mode, the key is set to the negative version of itself.
For example, if ey is the integer 22, then decryption mode sets it to -22. The reason is
explained in “Encrypting or Decrypting Each Letter” on page 205.

The transiatea variable will contain the string of the result: either the ciphertext (if
you are encrypting) or the plaintext (if you are decrypting). It starts as a blank string and
has encrypted or decrypted characters concatenated to the end of it. Before we can start
concatenating the characters to transiated, however, we need to encrypt or decrypt the
text, which we’ll do in the rest of getTranslatedMessage ().

Finding Passed Strings with the find() String Method

In order to shift the letters around to do the encryption or decryption, we first need to
convert them into numbers. The number for each letter in the symsors string will be the
index where it appears. Since the letter A is at symBoLs(o7, the number o will represent the
capital A. If we wanted to encrypt this with the key 3, we would simply use 0 + 3 to get the
index of the encrypted letter: symsors(3] or 'p'.

We'll use the £ina() string method, which finds the first occurrence of a passed string
in the string on which the method is called. Enter the following in the interactive shell:

>>> 'Hello world!'.find('H')

0

>>> 'Hello world!'.find('o')

4

>>> 'Hello world!'.find('ell"')
1

'Hello world!'.find('H') returns o because the 'u' is found at the first index of the
string 'Hello world!'. Remember, indexes start at o, not 1. The code ‘'mello
world!'.find('o') returns 4 because the lowercase 'o' is first found at the end of 'zeilio:.
The £ina() method stops looking after the first occurrence, so the second 'o' in 'worid:
doesn’t matter. You can also find strings with more than one character. The string 'e11" is
found starting at index 1.

If the passed string cannot be found, the fina() method returns -1:

>>> 'Hello world!'.find('xyz"')
-1

Let’s go back to the Caesar Cipher program. Line 31 is a for loop that iterates on each
character in the message string:

31. for symbol in message:
32. symbolIndex = SYMBOLS.find (symbol)
33. if symbolIndex == -1: # Symbol not found in SYMBOLS.

34. # Just add this symbol without any change.



35. translated += symbol

The fina() method is used on line 32 to get the index of the string in symbo1. If £ind()
returns -1, the character in symbo1 will just be added to transiated without any change.
This means that any characters that aren’t part of the alphabet, such as commas and
periods, won’t be changed.

Encrypting or Decrypting Each Letter

Once you’ve found a letter’s index number, adding the key to the number will perform the
shift and give you the index for the encrypted letter.

Line 38 does this addition to get the encrypted (or decrypted) letter.

37. # Encrypt or decrypt.
38. symbolIndex += key

Remember that on line 28, we made the integer in xey negative for decryption. The
code that adds the key will now subtract it, since adding a negative number is the same as
subtraction.

However, if this addition (or subtraction, if xey is negative) causes symbolIndex tO gO
past the last index of svmeors, we’ll need to wrap around to the beginning of the list at o.
This is handled by the if statement starting at line 40:

40. if symbolIndex >= len (SYMBOLS) :
41. symbolIndex -= len (SYMBOLS)
42. elif symbolIndex < O0:

43 . symbolIndex += len (SYMBOLS)
44 .

45 . translated += SYMBOLS|[symbolIndex]

Line 40 checks whether symbo11ndex has gone past the last index by comparing it to the
length of the symeors string. If it has, line 41 subtracts the length of svmBoLs from
symbolIndex. If symbolindex is now negative, then the index needs to wrap around to the
other side of the symBors string. Line 42 checks whether the value of symbo11ndex is negative
after adding the decryption key. If so, line 43 adds the length of symBoLs to symbolindex.

The symbolindex variable now contains the index of the correctly encrypted or
decrypted symbol. symBoLs [symbol1ndex] will point to the character for this index, and this
character is added to the end of transiated on line 45.

The execution loops back to line 31 to repeat this for the next character in nessage.
Once the loop is done, the function returns the encrypted (or decrypted) string in
translated on line 46:

46. return translated

The last line in the getTranslatedMessage () function returns the transilated string.



Starting the Program

The start of the program calls each of the three functions defined previously to get the
mode, message, and key from the user:

48. mode = getMode()

49. message = getMessage ()

50. key = getKey()

51. print('Your translated text is:')

52. print (getTranslatedMessage (mode, message, key))

These three values are passed to getTranslatedMessage(), whose return value (the
translated string) is printed to the user.

EXPANDING THE SYMBOLS

If you want to encrypt numbers, spaces, and punctuation marks, just add them to the
symBoLs string on line 2. For example, you could have your cipher program encrypt
numbers, spaces, and punctuation marks by changing line 2 to the following:

2. SYMBOLS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz 123
4567890 ! @#SB"&* () !

Note that the svusoLs string has a space character after the lowercase .

If you wanted, you could add even more characters to this list. And you don’t need
to change the rest of your program, since all the lines of code that need the character
list just use the symBoLs constant.

Just make sure that each character appears only once in the string. Also, you’ll need
to decrypt your message with the same symsoLs string that it was encrypted with.

The Brute-Force Technique

That’s the entire Caesar cipher. However, while this cipher may fool some people who
don’t understand cryptography, it won’t keep a message secret from someone who knows
cryptanalysis. While cryptography is the science of making codes, cryptanalysis is the science
of breaking codes.

The whole point of cryptography is to make sure that if someone else gets their hands
on the encrypted message, they cannot figure out the original text. Let’s pretend we are the
code breaker and all we have is this encrypted text:

LwCjBA uiG vwB jm xtmiAivB, jCB kmzBigvBG gA ijACzl.

Brute-forcing is the technique of trying every possible key until you find the correct one.



Because there are only 52 possible keys, it would be easy for a cryptanalyst to write a
hacking program that decrypts with every possible key. Then they could look for the key
that decrypts to plain English. Let’s add a brute-force feature to the program.

Adding the Brute-Force Mode

First, change lines 7, 9, and 12—which are in the getmode () function—to look like the
following (the changes are in bold):

Ul

def getMode() :
while True:

[e)}

7. print ('Do you wish to encrypt or decrypt or brute-force a
message?')
8. mode = input() .lower ()
9. if mode in ['encrypt', 'e', ‘'decrypt', 'd', 'brute', 'b']:
10. return mode
11. else:
12. print ('Enter either "encrypt" or "e" or "decrypt" or "d" or

"brute" or "b".')

"This code will let the user select brute force as a mode.
Next, make the following changes to the main part of the program:

48. mode = getMode()

49. message = getMessage ()

50. if mode[0] != 'b':

51. key = getKey ()

52. print('Your translated text is:')

53. if mode[0] != 'b':

54 . print (getTranslatedMessage (mode, message, key))

55. else:

56. for key in range(l, MAX KEY SIZE + 1):

57. print (key, getTranslatedMessage('decrypt', message, key))

If the user is not in brute-force mode, they are asked for a key, the original
getTranslatedMessage () call is made, and the translated string is printed.

However, if the user is in brute-force mode, then the getrranslateduessage() loop
iterates from 1 all the way up to max_xev_size (which is 52). Remember that the range()
function returns a list of integers up to, but not including, the second parameter, which is
why we add + 1. The program will then print every possible translation of the message
(including the key number used in the translation). Here is a sample run of this modified
program:

Do you wish to encrypt or decrypt or brute-force a message?
brute

Enter your message:

LwCjBA uiG vwB jm xtmiAivB, jCB kmzBiqvBG gA ijACzl.

Your translated text is:

1 KvBiAz thF uvA il wslhzhuA, iBA jlyAhpuAF pz hizByk.

2 JuAhzy sgE tuz hk vrkgygtz, hAz ikxzgotzE oy ghyAxj.



Itzgyx rfD sty gj ugjfxfsy, gzy hjwyfnsyD nx fgxzwi.

Hsyfxw geC rsx fi tpiewerx, fyx givxemrxC mw efwyvh.

Grxewv pdB grw eh sohdvdgw, exw fhuwdlgwB 1lv devxug.

Fgwdvu ocA pgv dg rngcucpv, dwv egtvckpvA ku cduwtf.

Epvcut nbz opu cf gmfbtbou, cvu dfsubjouz jt bctvse.

Doubts may not be pleasant, but certainty is absurd.

9 Cntasr 1Zx mns ad okdZrZms, ats bdgsZhmsx hr Zartqgc.

10 BmsZrg kYw lmr Zc njcYgYlr, Zsr acprYglrw gg YZgspb.
11 AlrYgp jXv klg Yb mibXpXkqg, Yrg ZbogXfkgv fp XYproa.
12 zkgXpo iWu jkp Xa lhaWoWjp, Xgp YanpWejpu eo WXodnZ.
--snip--

0 J o Ul i W

After looking over each row, you can see that the eighth message isn’t nonsense but
plain English! The cryptanalyst can deduce that the original key for this encrypted text
must have been 8. This brute-force method would have been difficult to do back in the
days of Julius Caesar and the Roman Empire, but today we have computers that can
quickly go through millions or even billions of keys in a short time.

Summary

Computers are good at doing math. When we create a system to translate some piece of
information into numbers (as we do with text and ordinals or with space and coordinate
systems), computer programs can process these numbers quickly and efficiently. A large
part of writing a program is figuring out how to represent the information you want to
manipulate as values that Python can understand.

While our Caesar Cipher program can encrypt messages that will keep them secret
from people who have to figure them out with pencil and paper, the program won’t keep
them secret from people who know how to get computers to process information. (Our
brute-force mode proves this.)

In Chapter 15, we'll create Reversegam (also known as Reversi or Othello). The Al that
plays this game is much more advanced than the Al that played Tic-Tac-Toe in Chapter
10. In fact, it’s so good that most of the time you won’t be able to beat it!



15
THE REVERSEGAM GAME

In this chapter, we’ll make Reversegam, also known as Reversi or Othello. This two-player
board game is played on a grid, so we’ll use a Cartesian coordinate system with x- and y-
coordinates. Our version of the game will have a computer Al that is more advanced than
our Tic-Tac-Toe Al from Chapter 10. In fact, this Al is so good that it will probably beat
you almost every time you play. (I lose whenever I play against it!)

( )

TOPICS COVERED IN THIS CHAPTER

* How to play Reversegam
* The voo1 () function
* Simulating moves on a Reversegam board

® Programming a Reversegam Al

How to Play Reversegam

Reversegam has an 8x8 board and tiles that are black on one side and white on the other
(our game will use Os and Xs instead). The starting board looks like Figure 15-1.



O®
L J®

7

8

Figure 15-1: The starting Reversegam board has two white tiles and two black tiles.

Two players take turns placing tiles of their chosen color—black or white—on the
board. When a player places a tile on the board, any of the opponent’s tiles that are
between the new tile and the other tiles of the player’s color are flipped. For example,
when the white player places a new white tile on space (5, 6), as in Figure 15-2, the black
tile at (5, 5) is between two white tiles, so it will flip to white, as in Figure 15-3. The goal of
the game is to end with more tiles of your color than your opponent’s color.

1 2 3 4 & & 7 8

O®
G

7

8

Figure 15-2: White places a new tile.



O®
OO0

7

8

Figure 15-3: White’s move has caused one of black’s tiles to flip.

Black could make a similar move next, placing a black tile on (4, 6), which would flip
the white tile at (4, 5). This results in a board that looks like Figure 15-4.

1 2 3 4 &5 6 7 8

000
O|O|O

7

8

Figure 15-4: Black has placed a new tile, flipping one of white’s tiles.

Tiles in all directions are flipped as long as they are between the player’s new tile and
an existing tile of that color. In Figure 15-5, white places a tile at (3, 6) and flips black tiles
in two directions (marked by the lines). The result is shown in Figure 15-6.



Each player can quickly flip many tiles on the board in one or two moves. Players must
always make a move that flips at least one tile. The game ends when either a player can’t
make a move or the board is completely full. The player with the most tiles of their color
wins.

oNe
BIO™

: &

7

8

Figure 15-5: White’s second move at (3, 6) will flip two of black’s tiles.

1 2 3 4 &5 6 7 8

O0|®
OlO|O

: O

7

8

Figure 15-6: The board after white’s second move.

The AI we make for this game will look for any corner moves on the board it can take.



If there are no corner moves available, the computer will select the move that claims the
most tiles.

Sample Run of Reversegam

Here’s what the user sees when they run the Reversegam program. The text entered by the

player is bold.

Welcome to Reversegam!
Do you want to be X or 02

x
The player will go first.
12345678
tmmm—— +
1| |1
2| |2
3 |3
4| X0 | 4
5] (0): |5
6| | 6
7| |7
8| | 8
tmmm—— +
12345678
You: 2 points. Computer: 2 points.
Enter your move, "quit" to end the game, or "hints" to toggle hints.
53
12345678
tmmm—— +
1| |1
2| |2
3 X |3
4| XX | 4
5] (0): |5
6| | 6
7| |7
8| | 8
tmmm—— +
12345678

You: 4 points. Computer: 1 points.
Press Enter to see the computer's move.

--snip--
12345678

100000000 |1
2 | OXXX0000 | 2
3| 0xX000000 | 3
4 | OXXOXXO0X | 4
5| 0XX00X0X | 5
6 | OXXXX00X | 6
7 | 00XX0000 | 7
8 | 00X00000 | 8

12345678



X scored 21 points. O scored 43 points.

You lost. The computer beat you by 22 points.
Do you want to play again? (yes or no)

no

As you can see, the Al was pretty good at beating me, 43 to 21. To help the player out,
we’ll program the game to provide hints. The player can type nhints as their move, which
will toggle the hints mode on and off. When hints mode is on, all the possible moves the
player can make will show up on the board as periods (.), like this:

12345678
- +
1] |1
2] . |2
3| Xo. |3
4| X0xX |4
5] 000 |5
6| . . |6
7] | 7
8 | |8
- +
12345678

As you can see, the player can move on (4, 2), (5, 3), (4, 6), or (6, 6) based on the hints
shown on this board.

Source Code for Reversegam

Reversegam is a mammoth program compared to our previous games. It’s nearly 300 lines
long! But don’t worry: many of these are comments or blank lines to space out the code
and make it more readable.

MAKE SURE YOU'RE
USING PYTHON 3,
NOT PYTHON 2!

As with our other programs, we’ll first create several functions to carry out
Reversegam-related tasks that the main section will call. Roughly the first 250 lines of code



are for these helper functions, and the last 30 lines of code implement the Reversegam
game itself.

the online diff tool at hezps://www.nostarch.com/inventwithpython#diff.

If you get errors after entering this code, compare your code to the book’s code with

reversegan.py
1. # Reversegam: a clone of Othello/Reversi
2. import random
3. import sys
4. WIDTH = 8 # Board is 8 spaces wide.
5. HEIGHT = 8 # Board is 8 spaces tall.
6. def drawBoard (board) :
7 # Print the board passed to this function. Return None.
8. print (' 12345678"')
9. print (' +-------- +')
10. for y in range (HEIGHT) :
11. print('%s|' % (y+1), end='")
12. for x in range (WIDTH) :
13. print (board[x] [y], end="'")
14. print('|%s' % (y+1))
15. print (' +---——-—---- +')
16. print (' 12345678"')
17.
18. def getNewBoard() :
19. # Create a brand-new, blank board data structure.
20. board = []
21. for i in range (WIDTH) :
22. board.append ([ ', " ', ", tor,oror, oror ronn )
23. return board
24.
25. def isValidMove (board, tile, xstart, ystart):
26. # Return False if the player's move on space xstart, ystart is
invalid.
27. # If it is a valid move, return a list of spaces that would become
the player's if they made a move here.
28. if board[xstart] [ystart] != ' ' or not isOnBoard(xstart, ystart):
29. return False
30.
31. if tile == 'X':
32. otherTile = 'O
33. else:
34. otherTile = 'X'
35.
36. tilesToFlip = []
37. for xdirection, ydirection in [[O, 1], [1, 11, [1, O], [1, -171,
(¢, -11, (-1, -11, [-1, O], [-1, 111:
38. x, y = Xstart, ystart
39. X += xdirection # First step in the x direction
40. y += ydirection # First step in the y direction
41. while isOnBoard(x, y) and board[x][y] == otherTile:
42. # Keep moving in this x & y direction.
43, X += xdirection
44 . vy += ydirection
45. if isOnBoard(x, y) and board[x][y] == tile:
46. # There are pieces to flip over. Go in the reverse

direction until we reach the original space,
the tiles along the way.

noting all


https://www.nostarch.com/inventwithpython#diff

47 . while True:

48. x -= xdirection
49. y -= ydirection
50. if x == xXstart and y == ystart:
51. break
52. tilesToFlip.append([x, vyI1)
53.
54. if len(tilesToFlip) == 0: # If no tiles were flipped, this is not a
valid move.
55. return False
56. return tilesToFlip
57.
58. def isOnBoard(x, v):
59. # Return True if the coordinates are located on the board.
60. return x >= 0 and x <= WIDTH - 1 and y >= 0 and y <= HEIGHT - 1
61.
62. def getBoardWithValidMoves (board, tile):
63. # Return a new board with periods marking the valid moves the player
can make.
64. boardCopy = getBoardCopy (board)
65.
66. for x, yv in getValidMoves (boardCopy, tile):
67. boardCopy [x] [yv] = '.'
68. return boardCopy
69.
70. def getvValidMoves (board, tile):
71. # Return a list of [x,y] lists of valid moves for the given player
on the given board.
72. validMoves = []
73. for x in range (WIDTH) :
74. for y in range (HEIGHT) :
75. if isValidMove (board, tile, x, y) != False:
76. validMoves.append([x, vyI1)
77. return validMoves
78.
79. def getScoreOfBoard (board) :
80. # Determine the score by counting the tiles. Return a dictionary
with keys 'X' and 'O'.
81. xscore = 0
82. oscore = 0
83. for x in range (WIDTH) :
84. for y in range (HEIGHT) :
85. if board[x] [y] == 'X':
86. xscore += 1
87. if board[x][y] == 'O':
88. oscore += 1
89. return {'X':xscore, 'O':oscore}
90.
91. def enterPlayerTile():
92. # Let the player enter which tile they want to be.
93. # Return a list with the player's tile as the first item and the
computer's tile as the second.
94 . tile = '
95. while not (tile == 'X' or tile == '0'):
96. print ('Do you want to be X or 07?')
97. tile = input () .upper ()
98.
99. # The first element in the list is the player's tile, and the second

is the computer's tile.
100. if tile == 'X':



101. return ['X', '0O']

102. else:

103. return ['O', 'X']

104.

105. def whoGoesFirst():

106. # Randomly choose who goes first.

107. if random.randint (0, 1) == O0:

108. return 'computer'

1009. else:

110. return 'player’

111.

112. def makeMove (board, tile, xstart, ystart):

113. # Place the tile on the board at xstart, ystart and flip any of the

opponent's pieces.

114. # Return False if this is an invalid move; True if it is valid.

115. tilesToFlip = isValidMove (board, tile, xstart, ystart)

116.

117. if tilesToFlip == False:

118. return False

119.

120. board[xstart] [ystart] = tile

121. for x, y in tilesToFlip:

122. board[x] [y] = tile

123. return True

124.

125. def getBoardCopy (board) :

126. # Make a duplicate of the board list and return it.

127. boardCopy = getNewBoard()

128.

129. for x in range (WIDTH) :

130. for y in range (HEIGHT) :

131. boardCopy [x] [yv] = board[x] [y]

132.

133. return boardCopy

134.

135. def isOnCorner(x, Vy):

136. # Return True if the position is in one of the four corners.

137. return (x == 0 or x == WIDTH - 1) and (y == 0 or y == HEIGHT - 1)

138.

139. def getPlayerMove (board, playerTile):

140. # Let the player enter their move.

141. # Return the move as [x, y] (or return the strings 'hints' or

'quit') .

142. DIGITSITO8 = '1 2 3 4 5 6 7 8'.split()

143. while True:

144. print ('Enter your move, "quit" to end the game, or "hints" to
toggle hints.')

145. move = input () .lower ()

146. if move == 'quit' or move == 'hints':

147. return move

148.

149. if len(move) == 2 and move[0] in DIGITS1TO8 and move[l] in
DIGITS1TOS:

150. X = int (move[0]) - 1

151. y = int(move[l]) - 1

152. if isValidMove (board, playerTile, x, y) == False:

153. continue

154. else:

155. break

156. else:



157.

158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.
176.
177.
178.
179.
180.
181.
182.
183.
184.
185.
186.

187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
200.
201.
202.
203.
204.
205.
206.
207.
208.
209.
210.

211.
212.
213.

def

def

def

print ('That is not a valid move. Enter the column (1-8) and
then the row (1-8).")
print ('For example, 81 will move on the top-right corner.')

return [x, V]

getComputerMove (board, computerTile):

# Given a board and the computer's tile, determine where to

# move and return that move as an [x, y] list.

possibleMoves = getValidMoves (board, computerTile)

random.shuffle (possibleMoves) # Randomize the order of the moves.

# Always go for a corner if available.
for x, y in possibleMoves:
if isOnCorner (x, y):
return [x, VyI

# Find the highest-scoring move possible.
bestScore = -1
for x, y in possibleMoves:
boardCopy = getBoardCopy (board)
makeMove (boardCopy, computerTile, x, V)
score = getScoreOfBoard (boardCopy) [computerTile]
if score > bestScore:
bestMove = [x, y]
bestScore = score
return bestMove

printScore (board, playerTile, computerTile):

scores = getScoreOfBoard (board)

print ('You: %s points. Computer: %s points.' % (scores|[playerTile],
scores[computerTile]))

playGame (playerTile, computerTile):
showHints = False

turn = whoGoesFirst ()

print ('The ' + turn + ' will go first.')

# Clear the board and place starting pieces.

board = getNewBoard()
board[3][3] = 'X'
board[3]1[4] = 'O’
board[4][3] = 'O
board([4] [4] X!

while True:
playerValidMoves = getValidMoves (board, playerTile)
computerValidMoves = getValidMoves (board, computerTile)

if playervValidMoves == [] and computerValidMoves == []:
return board # No one can move, so end the game.

elif turn == 'player': # Player's turn
if playervValidMoves != []:

if showHints:

validMovesBoard = getBoardWithValidMoves (board,
playerTile)

drawBoard (validMovesBoard)

else:
drawBoard (board)



214 . printScore (board, playerTile, computerTile)
215.

216. move = getPlayerMove (board, playerTile)

217. if move == 'quit':

218. print ('Thanks for playing!')

219. sys.exit () # Terminate the program.

220. elif move == 'hints':

221. showHints = not showHints

222. continue

223. else:

224 . makeMove (board, playerTile, move[0], move[l])

225. turn = 'computer'

226.

227. elif turn == 'computer': # Computer's turn

228. if computerValidMoves != []:

229. drawBoard (board)

230. printScore (board, playerTile, computerTile)

231.

232. input ('Press Enter to see the computer\'s move.')

233. move = getComputerMove (board, computerTile)

234. makeMove (board, computerTile, move[0], move[l])

235. turn = 'player'

236.

237.

238.

239. print('Welcome to Reversegam! ')

240.

241. playerTile, computerTile = enterPlayerTile()

242 .

243 . while True:

244 . finalBoard = playGame (playerTile, computerTile)

245.

246. # Display the final score.

247 . drawBoard (finalBoard)

248. scores = getScoreOfBoard(finalBoard)

249. print ('X scored %s points. O scored %s points.' % (scores['X'],

scores['0']))

250. if scores|[playerTile] > scores[computerTile]:

251. print ('You beat the computer by %$s points! Congratulations!' %
(scores[playerTile] - scores[computerTile]))

252. elif scores[playerTile] < scores|[computerTile]:

253. print ('You lost. The computer beat you by %$s points.' %
(scores[computerTile] - scores[playerTile]))

254 . else:

255. print ('The game was a tie!')

256.

257. print ('Do you want to play again? (yes or no)')

258. if not input().lower () .startswith('y'):

259. break

Importing Modules and Setting Up Constants

As with our other games, we begin this program by importing modules:

1. # Reversegam: a clone of Othello/Reversi
2. import random
3. import sys



4. WIDTH = 8 # Board is 8 spaces wide.
5. HEIGHT = 8 # Board is 8 spaces tall.

Line 2 imports the random module for its randint() and choice() functions. Line 3
imports the sys module for its exit () function.

Lines 4 and 5 set two constants, wipra and uezcuT, which are used to set up the game

board.

The Game Board Data Structure

Let’s figure out the board’s data structure. This data structure is a list of lists, just like the
one in Chapter 13’s Sonar Treasure Hunt game. The list of lists is created so that board[x]
(vl will represent the character on the space located at position x on the x-axis (going
left/right) and position y on the y-axis (going up/down).

"This character can either be a + ' (a space representing an empty position), a '.' (a
period representing a possible move in hints mode), or an 'x or o' (letters representing
tiles). Whenever you see a parameter named boarg, it is meant to be this kind of list-of-lists
data structure.

It is important to note that while the x- and y-coordinates for the game board will

range from 1 to 8, the indexes of the list data structure will range from 0 to 7. Our code
will need to make slight adjustments to account for this.

Drawing the Board Data Structure on the Screen

The board data structure is just a Python list value, but we need a nicer way to present it
on the screen. The arawsoard () function takes a board data structure and displays it on the
screen so the player knows where tiles are placed:

6. def drawBoard (board) :
7. # Print the board passed to this function. Return None.
8. print (' 12345678"')
9. print (' +---——-—---- +')
10. for vy in range (HEIGHT) :
11. print('%s|' % (y+1), end='")
12. for x in range (WIDTH) :
13. print (board[x] [y], end='")
14. print ('|%s' % (y+1))
15. print (' +---——-—---- +')
16. print (' 12345678")

"The arawsoard() function prints the current game board based on the data structure in
board.

Line 8 is the first print () function call executed for each board, and it prints the labels
for the x-axis along the top of the board. Line 9 prints the top horizontal line of the board.
The for loop on line 10 will loop eight times, once for each row. Line 11 prints the label



for the y-axis on the left side of the board, and it has an end="' keyword argument to print
nothing instead of a new line.

"This is so that another loop on line 12 (which also loops eight times, once for each
column in the row) prints each position along with an x, o, ., or blank space depending on
what’s stored in boardix] (y]. Line 13’s print () function call inside this loop also has an
end="" keyword argument so that the newline character is not printed. That will produce a
single line on the screen that looks like '1|xxxxxxxx|1' (if each of the voararx] [yl values
were an 'x').

After the inner loop is done, the print () function calls on lines 15 and 16 to print the
bottom horizontal line and x-axis labels.

When the for loop on line 13 prints the row eight times, it forms the entire board:

12345678

1| XXXXXXXX |1
2 | XXXXXXXX | 2
3 | XXXXXXXX |3
4| XXXXXXXX | 4
5 | XXXXXXXX | 5
6 | XXXXXXXX | 6
7 | XXXXXXXX |7
8 | XXXXXXXX | 8

12345678

Of course, instead of x, some of the spaces on the board will be the other player’s mark
(0), a period (.) if hints mode is turned on, or a space for empty positions.

Creating a Fresh Board Data Structure

The arawsoara() function will display a board data structure on the screen, but we need a
way to create these board data structures as well. The getnewsoard () function returns a list
of eight lists, with each list containing eight ' ' strings that will represent a blank board
with no moves:

18. def getNewBoard() :

19. # Create a brand-new, blank board data structure.

20. board = T[]

21. for i in range (WIDTH) :

22. board.append ([ ', ' ', "t tor,oror, oror r o]
23. return board

Line 20 creates the list that contains the inner lists. The for loop adds eight inner lists
inside this list. These inner lists have eight strings to represent eight empty spaces on the
board. Together, this code creates a board with 64 empty spaces—a blank Reversegam
board.



Checking Whether a Move Is Valid

Given the board’s data structure, the player’s tile, and the x- and y-coordinates for the
player’s move, the isvalidmove () function should return rrue if the Reversegam game rules
allow a move on those coordinates, and ralse if they don’t. For a move to be valid, it must
be on the board and also flip at least one of the opponent’s tiles.

"This function uses several x- and y-coordinates on the board, so the xstart and ystart
variables keep track of the x- and y-coordinates of the original move.

25. def isValidMove (board, tile, xstart, ystart):

26. # Return False if the player's move on space xstart, ystart is
invalid.

27. # If it is a valid move, return a list of spaces that would become
the player's if they made a move here.

28. if board[xstart] [ystart] != ' ' or not isOnBoard(xstart, ystart):

29. return False

30.

31. if tile == 'X':

32. otherTile = 'O

33. else:

34. otherTile = 'X'

35.

36. tilesToFlip = []

Line 28 checks whether the x- and y-coordinates are on the game board and whether
the space is empty using the isonBoard () function (which we’ll define later in the program).
"This function makes sure both the x- and y-coordinates are between o and the wipts or
uercHT of the board minus 1.

The player’s tile (either the human player or the computer player) is in tile, but this
function will need to know the opponent’s tile. If the player’s tile is x, then obviously the
opponent’s tile is o, and vice versa. We use the if-else statement on lines 31 to 34 for this.

Finally, if the given x- and y-coordinate is a valid move, isvalidmove() returns a list of

all the opponent’s tiles that would be flipped by this move. We create a new empty list,
tilesToFlip, that we’ll use to store all the tile coordinates.

Checking Each of the Eight Directions

In order for a move to be valid, it needs to flip at least one of the opponent’s tiles by
sandwiching the current player’s new tile with one of the player’s old tiles. That means
that the new tile must be next to one of the opponent’s tiles.

The for loop on line 37 iterates through a list of lists that represents the directions the
program will check for an opponent’s tile:

37. for xdirection, ydirection in [[O, 1], [1, 11, [1, O], [1, -17,
[O/ _l]/ [_l/ _l]/ [_l/ O]/ [_ 7 l]]:

The game board is a Cartesian coordinate system with x- and y-directions. There are



eight directions to check: up, down, left, right, and the four diagonal directions. Each of
the eight two-item lists in the list on line 37 is used for checking one of these directions.
The program checks a direction by adding the first value in the two-item list to the x-
coordinate and the second value to the y-coordinate.

Because the x-coordinates increase as you go to the right, you can check the right
direction by adding 1 to the x-coordinate. So the 11, o3 list adds 1 to the x-coordinate and
o to the y-coordinate. Checking the left direction is the opposite: you would subtract 1
(that is, add -1) from the x-coordinate.

But to check diagonally, you need to add to or subtract from both coordinates. For
example, adding 1 to the x-coordinate and adding -1 to the y-coordinate would result in
checking the up-right diagonal direction.

Figure 15-7 shows a diagram to make it easier to remember which two-item list
represents which direction.

X increases —

['1: '1] [D: '1] [1: '1]

« sespamnul A

[-1, o] | [0, 0] | [1, O]

['1: 1] [ﬂ: 1] [1: 1]

Figure 15-7: Each two-item list represents one of the eight directions.

The for loop at line 37 iterates through each of the two-item lists so that each
direction is checked. Inside the for loop, the x and y variables are set to the same values as
xstart and ystart, respectively, using multiple assignment at line 38. The xdirection and
ydirection variables are set to the values in one of the two-item lists and change the x and v
variables according to the direction being checked in that iteration of the for loop:

37. for xdirection, ydirection in [[O, 1], [1, 11, [1, O], [1, -17,
(o, -11, (-1, -11, [-1, 01, [-1, 1]1]:

38. x, y = Xstart, ystart

39. X += xdirection # First step in the x direction

40. vy += ydirection # First step in the y direction

The xstart and ystart variables will stay the same so that the program can remember
which space it originally started from.

Remember, for a move to be valid, it must be both on the board and next to one of the
other player’s tiles. (Otherwise, there aren’t any of the opponent’s tiles to flip, and a move
must flip over at least one tile to be valid.) Line 41 checks this condition, and if it isn’t



True, the execution goes back to the for statement to check the next direction.

41. while isOnBoard(x, y) and board[x][y] == otherTile:
42. # Keep moving in this x & y direction.

43, X += xdirection

44 . y += ydirection

But if the first space checked does have the opponent’s tile, then the program should
check for more of the opponent’s tiles in that direction until it reaches one of the player’s
tiles or the end of the board. The next tile in the same direction is checked by using
xdirection and ydirection again to make x and y the next coordinates to check. So the
program changes x and y on lines 43 and 44.

Finding Out Whether There Are Tiles to Flip Over

Next, we check whether there are adjacent tiles that can be flipped over.

45. if isOnBoard(x, y) and board[x][y] == tile:

46. # There are pieces to flip over. Go in the reverse
direction until we reach the original space, noting all
the tiles along the way.

47 . while True:

48. x -= xdirection

49. y -= ydirection

50. if x == xstart and y == ystart:
51. break

52. tilesToFlip.append([x, vyI1)

The if statement on line 45 checks whether a coordinate is occupied by the player’s
own tile. This tile will mark the end of the sandwich made by the player’s tiles surrounding
the opponent’s tiles. We also need to record the coordinates of all of the opponent’s tiles

that should be flipped.

The while loop moves x and y in reverse on lines 48 and 49. Until x and y are back to
the original xstart and ystart position, xdirection and ydirection are subtracted from x
and v, and each x and v position is appended to the tilestoriip list. When x and v have
reached the xstart and ystart position, line 51 breaks the execution out of the loop. Since
the original xstart and ystart position is an empty space (we ensured this was the case on
lines 28 and 29), the condition for line 41’s while loop will be Faise. The program moves
on to line 37, and the for loop checks the next direction.

The for loop does this in all eight directions. After that loop is done, the tilesTorlip
list will contain the x- and y-coordinates of all our opponent’s tiles that would be flipped if
the player moved on xstart, ystart. Remember, the isvaliamove() function is only
checking whether the original move was valid; it doesn’t actually permanently change the
data structure of the game board.

If none of the eight directions ended up flipping at least one of the opponent’s tiles,
then tilestor1ip will be an empty list:



54. if len(tilesToFlip) == 0: # If no tiles were flipped, this is not a
valid move.

55. return False

56. return tilesToFlip

This is a sign that this move is not valid and isvaliamove() should return raise.
Otherwise, isvalidMove () returns tilesToFlip.

Checking for Valid Coordinates

The isonBoara() function is called from isvaliamove(). It does a simple check to see
whether given x- and y-coordinates are on the board. For example, an x-coordinate of 4
and a y-coordinate of 9999 would not be on the board since y-coordinates only go up to 7,
which is equal to wipta - 1 or HETGHT - 1.

58. def isOnBoard(x, Vv):
59. # Return True if the coordinates are located on the board.
60. return x >= 0 and x <= WIDTH - 1 and y >= 0 and y <= HEIGHT - 1

Calling this function is shorthand for the Boolean expression on line 72 that checks
whether both x and y are between o and the wiprs or sercHT subtracted by 1, which is 7.

Getting a List with All Valid Moves

Now let’s create a hints mode that displays a board with all possible moves marked on it.
The getBoardwithvalidmoves() function returns a game board data structure that has
periods (.) for all spaces that are valid moves:

62. def getBoardWithValidMoves (board, tile):

63. # Return a new board with periods marking the valid moves the player
can make.

64. boardCopy = getBoardCopy (board)

65.

66. for x, yv in getValidMoves (boardCopy, tile):

67. boardCopy[x] [yl = '.'

68. return boardCopy

"This function creates a duplicate game voara data structure called poardcopy (returned
by getBoardcopy() on line 64) instead of modifying the one passed to it in the board
parameter. Line 66 calls getvaliamoves() to get a list of x- and y-coordinates with all the
legal moves the player could make. The board copy is marked with periods in those spaces
and returned.

The getvaliamoves () function returns a list of two-item lists. The two-item lists hold
the x- and y-coordinates for all valid moves of the tile given to it for the board data
structure in the board parameter:

70. def getValidMoves (board, tile):



71. # Return a list of [x,y] lists of wvalid moves for the given player
on the given board.

72. validMoves = []

73. for x in range (WIDTH) :

74 . for y in range (HEIGHT) :

75. if isValidMove (board, tile, x, y) != False:
76. validMoves.append([x, vyI1)

77. return validMoves

"This function uses nested loops (on lines 73 and 74) to check every xand y-coordinate
(all 64 of them) by calling isvaliamove() on that space and checking whether it returns
ralse or a list of possible moves (in which case the move is valid). Each valid x- and y-
coordinate is appended to the list in valiamoves.

Calling the bool() Function

You may have noticed that the program checks whether isvaliamove () on line 75 returns
ralse even though this function returns a list. T'o understand how this works, you need to
learn a bit more about Booleans and the voo1 () function.

The boo1 () function is similar to the int () and str () functions. It returns the Boolean
value form of the value passed to it.

Most data types have one value that is considered the raise value for that data type.
Every other value is considered True. For example, the integer o, the floating-point number
0.0, an empty string, an empty list, and an empty dictionary are all considered to be ralse
when used as the condition for an if or loop statement. All other values are true. Enter the
following into the interactive shell:

>>> bool (0)

False

>>> bool(0.0)

False

>>> bool('")

False

>>> bool([])

False

>>> bool({})

False

>>> bool (1)

True

>>> bool('Hello')

True

>>> bool([1, 2, 3, 4, 51)
True

>>> bool({'spam':'cheese', 'fizz':'buzz'})
True

Conditions are automatically interpreted as Boolean values. This is why the condition
on line 75 works correctly. The call to the isvaliamove() function either returns the
Boolean value ralse or a nonempty list.

If you imagine that the entire condition is placed inside a call to voo1 (), then line 75’s



condition False becomes bool (False) (which, of course, evaluates to ralse). And a
condition of a nonempty list placed as the parameter to boo1 () will return True.

Getting the Score of the Game Board

The getscoreofBoard() function uses nested for loops to check all 64 positions on the
board and see which player’s tile (if any) is on them:

79. def getScoreOfBoard (board) :

80. # Determine the score by counting the tiles. Return a dictionary
with keys 'X' and 'O'.

81. xscore = 0

82. oscore = 0

83. for x in range (WIDTH) :

84. for vy in range (HEIGHT) :

85. if board[x] [y] == 'X':

86. xscore += 1

87. if board[x][y] == 'O':

88. oscore += 1

89. return {'X':xscore, 'O':oscore}

For each x tile, the code increments xscore on line 86. For each o tile, the code
increments oscore on line 88. The function then returns xscore and oscore in a dictionary.

Getting the Player’s Tile Choice

The enterpiayerrile() function asks the player which tile they want to be, either X or O:

91. def enterPlayerTile():

92. # Let the player enter which tile they want to be.

93. # Return a list with the playver's tile as the first item and the
computer's tile as the second.

94 . tile = "

95. while not (tile == 'X' or tile == '0'):

96. print ('Do you want to be X or 07?')

97. tile = input () .upper ()

98.

99. # The first element in the list is the player's tile, and the second
is the computer's tile.

100. if tile == 'X':

101. return ['X', '0O']

102. else:

103. return ['O', 'X']

The for loop will keep looping until the player enters x or o in either upper- or
lowercase. The enterrlayerrile() function then returns a two-item list, where the player’s
tile choice is the first item and the computer’s tile is the second. Later, line 241 calls
enterplayerTile() and uses multiple assignment to put these two returned items in two
variables.



Determining Who Goes First

"The whocoesFirst () function randomly selects who goes first and returns either the string
'computer' Or the string 'player':

105. def whoGoesFirst () :

106. # Randomly choose who goes first.
107. i1f random.randint (0, 1) == 0:
108. return 'computer'

109. else:

110. return 'player’

Placing a Tile on the Board

"The makeMove () function is called when a player wants to place a tile on the board and flip
the other tiles according to the rules of Reversegam:

112. def makeMove (board, tile, xstart, ystart):

113. # Place the tile on the board at xstart, ystart and flip any of the
opponent's pieces.

114. # Return False if this is an invalid move; True if it is wvalid.

115. tilesToFlip = isValidMove (board, tile, xstart, ystart)

"This function modifies in place the board data structure that is passed. Changes made
to the voard variable (because it is a list reference) will be made to the global scope.

Most of the work is done by isvaliamove() on line 115, which returns a list of x- and y-
coordinates (in a two-item list) of tiles that need to be flipped. Remember, if the xstart
and ystart arguments point to an invalid move, isvaliamove() will return the Boolean
value raise, which is checked for by line 117:

117. if tilesToFlip == False:
118. return False

119.

120. board[xstart] [ystart] = tile
121. for x, v in tilesToFlip:
122. board[x] [y] = tile

123. return True

If the return value of isvalidMove() (now stored in tilesToFlip) 1S False, then
makeMove () Will also return ralse on line 118.

Otherwise, isvalidmove () returns a list of spaces on the board to put down the tiles (the
'x' or o' string in tile). Line 120 sets the space that the player has moved on. Line 121
for loop sets all the tiles that are in tilesTorlip.

Copying the Board Data Structure

The getBoardCopy () function is different from getNewBoard(). The getNewBoard () function



creates a blank game board data structure that has only empty spaces and the four starting
tiles. getBoardcopy () creates a blank game board data structure but then copies all of the
positions in the board parameter with a nested loop. The Al uses the getBoardcopy()
function so it can make changes to the game board copy without changing the real game
board. This technique was also used by the Tic-Tac-Toe program in Chapter 10.

125. def getBoardCopy (board) :

126. # Make a duplicate of the board list and return it.
127. boardCopy = getNewBoard()

128.

129. for x in range (WIDTH) :

130. for vy in range (HEIGHT) :

131. boardCopy[x] [y] = board[x][y]

132.

133. return boardCopy

A call to getNewBoard () sets up boardcopy as a fresh game board data structure. Then the
two nested for loops copy each of the 64 tiles from board to the duplicate board data
structure 1n boardCopy.

Determining Whether a Space Is on a Corner

The isoncorner() function returns true if the coordinates are on a corner space at

coordinates (0, 0), (7, 0), (0, 7), or (7, 7):

135. def isOnCorner(x, Vy):
136. # Return True if the position is in one of the four corners.
137. return (x == 0 or x == WIDTH - 1) and (y == 0 or y == HEIGHT - 1)

Otherwise, isoncorner () returns ralse. We'll use this function later for the Al

Getting the Player's Move

The getplayermove () function is called to let the player enter the coordinates of their next
move (and check whether the move is valid). The player can also enter hints to turn hints
mode on (if it is off) or off (if it is on). Finally, the player can enter quit to quit the game.

139. def getPlayerMove (board, playerTile):

140. # Let the player enter their move.
141. # Return the move as [x, y] (or return the strings 'hints' or
‘quit').
142. DIGITSITO8 = '1 2 3 4 5 6 7 8'.split()
The prciTsiTos constant variable is the list r1+, 2+, '3', "4', '5', 6", 7, '8'].

The getplayermove () function uses picirsitTos a couple times, and this constant is more
readable than the full list value. You can’t use the isdigit () method because that would
allow 0 and 9 to be entered, which are not valid coordinates on the 8x8 board.



The while loop keeps looping until the player types in a valid move:

143. while True:

144. print ('Enter your move, "quit" to end the game, or "hints" to
toggle hints.')

145. move = input () .lower ()

146. if move == 'quit' or move == 'hints':

147. return move

Line 146 checks whether the player wants to quit or toggle hints mode, and line 147
returns the string 'quit' or 'hints', respectively. The 1ower () method is called on the
string returned by input () so the player can type aints or guit and still have the command
understood.

The code that called getriayermove () will handle what to do if the player wants to quit
or toggle hints mode. If the player enters coordinates to move on, the if statement on line
149 checks whether the move is valid:

149. if len(move) == 2 and move[0] in DIGITS1TO8 and move[l] in
DIGITS1TOS:

150. x = int (move[0]) - 1

151. y = int(move[l]) - 1

152. if isvValidMove (board, playerTile, x, y) == False:

153. continue

154. else:

155. break

The game expects that the player has entered the x- and y-coordinates of their move as
two numbers without anything between them. Line 149 first checks that the size of the
string the player typed in is 2. After that, it also checks that both moveo7 (the first character
in the string) and move[1] (the second character in the string) are strings that exist in
DIGITS1TOS.

Remember that the game board data structures have indexes from 0 to 7, not 1 to 8.
The code prints 1 to 8 when the board is displayed in darawsoard() because
nonprogrammers are used to numbers beginning at 1 instead of 0. So to convert the strings
in move [0] and move[1] to integers, lines 150 and 151 subtract 1 from x and y.

Even if the player has entered a correct move, the code needs to check that the move is
allowed by the rules of Reversegam. This is done by the isvaliamove() function, which is
passed the game board data structure, the player’s tile, and the x- and y-coordinates of the
move.

If isvalidMove() returns ralse, line 153 continue statement executes. The execution
then goes back to the beginning of the while loop and asks the player for a valid move
again. Otherwise, the player did enter a valid move, and the execution needs to break out
of the while loop.

If the if statement’s condition on line 149 was raise, then the player didn’t enter a
valid move. Lines 157 and 158 instruct them on how to correctly enter moves:



156. else:

157. print ('That is not a valid move. Enter the column (1-8) and
then the row (1-8).")
158. print ('For example, 81 will move on the top-right corner.')

Afterward, the execution moves back to the while statement on line 143, because line
158 is not only the last line in the e1se block but also the last line in the whiile block. The
while loop will keep looping until the player enters a valid move. If the player enters x- and
y-coordinates, line 160 will execute:

160. return [x, V]

Finally, if line 160 executes, getplayervove () returns a two-item list with the x- and y-
coordinates of the player’s valid move.

Getting the Computer’s Move

The getcomputermove () function is where the Al algorithm is implemented:

162. def getComputerMove (board, computerTile):

163. # Given a board and the computer's tile, determine where to
164. # move and return that move as an [x, y] list.
165. possibleMoves = getValidMoves (board, computerTile)

Normally you use the results from getvaliamoves() for hints mode, which will print .
on the board to show the player all the potential moves they can make. But if
getvalidmMoves () is called with the computer Al’s tile (in computertile), it will also find all
the possible moves that the comzputer can make. The Al will select the best move from this
list.

First, the random.shuffle() function will randomize the order of moves in the
possibleMoves]iSt

166. random.shuffle (possibleMoves) # Randomize the order of the moves.

We want to shuffle the possiblemoves list because it will make the Al less predictable;
otherwise, the player could just memorize the moves needed to win because the computer’s
responses would always be the same. Let’s look at the algorithm.

Strategizing with Corner Moves

Corner moves are a good idea in Reversegam because once a tile has been placed on a
corner, it can never be flipped over. Line 169 loops through every move in possibleMoves.
If any of them is on the corner, the program will return that space as the computer’s move:

168. # Always go for a corner if available.
169. for x, y in possibleMoves:



170. if isOnCorner (x, y):
171. return [x, V]

Since possibleMoves is a list of two-item lists, we’ll use multiple assignment in the for
loop to set x and y. If possiblemoves contains multiple corner moves, the first one is always
used. But since possibleMoves was shuffled on line 166, which corner move is first in the list
is random.

Getting a List of the Highest-Scoring Moves

If there are no corner moves, the program will loop through the entire list of possible
moves and find out which results in the highest score. Then vestwmove is set to the highest-
scoring move the code has found so far, and pestscore is set to the best move’s score. This
is repeated until the highest-scoring possible move is found.

173. # Find the highest-scoring move possible.

174. bestScore = -1

175. for x, y in possibleMoves:

176. boardCopy = getBoardCopy (board)

177. makeMove (boardCopy, computerTile, x, V)

178. score = getScoreOfBoard(boardCopy) [computerTile]
179. if score > bestScore:

180. bestMove = [x, V]

181. bestScore = score

182. return bestMove

Line 174 first sets bestscore to -1 so that the first move the code checks will be set to
the first vestmove. This guarantees that bestmove is set to one of the moves from
possibleMovesVvhenitreturns.

On line 175, the for loop sets x and v to every move in possibleMoves. Before simulating
a move, line 176 makes a duplicate game board data structure by calling getBoardcopy ().
You’ll want a copy you can modify without changing the real game board data structure
stored in the board variable.

"Then line 177 calls makemove (), passing the duplicate board (stored in boardcopy) instead
of the real board. This will simulate what would happen on the real board if that move
were made. The makemove () function will handle placing the computer’s tile and flipping
the player’s tiles on the duplicate board.

Line 178 calls getscoreofsoarda() with the duplicate board, which returns a dictionary
where the keys are 'x' and ‘o', and the values are the scores. When the code in the loop
finds a move that scores higher than vestscore, lines 179 to 181 will store that move and
Score as dle nvevnlues in bestMove and bestScore..AJ%er possibleMoves has been ﬁuﬂy
iterated through, vestmove is returned.

For example, say that getscoreofBoard() returns the dictionary ('x':22, 'o':8) and
computerTile is 'x'. Then getScoreOfBoard (boardCopy) [computerTile] would evaluate to
{'x':22, '0':8)['x'], which would then evaluate to 22. If 22 is larger than pestscore,
bestScore 18 set to 22, and bestMove is set to the current x and v values.



By the time this for loop is finished, you can be sure that vestscore is the highest
possible score a move can get, and that move is stored in bestMove.

Even though the code always chooses the first in the list of these tied moves, the choice
appears random because the list order was shuffled on line 166. This ensures that the Al
won’t be predictable when there’s more than one best move.

Printing the Scores to the Screen

The showpoints () function calls the getscoreofBoard() function and then prints the player’s
and computer’s scores:

184. def printScore(board, playerTile, computerTile):

185. scores = getScoreOfBoard (board)

186. print ('You: %s points. Computer: %s points.' % (scores|[playerTile],
scores[computerTile]))

Remember that getscoreofBoard() returns a dictionary with the keys 'x' and o' and
values of the scores for the X and O players.

That’s all the functions for the Reversegam game. The code in the p1laycame () function
implements the actual game and calls these functions as needed.

Starting the Game

The p1aycame () function calls the previous functions we’ve written to play a single game:

188. def playGame (playerTile, computerTile):

189. showHints = False

190. turn = whoGoesFirst/()

191. print ('The ' + turn + ' will go first.')
192.

193. # Clear the board and place starting pieces.
194. board = getNewBoard()

195. board[3][3] = 'X'

196. board[3][4] = 'O

197. board[4][3] = 'O

198. board[4][4] = 'X!'

The playcame () function is passed 'x' or ro' strings for playerrile and computerTile.
The player to go first is determined by line 190. The turn variable contains the string
'computer' O 'player' to keep track of whose turn it is. Line 194 creates a blank board
data structure, while lines 195 to 198 set up the initial four tiles on the board. The game is
now ready to begin.

Checking for a Stalemate

Before getting the player’s or computer’s turn, we need to check whether it is even possible



for either of them to move. If not, then the game is at a stalemate and should end. (If only
one side has no valid moves, the turn skips to the other player.)

200. while True:

201. playervValidMoves = getValidMoves (board, playerTile)
202. computerValidMoves = getValidMoves (board, computerTile)
203.

204 . if playerValidMoves == [] and computerValidMoves == []:
205. return board # No one can move, so end the game.

Line 200 is the main loop for running the player’s and computer’s turns. As long as this
loop keeps looping, the game will continue. But before running these turns, lines 201 and
202 check whether either side can make a move by getting a list of valid moves. If both of
these lists are empty, then neither player can make a move. Line 205 exits the playcame ()
function by returning the final board, ending the game.

Running the Player’s Turn

If the game is not in a stalemate, the program determines whether it is the player’s turn by
checking whether turn is set to the string 'player':

207. elif turn == 'player': # Player's turn

208. if playerValidMoves != []:

2009. if showHints:

210. validMovesBoard = getBoardwWithvValidMoves (board,
playerTile)

211. drawBoard (validMovesBoard)

212. else:

213. drawBoard (board)

214 . printScore (board, playerTile, computerTile)

Line 207 begins an e1if block containing the code that runs if it is the player’s turn.
(The e1if block that starts on line 227 contains the code for the computer’s turn.)

All of this code will run only if the player has a valid move, which line 208 determines
by checking that p1layervaliamoves is not empty. We display the board on the screen by
calling drawsoard () on line 211 or 213.

If hints mode is on (that is, showHints is True), then the board data structure should
display . on every valid space the player could move, which is accomplished with the
getBoardwithvalidMoves () function. It is passed a game board data structure and returns a
copy that also contains periods (.). Line 211 passes this board to the arawsoard() function.

If hints mode is off, then line 213 passes board to drawBoard () instead.

After printing the game board to the player, you also want to print the current score by
calling printScore () ON line 214.

Next, the player needs to enter their move. The getpiayermove () function handles this,
and its return value is a two-item list of the x- and y-coordinates of the player’s move:

216. move = getPlayerMove (board, playerTile)




When we defined getpiayermove (), we already made sure that the player’s move is valid.

The getprilayermove () function may have returned the strings 'quit' or 'hints' instead
of a move on the board. Lines 217 to 222 handle these cases:

217. if move == 'quit':

218. print ('Thanks for playing!')

219. sys.exit () # Terminate the program.

220. elif move == 'hints':

221. showHints = not showHints

222. continue

223. else:

224. makeMove (board, playerTile, move[0], movel[l])
225. turn = 'computer'

If the player entered quit for their move, then getplayervove () would return the string
'quit'. In that case, line 219 calls sys.exit () to terminate the program.

If the player entered nints for their move, then getpiayermove () would return the string
'hints'. In that case, you want to turn hints mode on (if it was off) or off (if it was on).

The showtints = not showrints assignment statement on line 221 handles both of these
cases, because not False evaluates to True and not True evaluates to ralse. Then the
continue Statement moves the execution to the start of the loop (turn has not changed, so it
will still be the player’s turn).

Otherwise, if the player didn’t quit or toggle hints mode, line 224 calls nakemove () to
make the player’s move on the board.

Finally, line 225 sets turn to 'computer'. The flow of execution skips the e1se block and
reaches the end of the while block, so execution jumps back to the while statement on line
200. This time, however, it will be the computer’s turn.

Running the Computer’s Turn

If the turn variable contains the string 'computer', then the code for the computer’s turn
will run. It is similar to the code for the player’s turn, with a few changes:

227. elif turn == 'computer': # Computer's turn

228. if computervValidMoves != []:

229. drawBoard (board)

230. printScore (board, playerTile, computerTile)

231.

232. input ('Press Enter to see the computer\'s move.')
233. move = getComputerMove (board, computerTile)

234. makeMove (board, computerTile, move[0], move[l])

After printing the board with drawsoard(), the program also prints the current score
with a call to showpoints () on line 230.
Line 232 calls input () to pause the script so the player can look at the board. This is

much like how input () was used to pause the Jokes program in Chapter 4. Instead of using
a print () call to print a string before a call to input(), you can do the same thing by



passing the string to print to input ().

After the player has looked at the board and pressed ENTER, line 233 calls
getComputerMove () to get the x- and y-coordinates of the computer’s next move. These
coordinates are stored in variables x and y using multiple assignment.

Finally, x and vy, along with the game board data structure and the computer’s tile, are
passed to the makemove () function. This places the computer’s tile on the game board in
poard to reflect the computer’s move. Line 233 call to getcomputermove() got the
computer’s move (and stored it in variables x and y). The call to makemove() on line 234
makes the move on the board.

Next, line 235 sets the turn variable to 'player:

235. turn = 'player'

There is no more code in the while block after line 235, so the execution loops back to
the while statement on line 200.

The Game Loop

That’s all the functions we’ll make for Reversegam. Starting at line 239, the main part of
the program runs a game by calling p1aycame (), but it also displays the final score and asks
the player whether they want to play again:

239. print('Welcome to Reversegam! ')
240.
241. playerTile, computerTile = enterPlayerTile()

The program starts by welcoming the player on line 239 and asking them whether they
want to be X or O. Line 241 uses the multiple assignment trick to set playerrile and
computerTile to the two values returned by enterplayertile().

The while loop on line 243 runs each game:

243 . while True:

244 . finalBoard = playGame (playerTile, computerTile)

245.

246. # Display the final score.

247. drawBoard (finalBoard)

248. scores = getScoreOfBoard(finalBoard)

249. print ('X scored %s points. O scored %s points.' % (scores['X'],

scores['0']))

250. if scores[playerTile] > scores[computerTile]:

251. print ('You beat the computer by %$s points! Congratulations!' %
(scores[playerTile] - scores[computerTile]))

252. elif scores[playerTile] < scores[computerTile]:

253. print ('You lost. The computer beat you by %$s points.' %
(scores[computerTile] - scores[playerTile]))

254 else:

255. print ('The game was a tie!')




It begins by calling p1aycame (). This function call does not return until the game is
finished. The board data structure returned by playcame() will be passed to
getScoreoOfBoard() to count the X and O tiles to determine the final score. Line 249
displays this final score.

If there are more of the player’s tiles than the computer’s, line 251 congratulates the
player for winning. If the computer won, line 253 tells the player that they lost. Otherwise,
line 255 tells the player the game was a tie.

Asking the Player to Play Again

After the game is finished, the player is asked whether they want to play again:

257. print ('Do you want to play again? (yes or no)')
258. if not input().lower().startswith('y"'):
259. break

If the player does not type a reply that begins with the letter y, such as yes or ves or v,
then the condition on line 258 evaluates to True, and line 259 breaks out of the while loop
that started on line 243, which ends the game. Otherwise, this while loop naturally loops,
and playcame () is called again to begin the next game.

Summary

The Reversegam Al may seem almost unbeatable, but this isn’t because the computer is
smarter than we are; it’s just much faster! The strategy it follows is simple: move on the
corner if you can, and otherwise make the move that will flip over the most tiles. A human
could do that, but it would be time-consuming to figure out how many tiles would be
flipped for every possible valid move. For the computer, calculating this number is simple.

This game is similar to Sonar Treasure Hunt because it makes use of a grid for a board.
It is also like the Tic-Tac-Toe game because there’s an Al that plans out the best move for
the computer to make. This chapter introduced only one new concept: that empty lists,
blank strings, and the integer o all evaluate to ralse in the context of a condition. Other
than that, this game used programming concepts you already knew!

In Chapter 16, you’ll learn how to make Als play computer games against each other.



16
REVERSEGAM Al SIMULATION

The Reversegam Al algorithm from Chapter 15 is simple, but it beats me almost every
time I play it. Because the computer can process instructions quickly, it can easily check
each possible position on the board and select the highest-scoring move. It would take me
a long time to find the best move this way.

The Reversegam program had two functions, getPlayerMove () and getComputerMove (),
which both returned the move selected as a two-item list in the format [x, y1. Both
functions also had the same parameters, the game board data structure and one type of tile,
but the returned moves came from different sources—either the player or the Reversegam
algorithm.

What happens when we replace the call to getpilayermove() with a call to
getcomputerMove () ? Then the player never has to enter a move; it is decided for them. The
computer is playing against itself!

In this chapter, we’ll make three new programs in which the computer plays against
itself, each based on the Reversegam program in Chapter 15:

* Simulation 1: AISim1.py will make changes to reversegam.py.
* Simulation 2: AISim2.py will make changes to AISim1.py.
* Simulation 3: AISim3.py will make changes to AI1Sim2.py.

The small changes from one program to the next will show you how to turn a “player
versus computer” game into a “computer versus computer” simulation. The final program,
AlSim3.py, shares most of its code with reversegam.py but serves quite a different purpose.
The simulation doesn’t let us play Reversegam but teaches us more about the game itself.

You can either type in these changes yourself or download them from the book’s
website at https://www.nostarch.com/inventwithpython/.


https://www.nostarch.com/inventwithpython/

TOPICS COVERED IN THIS CHAPTER

* Simulations

* Percentages

* Integer division

® The rounda() function

* Computer-versus-computer games

Making the Computer Play Against ltself

Our AISim1.py program will have a few simple changes so that the computer plays against
itself. Both the getPlayerMove () and getComputerMove () functions take a board data
structure and the player’s tile, and then return the move to make. This is why
getComputerMove () Can replace getPlayerMove () and the program still works. In the
AlSim1.py program, the getcomputerMove() function is being called for both the x and o
players.

We also make the program stop printing the game board for moves that are made.
Since a human can’t read the game boards as fast as a computer makes moves, it isn’t useful
to print every move, so we just print the final board at the end of the game.

"These are just minimal changes to the program, so it will still say things like The player
will go first. even though the computer is playing as both the computer and the player.

Sample Run of Simulation 1

Here’s what the user sees when they run the AISim1.py program. The text entered by the
player is bold.

Welcome to Reversegam!
The computer will go first.
12345678

1| XXXXXXXX |1
2 | OXXXXXXX |2
3 | XOXXO0XXX |3
4 | XX00X00X | 4
5| XX0OXXXX | 5
6 | XXOXOXXX | 6
7 | XXXOX0XX | 7
8 | XXXXXXXX | 8

12345678
X scored 51 points. O scored 13 points.
You beat the computer by 38 points! Congratulations!
Do you want to play again? (yes or no)



no

Source Code for Simulation 1
Save the old reversegam.py file as AISim1.py as follows:

1. Select File » Save As.
2. Save this file as AISiml.py so that you can make changes without affecting
reversegam.py. (At this point, reversegam.py and AISim 1.py still have the same code.)

3. Make changes to AISim1.py and save that file to keep any changes. (AISim1.py will
have the new changes, and reversegam.py will have the original, unchanged code.)

"This process will create a copy of our Reversegam source code as a new file that you
can make changes to, while leaving the original Reversegam game the same (you may want
to play it again to test it). For example, change line 216 in AISim1.py to the following (the
change is in bold):

216. move = getComputerMove (board, playerTile)

Now run the program. Notice that the game still asks whether you want to be X or O,
but it won’t ask you to enter any moves. When you replace the getrilayermove() function
with the getcomputermove () function, you no longer call any code that takes this input from
the player. The player still presses ENTER after the original computer’s moves (because of
the input ('Press Enter to see the computer\'s move.') on line 232), but the game plays
itself!

MAKE SURE YOU'RE
USING PYTHON 3,
NOT PYTHON 2!

Let’s make some other changes to AISim1.py. Change the following bolded lines. The
changes start at line 209. Most of these changes are simply commenting out code, which
means turning the code into a comment so it won’t run.

If you get errors after typing in this code, compare the code you typed to the book’s



code with the online diff tool at htps://www.nostarch.com/inventwithpython#diff.

AlSim1.py

207. elif turn == 'player': # Player's turn

208. if playerValidMoves != []:

209. #if showHints:

210. # validMovesBoard = getBoardWithValidMoves (board,
playerTile)

211. # drawBoard (validMovesBoard)

212. #else:

213. # drawBoard (board)

214. #printScore(board, playerTile, computerTile)

215.

216. move = getComputerMove (board, playerTile)

217. #if move == 'quit':

218. # print ('Thanks for playing!')

219. # sys.exit() # Terminate the program.

220. #elif move == 'hints':

221. # showHints = not showHints

222. # continue

223. #else:

224. makeMove (board, playerTile, move[0], move[l])

225. turn = 'computer'

226.

227. elif turn == 'computer': # Computer's turn

228. if computervValidMoves != []:

229. #drawBoard (board)

230. #printScore(board, playerTile, computerTile)

231.

232. #input ('Press Enter to see the computer\'s move.')

233. move = getComputerMove (board, computerTile)

234. makeMove (board, computerTile, move[0], move[l])

235. turn = 'player'

236.

237.

238.

239. print('Welcome to Reversegam! ')

240.

241 . playerTile, computerTile = ['X', 'O'] #enterPlayerTile()

Removing the Player Prompts and Adding a Computer Player

As you can seen, the AISim1.py program is mostly the same as the original Reversegam
program, except we've replaced the call to getplayermove() with a «call to
getComputerMove (). We've also made some changes to the text that is printed to the screen
so that the game easier to follow. When you run the program, the entire game is played in
less than a second!

Again, most of the changes are simply commenting out code. Since the computer is
playing against itself, the program no longer needs to run code to get moves from the
player or display the state of the board. All of this is skipped so that the board is displayed
only at the very end of the game. We comment out code instead of deleting it because it’s
easier to restore the code by uncommenting it if we need to reuse the code later.


https://www.nostarch.com/inventwithpython#diff

We commented out lines 209 to 214 because we don’t need to draw a game board for
the player since they won’t be playing the game. We also commented out lines 217 to 223
because we don’t need to check whether the player enters quit or toggles the hints mode.
But we need to de-indent line 224 by four spaces since it was in the e1se block that we just
commented out. Lines 229 to 232 also draw the game board for the player, so we comment
out those lines, too.

The only new code is on lines 216 and 241. In line 216, we just substitute the call to
getPlayerMove () With getcomputerMove (), as discussed earlier. On line 241, instead of asking
the player whether they want to be X or O, we simply always assign 'x' to playertile and
'0" to computerTile. (Both of these players will be played by the computer, though, so you
can rename playerTile tO computerTile2 Or secondComputerTile ﬂ?y(nlxvant) Now that we
have the computer playing against itself, we can keep modifying our program to make it do
more interesting things.

Making the Computer Play Itself Several Times

If we created a new algorithm, we could set it against the Al implemented in
getComputerMove () and see which one is better. Before we do so, however, we need a way to
evaluate the players. We can’t evaluate which Al is better based on only one game, so we
should have the Als play against each other more than once. To do that, we’ll make some
changes to the source code. Follow these steps to make A1Sim2.py:

1. Select File » Save As.

2. Save this file as AISim2.py so that you can make changes without affecting A1Sim 1.py.
(At this point, AISim1.py and AISim2.py still have the same code.)

Sample Run of Simulation 2

Here’s what the user sees when they run the A1Sim2.py program.

Welcome to Reversegam!
#1: X scored 45 points.
#2: X scored 38 points.
#3: X scored 20 points. scored 44 points.
#4: X scored 24 points. scored 40 points.
#5: X scored 8 points. O scored 56 points.
--snip--

#249: X scored 24 points. O scored 40 points.
#250: X scored 43 points. O scored 21 points.
X wins: 119 (47.6%)

O wins: 127 (50.8%)

Ties: 4 (1.6%)

scored 19 points.
scored 26 points.

O O OO

Because the algorithms include randomness, your run won’t have exactly the same
numbers.



Source Code for Simulation 2

Change the code in AISim2.py to match the following. Make sure that you change the code
line by line in number order. If you get errors after typing in this code, compare the code
you typed to the book’s code with the online diff tool at
https://www.nostarch.com/inventwithpython#diff.

AlSim?2.py

235. turn = 'player'
236.

237. NUM_GAMES = 250

238. xWins = oWins = ties = 0

239. print('Welcome to Reversegam! ')

240.

241. playerTile, computerTile = ['X', 'O'] #enterPlayerTile()

242.

243 . for i in range(NUM GAMES): #while True:

244 . finalBoard = playGame (playerTile, computerTile)

245.

246. # Display the final score.

247 . #drawBoard (finalBoard)

248. scores = getScoreOfBoard(finalBoard)

249. print ('#%s: X scored %s points. O scored %s points.' % (i + 1,

scores['X'], scores['0']))

250. if scores[playerTile] > scores[computerTile]:

251. xWins += 1 #print ('You beat the computer by %s points!
Congratulations!' % (scores[playerTile] -
scores [computerTile]))

252. elif scores[playerTile] < scores[computerTile]:

253. oWins += 1 #print('You lost. The computer beat you by %s points.’
% (scores[computerTile] - scores|[playerTile]))

254. else:

255. ties += 1 #print('The game was a tie!')

256.

257. #print ('Do you want to play again? (yes or no)')

258. #if not input().lower().startswith('y'):

259. # break

260.

261. print('X wins: %s (% )' % (xWins, round(xWins / NUM GAMES * 100, 1)))
262. print ('O wins: %s (%s%%)' % (oWins, round(oWins / NUM GAMES * 100, 1)))
263. print('Ties: %s (% )' % (ties, round(ties / NUM_GAMES * 100, 1)))

If this is confusing, you can always download the AISim2.py source code from the
book’s website at https://www.nostarch.com/inventwithpython/.

Keeping Track of Multiple Games

The main information we want from the simulation is how many wins for X, wins for O,
and ties there are over a certain number of games. These can be tracked in four variables,
which are created on lines 237 and 238.

237. NUM_GAMES = 250
238. xWins = oWins = ties = 0



https://www.nostarch.com/inventwithpython#diff
https://www.nostarch.com/inventwithpython/

The constant num_caves determines how many games the computer will play. You've
added the variables xwins, owins, and ties to keep track of when X wins, when O wins, and
when they tie. You can chain the assignment statement together to set ties equal to o and
owins equal to ties, then xwins equal to owins. This sets all three variables to o.

NuM_GaMES 1S used in a for loop that replaces the game loop on line 243:

243 . for 1 in range (NUM_GAMES) : #while True:

The for loop runs the game the number of times in num_cames. This replaces the wnile
loop that used to loop until the player said they didn’t want to play another game.

At line 250, an if statement compares the score of the two players, and lines 251 to 255
in the if-e1if-else blocks increment the xwins, owins, and ties variables at the end of each
game before looping back to start a new game:

250. if scores[playerTile] > scores[computerTile]:

251. xWins += 1 #print('You beat the computer by %s points!
Congratulations!' % (scores|[playerTile] -
scores[computerTile]))

252. elif scores|[playerTile] < scores[computerTile]:

253. oWins += 1 #print('You lost. The computer beat you by %s points.'
% (scores[computerTile] - scores|[playerTile]))

254 else:

255. ties += 1 #print('The game was a tie!')

We comment out the messages originally printed in the block so now only a one-line
summary of the scores prints for each game. We’ll use the xwins, owins, and ties variables
later in the code to analyze how the computer performed against itself.

Commenting Out print() Function Calls

You also commented out lines 247 and 257 to 259. By doing that, you took out most of the
print () function calls from the program, as well as the calls to arawsoara(). We don’t need
to see each of the games since there are so many being played. The program still runs every
game in its entirety using the Al we coded, but only the resulting scores are shown. After
running all the games, the program shows how many games each side won, and lines 251 to
253 print some information about the game runs.

Printing things to the screen slows the computer down, but now that you’ve removed
that code, the computer can run an entire game of Reversegam in about a second or two.
Each time the program printed out one of those lines with the final score, it ran through
an entire game (checking about 50 or 60 moves individually to choose the one that gets the
most points). Now that the computer doesn’t have to do as much work, it can run much
faster.

"The numbers that the program prints at the end are statisticc—numbers that are used to
summarize how the games were played. In this case, we showed the resulting scores of each
game played and the percentages of wins and ties for the tiles.



Using Percentages to Grade the Als

Percentages are a portion of a total amount. The percentages of a whole can range from 0
percent to 100 percent. If you had 100 percent of a pie, you would have the entire pie; if
you had 0 percent of a pie, you wouldn’t have any pie at all; and if you had 50 percent of
the pie, you would have half of it.

We can calculate percentages with division. To get a percentage, divide the part you
have by the total and then multiply that by 100. For example, if X won 50 out of 100
games, you would calculate the expression 50 / 100, which evaluates to o.5. Multiply this
by 100 to get the percentage (in this case, 50 percent).

If X won 100 out of 200 games, you would calculate the percentage with 100 / 200,
which also evaluates to 0.5. When you multiply 0.5 by 100 to get the percentage, you get
50 percent. Winning 100 out of 200 games is the same percentage (that is, the same
portion) as winning 50 out of 100 games.

In lines 261 to 263, we use percentages to print information about the outcomes of the
games:

oP
o

(
(
(

o
0

oo
o

261. print('X wins:
262. print ('O wins:
263. print('Ties:

S
S
S

(xWins, round(xWins / NUM_GAMES * 100, 1)))
(oWins, round(oWins / NUM_GAMES * 100, 1)))
(ties, round(ties / NUM_GAMES * 100, 1)))

o
[0}

oP
oo
o
o

oP
0]

oe
o°
oe
oe

Each print () statement has a label that tells the user whether the data being printed is
for X wins, O wins, or ties. We use string interpolation to insert the number of games won
or tied and then insert the calculated percentage the wins or ties make up of the total
games, but you can see that we’re not simply dividing the xwins, owins, or ties by the total
games and multiplying by 100. This is because we want to print only one decimal place for
each percentage, which we can’t do with normal division.

Division Evaluates to a Floating-Point Number

When you use the division operator (/), the expression will always evaluate to a floating-
point number. For example, the expression 10 / 2 evaluates to the floating-point value 5. o,
not to the integer value 5.

'This is important to remember, because adding an integer to a floating-point value
with the + addition operator will also always evaluate to a floating-point value. For
example, 3 + 4.0 evaluates to the floating-point value 7.0, not to the integer 7.

Enter the following code into the interactive shell:

100 /7 4

>>> spam
>>> spam
25.0
>>> spam
>>> spam
45.0

spam + 20




In the example, the data type of the value stored in span is always a floating-point value.
You can pass the floating-point value to the int () function, which returns an integer form
of the floating-point value. But this will always round the floating-point value down. For
example, the expressions int(4.0), int(4.2), and int(4.9) all evaluate to 4, not 5. But in
AlSim?2.py, we need to round each percentage to the tenths place. Since we can’t just divide
to do this, we need to use the round() function.

The round() Function

The round () function rounds a floating-point number to the nearest integer number. Enter
the following into the interactive shell:

>>> round(10.0)

10

>>> round(10.2)

10

>>> round(8.7)

9

>>> round(3.4999)

3

>>> round(2.5422, 2)
2.54

The rouna() function also has an optional second parameter, where you can specify
what place you want to round the number to. This will make the rounded number a
floating-point number rather than an integer. For example, the expression round(2.5422,
2) evaluates to 2.54 and round(2.5422, 3) evaluates to 2.542. In lines 261 to 263 of
AlSim2.py, we use this round () with a parameter of 1 to find the fraction of games won or
tied by X and O up to one decimal place, which gives us accurate percentages.

Comparing Different Al Algorithms

With just a few changes, we can make the computer play hundreds of games against itself.
Right now, each player wins about half of the games, since both run exactly the same
algorithm for moves. But if we add different algorithms, we can see whether a different Al
will win more games.

Let’s add some new functions with new algorithms. But first, in AI1Sim2.py select File »
Save As to save this new file as AISim3.py.

We’ll rename the getComputerMove () function to getCornerBestMove (), since this
algorithm tries to move on corners first and then chooses the move that flips the most tiles.
We'll call this strategy the corner-best algorithm. We'll also add several other functions that
implement different strategies, including a worst-move algorithm that gets the worst-scoring
move; a random-move algorithm that gets any valid move; and a corner-side-best algorithm,
which works the same as the corner-best Al except that it looks for a side move after a
corner move and before taking the highest-scoring move.



In AISim3.py, the call to getcomputermove() on line 257 will be changed to
getCornerBestMove(), and line 274,8 getComputerMove () WIH become getWorstMove (), Wthh iS
the function we’ll write for the worst-move algorithm. This way, we’ll have the regular
corner-best algorithm go against an algorithm that purposefully picks the move that will
flip the fewest tiles.

Source Code for Simulation 3

As you enter the source code of AISim3.py into your renamed copy of AISim?2.py, make
sure to write your code line by line in number order so that the line numbers match. If you
get errors after typing in this code, compare the code you typed to the book’s code with
the online diff tool at hezps://www.nostarch.com/inventwithpython#diff.

AISim3.py

162. def getCornerBestMove (board, computerTile):

--snip--

184. def getWorstMove (board, tile):

185. # Return the move that flips the least number of tiles.
186. possibleMoves = getValidMoves (board, tile)

187. random.shuffle (possibleMoves) # Randomize the order of the moves.
188.

189. # Find the lowest-scoring move possible.

190. worstScore = 64

191. for x, y in possibleMoves:

192. boardCopy = getBoardCopy (board)

193. makeMove (boardCopy, tile, x, y)

194. score = getScoreOfBoard(boardCopy) [tile]

195. if score < worstScore:

196. worstMove = [x, vyl

197. worstScore = score

198.

199. return worstMove

200.

201. def getRandomMove (board, tile):

202. possibleMoves = getValidMoves (board, tile)

203. return random.choice(possibleMoves)

204 .

205. def isOnSide(x, y):

206. return x == 0 or Xx == WIDTH - 1 or vy == 0 or y == HEIGHT - 1
207.

208. def getCornerSideBestMove (board, tile):

209. # Return a corner move, a side move, or the best move.
210. possibleMoves = getValidMoves (board, tile)

211. random.shuffle(possibleMoves) # Randomize the order of the moves.
212.

213. # Always go for a corner if available.

214. for x, y in possibleMoves:

215. if isOnCorner(x, y):

216. return [x, Y]

217.

218. # If there is no corner move to make, return a side move.
219. for x, y in possibleMoves:

220. if isOnSide(x, y):

221. return [x, Y]


https://www.nostarch.com/inventwithpython#diff

222.
223. return getCornerBestMove(board, tile) # Do what the normal AI
would do.

224 .

225. def printScore(board, playerTile, computerTile):

--snip--

257. move = getCornerBestMove (board, playerTile)
--snip--

274 . move = getWorstMove (board, computerTile)

Running AISim3.py results in the same kind of output as AISim2.py, except different
algorithms will be playing the games.

How the Als Work in Simulation 3

The functions getCornerBestMove(), getWorstMove (), getRandomMove (), and
getCornerSideBestMove () are similar to one another but use slightly different strategies to
play games. One of them uses the new isonside() function. This is similar to our
isoncorner () function, but it checks for the spaces along the side of the board before
selecting the highest-scoring move.

The Corner-Best Al

We already have the code for an Al that chooses to move on a corner and then chooses the
best move possible, since that’s what getcomputermove () does. We can just change the name
of getcomputerMove () to something more descriptive, so change line 162 to rename our
funCtﬂNJtI)getCornerBestMove(H

162. def getCornerBestMove (board, computerTile) :

Since getcomputerdove () no longer exists, we need to update the code on line 257 to

getCornerBestMove () :

257. move = getCornerBestMove (board, playerTile)

"That’s all the work we need to do for this Al so let’s move on.

The Worst-Move Al

The worst-move Al just finds the move with the fewest-scoring points and returns that. Its
code is a lot like the code we used to find the highest-scoring move in our original
getComputerMove () algoridnnlz

184. def getWorstMove (board, tile):

185. # Return the move that flips the least number of tiles.
186. possibleMoves = getValidMoves (board, tile)
187. random.shuffle (possibleMoves) # Randomize the order of the moves.

188.



189. # Find the lowest-scoring move possible.

190. worstScore = 64

191. for x, vy in possibleMoves:

192. boardCopy = getBoardCopy (board)

193. makeMove (boardCopy, tile, x, Vy)

194. score = getScoreOfBoard (boardCopy) [tile]
195. if score < worstScore:

196. worstMove = [x, V]

197. worstScore = score

198.

199. return worstMove

The algorithm for getworstmove () starts out the same for lines 186 and 187, but then it
makes a departure at line 190. We set up a variable to hold the worstscore instead of
bestScore and set it to 64, because that is the total number of positions on the board and
the most points that could be scored if the entire board were filled. Lines 191 to 194 are
the same as the original algorithm, but then line 195 checks whether the score is less than
worstscore instead of whether the score is hlgher If score is less, then worstmove is replaced
with the move on the board the algorithm is currently testing, and worstscore is updated,
too. Then the function returns worstumove.

Finally, line 274’s getComputerMove () needs to be changed tO getWorstMove():

274 . move = getWorstMove (board, computerTile)

When this is done and YOtlrurlthe program, getCornerBestMove () and,getWorstMove()
will play against each other.

The Random-Move Al

The random-move Al just finds all the valid possible moves and then chooses a random
one.

201. def getRandomMove (board, tile):
202. possibleMoves = getValidMoves (board, tile)
203. return random.choice (possibleMoves)

It uses getvalidMoves (), just as all the other Als do, and then uses choice () to return one
of the possible moves in the returned list.

Checking for Side Moves

Before we get into the algorithms, let’s look at one new helper function we’ve added. The
isonside () helper function is like the isoncorner () function, except that it checks whether a
move is on the sides of a board:

205. def isOnSide(x, Vv):
206. return x == 0 or x == WIDTH - 1 or v == 0 or y == HEIGHT - 1




It has one Boolean expression that checks whether the x value or y value of the
coordinate arguments passed to it is equal to o or 7. Any coordinate with a 0 or a 7 in it is
at the edge of the board.

We’ll use this function next in the corner-side-best Al

The Corner-Side-Best Al

The corner-side-best Al works a lot like the corner-best Al, so we can reuse some of the
code we've already entered. We define this Al in the function getcornersideBestmove ():

208. def getCornerSideBestMove (board, tile):

209. # Return a corner move, a side move, or the best move.

210. possibleMoves = getValidMoves (board, tile)

211. random.shuffle (possibleMoves) # Randomize the order of the moves.

212.

213. # Always go for a corner if available.

214. for x, y in possibleMoves:

215. if isOnCorner (x, Vv):

216. return [x, V]

217.

218. # If there is no corner move to make, return a side move.

219. for x, y in possibleMoves:

220. if isOnSide(x, Vy):

221. return [x, V]

222.

223. return getCornerBestMove (board, tile) # Do what the normal AI
would do.

Lines 210 and 211 are the same as in our corner-best Al, and lines 214 to 216 are
identical to our algorithm to check for a corner move in our original getcomputermove () Al
If there’s no corner move, then lines 219 to 221 check for a side move by using the
isonside() helper function. Once all corner and side moves have been checked for
availability, if there’s still no move, then we reuse our getcornerBestmove () function. Since
there were no corner moves earlier and there still won’t be any when the code reaches the
getCornerBestMove () function, this function will just look for the highest-scoring move to
make and return that.

Table 16-1 reviews the new algorithms we’ve made.

Table 16-1: Functions Used for the Reversegam Als

Function Description

getCornerBestMove () Take a corner move if available. If there’s no corner, find the
highest-scoring move.

getCornerSideBestMove () Take a corner move if available. If there’s no corner, take a space
on the side. If no sides are available, use the regular
getCornerBestMove()algorﬁinn.

getRandomMove () Randomly choose a valid move to make.



getWorstMove () Take the position that will result in the fewest tiles being

flipped.

Now that we have our algorithms, we can pit them against each other.

Comparing the Als

We've written our program so that the corner-best Al plays against the worst-move Al
We can run the program to simulate how well the Als do against each other and analyze
the results with the printed statistics.

In addition to these two Als, we’ve made some others that we don’t call on. These Als
exist in the code but aren’t being used, so if we want to see how they fare in a match, we’ll
need to edit the code to call on them. Since we already have one comparison set up, let’s
see how the worst-move Al does against the corner-best Al

Worst-Move Al vs. Corner-Best Al

Run the program to Fﬁt the getCornerBestMove () function agahnn the getWorstMove ()
function. Unsurprisingly, the strategy of flipping the fewest tiles each turn will lose most
games:

X wins: 206 (82.4%)
O wins: 41 (16.4%)
Ties: 3 (1.2%)

What is surprising is that sometimes the worst-move strategy does work! Rather than
winning 100 percent of the time, the algorithm in the getcornerBestmove () function wins
only about 80 percent of the time. About 1 in 5 times, it loses!

This is the power of running simulation programs: you can find novel insights that
would take much longer for you to realize if you were just playing games on your own.
The computer is much faster!

Random-Move Al vs. Corner-Best Al

Let’s try a different strategy. Change the getworstmove() call on line 274 to
getRandomMove () :

274 . move = getRandomMove (board, computerTile)

When you run the program now, it will look something like this:

Welcome to Reversegam!

#1: X scored 32 points. O scored 32 points.
#2: X scored 44 points. O scored 20 points.
#3: X scored 31 points. O scored 33 points.



#4: X scored 45 points. O scored 19 points.
#5: X scored 49 points. O scored 15 points.
--snip--

#249: X scored 20 points. O scored 44 points.
#250: X scored 38 points. O scored 26 points.
X wins: 195 (78.0%)

O wins: 48 (19.2%)

Ties: 7 (2.8%)

The random-move algorithm getrandommove () did slightly better against the corner-
best algorithm than did the worst-move algorithm. This makes sense because making
intelligent choices is usually better than just choosing moves at random, but making
random choices is slightly better than purposefully choosing the worst move.

Corner-Side-Best Al vs. Corner-Best Al

Picking a corner space if it’s available is a good idea, because a tile on the corner can never
be flipped. Putting a tile on the side spaces seems like it might also be a good idea, since
there are fewer ways it can be surrounded and flipped. But does this benefit outweigh
passing up moves that would flip more tiles? Let’s find out by pitting the corner-best
algorithm against the corner-side-best algorithm.

Change the algorithm on line 274 to use getcornersideBestMove ():

274 . move = getCornerSideBestMove (board, computerTile)

Then run the program again:

Welcome to Reversegam!

#1: X scored 27 points. O scored 37 points.
#2: X scored 39 points. O scored 25 points.
#3: X scored 41 points. O scored 23 points.
--snip--

#249: X scored 48 points. O scored 16 points.
#250: X scored 38 points. O scored 26 points.
X wins: 152 (60.8%)

O wins: 89 (35.6%)

Ties: 9 (3.6%)

Wow! That’s unexpected. It seems that choosing the side spaces over a space that flips
more tiles is a bad strategy. The benefit of the side space doesn’t outweigh the cost of
flipping fewer of the opponent’s tiles. Can we be sure of these results? Let’s run the
program again, but this time play 1,000 games by changing line 278 to nuv_caues = 1000 in
AlSim3.py. The program may now take a few minutes for your computer to run—but it
would take weeks for you to do this by hand!

You’ll see that the more accurate statistics from the 1,000-games run are about the
same as the statistics from the 250-games run. It seems that choosing the move that flips
the most tiles is a better idea than choosing a side to move on.

We've just used programming to find out which game strategy works the best. When



you hear about scientists using computer models, this is what they’re doing. They use a
simulation to re-create some real-world process, and then do tests in the simulation to find
out more about the real world.

Summary

This chapter didn’t cover a new game, but it modeled various strategies for Reversegam. If
we thought that taking side moves in Reversegam was a good idea, we would have to spend
weeks, even months, carefully playing games of Reversegam by hand and writing down the
results to test this idea. But if we know how to program a computer to play Reversegam,
then we can have it try different strategies for us. If you think about it, the computer is
executing millions of lines of our Python program in seconds! Your experiments with the
simulations of Reversegam can help you learn more about playing it in real life.

In fact, this chapter would make a good science fair project. You could research which
set of moves leads to the most wins against other sets of moves, and you could make a
hypothesis about which is the best strategy. After running several simulations, you could
determine which strategy works best. With programming, you can make a science fair
project out of a simulation of any board game! And it’s all because you know how to
instruct the computer to do it, step by step, line by line. You can speak the computer’s
language and get it to do large amounts of data processing and number crunching for you.

That’s all for the text-based games in this book. Games that use only text can be fun,
even though they’re simple. But most modern games use graphics, sound, and animation to
make them more exciting. In the rest of the chapters in this book, you’ll learn how to
create games with graphics by using a Python module called pygame.



17
CREATING GRAPHICS

So far, all of our games have used only text. Text is displayed on the screen as output, and
the player enters text as input. Just using text makes programming easy to learn. But in this
chapter, we’ll make some more exciting programs with advanced graphics using the pygane
module.

Chapters 17, 18, 19, and 20 will teach you how to use pygame to make games with
graphics, animations, mouse input, and sound. In these chapters, we’ll write source code
for simple programs that demonstrate pygame concepts. Then in Chapter 21, we’ll put
together all the concepts we learned to create a game.

( )

TOPICS COVERED IN THIS CHAPTER

C Installing pygame

® Colors and fonts in pygame

* Aliased and anti-aliased graphics

e Attributes

C The pygame. font.Font, pygame. Surface, pygame.Rect, and pygame.PixelArray data types
¢ Constructor functions

® pygame’s drawing functions

® The b1it () method for surface objects

* Events

Installing pygame



"The pygame module helps developers create games by making it easier to draw graphics on
your computer screen or add music to programs. The module doesn’t come with Python,
but like  Python, it’s free to  download. Download pygame  at
https://www.nostarch.com/inventwithpython/, and follow the instructions for your operating
system.

After the installer file finishes downloading, open it and follow the instructions until
pygame has finished installing. To check that it installed correctly, enter the following into
the interactive shell:

>>> import pygame

If nothing appears after you press ENTER, then you know pygame was successfully
installed. If the error ImportError: No module named pygame appears, try to install pygame
again (and make sure you typed import pygame correctly).

When writing your Python programs, don’t save your file as pygame.py. If you do, the import
pygame line will import your file instead of the real pygame module, and none of your code will
work.

Hello World in pygame

First, we’ll make a new pygame Hello World program like the one you created at the
beginning of the book. This time, you’ll use pygame to make “Hello world!” appear in a
graphical window instead of as text. We’'ll just use pygame to draw some shapes and lines on
the window in this chapter, but you’ll use these skills to make your first animated game
soon.

The pygame module doesn’t work well with the interactive shell, so you can only write
programs using pygame in a file editor; you can’t send instructions one at a time through
the interactive shell.

Also, pygame programs don’t use the print () or input () functions. There is no text input
or output. Instead, pygame displays output by drawing graphics and text in a separate
window. Input to pygame comes from the keyboard and the mouse through events, which are
covered in “Events and the Game Loop” on page 270.

Sample Run of pygame Hello World

When you run the graphical Hello World program, you should see a new window that
looks like Figure 17-1.


https://www.nostarch.com/inventwithpython/

| &

.'f.- ‘-...

Figure 17-1: The pygame Hello World program

The nice thing about using a window instead of a console is that text can appear
anywhere in the window, not just after the previous text you have printed. The text can
also be any color and size. The window is like a canvas, and you can draw whatever you
like on it.

Source Code for pygame Hello World

Enter the following code into the file editor and save it as pygameHelloWorld.py. If you get
errors after typing in this code, compare the code you typed to the book’s code with the
online diff tool at https://www.nostarch.com/inventwithpython#diff.


https://www.nostarch.com/inventwithpython#diff

MAKE SURE YOU'RE
USING PYTHON 3,
NOT PYTHON 2!

pygame HelloWorld.py
1. import pygame, sys
2. from pygame.locals import *
3.
4. # Set up pygame.
5. pygame.init ()
6.
7. # Set up the window.
8. windowSurface = pygame.display.set_mode( (500, 400), 0, 32)
9. pygame.display.set_caption('Hello world!")
10.
11. # Set up the colors.
12. BLACK = (0, 0, 0)
13. WHITE = (255, 255, 255)
14. RED = (255, 0, 0)
15. GREEN = (0, 255, 0)
16. BLUE = (0, 0, 255)
17.
18. # Set up the fonts.
19. basicFont = pygame.font.SysFont (None, 48)
20.
21. # Set up the text.
22. text = basicFont.render('Hello world!', True, WHITE, BLUE)
23. textRect = text.get_rect()
24 . textRect.centerx = windowSurface.get_rect () .centerx
25. textRect.centery = windowSurface.get_rect () .centery
26
27. # Draw the white background onto the surface.
28. windowSurface.fill (WHITE)
29.
30. # Draw a green polygon onto the surface.
31. pygame.draw.polygon (windowSurface, GREEN, ((146, 0), (291, 106),
(236, 277), (56, 277), (0, 106)))
32.
33. # Draw some blue lines onto the surface.
34. pygame.draw.line (windowSurface, BLUE, (60, 60), (120, 60), 4)
35. pygame.draw.line (windowSurface, BLUE, (120, 60), (60, 120))
36. pygame.draw.line (windowSurface, BLUE, (60, 120), (120, 120), 4)
37.
38. # Draw a blue circle onto the surface.



39. pygame.draw.circle (windowSurface, BLUE, (300, 50), 20, 0)

40.

41. # Draw a red ellipse onto the surface.

42 . pygame.draw.ellipse (windowSurface, RED, (300, 250, 40, 80), 1)

43 .

44 . # Draw the text's background rectangle onto the surface.

45. pygame.draw.rect (windowSurface, RED, (textRect.left - 20,
textRect.top - 20, textRect.width + 40, textRect.height + 40))

46.

47. # Get a pixel array of the surface.

48. pixArray = pygame.PixelArray (windowSurface)

49. pixArray[480][380] = BLACK
50. del pixArray
51.

52. # Draw the text onto the surface.
53. windowSurface.blit (text, textRect)
54.

55. # Draw the window onto the screen.
56. pygame.display.update ()

57.

58. # Run the game loop.

59. while True:

60. for event in pygame.event.get():
61. if event.type == QUIT:

62. pygame.quit ()

63. sys.exit ()

Importing the pygame Module

Let’s go over each of these lines of code and find out what they do.

First, you need to import the pygame module so you can call its functions. You can
import several modules on the same line by separating the module names with commas.
Line 1 imports both the pygame and sys modules:

1. import pygame, sys
2. from pygame.locals import *

The second line imports the pygame.locals module. This module contains many
constant variables that you’ll use with pygame, such as gurr, which helps you quit the
program, and x_gscape, which represents the ESC key.

Line 2 also lets you use the pygames.locals module without having to type
pygames.locals. in front of every method, constant, or anything else you call from the
module.

If you have from sys import * instead of import sys in your program, you could call
exit () Instead of sys.exit() in your code. But most of the time it’s better to use the full
function name so you know which module the function is in.

Initializing pygame



All pygame programs must call pygame.init () after importing the pygame module but before
calling any other pygame functions:

4. # Set up pygame.
5. pygame.init ()

"This initializes pygame so it’s ready to use. You don’t need to know what init() does;
you just need to remember to call it before using any other pygane functions.

Setting Up the pygame Window

Line 8 creates a graphical user interface (GUI) window by calling the set_mode () method in
the pygame.display module. (The display module is 2 module inside the pygame module.
Even the pygame module has its own modules!)

7. # Set up the window.
8. windowSurface = pygame.display.set_mode( (500, 400), 0, 32)
9. pygame.display.set_caption('Hello world!")

These methods help set up a window for pygame to run in. As in the Sonar Treasure
Hunt game, windows use a coordinate system, but the window’s coordinate system is
organized in pixels.

A pixel is the tiniest dot on your computer screen. A single pixel on your screen can
light up in any color. All the pixels on your screen work together to display the pictures
you see. We'll create a window 500 pixels wide and 400 pixels tall by using a ruple.

Tuples

Tuple values are similar to lists, except they use parentheses instead of square brackets.
Also, like strings, tuples can’t be modified. For example, enter the following into the
interactive shell:

>>> gpam = ('Life', 'Universe', 'Everything', 42)
Q@ >>> spam[0]

'Life’

>>> spam[3]

42
A >>> spam[1l:3]

('Universe', 'Everything')
® >>> spam[3] = 'Hello®
O Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment

As you can see from the example, if you want to get just one item of a tuple @ or a
range of items @, you still use square brackets as you would with a list. However, if you try



to change the item at index 3 to the string '#e110' ©, Python will raise an error @.

We'll use tuples to set up pygame windows. There are three parameters to the
pygame .display.set_mode () method. The first is a tuple of two integers for the width and
height of the window, in pixels. To set up a 500- by 400-pixel window, you use the tuple
(500, 400) for the first argument to set_mode(). The second and third parameters are
advanced options that are beyond the scope of this book. Just pass o and 32 for them,
respectively.

Surface 0Objects

The set_mode () function returns a pygame.Surface okﬁect GNhjCh.“KfH.CaH.Surface okﬁects
for short). Object is just another name for a value of a data type that has methods. For
example, strings are objects in Python because they have data (the string itself) and
methods (such as 1ower () and sp1it (). The surface object represents the window.

Variables store references to objects just as they store references for lists and
dictionaries (see “List References” on page 132).

The set_caption() method on line 9 just sets the window’s caption to read 'zello
world! . The caption is in the top left of the window.

Setting Up Color Variables

There are three primary colors of light for pixels: red, green, and blue. By combining
different amounts of these three colors (which is what your computer screen does), you can
form any other color. In pygame, colors are represented by tuples of three integers. These
are called RGB color values, and we’ll use them in our program to assign colors to pixels.
Since we don’t want to rewrite a three-number tuple every time we want to use a specific
color in our program, we’ll make constants to hold tuples that are named after the color
the tuple represents:

11. # Set up the colors.

12. BLACK = (0, 0, 0)

13. WHITE = (255, 255, 255)
14. RED = (255, 0, 0)

15. GREEN = (0, 255, 0)

16. BLUE = (0, 0, 255)

The first value in the tuple determines how much red is in the color. A value of 0 means
there’s no red in the color, and a value of 255 means there’s a maximum amount of red in
the color. The second value is for green, and the third value is for blue. These three
integers form an RGB tuple.

For example, the tuple (0o, o, o) has no red, green, or blue. The resulting color is
completely black, as in line 12. The tuple (255, 255, 255) has a maximum amount of red,
green, and blue, resulting in white, as in line 13.



We'll also use red, green, and blue, which are assigned in lines 14 to 16. The tuple (255,
0, 0) represents the maximum amount of red but no green or blue, so the resulting color is
red. Similarly, (0, 255, 0) is greenand (o, o, 255) is blue.

You can mix the amount of red, green, and blue to get any shade of any color. Table
17-1 has some common colors and their RGB wvalues. The web page
https://www.nostarch.com/inventwithpython/ lists several more tuple values for different colors.

Table 17-1: Colors and Their RGB Values
Color RGB value
Black (0, 0, 0)

Blue (0, 0, 255)
Gray (128,128, 128)
Green (0, 128, 0)
Lime (0, 255, 0)
Purple (128, 0, 128)
Red (255,0,0)
Teal (0,128, 128)
White (255, 255, 255)
Yellow (255, 255, 0)

We'll just use the five colors we’ve already defined, but in your programs, you can use
any of these colors or even make up different colors.

Writing Text on the pygame Window

Writing text on a window is a little different from just using print (), as we’ve done in our
text-based games. In order to write text on a window, we need to do some setup first.

Using Fonts to Style Text

A font is a complete set of letters, numbers, symbols, and characters drawn in a single style.
We'll use fonts anytime we need to print text on a pygame window. Figure 17-2 shows the
same sentence printed in different fonts.


https://www.nostarch.com/inventwithpython/

Programming is fun!
Programming is fun!
PROGRAMMING IS FUN!
Programming is fun!

Drogramming is fun?
PYogramming s fun!

Figure 17-2: Examples of different fonts

In our earlier games, we only told Python to print text. The color, size, and font that
were used to display this text were completely determined by your operating system. The
Python program couldn’t change the font. However, pygame can draw text in any font on
your computer.

Line 19 creates a pygame. font.Font object (called a ront object for short) by calling the
pygame. font.SysFont () function with two parameters:

18. # Set up the fonts.
19. basicFont = pygame.font.SysFont (None, 48)

The first parameter is the name of the font, but we’ll pass the none value to use the
default system font. The second parameter is the size of the font (which is measured in
units called points). We’ll draw 'Hello world:' on the window in the default font at 48
points. Generating an image of letters for text like “Hello world!” is called rendering.

Rendering a Font Object

The ront object that you’ve stored in the vasicront variable has a method called renger ().
This method will return a surface object with the text drawn on it. The first parameter to
render () 1s the string of the text to draw. The second parameter is a Boolean for whether
or not to anti-alias the font. Anti-aliasing blurs your text slightly to make it look smoother.
Figure 17-3 shows what a line looks like with and without anti-aliasing.



Aliased Anti-aliased
Figure 17-3: An enlarged view of an aliased line and an anti-aliased line

On line 22, we pass True to use anti-aliasing:

21. # Set up the text.
22. text = basicFont.render('Hello world!', True, WHITE, BLUE)

The third and fourth parameters in line 22 are both RGB tuples. The third parameter
is the color the text will be rendered in (white, in this case), and the fourth is the
background color behind the text (blue). We assign the Font object to the variable text.

Once we've set up the ront object, we need to place it in a location on the window.

Setting the Text Location with Rect Attributes

The pygame.rect data type (called rect for short) represents rectangular areas of a certain
size and location. This is what we use to set the location of objects on a window.

To create a new rect object, you call the function pygame.rect (). Notice that the
pygame.Rect () function has the same name as the pygame.rect data type. Functions that
have the same name as their data type and create objects or values of their data type are
called constructor functions. The parameters for the pygame.rect () function are integers for
the x- and y-coordinates of the top-left corner, followed by the width and height, all in
pixels. The function name with the parameters looks like this: pygame.rect (1eft, top,
width, height).

When we created the ront object, a rect object was already made for it, so all we need
to do now is retrieve it. T'o do that, we use the get_rect () method on text and assign the
Rect tO textRect:

23. textRect = text.get_rect()
24 . textRect.centerx = windowSurface.get_rect () .centerx
25. textRect.centery = windowSurface.get_rect () .centery

Just as methods are functions that are associated with an object, attributes are variables
that are associated with an object. The rect data type has many attributes that describe the
rectangle they represent. In order to set the location of textrect on the window, we need



to assign its center x and y values to pixel coordinates on the window. Since each rect
object already has attributes that store the x- and y-coordinates of the rect’s center, called
centerx and centery, respectively, all we need to do is assign those coordinates values.

We want to put textrect in the center of the window, so we need to get the
windowSurface Rect, get its centerx and centery attributes, and then assign those to the
centerx and centery attributes of textrect. We do that in lines 24 and 25.

There are many other rect attributes that we can use. Table 17-2 is a list of attributes
of a rect object named myrect.

Table 17-2: Rect Attributes

pygame.Rect Description

attribute

myRect.left Integer value of the x-coordinate of the left side of the rectangle

myRect.right Integer value of the x-coordinate of the right side of the rectangle

myRect . top Integer value of the y-coordinate of the top side of the rectangle

myRect .bottom Integer value of the y-coordinate of the bottom side of the
rectangle

myRect . centerx Integer value of the x-coordinate of the center of the rectangle

myRect .centery Integer value of the y-coordinate of the center of the rectangle

myRect .width Integer value of the width of the rectangle

myRect .height Integer value of the height of the rectangle

myRect.size A tuple of two integers: (width, height)

myRect. topleft A tuple of two integers: (1eft, top)

myRect . topright A tuple of two integers: (right, top)

myRect.bottomleft A tuple of two integers: (left, bottom)

myRect.bottomright A tuple of two integers: (right, bottom)

myRect.midleft A tuple of two integers: (1eft, centery)
myRect.midright A tuple of two integers: (right, centery)
myRect .midtop A tuple of two integersz (centerx, top)
myRect .midbottom A tuple of two integersz (centerx, bottom)

The great thing about rect objects is that if you modify any of these attributes, all the
other attributes will automatically modify themselves, too. For example, if you create a
rect object that is 20 pixels wide and 20 pixels tall and has the top-left corner at the
coordinates (30, 40), then the x-coordinate of the right side will automatically be set to 50



(because 20 + 30 = 50).

Or if you instead change the 1eft attribute with the line nyrect.1eft = 100, then pygame
will automatically change the right attribute to 120 (because 20 + 100 = 120). Every other
attribute for that rect object is also updated.

( )

MORE ABOUT METHODS, MODULES, AND DATA TYPES

Inside the pygame module are the font and surface modules, and inside those modules
are the rFont and surface data types. The pygane programmers began the modules with
a lowercase letter and the data types with an uppercase letter to make it easier to
distinguish the data types and the modules.

Notice that both the ront object (stored in the text variable on line 23) and the
surface object (stored in the windowsurface variable on line 24) have a method called
get_rect (). T'echnically, these are two different methods, but the programmers of
pygame gave them the same name because they both do the same thing: return rect
objects that represent the size and position of the Font or surface object.

Filling a Surface Object with a Color

For our program, we want to fill the entire surface stored in windowsurface with the color
white. The £i11() function will completely cover the surface with the color you pass as the
parameter. (Remember, the warTe variable was set to the value (255, 255, 255) on line 13.)

27. # Draw the white background onto the surface.
28. windowSurface.fill (WHITE)

Note that in pygane, the window on the screen won’t change when you call the £i11 ()
method or any of the other drawing functions. Rather, these will change the surface object,
and you have to render the new surface object to the screen with the
pygame.display.update () function to see changes.

"This is because modifying the surface object in the computer’s memory is much faster

than modifying the image on the screen. It is much more efficient to draw onto the screen
once after all of the drawing functions have been drawn to the surface object.

pygame’s Drawing Functions

So far, we'’ve learned how to fill a pygame window with a color and add text, but pygame also
has functions that let you draw shapes and lines. Each shape has its own function, and you
can combine these shapes into different pictures for your graphical game.



Drawing a Polygon

The pygame.draw.polygon () function can draw any polygon shape you give it. A polygon is a
multisided shape with sides that are straight lines. Circles and ellipses are not polygons, so
we need to use different functions for those shapes.

The function’s arguments, in order, are as follows:

1. The surface object to draw the polygon on.
2. The color of the polygon.

3. A tuple of tuples that represents the x- and y-coordinates of the points to draw in
order. The last tuple will automatically connect to the first tuple to complete the
shape.

4. Optionally, an integer for the width of the polygon lines. Without this, the polygon
will be filled in.

On line 31, we draw a green polygon onto our white surface object.

30. # Draw a green polygon onto the surface.
31. pygame.draw.polygon (windowSurface, GREEN, ((146, 0), (291, 106),
(236, 277), (56, 277), (0, 106)))

We want our polygon to be filled, so we don’t give the last optional integer for line
widths. Figure 17-4 shows some examples of polygons.

Figure 17-4: Examples of polygons

Drawing a Line

The pygame.draw.1ine () function just draws a line from one point on the screen to another
point. The parameters for pygame.draw.line(), in order, are as follows:

1. The surface object to draw the line on.



2. The color of the line.

3. A tuple of two integers for the x- and y-coordinates of one end of the line.

4. A tuple of two integers for the x- and y-coordinates of the other end of the line.
5. Optionally, an integer for the width of the line in pixels.

In lines 34 to 36, we call pygame.draw.1ine() three times:

33. # Draw some blue lines onto the surface.

34. pygame.draw.line (windowSurface, BLUE, (60, 60), (120, 60), 4)
35. pygame.draw.line (windowSurface, BLUE, (120, 60), (60, 120))

36. pygame.draw.line (windowSurface, BLUE, (60, 120), (120, 120), 4)

If you don’t specify the wiatn parameter, it will take on the default value of 1. In lines 34
and 36, we pass 4 for the width, so the lines will be 4 pixels thick. The three
pygame.draw.line () calls on lines 34, 35, and 36 draw the blue Z on the surface object.

Drawing a Circle

The pygame.draw.circle() function draws circles on surface objects. Its parameters, in
order, are as follows:

1. The surface object to draw the circle on.

2. The color of the circle.

3. A tuple of two integers for the x- and y-coordinates of the center of the circle.
4. An integer for the radius (that is, the size) of the circle.

5.

Optionally, an integer for the width of the line. A width of 0 means that the circle will
be filled in.

Line 39 draws a blue circle on the surface object:

38. # Draw a blue circle onto the surface.
39. pygame.draw.circle (windowSurface, BLUE, (300, 50), 20, 0)

"This circle’s center is at an x-coordinate of 300 and y-coordinate of 50. The radius of
the circle is 20 pixels, and it is filled in with blue.

Drawing an Ellipse

The pygame.draw.ellipse() function is similar to the pygame.draw.circle () function, but
instead it draws an ellipse, which is like a squished circle. The pygame.draw.ellipse()
function’s parameters, in order, are as follows:

1. The surface object to draw the ellipse on.
2. The color of the ellipse.



3. A tuple of four integers for the left and top corner of the ellipse’s rect object and the
width and height of the ellipse.

4. Optionally, an integer for the width of the line. A width of 0 means that the ellipse
will be filled in.

Line 42 draws a red ellipse on the surface object:

41. # Draw a red ellipse onto the surface.
42 . pygame.draw.ellipse (windowSurface, RED, (300, 250, 40, 80), 1)

The ellipse’s top-left corner is at an x-coordinate of 300 and y-coordinate of 250. The
shape is 40 pixels wide and 80 pixels tall. The ellipse’s outline is 1pixel wide.

Drawing a Rectangle

The pygame.draw.rect () function will draw a rectangle. The pygame.draw.rect () function’s
parameters, in order, are as follows:

1. The surface object to draw the rectangle on.
2. The color of the rectangle.

3. A tuple of four integers for the x- and y-coordinates of the top-left corner and the
width and height of the rectangle. Instead of a tuple of four integers for the third
parameter, you can also pass a rect object.

In the Hello World program, we want the rectangle we draw to be visible 20 pixels
around all the sides of text. Remember, in line 23 we created a textrect to contain our
text. On line 45 we set the left and top points of the rectangle as the left and top of
textRect minus 20 (we subtract because coordinates decrease as you go left and up):

44 . # Draw the text's background rectangle onto the surface.
45. pygame.draw.rect (windowSurface, RED, (textRect.left - 20,
textRect.top - 20, textRect.width + 40, textRect.height + 40))

"The width and height of the rectangle are equal to the width and height of the textrect
plus 40. We use 40 and not 20 because the left and top were moved back 20 pixels, so you
need to make up for that space.

Coloring Pixels

Line 48 creates a pygame.pPixelarray object (called a pixelarray object for short). The
pixelarray object is a list of lists of color tuples that represents the surface object you
passed it.

The pixelarray object gives you a high per-pixel level of control, so it’s a good choice if
you need to draw very detailed or customized images to the screen instead of just large



shapes.

We'll use a pixelarray to color one pixel on windowsurface black. You can see this pixel
on the bottom right of the window when you run pygane Hello World.

Line 48 passes windowSurface tO the pygame.PixelArray () Cauﬂ SO a&ﬁgning BLACK toO
pixArray[480][380] on line 49 will make the pixel at the coordinates (480, 380) black:

47. # Get a pixel array of the surface.
48. pixArray = pygame.PixelArray (windowSurface)
49. pixArray[480][380] = BLACK

The pygame module will automatically modify the windowsurface object with this
change.

The first index in the pixelarray object is for the x-coordinate. The second index is for
the y-coordinate. pixelarray objects make it easy to set individual pixels on a surface
object to a specific color.

Every time you create a pixelarray object from a surface object, that surface object is
locked. That means no b1it () method calls (described next) can be made on that surface
object. To unlock the surface object, you must delete the pixelarray object with the de1
operator:

50. del pixArray

If you forget to do so, you’ll get an error message that says pygame.error: Surfaces must
not be locked during blit.

The blit() Method for Surface Objects

The v1it() method will draw the contents of one surface object onto another surface
object. All text objects created by the render () method exist on their own surface object.
The pygame drawing methods can all specify the surface object to draw a shape or a line on,
but our text was stored into the text variable rather than drawn onto windowsurface. In
order to draw text on the surface we want it to appear on, we must use the b1it () method:

52. # Draw the text onto the surface.
53. windowSurface.blit (text, textRect)

Line 53 draws the 'Hello world!' surface object in the text variable (defined on line
22) onto the surface object stored in the windowsurface variable.

The second parameter to blit() specifies where on windowsurface the text surface
should be drawn. The rect object you got from calling text.get_rect () on line 23 is passed
for this parameter.

Drawing the Surface Object to the Screen



Since in pygame nothing is actually drawn to the screen until the function
pygame.display.update () 1s called, we call it on line 56 to display our updated surface
object:

55. # Draw the window onto the screen.
56. pygame.display.update ()

To save memory, you don’t want to update to the screen after every single drawing
function; instead, you want to update the screen only once, after all the drawing functions
have been called.

Events and the Game Loop

In our previous games, all of the programs would print everything immediately until they
reached an input () function call. At that point, the program would stop and wait for the
user to type something in and press ENTER. But pygame programs are constantly running
through a game loop, which executes every line of code in the loop about 100 times a
second.

The game loop constantly checks for new events, updates the state of the window, and
draws the window on the screen. Events are generated by pygame whenever the user presses a
key, clicks or moves the mouse, or performs some other action recognized by the program
that should make something happen in the game. An Event is an object of the
pygame.event.Event.datatype.

Line 59 is the start of the game loop:

58. # Run the game loop.
59. while True:

The condition for the while statement is set to True so that it loops forever. The only
time the loop will exit is if an event causes the program to terminate.

Getting Event Objects

The function pygame.event.get () checks for any NE€w pygame.event.Event objects (called
event objects for short) that have been generated since the last call to pygame.event.get ().
These events are returned as a list of Event objects, which the program will then execute to
perform some action in response to the event. All event objects have an attribute called
type, which tell us the type of the event. In this chapter, we only need to use the guit event
type, which tells us when the user quits the program:

60. for event in pygame.event.get():
61. if event.type == QUIT:

In line 60, we use a for loop to iterate over each event object in the list returned by



pygame.event.get (). If the type attribute of the event is equal to the constant variable gurr
—which was in the pygame.locals module we imported at the start of the program—then
you know the ourt event has been generated.

The pygame module generates the guir event when the user closes the program’s
window or when the computer shuts down and tries to terminate all the running programs.
Next, we’ll tell the program what to do when it detects the guzT event.

Exiting the Program

If the gurir event has been generated, the program will call both pygame.quit() and

sys.exit():
62. pygame.quit ()
63. sys.exit ()

The pygame.quit () function is sort of the opposite of init (). You need to call it before
exiting your program. If you forget, you may cause IDLE to hang after your program has
ended. Lines 62 and 63 quit pygane and end the program.

Summary

In this chapter, we’ve covered many new topics that will let us do a lot more than we could
with our previous games. Instead of just working with text by calling print () and input (), a
pygame progxarn<hasa.blankrwdnd(nv——created bY'pygame.display.set_mode()——{hat\Ve can
draw on. pygame’s drawing functions let you draw shapes in many colors in this window.
You can create text of various sizes as well. These drawings can be at any x- and y-
coordinate inside the window, unlike the text created by print ().

Even though the code is more complicated, pygame programs can be much more fun
than text games. Next, let’s learn how to create games with animated graphics.



18
ANIMATING GRAPHICS

Now that you’ve learned some pygame skills, we’ll write a program to animate boxes that
bounce around a window. The boxes are different colors and sizes and move only in
diagonal directions. To animate the boxes, we’ll move them a few pixels on each iteration
through the game loop. This will make it look like the boxes are moving around the
screen.

( )

TOPICS COVERED IN THIS CHAPTER

* Animating objects with the game loop
* Changing the direction of an object

Sample Run of the Animation Program

When you run the Animation program, it will look something like Figure 18-1. The
blocks will be bouncing off the edges of the window.



o~

{'T'. 1
3=g Animation

& )

Figure 18-1: A screenshot of the Animation program

Source Code for the Animation Program

Enter the following program into the file editor and save it as amimation.py. If you get
errors after typing in this code, compare the code you typed to the book’s code with the
online diff tool at https://www.nostarch.com/inventwithpython#diff.

MAKE SURE YOU'RE
USING PYTHON 3,
NOT PYTHON 2!

animation.py


https://www.nostarch.com/inventwithpython#diff

[E="

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44 .
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.

O W oo Jo Ul WN

import pygame, sys, time
from pygame.locals import *

# Set up pygame.
pygame.init ()

# Set up the window.
WINDOWWIDTH = 400
WINDOWHEIGHT = 400

windowSurface = pygame.display.set_mode ( (WINDOWWIDTH,

0, 32)
pygame.display.set_caption('Animation')

# Set up direction variables.

DOWNLEFT = 'downleft'
DOWNRIGHT = 'downright'
UPLEFT = ‘'upleft'
UPRIGHT = 'upright'

MOVESPEED = 4

# Set up the colors.

WHITE = (255, 255, 255)
RED = (255, 0, 0)

GREEN = (0, 255, 0)
BLUE = (0, 0, 255)

# Set up the box data structure.

bl = {'rect':pygame.Rect (300, 80, 50, 100),
b2 = {'rect':pygame.Rect (200, 200, 20, 20),
b3 = {'rect':pygame.Rect (100, 150, 60, 60),
boxes = [bl, b2, b3]

# Run the game loop.
while True:
# Check for the QUIT event.
for event in pygame.event.get():
if event.type == QUIT:
pygame.quit ()
sys.exit ()

WINDOWHEIGHT) ,

'color':RED, 'dir':UPRIGHT}

'color' :GREEN,
'color' :BLUE,

# Draw the white background onto the surface.

windowSurface.fill (WHITE)

for b in boxes:
# Move the box data structure.

if b['dir'] == DOWNLEFT:
b['rect'].left -= MOVESPEED
b['rect'].top += MOVESPEED
if b['dir'] == DOWNRIGHT:

bl['rect'].left += MOVESPEED
b['rect'].top += MOVESPEED

if b['dir'] == UPLEFT:
b['rect'].left -= MOVESPEED
b['rect'].top -= MOVESPEED

if b['dir'] == UPRIGHT:
b['rect'].left += MOVESPEED
b['rect'].top -= MOVESPEED

'dir' :UPLEFT}
'dir' :DOWNLEFT}



59. # Check whether the box has moved out of the window.

60. if b['rect'].top < 0:

61. # The box has moved past the top.
62. if b['dir'] == UPLEFT:

63. b['dir'] = DOWNLEFT

64. if b['dir'] == UPRIGHT:

65. b['dir'] = DOWNRIGHT

66. if b['rect'].bottom > WINDOWHEIGHT:

67. # The box has moved past the bottom.
68. if b['dir'] == DOWNLEFT:

69. b['dir'] = UPLEFT

70. if b['dir'] == DOWNRIGHT:

71. b['dir'] = UPRIGHT

72. if b['rect'].left < 0:

73. # The box has moved past the left side.
74 . if b['dir'] == DOWNLEFT:

75. b['dir'] = DOWNRIGHT

76. if b['dir'] == UPLEFT:

77 . b['dir'] = UPRIGHT

78. if b['rect'].right > WINDOWWIDTH:

79. # The box has moved past the right side.
80. if b['dir'] == DOWNRIGHT:

81. b['dir'] = DOWNLEFT

82. if b['dir'] == UPRIGHT:

83. b['dir'] = UPLEFT

84.

85. # Draw the box onto the surface.

86. pygame.draw.rect (windowSurface, b['color'], bl['rect'])
87.

88. # Draw the window onto the screen.

89. pygame.display.update ()

90. time.sleep(0.02)

Moving and Bouncing the Boxes

In this program, we’ll have three boxes of different colors moving around and bouncing oft
the walls of a window. In the next chapters, we’ll use this program as a base to make a game
in which we control one of the boxes. To do this, first we need to consider how we want
the boxes to move.

Each box will move in one of four diagonal directions. When a box hits the side of the
window, it should bounce off and move in a new diagonal direction. The boxes will bounce
as shown in Figure 18-2.



[
(2

Figure 18-2: How boxes will bounce

The new direction that a box moves after it bounces depends on two things: which
direction it was moving before the bounce and which wall it bounced off. There are eight
possible ways a box can bounce: two different ways for each of the four walls. For example,
if a box is moving down and right and then bounces off the bottom edge of the window, we
want the box’s new direction to be up and right.

We can use a rect object to represent the position and size of the box, a tuple of three
integers to represent the color of the box, and an integer to represent which of the four
diagonal directions the box is currently moving in.

The game loop will adjust the x- and y-position of the box in the rect object and draw
all the boxes on the screen at their current position on each iteration. As the program
execution iterates over the loop, the boxes will gradually move across the screen so that it
looks like they’re smoothly moving and bouncing around.

Setting Up the Constant Variables

Lines 1 to 5 are just setting up our modules and initializing pygame as we did in Chapter 17:

1. import pygame, sys, time

2. from pygame.locals import *

3.

4. # Set up pygame.

5. pygame.init ()

6.

7. # Set up the window.

8. WINDOWWIDTH = 400

9. WINDOWHEIGHT = 400

10. windowSurface = pygame.display.set_mode ( (WINDOWWIDTH, WINDOWHEIGHT),
0, 32)

11. pygame.display.set_caption('Animation')

At lines 8 and 9, we define the two constants for the window width and height, and then
in line 10, we use those constants to set up windowsurface, which will represent our pygame



window. Line 11 uses set_caption() to set the window’s caption to 'animation’.

In this program, you’ll see that the size of the window’s width and height is used for
more than just the call to set_mode (). We'll use constant variables so that if you ever want
to change the size of the window, you only have to change lines 8 and 9. Since the window
width and height never change during the program’s execution, constant variables are a
good idea.

Constant Variables for Direction

We’'ll use constant variables for each of the four directions the boxes can move in:

13. # Set up direction variables.

14. DOWNLEFT = 'downleft'
15. DOWNRIGHT = 'downright'
16. UPLEFT = 'upleft'

17. UPRIGHT = 'upright'

You could have used any value you wanted for these directions instead of using a
constant variable. For example, you could use the string 'downieft' directly to represent
the down and left diagonal direction and retype the string every time you need to specify
that direction. However, if you ever mistyped the 'downleft' string, you’d end up with a
bug that would cause your program to behave strangely, even though the program
wouldn’t crash.

If you use constant variables instead and accidentally mistype the variable name,
Python will notice that there’s no variable with that name and crash the program with an
error. This would still be a pretty bad bug, but at least you would know about it
immediately and could fix it.

We also create a constant variable to determine how fast the boxes should move:

19. MOVESPEED = 4

"The value 4 in the constant variable movespeep tells the program how many pixels each
box should move on each iteration through the game loop.

Constant Variables for Color

Lines 22 to 25 set up constant variables for the colors. Remember, pygame uses a tuple of
three integer values for the amounts of red, green, and blue, called an RGB value. The
integers range from o to 255.

21. # Set up the colors.

22. WHITE = (255, 255, 255)
23. RED = (255, 0, 0)
24. GREEN = (0, 255, 0)

25. BLUE = (0, 0, 255)




Constant variables are used for readability, just as in the pygame Hello World program.

Setting Up the Box Data Structures

Next we’ll define the boxes. To make things simple, we’ll set up a dictionary as a data
structure (see “The Dictionary Data T'ype” on page 112) to represent each moving box.
The dictionary will have the keys 'rect' (with a rect object for a value), 'color' (with a
tuple of three integers for a value), and 'dair' (with one of the direction constant variables
for a value). We'll set up just three boxes for now, but you can set up more boxes by
defining more data structures. The animation code we’ll use later can be used to animate
as many boxes as you define when you set up your data structures.

The variable b1 will store one of these box data structures:

27. # Set up the box data structure.
28. bl = {'rect':pygame.Rect (300, 80, 50, 100), 'color':RED, 'dir':UPRIGHT}

This box’s top-left corner is located at an x-coordinate of 300 and a y-coordinate of so.
It has a width of 50 pixels and a height of 100 pixels. Its color is rep, and its initial direction
1S UPRIGHT.

Lines 29 and 30 create two more similar data structures for boxes that are different
sizes, positions, colors, and directions:

29. b2 {'rect':pygame.Rect (200, 200, 20, 20), 'color':GREEN, 'dir':UPLEFT}
30. b3 {'rect':pygame.Rect (100, 150, 60, 60), 'color':BLUE, 'dir':DOWNLEFT}
31. boxes = [bl, b2, b3]

If you needed to retrieve a box or value from the list, you could do so using indexes and
keys. Entering poxes(0] would access the dictionary data structure in b1. If we entered
boxes[0] ['color'], that would access the 'color' key in b1, so the expression boxes[0]
['color'] would evaluate to (255, 0, 0). You can refer to any of the values in any of the
box data structures by starting with poxes. The three dictionaries, b1, b2, and b3, are then
stored in a list in the boxes variable.

The Game Loop

The game loop handles animating the moving boxes. Animations work by drawing a series
of pictures with slight differences that are shown one right after another. In our animation,
the pictures will be of the moving boxes and the slight differences will be in each box’s
position. Each box will move by 4 pixels in each picture. The pictures are shown so fast
that the boxes will look like they are moving smoothly across the screen. If a box hits the
side of the window, then the game loop will make the box bounce by changing its
direction.

Now that we know a little bit about how the game loop will work, let’s code it!



Handling When the Player Quits

When the player quits by closing the window, we need to stop the program in the same
way we did the pygame Hello World program. We need to do this in the game loop so that
our program is constantly checking whether there has been a gurr event. Line 34 starts the
loop, and lines 36 to 39 handle quitting:

33. # Run the game loop.
34. while True:

35. # Check for the QUIT event.

36. for event in pygame.event.get():
37. if event.type == QUIT:

38. pygame.quit ()

39. sys.exit ()

After that, we want to make sure that windowsurface is ready to be drawn on. Later,
we’ll draw each box on windowsurface with the rect () method. On each iteration through
the game loop, the code redraws the entire window with new boxes that are located a few
pixels over each time. When we do that, we’re not redrawing the whole surface object;
instead, we’re just adding a drawing of the rect object to windowsurface. But when the game
loop iterates to draw all the rect objects again, it redraws every rect and doesn’t erase the
old rect drawing. If we just let the game loop keep drawing rect objects on the screen, we’ll
end up with a trail of rect objects instead of a smooth animation. To avoid that, we need
to clear the window for every iteration of the game loop.

In order to do that, line 42 fills the entire surface with white so that anything
previously drawn on it is erased:

41. # Draw the white background onto the surface.
42 . windowSurface.fill (WHITE)

Without calling windowsurface.£ill (wnrTe) to white out the entire window before
drawing the rectangles in their new position, you would have a trail of rect objects. If you
want to try it out and see what happens, you can comment out line 42 by putting a # at the
beginning of the line.

Once windowsurface is filled, we can start drawing all of our rect objects.

Moving Each Box

In order to update the position of each box, we need to iterate over the boxes list inside the
game loop:

44 . for b in boxes:

Inside the for loop, you’ll refer to the current box as v to make the code easier to type.
We need to change each box depending on the direction it is already moving, so we’ll use
if statements to figure out the box’s direction by checking the air key inside the box data



structure. Then we’ll change the box’s position depending on the direction the box is
moving.

45. # Move the box data structure.

46. if b['dir'] == DOWNLEFT:

47 . bl'rect'].left -= MOVESPEED
48. b['rect'].top += MOVESPEED

49. if b['dir'] == DOWNRIGHT:

50. bl'rect'].left += MOVESPEED
51. b['rect'].top += MOVESPEED

52. if b['dir'] == UPLEFT:

53. bl'rect'].left -= MOVESPEED
54. b['rect'].top -= MOVESPEED

55. if b['dir'] == UPRIGHT:

56. bl'rect'].left += MOVESPEED
57. bl'rect'].top -= MOVESPEED

The new value to set the 1eft and top attributes of each box to depends on the box’s
direction. If the direction is either pownLEFT Or powNRIGHT, you want to #ncrease the top
attribute. If the direction is upLEFT Or UPRIGHT, yOu want to decrease the top attribute.

If the box’s direction is DOWNRIGHT Or UPRIGHT, you want to increase the 1eft attribute. It
the direction is powNLEFT Or UPLEFT, yOu want to decrease the 1eft attribute.

The value of these attributes will increase or decrease by the amount of the integer
stored in movespeep, which stores how many pixels the boxes move on each iteration
through the game loop. We set movesezep on line 19.

For example, if b['air'] is set to 'downleft', b['rect'].left to 40, and b['rect'].top tO
100, then the condition on line 46 will be True. If MovESPEED is set to 4, then lines 47 and 48
will change the rect object so that b['rect'1.1eft is36 and bl 'rect'].top is 104. Changing
the rect value then causes the drawing code on line 86 to draw the rectangle slightly down
and to the left of its previous position.

Bouncing a Box

After lines 44 to 57 have moved the box, we need to check whether the box has gone past
the edge of the window. If it has, you want to bounce the box. In the code, this means the
for loop will set a new value for the box’s 'air' key. The box will move in the new
direction on the next iteration of the game loop. This makes it look like the box has
bounced off the side of the window.

In the if statement on line 60, we determine that the box has moved past the top edge
of the window if the top attribute of the box’s rect object is less than o:

59. # Check whether the box has moved out of the window.
60. if bl['rect'].top < 0:

61. # The box has moved past the top.

62. if b['dir'] == UPLEFT:

63. b['dir'] = DOWNLEFT

64 . if b['dir'] == UPRIGHT:

65. b['dir'] = DOWNRIGHT




In that case, the direction will be changed based on which direction the box was
moving. If the box was moving vererr, then it will now move pownverT; if it was moving
UPRIGHT, it will now move DowNRIGHT.

Lines 66 to 71 handle the situation in which the box has moved past the bottom edge of
the window:

66. if b['rect'] .bottom > WINDOWHEIGHT:

67. # The box has moved past the bottom.
68. if b['dir'] == DOWNLEFT:

69. b['dir'] = UPLEFT

70. if b['dir'] == DOWNRIGHT:

71. b['dir'] = UPRIGHT

These lines check whether the votton attribute (not the top attribute) is greater than the
value in winpowsezcaT. Remember that the y-coordinates start at o at the top of the window
and increase to winpowHETGHT at the bottom.

Lines 72 to 83 handle the behavior of the boxes when they bounce off the sides:

72. if bl['rect'].left < 0:

73. # The box has moved past the left side.
74. if b['dir'] == DOWNLEFT:

75. b['dir'] = DOWNRIGHT

76. if b['dir'] == UPLEFT:

77. b['dir'] = UPRIGHT

78. if b['rect'].right > WINDOWWIDTH:

79. # The box has moved past the right side.
80. if b['dir'] == DOWNRIGHT:

81. b['dir'] = DOWNLEFT

82. if b['dir'] == UPRIGHT:

83. b['dir'] = UPLEFT

Lines 78 to 83 are similar to lines 72 to 77 but check whether the right side of the box
has moved past the window’s right edge. Remember, the x-coordinates start at o on the
window’s left edge and increase to winbowwrpTs on the window’s right edge.

Drawing the Boxes on the Window in Their New Positions

Every time the boxes move, we need to draw them in their new positions on windowsurface
by calling the pygame.draw.rect () function:

85. # Draw the box onto the surface.
86. pygame.draw.rect (windowSurface, b['color'], bl['rect'])

You need to pass windowsurface to the function because it is the surface object to draw
the rectangle on. Pass b1 'color'] to the function because it is the rectangle’s color. Finally,
pass b['rect'] because it is the rect object with the position and size of the rectangle to
draw.

Line 86 is the last line of the for loop.



Drawing the Window on the Screen

After the for loop, each box in the poxes list will be drawn, so you need to call
pygame.display.update()tI)draﬁfwindowSurfaceCHlthescreen:

88. # Draw the window onto the screen.
89. pygame.display.update ()
90. time.sleep(0.02)

The computer can move, bounce, and draw the boxes so fast that if the program ran at
full speed, all the boxes would look like a blur. In order to make the program run slowly
enough that we can see the boxes, we need to add time.sleep(0.02). You can try
commenting out the time.sleep(0.02) line and running the program to see what it looks
like. The call to time.sleep() will pause the program for 0.02 seconds, or 20 milliseconds,
between each movement of the boxes.

After this line, execution returns to the start of the game loop and begins the process all
over again. This way, the boxes are constantly moving a little, bouncing off the walls, and
being drawn on the screen in their new positions.

Summary

"This chapter has presented a whole new way of creating computer programs. The previous
chapters’ programs would stop and wait for the player to enter text. However, in our
Animation program, the program constantly updates the data structures without waiting
for input from the player.

Remember that we had data structures that would represent the state of the board in
our Hangman and Tic-Tac-Toe games. These data structures were passed to a drawBoard ()
function to be displayed on the screen. Our Animation program is similar. The boxes
variable holds a list of data structures representing boxes to be drawn to the screen, and
these are drawn inside the game loop.

But without calls to input (), how do we get input from the player? In Chapter 19, we’ll
cover how programs know when the player presses keys on the keyboard. We’ll also learn
about a new concept called collision detection.



19
COLLISION DETECTION

Collision detection involves figuring out when two things on the screen have touched (that is,
collided with) each other. Collision detection is really useful for games. For example, if the
player touches an enemy, they may lose health. Or if the player touches a coin, they should
automatically pick it up. Collision detection can help determine whether the game
character is standing on solid ground or there’s nothing but empty air beneath them.

In our games, collision detection will determine whether two rectangles are
overlapping each other. This chapter’s example program will cover this basic technique.
We'll also look at how our pygame programs can accept input from the player through the
keyboard and the mouse. It’s a bit more complicated than calling the input () function, as
we did for our text programs. But using the keyboard is much more interactive in GUI
programs, and using the mouse isn’t even possible in our text games. These two concepts
will make your games more exciting!

( )

TOPICS COVERED IN THIS CHAPTER

® clock Objects

C Keyboar d input 1N pygame
* Mouse input 1N pygame

* Collision detection

* Not modifying a list while iterating over it

Sample Run of the Collision Detection Program

In this program, the player uses the keyboard’s arrow keys to move a black box around the



screen. Smaller green squares, which represent food, appear on the screen, and the box
“eats” them as it touches them. The player can click anywhere in the window to create new
food squares. In addition, ESC quits the program, and the X key teleports the player to a
random place on the screen.

Figure 19-1 shows what the program will look like once finished.

§§ Collision Detection (= -

s =

Figure 19-1: A screenshot of the pygame Collision Detection program

Source Code for the Collision Detection Program

Start a new file, enter the following code, and then save it as collisionDetection.py. If you get
errors after typing in this code, compare the code you typed to the book’s code with the
online diff tool at https://www.nostarch.com/inventwithpython#diff.


https://www.nostarch.com/inventwithpython#diff

MAKE SURE YOU'RE
USING PYTHON 3,
NOT PYTHON 2!

collision Detection.py

B

13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.

P O WO Jo Ul WP

import pygame, sys, random
from pygame.locals import *

# Set up pygame.
pygame.init ()
mainClock = pygame.time.Clock()

# Set up the window.

WINDOWWIDTH = 400

WINDOWHEIGHT = 400

windowSurface = pygame.display.set_mode ( (WINDOWWIDTH, WINDOWHEIGHT) ,
0, 32)

pygame.display.set_caption('Collision Detection')

# Set up the colors.

BLACK = (0, 0, 0)
GREEN = (0, 255, 0)
WHITE = (255, 255, 255)

# Set up the player and food data structures.
foodCounter = 0
NEWFOOD = 40
FOODSIZE = 20
player = pygame.Rect (300, 100, 50, 50)
foods = []
for i in range(20):
foods.append (pygame.Rect (random.randint (0, WINDOWWIDTH - FOODSIZE),
random.randint (0, WINDOWHEIGHT - FOODSIZE), FOODSIZE, FOODSIZE))

# Set up movement variables.

moveLeft = False
moveRight = False
moveUp = False

moveDown = False

MOVESPEED = 6

# Run the game loop.



38.
39.
40.
41.

42.

43.
44.
45.
46.
47 .
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.

72.

73.
74 .
75.

76.
77 .
78.
79.
80.
81.

82.
83.
84.
85.
86.
87.
88.
89.
90.

91.

92.

while True:
# Check for events.

for event in pygame.event.get():
if event.type == QUIT:
pygame.quit ()
sys.exit ()
if event.type == KEYDOWN:

# Change the

keyboard variables.

if event.key == K_LEFT or event.key == K_a:
moveRight = False
moveLeft = True
if event.key == K_RIGHT or event.key == K_d:
moveLeft = False
moveRight = True
if event.key == K _UP or event.key == K _w:
moveDown = False
moveUp = True
if event.key == K_DOWN or event.key == K_s:
moveUp = False
moveDown = True
if event.type == KEYUP:
if event.key == K_ESCAPE:
pygame.quit ()
sys.exit ()
if event.key == K_LEFT or event.key == K_a:
moveLeft = False
if event.key == K_RIGHT or event.key == K_d:
moveRight = False
if event.key == K _UP or event.key == K _w:
moveUp = False
if event.key == K_DOWN or event.key == K_s:
moveDown = False
if event.key == K_Xx:
player.top = random.randint (0, WINDOWHEIGHT -
player.height)
player.left = random.randint (0, WINDOWWIDTH -

player .width)

if event.type MOUS

foods.append (pygame.Rect (event.pos[0],

FOODSIZE, FOODS

foodCounter += 1

if foodCounter >= NEWFOOD
# Add new food.
foodCounter = 0

foods.append (pygame.Rect (random.randint (0,

FOODSIZE), random.r
FOODSIZE, FOODSIZE)

EBUTTONUP:

IZE))

andint (0,
)

# Draw the white background onto the surface.

windowSurface.fill (WHITE)

# Move the player.

if moveDown and player.bottom < WINDOWHEIGHT:

player.top += MOVESPE

ED

if moveUp and player.top > 0:
player.top -= MOVESPEED

if moveLeft and player.left > 0:
player.left -= MOVESPEED

event.pos[1],

WINDOWWIDTH -
WINDOWHEIGHT - FOODSIZE),



93. if moveRight and player.right < WINDOWWIDTH:

94 . player.right += MOVESPEED

95.

96. # Draw the player onto the surface.

97. pygame.draw.rect (windowSurface, BLACK, player)

98.

99. # Check whether the player has intersected with any food squares.
100. for food in foods[:]:

101. if player.colliderect (food):

102. foods.remove (food)

103.

104. # Draw the food.

105. for i in range(len(foods)):

106. pygame.draw.rect (windowSurface, GREEN, foods[i])
107.

108. # Draw the window onto the screen.

109. pygame.display.update ()

110. mainClock.tick (40)

Importing the Modules

The pygame Collision Detection program imports the same modules as the Animation
: prog p
program in Chapter 18, plus the random module:

1. import pygame, sys, random
2. from pygame.locals import *

Using a Clock to Pace the Program

Lines 5 to 17 mostly do the same things that the Animation program did: they initialize
pygame, set wINDOWHEIGHT and winbowwiprs, and assign the color and direction constants.

However, line 6 is new:

6. mainClock = pygame.time.Clock/()

In the Animation program, a call to time.sleep(0.02) slowed down the program so that
it wouldn’t run too fast. While this call will always pause for 0.02 seconds on all
computers, the speed of the rest of the program depends on how fast the computer is. If we
want this program to run at the same speed on any computer, we need a function that
pauses longer on fast computers and shorter on slow computers.

A pygame. time.Clock object can pause an appropriate amount of time on any computer.
Line 110 calls mainclock.tick(40) inside the game loop. This call to the ciock object’s
tick () method waits enough time so that it runs at about 40 iterations a second, no matter
what the computer’s speed is. This ensures that the game never runs faster than you expect.
A call to tick () should appear only once in the game loop.



Setting Up the Window and Data Structures

Lines 19 to 22 set up a few variables for the food squares that appear on the screen:

19. # Set up the player and food data structures.
20. foodCounter = 0

21. NEWFOOD = 40

22. FOODSIZE = 20

The foodcounter variable will start at the value o, newroop at 40, and roopsizE at 20.
We'll see how these are used later when we create the food.

Line 23 sets up a pygame.rect object for the player’s location:

23. player = pygame.Rect (300, 100, 50, 50)

The p1ayer variable has a pygame.rect object that represents the box’s size and position.
The player’s box will move like the boxes did in the Animation program (see “Moving
Each Box” on page 280), but in this program, the player can control where the box moves.

Next, we set up some code to keep track of the food squares:

24. foods = []
25. for i in range(20):
26. foods.append (pygame.Rect (random.randint (0, WINDOWWIDTH - FOODSIZE),

random.randint (0, WINDOWHEIGHT - FOODSIZE), FOODSIZE, FOODSIZE))

The program will keep track of every food square with a list of rect objects in foods.
Lines 25 and 26 create 20 food squares randomly placed around the screen. You can use the
random.randint () function to come up with random x- and y-coordinates.

On line 26, the program calls the pygame.rect () constructor function to return a new
pygame.Rect Object. It will represent the position and size of a new food square. The first
two parameters for pygame.rect () are the x- and y-coordinates of the top-left corner. You
want the random coordinate to be between o and the size of the window minus the size of
the food square. If you set the random coordinate between o and the size of the window,
then the food square might be pushed outside of the window altogether, as in Figure 19-2.

The third and fourth parameters for pygame.rect () are the width and height of the food
square. Both the width and height are the values in the roops1ze constant.



(O, 0) (400, Q)

(300, 200) (400, 200

® : : &
(0, 400) (400, 400)
Figure 19-2: For a 100x100 square in a 400x400 window, setting the top-left edge at 400 would place the
rectangle outside of the window. To be inside, the left edge should be set at 300 instead.

The third and fourth parameters for pygame.rect () are the width and height of the food
square. Both the width and height are the values in the roops1ze constant.

Setting Up Variables to Track Movement

Starting at line 29, the code sets up some variables that track the movement of the player’s
box for each direction the box can move:

28. # Set up movement variables.
29. moveLeft = False

30. moveRight = False

31. moveUp = False

32. moveDown = False

The four variables have Boolean values to keep track of which arrow key is being
pressed and are initially set to raise. For example, when the player presses the left arrow
key on their keyboard to move the box, movereft is set to rrue. When they let go of the key,
moveLeft 1S set back to False.

Lines 34 to 43 are nearly identical to code in the previous pygane programs. These lines
handle the start of the game loop and what to do when the player quits the program. We’ll
skip the explanation for this code since we covered it in the previous chapter.

Handling Events

The pygame module can generate events in response to user input from the mouse or



keyboard. The following are the events that can be returned by pygame.event.get ():

gurt Generated when the player closes the window.

keypowN Generated when the player presses a key. Has a xey attribute that tells which
key was pressed. Also has a moa attribute that tells whether the SHIFT, CTRL, ALT, or
other keys were held down when this key was pressed.

keyur Generated when the player releases a key. Has xey and moa attributes that are
similar to those for xkEypown.

mousemorzoN (Generated whenever the mouse moves over the window. Has a pos
attribute (short for position) that returns a tuple (x, v) for the coordinates of where the
mouse is in the window. The re1 attribute also returns an (x, y) tuple, but it gives
relative coordinates since the last mousemorzon event. For example, if the mouse moves
left by 4 pixels from (200, 200) to (196, 200), then re1l will be the tuple value (-4, o).
The putton attribute returns a tuple of three integers. The first integer in the tuple is
for the left mouse button, the second integer is for the middle mouse button (if one
exists), and the third integer is for the right mouse button. These integers will be o it
they are not being pressed when the mouse is moved and 1 if they are pressed.

mousesuTToNDOWN (Generated when a mouse button is pressed in the window. This event
has a pos attribute, which is an (x, y) tuple for the coordinates of where the mouse was
positioned when the button was pressed. There is also a button attribute, which is an

integer from 1 to 5 that tells which mouse button was pressed, as explained in Table 19-
1.

mouseBurToNUP (Generated when the mouse button is released. This has the same
attributes as MOUSEBUTTONDOWN.

When the mousesurToNDOWN event is generated, it has a button attribute. The button

attribute is a value that is associated with the different types of buttons a mouse might
have. For instance, the left button has the value 1, and the right button has the value 3.
Table 19-1 lists all of the button attributes for mouse events, but note that a mouse might
not have all the button values listed here.

Table 19-1: The button Attribute Values

Value of button Mouse button

1

U O UCEE O)

Left button

Middle button

Right button

Scroll wheel moved up

Scroll wheel moved down




We'll use these events to let the player control the box with xkevpown events and with
mouse button clicks.

Handling the KEYDOWN Event

The code to handle the keypress and key release events starts on line 44; it includes the
KEYDOWN event type:

44 . if event.type == KEYDOWN:

If the event type is kevpown, then the Event object has a kxey attribute that indicates
which key was pressed. When the player presses an arrow key or a WASD key (pronounced
wazz-dee, these keys are in the same layout as the arrow keys but on the left side of the
keyboard), then we want the box to move. We’ll use it statements to check the pressed key
in order to tell which direction the box should move.

Line 46 compares this key attribute to x_vterr and k_a, which are the pygame.locals
constants that represent the left arrow key on the keyboard and the A in WASD,
respectively. Lines 46 to 57 check for each of the arrow and WASD keys:

45. # Change the keyboard variables.

46. if event.key == K_LEFT or event.key == K_a:
47 . moveRight = False

48. moveLeft = True

49 . if event.key == K_RIGHT or event.key == K_d:
50. moveLeft = False

51. moveRight = True

52. if event.key == K_UP or event.key == K _w:
53. moveDown = False

54. moveUp = True

55. if event.key == K_DOWN or event.key == K_s:
56. moveUp = False

57. moveDown = True

When one of these keys is pressed, the code tells Python to set the corresponding
movement variable to True. Python will also set the movement variable of the opposite
direction to ralse.

For example, the program executes lines 47 and 48 when the left arrow key has been
pressed. In this case, Python will set moveLeft to True and moveright to False (even though
noveRight might already be raise, Python will set it to Faise again just to be sure).

On line 46, event .xey can either be equal to x_rerr or x_a. The value in event.key is set
to the same value as x_verr if the left arrow key is pressed or the same value as x_a if the A
key is pressed.

By executing the code on lines 47 and 48 if the keystroke is either x_verr or x_a, you
make the left arrow key and the A key do the same thing. The W A, S, and D keys are used
as alternates for changing the movement variables, letting the player use their left hand
instead of their right if they prefer. You can see an illustration of both sets of keys in Figure



19-3.

Figure 19-3: The WASD keys can be programmed to do the same thing as the arrow keys.

"The constants for letter and number keys are easy to figure out: the A key’s constant is
k_a, the B key’s constant is k_b, and so on. The 3 key’s constant is k_3. Table 19-2 lists
commonly used constant variables for the other keyboard keys.

Table 19-2: Constant Variables for Keyboard Keys

pygame constant variable Keyboard key

K_LEFT Left arrow
K_RIGHT Right arrow
K_UP Up arrow
K_DOWN Down arrow
K_ESCAPE ESC
K_BACKSPACE Backspace
K_TAB TAB
K_RETURN RETURN or ENTER
K_SPACE Spacebar
K_DELETE DEL
K_LSHIFT Left SHIFT
K_RSHIFT Right SHIFT
K_LCTRL Left CTRL
K_RCTRL Right CTRL
K_LALT Left aLT
K_RALT Right ALT
K_HOME HOME

K_END END
K_PAGEUP PGUP
K_PAGEDOWN PGDN

K_F1



F1

K_F2 2
K_F3 F3
K_F4 F4
K_F5 FS
K_F6 F6
K_F7 F7
K_F8 F8
K_F9 F9
K_F10 F10
K_F11 F11
K_F12 F12

Handling the KEYUP Event

When the player releases the key that they were pressing, a kevup event is generated:

58. if event.type == KEYUP:

If the key that the player released was ESC, then Python should terminate the program.
Remember, in pygame you must call the pygame.quit() function before calling the
sys.exit () function, which we do in lines 59 to 61:

59. if event.key == K_ESCAPE:
60. pygame.quit ()
61. sys.exit ()

Lines 62 to 69 set a movement variable to raise if that direction’s key was released:

62. if event.key == K_LEFT or event.key == K_a:
63. moveLeft = False

64. if event.key == K_RIGHT or event.key == K_d:
65. moveRight = False

66. if event.key == K_UP or event.key == K _w:
67. moveUp = False

68. if event.key == K_DOWN or event.key == K_s:
69. moveDown = False

Setting the movement variable to ralse through a xevur event makes the box stop
moving.



Teleporting the Player

You can also add teleportation to the game. If the player presses the X key, lines 71 and 72
set the position of the player’s box to a random place on the window:

70. if event.key == K_x:

71. player.top = random.randint (0, WINDOWHEIGHT -
player.height)

72. player.left = random.randint (0, WINDOWWIDTH -

player .width)

Line 70 checks whether the player pressed the X key. Then, line 71 sets a random x-
coordinate to teleport the player to between o and the window’s height minus the player
rectangle’s height. Line 72 executes similar code, but for the y-coordinate. This enables
the player to teleport around the window by pushing the X key, but they can’t control
where they will teleport—it’s completely random.

Adding New Food Squares

There are two ways the player can add new food squares to the screen. They can click a
spot in the window where they want the new food square to appear, or they can wait until
the game loop has iterated newroop number of times, in which case a new food square will
be randomly generated on the window.

We’ll look at how food is added through the player’s mouse input first:

74 . if event.type == MOUSEBUTTONUP:
75. foods.append (pygame.Rect (event.pos[0], event.pos[l],
FOODSIZE, FOODSIZE))

Mouse input is handled by events just like keyboard input. The mousesurTONUP event
occurs when the player releases the mouse button after clicking it.

On line 75, the x-coordinate is stored in event.pos[01, and the y-coordinate is stored in
event.pos[1]. Line 75 creates a new rect object to represent a new food square and places it
where the mousesurTOoNUP event occurred. By adding a new rect object to the foodas list, the
code displays a new food square on the screen.

In addition to being added manually at the player’s discretion, food squares are
generated automatically through the code on lines 77 to 81:

77 . foodCounter += 1

78. if foodCounter >= NEWFOOD:

79. # Add new food.

80. foodCounter = 0

81. foods.append (pygame.Rect (random.randint (0, WINDOWWIDTH -

FOODSIZE), random.randint (0, WINDOWHEIGHT - FOODSIZE),
FOODSIZE, FOODSIZE))




"The variable foodcounter keeps track of how often food should be added. Each time the
game loop iterates, foodcounter is incremented by 1 on line 77.

Once foodcounter is greater than or equal to the constant NEwroOD, foodCounter 1S reset
and a new food square is generated by line 81. You can change the rate at which new food
squares are added by adjusting newroop back on line 21.

Line 84 just fills the window surface with white, which we covered in “Handling When
the Player Quits” on page 279, so we’ll move on to discussing how the player moves
around the screen.

Moving the Player Around the Window

We’ve set the movement variables (moveDown, moveUp, moveLeft, and moveRight) tO True Or
ralse depending on what keys the player has pressed. Now we need to move the player’s
box, which is represented by the pygame.rect object stored in player. We'll do this by
adjusting the x- and y-coordinates of player.

86. # Move the player.

87. if moveDown and player.bottom < WINDOWHEIGHT:
88. player.top += MOVESPEED

89. if moveUp and player.top > 0:

90. player.top -= MOVESPEED

91. if moveLeft and player.left > 0:

92. player.left -= MOVESPEED

93. if moveRight and player.right < WINDOWWIDTH:
94 . player.right += MOVESPEED

If movepown is set to True (and the bottom of the player’s box isn’t below the bottom
edge of the window), then line 88 moves the player’s box down by adding movespzeep to the
player’s current top attribute. Lines 89 to 94 do the same thing for the other three
directions.

Drawing the Player on the Window

Line 97 draws the player’s box on the window:

96. # Draw the player onto the surface.
97. pygame .draw.rect (windowSurface, BLACK, player)

After the box is moved, line 97 draws it in its new position. The windowsurface passed
for the first parameter tells Python which surface object to draw the rectangle on. The
BLACK variable, which has (0, o, o) stored in it, tells Python to draw a black rectangle. The
rect object stored in the player variable tells Python the position and size of the rectangle
to draw.

Checking for Collisions



Before drawing the food squares, the program needs to check whether the player’s box has
overlapped with any of the squares. If it has, then that square needs to be removed from the
foods list. This way, Python won’t draw any food squares that the box has already eaten.

We'll use the collision detection method that all rect objects have, col1liderect (), in
line 101:

99. # Check whether the player has intersected with any food squares.
100. for food in foods|[:]:
101. if player.colliderect (food) :
102. foods.remove (food)

On each iteration through the for loop, the current food square from the foods (plural)
list is placed in the variable food (singular). The colliderect () method for pygame.rect
objects is passed the player rectangle’s pygame.rect object as an argument and returns True
if the two rectangles collide and raise if they do not. If True, line 102 removes the
overlapping food square from the foods list.

DON'T CHANGE A LIST WHILE ITERATING OVER IT

Notice that this for loop is slightly different from any other for loop we’ve seen. If you
look carefully at line 100, it isn’t iterating over foods but actually over foodst: 1.

Remember how slices work. foods(:21 evaluates to a copy of the list with the items
from the start and up to (but not including) the item at index 2. fooas[:1 will give you
a copy of the list with the items from the start to the end. Basically, foods(:1 creates a
new list with a copy of all the items in foods. This is a shorter way to copy a list than,
say, what the getBoardcopy () function did in Chapter 10’s Tic-Tac-Toe game.

You can’t add or remove items from a list while you're iterating over it. Python
can lose track of what the next value of the fooa variable should be if the size of the
foods list is always changing. Think of how difficult it would be to count the number
of jelly beans in a jar while someone was adding or removing jelly beans.

But if you iterate over a copy of the list (and the copy never changes), adding or
removing items from the original list won’t be a problem.

Drawing the Food Squares on the Window

The code on lines 105 and 106 is similar to the code we used to draw the black box for the
player:

104. # Draw the food.
105. for i in range(len(foods)):
106. pygame.draw.rect (windowSurface, GREEN, foods[i])




Line 105 loops through each food square in the foods list, and line 106 draws the food
square onto windowSurface.

Now that the player and food squares are on the screen, the window is ready to be
updated, so we call the update () method on line 109 and finish the program by calling the
tick () method on the ciock object we created earlier:

108. # Draw the window onto the screen.
1009. pygame.display.update ()
110. mainClock.tick (40)

The program will continue through the game loop and keep updating until the player
quits.

Summary

"This chapter introduced the concept of collision detection. Detecting collisions between
two rectangles is so common in graphical games that pygame provides its own collision
detection method named col1liderect () for pygame.Rect objects.

The first several games in this book were text based. The program’s output was text
printed to the screen, and the input was text typed by the player on the keyboard. But
graphical programs can also accept keyboard and mouse inputs.

Furthermore, these programs can respond to single keystrokes when the player presses
or releases a single key. The player doesn’t have to type in an entire response and press
ENTER. This allows for immediate feedback and much more interactive games.

"This interactive program is fun, but let’s move beyond drawing rectangles. In Chapter
20, you’ll learn how to load images and play sound effects with pygame.



20
USING SOUNDS AND IMAGES

In Chapters 18 and 19, you learned how to make GUI programs that have graphics and can
accept input from the keyboard and mouse. You also learned how to draw different shapes.
In this chapter, you'll learn how to add sounds, music, and images to your games.

( )

TOPICS COVERED IN THIS CHAPTER

* Sound and image files
* Drawing and rescaling sprites
* Adding music and sounds

* Toggling sound on and off

Adding Images with Sprites

A sprite is a single two-dimensional image that is used as part of the graphics on a screen.
Figure 20-1 shows some example sprites.



Figure 20-1: Some examples of sprites

The sprite images are drawn on top of a background. You can flip the sprite image
horizontally so that it is facing the other way. You can also draw the same sprite image
multiple times on the same window, and you can resize sprites to be larger or smaller than
the original sprite image. The background image can be considered one large sprite, too.
Figure 20-2 shows sprites being used together.

TR

@4'? WA
] ; %) k. 4 b
AR

1 1
ot 3 b R N Ak
; .\n.lhéﬁ. lu"ﬁ LR =LY

Figure 20-2: A complete scene, with sprites drawn on top of a background

The next program will demonstrate how to play sounds and draw sprites using pygame.

Sound and Image Files

Sprites are stored in image files on your computer. There are several image formats that
pygame can use. T'o tell what format an image file uses, look at the end of the filename (after
the last period). This is called the file extension. For example, the file player.png is in the
PNG format. The image formats pygame supports include BMP, PNG, JPG, and GIF.

You can download images from your web browser. On most web browsers, you do so



by right-clicking the image in the web page and selecting Save from the menu that appears.
Remember where on the hard drive you saved the image file, because you’ll need to copy
the downloaded image file into the same folder as your Python program’s .py file. You can
also create your own images with a drawing program like Microsoft Paint or Tux Paint.

The sound file formats that pygame supports are MIDI, WAV, and MP3. You can
download sound effects from the internet just as you can image files, but the sound files
must be in one of these three formats. If your computer has a microphone, you can also
record sounds and make your own WAV files to use in your games.

Sample Run of the Sprites and Sounds Program

This chapter’s program is the same as the Collision Detection program from Chapter 19.
However, in this program we’ll use sprites instead of plain-looking squares. We'll use a
sprite of a person to represent the player instead of the black box and a sprite of cherries
instead of the green food squares. We'll also play background music, and we’ll add a sound
effect when the player sprite eats one of the cherries.

In this game, the player sprite will eat cherry sprites and, as it eats the cherries, it will
grow. When you run the program, the game will look like Figure 20-3.

& Sprites and Sounds ™
]
de e 4@
19 @ e |
E7Y
o © E
:@.ﬂ;' e
W da ~ |
2 @ 19 L) I
E7Y
7S
'S
@ % :‘;
TS
@@

Figure 20-3: A screenshot of the Sprites and Sounds game

Source Code for the Sprites and Sounds Program



Start a new file, enter the following code, and then save it as spritesAndSounds.py. You can
download the image and sound files we’ll use in this program from this book’s website at
https://www.nostarch.com/inventwithpython/. Place these files in the same folder as the
spritesAndSounds.py program.

MAKE SURE YOU'RE
USING PYTHON 3,
NOT PYTHON 2!

If you get errors after entering this code, compare the code you typed to the book’s
code with the online diff tool at https://www.nostarch.com/inventwithpython#diff.

spritesAnd Sounds.py

1. import pygame, sys, time, random

2. from pygame.locals import *

3.

4. # Set up pygame.

5. pygame.init ()

6. mainClock = pygame.time.Clock()

7.

8. # Set up the window.

9. WINDOWWIDTH = 400

10. WINDOWHEIGHT = 400

11. windowSurface = pygame.display.set_mode ( (WINDOWWIDTH, WINDOWHEIGHT),

0, 32)

12. pygame.display.set_caption('Sprites and Sounds')

13.

14. # Set up the colors.

15. WHITE = (255, 255, 255)

16.

17. # Set up the block data structure.

18. player = pygame.Rect (300, 100, 40, 40)

19. playerImage = pygame.image.load('player.png')

20. playerStretchedImage = pygame.transform.scale(playerImage, (40, 40))
21. foodImage = pygame.image.load('cherry.png')

22. foods = []
23. for i in range(20):
24 . foods.append (pygame.Rect (random.randint (0, WINDOWWIDTH - 20),

random.randint (0, WINDOWHEIGHT - 20), 20, 20))
25.
26. foodCounter = 0
27 . NEWFOOD = 40


https://www.nostarch.com/inventwithpython/
https://www.nostarch.com/inventwithpython#diff

28.
29.
30.
31.
32.
33.
34.
35.
36.

37.

38.
39.
40.
41.
42.
43.
44.
45.
46.
47 .
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77 .

78.

79.
80.
81.
82.
83.
84.
85.

# Set up keybo
moveLeft = Fal
moveRight = Fa
moveUp = False
moveDown = Fal

MOVESPEED = 6

# Set up the mu
pickUpSound =

ard variables.
se
1lse

se

sic.
pygame .mixer .Sound ('pickup.wav')

pygame .mixer .music.load('background.mid')
pygame .mixer .music.play (-1, 0.0)

musicPlaying =

# Run the game
while True:

True

loop.

# Check for the QUIT event.
for event in pygame.event.get():
if event.type == QUIT:
pygame.quit ()
sys.exit ()
if event.type == KEYDOWN:
# Change the keyboard variables.
if event.key == K_LEFT or event.key == K_a:

if

if

if

if eve

if

if

if

if

if

if

if

moveRight = False

moveLeft = True

event.key == K_RIGHT or event.key == K_d:
moveLeft = False

moveRight = True

event.key == K_UP or event.key == K_w:

moveDown = False

moveUp = True

event.key == K_DOWN or event.key == K_s:

moveUp = False

moveDown = True

nt.type == KEYUP:

event.key == K_ESCAPE:

pygame.quit ()

sys.exit ()

event.key == K_LEFT or event.key == K_a:

moveLeft = False

event.key == K_RIGHT or event.key == K_d:

moveRight = False

event.key == K_UP or event.key == K_w:

moveUp = False

event.key == K_DOWN or event.key == K_s:

moveDown = False

event.key == K_Xx:

player.top = random.randint (0, WINDOWHEIGHT -
player.height)

player.left = random.randint (0, WINDOWWIDTH -
player .width)

event.key == K_m:

if musicPlaying:

pygame.mixer .music.stop()
else:

pygame.mixer .music.play (-1, 0.0)
musicPlaying = not musicPlaying



86. if event.type == MOUSEBUTTONUP:

87. foods.append (pygame.Rect (event.pos[0] - 10,
event.pos[1l] - 10, 20, 20))
88.
89. foodCounter += 1
90. if foodCounter >= NEWFOOD:
91. # Add new food.
92. foodCounter = 0
93. foods.append (pygame.Rect (random.randint (0, WINDOWWIDTH - 20),
random.randint (0, WINDOWHEIGHT - 20), 20, 20))
94.
95. # Draw the white background onto the surface.
96. windowSurface.fill (WHITE)
97.
98. # Move the player.
99. if moveDown and player.bottom < WINDOWHEIGHT:
100. player.top += MOVESPEED
101. if moveUp and player.top > 0:
102. player.top -= MOVESPEED
103. if moveLeft and player.left > 0:
104. player.left -= MOVESPEED
105. if moveRight and player.right < WINDOWWIDTH:
106. player.right += MOVESPEED
107.
108.
1009. # Draw the block onto the surface.
110. windowSurface.blit (playerStretchedImage, player)
111.
112. # Check whether the block has intersected with any food squares.
113. for food in foods[:]:
114. if player.colliderect (food):
115. foods.remove (food)
116. player = pygame.Rect (player.left, player.top,
player.width + 2, player.height + 2)
117. playerStretchedImage = pygame.transform.scale(playerImage,
(player.width, player.height))
118. if musicPlaying:
119. pickUpSound.play ()
120.
121. # Draw the food.
122. for food in foods:
123. windowSurface.blit (foodImage, food)
124.
125. # Draw the window onto the screen.
126. pygame.display.update ()
127. mainClock.tick (40)

Setting Up the Window and the Data Structure

Most of the code in this program is the same as the Collision Detection program in
Chapter 19. We'll focus only on the parts that add sprites and sounds. First, on line 12 let’s
set the caption of the title bar to a string that describes this program:

12. pygame.display.set_caption('Sprites and Sounds')




In order to set the caption, you need to pass the string 'sprites and Sounds' to the
pygame.display.set_caption() function.

Adding a Sprite

Now that we have the caption set up, we need the actual sprites. We’ll use three variables
to represent the player, unlike the previous programs that used just one.

17. # Set up the block data structure.

18. player = pygame.Rect (300, 100, 40, 40)

19. playerImage = pygame.image.load('player.png')

20. playerStretchedImage = pygame.transform.scale(playerImage, (40, 40))
21. foodImage = pygame.image.load('cherry.png')

The p1ayer variable on line 18 will store a rect object that keeps track of the location
and size of the player. The player variable doesn’t contain the player’s image. At the
beginning of the program, the top-left corner of the player is located at (300, 100), and the
player has an initial height and width of 40 pixels.

The second variable that represents the player is playerimage on line 19. The
pygame. image.load () function is passed a string of the filename of the image to load. The
return value is a surface object that has the graphics in the image file drawn on its surface.
We store this surface object inside playerimage.

Changing the Size of a Sprite

On line 20, we’ll use a new function in the pygame.transform module. The
pygame. transform.scale() function can shrink or enlarge a sprite. The first argument is a
surface object with the image drawn on it. The second argument is a tuple for the new
width and height of the image in the first argument. The scale() function returns a
surface object with the image drawn at a new size. In this chapter’s program, we’ll make
the player sprite stretch larger as it eats more cherries. We'll store the original image in
the playerImage variable but the stretched image in the playerStretchedImage variable.

On line 21, we call 10ad () again to create a surface object with the cherry image drawn
on it. Be sure you have the player.png and cherry.png files in the same folder as the
spritesAndSounds.py file; otherwise, pygame won’t be able to find them and will give an error.

Setting Up the Music and Sounds

Next you need to load the sound files. There are two modules for sound in pygame. The
pygame.mixer module can play short sound effects during the game. The
pygame.mixer.music module can play background music.

Adding Sound Files



Call the pygame.mixer.Sound () constructor function to create a pygame .mixer .Sound okject
(called a souna object for short). This object has a p1ay () method that will play the sound
effect when called.

37. # Set up the music.

38. pickUpSound = pygame.mixer.Sound('pickup.wav')
39. pygame.mixer.music.load('background.mid')

40. pygame.mixer.music.play (-1, 0.0)

41. musicPlaying = True

Line 39 calls pygane .mixer .music.1oad () to load the background music, and line 40 calls
pygame.mixer.music.play () tO start playing it. The first parameter tells pygame how many
times to play the background music after the first time we play it. So passing 5 would cause
pygame to play the background music six times. Here we pass the parameter -1, which is a
special value that makes the background music repeat forever.

The second parameter to play() is the point in the sound file to start playing. Passing
0.0 will play the background music starting from the beginning. Passing 2.5 would start
the background music 2.5 seconds from the beginning.

Finally, the musicpilaying variable has a Boolean value that tells the program whether it
should play the background music and sound effects or not. It’s nice to give the player the
option to run the program without the sound playing.

Toggling the Sound 0n and Off

The M key will turn the background music on or off. If musicplaying is set to True, then the
background music is currently playing, and we should stop it by calling
pygame.mixer.music.stop().IfmusicPlayingiSSCttO False,then1&“3baCkgTOtHNjInUShliﬁl%
currently playing, and we should start it by calling p1ay (). Lines 79 to 84 use it statements
to do this:

79. if event.key == K_m:

80. if musicPlaying:

81. pygame.mixer . .music.stop()

82. else:

83. pygame.mixer . .music.play (-1, 0.0)
84. musicPlaying = not musicPlaying

Whether the music is playing or not, we want to toggle the value in musicplaying.
Toggling a Boolean value means to set a value to the opposite of its current value. The line
musicPlaying = not musicPlaying sets the variable to ralse if it is currently True or sets it to
True if it is currently raise. Think of toggling as what happens when you flip a light switch
on or off: toggling the light switch sets it to the opposite setting.

Drawing the Player on the Window



Remember that the value stored in.playerStretchedImage 1S a surface okﬁect.];hle 110
draws the sprite of the player onto the window’s surface object (which is stored in
windowSurface) using blit():

109. # Draw the block onto the surface.
110. windowSurface.blit (playerStretchedImage, player)

"The second parameter to the b1it () method is a rect object that specifies where on the
surface object the sprite should be drawn. The program uses the rect object stored in
player, which keeps track of the player’s position in the window.

Checking for Collisions

"This code is similar to the code in the previous programs, but there are a couple of new
lines:

114. if player.colliderect (food) :

115. foods.remove (food)

116. player = pygame.Rect (player.left, player.top,
player.width + 2, player.height + 2)

117. playerStretchedImage = pygame.transform.scale(playerImage,
(player.width, player.height))

118. if musicPlaying:

119. pickUpSound.play ()

When the player sprite eats one of the cherries, its size increases by two pixels in height
and width. On line 116, a new rect object that is two pixels larger than the old rect object
will be assigned as the new value of p1ayer.

While the rect object represents the position and size of the player, the image of the
player is stored in a playerStretchedimage as a Surface object. On line 117, the program
creates a new stretched image by calling scaie().

Stretching an image often distorts it a little. If you keep restretching an already
stretched image, the distortions add up quickly. But by stretching the original image to a
new size each time—by passing playerImage, NOt playerStretchedImage, aS the first
argument for scale ()—you distort the image only once.

Finally, line 119 calls the p1ay () method on the sound object stored in the pickupsound
variable. But it does this only if musicplaying is set to true (which means that the sound is
turned on).

Drawing the Cherries on the Window

In the previous programs, you called the pygame.draw.rect() function to draw a green
square for each rect object stored in the foods list. In this program, however, you want to
draw the cherry sprites instead. Call the v1it () method and pass the surface object stored



in foodimage, which has the cherries image drawn on it:

121. # Draw the food.
122. for food in foods:
123. windowSurface.blit (foodImage, food)

The fooa variable, which contains each of the rect objects in foods on each iteration
through the for loop, tells the b1it () method where to draw the foodimage.

Summary

You’ve added images and sound to your game. The images, called sprites, look much
better than the simple drawn shapes used in the previous programs. Sprites can be scaled
(that is, stretched) to a larger or smaller size, so we can display sprites at any size we want.
The game presented in this chapter also has a background and plays sound effects.

Now that we know how to create a window, display sprites, draw primitives, collect
keyboard and mouse input, play sounds, and implement collision detection, we’re ready to
create a graphical game in pygame. Chapter 21 brings all of these elements together for our
most advanced game yet.



21
A DODGER GAME WITH SOUNDS AND IMAGES

The previous four chapters went over the pygame module and demonstrated how to use its
many features. In this chapter, we’ll use that knowledge to create a graphical game called
Dodger.

( )

TOPICS COVERED IN THIS CHAPTER

* The pygame . FuLrscreen flag
* The move_ip () Rect method
* Implementing cheat codes

* Modifying the Dodger game

\ J/

In the Dodger game, the player controls a sprite (the player’s character) who must
dodge a whole bunch of baddies that fall from the top of the screen. The longer the player
can keep dodging the baddies, the higher their score will get.

Just for fun, we’ll also add some cheat modes to this game. If the player holds down the
X key, every baddie’s speed is reduced to a super slow rate. If the player holds down the Z
key, the baddies will reverse their direction and travel up the screen instead of down.

Review of the Basic pygame Data Types
Before we start making Dodger, let’s review some of the basic data types used in pygame:

pygame .Rect
rRect objects represent a rectangular space’s location and size. The location is
determined by the rect object’s topleft attribute (or the topright, bottomleft, and



bottomright attributes). These corner attributes are a tuple of integers for the x- and y-
coordinates. The size is determined by the width and neight attributes, which are
integers indicating how many pixels long or high the rectangle is. rect objects have a
colliderect () method that checks whether they are colliding with another rect object.

pygame.Surface
surface objects are areas of colored pixels. A surface object represents a rectangular
image, while a rect object represents only a rectangular space and location. surface
objects have a v1it() method that is used to draw the image on one surface object
onto another surface object. The surface object returned by the
pygame.display.set_mode () function is special because anything drawn on that surface
object is displayed on the user’s screen when pygame.display.update () is called.

pygame.event .Event
The pygame.event module generates event objects whenever the user provides
keyboard, mouse, or other input. The pygame.event.get () function returns a list of
these event objects. You can determine the type of the svent object by checking its type
attribute. gurt, kevpown, and mousesuTTONUP are examples of some event types. (See
“Handling Events” on page 292 for a complete list of all the event types.)

pygame. font.Font
The pygame. font module uses the ront data type, which represents the typeface used
for text in pygame. The arguments to pass to pygame.font. SysFont() are a string of the
font name (it’s common to pass None for the font name to get the default system font)
and an integer of the font size.

pygame.time.Clock
The ciock object in the pygame.time module is helpful for keeping our games from
running faster than the player can see. The c1ock object has a tick() method, which
can be passed the number of frames per second (FPS) we want the game to run. The
higher the FPS, the faster the game runs.

Sample Run of Dodger

When you run this program, the game will look like Figure 21-1.



core: 212 = L&] e
op Score: 0 & T
¥ Fy

i

Figure 21-1: A screenshot of the Dodger game

Source Code for Dodger

Enter the following code in a new file and save it as dodger.py. You can download the code,
image, and sound files from https://www.nostarch.com/inventwithpython/. Place the image and
sound files in the same folder as dodger.py.

MAKE SURE YOU'RE
USING PYTHON 3,
NOT PYTHON 2!



https://www.nostarch.com/inventwithpython/

If you get errors after entering this code, compare the code you typed to the book’s
code with the online diff tool at hetps://www.nostarch.com/inventwithpython#diff.

dodger.py

import pygame, random, sys
from pygame.locals import *

1

2

3.

4. WINDOWWIDTH = 600
5. WINDOWHEIGHT = 600
6

7

8

TEXTCOLOR = (0, 0, 0)
BACKGROUNDCOLOR = (255, 255, 255)
. FPS = 60
9. BADDIEMINSIZE = 10
10. BADDIEMAXSIZE = 40

11. BADDIEMINSPEED = 1
12. BADDIEMAXSPEED = 8
13. ADDNEWBADDIERATE = 6
14. PLAYERMOVERATE = 5

15.

16. def terminate():

17. pygame.quit ()

18. sys.exit ()

19.

20. def waitForPlayerToPressKey () :

21. while True:

22. for event in pygame.event.get():

23. if event.type == QUIT:

24 . terminate ()

25. if event.type == KEYDOWN:

26. if event.key == K _ESCAPE: # Pressing ESC quits.
27. terminate ()

28. return

29.

30. def playerHasHitBaddie(playerRect, baddies):
31. for b in baddies:

32. if playerRect.colliderect(b['rect']):
33. return True

34. return False

35.

36. def drawText (text, font, surface, x, Vv):

37. textobj = font.render (text, 1, TEXTCOLOR)
38. textrect = textobj.get_rect()

39. textrect.topleft = (x, V)

40. surface.blit (textobj, textrect)

41.

42. # Set up pygame, the window, and the mouse cursor.
43. pygame.init ()

44. mainClock = pygame.time.Clock()

45. windowSurface = pygame.display.set_mode ( (WINDOWWIDTH, WINDOWHEIGHT) )
46. pygame.display.set_caption('Dodger"')

47 . pygame.mouse.set_visible(False)

48.

49. # Set up the fonts.

50. font = pygame.font.SysFont (None, 48)

51.

52. # Set up sounds.

53. gameOverSound = pygame.mixer.Sound('gameover.wav')
54. pygame.mixer.music.load('background.mid')


https://www.nostarch.com/inventwithpython#diff

55.
56. # Set up images.
57. playerImage = pygame.image.load('player.png')
58. playerRect = playerImage.get_rect ()
59. baddieImage = pygame.image.load('baddie.png')
60.
61. # Show the "Start" screen.
62. windowSurface.fill (BACKGROUNDCOLOR)
63. drawText ('Dodger', font, windowSurface, (WINDOWWIDTH / 3),
(WINDOWHEIGHT / 3))
64. drawText ('Press a key to start.', font, windowSurface,
(WINDOWWIDTH / 3) - 30, (WINDOWHEIGHT / 3) + 50)
65. pygame.display.update()
66. waltForPlayerToPressKey ()
67.
68. topScore = 0
69. while True:

70. # Set up the start of the game.

71. baddies = []

72. score = 0

73. playerRect.topleft = (WINDOWWIDTH / 2, WINDOWHEIGHT - 50)
74 . moveLeft = moveRight = moveUp = moveDown = False

75. reverseCheat = slowCheat = False

76. baddieAddCounter = 0

77. pygame.mixer .music.play (-1, 0.0)

78.

79. while True: # The game loop runs while the game part is playing.
80. score += 1 # Increase score.

81.

82. for event in pygame.event.get():

83. if event.type == QUIT:

84. terminate ()

85.

86. if event.type == KEYDOWN:

87. if event.key == K_z:

88. reverseCheat = True

89. if event.key == K_x:

90. slowCheat = True

91. if event.key == K_LEFT or event.key == K_a:
92. moveRight = False

93. moveLeft = True

94 . if event.key == K_RIGHT or event.key == K_d
95. moveLeft = False

96. moveRight = True

97. if event.key == K _UP or event.key == K _w:
98. moveDown = False

99. moveUp = True

100. if event.key == K_DOWN or event.key == K_s:
101. moveUp = False

102. moveDown = True

103.

104. if event.type == KEYUP:

105. if event.key == K_z:

106. reverseCheat = False

107. score = 0

108. if event.key == K_x:

1009. slowCheat = False

110. score = 0

111. if event.key == K_ESCAPE:

112. terminate ()



113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.

134.

135.

136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.

if event.key == K_LEFT or event.key == K_a:
moveLeft = False

if event.key == K_RIGHT or event.key == K_d:
moveRight = False

if event.key == K _UP or event.key == K_w:
moveUp = False

if event.key == K_DOWN or event.key == K_s:

moveDown = False

if event.type == MOUSEMOTION:
# If the mouse moves, move the player to the cursor.
playerRect.centerx = event.pos|[0]
playerRect.centery = event.pos[1]
# Add new baddies at the top of the screen, if needed.
if not reverseCheat and not slowCheat:
baddieAddCounter += 1
if baddieAddCounter == ADDNEWBADDIERATE:
baddieAddCounter = 0
baddieSize = random.randint (BADDIEMINSIZE, BADDIEMAXSIZE)
newBaddie = {'rect': pygame.Rect (random.randint (0,
WINDOWWIDTH - baddieSize), 0 - baddieSize,
baddieSize, baddieSize),
'speed': random.randint (BADDIEMINSPEED,
BADDIEMAXSPEED) ,
'surface' :pygame.transform.scale (baddieImage,
(baddieSize, baddieSize)),
}

baddies.append (newBaddie)

# Move the player around.

if moveLeft and playerRect.left > 0:
playerRect.move_ip (-1 * PLAYERMOVERATE, O0)

if moveRight and playerRect.right < WINDOWWIDTH:
playerRect.move_ip (PLAYERMOVERATE, O0)

if moveUp and playerRect.top > 0:
playerRect.move_ip (0, -1 * PLAYERMOVERATE)

if moveDown and playerRect.bottom < WINDOWHEIGHT:
playerRect.move_ip (0, PLAYERMOVERATE)

# Move the baddies down.
for b in baddies:
if not reverseCheat and not slowCheat:
bl['rect'] .move_ip (0, b['speed'])
elif reverseCheat:
b['rect'] .move_ip (0, -5)
elif slowCheat:
bl['rect'] .move_ip (0, 1)

# Delete baddies that have fallen past the bottom.
for b in baddies[:]:
if b['rect'].top > WINDOWHEIGHT:
baddies.remove (b)

# Draw the game world on the window.
windowSurface.fill (BACKGROUNDCOLOR)

# Draw the score and top score.

Q

drawText ('Score: %s' % (score), font, windowSurface, 10, 0)



Q

169. drawText ('Top Score: %s' % (topScore), font, windowSurface,

10, 40)
170.
171. # Draw the player's rectangle.
172. windowSurface.blit (playerImage, playerRect)
173.
174. # Draw each baddie.
175. for b in baddies:
176. windowSurface.blit (b['surface'], b['rect'])
177.
178. pygame.display.update ()
179.
180. # Check if any of the baddies have hit the player.
181. if playerHasHitBaddie (playerRect, baddies):
182. if score > topScore:
183. topScore = score # Set new top score.
184. break
185.
186. mainClock.tick (FPS)
187.
188. # Stop the game and show the "Game Over" screen.
189. pygame .mixer .music.stop()
190. gameOverSound.play ()
191.
192. drawText ('GAME OVER', font, windowSurface, (WINDOWWIDTH / 3),
(WINDOWHEIGHT / 3))
193. drawText ('Press a key to play again.', font, windowSurface,
(WINDOWWIDTH / 3) - 80, (WINDOWHEIGHT / 3) + 50)
194. pygame.display.update ()
195. waitForPlayerToPressKey ()
196.
197. gameOverSound.stop ()

Importing the Modules

The Dodger game imports the same modules as did the previous pygame programs: pygame,
random,sys,an(lpygame.locals.

1. import pygame, random, Sys
2. from pygame.locals import *

The pygame.1locals module contains several constant variables that pygame uses, such as
the event types (ourt, kEvpown, and so on) and keyboard keys (x_gscarg, x_rerT, and so on).
By using the from pygame.locals import * Syntax, you can just use quit in the source code
instead()fpygame.locals.QUIT.

Setting Up the Constant Variables

Lines 4 to 7 set up constants for the window dimensions, the text color, and the
background color:

4. WINDOWWIDTH = 600



5. WINDOWHEIGHT = 600
. TEXTCOLOR = (0, 0, 0)
7. BACKGROUNDCOLOR = (255, 255, 255)

[e)}

We use constant variables because they are much more descriptive than if we had typed
out the values. For example, the line windowsurface.fill (BACKGROUNDCOLOR) 1S more
understandable than windowsurface.£i11( (255, 255, 255)).

You can easily change the game by changing the constant variables. By changing
winpowwIDTH on line 4, you automatically change the code everywhere winoowwiprs is used. It
you had used the value 600 instead, you would have to change each occurrence of 600 in the
code. It’s easier to change the value in the constant once.

On line 8, you set the constant for the rps, the number of frames per second you want
the game to run:

8. FPS = 60

A frame is a screen that’s drawn for a single iteration through the game loop. You pass
FPS to the mainclock.tick() method on line 186 so that the function knows how long to
pause the program. Here rps is set to 60, but you can change rps to a higher value to have
the game run faster or to a lower value to slow it down.

Lines 9 to 13 set some more constant variables for the falling baddies:

9. BADDIEMINSIZE = 10
10. BADDIEMAXSIZE = 40
11. BADDIEMINSPEED 1

12. BADDIEMAXSPEED

8
13. ADDNEWBADDIERATE =

6

The width and height of the baddies will be between app1eMiNsTZE and BaDDIEMAXSIZE.
The rate at which the baddies fall down the screen will be between sabpreminspEED and
BADDIEMAXSPEED pixels per iteration through the game loop. And a new baddie will be added
to the top of the window every appnewsappreraTE iterations through the game loop.

Finally, the pravervoveraTE stores the number of pixels the player’s character moves in
the window on each iteration through the game loop (if the character is moving):

14. PLAYERMOVERATE = 5

By increasing this number, you can increase the speed at which the character moves.

Defining Functions

There are several functions you’ll create for this game. The terminate() and
waitForPlayerToPressKey () functions will end and pause the game, respectively, the
playerHasHitBaddie() function will track the player’s collisions with baddies, and the
drawrext () function will draw the score and other text to the screen.



Ending and Pausing the Game

The pygame module requires that you call both pygame.quit() and sys.exit() to end the
game. Lines 16 to 18 put them both into a function called terminate().

16. def terminate():
17. pygame.quit ()
18. sys.exit ()

Now you only need to call terminate () instead of both pygame.quit () and sys.exit ().

Sometimes you’ll want to pause the program until the player presses a key, such as at
the very start of the game when the Dodger title text appears or at the end when Game Over
shows. Lines 20 to 24 create a new function called waitrorplayerTopresskey():

20. def waitForPlayerToPressKey () :

21. while True:

22. for event in pygame.event.get():
23. if event.type == QUIT:

24. terminate ()

Inside this function, there’s an infinite loop that breaks only when a xeypown or qurr
event is received. At the start of the loop, pygame.event.get () returns a list of event objects
to check out.

If the player has closed the window while the program is waiting for the player to press
a key, pygame will generate a gurt event, which you check for in line 23 with event.type. If
the player has quit, Python calls the terninate () function on line 24.

If the game receives a keypown event, it should first check whether ESC was pressed:

25. if event.type == KEYDOWN:

26. if event.key == K _ESCAPE: # Pressing ESC quits.
27. terminate ()

28. return

If the player pressed ESC, the program should terminate. If that wasn’t the case, then
execution will skip the if block on line 27 and go straight to the return statement, which
exits the waitForPlayerToPressKey () function.

If a gurT or xEyDOWN event isn’t generated, the code keeps looping. Since the loop does
nothing, this will make it look like the game has frozen until the player presses a key.

Keeping Track of Baddie Collisions

The playernastitBaddie() function will return True if the player’s character has collided
with one of the baddies:

30. def playerHasHitBaddie(playerRect, baddies):
31. for b in baddies:

32. if playerRect.colliderect (b['rect']):
33. return True



34. return False

The vaddies parameter is a list of baddie dictionary data structures. Each of these
dictionaries has a 'rect' key, and the value for that key is a rect object that represents the
baddie’s size and location.

playerRect 1S also a rect object. rect objects have a method named coliliderect () that
returns True if the rect object has collided with the rect object that is passed to it.
()ther“dse,colliderect()returnSFalse.

The for loop on line 31 iterates through each baddie dictionary in the vaadies list. If
any of these baddies collides with the player’s character, then playertastitBaddie() returns
true. If the code manages to iterate through all the baddies in the vaddies list without
detecting a collision, playerHasHitBaddie () returns ralse.

Drawing Text to the Window

Drawing text on the window involves a few steps, which we accomplish with arawrext ().
"This way, there’s only one function to call when we want to display the player’s score or
the Game Over text on the screen.

36. def drawText (text, font, surface, x, v):

37. textobj = font.render (text, 1, TEXTCOLOR)
38. textrect = textobj.get_rect()

39. textrect.topleft = (x, V)

40. surface.blit (textobj, textrect)

First, the render () method call on line 37 creates a surface object that renders the text
in a specific font.

Next, you need to know the size and location of the surface object. You can get a rect
object with this information using the get_rect () surface method.

The rect object returned from get_rect () on line 38 has a copy of the width and height
information from the surface object. Line 39 changes the location of the rect object by
setting a new tuple value for its topleft attribute.

Finally, line 40 draws the surface object of the rendered text onto the surface object
that was passed to the drawrext () function. Displaying text in pygame takes a few more steps
than simply calling the print () function. But if you put this code into a single function
named drawrext (), then you only need to call this function to display text on the screen.

Initializing pygame and Setting Up the Window

Now that the constant variables and functions are finished, we’ll start calling the pygame
functions that set up the window and clock:

42. # Set up pygame, the window, and the mouse cursor.
43. pygame.init ()



44 . mainClock = pygame.time.Clock()

Line 43 sets up pygame by calling the pygame.init() function. Line 44 creates a
pygame. time.Clock () Object and stores it in the mainclock variable. This object will help us
keep the program from running too fast.

Line 45 creates a new surface object that is used for the window display:

45. windowSurface = pygame.display.set_mode ( (WINDOWWIDTH, WINDOWHEIGHT))

Notice that there’s only one argument passed to pygame.display.set_mode(): a tuple.
The arguments for pygame.display.set_mode() are not two integers but one tuple of two
integers. You can specify the width and height of this surface object (and the window) by
passing a tuple with the winpowwrpTs and winbowsEIGHT constant variables.

The pygame.display.set_mode() function has a second, optional parameter. You can

pass the pygame . FuLLscrEEN constant to make the window fill the entire screen. Look at this
modification to line 45:

45. windowSurface = pygame.display.set_mode ( (WINDOWWIDTH, WINDOWHEIGHT),
pygame . FULLSCREEN)

The parameters winoowwrprs and winpowsezgaT are still passed for the window’s width
and height, but the image will be stretched larger to fit the screen. Try running the
program with and without fullscreen mode.

Line 46 sets the caption of the window to the string 'podger':

46. pygame.display.set_caption('Dodger"')

"This caption will appear in the title bar at the top of the window.

In Dodger, the mouse cursor shouldn’t be visible. You want the mouse to be able to
move the player’s character around the screen, but the mouse cursor would get in the way
of the character’s image. We can make the mouse invisible with just one line of code:

47 . pygame.mouse.set_visible(False)

Calling pygame.mouse.set_visible(False) tells pygame tO make the cursor invisible.

Setting Up Font, Sound, and Image Objects

Since we are displaying text on the screen in this program, we need to give the pygame
module a ront object to use for the text. Line 50 creates a ront object by calling
pygame. font.SysFont ():

49. # Set up the fonts.
50. font = pygame.font.SysFont (None, 48)




Passing none uses the default font. Passing 48 gives the font a size of 48 points.
Next, we’ll create the sound objects and set up the background music:

52. # Set up sounds.
53. gameOverSound = pygame.mixer.Sound('gameover.wav')
54. pygame.mixer.music.load('background.mid')

The pygame.mixer.sound () constructor function creates a new sound object and stores a
reference to this object in the gameoversound variable. In your own games, you can create as
many sound objects as you like, each with a different sound file.

The pygame.mixer.music.load() function loads a sound file to play for the background
music. This function doesn’t return any objects, and only one background sound file can
be loaded at a time. The background music will play constantly during the game, but sound
objects will play only when the player loses the game by running into a baddie.

You can use any WAV or MIDI file for this game. Some sound files are available from
this book’s website at brtps://www.nostarch.com/inventwithpython/. You can also use your own
sound files for this game, as long as you name the files gameover.wav and background.mid or
change the strings used on lines 53 and 54 to match the filename you want.

Next you’ll load the image files to be used for the player’s character and the baddies:

56. # Set up images.

57. playerImage = pygame.image.load('player.png')
58. playerRect = playerImage.get_rect ()

59. baddieImage = pygame.image.load('baddie.png')

The image for the character is stored in player.png, and the image for the baddies is
stored in baddie.png. All the baddies look the same, so you need only one image file for
them. You can download these images from this book’s website at
bttps://www.nostarch.com/inventwithpython/.

Displaying the Start Screen

When the game first starts, Python should display the Dodger title on the screen. You also
want to tell the player that they can start the game by pushing any key. This screen appears
so that the player has time to get ready to start playing after running the program.

On lines 63 and 64, we write code to call the arawrext () function:

61. # Show the "Start" screen.

62. windowSurface.fill (BACKGROUNDCOLOR)

63. drawText ('Dodger', font, windowSurface, (WINDOWWIDTH / 3),
(WINDOWHEIGHT / 3))

64 . drawText ('Press a key to start.', font, windowSurface,
(WINDOWWIDTH / 3) - 30, (WINDOWHEIGHT / 3) + 50)

65. pygame.display.update()

66. waltForPlayerToPressKey ()



https://www.nostarch.com/inventwithpython/
https://www.nostarch.com/inventwithpython/

We pass this function five arguments:

1. The string of the text you want to appear

2. The font in which you want the string to appear

3. The surface object onto which the text will be rendered

4. The x-coordinate on the surface object at which to draw the text
5. The y-coordinate on the surface object at which to draw the text

"This may seem like a lot of arguments to pass for a function call, but keep in mind that
this function call replaces five lines of code each time you call it. This shortens the
program and makes it easier to find bugs since there’s less code to check.

The waitForplayerTopresskey () function pauses the game by looping until a xevpowy
event is generated. Then the execution breaks out of the loop and the program continues
to run.

Starting the Game

With all the functions now defined, we can start writing the main game code. Lines 68 and
on will call the functions that we defined earlier. The value in the topscore variable starts
at 0 when the program first runs. Whenever the player loses and has a score larger than the
current top score, the top score is replaced with this larger score.

68. topScore = 0
69. while True:

The infinite loop started on line 69 is technically not the game loop. The game loop
handles events and drawing the window while the game is running. Instead, this while loop
iterates each time the player starts a new game. When the player loses and the game resets,
the program’s execution loops back to line 69.

At the beginning, you also want to set baddies to an empty list:

70. # Set up the start of the game.
71. baddies = []
72. score = 0

The vaddies variable is a list of dictionary objects with the following keys:

rrect' [he rect object that describes where and what size the baddie is.

'speed' How fast the baddie falls down the screen. This integer represents pixels per
iteration through the game loop.

'surface' |'he surface object that has the scaled baddie image drawn on it. This is the
Surfacethatisdra“WlU)thCSurface(ﬂjectreturned[ﬂfpygame.display.set_mode(L



Line 72 resets the player’s score to o.

"The starting location of the player is in the center of the screen and 50 pixels up from
the bottom, which is set by line 73:

73. playerRect.topleft = (WINDOWWIDTH / 2, WINDOWHEIGHT - 50)

The first item in line 73’s tuple is the x-coordinate of the left edge, and the second item
is the y-coordinate of the top edge.

Next we set up variables for the player movements and the cheats:

74 . moveLeft = moveRight = moveUp = moveDown = False
75. reverseCheat = slowCheat = False
76. baddieAddCounter = 0

The movement variables moveLeft, moveRight, moveUp, and moveDown are set to False. | he
reverseCheat and slowcheat variables are also set to ralse. They will be set to True only
when the player enables these cheats by holding down the Z and X keys, respectively.

The vaddieaddcounter variable is a counter to tell the program when to add a new
baddie at the top of the screen. The value in baddieaddcounter increments by 1 each time
the game loop iterates. (This is similar to the code in “Adding New Food Squares” on page
295))

When paddieaddcounter is equal to ADDNEWBADDIERATE, then baddieaddcounter resets to o
and a new baddie is added to the top of the screen. (This check is done later on line 130.)

The background music starts playing on line 77 with a call to the
pygame.mixer .music.play () function:

77. pygame.mixer .music.play (-1, 0.0)

Because the first argument is -1, pygame repeats the music endlessly. The second
argument is a float that says how many seconds into the music you want it to start playing.
Passing 0.0 means the music starts playing from the beginning.

The Game Loop

The game loop’s code constantly updates the state of the game world by changing the
position of the player and baddies, handling events generated by pygame, and drawing the
game world on the screen. All of this happens several dozen times a second, which makes
the game run in real time.

Line 79 is the start of the main game loop:

79. while True: # The game loop runs while the game part is playing.
80. score += 1 # Increase score.

Line 80 increases the player’s score on each iteration of the game loop. The longer the



player can go without losing, the higher their score. The loop will exit only when the
player either loses the game or quits the program.

Handling Keyboard Events

There are four types of events the program will handle: gurr, kevpown, xEvue, and
MOUSEMOTION.

Line 82 is the start of the event-handling code:

82. for event in pygame.event.get():
83. if event.type == QUIT:
84. terminate ()

It calls pygame.event.get (), which returns a list of event objects. Each event object
represents an event that has happened since the last call to pygame.event.get (). The code
checks the type attribute of the event object to see what type of event it is, and then handles
it accordingly.

If the type attribute of the event object is equal to gurr, then the user has closed the
program. The gurr constant variable was imported from the pygame.1ocals module.

If the event’s type is kevpown, the player has pressed a key:

86. if event.type == KEYDOWN:
87. if event.key == K_z:
88. reverseCheat = True
89. if event.key == K_x:
90. slowCheat = True

Line 87 checks whether the event describes the Z key being pressed with event.key ==
k_z. If this condition is true, Python sets the reversecheat variable to True to activate the
reverse cheat. Similarly, line 89 checks whether the X key has been pressed to activate the
slow cheat.

Lines 91 to 102 check whether the event was generated by the player pressing one of the
arrow or WASD keys. This code is similar to the keyboard-related code in the previous
chapters.

If the event’s type is kevup, the player has released a key:

104. if event.type == KEYUP:

105. if event.key == K_z:
106. reverseCheat = False
107. score = 0

108. if event.key == K_x:
1009. slowCheat = False
110. score = 0

Line 105 checks whether the player has released the Z key, which will deactivate the
reverse cheat. In that case, line 106 sets reversecheat to False, and line 107 resets the score
to 0. The score reset is to discourage the player from using the cheats.



Lines 108 to 110 do the same thing for the X key and the slow cheat. When the X key is
released, s1owcheat is set to rFalse, and the player’s score is reset to o.

At any time during the game, the player can press ESC to quit:

111. if event.key == K_ESCAPE:
112. terminate ()

Line 111 determines whether the key that was released was ESC by checking event.xey
== k_EscaPE. If so, line 112 calls the terminate () function to exit the program.

Lines 114 to 121 check whether the player has stopped holding down one of the arrow
or WASD keys. In that case, the code sets the corresponding movement variable to ralse.
"This is similar to the movement code in Chapter 19’s and Chapter 20’s programs.

Handling Mouse Movement

Now that you’ve handled the keyboard events, let’s handle any mouse events that may have
been generated. The Dodger game doesn’t do anything if the player has clicked a mouse
button, but it does respond when the player moves the mouse. This gives the player two
ways of controlling the character in the game: the keyboard or the mouse.

"The mousemorton event is generated whenever the mouse is moved:

123. if event.type == MOUSEMOTION:

124. # If the mouse moves, move the player to the cursor.
125. playerRect.centerx = event.pos[0]

126. playerRect.centery = event.pos[1]

Event Objects with a type set to mousemorzon also have an attribute named pos for the
position of the mouse event. The pos attribute stores a tuple of the x- and y-coordinates of
where the mouse cursor moved in the window. If the event’s type is mousemorIon, the
player’s character moves to the position of the mouse cursor.

Lines 125 and 126 set the center x- and y-coordinate of the player’s character to the x-
and y-coordinates of the mouse cursor.

Adding New Baddies

On each iteration of the game loop, the code increments the baddieaddcounter variable by
one:

127. # Add new baddies at the top of the screen, if needed.
128. if not reverseCheat and not slowCheat:
129. baddieAddCounter += 1

This happens only if the cheats are not enabled. Remember that reversecheat and
slowCheat are set to True as long as the Z and X keys are being held down, respectively.
While the Z and X keys are being held down, baddieaddcounter isn’t incremented.



Therefore, no new baddies will appear at the top of the screen.

When the baddieaddcounter reaches the value in appneEweaDDIERATE, it’s time to add a
new baddie to the top of the screen. First, baddieaddcounter is reset to o:

130. if baddieAddCounter == ADDNEWBADDIERATE:

131. baddieAddCounter = 0

132. baddieSize = random.randint (BADDIEMINSIZE, BADDIEMAXSIZE)
133. newBaddie = {'rect': pygame.Rect (random.randint (0,

WINDOWWIDTH - baddieSize), 0 - baddieSize,
baddieSize, baddieSize),

134. 'speed': random.randint (BADDIEMINSPEED,
BADDIEMAXSPEED) ,
135. 'surface' :pygame.transform.scale (baddieImage,

(baddieSize, baddieSize)),
136. }

Line 132 generates a size for the baddie in pixels. The size will be a random integer
between sapprEMINsIZE and BappIEMaxsIzE, which are constants set to 10 and 40 on lines 9
and 10, respectively.

Line 133 is where a new baddie data structure is created. Remember, the data structure
for paddies is snnply a diCtiOIlaI'y with keys 'rect', 'speed’, and 'surface'. The 'rect: key
holds a reference to a rect object that stores the location and size of the baddie. The call to
the pygame.rect () constructor function has four parameters: the x-coordinate of the top
edge of the area, the y-coordinate of the left edge of the area, the width in pixels, and the
height in pixels.

The baddie needs to appear at a random point along the top of the window, so pass
random.randint (0, WINDOWWIDTH - baddiesize) for the x-coordinate of the left edge of the
baddie. The reason you pass winoowwIpTH - baddiesize instead of winbowwiprs is that if the
left edge of the baddie is too far to the right, then part of the baddie will be off the edge of
the window and not visible onscreen.

The bottom edge of the baddie should be just above the top edge of the window. The
y-coordinate of the top edge of the window is 0. To put the baddie’s bottom edge there, set
the top edge to 0 - baddiesize.

The baddie’s width and height should be the same (the image is a square), so pass
baddiesize for the third and fourth arguments.

The speed at which the baddie moves down the screen is set in the 'speed' key. Set it to
a random integer between sapprEMINSPEED and BADDIEMAXSPEED.

Line 138 will then add the newly created baddie data structure to the list of baddie data
structures:

138. baddies.append (newBaddie)

The program uses this list to check whether the player has collided with any of the
baddies and to determine where to draw baddies on the window.



Moving the Player’s Character and the Baddies

The four movement variables moveLeft, moveRight, moveUp, and moveDown are set to True and
ralse when pygame generates the kevoown and xeyup events, respectively.

If the player’s character is moving left and the left edge of the player’s character is
greater than o (which is the left edge of the window), then piayerrect should move to the

left:

140. # Move the player around.
141. if movelLeft and playerRect.left > 0:
142. playerRect.move_ip (-1 * PLAYERMOVERATE, 0)

The move_ip() method will move the location of the rect object horizontally or
vertically by a number of pixels. The first argument to move_ip() is how many pixels to
move the rect object to the right (to move it to the left, pass a negative integer). The
second argument is how many pixels to move the rect object down (to move it up, pass a
negative integer). For example, playerrect.move_ip (10, 20) would move the rect object 10
pixels to the right and 20 pixels down and playerrect.move_ip(-5, -15) would move the
rect object 5 pixels to the left and 15 pixels up.

The ip at the end of move_ip () stands for “in place.” This is because the method changes
the rect object itself, rather than returning a new rect object with the changes. There is
also a move () method, which doesn’t change the rect object but instead creates and returns
a new rect object in the new location.

You’ll always move the playerrect object by the number of pixels in pLaverMovERATE. ToO
get the negative form of an integer, multiply it by -1. On line 142, since 5 is stored in
PLAYERMOVERATE, the expression -1 * pravervoveraTe evaluates to -5. Therefore, calling
playerRect.move_ip (-1 * pLAavERMOVERATE, 0) will change the location of playerrect by 5
pixels to the left of its current location.

Lines 143 to 148 do the same thing for the other three directions: right, up, and down.

143. if moveRight and playerRect.right < WINDOWWIDTH:
144. playerRect.move_ip (PLAYERMOVERATE, O0)

145. if moveUp and playerRect.top > 0:

146. playerRect.move_ip (0, -1 * PLAYERMOVERATE)
147. if moveDown and playerRect.bottom < WINDOWHEIGHT:
148. playerRect.move_ip (0, PLAYERMOVERATE)

Each of the three if statements in lines 143 to 148 checks that its movement variable is
set to True and that the edge of the rect object of the player is inside the window. Then it
calls move_ip () to move the rect object.

Now the code loops through each baddie data structure in the baddies list to move
them down a little:

150. # Move the baddies down.
151. for b in baddies:
152. if not reverseCheat and not slowCheat:



153. bl['rect'] .move_ip (0, b['speed'])

If neither of the cheats has been activated, then the baddie’s location moves down a
number of pixels equal to its speed (stored in the 'speea: key).

Implementing the Cheat Codes

If the reverse cheat is activated, then the baddie should move up by 5 pixels:

154. elif reverseCheat:
155. b['rect'] .move_ip (0, -5)

Passing -5 for the second argument to move_ip () will move the rect object upward by 5
pixels.

If the slow cheat has been activated, then the baddie should still move downward, but at
the slow speed of 1 pixel per iteration through the game loop:

156. elif slowCheat:
157. b['rect'].move_ip (0, 1)

The baddie’s normal speed (again, this is stored in the 'speeda key of the baddie’s data
structure) is ignored when the slow cheat is activated.

Removing the Baddies

Any baddies that fall below the bottom edge of the window should be removed from the
baddies list. Remember that you shouldn’t add or remove list items while also iterating
through the list. Instead of iterating through the vaddgies list with the for loop, iterate
through a copy of the vaaaies list. To make this copy, use the blank slicing operator [:1:

159. # Delete baddies that have fallen past the bottom.
160. for b in baddies[:1]:

The for loop on line 160 uses the variable » for the current item in the iteration
through baddies(:1. If the baddie is below the bottom edge of the window, we should
remove it, which we do on line 162:

161. if b['rect'].top > WINDOWHEIGHT:
162. baddies.remove (b)

The v dictionary is the current baddie data structure from the vaddiest:] list. Each
baddie data structure in the list is a dictionary with a 'rect' key, which stores a rect object.
So b['rect'] is the rect object for the baddie. Finally, the top attribute is the y-coordinate
of the top edge of the rectangular area. Remember that the y-coordinates increase going
down. So bl rect'].top > winoowrerceT will check whether the top edge of the baddie is



below the bottom of the window. If this condition is True, then line 162 removes the
baddie data structure from the baddies list.

Drawing the Window

After all the data structures have been updated, the game world should be drawn using
pygame’s image functions. Because the game loop is executed several times a second, when
the baddies and player are drawn in new positions, they look like they’re moving smoothly.

Before anything else is drawn, line 165 fills the entire screen to erase anything drawn on
it previously:

164. # Draw the game world on the window.
165. windowSurface.fill (BACKGROUNDCOLOR)

Remember that the surface object in windowsurface is special because it is the one
returned bY'pygame.display.set_mode().irhereﬁDIC,anythjng'draﬁvn.on.dlatSurface okject
will appear on the screen after pygame.display.update() is called.

Drawing the Player’s Score

Lines 168 and 169 render the text for the current score and top score to the top-left corner
of the window.

167. # Draw the score and top score.

168. drawText ('Score: %s' % (score), font, windowSurface, 10, 0)

169. drawText ('Top Score: %s' % (topScore), font, windowSurface,
10, 40)

The 'score: %s' % (score) expression uses string interpolation to insert the value in
the score variable into the string. This string, the ront object stored in the font variable,
the surface object to draw the text on, and the x- and y-coordinates of where the text
should be placed are passed to the darawrext () method, which will handle the call to the
render () and plit () methods.

For the top score, do the same thing. Pass 40 for the y-coordinate instead of o so that
the top score’s text appears beneath the current score’s text.

Drawing the Player’s Character and Baddies

Information about the player is kept in two different variables. playerimage is a surface
object that contains all the colored pixels that make up the player character’s image.
playerRect 1S a Rect object that stores the size and location of the player’s character.

The »1it() method draws the player character’s image (in playerimage) on
windowSurface at the location in playerRect:



171. # Draw the player's rectangle.
172. windowSurface.blit (playerImage, playerRect)

Line 175’s for loop draws every baddie on the windowsurface object:

174. # Draw each baddie.
175. for b in baddies:
176. windowSurface.blit (b['surface'], b['rect'])

Each item in the vaadies list is a dictionary. The dictionaries’ 'surface' and 'rect:
keys contain the surface object with the baddie image and the rect object with the position
and size information, respectively.

Now that everything has been drawn to windowsurface, we need to update the screen so
the player can see what’s there:

178. pygame.display.update ()

Draw this surface object to the screen by calling update ().

Checking for Collisions

Line 181 checks whether the player has collided with any baddies by calling
playerHasHitBaddie (). [his function will return true if the player’s character has collided
with any of the baddies in the baadies list. Otherwise, the function returns raise.

180. # Check if any of the baddies have hit the player.
181. if playerHasHitBaddie (playerRect, baddies) :

182. if score > topScore:

183. topScore = score # Set new top score.

184. break

If the player’s character has hit a baddie and if the current score is higher than the top
score, then lines 182 and 183 update the top score. The program’s execution breaks out of
the game loop at line 184 and moves to line 189, ending the game.

To keep the computer from running through the game loop as fast as possible (which
would be much too fast for the player to keep up with), call mainciock.tick() to pause the
game very briefly:

186. mainClock.tick (FPS)

"This pause will be long enough to ensure that about 40 (the value stored inside the rps
variable) iterations through the game loop occur each second.

The Game Over Screen

When the player loses, the game stops playing the background music and plays the “game



over” sound effect:

188. # Stop the game and show the "Game Over" screen.
189. pygame.mixer . .music.stop()
190. gameOverSound.play ()

Line 189 calls the stop() function in the pygame.mixer.music module to stop the
background music. Line 190 calls the play() method on the souna object stored in
gameOverSound.

Then lines 192 and 193 call the arawrext () function to draw the “game over” text to the
windowSurfaceCﬁﬁCCt

192. drawText ('GAME OVER', font, windowSurface, (WINDOWWIDTH / 3),
(WINDOWHEIGHT / 3))

193. drawText ('Press a key to play again.', font, windowSurface,
(WINDOWWIDTH / 3) - 80, (WINDOWHEIGHT / 3) + 50)

194. pygame.display.update ()

195. waitForPlayerToPressKey ()

Line 194 calls update () to draw this surface object to the screen. After displaying this
text, the game stops until the player presses a key by calling the waitForplayerTopresskey ()
function.

After the player presses a key, the program execution returns from the
waitForPlayerToPressKkey () call on line 195. Depending on how long the player takes to
press a key, the “game over” sound effect may or may not still be playing. To stop this
sound effect before a new game starts, line 197 calls gameoversound. stop ():

197. gameOverSound. stop ()

That’s it for our graphical game!

Modifying the Dodger Game

You may find that the game is too easy or too hard. Fortunately, the game is easy to
modify because we took the time to use constant variables instead of entering the values
directly. Now all we need to do to change the game is modify the values set in the constant
variables.

For example, if you want the game to run slower in general, change the rps variable on
line 8 to a smaller value, such as 20. This will make both the baddies and the player’s
character move slower, since the game loop will be executed only 20 times a second instead
of 4o.

If you just want to slow down the baddies and not the player, then change
BADDIEMAXSPEED to a smaller value, such as 4. This will make all the baddies move between 1
(the value in sappremMinsPEED) and 4 pixels per iteration through the game loop, instead of
between 1 and 8.



If you want the game to have fewer but larger baddies instead of many smaller baddies,
then increase ADDNEWBADDIERATE tO 12, BADDIEMINSIZE tO 40, and BADDIEMAXSIZE to 80. Now
baddies are being added every 12 iterations through the game loop instead of every 6
iterations, so there will be half as many baddies as before. But to keep the game interesting,
the baddies are much larger.

Keeping the basic game the same, you can modify any of the constant variables to
dramatically affect how the game plays. Keep trying out new values for the constant
variables until you find the set of values you like best.

Summary

Unlike our text-based games, Dodger really looks like a modern computer game. It has
graphics and music and uses the mouse. While pygame provides functions and data types as
building blocks, it’s you the programmer who puts them together to create fun, interactive
games.

And you can do all of this because you know how to instruct the computer to do it, step
by step, line by line. By speaking the computer’s language, you can get it to do the number
crunching and drawing for you. This is a useful skill, and I hope you’ll continue to learn
more about Python programming. (And there’s still much more to learn!)

Now get going and invent your own games. Good luck!



INDEX

Symbols
+ (addition), 2, 13
augmented assignment, 155
commutative property of, 169
\ (backslash), for escape characters, 41-42
: (colon), in for statements, 28-29
{) (curly brackets), for dictionaries, 113
/ (division), 2, 4, 246-247
augmented assignment, 156
» (double quotes), 42-43
= (equal sign), as assignment operator, 5, 34
== (equal to) operator, 32, 34
> (greater than) operator, 30, 32
>= (greater than or equal to) operator, 32
# (hash mark), for comments, 18, 23
< (less than) operator, 30, 32
<= (less than or equal to) operator, 32
+ (multiplication), 2
augmented assignment, 156
1= (not equal to) operator, 32, 36
() (parentheses), and order of operation, 4
>>> prompt, 5, 14
+ (single quotes), 4243
[1 (square brackets), for indexes, 92
- (subtraction), 2
augmented assignment, 155

A

abs () function, 170
absolute value of number, 170
addition(+), 2, 13

augmented assignment, 155



commutative property of, 169
Al See artificial intelligence (AI)
AlSim1.py program
adding computer player, 242-243
comparing algorithms, 247-254
computer playing against itself, 240-247
sample run, 240-241
source code, 241-242
AISim?2.py program
keeping track of multiple games, 245
sample run, 243-244
source code, 244
AISim3.py program
how Al works in, 249-252
source code, 248-249
algorithms, 128
alphabetic order, sort () method for, 157-158
and operator, 52-53
short-circuiting evaluation, 140
Animation program
box data structure setup, 278-279
constant variables, 277-278
moving and bouncing boxes, 276-277, 280-282
running game loop, 279-283
sample run, 274
source code, 274-276
anti-aliasing, 263
append () method, 95
arguments, 18
arrow keys on keyboard, 293, 294
artificial intelligence (AI), 121, 209
for Reversegam, 232-233
comparing algorithms, 247-254
computer playing against itself, 240-247
for Tic-Tac-Toe
creating, 142-145



strategizing, 128-129
ASCII art, 79, 108
assignment (=) operator, 5, 34
attributes, 264
augmented assignment operators, 155-156

background color, for text, 263
background music, 322, 325
repeating forever, 308
backslash (\), for escape characters, 41-42
Bagels Deduction game
checking for win or loss, 161-162
checking string for only numbers, 158-159
clues, 149
calculating, 156-157
getting, 161
flowchart for, 152-153
getting player’s guess, 161
join() method, 158
playing again, 162
sample run, 150-151
secret number, creating, 160-161
shuffling unique set of digits, 154-155
source code, 151-152
starting game, 159
blank line, printing, 41
blit () method, 269-270, 331
blocks of code, grouping with, 27
BMP file format, 302
bool () function, 227
Boolean data type, 31
comparison operators and, 33-34
conditions for checking, 32
in Tic-Tac-Toe evaluation, 136-137
Boolean operators, 52-55



break statement, 35, 37, 109, 161
breakpoints in debugger, 73-75
brute-force technique, for ciphers, 206-208
bugs, 63

finding, 70-72

types, 64-65

but ton attribute, for mousesuTTONDOWN event, 292

C

Caesar Cipher program
brute-force technique, 206-208
encryption or decryption, 202-205
getting key from player, 203
getting message from player, 203
how it works, 199-200
sample run, 200-201
setting maximum key length, 202
source code, 201-202
starting program, 206
calling
functions, 49-50, 60-61
methods, 94-96
camel case, 20
captions, for windows, 261
Cartesian coordinate system, 163, 209
grids and, 164-165
math tricks, 168-169
negative numbers in, 166-167
case sensitivity, 61
of variable names, 20
centerx attribute, of rect object, 264
centery attribute, of rect object, 264
cheat modes, 312
chessboard, coordinates, 164-165
choice () function, random module, 115-117
cipher, 198



circle() fllIlCtiOIl, pygame.draw module, 268
clearing window, for animation iteration, 280
clock () function, 289-290
clock object, 313
code. See source code
coin flips, program simulating, 73-75
colliderect () fllIlCtiOIl, 297, 320
Collision Detection program
adding food squares, 295-296
checking for collisions, 297
clock to pace program, 289-290
drawing food squares, 298
drawing player on screen, 297
event handling, 292-295
moving player around screen, 296-297
sample run, 286
source code, 287-289
teleporting player, 295
variables for tracking movement, 291
window and data structures setup, 290-291
colon (:), in for statements, 28-29
color
filling surface object with, 266
of pixels, 269-270
RGB Values, n pygame, 261-262
of text, 263
commenting out code, 242
comments, 17-18
commutative property of addition, 169
comparison operators, 32, 33-34
computer
vs. computer Al simulation, 240
screen coordinate system, 167-168
concatenation
of lists, 94
of strings, 13, 26, 159



conditions, 33-34

constant variables, 91
for keyboard keys, 294

constructor functions, 264

continue Statement, 161

conversion specifiers, 159-160

coordinate system
Cartesian. See Cartesian coordinate system
of computer screen, 167-168

coordinates, 163

corner-best algorithm, 248, 249
vs. corner-side-best algorithm, 253-254
vs. random-move algorithm, 252-253
vs. worst-move algorithm, 252

corner-side-best algorithm, 248, 251-252
vs. corner-best algorithm, 253-254

crashing programs, 64

cryptanalysis, 206

cryptography, 198

cursor, in file editor, 14

data structures, 180
for boxes in Animation program, 278-279
for collision detection, 290-291
copying in Reversegam, 229-230
for ocean waves in Sonar Treasure Hunt, 184
for Sprites and Sounds program, 306-307
for Tic-Tac-Toe board, 127-128
data types, 13
Boolean, 31-34
dictionary, 112-115
integers, 2—-3, 30-31
lists, 92-94
pygame.Rect, 264-265
strings. See strings



debugger
breakpoints, 73-75
finding bugs, 70-72
running game under, 66
starting, 65
stepping through program with, 67-70
decryption, 198
in Caesar Cipher, 202-205
def block, 49, 50
return statement inside, 55
def statement, 49, 50
deleting items in list, 117-118
del statement, 117
dictionary data type, 112-113
evaluating with choice () function, 115-117
keys () and values () methods, 114-115
vs. lists, 113-114
variables storing references to, 134
diff tool, 16-17
division (1), 2, 4, 246-247
augmented assignment, 156
Dodger game
baddies
adding, 327-328
drawing, 331-332
moving, 328-329
removing, 330
tracking collisions, 320
cheat modes, implementing, 329-330
collision detection, 332
constant variables, 318-319
drawing character, 331-332
drawing text to window, 320-321
drawing window, 330-332
ending and pausing, 319-320
functions, 319-321



game loop, 324, 325-327

game over screen, 332-333

importing modules, 317-318

modifying, 333

moving character, 328-329

rendering text for score, 331

sample run, 313

source code, 313-317

starting game, 324-325
double quotes (), 42-43
Dragon Realm

asking to play again, 61

Boolean operators evaluation, 54

checking caves, 59

displaying results, 58-59

flowchart for, 4647

functions, 49-50

getting player’s input, 54-55

how to play, 45

importing random and time modules, 48

return Statement, 55-56

running under debugger, 66

sample run, 46

source code, 4748

start of program, 60

E

elif statements, 103
ellipse() function, pygame.draw module, 268
else statement, 59, 103
encryption, 198
in Caesar Cipher, 202-205
end keyword parameter, for print () function, 43-44
end of programs, 19
end='' Statements, 97
endswith () method, 105



equal sign (=), as assignment operator, 5, 34
equal to (==) operator, 32, 34
error messages, 64

ImportError, 256

IndexError, 93

NameError, 0, 16

syntax errors, 4-5

ValueError, 139
errors. See bugs
ESC key, for terminating program, 295, 326
escape characters, 41-42
evaluation, short-circuit, 139-141
event handling, 292-295, 325-326
event object, 271, 312
events, 270-271
execution of program, 17
exit () function, sys module, 180
exiting program, 19, 271
expressions, 3, 36

evaluating, 3—4

in function calls, 19

function calls in, 18

F

ralse Boolean value, 31
for data types, 227
while keyword and, 51
file editor, 13-16
file extensions, for images, 302
£i11 () function, 266
find () method, 204-205
float () function, 29-31
floating-point numbers, 2-3, 4
from division (/), 246-247
rounding, 247
flow control statements, 26



elif statements, 103
if statement, 34, 37
break statement and, 35
else statement after, 59
for statement, 26, 28-29, 37
while statement, 51-52, 60
flowcharts
for Bagels Deduction game, 152-153
benefits, 86
for Hangman design, 80-85
for Tic-Tac-Toe design, 127
Font Object, 312, 322
rendering, 263
fonts, 262-263
for statement, 26, 28-29, 37
frame, 318
functions, 18-19, 24. See also names of individual functions
calling, 18, 49-50
def statements, 49, 50
parameters, 57-58

G

game loop, 270-271
for Dodger game, 325-327
for Reversegam game, 237-238
for Animation program, 279-283
games. See names of individual games
get_rect () method, 264, 321
GIF file format, 302
global scope, 56-57
global variables, 67
graphical user interface (GUI) window, 260
graphics. See also pygame module
ASCII art for Hangman, 79
downloading from web browsers, 303
sprites for adding, 302



Guess the Number game, 21
checking for loss, 35-36
checking for win, 35
converting values, 29-31
flow control statements, 26-29
generating random numbers, 24-26
getting player’s guess, 29
importing random module, 23-24
sample run, 22
source code, 22-23
for statement, 28-29
welcoming player, 26

H

Hacking Secret Cipbers with Python, 198
Hangman game

ASCII art, 79

asking to play again, 104-105

checking for loss, 108

checking for win, 107

confirming entry of valid guess, 104

dictionaries of words in, 115

displaying board to player, 97-101, 106

displaying secret word with blanks, 99-101

elif statements, 103

ending or restarting, 83, 108-109

extending
adding more guesses, 112
dictionary data type, 112-115
evaluating dictionary of lists, 115-117
printing word category, 119

feedback to player, 85

flowcharts for design, 80-85

getting player’s guess, 101-103

getting secret word from list, 96

how to play, 78



incorrect guesses, 107-108
main program, 105-109
printing word category for player, 119
review of functions, 105
sample run, 78-79
source code, 88-91
hash mark (%), for comments, 18, 23
Hello World program
creating, 14-15
how it works, 17-19
in pygame, 256-259. See also pygame module
hypotenuse, 187

IDLE
file editor, 13-14
interactive shell, 1-9, 13
starting, Xxvi
if statement, 34, 37
break statement and, 35
else statement after, 59
image files, 302-303
images. See graphics
import Statement, 24
ImportError, 256
importing modules, 24
in operator, 94
indentation of code, 27
IndexError, 93
indexes
for accessing list items, 92-93
value after deleting item in list, 117
infinite loop, 64, 160-161
input, 37, 39
validation, 52
input () function, 18-19



installing
pygame, 256
Python, xxv—xxvi
int () function, 29-31, 139
integers, 2—3
converting strings to, 30-31
interactive shell, 1-9, 13
items in lists
accessing with indexes, 92-93
changing with index assignment, 93
deleting, 117-118
iteration, 29

J

join() method, 158

Jokes program
end keyword, 43-44
escape characters, 41-42
how it works, 41
sample run, 40

source code, 40
JPG file format, 302

K

key-value pairs, in dictionaries, 113
keyboard

event handling, 325-326

user input with, 292-295
KEYDOWN event, 292, 293-294
keys

for ciphers, 198

for dictionaries, 113
keys () method, 114-115
KEYUP event, 292, 294-295



L

len() function, 57, 113
line breaks, in printed string, 51
line () function, pygame.draw module, 267
line numbers, xxiv
1ist () function, 98
lists
accessing items with indexes, 92-93
changing item order, 154
concatenation, 94
vs. dictionaries, 113-114
and in operator, 94
iterating and changes, 298
methods, 95
references, 132-135
slicing, 98-99
sort () method fOI‘, 157-158
load () function, 307
loading previously saved program, 15
local scope, 56-57
loops, 26
break statement to leave, 35
nested, 161
with while statements, 51-52
lower () method, 101-102
lowercase, displaying characters as, 101-102

M

mainClock.tick() function, 289-290, 332
math

expressions, 3—4

integers and floats, 23

operators, 2

syntax errors, 4-5

tricks, 168-169



math module, 180
methods, calling, 94-96
MIDI file format, 303, 322
modules, importing, 24
mouse
handling events, 292-293, 327
making invisible, 322
MOUSEBUTTONDOWN event, 292
MOUSEBUTTONUP event, 292, 296
MOUSEMOTION event, 292, 325, 327
move () method, 329
move_ip () method, 329
MP3 file format, 303
multiline strings, 50-51
multiple assignment, 118-119
multiplication (*), 2
augmented assignment, 156
music
background, 322, 325
repeating forever, 308
setup, 307-308

NameError, 0, 16

names, for variables, 20

nested loops, 161, 226

newline (\n), 42, 43

None value, 142

not equal to (:=) operator, 32, 36

not operator, 53-54

numbers. See also math
absolute value of, 170
negative, in Cartesian coordinate system, 166—167
sort () method for ordering, 157-158



0

objects, 261
operators
Boolean, 52-55
comparison, 32, 33-34
math, 2
or operator, 53
order of operations, 3—4
origin, in Cartesian coordinate system, 167
Othello. See Reversegam game
output, 37, 39

P

parameters, for functions, 57-58
parentheses [ ()], and order of operation, 4
pausing program, 283, 319-320
percentages, 246—247
PixelArray ObjCCt, 269
pixels, 167, 260
coloring, 269-270
plaintext, 198
play () method, pygame.mixer.music module, 309
PNG file format, 302
points, fonts, 263
polygon () fllIlCtiOIl, pygame.draw module, 266-267
print () function, 18, 37
end keyword parameter, 43-44
programs. See also names of individual programs and games
end of, 19
running, 16
saving, 15
writing, 13-15
pygame I’IlOdllle

drawing functions
circle, 268



ellipse, 268
line, 267
polygon, 266-267
rectangle, 268-269
events and game loop, 270-271
exiting programs, 271
filling surface object with color, 266
Hello World program, 256-257
sample run, 257
source code, 257-259
importing module, 259
initializing, 259, 321-322
installing, 256
RGB color values, 261-262
window setup, 260-261
pygame .display module
set_caption () function, 261, 277
set_mode () fllIlCtiOIl, 260, 261, 321
update () function, 266, 270, 282
pygame . draw module
circle() function, 268
ellipse() function, 268
line () function, 267
polygon () function, 266-267
rect () function, 268-269
pygame . event module
event object, 271, 312
get () function, 271, 292, 312
pygame . font module
Font Object, 312, 263
sysFont () function, 263, 322
pygame.image.load () fllIlCtiOIl, 307
pygame.init () function, 259, 321
pygame.locals module, 318
pygame .mixer module, 307
sound () function, 308



pygame.mixer .music module, 307, 332

load () function, 308, 322

play () function, 308, 325

stop () function, 308
pygame.quit () fllIlCtiOIl, 271, 295
pygame.Rect data type, 264-265
pygame.Rect () function, 264, 290, 328
pygame.Surface ObjCCt, 261, 312. See also surface object
pygame. time module

clock () function, 289-290

clock object, 298, 313, 321
pygame. transform module, 307

scale() function, 309
Pythagorean theorem, 187-188
Python, installing, xxv—xxvi

Q

ouit event, 271, 292
quotation marks, for strings, 12, 42-43

R

random module
choice() function, 115-117
importing, 23-24
randint () function, 24-26
shuffle() function, 154-155, 232
random-move algorithm, 248, 250
vs. corner-best algorithm, 252-253
range () function, 26, 98
rect () function, 268-269
rect object, 309, 312
colliderect () function, 320
references, to lists, 132-135
remove () method, 189-190
render () method, Font object, 263, 321



rendering fonts, 263
return Statement, 55-56
return value, 18
reverse () method, 95
Reversegam game
Al simulation
comparing Al algorithms, 247-254
computer playing against itself, 240-247
checking for valid coordinates, 225-227
checking for valid move
checking eight directions, 223-224
determining tiles to flip, 224-225
constants, 220
corner moves strategy, 232
data structures
copying, 229-230
creating fresh board, 222
drawing on screen, 221-222
determining if space is corner, 230
determining who goes first, 228-229
game loop, 237-238
getting computer’s move, 232-233
getting list with all valid moves, 226
getting player’s move, 230-232
getting player’s tile choice, 228
getting score, 227-228
hints, 214, 226
how to play, 210-213
importing modules, 220
listing highest-scoring moves, 233
placing tile, 229
playing again, 238
printing scores to screen, 234
running computer’s turn, 236237
sample run, 213-215
source code, 215-220



starting game, 234-237
Reversi. See Reversegam game
RGB color values, 261
right triangle, Pythagorean theorem and, 187-188
round () function, 247
running programs, 16
runtime errors, 64

S

saving programs, 15
scale() fllIlCtiOIl, pygame. transform module, 307, 309
scope, global and local, 56-57
semantic errors, 64
set_caption() function, pygame.display module, 261, 277
set_mode () function, pygame.display module, 260, 261, 321
short-circuit evaluation, 139-141
shuffle () function, random module, 154-155, 232
shuffling unique set of digits, 154-155
simulation
Al See Reversegam, Al similation
of coin flips, 73-75
single quotes ('), 42-43
sleep () fllIlCtiOIl, time module, 58, 283
slicing
lists, 98-99
operator for, 330
sonar, 171
Sonar Treasure Hunt game
checking for player loss, 195
checking for player win, 194
creating game board, 180-181
creating random treasure chests, 184-185
design, 180
determining if move is valid, 185
displaying game status for player, 193
drawing game board, 181-184



drawing ocean, 183-184
finding closest treasure chest, 186-189
finding sunken treasure chest, 194
getting player’s move, 190-191, 193-194
guessing location, 189
placing move on board, 185-191
printing game instructions, 191-192
quitting, 190
removing values from lists, 189-190
sample run, 173-175
source code, 175-178
starting game, 192-195
termination of program, 195
variables, 193
sort () method, for liStS, 157-158
sound file formats, 303
Sound () fllIlCtiOIl, pygame.mixer module, 308
sound object, 322
sounds
adding, 308
for game over, 332
setup, 307-308
toggling on and off, 308
source code, 14
AISim1.py program, 241-242
AISim?2.py program, 244
AISim3.py program, 248-249
Animation program, 274-276
Bagels Deduction game, 151-152
Caesar Cipher program, 201-202
Collision Detection program, 287-289
Dodger game, 313-317
Dragon Realm game, 47-48
Guess the Number game, 22-23
Hangman game, 88-91
Jokes program, 40



reusing, 24
Reversegam game, 215-220
Sonar Treasure Hunt game, 175-178
spaces 1n, Xxiv—xxv, 23
Sprites and Sounds game, 304-306
Tic-Tac-Toe game, 123-126
spaces
in source code, xxiv—xxv, 23
between values and operators, 3
special characters, printing, 42
split () method, 95-96, 190-191
sprites, 302
adding, 307
size changes, 307, 309
Sprites and Sounds game
checking for collision with cherries, 309
drawing player on window, 309
sample run, 303
source code, 304-306
window and data structures setup, 306-307
sgrt () fllIlCtiOIl, math module, 180, 188
square brackets ([1), for indexes, 92
square root, 187
startswith() method, 105
statements, 5. See also flow control statements
continue, 161
def, 49, 50
del, 117
end="'", 97
for, 26, 28—29, 37
import, 24
statistics, 246
stepping through program with debugger, 65, 67-70
into code, 68
out, 69

stop () function, pygame.mixer.music module, 332



str () function, 31, 35
strings, 12
checking for only numbers, 158-159
comparison operators and, 33-34
concatenation, 13, 26
converting to integer, 30-31
finding, 204-205
interpolation, 159-160
line breaks in, 51
multiline, 50-51
quotes for, 42-43
split () method, 95-96
subtraction (-), 2
augmented assignment, 155
Surface ObjCCt, 261, 312
creating, 307
drawing on screen, 270
filling with color, 266
syntax errors, 64
in math expressions, 4-5
sys module, 180

T

TAB key (\t), 42
terminating program, 19
ESC key for, 295, 326
text. See also strings
drawing to window, 320-321
entry by user, 18
fonts for, 262-263
setting location, 264-265
Tic-Tac-Toe game
arguments, 143
artificial intelligence for, 128-129
checking for full board, 145
checking corner, center, and side spaces, 144-145



checking for computer move to win, 143-144
checking for free space on board, 138
checking for win, 135-137
in one move, 144
choosing move from list, 141-142
choosing player’s mark, 146
deciding who goes first, 131
design with flowcharts, 127-129
duplicating board data, 137-138
letting player choose X or O, 130-131
placing mark on board, 131-135
player move, 138-139
playing again, 148
printing board on screen, 129-130
running computer’s turn, 147-148
running player’s turn, 146-147
sample run, 122-123
source code, 123-126
starting game, 145-146
tick () method, of ciock object, 289-290, 298, 313, 332
time module
importing, 48
sleep () function, 58, 283
traceback, 64
true Boolean value, 31
for data types, 227
while keyword and, 51
truth table
for not operator, 54
for ana operator, 52-53
for or operator, 53
tuples, 260
for RGB colors, 261
typing errors, 6

U



update () method, pygame . display module, 266, 270, 282
upper () method, 101-102
uppercase, displaying characters as, 101-102
users
input () function, 18-19
input with mouse and keyboard, 292-295

vV

ValueError, 139
values, 3
assigning new to variable, 7
converting data type, 29-31
storing in variables, 5-8
values () method, 114-115
variables
assigning multiple, 118-119
constant, 91
names for, 20
overwriting, 7
for references to dictionaries, 134
scope, 5657, 67, 68
storing list in, 98
storing strings in, 102
storing values in, 5-8

W

WASD keys, 293, 294
WAV file format, 303, 322
while statement, 51-52, 60
infinite loop, 160-161
leaving block, 103
windowSurface Object
blit () method, 269-270, 331
centerx and centery attributes, 264
worst-move algorithm, 248, 250



vs. corner-best algorithm, 252
writing programs, 13—15

X

x-axis, 165, 167
x-coordinates, 165
for pixelarray object, 269

Y
y-axis, 165, 167
y-coordinates, 165

for pixelarray object, 269

z

zero-based indexes, 92, 96



RESOURCES

Visit  https://www.nostarch.com/inventwithpython/ for resources, errata, and more
information.

More no-nonsense books from @ NO STARCH PRESS

: SCRATCH g
| PROGRAMMING
|1 PLAYGROUND

R AR COCL AT

SCRATCH PROGRAMMING PLAYGROUND

Learn to Program by Making Cool Games
by AL SWEIGART

SEPTEMBER 2016, 288 PP., $24.95

ISBN 978-1-59327-762-8

full color

o o SO |
AUTOMATE
THE BORING STUFF
WITH PYTHON

AUTOMATE THE BORING STUFF WITH PYTHON
Practical Programming for Total Beginners

by AL SWEIGART

APRIL 2015, 504 PP., $29.95



https://www.nostarch.com/inventwithpython/

ISBN 978-1-59327-599-0

THE LINUX
COMMAND LINE

THE LINUX COMMAND LINE

A Complete Introduction

by WILLIAM E. SHOTTS, JR.
JANUARY 2012, 480 PP., $39.95
ISBN 978-1-59327-389-7

| LEARN TO
| PROGRAM WITH
|  MINECRAFT

TRAMEF SFM wOHUE wOaLE
Wit Thi Bowil 0F Fyisin

LEARN TO PROGRAM WITH MINECRAFT

Transform Your World with the Power of Python
by CRAIG RICHARDSON

DECEMBER 2015, 320 PP., $29.95

ISBN 978-1-59327-670-6

full color




THE BOOK OF

THE BOOK OF R

A First Course in Programming and Statistics
by TILMAN M. DAVIES

JULY 2016, 832 PP., $49.95

ISBN 978-1-59327-651-5

e e S e
PYTHON
PLAYGRDUHD

T
I.E\l II__ s

}\

b

f

PYTHON PLAYGROUND

Geeky Projects for the Curious Programmer
by MAHESH VENKITACHALAM
OCTOBER 2015, 352 PP., $29.95

ISBN 978-1-59327-604-1

1.800.420.7240 OR 1.415.863.9900 | SALES@NOSTARCH.COM | WWW.NOSTARCH.COM



mailto:SALES@NOSTARCH.COM
http://WWW.NOSTARCH.COM

The Electronic Frontier Foundation (EFF) is the leading organization
defending civil liberties in the digital world. We defend free speech
on the Internet, fight illegal surveillance, promote the rights of
innovators to develop new digital technologies, and work to ensure
that the rights and freedoms we enjoy are enhanced — rather than
eroded — as our use of technology grows.

EE EEEEEEEEN
1=

EFF.INIHIs

rotecting Rights and Promoting Fi e Electronic Fronti




DON'T JUST PLAY GAMES—MAKE THEM!

Invent Your Own Computer Games with Python will teach you how to make computer games
using the popular Python programming language—even if you’ve never programmed
before!

Begin by building classic games like Hangman, Guess the Number, and Tic-Tac-Toe, and
then work your way up to more advanced games, like a text-based treasure-hunting game
and an animated collision-dodging game with sound effects. Along the way, you’ll learn
key programming and math concepts that will help you take your game programming to
the next level.

Learn how to:

* Combine loops, variables, and flow control statements into real working programs
* Choose the right data structures for the job, such as lists, dictionaries, and tuples

* Add graphics and animation to your games with the pygame module

* Handle keyboard and mouse input

* Program simple artificial intelligence so you can play against the computer

* Use cryptography to convert text messages into secret code

* Debug your programs and find common errors

As you work through each game, you’ll build a solid foundation in Python and an
understanding of computer science fundamentals.

What new game will you create with the power of Python?

ABOUT THE AUTHOR



Al Sweigart is a software developer who teaches programming to kids and adults. His
programming tutorials can be found at heps://inventwithpython.com/. He is the best-selling
author of Automate the Boring Stuff with Python and Scratch Programming Playground.

COVERS PYTHON 3.X

¢

no starch
press

THE FINEST IN GEEK ENTERTAINMENT™

www.nostarch.com

“I LIE FLAT.”
This book uses a durable binding that won’t snap shut.


https://inventwithpython.com/
http://www.nostarch.com

	Title Page
	Copyright Page
	About the Author
	About the Technical Reviewer
	Brief Contents
	Contents in Detail
	Acknowledgments
	Introduction
	Who Is This Book For?
	About This Book
	How to Use This Book
	Line Numbers and Indentation
	Long Code Lines

	Downloading and Installing Python
	Starting IDLE
	Finding Help Online

	Chapter 1: The Interactive Shell
	Some Simple Math
	Integers and Floating-Point Numbers
	Expressions

	Evaluating Expressions
	Syntax Errors
	Storing Values in Variables
	Summary

	Chapter 2: Writing Programs
	String Values
	String Concatenation
	Writing Programs in IDLE’s File Editor
	Creating the Hello World Program
	Saving Your Program
	Running Your Program

	How the Hello World Program Works
	Comments for the Programmer
	Functions: Mini-Programs Inside Programs
	The End of the Program

	Naming Variables
	Summary

	Chapter 3: Guess the Number
	Sample Run of Guess the Number
	Source Code for Guess the Number
	Importing the random Module
	Generating Random Numbers with the random.randint() Function
	Welcoming the Player
	Flow Control Statements
	Using Loops to Repeat Code
	Grouping with Blocks
	Looping with for Statements

	Getting the Player’s Guess
	Converting Values with the int(), float(), and str() Functions
	The Boolean Data Type
	Comparison Operators
	Checking for True or False with Conditions
	Experimenting with Booleans, Comparison Operators, and Conditions
	The Difference Between = and ==

	if Statements
	Leaving Loops Early with the break Statement
	Checking Whether the Player Won
	Checking Whether the Player Lost
	Summary

	Chapter 4: A Joke-Telling Program
	Sample Run of Jokes
	Source Code for Jokes
	How the Code Works
	Escape Characters
	Single and Double Quotes
	The print() Function’s end Keyword Parameter
	Summary

	Chapter 5: Dragon Realm
	How to Play Dragon Realm
	Sample Run of Dragon Realm
	Flowchart for Dragon Realm
	Source Code for Dragon Realm
	Importing the random and time Modules
	Functions in Dragon Realm
	def Statements
	Calling a Function
	Where to Put Function Definitions

	Multiline Strings
	How to Loop with while Statements
	Boolean Operators
	The and Operator
	The or Operator
	The not Operator
	Evaluating Boolean Operators

	Return Values
	Global Scope and Local Scope
	Function Parameters
	Displaying the Game Results
	Deciding Which Cave Has the Friendly Dragon
	The Game Loop
	Calling the Functions in the Program
	Asking the Player to Play Again

	Summary

	Chapter 6: Using the Debugger
	Types of Bugs
	The Debugger
	Starting the Debugger
	Stepping Through the Program with the Debugger

	Finding the Bug
	Setting Breakpoints
	Using Breakpoints
	Summary

	Chapter 7: Designing Hangman with Flowcharts
	How to Play Hangman
	Sample Run of Hangman
	ASCII Art
	Designing a Program with a Flowchart
	Creating the Flowchart
	Branching from a Flowchart Box
	Ending or Restarting the Game
	Guessing Again
	Offering Feedback to the Player

	Summary

	Chapter 8: Writing the Hangman Code
	Source Code for Hangman
	Importing the random Module
	Constant Variables
	The Lists Data Type
	Accessing Items with Indexes
	List Concatenation
	The in Operator

	Calling Methods
	The reverse() and append() List Methods
	The split() String Method

	Getting a Secret Word from the Word List
	Displaying the Board to the Player
	The list() and range() Functions
	List and String Slicing
	Displaying the Secret Word with Blanks

	Getting the Player’s Guess
	The lower() and upper() String Methods
	Leaving the while Loop

	elif Statements
	Making Sure the Player Entered a Valid Guess
	Asking the Player to Play Again
	Review of the Hangman Functions
	The Game Loop
	Calling the displayBoard() Function
	Letting the Player Enter Their Guess
	Checking Whether the Letter Is in the Secret Word
	Checking Whether the Player Won
	Handling an Incorrect Guess
	Checking Whether the Player Lost
	Ending or Resetting the Game

	Summary

	Chapter 9: Extending Hangman
	Adding More Guesses
	The Dictionary Data Type
	Getting the Size of Dictionaries with len()
	The Difference Between Dictionaries and Lists
	The keys() and values() Dictionary Methods
	Using Dictionaries of Words in Hangman

	Randomly Choosing from a List
	Deleting Items from Lists
	Multiple Assignment
	Printing the Word Category for the Player
	Summary

	Chapter 10: Tic-Tac-Toe
	Sample Run of Tic-Tac-Toe
	Source Code for Tic-Tac-Toe
	Designing the Program
	Representing the Board as Data
	Strategizing with the Game AI

	Importing the random Module
	Printing the Board on the Screen
	Letting the Player Choose X or O
	Deciding Who Goes First
	Placing a Mark on the Board
	List References
	Using List References in makeMove()

	Checking Whether the Player Won
	Duplicating the Board Data
	Checking Whether a Space on the Board Is Free
	Letting the Player Enter a Move
	Short-Circuit Evaluation
	Choosing a Move from a List of Moves
	The None Value
	Creating the Computer’s AI
	Checking Whether the Computer Can Win in One Move
	Checking Whether the Player Can Win in One Move
	Checking the Corner, Center, and Side Spaces (in That Order)
	Checking Whether the Board Is Full

	The Game Loop
	Choosing the Player’s Mark and Who Goes First
	Running the Player’s Turn
	Running the Computer’s Turn
	Asking the Player to Play Again

	Summary

	Chapter 11: The Bagels Deduction Game
	Sample Run of Bagels
	Source Code for Bagels
	Flowchart for Bagels
	Importing random and Defining getSecretNum()
	Shuffling a Unique Set of Digits
	Changing List Item Order with the random.shuffle() Function
	Getting the Secret Number from the Shuffled Digits

	Augmented Assignment Operators
	Calculating the Clues to Give
	The sort() List Method
	The join() String Method
	Checking Whether a String Has Only Numbers
	Starting the Game
	String Interpolation
	The Game Loop
	Getting the Player’s Guess
	Getting the Clues for the Player’s Guess
	Checking Whether the Player Won or Lost
	Asking the Player to Play Again

	Summary

	Chapter 12: The Cartesian Coordinate System
	Grids and Cartesian Coordinates
	Negative Numbers
	The Coordinate System of a Computer Screen
	Math Tricks
	Trick 1: A Minus Eats the Plus Sign on Its Left
	Trick 2: Two Minuses Combine into a Plus
	Trick 3: Two Numbers Being Added Can Swap Places

	Absolute Values and the abs() Function
	Summary

	Chapter 13: Sonar Treasure Hunt
	Sample Run of Sonar Treasure Hunt
	Source Code for Sonar Treasure Hunt
	Designing the Program
	Importing the random, sys, and math Modules
	Creating a New Game Board
	Drawing the Game Board
	Drawing the X-Coordinates Along the Top of the Board
	Drawing the Ocean
	Printing a Row in the Ocean
	Drawing the X-Coordinates Along the Bottom of the Board

	Creating the Random Treasure Chests
	Determining Whether a Move Is Valid
	Placing a Move on the Board
	Finding the Closest Treasure Chest
	Removing Values with the remove() List Method
	Getting the Player’s Move

	Printing the Game Instructions for the Player
	The Game Loop
	Displaying the Game Status for the Player
	Handling the Player’s Move
	Finding a Sunken Treasure Chest
	Checking Whether the Player Won
	Checking Whether the Player Lost
	Terminating the Program with the sys.exit() Function

	Summary

	Chapter 14: Caesar Cipher
	Cryptography and Encryption
	How the Caesar Cipher Works
	Sample Run of Caesar Cipher
	Source Code for Caesar Cipher
	Setting the Maximum Key Length
	Deciding to Encrypt or Decrypt the Message
	Getting the Message from the Player
	Getting the Key from the Player
	Encrypting or Decrypting the Message
	Finding Passed Strings with the find() String Method
	Encrypting or Decrypting Each Letter

	Starting the Program
	The Brute-Force Technique
	Adding the Brute-Force Mode
	Summary

	Chapter 15: The Reversegam Game
	How to Play Reversegam
	Sample Run of Reversegam
	Source Code for Reversegam
	Importing Modules and Setting Up Constants
	The Game Board Data Structure
	Drawing the Board Data Structure on the Screen
	Creating a Fresh Board Data Structure

	Checking Whether a Move Is Valid
	Checking Each of the Eight Directions
	Finding Out Whether There Are Tiles to Flip Over

	Checking for Valid Coordinates
	Getting a List with All Valid Moves
	Calling the bool() Function

	Getting the Score of the Game Board
	Getting the Player’s Tile Choice
	Determining Who Goes First
	Placing a Tile on the Board
	Copying the Board Data Structure
	Determining Whether a Space Is on a Corner
	Getting the Player’s Move
	Getting the Computer’s Move
	Strategizing with Corner Moves
	Getting a List of the Highest-Scoring Moves

	Printing the Scores to the Screen
	Starting the Game
	Checking for a Stalemate
	Running the Player’s Turn
	Running the Computer’s Turn

	The Game Loop
	Asking the Player to Play Again
	Summary

	Chapter 16: Reversegam AI Simulation
	Making the Computer Play Against Itself
	Sample Run of Simulation 1
	Source Code for Simulation 1
	Removing the Player Prompts and Adding a Computer Player

	Making the Computer Play Itself Several Times
	Sample Run of Simulation 2
	Source Code for Simulation 2
	Keeping Track of Multiple Games
	Commenting Out print() Function Calls
	Using Percentages to Grade the AIs

	Comparing Different AI Algorithms
	Source Code for Simulation 3
	How the AIs Work in Simulation 3
	Comparing the AIs

	Summary

	Chapter 17: Creating Graphics
	Installing pygame
	Hello World in pygame
	Sample Run of pygame Hello World
	Source Code for pygame Hello World
	Importing the pygame Module
	Initializing pygame
	Setting Up the pygame Window
	Tuples
	Surface Objects

	Setting Up Color Variables
	Writing Text on the pygame Window
	Using Fonts to Style Text
	Rendering a Font Object
	Setting the Text Location with Rect Attributes

	Filling a Surface Object with a Color
	pygame’s Drawing Functions
	Drawing a Polygon
	Drawing a Line
	Drawing a Circle
	Drawing an Ellipse
	Drawing a Rectangle
	Coloring Pixels

	The blit() Method for Surface Objects
	Drawing the Surface Object to the Screen
	Events and the Game Loop
	Getting Event Objects
	Exiting the Program

	Summary

	Chapter 18: Animating Graphics
	Sample Run of the Animation Program
	Source Code for the Animation Program
	Moving and Bouncing the Boxes
	Setting Up the Constant Variables
	Constant Variables for Direction
	Constant Variables for Color

	Setting Up the Box Data Structures
	The Game Loop
	Handling When the Player Quits
	Moving Each Box
	Bouncing a Box
	Drawing the Boxes on the Window in Their New Positions
	Drawing the Window on the Screen

	Summary

	Chapter 19: Collision Detection
	Sample Run of the Collision Detection Program
	Source Code for the Collision Detection Program
	Importing the Modules
	Using a Clock to Pace the Program
	Setting Up the Window and Data Structures
	Setting Up Variables to Track Movement
	Handling Events
	Handling the KEYDOWN Event
	Handling the KEYUP Event

	Teleporting the Player
	Adding New Food Squares
	Moving the Player Around the Window
	Drawing the Player on the Window
	Checking for Collisions

	Drawing the Food Squares on the Window
	Summary

	Chapter 20: Using Sounds and Images
	Adding Images with Sprites
	Sound and Image Files
	Sample Run of the Sprites and Sounds Program
	Source Code for the Sprites and Sounds Program
	Setting Up the Window and the Data Structure
	Adding a Sprite
	Changing the Size of a Sprite

	Setting Up the Music and Sounds
	Adding Sound Files
	Toggling the Sound On and Off

	Drawing the Player on the Window
	Checking for Collisions
	Drawing the Cherries on the Window
	Summary

	Chapter 21: A Dodger Game with Sounds and Images
	Review of the Basic pygame Data Types
	Sample Run of Dodger
	Source Code for Dodger
	Importing the Modules
	Setting Up the Constant Variables
	Defining Functions
	Ending and Pausing the Game
	Keeping Track of Baddie Collisions
	Drawing Text to the Window

	Initializing pygame and Setting Up the Window
	Setting Up Font, Sound, and Image Objects
	Displaying the Start Screen
	Starting the Game
	The Game Loop
	Handling Keyboard Events
	Handling Mouse Movement

	Adding New Baddies
	Moving the Player’s Character and the Baddies
	Implementing the Cheat Codes
	Removing the Baddies
	Drawing the Window
	Drawing the Player’s Score
	Drawing the Player’s Character and Baddies

	Checking for Collisions
	The Game Over Screen
	Modifying the Dodger Game
	Summary

	Index
	Resources
	The Electronic Frontier Foundation (EFF)
	Don’t Just Play Games—Make Them!

