Contents

Contents 5
1 Object Oriented Programming 9
1.1 Classes o e 10
1.2 Properties L e e 12
1.3 Aggregation and Composition e e e e 15
1.4 Inheritance L e 15
1.5 Multiple Inheritance e 17
1.6 Abstract Base Class e 35
1.7 Class Diagrams o o e e e e e e e e e e e 39
1.8 Hands-On Activities o o e e e e 43
2 Data Structures 45
2.1 Array-Based Data Structureso 47
2.2 Node-based Data Structures e 76
2.3 Hands-On Activities o e 96
3 Functional Programming 101
3.1 Python Functions e 101
32 Decorators e e e 123
33 Hands-On Activities o e 130
4 Meta Classes 135
4.1 Creating classes dynamically e 137
4.2 Metaclasses e e e e 140

4.3 Hands-On ActiVities o o e e e e e e e 146

10

11

Exceptions

5.1 Exception Types
5.2 Raising exceptions
53 Exception handling
54 Creating customized exceptions .
5.5 Hands-On Activities
Testing

6.1 Unittest
6.2 Pytest
6.3 Hands-On Activities
Threading

7.1 Threading
7.2 Synchronization
7.3 Hands-On Activities
Simulation

8.1 Synchronous Simulation
8.2 Discrete Event Simulation (DES)
8.3 Hands-On Activities

Handling Strings and Bytes

9.1 Some Built-in Methods for Strings
9.2 Bytesand /O
9.3 bytearrays
9.4 Hands-On Activities
1/0 Files

10.1 Context Manager
10.2 Emulating files
Serialization

11.1 Serializing web objects with JSON
11.2 Hands-On Activities

CONTENTS

147

163
................................. 163
................................. 172
.................................. 181

185
................................. 185
.................................. 197
.................................. 207

209
................................. 210
................................. 215
................................. 222

227
.................................. 227
................................. 236
................................. 239
................................. 240

245
................................. 248
................................. 250

CONTENTS

12 Networking

12.1
12.2
12.3
12.4
12.5
12.6
12.7

How to identify machines on internet
Ports e e
Socketso e e
Client-Server Architecture o
Sending JSONdata e e
Sending data withpickle L

Hands-On ACHIVILIES o o o o e e e e e e e e e e

13 Web Services

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8

Client-side Script o e e e e e
Server-side Script L. L e
Request o L e e
Request Data
Response e e e

Other architectures for Web Services

14 Graphical User Interfaces

14.1
14.2
14.3
14.4
14.5
14.6
14.7

PyQt . e
Layouts o e e

Events and Signals
Sendero e e e
Creating Custom Signals L e
Mouse and Keyboard Events
QT Designer o e e e

15 Solutions for Hands-On Activities

15.1
15.2
15.3
154
15.5

Solution for activity 1.1: Variable stars
Solution for activity 1.2: Geometric Shapes L oL
Solution for activity 2.1: Production line of bottles
Solution for activity 2.2: Subway Map

Solution for activity 3.1: Patients ina Hospital

263
263
263
265
266
273
274
276

277
278
279
280
281
284
285
287
289

291
291
300
303
305
306
308
308

8 CONTENTS

15.6 Solution for activity 3.2: Soccer Teamo 334
15.7 Solution for activity 3.3: Hamburger Storeo oo 337
15.8 Solution for activity 4.1: MetaRobot Lo 341
15.9 Solution for activity 5.1: Calculator 343
15.10 Solution for activity 6.1: Testing the encryptor 347
15.11 Solution for activity 6.2: Testing ATMs 354
15.12 Solution for activity 7.1: Godzilla L 357
15.13 Solution for activity 7.2: Mega Godzilla oL Lo 360
15.14 Solution for activity 8.1: Clientqueues 364
15.15 Solution for activity 8.2: GoodZoo 368
15.16 Solution for activity 9.1: Fixingdata L L 378
15.17 Solution for activity 9.2: Audiofiles Lo 382
15.18 Solution for activity 11.1: Cashiers’data 383

Bibliography 389

KARIM PICHARA — CHRISTIAN PIERINGER

ADVANCED COMPUTER PROGRAMMING IN PYTHON

ADVANCED COMPUTER PROGRAMMING IN PYTHON

Copyright © 2017 by Karim Pichara and Christian Pieringer
All rights reserved. This book or any portion thereof may not be reproduced or used in
any manner whatsoever without the express written permission of the publisher except

for the use of brief quotations in a book review.

ISBN: 9781521232385

To our wives and children

Preface

This book contains most of the relevant topics necessary to be an advanced computer programmer. The language used
in the book is Python 3. Besides the programming language, the reader will learn most of the backbone contents in
computer programming, such as object-oriented modeling, data structures, functional programming, input/output,
simulation, graphical interfaces, and much more. We believe that the best way to learn computer programming is to
work in hands-on activities. Practical exercises make the user get familiar with the main challenges that programming
brings, such as how to model a particular problem; or how to write good code and efficient routine implementation,
among others. Most of the chapters contain a set of hands-on activities (with proposed solutions) at the end. We
encourage the readers to solve all those assignments without previously checking the solution. Challenges may be hard
for initial programmers, but while going through this book, the activities will become more achievable for the reader.
This book contains most of the material used for the Advanced Python Programming course taught at PUC University
in Chile, by professors Karim Pichara and Christian Pieringer. The course is intended for Computer Science students
as well as any other affine career that can be benefited by computer programming knowledge. Of course, this book
is not enough to become a Software Engineer; there are other necessary courses that the reader must take to learn
more advanced concepts related to the development of bigger software projects. Some of the recommended courses
are Database Systems, Data Structures, Operating Systems, Compilers, Software Engineering, Testing, Software
Architecture, and Software Design, among others. The content of this book will prepare the reader to have the necessary
background for any of the next Software Engineering courses listed above. While using this book, readers should
follow along on their computers to be able to try all the examples included in the chapters. It will be necessary that

computers have already installed the required Python libraries.

Authors

Karim Pichara Baksai

Ph.D. in Computer Science,

Research Area: Machine Learning and Data Science applied to Astron-
omy

Associate Professor, Computer Science Department

Pontificia Universidad Catdlica de Chile (PUC)

Christian Pieringer Baeza

Ph.D. in Computer Science

Research Area: Computer Vision and Machine Learning
Adjunt Professor, Computer Science Department

Pontificia Universidad Catdlica de Chile (PUC)

Acknowledgments

This book was not possible without the constant help of the teaching assistants; they gave us invaluable feedback,
code and text editions to improve the book. The main collaborators who highly contributed are Belén Saldias, Ivania

Donoso, Marco Bucchi, Patricio Lépez, and Ignacio Becker.

We would like also thank the team of assistants who worked in the hands-on activities: Jaime Castro, Rodrigo Gémez,

Bastidan Mavrakis, Vicente Dominguez, Felipe Garrido, Javiera Astudillo, Antonio Gil, and José Maria De La Torre.

Uy

Belén Saldias Ivania Donoso Marco Bucci

Patricio Lépez Ignacio Becker

Chapter 1

Object Oriented Programming

In the real world, objects are tangible; we can touch and feel them, they represent something meaningful for us. In the
software engineering field, objects are a virtual representation of entities that have a meaning within a particular context.
In this sense, objects keep information/data related to what they represent and can perform actions/behaviors using
their data. Object Oriented Programming (OOP) means that programs model functionalities through the interaction
among objects using their data and behavior. The way OOP represents objects is an abstraction. It consists in to create
a simplified model of the reality taking the more related elements according to the problem context and transforming
them into attributes and behaviors. Assigning attributes and methods to objects involves two main concepts close

related with the abstraction: encapsulation and interface.

Encapsulation refers to the idea of some attributes do not need to be visualized by other objects, so we can produce
a cleaner code if we keep those attributes inside their respective object. For example, imagine we have the object
Amplifer that includes attributes tubes and power transformer. These attributes only make sense inside
the amplifier because other objects such as the Guitar do not need to interact with them nor visualize them. Hence,

we should keep it inside the object Amplifier.

Interface let every object has a “facade” to protect its implementation (internal attributes and methods) and interact
with the rest of objects. For example, an amplifier may be a very complex object with a bunch of electronic pieces
inside. Think of another object such as the Guitar player and the Guitar that only interact with the amplifier
through the input plug and knobs. Furthermore, two or more objects may have the same interface allowing us to
replace them independently of their implementation and without change how we use them. Imagine a guitar player
wants to try a tube amplifier and a solid state amp. In both cases, amplifiers have the interface (knobs an input plug)

and offer the same user experience independently of their construction. In that sense, each object can provide the

10 CHAPTER 1. OBJECT ORIENTED PROGRAMMING

suitable interface according to the context.

1.1 Classes

From the OOP perspective, classes describe objects, and each object is an instance of a class. The class statement
allow us to define a class. For convention, we name classes using Came 1Case and methods using snake_case.

Here is an example of a class in Python:

1 # create_apartment.py

4 Apartment:

5 R

6 Class that represents an apartment for sale
7 value is in USD

8 R

9

10 __init_ (self, _id, mts2, value):
11 self._id = _id

12 self.mts2 = mts2

13 self.value = value

14 self.sold =

15

16 sell (self):

17 self.sold:

18 self.sold =

19

20 print ("Apartment {} was sold"
21 . (self._id))

To create an object, we must create an instance of a class, for example, to create an apartment for sale we have to call

the class Apartment with the necessary parameters to initialize it:

1 # instance_apartment.py
2

3 create_apartment Apartment

1.1. CLASSES 11

5 dl = Apartment (_id=1, mts2=100, value=5000)

7 print("sold?", dl.sold)
8 dl.sell()
9 print("sold?", dl.sold)

10 dl.sell()

sold? False
sold? True

Apartment 1 was sold

We can see thatthe __init__ method initializes the instance by setting the attributes (or data) to the initial values,
passed as arguments. The first argument inthe __init__ method is self, which corresponds to the instance itself.
Why do we need to receive the same instance as an argument? Because the __init__ method is in charge of the
initialization of the instance, hence it naturally needs access to it. For the same reason, every method defined in the
class that specifies an action performed by the instance must receive self as the first argument. We may think of
these methods as methods that belong to each instance. We can also define methods (inside a class) that are intended
to perform actions within the class attributes, not to the instance attributes. Those methods belong to the class and do

not need to receive self as an argument. We show some examples later.

Python provides us with the help (<class>) function to watch a description of a class:

1 (Apartment)

#output
Help on class Apartment in module create_apartment:
class Apartment (builtins.object)

| Class that represents an apartment for sale

| price is in USD

| Methods defined here:

__init__ (self, _id, sgm, price)

12 CHAPTER 1. OBJECT ORIENTED PROGRAMMING

| sell (self)

| Data descriptors defined here:

| __dict__

| dictionary for instance variables (if defined)

| __ _weakref_

| list of weak references to the object (if defined)

1.2 Properties

Encapsulation suggests some attributes and methods are private according to the object implementation, i.e., they
only exist within an object. Unlike other programming languages such as C++ or Java, in Python, the private concept
does not exist. Therefore all attributes/methods are public, and any object can access them even if an interface exist.
As a convention, we can suggest that an attribute or method to be private adding an underscore at the beginning
of its name. For example, _<attribute/method name>. Even with this convention, we may access directly
to the attributes or methods. We can strongly suggest that an element within an object is private using a double
underscore __<attribute/method name>. The name of this approach is name mangling. It concerns to the
fact of encoding addition semantic information into variables. Remember both approaches are conventions and good

programming practices.

Properties are the pythonic mechanism to implement encapsulation and the interface to interact with private attributes
of an object. It means every time we need that an attribute has a behavior we define it as property. In other way, we are
forced to use a set of methods that allow us to change and retrieve the attribute values, e.g, the commonly used pattern

get_value () and set_value (). This approach could generate us several maintenance problems.

The property () function allow us to create a property, receiving as arguments the functions use to get, set and delete
the attribute as property (<setter_function>, <getter_function>, <deleter_function>).

The next example shows the way to create a property:

1 # property.py
2

3 Email:

1.2.

20

21

22

23

Check out how the property works once we create an instance of the Email class:

1

PROPERTIES
__init_ (self, address):
self._email = address # A private attribute

_set_email(self, wvalue):
'@ value:

print ("This is not an email address.")

self._email = wvalue

_get_email (self):

self. email

_del_email (self):
print ("Erase this email attribute!!")

self._email

The interface provides the public attribute email
email = (_get_email, _set_email, _del_email,

'This property contains the email.')

ml = Email ("kpl@othermail.com")
print (ml.email)

ml.email = "kp2@othermail.com"
print (ml.email)

ml.email = "kp2.com"

ml.email

kpl@othermail.com
kp2@othermail.com
This is not an email address.

Erase this email attribute!!

13

Note that properties makes the assignment of internal attributes easier to write and read. Python also let us to define

properties using decorators. Decorators is an approach to change the behavior of a method. The way to create a

14 CHAPTER 1. OBJECT ORIENTED PROGRAMMING

property through decorators is adding @property statement before the method we want to define as attribute. We

explain decorators in Chapter 3.

1 # property_without_decorator.py

3 Color:

4

5 __init_ (self, rgb_code, name):
6 self.rgb_code = rgb_code

7 self._name = name

8

9 set_name (self, name) :

10 self._name = name

11

12 get_name (self) :

13 self._name

14

15 name = (get_name, set_name)

1 # property_with_decorator.py

3 Color:

4

5 __init__ (self, rgb_code, name):

6 self._rgb_code = rgb_code

7 self._name = name

8

9 # Create the property using the name of the attribute. Then we
10 # define how to get/set/delet it.

11

12 name (self) :

13 print ("Function to get the name color")
14 self._name

15

16 @name.setter

17 name (self, new_name) :

1.3. AGGREGATION AND COMPOSITION 15

18 print ("Function to set the name as {}". (new_name))
19 self._name = new_name

20

21 @name.deleter

22 name (self) :

23 print ("Erase the name!!")

24 self._name

1.3 Aggregation and Composition

In OOP there are different ways from which objects interact. Some objects are a composition of other objects who
only exists for that purpose. For instance, the object printed circuit board only exists inside a amplifier
and its existence only last while the amp1 1 fier exists. That kind of relationship is called composition. Another kind
of relationship between objects is aggregation, where a set of objects compose another object, but they may continue
existing even if the composed object no longer exist. For example, students and a teacher compose a classroom, but
both are not meant to be just part of that classroom, they may continue existing and interacting with other objects
even if that particular classroom disappears. In general, aggregation and composition concepts are different from the
modeling perspective. The use of them depends on the context and the problem abstraction. In Python, we can see
aggregation when the composed object receive instances of the components as arguments, while in composition, the

composed object instantiates the components at its initialization stage.

1.4 Inheritance

The inheritance concept allows us to model relationships like “object B is an object A but specialized in certain
functions”. We can see a subclass as a specialization of its superclass. For example, lets say we have a class called
Car which has attributes: brand, model and year; and methods: stop, charge_gas and fill_tires.
Assume that someone asks us to model a taxi, which is a car but has some additional specifications. Since we already
have defined the Car class, it makes sense somehow to re-use its attributes and methods to create a new Taxi class
(subclass). Of course, we have to add some specific attributes and methods to Taxi, like taximeter, faresor
create_receipt. However, if we do not take advantage of the Car superclass by inheriting from it, we will have

to repeat a lot of code. It makes our software much harder to maintain.

Besides inheriting attributes and methods from a superclass, inheritance allows us to “re-write” superclass methods.

Suppose that the subclass Mot orcycle inherits from the class Vehicle. The method called £1i11_tires from

16 CHAPTER 1. OBJECT ORIENTED PROGRAMMING

Vehicle has to be changed inside Mot orcycle, because motorcycles (in general) have two wheels instead of four.
In Python, to modify a method in the subclass we just need to write it again, this is called overriding, so that Python

understands that every time the last version of the method is the one that holds for the rest of the code.

A very useful application of inheritance is to create subclasses that inherit from some of the Python built-in classes, to
extend them into a more specialized class. For example, if we want to create a custom class similar to the built-in class

1ist, we just must create a subclass that inherits from 1ist and write the new methods we want to add:

1 # grocery_list.py

L

2

4 GroceryList () :

5

6 discard(self, price):

7 product self:

8 product.price > price:
9 # remove method is implemented in the class "list"
10 self.remove (product)
11 self

12

13 __str_ (self):

14 out = "Grocery List:\n\n"

15 P self:

16 out += "name: " + p.name + " - price: "
17 + (p.price) + "\n"

18

19 out

20

21

22 Product:

23

24 __init__ (self, name, price):
25 self.name = name

26 self.price = price
27

28

1.5. MULTIPLE INHERITANCE

29 grocery_list = GroceryList ()
30
31 # extend method also belongs to 'list' class

32 grocery_list.extend([Product ("bread", 5),

33 Product ("milk", 10), Product ("rice",

34
35 print (grocery_list)
36 grocery_list.discard(1l1l)

37 print (grocery_list)

Grocery List:

name: bread - price: 5

name: milk - price: 10

name: rice - price: 12

Grocery List:

name: bread - price: 5

name: milk - price: 10

12) 1)

17

Note that the ___str___ method makes the class instance able to be printed out, in other words, if we call

print (grocery_list) it will print out the string returned by the ___str___ method.

1.5 Multiple Inheritance

We can inherit from more than one class. For example, a professor might be a teacher and a researcher, so she/he

should inherit attributes and methods from both classes:

1 # multiple inheritance.py

4 Researcher:

6 _ init_ (self, field):

7 self.field = field

18 CHAPTER 1. OBJECT ORIENTED PROGRAMMING

9 __str_ (self):

10 "Research field: " + self.field + "\n"
11

12

13 Teacher:

14

15 __init_ (self, courses_list):

16 self.courses_list = courses_list

17

18 _ _str_ (self):

19 out = "Courses: "

20 c self.courses_list:

21 out += ¢ + ", "

22 # the [:-2] selects all the elements
23 # but the last two

24 out[:-2] + "\n"

25

26

27 Professor (Teacher, Researcher):

28

29 __init_ (self, name, field, courses_list):
30 # This 1s not completetly right

31 # Soon we will see why

32 Researcher._ init_ (self, field)

33 Teacher._ _init_ (self, courses_1list)
34 self.name = name

35

36 __str_ (self):

37 out = Researcher._ str_ (self)

38 out += Teacher.__str__ (self)

39 out += "Name: " + self.name + "\n"

40 out
41

42

1.5. MULTIPLE INHERITANCE 19

43 p = Professor("Steve Iams",

44 "Meachine Learning",

45 [

46 "Python Programming",

47 "Probabilistic Graphical Models",
48 "Bayesian Inference"

49 1)
50

51 print (p)

#output

Research field: Meachine Learning
Courses: Python Programming, Probabilistic Graphical Models,
Bayesian Inference

Name: Steve Iams

Multiple Inheritance Problems

In Python, every class inherits from the Object class, that means, among other things, that every time we in-
stantiate a class, we are indirectly creating an instance of Object. Assume we have a class that inherits from
several superclasses. If we call to all the __init__ superclass methods, as we did in the previous example
(calling Researcher.__init__ and Teacher.__init__), we are calling the Object initializer twice:
Researcher._ _init__ calls the initialization of Object and Teacher._ init_ calls the initialization of
Object as well. Initializing objects twice is not recommended. It is a waste of resources, especially in cases where
the initialization is expensive. It could be even worst. Imagine that the second initialization changes the setup done by

the first one, and probably the objects will not notice it. This situation is known as The Diamond Problem.

The following example (taken from [6]) shows what happens in the context of multiple-inheritance if each subclass

calls directly to initialize all its superclasses. Figure 1.1 indicates the hierarchy of the classes involved.

The example below (taken from [6]) shows what happens when we call the call () method in both superclasses from

SubClassA.

1 # diamond _problem.py

2

20

20

21

CHAPTER 1. OBJECT ORIENTED PROGRAMMING

ClassB

+call()

LeftSubClass

+call() +call()

SubClassA

+call()

Figure 1.1: The diamond problem

ClassB:

num_calls_B = 0

make_a_call (self):
print ("Calling method in ClassB")

self.num_calls_ B += 1

LeftSubClass (ClassB) :

num_left_calls = 0

make_a_call (self):
ClassB.make_a_call (self)
print ("Calling method in LeftSubClass")

self.num_left_calls += 1

RightSubClass (ClassB) :

num_right_calls = 0

RightSubClass

1.5. MULTIPLE INHERITANCE

22

23 make_a_call (self):

24 ClassB.make_a_call (self)

25 print ("Calling method in RightSubClass")

26 self.num_right_calls += 1

27

28

29 SubClassA (LeftSubClass, RightSubClass):

30 num_calls_subA = 0

31

32 make_a_call (self):

33 LeftSubClass.make_a_call (self)

34 RightSubClass.make_a_call (self)

35 print ("Calling method in SubClassA")

36 self.num_calls_subA += 1

37

38

39 __name_ == '__main__':

40 s = SubClassA()

41 s.make_a_call()

42 print ("SubClassA: {}". (s.num_calls_subA))
43 print ("LeftSubClass: {}". (s.num_left_calls))
44 print ("RightSubClass: {}". (s.num_right_calls))
45 print ("ClassB: {}". (s.num_calls_B))

Calling method in ClassB
Calling method in LeftSubClass
Calling method in ClassB
Calling method in RightSubClass
Calling method in SubClassA
SubClassA: 1

LeftSubClass: 1

RightSubClass: 1

ClassB: 2

21

From the output, we can see that the upper class in the hierarchy (C1lassB) is called twice, despite that we just directly

22 CHAPTER 1. OBJECT ORIENTED PROGRAMMING

call it once in the code.

Every time that one class inherits from two classes, a diamond structure is created. We refer the readers to
https://www.python.org/doc/newstyle/ for more details about new style classes. Following the same example shown
above, if instead of calling the make_a_call () method we call the __init__ method, we would be initializing

Object twice.

Solution to the diamond problem

One possible solution to the diamond problem is that each class must call the initialization of the superclass that
precedes it in the multiple inheritance resolution order. In Python, the order goes from left to right on the list of

superclasses from where the subclass inherits.

In this case, we just should call to super (), because Python will make sure to call the parent class in the multiple in-
heritance resolution order. In the previous example, after the subclass goes Left Subclass, then Right SubClass,

and finally C1lassB. From the following output, we can see that each class was initialized once:

1 # diamond _problem solution.py

3 ClassB:

4 num_calls_B = 0

5

6 make_a_ call (self):

7 print ("Calling method in ClassB")
8 self.num_calls_B += 1

11 LeftSubClass (ClassB) :

12 num_left_calls = 0

13

14 make_a_call (self):

15 () .make_a_call()

16 print ("Calling method in LeftSubClass")

17 self.num_left_calls += 1

1.5. MULTIPLE INHERITANCE

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41 print ("SubClassA: {}". (s.num_calls_subA))

42 print ("LeftSubClass: {}". (s.num_left_calls))
43 print ("RightSubClass: {}". (s.num_right_calls))
44 print ("ClassB: {}". (s.num_calls_B))

RightSubClass (ClassB) :

num_right_calls = 0

make_a_call (self):
() .make_a_call()
print ("Calling method in RightSubClass")

self.num_right_calls += 1

SubClassA (LeftSubClass, RightSubClass) :

num_calls_subA = 0

make_a_call (self):

() .make_a_call()
print ("Calling method in SubClassA")
self.num_calls_subA += 1

A\l

name == main__ ':

s = SubClassA()

s.make_a_call ()

23

Calling method in ClassB
Calling method in RightSubClass
Calling method in LeftSubClass
Calling method in SubClassA
SubClassA: 1

LeftSubClass: 1

RightSubClass: 1

ClassB: 1

24 CHAPTER 1. OBJECT ORIENTED PROGRAMMING

Method Resolution Order

The mro method shows us the hierarchy order. It is very useful in more complex multiple-inheritance cases. Python

uses the C3 [3] algorithm to calculate a linear order among the classes involved in multiple inheritance schemes.

1 # mro.py

2

3 diamond_problem_solution SubClassA
4

5 c SubClassA.__mro__

6 print (c)

<class ’diamond_problem_solution.SubClassA’>
<class ’diamond_problem_solution.LeftSubClass’>
<class ’diamond_problem_solution.RightSubClass’>
<class ’'diamond_problem_solution.ClassB’>

<class ’'object’>

The next example describes a case of an unrecommended initialization. The C3 algorithm generates an error because

it cannot create a logical order:

1 # invalid structure.py

3 X () :

4 call_me(self):
5 print ("I'm X")
6

7

8 Y():

9 call _me(self):
10 print("I'm Y")
11

12

13 A(X, Y):

14 call _me(self):

15 print ("I'm A")

1.5.

20

21

22

23

24

25

26

28

MULTIPLE INHERITANCE 25

B(Y, X):
call_me(self):

print ("I'm B")

F(A, B):
call_me(self):

print ("I'm F")

TypeError: Cannot create a consistent method resolution

order (MRO) for bases X, Y

Traceback (most recent call last):
File "/codes/invalid_structure.py",
line 24, in <module>
class F (A, B):
TypeError: Cannot create a consistent method resolution

order (MRO) for bases X, Y

A Multiple Inheritance Example

Here we present another case of multiple-inheritance, showing the wrong and the right way to call the initialization of

superclasses:

Wrong initialization of the superclass’ __init__ method

Calling directly to superclasses’ __init___ method inside the class Customer, as we show in the next example, is

highly not recommended. We could initiate a superclass multiple times, as we mentioned previously. In this example,

acall to object’s__init_ is done twice:

inheritance_wrong.py

AddressHolder:

__init__ (self, street, number, city, state):

26 CHAPTER 1. OBJECT ORIENTED PROGRAMMING

7 self.street = street

8 self.number = number

9 self.city = city

10 self.state = state

11

12

13 Contact:

14

15 contact_1list = []

16

17 __init_ (self, name, email):

18 self.name = name

19 self.email = email

20 Contact.contact_list.append(self)

21

22

23 Customer (Contact, AddressHolder):

24

25 __init_ (self, name, email, phone,

26 street, number, state, city):

27 Contact._ _init_ (self, name, email)

28 AddressHolder._ _init__ (self, street, number,
29 state, city)

30 self.phone = phone

31

32

33 __name___ == "__main__ ":

34

35 c = Customer ('John Davis', 'jplg_mail.com', '23542331",
36 'Beacon Street', '231', 'Cambridge', 'Massachussets')
37

38 print ("name: {}\nemail: {}\naddress: {}, {}"

39 . (c.name, c.email, c.street, c.state))

name: John Davis

email: Jjp@g_mail.com

1.5. MULTIPLE INHERITANCE 27

address: Beacon Street, Massachussets

The right way: *args y **kwargs

Before showing the fixed version of the above example, we show how to use a list of arguments (xargs) and keyword
arguments (xxkwargs). In this case xargs refers to a Non-keyword variable length argument list, where the

operator » unpacks the content inside the list args and pass them to a function as positional arguments.

1 # args_example.py

3 method?2 (f_arg, *argv):

4 print ("first arg normal: {}". (f_arqg))

5 arg argv:

6 print ("the next arg is: {}". (arg))

7

8 __name__ == "__main__ ":

9 method2 ("Lorem", "ipsum", "ad", "his", "scripta")

first arg normal: Lorem
the next arg is: ipsum
the next arg is: ad

the next arg is: his

the next arg is: scripta

Similarly, » xkwargs refers to a keyword variable-length argument list, where * « maps all the elements within the
dictionary kwargs and pass them to a function as non-positional arguments. This method is used to send a variable

amount of arguments to a function:

1 # kwargs_example.py

3 method(argl, arg2, arg3):
4 print ("argl: {}". (argl))
5 print ("arg2: {}". (arg2))

6 print ("arg3: {}". (arg3))

28 CHAPTER 1. OBJECT ORIENTED PROGRAMMING

9 name == "_ _main

m.

10 kwargs = {"arg3": 3, "arg2": "two"}

11 method(l, *xkwargs)

argl: 1
arg2: two

arg3: 3

Now that we know how to use *args and xxkwargs, we can figure out how to properly write an example of

multiple inheritance as shown before:

1 # inheritance_right.py

4 AddressHolder:

5

6 __init_ (self, street, number, city, state, *xkwargs):
7 () .__init__ (**kwargs)

8 self.street = street

9 self.number = number

10 self.city = city

11 self.state = state

12

13

14 Contact:

15 contact_1list = []

16

17 __init_ (self, name, email, =**kwargs):
18 () .__init__ (**kwargs)

19 self.name = name

20 self.email = email

21 Contact.contact_list.append(self)

22
23
24 Customer (Contact, AddressHolder):

25

1.5. MULTIPLE INHERITANCE

26 __init__ (self, phone_number, =**kwargs):

27 () .__init__ (**xkwargs)

28 self.phone_number = phone_number

29

30

31 __name___ == "__main__ ":

32

33 c = Customer (name='John Davis', email='jp@g_mail.com',

34 phone_number='23542331", street='Beacon Street',

35 number="'231", city='Cambridge', state='Massachussets')
36

37 print ("name: {}\nemail: {}\naddress: {}, {I". (c.name, c.email,

38

name: John Davis
email: Jjp@g_mail.com

address: Beacon Street, Massachussets

c.street,

c.state))

29

As we can see in the above example, each class manage its own arguments passing the rest of the non-used arguments

to the higher classes in the hierarchy. For example, Customer passes all the non-used argument (xxargs) to

Contact and to AddressHolder through the super () function.

Polymorfism

Imagine that we have the ChessPiece class. This class has six subclasses: King, Queen, Rook, Bishop,

Knight, and Pawn. Each subclass contains the move method, but that method behaves differently on each subclass.

The ability to call a method with the same name but with different behavior within subclasses is called Polymorphism.

There are mainly two flavors of polymorphism:

* Overriding: occurs when a subclass implements a method that replaces the same method previously implemented

in the superclass.

* Overloading: happens when a method is implemented more than once, having a different number of arguments

on each case. Python does not support overloading because it is not really necessary. Each method can have a

variable number of arguments by using a keyworded o non-keyworded list of arguments. Recall that in Python

every time we implement a method more than once, the last version is the only one that Python will use. Other

30 CHAPTER 1. OBJECT ORIENTED PROGRAMMING

programming languages support overloading, automatically detecting what method implementation to use

depending on the number of present arguments when the method is called.

The code bellow shows an example of Overriding. The Variable class represents data of any kind. The Income
class contains a method to calculate the representative value for it. In Income, the representative value is the average,
in City, the representative value is the most frequent city, and in JobT1it 1e, the representative value is the job with

highest range, according to the _range dictionary:

1 # polymorfism 1.py

2

3 Variable:

4 _ init__ (self, data):
5 self.data = data

6

7 representative (self) :

11 Income (Variable) :

12 representative (self) :

13 (self.data) / (self.data)

14

15

16 City (Variable):

17 # class variable

18 _city_pop_size = {'Shanghai': 24000, 'Sao Paulo': 21300, 'Paris': 10800,
19 'London': 8600, 'Istambul': 15000,

20 'Tokyo': 13500, 'Moscow': 12200}

21

22 representative (self):

23 = {City._city_pop_size[c]: c ¢} self.data
24 c City._city_pop_size.keys()}

25 [(.keys ())]

26
27

28 JobTitle (Variable) :

1.5. MULTIPLE INHERITANCE 31

29 # class variable

30 _range = {'CEO': 1, 'CTO': 2, 'Analyst': 3, 'Intern': 4}

31

32 representative (self) :

33 = {JobTitle._range[c]l: c c self.data

34 c JobTitle._range.keys ()}

35 [(-keys())1]

36

37

38 __name___ == "__main__ ":

39 income_list = Income([50, 80, 90, 150, 45, 65, 78, 89, 59, 77, 90])
40 city_list = City(['Shanghai', 'Sao Paulo', 'Paris', 'London',
41 '"Istambul', 'Tokyo', 'Moscow'])

42 job_title_list = JobTitle(['CTO', 'Analyst', 'CEO', 'Intern'])
43 print (income_list.representative())

44 print (city_list.representative())

45 print (job_title_list.representative())

79.36363636363636
Shanghai

CEO

Operator Overriding

Python has several built-in operators that work for many of the built-in classes. For example, the operator “+” can
sum up two numbers, concatenate two strings, mix two lists, etc., depending on the object we are working with. The

following code shows an example:

1 # operator_overriding 1.py

5 print(a + b)

"Hello"

<
Q
|

=
0.
|

" World"

9 print(c + d)

32 CHAPTER 1. OBJECT ORIENTED PROGRAMMING

Hello World

Thanks to polymorphism, we can also personalize the method ___add___ to make it work on any particular class we
want. For example, we may need to create a specific way of adding two instances of the ShoppingCart class in the

following code:

1 # operator_overriding 2.py

3 ShoppingCart:

4

5 __init_ (self, product_list):

6 self.product_list = product_list # Python dictionary
7

8 __call__(self, product_list =)t

9 product_list

10 product_list = self.product_list

1 self.product_list = product_list

13 __add__(self, other_cart):

14 added_list = self.product_list

15 P other_cart.product_list.keys():

16 jo) self.product_list.keys():

17 value = other_cart.product_list[p] + self.product_list[p]
18 added_list.update ({p: value})

19

20 added_list.update ({p: other_cart.product_list[p]})
21

22 ShoppingCart (added_list)

23

24 __repr__ (self):

25 "\n".Jjoin ("Product: {} | Quantity: {}". (

26 p, self.product_list([p]) P self.product_list.keys()
27)
28

29

1.5. MULTIPLE INHERITANCE 33

30 __name_ == "__main__":

31 s_cart_1 = ShoppingCart ({ 'muffin': 3, 'milk': 2, 'water': 6})
32 s_cart_2 = ShoppingCart ({'milk': 5, 'soda': 2, 'beer': 12})
33 s_cart_3 = s_cart_1 + s_cart_2

34 print (s_cart_3.product_list)

35 print (s_cart_3)

{"soda’: 2, ’'water’: 6, 'milk’: 7, ’'beer’: 12, 'muffin’: 3}
Product: soda | Quantity: 2

Product: water | Quantity: 6

Product: milk | Quantity: 7

Product: beer | Quantity: 12

Product: muffin | Quantity: 3

The ___repr___ method allows us to generate a string that will be used everytime we ask to print any instance of
the class. We could also implement the ___str___ method instead, it works almost exactly as ___repr__, the main
difference is that __str___ should be used when we need a user friendly print of the object instance, related to the
particular context where it is used. The ___repr__ method should generate a more detailed printing, containing all the
necessary information to understand the instance. In cases where __str___and __repr__ are both implemented,
Python willuse __str___ when print (instance) is called. Hence, __repr__ willbeusedonlyif __ str_

is not implemented.

There are other operators that we can override, for example “less than” (__1t__), “greather than” (__gt__) and
“equal” (__eqg__). We refer the reader to https://docs.python.org/3.4/1library/operator.html
for a detailed list of built-in operators. Here is an example that shows how to override the __1t___ method for

implementing the comparison between two elements of the Point class:

1 # operator_overriding_ 3.py

3 Point:

4

5 __init__ (self, x, y):
6 self.x = x

7 self.y =y

9 __1t_ _(self, other_point):

34 CHAPTER 1. OBJECT ORIENTED PROGRAMMING

10 self_mag = (self.x xx 2) + (self.y *x 2)
11 other_point_mag = (other_point.x xx 2) + (other_point.y *x* 2)
12 self _mag < other_point_mag
13
14 __name__ == "__main_ ":
15 pl = Point (2, 4)
16 p2 = Point (8, 3)
17 print (pl < p2)
True
Duck Typing

The most common way to define it is "If it walks like a duck and quacks like a duck, then it is a duck." In other words,
it does not matter what kind of object performs the action, if it can do it, let it do it. Duck typing is a feature that
some programming languages have that makes polymorphism less attractive because it allows polymorphic behavior
without inheritance. In the next example, we can see that the act ivate function makes a duck scream and walk.
Despite that the method is implemented for Duck objects, it can be used with any object that has the scream and

walk methods implemented:

1 # duck_typing.py

4 Duck:

5

6 scream(self) :

7 print ("Cuack!™)
8

9 walk (self) :

10 print ("Walking like a duck...")

13 Person:

15 scream (self) :

16 print ("Ahhh!")

1.6. ABSTRACT BASE CLASS 35

18 walk (self):
19 print ("Walking like a human...")
20
21
2 activate (duck) :
23 duck.scream/()
24 duck.walk ()
25
26 __name__ == "__main__ ":
27 Donald = Duck ()
28 John = Person|{()
29 activate (Donald)
30 # this is not supported in other languajes, because John
31 # is not a Duck object
32 activate (John)
Cuack!

Walking like a duck...
Ahhh!

Walking like a human...

Typed programming languages that verify the type of objects during compilation time, such as C/C++, do not support

duck typing because in the list of arguments the object’s type has to be specified.

1.6 Abstract Base Class

Abstract classes in a programming language allow us to represent abstract objects better. What is an abstract object?
Abstract objects are created only to be inherited, so it does not make any sense to instantiate them. For example,
imagine that we have cars, buses, ships, and planes. Each one has similar properties (passengers capacity, color,
among others) and actions (load, move, stop) but they implement their methods differently: it is not the same to stop a
ship than a car. For this reason, we can create the class called Vehicle, to be a superclass of Car, Bus, Ship and

Plane.

Our problem now is how do we define Vehicle’s actions. We cannot define any of those behaviors inside Vehicle.

We can only do it inside any of its subclasses. That explains why it does not make any sense to instantiate the abstract

36 CHAPTER 1. OBJECT ORIENTED PROGRAMMING

class Vehicle. Hence, it is recommended to make sure that abstract classes are not going to be instantiated in the

code, by raising an exception in case any programmer attempts to instantiate it.

We can also have abstract methods, in other words, methods that have to be defined in the subclasses because their
implementation makes no sense to occur in the abstract class. Abstract classes can also have traditional (non abstract)
methods when they do not need to be modified withing the subclasses. Let’s try to define abstract classes and abstract

methods in Python. The following code shows an example:

1 # 01_abstract_1.py

3 Base:

4 func_1(self):

5 NotImplementedError ()
6

7 func_2 (self):

8 NotImplementedError ()
9

10 SubClass (Base) :

11 func_1 (self) :

12 print ("func_1() called...™)

15 # We intentionally did not implement func_2

17 bl = Base()
18 b2 = SubClass/()
19 b2.func_1()

20 b2.func_2 ()

func_1() called...
NotImplementedError Traceback (most recent call last)
<ipython—-input-17-0803174ccel7> in <module> ()

16 b2 = SubClass/()

17 b2.func_1()

———> 18 b2.func_2()

1.6. ABSTRACT BASE CLASS 37

<ipython-input-17-0803174ccel7> in func_2 (self)

4
5 def func_2 (self):

-————> 6 raise NotImplementedError ()
7

8 class SubClass (Base) :

NotImplementedError:

The problem with this approach is that the program lets us instantiate Base without complaining, that is not what we
want. It also allows us not to implement all the needed methods in the subclass. An Abstract class allows the class

designer to assert that the user will implement all the required methods in the respective subclasses.

Python, unlike other programming languages, does not have a built-in way to declare abstract classes. Fortunately,
we can import the ABC module (stands for Abstract Base Class), that satisfies our requirements. The following code

shows an example:

3 abc ABCMeta, abstractmethod
4

5

6 Base (metaclass=ABCMeta) :
7 @abstractmethod

8 func_1 (self):

9

10

1 @abstractmethod

12 func_2 (self) :

13

14

15

16 SubClass (Base) :

17 func_1 (self):

38

20
21
22

23

Note that to declare a method as abstract we have to add the Rabst ractmethod decorator over its declaration. The

CHAPTER 1. OBJECT ORIENTED PROGRAMMING

We intentionally did not implement func_2

print ('Is it subclass?:

{rr. (
{rr. (

print ('Is it instance?:

Is it subclass?: True

TypeError Traceback (most recent call

(SubClass, Base)))

(SubClass (), Base)))

last)

<ipython-input-19-b1003dd6£d92> in <module> ()

17
18 print ('Is it subclass?:

———> 19 print ('Is it instance?:

TypeError: Can’t instantiate abstract

" func_2

04_ABC_2.py

print ('Trying to generate an instance

a = Base()

Trying to generate an instance of the

TypeError Traceback (most recent call

{}’ .format (issubclass (SubClass,

{}’ .format (isinstance (SubClass (),

Base)))

Base)))

class SubClass with abstract methods

of the Base class\n')

Base class

last)

<ipython-input-20-e8aa694c9937> in <module> ()

1 print (' Trying to generate an instance of the Base class\n’)

-——=> 2 a = Base()
TypeError: Can’t instantiate abstract
func_1, func_2

class Base with abstract methods

following code shows the implementation of the abstract methods:

1

2

3

05_ABC_3.py

abc ABCMeta,

abstractmethod

4

\

1.7. CLASS DIAGRAMS 39

6 Base (metaclass=ABCMeta) :

7 @abstractmethod

8 func_1 (self):

9

10

11 @abstractmethod

12 func_2 (self):

13

14

15

16 SubClass (Base) :

17

18 func_1 (self):

19

20

21 func_2 (self):

22

23

24 # We forgot again to implement func_ 2
25

26 c = SubClass|()

27 print ('Subclass: {}'. ((SubClass, Base)))
28 print ('Instance: {}'. ((SubClass (), Base)))

Subclass: True

Instance: True

1.7 Class Diagrams

By using class diagrams, we can visualize the classes that form most of the objects in our problem. Besides the classes,
we can also represent their properties, methods, and the way other classes interact with them. These diagrams belong
to a language known as Unified Modelling Language (UML). UML allows us to incorporate elements and tools to

model more complex systems, but it is out of the scope of this book. A class diagram is composed of a set of classes

40 CHAPTER 1. OBJECT ORIENTED PROGRAMMING

and their relations. Rectangles represent classes, and they have three fields; the class name, its data (attributes and

variables), and its methods. Figure 1.2 shows an example.

<ClassName>
<Attribute_1>
<Attribute_2>

Attribute section =<

<Attribute_n>
<Method_1>
<Method_2>

Y4

Methods section =<

<Method_m>

Figure 1.2: UML Class diagram example

Suppose that by using OOP we want to model a database with stars that exist in a given area of the Universe. Each
star is correspond to a set of 7" observations, where each observation is a tuple (m;, t;, e;), where m; is the bright
magnitude of the star in observation ¢, t; is the time when the observation ¢ was obtained, and e; is the instrumental

error associated with observation 7. Using UML diagrams, we can model the system as shown in figure 1.3.

Database TimeSeries Observation

+ stars: TimeSeries|] +id: int + magnitude: float
+ ra: float + time: int
+ dec: float + error: float
+ observations: Observation[]

Figure 1.3: UML tables for the stars model

Consider now that the TimeSeries class has methods to add an observation to the time series and to return the
average and standard deviation of the set of observations that belong to the star. We can represent the class and the

mentioned methods as in figure 1.4.

Besides the classes, we can represent the relations among them using UML notation as well. The most common types
of relations are: composition, agreggation and inheritance (Concepts explained previously in this chapter). Figure 1.5
shows an example of Composition. This relation is represented by an arrow starting from the base object towards the
target that the class is composing. The base of the connector is a black diamond. The number at the beginning and end
of the arrow represent the cardinalities, in other words, the range of the number of objects included in each side of the
relation. In this example, the number one at the beginning of the arrow and the 1, ..., * at the end, mean that one Time

Series may include a set of one or more observations, respectively.

1.7. CLASS DIAGRAMS 41

TimeSeries
+id: int

+ ra: float

+ dec: float
+ observations: Observation[]
+ add_observation(magnitude: float, tiene: int, error: float): None

+ average(observations: Observation[]): float

+ standard_deviation(observation: Observation[]): float

Figure 1.4: UML table for the TimeSeries class including the add_observation, average and
standard_deviation methods.

TimeSeries

+id: int Observation

+ra: float 1 1.* | + magnitude: float
+ dec: float ‘— + time: int

+ observations: Observation[] + error: float

+ add_observation(magnitude: float, tieme: int, error: float): None

+ average(observations: Observation[]): float
+ standard_deviation(observation: Observation[]): float

Figure 1.5: Example of the composition relation between classes in a UML diagram.

Similarly, agreggation is represented as an arrow with a hollow diamond at the base. Figure 1.6 shows an example. As
we learn previously in this chapter, here the only difference is that the database aggregates time series, but the time

series objects are entities that have a significance even out of the database where they are aggregate.

Database
+ stars: TimeSeries[]

1.*

TimeSeries
+id: int
+ ra: float

+ dec: float
+ observations: Observation[]

+ add_observation(magnitude: float, tieme: int, error: float): None
+ average(observations: Observation[]): float

+ standard_deviation(observation: Observation[]): float

Figure 1.6: Example of the agreggation relation between classes in a UML diagram.

42 CHAPTER 1. OBJECT ORIENTED PROGRAMMING

In UML, we represent the inheritance as a simple arrow with a hollow triangle at the head. To show an example,
consider the case of astronomical stars again. Imagine that some of the time series are periodic. It means
that there is a set of values repeated at a constant amount of time. According to that, we can define the subclass
PeriodicTimeSeries that inherits from the TimeSeries class its common attributes and behaviors. Figure
1.7 shows this example in a UML diagram. The complete UML diagram for the astronomical stars example is shown

in figure 1.8.

TimeSeries
+id: int
+ ra: float

+ dec: float
+ observations: Observation[]
+ add_observation(magnitude: float, tieme: int, error: float): None

+ average(observations: Observation[]): float

+ standard_deviation(observation: Observation[]): float

PeriodicTimeSeries

+ period: float

+ compute_period (observations: Observation[]): float

Figure 1.7: Example of the inheritance relation between classes in a UML diagram.

Database
+ stars: TimeSeries[]

TimeSeries

+id: int Observation

+ ra: float 1 1.* | * magnitude: float
+ dec: float @— +time:int

+ observations: Observation(] + error: float

+ add_observation(magnitude: float, time: int, error: float): None

+ average(observations: Observation[]): float

+ standard_deviation(observation: Observation[]): float

PeriodicTimeSeries
+ period: float

+ compute_period (observations: Observation[]): float

Figure 1.8: The complete UML diagram for the astronomical stars example.

1.8. HANDS-ON ACTIVITIES 43

1.8 Hands-On Activities

Activity 1.1

Variable stars are stars whose level of brightness changes with time. They are of considerable interest in the
astronomical community. Each star belongs to one of the possible classes of variability. Some of the classes are RR
Lyrae, Eclipsing Binaries, Mira, Long Period Variables, Cepheids, and Quasars. Each star has a position in the sky
represented by RA and DEC coordinates. Stars are represented by an identifier and contain a set of observations. Each
observation is a tuple with three values: time, magnitude and error. Time value indicates the moment in which the
telescope or the instrument does the observation. The magnitude indicates the amount of brightness calculated in the
observation. The error corresponds to a range of uncertainty associated with the measurement. Many fields compose
the sky, and each field contains a huge amount of stars. For each star, we need to know the average and the variance
of the bright magnitudes. Create the necessary Python classes which allow modeling the situation described above.

Classes must have the corresponding attributes and methods. Write code to instantiate the classes involved.

Activity 1.2

A software company is building a computer program that works with geometric shapes and needs help with the initial

model. The company is interested in making the model as extensible as possible.

* Each figure has:

A property center as an ordered pair (x, y) . It should be possible to access and set it. The constructor

needs one to build a figure.

— A method t ranslate that receives an ordered pair (a, b) and sums to each of the center’s component,

the components in (a, b).
— A property perimeter that should be calculated with the figure’s dimensions.
— A property area that should be calculated with the figure’s dimensions.

— A method grow_area that enlarges the area of the figure x times, increasing its dimensions proportionally.

For example, in the case of a rectangle it should modify its width y length.

— A method grow_perimeter that enlarges the perimeter in z units, increasing its dimensions propor-

tionally. For example, in the case of a rectangle it should modify its width y length.

— Each time a figure is printed, the output should have the following format:

ClassName - Perimeter: value, Area: value, Center: (x, vy)

44 CHAPTER 1. OBJECT ORIENTED PROGRAMMING

¢ A rectangle has:

— Two properties, Length and width. It must be possible to access and set them. The constructor needs

both of them to build a figure.
¢ An Equilateral Triangle has:
— A property side that must be possible to access and to set. The constructor needs it to build a figure.
Implement all the necessary classes to represent the model proposed. Some of the classes and methods might be

abstract. Also implement a vertices property for all the figures that returns a list of ordered pairs (x, vy).Hint:

Recall that to change what print (obJject) shows, you have to override the method ___repr__.

Chapter 2

Data Structures

We define a data structure as a specific way to group and manage the information, such that we can efficiently use the
data. Opposite to the simple variables, a data structure is an abstract data type that involves a high level of abstraction,
and therefore a tight relation with OOP. We will show the Python implementation of every data structure according to
its conceptual model. Each data structure depends on the problem’s context and design, and the expected efficiency
of our algorithm. In conclusion, choosing the right data structure impacts directly on the outcome of any software

development project.
In Python, we could create a simple data structure by using an empty object without methods and add the attributes
along with our program. However, using empty classes is not recommended, because:
* i) it requires a lot of memory to keep tracked all the potentially new attributes, names, and values.
* i) it decreases the maintainability of the code.
e jii) it is an overkill solution.
The example below shows the use of the pass sentence to let the class empty, which corresponds to a null operation.

We commonly use the pass sentence when we expect the method to be defined later. Once we create the object, we

can add more attributes.

1 # We create an empty class

2 Video:

5 vid = Video ()

46 CHAPTER 2. DATA STRUCTURES

7 # We add new attributes
8§ vid.ext = 'avi'

9 vid.size = '1024"

11 print(vid.ext, vid.size)

avi 1024

We can also create a class only with few attributes, but still without methods. Python allows us to add new attributes to

our class on the fly.

1 # We create a class with some attributes

2 Image:

3

4 __init_ (self):
5 self.ext = "'

6 self.size = "'
7 self.data = "'

10 # Create an instance of the Image class

11 img = Image ()
12 img.ext = 'bmp'
13 img.size = '8'

4 img.data = [255, 255, 255, 200, 34, 35]

16 # We add this new attribute dynamically

17 img.ids = 20

19 print(img.ext, img.size, img.data, img.ids)

bmp 8 [255, 255, 255, 200, 34, 35] 20

Fortunately, Python has many built-in data structures that let us manage data efficiently, such as: 1ist, tuples,

dictionaries, sets, stacks, and queues.

2.1. ARRAY-BASED DATA STRUCTURES 47

2.1 Array-Based Data Structures

In this section, we will review a group of data structures based on the sequential order of their elements. These kinds
of structures are indexed through seq[index]. Python uses an index format that goes from 0 to n — 1, where n is

the number of elements in the sequence. Examples of this type of structures are: tuple and 1ist.

Tuples

Tuples are useful for handling ordered data. We can get a particular element inside the tuple by using its index:

Tuple

Values ‘400‘ 20 ‘ 1 ‘ 4 ‘ 10 | n ‘ 12 |500|

Indices

Figure 2.1: Diagram of indexing on tuples. Each cell contains a value of the tuple that could be referenced using its
index. In Python, indices go from O until n — 1, where the tuple has length n.

Tuples can handle various kind of data types. We can create a tuple using the tuple constructor as follows:

tuple (elementq, elementy, ..., element,_1). We can create a empty tuple using tuple () without arguments:
a = tuple (). We can also create a tuple by directly adding the tuple elements:
1 b = (0 ’ 1 7 2)

A tuple can handle various data types. The parentheses are not mandatory during its creation:

1 ¢ =0, 'message'

2 print(c[0], c[1l])

0 message

We can also add any object to the tuple:

1 teacher = ('Christian', '23112436-0', 2)
2 video = ('data-structures.avi', 1024, 'mp4"')
3 entry = (1, teacher, video)

4 print (entry)

48 CHAPTER 2. DATA STRUCTURES

(1, (’Christian’, ’'23112436-0", 2), (’data-structures.avi’, 1024, 'mp4’))

Tuples are immutable, i.e, once we create a tuple, it is not possible to add, remove or change elements of the tuple.
This immutability allows us to use tuples as a key value in hashing-based data structures, such as dictionaries. In
the next example, we create a tuple with three elements: an instance of the class Image, a string,anda float.

Then, we attempt to change the element in position 0 by a string. We can see that this attempt raise a TypeError

exception:
1 a = ('this is' , 'a tuple', 'of strings')
2 al[l] = 'new data’'

Traceback (most recent call last):
File "05_tuple_inmutable.py", line 2, in <module>
all] = 'new data’

TypeError: ’"tuple’ object does not support item assignment

We can map tuples into a set of individual variables. For example, if a function returns a tuple with several values,
the tuple can be assigned separately to a set of individual variables. The code below shows an example, the function

compute_geometry () receives as input the sides a and b of a quadrilateral and returns a set of geometric measures:

1 compute_geometry(a, b):

2 area = a * b

3 perimeter = (2 * a) + (2 * Db)

4 mpa = a / 2

5 mpb = b / 2

6

7 (area, perimeter, mpa, mpb)

9 data = compute_geometry (20.0, 10.0)

10 print('l: {0}'. (data))

12 a = datal[0]

13 print('2: {0}'. (a))

15 # Here we unpack the values into independent variables contained
16 # in the tuple

17 a, p, mpa, mpb = data

2.1. ARRAY-BASED DATA STRUCTURES 49

18 print('3: {0}, {1}, {2}, {3}'. (a, p, mpa, mpb))
19 a, p, mpa, mpb = compute_geometry(20.0, 10.0)
20 print('4: {0}, {1}, {2}, {3}'. (a, p, mpa, mpb))

1: (200.0, 60.0, 10.0, 5.0)
2: 200.0

3: 200.0, 60.0, 10.0, 5.0
4: 200.0, 60.0, 10.0, 5.0

We can use slice notation to select a section of the tuple. In this notation, indexes do not correspond directly to the
element positions in the sequence, but they work as boundaries to indicate sequence [start:stop:steps]. As

a default, steps = 1. Figure 2.2 shows an example.

|4oo‘zo| 1\4|1o‘11|12‘500‘

Slicing indices

Figure 2.2: Slicing example. Python allows selecting a portion of a tuple or a list using the slice notation. Opposite to
a single indexing, slicing start at 0 until n, where n is the length of the sequence.

1 data = (400, 20, 1, 4, 10, 11, 12, 500)
2 a = datall:3]

3 print('l: {0}'. (a))
4 a = datal[3:]

5 print('2: {0}'. (a))
6 a = datal:5]

7 print('3: {0}'. (a))
8§ a = data[2::2]

9 print('4: {0}'. (a))
10 #We can revert a sequence:
11 a = datafl[::-1]

12 print ('5: {0}'. (a))

50

1: (20, 1)
2: (4, 10, 11, 12, 500)
3: (400, 20, 1, 4, 10)
4: (1, 10, 12)
5: (500, 12, 11, 10, 4, 1, 20, 400)
Named Tuples

CHAPTER 2. DATA STRUCTURES

Named Tuples let us define a name for each position of the data. They are useful to group elements. First, we require

to import the module namedtuple from library collections. Then, we need to define an object with the tuple attribute

names:

1 collections namedtuple

3 # name of tuple type

4 Register namedtuple ('Register’,

5 cl = Register('13427974-5', 'Christian',
6 c2 = Register ('23066987-2"', 'Dante', 5)
7 print (cl.ID_NUMBER)
8§ print (c2.ID_NUMBER)
13427974-5
23066987-2
Functions can also return Named Tuples:
1 collections namedtuple
2
3 compute_geometry(a, b):
4 Features = namedtuple ('Geometrical',
5 area = axb
6 perimeter = (2%a) + (2xDb)
7 mpa = a/2
8 mpb = b/2
9 Features (area, perimeter, mpa,

data

compute_geometry (20.0, 10.0)

print (data.area)

(defined by user) and tuple attributes

'ID_NUMBER name age')

20)

'area perimeter mpa mpb')

mpb)

2.1. ARRAY-BASED DATA STRUCTURES 51

200.0

Lists

This data structure allows us to manage multiple instances of the same type of object, although, they are not limited to
combine various type of object classes. Lists are sequential data structures, sorted according to the order we add its

elements. Opposite to tuples, lists are mutable, i.e, their content can dynamically change after their creation.

We must avoid using lists to collect various attributes of an object or using them as vectors in C++, for example
as a histogram of words frequency [’ python’, 20, ’language’, 16]. This way requires an algorithm to
access the data inside the list that makes hard use it. In these cases, we must prefer another data structure such as

hashing-based data structures, NamedTuples, or simply a dictionary.

1 # An empty 1list. We add elements one-by-one
2 # In this case we add tuples

3 le = []

4 le.append((2015, 3, 14))

5 le.append((2015, 4, 18))

6 print (le)

8 # We can also explicitly assign values during creation

9 1 = [1, 'string', 20.5, (23, 45)]

10 print (1)

12 # We can retrieve an element using their index

13 print(1[1])

[(2015, 3, 14), (2015, 4, 18)]
[1, ’"string’, 20.5, (23, 45)]

string

A useful lists method is extend () that allows us to add a complete list to other list already created.

2

1 # We create a list with 3 elements
2 songs = ['Addicted to pain', 'Ghost love score', 'As I am']

3 print (songs)

5 # Then, we add the list "songs" to the list "new_songs"

52 CHAPTER 2. DATA STRUCTURES

6 new_songs = ['Elevate', 'Shine']
7 songs.extend (new_songs)

8 print (songs)

["Addicted to pain’, ’'Ghost love score’, ’'As I am’]
["Addicted to pain’, ’'Ghost love score’, 'As I am’, ’'Elevate’, ’Shine’]
We can also insert elements at specific positions within the list using the method insert (position, element).

1 # We create a 1list with 3 elements
2 songs = ['Addicted to pain', 'Ghost love score', 'As I am']

3 print (songs)

5 # Then, we insert a new songs at the position 1
6 songs.insert(l, 'Sober')

7 print (songs)

["Addicted to pain’, ’'Ghost love score’, 'As I am’]

["Addicted to pain’, ’'Sober’, ’Ghost love score’, 'As I am’]

In addition, we can ask for an element using the index or retrieve a portion of the list using slicing notation. Here we

show some examples:

1 # We can take a slice
2 numbers = [6,7,2,4,10,20,25]

3 print (numbers[2:6])

(2, 4, 10, 20]

1 # We can pick a portion until the end

2 print (numbers([2::1])

(2, 4, 10, 20, 25]

1 # We can take a slice from the beginning until a specific position

2 print (numbers[:5])

(6, 7, 2, 4, 10]

2.1. ARRAY-BASED DATA STRUCTURES 53

1 # We can also change the number of steps

2 print (numbers[:5:2])

(6, 2, 10]

1 # We can revert a list

2 print (numbers[::-1])

(25, 20, 10, 4, 2, 7, 6]

Lists can be sorted using the method sort (). This method sorts the list in place i.e, does not return any value.

1 # We create the list with seven numbers
2 numbers = [6, 7, 2, 4, 10, 20, 25]

3 print (numbers)

5 # Ascendence. Note that variable a do not receive
6 # any value from assignation.
7 a = numbers.sort ()

8 print (numbers, a)

10 # Descendent

11 numbers.sort (reverse=

12 print (numbers)

(e, 7, 2, 4, 10, 20, 25]
(2, 4, 6, 7, 10, 20, 25] None

[25, 20, 10, 7, 6, 4, 2]

Lists are optimized to be flexible and easy to manage. They are easy to use within for loops. Note that we avoid

using 1d as a variable because it is a reserved word in Python language.

1 Piece:

2 # Avoid using id as variable because it is a reserved word
3 pid = 0

4

5 __init_ (self, piece):

6 Piece.pid += 1

54 CHAPTER 2. DATA STRUCTURES

7 self.pid = Piece.pid

8 self. = piece

10 pieces = []

11 pieces.append(Piece('Bishop'))
12 pieces.append(Piece('Pawn'))

13 pleces.append(Piece('King'))

14 pieces.append(Piece('Queen'))

16 piece pieces:

17 print ('pid: {0} - types of piece: {1}'. (piece.pid, piece.))

pid: 1 - types of piece: Bishop

pid: - types of piece: Pawn

w N
|

pid: types of piece: King

pid: 4 - types of piece: Queen

Stacks

Stacks are a data structures that manage the elements using the Last-in First-out (LIFO) principle. When we add
elements, they are located on top of the stack. When we remove elements from it, we take the most recently added

element. The Figure 2.3 shows an analogy between stacks and a pile of clean dishes. The last added dish will be the

first dish to be used.
Last In First Out
BT . - Itemn Itemn-1
b Push ltemn—1 Pop
Item 3
Item 2 Item 2
Item 1 Item 1

Figure 2.3: Here we show the analogy between stacks and a pile of dishes. The push () method add an element to
the top of the pile. The pop () method let us to get the last element added to the stack.

Stacks have two main methods: push () and pop (). The push () method allows us to add an element to the end

of the stack and the pop () let us to get the top element in the stack. In Python, the stacks are built-in as Lists.

2.1. ARRAY-BASED DATA STRUCTURES 55

There are also more methods, such as: top (), is_empty (), Len (). Figure 2.4 includes a brief description and

comparison of the other methods included in this data structure.

Stack.push(item) List.append(item) Add sequentialy a new item to the stack

Stack.pop() List.pop() Returns and removes the last item added to the
stack

Stack.top() List[-1] Return the last item added to stack without
remove it

len(Stack) len(List) Return the total number of items in the stack

Stack.is_empty() len(List) == Verify whether the stack is empty or not

Figure 2.4: Summary of most used methods of the stack data structure and its equivalence in Python.

Methods described in Figure 2.4 work as follows:

1 # Create an empty Stack. In Python Stacks are built-in as Lists.

2 stack = []

4 # push() method
5 stack.append(1l)
6 stack.append(10)

7 stack.append(12)

9 print (stack)

11 # pop () method
12 stack.pop ()

13 print('pop(): {0}'. (stack))

15 # top() method. Lists does not have a this method implemented directly.
16 #We can have the same behaviour indexing the last element in the Stack.
17 stack.append (25)

18 print('top(): {0}'. (stack[-11))

20 # len()
21 print ('The stack have {0} elements'. ((stack)))

22

56 CHAPTER 2. DATA STRUCTURES

23 # is_empty () method. In Python we verify the status of the stack

24 #checking if it has elements.

25 stack = []

26 (stack) == 0:

27 print ('The stack is empty : (")
[1, 10, 12]
pop(): [1, 10]
top(): 25

The stack have 3 elements

The stack is empty : (

A practical example of stacks is the back button of web browsers. When we are browsing the internet, each time we
visit an URL, the browser add the link to a stack. Then, we can recover the last visited URL when we click on the

back button.

UrlN (= IRAETI(= I =)
- € > C | httpsy/images.google
Url 3
Url 2 Url N
Q Pop
Url N-1
Url 2
Url1 Url1

Figure 2.5: An example of using Stacks in a web browser. We can recover the last visited URL every time we press
the back button of the browser.

1 Browser:

2

3 __init__ (self, current_url='http://www.google.com') :
4 self.__urls_stack = []

5 self.__ _current_url = current_url

6

7 __load_url(self, url):

8 self._ current_url = url

2.1. ARRAY-BASED DATA STRUCTURES 57

9 print ('loading url: {0}"'. (url))

11 go(self, url):

12 self.__urls_stack.append(self.__current_url)
13 print ('go ->', end="' ")

14 self._load_url (url)

15

16 back (self):

17 last_url = self.__urls_stack.pop()

18 print ('back->"', end=' ")

19 self.__load_url (last_url)

20

21 show_current_url (self):

22 print ('Current URL: {0}'. (self.__current_url))
23

24

25 __name___ == ' main__ ':

26 chrome = Browser|()

27 chrome.go ('http://www.uc.cl")

28 chrome.go ('http://www.uc.cl/en/courses")
29 chrome.go ('"http://www.uc.cl/es/doctorado")
30

31 chrome.show_current_url ()

32 chrome.back ()

33 chrome.show_current_url ()

go —> loading url: http://www.uc.cl

go —> loading url: http://www.uc.cl/en/courses
go —> loading url: http://www.uc.cl/es/doctorado
Current URL: http://www.uc.cl/es/doctorado
back-> loading url: http://www.uc.cl/en/courses

Current URL: http://www.uc.cl/en/courses

Another practical example of stacks is sequence reversion. We show a simple implementation of this task in the next

example:

1 Text:

58 CHAPTER 2. DATA STRUCTURES

2 __init_ (self):

3 self.stack = []

4

5 read_file(self, filename) :
6 print ("input:")

7

8 with (filename) fid:
9 line fid:

10 print (line.strip())

11 self.stack.append(line.strip())

13 print ()
14 fid.closed
15
16 reverse_lines (self):
17 print ('output:")
18
19 (self.stack) > O:
20 print (self.stack.pop())
21
22
23 __name__ == '__main_ ':
24 t = Text ()
25 t.read_file('stacks_text.txt")
26 t.reverse_lines ()
input:

he friend who can be silent with us in a moment of despair or confusion,
who can stay with us in an hour of grief and bereavement,
who can tolerate not knowing... not healing, not curing...

that is a friend who cares.

output:
that is a friend who cares.
who can tolerate not knowing... not healing, not curing...

who can stay with us in an hour of grief and bereavement,

2.1. ARRAY-BASED DATA STRUCTURES 59

he friend who can be silent with us in a moment of despair or confusion,

Queues

This data structure is an abstract data type that lets us collect objects sequentially following the rule First—in, First—out
(FIFO). When we add elements, we place them at the end of the queue. When we remove elements from it, we take the
oldest element in the queue. Various examples fit with the queue model, such as the line in a supermarket or incoming

calls in a call center.

Incomming Queue ¢ @ -’
calls A ga;i!ih@?
& ‘ ‘ CallN .. cCall3 cCall2 calll First-Out

First-In

Figure 2.6: A practical example of queues is a call center, where incoming requests wait until an operator can pick the
first call added to the queue.

In Python, lists do not work efficiently as queues. Fortunately, the collections library includes the deque module
that is an efficient implementation for data structures based on the FIFO model. This module manages single and
double ended queues, while executes all operations efficiently and memory safe. The deque module guarantees that
the memory access from both sides of the queue is O(1). Although lists support similar operations and methods like
queues, they are optimized to perform operations in fixed sized sequences. For example, operations that change the
length or position of the element in the sequences, such as pop (0) or insert (0, v), involve a cost to update de
memory registers of O(n). Queues have two primary methods: enqueue () that allows us to add elements to the
queue; and dequeue (), that returns and removes the first element in the queue. Figure 2.7 includes a brief summary

of other methods and operations of this data structure.

1 # The collection library includes the deque module that manages single queues
2 # or double ended queues efficiently

3 collections deque

5 # An empty queue

(=2}

g = deque ()

60

20
21
22
23
24
25
26
27

28

32

33

Queue.enqueue(item)
Queue.dequeue()

Queue-first()
len(Queue)

Queue.is_empty()

deque.append(item)
deque.popleft()
dequell]

len(deque)

len(deque) ==

CHAPTER 2. DATA STRUCTURES

Add an item to the queue
Returns and remove the first item in the queue

Returns the first item in the queue without
remove it

Returns the total number of elements in the
queue

Verify whether the queue is empty or not

Figure 2.7: Summary of used methods and operations in queues.

.append('orange')

.append('apple')

Q Q9 =

.append ('pear')

Print the queue

print (q)

We add some elements to the queue using append method, similar to lists.

We extract the first element and print again the queue

print ('Remove the item:

print (q)

{r.

Add a new element to the queue

g.append ('strawberry')

Get the first element

print ('The first item is {}'.

len()

print ('The queue have {0} elements'.

(g.popleft ()))

((a)))

is _empty (). We first remove all the items in the queue using clear () method

and the we check the number of elements.

g.clear ()

(q) == 0:

print ('The queue is empty')

2.1. ARRAY-BASED DATA STRUCTURES

deque ([’ orange’, ’apple’, ’'pear’])
Remove the item: orange
deque ([’ apple’, ’'pear’])

The first item is pear

The queue have 3 elements

The queue is empty

The code below shows a practical example of this data structure applied to vehicle inspection garages:

1 collections deque

2 random choice, randrange

3

4

5 Vehicle:

6

7 # This class models the vehicles that upcoming to the plant and the
8 # average time spent during the test

9 tp = {'motorcycle': 10, 'car': 25, 'suv': 30}

10

11 __init_ (self):

12 self.vehicle_type = choice((Vehicle.tp))

13 self._testing_time = Vehicle.tpl[self.vehicle_type]
14

15

16 testing_time (self):

17 self._testing_time

18

19 @testing_time.setter

20 testing_time(self, new_time):

21 self._testing_time = new_time

22

23 show_type (self) :

24 print ('Testing: {0}"'. (self.vehicle_type))

25
26

27 Plant:

62

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

CHAPTER 2. DATA STRUCTURES

This class models the test plant

__init__ (self, vehicles_per_hour):

self.test_ratio = vehicles_per_hour

self.current_task

Il
o

self.testing_time

busy (self) :

self.current_task !=

next_vehicle(self, wvehicle):

self.current_task vehicle
self.testing_time = self.current_task.testing_time

self.current_task.show_type ()

tick (self):
self.current_task !=
self.testing_time = self.testing_time - 1
self.testing_time <= 0:

self.current_task =

arrive_new_car () :
This function manage randomly if arrives a new vehicle
num = randrange (1, 201)

num == 200

testing() :

This function manage the testing process

We createa a Plant with capacity of 5 vehicles/hour

plant = Plant (5)

2.1. ARRAY-BASED DATA STRUCTURES

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

Then, we create an empty queue

g = deque ()

Waiting time

time_list = []

We model arriving vehicles randomly

instant (1000) :

arrive_new_car() :
v = Vehicle ()

g.append (v)

(plant.busy()) ((q) > 0):

We get the next vehicle in the queue
next_vehicle = g.popleft ()
time_list.append(next_vehicle.testing_time)

plant.next_vehicle (next_vehicle)

We make time pass by one tick

plant.tick ()

average_time = (time_1list) / (time_1list)

print (

'Average waiting time: {0:6.2f} min, {1} vehicles queued.'.

average_time,

(time_1list))

name == '_ _main '

testing ()

Testing: suv

Testing: motorcycle

63

64

CHAPTER 2. DATA STRUCTURES

Testing: motorcycle
Testing: motorcycle
Testing: suv
Testing: motorcycle
Testing: suv

Average waiting time:

18.57 min, 7 vehicles queued.

Double Ended Queue (Deque)

The double ended queue data structure is the general case of stack and queue, which allows us to add and remove

items from both sides of the structure. This flexibility is useful for modeling real problems where the entities have a

different frequency for arrival and attention. This difference originates that some objects leave the queue early. A real

example is a call center that receives incoming calls with different priorities and others calls finish abruptly.

delete_last()

delete_first() /ﬂlast()
Calll «—— Call2 Call 3 Call 4 CallN «— '“CZ?Imm'ng ®
High priority?
add_first()

Figure 2.8: Example of using a double ended queues.

Similar to queues, we create a deque structure using the deque module included in the collections library. The table

in Figure 2.9 shows a summary of the basic methods and operations of a deque.

10

QO o 2 o o Q2 9 =%

collections

=

= deque ()

.append('r")
.append('a')
.append('d")
.append('a')
.append('r")

.append('e'")

deque

e create an empty deque and item by item

2.1. ARRAY-BASED DATA STRUCTURES

Deque.add_ first(item)
Deque.add_last(item)
Deque.delete_ first()
Deque.delete_last()
Deque-first()
Deque.last()

len(Deque)

Deque.is_empty()

Deque.appendleft(item)
Deque.append(item)
Deque.popleft()
Deque.pop()

Dequel[0]

Dequel-1]

len(Deque)

len(Deque) ==
Dequelj]
Dequelj] = value
Deque.clear()
Deque.rotate(k)
Deque.remove(e)

Deque.count(e)

Add an item at the begining of the deque
Add an item at the end of the deque
Returns and removes the first item
Returns and remove the last item
Returns the first item without extract it
Returns the last item without extract it

Returns the total number of items in the
deque

Verify whether the deque is empty or not
Access to the item j

Modify the item j

Delete all the items

K step circular scrolling

Remove the first item that match to e

Counts the number of items that match to e

Figure 2.9: Brief summary of the basic deque methods in python.

1 # Next, we check the first and the last

2 print(d[0], d[-1])

1 # Then, we rotate the deque in k=3 step

2 d.rotate(3)

3 print (d)

deque(['x’, 'e’, 's'’,

1 # Finally, we extract the first

2 first = d.popleft ()

3 last = d.pop ()

and the last iter

1S

3

65

66 CHAPTER 2. DATA STRUCTURES

5 print (first, last)

6 print (d)

r a

deque([’e’, ISI, rl, IaI, rd’ 1)

Next, a simple example of the use of a deque for palindrome detection. The word is saved in a deque, while we

iteratively remove and compare the first and the last characters.

1 collections deque

2

3

4 Word:

5

6 __init_ (self, word=)t

7 self.word = word

8 self.characters = deque(self.word)

10 is_palindrome (self) :
11 (self.characters) > 1:
12 self.characters.popleft () == self.characters.pop() \

13 Word (''.join(self.characters)) .is_palindrome ()

17 pl = Word("radar")

Word ("level™)

18 p2

19 p3 Word ("structure")

20

21 print (pl.is_palindrome())
22 print (p2.is_palindrome ())

23 print (p3.is_palindrome())

True
True

False

2.1. ARRAY-BASED DATA STRUCTURES 67

Note: In Python, if we want to check whether a word is a palindrome or not, we only need to compare word ==

word[::-1].

Dictionaries

A dictionary is a data structure based on key—value associations. This relation allows us to use the key to efficiently

search an item because it points to the memory address where its associated value is located.

Keys Chile Peru Spain Holland Brazil
Values Chilean Peruvian Euro Real
Peso Sol

Figure 2.10: Example of a dictionary. Every key is unique in the dictionary.

In Python, an empty dictionary is created by braces { } or dict (). We must specify the key and value using colon :,
i.e, {keyl: wvaluel, key2: wvalue2, ...}.Thekey hastobeaninmutable object: int, str, tuple,

etc. We can access the value using the key within brackets. The next example shows how we create a dictionary:

1 dogs = {'bc': 'border-collie', 'lr': 'labrador retriever', 'pg': 'pug'}
2 telephones = {23545344: 'John', 23545340: 'Trinity', 23545342: 'Taylor'}

3 tuples = {('23545344', 0): 'office', ('2353445340', 1): 'admin'}

5 print (dogs)

6 print (tuples)

8 # We access directly to the value using its key
9 print(dogs['bc'])

10 print (telephones[23545344])

{"bc’: "border-collie’, ’'lr’: ’labrador retriever’, ’'pg’: ’"pug’}
{(72353445340", 1): ’"admin’, (’23545344’, 0): 'office’}
border-collie

John

68 CHAPTER 2. DATA STRUCTURES

In the next example, we can see that dictionaries are not a sorted sequence like fuples or list; and that the key can even

be of various types within the same dictionary.

1 d = {1l: "first key', '2': 'second key', 23.0: 'third key',
2 (23, 5): '"fourth key'}
3 print (d)

{l: "first key’, (23, 5): ’"fourth key’, ’2’: ’"second key’,

23.0: 'third key’}

Dictionaries are mutable data structures, i.e, its content can change through the execution of a program. There are
two behaviors when we assign a value to key: 1) if the key does not exist, Python creates the key in the dictionary and

assigns the value; and 2) if the key already exists, Python assigns the new value.

1 # If a key does not exist, Python creates a new one and assigns the value
2 dogs['te'] = 'terrier'

3 print (dogs)

s # If the key already exist, Python just assigns the value
6 dogs['pg'] = 'pug-pug'

7 print (dogs)

{"bc’: "border-collie’, ’'1lr’: ’labrador retriever’, ’'te’: ’'terrier’,
ngl . Ipugl }
{"bc’: "border-collie’, ’'l1lr’: ’labrador retriever’, ’'te’: ’'terrier’,

"pg’: 'pug’}

We can also remove items directly from a dictionary by using the de 1 sentence. For example:

1 # We remove items using del
2 dogs|['te']

3 print (dogs)

{"bc’: ’'border-collie’, ’"1lr’: ’"labrador retriever’, ’'pg’: ’'pug-pug’}

We can check whether a given key exists in a dictionary by using the in statement. By default, every time we use this
sentence directly with the name of the dictionary, Python assumes that we refer to its list of keys. The result of using

inis True if the required key exists in the dictionary keys, and False otherwise:

2.1. ARRAY-BASED DATA STRUCTURES 69

1 # The sentence in checks whether exist a specific key in the dictionary

2 print('pg' dogs)
3 print('te’ dogs)
True
False

Similarly, dictionaries have the get () method that allows us to check whether a key exist or not. This method

requires two parameters: the key and a default value for missing keys. We can use any Python object as a default value.

1 # The method get () checks whether a key exists or not.

3 print (dogs.get ('pg',)) # logical value as default

4 print (dogs.get('te', 2)) # int value as default

5 print (dogs.get('te', 'The dog does not exist')) # String value as default
True
False
pug-pug

This verification is useful when we need to build a dictionary during the execution of our program, such as we show in

the following example:

1 # A string to be verified and a empty dictionary to count vowels
2 msg = 'supercalifragilisticexpialidocious'

3 vowels = ()

5 v msg:

6 v 'aeiou': # check wheter v is vowel or not
7

8

9 # If v exist, add a key named as v initialized at 0

10 v vowels:

11 vowels([v] = 0

12

13 # If v alread exist, increase the counter

14 vowels[v] += 1

70 CHAPTER 2. DATA STRUCTURES
16 print (vowels)
{ri7: 7, 'a’: 3, 'o’': 2, 'e'": 2, "u’': 2}

There are three useful methods that let us to retrieve the dictionary contents at different levels. These methods are:

keys (), values (), and items (). The example below shows the results of using these methods and their outputs:

1 currency = {'Chile': 'Peso', 'Brazil': 'Real',

2 'Peru': 'Sol', 'Spain': 'Euro', 'Italy': 'Euro'}

3

4 print (currency.keys()) # returns a list with the keys

5 print (currency.values()) # returns a list with the values

6 print (currency.items()) # returns a list of tuples key-value

dict_keys([’Chile’, ’Spain’, ’'Italy’, ’'Peru’, ’'Brazil’])
dict_values ([’Peso’, ’"Euro’, ’"Euro’, ’"Sol’, ’'Real’l])
dict_items ([(’Chile’, ’'Peso’), (’'Spain’, ’'Euro’), (’'Italy’, ’"Euro’),

("Peru’, ’"Sol’), ('Brazil’, 'Real’)])

The methods keys (), values (), and items () described above are completely suitable during iteration over
dictionaries. By default, when we use a for loop to iterate over a dictionary Python iterates directly over the keys. In

each iteration the local variable takes a key value in the list.

1 # Iteration over a dictionary

3 # By default Python iterates directly over the keys

4 print ('This dictionary has the following keys:')

6 k currency:

7 print ("{0}"'. (k))

This dictionary has the following keys:
Chile
Spain
Italy
Peru

Brazil

Or we can also use the method keys () explicitly

2.1. ARRAY-BASED DATA STRUCTURES

1 # Although we can also use the method keys()

2 print ('This dictionary has the following keys:')

4 k currency.keys () :

5 print ("{0}". (k))

This dictionary has the following keys:
Chile
Spain
Italy
Peru

Brazil

The method values () allows us to iterate over the list of values associated to each key.

1 # We use the method values () when we want to iterates using the values
2 print ('The values in the dictionary:"')
3 v currency.values() :

4 print ('{0}'. (v))

The values in the dictionary:
Peso
Euro
Euro
Sol

Real

Finally, the method items () provide us with a way to iterate using the pair key-value.

1 # The method items () allows us to retrieve a tuple (key, value)

2 print ('The pairs key-value:')

4 k, v currency.items () :

5 print ('the currency in {0} is {1}'. (k, cv))

The pairs key-value:
the currency in Chile is Peso

the currency in Spain is Euro

71

72 CHAPTER 2. DATA STRUCTURES

the currency in Italy is Euro
the currency in Peru is Sol

the currency in Brazil is Real

Defaultdicts

Python provide us with a special case of dictionary called defaultdicts that allows us to assign a default value
to the nonexistent keys. This type of dictionary is part of the collections library and let us to save time writing
line codes to manage the cases when our code tries to access a nonexistent keys. The defaultdics accept also a
function as default value, which can receive an action and return any object as key in the dictionary. For example,
suppose we want to create a dictionary where each new key has as value a list with a string indicating the current

number of items in the dictionary.

1 collections defaultdict
2

3 num_items = 0

4

5 my_function() :

6 num_items

7 num_items += 1

8 ([(num_items)])

10 d = defaultdict (my_function)

12 print(d['a'l)
13 print(d['b'])
14 print(d['c'])
15 print(d['d'])

16 print(d)

[("171
(2]
["3"]
(4]
defaultdict (

<function my_function at 0x000000000295CBF8>,

2.1. ARRAY-BASED DATA STRUCTURES 73

{Idl: [14’], Ibl: [’2’], Ic’: [131], ’a’: [Ill]})

Sets

A set is a data structure that contains an unordered collection of unique and immutable objects. For example: imagine
that we have a list that contains a collection of tuples of items (song, artist) where different songs may be
associated with the same artist, and we would like to build a list of all unique artists in our library. To do so, we may
create a new list and for each item in the collection check if we already added the artist to the new list. That iteration is
inefficient. Sets provide us with a way to do this task easily because the data structures make sure that each item in the

set is unique even if we add the same item again.

Python requires that the sets contain hashable objects, i.e, an immutable object that has a hash value registered in the
__hash__ () method. This values never changes during its lifetime and can be compared to other objects. Hashable

objects have the advantage that they can be used as keys in dictionaries.

1 songs_list = [("Uptown Funk", "Mark Ronson"),

2 ("Thinking Out Loud", "Ed Sheeran"),

3 ("Sugar", "Maroon 5"),

4 ("Patterns In The Ivy", "Opeth"),

5 ("Take Me To Church", "Hozier"),

6 ("Style", "Taylor Swift"),

7 ("Love Me Like You Do", "Ellie Goulding")]

9 artists = ()

1 song, artist songs_list:

12 # The add() method append a new item to the set. We do not require to
13 # check whether the item exist or not previously in the set.

14 artists.add(artist)

16 print (artists)

{"Mark Ronson’, ’'Opeth’, ’'Hozier’, ’'Ed Sheeran’, ’'Maroon 5’, ’Taylor Swift’,

"Ellie Goulding’}

We also can build a set using brackets, where a coma must separate the items. An empty set has to be created with the

set () statement, otherwise a dictionary will be created.

74 CHAPTER 2. DATA STRUCTURES

1 # We can create a set using brackets including items separated by coma.

2 songs = {'Style', 'Uptown Funk', 'Take Me To Church', 'Sugar',

3 'Thinking Out Loud', 'Patterns In The Ivy', 'Love Me Like You Do'}

5 print (songs)

6 print ('Sugar' songs)

7

8 artist artists:

9 print ("{} plays excellent music". (artist))

{’Patterns In The Ivy’, ’"Take Me To Church’, ’Sugar’, ’"Love Me Like You Do’,
"Style’, ’Uptown Funk’, ’"Thinking Out Loud’}

True

Mark Ronson plays excellent music

Opeth plays excellent music

Hozier plays excellent music

Ed Sheeran plays excellent music

Maroon 5 plays excellent music

Taylor Swift plays excellent music

Ellie Goulding plays excellent music

Note that the results of the previous example show that the items in the set are unordered (similar to dictionaries). Sets

cannot be indexed to retrieve their items. We can build an ordered list from a set as follows:

1 # Build a list from a set
2 artists_list = (artists)
3 artists_list.sort()

4 print(artists_list)

["Ed Sheeran’, ’'Ellie Goulding’, ’Hozier’, ’'Mark Ronson’, ’"Maroon 57,

"Opeth’, ’"Taylor Swift’]

Sets data structures behave as mathematical sets and provide us with the same mathematical operations.

1 # Mathematical Operations
2 my_artists = {
3 'Hozier', 'Opeth', 'Ellie Goulding', 'Mark Ronson', 'Taylor Swift'

4}

2.1. ARRAY-BASED DATA STRUCTURES 75

artists_album = {'Maroon 5', 'Taylor Swift', 'Amy Wadge'}

print ("All: {}".format (my_artists.union(artists_album)))

print ("both: {}".format (artists_album.intersection(my_artists)))

All: {’'Mark Ronson’, ’'Opeth’, ’'Hozier’, ’'Taylor Swift’, ’'Maroon 57/,
"Amy Wadge’, ’'Ellie Goulding’}

both: {’Taylor Swift’}

The A.difference (B) returns a set of items that exist only in A but
not 1in B.

print ("Only in A: {}".format (my_artists.difference(artists_album)))

Only in A: {’Ellie Goulding’, ’"Mark Ronson’, ’Hozier’, ’Opeth’}

The symmetric difference returns a set of items that exist only in
one of the sets, but not both.
print ("Any but not both: {}".format (my_artists.symmetric_difference (

artists_album)))

Any but not both: {’Mark Ronson’, ’Opeth’, ’"Hozier’, ’"Maroon 5',

"Amy Wadge’, ’"Ellie Goulding’}

Operation Order

bands = {"Opeth", "Guns N' Roses"}

print ("my_artist is to bands:")
print ("issuperset: {}".format (my_artists.issuperset (bands)))
print ("issubset: {}".format (my_artists.issubset (bands)))

print ("difference: {}".format (my_artists.difference (bands)))

print ("-" % 20)

print ("bands is to my_artists:")
print ("issuperset: {}".format (bands.issuperset (my_artists)))
print ("issubset: {}".format (bands.issubset (my_artists)))

print ("difference: {}".format (bands.difference (my_artists)))

76 CHAPTER 2. DATA STRUCTURES

my_artist is to bands:
issuperset: False
issubset: False

difference: {’Mark Ronson’, ’'Taylor Swift’, ’'Hozier’, ’'Ellie Goulding’}

bands is to my_artists:
issuperset: False
issubset: False

difference: {"Guns N’ Roses"}

In some methods, the arguments’ order does not matter, for example, my_artists.union (artists_album)
returns the same result that my_artist_album.union (my_artist). There are other methods where the

arguments’ order does matter, for example, issubset () and issuperset ().

2.2 Node-based Data Structures

In this section, we describe a set of data structures based on a single and basic structure called node. A node allocates
an item and its elements and maintains one or more reference to neighboring nodes to represent more complex data
structures collectively. One relevant aspect of these complex structure is the way on how we walk through each node.
The traversal is the way to visit all the nodes in a node-base structure systematically. The following sections show

how to build and traverse two essentials node-based structures: linked lists and, trees.

Singly Linked List

This data structure is one of the primary node-based structure. In a linked list, a collection of nodes forms a linear
sequence where each node has a unique precedent and subsequent nodes. The first node is called head and the last
node is called tail. In this structure, nodes have references to their value and to the next element in the sequence.

Figure 2.11 shows a diagram of a linked list. In the tail node there is no reference to the next object.

The way to traverse a linked list is node-by-node recursively. Every time we get a node we have to pick the next one,
indicated with the next statement. The traverse stops when there are no more nodes in the sequence. The code below

shows how to build a linked list. Lines 21 to 31 show how to traverse the structure.

2.2. NODE-BASED DATA STRUCTURES 77

Node Node Node
value E— value E— .. = | value | next
Head Tail

Figure 2.11: The simpler implementation of a linked list consists into a node that has two attributes: the value of the
node and a reference to the next node. We can put as many nodes as we require.

78 CHAPTER 2. DATA STRUCTURES

1 Node:

2 # This class models the basic structure, the node.
3 _ init_ (self, wvalue=)t

4 self. =

5 self.value = value

6

7 LinkedList:

8 # This class implement a singly linked 1list
9 _ init_ (self):

10 self.tail =

11 self.head =

12

13 add_node (self, wvalue):

14 self.head:

15 self.head = Node (value)

16 self.tail = self.head

17

18 self.tail. = Node (value)
19 self.tail = self.tail.

20

21 __repr__ (self):

22 rep = ''

23 current_node = self.head

24

25 current_node:

26 rep += "{0}"'. (current_node.value)
27 current_node = current_node.
28 current_node:

29 rep += ' —> '

30

31 rep

32

33 __name___ == ' _main__ ':

34 1l = LinkedList ()

35 1.add_node (2)

2.2. NODE-BASED DATA STRUCTURES 79

36 1l.add_node (4)
37 1.add_node (7)
38

39 print (1)

2 =>4 —> 7

Trees

Trees are one of the most important data structure in computer science. A tree is a collection of nodes structured
hierarchically. Opposite to the array-based structures (e.g. stacks and queues), the nodes that represent the items lay
ordered above and below according to the parent-child hierarchy. A tree has a top node called root that is the only
node that does not have a parent. Nodes other than the root have a single parent and one o more children. Children

nodes descending from the same parent are called siblings.

We say that a node a is an ancestor of node b if a is in the path from b to the root. Nodes that have no children
are called leaf nodes (sometimes called external). Nodes that are not the root or leaves are called internal nodes.
Recursively, every node can be the root of its subtree. Figure 2.12 shows a tree representation of the animal kingdom.
The root node has two children: Vertebrates and Invertebrates. The Invertebrates node has three children that are
siblings each other: mollusks, arthropod, and worms. The node Annelids is a leave node. Vertebrates can be a root

node of the subtree formed by its children.

Animal Kingdom = Root node

Vertebrates Invertebrates Parent node
Fishes Mammals Mollusks Arthropods Annelids Children node
Bony Cartilaginous Insects Arachnids
Fihes Fishes
Leaf nodes Leaf nodes

Figure 2.12: An example of a tree structure to represent the Animal Kingdom shows a tree representation of the animal
kingdom. According to the definition, the root node has no a parent node. All the internal nodes have a parents-child
relationship. The leaf nodes have no children. Every node can be the root of its own subtree, e.g, Fishes.

An edge connects a pair of nodes (u, v) that have a parent-child relationship. Each node has a unique incoming edge

(parent) and zero or various outgoing edges (children). An ordered sequence of consecutive nodes joint by a set of

80 CHAPTER 2. DATA STRUCTURES

edges from a starting node to a destination node through the tree form a path. In the same Figure 2.12, there are two
edges that connect the node Fishes with its children Bony and Cartilaginous. The set of edges from Bony to Animals

form the path Animals-Vertebrates-Fishes-Bony.

The depth of a node b is the number of levels or ancestors that exist between b and the root node. The height of a tree
is the number of levels in the tree, or the maximum depth reached among the leaf nodes. As shown in Figure 2.12, the

Fishes node has depth 2, and the height of the tree is 3.

Binary Tree

Binary trees are among the most used tree structures in computer science. In a binary tree, each node has a maximum
number of two children; each child node has a label: left- child and right-child, and regarding precedence, the left
child precedes the right child.

In binary trees, the number of nodes grows exponentially with depth. Let d be the level of an binary tree T defined as
the set of nodes located at the same depth d. At the level d = 0 there is at least only one node (the root). The level
d = 1 has at least two nodes, and so on. At any level d, the tree has a maximum number of 2¢ levels. The special case

when every node has two children is know as a complete tree.

Level

0

Figure 2.13: An example of a binary tree. As we can see, the node 0 is the root of the tree. For this example, we adopt
the convention of setting the numbers while traversing the tree in amplitude.

A practical example of binary trees is decision trees. In this kind of trees, each interior node and the root represent a
query, and their outgoing edges represent the possible answers. Another example is expression trees; they represent

arithmetic operations where variables correspond to leaf nodes and operators to interior nodes.

2.2. NODE-BASED DATA STRUCTURES 81

Linked Structure Based Binary Tree

The linked structure based binary tree correspond to the recursive version for binary trees. Each node of the tree is an
object where each attribute is a reference to the parent node, children nodes, and its value. We use None to indicate
that an attribute does not exist. For example, if we write the root node, the attribute parent is equal to None. Now

we show the implementation of a binary tree using a linked structure:

1 Node:

2

3 __init__ (self, wvalue, parent=)t
4 self.value = value

5 self.parent = parent

6 self.left_child =

7 self.right_child =

8

9 __repr__ (self):

10 'parent: {0}, value: {1}'. (self.parent, self.value)
11

12

13 BinaryTree:

14

15 __init__ (self, root_node=)t

16 self.root_node = root_node

17

18 add_node (self, wvalue):

19 self.root_node

20 self.root_node = Node (value)

21

22 temp = self.root_node

23 added =

24

25 added:

26 value <= temp.value:

27 temp.left_child

28 temp.left_child = Node(value, temp.value)

29 added =

82

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

63

__repr__ (self):

traverse_tree (node,

ret = "'

Node

ret +=

temp = temp.left_child

temp.right_child

temp.right_child

added =

temp = temp.right_child

{0} => {1}\n"'.

side="root") :

(node,

CHAPTER 2. DATA STRUCTURES

Node (value, temp.value)

side)

ret += traverse_tree(node.left_child, 'left'")

ret += traverse_tree(node.right_child, 'right')

ret

traverse_tree(self.root_node)

= BinaryTree ()
.add_node (4)
.add_node (1)
.add_node (5)
.add_node (3)

[T T o N B o B o

.add_node (20)

print (T)

parent: None, value: 4

-> root

2.2. NODE-BASED DATA STRUCTURES 83

parent: 4, value: 1 —-> left
parent: 1, value: 3 —-> right
parent: 4, value: 5 —-> right

parent: 5, value: 20 -> right

Binary Tree Traversal

In the following sections, we describe the three basic methods to traverse a binary tree: pre-order traversal, in-order
traversal, post-order traversal.

Pre-Order Traversal

In this method we first visit the root node and then its children recursively:

1 # 31_binary trees_pre_order_traversal.py

2

3 BinaryTreePreOrder (BinaryTree) :

4 # We inherited the original class of our binary tree, and override the
5 # __repr. method to traverse the tree using pre-order traversal.
6

7 __repr__(self):

8 traverse_tree (node, side="root"):

9 ret = "'

10

11 node

12 ret += '{0} —> {1}\n"'. (node, side)

13 ret += traverse_tree (node.left_child, 'left'")

14 ret += traverse_tree(node.right_child, 'right"')

15

16 ret

17

18 traverse_tree(self.root_node)

19

20

21 __name___ == ' main__ ':

22 # We add some nodes to the tree

23 T = BinaryTreePreOrder ()

84

24
25
26
27
28
29

30

.add_node (4)
.add_node (1)
.add_node (5)
.add_node (3)

.add_node (20)

print (T)
parent: None, value: 4 —-> root
parent: 4, value: 1 -> left
parent: 1, value: 3 -> right
parent: 4, value: 5 —-> right
parent: 5, value: 20 -> right

In-Order Traversal

CHAPTER 2. DATA STRUCTURES

In this method we first visit the left-child, then the root and finally the right-child recursively:

1

32_binary trees_in_order_traversal.py

BinaryTreeInOrder (BinaryTree) :

We inherited the original class of our binary tree, and override the

__repr._ method to traverse the tree using pre-order traversal.

__repr__ (self):

traverse_tree (node, side="root"):

ret = "'
node
ret += traverse_tree(node.left_child, 'left")
ret += '{0} -> {1}\n"'. (node, side)
ret += traverse_tree(node.right_child, 'right')

ret

traverse_tree(self.root_node)

2.2. NODE-BASED DATA STRUCTURES

20

21 name == main '

22 We add some nodes to the tree

23 = BinaryTreeInOrder ()
24 .add_node (4)
25 .add_node (1)
26 .add_node (5)

27 .add_node (3)

e I T R B B R

28 .add_node (20)
29

30 print (T)

parent: 4, value: 1 -> left
parent: 1, value: 3 -> right
parent: None, value: 4 —> root
parent: 4, value: 5 -> right

parent: 5, value: 20 —-> right

Post-Order Traversal

The post-order traversal first finds the sub-trees descending from the children nodes, and finally the root.

1 # 33 binary trees_post_order_traversal.py

3 BinaryTreePostOrder (BinaryTree) :

4 # We inherited the original class of our binary tree, and override the
5 # __repr___ method to traverse the tree using pre-order traversal.
6

7 __repr__ (self):

8 traverse_tree (node, side="root"):

9 ret = "'

10

11 node

12 ret += traverse_tree(node.left_child, 'left'")

13 ret += traverse_tree(node.right_child, 'right'")

14 ret += '{0} —-> {1}\n'. (node, side)

85

86 CHAPTER 2. DATA STRUCTURES

16 ret

17

18 traverse_tree(self.root_node)
19

20

21 __name__ == ' _main__ ':

22 # We add some nodes to the tree
23 T = BinaryTreePostOrder ()

24 T.add_node (4)

25 T.add_node (1)

26 T.add_node (5)

27 T.add_node (3)

28 T.add_node (20)

29

30 print (T)

parent: 1, value: 3 —-> right

parent: , value: 1 —-> left

4
parent: 5, value: 20 -> right
parent: 4, value: 5 -> right

parent: None, value: 4 —-> root

N-ary Trees

The N-ary trees correspond to a generalization of trees. Differently from the binary case, in N-ary trees, each node

may have zero or more children.

Linked Structured N-ary Tree

Similar to a binary tree, we can build N-ary trees using a linked structure where each node is a tree itself. Following
the tree definition, the complete N-ary tree is a collection of nodes that we append incrementally. Each node includes
the following attributes: node_id, parent_id, children, and value. Figure 2.14 shows an example of a tree

with three levels where each node has a value and an identifier.
The code below shows a recursive implementation of a linked structured tree:

1 # 34 _linked trees.py

2.2. NODE-BASED DATA STRUCTURES 87

Figure 2.14: An example of a general tree structure. Green circles denote the nodes that include its value. Each node
also has an identification number ID. Black arrows represent edges.

3 Tree:

4 # We create the basic structure of the tree. Children nodes can be keep in
5 # a different data structure, such as: a lists or a dictionary. In this

6 # example we manage the children nodes in a dictionary.

7

8 __init_ (self, node_id, wvalue= , parent_id=)t

9 self.node_id = node_id

10 self.parent_id = parent_id

11 self.value = value

12 self.children = {}

13

14 add_node (self, node_id, value= , parent_id=)t

15 # Every time that we add a node, we need to verify the parent of the
16 # new node. If it is not the parent, we search recursively through the
17 # the tree until we find the right parent node.

18

19 self.node_id == parent_id:

20 # If the node is the parent, we update the dictionary with the

21 # children.

22 self.children.update ({node_id: Tree (node_id, value, parent_id)})

88

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

57

if

else:

def get_node(self,

CHAPTER 2. DATA STRUCTURES

If the node is not the parent we search recursively

for child in self.children.values/():

child.add_node (node_id,

node_id) :

value, parent_id)

We recursively get the node as long as it exists 1in the tree.

if self.node_id

return self

else:

node_id:

for child in self.children.values():

node = child.get_node (node_1id)

if node:

1f the node exists in the tree, returns the node

return node

def _ repr_ (self):

We override this method in order to traverse recursively the node in

the tree.

def traverse_tree (root):

ret

ret

for child in root.children.values():

ret += "id-node: {} -> parent_id: {} -> value: {}\n".format (

child.node_id,

ret += traverse_tree(child)

return ret

'root :\nroot—-id: {} -> value:

self.node_id,

self.value)

ret += traverse_tree(self)

name

curn

ret

main

child.parent_id, child.value)

{}\n\nchildren:\n'.format (

2.2. NODE-BASED DATA STRUCTURES

58

59

60

61

62

63

64

= Tree (0, 10)
.add_node (1, 8, 0)
.add_node (2, 12, 0)

.add_node (4, 9, 1)

T
T
T
T.add_node (3, 4, 1)
T
T.add_node (5, 1, 3)
T

.add_node (6, 18, 2)

root:

root—id: 0 -> value: 10

children:

id-node: 1 —-> parent_id: 0
id-node: 3 -> parent_id: 1
id-node: 5 -> parent_id: 3

id-node: 4 -> parent_id: 1

(@)

id-node: 2 -> parent_id:

id-node: 6 —-> parent_id: 2

value:
value:
value:
value:
value:

value:

12
18

89

We use the method get_node () to get a specific node. In this implementation, the method returns the object

representing the node:

node = T.get_node (6)

print ('The ID of the node is {}'.

node = T.get_node (1)

print ('The node has {} children'.

The ID of the node is root:

root—id: 6 —-> value: 18

children:

The node have 2 children

(node))

((node.children)))

90 CHAPTER 2. DATA STRUCTURES

N-ary Tree Traversal

There are two basic methods to traverse the tree: pre-order traversal and post-order traversal. These approaches
generalize the traverse methods for binary trees. Note that in this case, the in-order traverse is difficult to define

because we cannot determine after which child we have to visit the root node.

Pre-Order Traversal
In this method, we first visit the root node and then its children recursively:

1 # 35_trees _pre_order_traversal.py

2

3 TreePreOrder (Tree) :

4 # We inherited the original class of our linked tree, and override the
5 # __repr___ method to traverse the tree using pre-order traversal.

6

7 __repr__(self):

8 traverse_tree (root) :

9 ret = "'

10 # We first visit the root note

1 ret += "node_id: {}, parent_id: {} —> value: {}\n". (

12 root.node_id, root.parent_id, root.value)
13

14 # And finally, we traverse the children recursively
15 child root.children.values():

16 ret += traverse_tree(child)

17

18 ret

19

20 traverse_tree(self)

21

22

23 __name___ == '__ _main__ ':

24 # We add some nodes to the tree

25 T = TreePreOrder (0, 10)

26 T.add_node (1, 8, 0)

27 T.add_node (2, 12, 0)

2.2. NODE-BASED DATA STRUCTURES
28 .add_node (3, 4, 1)
29

.add_node (4, 4, 1)

30 .add_node (5, 1, 3)

I = R

31 .add_node (6, 18, 2)
32

33 print (T)

node_id: 0, parent_id: None -> value: 10
node_id: 1, parent_id: 0 -> value: 8
node_id: 3, parent_id: 1 -> value: 4
node_id: 5, parent_id: 3 -> value: 1
node_id: 4, parent_id: 1 -> value: 4

node_id: 2, parent_id: 0 -> value: 12

node_id: 6, parent_id: 2 -> value: 18

Post-Order Traversal

The post-order traversal first finds the sub-trees descendant from the children nodes, and finally the root:

1 TreePostOrder (Tree) :

2 # We inherited the class Tree from te previous example and we override the
3 # __repr__ method using the post-order traversal.

4

5 __repr__ (self):

6 traverse_tree(root):

7 ret = ''

8

9 # we first recursively traverse the children

10 child root.children.values () :

11 ret += traverse_tree(child)

13 # Finally, we visit the root note
14 string = "node_id: {}, parent_id: {} —-> value: {}\n"
15 ret += string. (root.node_id, root.parent_id, root.value)

17 ret

92

20

21

traverse_tree(self)

22 __name__ == '"_ _main__ ':

23 # We add instances

24 T = TreePostOrder (0, 10)

25 T.add_node (1, 8, 0)

26 T.add_node (2, 12, 0)

27 T.add_node (3, 4, 1)

28 T.add_node (4, 4, 1)

29 T.add_node (5, 1, 3)

30 T.add_node (6, 18, 2)

31

32 print (T)
node_id: 5, parent_id: 3 ->
node_id: 3, parent_id: 1 ->
node_id: 4, parent_id: 1 ->
node_id: 1, parent_id: 0 —->
node_id: 6, parent_id: 2 ->
node_id: 2, parent_id: 0 ->
node_id: 0, parent_id: None

Non-Recursive Traversal

to the tree

value: 1
value: 4
value: 4
value: 8
value: 18
value: 12

-> value: 10

CHAPTER 2. DATA STRUCTURES

There are two non-recursive methods to implement the tree traversal: Breadth-First Search (BFS) and Depth-First

Search (DFS). These non-recursive algorithms use auxiliary data structures to keep a record of the nodes we must

visit, to avoid infinite loops while traversing trees or other complex node-based structures.

Breadth-First Search

In the BFS strategy, the algorithm traverses the nodes level by level hierarchically, i.e, the root node first, then the set

of nodes on the second level, etc. This algorithm uses a queue to keep the nodes that it has to visit in the following

iterations.

2 TreeBFS (Tree) :

2.2. NODE-BASED DATA STRUCTURES 93

3 # We inherited the original class Tree from the previous example and
4 # override the __repr. method to apply the BFS algorithm.
5

6 def _ _repr_ (self):

7 def traverse_tree (root):

8 ret = '

9 QO = deque ()

10 Q.append (root)

11

12 # We use a list to keep the visited nodes

13 visited = []

14

15 while len(Q) > 0:

16 P = Q.popleft ()

17

18 if p.node_id not in visited:

19 # We check i1f the node is in the visited nodes list. If is
20 # not in the 1list, we add it

21 visited.append (p.node_id)

22

23 ret += "node_id: {}, parent_id: {} —-> wvalue: {}\n".format (
24 p.node_id, p.parent_id, p.value)

25 for child in p.children.values():

26 Q.append (child)

27

28 return ret

29 return traverse_tree(self)

30

31

32 if _ name_ == '_ _main_ ':

33 # We add items to the tree

34 T = TreeBFS (0, 10)

35 T.add_node (1, 8, 0)

36 T.add_node (2, 12, 0)

37 T.add_node (3, 4, 1)

94

38

39

40

41

42

T.add_node (4, 4, 1)

T.add_node (5, 1, 3)

T.add_node (6, 18, 2)

print (T)
node_id: 0, parent_id: None
node_id: 1, parent_id: 0 ->
node_id: 2, parent_id: 0 —->
node_id: 3, parent_id: 1 ->
node_id: 4, parent_id: 1 ->
node_id: 6, parent_id: 2 ->
node_id: 5, parent_id: 3 ->

Depth-First Search

-> value: 10

value:
value:
value:
value:
value:

value:

12

18

CHAPTER 2. DATA STRUCTURES

In the DFS approach, the traversal algorithm starts from the top node and then goes down until it reaches a leaf. To

achieve this kind of traversal, we have to use a stack to add the children nodes that we will visit in future iterations:

TreeDFS (Tree) :

We inherited the original class Tree from the previous example and

override the __repr. method to apply the BFS algorithm.

__repr__ (self):
traverse_tree(ro
ret = ''

0 = [

Q.append (root)

We use a list to keep the visited nodes

ot) :

visited = []
(Q) > 0:
p = Q.pop()
p.node_id

visited:

We check 1f the node is in the visited nodes 1list. If 1is

2.2.

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

In this chapter, we reviewed the most common data structures in Python, if the reader wants to go deeper into data

structures and algorithms we recommend the books of Cormen [4] and Karumanchi [5].

NODE-BASED DATA STRUCTURES

name

I T B B I I R

print (T)

node_id:
node_id:
node_id:
node_id:
node_id: 4,
node_id: 3,

node_id: 5,

not in the list, we add it

visited.append (p.node_id)

ret += "node_id: {}, parent_id: {} -> wvalue:

p.node_id, p.parent_id, p.value)
child p.children.values() :

Q.append (child)

ret

traverse_tree(self)

A\l

== main '

We add items to the tree
TreeDFS (0, 10)
.add_node (1, 8, 0)
.add_node (2, 12, 0)
.add_node (3, 4, 1)
.add_node (4, 4, 1)
.add_node (5, 1, 3)
.add_node (6, 18, 2)

parent_id: None -> value: 10
parent_id: 0 -> value: 12
parent_id: 2 -> value: 18
parent_id: 0 -> value: 8
parent_id: 1 -> value: 4
parent_id: 1 -> value: 4
parent_id: 3 -> value: 1

{I\n".

96 CHAPTER 2. DATA STRUCTURES

2.3 Hands-On Activities

Activity 2.1

In a production line of bottles, you have to implement software that lets the user predict the output of his factory. A
colleague has modeled the process, and he asks you to finish the code by adding all the functionalities. Your task is to

complete only the methods that appear commented in the code, explained below.

1 collections deque

2 package Package

3 bottle Bottle

4

5

6 Machine:

7

8 process (self, incoming_production_line):
9 print("-—-——————————————— ")

10 print ("Machine {} started working.". (
11 self.__class__._ _name_))

12

13

14 BottleModulator (Machine) :

15

16 __init__ (self):

17 self.bottles_to_produce = 0

18

19 process (self, incoming_production_line=) :
20 () .process (incoming_production_line)
21 oo

22 # Complete the method

23 #ommm

24

25

26

27 LowFAT32 (Machine) :

28

29 __init_ (self):

2.3.

30

31

32

33

34

35

36

37

38

39

40

41

42

43

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

HANDS-ON ACTIVITIES

self.discarded_bottles = []

discard_bottle(self, bottle):

self.discarded_bottles.append (bottle)
print_discarded_bottles (self) :
print ("{} bottles were discarded". (

(self.discarded_bottles)))

process (self, incoming_production_line):

HashSo0da9001 (Machine) :

process (self, incoming_production_line):

() .process (incoming_production_line)

PackageManager (Machine) :

process (self, incoming_production_line):

packages = deque ()

stack incoming_production_line.values/() :

package = Package ()
package.add_bottles (stack)
packages.append (package)

packages

97

98 CHAPTER 2. DATA STRUCTURES

65

66

67 Factory:

68

69 __init__ (self):

70 self.bottlemodulator = BottleModulator ()
71 self.lowFAT32 = LowFAT32 ()

72 self.hashSoda%9001 = HashSoda9001 ()

73 self.packageManager = PackageManager ()
74

75 producir (self, num_bottles):

76 self.bottlemodulator.bottles_to_produce = num_bottles
77 product =

78 machine [self.bottlemodulator,
79 self.lowFAT32,

80 self.hashSoda9001,

81 self.packageManager]:
82 product = machine.process (product)
83 product

84

85

86 __name__ == "_main_ "

87

88 num_bottles = 423

89

90 factory = Factory ()

91 output = factory.producir (num_bottles)

92 print("-————————————————————— ")

93 print ("{} bottles produced {} packages". (
94 num_bottles, (output)))

95 package output:

96 package.see_content ()

97 print("-————————————————————— ")

The class bottle has a parameter that denote its maximum capacity in liters (Its). By default the maximum capacity is 1

It. and it is filled with the delicious soda DCC-Cola. The class factory has a method that receives the number of bottles

2.3. HANDS-ON ACTIVITIES 99

that will be produced. Each machine has the method process that receives bottles as incoming_production_line.

1. Bottlemodulator: this machine creates the bottles. It has an attribute to set up the number of bottles to produce.
The incoming_production_line is null. By default, it produces bottles of 1-liter capacity, however, after a

particular number of bottles occurs the following variations:

* Each five produced bottles, the next bottle (ex: 6, 11, 16, ...) will have three times of the standard capacity
(11t)

* Each six produced bottles, the next bottle (ex: 7, 13, 19, ...) will have half of the last bottle capacity (1 It.)

plus four times of the antepenultimate bottle.

At the end of this process, each bottle passes to a production line in the same order that they were created. The

method that models this machine returns the production line.

2. Low-FAT32: this machine processes the production line provided by the Bottlemodulator and fills a dispatch
line. It chooses the first bottle from the incoming production line. If there is no bottle in this new line, the

machine adds the first one. If the machine already has added bottles:

* It puts the bottle at the end of the dispatch line if the bottle has the same or greater capacity than the last

bottle in the line.

* It puts the bottle at the beginning of the dispatch line if the bottle has the same or less capacity that the first

bottle in the line.

e It discards the bottle in other cases.

At the end of this process, it shows the number of discarded bottles. Finally, the model of the machine returns

the dispatch line.

3. HashSoda9001: this machine classifies and stacks the incoming bottles according to their size (for n different

capacities we will have b different stacks).
4. PackageManager: the function of this machine is to pack the stacks of bottles provided by the previous

machine. It returns a list of packages. Your colleague has already programmed this machine.

You have to complete the BottleModulator, Low-FAT32, and HashSoda9001 machines, such that they return the

expected output.

100 CHAPTER 2. DATA STRUCTURES

Activity 2.2

Most of the data structures saw in this chapter are linear, however, in some situations, we require to work using more
dimensions, such as a graph to navigate in a labyrinth or a tree to make decisions or perform depth search. In this
activity, we use a data structure that models a subway map, where each station can have until four adjacent subway
stations: Right, Left, Up, and Down. Below we show an example of a map. Note that station one is connected to
station two, but not the other way around. We can also note that it is possible to reach station eleven from station zero.

However, it is not feasible to go from station zero to station nineteen.

Figure 2.15

Get the files main.py and station.py provided in https.//github.com/advancedpythonprogramming

Modify only the file main.py and complete the path method, that works as follows:

 This method receives two subway stations
* It returns False if it is not possible to arrive from the origin to the end. You must respect the rest of the paths.
e It returns True if exist a path between the origin and the destination. It also prints the path.

You can create methods, classes or anything you require in the main.py file. You cannot change the signature

of the path method. You can work with the map provided in 2.15. The method used to generate the map is

SubwayMetro.example_map ()

Chapter 3

Functional Programming

In general, the most used programming approach for introductory courses is the procedural one, where we organize
the code as a list of instructions that tell the computer how to process a given input. In chapter 1 we introduced the
Object-Oriented paradigm, where programs represent the functionalities by objects-interaction through their attributes
and methods that modify the attributes or states of each object. In the functional approach, we organize our code as a
set of related functions that we can pass as arguments, modify or return them. Functions’ outputs can be inputs to
other functions. Functions’ scope is only the code contained inside them; they do not use or modify any data outside

their scope

The functional programming forces us to write a modular solution, breaking into apart our tasks into small pieces. It is
advantageous during debugging and testing because the wrote functions are small and easy to read. In debugging, we
can quickly isolate errors in a particular function. When we test a program, we see each function as a unit, so we only

need to create the right input and then check its corresponding output.

Python is a multi-paradigm programming language, i. e, our solutions could be written simultaneously either in a
procedural way, using object-oriented programming or applying a functional approach. In this chapter, we explain the

core concepts of functional programming in Python and how we develop our applications using this technique.

3.1 Python Functions

There are many functions already implemented in Python, mainly to simplify and to abstract from calculations that we
can apply to several different types of classes (duck typing). We recommend the reader to check the complete list of

built-in functions in [1]. Let’s see a few examples:

102 CHAPTER 3. FUNCTIONAL PROGRAMMING

Len

Returns the number of elements in any container (list, array, set, etc.)

1 print(([3, 4, 1, 5, 5, 21))
2 print(({'name': 'John', 'lastname': 'Smith'}))
3 print(((4, 6, 2, 5, 6)))

6

2

5

This function comes implemented as the internal method (__len__) in most of Python default classes:

1 print([3, 4, 1, 5, 5, 2].__len_ ())

2 print({'name': 'John', 'lastname': 'Smith'}.__len__ ())
6
2

When len (MyObject) is called, it actually calls the method MyObject.__len_ ():

1 print (id([3, 4, 1, 5, 5, 2]._len__ ()))
2 print (1d((3, 4, 1, 5, 5, 21)))
4490937616
4490937616

We can also override the ___1en___ method. Suppose we want to implement a special type of list (MyList) such that

len (MyList ()) returns the length of the list ignoring repeated occurences:

1 collections defaultdict

2

3

4 MyList ()t

5 __len_ (self):

6 # Each time this method is called with a non-existing key, the
7 # key-value palir is generated with a default value of 0

8 d = defaultdict ()

9 # This value comes from calling "int" without arguments. (Try

3.1. PYTHON FUNCTIONS 103

10 # typing int () on Python's console)

11

12 # Here we call the original method from the super-class list
13 for i in range(list.__len__ (self)):

14 d.update ({self[i]: d[self[i]] + 1})

15

16 # Here we call d's (a defaultdict) len method

17 return len (d)

0 L = MyList([l, 2, 3, 4, 5, 6, 6, 7, 7, 7, 7, 2, 2, 3, 3, 1, 11)

21 print (len (L))

1 from collections import defaultdict

3 # Another way of achieving the same behaviour

4 class MyList2(list):

5 def _ len_ (self):

6 d = defaultdict (int)

7

8 for 1 in self: # Here we iterate over the items contained in the object
9 d.update ({i: d[i] + 1})

10

11 return len (d)

14 L = MyList2([1, 2, 3, 4, 5, 6, 6, 7, 7, 7, 7, 2, 2, 3, 3, 1, 11)

15 print (len (L))

1 # Yet another way
2 class MyList3(list):
3 def _ len_ (self):

4 d = set (self)

104 CHAPTER 3. FUNCTIONAL PROGRAMMING

7 L = MyList3([1, 2, 3, 4, 5, 6, 6, 7, 7, 7, 7, 2, 2, 3, 3, 1, 11)

8 print ((L))
7
Getitem

Declaring this function within a class allows each instance to become iterable (you can iterate over the object, soon we
delve further into iterable objects). Besides allowing iteration, the ___getitem__ method lets us use indexation over

the objects:

1 MyClass:

2 __init_ (self, word=)t
3 self.word = word

4

5 __getitem__ (self, 1i):

6 self.word[i]

9 p = MyClass("Hello World")

10 print(pl0])

12 [print (c) c pl

4 (a, b, c, d) = p[0:4]

15 print(a, b, c, d)

16 print ((p))

3.1. PYTHON FUNCTIONS 105

He 1 1
[IHI, IeI, Ill, Ill, IOI, r I, IWI, IOI, IrI, Ill, Idl]

(IHI’ IeI’ Ill, Ill, IoI, 4 I, IWI, IoI, IrI, Ill, Idl)

Reversed

The reversed function takes a sequence as input and returns a copy of the sequence in reversed order. We can also
customize the function by overriding the __reversed__ method in each class. If we do not customize this function,

the built-in will be used, by iterating once from __len__ to O using the __getitem__ method.

1 a_list = [1, 2, 3, 4, 5, 6]

2

3

4 MySequence:

5 # given that we are not overriding the __reversed _ method, the built-in
6 # will be used (iterating with __getitem _ and __len_)
7 __len_ (self):

8 9

9

10 __getitem__ (self, index):

11 "ITtem_{O}". (index)

12

13

14 MyReversed (MySequence) :

15 __reversed__ (self):

16 "Reversing!!"

17

18

19 seq a_list, MySequence (), MyReversed():

20 print ("\n{} : ". (seq.__class__._ _name_), end="")

106

21 item (seq) :

22 print (item, end=", ")
list : 6, 5, 4, 3, 2, 1,
MySequence Item_8, Item_7, Item_o6,
Item_0O,

MyReversed : R, e, v, &, ¥, s, i, n, g,

Enumerate

Item_5,

-7

CHAPTER 3. FUNCTIONAL PROGRAMMING

Item_4, Item_3, Item_ 2, Item_1,

The enumerate method creates an iterable of tuples, where the first item in each tuple is the index and the second is

the original object in the corresponding index.

1 a_list = ["a", "b", "c", "d"]

2

3 i, j (a_list):

4 print ("{}: {}". (i, 3))

5

6 print ([pair pair (a_list)])

8 # We create a dictionary using the index given by

9 print({i: 7 i, 3 (a_list) })
0: a
1: b
2: C
3: d
[0, "a"), (1, '"b"), (2, "c"), (3, "d")]
{0: "a’, 1: 'b’", 2: 'c’", 3: "d’"}

Zip

"enumerate" as key

This function takes n sequences (two or more) and generates a sequence of n-tuples with the relative objects in each

sequence:
1 variables = ['name', 'lastname', 'email']
2 pl = ["John", 'Smith', 'Jsl@hotmail.com']

3.1. PYTHON FUNCTIONS 107

3 p2 = ["Thomas", 'White', 'thwh@gmail.com']

4 p3 = ["Jeff", 'West', 'jwest@yahoo.com']

6 contacts = []

7 P pl,p2,p3:

8 contact = (variables, p)

9 contacts.append ((contact))

10

11 c contacts:

12 print ("Name: {name} {lastname}, email: {email}". (x*cC))
13 #++Cc passes the dictionary as a keyworded 1list of arguments

Name: John Smith, email: jsl@hotmail.com
Name: Thomas White, email: thwh@gmail.com

Name: Jeff West, email: jwest@yahoo.com

The zip function is also its own inverse:

1 A= 1[1, 2, 3, 4]

2 B=1['a'", '"b', 'c', 'd']
3

4 zipped = (A, B)

5 zipped = (zipped)

6 print (zipped)
7 unzipped = (xzipped)
8§ unzipped = (unzipped)

9 print (unzipped)

Comprehensions

Defining a set of elements by comprehension allows you to explicitly describe the content without enumerating each

one of the elements. In Python we can do this as follows:

List comprehensions:

108 CHAPTER 3. FUNCTIONAL PROGRAMMING

| a_list = ['l', '4', '55', 165", v4', 115', 1'9Q"']
2 int_list = [(c) c a_list]

3 print("int_list:", int_list)

5 int_list_2d = [(c) c a_list (c) > 1]

6 print("int_list_2d:", int_list_2d)

int_list: [1, 4, 55, 65, 4, 15, 90]

int_list_2d: [55, 65, 15, 90]

Sets and Dictionary comprehensions:

1 collections namedtuple

3 #namedtuple is a tuple subclass that has fields (with arbitrary names),

4 #which can be accessed as tuple.field

5 Movie = namedtuple("Movie", ["title", "director", "genre"l])

6 movies = [Movie ("Into the Woods", "Rob Marshall", "Adventure"),

7 Movie ("American Sniper", "Clint Eastwood", "Action"),

8 Movie ("Birdman", "Alejandro Gonzalez Inarritu", "Comedy"),
9 Movie ("Boyhood", "Richard Linklater", "Drama"),

10 Movie ("Taken 3", "Olivier Megaton", "Action"),

11 Movie ("The Imitation Game", "Morten Tyldum", "Biography"),

12 Movie ("Gone Girl", "David Fincher", "Drama")]

14 # set comprehension
15 action_directors = {b.director b movies b.genre == 'Action'}

16 print (action_directors)

{’Clint Eastwood’, ’Olivier Megaton’}

‘We can create dictionaries from search results:

1 action_directors_dict = {b.director: b b movies b.genre == 'Action'}
2 print (action_directors_dict)

3 print (action_directors_dict['Olivier Megaton'])

{’Clint Eastwood’: Movie(title=’American Sniper’, director=’Clint Eastwood’,

3.1. PYTHON FUNCTIONS 109

genre='Action’), ’Olivier Megaton’: Movie(title=’Taken 3’,
director='0livier Megaton’, genre='Action’)}

Movie (title='Taken 3’, director='0Olivier Megaton’, genre='Action’)

Iterables and Iterators

A iterable is any object over which you can iterate. Therefore, we can use any iterable on the right side of a for loop.
We can iterate an infinite amount of times over an iterable, just like with lists. This type of objects must contain the

__iter__ method.

A iterator is an object that iterates over an iterable. These objects contain the ___next___ method, which will return
the next element each time we call it. The object returned by the __iter___ method must be an iterator. Let’s see the

following example:

1 x = [11, 32, 43]

2 c X

3 print (c)

4 print(x.__iter_)

5 (x) # Lists are not iterators

11
32
43
<method-wrapper ’__iter_ '’ of list object at 0x10bef2e48>

"list’ object is not an iterator

As we can see above, list objects are not iterators, but we can get an iterator over a list by calling the iter method.

1y = (x) # equivalent to x.__iter
2 print((v))
3 print((y))

4 print((y))

11
32
43

1 Card:

110

20

21

Even though a Deck instance contains many cards, we can not iterate directly over it, only over Deck () .cards

(which corresponds to a list, an iterable object). Suppose we want to iterate over Deck () directly. In order to do so,

CHAPTER 3. FUNCTIONAL PROGRAMMING

FACE_CARDS = {11: 'J', 12: 'Q', 13: 'K'}

__init_ (self, wvalue, suit):
self.suit = suit
self.value = value value <= 10 Card.FACE_CARDS [value]

%$s %$s" % (self.value, self.suit)

Deck:
__init_ (self):
self.cards = []
S ['Spades', 'Diamonds', 'Hearts', 'Clubs']:
v (1, 14):

self.cards.append(Card(v, s))

c Deck () .cards:

print (c)

Spades

Spades

Diamonds

Diamonds

Hearts

Hearts

Clubs

Clubs

3.1. PYTHON FUNCTIONS

we should define the ___iter_ method.

Deck:
__init_ (self):

self.cards = []

P ['Spades', 'Diamonds', 'Hearts',

n (1, 14):

self.cartas.append(Card(n, p))

__iter_ (self):

(self.cards)

c Deck () :

print (c)

Spades

Spades

Diamonds

Diamonds

Hearts

Hearts

Clubs

Clubs

Let’s see an example of how to create an iterator:

Fib:
__init_ (self):

self.prev = 0

self.curr 1

__iter_ (self):

self

'Clubs']:

111

112 CHAPTER 3. FUNCTIONAL PROGRAMMING

9 __next_ (self):
10 value = self.curr

11 self.curr += self.prev

12 self.prev = value

13 value

14

15

16 £ = Fib()

17 N = 10

18 1 = [(£) i (N)]
19 print (1)

Python’s module “itertools” provides many iterators. Here are some examples:

1 itertools

2

3 letters = ['a', 'b', 'c', 'd', 'e', 'f']
4 bools = [1, 0, 1, 0, 0, 1]

5 nums = [23, 20, 44, 32, 7, 12]

6 decimals = [0.1, 0.7, 0.4, 0.4, 0.5]

8 # Iterates indefinitely over letters.

9 colors = itertools.cycle(letters)
10 print((colors))
11 print((colors))
12 print((colors))
13 print((colors))
14 print((colors))
15 print((colors))
16 print ((colors))
17 print((colors))
18 print((colors))

19 print((colors))

3.1. PYTHON FUNCTIONS 113

1 # Iterates across all the iterables in the arguments consecutively.
2 i itertools.chain (letters, bools, decimals):

3 print (i, end=" ")

abcdef1010010.10.70.40.40.5

1 # Iterates over the elements in letters according to the condition in bools.

2 i itertools.compress (letters, bools):
3 print (i, end=" ")

ac f
Generators

Generators are a particular type of iterators; they allow us to iterate over sequences without the need to save them in
a data structure, avoiding unnecessary memory usage. Once we finish the iteration over a generator, the generator
disappears. It is useful when you want to perform calculations on sequences of numbers that only serve a purpose in a
particular calculation. The syntax for creating generators is very similar to a list comprehension, but instead of using

square brackets [], we use parentheses () :

1 Sys getsizeof

3 # using parenthesis indicates that we are creating a generator

4 a = (b b (10))

6 print (getsizeof (a))

114 CHAPTER 3. FUNCTIONAL PROGRAMMING

8 ¢ = [b b (10) 1]

10 # c uses more memory than a

11 print (getsizeof (c))

13 b a:

14 print (b)

16 print ((a)) # the sequence has disappeared

72
192

o oo W N

Example: Suppose that the archive 1ogs . txt contains the following lines::

Abr 13, 2014 09:22:34

Jun 14, 2014 08:32:11

May 20, 2014 10:12:54

Dic 21, 2014 11:11:62

WARNING We are about to have a problem.
WARNING Second Warning!

WARNING This is a bug

WARNING Be careful

3.1. PYTHON FUNCTIONS

inname, outname = "logs.txt", "logs_out.txt"
with (inname) infile:
with (outname, "w") outfile:
warnings = (l.replace('WARNING', '")
1 warnings:

outfile.write (1)

The contents of 1ogs_out . txt should read as goes:

We are about to have a problem.

Second Warning!

This is a bug

Be careful

Generator Functions

1 infile 'WARNING'

1)

115

Python functions are also able to work as generators, through the use of the yield statement. yield replaces

return, which besides being responsible for returning a value, it assures that the next function call will be executed

starting from that point. In other words, we work with a method that once it “returns” a value through yield, it

transfers the control back to the outer scope only temporarily, waiting for a successive call to “generate” more values.

Calling a generator function creates a generator object. However, this does not start the execution of the function:

dec_count (n) :
print ("Counting down from {}".
n > 0:
yield n

n -—= 1

The function is only executed once we call the generated object’s ___next___ method:

1

X = dec_count (10) # Note that this does not

print ("{}\n". (x))

here we are print

y = dec_count (5)
print ((¥))
print ((y))
print ((y))

print anything

ing the object itself

116

7

print (

(v))

<generator object dec_count at 0x1080464c8>

Counting down from 5

5
4
3
2
fibonacci() :
a, b=20, 1
vield b
a, b =",
f = fibonacci ()
print ((£))
print ((£))
print ((£))
print ((£))
print ((£))
print ((£))
gl = [(£)
print (gl)
gz = ((£)
a g2
print (a)
1
1
2
3
5
8
(13, 21, 34, 55,

a + b

144,

233,

377,

610,

987]

CHAPTER 3. FUNCTIONAL PROGRAMMING

3.1. PYTHON FUNCTIONS

1597
2584
4181
6765
10946
17711
28657
46368
75025
121393

numpy np

maximum(values) :
temp_max = -np.infty
v values:
v > temp_max:
temp_max = v

yield temp_max

elements = [10, 14, 7, 9, 12, 19, 33]

res = maximum (elements)
print ((res))

print ((res))

print ((res))

print ((res))

print ((res))

print ((res))

print ((res))

print ((res)) # we've run out of list elements!
10

14

14

14

14

117

118 CHAPTER 3. FUNCTIONAL PROGRAMMING

19
33

We can also interact with a function by sending messages. The send method allows us to send a value to the generator.
We can assign that value to a variable by using the yield statement. When we write a = yield, we are assigning
to the variable a the value sent by the send method. When we write a = yield b!, besides assigning the sent

value to a, the function is returning the object b:

1 mov_avg () :

2 print ("Entering ...")

3 total = ((yield))

4 cont =1

5 print ("total = {}". (total))

6

7 print ("While loop ...")

8 # Here 1 receive the message and also the yield returns total/count
9 i = yield total / cont

10 cont += 1

11 total += 1

12 print ("i = {}". (1))
13 print ("total = {}". (total))
14 print ("cont = {}". (cont))

Note that the code must run until the first yield in order to start accepting values through send (). Hence it is
always necessary to call next () (or send (None)) after having created the generator to be able to start sending

data:

1 m = mov_avg()

2 print ("Entering to the first next")

3 (m) # We move to the first yield
4 print ("Leaving the first next")

5 m.send(10)

6 print ("Entering to send(5)")

7 m.send(5)

8 print ("Entering to send(0)")

9 m.send (0)

!'Use of parentheses around yield b may be needed if you want to operate over the sent value

3.1. PYTHON FUNCTIONS 119

10 print ("Entering to second send(0)")
11 m.send(0)
12 print ("Entering to send(20)")

13 m.send (20)

Entering to the first next
Entering

Leaving the first next
total = 10.0

While loop

Entering to send(5)
i=25

total = 15.0

cont = 2

While loop

Entering to send(0)
i=20

total = 15.0

cont = 3

While loop

Entering to second send(0)
i=20

total = 15.0

cont = 4

While loop

Entering to send(20)

i = 20

total = 35.0

cont = 5

While loop

The following example shows how to perform the UNIX grep command by using a generator function.

1 grep (pattern) :

Q

2 print ("Searching for %s" % pattern)

4 line = yield

120 CHAPTER 3. FUNCTIONAL PROGRAMMING

5 pattern line:

6 print (line)

7

8

9 o = grep("Hello") # creating the object won't execute the function yet

10 (o) # Move on to the first yield, "Searching for ..." will be printed

12 o.send("This line contains Hello")
13 o.send("This line won't be printed")
14 o.send("This line will (because it contains Hello :))")

15 o.send("This line won't be shown either")

Searching for Hello
This line contains Hello

This line will (because it contains Hello :))

Lambda Functions

Lambda functions are short methods created “on the fly”. Their expressions are always returned (no need for the

“return” statement). Examples:

1 Strings = ["ZZ", "YY", "bb", "aa"]

2 print ("Simple sort:", (strings))

4 # If we want to sort according to the lowercase values:

5 lower (s) :

6 s.lower ()

7

8 print ("Lower sort: ", (strings, key=lower))

10 # The same result can be achieved with a lambda function:

11 print ("Lambda sort:", (strings, key= s: s.lower()))

Simple sort: [’YY', ’'ZZ', 'aa’, "bb’]
Lower sort: ["aa’, ’'bb’", "YY’', "ZZ'"]

Lambda sort: ["aa’, ’"bb’, ’'YY’', "772']

3.1. PYTHON FUNCTIONS 121

Map

The map function takes a function and an iterable and returns a generator that results from applying the function to

each value on the iterable. map (f, iterable) isequivalentto [f (x) for x in iterable]

1 matplotlib pyplot plt

2 numpy np

4 pow2 = X: X *% 2

Creates a 100 element numpy array, ranging evenly from -1 to 1

6 t = np.linspace(-1., 1., 100)
7 plt.plot (t, ((pow2, t)), 'xb")
8 plt.show()
1.0
X X
X x
x x
X x
08 x ®o
x x
x x
X x
x x
X X
0.6 X X
X X
X %
x x
X X
% %
X x
04t X X
% %
% %
S %
x %
% %
“ x
4 %
0.2 %, X
X%%& XXX
0.0 . e Sl s
-1.0 -0.5 0.0 0.5 1.0

X, y: x +y, a, b))
X, y, z: X +y + 2z, a, b, c))

c3 = ((X, VYV, z2: 2.5 % x +2 xy -2z, a, b, c))

122

11

12

13

print (cl)
print (c2)

print (c3)

[18, 14, 14, 14]
[17, 10, 19, 23]
[37.5, 33.0, 24.5, 21.0]

Filter

filter (£,

the result of applying £ (value) was True. Function £ should always return a boolean value:

6 even = ((X: X % 2 == 0, fib))
7 print ("Even:", even)
odd: [1, 1, 3, 5, 13, 21, 55, 89]
Even: [2, 8, 34]
Reduce
reduce (£, [sl,s2,s3,...,sn]) returnsthe result of applying £ over the sequence [s1, s2,s3, ..
as follows: £ (£ (£ (f£(sl,s2),s3),s4),s5), ... The following code shows an example:
1 functools
2 datetime
3
4 (X, y: x +y, (1, 10))

f = fibonacci() # Defined before
fib = [(f) i (11) 1]
odds = ((X: x % 2 != 0, fib))

print ("Odd:", odds)

Lets compute the length of a file's longest line
rstrip returns a string copy that has no trailing spaces

(or the character specified)

CHAPTER 3. FUNCTIONAL PROGRAMMING

sequence) returns a new sequence that includes all the values from the original sequence in which

., Sn]

3.2. DECORATORS 123

9 # eg: "Hello...".rstrip(".") returns "Hello"

10

11 t = datetime.datetime.now ()

2 rl = (, (1: (l.rstrip()), [line line

13 ("logs_out.txt')]1))
14 print ("reduce time: {}". (datetime.datetime.now () — t))

15 print(rl)

17 # Another way of doing the same with generator comprehensions and numpy

18 t = datetime.datetime.now ()
19 r2 = (((line.rstrip()) line ("logs_out.txt")))
20 print ("max (generator) time: {}". (datetime.datetime.now () - t))

21 print (r2)

22

23 # To visualize the lines of the file
24 line ('"logs_out.txt"'):

25 print (line.rstrip())

reduce time: 0:00:00.000224

31

max (generator) time: 0:00:00.000158
31

We are about to have a problem.
Second Warning!

This is a bug

Be careful

3.2 Decorators

Decorators allow us to take an already implemented feature, add some behavior or additional data and return a new
function. We can see decorators as functions that receive any function £1 and return a new function £2 with a
modified behaviour. If our decorator is called dec_1, in order to modify a function and assign it to the same name,

we should simply write 1 = dec_1 (f1).

124 CHAPTER 3. FUNCTIONAL PROGRAMMING

Our function £1 now contains the new data and aggregate behavior. One benefit of decorators is that we avoid the
need to modify the code of the original function (and if we want the original version of the function, we simply
remove the call to the decorator). It also avoids creating a different function with a different name (this would imply

modifying all the calls to the function you want to change).

Take the following inefficient recursive implementation of a function that returns the Fibonacci numbers:

1 datetime

2

3

4 fib(n) :

5 n == 20

6 0

7 n == 1

8 1

9

10 fib(n - 1) + fib(n - 2)
11

12

13 n = 35

14 tl = datetime.datetime.now ()

15 print (fib(n))

16 print ("Execution time: {}". (datetime.datetime.now () - tl1))

9227465

Execution time: 0:00:06.462758

A more efficient implementation might try to “store” numbers already calculated in the Fibonacci sequence. We can
use a decorator that receives the £ib function, adds memory to it and checks for the existence of that number in a

previous call:

1 efficient_fib (f) : # recieves a function as an argument
2 data = {}

3

4 func (x) : # this is the new function to be returned
5 X data:

6 data[x] = f(x) # the function recieved as an argument

3.2. DECORATORS 125

7 #is now called

8 data[x]

10 func

12 # we use the decorator.

13 fib = efficient_fib (fib)

14 # The fib function is now "decorated" by the function
15 #"efficient_fib"

16 tl = datetime.datetime.now ()

18 # We still use the same function name, there is no need
19 #to call the new function
20 print (fib(n))

21 print ("Execution time: {}". (datetime.datetime.now () - tl))

9227465

Execution time: 0:00:00.000144

Using Python’s alternative notation for decorators:

1 Qeficient_fib

2 fib(n) :

3 n==20

4 0

5 n==1

6 1

7

8 fib(n-1) + fib(n-2)
9

10 n = 35

11 tl = datetime.datetime.now ()

12 print (fib(n))

13 print ("Execution time: {}". (datetime.datetime.now () -tl))

9227465

Execution time: 0:00:00.000038

126 CHAPTER 3. FUNCTIONAL PROGRAMMING

We can use a hierarchy of decorators and receive parameters for decoration. A generic way to do this is:

1 mydecorator (function) :

2 _mydecorator (xargs, xxkw):

3 # Do stuff here before calling the original function
4 # call the function

5 res = function(xargs, #*xkw)

6 # Do more stuff after calling the function

7 res

8

9 # return the sub-function

10 _mydecorator

1 time

2 hashlib

3 pickle

4

5 cache = {}

6

7

8 is_obsolete (entry, duration):

9 time.time () - entry['time'] > duration

10

11

12 compute_key (function, args, kw):

13

14 key = pickle.dumps ((function.__name__, args, kw))
15 # returns the pickle representation of an object as a byte object
16 # instead of writing it on a file

17

18 # creates a key from the "frozen" key generated in the last step
19 hashlib.shal (key) .hexdigest ()

20

21

22 memoize (duration=10) :

23 _memoize (function) :

24 memoize (xargs, xxkw):

3.2.

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

DECORATORS

key = compute_key (function, args, kw)

do we have the value on cache?

key cache is_obsolete (cache[key], duration):

print ('we already have the value')

cache[key] ['value']

1if we didn't

print ('calculating..."')

result = function (xargs, *xxkw)

storing the result

cache[key] = {'value': result, 'time': time.time()}

result

memoize

_memoize

@memoize (0.0001)
complex_process(a, b):

a + b

This is the same as calling
complex_process = memoize (0.0001) (complex_process)

after defining the function

print (complex_process (2, 2))
print (complex_process (2, 1))
print (complex_process (2, 2))
print (complex_process (2, 2))
print (complex_process (2, 2))
print (complex_process (2, 2))
print (complex_process (2, 2))
print (complex_process (2, 2))

print (complex_process (2, 2))

127

128

calculating...

4

calculating...

3

we already have the value
4

we already have the value
4

we already have the value
4

calculating...

4

we already have the value
4

we already have the value
4

we already have the value

4

Here an example of an access protection decorator:

1 User:

2 _init_ (self, roles):
3 self.roles = roles

4

5

6 Unauthorized (Exception) :
7

8

9

10 protect (role) :

11 _protect (function) :
12 __protect (xargs, *xkw):
13 user = () .get ('user")

14 user role

CHAPTER 3. FUNCTIONAL PROGRAMMING

user.roles:

15 Unauthorized ("Not telling you!!") # exceptions coming soon!

3.2. DECORATORS 129

16 function (xargs, *xkw)
17

18 __protect

19

20 _protect

21

22

23 john = User(('admin', 'user'))

24 peter = User(('user',))

25

26

27 Secret:

28 @protect ('admin')

29 pisco_sour_recipe (self) :

30 print ('Use lots of pisco!')
31

32

33 s = Secret ()

3 user = john

35 s.pisco_sour_recipe()
36 user = peter

37 s.plisco_sour_recipe ()

Use lots of pisco!
__main__ .Unauthorized: Not telling you!!
We can also decorate classes in the same way we decorate functions:

1 # Lets suppose we want to decorate a class such that it prints a warning

2 # when we try to spend more than what we've got

3 add_warning(cls) :

4 prev_spend = getattr(cls, 'spend')

5

6 new_spend(self, money) :

7 money > self.money:

8 print ("You are spending more than what you have, "

9 "a debt has been generated in your account!!")

130

10 prev_spend(self,
11

12 setattr(cls, 'spend',
13 cls

16 @add_warning

17 Buy:

18 __init__ (self, money):

19 self.money = money

20 self.debt = 0

21

22 spend(self, money):

23 self.money —= money

24 self.money < O:

25 self.debt = (self.money)
26 self.money = 0

27 print ("Current Balance = {}".

28
29

30 b = Buy(1000)
31 b.spend(1200)

You are spending more than what you have,

Current Balance = 0

3.3 Hands-On Activities

Activity 3.1

money)

new_spend)

CHAPTER 3. FUNCTIONAL PROGRAMMING

the debt is considered positive

(self.money))

a debt has been generated in your account!!

In this activity, we have a file called Report.txt contains information about patients that attended to the city hospital

during one year. Each line refers to the fields year of attention, month of attention, day of the week, assigned color,

time of attention and release reason, separated by tabs. The assigned color shows how critical is the medical condition

of the patient. The color code is from most to less critical: blue, red, orange, yellow and green. Your task is to create

an application able to read the information from the file and generate the necessary classes and objects using this

information. To read the file, you have to create a generator function that yields each line of the file one by one. You

3.3. HANDS-ON ACTIVITIES 131

will also have to create a class called Report. An instance of this class has to keep the list of all the patients. The
instance of Report has to be a iterable, such that, iterations over it must return each patient in its list of patients.
Also, the Report class have to contain a function that given a color it returns all the patients assigned to this color.

The returned list must be created using comprehension.

Each patient instance have all the information contained in the file Report.txt plus a personal id generated by using a
generator function. Also, each patient must be able to be printed showing all his personal information, including the

id assigned by the system. After reading all the file, your application must print out all the patients.

Activity 3.2

A soccer team needs to hire some new players to improve their results in the next sports season. They bought a data
file called players.txt that contains information with most of the soccer players in the league. The team asks
your help to process the data file and get valuable information for hiring. Each line of the archive contains information

about one player in comma separated values format (CSV):

names; last_name_1; last_name_2; country; footedness; birth_day; birth_month;

birth_year; number_of_goals; high_cm, weight_kg

Using mostly only map, reduce and filter, you must perform the following tasks:

1. Read the data file players. txt using map. Generate a list of tuples, where each tuple contains the data from

each player.
2. For each of the queries below, create a function name_query (1list_tuples) that returns the following:
a) Has the name: Returns a list of tuples with the information about the players that have a defined name or
last name (1 or 2)
b) Lefty-Chileans: Returns a list of tuples with the information about all the lefty players from Chile.

c) Ages: Returns a list of tuples with the format (names, last_name_1, age) of every player. For

simplicity, just use the year of birth to calculate the age.

d) Sub-17: Returns a list of tuples with the format (names, last_name_1) if every players that have

17 years old or less (hint: use the previous result).

e) Top Scorer: Returns a tuple with all the information from the top scorer player. You can assume that

exists just one top scorer.

132 CHAPTER 3. FUNCTIONAL PROGRAMMING

f) Highest obesity risk: Returns a tuple with the format (names, last_name_1, high_cmn,
weight_kg, bmi). Where bmi is the body mass index, calculated as the body mass divided by
the square of the body height (kg/m?)

Using all the coded functions, print the results of all the queries.

Activity 3.3

The owner of a hamburger store wants you to implement an upgrade for the current production management system.
They have the main class that models each product; you have to create a decorator for that class such that you save

every newly created instance in a list (belonging to that class) called instances.

The upgrade has to allow the system to compare the produced hamburgers according to a customizable attribute that
may vary in the future. Your goal is to include a decorator called compare_by that receives as a parameter the name
of the attribute used for the comparison, such that it allows for comparing instances. We have to make all the possible
comparisons though the operators: <, >, =, <, >. For example, hamburgerl > hamburger?2 returns True if

the attribute specified in the decorator for hamburger1 is higher than the same attribute in hamburger?2.

The current function used by the management system to calculate the final price uses a fix tax value. However, The
Government will change the tax percentage in the future from 19% to 23%. Your upgrade should also change the
way the system calculates the amount of the tax applied to each sale. Unfortunately, the function cannot be directly
modified. Therefore, one of the most suitable solutions is to change the behavior of the function using a decorator,

called change_tax.

Tips and examples

* Retrieving and modifying attributes
You can use getattr and setattr to retrieve and to update the attributes of an object.
1 # Access
2 old_value = getattzr(, 'attribute_name')
3 # Modify

4 setattr(, 'attribute_name', new_value)

¢ Decorating a class
The following example shows a decorator that modifies a class method such that it prints out a message every

time we call it.

3.3. HANDS-ON ACTIVITIES

1 call_alert (method_name) :

2 _decorator(cls):

3 method = getattr(cls, method_name)
4

5 new_method (*xargs, x*kwargs):

6 print ('Calling the method!")

7 method (xargs, =*xkwargs)
8

9 setattr(cls, method_name, new_method)
10 cls

11

12 _decorator

14 #Here we apply it to a test class:

15 (@call_alert ('walk'")

16 Test:

17 walk (self):

18 'T am walking'
19

20 __name___ == "_main__":

21 t = Test ()

2 print (t.walk())

133

The following script shows the current production management system used by the store. Add your decorators at the

beginning and then, decorate the class Hamburger and the function price_after_tax:

1 Hamburger:

2

3 __init_ (self, high, diameter, meat_quantity):
4 self.high = high

5 self.diameter = diameter

6 self.meat_quantity = meat_quantity

7

8 __repr__ (self):

9 ('Hamburger {0} cms high, '

10 '{1} cm of diameter and '

134

20
21
22
23
24
25
26
27
28
29

30

price_after_tax (price_before_tax):

(price_before_tax = 1.19 + 100)

__name__ ==
hamburgerl
hamburger?2

hamburger3

" _ main

Hamburger (10,
Hamburger (7,

Hamburger (10,

15,
10,
9,

print (hamburger2 > hamburgerl)

'{2} meat quantity').

2)
3)
2)

print (hamburger2 == hamburger3)

print (hamburgerl < hamburger3)

print (Hamburger.instances)

hamburger4

Hamburger (12,

print (Hamburger.instances)

20,

print (price_after_tax(2000))

4)

CHAPTER 3. FUNCTIONAL PROGRAMMING

(self.high, self.diameter,

self.meat_quantity)

Chapter 4

Meta Classes

Python classes are also objects, with the particularity that these can create other objects (their instances). Since classes

are objects, we can assign them to variables, copy them, add attributes, pass them as parameters to a function, etc.

1 ObjectCreator:

4 print (ObjectCreator)

7 visualize (o) :

8 print (o)

10 visualize (ObjectCreator)

<class ’'ObjectCreator’>

<class ’'ObjectCreator’>

1 # Here we check 1if ObjectCreator has the attribute weight

2 print((ObjectCreator, 'weight'))
False

1 # Here we are directly adding the weight attribute
2 ObjectCreator.weight = 80
3 print((ObjectCreator, 'weight'))

4 print (ObjectCreator.weight)

136 CHAPTER 4. META CLASSES

True

80

1 # Assigning the class to a new variable

2 # Note that both variables reference the same object
3 ObjectCreatorMirror = ObjectCreator

4 print((ObjectCreatorMirror))

5 print((ObjectCreator))

6 print (ObjectCreatorMirror.weight)

140595089871608
140595089871608
80

Note that any changes we make to a class affect all of the class objects, including those that were already instantiated:

1 Example:

4 x = Example ()

5 print((x, 'attr'"))

6 Example.attr = 33

7y = Example ()

8§ print(y.attr)

9 Example.attr2 = 54

10 print(y.attr2)

11 Example.method = self: "Calling Method..."
12 print (y.method())

13 print ((x, 'attr'))

False

33

54

Calling Method. ..

True

4.1. CREATING CLASSES DYNAMICALLY 137

4.1 Creating classes dynamically

Since classes are objects, we can create them at runtime just like any other object. For example, you can create a class

within a function using the class statement:

1 create_class (name) :

2 name == 'MyClass':

3 MyClass: # Usual way of creating a class
4

5 MyClass

6

7 OtherClass:

8

9 OtherClass

10

11 cl = create_class('MyClass')

12 print(cl())
<MyClass object at 0x1078ff£710>

We could also create a class in runtime using Python’s exec command, which runs the code written in the input string.
(You should be extremely careful with this function, and never execute a user given code, as it may contain malicious

instructions).

1 name = "MyClass"
2 my_class = """

3 class %s():

4 def __init__ (self, a):
5 self.at = a

6 """ % (name)

7 (my_class)

8 e = MyClass(8)

9 print(e.at)

That’s pretty much, more of the same we have done so far. Now let’s do it dynamically. First, let’s remember that the

type function returns an object’s type:

138 CHAPTER 4. META CLASSES

1 print((1))

2 print(("1M))
3 print((cl))

4 print((c1(0)))

5 # type is also an object of type 'type', it is an instance of itself

6 print (())

<class ’'int’>
<class ’'str’>
<class ’"type’>
<class ’'MyClass’>

<class ’'type’>

type can also create objects in runtime by taking a class descriptors as parameters. In other words, if we call type
with only one argument, we are asking the type of the argument, but if you call it with three arguments, we are
asking for the creation of a class. The first argument is the class name; the second argument is a tuple that contains
all the parent classes. Finally, the third argument is a dictionary that contains all the class’s attributes and methods:

{attr_name:attr_value} or {method_name:function}. Below we show an example:

1 name = "MyClass"

2 c2 = (name, (), {1})

1 # We can do the same with a function

2 create_class (name) :
3 c = (name, (), {1})
4 c

6 # Here we create the class MyClassZ2

7 create_class ("MyClass2") ()

Obviously we can also add attributes:

1 create_class (name, attr_name, attr_value):

2 (name, (), {attr_name: attr_value})

4 Body = create_class ("Body", "weight", 100)
5 bd = Body () # using it as a normal class to create instances.

6 print (bd.weight)

4.1. CREATING CLASSES DYNAMICALLY 139

100

We can also add functions to the class dictionary, to create the methods of the class:

1 # a function that will be used as a method in the class we shall create

2 lose_weight (self, x):

3 self.weight -= x

4

5 Body = ("Body", (), {"weight": 100, "lose_weight": lose_weight})

6 bd = Body /()

8 print (bd.weight)
9 bd.lose_weight (10)

10 print (bd.weight)

100
90

To inherit from the Body class:

1 MyBody (Body) :

we should write:

1 MyBody = ("MyBody", (Body,), {})
2 print (MyBody)

3 print (MyBody.weight)

<class ’'MyBody’>

100

If we want to add methods to MyBody:

1 see_weight (self) :

2 print (self.weight)

3

4 MyBody = ("MyBody", (Body,), {"see_weight": see_weight})
5 print((Body, "see_weight"))

6 print((MyBody, "see_weight"))

140

print (getattr (MyBody, "see_weight"))

print (getattr (MyBody (), "see_weight"))

ml = MyBody ()

ml.see_weight ()

False
True

<function see_weight at 0x1078e02f0>

<bound method MyBody.see_weight of <MyBody object at 0x1078ffc50>>

100

4.2 Metaclasses

Metaclasses are Python’s class creators; they are the classes of classes. t ype is Python’s metaclass by default. It is
written in lower_case to maintain consistency with st r, the class that creates string objects, and with int, the class

that creates objects of integer type. type is simply the class that creates objects of type class.

In Python all objects are created from a class:

height = 180
print (height.___class_)
name = "Carl"

print (name.__class_)

func () :

print (func.__class_)

MyClass () :

print (MyClass.__class__)

<class ’"int’>
<class ’str’>

<class '’ function’>

CHAPTER 4. META CLASSES

4.2. METACLASSES 141

<class ’"type’>

We can also check what is the creator class of all the previous classes:

I print (height._ _class__._ class_)
2 print (name.__class__._ _class__)

3 print (func.__class__.__class__)

4 print (MyClass.__class__.__class__)

<class ’'type’>
<class ’"type’>
<class ’"type’>

<class ’"type’>

""metaclass'’' keyword argument in base classes

We can add the metaclass keyword in the list of keyword arguments of a class. If we do it, Python uses that

metaclass to create the class; otherwise, Python will use t ype to create it:

1 MyBody (Body) :

5 MyOtherBody (Body, metaclass=) :

Python asks if the metaclass keyword is defined within MyBody class arguments. If the answer is “yes”, like in
MyOtherBody, a class with that name is created in memory using the value of metaclass as a creator. If the
answer is “no”, Python will use the same metaclass of the parent class to create the new class. In the case of MyBody,
the metaclass used is Body’s metaclass i.e: type. What can we put in metaclass?: Anything that can create a

class. In Python, type or any object that inherits from it can create a class.

Personalized Metaclasses

Before we start explaining of to personalize a metaclass, we will take a look at the structure of regular Python classes

we have been using so far:

1 System:

142

20
21
22
23
24
25
26
27
28
29
30
31
3
33
34
35

36

CHAPTER 4. META CLASSES

users_dict = {} we will do this automatically inside __new___
cls is the object that represents the class
def _ _new__ (cls, *args, =*xkwargs):

cls.users_dict = {}

cls.id_ = cls.generate_user_id()

object has to create the class (everything inherits from object)

return super () ..__new__ (cls)
recall that self is the object that represents the instance of the class
def _ _init_ (self, name):

self.name = name
def _ _call__ (self, =xargs, =xxkwargs):

return [System.users_dict[ar] for ar in args]
@staticmethod
def generate_user_id():

count = 0

while True:

yield count
count += 1

def add_user (self, name):

System.users_dict [name] = next (System.id_)

if __name_ == "_ _main_ ":

e = System("Zoni")

e.add_user ("KP")
e.add_user ("CpP")
e.add_user ("BS")

print (e.users_dict)
print (e ("KP", "CP", "BS"))

print (System.mro()) # prints the class and superclasses

4.2. METACLASSES 143

{("KP’: 0, 'CP’: 1, 'BS’: 2}
[0, 1, 2]

[<class '_main__ .System’>, <class ’object’>]

The __new___ method is in charge of the construction of the class. c1s corresponds to the object that represents the
created class. Any modification we want to do in the class before its creation can be done inside the ___new___ method.
In the example above, we are creating a dictionary (users_dict) and an id (id_). Both of them will belong to
the class (static), not to the instances of the class. Note that __new___ has to return the created class, in this case

returning the result of the __new___ method of the superclass.

Inside __init__, the class is already created. Now the main goal is to initialize the instances of it, by modifying
self, the object that represents the instance of the class. In the example above, the instance initialization just registers

the variable name inside the instance (self.name = name).

Finally, the __call__ method is in charge of the action that will be performed every time an instance of the class is
called with parenthesis (treated as a callable). In the example, when we execute e ("KP", "CP", "BS"), we are

executing e.___call___ with the passed arguments.

Now we are ready to understand how to personalize a metaclass. Following the same structure of regular Python
classes mentioned above, imagine that the class now is a metaclass, and the instance is a class. In other words, instead
of cls we use mcs in the __new__ method and instead of self we use cls inthe _ init__ method. The
__call__ method will be in charge of the action performed when an instance of the metaclass (i.e. the class) is

called with parenthesis.

The primary purpose of metaclasses is to change a class automatically during its creation. To control the creation and
initialization of a class, we can implement the __new___and __init__ methods in the metaclass (overriding). We
must implement __new___: when we want to control the creation of a new object (class); and __init__: when we

want to control the object initialization (in this context a class) after its creation.

1 MyMetaClass ()t

2

3 __new__ (meta, clsname, bases, clsdict):

4 print('-————"""""""" = ")
5 print ("Creating Class: {} ". (clsname))
6 print (meta)

7 print (bases)

8 # Suppose we want to have a mandatory attribute

144 CHAPTER 4. META CLASSES

9 clsdict.update (({'mandatory_attribute': 10}))
10 print (clsdict)

11 () .__new__ (meta, clsname, bases, clsdict)

12 # we are calling 'type' __new__ method after doing the desired
13 # modifications. Note hat this method is the one that would have
14 # been called had we not used this personalized metaclass

15

16

17 MyClass (metaclass=MyMetaClass) :

18

19 func (self, params):

20

21

22 my_param = 4

23
24 ml = MyClass /()

25 print (ml.mandatory_attribute)

Creating Class: MyClass

<class ’"MyMetaClass’>

0

{’mandatory_attribute’: 10, 'my_param’: 4, ’'__qualname__': ’"MyClass’,
"func’: <function MyClass.func at 0x1078e0620>, ’'__module__': ’'builtins’}

10

Overwriting the __call__ method

The __call__ method is executed each time the already created class is called to instantiate a new object. Here is

an example of how the __call__ method can be intercepted whenever an object is instantiated:

1 MyMetaClass () :

2

3 _call__(cls, =xargs, =xxkwargs):

4 print ("__call___ of {}". ((cls)))

5 print("__call__ xargs= {}". ((args)))

6 () .__call__ (xargs, =xxkwargs)

4.2. METACLASSES 145

9 MyClass (metaclass=MyMetaClass) :

10

11 __init_ (self, a, b):

12 print ("MyClass object with a=%s, b=%s" % (a, b))

14 print('creating a new object..."')

15 objl = MyClass(l, 2)

creating a new object...
__call__ of <class ’'MyClass’>
__call__ xargs= (1, 2)

MyClass object with a=1, b=2

Overwriting the __init__ method

We can also override the ___init___ method to mimic the behavior of the previous example. The main difference
isthat __init__ (justlike _ new__)is called upon when creating the class, however __call___is called when

creating a new instance:

1 MyMetaClass ()t

2

3 _ init_ (cls, name, bases, dic):

4 print ("__init___ of {ym. ((cls)))
5 () .__init__ (name, bases, dic)

6

7

8 MyClass (metaclass=MyMetaClass) :

9

10 __init_ (self, a, b):

11 print ("MyClass object with a=%s, b=%s" % (a, b))

13 print ('creating a new object...')

14 objl = MyClass(l, 2)

__init__ of <class ’"MyClass’>

146 CHAPTER 4. META CLASSES

creating a new object...

MyClass object with a=1l, b=2

4.3 Hands-On Activities

Activity 4

In the file called AC0O4_0_provided_code.py we have two implemented classes and a main. You have to create a

metaclass called Met aRobot that must add the following data and methods to the Robot class:

* The creator (static) variable: It must be your user id

* The start_ip (static) variable: It is the IP address from where the robot is initialized. The address is

"190.102.62.283"

* The check_creator method: This method verifies that the robot exists inside the list of programmers. |

must print out a message indicating if the creator is inside the programmer’s list or not.

* The disconnect method: By using this method, the robot can disconnect any hacker that is on the same port
as the robot. In case the robot finds a hacker in the same port, it must print out a message telling the situation.

Assume that the port’s hacker attribute has to be changed to O to disconnect it.

* The change_node method: With this method, the robot can modify the node (port) to anyone that gets inside

the network. It must print out a message indicating from what node it is coming from and what is its destination.

Consider that only the Robot class can be builded from the MetaRobot metaclass. In case any other
class is attempted to be created from MetaRobot you should raise an error. It is forbiden to modify the

ACO04_0_provided_code.py file, everything has to be done through the Met aRobot metaclass.

Chapter 5

Exceptions

Exceptions are execution errors or situations where the program cannot obtain a valid or expected value. In most
cases, they are indicating that something is going wrong with the execution of the program. For example, this situation
happens when the input data type does not match with the expected by our program, or any other runtime errors. These

conditions produce the unexpected termination of the execution. Python represents exceptions as objects.

5.1 Exception Types

In Python, all exceptions inherit from the BaseException class. Below, we see examples of the most common

Python exceptions.

1 # 0.py
2
3 # SyntaxError exception: print is valid PythonZ2.x, but incorrect in Python3.x

4 print 'Hello World'

File "O.py", line 4
print ’'Hello World’

A

SyntaxError: Missing parentheses in call to ’'print’

3 # In this Python version print is a function

4 # and requires params inside the brackets

148 CHAPTER 5. EXCEPTIONS

5 print ('Hello World')

Hello World

1 # 2.py

3 # NameError exception: for data input in PythonZ.x, but incorrect 1in
4 # Python3.x
5 a = raw_input ('Enter a number: ')

6 print (a)

Traceback (most recent call last):
File "2.py", line 4, in <module>
a = raw_input (' Enter a number: ')

NameError: name ’'raw_input’ is not defined

1 # 3.py

3 # ZeroDivisionError exception: division by zero

4 x=5.0/0

Traceback (most recent call last):
File "4.py", line 5, in <module>
x =5.0/0

ZeroDivisionError: float division by zero

1 # 4.py

2

3 # IndexError exception: index out of range. A typical error that ocurrs

4 # when we try to access to an element of a list with an index that exceeds
5 # its size.

6 # Lists in Python have indexes from 0 to len(list_)-1

8§ age = [36, 23, 12]

9 print (agel3])

Traceback (most recent call last):

File "5.py", line 9, in <module>

5.1. EXCEPTION TYPES

print (age[3])

IndexError: list index out of range

5.py

TypeError exception: erroneus data type handling.
A typical example 1is trying to concatenate a list

with a variable that is not a list

age = [36, 23, 12]

print (age + 2)

Traceback (most recent call last):
File "6.py", line 8, in <module>
print (age + 2)

TypeError: can only concatenate list (not "int") to list

6.py

Correct data type handling.

To concatenate a list to another object, the latter has to be a list too

age = [36, 23, 12]

print (age + [2])

[36, 23, 12, 2]

7.py

AttributeError exception: incorrect use of methods of a class or data type.

In this example the class Car has only defined the method move, but the

program tries execute the method stop () that doesn't exist

class Car:
def _ init_ (self, doors=4):

self.doors = doors

149

150

mover (self) :

print ('avanzando')

chevi = Car ()

chevi.stop ()

Traceback (most recent call last):

File "8.py", line 16, in <module>

chevi.stop ()

AttributeError: ’'Car’

8.py

KeyError exception:

object has no attribute

incorrect use of key in dictionaries.

"stop’

CHAPTER 5. EXCEPTIONS

In this example the program ask for an item associated with a key that

doesn't appears in the dictionary

book = {'author': 'Bob Doe', 'pages':

print (book['editorial'

1)

Traceback (most recent call last):

File "9.py", line 8§,

in <module>

print (book[’editorial’])

KeyError: ’'editorial’

5.2 Raising exceptions

'a lot'}

We trigger exceptions in a program, or within a class or function using the statement raise. We can also add

optionally a descriptive message to be shown when the exception is raised:

1

9.py

Operations:

@staticmethod

5.2. RAISING EXCEPTIONS 151

7 divide (num, den) :

8 den ==

9 # Here we generate the exception and we include
10 # information about its meaning.

11 ZeroDivisionError ('Denominator is 0')

12 (num) / (den)
13
14
15 print (Operations () .divide (3, 4))
16 print (Operations().divide (3, 0))
0.75

Traceback (most recent call last):
File "10.py", line 16, in <module>
print (Operations () .divide (3, 0))
File "10.py", line 11, in divide
raise ZeroDivisionError (' Denominator is 07)

ZeroDivisionError: Denominator is 0

When an exception occurs inside a function contained in another one, this exception interrupts all the functions that

include it and the main program. Besides the existent exceptions, it is possible to raise exceptions with customized

messages:

1 # 10.py

2

3

4 Circle:

5

6 _ init__ (self, center):

7 (center,)t

8 Exception('Center has to be a tuple')
9 print ('This line is not printed')
10

11 self.center = center

12

13 __repr__ (self):

14 'The center 1is {0}'. (self.center)

152

20

21

cl = Circle((2, 3))

print (cl)

c2 = Circle([2, 31)

print (c2)

The center is (2, 3)

Traceback (most recent call last):

File "11l.py", line 20, in <module>

c2 = Circle([2, 31)

File "1l.py", line 8, in __init___

raise Exception(’Center has to be a tuple’)

Exception: Center has to be a tuple

5.3 Exception handling

CHAPTER 5. EXCEPTIONS

Every time an exception occurs, it is possible to handle it with the statements t ry and except. When a block of

instructions defined inside the #ry statement triggers an exception, and the except processed it using the instructions

inside of it. Afterward, the program continues its execution normally and does not stop or crash. The block of

instructions inside the except defines how the program behaves depending on the exception type. In the following

example, we observe that the program does not crash, even though occurs an invalid operation inside the t ry block:

11.py

Operations:

@staticmethod

divide (num, den) :

This method will raise an exception when denominator be 0

(num) /

(den)

5.3. EXCEPTION HANDLING 153

13 # Here we manage the exceptions during the runtime of the function.

14 # The first case will return an output and the second case will yield and
15 # error beacuse denominator is 0. The output in this wont be printed.

16

17 print ('"First case: {}'.format (Operations () .divide (4, 5)))

18 print ('Second case: {}'.format (Operations().divide(4, 0)))

19

20 except ZeroDivisionError as err:

21 print ('"Error: {}'.format (err))

First case: 0.8

Error: float division by zero

We can handle separately different types of exceptions by adding more specific exception blocks (ex:
ZeroDivisionError, TypeError, KeyError, etc.), each one catches the exceptions according to the

exception type that occurred:

1 # 12.py

4 class Operations:

6 @staticmethod

7 def divide (num, den):

8 # Check if the input parameters are a valid type

9 if not (isinstance (num, int) and isinstance (den, int)):
10 raise TypeError ('Invalid input type.')

11

12 # Check the numerator and denominator are greater than 0
13 if num < 0 or den < 0:

14 # The message inside brackets will show once the

15 # exception has been handled.

16 raise Exception('Negative values. Check the input parameters')
17

18 return float (num) / float (den)

154 CHAPTER 5. EXCEPTIONS

25

26

27

28

29

30

31

32

33

34

35

36

38

39

40

41

)

43

44

45

46

47

In this code section we manage the runtime exception using try and except

sentences.

First example, using float values

print ('First case: {}'. (Operations () .divide (4.5, 3)))

(ZeroDivisionError, TypeError) err:
This block works with the already defined exception types

print ('Error: {}'. (err))

Exception err:
This block only handles type Exception exceptions

print ('Error: {}'. (err))

Second example, using negative values

print ('Second case: {}'. (Operations () .divide (-5, 3)))

(ZeroDivisionError, TypeError) err:
This block works with the already defined exception types

print ("Error: {}'. (err))

Exception err:
This block only handles type Exception exceptions

print ('Error: {}'. (err))

Error: Invalid input type.

Error: Negative wvalues. Check the input parameters

If we do not use any particular exception name after the Except statement, it caught any exception triggered in the

try. The try and except blocks can be complemented by the el se and finally statements. The else block

execute the instructions inside of it only in case no exception happened. The finally statement always executes the

instructions defined in its block. This statement is commonly used to trigger cleaning actions, such as closing a file,

database connections, etc. The following code shows an example:

5.3. EXCEPTION HANDLING

1

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

13.py

class Operations:
@staticmethod
def divide (num, den) :
if not (isinstance(num, int) and isinstance (den,

raise TypeError ('Invalid input type')

if num < 0 or den < 0:

raise Exception('Negative input values')

return float (num) / float (den)

The complete Try/Except structure
try:
Check if we can excecute this operation

resultado = Operations.divide (10, O0)

except (ZeroDivisionError, TypeError):

int)):

This block works with the already defined exception types

print ('Check the input values.

'They aren\'t ints or the denominator is 0')
except Exception:
This block only handles type Exception exceptions

print ('All given values are negative')

else:

When we do no have errors, the program excecute this lines

print ('Everything is ok. They were no errors')

155

156 CHAPTER 5. EXCEPTIONS

36
37 print ('Rebember to ALWAYS use this structure to handle your runtime'

38 'errors')
Check the input values. They aren’t ints or the denominator is 0
Rebember to ALWAYS use this structure to handle your runtimeerrors

5.4 Creating customized exceptions

In Python, there are three main types of exceptions: SystemExit, KeyboardInterrupt and Exception. All
of the them inherits from BaseException. All the other exceptions suchs as the exceptions generated by errors

iherits from the Exceptions class, as is shown in Figure 5.1:

SystemExit

Keyboardinterrupt ‘

SyntaxError
NameError
ZeroDivisionError
IndexError
TypeError
AttributeError

BaseException

Exception

User customized exceptions ‘

Figure 5.1: Diagram of exceptions hierarchy. All exceptions descended from a the general exception
BaseException. We can create our new exceptions inheriting from the base class Exception.

The previous diagram explains the reason why using only the Except ion statement without specifying exceptions

catches any error. All of them are subclasses of Exception.

1 # 14.py

2

3

4 Operations:

5

6 @staticmethod

7 divide (num, den) :

8 ((num,) (den,)) :

9 TypeError ('Invalid input type')

5.4. CREATING CUSTOMIZED EXCEPTIONS

20

21

22

23

24

num < 0

Exception('Negative input values')

(num)

In this section we handle the excetions

print (Operations () .divide (4,

Exception err:

This block works for all exception types.

print ('"Error: {}'.

print ('Check the input')

/

den < O:

(den)

(err))

Error: float division by zero

Check the input

0))

157

To create customized exceptions, we need that the custom exception inherits from the Exception class. The

following code shows an example:

1

15.py

Exceptionl (Exception) :

Exception2 (Exception) :

__init_ (self,

() .__init__ ("One of the values {0} or {1} is not integer"

Operations:

ay

b) :

(a,

b))

158 CHAPTER 5. EXCEPTIONS

17 @staticmethod

18 def divide (num, den):

19 # In this example, we re-define exceptions that we used in the last
20 # examples.

21

22 if not (isinstance(num, int) and isinstance (den, int)):
23 ralse Exception2 (num, den)

24

25 if num < 0 or den < O:

26 ralse Exceptionl ('Negative values\n')

27

28 return float (num) / float (den)

29

30

31 # This case raise the exception 1

32 try:

33 print (Operations () .divide (4, -3))

34

35 except Exceptionl as err:

36 # This block works for type one exception
37 print ('"Error: {}'.format (err))

38

39 except Excepcion2 as err:

40 # This block works for type two exception
41 print ('"Error: {}'.format (err))

42

43

4 # This case raise the exception 2

45 try:

46 print (Operations () .divide (4.4, -3))

47

48 cxcept Exceptionl as err:

49 # This block works for type one exception

50 print ("Error: {}'.format (err))

5.4. CREATING CUSTOMIZED EXCEPTIONS 159

51

52 Exception?2 err:
53 # This block works for type two exception
54 print ('"Error: {}'. (err))

Error: Negative wvalues

Error: One of the values 4.4 or -3 is not integer

Here we show another example:

1 # 16.py

2

3 TransactionError (Exception) :

4 __init__ (self, funds, expenses):

5 () .__init__ ("The money on your wallet is not enough to pay ${}"
6 . (expenses))
7 self.funds = funds

8 self.expenses = expenses

9

10 excess (self):

11 self.funds - self.expenses
12

13

14 Wallet:

15 __init__ (self, money):

16 self.funds = money

17

18 pay (self, expenses):

19 self.funds - expenses < 0:

20 TransactionError (self.funds, expenses)
21 self.funds —-= expenses

22

23 __name__ == '__main__':

24 b = Wallet (1000)
25

26

160 CHAPTER 5. EXCEPTIONS

27 b.pay (1500)

28 TransactionError err:

29 print ('"Error: {}'. (err))

30 print ("There is an excess of expenses of ${}". (err.excess()))

Error: The money on your wallet is not enough to pay $1500

There is an excess of expenses of $-500

Notes

Handling exceptions is another way of controlling the program’s flow, similar to i f-e1se sentences. It is recom-
mended to use exceptions to control the errors in the program. We always can to create a sort of “error codes” for
managing the returned values or results in different kind of operations. However, this solution makes the program
and other modules hard to maintain. The number of error codes may grow at the same time the number of possible
outputs we need to control. It makes our program impossible to be understood by any other programmers. A clearer
example of the reason we need to handle exceptions is that in general, our program has to notify other applications
that a particular error occurred. This kind of notifications would not be possible with the use of error codes. It is also
critical that our code does not unexpectedly crash because during a crash the interpreter usually exposes in the output

part of code that triggers the error. We have to avoid this situation if we correctly handle the exceptions.

5.5 Hands-On Activities

Activity 5

The Physics Club of your University The Absolute Zeros decided to program a calculator, whose main feature is that it
handles letters and numbers as input. The person who was working on the project decided to change to the chemistry
club Cooler than Absolute Zero and left the calculator unfinished. The calculator works well for some operations, but
many times it triggers errors, and no one has been able to fix it. The president of the Physics Club has asked you to fix

the code, such that it does not crash whenever is possible, handling the errors produced by user’s input.

Consider that the president sent you a list of tested operations that work correctly: tested_operations;and a list
with operations that do not work: statements_for_testing. We provide the file ACO5_0_provided_code.py
with the code. You cannot modify the code from line 87. Your job is to write the code to handle the exceptions and

obtain the following output:

[ERROR] KeyError

5.5. HANDS-ON ACTIVITIES 161

Letter ‘g’ won’t be aggregated. It already exist in memory.
[ERROR] ZeroDivisionError

1 divided 0 is equal to infinite

[ERROR] KeyError

‘a’ doesn’t have any assigned values .It must be added before using it.

The operation a+2 wasn’t executed

9.81 plus 0 is equal to 9.81

88 divided by 2 is equal to 44.0

44.0 plus 0 is equal to 44.0

[ERROR] Stoplteration

There’s one missing operator in 88/2+0+

[ERROR] ValueError

‘1=2" cannot be parsed to float

[ERROR] The syntax ’'1=2’ is incorrect. Read the manual for more information.

8.953 plus 1 is equal to 9.953

Chapter 6

Testing

A lot of programmers agree that “testing” is one of the most important aspects of the development of the software.
Testing is the art of generating codes that can test our programs, checking that our development achieves the behavior
requested by the final users. Even though we generally perform manual tests each time we develop a new piece of
code that executes a task, it’s very likely that we manually test for a rather typical case, which does not ensure that our
new piece of code works in every possible scenario. Another factor to consider is efficiency: it takes a lot of time and
code lines to set up and execute each evaluation. For these reasons, programmers prefer to automate testing since it

quickly creates the set up for many different tests and allows to run them in a much visible way.

From now on, all your programs must go hand in hand with a program that tests it. On this chapter, we will see the
fundamental concepts of testing and how to assemble unitary tests, but testing is a section that provides for an entire

course.

In this chapter, we focus on unitary tests. A unitary test performs tests on minimal units of codes, such as functions or

class methods. We present two Python libraries that make easier the creation of unitary tests: unittest y Pytest.

6.1 Unittest

The library unittest of Python gives many tools to create and run tests, one of the most important classes is
“TestCase”. In general, the classes that we create to perform tests must inherit the TestCase class. By convention all
of the methods we implement to test must be called starting with the word “test”, so that they are recognize at the

moment of running the full program of testing in an automatic way:

1 unittest

164 CHAPTER 6. TESTING

4 CheckNumbers (unittest.TestCase) :
5

6 # This test has to be ok

7 test_int_float (self):

8 self.assertEquals (1, 1.0)

10 # This test fails

11 test_str_float (self):

12 self.assertEquals (1, "1")
13
14 __name__ == "__main__ ":
15 unittest.main ()
F
FAIL: test_str_ _float (__main__ .CheckNumbers)

Ran 2 tests in 0.000s

FAILED (failures=1)

The dot before the F indicates that the first test (test_int_float) passed with success. The F after the dot indicates that
the second test failed. Afterward appear the details of the tests that failed, followed by the number of executed tests,

the time it took and the total number of tests that failed.

We could then have all the tests we need inside the class that inherits TestCase, as long as the name of the method
begins with “test”. Each test must be entirely independent of the others, in other words, the result of the calculus of a

test must not affect the result of another test.

Assertion Methods

Assertion methods allow us to perform an essential kind of tests, where we know the desired result, and we just check
if the value returned by the test matches that result. Assertion methods allow us to validate results in different ways.

Some assertion methods (included in the class TestCase) are:

6.1. UNITTEST

1

20

21

22

23

24

25

26

27

28

29

30

31

32

import unittest

class ShowAsserts (unittest.TestCase) :

def test_assertions(self):

a =2

b =a

c=1. +1

self.assertEqual ([1, 2, 3], [1, 2, 31) # Fails if a != b
self.assertNotEqual ("hello", "bye") # Fails if a == b
self.assertTrue ("Hello" == "Hello") # Fails 1f bool(x) is False
self.assertFalse("Hello" == "Bye") # Fails 1if bool (x) 1is True
self.assertIs(a, b) # Fails 1if a is not b

Fails if a is b. Pay attention that "is" implies
equality (==) but not upside. Two differents objects
can have the same value.

self.assertIsNot (a, c)

self.assertIsNone (None) # Fails if x is not None
self.assertIsNotNone (2) # Fails 1f x 1is None
self.assertIn (2, [2, 3, 4]) # Fails 1if a 1s not in b
self.assertNotIn(l, [2, 3, 41]) # Fails 1f a is in b

Fails 1f isinstance(a, b) 1s False
self.assertIsInstance("Hello", str)
Fail 1f isinstance(a, b) 1is True
self.assertNotIsInstance ("1", int)
if __name_ == "_ _main_ ":

unittest.main ()

Ran 1 test in 0.000s

165

166 CHAPTER 6. TESTING

OK

The method assertRaises requires an exception, a function or any object with the implemented method
__call__ (callable) and an arbitrary number of arguments that will be passed to the callable method. The
assertion will invoke the callable method with its arguments. It will fail if the method does not generate the expected

error. The next code shows two ways of how to use the method assertRaises.

1 unittest

2

3

4 average (seq) :

5 (seq) / (seq)

6

7

8 TestAverage (unittest.TestCase) :
9

10 test_python30_zero(self):

11 self.assertRaises (ZeroDivisionError, average, [])

13 test_python3l_zero(self):

14 with self.assertRaises (ZeroDivisionError) :
15 average ([])

16

17 __name___ == "_main__ ":

18 unittest.main ()

Ran 2 tests in 0.000s

OK

In the second example assertRaises is used within a context manager (with sentence). It allows us to write our
code in a more natural way by calling directly to the function average instead of having to call it indirectly as in the

other example. We address context managers with more details in Chapter 10.

6.1. UNITTEST 167

In Python 3.4 appeared new assertion methods:

* assertGreater (first, second, msg=None)

* assertGreaterEqual (first, second, msg=None)

* assertlLess (first, second, msg=None)

* assertlLessEqual (first, second, msg=None)

* assertAlmostEqual (first, second, places=7, msg=None, delta=None)

* assertNotAlmostEqual (first, second, places=7, msg=None, delta=None)
They test that £irst and second are approximately (or not approximately) equal, by calculating the difference,
rounding the result number to places decimals places. If the argument delta is provided instead of “places”, the

difference between first and second must be less or equal (0 more in case of assertNotAlmostEqual) than delta.

If delta and places are given it generates an error.

The setUp method

Once we have written several tests, we realize we need to assemble a group of objects that will be used as input to
compare the results of a test. The setUp method allows us to declare the variables that we will use and also takes
care of resetting or re-initializing the variables before entering to a new test, in case that one of the other tests modified

something in the variables.

1 collections defaultdict
2 unittest

3

4

5 StatisticList ()t

6

7 mean (self) :

8 (self) / (self)
9

10 median (self) :

11 (self) % 2:

12 self| ((self) / 2)1

168

20
21
2
23
24
25
26
27
28
29
30
31
kY
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47

idx = ((self) / 2)

(self[idx]

mode (self) :

fregs = defaultdict (
item self:
fregs[item] += 1

mode_freq =

modes = []

+ self[idx—-1])

)

(fregs.values())

item, value fregs.items () :

value == mode_freq:

modes.append (item)

modes

TestStatistics (unittest.TestCase) :

setUp (self):

self.stats = StatisticList ([1, 2, 2,

test_mean (self) :

print (self.stats)

self.assertEqual (self.

test_median(self):

self.assertEqual (self.

self.stats.append (4)

self.assertEqual (self.

test_mode (self) :

print (self.stats)

self.assertEqual (self.

self.stats.remove (2)

self.assertEqual (self.

stats.

stats.

stats.

stats.

stats.

mean (),

median(), 2

/ 2

2.5)

median (), 3)

.5)

CHAPTER 6. TESTING

6.1. UNITTEST

48

49

50

name == main

n LY

unittest.main ()

OK

Ran 3 tests in 0.000s

169

Notice that the set Up method is never called explicitly inside of any of the tests because unittest does that for us.

As you can see test_median modifies the list by adding a 4, but then in test_mode the list is the same as in the

beginning. It occurs because setUp manages to re-initialize the variables that we need at the start of the each test. It

helps us not to repeat code needlessly.

Besides the method setUp, TestCase offers us the method tearDown, which can be used to “clean” after all the

tests have been executed. For instance, if our tests have the need to create some files, the idea is that at the end all

of those temporary files are eliminated, in a way that ensures that the system is in the same state that it was before

executing the tests:

os

unittest

TestFiles (unittest.TestCase) :

setUp (self):

self. =

self.dictionary = {1: "Hello", 2:

tearDown (self) :

self. .close ()

print ("Removing temporary files..

os.remove ("test_file.txt")

("test_file.txt",

IWI)

"Bye" }

.")

170 CHAPTER 6. TESTING

20

21

22

23

24

25

26

27

test_str(self):

print ("Writing temporary files...")

self. .write(self.dictionary[1l])
self. .close ()

self. = ("test_file.txt", 'r'")
d = self. .readlines () [0]

print (d)

self.assertEqual (self.dictionary[1l], d)

name == "__main_ ":

unittest.main ()

Writing temporary files...
Hello

Removing temporary files...

Ran 1 test in 0.000s

OK

The discover module

When we test a program, we quickly begin to fill us with testing codes only. To solve this problem, we can arrange our

modules that contain tests (objects TestCase) in more general modules called test suites (objects TestSuite), which

include collections of tests:

unittest

ArithmeticTest (unittest.TestCase) :

test_arit (self):

self.assertEqual (1+1, 2)

6.1. UNITTEST 171

10 name == "_ main__ ":

11 Tsuite = unittest.TestSuite ()
12 Tsuite.addTest (unittest.TestLoader () .loadTestsFromTestCase (ArithmeticTest))

13 unittest.TextTestRunner () .run (Tsuite)

Ran 1 test in 0.000s

OK

How to ignore tests

Many times we know that some of the tests are going to fail in our program and we do not want they to fail
during a given test. For example, when we have a function that is not yet finished. In these particular cases, we
would like that the suite does not run these tests because we already know they will fail. Fortunately, unittest

provides us with some decorators that mark tests and ignore them under certain circumstances. These decorators are:

expectedFailure (), skip(reason), skipIf (condition, reason), skipUnless (condition,
reason):

1 unittest

2 Sys

3

4

5 IgnoreTests (unittest.TestCase) :
6

7 @unittest.expectedFailure

8 test_fail (self):

9 self.assertEqual (,)

11 Qunittest.skip ("Useless test")
12 test_ignore (self):

13 self.assertEqual (’)

15 @Qunittest.skipIf(sys.version_info.minor == 5, "does not work on 3.5")

172 CHAPTER 6. TESTING

16 test_ignore_if (self):
17 self.assertEqual (,)
18
19 @Qunittest.skipUnless (sys.platform.startswith ("linux"),
20 "does not work on linux")
21 test_ignore_unless (self):
22 self.assertEqual (,)
23
24
25 __name__ == "__main__ ":
26 unittest.main ()
xsF's
FAIL: test_ignore_if (__main__.IgnoreTests)

Traceback (most recent call last):
File "src/ENG/chapter_06/codes/unittest/6_ignore_test.py", line 17,
in test_ignore_if self.assertEqual (False, True)

AssertionError: False != True

Ran 4 tests in 0.001s

The x in the first line means expected failure, the s means skipped test, and the F means a real failure.

6.2 Pytest

Pytest is a framework for an alternative testing of unittest. It has a different design and allows to write the test in a
more simple and readable way. Pyfest also does not require that testing cases are classes, taking advantage of the fact
that functions are objects, allowing any suitable function to work as a test. These features make the tests written in

Pytest more readable and maintainable.

When we execute py . test, it begins by searching all the modules or sub-packages that begin with test in the
current folder. Any function in that module that also begins with test_ will be executed as an individual test.

Whenever exists some class (inside the module) that starts with Test, any method inside that class beginning with

6.2. PYTEST 173

test_ will also be executed in the testing environment. The next example shows how to write simple unitary tests;

we can see that it is much shorter than it unittest counterparts:

1 test_int_float () :

2 assert 1 == 1.0
3
4
5 test_int_str():
6 assert 1 == "1"

If we execute this code with py.test PyTest0.py in console the output is (assuming that in the file PyTest0.py

is the code with the tests):

============================= tegt SessSion starts ======================
platform win32 -- Python 3.5.2, pytest-2.9.2, py-1.4.31, pluggy-0.3.1
rootdir: codes\pytest, inifile:

collected 2 items

PyTestO.py .F

m————————————————— - FATLURES ============—=——=——=—————————=

test_int_str

def test_int_str():
> assert 1 == "1"

E assert 1 == "1’

PyTest0.py:7: AssertionError

=====================] failed, 1 passed in 0.02 seconds ===============

We can see in the printed output some information about the platform. After that appears the name of the file that
contains the tests; then we see the same notation used in unittest about the tests results, in this case anew the dot (““.”)
indicates that the test has passed and the F that the test failed. We also see that it highlights the error and it mentions

which kind of error it is.

We can also use classes in pyfest. In this case, we do not have to inherit from any superclass from the testing module,

as we did in unittest):

174 CHAPTER 6. TESTING

1 TestNumbers:

2

3 test_int_float (self):

4 assert 1 == 1.0

5

6 test_int_str(self):

7 assert 1 == "1"
== == test session starts =======================
platform win32 —-- Python 3.5.2, pytest-2.9.2, py-1.4.31, pluggy-0.3.1

rootdir: codes\pytest, inifile:

collected 2 items

PyTestl.py .F

mm———————— oo PATLURES Sso—mm————m——— oo

TestNumbers.test_int_str

self = <PyTestl.TestNumbers object at 0x000001661A37EBEO>
def test_int_str(self):
> assert 1 == "1"

E assert 1 == "1’

PyTestl.py:7: AssertionError

== 1 failed, 1 passed in 0.03 seconds ================

setup and teardown in Pytest

The main difference between the setup and teardown methods from pytest (more precisely setup_method and
teardown_method) with the ones from unittest, is that in pyfest these methods accept one argument: the function

(object) that represents the method that is being called.

In addition, pytest provides the setup_class and teardown_class functions, that are methods that must test

one class, they actually receive the class they are going to test as an argument

6.2. PYTEST 175

Finally, the setup_module and teardown_module methods are functions that run before and after all tests
(despite they are functions or classes) in the module. The next example shows how to use each of these methods and in

which order they are being executed:

1 setup_module (module) :

2 print ("Setting up module {0}". (module.__name__))

3

4

5 teardown_module (module) :

6 print ("Tearing down module {0}". (module._ _name_))

7

8

9 test_a_function():

10 print ("Running test function")

11

12

13 BaseTest:

14

15 setup_class(cls):

16 print ("Setting up Class {0}". (cls.__name__))

17

18 teardown_class (cls) :

19 print ("Tearing down Class {0}\n". (cls.__name_))
20

21 setup_method(self, method) :

22 print ("Setting up method {0}". (method.__name__))
23

24 teardown_method(self, method):

25 print ("Tearing down method {O}". (method.__name__))
26

27

28 TestClassl (BaseTest) :

29

30 test_method_1 (self):

31 print ("Running Method 1-1")

32

176

33

34

35

36

37

38

39

40

41

42

43

44

45

46

test_method_2 (self):

print ("Running Method 2-1")

TestClass2 (BaseTest) :

test_method_1(self):

print ("Running Method 1-2")

test_method_2 (self):

print ("Running Method 2-2")

Running by console "py.test PyTest.py -s",

—s disables the deletion of "print" outputs.

============================= test Ssession starts =======

platform win32 -- Python 3.5.2, pytest-2.9.2, py-1.4.31,
rootdir: \codes\pytest, inifile:

collected 5 items

PyTest2.py Setting up module PyTest2
Running test function

.Setting up Class TestClassl

Setting up method test_method_ 1
Running Method 1-1

.Tearing down method test_method_1
Setting up method test_method_2
Running Method 2-1

.Tearing down method test_method_2

Tearing down Class TestClassl

Setting up Class TestClass2

Setting up method test_method_1
Running Method 1-2

.Tearing down method test_method_1

Setting up method test_method_ 2

CHAPTER 6. TESTING

pluggy-0.3.1

6.2. PYTEST 177
Running Method 2-2
.Tearing down method test_method_2

Tearing down Class TestClass2

Tearing down module PyTest2

========================== 5 passed in 0.02 seconds === ==

Funcargs in pytest

A different way to do a setup and teardown in pytest is using funcargs (an abbreviation for function arguments).
They correspond to variables that are previously set up in a file of tests configuration. It allows us to separate the
configuration of the execution files from the tests files, and it also makes it possible to use the funcargs through

multiple classes and modules.

To use the funcargs, we just add parameters to our testing functions, the names of these parameters will be used to
search specific arguments in functions with a particular name (with the example this will become clearer). For instance,

if we want to use the class StatisticsList in one of the previous examples by using funcargs:

1 pytest_funcarg__valid_stats(request) :

2 StatisticsList([1, 2, 2, 3, 3, 4])
3

4

5 test_mean(valid_stats) :

6 assert valid_stats.mean() == 2.5

7

8

9 test_median(valid_stats):

10 assert valid_stats.median() == 2.5

11 valid_stats.append (4)

12 assert valid_stats.median() == 3

15 test_mode (valid_stats) :

16 assert valid_stats.mode () == [2, 3]

178

CHAPTER 6. TESTING

valid_stats.remove (2)

assert valid_stats.mode () == [3]

============================= test Session starts =====================
platform win32 -- Python 3.5.2, pytest-2.9.2, py-1.4.31, pluggy-0.3.1
rootdir: codes\pytest, inifile:

collected 3 items

PyTest3.py EEE

—=——=——————————————————————————————- FRRORS ==================—=====c===c—=

ERROR at setup of test_mean

request = <SubRequest ’valid_stats’ for <Function ’'test_mean’>>

def pytest_funcarg__valid_stats (request) :
> return StatisticsList([1, 2, 2, 3, 3, 4])

E NameError: name ’'StatisticsList’ is not defined

PyTest3.py:3: NameError

ERROR at setup of test_median

request = <SubRequest ’valid_stats’ for <Function ’'test_median’>>

def pytest_funcarg__valid_stats (request) :
> return StatisticsList([1, 2, 2, 3, 3, 4])

E NameError: name ’'StatisticsList’ is not defined

PyTest3.py:3: NameError

ERROR at setup of test_mode

request = <SubRequest ’valid_stats’ for <Function ’'test_mode’>>

def pytest_funcarg__valid_stats (request) :
> return StatisticsList ([1, 2, 2, 3, 3, 41)

E NameError: name ’'StatisticsList’ is not defined

6.2. PYTEST 179

PyTest3.py:3: NameError

=========================== 3 error in 0.05 seconds ================== =

Note that the function has the prefix pytest__funcarg__. valid_stats contains the parameters used by the
testing methods. In this case, valid_stats is returned by the pytest_funcarg__valid_stats function
and corresponds to the list StatisticsList ([1,2,2,3,3,4]1). Note that in general the funcargs should be
defined in an apart file called conftest.py, to allow the function be used by several modules. From the example we can
see that the funcargs are reloaded every time for each test, hence we can modify the list inside a test as much as we

need, without affecting other tests that may use the funcargs in further executions.

The request .addfinalizer method receives a function for cleaning purposes. It is equivalent to the teardown
method, for example, it allows us to clean files, close connections, and empty lists. The next example tests the

os .mkdir method (creates a directory) by checking that two temporary directories are indeed created:

1 tempfile

2 shutil

3 os.path

4

5

6 pytest_funcarg__temp_dir (request) :
7 = tempfile.mkdtemp ()

8 print ()

9

10 cleanup () :

11 shutil.rmtree ()

13 request.addfinalizer (cleanup)

14

15

16

17 test_osfiles (temp_dir) :

18 os.mkdir (os.path.join(temp_dir, 'a'))
19 os.mkdir (os.path.join(temp_dir, 'b'))
20 dir_contents = os.listdir (temp_dir)

21 assert (dir_contents) == 2

180 CHAPTER 6. TESTING

22 assert 'a' dir_contents

23 assert 'b' dir_contents

== == test session starts ====================

platform win32 -- Python 3.5.2, pytest-2.9.2, py-1.4.31, pluggy-0.3.1
rootdir: codes\pytest, inifile:

collected 1 items

PyTest4d.py

== 1 passed in 0.02 seconds ==================

Skip tests in pytest

As in unittest, in pytest we can ignore some tests by using the py . test . skip function. It accepts only one argument;
a string describing why we are ignoring the test. We can call py . test . skip anywhere. If we call it inside a test
function, the test will be ignored; if we call it inside a module, all the tests within the module will be ignored, and if

we call it inside a funcarg function, all the tests that call that funcarg will be ignored:

1 Sys

2 py.test

3

4

5 test_simple_skip():

6 sys.platform != "Linows":

7 py.test.skip("This test only works on Linows OS")

8 fakeos.do_something_ fake ()

9 assert fakeos.did_not_happen
============================= test session starts ====================
platform win32 -- Python 3.5.2, pytest-2.9.2, py-1.4.31, pluggy-0.3.1

rootdir: codes\pytest, inifile:

collected 1 items

PyTest5.py s

== 1 skipped in 0.02 seconds ====s=============

6.3. HANDS-ON ACTIVITIES 181

Note that we can call the function that ignores the tests inside of i £ sentences, which gives us a lot of conditioning
possibilities. Besides the skip function, pytest offers us a decorator that allows us to skip tests when a particular
condition is fulfilled. The decorator is @py.test .mark.skipif (string), where the argument it receives

corresponds to a string that contains a code that returns a boolean value after its execution.

1 Sys
2 py.test
3
4
5 Q@py.test.mark.skipif ("sys.platform != \"Linows\"")
6 test_simple_skip() :
7 fakeos.do_something_ fake ()
8 assert fakeos.did_not_happen
============================= test session starts
platform win32 -- Python 3.5.2, pytest-2.9.2, py-1.4.31, pluggy-0.3.1

rootdir: codes\pytest, inifile:

collected 1 items

PyTest6.py s

In pytest, there is another way to obtain a setup/teardown framework. This way is called fixtures. We will not address
fixtures because we believe that it is out of the scope of this book, but you can find details about fixtures in this link:

https://pytest.org/latest/fixture.html\#fixture.

6.3 Hands-On Activities

Activity 6.1

A management system has lately suffered attacks to its servers. The managers decided to increase their security by

adding encryption to the information. You must test the encryption system.

The only things you know about the system are the following:

* The encrypter is symmetrical, which means, to encrypt and decrypt information, we use the same function. This

is described in the Encoder class. The method to encrypt is called encrypt.

182 CHAPTER 6. TESTING

* The encrypter is based in two classes, called Rotor and Reflector.

* An alphabet is a set of allowed characters, it must be added before the encryption begins. To test the program,
you can assume that the alphabet is lowercase ASCII. You must perform a test setup by calling the method

create_alphabet, as shown in main.

* If we enter a word with characters that are not included in the alphabet, the program will raise a ValueError

exception.

Rotor method

It takes a text archive and creates a function from it. It is not necessary that you know how it works, you only have to

assert the properties of the function.

The application of this function is done through the get method. If the values are not in the domain, it returns None.

To work correctly, it is necessary that this function is bijective.

Reflector method

It takes a text archive. The reflector is equal to the rotor, but it has a symmetry function. If f(z) = y then f(y) = .
You access the function in the class through the method get. If the value is not in the domain, it returns None. It
must show that bijection and symmetry hold. To test symmetry is enough to see if get (x) =y with y # None. Also

get (y)=x must hold.

Encrypter method

It has as initialization parameters a list of the rotors’ addresses and the reflector’s address.

To test that the encryption is correct you must prove for the following list of strings that by calling encrypt, the

word gets encrypted and by calling it again, the word becomes decrypted.

list_ = [’thequickbrownfoxjumpsoverthelazydog’, ’python’, ’'bang’, ’'dragonfly’,

"csharp’].

To test the exception is enough to try with any word that has characters that are not in the alphabet. For instance, you

may attempt with ’ fiandu’.

6.3. HANDS-ON ACTIVITIES 183

Notes

* Your code can be based in encoder_test.py.

* Check the main method if you have doubts on how to use the encrypter.

* To test the bijection of the functions, you can call the function check_bi jection of the base code that
receives a rotor or a reflector, and prove it holds bijection.

Summarizing, you have to perform the following steps:

* Initialize the alphabet as ASCII lowercase with a setup module.

* Prove that the rotor function is bijective. You must prove this for the archives (rotorl.txt, rotor2.txt,

rotor3.txt)

* Prove that the reflector function is bijective and symmetric. ~You must prove this for the archive

(reflector.txt)

* Prove that the encryption and decryption is correct. This includes to test that it raises the exception when needed.

Activity 6.2

The Bank has recently acquired last technology ATMs. The ATMs need to be programmed, for this reason, the bank

has contacted you. You must assure that the coded features work correctly.

The features that come already implemented and you must test are:

* Withdraw cash: The user chooses an amount and withdraws it from its account. To obtain the money, the user
must enter his password correctly. The maximum amount per transaction is $200.

* Transfer money to a third party: The user can transfer money to other users. The maximum amount to be
transferred per operation is $1000.

For the withdraw money feature, create the following tests with unittest:

¢ Check that the credentials are correct.

* Check that it only withdraws money if there is enough balance.

184 CHAPTER 6. TESTING

* Check that once the money has been withdrawn, the amount is updated.

For the transfer money feature, create the following tests with unittest:

* Check that the account of the third person exists.
* Check that once the money has been transferred, both accounts have been updated with the correct amount.

* Check that if there is any error, the transference did not occur.

Chapter 7

Threading

7.1 Threading

Threads are the smallest program units that an operating system can execute. Programming with threads allows that
several lightweight processes can run simultaneously inside the same program. Threads that are in the same process
share the memory and the state of the variables of the process. This shared use of resources enables threads to run

faster than execute several instances of the same program.

Each process has at least one thread that corresponds to its execution. When a process creates several threads, it
executes these units as parallel processes. In a single-core machine, the parallelism is approximated through thread
scheduling or time slicing. The approximation consists of assigning a limited amount of time to each thread repeatedly.
The alternation between threads simulates parallelism. Although there is no true increase in execution speed, the
program becomes much more responsive. For example, several tasks may execute while a program is waiting for a
user input. Multi-core machines achieve a truly faster execution of the program. Figure 7.1 shows how threads interact

with the main process.

Some examples of where it is useful to implement threads, even on single-core computers, are:

* Interfaces that interact with the user while the machine executes a heavyweight calculation process.

* Delegation of tasks that follow consumer-producer pattern, i.e., jobs which outputs and inputs are related, but

run independently.

* Multi-users applications, in which each thread would be in charge of the requests of each user.

Python 3 handles threads by using the threading library. It includes several methods and objects to manipulate threads.

186 CHAPTER 7. THREADING

| Process]

L EEn e |

‘ Thread 1 [Thread 1 ‘ Thread ’
Local variables J [Local variables J [Local variables J
Code J [Code J [Code J

Figure 7.1: Diagram of a threading-based application

Creating Threads

We can create a new thread using the Thread class from the Threading library. This class requires three arguments:
target to define the function to be executed; name to provide name we want to give to the thread; args to pass the
target arguments. Once created, it may be executed by calling the start () method. In the next example, we

create three threads t 1, w1, and w2, that execute different instances of the service and worker functions.

1 # codeO.py

3 threading

4 time

5

6

7 worker () :

8 print ("{} starting...". (threading.currentThread () .getName ()))
9 # This stops the thread execution for 2 seconds.

10 time.sleep (2)

11 print ("{} exiting...". (threading.currentThread() .getName ()))
12

13

14 service():

15 print ("{} starting...". (threading.currentThread () .getName ()))
16 # This stops the thread execution for 4 seconds.

17 time.sleep (4)

18 print ("{} exiting...". (threading.currentThread () .getName ()))

7.1. THREADING

22

23

24

25

26

27

28

29

30

31

32

33

34

35

We create two named threads

tl

threading.Thread (name='Thread 1', target=service)

wl threading.Thread (name='Thread 2', target=worker)
This uses the default name (Thread-1i)

w2 = threading.Thread (target=worker)

All threads are executed
wl.start ()
w2 .start ()

tl.start ()

The following will be printed before the threads finish executing

print ("\nThree threads were created\n')

Thread 2 starting...
Thread-1 starting...

Thread 1 starting...

Three threads were created

Thread 2 exiting...

Thread-1 exiting...

Thread 1 exiting...

187

In the example, we see that once we have initialized the threads, the main program continues with the rest of the

instructions while threads execute their task. The three threads end independently at different times. The main program

waits until all the threads finish correctly.

The following code shows an example of how to pass arguments to the target function through the args attribute.

1

2

3

codel.py

threading

188 CHAPTER 7. THREADING

4 import time

7 def worker (t):

8 print ("{} starting...".format (threading.currentThread () .getName ()))

10 # Thread 1is stopped for t seconds
11 time.sleep (t)

12 print ("{} exiting...".format (threading.currentThread () .getName ()))

Threads are created using the Thread class, these are associated with the
objective function to be executed by the thread. Function attributes are

given using the 'args' keyword. In this example, we only need to give one

3
HH R H H

argument. For this reason a one value tuple is given.

20 w = threading.Thread(name='Thread 2', target=worker, args=(3,))

21 w.start ()

Thread 2 starting...

Thread 2 exiting...

Another way of creating a thread is by inheriting from Thread and redefining the run () method.

1 # codeZ.py

3 import threading

4 import time

7 class Worker (threading.Thread) :

9 def _ init_ (self, t):
10 super () .__init__ ()
11 self.t =t

13 def run(self):

7.1.

20

21

22

23

24

25

26

27

28

29

30

32

33

34

35

36

37

38

39

THREADING 189

print ("{} starting...". (threading.currentThread () .getName ()))

time.sleep(self.t)

print ("{} exiting...". (threading.currentThread() .getName ()))

Service (threading.Thread) :

__init_ (self, t):

() .__init__ ()
self.t =t
run (self) :
print ("{} starting...". (threading.currentThread() .getName ()))

time.sleep(self.t)

print ("{} exiting...". (threading.currentThread() .getName ()))

Creating threads

tl = Service (5)
wl = Worker (2)
w2 = Worker (4)

The created threads are executed
tl.start ()
wl.start ()

w2 .start ()

Thread-1 starting...
Thread-2 starting...
Thread-3 starting...
Thread-2 exiting...
Thread-3 exiting...

Thread-1 exiting...

190 CHAPTER 7. THREADING

Join()

In certain situations, we would like to synchronize part of our main program with the outputs of the running threads.
When we need the main program to wait that the execution of a thread or a group of threads finished, we must use the
join (< maximum-waiting-time >) method after the thread starts. In this way, every time we use join ()
the main program will be blocked until the referenced threads finish correctly. If we do not define the maximum
waiting time, the main program waits indefinitely until the referenced thread finishes. Figure 7.2 shows the execution

of the program using join ().

Main program’s execution Thread 1 Thread 2
o
Start the thread 1
_____________________________________ ’O
Start the thread 2
__________________ J PEQ(.)_________.-.___, Join()
A et e e e >
Main program
sleeping B il bbb
[R L L EEL AL =
Threads finished O

Figure 7.2: Diagram shows the program’s flow when we use the join () method. We can see that the main program
will sleep until thread I finishes. The thread 2 keeps running independently to the other thread and the main program.

Now let’s see the same previous example but incorporating the join () method after threads start running.

2 # Creating threads
3 tl = Service(5)
4 wl = Worker (2)

5 w2 = Worker (4)

7 # Starting threads
8 tl.start()

9 wl.start ()

7.1. THREADING

w2.start ()

Here we call the join() method to block the main program.

The other threads keep running independently

t0 = time.time ()

wl.Jjoin ()

print ('Main program waits for: {}'.

Thread 1 starting...
Thread 2 starting...
Thread 3 starting...

Thread 2 exiting...

Main program waits for: 2.000131607055664

Thread 1 exiting...

Thread 3 exiting...

IsAlive()

(time.time () - t0))

191

We can identify if a thread finished its execution using the IsAlive () method or the is_alive attribute, for

example, after using join (). The following example shows the way to use IsAlive () to check if a thread is still

running after a certain amount of time.

o

= Service (4)

t.start ()

The main program will wait 5 seconds after 't' has finished executing

before continuing its execution.

t.join (5)

This returns true if the thread is not currently executing

t.isAlive () :

print ('The thread has finished successfully')

print ('The thread is still executing')

Thread-1 starting...

192 CHAPTER 7. THREADING

Thread-1 exiting...

The thread has finished successfully

We can avoid the use of too many prints that help us with the tracking of threads, by using the logging library.
Every time we make a log we have to embed the name of each thread on its log message, as shown in the following

example:

1 # codeb5.py

3 threading
4 time
5 logging

8 # This sets ups the format in which the messages will be logged on console

9 logging.basicConfig(level=logging.DEBRUG, ='[%(levelname)s]"'
10 ' (% (threadName) -10s) % (message)s')
11

12 Worker (threading.Thread) :

13

14 __init__ (self, t):

15 () ._init__ ()

16 self.t =t

17

18 run (self) :

19 logging.debug ('Starting")

20 time.sleep(self.t)

21 logging.debug ('Exiting")

22

23

24 Service (threading.Thread) :

25

26 __init__ (self, t):

27 ().__init_ ()

28 self.t =t

29

7.1. THREADING

30

31

32

33

34

35

37

38

39

40

41

42

43

44

run (self):
logging.debug('Starting')
time.sleep(self.t)

logging.debug ('Exiting")

Creating threads

tl = Service (4)
wl = Worker (2)
w2 = Worker (2)

Starting threads

wl.start ()

w2.start ()

tl.start ()

[DEBUG] (Thread-2) Starting
[DEBUG] (Thread-3) Starting
[DEBUG] (Thread-1) Starting
[DEBUG] (Thread-2) Exiting

[DEBUG] (Thread-3) Exiting

[DEBUG] (Thread-1) Exiting

Daemon Threads

193

In general, the main program waits for all the threads to finish before ending its execution. Daemon threads let the

main program to kill them off after other threads (and itself) finish. Daemon threads do not prevent the main program

to end. In this way, daemon threads will only run until the main program finishes.

1

code7.py

threading

time

Worker (threading.Thread) :

194 CHAPTER 7. THREADING

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

def _ init_ (self, t):
super () .__init_ ()

self.t =t

def run(self):
print ("{} starting...".format (threading.currentThread () .getName ()))
time.sleep(self.t)

print ("{} exiting...".format (threading.currentThread () .getName ()))

class Service (threading.Thread) :

def _ init_ (self, t):
super () .__init_ ()
self.t =t
We can set a thread as deamon inside the class definition
setting the daemon attribute as True

self.daemon = True

def run(self):
print ("{} starting...".format (threading.currentThread () .getName ()))
time.sleep(self.t)

print ("{} exiting...".format (threading.currentThread () .getName ()))

Creating threads
tl = Service (5)

wl = Worker (2)

Setting the working thread as daemon
We can use this same method when we define a function as target
of a thread.

wl.setDaemon (True)

Executing threads

7.1. THREADING 195

4 wl.start ()

45 tl.start ()

Thread 2 starting...

Thread 1 starting...

The previous example explains the use of daemon threads. The console output shows how threads are interrupted
abruptly after the main program ends its execution. We can compare this output with the output of the next example,

configuring threads as daemon (removing lines 24 and 39):

Thread-2 starting...
Thread-1 starting...
Thread-2 exiting...

Thread-1 exiting...

Note that threads complete the execution and the program did not close until both threads finished. If for any reason,
we require waiting for a daemon thread during an amount of time, we can specify that amount (in seconds) in the

join () method:

1 # code9.py

3 threading

4 logging

5 time

6

7 logging.basicConfig(level=logging.DEBUG, =' (% (threadName)-10s) '
8 '$ (message)s')
9

10 DaemonThread (threading.Thread) :

11

12 __init_ (self, t):

13 () o___init__ ()

14 self.t =t

15 self.daemon =

16 self.name = 'daemon'

18 run (self) :

196

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

4

43

44

45

logging.debug ('Starting")
time.sleep(self.t)

logging.debug ('Exiting")

NonDaemonThread (threading.Thread) :

__init_ (self, t):
() .__init_ ()
self.t =t

self.name = 'non-daemon'

run (self) :
logging.debug('Starting')
time.sleep(self.t)

logging.debug ('Exiting")

Creating threads
d = DaemonThread (3)

t = NonDaemonThread (1)
Executing threads
d.start ()

t.start ()

Waiting thread d for 1 seconds

d.join (2)
print ('is d alive?: {}'. (d.isAlive ()))
(daemon) Starting

(non-daemon) Starting
(non—-daemon) Exiting

is d alive?: True

CHAPTER 7. THREADING

7.2. SYNCHRONIZATION 197

Timers

The class Timer is a subclass of the class Thread and allows us to execute a process or an action after a certain
amount of time has passed. Timer requires as basic parameters the time in seconds after which the thread starts
running, the name of the process to execute and the entry arguments for the process. The cancel () method allows

us, if required, to cancel the execution of the timer before its begins.

1 # codell.py

3 threading

4

5 delayed_message (msqg) :

6 print ("Message:", msg)

7

8 tl = threading.Timer (10.0, delayed_message, args=("This is a thread tl!",))
9 t2 = threading.Timer (5.0, delayed _message, args=('This is a thread t2!"',))

10 t3 = threading.Timer (15.0, delayed_message, args=('This is a thread t3!',))

12 # This thread will start after 10 seconds

13 tl.start ()

15 # This thread will start after 5 seconds

16 t2.start()

18 # Here we cancel thread tl

19 tl.cancel()

20

21 # This thread will start after 15 seconds

22 t3.start ()

Message: This is a thread t2!
Message: This is a thread t3!
7.2 Synchronization

Threads run in a non-deterministic way. Therefore, there are some situations in which more than one thread must

share the access to certain resources, such as files and memory. During this process, only one thread have access to the

198 CHAPTER 7. THREADING

resource, and the remaining threads must wait for it. When there is multiple concurrence to a resource it is possible to

control the access through synchronization mechanisms among the threads.

Locks

Locks allow us to synchronize the access to shared resources between two or more threads. The Threading library
provides us with the Lock class which allows the synchronization. A lock has two states: locked and unlocked.
The default state is unlocked. When a given thread ¢; attempts to execute, first it tries to acquire the lock (with
the acquire () method). If another thread ¢; takes the lock, ¢; must wait for ¢; to finish and release it (with the
release () method) to have the chance to acquire the lock. Once ¢; acquires the lock, it can start executing. Figure

7.3 shows a general scheme of synchronization between threads using locks.

1 # codell.py

3 threading

6 # This class models a thread that blocks to a file

7 MyThread (threading.Thread) :

8

9 lock = threading.Lock ()

10

11 __init_ (self, 1,)z

12 () ._init_ ()

13 self.i =1

14 self. =

15

16 # This method is the one executed when the start () method is called.
17 run (self) :

18

19 # Blocks other threads from entering the next block

20 MyThread.lock.acquire ()

21

22 self. .write('This line was written by thread #{}\n'. (self.i))

23

24 # Releases the resource

7.2.

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

SYNCHRONIZATION

MyThread.lock.release ()

name =

This
This
This
This
This
This
This
This
This
This
This
This
This
This

This

n_threads

threads =

= ' main

= 15
[]

1.

We create a file to write the output.

with

('out.txt',

lwl)

All writing threads are created at once

line
line
line
line
line
line
line
line
line
line
line
line
line
line

line

i

my_thread

The thread 1is started,

(n_threads) :

MyThread (i,

my_thread.start ()

threads.append (my_thread)

was

was

was

was

was

was

was

was

was

was

was

was

was

was

was

written
written
written
written
written
written
written
written
written
written
written
written
written
written

written

by
by
by
by
by
by
by
by
by
by
by
by
by
by
by

thread
thread
thread
thread
thread
thread
thread
thread
thread
thread
thread
thread
thread
thread

thread

#0
#1
#2
#3
#4
#5
#6
#7
#8
#9
#10
#11
#12
#13
#14

which executes the run() method.

199

Fortunately in Python locks can also work inside a context manager through the with sentence. In this case, is the

200 CHAPTER 7. THREADING

Thread-1 Thread-2 Thread-i
Non-blocking instructions Non-blocking instructions Non-blocking instructions
Lock.acquire() Lock.acquire() Lock.acquire()

Blocking instructions Blocking instructions Blocking instructions
Lock.release() Lock.release() Lock.release()

Figure 7.3: This image shows a general example where a set of i threads are running. Whenever a thread acquires the
lock, the rest of the threads must wait to be able to execute. After the thread releases the lock, the other threads can
acquire it and run their (blocking) instructions.

same with that is in charge of calling the acquire () and release () methods. For example, the locks used in

the run method from the previous example can be implemented as shown:

1 run (self) :

2 with MyThread.lock:
3 self. .write(
4 'This line was written by thread #{}\n'. (self.1))

A common problem in concurrent programming is the Producer-Consumer pattern. This problem arises when two or
more threads, known as producers and consumers, access to the same storage space or buffer. Under this scheme,
producers put items in the buffer and consumers pull items out of the buffer. This model allows the communication
between different threads. In general the buffer shared in this model is implemented through a synchronized queue or

secure queue.

For example, let’s assume that we can separate a program that processes a text file with numbers in two independent
threads. The first thread is in charge of reading the file and appending the values to a queue. The second thread stores
into another file the sum of the tuples of numbers previously added into the queue. We communicate both threads

through a synchronized queue implemented as shown next:

7.2. SYNCHRONIZATION 201

1 # codel3.py

3 collections

4 threading

5

6 MyDeque (collections.deque) :

7

8 # We inherit from a normal collections module Deque and
9 # we add the locking mechanisms to ensure thread

10 # synchronization

11

12 __init__ (self):

13 () .__init_ ()

14 # A lock is created for this queue

15 self.lock = threading.Lock ()

16

17 append (self, element):

18

19 # The lock is used within a context manager

20 with self.lock:

21 () .append (element)

22 print (' [ADD] queue now has {} elements'. ((self)))
23

24 popleft (self):

25 with self.lock:

26 print (' [REMOVE] queue now has {} elements’'. ((self)))
27 () .popleft ()

Now let’s see the rest of the implementation of the producer and the consumer. As a recommendation, we encourage

the read to try the examples directly in a terminal or using a IDE such as PyCharm.

1 # codeld.py
2
3 time

4 threading

202 CHAPTER 7. THREADING

7 class Producer (threading.Thread) :

8 # This thread is implemented as a class

9

10 def __init__ (self, queue):

11 super () .__init__ ()

12 self.queue = queue

13

14 def run(self):

15 # We open the file using a context manager. We explain this in details
16 # in Chapter 10.

17 with open ('raw_numbers.txt') as file:

18 for line in file:

19 values = tuple(map(int, line.strip().split(',")))
20 self.queue.append(values)

21
22

23 def consumer (queue) :

24 # This thread is implemented as a function

25

26 with open('processed_numbers.txt', 'w') as file:
27 while len(queue) > 0:

28 numbers = gqueue.pop ()

29 file.write('{}\n'.format (sum(numbers)))
30

31 # Simulates that the consumer is slower than the producer
32 time.sleep(0.001)

33

34

35 if _ name_ == '_ _main_ ':

36

37 queue = MyDeque ()

38

39 p = Producer (queue)

40 p.start ()

7.2. SYNCHRONIZATION

41

42 C

43 C
[ADD]
[ADD]
[ADD]
[ADD]
[ADD]

Deadlock

= threading.Thread (target=consumer,

.start ()

queue now has 1 elements

queue now has elements

w N

gqueue now has elements
queue now has 4 elements

queue now has 5 elements

args= (queue,))

203

In the context of multithreading-based applications, there is an innocent but dangerous situation in programs that use

locks. This case is commonly called deadlock. A deadlock occurs when two or more threads are stuck waiting for

each other to release a resource. For example, let FirstProcess be a thread that acquires a lock a and requests for

alock b so it can release the lock a. Let SecondProcess be another thread that already acquired the lock b and

is waiting for the lock a before it releases the lock b. We note the deadlock because of our program will be frozen

without getting a runtime error or crash. The next code example shows a template of a deadlock according to with the

situation described:

1 # codel5.py

threading

FirstProcess (threading.Thread) :

__init_ (self, lock_a, lock_b):
self.lock_a = lock_a

self.lock_b = lock_b

run (self) :

with self.lock_a:

Acquire the first lock

with self.lock_b:

204 CHAPTER 7. THREADING

17 # Acquire the second lock for another concurrent task
18

19

20 SecondProcess (threading.Thread) :

21

22 __init_ (self, lock_a, lock_b):

23 self.lock_a = lock_a

24 self.lock_b = lock_b

25

26 run (self) :

27 with self.lock_b:

28 # Acquire the first lock

29 # Notice that this thread require the lock_b, that

30 # could be taken fot other thread previously

31

32 with self.lock_a:

33 # Acquire the second lock for another concurrent task

34
35

36 lock_a = threading.Lock()

37 lock_b threading.Lock ()
38

39 tl

FirstProcess (lock_a, lock_b)

40 t2 SecondProcess (lock_a, lock_b)

41 tl.start ()

42 t2.start ()

We can decrease the risk of a deadlock by restricting the number of locks that a threads can acquire at a time.

Queue

Fortunately, Python has an optimized library for secure queues management in producer-consumer models. The queue
library has a implemented queue that safely manages multiples concurrences. It is different to the queue implemented

in collections library used in data structures because that one does not have locks for synchronization.

The main queue methods in the queue library are:

7.2. SYNCHRONIZATION

* put (): Adds an item to the queue (push)

* get (): Removes and returns an item from the queue (pop)

* task_done () : Requires to be called each time an item has been processed

* join (): Blocks the queue until all the items have been processed

205

Recall the text file processing example shown before. The implementation using the queue library is as follows:

1

20

21

22

23

24

25

26

27

28

codelé6.py

threading

t

q

ime

ueue

Producer (threading.Thread) :

__init_ (self, que):
() .__init__ ()
self.que = que

run (self) :

with

('raw_numbers.txt')
line
values = ([(1)

self.que.put (values)

line.strip() .split (', ") 1)

print (' [PRODUCER] The queue has {} elements.'. (\

self.que.qgsize()))

Simulates a slower process

time.sleep (0.001)

consumer (que) :

with

('processed_numbers.txt',

|l

w')

206 CHAPTER 7. THREADING

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

A try/except clause is used in order to stop
the consumer once there is no elements left in the
queue. If not for this, the consumer would be executing

for ever

try:

If no elements are left in the queue, an Empty
exception is raised
numbers = que.get (False)
except queue.Empty:
break
else:
file.write (' {}\n'.format (sum(numbers)))

que.task_done ()

gsize() returns the queue size
print (' [CONSUMER] The queue now has {} elements.'.format (\

que.gsize()))

Simulates a complex process. If the consumer was faster

than the producer, the threads would end abruptly
time.sleep (0.005)

if name == '_ main__ ':

queue.Queue ()

Q
Il

a producer is created and executed
p = Producer (q)

p.start ()

a consumer thread is created and executed with the same queue

7.3. HANDS-ON ACTIVITIES 207

64 c = threading.Thread (target=consumer, args=(qg,))

65 c.start ()

[PRODUCER] The queue has 1 elements.
[CONSUMER] The queue now has 0 elements.
[PRODUCER] The queue has 1 elements.

[PRODUCER] The queue has elements.

2
[PRODUCER] The queue has 3 elements.
[PRODUCER] The queue has 4 elements.
[CONSUMER] The queue now has 3 elements.
[CONSUMER] The queue now has 2 elements.
[CONSUMER] The queue now has 1 elements.

[CONSUMER] The queue now has 0 elements.

7.3 Hands-On Activities

Activity 7.1
ALERT! Godzilla has arrived at Santiago! Soldiers need to simulate a battle against Godzilla. The simulation will
contribute deciding whether it is better to run away or to fight him. With this purpose, Soldiers have given us a report
with the specifications that we have to accomplish. These specifications are:

* There is just one Godzilla and several soldiers.

* Each soldier has an attack speed, remaining life (HP), and strength of attack (damage).

* Godzilla attacks every eight seconds, affecting all soldiers by decreasing their HP in three units.

» Each time a soldier attacks Godzilla, it attacks back decreasing one-fourth of the soldiers’ attack to his HP.

* The soldiers’ attack speed is random between 4 and 19 seconds.

* You must create one new soldier every = seconds, where x has to be previously defined by you.

Activity 7.2

Congratulations! Thanks to the previous simulation (7.3), the Army has realized of its superiority against Godzilla.

Santiago is safe again, or that is what we believe. The truth is that the epic battle has been nothing but a simulation

208 CHAPTER 7. THREADING

made by Godzilla to decide if he attacks Santiago or not. Now Santiago will be faced by Mega-Godzilla (Godzilla
in its ultimate form), with all of the powers he has not shown before. The task is to simulate the battle between

Mega-Godzilla and the Army so it can be written in history books. The simulation must:

» Contain several soldiers and one Mega-Godzilla.

» Each soldier has an attack speed, remaining life (HP), and strength of attack (damage).

* Mega-Godzilla attacks every N seconds, where IV is a random number between 3 and 6. IV has to be reset after

each action.
* Mega-Godzilla attacks in the following ways:

— Normal attack: Mega-Godzilla stomps affecting all soldiers. This attack causes a three units damage to

each soldier.

— Scaly Skin: Each time a soldier attacks Mega-Godezilla, it attacks back decreasing one-fourth of the

soldiers’ attack to his HP.

— Ultimate Mega-Godzilla Super Attack: Mega-Godzilla screams causing a six units damage to every soldier.
Also, the scream stuns all the soldiers for 10 seconds. During this period, soldiers can not perform any

action.
* Soldiers’ attack speed is random between 4 and 19 seconds.
¢ Soldiers’ attack lasts a random number between 1 and 3 seconds.

* Only one soldier can attack Mega-Godzilla at a time.

Chapter 8

Simulation

During OOP modeling, we make assumptions on the system regarding the relationship between objects and data and
use algorithms to represent their behavior. These models are just an approximation of real systems. Real systems
include complex interactions usually hardly represented by exact analytical models. In these cases, systems’ behavior

must be simulated.

Simulations are used to generate data to obtain statistics of real systems. These statistics are used to make decisions
on variables configuration that are relevant for systems’ performance. For example, if we need to decide how many
points of sale we must have in a supermarket, we can simulate customers arrival, products availability, shopping time,
and also measure check out times. We can estimate the optimal number of points of sale that result in a desirable

customers’ check out time.

The main advantages of simulations are fast experimentation, cost, and risk reduction, design feedback, and data

generation.

Simulations mainly depend on time and runtime. The former corresponds to the virtual clock that approximates the
real time elapsed in the simulation. The latter represents the required computational time to carry out the simulation.

In general, we want to simulate large amounts of time using a minimal amount of runtime.

Events occurrences are modeled using probability distributions to have more realistic simulations. For example,
the arrival time of customers, or the customers’ service time in a given store, can be modeled using an exponential
distribution. For this kind of distribution, it is necessary to define the average rate of event occurrences. For instance,
when a person arrives at a queue each 20 minutes, then this event has a distribution with a rate of 1/20. The following

code shows an example of the use of the expovariate function to generate exponentially distributed times:

1 #00_expovariate.py

210 CHAPTER 8. SIMULATION

3 random expovariate

5 '"'"'We added a basis time of 0.5 to prevent

6 time 0 returned by the distribution.'''

8 client_arrival_time = (expovariate (1/20) + 0.5)

9 server_time_1 = (expovariate (1/50) + 0.5)

10 server_time_2 (expovariate (1/50) + 0.5)

12 print(client_arrival_time)
13 print (server_time_1)

14 print (server_time_2)

29
53
26

8.1 Synchronous Simulation

It corresponds to one of the simpler ways of implementing a simulation. In this case, we divide the total simulation
time into small intervals. At each interval, the program verifies all activities involved in the system. The general

algorithm of this type of simulation is as follows:

while time simulation does not end do
Increase the time by one unit
if events occur in this time interval then
Simulate events
end if

end while

For instance, let’s consider the case of modeling a car inspection station. This system operates as a queue, where the
vehicles arrive randomly with probability P., and are processed by a station during a random amount of time. This

type of problems is known as M /M /k according to Kendal’s notation. This notation defines that customers come to

8.1. SYNCHRONOUS SIMULATION 211

the system in a Markovian way (M), the service time in the queue is also Markovian (M), and there are k servers to

attend each car in the waiting queue.

1 # 01_synchronous.py

3 collections deque

4 random

5

6

7 Vehicle:

g wn

9 This class represent vehicles which arrives to the mechanical
10 workshop

11 e

12

13 __init__ (self, wvehicles):

14 # When a new vehicle is created is chosen randomly incoming
15 # vehicle type and the average time of service'''

16

17 self.vehicle_type = random.choice ((vehicles))

18 self. _review_time = (

19 random.expovariate (vehicles[self.vehicle_typel))

20

21

22 review_time (self) :

23 self._review_time

24

25 @review_time.setter

26 review_time(self, wvalue):

27 self._review_time = value

28

29 show_type (self) :

30 print ("Being treated: {0} with an average time of {1} minutes"

31 . (self.vehicle_type, self.review_time))
32

33

212

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

class WorkShop:

mmn

This class represent the review line in the workshop.

mmn

def

def

def

def

__init_ (self):

self.current_task = None

self.review_time = 0

busy (self) :

return self.current_task is not None

next_vehicle (self, wvehicle):
self.current_task = vehicle
self.review_time = vehicle.review_time

vehicle.show_type ()

tick (self) :

if self.current_task is not None:
self.review_time -= 1
if self.review_time <= 0:

self.current_task = None

def new_vehicle_arrive () :

mmn

This function returns 1if arrive a new vehicle to queue.

sampled from a uniform probability distribution.

CHAPTER 8. SIMULATION

It is

The method

returns True 1if the value delivered by the random function 1is

greater than a given value.

mmn

return random.random() >= 0.8

def technical_workshop (max_time, vehicles):

8.1.

69

70

71

72

73

74

75

76

71

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

SYNCHRONOUS SIMULATION

mmn

This function handles the process or technical service.

mmn

Fix the random seed

random.seed (10)

A WorkShop is created

workshop = WorkShop ()

Empty review line

review_line = deque ()

Waiting time

waiting_times = []

The simulation cycle is defined until the maximum time in
minutes, each time t 1is increased 1is evaluated if a new

vehicle arrives at the review queue

for t in range (max_time) :
if new_vehicle_arrive () :

review_line.append (Vehicle (vehicles))

if not workshop.busy () and len(review_line) > 0:
Next vehicle is taken out from review queue
curr_vehicle = review_line.popleft ()
wailting_times.append(curr_vehicle.review_time)

workshop.next_vehicle (curr_vehicle)

Decrease one tick of time to waiting vehicle

workshop.tick ()

average_time = sum(waiting_times) / len(waiting_times)

total_time = sum(waiting_times)

213

214 CHAPTER 8. SIMULATION

104 print ('Statistics:')

105 print ('Average waiting time {0:6.2f} min.'. (average_time))
106 print ('Total workshop service time was', '{0:6.2f} min"'. (

107 total_time))

108 print ('Total vehicles serviced: {0}'. ((waiting_times)))
109

110

111 __name__ == '__main__ ':

112

113 # The types of vehicles and the average service time are defined
114 vehicles = {'motorcycle': 1.0 / 8, 'car': 1.0 / 15,

115 "pickup_truck': 1.0 / 20}

116 maximum_time = 200

117 technical_workshop (maximum_time, vehicles)

Output:

Being treated: pickup_truck with an average time of 5 minutes
Being treated: car with an average time of 5 minutes

Being treated: motorcycle with an average time of 36 minutes
Being treated: motorcycle with an average time of 8 minutes
Being treated: motorcycle with an average time of 1 minutes
Being treated: car with an average time of 8 minutes

Being treated: pickup_truck with an average time of 6 minutes
Being treated: motorcycle with an average time of 9 minutes
Being treated: motorcycle with an average time of 14 minutes
Being treated: car with an average time of 2 minutes

Being treated: car with an average time of 43 minutes

Being treated: car with an average time of 9 minutes

Being treated: pickup_truck with an average time of 33 minutes
Being treated: car with an average time of 7 minutes

Being treated: pickup_truck with an average time of 20 minutes
Statistics:

Average waiting time 13.73 min.

Total workshop service time was 206.00 min

Total vehicles serviced: 15

8.2. DISCRETE EVENT SIMULATION (DES) 215

Synchronous simulations require a lot of running time to produce results. Most of the time steps in the main simulation
loop do not produce changes in the system. Verification of system’s states and simulation constraints generates a waste

of CPU time. Due to these downsides, in this chapter, we focus on Discrete Event Simulation (DES).

8.2 Discrete Event Simulation (DES)

In DES paradigm exists a discrete sequence of events distributed in time, in which each event occurs at a determined
instant ¢ that generates a change in system’s state. In contrast with the synchronous simulation, DES assumes that
there are no variations in the system’s states between consecutive events. This assumption allows us to jump directly
to the next event, without wasting runtime. On each iteration, the simulation selects the next event by choosing the one
that occurs first, according to its simulated time. The following pseudocode shows a general discrete-based event

simulation algorithm:

while the events queue is not empty and the simulation time is not over do
select the next event from the queue
move the simulation time to the previously selected event’s time
simulate the event

end while

DES Model components

The following elements comprise a simulation model:

* A set of state variables that describe the system at any time. For example:
A clock that stores the simulation time.

A set of possible events, including the next instant they will take place.

* A set of simulation elements, for example:
A method that controls the flow of different events.

A set of performance variables, useful to keep simulation statistics.

Now we present an example of a technical car inspection station. Figure 8.1 shows the workflow of the system.

1 # 02_DES.py

2

216 CHAPTER 8. SIMULATION

Initialize status variables

Simulation Yes
t'”."e —— > Return the statistics
> maximum
time?
l No
New vehicle arrives What is Vehicle leaves the workshop
the next
event?
* Add the vehicle into the queue * Update the number of served vehicles
* Generate the time for the next arrival » Clear the workshop for the next vehicle
Yes No
Is the
workshop
busy?
* Serve a vehicle in the queue
* Update the service time

Figure 8.1: The figure shows a flow chart of the technical car inspection example. The gray rectangles describe the
statistics updated on each event. The green boxes represent the simulation events. Decisions are represented by yellow
diamonds.

3 collections deque

4 random

5

6

7 Vehicle:

8 nwn

9 This class represent vehicles which arrives to
10 the mechanical workshop

11 e

12

13 __init_ (self, arrival_time=0):

14 self.vehicle_type = random.choice(['motorcycle', 'pickup_truck', 'car'])

8.2. DISCRETE EVENT SIMULATION (DES) 217

15 self.arrival_time = arrival_time

16

17 def _ _repr_ (self):

18 return 'Vehicle type: {0}'.format (self.vehicle_type)

20
21 class WorkShop:

mon
22

23 This class represents the workshop and its behaviors.
24 o

25

26 def _ _init_ (self, types):

27 self.current_task = None

28 self.review_time = 0

29 self.types = types

30

31 def pass_vehicle(self, vehicle):

32 self.current_task = vehicle

33

34 # Create a random review time

35 current_type_rate = self.types[vehicle.vehicle_type]
36

37 # We add 0.5 to avoid random times equals to zero
38 self.review_time = round(random.expovariate (current_type_rate) + 0.5)
39

40 @property

41 def busy(self):

42 return self.current_task is not None

43

44

45 class Simulation:

46 mmn

47 This class implements the simulation.

48 Also you can use a function like in the previous case.

49 All variables used in the simulation are initialized.

218

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

84

mmn

def

def

def

__init_ (self, maximum_time, arrival_rate,
self.maximum_sim_time = maximum_time
self.arrival_rate = arrival_rate
self.simulation_time = 0
self.next_vehicle_time = 0
self.final_service_time = float ('Inf'")
self.waiting_time = 0

self.workshop = WorkShop (types)
self.waiting_line = deque ()

self.served_vehicles = 0

next_vehicle(self, arrival_rate):

Update the arrival time of the next vehicle.

arrivals time equals to zero.

self.next_vehicle time = self.simulation_time + \

types) :

CHAPTER 8. SIMULATION

We add 0.5 to avoid

round (random.expovariate (arrival_rate) + 0.5)

run(self) :

mmrn

This method executes the simulation of the

workshop and the waiting line

mmn

random.seed (10)

self.next_vehicle(self.arrival_rate)

The cycle is executed verified the simulation time is less than

maximum simulation time

while self.simulation_time < self.maximum_sim_time:

Update simulation time. Note that when the workshop is

self.simulation_time = min(self.next_vehicle_time,

self.final_service_time) if \

8.2.

85

86

87

88

89

90

91

92

93

94

95

96

97

98

9

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

DISCRETE EVENT SIMULATION (DES) 219

self.workshop.busy else self.next_vehicle_time

print (' [SIMULATION] time = {0} min'.format (self.simulation_time))

First, review the next event between arrival and the final of a
service

if self.simulation_time == self.next_vehicle_time:

If a vehicle has arrived we have to add it to the queue,
and to generate the next arrival.
self.waiting_line.append (Vehicle(self.simulation_time))

self.next_vehicle(self.arrival_rate)

print (' [QUEUE] {0} arrives in: {1} min.'.format (
self.waiting_line[-1].vehicle_type,
self.simulation_time))
elif self.simulation_time == self.final_service_time:

print (' [W_SHOP] Departure: {0} at {1} min.'.format (
self.workshop.current_task.vehicle_type,

self.simulation_time))

self.workshop.current_task = None

self.served_vehicles += 1

If the workshop is busy, the vehicle has to wait for its turn,

else can be served.
if not self.workshop.busy and len(self.waiting_line) > 0:
Get the next vehicle in the waiting line

next_vehicle = self.waiting_line.popleft ()

The vehicle begin to be served

220

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

153

CHAPTER 8. SIMULATION
self.workshop.pass_vehicle (next_vehicle)
Update the waiting time, added 0 actually
self.waiting_time += self.simulation_time \
- self.workshop.current_task.arrival_time
The next final time is generated
self.final_service_time = self.simulation_time \
+ self.workshop.review_time
print (' [W_SHOP] {0} enters with a expected service time {'

'l} min.'.format (
self.workshop.current_task.vehicle_type,
self.workshop.review_time))

print ('Statistics: ")
print ('Total service time {0} min.'.format (self.final_service_time))
print ('Total number of served vehicles: {0}'
.format (self.served_vehicles))
w_time = self.waiting time / self.served_vehicles
print ('Average waiting time {0} min.'.format (round(w_time)))
if __ name_ == '__ _main_ ':

Set the arrival rate in 5 minutes.

arrival_rate_vehicles =1 / 5

Here we define different types of vehicles and the their service time.

vehicles = {'motorcycle': 1.0 / 8, 'car':

'pickup_truck': 1.0 / 20}

The simulation runs until 50 minutes.

s = Simulation (70, arrival_rate_vehicles,

s.run ()

[SIMULATION] time

5 min

1.0 / 15,

vehicles)

8.2. DISCRETE EVENT SIMULATION (DES) 221

[QUEUE] pickup_truck arrives in: 5 min.

[W_SHOP] pickup_truck enters with a expected service time 1 min.
[SIMULATION] time = 6 min

[W_SHOP] Departure: pickup_truck at 6 min.

[SIMULATION] time = 9 min

[QUEUE] pickup_truck arrives in: 9 min.

[W_SHOP] pickup_truck enters with a expected service time 35 min.
[SIMULATION] time = 18 min

[QUEUE] car arrives in: 18 min.

[SIMULATION] time = 27 min

[QUEUE] motorcycle arrives in: 27 min.

[SIMULATION] time = 31 min

[QUEUE] pickup_truck arrives in: 31 min.

[SIMULATION] time = 32 min

[QUEUE] car arrives in: 32 min.

[SIMULATION] time = 44 min

[W_SHOP] Departure: pickup_truck at 44 min.

[W_SHOP] car enters with a expected service time 1 min.
[SIMULATION] time = 45 min

[W_SHOP] Departure: car at 45 min.

[W_SHOP] motorcycle enters with a expected service time 16 min.
[SIMULATION] time = 61 min

[QUEUE] car arrives in: 61 min.

[SIMULATION] time = 61 min

[W_SHOP] Departure: motorcycle at 61 min.

[W_SHOP] pickup_truck enters with a expected service time 11 min.
[SIMULATION] time = 64 min

[QUEUE] car arrives in: 64 min.

[SIMULATION] time = 66 min

[QUEUE] motorcycle arrives in: 66 min.

[SIMULATION] time = 72 min

[QUEUE] car arrives in: 72 min.

Statistics:

Total service time 72 min.

Total number of served vehicles: 4

222 CHAPTER 8. SIMULATION

Average waiting time 18 min.

As we can see, the variation of the simulation time depends exclusively on the events that occur during the simulation.
On each iteration, a vehicle gets into the waiting line, and it randomly generates the arrival time for the next car
(or event). Then, each time a vehicle enters the station, it makes a change in the state of the system. In case the
workshop is not busy the next car is served during a random service time. In the opposite case, while the station is
busy the incoming vehicles accumulate in the queue. When a car leaves the workshop, the simulation time is updated,

generating a new change in the system’s state.

8.3 Hands-On Activities

Activity 8.1

The first branch office of Seguritas Bank has two tellers to attend all clients. Each teller has its queue. Clients arriving
are placed in the shortest line, if both lines are equal, they prefer the teller 1. When a customer finishes his visit and
leaves the cashier, the last client of the other queue checks if he can improve his position by changing between lines,
in that case, he moves to the other line instantly. Assume that all clients arrive in a random time between one and three
minutes. Also, each teller takes a random time between one and ten minutes to serve one client. You must use DES to

simulate this situation during eighty minutes. Do not forget to identify the states variables and the relevant events.

Activity 8.2

The zoo GoodZoo is thinking about creating a new exhibition where they will show the life cycle in a natural
environment as a simulation. Six species are interacting in the environment: Tiger, Elephants, Jaguars, Penguins,
Grass and Cephalopods. Their interactions follow the rules of the food chain. They ask you to create the simulation

with the following events:

* Feeding rules Animals should eat according to their diet. To eat, they have to wait a random time within a
range defined in the variable t ime_ for_ food. After an animal selects a prey from the ecosystem, it verifies
if the victim belongs to its diet. After eating, animals get food_energy. In case the prey is not included in

the animal’s diet, it loses half of food_energy and tries to eat in the next simulation time.

* Birth New animals born at a rate of new_animal. Parents lose an amount of energy defined in the variable

giving_birth_energy. After the birth, you should verify that parents have enough energy to stay alive.

8.3. HANDS-ON ACTIVITIES 223

* Deaths An animal can die for three reasons: it has reached its 11 fe_expectancy, another animal has eaten

it, and its total energy has got to zero.

The simulation parameters are in the table below. food_frequency is uniformly distributed within a range specified

in the table. The time between births (new_animal) follows an exponential distribution where A is also specified in

the table:

Parameters Tiger Elephant Jaguar Penguin
Elephant, Jaguar, Elephant, Tiger,
food Grass Cephalopod
Penguin Penguin
food_frequency (20, 30) (8,15) (35,55) (4,15)
food_energy 30 4 20)
1 1 1 1
A 75 200 80 80
new_animal_energy 15 7 10 10
life_expectancy 300 500 350 90
initial number of
5) 8 5 12
animals

The simulation never runs out of Grass and Cephalopods, they do not perform any action, and only Elephants and

penguins eat them. Their quantities will always be:

* Grass: initial number of elephants x 3

* Cephalopods: initial number of penguins x5

The maximum simulation time is 1000 units of time, and you must run 1000 of these simulations to calculate and

show the following statistics:

224 CHAPTER 8. SIMULATION

1. Average simulation time.

2. How many times each species becomes extinct.

3. When does a species becomes extinct.

4. How many animals of each species were born.

5. How many animals of each species were eaten.

6. How many animals of each species ran out of energy.

7. How many animals of each species died old.

8. Average lifetime per species.

9. How many individuals of each species were alive at the end of the simulations.

10. How many animals of each species had to wait one turn or more to find their food.

11. Average food-waiting-time per species.

Requirements

* You must use Discrete Events Simulations because an iterative simulation won’t be fast enough to test all the

cases that GoodZoo wants to tests.

* Animals can be part of many events at the same time. The verification order of events it is not important, but

you have to make sure that animals that die at event n cannot exist at n + 1.

* Animals become part of the simulation the next instant of time after they born. That means that if they are born
at t, they cannot be food for any animal that eats at ¢, and they cannot die or find food. These actions can be

performed only from ¢ + 1.

Notes

» Consider making a detailed model; it will get your job much easier

8.3. HANDS-ON ACTIVITIES 225

Here we summarize all what you have to do:

* Simulate feeding

Randomly find prey. If the chosen animal cannot be eaten (it is not part of the diet) then wait for one

instant.

Check energy level and simulate death if that corresponds

Calculate statistics 1, 2, 3, 8, 9, 10, 11 and the deaths-counts per species.

Compute the next feeding time event
 Simulate births

Add a new animal to the simulation

Simulate the energy loss and deaths if corresponds

Calculate statistic 4

Compute next birth time event
* Simulate deaths

— Delete an animal from the ecosystem when it has reached its maximum age.

— Calculate statistics 5, 6 and 7

Chapter 9

Handling Strings and Bytes

In this chapter, we present some of the most used methods in strings and bytes objects. Strings are extremely useful to
manage most of the output generated from programs, like formatted documents or messages that involve program
variables. Bytes allow us, among other uses, to perform input/output operations that make possible the communication

between programs by sending/receiving data through different channels in low-level representation.

9.1 Some Built-in Methods for Strings

In Python, all strings are an immutable sequence of Unicode characters. Unicode is a standard encoding that allows us

to have a virtual representation of any character. Here we have some different ways to create a string in Python:

1 a = "programming"
2 b = "a lot'
3 ¢ = ""'a string

4 with multiple

5 lines'''

6 d = """Multiple lines with

7 double quotation marks """

8 e = "Three " "Strings" " Together"
9 f = "a string " + "concatenated"

10

11 print(a)

12 print (b)

13 print(c)

14 print (d)

228 CHAPTER 9. HANDLING STRINGS AND BYTES

15 print (e)

16 print (f)

programming
a lot
a string
with multiple
lines
Multiple lines with
double quotation marks
Three Strings Together

a string concatenated

The type st r has several methods to manipulate strings. Here we have the list:

1 print (())
[_add__', '__class_ ', '__contains_ ', ’'__ _delattr_ ', ’'_dir_', ’'__doc_ ',
' __eq ', '_format__ ', '_ge__', '__getattribute__’, '__getitem__’,

’ getnewargs__ ', ' gt__ ', ’_hash__’", ' init__ ", ' iter_ ", ' le_ ",

’ len_ 7", ' lt_ ", ' _mod_ ', '_mul_ ', '"_ne_'", ' _ _new ", ' reduce__ ',

’ reduce_ex_ ", ' repr__ ", ' rmod__ ", ' rmul__ ", ' setattr_ ',

' _sizeof_ ', ’_str__ ', ’'__subclasshook_ ', ’capitalize’, ’casefold’,
"center’, ’'count’, ’‘encode’, ’'endswith’, ’expandtabs’, ’"find’, ’'format’,
"format_map’, ’'index’, ’'isalnum’, ’'isalpha’, ’isdecimal’, ’isdigit’,
"isidentifier’, ’"islower’, ’isnumeric’, ’isprintable’, ’isspace’, ’istitle’,
"isupper’, ’join’, ’'lijust’, ’'lower’, ’lstrip’, ’'maketrans’, ’partition’,
"replace’, ’"rfind’, ’'rindex’, ’'rjust’, ’'rpartition’, ’rsplit’, ’'rstrip’,
"split’, ’splitlines’, ’startswith’, ’strip’, ’swapcase’, ’'title’,

"translate’, ’upper’, ’‘zfill’]
Now we show some examples of methods to manipulate strings. We defer the reader to Python documentation for
more examples of st ring methods.

The isalpha () method checks whether the string contains alpha characters or not. It returns True if all the

characters are in the alphabet of some language:

1 print ("abn".isalpha())

9.1. SOME BUILT-IN METHODS FOR STRINGS 229

True

If there is a number, blank space or punctuation marks, it will return False:

1 print("t/".isalpha())

False

The 1sdigit () method returns True if all the characters in the string are digits:

I print("34".isdigit ())

True

We can check if a portion of a string includes a specific sub-sequence within it by startswith () and endswith ()
methods:

1 s = "I'm programming"

2 print(s.startswith("I'm"))

3 print(s.endswith("ing"))

True

True

If we require searching for a sub-sequence anywhere within a string we use the £ind (seq) method, which returns

the index of s where the argument’s sequence seq starts:

1 print(s.find("m p"))

The index method index (str, beg=0 end=len (string)-1) returns the index of where the sequence str
starts within the string s. It always returns the first appearance of the argument str in s and starts at 0 as other

Python indexing cases:

I print(s.index('g"))

If we do not indicate the beginning or ending of the substring, index () method will use by default beg=0 and
end=len (string) —1. The next example shows how to search a substring that starts at position 4 and ends at

position 10:

230 CHAPTER 9. HANDLING STRINGS AND BYTES

1 print(s.index('o', 4, 10))

Python will let us know if we use the right boundaries arguments to search:

1 print(s.index('i', 5, 10))

Traceback (most recent call last):
File "2.py", line 29, in <module>
print (s.index("i’, 5, 10))

ValueError: substring not found

The split () method generates a list of words in s separated by blank spaces:

1 s = "Hi everyone, how are you?"

2 s2 = s.split ()

3 print(s2)

["Hi", ’'everyone,’, ’"how’, ’'are’, ’"you?’]

By default split () uses blank spaces. The join () method let us to create a string concatenating the words in a
list of strings through a specific character. The next example join the words in s2 using the # character:
1 s3 = "#'.join(s2)

2 print (s3)

Hi#everyone, #how#are#you?

We can change portions of a string indicating the sub-sequence that we want to change and the character to replace:
1 print(s.replace(' ', '%x'))

4

2 print(s)

Hixxeveryone, xxhowxxarexxyou?

The partition (seq) method splits any string at the first occurrence of the sub-sequence seq. It returns a tuple
with the part before the sub-sequence, the sub-sequence and the remaining portion of the string:

1 s5 = s.partition(' ")

2 print (s5)

3 print (s)

9.1. SOME BUILT-IN METHODS FOR STRINGS 231

("Hi’, ’ ', ’'everyone, how are you?’)

Hi everyone, how are you?

As we have seen in previous chapters, we can insert variable values into a string by using format:

1 # 4.py

3 name = 'John Smith'

4 grade = 4.5

5 grade >= 5.0:

6 result = 'passed'

7

8 result = 'failed'

9

10 template = "Hi {0}, you have {1} the exam. Your grade was {2}"
11 print (template. (name, result, grade))

Hi John Smith, you have failed the exam. Your grade was 4.5

If we want to include braces within the string, we can escape them by using double braces. In the example below, we

print a Java class definition:

1 # 5.py

3 template = """

4 public class {0}

5 {f

6 public static void main (String[] args)

7 {{

8 System.out.println({1});

9)

1oy

11

12 print (template. ("MyClass", "'hello world'"));

public class MyClass
{

public static void main(String[] args)

232 CHAPTER 9. HANDLING STRINGS AND BYTES

System.out.println("hello world’);

Sometimes we want to include several variables inside a string. This makes it hard to remember the order in which we

have to write them inside of format. One solution is to use arguments with keywords in the function:

1

2

6.py

print ("{} {label} {}". ("x", "y", label="z"))

7.py

template = """

From: <{from email}>
To: <{to_email}>
Subject: {subject}

{message}

mmn

print (template. (
from_email="someonel@domain.com",
to_email="anyonelexample.com",
message="\nThis is a test email.\n\nI hope this be helpful!",

subject="This email is urgent")

From: <someone@domain.com>
To: <anyone@example.com>
Subject: This email is urgent

This is a test email.

I hope this be helpful!

9.1. SOME BUILT-IN METHODS FOR STRINGS 233

We can also use lists, tuples or dictionaries as argument into format:

1 # 8.py

2

3 emails = ("a@example.com", "b@example.com")

4 message = {'subject': "You have an email.",

5 'message': "This is an email to you."}

7 template = """
8 From: <{0[0]}>
9 To: <{0[1]}>

10 Subject: {message[subject]} {message[message]}

mwn
11

13 print (template. (emails, message=message))

From: <a@example.com>
To: <b@example.com>

Subject: You have an email. This is an email to you.

We can even use a dictionary and index it inside the string:

1 # 9.py

2

3 header = {"emails": ["melexample.com", "youlexample.com"],
4 "subject": "Look at this email."}

5

6 message = {"text": "Sorry this is not important."}

8§ template = """

9 From: <{0O[emails][0]}>
10 To: <{O[emails][1]}>

11 Subject: {0[subject]}

12 {1[text]}"""

14 print (template. (header, message))

234 CHAPTER 9. HANDLING STRINGS AND BYTES

From: <me(@example.com>
To: <youlexample.com>
Subject: Look at this email.

Sorry this is not important.

We can also pass any object as an argument. For example, we can pass an instance of a class and then access to any of

the attributes of the object:

1 # 10.py

2

3 EMail:

4 __init_ (self, from_addr, to_addr, subject, message):

5 self.from_addr = from_addr

6 self.to_addr = to_addr

7 self.subject = subject

8 self.message = message

9

10 email = EMail ("a@example.com", "b@example.com", "You have an email.",

11 "\nThe message 1s useless.\n\nBye!")

13 template = """

14 From: <{0.from_ addr}>
15 To: <{0.to_addr}>

16 Subject: {0.subject}
17 {0.message} """

18 print (template. (email))

From: <a@example.com>
To: <b@example.com>
Subject: You have an email.

The message is useless.

Bye!

9.1. SOME BUILT-IN METHODS FOR STRINGS 235

We can also improve the format of the strings that we print. For instance, when you have to print a table with data,

most of the time you want to show the values of the same variable aligned in columns:

3 items_bought = [('milk', 2, 120), ('bread', 3.5, 800), ('rice', 1.75, 960)]

5 print ("PRODUCT QUANTITY PRICE SUBTOTAL")

6 product, price, quantity, items_bought:

7 subtotal = price x quantity

8 print ("{0:8s}{1: ~9d} ${2: <8.2f}${3: >7.2f}"

9 . (product, quantity, price, subtotal))

PRODUCT QUANTITY PRICE SUBTOTAL

milk 120 $2.00 $ 240.00
bread 800 $3.50 $2800.00
rice 960 $1.75 $1680.00

Note that within each key there is a dictionary-type item, in other words, before the colon is the index of the argument
within the format function. The string format is given after the colon. For example, 8 s means that the data is a
string of 8 characters. By default, if the string is shorter than 8 characters, the rest is filled with spaces (on the right).
If we enter a string longer than 8 characters, it will not be truncated. We can force longer strings to be truncated by

adding a dot before the number that indicates the number of characters. As an example, if the formatis {1: ~9d}:

* 1 corresponds to the index of the argument in the format function

» The space after the colon says that the empty spaces must be filled with spaces (by default integer types are
filled with zeros)

* The symbol " is used to center the number in the available space
* 9d means it will be an integer up to 9 digits

The order of these parameters, although they are optional, should be from left to right after the colon: character to fill

the empty spaces, alignment, size and then type.

In the case of the price, {2: <8.2f} means that the used data is the third argument of the format function. The

free places are filled with spaces; the < symbol means that the alignment is to the left, the number is a float of up to 8

236 CHAPTER 9. HANDLING STRINGS AND BYTES

characters, with two decimals. Similarly, in the case of the subtotal {3:> 7.2f}, it means that the used data is the
fourth argument in the format function, the filling character is space, the alignment is to the right, and the number is

a 7 digit float, including two decimal places.

9.2 Bytes and I/0

At the beginning of the chapter, we said that Python strings are an immutable collection of Unicode characters.
Unicode is not a valid data storage format. We often read information of a string from some file or socket in bytes, not
in Unicode. Bytes are the lowest level storage format. They represent a sequence of 8 bits which are described as
an integer between 0 and 255, an equivalent hexadecimal between 0 and FF, or a literal (only ASCII characters are

allowed to represent bytes).

Bytes can represent anything, such as coded character strings, or pixels of an image. In general, we need to know how
they are coded to interpret the correct data type represented by bytes. For example, a binary pattern of 8 bits (one byte)

may correspond to a particular character if is decoded as ASCII, or to a different character if is decoded as Unicode.

In Python, bytes are represented with the bytes object. To declare that an object is a byte you must add a b at the

beginning of the object a. For example:

3 # What is between quotes 1is a byte object
4 characters = b'\x63\x6c\x69\x63\x68\xe9"'
5 print (characters)

6 print (characters.decode("latin-1"))

8 # 61 and 62 are the hexadecimal representation of 'a' and 'b'
9 characters = b"\x61\x62"

10 print (characters.decode ("ascii"))

12 # 97 and 98 are the corresponding ASCII code of 'a' and 'b'
13 characters = b"ab"

14 print (characters)

15 characters = bytes ((97, 98))

16 print (characters)

17 print (characters.decode ("ascii"))

9.2. BYTES AND I/O 237

b’ clich\xe9’
cliché

ab

b"ab’

b"ab’

ab

1 # 13.py

3 # This generate an error because it 1is only possible to use ascii literals

4 # to create bytes

6 characters = b"ab"

SyntaxError Traceback (most recent call last)
<ipython-input-19-826203d742e2> in <module> ()

—-——> 4 caracteres = b"ab"

SyntaxError: bytes can only contain ASCII literal characters.

The space symbol indicates that the two characters after the x correspond to a byte in hexadecimal digits. The bytes
that coincide with the ASCI T bytes are immediately recognized. When we print these characters, they appear correctly;
the rest are printed as hexadecimal. The b reminds us that what is in the right is a bytes object, not a string.
The sentence characters.decode ("latin—-1") decodes the sequence of bytes by using the "latin—-1"

alphabet.
The decode method returns a Unicode string. If we use another alphabet, we get another string:

1 # 14.py

2

3 characters = b'\x63\x6c\x69\x63\x68\xe9’
4 print (characters.decode ("latin-1"))

5 print (characters.decode ("1is08859-5"))

cliché

clich

238 CHAPTER 9. HANDLING STRINGS AND BYTES

To code a string in a different alphabet, we simply have to use the encode method from str. It is necessary to

indicate the encoding alphabet:

1

15.py
characters = "estacion"
print (characters.encode ("UTEF-8")) # 8-bit Unicode Transformation Format

print (characters.encode ("latin-1"))
print (characters.encode ("CP437"))

print (characters.encode ("ascii")) # Can't enconde 1in ascii the character o

b’estaci\xc3\xb3n’
b’estaci\xf3n’

b’estaci\xa2n’

UnicodeEncodeError Traceback (most recent call last)
<ipython-input-32-844dd5b7b18c> in <module> ()

3 print (characters.encode ("latin-1"))

4 print (characters.encode ("CP437"))

—-——=> 5 print (characters.encode ("ascii")) # can’t enconde in ascii the character 6

UnicodeEncodeError: ’"ascii’ codec can’t encode character ’\xf3’ in position 6:

ordinal not in range (128)

The encode method has options to handle the cases where the string we want to code cannot be coded with

the requested alphabet. These options are passed in key argument errors. Possible values are: ' strict’ by

default to raise a UnicodeDecodeError exception, ' replace’ to replace an unknown character with symbol

?, " ignore’ to skip the character, and ' xmlcharrefreplace’ to create a xml entity that represents a Unicode
character.

1 # 16.py

2

3 characters = "estacidén"

4

5

print (characters.encode ("ascii", errors='replace'))

print (characters.encode ("ascii", errors='ignore'))

9.3. BYTEARRAYS 239

6 print (characters.encode ("ascii", errors='xmlcharrefreplace'))

b’estaci?n’
b’estacin’

b’estación’

In general, if we want to code a string and we do not know the alphabet we should use, the best to do is to use UTF-8

because it is compatible with ASCTIT.

9.3 bytearrays

Just like the name suggests, bytearrays are arrays of bytes, that in contrast to bytes, they are mutable. They behave
like lists: we can index them with slice notation, and we can add bytes to them with extend. To build a bytearray we

must enter an initial byte:

1 # 17.py

3 ba_l = (b"hello world")

4 print(ba_1l)

5 print(ba_1[3:7])

6 ba_1[4:6] = b"\x15\xa3"

7 print (ba_1)

8 ba_l.extend (b"program")

9 print(ba_1)

10 # Here it prints an int, the ascii that corresponds to the letter 'h'
11 print(ba_1[0])

12 print((ba_1[01))

13 print((ba_1[01)[2:].2£111(8))

bytearray (b"hello world’)

bytearray (b’lo w’)
bytearray (b’ hell\x15\xa3world’)
bytearray (b’ hell\x15\xa3worldprogram’)
104

0b1101000

01101000

240 CHAPTER 9. HANDLING STRINGS AND BYTES

Note that the last line is used to print the bits that correspond to the first byte. The [2:] is used to start from the third
position, because the first two b’ indicate that the format is binary. When we add .z£f111 (8) we mean that § bits

will be used to represent a byte. It only makes sense when there are only zeros at the left side.

A one-byte character can be converted to an integer using the ord function:

1 # 18.py
2
3 print((b"a"))
4 b = (b'abcdef")
5 b[3] = (b'g") # The ASCII code for g is 103
6 b[4d] = 68 # The ASCII code for D 1is 68, this is the same as b[4] = ord(b'D")
7 print (b)
97

bytearray (b’ abcgDf’)

9.4 Hands-On Activities

Activity 9.1

The teacher assistants of the Advanced Programming course, rescued at the last second all students data from the
Computer Science Department’s ERP. However, during the download some errors appeared and produced the following

changes:
* In some rows, a random natural number followed by a blank space was placed at the beginning of the student’s
name. For example: Jonh Smith changed to 42 John Smith. Those numbers must be removed.

* For each sequence of letters #, an additional n was added at the end of the concatenation. For example: ANNE
became ANNNE. These names must be corrected. Assume that there are no names or last names with more than

two consecutive n.

* Some names changed from uppercase to lowercase. All names must be in uppercase.

The rescued students list was saved as a .csv file. The main characteristic of this kind of files are:

* Each column is separated by commas

9.4. HANDS-ON ACTIVITIES 241

e The first row is the header for all columns.

You must convert all the data to three different formats: LaTeX, HTML, Markdown. The file FORMATS.md explains
all the different formats and the representation that is required. Consider that the students.csv file always have three
columns, but an unknown finite number of rows. Assume that there is no missing data. All the required files are

available at https://advancedpythonprogramming.github.io/

Activity 9.2

One of your friends has to solve a big challenge: to separate a weird audio file that has two audio tracks mixed. Your
friend did some research and found out that the file can be modified reading its data as bytes. The problem is that your

friend has no idea about bytes, but he knows that you are reading this book, so he asked you to solve this big problem.

The input file, music.wav is a mix of two songs. You will have to read this file and generate two other files,
songl.wav and song2.wav, each one with a separate audio. All the required files are available at https:

//advancedpythonprogramming.github.io/

The file music.wav has the mixed audio in the following way: From the byte 44 (start counting from 0), one byte
corresponds to the first audio, and the other byte corresponds to the second. If x and y represent the bytes from the

first and second audio respectively; the bytes are in the following order:

XYyXYyXyXy...

Figure 9.1 shows the structure of a WAV audio file.

Consider the following:

* The size of each file will change after the separation: Each output file has half of the original data. Consider

this when writing the headers of the output files. Tip: Use the 4-byte representation for these integers.

* The rest of the header data can be re-used without modification as they appear in the input, but do not forget to

add them.

Bonus track

Now we have a new file, audio.wav. You suppose to do the same separation previously performed, but now the

sampling frequency is different for each output file. In this case, bytes 25 to 28 and 29 to 32 are different depending on

242 CHAPTER 9. HANDLING STRINGS AND BYTES

the file. The values are':

* For the first file, write 11025 in both groups of bytes.

* For the second file, write 22050 in both groups of bytes.

* Run the previous algorithm with this audio and obtain the correct output.

Tips

e int.from _bytes (bytes, byteorder=‘1little’): This function transform a byte to the equivalent

integer.

* int.to_bytes(size, byteorder=‘little’): This function transforms an integer to bytes of the

given size, with the given size of bytes.

IThe sampling frequency corresponds to the number of samples in one unit of time from a continuous signal during the process of conversion
from analogous to digital. The product is a discrete signal that can be reconstructed by a digital audio reproducer when it knows the sampling
frequency.

9.4. HANDS-ON ACTIVITIES 243

WAV Audio File (bytes array)

Header (44 bytes) Audio Data (> 45)
Byte ID 0 1 2 3 4 5 6 7 8 9 10 11 43 44 a5 46 a7 48 49 50
Example R | 7 B \xd1 \x00 \x00 \x00 w A Vv E \xad \x80 \x7f \x7f \x80 45 128 234

values

\ J \
N N/

otions L pesrpion]
1-4 Defines the file as a “RIFF” file.
5-8 Size of the overall file minus 8 bytes (in bytes)
9-12 File type header. In this case “WAVE”
13-16 Format chunk marker “fmt”
17-20 Lenght of format data
21-22 Type of format (1 is PCM)
23-24 Number of Channels
25-28 Sample Rate (SR): number of samples per second
29-32 (SR * Bits per sample * Channels) / 8
33-34 (Bits per sample * Channels) / 8
35-36 Bits per sample
37-40 Data chunk header “data”: marks the beginning of data section
41-44 Size of the data section
=45 Audio data —

Figure 9.1: Figure shows the WAV audio file structure. Note that Byte ID starts from 0 and the position in the structure
form 1.

Chapter 10

1/0 Files

So far we have worked reading and writing text files. However, operating systems represent most of its files as
sequences of bytes, not as text. Since reading bytes and converting them to text is a very common operation in files,
Python handles the bytes by transforming the string representation with the respective encoders/decoders. For example,
the open function receive the name of the file to open, but also accept as an argument the character set for encoding
the bytes, and the strategy to follow when bytes are inconsistent with the format. For instance, take a look at the

different methods applied to the file example_file:

Lorem Ipsum

Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae,
felis. Curabitur dictum gravida mauris. Nam arcu libero,
nonummy eget, consectetuer id, vulputate a, magna. Donec
vehicula augue eu neque. Pellentesque habitant morbi
tristique senectus et netus et malesuada fames ac turpis
egestas. Mauris ut leo. Cras viverra metus rhoncus sem.
Nulla et lectus vestibulum urna fringilla ultrices. Phasellus

eu tellus sit amet tortor gravida placerat.

As we mentioned above, we open a file using the open () function:

3 = ('example_file', 'r', encoding='ascii', errors='replace')

246 CHAPTER 10. I/O FILES

4 print(.read())

5 .close()

Lorem Ipsum

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut
purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis.
Curabitur dictum gravida mauris. Nam arcu libero, nonummy

eget, consectetuer id, vulputate a, magna. Donec vehicula augue
eu neque. Pellentesque habitant morbi tristique senectus et netus
et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra
metus rhoncus sem. Nulla et lectus vestibulum urna fringilla

ultrices. Phasellus eu tellus sit amet tortor gravida placerat.

We can override and overwrite this file, using the ’ w’ argument in the open () method as follows:

1 # 20.py

2

3 content = "Sorry but now, this file will have me."

4 = ('example_file', 'w', encoding='ascii', errors='replace')
5 .write (content)

6 .close ()

Now, if we re-open and read the file like at the beginning:

1 # 21.py

2

3 = ('example_file', 'r', encoding='ascii', errors='replace')
4 print(.read())

5 .close ()

Sorry but now, this file will have me.

The contents in the file changed by the last sentence we wrote using the * w’ argument. We could instead add content

at the end of the file if we replace the " w’ by an ' a’:

1 # 22.py
2

3 content = "\nI will be added to the end."

247

4 = ('example_file', 'a', encoding='ascii', errors='replace')
5 .write (content)

6 .close ()

7

8 = ('example_file', 'r', encoding='ascii', errors='replace')
9 print(.read())

10 .close ()

Sorry but now, this file will have me.

I will be added to the end.

To open a file as binary, we only need to append the char b to the opening mode. For example, ' wb’ and ’ rb’

instead of " w’ and ’ r’, respectively. In this case, Python opens the file like text files, but without the automatic

coding from byte to text:

1 # 23.py

3 content = b"abcdel2"

4 = ('example_file_2', 'wb')
5 .write (content)

6 .close ()

7

8 = ('example_file_2', 'rb')
9 print(.read())

10 .close ()

b’ abcdel?2’

We can concatenate bytes by simply using the sum operator. In the example below, we build dynamic content in each

iteration. Then it is written in an explicit bytes file.

1 # 24.py

2

3 num_lines = 100

4

5 = ('example_file_3', 'wb')
6 i (num_lines) :

7 # To the bytes function we should pass an iterable with the content to

248 CHAPTER 10. I/O FILES

8 # convert. For this reason we pass the integer inside the 1ist
9 content = b"line_ " + bytes([1]) + b" abcdel2"

10 .write (content)

11 .close ()

To see the result, we re-read a fixed amount of bytes from the same file:

1 = ('example_file_3', 'rb'")

2 # The number 40 indicates the number of bytes that will be read from the file
3 print(.read (40))

4 .close ()

b’line_\x00 abcdel2line_\x01 abcdel2line_\x02 abcde’

10.1 Context Manager

Every time we open a file, binary or not, we have to ensure our program close it correctly after reading the necessary
information. However, exceptions may occur while the file is still open causing the loss of information and exposing a
weakness in our code. One clear way is to close a file using the finally block, after a t ry statement. A cleaner
option is to use a context manager which is responsible for executing the t ry and £inally statements and manage
the life-cycle of the object in the context without the need to write these statements directly. The following code shows

an example of the using a context:

1 # 25.py

3 with ('"example_file_4', 'r', errors='replace')
4 content = .read ()

5 print (content)

file = open (’example_file’, 'r’)
try:

content = file.read()
finally:

file.close ()

If we execute dir in an object type, we can see that there are two methods called __enter__and __exit__ :

1 # 26.py

10.1. CONTEXT MANAGER 249

3 = ('"example_file_4', 'w')
4 print(())

5 .close ()

[/ _CHUNK_SIZE’, ’'__class_ ', '_del_ ', '__delattr ', ’'__dict__', ’'__dir_ ',
’ doc__ ' " _enter_ ', '_eq ', '_exit_ ', '__format__ ', '_ge_ ',

_ (R 4

! _getattribute__ ', ’'__getstate_ ', '_gt__ ', '_hash__ ', '__init__ ',

14 4 4

_ iter_ ', _le_ ', ' 1t ', ' _ne_ ', ' _new_ ', '"_next_ ', '__ _reduce_ ',
' __reduce_ex__ ',’'__repr_ ', '__setattr_ ', ’'__sizeof__', ’'_str__ ',

' __subclasshook__ ', ’_checkClosed’, ’_checkReadable’, ’'_checkSeekable’,

' _checkWritable’, ’_finalizing’, "buffer’, ’"close’, ’'closed’, ’'detach’,
"encoding’, ’errors’, ’'fileno’, ’flush’, ’isatty’, ’'line_buffering’, ’'mode’,
"name’, ’'newlines’, ’'read’, ’readable’, ’'readline’, ’'readlines’, ’seek’,

"seekable’, "tell’, ’'truncate’, ’'writable’, ’'write’, ’'writelines’]

Both methods allow us to customize any object within a context manager. The __exit__ method makes it possible
to define the set of actions executed after a context finish. In the case of a file, it ensures that the context manager shall

close the file correctly after reading the necessary data, even if an exception occurs while it is open.

In a similar way, the __enter___ method let us specify the necessary steps performed to set the context of the object.
For example, within a context the open () function returns a file object to the context manager. Finally, we simply
use the with statement to generate the context and ensure that any object defined within it uses the __enter___ and

__exit__ methods.

To personalize the use of any object within a context manager, we simply create a class and add the __enter_
and __exit__ methods. Then, call the class using the with statement. The following example shows how the

__exit__ method runs once we get out of the scope of the with statement.

1 # 27.py

3 string

4 random

7 StringUpper ()t

250 CHAPTER 10. I/O FILES

9 __enter__ (self):

10 self

11

12 __exit_ (self, , value, tb):

13 i ((self)):

14 self[i] = self[i].upper()

15

16

17 with StringUpper () s_upper:

18 i (20) :

19 # Here we randomly select a lower case ascili
20 s_upper.append (random.choice (string.ascii_lowercase))
21 print (s_upper)

22

23 print (s_upper)

[IMV, IFV, IWV, IGV, IQV, ’OV, ’K’, ’A’, ’H’, ’P’, ’O’, ’W’, ’E’, VK/’ VF/’

In the last example we have a class that inherits from 1ist. We implemented the __enter_ and __exit_
methods, hence we can instantiate it through a context manager. In this particular example, the context manager

transforms all the lower case ascii characters to upper case.

10.2 Emulating files

We often have to interact with some software modules which only read and write data to and from files. In other cases,
we just want to test a feature which requires some files. To avoid having to write data to persistent storage, we can

have it on memory as files using St ringIO or BytesIO. The next example shows the use of these modules:

1 # 28.py

3 io StringIO, BytesIO

5 # Simulate a text file

6 file_in = StringIO("info, text and more")

10.2. EMULATING FILES 251

7 # Simulate a binary blob file

8 file_out = BytesIO()

10 char = file_in.read(1l)

11 char:

12 file_out.write (char.encode('ascii', 'ignore'))
13 char = file_in.read (1)

14

15 buffer_ = file_out.getvalue ()

16 print (buffer_)

b’"info, text and more’

Chapter 11

Serialization

The term serialization refers to the process of transforming any object into a sequence of bytes to be able to storage or
transfer its data. We often use serialization to keep the results or states after a program finishes its execution. It may be

very useful when another program or a later execution of the same program can load the saved objects and reuse them.

The Python pickle module allows us to serialize and deserialize objects. This module provides two principal

methods

1. dumps () method: allows us to serialize an object.

2. loads () method: let us to deserialize the data and return the original object.

1 # 29.py

2

3 pickle

4

5 tuple_ = ("a", 1, 3, "hi")

6 serial = pickle.dumps (tuple_)
7 print (serial)
8 print ((serial))

9 print (pickle.loads (serial))

P’ \x80\x03 (X\x01\x00\x00\x00ag\x00K\x01K\x03X\x02\x00\x00\x00hig\x01tg\x02."
<class ’'bytes’>

("a’, 1, 3, 'hi’)

254 CHAPTER 11. SERIALIZATION

Pickle has also the dump () and 1oad () methods to serialize and deserialize through files. These methods are not the
same methods dumps () and 1oads () described previously. The dump () method saves a file with the serialized

object and the 1oad () deserializes the content of the file. The following example shows how to use them:

1 # 30.py

2

3 pickle

4

5 list_ = [1, 2, 3, 7, 8, 3]

6 with ("my_1list", 'wb')

7 pickle.dump (list_,)

8

9 with ("my_1list", 'rb'")

10 my_list = pickle.load()
11 # This will generate an error if the object is not same we saved
12 assert my_list == list_

The pickle module is not safe. You should never load a pickle file when you do not know its origin since it could run
malicious code on your computer. We will not go into details on how to inject code via the pickle module, we refer the
reader to [2] for more information about this topic. If we use Python 3 to serialize an object that will be deserialized
later in Python 2, we have to pass an extra argument to dump or dumps functions, the argument name is protocol

and must be equal to 2. The default value is 3). The next example shows how to change the pickle protocol:

1 # 31. Py

3 pickle

5 my_object = [1, 2, 3, 4]

6 serial = pickle.dumps (my_object, protocol=2)

When pickle is serializing an object, what is trying to do is to save the attribute __dict___ of the object. Interestingly,
before checking the attribute ___dict__, pickle checks if there is a method called __getstate__, if any, it will
serialize what the method __getstate___ returns instead of the dictionary __dict___ of the object. It allows us to

customize the serialization:

1 # 32.py

20

21

22

23

24

25

26

255

pickle
Person:
__init__ (self, name, age):
self.name = name
self.age = age
self.message = "Nothing happens"

Returns the current object state to be serialized by pickle
__getstate_ (self):
Here we create a copy of the current dictionary, to modify the copy,

not the original object

new = self.__dict__.copy ()
new.update ({"message": "I'm being serialized!!"})
new

m = Person("Bob", 30)
print (m.message)

serial = pickle.dumps (m)
m2 = pickle.loads (serial)
print (m2.message)

print (m.message) # The original object is "the same"

Nothing happens
I'm being serialized!!

Nothing happens

Naturally, we can also customize the serialization by implementing the ___setstate__ method, it will run each

time you call Load or loads, for setting the current state of the newly deserialized object. The __setstate___

method receives as argument the state of the object that was serialized, which corresponds to the value returned by

__getstate__ . __ setstate__ must set the state in which we want the deserialized object to be by setting

self._dict__ . Forinstance:

1

33.py

256 CHAPTER 11. SERIALIZATION

3 pickle

4

5

6 Person:

7

38 __init__ (self, name, age):

9 self.name = name

10 self.age = age

11 self.message = "Nothing happens"

12

13 # Returns the current object state to be serialized by pickle
14 __getstate_ (self):

15 # Here we create a copy of the current dictionary, to modify the copy,
16 # not the original object

17 new = self.__dict__.copy()

18 new.update ({"message": "I'm being serialized!!"})

19 new

20

21 _ _setstate_ (self, state):

22 print ("deserialized object, setting its state...\n")

23 state.update ({"name": state["name"] + " deserialized"})
24 self._dict___ = state

25

26 m = Person("Bob", 30)

27 print (m.name)

28 serial = pickle.dumps (m)
29 m2 = pickle.loads (serial)

30 print (m2.name)

Bob

deserialized object, setting its state...

Bob deseialized

A practical application of __getstate__ and __setstate__ methods can be when we need to serialize an

11.1. SERIALIZING WEB OBJECTS WITH JSON 257

object that contains attributes that will lose sense after serialization, such as, a database connection. A possible solution
is: firsttouse __getstate_ toremove the database connection within the serialized object; and then manually

reconnect the object during its deserialization, in the __setstate__ method.

11.1 Serializing web objects with JSON

One disadvantage of pickle serialized objects is that only other Python programs can deserialize them. JavaScript
Object Notation (JSON) is a standard data exchange format that can be interpreted by many different systems. JSON
may also be easily read and understood by humans. The format in which information is stored is very similar to Python
dictionaries. JSON can only serialize data (int, str, floats, dictionaries and 1ists), therefore, you can
not serialize functions or classes. In Python there is a module that transforms data from Python to JSON format, called
json, which provides an interface similar to dump (s) and 1oad (s) in pickle. The output of a serialization using

the json module’s dump method is of course an object in JSON format. The following code shows an example:

1 # 34.py

2

3 json

4

5

6 Person:

7

8 __init_ (self, name, age, marital_status):
9 self.name = name

10 self.age = age

11 self.marital_status = marital_status
12 self.idn = (Person.gen)

13

14 get_id() :

15 cont =1

16

17 yield cont

18 cont +=1

19

20 gen = get_id()

21

22 p = Person("Bob", 35, "Single")

258 CHAPTER 11. SERIALIZATION

23 json_string = json.dumps(p.__dict_)
24 print ("JSON data: ")

25 print (json_string)

26 print ("Python data: ")

27 print (json.loads (json_string))

JSON data:
{"marital_status": "Single", "name": "Bob", "idn": 1, "age": 35}
Python data:

{'marital_status’: ’Single’, ’'name’: 'Bob’, ’'age’: 35, ’'idn’: 1}

We can also write directly JSON objects as Python strings that follow the JSON data format. In the next instance we
create a JSON object type directly (without json.dumps), and then we deserialize it into a Python type object with

json.loads:

1 # 35.py

2

3 json

4

5

6 Json_string = '{"name":"Mark","age":34," \

7 '""marital_status": "married", "score" : 90.5}'

8 print (json.loads(json_string))

{'marital_status’: 'married’, ’age’: 34, ’'score’: 90.5, ’'name’: ’'Mark’}

We can also load data with particular formats. For instance, in the case we want to show int types as floats:

1 # 36.py

2

3 json

4

5

6 Json_string = '{"name":"Mark","age":34,"' \

7 '""marital_status": "married", "score" : 90.5}'

8 print (json.loads(json_string, parse_int=))

{"age’: 34.0, ’'name’: "Mark’, ’score’: 90.5, ’'marital_status’: 'married’}

11.1. SERIALIZING WEB OBJECTS WITH JSON 259

In Python, by default, JSON converts all data to a dictionary. If you want to turn data into another type, we can use the
object argument ob ject_hook with a 1ambda function that will be applied to each data object. For instance, if we

want to load JSON data into a list of tuples instead of a dictionary:

1 # 37.py

2

3 json

4

5

6 Json_string = '{"name":"Mark","age":34,"' \

7 '""marital_status": "married", "score" : 90.5}'

8 data = json.loads(json_string,

9 object_hook= dict_obj:

10 [(1, 3)) i, J dict_obj.items ()])

—_

I print (data)

[(fmarital_status’, ’'married’), ("age’, 34), ('name’, ’"Mark’), (’score’, 90.5)]

We can create any function and then apply it to the data we want to convert:

1 # 38.py

2

3 Jjson

4

5

6 funcion(dict_obj) :

7 collection = []

8 k dict_obj:

9 collection.extend([k, (dict_objlk]) 1)

10 collection

11

12 Json_string = '{"name":"Mark","age":34," \

13 '"marital_status": "married", "score" : 90.5}'
14 data = json.loads (json_string, object_hook= dict_obj: funcion(dict_obj))

15 print (data)

["age’, '"34’, ’'"name’, ’'Mark’, ’score’, ’"90.5", ’'marital_status’, ’'married’]

260

CHAPTER 11. SERIALIZATION

We can also customize the way we code the data in JSON format by creating a class that inherits from the

json.JSONEncoder class and by overriding the default method:

20

21

22

23

24

25

26

27

28

29

30

31

32

33

39.py
json
datetime datetime
Person:
__init_ (self, name, age, marital_status):
self.name = name

self.age = age

self.marital_status = marital_status
self.idn = (Person.gen)
get_id() :

cont = 1

yield cont

cont += 1

gen = get_id()

Personakncoder (json.JSONEncoder) :

default (self, obj):

(obj, Person):

{'Person_id': obj.idn, 'name':

A\l

'dob': datetime.now () .year - obj.age}

() .default (obj)

pl Person ("Bob", 37, "Single")

P2 Person ("Mark", 33, "Married")

age': obj.age, 'marital_ status':

obj.name,

obj.marital_status,

11.2. HANDS-ON ACTIVITIES

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

p3 = Person("Peter", 24, "Single")

print ("Default serialization:\n")
With this we serialized using the default method
json_string = Jjson.dumps (pl.__dict__)

print (json_string)

Now we serialize with the personalized method
print ("\nCustom Serialization:\n")

json_string = Jjson.dumps (pl, cls=PersonaEncoder)
print (json_string)

json_string = Jjson.dumps (p2, cls=PersonaEncoder)
print (json_string)

json_string = json.dumps (p3, cls=PersonaEncoder)

print (json_string)

Default serialization:

261

{"name": "Bob", "marital_status": "Single", "age": 37, "idn": 1}

Custom Serialization:

{"age": 37, "name": "Bob", "marital_status": "Single", "Person_id": 1,
"dob": 1978}

{"age": 33, "name": "Mark", "marital_status": "Married", "Person_id": 2,
"dob": 1982}

{"age": 24, "name": "Peter", "marital_ status": "Single", "Person_id": 3,
"dob": 1991}

11.2 Hands-On Activities

Activity 11.1

The Walkcart supermarket has asked us to help them to handle its clients’ transactional data. This information, in

future, will be useful to know who are the best customers and cashiers. The Walkcart managers asked us to implement

262 CHAPTER 11. SERIALIZATION

all the needed functionalities to allow the clerk to update and save clients’ data. This information has to be stored in a

file inside the ClientsDB folder. All files need to have the . walkcart extension.

Each cashier should be able to:
» Star a new session with their name. To verify that the person is really a cashier, you can verify the file in
cashiers.walkcart that contains a list of serialized strings.
* For each client, ask its name (str),id (int) and money spent (int).

* Update and generate the file id.walkcart inside the C1ient sDB folder, where id is the client’s id. This
file must be a serialization of the C1ient class, that you must define. You have to save: name, id, accumulated

spent, and last purchase’s date.

The company should also be able to:

* Star a session with a unique user: WalkcartUnlimited.

¢ Generate the file TOP .walkcart. This file must be in format and must contain the data of the client who

historically has spent the most. If you find more than one winner, pick one randomly.

Notes

* If the username does not correspond to a cashier (or a WalkcartUnlimited), then this user must not be able to log

into the system.
» At all times you must serialize using pickle.

» Each cashier can attend a customer more than once, and one client can make as many purchases as he/she want.

Keep the information in the file correct and updated.

e The PlainTextInfo.txt file cannot be used by your program.

Chapter 12

Networking

Computer networks allow communication between multiple computers, regardless of their physical location. Internet
provides us with an infrastructure that allows computers to interact across the entire web. In this chapter, we explore
the main concepts needed to understand communication protocols and to learn how to send and receive data through

networks with Python.

12.1 How to identify machines on internet

Every machine connected to internet has an IP (Infernet Protocol) address. Every website has (besides the IP address) a
hostname. For example, the hostname www .python.orghas 199.27.76.223 as its IP address. We can obtain a
website’s IP address by typing ping hostname on a unix terminal. For example, type ping www.python.org

in a unix or windows terminal.

An IP address on its fourth version (IPv4) corresponds to a binary number of 32 bits (grouped by 4 bytes), hence in the
IPv4 format we can have a maximum of (28)4 = 256* = 4.294.967.296 IP addresses. Because the maximum number
of IP addresses was surpassed by the amount of machines connected to the global network, the new /Pv6 standard was
created. In IPv6, every address has 128 bits, divided in 8 groups of 16 bits each, represented in hexadecimal notation.

For example: 20£1:0db8:0aab:12£f1:0110:1bde:0bfd:0001

12.2 Ports

An IP address is not enough to establish a connection. When two computers are communicating through an application,
besides the IP address, we must specify a port. A port establishes the communication channel that the application

uses inside the machine. The sender and receiver applications can have different ports assigned on their respective

264 CHAPTER 12. NETWORKING

machines, even if the applications are the same. For example, if we want to start communicating with a remote server
through FTP (File Transfer Protocol), we must connect to the server by its IP address and port 21. There are many

applications with already assigned ports, as we can see on Table 12.1.

Table 12.1: Some preset ports

Port | Description
21 FTP CONTROL

22 SSH

23 Telnet

25 SMTP (email)

37 Time

42 Host Name Server (Nameserv)

53 Domain Name System (DNS)
80 HTTP (Web)

110 | POP3 (email)

118 | SQL Services

119 | NNTP (News)

443 | HTTPS (Web)

The port number is represented by 16 bits, hence exist 2'¢ = 65536 possible ports. There are three preset ranges in
the list of available ports: well-known ports in the range [0 — 1023], registered ports in the range [1024 — 49151] and
dynamic or private ports in the range [49152 — 65535]. The IANA (Internet Assigned Numbers Authority) organization
is responsible for designing and maintaining the number of ports for the first two ranges. The third range, in general, is
used by the operating system, that automatically assigns ports depending on the running programs’ requests. Every
running program must be represented by a host and a port to communicate inside a network. In Python, we represent

those values as a tuple. For example: (”www.yahoo.es”, 80) or (”74.6.50.150", 443).

The most used transmission protocols in a network are: TCP (Transmission Control Protocol) y UDP (User Data-

gram Protocol).

TCP

This kind of protocol guarantees that sent data will arrive intact, without information loss or data corruption,
unless the connection fails. In this case, data packages are re-transmitted until they successfully arrive. A sequence
of packages transmits a message. Each TCP package has an associated sequence of numbers that identify each
package. These numbers allow the receiver system to reassemble the packages in the correct order regardless
of the sequence they arrive. Also, using the same sequence of numbers the system can detect missing packages
and require their retransmission. Figure 12.2 shows the structure of the TCP header for a better understanding

of these correction mechanisms. Details about the meaning of all the fields in the TCP datagram can be found

12.3. SOCKETS 265

inhttps://tools.ietf.org/html/rfc3168#section-6.1. We do not explain them here because we
believe that it is out of the scope of this book. Some examples of TCP uses are: sending files via F TP, sending emails

via SMTP, POP3 or HTTP.

Bit
(0] 4 8 12 16 20 24 28 32
Source Port Destination Port
Sequence Number
Acknowledgment Number 20 Bytes Data
. Offset
Data Offset Reserved TCP Flags Window
Checksum Urgent Pointer
TCP Options (variable length, optional)
Data
t— Nibble } Byte % Word

TCP Flags
0 2 4 6
Urgent Bit AC;“e"n":';‘zg' push Bit Reset Bit Syncgi’f”'ze Finish Bit
(URG) ey (PSH) (RST) e (FIN)

Figure 12.1: The figure shows the structure of the header in a TCP datagram. Note that it includes sections, such as the
checksum, used to detect and fix errors during the transmission. The TCP flags can help us troubleshoot a connection.

UDP

UDP allows data transmission without establishing a connection. UDP packages have a header with enough information
to be correctly identified and addressed through the network. Some examples are audio/video streaming, and online

video games.

12.3 Sockets

To allow the communication among machines through the network, we need to generate an object which would be
in charge of managing all the necessary information (hostname, address, port, etc.). Sockets are the Python objects
that can handle the connection at a code level. To use sockets, we first need to import the socket module. To
create a socket, we have to pass two arguments: the address family and socket type. There are two kinds of address
families: AF__INET, for IPv4 addresses; and AF_INETG6, for IPv6 addresses. Also there are two types of connections:

SOCK_STREAM, for TCP connections; and SOCK_DGRAM, for UDP connections:

266

CHAPTER 12. NETWORKING

Bit
0 4 8 12 16 20 24 28 32
Source Port Destination Port T
8 Bytes
Length Checksum l
Data
l*— Nibble ——— Byte —»—— Word

Figure 12.2: The figure shows the structure of the header in a UDP datagram. Note that it contains less information
than TCP header. Length includes the number of bits used for header and data.

1 # create_socket.py

3 socket

5 # Create TCP IPv4 socket

6 s = socket.socket (socket.AF_INET,

7 print (s)

socket .SOCK_STREAM)

<socket.socket fd=3, family=AddressFamily.AF_INET,

type=SocketKind.SOCK_STREAM, proto=0,

12.4 Client-Server Architecture

laddr=('0.0.0.0", 0)>

Client-Server architecture corresponds to a network model between machines, in which some computers offer a service

(servers), and others consume the service (clients). Figure 12.3 shows a diagram of this architecture. Clients must

connect to a given server and use the necessary protocols to receive the requested service from it. A server must be

constantly alert to potential client connections, to be able to deliver requested services when it receives connection

attempts. Both sides in the client-server architecture accept TCP and UDP connections. However, both parties must

use the same connection protocol to be able to communicate.

TCP client in Python

The following code shows an example of a TCP client in Python:

1 # tcp_client.py

12.4. CLIENT-SERVER ARCHITECTURE 267

Android

client D
Server

Desktop
client

Laptop
client

Figure 12.3: This figure shows the most common structure of connection between clients and a server. In general, the
connection passes through several machines within the network before reaching the server.

3 socket

4 sys

6 MAX_SIZE = 1024

8§ s = socket.socket (socket.AF_INET, socket.SOCK_STREAM)

11 # Connect to a specify address

12 s.connect (("www.python.org", 80))

13

14 # Send a encoded string asking for the content of the page.
15 # Check https://www.w3.org/Protocols/rfc2616/rfc26l6-secl4
16 #.html#secl4.23

17 # for possible protocol updates.

18 s.sendall ("GET / HTTP/1l.1\r\nHost: www.python.org\r\n\r\n"

268 CHAPTER 12. NETWORKING

19 .encode('ascii'"))

20

21 # Receive the response. The argument indicates the buffer
22 #size

23 data = s.recv (MAX_SIZE)

24

25 # Print received data after decoding

26 print (data.decode('ascii'))

27

28 socket.error:

29 print ("Connection error", socket.error)
30 sys.exit ()

31

32

33 # Close connection

34 s.close ()

HTTP/1.1 301 Moved Permanently

Server: Varnish

Retry-After: O

Location: https://www.python.org/

Content-Length: 0

Accept—-Ranges: bytes

Date: Fri, 27 Jan 2017 21:08:53 GMT

Via: 1.1 varnish

Connection: close

X-Served-By: cache-dfwl838-DFW

X-Cache: HIT

X—-Cache-Hits: 0

X-Timer: S1485551333.542024,VS0,VEO

Public-Key-Pins: max—-age=600; includeSubDomains; pin-sha256=
"WoiWRyIOVNa9ihaBciRSC7XH31iYSOVwUGOIud4PB18="; pin-sha256=
"5C8kvU039KouVrl52D0eZSGf40njo4Khs8tmyT1lV3nU="; pin-sha256=
"5C8kvU039KouVrl52D0eZSGf40njo4Khs8tmyT1V3nU="; pin-sha256=
"1CppFgbkrlJ3EcVFAkeip0+44VaoJUymbnOaEUk7tEU="; pin-sha256=

"TUDnrOME0J30£f7+Y11iBMBVFB4/gJsv5z07IxD9+YoWI="; pin-sha256=

12.4. CLIENT-SERVER ARCHITECTURE

"x4QzPSC810K5/cMjb050m4k3Bw52zBn41TdO/nEW/Td4="";
Strict-Transport-Security: max-age=63072000;

includeSubDomains

TCP server in Python

The following code shows an example of a TCP server in Python:

20

21

22

23

24

25

26

27

28

tcp_server.py

socket

Create a TCP IPv4 socket
s = socket.socket (socket.AF_INET, socket.SOCK_STREAM)
host = socket.gethostname ()

port = 10001

Bind the socker to the host and port

s.bind((host, port))

We ask the operating system to start listening connections through

the socket.

HH R

The argument correspond to the maximun allowed connections.

s.listen (5)

count = 0

Stablish connection

s_client, address = s.accept ()

print ("Connection from:", address)

Prepare message

message = "{}. Hi new friend!\n". (count)

Change encoding and send

s_client.send(message.encode ("ascii"))

269

270 CHAPTER 12. NETWORKING

29

30 # Clonse current connection
31 s_client.close()
32 count += 1

Consider that the server and client must be executed in separated processes. Note that clients are not required to bind
the host and the port, because the operating system implicitly does it in the connect method, assigning a random
port for the client. The only case that needs a bind between a host and a particular port is when the server requires that
the addresses of clients belong to a specific port range. In the server’s case, the port must be linked to the address
because clients must know how to find the server’s exact position to connect to it. The 11 sten method does not work
if the address and the port are not linked. The following code is an example of a client that connects to the previously

created server:

1 # tcp_server—-listener.py

3 socket

5 MAX SIZE 1024

7 s_client = socket.socket (socket.AF_INET, socket.SOCK_STREAM)

9 # Get local machine name

10 host = socket.gethostname ()

11 port = 10001

13 s_client.connect ((host, port))
14 data = s_client.recv (MAX_SIZE)
15 print (data.decode('ascii'))

16 s_client.close()

0. Hi new friend!

UDP client in Python

Given that the UDP protocol does not establish a connection, UDP communication code is much simpler. For example,

to send a client message to a server, we only have to specify the server’s address. Consider that the second argument

12.4. CLIENT-SERVER ARCHITECTURE 271

when creating the socket must be SOCK_DGRAM, for example:

1 # udp_client.py

3 socket

5 MAXSIZE = 2048

7 # Create connection

8 server_name = socket.gethostbyname('localhost")

9 server_port 25000

10 s = socket.socket (socket.AF_INET, socket.SOCK_DGRAM)

12 # Create message
13 message = "Hi, I'm sending this message."

14 target = (server_name, server_port)

16 # Send message

17 s.sendto(message.encode('ascii'), target)

19 # Optionally, we can get back sent information
20 # Also we can get the sender address
21 data, address = s.recvfrom(MAXSIZE)

22 print (data.decode ('utf-8"))

Response for 127.0.0.1

Note that the string is encoded before being sent, to send bytes through the network. In Python 2 this was not necessary
because the encoding was carried out automatically, but in Python 3 the encoding has to be performed explicitly. We

can also receive the whole message fragmented in chunks. The following code shows how to assemble the message:

1 # fragmented.py

3 socket

5 s = socket.socket (socket.AF_INET, socket.SOCK_STREAM)

6 MAX_ SIZE = 1024

272

fragments = []

finish =

finish:
chunk = s.recv (MAX_SIZE)

chunk:

fragments.append (chunk)

Joining original message

message = "".join (fragments)

UDP server in Python

CHAPTER 12. NETWORKING

To implement a server that sends messages using UDP, we only have to care about responding to the same address that

sent the message. The following code shows an example of a server that communicates with the client implemented

before:

1

udp_server.py

socket

MAXSIZE = 2048

server_name = socket.gethostbyname('localhost')

server_port = 25000

s = socket.socket (socket.AF_INET, socket.SOCK_DGRAM)
s.bind(("", server_port))
data, addr = s.recvfrom(MAXSIZE)
print (data.decode('ascii'))
response = "Response for {}". (addr[0])
s.sendto (response.encode ('utf-8"), addr)
Hi, I'm sending this message.

12.5. SENDING JSON DATA 273

12.5 Sending JSON data

In the next example, we see how to generate a server that receives data and sends it back to the client. We then make a
client that sends JSON data and prints it out after the server sends it back. Try this with two computers, one running as

a server and the other as a client.

1 # json_server.py

3 socket

5 MAX_SIZE = 1024

7 host = socket.gethostname ()
8§ port = 12345
9 s = socket.socket (socket.AF_INET, socket.SOCK_STREAM)

10 print (socket.gethostname())

12 s.bind((host, port))
13 s.listen(1l)
14 conn, addr = s.accept()

15 print ('Connected:', addr)

18 data = conn.recv (MAX_SIZE)
19 data:

20

21 conn.sendall (data)

22

23 conn.close()

1 # json_client.py

3 socket
4 sSys
5 json

7 MAX_SIZE = 1024

274 CHAPTER 12. NETWORKING

9 server_host = socket.gethostname ()
10 port = 12345

11 s = socket.socket (socket.AF_INET, socket.SOCK_STREAM)

13 # Info to send as dictionary

14 info = {"name": "Johanna", "female": }

16 # Create a string

17 message = json.dumps (info)

18

19

20 s.connect ((server_host, port))

21

22 socket.gaierror err:

23 print ("Error: Connection error {}". (err))
24 sys.exit ()

25

26 # Send a message as bytes

27 s.sendall (bytes (message, "UTE-8"))

28

29 # Wait for response, then we decode it and convert it to JSON
30 data = Jjson.loads(s.recv (MAX_SIZE) .decode ('UTF-8"))

31 print (data)

32 s.close()

12.6 Sending data with pickle

We can send any Python object serialized with pickle. The following code shows an example of how to connect to
the previous server and to send pickle serialized data. When the bytes come back from the server, we de-serialize

them and create a copy of the instance:

1 # pickle.py
2
3 socket

4 sys

12.6. SENDING DATA WITH PICKLE 275

5 pickle_

7 MAX_SIZE = 1024

9 server_host = socket.gethostname ()

10 port = 12345

11 s = socket.socket (socket.AF_INET, socket.SOCK_STREAM)

14 Person:

15

16 _ init_ (self, name, male):
17 self.name = name

18 self.male = male

19

20

21 person = Person("Sarah",)

22 message = pickle_.dumps (person)

23

24

25 s.connect ((server_host, port))
26

27 socket.gaierror err:

28 print ("Error: Connection error {}". (err))
29 sys.exit ()

30

31 s.sendall (message)

32 data = pickle_.loads(s.recv (MAX_SIZE))
33 print (data.name)

3 s.close()

Recall that pickle has a weakness in the sense that when we de-serialize a pickled object, we may execute arbitrary
code on our computer. We can modify the server’s code to make it do anything we want with the received data or to
send anything back to the clients. We recommend you to connect two computers and play sending back and forth data

to familiarize with sockets.

276 CHAPTER 12. NETWORKING

12.7 Hands-On Activities

Activity 12.1
Description

An internet startup needs to implement a bidirectional chat to communicate their employees. The application must give
the option to become server or client, and you can assume that only a single server and client instance will connect.
The communication flow must be synchronous, in other words, one user must wait for the other’s response to reply.

This application requires that sent messages appear on both endpoints, identifying the sender’s username.

Chapter 13

Web Services

In the previous chapter, we have learned how to use sockets and protocols to establish communication through the
client-server architecture. We also could transfer data between different computers. In this chapter, we will learn how

to create a communication and data transference between computers by using the world wide web.

A Web Service is a grouping of client-server applications that communicate through the web using a specially designed
protocol. We can see this type of service as a function or a black box that can be accessed by other programs via The
Web. For example, let’s consider the HTTP protocol used by internet browsers to get information from a website.
Each time we execute any action within a web browser, a web server send a request to the browser. The server replies
sending the required information (a web page for example), then our browser interprets that page and displays it to us
in a friendly format. Web Services work in a similarly way, but the main difference is that the communication occurs
between applications. Client and server must know the format of the exchanged information. It also helps to develop

applications according to the hardware and keep the same communication structure.

Figure 13.1 shows the example of a house controlled remotely. This house is controllable by different computers
with an internet connection through a web server. This server allows interaction between the house and other devices.
One of the advantages of this model is the simplicity of the interaction between the applications, because of the
independence of the languages used to implement the client and server. Each node can request the server to send
or modify certain parameters of the house. Nodes may publish the information using JSON or XML or using any
other format as well. A protocol bound used as an interface between two or more programs is known as Application
Programming Interface, or API for short. APIs consist of a set of instructions that allows the applications to access

the web.

278

JSON/XML

/
Android =
client /

Heating: turn on
/)
%

JSON/XML

C++ —_
client

Doors: lock

CHAPTER 13. WEB SERVICES

JSON/XML Web
server
% —_
€ /\IP
S
j dasl Naal
A Python House State:

service - Temperature: 18°C
- Lights: on

- Heating: on

- Doors: locked

171
JSON/XML
%

JSON/XML
Python
client
v
iQS - Temperature: 18°C
client - Lights: on

- Heating: on
- Doors: locked
Heating: turn on

Figure 13.1: Diagram of a Web Service. Users interact with the house through clients software. In this example,
clients request information and the Web Server provide a response in a JSON/XML format.

13.1 HTTP

A big part of the architecture in web services relies on the use of the HTTP or Hypertext Transfer Protocol. It

is in charge of providing a layer to do transactions and allow communication between clients and servers. This

protocol allows a higher level of communication when compared to TCP and UDP (see chapter 12). HTTP works as a

request-response protocol in which the client performs a request and the server replies with the required information.

It is a state-less protocol, which means that all commands are executed independently from the previous and future

requests. The operation of this protocol depends on the definition of methods that indicate the action to perform

on a particular resource. Resources could be existing data on the server such as files or entries in a database, or a

dynamically generated output, among others. Version HTTP /1 . 1 defines five methods, described in Table 13.1.

HTTP also consists of a set of status codes whereby they deliver information to the client about the result of its

request. Table 13.2 shows an example of the HTTP message. We defer the read to the following link http:

//www.w3schools.com/tags/ref_httpmessages.asp for more details about these codes.

13.2. REST ARCHITECTURE 279

Table 13.1: HTTP actions

HTTP method | Action

GET Recovers a representation (information and meta-information) of a resource without
changing anything in the server.

HEAD Recovers only the meta-information (header) of a resource.

POST Creates a resource.

PUT Completely replaces a resource.

PATCH Replaces selected attributes of a resource.

DELETE Deletes a resource.

Table 13.2: Some common HTTP status codes

Status code | Description
200 OK. Successful request.
403 Forbidden. The request is accepted, but the server rejects it.
404 Not found. The requested resource was not found.
500 Internal server error.
HTTP Request HTTP Response
GET /resource/resourcel HTTP/1.1 } Request HTTP/1.1 200 OK } Request status
Host: localhost:80 Content-Type: text/html;
User-Agent: my_script.py Header charset=UTF-8 Header
Accep-Encoding: utf-8 Content-Length: 1419
> Blank line } Blank line
{ <IDOCTYPE html>
Id" : 1 <html>
} <h1>Lorem Ipsum</h1>
Body (optional) Body (optional)

Figure 13.2: A simplified structure of the HTTP message. The blank line is intentionally added by the protocol.

13.2 REST architecture

One of the most used architectures for web service interaction is known as Representational State Transfer or simply
REST. This structure uses standard HTTP methods to perform operations on the server. The calls to the server using
REST reply in the format shown in the Figure 13.3, in which:

* The HTTP method corresponds to the action defined in the previous table.

* URI (Uniform Resource Identifier) is the identifier of a resource in a server.

* HTTP Version indicates the version of the protocol used by a request (HTTP v1.1).

280 CHAPTER 13. WEB SERVICES

HTTP Verb SPACE URI SPACE HTTP Version CR LF

GET http://localhost:8080 HTTP/1.1

Figure 13.3: Representation of a request. Blank spaces exists between each part of the request. In the version
HTTP /1.1 the request requires the CR and LF characters at the end.

REST is straightforward and lightweight. The client and server implemented with REST and HTTP can take advantage

of the entire internet infractrmectiire In the Fionre 13 4 we can cee a diaoram nf the REQT architectuire

HTTP Verbs GET PUT POST DELETE

Resource Collection

http://localhost:8080/customers/

Single Resource 1 Single Resource 2

http://localhost:8080/customers/customer_id1 http://localhost:8080/customers/customer_id2

Resource Sub-collection

http://localhost:8080/customers/customer_id1/accounts

Figure 13.4: REST architecture schema. Links represent the resources. The hierarchy can be observed in the figure.
There is no saved information about clients on the server. The request must contain all the necessary information to
get the required resource.

13.3 Client-side Script

In this section, we see from the client viewpoint about how to perform requests to a server that hosts a web service. In
Python, the request s library allows us to interact with several available web services. The library has the necessary

HTTP methods for the REST structure. It also integrates JSON serializing methods as well.

To generate a request by means of GET, we use the get (url) method. For example, in the following script we

generate a client that connects to the Google Image’s API and recovers a query:

13.4. SERVER-SIDE SCRIPT 281

1 # request_google _images.py

3 requests

5 # This URL contains the web service address

6 # and the required parameters

8 # %20 represents a 'space'

10 url = ('https://ajax.googleapis.com' +
11 '/ajax/services/search/images?' +

12 'v=1.0&g=copa%20america%20chilegas_filetype=jpg"')

14 response = requests.get (url)

15 print (response.json())

{" responseData’: None, ’'responseDetails’: ’This API is no longer available.’,

"responseStatus’: 403}

13.4 Server-side Script

To generate a web service we need to work on a Web Framework which lets us build dynamic websites and thus,
manage the events by which the applications will interact. One of the most popular and significant framework
choices for Python is Django (https://www.djangoproject.com/). However, for small applications, a

micro-framework is more than enough. Here is a list of many smaller Python frameworks for web programming:

* Flask: http://flask.pocoo.org/

* Tornado: http://www.tornadoweb.org/en/stable/
* WebPy: http://webpy.org/

* CherryPy: http://www.cherrypy.org/

* Bottle: http://bottlepy.org/docs/dev/index.html

282 CHAPTER 13. WEB SERVICES

To exemplify the creation of a web service without loss of generality, we choose the Flask framework. This micro-
framework is lightweight, easy to use and install, completely written in Python. Its form of encoding let us implement

quickly REST-type web services.

The following example runs a server in the port 8080. By default, the server runs locally in the IP address

127.0.0.1, also referred as localhost:

1 # flask server.py

3 flask

5 app = flask.Flask(__name_)

Originally, webservers used to have index.html as their main page.
For example, http://mysite.com/index.html.

By default, when no .html resource 1is requested

on the URL root, it 1is assumed that will return

the index.html.

Nowadays this structure this folder structure

is preserved but it is created dynamically catching the

¥
=W W R W R W R

route and rendering anything we want.

19 # This route '/' determines the website root.
20 # Similar to the index.html document.

21 Qapp.route('/")

22 index () :
23 '<hl>Welcome to ur Web Service!</hl>"' \
24 '<p>HTML content</p>"

25
26
27 # Add a resource section
28 Qapp.route('/resources')

29 resources_get () :

13.4. SERVER-SIDE SCRIPT

30 "<hl>Resources index</hl>"
31

32

33 # Resource section with arguments

34 Qapp.route('/resources/<resource_id>")

35 resource_id_get (resource_id) :

36 '<p>Looking for resource with id: {}</p>"'. (resource_id)
37

38

39 __name__ == '__main__ ':

40 # Start service as port 8080

41 app.run (port=8080)

283

Thanks to Flask we can start a dynamic web server using just a few lines of code. Once we run our script, we can see

the result of our example in the browser, by typing in the address bar:

e http://localhost:8080/ for the root.

* http://localhost:8080/resources to access our resources.

* http://localhost:8080/resources/1 to access a resource created specifically with 1d:

We can also execute our web service client with the following code:

1 # flask client.py

3 requests

5 r = requests.get ('http://localhost:8080")

6 print('/: {}'. (r.text))

8 r = requests.get('http://localhost:8080/resources’)

9 print('/resources: {}'. (r.text))

11 r = requests.get ('http://localhost:8080/resources/1")

12 print ('/resources/id: {}'. (r.text))

284 CHAPTER 13. WEB SERVICES

/: <hl>Welcome to ur Web Service!</hl><p>HTML content</p>
/resources: <hl>Resources index</hl>

/resources/id: <p>Looking for resouce with id: 1</p>

13.5 Request

From the server’s side, requests are calls from the client in which it is possible to receive arguments for the correspond-
ing resource. These arguments are sent from the client through the methods: GET; POST; PUT and DELETE. Flask
manages the sent data from the calls via the request class. Let’s assume that we have the following service that

allows sending two values to the service and define an operation using the type of resource called:

1 # request.py

3 flask

5 app = flask.Flask(__name_)

8 (vl, v2):

9 vl xx v2
10

11

12 add(vl, v2):

13 vl + v2

15 # Server functions

16 fun_handle = {'pow': , 'add': add}

19 Qapp.route('/api/<api_id>")

20 api_get (api_id):

21 # Request.args contains a dictionary with the
22 # arguments that were sent by the client

23 args = flask.request.args

24 'vl' args 'v2! args:

25 'Error: No values were found'

13.6. REQUEST DATA 285

26

27 # Parse string to integer

28 vl = (args['v1'])

29 v2 = (args['v2'])

30

31 "{0}: {1}'. (api_id, fun_handle[api_id] (vl, v2))
32

33

34 __name___ == '_ _main__ ':

35 # Start service as port 8080

36 app.run (port=8080)

Using our client, we can send arguments to the different functions of the service that the server is running. To transfer

the parameters, we use the params keyword inside the get method.

1 # request_usage.py

3 requests

5 r = requests.get ('http://localhost:8080/api/pow',

6 params={'vl': "'"10', 'v2': '2'})

8§ print (r.text)

10 r = requests.get ('http://localhost:8080/api/add’',

11 params={'vl': "10', 'v2': '2'})

13 print (r.text)

pow: 100
add: 12

13.6 Request Data

Aside from sending values as arguments in the request, it is also possible to send data to the server in JSON format, or

plain text, by using the POST method. Using POST allows, aside from many things, to not leave any local information

286 CHAPTER 13. WEB SERVICES

(cache) from the sent data. It also does not let the data get exposed alongside the URI. Visually, this would be like
seeing the data alongside the address in the search bar of our browser. The negotiation of the sent contents is done

through the HEADER:

1 # request_post_server.py

3 flask

4 json

6 app = flask.Flask(__name_)

9 # This time only POST methods

10 @app.route('/upload', methods=['POST'])

11 api_post () :

12 req = flask.request

13 reqg.headers|['Content-Type'] == 'application/json':
14 with ('post.txt', 'w') fid:

15 json.dump (req. json, fid)

16

17 # Send echo to the client

18 "Echo: {}". (json.dumps (reqg. json))
19

20

21 __name__ == ' main__ ':

22 # Start service as port 8080

23 app.run (port=8080)

1 # request_post_client.py

3 requests

4 json

6 # Data as a form
7 form = {'id': 1,
8 'name': 'Guido',

9 'last_name': 'Van Rossum'}

13.7. RESPONSE

11 # Header declares content type

12 header = {'Content-Type': 'application/json'}

14 # Make the request

15 r = requests.post('http://localhost:8080/upload’,

16 headers=header,

17 data=json.dumps (form))

19 # Status code, 200 is 'OK'
20 print (r.status_code)

21 print (r.text)

200

Echo: {"last_name": "Van Rossum", "id": 1, "name":

13.7 Response

287

As we saw at the beginning of this chapter, to communicate applications, it is easier to use a format or protocol to

send information back and force. Within the most used formats, JSON and XML are among the most popular. In the

specific case of Flask, server response is managed via the Response class. Now, we see a serialization example of

the answer of a server through JSON:

1 # request_response_server.py

3 flask

4 json

5

6

7 get_id():

8 pid = 0

9

10 yield pid
11 pid += 1

13 pid = get_id()

288 CHAPTER 13. WEB SERVICES

16 Person:

17 __init_ (self, name, number):
18 self.name = name

19 self.number = number

20 self. = (pid)

21

22

23 app = flask.Flask(__name_)

24

25

26 # Response to GET method at /api route

27 Qapp.route('/api', methods=['GET'])

28 api_echo():

29 person = Person('Jason Kruger', '20.000.000-0")

30 flask.Response (json.dumps (person.__dict_), status=200)
31

32

33 __name___ == '_ _main__ ':

34 # Start service as port 8080

35 app.run (port=8080)

1 # request_response_client.py

3 requests

5 r = requests.get ('http://localhost:8080/api')

6 print ('{}"'. (r.Jjson()))

8 r = requests.get ('http://localhost:8080/api')

9 print ('{}'. (r.json()))

{’name’ : ’"Jason Kruger’, ’'number’: ’20.000.000-0", ’"id’: 2}

{’name’ : ’"Jason Kruger’, ’'number’: ’20.000.000-0", ’"id’: 3}

13.8. OTHER ARCHITECTURES FOR WEB SERVICES 289

13.8 Other architectures for Web Services

Other architectures to implement web services are XML/RCP and SOAP. Both use HTTP and XML to transfer data.

The XML-RPC protocol (XML for Remote Procedure Call) use HTTP to send requests to the server. Just like in
REST, the client is an application that makes a call to a server giving arguments, which then returns a value. The use
of XML allows the serialization of structures or objects as input and output of the resources. Unlike REST, which uses

representations of resources, XML-RCP performs calls to methods on the server.

The SOAP protocol (Simple Object Access Protocol) uses HTTP or SMTP (Simple Mail Transfer Protocol) as
transport and only XML to define the messages. SOAP allows the use of communication between different platforms,
achieving the specification for Web Services Description Language (WSDL) and Universal Description, Discovery,
and Integration (UDDI). Just like XML-RCP, in the message, it defines the methods that must be executed on the

server. Figure 13.5 shows the interaction between the client and server, following the SOAP architecture.

<m:GetCustomerInfoResponse>
<account>1069</acccount>
</m:GetCustomerInfoResponse>

SOAP service request

A

Service Service
provider consumer

v

XML service resonse

<m:GetCustomerInfoResponse>
<name>Barry & Associates, Inc.</name>
<phone>1-621-456-3476</phone>
<address>2145 Providence Ave.</address>
<city>Santiago</city>
<postalcode>7402402</postalcode>
<country>Chile</country>

</m:GetCustomerInfoResponse>

Figure 13.5: SOAP interaction

The following is an example of a SOAP message (Source: https://en.wikipedia.org/wiki/SOAP):

POST /InStock HTTP/1.1
Host: www.example.org

Content-Type: application/soap+xml; charset=utf-8

290 CHAPTER 13. WEB SERVICES

Content-Length: 299

SOAPAction: "http://www.w3.0rg/2003/05/soap-envelope"

<?xml version="1.0"?>
<soap:Envelope xmlns:soap="http://www.w3.0rg/2003/05/socap-envelope">
<soap:Header>
</soap:Header>
<soap:Body>
<m:GetStockPrice xmlns:m="http://www.example.org/stock">
<m:StockName>IBM</m:StockName>
</m:GetStockPrice>
</soap:Body>

</soap:Envelope>

Chapter 14

Graphical User Interfaces

So far, we have developed programs that interact with the user through the command line, where the user has to call a

Python program by typing its name and adding the sequence of arguments.

Having a visual environment for the program variables and results extremely simplify the interaction between the
user and the application. This kind of environments are known as a Graphical User Interfaces (GUI). Graphical
interfaces are present in various types of devices and platforms, such as web form or a smartphone application. Most,
if not all, graphical user interface based applications use an event management based architecture. Applications
operated by command line perform data input and output at specific times and circumstances established within the
program. However, every time we interact with an application graphically, the program does not know beforehand
when actions will occur. The user may enter data, press a key, move the mouse, or click on any widget within the
interface. Therefore, the code must be written to respond to all these events. It is always possible to design a graphical
interface from the beginning to the end by interacting directly with each pixel. Never the less, there are now optimized
modules that provide generic graphical elements such as buttons, bars, text boxes, and calendars. These modules

greatly facilitate the development of graphical interfaces. In this course, we will focus on the use of PyQz.

14.1 PyQt

PyQt is a Python library that includes several modules that help with the development of graphical interfaces, here we

describe some of the modules included in PyQt:

* QtCore: includes non-GUI functionalities like file and directory management, time, and URLSs, among others.

* QtGui: includes visual components such as buttons, windows, drop-down lists, etc.

292 CHAPTER 14. GRAPHICAL USER INTERFACES
* QtNetwork: provides classes to program graphical applications based on TCP/IP, UDP, and some other network
protocols.
* QtXml: includes XML file handling functionalities.
* QtSvg: provides classes to display vector graphics files (SVG).
* QtOpenGL: contains functions for 3D and 2D graphics rendering using OpenGL.
* QtSql: includes functionalities for working with SQL databases.
To create a window we use the QtGui module. The first step is to build the application that will contain the window
and all its elements or Widgets. This procedure is done through the QApplication class, which includes event loop,
application initialization and closing, input arguments handling, among other responsibilities. For every application

that PyQt uses, there is only one QApplication object regardless of the number of windows that this application

has.

3 PyQt4 QtGui

4

5

6 MiForm (QtGui.QWidget) :

7 # The next line defines the window geometry.

8 # Parameters: (x_top_left, y top left, width, height)
9 self.setGeometry (200, 100, 300, 300)

10 self.setWindowTitle ('My First Window') # Optional
11

12

13 __name__ == ' _main_ ':

14 app = QtGui.QApplication([])

15 form = MiForm{()

16 form.show ()

17 app.exec_ ()

The Qt Gui.QWidget class from which the MyForm class descends, is the base class for all objects in PyQt. The
constructor for this class has no default parents, in which case corresponds to an empty window. We also have to

define the window properties, so far only defined in memory. To display the window on the screen, we must use the

14.1. PYQT 293

show () method. Finally, the exec_ () method executes the main loop to perform the event detection. The result of

the above code corresponds to the clear interface as shown in Figure 14.1.

[X N) My First Window

Figure 14.1: Example of an empty window generated by PyQt.

In PyQt there are useful objects or Widgets to control information input and output in graphical interfaces. These are
labels and text boxes. Labels are used to display form variables or static strings. In PyQt these are represented by the
QLabel class. Text boxes also allow text handling in the interface, primarily as a means of entering data into the

form. In PyQt interface they are created by QLineEdit class:

1 # codes_2.py

3 PyQt4 QtGui

4

5

6 MiForm (QtGui.QWidget) :
7 __init_ (self):

8 () e__init__ ()

9 self.init_GUI ()

11 init_GUI (self) :

12 # Once the form 1is called, this method initializes the
13 # interface and all of its elements and Widgets

14

15 self.labell = QtGui.QLabel ('Text:', self)

16 self.labell.move (10, 15)

294

20
21
2
23
24
25
26
27
28

29

31
32
33
34

35

CHAPTER 14. GRAPHICAL USER INTERFACES

self.label2 = QtGui.QLabel ('This label is modifiable', self)

self.label2.move (10, 50)

self.editl = QtGui.QLineEdit ('', self)

self.editl.setGeometry (45, 15, 100, 20)

Adds all elements to the form

self.setGeometry (200, 100, 200, 300)

self.setWindowTitle ('Window with buttons')

name ==

A\l

main

app = QtGui.QApplication([])

A window that inherits from QMainWindow is created

form = MiForm{()

form.show ()

app.exec_ ()

The code above clarifies how to use Labels and LineEdits within the GUI. Figure 14.2 shows the results.

® ® ® Window with butt...

Rmt|

This label is variable

Figure 14.2: Example of a QLabel within a Widget.

PyQt also includes several useful graphical objects to control the interface. = The most basic is the

PushButton (label,

father,

function) element, which embeds a button in the window. The result

14.1. PYQT 295

generated by the code below is a window with a button as shown in the Figure 14.3.

1 # codes_3.py

3 from PyQt4 import QtGui

6 class MyForm(QtGui.QWidget) :

7 def _ init_ (self):
8 super () .__init__ ()
9 self.init_GUI ()

11 def init_GUI (self):

12 # Once the form 1is called, this method initializes the

13 # interface and all of its elements and Widgets

14 self.labell = QtGui.QLabel ('Text:', self)

15 self.labell.move (10, 15)

16

17 self.label?2 = QtGui.QLabel ('Write the answer here', self)
18 self.label2.move (10, 50)

19

20 self.editl = QtGui.QLineEdit ('', self)

21 self.editl.setGeometry (45, 15, 100, 20)

22

23 # The use of the & symbol at the start of the text within
24 # any button or menu makes it so the first letter is shown
25 # in bold font. This visualization may depend on the used
26 # platform.

27 self.buttonl = QtGui.QPushButton('&Process', self)

28 self.buttonl.resize(self.buttonl.sizeHint ())

29 self.buttonl.move (5, 70)

30

31 # Adds all elements to the form

32 self.setGeometry (200, 100, 200, 300)

33 self.setWindowTitle ('Window with buttons')

34 self.show()

296 CHAPTER 14. GRAPHICAL USER INTERFACES

35

36

37 __name__ == '_ _main__ ':
38 app = QtGui.QApplication([])
39
40 # A window that inherits from QMainWindow 1s created
41 form = MyForm()
42 form.show ()
43 app.exec_ ()

[X) Window with butt...

Text: |

Write your answer here

Process
Figure 14.3: A simple window with a button.

Main Window

Windows created by QWidget correspond to windows that may contain other Widgets. PyQt offers a more complete
type of window called MainWindow. It creates the standard skeleton of an application including a status bar, toolbar,

and menu bar, as shown in the Figure 14.4.

The status bar allows us to display application status information. To create this, the statusBar () method (belongs
to QApplication class) is used. Messages in the status bar are updated when the user interacts with the rest of
the application. The menu bar is a typical part of a GUI-based application. It corresponds to a group of structured
and logically grouped commands inside of menus. The toolbar provides quick access to the most frequently used
commands. Finally, the Central Widget or core content area corresponds to the body of the window. It may contain

any Widget in QrGui, as well as one of the forms created in the previous examples. To add this Widget or form to

14.1. PYQT

Icon Title bar

Menu bar

Tool bar

Central Widget

Figure 14.4: Diagram of the classic MainWindow layout.

297

the central Widget, the setCentralWidget (Widget) method must be used. The next example shows how to

integrate the elements described in the main window:

1 # codes_4.py

3 from PyQt4 import QtGui

6 class MainForm(QtGui.QMainWindow) :

7 def _ init_ (self):

8 super () .__init__ ()

9

10 # Configures window geometry

11 self.setWindowTitle ('Window with buttons')

12 self.setGeometry (200, 100, 300, 250)

13

14 # Action definitions

15 see_status = QtGui.QAction (QtGui.QIcon (None),

17 see_status.setStatusTip('This is a test item')

'&Change

'Status’',

self)

298 CHAPTER 14. GRAPHICAL USER INTERFACES

18 see_status.triggered.connect (self.change_status_bar)

19

20 exit = QtGui.QAction (QtGui.QIcon ()y, '&Exit', self)

21 # We can define a key combination to execute each command
22 exit.setShortcut ('Ctrl+Q")

23 # This method shows the command description on the status bar
24 exit.setStatusTip('End the app')

25 # Connects the signal to the slot that will handle this event
26 exit.triggered.connect (QtGui.gApp.quit)

27

28 # Menu and menu bar creation

29 menubar = self.menuBar ()

30 file_menu = menubar.addMenu('&File') # first menu

31 file_menu.addAction (see_status)

32 file_menu.addAction (exit)

33

34 other_menu = menubar.addMenu ('&Other Menu') # second menu
35

36 # Includes the status bar

37 self.statusBar () .showMessage ('Ready')

38

39 # Sets the previously created form as the central widged
40 self.form = MyForm()

41 self.setCentralWidget (self.form)

42

43 change_status_bar (self):

44 self.statusBar () .showMessage ('Status has been changed')

45

46

47 MyForm (QtGui.QWidget) :

48 __init_ (self):

19 ()._init_ ()

50 self.init_GUI ()

51

52 init_GUI (self) :

14.1. PYQT

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

71

78

79

80

82

83

84

85

nam

app

form

form

app.

299

self.labell = QtGui.QLabel ('Text:', self)

self.labell.move (10, 15)

self.label2 = QtGui.QLabel ('Write the answer here', self)

self.label2.move (10, 50)

self.editl = QtGui.QLineEdit ("', self)

self.editl.setGeometry (45, 15, 100, 20)

self.buttonl = QtGui.QPushButton('&Process', self)
self.buttonl.resize (self.buttonl.sizeHint ())

self.buttonl.move (5, 70)

self.setGeometry (200, 100, 200, 300)
self.setWindowTitle ('Window with buttons')

self.show()

button_pressed(self) :
sender = self.sender()
self.label3.setText ('Signal origin: {0}". (sender.text ()))

self.label3.resize(self.label3.sizeHint ())

buttonl_callback (self) :
self.label2.setText ("{}"'. (self.editl.text ()))

self.label2.resize(self.label2.sizeHint ())

e == '_ main__ ':

= QtGui.QApplication([])

= MainForm()
.show ()

exec_ ()

300 CHAPTER 14. GRAPHICAL USER INTERFACES

14.2 Layouts

Layouts allow a more flexible and responsive way to manage and implement Widget distribution in the interface
window. Each Widget’s move (x, y) method allows absolute positioning of all objects in the window. However, it
has limitations, such as; Widget position does not change if we resize the window, and Application’s look will vary on

different platforms or display settings.

To avoid redoing the window for better distribution, we use box layouts. Two basic types allow Widget horizontal
and vertical alignment: QtGui.QHBoxLayout () and QtGui.QVBoxLayout (). In both cases, Widgets are
distributed within the layout occupying all available space, even if we resize the window. Objects must be added to each
layout by the addWidget method. Finally, the box layout must be loaded to the window as self.setLayout ().
We can add the vertical alignment of objects by including the horizontal layout within a vertical layout. The following
code shows an example of how to create a layout such that three Widgets are aligned in the bottom right corner. Figure

14.5 shows the output:

1 # codes_b5.py

2

3 PyQt4 QtGui

4

5

6 MainForm (QtGui.QMainWindow) :
7 __init__ (self):

8 () .__init__ ()

9

10 # Window geometry

11 self.setWindowTitle ('Window with buttons')

12 self.setGeometry (200, 100, 300, 250)
13

14 self.form = MiForm()

15 self.setCentralWidget (self.form)

16

17

18 MiForm (QtGui.QWidget) :

19 __init__ (self):

20 ().__init_ ()

21 self.init_GUI ()

14.2. LAYOUTS

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

45

46

47

48

49

50

51

53

54

55

56

init_GUI (self):
self.labell = QtGui.QLabel ('Text:"',

self.labell.move (10, 15)

self.editl = QtGui.QLineEdit ('', self)

self.editl.setGeometry (45, 15, 100,

self.buttonl = QtGui.QPushButton('s&Calculate',

self.buttonl.resize(self.buttonl.sizeHint ())

301

self)

QHBoxLayout () and QVBoxLayout () are created and added to the

Widget list by using the addWidget () method.

The stretch /()

method includes a spacing that expands the layout towards

the right and downwards.
hbox = QtGui.QHBoxLayout ()
hbox.addStretch (1)
hbox.addWidget (self.labell)
hbox.addWidget (self.editl)

hbox.addWidget (self.buttonl)

vbox = QtGui.QVBoxLayout ()
vbox.addStretch (1)

vbox.addLayout (hbox)

The vertical layout contains the horizontal layout

self.setLayout (vbox)

name == main__ ':

app = QtGui.QApplication([])

form = MainForm()
form.show ()

app.exec_ ()

302 CHAPTER 14. GRAPHICAL USER INTERFACES

® ® ® Window with buttons ® ® ® Window with buttons

Text: | Calculate

Text: || Calculate

(a) (b)

Figure 14.5: This figure shows the possible results after executing the code above. (a) Shows only using
QHBoxLayout. (b) Shows using QHBoxLayout and QVBoxLayout.

PyQt includes a class to distribute widgets in a matrix-like grid within the window, called QGridLayout (). This
type of layout divides the window space into rows and columns. Each Widget must be added to a cell in the grid by
using the addWidget (Widget, i, Jj) method. For example, the following code shows an example to create a

matrix similar to a mobile phone keypad buttons. The output can be seen in Figure 14.6.

1 # codes_6.py

3 MyForm (QtGui.QWidget) :

4 __init_ (self):

5 () .__init__ ()

6 self.init_GUI ()

7

8 init_GUI (self):

9 # Creating the grid that will position Widgets in a matrix
10 # like manner

11 grid = QtGui.QGridLayout ()

12 self.setLayout (grid)

13

14 values = ['1', '2', '3",
15 4, '5', 'e6',

14.3.

20

21

22

23

24

25

26

27

28

29

30

31

32

EVENTS AND SIGNALS 303

positions = [(i, 3J) i (4) J (3)1
_positions, value (positions, values):
value == "'

The = symbol allows unpacking _positions as
independent arguments
button = QtGui.QPushButton (value)

grid.addWidget (button, *_positions)

self.move (300, 150)

self.setWindowTitle ('Calculator"')

self.show()

@ ® ® Window with buttons

1 2 3
4 5 6
7 8 9
* 0 #

Figure 14.6: Example of numeric keypad using QGridLayout to organize the buttons in a grid.

14.3 Events and Signals

Graphical interfaces are applications focused mainly on handling events. This strategy allows detecting user actions on
the interface asynchronously. The same application can generate events A. In PyQt these events are detected once

the application enters the main loop started by the exec_ () method. Figure 14.6 shows a flowchart comparison

304 CHAPTER 14. GRAPHICAL USER INTERFACES

between a program with a linear structure and a program using GUI-based event handling. In this model there are

three fundamental elements:

» The source of the event: corresponds to the object that generates the change of state or that generates the event
» The event object: the object that encapsulates the change of status through the event.

» The target object: the object to be notified of the status change

Under this model, the event source delegates the task of managing the event to the target object. PyQt, on its 4th
version, uses the signal and slot mechanism to handle events. Both elements are used for communication between
objects. When an event occurs, the activated object generates signals, and any of those signals calls a slot. Slots can be

any callable Python object.

Below, we see a modification to the previous program so that it generates a call to the botonl_callback ()
function, after buttonl is pressed. This is accomplished using the event to send the signal. In the case of buttons,
the signal corresponds to the clicked method. By using the connect () method, communication between objects

involved in the event is set. This method receives a Python callable function, i.e., botonl_callback without ().

1 # codes_7.py

3 MyForm (QtGui.QWidget) :

4 __init__ (self):

5 () .__init__ ()

6 self.init_GUI ()

7

8 init_GUI (self) :

9 self.labell = QtGui.QLabel ('Text:', self)
10 self.labell.move (10, 15)

11

12 self.label2 = QtGui.QLabel ('Write your answer here', self)
13 self.label2.move (10, 50)

14

15 self.editl = QtGui.QLineEdit ('', self)

16 self.editl.setGeometry (45, 15, 100, 20)

18 # Connecting buttonl signal to other object

14.4. SENDER 305

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

self.buttonl = QtGui.QPushButton('&Process', self)
self.buttonl.resize(self.buttonl.sizeHint ())
self.buttonl.move (5, 70)

This object MUST be callable. self.buttonl_callback/()
would not work.

self.buttonl.clicked.connect (self.buttonl_callback)

self.button2 = QtGui.QPushButton ('&Exit', self)

self.button2.clicked.connect (
QtCore.QCoreApplication.instance () .quit)

self.button2.resize (self.button2.sizeHint ())

self.button2.move (90, 70)

self.setGeometry (200, 100, 200, 300)

self.setWindowTitle ('Window with buttons')

buttonl_callback (self) :
This method handles the event

self.label2.setText (self.editl.text ())

14.4 Sender

Sometimes we need to know which of the objects on the form sent a signal. PyQt offers the sender () method. We

can see an example by adding a new label to the form that will display the name of the widget that sends the signal:

1

codes_8.py

init_GUI (self):

self

self.

self.

self.

self.

self.

.labell = QtGui.QLabel ('Text:', self)
labell.move (10, 15)

label2 = QtGui.QLabel ('Write your answer here:', self)

label2.move (10, 50)

label3 = QtGui.QLabel ('Signal origin:', self)
label3.move (10, 250)

306

20
21
2
23
24
25
26
27
28
29

30

32
33
34
35
36
37
38
39
40

41

CHAPTER 14. GRAPHICAL USER INTERFACES

self.editl = QtGui.QLineEdit ('', self)

self.editl.setGeometry (45, 15, 100, 20)

self.buttonl = QtGui.QPushButton('&Process', self)
self.buttonl.resize(self.buttonl.sizeHint ())
self.buttonl.move (5, 70)
self.buttonl.clicked.connect (self.buttonl_callback)

self.buttonl.clicked.connect (self.button_pressed)

self.button?2 = QtGui.QPushButton ('&Exit', self)
self.button2.clicked.connect (QtCore.QCoreApplication.instance () .quit)
self.button2.resize(self.button2.sizeHint ())

self.button2.move (90, 70)

self.setGeometry (200, 100, 300, 300)
self.setWindowTitle ('Window with buttons.')

self.show()

button_pressed(self) :

This method registers the object sending the signal and shows it in
label3 by using the sender () method

sender = self.sender ()

self.label3.setText ('Signal origin: {0}'". (sender.text ()))

self.label3.resize(self.label3.sizeHint ())

buttonl_callback(self) :

self.label2.setText (self.editl.text ())

14.5 Creating Custom Signals

In PyQt it is also possible to define user-customized signals. In this case, we must create the object that will host the

new signal. These signals are a subclass of Qt Core.Q0bject. Within the object the new signal is created as an

14.5.

CREATING CUSTOM SIGNALS

307

instance of the object Ot Core.pygtSignal (). Then, the signal and its handling functions if required, must be

created in the form. The example below shows a simple way to generate a new signal that activates when one of the

buttons is pressed. To emit the signal the emit () method inherited from pygt Signal () is used:

1

20

21

22

23

24

25

26

27

28

29

30

31

32

codes_9.py

sys

PyQt4 QtGui, QtCore

MySignal (QtCore.QObject) :
This class defines the new signal

signal_writer = QtCore.pyqgtSignal ()

MyForm (QtGui.QWidget) :
__init__ (self):
() .__init_ ()

self.initialize_GUI ()

initialize_GUI (self):

self.s = MySignal ()

'signal writer'

self.s.signal_writer.connect (self.write_label)

self.labell = QtGui.QLabel ('Label', self)

self.labell.move (20, 10)

self.resize(self.labell.sizeHint ())

self.setGeometry (300, 300, 290,

150)

self.setWindowTitle ('Signal Emitter")

self.show()

mousePressEvent (self, event):

This method handles when any of the mouse buttons is pressed. It is

defined by default within the app. It can be overwritten according

to how the event should be handled in each app.

308

33
34
35
36
37
38
39
4

41
42
43
44
45

46

47

CHAPTER 14. GRAPHICAL USER INTERFACES

self.s.signal_writer.emit ()

write_label (self) :
self.labell.setText ('Mouse was clicked")

self.labell.resize(self.labell.sizeHint ())

main () :
app = QtGui.QApplication(sys.argv)
ex = MyForm()

sys.exit (app.exec_())

name == '_ _main '

main ()

14.6 Mouse and Keyboard Events

Another way to generate events is through the keyboard and mouse. These events can be handled by overriding two

methods defined in the MainForm: mousePressEvent () and keyPressEvent ().

1

codes_10.py

keyPressEvent (self, event):

self.statusBar () .showMessage ('Key pressed {}'. (event.text ()))

mousePressEvent (self, xargs, #**xkwargs):

self.statusBar () .showMessage ('Mouse click")

14.7 QT Designer

When GUIs have few Widgets, it is easy to create them manually by adding each one with code. However, when

the interface includes a larger number of objects, interactions or controls, the code gets longer and hard to maintain.

Fortunately, PyQt provides a tool called QT Designer that allows building the graphical interface visually. Qt Designer

14.7. QT DESIGNER 309

allows to create each widget in the interface and also gives you control over all the properties of Widgets. Figure 14.7

shows the main view of Qt Designer.

[XoX MainWindow - untitled
[.| Type Here | Object Class
| i D_ L& > |'v MainWindow QMainWindow
v @ centralwidget [| QWidget
— | = g label % QLabel
+ =
- t =E o lineEdit @) QLineEdit
Filte Labeli" H menubar r
_ " " ™ . Aelushes
Group Box
B Scroll Area Filte: Cll-lla = 7
- v -
B ToolBox label : QLabel
Tab Widget Property Value
Ia Siaokad Yidget objectName label
Frame
D Widget enabled
) » geometry [(70, 60), 81 x 20]
MdiArea
@ - » sizePolicy [Preferred, Preferred, 0, 0]
£_§ Dock Widget » minimumSize 0x0
Input Widgets » maximumSize 16777215 x 16777215
% Combo Box » sizelncrement 0x0
F‘r » baseSize 0x0
FontGombo Box palette Inherited
[E Line Edit » font A [.SF NS Text, 13]
AT| TextEdit cursor Iz Arrow
[AT] Piain Text Edit mouseTracking
T focusPolicy NoFocus
\g Spin Box cor iPolicy | DefaultC
[12] Double Spin Box acceptDrops
@ Time Edit » toolTip
= Date Edit L slatusTlQ
= § » whatsThis
(y Date/Time Edit » accessibleName
Q Dial » accessibleDescrip...
i S layoutDirection LeftToRight
gy Hoitzonial Sorol Bar autoFillBackground
[vertical scroil Bar styleSheet
{I= Horizontal Siider > locale English, UnitedStates
» inputMethodHints ImhNone
?’ Vertical Slider e —— -~ —

Figure 14.7: Example of QtDesigner application’s main view.

All QTDesigner’s actions can be controlled from the application menu. There are four major sections in the working
window. On the left side is the Widget Box containing all Widgets that can be added to the form, sorted by type. On
the right side, we can find the Object Inspector which allows displaying the hierarchy of widgets that exist in the form.
Following the Object Inspector is the property editor. Finally, in the center we may find the central Widget that can be

a simple window or form, or a more complex Widget:

Once we add a Widget to the interface, a default name is assigned to the ob jectName field in the property editor.
This name can be changed directly, as shown in figure 14.9. The same name will be the one used to reference the

object from the Python code that handles the interface.

A natural way to see the result without embedding it in the final code is to use Qt Designer’s preview mode, accessed
by pressing Ctrl + R. In this mode the interface created is fully functional. Once the interface is complete, it must be
saved. At that time a file with the . ui extension is created. Then it should be assembled with the Python code that
controls the interface Widgets’ functionalities. To integrate the interface with a given program, we use the uic module.
This allows us to load the interface through the (<interface-name>.ui) method. The function returns a tuple

with two elements: the first is a class named as the window defined in the ob jectName in QtDesigner Property

310 CHAPTER 14. GRAPHICAL USER INTERFACES

Widget Box 8 x Object Inspector & x
‘Falter Object Class A
v MainWindow QMainWindow
v 4
N Layouts < v B centralwidget [7] Qwidget
g Vertical Layout ~ ()] horizentalLayout)] QHBoxLayout
] Horizontal Layout v [ll} horizontalLayout 2 [[J] QHBoxLayout

horizontalSpacer B Spacer

§§§ Grid Layout horizontalSpacer 2 §a@ Spacer

3 Form Layout labell Qabel
v Spacers pushButton a QPushButton
. textol LineEdit
[Béd] Horizontal Spacer s S Qtine ¥
g Vertical Spacer (b)
he Buttons
i X
2%] Push Button EippeE ey) ”
@ Tool Button |Fmer |:%, — /‘:
o Radio Button MainWindow : QMainWindow
p Vall ~
. Check Box reperty sairia
> sizePolicy [Preferred, Preferred, 0, 0]
e Command Link Button S winimunSke 0x0
Dialog Button Box > maximumSize 16777215 x 16777215
v ftem Views (Model-Based) gRseincrement 0x0
— > baseSize 0x0
List View -
P] palette Inherited
1 Tree View > font A_[MS Shell Dig 2, 8] v
(a) (c)

Figure 14.8: This figure shows the main panels available on QtDesigner. (a) Shows the Widget Box. (b) Shows the
Object Inspector. (c) Shows the Property Editor.

Object Inspector -3

Object Class
p— o v e EAT
[3 :nw ndow - untitled 4 B centralwidget [QWidget
ype Here label ® QLabel
textol &) QlineEdit
menubar QMenuBar
* S statusbar QStatusBar
i
Property Editor 8 x
=/

label1 : QLabel

labell

enabled
> geometry [(50, 50), 51 x 16]
b_sizePolicy. I Preferred 0 01 ™

Figure 14.9: An example of how pyqt-designer assigns the object name to a new widget. In this case, the designer
adds a new label call 1abell.

Editor; and the second is the name of the class from where it inherits. Figure 14.10 shows where the name appears in

the MainWindow from the Property Editor.

The following example shows how to perform this procedure with an already created interface. In this case the form
variable will include the tuple: (class ’Ui_MainWindow’ class ’PyQt4.QtGui.QMainWindow’).
The Ui prefix associated with the name of the class containing the interface is assigned by the uic module during
interface loading. Once we loaded the interface, it must be initialized withinthe __init__ () method, located in the

class from where it inherits. This initialization is performed by the setupUi (self) method. Applications’ creation

14.7. QT DESIGNER 311

[JoN] MainWindow - untitled
Type Here Object Class
MainWindow QMainWindow
v § centralwidget [| QWidget
label O Qlabel
lineEdit % QLineEdit
ushButton = QPushButton
gatel} Tk P: vert._vout = QVBoxl avout

Filter -
ilte Ellh — f'

MainWindow : QMainWindow
| Property

objectName | MainWindow

window! ~Norivtogar
enabled
» geometry [(0, 0), 613 x 404]
» sizePolicy [Preferred, Preferred, 0, 0]
» minimumSize 0x0
» maximumSize 16777215 x 16777215
» sizelncrement 0x0
» baseSize 0x0
4 nalatte Inharitard

Figure 14.10: We use a red ellipse to point out that the name that Qt Designer assigns to the class representing the
window is, in this case MainWindow.

must be carried out by using the main program’s structure, seen at the beginning of the explanation of graphical

interfaces:

1 # codes_11.py

3 PyQt4 QtGui, uic

5 form = uic.loadUiType ("gt-designer-label.ui")

6

7

8 MainWindow (form([0], form[1l]):

9 __init_ (self):

10 () ._init__ ()

11 self.setupUi (self) # Interface 1s initialized
12

13

14 __name__ == '__ _main__ ':

15 # Application should be initialized just as if it had been
16 # created manually

17 app = QtGui.QApplication([])

18 form = MainWindow ()

19 form.show ()

20 app.exec_ ()

312 CHAPTER 14. GRAPHICAL USER INTERFACES

Each Widget’s action must be defined by signals and slots as explained before. Figure 14.11 shows an example of an

interface that performs division between two numbers. The button created in Qt Designer displays the result on a label.

20

21

22

[N X | MainWindow - gt-designer-mainwindow.ui XN MainWindow
File Type Here

Numerator 10
| =5.0

[Numerator | Denominator, 2

| | |
\L penomlnatnr: i] Divide
Divide

(a) (b)

Figure 14.11: (a) The design view of the multiplication example. (b) The execution view.

codes_12.py

PyQt4 QtGui, uic

form = uic.loadUiType ("gt-designer-mainwindow.ui")

print (form[0], form[1l])

MainWindow (form[0], form[1l]):
__init_ (self):
() .__init__ ()
OtDesigner created interface is initialized

self.setupUi (self)

Button signal 1is connected

self.pushButtonl.clicked.connect (self.divide)

divide(self):
This function acts as a slot for de button clicked signal
self.label_3.setText ('= ' + (

(self.lineEditl.text()) / (

self.lineEdit2.text ())))

14.7. QT DESIGNER 313

23

24

25 __name__ == '"_ _main__ ':

26 app = QtGui.QApplication([])
27 form = MainWindow ()

28 form.show ()

29 app.exec_ ()

It is easy to include new Widgets that simplify the user interaction within Q¢ Designer. One example is radio buttons,
which allow us to capture user options on the form. Figure 14.12 shows a design form using radio buttons and the

python code used to verify the values.
@ @ MainWindow - [Preview]

Which italian food do you prefer?
Pizza
O Pasta

Done

Figure 14.12: Figure shows an execution of a GUI using radio buttons.
1 # codes_13.py
3 PyQt4 QtGui, uic
5 form = uic.loadUiType ("gt-designer-radiobutton.ui")

6 print (form[0], form[1l])

9 MainWindow (form([0], form[1l]):

10 __init_ (self):

314 CHAPTER 14. GRAPHICAL USER INTERFACES

11 () ._init__ ()

12 self.setupUi (self)

13

14 self.pushButtonl.clicked.connect (self.show_preferences)

15

16 show_preferences (self) :

17 rb_id (1, 3):

18 getattr(self, 'radioButton' + (rb_id)) .isChecked () :
19 option = getattr(self, 'radioButton' + (rb_id)) .text ()
20 print (option)

21 self.label2.setText ('prefers: {0}'. (option))

22 self.label2.resize(self.label2.sizeHint ())

23

24

25 __name___ == '__main__ ':

26 app = QtGui.QApplication([])

27 form = MainWindow ()

28 form.show ()

29 app.exec_ ()

Bibliography

[1] https://docs.python.org/3/1library/functions.html.
[2] http://www.cs.jhu.edu/~s/musings/pickle.html.

[3] Kim Barrett, Bob Cassels, Paul Haahr, David A. Moon, Keith Playford, and P. Tucker Withington. A monotonic
superclass linearization for dylan. In ACM SIGPLAN Notices, volume 31, pages 69-82, 1996.

[4] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms, Third
Edition. The MIT Press, 2009.

[5] Narasimha Karumanch. Data Structure and Algorithmic Thinking with Python. CareerMonk Publications, 2015.

[6] Dusty Phillips. Python 3 object oriented programming. PACKT, 2010.

